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Foreword
Jim Gray, Microsoft, Inc.

This book is a major advance for transaction processing. It synthesizes and
organizes the last three decades of research into a rigorous and consistent pre-
sentation. It unifies concurrency control and recovery for both the page and
object models. As the copious references show, this unification has been the
labor of many researchers in addition to Weikum and Vossen; but this book or-
ganizes that huge research corpus into a consistent whole, with a step-by-step
development of the ideas.

The “classic” books on transaction processing have largely either focused
on the practical aspects or taken a rigorous approach presenting theorems and
proofs. Most have limited themselves to “flat” transactions because the theory
of multilevel transactions was so immature. This is the first book to give an
in-depth presentation of both the theory and the practical aspects of the field,
and the first to present our new understanding of multilevel (object model)
transaction processing.

In reading the book, I was impressed at how much our field has advanced,
and how once-complex ideas are now simply explained once the terminology is
rationalized, and once the proper perspective is set. You will find it possible to
read this book at the superficial level: just following the text, the examples, the
definitions, and the theorems. You will also be able to dive as deep as you like
into the detailed presentation of the results – both the proofs and the programs.
In reviewing the book, I took both perspectives: trying to use it as a reference
by diving into the middle of some chapter and seeing how quickly I could find
the answer to my question. I also took the linear approach of reading the book.
In both cases, the book was very informative and very accessible.

This book is likely to become the standard reference in our field for many
years to come.

ix
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Preface

Teamwork is essential. It allows you to blame someone else.

—Anonymous

The Book’s Mission

For three decades transaction processing has been a cornerstone of modern
information technology: it is an indispensable asset in banking, stock trading,
airlines, travel agencies, and so on. With the new millennium’s proliferation
of e-Commerce applications, business-to-business workflows, and broad forms
of Web-based e-Services, transactional information systems are becoming even
more important. Fortunately, the success of the transaction concept does not
solely rely on clever system implementations, but builds on and leverages sci-
entifically rigorous foundations that have been developed in the research com-
munity. This scientific achievement has most prominently been recognized by
the 1998 Turing Award to Jim Gray for his outstanding, pioneering work on
the transaction concept. It is exactly such a systematic and fundamental under-
standing that will allow us to generalize and extend transactional information
systems toward the evolving new classes of network-centric, functionally rich
applications.

For the above reason this book emphasizes scientific fundamentals of long-
term validity and value, and does not cover specific system products, which tend
to become quickly outdated. The book does, however, put the presented the-
ory, algorithms, and implementation techniques into perspective with practical
system architectures. In this sense, the book is complementary to the systems-
oriented literature, most notably, the “TP bible” by Jim Gray and Andreas
Reuter and the more recent textbook by Phil Bernstein and Eric Newcomer.
Our role model instead is the classic book Concurrency Control and Recovery
in Database Systems, by Phil Bernstein, Vassos Hadzilacos, and Nat Goodman,
which is now out of print. However, the field has made much progress since the
time that book was written, and the transaction concept has become of much
broader relevance beyond the scope of database systems alone. Our book re-
flects the advances of the past decade and the trends in modern IT architectures.

xxi



xxii Preface

Organization of the Book

The two key components of a transactional information system are concurrency
control, to ensure the correctness of data when many clients simultaneously
access shared data, and recovery, to protect the data against system failures. The
book devotes its two major parts, Part II and Part III, to these two components,
organized into 15 chapters altogether. For distributed, multi-tier federations of
transactional servers, we will show that the concurrency control and recovery
components of each server are the major asset toward viable solutions, but
in addition, the coordination of distributed transactions becomes a vital issue
that will be covered in Part IV. These three technically “hard-core” parts are
surrounded by Part I, which contains motivation and background material and
outlines the “big picture” of transactional technology, and Part V, which gives
an outlook on topics that could not be covered (for lack of space and time)
and speculates on future trends. Throughout all five parts, each chapter begins
with a brief section on the goal and overview of the chapter, and concludes
with the sections Lessons Learned, Exercises, and Bibliographic Notes. (Note:
Chapter 20 doesn’t include Lessons Learned or Exercises.)

Guidelines for Teaching

This book covers advanced material, including intensive use of formal mod-
els. So a solid background in computer science in general is assumed, but not
necessarily familiarity with database systems. Whatever knowledge from that
area is needed will be provided within the book itself. It is, in fact, one of our
major points that transactional technology is important for many other areas,
such as operating systems, workflow management, electronic commerce, and
distributed objects, and should therefore be taught independently of database
classes.

The book is primarily intended as a text for advanced undergraduate courses
or graduate courses, but we would also encourage industrial researchers as well
as system architects and developers who need an in-depth understanding of
transactional information systems to work with this book. After all, engineers
should not be afraid of (a little bit of) mathematics.

The book has been class tested at both the University of the Saarland in
Saarbrücken and the University of Münster, and partly also at the University of
Constance, all in Germany, for advanced undergraduate courses. In Saarbrücken
the course was organized in 15 teaching weeks, each with four hours lecturing
and additional student assignments. A possible, approximate breakdown of the
material for this teaching time frame is given below. Since many universities
will allow only two hours of weekly lecturing for such an advanced course, the
material can be divided into mandatory core subjects and optional “high-end”
issues, as suggested in Table P.1 (with the first and last sections of each chapter
always being mandatory and thus omitted in the table).



Preface xxiii

Table P.1 Suggested teaching schedule for 15-week course.

Week Mandatory sections Optional sections

1 Chapter 1: What Is It All About?

Chapter 2: Computational Models
1.2–1.5, 2.2–2.5

2 Chapter 3: Concurrency Control: Notions of Correctness
for the Page Model

3.2–3.5, 3.7–3.8 3.6, 3.9–3.10

3 Chapter 4: Concurrency Control Algorithms
4.2, 4.3.1–4.3.4, 4.4–4.5 4.3.5–4.3.8

4 Chapter 5: Multiversion Concurrency Control
5.2, 5.3.1–5.3.2, 5.5 5.3.3, 5.4

5 Chapter 6: Concurrency Control on Objects: Notions
of Correctness

6.2–6.5 6.6

6 Chapter 7: Concurrency Control Algorithms on Objects

Chapter 8: Concurrency Control on Relational Databases
7.2–7.5 7.6, 8.2–8.4

7 Chapter 9: Concurrency Control on Search Structures

Chapter 10: Implementation and Pragmatic Issues
9.2–9.3, 9.4.1, 10.2–10.3 9.4.2, 9.4.3, 9.5, 10.4–10.7

8 Chapter 11: Transaction Recovery
11.2–11.4, 11.5.1, 11.6–11.7 11.5.2–11.5.3

9 Chapter 12: Crash Recovery: Notion of Correctness

Chapter 13: Page Model Crash Recovery Algorithms
12.2–12.4, 13.2, 13.3.1–13.3.3, 13.4 12.5, 13.3.4

10 Chapter 14: Object Model Crash Recovery
14.2–14.4 14.5

11 Chapter 15: Special Issues of Recovery

Chapter 16: Media Recovery
16.2.1–16.2.2, 16.3.1 15.2–15.6, 16.2.3, 16.3.2, 16.4

12 Chapter 17: Application Recovery
17.2–17.4 17.5

13 Chapter 18: Distributed Concurrency Control
18.2–18.3, 18.4.1–18.4.2, 18.5 18.4.3, 18.6–18.8

14 Chapter 19: Distributed Transaction Recovery
19.2–19.3 19.4

15 Chapter 20: What Is Next?
20.2–20.5
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Table P.2 Suggested teaching schedule for 10-week course.

Week Mandatory sections

1 Chapter 1: What Is It All About?

Chapter 2: Computational Models
1.2–1.4, 2.2–2.5

2 Chapter 3: Concurrency Control: Notions of Correctness for the Page Model
3.2–3.5, 3.7–3.8

3 Chapter 4: Concurrency Control Algorithms
4.2, 4.3.1–4.3.4, 4.4–4.5

4 Chapter 5: Multiversion Concurrency Control
5.2, 5.3.1–5.3.2, 5.5

5 Chapter 6: Concurrency Control on Objects: Notions of Correctness

Chapter 7: Concurrency Control Algorithms on Objects
6.2–6.5, 7.2–7.4

6 Chapter 10: Implementation and Pragmatic Issues

Chapter 11: Transaction Recovery
10.2–10.3, 11.2–11.4, 11.5.1, 11.6–11.7

7 Chapter 12: Crash Recovery: Notion of Correctness

Chapter 13: Page Model Crash Recovery Algorithms
12.2–12.4, 13.2, 13.3.1–13.3.3, 13.4

8 Chapter 14: Object Model Crash Recovery

Chapter 16: Media Recovery
14.2–14.4, 16.2.1–16.2.2, 16.3.1

9 Chapter 17: Application Recovery

Chapter 18: Distributed Concurrency Control
17.2–17.3, 18.2.1–18.2.2, 18.4.1–18.4.2, 18.5

10 Chapter 19: Distributed Transaction Recovery
19.2–19.3

It is also feasible to configure a 10-week course from the book’s mate-
rial. Under such time constraints it is obviously necessary to leave out some
of the most advanced topics. Our subjective recommendations for a 10-week
course, with either four or two hours lecturing per week, are shown in
Table P.2.

Additional teaching materials, most notably, slides for lecturers and solu-
tions to selected exercises are available at www.mkp.com/tis/. We will also offer
errata of the book as we discover our errors. And we’d appreciate comments,
suggestions, and criticisms via email at weikum@cs.uni-sb.de or vossen@uni-
mvenster.de.
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CHAPTER ONE

What Is It All About?

If I had had more time, I could have written you a shorter letter.

—Blaise Pascal

There are two mistakes one can make along the road

to truth—not going all the way, and not starting.

—Buddha

1.1 Goal and Overview

Transaction processing is an important topic in database and information sys-
tems. Moreover, it is rapidly gaining importance outside the context in which it
was originally developed. In this introductory chapter, we discuss why transac-
tions are a good idea, why transactions form a reasonable abstraction concept
for certain classes of real-life data management and related problems, as well
as what can and what cannot be done with the transaction concept.

The transaction concept was originally developed in the context of data- Application
areasbase management systems as a paradigm for dealing with concurrent accesses

to a shared database and for handling failures. Therefore, we start out (in
Section 1.2) by describing typical application scenarios for database and other
information systems in which transactions make sense. The original and most
canonical application example is funds transfer in banking; very similar appli-
cations in terms of functionality and structure have arisen in a number of other
service-providing industries, most notably in the travel industry with its flight,
car, and hotel bookings. All these classical application examples are commonly
referred to as online transaction processing, or OLTP for short. In addition, we
will show that the application area of the transaction concept includes modern
business sectors such as electronic commerce and the management of work-
flows (which are also known as business processes).

In terms of the underlying computer and network infrastructure, we are
typically dealing with distributed systems of potentially large scale and with
possibly heterogeneous, interoperating components. Most often, one of these
components is a database management system or, more specifically, a database
server that processes requests issued by clients (workstations, personal

3
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computers, portable notebooks, PDAs, electronic sensors, and other embedded
systems). It turns out that in today’s diverse information technology landscapes,
mail servers, Web- or intranet-based document servers, and workflow manage-
ment systems also play an increasingly important role and call for transactional
support.

The key problem that the transaction concept solves in a very elegant wayTransaction
concept is to cope with the subtle and often difficult issues of keeping data consistent

even in the presence of highly concurrent data accesses and despite all sorts
of failures. An additional key property of transactions is that this is achieved
in a generic way that is essentially invisible to the application logic (and to
application development), so that application developers are completely freed
from the burden of dealing with such system issues. This is why transactions
are an abstraction concept, and why this concept is a cornerstone of modern
information technology. Section 1.3 will discuss the role of the transaction
concept in state-of-the-art information systems from a strategic viewpoint. We
will introduce a fairly general reference architecture as a bird’s-eye view of the
entire infrastructure that is necessary to implement and deploy an information
system, and we will discuss several variations of this reference architecture
that are commonly used in practice. In particular, we will identify components
that are in charge of managing persistent data under a transaction-oriented
access regime, and we will concentrate on these transactional (data) servers.
We will then discuss, in Section 1.4, the abstract properties that constitute the
transaction concept and the great benefit that these properties provide in the
context of a transactional data server. We will also outline the requirements
on the server’s algorithms in terms of correctness and performance, as well as of
reliability and availability.

By far the most important concrete instantiation of a transactional dataComputational
models server is a database system. However, this is not a book about database sys-

tems. We limit our discussion to topics that are directly and closely related to
transactions, and nothing else. We will briefly survey the kind of knowledge
we expect our readers to have about database systems in Section 1.5. This
will prepare the setting for the introduction of two computational models for
transactional servers in the next chapter.

This chapter, like all subsequent chapters, is wrapped up by summarizing,
in Section 1.6, the key insights that the reader should have obtained from
reading it.

1.2 Application Examples

We begin our exposition with a few examples of applications in which trans-
actional properties can be brought to bear; these scenarios are
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funds transfer in a banking environment, a classical OLTP application,

Web-based electronic commerce (e-Commerce),

travel planning as a workflow example.

From OLTP to
e-Commerce
and workflow

1.2.1 Online Transaction Processing: Debit/Credit Example

Consider the simplified operation of a bank that uses a relational database for
keeping track of its account business. The database contains, among others, a
table named Account that describes bank accounts in terms of their account
ID, associated customer name, identification of the respective bank branch, and
balance. Transactions in the bank are either withdrawals or deposits (which is
why the application is often characterized as consisting of debit/credit transac-
tions), and these transactions are often combined in funds transfers. The typical
structure of a debit/credit program is shown below, using commands of the
standardized database query language SQL and embedding these commands
in a C program. Note the distinction between local variables of the invoked
program and the data in the underlying database that is shared by all programs.
Also note that a realistic, full-fledged debit/credit program may include various
sanity checks against the account data (e.g., for high amounts of withdrawals)
between the SQL Select command and the subsequent Update step.

/* debit/credit program */

void main()

{

EXEC SQL BEGIN DECLARE SECTION;

int accountid, amount; /* input variables */

int balance; /* intermediate variable */

EXEC SQL END DECLARE SECTION;

/* read user input */

printf(“Enter Account ID, Amount

for deposit (positive) or withdrawal (negative):”);

scanf(“%d%d”, &accountid, &amount);

/* determine current balance of the account,

reading it into a local, intermediate, variable of the

program */

EXEC SQL Select Account Balance Into :balance

From Account

Where Account Id = :accountid;

/* add amount (negative for withdrawal) */

balance = balance + amount;

/* update account balance in the database */
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EXEC SQL Update Account

Set Account Balance = balance

Where Account Id = :accountid;

EXEC SQL Commit Work;

}

Assume the bank operates in a traditional way, with various tellers at its
local branches executing transactions. However, the role of a teller’s termi-
nal could also be replaced by a customer’s PC equipped with home banking
software, the credit card reader of a merchant, or some other form of smart
cybercash carrier. We will generally refer to these as “clients” and will disregard
the details of the client software, as these are irrelevant to the server on which
the database resides.

With a huge number of clients potentially issuing simultaneous requestsConcurrency
and parallelism
→ concurrency

control
techniques for

isolation

to the bank’s database server, concurrent (i.e., overlapping in time) or even
parallel (i.e., on multiple processors) execution of multiple debit/credit
transactions is mandatory in order to exploit the server’s hardware resources.
For example, while the server is waiting for the completion of a disk I/O on
behalf of one transaction, its CPU should be utilized to process another trans-
action; similarly, multiple transactions should be processed in parallel on a
multiprocessor machine. Thus, the “outside world” of an individual transaction
is continuously changing as concurrently executing transactions are modify-
ing the underlying database of the banking application. In order to be able to
ignore the potential fallacies of this concurrency, it is therefore desirable that
each transaction be executed in an isolated manner, that is, as if there were
no other transactions and hence no concurrency. We will show that this ten-
sion between concurrency for the sake of performance, on the one hand, and
potential sequential execution for the sake of simplicity and correctness, on
the other, is reconciled by the concurrency control techniques of a transactional
server.

The following scenario illustrates that concurrency is indeed trickier than
it may seem at first glance, and that it may have a disastrous impact on the
consistency of the underlying data and thus the quality of the entire information
system, even if each individual transaction is perfectly correct and preserves
data consistency.

EXAMPLE 1.1

Consider two debit /credit transactions (i.e., invocations of the debit /

credit program outlined above) that are concurrently executed by processes

P1 and P2, respectively, both operating on the same account x (i.e., the

value of the program’s input variable “accountid”). To distinguish the two

different instances of the local program variable “balance” that temporarily
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holds the value of the account balance, we refer to them as balance1 for

process P1 and balance2 for P2. For simplicity, we ignore some syntactic

details of the embedded SQL commands. The first transaction intends to

withdraw $30, and the second transaction intends to deposit $20. We as-

sume that the initial account balance is $100. The table below shows those

parts of the two transactions that read and modify the account record.

P1 Time P2

/* balance1 = 0, x.Account Balance = 100, balance2 = 0 */

Select Account Balance

Into :balance1 From Account 1

Where Account Id = x

/* balance1 = 100, x.Account Balance = 100, balance2 = 0 */

Select Account Balance

2 Into :balance2 From Account

Where Account Id = x

/* balance1 = 100, x.Account Balance = 100, balance2 = 100 */

balance1 = balance1 − 30 3

/* balance1 = 70, x.Account Balance = 100, balance2 = 100 */

4 balance2 = balance2 + 20

/* balance1 = 70, x.Account Balance = 100, balance2 = 120 */

Update Account

Set Account Balance = :balance 5

Where Account Id = x

/* balance1 = 70, x.Account Balance = 70, balance2 = 120 */

Update Account

6 Set Account Balance = :balance2

Where Account Id = x

/* balance1 = 70, x.Account Balance = 120, balance2 = 120 */

Upon completion of the execution, the balance of account x, as recorded in

the persistent database, will be $120, although it should be $90 after exe-

cution of the two transactions. Thus, the recorded data no longer reflects re-

ality and should be considered incorrect. Obviously, for such an information

system to be meaningful and practically viable, this kind of anomaly must

be prevented by all means. Thus, concurrent executions must be treated

with extreme care. Similar anomalies could arise from failures of processes

or entire computers during the execution of a transaction, and need to be

addressed as well.

A second fundamentally important point is that the various accesses that
a transaction has to perform need to occur in conjunction. In other words,
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once a transaction has started, its data accesses should look to the outside
world as an atomic operation that is either executed completely or not at
all. This property of atomicity will turn out to be a crucial requirement on
database transactions. Moreover, this conceptual property should be guaran-
teed to hold even in a failure-prone environment where individual processes
or the entire database server may fail at an arbitrarily inconvenient point in
time. To this end, a transactional server provides recovery techniques to cope
with failures. In addition to ensuring transaction atomicity, these techniques
serve to ensure the durability of a transaction’s effects once the transaction is
completed.

The following scenario illustrates that atomicity is a crucial requirement

Failures
→ recovery

techniques for
atomicity and

durability

for being able to cope with failures.

EXAMPLE 1.2

Consider the following funds transfer program, which transfers a given

amount of money between two accounts, by first withdrawing it from a

source account and then depositing it in a target account. The program

is described in terms of SQL statements embedded into a host program

written in C.

/* funds transfer program */

void main()

{

EXEC SQL BEGIN DECLARE SECTION;

int sourceid, targetid, amount; /* input variables */

EXEC SQL END DECLARE SECTION;

/* read user input */

printf(“Enter Source ID, Target ID, Amount to be

transferred:”);

scanf(“%d %d %d”, &sourceid, &targetid, &amount);

/* subtract desired amount from source */

EXEC SQL Update Account

Set Account Balance = Account Balance - :amount

Where Account Id = :sourceid;

/* add desired amount to target */

EXEC SQL Update Account

Set Account Balance = Account Balance + :amount

Where Account Id = :targetid;

EXEC SQL Commit Work;

}

Now assume that the above funds transfer program has started execut-

ing and has already performed its first update statement, withdrawing the
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specified amount of money from the source. If there is a computer hardware

or software failure that interrupts the program’s execution at this critical

point, the remaining second part will not be performed anymore. Thus, the

target account will not receive the money, so that money is effectively lost

in transit.

A recovery procedure, to be invoked after the system is restarted, could

try to find out which updates were already made by ongoing transaction

program executions and which ones were not yet done, and could try to fix

the situation in some way. However, implementing such recovery procedures

on a per-application-case basis is an extremely difficult task that is itself

error prone by its mere complexity, especially because multiple transactions

issued by different programs may have accessed the data at the time of the

failure. So rather than programming recovery in an ad hoc manner for each

application separately, a systematic approach is needed.

System-provided recovery that ensures the atomicity of transactions greatly

simplifies the understanding of the postfailure state of the data and the

overall failure handling on the application side. In the example scenario,

rather than being left with the inconsistent state in the middle of the trans-

action, the system recovery should restore the state as of before the trans-

action began. On the other hand, if the transaction had already issued its

“commit transaction” call and had received a positive returncode from the

system, then the “all” case of the all-or-nothing paradigm would apply, and

the system would henceforth guarantee the durability of the transaction’s

complete funds transfer.

The above conceptual properties of a transaction—namely, atomicity, dura-
bility, and isolation—together provide the key abstraction that allows applica-
tion developers to disregard concurrency and failures, yet the transactional
server guarantees the consistency of the underlying data and ultimately the
correctness of the application. In the banking example, this means that no
money is ever lost in the jungle of electronic funds transfers and customers
can perfectly rely on electronic receipts, balance statements, and so on. As we
will show in the next two application scenarios, these cornerstones for building
highly dependable information systems can be successfully applied outside the
scope of OLTP and classical database applications as well.

1.2.2 Electronic Commerce Example

In today’s information landscape, client requests may span multiple data-
bases and other information sources across enterprise boundaries, yet the mu-
tual consistency of all this data is crucial and thus important to maintain. Then,
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the resulting transactions operate in a distributed system that consists of multi-
ple servers, often with heterogeneous software. As a concrete example of such
a modern setting, consider what happens when a client intends to purchase
something from an Internet-based bookstore; such applications are known as
electronic commerce (e-Commerce).

The purchasing activity proceeds in the following steps:

1. The client connects to the bookstore’s server through an appropriate
Internet protocol, and starts browsing and querying the store’s catalog.

2. The client gradually fills an electronic shopping cart with items that she
intends to purchase.

3. When the client is about to check out, she reconsiders the items in
her shopping cart and makes a final decision on which items she will
purchase.

4. The client provides all the necessary information for placing a defini-
tive (and legally binding) order. This includes her shipping address and
information on her credit card or some other valid form of cybercash.
The latter information may be encrypted such that the merchant can
only verify its authenticity, but possibly without being able to actually
decrypt the provided data.

5. The merchant’s server forwards the payment information to the cus-
tomer’s bank, credit card company, or some other clearinghouse for
cybercash. When the payment is accepted by the clearinghouse, the
shipping of the ordered items is initiated by the merchant’s server, and
the client is notified on the successful completion of the e-Commerce
activity.

So why are transactions and their properties relevant for this scenario? It
is obviously important to keep certain data consistent, and this data is even
distributed across different computers. The consistency requirement is already
relevant during the catalog browsing phase when the user fills her shopping
cart, as the client’s view of the shopping cart should ideally be kept consistent
with the shopping cart contents as maintained by the merchant’s server. Note
that this should be satisfied in the presence of temporary failures at the client
or the server side (e.g., a software failure of a client or server process) and
also network failures (e.g., undelivered messages due to network congestion).
Further note that this seemingly simple requirement may transitively involve
additional data, say, on the inventory for the selected items, which could reside
on yet another computer.

While it could be argued that data consistency is merely an optional luxury
feature for the shopping cart contents and does not necessarily justify the use
of advanced technology like transactions in the technical sense of this book, a
very similar situation arises in the last step of the entire activity. There, it is
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absolutely crucial that three parties agree on the data that tracks the overall
outcome:

The merchant’s server must have records on both the order and the
successfully certified payment.

At the same time, the clearinghouse must have a record on the payment,
as its approval may be requested again later, or the clearinghouse may
be responsible for the actual money transfer.

Finally, the client must have received the notification that the ordered
items are being shipped.

When these three effects on three different computers are known to be
atomic, confidence in the correct processing of such e-Commerce activities is
greatly increased. Conversely, when atomicity is not guaranteed, all sorts of
complicated cases arise, such as the merchant shipping the items but the clear-
inghouse losing all records of its cybercash approval and ultimately not being
able to reclaim the money. Similarly, when the customer is never informed
about the shipping and the resulting money transfer, she may order the items
again from a different merchant, ending up with two copies of the same book.
Even worse, the customer may receive the shipped items and keep them, but
pretend that she never ordered and never received them. Then, it is obviously
important for the entire e-Commerce industry to rely on atomicity guarantees
in order to prove a customer’s order when it comes to a lawsuit.

Similar, yet more involved arguments can be brought up about isolation
properties, but the case for transactions should have been made sufficiently
clear at this point. Of course, we could deal with inconsistent data among the
three computers of our scenario in many other ways as well. But the decisive
point is that by implementing the last step of the activity as a transaction, all
the arguments about atomicity in the presence of failures can be factored out,
and the entire application is greatly simplified.

So this example has indeed much more in common with the debit/
credit scenario than it might have seemed at first glance. There are, however,
a number of important differences as well, and these nicely highlight the po-
tential generalization of the transaction concept beyond the classical setting of
centralized database applications:

The entire application is distributed across multiple computers, and the
software may be heterogeneous in that different database systems are
used at the various servers. (Of course, the hardware is likely to be
heterogeneous, too, but this is mostly masked by the software and thus
less relevant.)

The servers are not necessarily based on database systems; they may as
well be some other form of information repository or document manage-
ment servers in general.
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The effects of a transaction may even include messages between com-
puters, for example, the notification of the customer. So transactions are
not limited to what is usually perceived as “stored data.”

We will show in this book that transaction technology can cope well with
all these additional, challenging aspects of modern applications. It will take us
to some of the advanced material, however, to cover all issues.

1.2.3 Workflow Management: Travel Planning Example

A final and most challenging application class that we consider is so-called work-
flows, also known as (the computerized part of) business processes. A workflow
is a set of activities (or steps) that belong together in order to achieve a certain
business goal. Typical examples would be the processing of a credit request or
insurance claim in a bank or insurance company, respectively; the work of a pro-
gram committee for a scientific conference (submissions, reviews, notifications,
etc.); the administrative procedures for real estate purchase; or the “routing”
of a patient in a hospital. To orchestrate such processes, it is crucial to specify
(at least a template for) the control flow and the data flow between activities,
although it may still be necessary to improvise at run time (e.g., in medical
applications). Making the “flow of work” between activities explicit in that it is
factored out of the entire application is exactly the key leverage from workflow
technology that allows a company or other institution to largely automate the
repetitive, stereotypic parts of its processes while retaining flexibility, and to
quickly adjust these processes to changing business needs.

Activities can be completely automated or based on interaction with a hu-
man user and intellectual decision making. This implies that workflows can be
long lived, up to several days or weeks, or even months and years. A typical
characteristic of workflows is that the activities are distributed across different
responsible persons and different, independent information systems, possibly
across different enterprises. In particular, an activity can spawn requests to an
arbitrary “invoked application” that is provided by some server independently
of the current workflow. Thus, workflow management is essentially an umbrella
for the activities and invoked applications that constitute a particular workflow.
To this end, a workflow management system provides a specification environ-
ment for registering activities and for specifying, in a high-level declarative
way, not only the control and data flow within a process, but also a run-time
environment that automatically triggers activities according to the specified
flow. Workflow management systems with such capabilities are commercially
available and are gaining significant industrial relevance.

As a concrete example of a workflow, consider the activities that are nec-
essary in the planning of a business trip, say, a trip to a conference. Suppose
your manager (or professor) allows you to choose one scientific or developer’s
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conference that you can attend as part of a continuing-education program. This
involves the following activities:

Select a conference, based on its subject, technical program, time, and
place. If no suitable conference is found, the process is terminated.

Check out the cost of the trip to this conference, typically by delegation
to a travel agency.

Check out the registration fee for the conference, which often depends
on your memberships, tutorials that you may wish to attend, and so on.

Compare the total cost of attending the selected conference to the al-
lowed budget, and decide to attend the conference only if the cost is
within the budget.

With the increasing costs of conferences and ever tighter travel budgets
(at the time this book was written), it is desirable to allow several trials with
different conferences, but the number of trials should be limited, in order
to guarantee termination of the entire process. The activities and the control
flow between them are graphically depicted in Figure 1.1. This illustration is
based on a specification formalism known as statecharts, which is one partic-
ular kind of formal specification method that might be used by a workflow
management system. Each oval denotes a state in which the workflow can
exist during its execution. Each state in turn corresponds to one activity; so

CheckConfFee

CheckTravelCost

Select
tutorials

Compute
fee

Check
airfare

Check
hotel

Select-
Conference

Go

Check-
Cost

No

/Budget : = 1000;
Trials : = 1;

[ConfFound]
/Cost : = 0

[!ConfFound]

/Cost : = [Cost ≤ Budget]
ConfFee +
TravelCost

[Cost > Budget
and Trials ≥ 3]

[Cost > Budget and Trials < 3]/Trials ++

Figure 1.1 Specification of the travel planning workflow.
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the activity is spawned when the state is entered. The activity may then in-
voke further application programs. When the workflow is started, a specified
initial state (a state without predecessors) is entered, and the workflow termi-
nates when a final state (a state without successors) is reached. In the example,
the initial state is the SelectConference state, and the final states are Go

and No.
The transitions between states are governed by event-condition-action

rules that are attached to the transition arcs as labels. The meaning of a rule
of the form E[C ] /A is that the transition fires if event E has occurred and
condition C is true in the current state. Then the current state is left and the
state where the transition arc points to is entered; during this transition the
specified action A is performed. In the example, we only make use of condi-
tions and actions. Both refer to a small set of variables (instantiated for each
workflow instance) that are relevant for the control flow. This kind of control
flow specification allows conditional execution as well as loops based on high-
level predicates. The entire specification can be hierarchical, thus supporting
both top-down refinement and bottom-up composition of existing building
blocks, by allowing states to be nested. So a state can in turn contain another
statechart that is executed when the state is entered. In addition, the specifi-
cation formalism allows parallel execution, which is graphically indicated by
breaking a state down into two or more orthogonal statecharts, separated by a
dashed line, that are executed in parallel. In the example, the activities that
correspond to the two states CheckConfFee and CheckTravelCost are exe-
cuted in parallel. These two states are further refined into several steps, where
CheckTravelCost again leads to two parallel substates.

Although the example scenario is still largely oversimplified, the above
discussion already indicates some of the semantically rich process design is-
sues that accompany workflow management. Here we are interested in the
connection between workflows and transactions, and how a workflow applica-
tion could possibly benefit from transaction-supporting services. The answer is
threefold and involves different stages of transactional scope:

The activities themselves can, of course, spawn requests to information
systems that lead to transactional executions in these systems. This is
almost surely the case with the CheckTravelCost activity. The travel
agency’s invoked application would typically issue transactions against
the reservation systems of airlines and hotels. In fact, it seems to make
sense that this activity not only figures out the prices, but also makes
reservations in the underlying information systems. Obviously, booking
a flight to a certain city and a hotel room in that city makes sense only if
both reservations are successful. If either of the two is unavailable, the
whole trip no longer makes sense. So these two steps need to be tied
together in a single transaction. Note that this transaction is a distributed
one that involves two autonomous information systems.
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The outcome of the above reservations affects the further processing
of the workflow. The requests against the various information systems
would return status codes that should be stored in variables of the work-
flow and would be relevant for the future control flow. For example, not
being able to make one of the two necessary reservations in the selected
city should trigger going back to the initial SelectConference state
for another trial. (To keep the example specification simple, this is not
shown in Figure 1.1.) Thus, it is desirable (if not mandatory) that the
modification of the workflow’s variables be embedded in the same trans-
action that accesses the airline and hotel databases. In other words, the
state of the workflow application should be under transactional control as
well. This is an entirely new aspect that did not arise in the banking and
e-Commerce examples. It is questionable whether today’s commercial
workflow management systems can cope with this issue in the outlined,
transactional way. But as we will show, transactional technology does
provide solutions for incorporating application state into atomic pro-
cessing units as well.

We could discuss whether the entire travel planning workflow should
be a single transaction that incorporates all effects on the underlying
information systems as well as the state of the workflow application it-
self. After all, the entire workflow should have an all-or-nothing, atomic
effect. Ideas along these lines have indeed been discussed in the research
community for quite a few years; however, no breakthrough is in sight.
The difficulty lies in the long-lived nature of workflows and the fact
that workflows, like simple transactions, run concurrently. Atomicity is
therefore coupled with isolation properties: the atomicity of a workflow
would imply that no concurrent workflow could ever “see” any partial
effects of it. Regardless of the technical details of how isolation can be
implemented at all (to be covered in great depth in this book), maintain-
ing such isolation over a period of hours, days, or weeks raises questions
about performance problems with regard to the progress of concurrent
workflows. For this reason, the straightforward approach of turning an
entire workflow into a single transaction is absolutely infeasible.

The discussion of the third item above does not imply, however, that the
one-transaction-per-activity approach is the only kind of transactional support
for workflows. Consider the situation when all necessary reservations have been
made successfully, but later it is found that the total cost including the con-
ference fees is unacceptable and it is decided not to attend any conference at
all. Now you hold reservations that may later result in charges to your credit
card, unless you intervene. So you must make sure that these reservations
are canceled. One approach could be to extend the workflow specification by
additional cancellation activities and the necessary control flow. However, it
turns out that cancellation-like activities are fairly common in many business
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processes, and a lot of time would be spent in specifying these kinds of things
over and over again. So a better solution would be to generalize the particular
case at hand into a more abstract notion of compensation activities. Each com-
pensation activity would be tied to one of the regular activities of the workflow
in the sense that their combined effect is a neutral one from the workflow ap-
plication’s viewpoint. Of course, it would still be necessary to provide code
(or a high-level declarative specification) for each compensation activity itself,
but modifications to the workflow’s control flow specification are no longer re-
quired. Instead, the appropriate triggering of compensation activities could be
delegated to the workflow management system. The transactional technology
that we develop in this book does provide the principal means for coping with
compensation issues in the outlined, generic way (as opposed to developing
specific solutions on a per-application basis over and over again).

At this point in the book, the major insight from this discussion is to realize
that the scope of transactions is not a priori fixed and limited to stored data,
but can be (carefully) extended to incorporate various aspects of information
system applications as well.

1.3 System Paradigms

The three application scenarios of Section 1.2 already provide hints on the
various system components that it takes to implement and deploy such appli-
cations in their entirety and on putting them together into a complete system
architecture. In particular, we have seen that we need to separate clients—
that is, the computers or terminals from which a human user generates com-
puter work—from the servers where data and possibly executable programs
reside in various forms. However, this distinction alone is insufficient for char-
acterizing full-fledged modern information systems. We now introduce a more
systematic view of these architectural issues in that we set up a reference ar-
chitecture (or framework) to capture the most typical cases that are used in
practice.

1.3.1 Three-Tier and Two-Tier Architectures

Our reference architecture is illustrated in Figure 1.2. It captures what is mostReference
architecture:

three-tier
system

frequently referred to by practitioners as a three-tier architecture. It consists of a
set of clients (PCs, workstations, notebooks, terminals, digital TV set top boxes,
“intelligent” sensors, etc.) that interact with an application server, which in turn
interacts with a data server.

Clients send business-oriented (or goal-oriented) requests to the appli-
cation server. For example, invoking a debit/credit transaction, starting an



1.3 System Paradigms 17

Users

Clients

Application
server

Data server

Request Reply

Request Reply

Application
program 1

Application
program 2

Objects

Exposed
data

Stored
data
(pages)

Encapsulated
data

Figure 1.2 Reference architecture.

e-Commerce shopping session, or initiating a travel planning workflow would
be concrete examples for such requests. In modern applications, requests are
typically issued from a GUI (Graphical User Interface); likewise, the reply that
the application server will send back is often presented in a graphical way, using
forms, buttons, charts, or even virtual reality–style animations. All this presen-
tation processing, for both input and output, is done by the client. Therefore,
HTML (Hypertext Markup Language), one of the original cornerstones of the
World Wide Web, is a particularly attractive basis for presentation, because
it merely requires that a Web browser is installed on the client side and thus
applies to a large set of clients.

The application server has a repository of application programs in executable

Clients:
presentation
processing

Application
serverform, and invokes the proper program that is capable of handling a client

request. Both the application programs and the entire application server can
be organized in a variety of ways. The programs themselves may be anything
from an old-fashioned terminal-oriented COBOL program to a Java applet or
some other program that generates, for example, a dynamic page.
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Since the number of such programs that need to be provided for a full-
fledged information system application can be very large, a good way of struc-
turing this program repository is to organize the programs according to the
object-oriented paradigm. This means that abstract business objects, such as ac-
counts, customers, or shopping catalogs, are provided as encapsulated objects,
each with an abstract interface that consists of a number of methods that can
be invoked on such an object. The invokable methods are exactly the applica-
tion programs that refer to (and are thus centered around) a business object.
In programming language terms, a business object would be referred to as an
abstract data type (ADT). The implementation of these ADTs, as provided by
the corresponding application programs, may itself invoke methods on other
business objects and issue requests to other servers, particularly, data servers.
To give an application example, modern ERP (Enterprise Resource Planning)
systems like SAP R/3 largely follow this paradigm.

The application server manages the entirety of application programs or

Application
programs and

business objects

Request
brokering business objects in that it spawns execution threads on behalf of client requests,

monitors executions, handles certain generic forms of exceptions, and so on.
It thus constitutes the surrounding run-time system of the invoked programs.
The functionality of this run-time system also usually includes management of
the communication connections between the clients and the application server
itself. Often some form of session is established between a client and the server,
possibly on top of a sessionless protocol such as HTTP (Hypertext Transport
Protocol) of the World Wide Web, and the application server is again in charge
of creating, monitoring, and terminating these sessions. So, in essence, the ap-
plication server can be viewed as a request broker that establishes and maintains
the proper connections between the client requests and the invoked business
object methods (or application programs, in more classical terminology). Tradi-
tionally, so-called TP monitors (Transaction Processing monitors) have been the
commercial incarnation of such request brokers, with specific support for OLTP
applications. In recent years, so-called object request brokers (ORBs) have be-
come popular in this role, based on either the standardized CORBA (Common
Object Request Broker Architecture) model of distributed objects or the indus-
try de facto standards DCOM (Distributed Component Object Model) or EJB
(Enterprise Java Beans). Yet another category of request brokers includes Web
servers (occasionally referred to as Internet or intranet information/application
servers), which include the functions (and may have grown out) of a sim-
ple HTTP server but are significantly enhanced to manage program execution
threads, sessions, and so on. As a matter of fact, the boundaries between these
three product categories are becoming more and more blurred, with TP mon-
itors becoming object oriented or Web servers being “upgraded” in terms of
functionality and scalability. It is not unlikely that in a short time only one
blend of request broker will exist and be worth remembering. The prolifera-
tion of the XML (Extensible Markup Language) data exchange standard, in
particular, will be a major force toward unified and also simpler protocols for
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network-centric applications. For exactly this reason we refer to a request bro-
kering application server only as an abstract notion throughout this book. This
notion would also include a complete workflow management system that has
its own integrated request broker or is coupled with an ORB or TP monitor.

As mentioned above, the implementation of a business object method of- Data servers:
database
systems,
document
servers, mail
servers, and
others

ten involves issuing requests to other business objects or other servers. Most
importantly, the business objects themselves typically do not contain any per-
sistent state data that would live beyond request/reply boundaries and user
sessions for an indefinite time period. Rather, such persistent data is better
kept on a data server that is specifically geared for the tasks of reliable long-
term maintenance of data. Database systems are the most prominent type of
systems that fall into this category, but for certain types of data, other sys-
tems may be even more appropriate. For example, for semistructured (text or
multimedia) documents and for electronic mail, specific products have a very
successful usage record. Thus, document servers and mail servers are other impor-
tant types of data servers. All these data servers may also provide some notion
of encapsulated objects, as opposed to exposing the raw data at their interface.
However, this is an option that does not need to be exercised. For example,
the data of a database server may be accessible to the application programs
of an application server via the standardized query language SQL (Structured
Query Language) in a direct way or via stored procedures, user-defined ADT
functions, or other forms of encapsulated interfaces in modern object relational
or fully object-oriented database products. In all cases, the actual data items
ultimately reside in fixed-size containers commonly known as database pages
(or blocks) on secondary storage, that is, the server’s (magnetic) disks.

Most of the elements in the above discussion are illustrated in Figure 1.2. Specializations
of the reference
architecture:
two-tier systems

In addition, the figure implicitly includes a number of practically important
specializations that are obtained by collapsing two tiers into a single component.
There are two major options for such simpler architectures:

Combining the client and the application server tiers: This implies that
the application programs reside on the clients, leading to an architec-
ture that is often called a client-server system with fat clients. Clients
then communicate directly with a data server, for example, via SQL,
often embedded in a standardized client-server high-level communica-
tion protocol such as ODBC (Open Database Connectivity). A possible
problem with this approach (and one of the original motivations for the
introduction of an explicit middle tier) is that many data server prod-
ucts have traditionally lacked the capabilities for maintaining a very
large number of sessions and execution threads, say, 10,000 concur-
rent sessions, which would not be that unusual for popular information
providers on the Web. However, not every application really needs such
high degrees of concurrency, and many commercial servers have made
tremendous progress in this direction anyway.
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Combining the application server and the data server tiers: This implies
that the application programs reside in the data server, leading to an
architecture that is known as a client-server system with thin clients.
For example, a database system that has rich object encapsulation ca-
pabilities could provide business object methods to which the client
requests can be directly mapped. The potential drawback of this ar-
chitectural approach is that the data server may become less scalable
and more susceptible to being overloaded. Indeed, if this architecture
were the starting point, then outsourcing the application processing
load to a separate application server would be another motivation for a
three-tier architecture. For example, the SAP R/3 product for com-
prehensive and integrated business administration originally evolved
along this outsourcing path. However, with today’s extremely pow-
erful hardware, the specialized two-tier approach using a combined
data/application server is a viable option for many low-end and midsized
applications.

The bottom line is that specialized two-tier architectures are and will con-
tinue to be practically relevant.

To avoid becoming dependent on specific architectures, our approach in
this book will be based on computational models (to be introduced in
Chapter 2) rather than two- or three-tier system architectures. This will allow
us to abstract from the particularities of the specific architecture and derive
results that are as general as possible. However, for concrete illustration pur-
poses, it may occasionally be helpful to transfer general results back to a specific
system architecture. For this purpose, the two-tier architectures are typically
easier to match with the abstract computational models, and we will therefore
prefer the two-tier cases over the more general three-tier case whenever we
need such an illustration.

1.3.2 Federations of Servers

It would be wishful thinking to assume that the entire information process-Federated
architecture ing of a large enterprise could be concentrated in a single application server

and a single data server. Instead, multiple instances of two- and three-tier ar-
chitectures often exist simultaneously within an enterprise for the different
business units and worldwide branches. Adding the various liaisons with exter-
nal business partners and the general trend to virtual enterprises increases the
multitude of information services upon which modern business is based. So we
really have to cope with a highly distributed architecture consisting of a wideDistributed,

heterogeneous,
autonomous

servers

variety of application and data servers. Obviously, these servers can be highly
heterogeneous in that they use different products, different interfaces, and
even radically different design philosophies (e.g., classically relational versus
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object-oriented database systems). In addition, the various servers can differ
widely in terms of their autonomy: some servers may focus explicitly on the
specific workload on behalf of a specific business purpose and specific clients,
whereas less autonomous servers may be more willing and prepared to inter-
operate with other application and/or data servers. So the full spectrum in
this highly diverse information landscape is best characterized as a federated
system architecture, with multiple servers working together on a per-business-
case basis. This most general kind of architecture, which is expected to become
ubiquitous in our information society, is illustrated in Figure 1.3.

Federated system architectures require a communication infrastructure Middleware
that can cope well with the heterogeneity and different operation modes of
the underlying application and data servers. This infrastructure is often re-
ferred to as middleware, as its place is between computer operating systems
and the application programming level, but it may as well be viewed as an
extension of modern operating systems. The key purpose is to provide high-
level communication mechanisms between clients and servers and also between
servers, reconciling programming comfort (e.g., location independence) with
robustness (e.g., reliable sessions). The paradigm that has evolved along these



22 CHAPTER ONE What Is It All About?

lines is again an object-oriented one: today’s middleware is centered around
the concept of remote method invocation. That is, methods on remote objects
can be invoked as if these were objects in the same local address space; all nec-
essary communication, including the lookup of computer network addresses,
is automatically plugged in by the middleware layer. To make this work in a
highly heterogeneous software landscape, standardized interfaces are needed.
The most prevalent standards to this end are DCOM and CORBA; Java-based
services are of increasing importance as well.

As mentioned earlier, both DCOM and CORBA services provide a lot
more than bare communication. In particular, both include request brokering
facilities, a key feature of an application server. Consequently, it is not possible
to tell precisely where the middleware stops and the application server itself
begins. But this fuzziness is only an issue in terms of implementation. The
overall system architecture can still be viewed as if the application server and
the middleware between servers and clients were clearly separated. In fact, it
is the intention of this section to condense the often confusing manifold of
commercial system components into a sufficiently simple architectural model.
From now on, our framework will be set up by the introduced reference model,
and we will leave the possible mappings of this model onto commercial software
packages to your (past or future) professional experience.

1.4 Virtues of the Transaction Concept

After having set the stage from an architectural point of view, we now turn to
the transaction concept itself and discuss its virtues, properties, and program-
ming interface.

1.4.1 Transaction Properties and the Transaction
Programming Interface

The three application scenarios of Section 1.2 suggest that the application’s
view of a transaction is essentially a program execution that reads and modifies
one or more data sources, which are managed by database systems or other
types of data servers. The key point of a transaction is that it comes with
certain system-guaranteed properties that greatly simplify the development of
such applications in that the application programs themselves can safely ignore
a good portion of the complexity of the overall system. In particular, application
programs are completely freed up from taking care of the issues of

concurrency, that is, all effects that may result from concurrent or even
parallel program executions and especially data accesses,
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failures, that is, all effects that would result from program executions
being interrupted (at “inconvenient” points) because of process or com-
puter failures.

So concurrency and failures are, to a large extent, masked to the application Masking
concurrency
and failures to
application
development

programs. Therefore, application programs can be developed as if they were to
be executed in a strictly sequential manner in a failure-free system environment.
Such simplifications are possible because all the necessary steps to cope with
concurrency and failures are factored out from the diversity of applications,
and are delegated to the generic run-time system of the underlying transac-
tional servers. This clear separation of responsibilities into application-specific
functionality and generic run-time services is indeed the main contribution of
transactional information systems and the key to their impressive commercial
success: being able to ignore concurrency and computer failures in application
development is a tremendous gain in terms of programmer and development
productivity, with respect to both time and cost.

All this is based on the simple, yet extremely powerful abstraction con-
cept called transaction. Transactions form the “interface contract” between an
application program and a transactional server in the following sense:

The application program simply specifies, during its execution, the
boundaries of a transaction, by issuing Begin transaction and Commit
transaction calls. In applications that use embedded SQL the former
is often implicit, interpreting the start of the program execution or
its session with the database server as the transaction begin; whereas
the latter is explicit and marked by the Commit work call (see the
debit/credit and funds transfer examples in Section 1.2). The end of
a transaction may also implicitly mark the begin of a new transaction
within the same program invocation.

The server automatically considers all requests that it receives from the
application program within this (dynamic) scope as belonging to the
same transaction and, most importantly, guarantees certain properties
for this set of requests and their effects on the underlying data.

The properties a server guarantees for a transaction, known as the ACID ACID
propertiesproperties, comprise the following four properties: atomicity, consistency,

isolation, and durability.

Atomicity: From the client’s and the application program’s point of Atomicity
view, a transaction is executed completely or not at all. So the effects
of the executing program on the underlying data servers will only be-
come visible (to the outside world or to other program executions) if Transaction

commitand when the transaction reaches its “commit” point, that is, the Commit
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transaction call is successfully returned. This case implies that the trans-
action could be processed completely, and no errors whatsoever were
discovered while it was processed. If, on the other hand, the program
is abnormally terminated before reaching its commit point, the data in
the underlying data servers will be left in or automatically brought back
to the state in which it was before the transaction started. So, in this
latter case, the data appears as if the transaction had never been invoked
at all. This holds also for system failures that are not related to the exe-
cuting transaction itself, such as failures of the data server, the operating
system that surrounds it, or the computer on which the data server is
running.

Consistency preservation: Consistency constraints that are defined onConsistency
preservation the underlying data servers are preserved by a transaction; so a transac-

tion leads from one consistent state to another. For example, the mer-
chant’s, the bank’s, and the customer’s records on an electronic sale
should be mutually consistent; or in a hyperlinked document collec-
tion, the referential structure should be consistent in that neither dan-
gling references nor unreachable documents exist. Upon the commit of
a transaction, constraints like these must be satisfied; however, between
the beginning and the end of a transaction, inconsistent intermediate
states are tolerated and may even be unavoidable.

This property of consistency preservation cannot be ensured in aTransaction
abort (rollback)

upon
consistency

violation

completely automatic manner. Rather, the application must be pro-
grammed so that the code between the beginning and the commit of a
transaction will eventually reach a consistent state. This can be hidden in
the application logic or be done by including corresponding code in the
application programs; moreover, the task of checking consistency can be
transferred to the database system, by exploiting constraint declaration
statements or even triggers. In the latter case, failing to satisfy all speci-
fied constraints at the commit point of a transaction results in the data
server enforcing an abnormal termination of the transaction. Then, in
conjunction with the atomicity property, consistency is preserved. Al-
ternatively, the application program can explicitly notify the data server
when it is clear that the application program will no longer be able to
reach a consistent state and requests that it be abnormally terminated.
In this case, we say that the transaction is deliberately aborted, and the
application program can achieve this effect by issuing an explicit Roll-
back transaction call. Again, in conjunction with the atomicity property,
data consistency is preserved. The capability to explicitly request such
a transaction abort can be a great simplification of the application pro-
gram’s consistency checking and consistency maintenance code.

Isolation: A transaction is isolated from other transactions, in the senseIsolation
that each transaction behaves as if it were operating alone with all
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resources to itself. In particular, each transaction will “see” only con-
sistent data in the underlying data sources. More specifically, it will see
only data modifications that result from committed transactions, and it
will see them only in their entirety, and never any effects of an incom-
plete transaction. This is the decisive property that allows the fallacies
and pitfalls of concurrency to be hidden from the application developers.
As we will show later, a sufficient condition for isolation is that concur-
rent executions are equivalent to sequential ones, so that all transactions
appear as if they were executed one after the other rather than in an
interleaved manner.

Durability: When the application program is notified that a transaction Durability
(persistence)has been successfully completed (when the Commit transaction call is

successfully returned) all updates that the transaction has made in the
underlying data servers are guaranteed to survive subsequent software or
hardware failures. Thus, updates of committed transactions are durable
(until another transaction later modifies the same data items) in that
they persist even across failures of the affected data server(s). Hence
the name “durability” or “persistence.”

In summary, a transaction is a set of operations issued by an application Transaction
programming
interface

program and executed on one or more data servers, with the ACID properties
guaranteed by the run-time system of the involved servers. The ACID contract
between the application program and the data servers requires the program to
demarcate the boundaries of the transaction as well as the desired outcome—
successful or abnormal termination—of the transaction, both in a dynamic
manner. To this end, the programming interface of a transactional information
system conceptually needs to offer three calls:

Begin transaction to specify the beginning of a transaction

Commit transaction to specify the successful end of a transaction

Rollback transaction to specify the unsuccessful end of a transaction
with the request to abort the transaction

Note, once more, that application programs generate the transaction bound-
aries as well as the operations that constitute a transaction dynamically during
program execution (and, as mentioned, often implicitly for beginning trans-
actions and explicitly for committing them). So, in particular, programs can
generate sequences of successive transactions, loops of transaction invocations,
or even multiple transactions in parallel, provided that the program is itself
multi-threaded. Thus, a workflow management system could be viewed as a
multi-threaded application program that issues transactions in such a flexible
manner. As pointed out earlier, there is a lot more to workflow management,
but it is clear at this point that the transaction concept is a great asset for
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distributed workflows and a wide variety of application classes beyond the
traditional OLTP area.

1.4.2 Requirements on Transactional Servers

The core requirement on a transactional server is that it provide the ACID
guarantees for sets of operations that belong to the same transaction issued
by an application program. This requires that the server include at least the
following two main components:

concurrency control component to guarantee the isolation properties ofServer
components:
concurrency
control and
recovery for

ACID contract

transactions, for both committed and aborted transactions

recovery component to guarantee the atomicity and durability of trans-
actions

Note that the server may or may not provide explicit support for consis-
tency preservation. One type of server may require the application program
to do all consistency checking and maintenance itself with implicit support by
means of the rollback option; whereas other servers, especially database sys-
tems, could enforce consistency by means of logical rules. Such logical rules
are, however, not a specific issue of transactional information systems and will
therefore not be considered in this book.

In addition to the ACID contract, a transactional server should meet aPerformance:
throughput and

response time
number of technical requirements: a transactional data server (which could,
and most often will, be a database system) must provide good performance
with a given hardware/software configuration, or more generally, a good cost/
performance ratio when the configuration is not yet fixed. Performance typi-
cally refers to the following two metrics:

high throughput, which is defined as the number of successfully processed
transactions per time unit

short response times, where the response time of a transaction is defined
as the time span between issuing the transaction and its successful com-
pletion as perceived by the client

It is evident that these performance metrics depend on many issues in the
implementation, configuration, and tuning of a server. As far as transactions
are concerned, the important requirement is that the concurrency control and
recovery components do not become a bottleneck. Therefore, it is desirable
that a transactional server be able to execute as many transactions as possible
concurrently or in parallel (with the parallel case assuming that the underlying
computer is a multiprocessor). Of course, such high degrees of concurrency or
parallelism are subject to the condition that the ACID contract is not violated.
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In fact, it would be much simpler to provide the ACID properties if perfor-
mance were not an issue. Real applications, however, dictate that throughput
and response time are important yardsticks for assessing the concurrency con-
trol and recovery components of a transactional server.

A server must be reliable, meaning that it virtually never loses data, unless Reliability
certain forms of catastrophic failures occur, and that it is always able to recover
data to a desired consistent state, no matter what complicated forms of one or
multiple failures arise. Reliability alone means correct behavior in the presence
of failures, but this may incur outages of the server during which client requests
are not served. In addition, most applications require high availability, which Availability
implies that recovery times after failures are short, and that failures that lead
to total outages are infrequent.

Other technical requirements on a data server include security, ease of ad-
ministration, standards compliance, and so on, but these are not directly related
to transactions and will therefore be disregarded in this book.

1.5 Concepts and Architecture of Database Servers

As mentioned earlier, the most important class of data servers is database sys-
tems. Throughout this book we assume you are familiar with a number of
basics about database systems, and we will discuss and explain in detail only
those aspects that refer to transactions, concurrency control, and recovery. In
this section, to make the book sufficiently self-contained, we sketch a few
principles of database system internals, specifically, the layered architecture of
modern database systems, the storage layout of data, the access acceleration
provided by index structures, and the basics of query and update processing.
For other database issues, particularly the relational, object-oriented, and object
relational data models, including the corresponding data definition and manip-
ulation languages such as SQL or OQL, we refer to the relevant literature
mentioned in the Bibliographic Notes at the end of this chapter.

1.5.1 Architectural Layers of Database Systems

Virtually all modern database systems have a layered internal architecture on
the server side, as illustrated in Figure 1.4. Each layer has an interface that
provides services invoked by the layers above it to implement their higher-
level services. Note, however, that all layers are within the same server and
therefore not visible to application programs. The actual code base of a specific
database system may not conform to the simple structure of the figure, but
all systems have internal components that can be approximately mapped to
the layers shown. When the server is itself a distributed database system, all
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Figure 1.4 Layered architecture of a database system.

system components and thus all architectural layers are usually installed on all
the underlying computers.

When a client request arrives at the server, the server executes code thatMulti-threaded
processing of

requests
transforms the request into one or more operations at each of the underlying
layers, ultimately arriving at a sequence of disk accesses (unless caching avoids
the disk access). To allow the server to exploit parallelism between the CPU
and the disk(s), the server makes use of modern operating system services in
that it typically spawns one thread (also known as lightweight process) per ac-
tive request, as illustrated by the wavy lines in Figure 1.4. This typically takes
place within one (heavyweight) process whose virtual memory address space
is shared across all threads. The server may actually keep a pool of preallocated
threads that are dynamically assigned to requests rather than creating and de-
stroying a thread for each individual request. This multi-threaded architecture
also facilitates disk I/O parallelism between different requests. In addition, by
simply assigning more than one thread per request, the architecture is also
geared for CPU and I/O parallelism within a single request execution. This is
the standard way of implementing a database system on a symmetric (shared
memory) multiprocessor (SMP).

The language and interface layer makes various kinds of interfaces availableLanguage and
interface layer to the application developer. This layer provides one or more languages for data
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definition and manipulation, usually in the form of application programming
interfaces (APIs). By far the most important language of this kind is SQL;
the most important standard for embedding SQL in an API that is usable for
a variety of programming languages is ODBC (Open Database Connectivity),
but other proprietary or language-specific SQL-based interfaces are widely used
as well. In addition to the data manipulation capabilities in the narrow sense,
SQL is often combined with or enriched by programming language constructs,
so that encapsulated “business objects” can be implemented within the database
server and their operations can be provided at the server interface (see the
discussion in Section 1.3).

The language and interface layer itself takes care of the client-server com- Query
decomposition
and
optimization
layer

munication at the API level and contains initial processing steps such as parsing
the SQL command in a request, checking authentication and authorization,
and so on. The next lower layer, the query decomposition and optimization layer,
works on an internal, tree-based representation of a request and is concerned
with the further decomposition of the request into smaller units that can be
directly executed. In particular, when the request is a full-fledged SQL query
with a complex query predicate, this decomposition involves challenging op-
timization issues. This is the level where the database system makes a choice
among different execution plans that are equivalent in that they all implement
the same query but can differ widely in terms of their execution efficiency.
These optimizations are usually carried out at the application program’s com-
pile time, but advanced applications, such as data warehousing systems, and also
a fair number of otherwise simple application programs, create the submitted
SQL requests dynamically during their run time and thus force the server to
decompose and optimize those requests also at run time.

The execution plan chosen by the query decomposition and optimization Query
execution layerlayer is usually represented as a tree (or, more generally, a directed acyclic

graph) of operators, where each operator can be directly mapped to a piece of
server code. The code for these operators and the code for the control and data
flow among operators are provided by the query execution layer. For example,
this layer includes the code for sorting disk-resident data, for performing a
relational join operation based on hash tables, a join algorithm based on sorting
and merging, and so on. All these operators consume streams of data records as
input and produce such streams as output. In addition to the data records that
constitute the primary contents of the database, the query execution layer also
depends heavily on index structures to speed up the processing of the records.
An index is essentially a search structure, often a specific type of search tree,
that helps identify records that match a certain predicate (a search condition).
Without indexes, all queries would inevitably end up performing at least one
complete scan over a possibly huge collection of data records. Index structures
and the capabilities for accessing and manipulating data records are provided
by the access layer of a database system. Finally, both data records and index Access layer
structures are ultimately mapped onto pages (fixed-size storage containers for
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the transfer between disk and memory, also known as blocks). The storage layerStorage layer
is responsible for managing the pages of a database. This involves disk I/O
control and optimization and, especially, caching in memory to exploit locality
in the page access patterns. Usually, the most recently or frequently used pages
are kept in memory and can be accessed without disk I/O. The area in main
memory that serves this caching purpose is known as the database (page) cache
or database (page) buffer.

Note that, a priori, the layered architecture of a database system does not
tell us anything about transaction management. The functionality of transac-
tional concurrency control and recovery could indeed be tied to any of the
presented five layers. In practice, however, those functions are often integrated
into the access and storage layers. We will discuss the embedding of transaction
management into a database architecture in more detail when we introduce
the book’s principal computational models in Chapter 2.

1.5.2 How Data Is Stored

All data objects are kept internally in the form of data records. A record consistsData records
of a set of fields, or columns, and is stored on disk as a string of consecutive bytes.
The fields correspond to the attributes of a relational schema; so they are of
specific data types, but this is not relevant at the storage level other than possibly
requiring specific byte encodings.

Records reside on disk in pages. A typical page size is on the order of 16KB;Pages
so with typical record sizes of a few hundred bytes, a page usually contains a
number of records. Pages are the minimum unit of data transfer between a
disk and main memory, and they are the units of caching in memory. A disk
I/O can read or write one or more pages, typically pages that are contigu-
ous on disk. Sometimes a fixed number of pages that can be read or written
together is called a block, but most often, the notion of a block is merely
used as a synonym for a page. In this book we will use pages and blocks as
synonyms.

Each page has a page header, typically less than a hundred bytes, that con-Storage layout
of a page tains administrative information for free space management and similar pur-

poses (e.g., the number of free bytes in the page, the size of the largest free
area within the page, etc.). Records that contain variable-length columns such
as ones of type varchar are themselves variable-length strings within a page;
so updates to data records can cause growth and shrinkage of these byte strings
and may thus require the movement of records within a page. As the database
system usually keeps pointers to records in other places, most notably for index-
ing purposes, it is important to prevent each and every movement of a record
from causing those pointers to change. This is achieved by addressing records
indirectly through a slot array that resides at the end of the page (also known
as a page trailer). A pointer to a record, a so-called RID (record ID, or row ID),
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Figure 1.5 Storage layout of database pages.

consists of a page number and a slot number, and it is only this referenced slot
inside the page that contains the full byte address of a record. So all record
movements are encapsulated within a page, as long as they do not span multi-
ple pages. Sometimes, however, it is unavoidable that a record must move to
another page because of lack of space within the original page. In this case, a
forwarding pointer, which is itself a RID, is left in the original page. With this
technique, all records are reachable through their RID pointers with at most
two page accesses, and most records are reachable in one page access. This
entire storage layout of a page is illustrated in Figure 1.5, using data records
that capture information about persons, customers, or friends, with fields such
as Name, Age, City, Zipcode, Street, and so on.

A growing number of database applications require support for long fields, Long fields
also known as BLOBs (Binary Large OBjects), to capture multimedia data such
as images (e.g., a photograph of a person), text, or video data. Such fields are
typically much larger than a page and must therefore be decomposed into mul-
tiple chunks and spread across multiple pages. A simple implementation tech-
nique for long fields would embed a list of page numbers rather than the actual
long field in the data record, and those pages would be exclusively reserved for
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the chunks of a long field. More sophisticated techniques exist for the storage
layout of long fields, but the simple approach is sufficient for understanding
this book.

In addition to the pages that contain data records, a database system needsStorage layer
metadata to keep a variety of metadata. At the storage level, this mostly refers to the

translation of page numbers into physical addresses on disk and to the man-
agement of free space within a database. Database systems usually preallocate
a certain amount of disk space that consists of one or more extents, each of
which is a range of pages that are contiguous on disk. A page number is then
translated into a disk number and a physical address on the disk by looking up
an entry in an extent table and adding a relative offset. Extents and the extent
table are illustrated in Figure 1.5. When data records are inserted, the database
system gradually uses this preallocated space by assigning records to pages and
keeping track of the available free space. In particular, all systems maintain
some form of free space management table from which they can infer which
pages are completely empty as well as possibly further free space information.

As mentioned earlier, the access layer of a database system also keeps cer-
tain forms of secondary, or derived, data to speed up the searching of records
by their contents (as opposed to the access through a given RID). Most no-
tably, this secondary data includes index structures, which are the subject of the
next subsection. Here we merely point out that those structures are themselves
mapped onto pages that are subject to caching, free space management, and
other “bookkeeping” at the underlying storage layer. Those pages are referred
to as index pages, but the storage layer often treats them in the same way as
regular data pages.

1.5.3 How Data Is Accessed

Database systems often need to retrieve all data records (of the same table)Table scan vs.
index lookup that have a specified value in a specific field, say, all records with the value

“Miami” in their City field. This could be a complete, relatively simple query
or merely one step in the processing of a more complex query. The specified
value (e.g., “Miami”) is referred to as a search key; sometimes this term is also
used for the name of the field on which the search is performed (i.e., City field
in the example). Without any index structures, the only way to retrieve the
records with the given search key is through a sequential table scan in which
all records of the corresponding table are accessed and inspected. The typical
implementation of a table scan first looks up, in the free space management
table, which (nonempty) pages are assigned to the corresponding data table and
then accesses all those pages one by one; the I/O cost of this procedure is linear
in the size of the data table. In contrast, a more efficient implementation should
retrieve the desired data records with an I/O cost that is at most logarithmic
in the size of the data table (plus linear in the number of records that satisfy
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the search condition or, under certain circumstances, the number of pages
on which these records reside). This is feasible in conjunction with an index
structure that keeps all values of a given field (or combination of fields) that
occur in the database, along with pointers to those data records that contain the
corresponding value. Using an index structure for resolving a specified search
condition is called an index lookup.

The index structure itself can be implemented in a variety of ways, most Search trees
notably as a search tree or a hash table, both in a page-structured, disk-resident
form. Regardless of the implementation, the interface of the index structure
provides a function like

lookup 〈index〉 where 〈indexed field〉 = 〈search key〉

With a tree-based implementation, which implicitly captures the ordering
of search keys, an additional interface function that cannot be easily supported
by hash-based implementations would be

lookup 〈index〉 where

〈indexed field〉 between 〈lower bound〉 and 〈upper bound〉

where one of the two bounds could be omitted and is then implicitly set to
the lowest or highest possible value of the field’s domain (e.g., zero or infinity
in the case of nonnegative integers). For example, we could retrieve all records
with values in the Age field that lie between 20 and 30. This type of index
lookup is called a range lookup (or range scan), as opposed to the first type that
is known as an exact match lookup. Sometimes both types together are referred
to as index scans. Both return RID lists for the qualifying records.

In the following we restrict ourselves to tree-based implementations as the B+ trees
more versatile ones. The prevalent data structure in this category is the B+

tree. This is a page-structured search tree whose nodes correspond to pages and
where all leaf nodes are at the same tree level (i.e., have the same distance from
the root node). An example B+ tree for an index on the Name field of a Person
table is shown in Figure 1.6. This tree has height 2; it consists of a root node
and three leaf nodes at the next lower level. The leaf nodes contain all values
of the indexed field that exist in the database. Each value is followed by a list of
RIDs to the corresponding records. The nonleaf nodes of the index consist of
pairs of values and pointers to index nodes of the next lower level. Within a
node these entries are sorted by values. These values serve as routers to guide
a top-down search for a given key value. To this end, the value associated with
a pointer to a subtree must be larger than or equal to the highest existing key
in this subtree, and it must be smaller than the lowest existing key in the right
neighboring subtree. For example, the entry in the root of Figure 1.6 that points
to the leftmost leaf has the value “Carl,” which is the (lexicographically) largest
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Figure 1.6 Example of a B+ tree.

key value in that subtree. Thus, the values in nonleaf nodes effectively partition
the key values into disjoint value ranges.

The rightmost child node of a given nonleaf node is automatically separated
from its left neighbor by the router value for this neighbor. Therefore, an entry
that points to the rightmost child of a node does not have a value but merely
consists of a pointer. In the example of Figure 1.6, the third entry of the root
simply points to the rightmost leaf, meaning that all key values in this rightmost
subtree are higher than the router value “Eve” in the preceding entry of the root.
Note that this technique not only is applicable to the root, but also avoids an
explicit router value for the rightmost subtree among the children of the same
node at all levels. The highest possible key value within such a rightmost subtree
is then determined by the router value for all subtrees with the same parent,
which can be found in that parent’s parent. As a consequence, each nonleaf
node has one more pointer to the next index level than it has router values.

A search for a given key value starts at the root node. It determines within
the currently inspected node the smallest value that is larger than or equal to
the given search key, and then follows the pointer of this router value. If the
search key is higher than all values in the index node, the search follows the
pointer to the rightmost child. This step is recursively applied per node until
the leaf level is reached. In the example tree, a search for the key “Dick” would
follow the “Eve” router in the root and find the key in the middle leaf. In
contrast, a search for the key “Joe” would follow the pointer to the rightmost
leaf, where it would detect that this key does not exist in the database.

B+ trees are among the most fundamental concepts in database systems.
Moreover, they also pose significant challenges for the concurrency control
and recovery components of the database system, as an inconsistency of a B+

tree index (e.g., dangling pointers or a violation of the tree invariant) would
be disastrous, and it is crucial to preserve consistency with extremely little
overhead. Because of the importance of index structures, we will later devote
an entire chapter to this issue.
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1.5.4 How Queries and Updates Are Executed

Now that we have a rough picture of how data records are stored and efficiently
accessed, the final issue that we want to consider is the execution of more
complex queries and update operations. As an example consider a query that
retrieves all persons under 30 years of age who live in Austin, Texas. In the
standard query language SQL, this can be phrased as follows:

Select Name, City, Zipcode, Street

From Person

Where Age < 30 And City = “Austin”

The query decomposition and optimization layer translates this SQL query
into an execution plan, taking into account the available indexes and other
physical design features that were chosen by the database administrator. This
translation involves solving an optimization problem, as its outcome should
be the execution plan whose estimated execution cost is minimum or at least
close to the minimum. Typically, query optimizers use a variety of sophisticated
heuristics for this purpose. The resulting execution plan is usually represented
as an operator tree. For our example, the operator tree of a possible execution
plan is shown in Figure 1.7. This plan makes use of two indexes (the query
optimizer must have determined that they both exist), namely, an index on

Projection

RID list
intersection

Index scan
on Age index

Index scan
on City index

Fetch Person
record

Select Name, City, Zipcode, Street
From Person
Where Age < 30 And City = "Austin"

RID access

Figure 1.7 Example of a query execution plan.
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Select Name, City, Zipcode, Street
From Person
Where Age < 30 And City = "Austin"

Projection

Filtering

RID access

Index scan
on City index

Fetch Person
record

Figure 1.8 Alternative query execution plan for
the query of Figure 1.7.

the Age field and an index on the City field. It performs a range lookup on the
Age index and an exact match lookup on the City field. Both index lookups
return RID lists that are then intersected to determine the RIDs of all qualifying
records. Finally, the last step is to fetch those records based on their RIDs and
perform some output processing such as projecting out the requested fields
(i.e., dropping all other fields of the possibly long records).

An alternative execution plan is shown in Figure 1.8. In this plan, only one
index is used, namely, the one on the City field. The reason for choosing this
plan (over the previous one) could be that either the Age index does not exist,
or is not very selective for the given range of key values, meaning that the RID
list that would be returned from the range lookup is too large relative to the
total number of records in the Person table.

The evaluation of such an operator tree proceeds bottom up, from the
leaves to the root. For each operator in the tree, the corresponding code in
the database system fetches the operands and produces its output, which is
then fed into the parent operator. As these operands as well as the interme-
diate outputs can become fairly large, the evaluation is usually carried out in
a pipelined manner. So the output of an operator is not necessarily produced
entirely before the parent operator is invoked. Rather, the parent operator is
invoked as soon as its first input records are available. This evaluation principle
establishes a set of producer-consumer data streams between operators, one
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stream for each operand arc in the tree. The benefit of the pipelining is that
intermediate results do not have to be “materialized” in their entirety, and this
is a significant cost savings, as the materialization would often require writing
large intermediate output to disk and reading it again for the subsequently in-
voked parent operator. In a parallel database system, pipelining leads to true
parallelism between operators, and, most importantly, it can be nicely com-
bined with a parallelization of each operator (where the latter is the kind of
parallelism that achieves by far the highest speedup).

1.6 Lessons Learned

This chapter has introduced transactions as a concept and emphasized their
practical importance, from both an application and a system architecture view-
point. Transactions are essentially a contract between an application program
and a collection of transactional servers that allows the program to combine
a number of requests to these servers into a logical unit. The decisive part of
this contract is that this unit has the ACID properties: atomicity, consistency
preservation, isolation, and durability. The benefit that we achieve from the
transaction abstraction is twofold:

Users (i.e., human end users) can rely on the consistency of the data
that they see and maintain as part of their day-to-day business. This
holds even for distributed, possibly heterogeneous information systems.
Furthermore, this quality is not limited to database systems as the un-
derlying data sources, but extends to document servers, mail servers,
and other components of modern information systems.

Application developers greatly benefit from the transaction concept
in that the application programming is fundamentally simplified, thus
boosting programming productivity and lowering the development and
maintenance costs. Thanks to the ACID properties, application develop-
ers do not need to care about synchronizing concurrent or parallel data
accesses or handling process and computer failures. Rather, programs
can be written as if each transaction had all underlying data exclusively
for itself and none of the involved system components would ever fail.

These fundamental benefits are achieved by providing each data server,
and possibly also other components of the information system, with two key
pieces of software:

a concurrency control component that guarantees the isolation of trans-
actions in the presence of concurrent data accesses,
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a recovery component that guarantees the atomicity and durability of
transactions in the presence of failures.

This book is largely about models and algorithms for these two key building
blocks of transactional information systems. The challenge lies in the perfor-
mance of the concurrency control and recovery components: providing high
concurrency, high throughput, and fast response times, and ensuring fast recov-
ery from failures and thus high availability with low overhead during normal
operation.

Exercises

1.1 Consider an order entry application, where customers order certain items
from a retail seller. Customers place their orders over the phone, and
agents enter these orders into a database at the merchant site. An order
may consist of multiple order lines, each referring to one product with a
specified quantity. Ordered products are shipped to the customer if they
are available in sufficient quantity in the retail seller’s warehouse. Cus-
tomers pay by sending a check or transferring funds electronically after
receiving the shipped products. Discuss how ACID transactions can help
maintain the consistency of the data that underlies this kind of order entry
business.

Hint: One possible approach, often used in practice, is to design and
implement three basic transaction programs, NewOrder, Shipment, and
Payment, for handling new orders, shipping ordered products, and regis-
tering payments. The underlying database would need the following tables
with appropriate fields: Customers, Products, Orders, OrderLines.

1.2 Discuss further applications of database systems in the context of which
the ACID properties of transactions make sense. Contrast these with other
applications in which the ACID properties (totally or in part) appear too
restrictive.

Bibliographic Notes

Various other textbooks have been published in recent years on the subject of
transactions and transaction management; the most important ones of these
are Bernstein et al. (1987), Papadimitriou (1986), Bernstein and Newcomer
(1997), Cellary et al. (1988), Lynch et al. (1994), and Gray and Reuter (1993).
Additional books and original papers on specific subjects will be mentioned
later.



Bibliographic Notes 39

Among the above textbooks, Bernstein and Newcomer (1997) as well as
Gray and Reuter (1993) provide detailed considerations on the overall architec-
ture and application development aspects of transactional information systems,
devoting significant space to TP monitors and other types of request brokers. In
this book, we focus instead on the fundamentals of transactional systems and do
not further discuss the manifold and continuously evolving issues of program-
ming interfaces and commercial middleware technology. For the latter aspects,
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and Roller (2000) on workflow technology. However, keep in mind that many
aspects of these applications are still evolving so that the material in these books
may become outdated fairly quickly.
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object-oriented programming and systems, in particular as used in the context
of database systems; textbooks on this subject include Cattell (1994), Kemper
and Moerkotte (1994), and Lausen and Vossen (1998).
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CHAPTER TWO

Computational Models

After each symbol conjured up by the director of a Game, each player was required

to perform silent, formal meditation on the content, origin, and meaning of this

symbol, to call to mind intensively and organically its full purport. . . . Beginners

learned how to establish parallels, by means of the Game’s symbols, between a

piece of classical music and the formula for some law of nature. Experts and

Masters of the Game freely wove the initial theme into unlimited combinations.

—Hermann Hesse

Here I am at a famous school. I’m dressing sharp and I’m acting cool.

—Frank Zappa

2.1 Goal and Overview

In the previous chapter, we have made it clear why transactions are important
and what is relevant when we start discussing them from a technical point of
view. In this chapter, we will go even further and introduce two precise com-
putational models for transactional servers around which all our discussions in
subsequent chapters of this book will center. In particular, the theory and algo-
rithms of concurrency control and of recovery that we will present are based
on these two models, from which most of our correctness and efficiency argu-
ments can be carried over to real implementations and applications. Especially
for correctness, it will be necessary to look at transactions even from a formal
point of view, and we will show here to what extent this is possible and what
natural limits exist.

The computational models we will introduce below follow a common
“recipe” for devising transaction models, which we first describe in Section 2.2.
Then we present in detail a simple model—coined the page model—for ease
of concise explanation in Section 2.3, and a more complex one—coined the
object model—to capture advanced issues in Section 2.4. In Parts II and III,
these models form the basis for a wide development of concurrency control
as well as recovery theory and algorithms. Thus, the material in this chapter
together with that of the previous chapter sets the stage for laying out a more
detailed road map of the book’s contents and organization, given in Section 2.5,
which ends the introductory part of the text.

41
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2.2 Ingredients

Computational models for transactional servers can be made precise in a va-
riety of ways, depending on the level of abstraction chosen, the programming
environment, or the application at hand. However, the way in which such a
model is devised is not completely arbitrary, but follows a kind of methodology
that reflects how to specify the essential and relevant ingredients. The common
approach by which our computational models are developed and will later be
used is characterized by the following five-step program:

1. First, elementary operations on data objects are defined—that is, oper-
ations that can be assumed to be indivisible so that each individual
operation by itself appears atomic and isolated from other operations.
(Note that we are not yet considering the embedding of such operations
in the context of a transaction.) This first step leaves some leeway in the
definition of what a data object is and what kind of elementary opera-
tions we consider, and this will later lead to the distinction between the
page model and the object model.

2. Next, transactions, as executions of transaction programs, can be mod-
eled as sequences or partial orders of such operations, with the intuitive
interpretation that such a collection is to be executed in conjunction in
order to guarantee its ACID properties.

3. When several transactions are “shuffled” into a large collection of oper-
ations (in such a way that the individual transactions can still be identi-
fied), we obtain schedules or histories as an abstract notion of concurrent
(or parallel) executions.

4. From the set of all syntactically correct schedules, we must identify those
that can be considered “correct” in the sense of the ACID guarantees.

5. Finally, we need algorithms or protocols to create correct schedules
in an online manner such that operations are scheduled for execution
dynamically as they are submitted by the application programs.

These five steps are relevant for virtually every transaction model, in par-
ticular when such a model is developed all the way from basic operations to
protocols. In the remainder of this chapter we will apply the steps to the two
computational models that we want to study in this book. The page model (also
known as the read/write model ) is a simple model that can be nicely motivated
from looking at the way data pages are accessed (i.e., read or written) at the
storage layer of a database system. As will be seen shortly, this model is simple
enough to capture the essence of the concurrency control and recovery prob-
lem in a concise and elegant way, yet it is general enough to describe many
(but not all) important system implementation issues. The major limitation of
the page model is that it captures no semantics of the data access operations,
given the simple low-level nature of page reads and writes.
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A richer model would therefore consider higher-level operations, for exam-
ple, those of the access layer or the query processing layer of a database system.
From here it is only a small step to consider even a limited form of application
semantics by taking into account an application program’s method invocations
on business objects, that is, instances of abstract data types (ADTs) that re-
side in the data server or the application server (see the discussion of system
architectures in Section 1.3). All these considerations give rise to our second
computational model, the object model, in which transactions consist of ADT
operations that may themselves invoke operations on other objects, all of which
would eventually result in read or write operations on objects of type Page.

In summary, the two computational models we are about to introduce
differ in their definitions of data objects. For the page model, these are pages
with read and write operations; for the object model, these are general objects
with an encapsulated set of operations applicable to them.

2.3 The Page Model

The simple page model to be defined next is motivated by the observation
that all higher-level operations on data are eventually mapped into read and
write operations on pages. We have shown this in our brief review of database
system concepts in the previous chapter, and similar mappings onto pages are
used by all other forms of data servers (e.g., mail or document servers). Thus,
to study the effects of concurrent executions, in the sense of interleaving the
operations of different transactions, it is, in principle, sufficient to inspect the
interleavings of the resulting page operations. In doing so, each page read or
write is assumed to be an indivisible operation, regardless of whether it takes
place in a page cache in memory or on disk. It is clear that we need to revise
this assumption once we start discussing recovery issues that arise after server
failures, but the “indivisibility axiom” for page operations will take us a fairly
long way into recovery considerations as well.

In general, we emphasize once again that the restriction to read/write page
operations represents a strong form of abstraction. (This is exactly why we
later need the richer object model.) However, as will be seen in the sequel,
the abstraction from higher-level data operations, such as SQL commands or
method invocations on business objects, down to the view that a resulting
transaction consists of reads and writes only is an interesting one and suffices
for many purposes. In fact, a comprehensive theory of concurrency control and
of recovery can be built on it, which is directly applicable to practical systems,
albeit with some performance limitations.

We now start going through the five-step procedure discussed in Sec-
tion 2.2. Formally, a data server is assumed to contain a (finite) set D =

{x, y, z, . . .} of (indivisible and disjoint) items with indivisible read and write
operations. You may think of these data items as pages, as these are the units
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onto which all higher-level operations are eventually mapped and for which
reads and writes can indeed be regarded as indivisible. As an abstract model,
this page model is not necessarily limited to the real notion of pages and rather
provides very general insights into concurrency problems and their solutions.
Nonetheless, page-oriented concurrency control and recovery at the storage
layer of a database system or other type of server is the major application of
the page model and the results derived from it. Throughout the book, we will
denote data items by small letters (often taken from the end of the alphabet),
where indices will be used if necessary (e.g., x1, y4).

Before we define transactions in this model in general, let us look at a sim-
plified version first, which we will use to introduce the (somewhat artificial)
distinction between the syntax and the semantics of a transaction. The sim-
plified version considers transactions as total orders of steps, while the general
model will allow partial orders. Since we are not going to make intensive use
of transaction semantics in what follows, we briefly explain that issue for total
orders here.

Let us consider a transaction t (in the page model) to be a (finite) sequence“Syntax”:
totally ordered

transaction
of steps (actions) of the form r (x) or w(x), written

t = p1 . . . pn

where n < ∞, pi ∈ {r (x), w(x)} for 1 ≤ i ≤ n, and x ∈ D. We use r as an ab-
breviation for “read” and w as an abbreviation for “write.” Thus, we abstract
from the details of a transaction as a program execution, and concentrate only
on the sequence of read and write operations that results from the execution.

Next we look at how we could define some form of semantics for individ-
ual transactions. Each step occurring in a transaction can be uniquely identified
so that two distinct transactions will not have steps in common. (Of course,
the same step types can occur in more than one transaction.) Within a single
transaction, we often denote steps in the form p j , that is, with a step number
as a subscript. (So p j is the j-th step of the transaction.) In the presence of
multiple transactions, we add a unique transaction number to each transaction,
and also use this number as an additional subscript for the steps of the trans-
actions. Then pi j denotes the j-th step of transaction i . Sometimes, a given
context does not require an explicit numbering of the steps; in such cases we
may simply write pi for a step of transaction i .

As we have seen, associated with each step is both an action (read or
write) and a data item from D. Thus, we use the following terminology when
we consider only a single transaction:

p j = r (x) : step j reads data item x

p j = w(x) : step j writes data item x

In our discussion on semantics that follows, there is always only a single
transaction under consideration so that single-level indexing suffices.



2.3 The Page Model 45

According to the above settings, a transaction is a purely syntactic entity
whose semantics or interpretation is unknown. If we had more information
on the semantics of the program that launches a transaction and the intended
state transformation of the underlying data, this knowledge could be used to
interpret a transaction and associate a formal semantics with it. In the absence
of such information, however, the best that can be done is a syntactic interpre-
tation of the steps of a transaction that is as general as possible:

In case p j = r (x), in which the j-th step of a given transaction is a read
step, the current value of x is assigned to a local variable v j :

v j := x

In case p j = w(x), in which the j-th step of a given transaction is a “Semantics”:
interpretation of
a transaction

write step, a possibly new value, computed by the respective program,
is written into x. Each value written by a transaction t potentially de-
pends on the values of all data items that t has previously read, which
is formally expressed as follows:

x := f j (v j1 , . . . , v jk)

(x is the return value of an arbitrary but unknown function f j ) such that:

{ j1, . . . , jk} = { jr | p jr is a read step ∧ jr < j}

(All values v jr , 1 ≤ r ≤ k, that were read prior to the j-th step of t are
used as parameters in function f j .)

As an example, consider the following transaction:

t = r (x)r (y)r (z)w(u)w(x)

Here we have p1 = r (x), p2 = r (y), p3 = r (z), p4 = w(u), and p5 = w(x). The
first three steps assign values (those of data items x, y, and z) to variables v1, v2,
and v3, respectively. The values of u and x written by the last two steps depend
on these variables, in principle as follows:

u = f4(v1, v2, v3)

x = f5(v1, v2, v3)

We mention here that the view of a transaction as a sequence of steps is a
simplification, but not an essential part of the model. Indeed, from a conceptual
point of view we do not even have to order all steps of a transaction in a straight-
line fashion, and it will often be the case that the specific order in which two
or more steps are executed does not matter, as long as the ACID principle
applies. Also, we should strive to capture a parallelized transaction execution
(i.e., on a multiprocessor) as well. Therefore, we can relax the total ordering
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requirement to the steps of a transaction to a partial ordering and generally
modify the previous definition as shown below. For the sake of completeness,
we define partial orders first:

Partial order DEFINITION 2.1 Partial Order

Let A be an arbitrary set. A relation R ⊆ A × A is a partial order on A if

the following conditions hold for all elements a, b, c ∈ A:

1. (a, a) ∈ R (reflexivity)

2. (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b (antisymmetry)

3. (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R (transitivity)

As is well known from mathematics, any relation R over a finite set A (and
hence a partial order) can be visualized through a graph in which the elements
of A form the nodes, and in which a pair (a, b) ∈ R is represented by a directed
edge of the form a → b. Examples of partial orders appear in Exercises 1 and
2 of this chapter. Note that a total order R of A is a partial order with the
additional requirement that for any two distinct a, b ∈ A, either (a, b) ∈ R or
(b, a) ∈ R.

We now exploit the notion of a partial order in the context of transactions.

Page model
(read/write)

transaction

DEFINITION 2.2 Page Model Transaction

A transaction t is a partial order of steps (actions) of the form r (x) or w (x),
where x ∈ D, and reads and writes as well as multiple writes applied to the

same data item are ordered. More formally, a transaction is a pair

t = (op, <)

where op is a finite set of steps of the form r (x) or w (x), x ∈ D, and

< ⊆ op × op is a partial order on set op for which the following holds: if

{p, q} ⊆ op such that p and q both access the same data item and at least

one of them is a write step, then p < q ∨ q < p.

Therefore, in the partial ordering of a transaction’s steps, we disallow that a
read and write operation on the same data item, or two write operations on the
same data item, are unordered. Instead, for each of these two types of action
pairs we require an ordering. The reason for this restriction is fairly obvious:
with unordered steps of these kinds it would be impossible to tell the exact
effect on the respective data item. For example, if we left a read and a write
unordered, the value that is read would remain inherently ambiguous; it could
be the one before the write or the new value that is written. So the constraints
in the above definition serve to ensure an unambiguous interpretation.
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In what follows we will generally try to stick to the latter definition (partial
orders), and it should be clear that with “conflicting” steps inside a transaction
being ordered, the semantics we have introduced for totally ordered transac-
tions carries over to partially ordered ones as well. However, partial orders
require considerable effort in some of our formal notation to be introduced in
the next chapter (e.g., the so-called shuffle product, which shuffles the steps of
multiple transactions into a concurrent execution). Therefore, we will simplify
some of the discussion of correctness criteria in Chapter 3 (and elsewhere) by
sticking to total orders. Once we have arrived at a standard notion of correctness
that we will use for the remaining exposition, we will generalize our notation
to partial orders of steps.

Although we will in the sequel consider read/write transactions as syntactic
entities only (with the pseudosemantics just sketched), it may be considered
as a certain advantage of this model and its theory to be discussed shortly that
this theory can be developed in the absence of semantic information and hence
can be used for every possible interpretation of the transactions. Thus, the
read/write page model is fairly general despite its simple structure.

The page model as described above allows a transaction to read or write
the same data item more than once, as is the case in the example

t = r (x)w(x)r (y)r (x)w(x)

Here t reads and writes x twice, although it is reasonable to assume that the
value of x remains available, after having been read the first time, in the local
variables of the underlying program for as long as it is needed by t, and that
only the last write step determines the final value of x produced by this transac-
tion. To exclude redundancies of this kind, we henceforth make the following
assumptions:

in each transaction each data item is read or written at most once,

no data item is read (again) after it has been written.

Notice that the latter condition does not exclude the possibility of a blind write,
which is a write step on a data item that is not preceded by a read of that data
item.

2.4 The Object Model

This section introduces the object model as an alternative to or generalization
of the page model. The reason why we explicitly separate this model from
the page model, although the latter is implicitly included here, is that many
important foundational issues and also basic algorithms and implementation
techniques can be more easily understood in the simpler page model first. The
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object model provides a framework for representing method invocations, or
operations for short, on arbitrary kinds of objects. This will later allow us to
exploit some semantic properties of the invoked operations for the sake of
improved performance. In addition, the object model can capture cases where
an operation on an object invokes other operations on the same or other objects.
Indeed, often the implementation of an object and its operations requires calling
operations of some lower-level types of objects.

For example, operations at the access layer of a database system, such as
index searches, need to invoke page-oriented operations at the storage layer
underneath. Similar invocation hierarchies may exist among a collection of
business objects that are made available as abstract data type (ADT) instances
within a data server or an application server, for example, a Bank account object
type along with operations like Deposit, Withdraw, Get Balance, Get History,
Compute Interests, and so on. Figures 2.1 and 2.2 depict two examples of
transaction executions against such object model scenarios.

Figure 2.1 shows a transaction, labeled t1, which performs, during its exe-Database
system layers

example
cution, (1) an SQL Select command to retrieve, say, all records from a database
of persons who live in Austin (i.e., whose City attribute has the value “Austin”)
and, after inspecting the result set, (2) an SQL command to insert a record
for a new person who happens to live in Austin, too. Since SQL commands
are already translated into operations at the query processing layer at compile
time (see Section 1.5 for a short primer on such database system issues), the
operations invoked at run time are those of the query processing layer. Because
of the extremely simple nature of the example’s SQL commands, the resulting
operations are also very simple, and already partly resemble operations at the
access layer (i.e., operations of the layer onto which the query processing layer
translates its operations). We assume that the Select command is executed by
first issuing a Search operation on an index that returns the RIDs (addresses) of
the result records. Next, these records, which we refer to as x and y in the figure,

Figure 2.1 Sample scenario for the object model: database system
internal layers.
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Figure 2.2 Sample scenario for the object model: business objects.

are fetched by dereferencing their RIDs. The Search operation in turn invokes
operations at the underlying storage layer, that is, read and write operations on
pages. Here we assume that first the root of a B+ tree is read, labeled as page
r in the figure, and then we are pointed to a leaf page, labeled l , that contains
the relevant RID list for the search key “Austin.” (So, for simplicity, we assume
that the B+ tree has height 2.) The subsequent Fetch operations to access the
two result records x and y by their RIDs require only one page access each
to pages p and q, respectively. Finally, the SQL Insert command is executed
at the query processing layer as a Store operation, storing the new record and
also maintaining the index on the City attribute (assuming no other indexes
are defined for the underlying table). This involves first reading a storage layer
metadata page, labeled f , that holds free space information in order to find a
page p with sufficient empty space. Then that page is read and subsequently
written after the new record z has been placed in the page. The last thing to
do on behalf of the Store operation is to add the RID of the new record z to
the RID list of the key “Austin” in the City index; this requires reading the B+

tree root page r , reading the proper leaf page l , and finally, writing page l after
the addition of the new RID.

In Figure 2.1, this entire execution is represented in a graphical, compact
form, by connecting the calling operation and the called operation with an
edge when operations invoke other operations. As a convention, the caller is
always placed closer to the top of the picture than the callee. Furthermore,
we represent the order in which operations are invoked by placing them in
“chronological” order from left to right. When giving a formal definition shortly,
this ordering convention needs to be revised a bit, but the above statement
reflects the essence.

The same approach to representing transaction executions in an object Business object
examplemodel can also be applied to collections of business objects, as shown in the

second example in Figure 2.2. The example contains a transaction, labeled t2,
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that withdraws money from one bank account x by invoking a Withdraw oper-
ation, and subsequently deposits money in another account y by means of the
operation Deposit. Here x and y are instances of the object type (or ADT) Ac-
count, which provides among its interface operations the mentioned Withdraw
and Deposit methods. The implementation of these operations requires call-
ing other operations. Assuming that the implementation is on top of a database
system (e.g., inside a database server that supports ADTs), most of it is straight-
forward and could be directly translated into a sequence of Search, Fetch, and
Modify operation invocations at the query processing layer. (The code for the
ADT implementation would be precompiled and accessible by the database
server, too.) For the underlying storage layer, we assume that the records can be
searched by an index on their AccountID attribute and that no other indexes are
involved in the example. Thus, the resulting page operations are straightforward
and very similar to those of Figure 2.1; to help intuition, we have even kept the
labels of the previous example, such as r for a B+ tree root page. To distinguish
the account objects x and y from the corresponding stored records on which
the Fetch operations are invoked, we label the records as x̂ and ŷ, respectively.

A particularity of the example in Figure 2.2 is that the Withdraw operation
also invokes another business object method, labeled Append, in addition to
the operations of the database system’s query processing layer. This Append
operation belongs to an object h of type History, which can be viewed as a
specialized way of capturing the recent cash flow history of the bank account.
For example, the last 20 cash flows, or all cash flows of the last 30 days, could be
kept in a small history queue and this information made accessible by additional
Get History or Browse History methods. The specific semantics of purging
expired entries from the history queue would be built into the object, and
this is why it makes sense to encapsulate the history data as an ADT object.
In the transaction execution of Figure 2.2, the invoked Append operation is
assumed to fetch a header record a (on page s) that contains pointers to the
head and tail of the history queue, assuming that the implementation uses a
doubly linked list of records. Adding an entry at the tail of the queue would
then find the page t with the currently most recent entry, record d. If this page
has sufficient empty space for the new record, then this is where the new entry
could be placed as record e. Storing the new entry and changing the linked list
to connect the previously last entry with the new one results in further write
operations on page t. Finally, the queue’s header record a in page s needs to be
updated to point to the new tail.

The two examples and especially their graphical depiction already sug-Transactions
as trees gest a definition that essentially views transactions as trees with the invoked

operations as tree nodes. However, to ensure that such trees are sufficiently
self-contained in that they reflect all relevant aspects of the transaction execu-
tion and allow us to reason rigorously about concurrency between transactions,
we require that the leaf nodes of a transaction tree be elementary operations in
the sense of the page model. So all tree leaves must be read and write operations
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on pages, or some other notion of abstract operations for which we can safely
assume that each operation is indivisible. At this point, we only know about
page operations having this property, at least with regard to concurrency ef-
fects. Thus, for the time being, you can always associate page operations with
the leaves of a transaction tree. If all or some leaf nodes of a given transaction
tree do not correspond to page operations, all we have to do is to further ex-
pand the operations at these leaves by making their invoked operations explicit
at lower implementation levels until we end up with elementary read or write
operations on pages. Note that this kind of expansion is always possible, as all
forms of data servers eventually store their (permanent) data items in pages
(also known as blocks). Further note that the expansion is a dynamic one that
tracks all operations invoked during the execution of a higher-level operation,
as opposed to a hierarchy derived from the static structure of the operation’s
code.

Analogously to the introduction of the page model, we still have to make
some amendments to the above considerations, to capture the ordering of op-
erations within a transaction. A simple definition would require a sequential
ordering of all leaf nodes, matching their left-to-right order in the example
figures. However, as in the page model, there are good reasons to require only a
partial ordering among the leaf node operations. An additional constraint that
arises from the requirement that leaf nodes be elementary page model opera-
tions is to enforce the ordering of operation pairs where one or both of the two
operations is a write. As in the page model, the argument for this constraint is
to ensure an unambiguous interpretation of the transaction.

We are now ready to give the following formal definition of an object model

Object model
transaction

transaction.

DEFINITION 2.3 Object Model Transaction

A transaction t is a (finite) tree of labeled nodes with

the transaction identifier as the label of the root node,

the names and parameters of invoked operations as labels of inner (i.e.,

nonleaf, nonroot) nodes,

page model read/write operations as labels of leaf nodes,

along with a partial order “<” on the leaf nodes such that for all leaf node

operations p and q with p of the form w(x) and q of the form r (x) or w(x)
or vice versa, we have p < q ∨ q < p.

Given this tree-based definition, we will from now on use standard ter-
minology for trees to refer to, for example, children, descendants, subtrees,
ancestors, siblings, and so on. Note that the definition allows for arbitrary types
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of operations as inner nodes and that it contains Definition 2.2 as a special case,
that is, the object model generalizes the page model. These can be operations
on an ADT object or some less stringent, but explicitly specified, form of op-
erational interface (e.g., the interface operations of a database system’s query
processing layer). Further note that transaction trees do not have to be balanced
in the sense that all leaf nodes have the same distance from the root. In Fig-
ure 2.2, for example, the leaf node descendants under the Append operation
are farther away from the root than those of the Modify operation, although
these two inner nodes are at the same tree level as seen from the root. For
clarity, however, we will usually attempt to place operations that belong to the
same object type(s) or interface within one level of the graphical picture of a
transaction tree. This is why we have placed, in Figure 2.2, all operations of the
query processing layer adjacently and have decided to let the Append operation
stick out. When we later apply the object model to reason about concurrent
executions, we will often deal with cases of perfectly balanced transaction trees
anyway. The class of transaction trees where all leaf nodes have the same dis-
tance from the root is known by the name layered transactions or multilevel
transactions—an important special case of our model.

A specific point in our formal definition that could, perhaps, strike you asInner node
ordering an accidental omission is that a partial order is defined only for the leaf nodes

of the tree. So you may wonder why no ordering has been defined for inner
nodes. The answer is that such an ordering is already implicitly defined, and
we wanted to keep the definition as concise as possible and avoid producing an
overspecification. Namely, for two inner node operations a and b, we say that
a precedes b in the execution order if all leaf node descendants of a precede
all leaf node descendants of b in the partial order < of the leaf nodes. In other
words, we consider a as preceding b only if a terminates its execution before
b begins; this is what ensures the required ordering between the two sets of
leaf node descendants. Otherwise, we would consider a and b as concurrent
operations; and this is a feasible viewpoint as none of them is assumed to be
indivisible. If we want to find out their resulting effects on the permanently
stored data, we can resort to checking the interleaving of their children and
further descendants until we arrive at the leaf nodes whose ordering ensures
an unambiguous interpretation.

To conclude this section, we give a brief outlook on how we will later use
the introduced object model in laying a foundation for and reasoning about
advanced concurrency control algorithms. Once we consider multiple transac-
tions that execute in a concurrent or parallel way, all we have to do is to form
the union of the involved transaction trees—that is, a forest of operations—and
inspect the partial execution order of leaf node operations (and the implic-
itly derived order for higher-level operations). The difference from the single
transaction case is that the partial order will then be defined on the union of
the leaf nodes of all involved trees. Because of the derivation of the inner node
ordering from the leaf node order, this approach will allow us to study not only
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the interleavings at the leaf node level but also concurrency or sequential order-
ings among higher-level operations. This ability to reason about concurrency at
different tree levels is indeed needed to properly exploit the object model for
the sake of better performance. The key to such performance enhancements
lies in taking into consideration semantic properties of the higher-level, inner
node operations.

By far the most important one of such properties is the commutativity or
noncommutativity of two operations. For example, two Deposit operations on
the same bank account are commutative in that both of the two possible se-
quential execution orders lead to identical results in terms of the resulting state
of the data and the return parameters of the invoked operations, assuming that
a Deposit operation does not return the current balance of the account. Two
Withdraw operations on the same account, however, do not generally commute
because their ordering may be relevant if only the first withdrawal succeeds and
the second one is refused due to overdraft protection. In this situation the two
possible sequential orderings would result in different return values (i.e., indi-
cators of the withdrawal’s success) and could also lead to different final states
of the account balance. The point about commutativity or noncommutativity
is that these considerations hold for pairs of operations from the same as well
as different transactions, so that we can also apply commutativity-based rea-
soning to concurrent executions of multiple transactions. It will be seen later
that commutative operations allow us to tolerate interleaved access patterns
that would have to be disallowed if we only knew that the operations read and
write the same data item.

2.5 Road Map of the Book

In this chapter and the previous one, we have set the stage for a discussion of
numerous issues related to transactions, and we are now ready to lay out a road
map of this book. Thus, in this section we explain how the book is organized
to provide guidance if you are mostly interested in specific topics.

Following this first part on background and motivation, the core of the
book is divided into three main parts. As discussed in the previous sections, the
two subsystems of a data server that are central to a transactional information
system are the concurrency control and the recovery components. The second
and third parts of the book are devoted to these two components, mostly from a
single server’s point of view. The book’s fourth part then broadens the view and
addresses the additional issues of distributed transaction coordination across
multiple servers, based on the foundation laid by the two parts on single server
techniques. Together these three main parts provide a comprehensive, in-depth
understanding of how transactional information systems work, covering formal
models, practical algorithms, and performance considerations for the various
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components and also the interdependencies among components. After all this
technical material, the book concludes with an outlook on future technology
and application trends. In the following we briefly outline the contents of the
chapters that constitute the three main parts.

Part II of the book starts out in Chapter 3 with a thorough look at whatPart II:
concurrency

control
transactional isolation means. This chapter introduces formal correctness crite-
ria for the concurrent execution of transactions, most importantly the notion
of serializability, and thus defines precisely the requirements that we pose on a
concurrency control algorithm. It is based on the simplifying assumption that
transactions are executed in a failure-free environment, so that there is not
(yet) a need to handle transaction aborts. For faster progress on the algorithmic
material, this chapter is based on the simpler page model and postpones the
analogous discussion on the richer object model until a later chapter. Chapter
4 then presents the most important classes of concurrency control algorithms
and shows their correctness in terms of satisfying the serializability criterion
of Chapter 3. Chapter 5 extends the algorithmic discussion to a class of algo-
rithms known as multiversion concurrency control, which is more powerful in
that it enhances the concurrency among transactions but is also more complex
and requires more system resources.

Both Chapters 4 and 5 are based on the page model. The thorough discus-
sion of page-oriented concurrency control sets the stage for the next step, where
transactions are reconsidered within the object model. In fact, we will show that
many considerations of the page model, both of correctness criteria and algo-
rithms, are extremely useful for object-based concurrency control techniques
as well. Chapter 6 is the analog of Chapter 3, discussing formal correctness
criteria that can be seen as generalizations of those of the page model. Chapter
7 then presents object-based concurrency control algorithms, largely building
on basic techniques already introduced for the page model. Chapter 7 also ex-
plains in great detail the major advantage of object-based concurrency control,
namely, the enhanced concurrency and resulting performance gains obtained
by considering the semantics of the transactions’ invoked operations. The pre-
sented techniques up to this point are as general as possible and applicable to
all kinds of objects and object methods. The next two chapters specialize the
object-based approach to two specific settings that are of high practical impor-
tance, deriving specific solutions that offer additional performance advantages.
Chapter 8 develops techniques for various forms of high-level methods pro-
vided by the relational data model, particularly predicate-oriented retrieval and
update operations. Chapter 9 is further specialized to the interface and inter-
nal operations provided by index structures, most notably, B+ trees and similar
structures. Although these considerations may appear to be of an extremely
special nature, they are among the most important ones for the efficiency of a
database system. The entire part on concurrency control is concluded in Chap-
ter 10 with a closer look into implementation issues and various pragmatic
concerns such as tuning options.
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Part III of the book is organized by addressing different classes of failures, Part III:
recoverymostly in increasing order of potential damage and difficulty to handle. Chap-

ter 11 considers transaction failures, where only a single process or thread
behaves abnormally (at the client or server), and thus at most one active trans-
action is affected by the failure. The major problem to be addressed in this
case is that such an abnormal, to-be-aborted transaction does not affect any
of the concurrently executing transactions that should make regular progress.
Chapter 11 provides the solutions to this problem, in terms of defining cor-
rectness criteria and developing practical algorithms, for both the page model
and the object model. Chapter 12 then considers a more severe class of fail-
ures, namely, crashes of the entire server caused, for example, by failures of the
underlying database system or operating system software or by transient hard-
ware failures. This case, which requires crash recovery actions for all in-progress
transactions and the server’s data, is the most challenging as far as efficient al-
gorithms are concerned. Therefore, after defining the appropriate notion of
correctness in Chapter 12, we first limit the discussion to the page model, and
develop detailed algorithms for page-oriented crash recovery in Chapter 13.
Chapter 14 then extends our algorithmic and performance considerations to
the object model. Similar to the concurrency control part, we can reuse many
basic techniques from the page model here, but still need a number of ad-
ditional steps toward a practically viable solution. Also, a number of specific
settings, for example, the recovery of index structures, are covered in Chapter
15. At the next stage, Chapter 16 considers failure cases where permanent data
becomes corrupted—for example, by a disk failure—and presents media recov-
ery techniques for guarding the data and its consistency against such failures
by means of appropriate redundancy. These techniques build directly upon the
algorithms for crash recovery, and will also be extended to provide a form of
disaster recovery for cases such as fire or flood that may affect entire buildings
but leave remote computer sites intact. The focus in Chapters 11 through 16
is to ensure that the server’s data remains consistent while disregarding the
possible inconvenience of manually restarting the applications after a failure.
Chapter 17 addresses this “missing link” toward zero outage, highly available
information systems by presenting advanced techniques for application recov-
ery. This final stage of recovery methods aims to mask all sorts of failures from
the human users and requires additional considerations to recover the state of
application processes and communication sessions.

The techniques derived in Parts II and III allow us to build and operate a sin- Part IV:
coordination of
distributed
transactions

gle server with transactional guarantees. With multiple servers in a distributed
or federated system, an obvious thing to do is simply to instantiate the single
server concurrency control and recovery components in each of the servers.
Indeed, we will see in Part IV that the single server techniques still do most of
the job for distributed transactions as well. However, we do need some addi-
tional techniques to coordinate and possibly reconcile the effects and outcome
of distributed transactions on the involved servers. The theoretical foundation
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and algorithmic solutions for the required kind of coordination are presented
in Chapter 18 for the concurrency control aspects, establishing a notion of
global serializability based on the local serializability and other properties of
the executions in the various servers. In Chapter 19 we will then discuss the
extensions needed for the recovery of one or multiple servers after various kinds
of failures in a distributed environment. The key addition to the local recovery
algorithms is the introduction of a distributed commit protocol to guarantee
global atomicity.

2.6 Lessons Learned

This book is largely about algorithms for the two key building blocks of transac-
tional information systems—concurrency control and recovery. The challenge
lies in the performance of concurrency control and recovery components: pro-
viding high concurrency, high throughput, and fast response times, and ensuring
fast recovery from failures and thus high availability with low overhead during
normal operation. To address these issues in a systematic manner that combines
algorithms with correctness arguments and efficiency considerations, we have
introduced two computational models: the page model as the simplest basis
and the richer but also more complex object model. These models allow us to
develop a theory and the truly fundamental concepts and techniques of our
subject in an abstract and concise manner, without getting lost in the plethora
of details of real-life systems. However, following Einstein’s quote that “noth-
ing is as practical as a good theory,” we will also exploit our abstract basis for
deriving concrete algorithms and practically viable, systems-oriented solutions.

Exercises

2.1 Consider a finite alphabet � and the set �∗ of all words over �. For v, w ∈

�∗ define the prefix order “≤” by v ≤ w if v is a prefix of w. Show that “≤”
is a partial order on �∗.

2.2 Consider an arbitrary (finite) set M as well as its powerset P(M), i.e.,
the set of all subsets of M. Show that subs ⊆ P(M) × P(M), defined by
(M1, M2) ∈ subs if M1 ⊆ M2, is a partial order on P(M).

2.3 Consider the following read/write page model transaction:

t = r (x)r (y)r (z)w(u)w(x)r (v)w(y)w(v)

Describe the interpretation of t from an informal as well as from a formal
point of view.
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2.4 Redo Exercise 2.3 for

t = r (x)r (y)r (z)r (u)r (v)

2.5 Redo Exercise 2.3 for

t = w(x)w(y)w(z)w(u)w(v)

2.6 In the literature, the following variations of the read/write page model can
be found:

“No Blind Writes” model: Each transaction writing a data item x must
have read x previously.

“Two-Step” model: All read steps of a transaction occur prior to all write
steps.

“Action” model: Each step of a transaction represents an atomic execu-
tion of a read step followed by a write step of the same data item; thus,
distinguishing reads from writes is no longer necessary.

Discuss the interpretation of a transaction along the lines of what has been
introduced in this chapter for each of these models. What, if any, are the
differences in interpretation to the standard read/write model?
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CHAPTER THREE

Concurrency Control:
Notions of Correctness for

the Page Model

Nothing is as practical as a good theory.

—Albert Einstein

If you don’t make mistakes, you’re not working on

hard enough problems. And that’s a big mistake.

—Frank Wilczek

3.1 Goal and Overview

In this chapter we concentrate on the page model of transactions and develop
notions of correctness for their concurrent execution. This study will reveal
a variety of aspects: techniques for proving concurrency control algorithms,
syntactic versus semantic notions of correctness, NP completeness results, and
hierarchies of classes of correct histories, to mention just a few. Several of
the notions presented in this chapter will later be reused in the context of
other models; more importantly, the approach of developing correctness cri-
teria, which is based on establishing a relationship between concurrent and
serial executions, has very few competitors. Indeed, although essentially in-
vented more than 20 years ago, it is even relevant for studies done in recent
years, and is often the starting point for novel developments and revisited
viewpoints.

We will first model an execution of multiple transactions that is interleaved
over time and thus concurrent by the notions of schedules and histories. For
these notions two points will be important. First, executing transactions is a
highly dynamic situation in reality; therefore, modeling this adequately might
not be as easy as it may seem. In fact, the concurrency control component of
a data server needs to be ready to decide instantly on the execution of a newly
arriving transaction, and needs to synchronize it correctly with already running
transactions. The technical tool will be to consider prefixes of histories, now
called schedules. Second, we need to take into account that some transactions
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might not terminate successfully, but can be aborted (for reasons to be dis-
cussed later). For this purpose, we will follow common practice and introduce
termination operations in addition to data operations that serve to terminate a
transaction by either a Commit operation or an Abort operation. However, the
formal treatment, especially of aborts, can easily become counterintuitive (see
the Bibliographic Notes for this chapter), which is why our formal exposition
will mostly assume a failure-free environment.

We will take these techniques through a variety of notions of correctness,
so you can become familiar with them and study how to apply them in distinct
settings. Before doing so, we lay the groundwork for the correctness discussion
by covering some prominent synchronization problems.

3.2 Canonical Concurrency Problems

Before we embark on a formal discussion of correctness in the page model
of transactions, we will show by way of examples that the model captures a
variety of the most important patterns of concurrency problems. To this end,
we consider three archetypical “conflicts” that may arise between the read and
write operations of distinct transactions in the absence of proper concurrency
control measures.

EXAMPLE 3.1

The following problem is known as the lost-update problem. Consider two

transactions t1 and t2, which are concurrently executed as follows:

t1 Time t2

/∗ x = 100 ∗/

r (x) 1

2 r (x)
/∗ update x := x + 30 ∗/ 3

4 /∗ update x := x + 20 ∗/

w(x) 5

/∗ x = 130 ∗/

6 w(x)

/∗ x = 120 ∗/

↑

update “lost”

Lost-update
problem

We suppose that x is a numerical data item having a value of 100 at time 1.

Both t1 and t2 read this value into local variables and modify the value in

their local variables, and then each of the two writes back its local value

into the shared data item. For simpler notation, we do not show the local

variables of the processes explicitly, and rather refer to them by the name x
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in their local assignments. Assume that t1 adds 20, while t2 adds 30. So in

the end x should have a value of 150. However, since t2 is the last one to

overwrite the original value of x, the final value is 120, which is incorrect.

Indeed, because t1 writes its new value back into the database before t2
does, the former update is lost.

Notice that it is irrelevant in the previous example what the two processes
do with data item x once it has been transferred into their local variables; the
important point is the uncontrolled overwriting of the first transaction’s result
by the second after the concurrent modifications of the local variables. For ex-
actly this reason, we could afford a somewhat loose notation, without explicit
names for the local variables. The essence of the problem really is the pattern
of interleaved read and write operations:

r1(x)r2(x)w1(x)w2(x)

with time proceeding from left to right.
Such problems do not necessarily have to involve two “writers,” as the

following example with one read-only transaction shows.

EXAMPLE 3.2

This problem is known as the inconsistent-read problem. Consider two Inconsistent-
read
problem

data items x and y of type Integer, with current values x = y = 50; so

x + y = 100. This could arise in a banking application, where the data

items represent account balances. For transfers among the accounts, their

sum should obviously remain constant. Transaction t1, below, computes

the current sum, while transaction t2 transfers a value of 10 from x to y as

follows:

t1 Time t2
1 r (x)
2 /∗ x := x − 10 ∗/

3 w (x)
/∗ sum := 0 ∗/ 4

r (x) 5

r (y) 6

/∗ sum := sum + x ∗/ 7

/∗ sum := sum + y ∗/ 8

9 r (y)
10 /∗ y := y + 10 ∗/

11 w (y)

Clearly, t1 will return 90 as a result, which is wrong; however, this error

cannot be easily recognized by the user who may thus be misguided in
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some follow-up real-world actions. Again, the essence of the problem is

the pattern of interleaved read and write operations:

r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)

These two simple examples already give rise to two important observations:

in both cases, the effects are unwanted, although in principle they are
not visible to the outside world;

a serial execution of the two transactions, that is, an execution in which
one transaction is executed completely before the other (either t1 be-
fore t2, or vice versa), would have avoided the erroneous effects; this
observation will be used later to design a first correctness criterion.

Next we take a look at a problem in which one of the transactions fails,
and the transaction-specific rollback option is exerted (e.g., by the data server
or by the transaction itself issuing an abort request), thus “erasing” all effects
that the process has left on the permanently stored data.

Dirty-read
problem

EXAMPLE 3.3

This example is known as the dirty-read problem or the problem of reading

uncommitted data. Its major point is that one transaction fails after having

modified some data, which is read by a second transaction between the

modification and the failure.

t1 Time t2
r (x) 1

/∗ x := x + 100 ∗/ 2

w(x) 3

4 r (x)
5 /∗ x := x − 100 ∗/

failure & rollback 6

7 w (x)

When transaction t1 fails and is rolled back after the modified value of x
has been read by t2, this puts t2 in an inconvenient position. Because of the

failure, the modified value of x is not a committed one upon which t2 can

rely. Nevertheless, this value is the only one that t2 has read and will thus

use for its own further processing, especially for computing the value that it

will subsequently write back into x. For example, if x were a bank account,

with an initial balance of 0 and no option for overdrafting the account

(i.e., producing a negative balance), and t1 were to deposit $100, say, in
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the form of a check, then t2 would critically rely on the validity of this check

and the deposit in its attempt to withdraw $100 from this no-overdraft

account. Obviously, the situation shown, where the withdrawal may even-

tually succeed but the deposit of the check fails, would severely damage

the dependability and reputation of the bank’s business. The solution would

be that the value read by t2 is rendered invalid by the rollback of t1, and

appropriate steps should be taken to prevent t2 from depending on this

invalid value.

What can be seen from the above examples is that the data accesses per-
formed by concurrently executing programs have a potential of conflicting with
each other. Therefore, some form of concurrency control is necessary, which
ultimately even has to take certain failure situations into account, as shown
by the dirty-read example. With transactional guarantees, however, all these
anomalies should be avoided, and the outside world should always get the
impression that the executing transactions are run serially, in some order.

Another important observation from the three examples is that the details
of how data is manipulated within the local variables of the executing programs
are mostly irrelevant. Rather it is the interleaved patterns of read and write
accesses to the permanently stored data (plus the occurrence of rollbacks on the
time line) that we should focus on. We will show next that these patterns will
indeed guide us to a correctness criterion for concurrent transaction executions,
in that we can discriminate the allowable patterns from those that could lead
to anomalies.

3.3 Syntax of Histories and Schedules

Following the discussion from the previous section, an immediate requirement
for a notion of correctness will be that these situations are captured and even
avoided. Obviously, we will also be interested in correctness criteria that can
be decided efficiently, since a scheduler—the heart of a concurrency control
component—will have to apply them online.

As we did for transactions in the previous chapter, we first clarify the
syntax of schedules. Here we try to respect the dynamic situation in two ways.
First, we assume that schedules contain information on how a transaction ends.
Technically, this can be either successfully or unsuccessfully. A successful end
is indicated by a termination operation called commit (c); that is, the transaction Termination

operationin question ran completely and without an interruption by some failure so that
the results it has produced can be made visible to other transactions and made
permanent in the database. An unsuccessful end means the transaction has to
be terminated prior to reaching its normal end, which will be indicated by
another termination operation called abort (a). An aborted transaction should



66 CHAPTER THREE Concurrency Control: Notions of Correctness for the Page Model

not have any effect on the underlying database, which will mainly be assured
by recovery procedures to be discussed in Part III. Steps of type c or a will
also be called termination operations, in order to distinguish them from data
operations of type r or w (in the page model).

Second, we will make a distinction between schedules in which the out-
come of every transaction is known and schedules in which this is open for
some or even all transactions. Since in reality the outcome of a set of trans-
actions is actually known in retrospect only, we will call schedules of the for-
mer type histories, and will keep the term schedule for transaction interleav-
ings of the second type. In other words, a history will always be complete in
the sense that all operations of each transaction appear, including a termina-
tion operation for every single transaction. Note that histories in this sense
are also called complete schedules in the literature. On the other hand, sched-
ules will in general be prefixes of histories, in which data as well as termina-
tion operations of transactions may still be missing. We consider this adequate
for capturing a dynamic scheduling situation, since a scheduler will gener-
ally know a schedule only as the operations of the various transactions arrive
step-by-step, and their execution is normally launched before the scheduler
has seen the entire transaction. In the ideal situation of continuously error-
free operation, a schedule (and hence a history) will even become infinitely
long.

We have mentioned in Chapter 2 that there are two ways of looking at aSchedules vs.
histories transaction: either as a total order of steps, in which no parallelism whatsoever

occurs, or as a partial order of steps, in which some steps may occur (and
hence be executed) in parallel. The same distinction is of course appropriate
for schedules and histories, as we will soon discuss (e.g., in Example 3.4). We
start by defining the general case (partial order), which puts as few restrictions
as possible on the ordering of steps on transactions, schedules, or histories.

DEFINITION 3.1 Schedules and Histories

Let T = {t1, . . . , tn} be a (finite) set of transactions, where each ti ∈ T has

the form ti = (opi , <i ), with opi denoting the set of operations of ti and

<i denoting their ordering, 1 ≤ i ≤ n.

1. A history for T is a pair s = (op(s), <s) such that:

(a) op(s) ⊆
⋃n

i=1 opi ∪
⋃n

i=1 {ai , ci } and
⋃n

i=1 opi ⊆ op(s), i.e., s con-

sists of the union of the operations from the given transactions plus a

termination operation, which is either a ci (commit) or an ai (abort),

for each ti ∈ T ;

(b) (∀ i, 1 ≤ i ≤ n) ci ∈ op(s) ⇐⇒ ai �∈ op(s), i.e., for each transac-

tion, there is either a commit or an abort in s, but not both;

(c)
⋃n

i=1 <i ⊆ <s , i.e., all transaction orders are contained in the partial

order given by s;
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(d) (∀ i, 1 ≤ i ≤ n)(∀ p ∈ opi ) p <s ai or p <s ci , i.e., the Commit or

Abort operation always appears as the last step of a transaction;

(e) every pair of operations p, q ∈ op(s) from distinct transactions that

access the same data item and have at least one write operation

among them is ordered in s in such a way that either p <s q or

q <s p.

2. A schedule is a prefix of a history.

Thus, a history (for partially ordered transactions) has to contain all op-
erations from all transactions (a), needs a distinct termination operation for
every transaction (b), preserves all orders within the transactions (c), has the
termination steps as final steps in each transaction (d), and orders conflicting
operations (e). Because of (a) and (b), a history is also called a complete sched-
ule in the literature. The view that two operations that access the same data
item and of which at least one is a write operation are in conflict is identical
to the notion of conflict that will later be used as the basis for a notion of
serializability.

Notice that a prefix of some history can also be the history itself; there-
fore, histories can be considered a special case of schedules, so that for most

Serial history

considerations that follow, it will suffice to consider some schedule to be given.

DEFINITION 3.2 Serial History

A history s is serial if for any two transactions t i and t j in it, where i �= j ,
all operations from t i are ordered in s before all operations from t j , or vice

versa.

EXAMPLE 3.4

Consider the three transactions shown in Figure 3.1. For each transaction,

shown as a directed acyclic graph (DAG), the edges exhibit the orderings of

steps. Figure 3.2 shows two histories (a) and (b) for these transactions, both

assuming that each transaction commits. In history (a), the operations are

totally ordered as written from left to right. History (b), on the other hand,

exhibits a partial order, where the dashed lines are those newly required by

condition (e) in Definition 3.1(1).

Note that we often say that a step p in a schedule or history occurs before
another step q in the same schedule, for which we write “p < q”; if the context
of a schedule s [transaction t] needs to be expressed, we will analogously write
“p <s q” [“p <t q”].
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r1(x)

r2(x) w2(y)

r1(z)

w1(x)

w3(y)

w3(z)

r3(z)

Figure 3.1 Three sample transactions.

We also note that a prefix of a partial order is essentially obtained by
omitting pieces from the end of a “reachability chain.” More precisely, if s =

(op(s), <s), then a prefix of s has the form s ′ = (ops ′ , <s ′) such that:

1. ops ′ ⊆ op(s)

2. <s ′ ⊆ <s

3. (∀ p ∈ ops ′) (∀q ∈ op(s)) q <s p ⇒ q ∈ ops ′

4. (∀ p, q ∈ ops ′) p <s q ⇒ p <s ′ q

It is easy to go from a partial order to a total order (by ordering previ-
ously unordered steps in an arbitrary way); indeed, partial orders can always be

r1(x)

r2(x) w2(y)

w3(y)

w1(x)

r1(z)

r3(z)

c3

c2

c1

w3(z)

r1(x)r2(x)r1(z)w1(x)w2(y)r3(z)w3(y)c1c2w3(z)c3

(a)

(b)

Figure 3.2 Two histories for the transactions
from Figure 3.1: totally ordered
(a) and partially ordered (b).
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extended to a variety of total orders as special cases. For example, the history
shown in Figure 3.2(a) is a totally ordered one obtained from the history shown
in Figure 3.2(b) by topologically sorting the given (acyclic!) history graph.

When starting from operation sequences or totally ordered transactions, Shuffle product
of transactionshowever, the appropriate technical tool to define histories and schedules is the

shuffle product: Let T = {t1, . . . , tn} be a (finite) set of totally ordered trans-
actions. shuffle(T) denotes the shuffle product of T , that is, the set of all
sequences of steps in which each sequence ti ∈ T occurs as a subsequence
and contains no other steps. Notice that this is the shuffle product in an
automata-theoretic sense; it is well defined due to the assumption that distinct
transactions do not have steps in common. Formally, the steps of a transaction
ti , 1 ≤ i ≤ n, are as before equipped with the index i in an element of a shuffle
product.

The notion of a shuffle product allows us to derive a definition of totally Totally ordered
histories and
schedules

ordered histories and schedules for transactions in the page model from Def-
inition 3.1 as follows: Let T = {t1, . . . , tn} be a (finite) set of totally ordered
transactions. A history (or complete schedule) s for T is derived from a se-
quence s ′ ∈ shuffle(T) by adding ci or ai for each ti ∈ T according to rules
(b) and (d) of Definition 3.1(1). (For simplification, we will also refer to this
augmentation simply as the shuffle product.) A schedule is, as before, a prefix
of a history, and a history s is serial if

s = tρ(1) . . . tρ(n)

holds for a permutation ρ of {1, . . . , n} (where it is assumed that the termina-
tion operations occur last in each transaction).

EXAMPLE 3.5

Consider the set T = {t1, t2, t3} of transactions from Example 3.4 again,

which are now perceived as total orders as follows:

t1 = r1(x)r1(z)w1(x)
t2 = r2(x)w2(y)
t3 = r3(z)w3(y)w3(z)

The history

r1(x)r2(x)r1(z)w1(x)w2(y)r3(z)w3(y)c1c2w3(z)c3

seen earlier is a totally ordered history and has

r1(x)r2(x)r1(z)w1(x)w2(y)r3(z)w3(y),
r1(x)r2(x)r1(z)w1(x)w2(y), and

r1(x)r2(x)r1(z)

among its prefixes.
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EXAMPLE 3.6

Consider the set T = {t1, t2, t3} of transactions, where

t1 = r1(x)w1(x)r1(y)w1(y),
t2 = r2(z)w2(x)w2(z),
t3 = r3(x)r3(y)w3(z).

Then we have

s1 = r1(x)r2(z)r3(x)w2(x)w1(x)r3(y)r1(y)w1(y)w2(z)w3(z) ∈ shuffle(T);
s2 = s1c1c2a3 is a history in the shuffle product of T augmented by termi-

nation steps, where s1 denotes the sequence of page operations;

s3 = r1(x)r2(z)r3(x) is a schedule;

s4 = s1c1 is another schedule;

s5 = t1c1t3a3t2c2 is serial.

It is not difficult to verify that the results obtained in this chapter always
hold both for total as well as for partial orders. However, they are mostly easier
to state for total orders, which is why we will almost without exception go with
total orders, in particular when giving examples. We will point to differences
where appropriate.

Instead of studying a static situation first and then transferring the results

Transaction sets
of a schedule

to the dynamic situation actually given in reality, we will develop the theory
of serializability here directly for a dynamic setting. Therefore, we will no
longer start from a “given” set T of transactions when considering schedules
and histories, but we will “read off” the steps of transactions from a given
schedule. To this end, we introduce the following notions, intended to ease
the distinction between committed, aborted, and active transactions in a given
schedule: let s be a schedule.

1. trans(s) := {ti | s contains steps from ti }

trans(s) denotes the set of all transactions occurring partially or com-
pletely in s.

2. commit(s) := {ti ∈ trans(s) | ci ∈ s}
commit(s) denotes the set of all transactions that are committed in s.

3. abort(s) := {ti ∈ trans(s) | ai ∈ s}
abort(s) denotes the set of all transactions that are aborted in s.

4. active(s) := trans(s) − (commit(s) ∪ abort(s))
active(s) denotes the set of all transactions that are still active in s (i.e.,
for which termination through commit or abort is still open).
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These notations will make it easier to argue about schedules. Consider the
previous example again; there we have for schedule

s2 = r1(x)r2(z)r3(x)w2(x)w1(x)r3(y)r1(y)w1(y)w2(z)w3(z)c1c2a3

the following transaction sets:

trans(s2) = {t1, t2, t3}
commit(s2) = {t1, t2}
abort(s2) = {t3}
active(s2) = ∅

Similarly, we have for schedule

s4 = r1(x)r2(z)r3(x)w2(x)w1(x)r3(y)r1(y)w1(y)w2(z)w3(z)c1

the following transaction sets:

trans(s4) = {t1, t2, t3}
commit(s4) = {t1}
abort(s4) = ∅

active(s4) = {t2, t3}

As a corollary from the definition of these notions, it should be clear that
for each history s,

trans(s) = commit(s) ∪ abort(s)
active(s) = ∅

In general, for a schedule s the sets commit(s), abort(s), and active(s) are
pairwise disjoint and together constitute trans(s). As transaction aborts will
mostly be ignored in this chapter, we will almost always look at schedules s
such that abort(s) = ∅.

3.4 Correctness of Histories and Schedules

Our next goal is to devise correctness criteria for schedules. If S denotes the
set of all schedules, such a criterion can formally be considered as a mapping

σ : S → {0, 1}
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associating a Boolean value with each s ∈ S (where 0 stands for “false” and 1 for
“true”). Thus, correct schedules will be those s ∈ S for which σ (s) = 1 holds:

correct(S) := {s ∈ S | σ (s) = 1}

A concrete criterion σ should at least meet the following requirements:

1. correct(S) �= ∅, that is, there are at least some correct schedules in S;

2. “s ∈ correct(S)” is efficiently decidable, so it does not take a scheduler
forever to determine whether what it has come up with is acceptable;

3. correct(S) is “sufficiently large,” so a scheduler based on the respective
criteria intuitively has many possibilities to produce correct schedules
for the given set of transactions. The larger the set of allowable schedules,
the more concurrency will be possible, and thus better performance can
be expected.

Our goal in this chapter is to provide several such criteria, under the pre-
requisite that the transaction semantics is not known. We will work around
this by introducing a “syntactical semantics” for schedules, which will render it
possible to state correctness criteria that are intuitively appropriate. However,
our initial approaches will not lead to efficiently decidable criteria, so restric-
tions are needed. An important observation, however, is that the way to obtain
another criterion will always be the same.

Assuming that schedules should maintain the integrity of the underlyingThe
fundamental

idea of
serializability

data (i.e., keep it consistent) and assuming that each individual transaction
is able to assure this, it is reasonable to conclude (by induction) that serial
histories are correct. On the other hand, for performance reasons we are not
interested in serial histories, so we will only use them as a correctness measure,
via an appropriately chosen equivalence relation. In more detail, we will do the
following:

1. We define an equivalence relation “≈” on the set S of all schedules. This
gives rise to a decomposition of S into equivalence classes [ ] according
to ≈:

[S]≈ = {[s]≈ | s ∈ S}

[S]≈ denotes the set of all equivalence classes according to ≈. Clearly, all
schedules in one such class are pairwise equivalent, so that any schedule
s can be chosen as the representative of that class.

2. According to what we said above, the interest will then be in those
classes for which a serial schedule can be chosen as the representative.
Elements of such a class will be called serializable.
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Thus, we will in brief do the following:

1. define a notion of equivalence for schedules,

2. define serializability via equivalence to serial histories.

We will practice this several times in the remainder of this chapter. We will even
practice the same, possibly for a different transaction model, in later chapters,
the reason being the simple fact that every notion of serializability can indeed
be obtained in that way.

Throughout this chapter, and also most of the material in Part II, we will
largely disregard transaction aborts. Whenever it is easy to incorporate aborts Aborts

disregardedat the syntactic level, we will do so, but a full account of their subtle semantics
is postponed until Part III. Chapter 11 will study the effects that aborts can
have on concurrent executions. So for the rest of this chapter you may assume
that schedules contain only committed or active transactions.

3.5 Herbrand Semantics of Schedules

We will define equivalence between schedules via a notion of semantics. How-
ever, as we have said, this is difficult to make precise in the absence of trans-
action program or even application semantics. So what we will do is define a
syntactical semantics that extends the interpretation of steps of a transaction,
introduced in the previous chapter, to the context of a schedule. More precisely,
we will first define the semantics of steps occurring in a schedule and then that
of the schedule itself. In doing so, we will ignore the fact that transactions may
fail, and will hence assume the following for an arbitrary schedule s:

1. a step ri (x) ∈ s of a transaction ti ∈ trans(s) reads the value written by
the last w j (x) ∈ s, j �= i , that occurs before ri (x);

2. a step wi (x) ∈ s writes a new value that potentially depends on the Idea of
Herbrand
semantics

values of all data items that ti has read from the database or from other
transactions in active(s) ∪ commit(s) prior to wi (x).

Notice that the last writer of some data item x is always well defined in a
schedule or history, since situations such as

wi (x) → rk(x)
ր

w j (x)



74 CHAPTER THREE Concurrency Control: Notions of Correctness for the Page Model

are disallowed by the fact that wi (x) and w j (x) must be ordered: if wi (x) <

w j (x), then rk(x) reads from w j (x); if w j (x) < wi (x), then rk(x) reads from
wi (x).

In our exposition of this chapter, we avoid problems that may result from
taking aborted (or aborting) transactions into account (see Bibliographic Notes)
by assuming that transactions are executed in a failure-free environment—in
other words, that each and every transaction eventually commits. We will return
to this discussion in particular in Part III of the book.

For the first assumption introduced above, a problem could arise from the
fact that not every read step is preceded by a write step in a schedule, for
example, consider

s = r1(x)r2(y)w1(x)r2(x) . . .

In order to make the result of a read operation well defined even in such
cases, we will assume in what follows that every schedule has a fictitious ini-
tializing transaction t0 in the beginning, which writes all data items referenced
in the schedule (and then commits). For example, the schedule just mentioned
thereby becomes

s = w0(x)w0(y)c0r1(x)r2(y)w1(x)r2(x) . . .

In words, an initializing transaction defines an initial state to which a given
schedule is applied. Clearly, the initializing transaction, which will always be
denoted t0, has to precede all steps from every other transaction occurring in the
schedule under consideration. Most of the time, we will not show t0 explicitly.

The problem with the informal semantics of steps in a schedule given above
still is that values read or written, or functions applied, are unknown. One way
out of this situation is to use a technique from mathematical logic, namely,
to define a Herbrand semantics by using only uninterpreted function symbols,
and nothing else.

DEFINITION 3.3 Herbrand Semantics of Steps

Let s be a schedule. The Herbrand semantics Hs of steps ri (x), wi (x) ∈ op(s)
is recursively defined as follows:

1. Hs(ri (x)) := Hs(w j (x)), where w j (x), j �= i , is the last write operation

on x in s before ri (x).

2. Hs(wi (x)) := fi x(Hs(ri (y1)), . . . , Hs(ri (ym))), where the ri (y j ), 1 ≤ j ≤
m, represent all read operations of t i that occur in s before wi (x), and

where fi x is an uninterpreted m-ary function symbol.
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Note that fi x as used in Definition 3.3(2) is well defined due to our gen-
eral assumption that there is at most one write step on each data item per
transaction. It is then easily verified that Hs(p) is well defined for each data
operation p ∈ op(s). To this end, it is important that s has been extended by t0;
every write step of t0 writing, say, data item x has not read anything before, and
will hence be associated with a 0-ary function f0x( ) providing a constant (the
initial value of x). Informally, the previous definition states that in a schedule
a read step returns the value of the last write operation executed on behalf
of an unaborted transaction. (Notice that we do not require that only the val-
ues produced by committed transactions may be read. This will be the subject
of recoverability notions to be introduced in Part III.) The result of a write
operation depends—in an unknown way—on the values of those data items
previously read by the writing transaction.

As an example, the Herbrand semantics Hs of the steps of the schedule

s = w0(x)w0(y)c0r1(x)r2(y)w2(x)w1(y)c2c1

is as follows, where f0x( ) and f0y( ) are 0-ary functions (constants):

Hs(w0(x)) = f0x( )
Hs(w0(y)) = f0y( )
Hs(r1(x)) = Hs(w0(x)) = f0x( )
Hs(r2(y)) = Hs(w0(y)) = f0y( )

Hs(w2(x)) = f2x(Hs(r2(y))) = f2x( f0y( ))
Hs(w1(y)) = f1y(Hs(r1(x))) = f1y( f0x( ))

The example also demonstrates the effect of an initializing transaction, which
fixes initial values for all relevant data items.

Next, we will fix a Herbrand universe for transactions and, based on that,
the semantics of a schedule.

DEFINITION 3.4 Herbrand Universe

Let D = {x, y, z, . . .} be a (finite) set of data items (representing the data

of the underlying data server(s)). For a transaction t, let op(t) denote the

set of all steps of t. The Herbrand universe HU for transactions t i , i > 0,

is the smallest set of symbols satisfying the following conditions:

1. f0x( ) ∈ HU for each x ∈ D, where f0x is a 0-ary function symbol (i.e.,

a constant);

2. if wi (x) ∈ op(t i ), |{ri (y) | (∃ y ∈ D) ri (y) <ti wi (x)}| = m, and if v1, . . . ,
vm ∈ HU, then fi x(v1, . . . , vm) ∈ HU, where fi x is an m-ary function

symbol.
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Thus, the semantic domain of data operations in a schedule is a set of values
from the Herbrand universe. Notice that a Herbrand universe is a purely syn-
tactical construction that is only about symbols, and that does not say anything
about the values actually read or written by the transactions in question. Now
we have

Semantics of a
schedule

DEFINITION 3.5 Schedule Semantics

The semantics of a schedule s is the mapping

H[s] : D → HU

defined by

H[s](x) := Hs(wi (x))

where wi (x) is the last operation from s writing x, for each x ∈ D.

In other words, the semantics of a schedule s is the set of values that are
written last in s. Since we are considering a failure-free environment, there is
no need to state that only unaborted transactions are taken into account.

As an example, let s = w0(x)w0(y)c0r1(x)r2(y)w2(x)w1(y)c2c1 be as above.
Then we have

H[s](x) = Hs(w2(x)) = f2x( f0y( ))
H[s](y) = Hs(w1(y)) = f1y( f0x( ))

The above definitions, although quite general, have the interesting side
effect that they can be adapted to any concrete transaction interpretation (see
Exercises 3.2 and 3.3). Clearly, the price to pay for this generality is the fact
that Herbrand semantics is intricate to handle.

3.6 Final State Serializability

We are now in a position to define a first form of serializability, or equivalence
to some serial schedule. Basically, such a notion of equivalence will make sense
only for histories (i.e., for complete schedules) since the serial standard of
comparison is by definition complete. (All transactions occur completely, one
after the other.) We will later have to discuss the question of how to define
correctness for (arbitrary) schedules that are not necessarily histories in our
sense.

We start with a first notion of equivalence between schedules, which now
appears near at hand:
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DEFINITION 3.6 Final State Equivalence

Let s and s ′ be schedules. s and s ′ are called final state equivalent, denoted

s ≈ f s ′, if op(s) = op(s ′) and H[s] = H[s ′], i.e., s and s ′ comprise the

same set of operations and have the same Herbrand semantics.

Intuitively, two schedules are final state equivalent if they result in the
same final state for any given initial state. For example, consider the following
pair of schedules:

s = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)
s ′ = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)

Notice that both schedules have the same operations and comprise active trans-
actions only; the initializing transaction t0 is not shown in both cases. Now we
have

H[s](x) = Hs(w1(x)) = f1x( f0x( )) = Hs ′(w1(x)) = H[s ′](x)
H[s](y) = Hs(w1(y)) = f1y( f0x( )) = Hs ′(w1(y)) = H[s ′](y)
H[s](z) = Hs(w2(z)) = f2z( f0x( ), f0y( )) = Hs ′(w2(z)) = H[s ′](z)

Thus, s ≈ f s ′. Next consider the following two histories:

s = r1(x)r2(y)w1(y)w2(y)c1c2

s ′ = r1(x)w1(y)r2(y)w2(y)c1c2

Now we have

H[s](y) = Hs(w2(y)) = f2y( f0y( ))
H[s ′](y) = Hs ′(w2(y)) = f2y(Hs ′(r2(y))) = f2y(Hs ′(w1(y)))

= f2y( f1y(Hs ′(r1(x))))
= f2y( f1y( f0x( )))

Thus, s �≈ f s ′. This example in particular shows that final state equivalence can-
not be decided just by looking at final write operations; whatever has preceded
these writes must also be taken into account. In particular, in s only the value
of y is newly written (by t2), and this new value is based on the old value of y
previously read by t2. On the other hand, in s ′ the value of y already written
by t1 influences the final value of y written by t2, whereas t1 is without effect
in s.

We next formalize these observations. To this end, it is useful to assume
that a history s has not only an initializing transaction t0 in the beginning but
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Figure 3.3 A history with an initial and a final transaction.

also a new transaction t∞ in the end, which reads all data items mentioned in s
(and then commits); that is, t∞ reads the new state produced by s, and all steps
of t∞ occur after all other steps of s. As an example, consider the transactions
shown in Figure 3.1 once more. Figure 3.3 shows the history from Figure 3.2
without commits, but completed by initializing and final transactions.

A transaction of type t∞ does not make sense for a schedule; nevertheless,

Reads-from
relation

the following notions can be applied to both histories and schedules, for exam-
ple, by ignoring t∞ or by artificially adding it to a given (incomplete) schedule.

DEFINITION 3.7 Reads-From Relation—Useful, Alive, and Dead Steps

Let s be a schedule.

1. Let t j ∈ trans(s), and let r j (x) be a read operation of t j . r j (x) reads x
in s from wi (x), j �= i , if wi (x) is the last write operation on x such that

wi (x) <s r j (x).

2. The reads-from relation of s is defined by

RF(s) := {(ti , x, t j ) |an r j (x) reads x from a wi (x)}

3. A step p is directly useful for a step q, denoted p → q, if q reads from

p, or if p is a read step and q a subsequent write step from the same

transaction.

Let
∗
→ (“useful”) denote the reflexive and transitive closure of →.

4. A step p is alive in s if it is useful for some step from t∞, i.e.,

(∃ q ∈ t∞) p
∗
→ q

and dead otherwise.
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5. The live reads-from relation of s is defined by

LRF(s) := {(ti , x, t j ) |an alive r j (x) reads x from a wi (x)}.

EXAMPLE 3.7

Consider again the following histories:

s = r1(x)r2(y)w1(y)w2(y)c1c2

s ′ = r1(x)w1(y)r2(y)w2(y)c1c2

Then we have

RF(s) = {(t0, x, t1), (t0, y, t2), (t0, x, t∞), (t2, y, t∞)}
RF(s ′) = {(t0, x, t1), (t1, y, t2), (t0, x, t∞), (t2, y, t∞)}

Moreover, in both s and s ′, r2(y) → w2(y) → r∞(y), i.e., r2(y)
∗
→ r∞(y),

and so r2(y) is alive.

In s ′, additionally r1(x) → w1(y) → r2(y) holds and hence r1(x)
∗
→ r∞(y),

that is, r1(x) is alive. (Note that r1(x) is not alive in s.) This implies

LRF(s) = {(t0, y, t2), (t0, x, t∞), (t2, y, t∞)}
LRF(s ′) = {(t0, x, t1), (t1, y, t2), (t0, x, t∞), (t2, y, t∞)}

After these considerations, it should no longer come as a surprise that final
state equivalence can alternatively be characterized as follows, which shows
that it is easy to test:

THEOREM 3.1

Let s and s ′ be histories. Then

s ≈ f s ′ iff op(s) = op(s ′) and LRF(s) = LRF(s ′)

Proof Sketch

For a given schedule s we can construct a “step graph” D(s) = (V, E) as Step graph of a
schedulefollows:

V := op(s)

E := {(p, q) | p, q ∈ V, p → q}
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From a step graph D(s) a reduced step graph D1(s) can be derived by

dropping all vertices (and their incident edges) that represent dead steps.

Then the following can be proven:

1. LRF(s) = LRF(s ′) iff D1(s) = D1(s ′);

2. s ≈ f s ′ iff op(s) = op(s ′) and D1(s) = D1(s ′).

Clearly, this shows the theorem.

EXAMPLE 3.8

The histories

s = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)c1c2c3 and

s ′ = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)c3c2c1

considered earlier have the following LRF relations:

LRF(s) = {(t0, x, t1), (t0, x, t2), (t0, y, t2), (t1, x, t∞), (t1, y, t∞), (t2, z, t∞)}

LRF(s ′) = {(t0, x, t2), (t0, x, t1), (t0, y, t2), (t1, x, t∞), (t1, y, t∞), (t2, z, t∞)}

In both histories, read steps r1(x), r2(y), and r2(x) are alive. Their step

graphs D(s) and D(s ′) are shown in Figure 3.4; the corresponding reduced

step graphs are obtained by omitting the circled parts. Clearly, LRF(s) =

LRF(s ′) implies D1(s) = D1(s ′) and hence s ≈ f s ′.

EXAMPLE 3.9

For the histories

s = r1(x)r2(y)w1(y)w2(y)c1c2 and

s ′ = r1(x)w1(y)r2(y)w2(y)c1c2

from Example 3.7, the step graphs D(s) and D(s ′) are shown in

Figure 3.5, where the reductions are again obtained by deleting the cir-

cled parts. Notice that in s only r2(y) is alive ((t0, y, t2) ∈ LRF(s)); on the

other hand, in s ′ both r1(x) and r2(y) are alive ((t0, x, t1), (t1, y, t2) ∈

LRF(s ′)). Therefore, D1(s) �= D1(s ′) and hence s �≈ f s ′.

Notice that the step graph of a history is different from the partial order
of steps in that history in general. Indeed, in the former, edges are constructed
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Figure 3.4 (Reduced) step graphs for Example 3.8.

for directly useful steps. For example, if

wi (x) → rk(x)
ր

w j (x)

occurs in some given history s, the requirement to order the conflicting writes
would yield either wi (x) <s w j (x), or vice versa. Now if wi (x) <s w j (x), there
would be no edge from wi (x) to rk(x) in D(s), since rk(x) is forced to read from
w j (x).

The intuition behind a step graph of type D1(s) for a history s is to restrict
the attention to alive steps when testing final state equivalence—that is, steps

w0(x)

r1(x)

r∞(x)

w0(y)

w1(y)

r2(y)

r∞(y)

w2(y)

D(s): D(s′):

w0(x)

r∞(x)

w0(y)

r2(y)

w1(y)r1(x)

r∞(y)

w2(y)

Figure 3.5 (Reduced) step graphs for Example 3.9.
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that influence the final state (and hence are on a path to t∞ in the reduced
graph). In light of this interpretation, Theorem 3.1 states that s ≈ f s ′ holds iff
each read step that is alive reads a data item from the same step in both s and s ′.

The following is now obvious regarding the complexity of the decision
problem asking whether two given schedules are final state equivalent:

COROLLARY 3.1

Final state equivalence of two schedules s and s ′ can be decided in time

polynomial in the length of the two schedules.

Now given a notion of equivalence, we can define our first notion of seri-
alizability:

Class FSR DEFINITION 3.8 Final State Serializability

A history s is final state serializable if there exists a serial history s ′ such that

s ≈ f s ′.

Let FSR denote the class of all final state serializable histories.

EXAMPLE 3.10

Consider s = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)c1c2c3 from above.

Then s ≈ f t3t2t1, i.e., s ∈ FSR.

The next question to ask is how membership in class FSR can be tested.
Clearly, a “brute force” approach would be to apply Theorem 3.1 to a given
history s and—in the worst case—all permutations of its transactions; for each
such permutation s ′ we need to test whether s ≈ f s ′. As we have observed, a
single such test is computationally easy (see Corollary 3.1). Unfortunately, the
same may not be expected for the serializability test, since for |trans(s)| = n
there are n! permutations of the n transactions—in other words, exponentially
many. This is clearly not efficient, and as we will see shortly, there is little hope
that a better method exists.

3.7 View Serializability

As we have seen, FSR emphasizes steps that are alive in a schedule. However,
since the semantics of a schedule and of the transactions occurring in a schedule
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are unknown, it is reasonable to require that in two equivalent schedules, each
transaction reads the same values, independent of its liveliness. In this way, it
would be assured that each transaction “does” the same in either schedule, or
has the same “view” of the underlying data.

This is particularly important due to the fact that in applications, transac-
tions retrieve information from a database and pass this information to their
application programs, which in turn may trigger certain real-world actions such
as refilling the stock of a product with low quantity on hand. So the retrieved
data values are an integral part of the application programs’ semantics, regard-
less of whether the database itself is updated or not.

The fundamental importance of this observation becomes clear when we Lost-update
and
inconsistent-
read anomalies
reconsidered

reconsider the various types of anomalies that contribute to the need for con-
currency control, specifically, the lost-update and inconsistent-read canonical
examples. These examples now serve as a sanity check for the applicability of
the developed theory. Obviously, the lost-update anomaly is indeed properly
classified as a case of inadmissible behavior, for the schedule

r1(x)r2(x)w1(x)w2(x)c1c2

can be shown to violate the FSR criterion. However, the inconsistent-read
example reveals that FSR is still insufficient as a correctness criterion, for the
schedule

r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)c1c2

would be accepted under the FSR criterion (since the final state is the same
as the one produced by t2t1) but should actually be disallowed to prevent t1
from its inconsistent reading. The criterion to be developed next, coined view
serializability, will prevent such inconsistent-read anomalies.

3.7.1 View Equivalence and the Resulting Correctness Criterion

We make the above intuition precise as follows:

View
equivalence

DEFINITION 3.9 View Equivalence

Let s and s ′ be two schedules. s and s ′ are called view equivalent, denoted

s ≈v s ′ if the following holds:

1. op(s) = op(s ′),

2. H[s] = H[s ′],

3. Hs(p) = Hs ′(p) for all read or write steps p.
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Conditions (1) and (2) are just final state equivalents of s and s ′. The
third condition additionally requires that each data operation has the same
semantics in either schedule. Thus, view equivalence is more restrictive than
final state equivalence. View equivalence can be characterized as follows; again,
this notion of equivalence is easy to test.

THEOREM 3.2

Let s and s ′ be schedules. The following three statements are pairwise

equivalent:

1. s ≈v s ′

2. D(s) = D(s ′)

3. RF(s) = RF(s ′)

Proof

We here show the equivalence of (1) and (3) and leave the fact that (1) is

equivalent to (2) to Exercise 3.5.

“=⇒:” Consider a read step ri (x) from s. Then

Hs(ri (x)) = Hs ′(ri (x))

which implies that if ri (x) reads x from some step w j (x) in s, the same

holds in s ′, and vice versa. Since ri (x) was chosen arbitrarily, it follows that

RF(s) = RF(s ′).

“⇐=:” If RF(s) = RF(s ′), this in particular applies to t∞; hence H[s] =
H[s ′].

By the same token, for all other reads ri (x) in s, we have Hs(ri (x)) =

Hs ′(ri (x)).

Next, suppose that for some wi (x), Hs(wi (x)) �= Hs ′(wi (x)). Thus, the set of

values read by ti prior to step wi (x) is different in s and in s ′, a contradiction

to our assumption that RF(s) = RF(s ′).

COROLLARY 3.2

View equivalence of two schedules can be tested in time polynomial in the

number of elements in op(s).

With another notion of equivalence, another notion of serializability is now
straightforward:
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DEFINITION 3.10 View Serializability

A history s is view serializable if there exists a serial history s ′ such that

s ≈v s ′.

Let VSR denote the class of all view-serializable histories.

View
serializability,
class VSR

It follows from Definition 3.9 that VSR ⊆ FSR; our next theorem shows
that this inclusion is strict:

THEOREM 3.3

VSR ⊂ FSR

Proof

It suffices to consider the following history:

s = w1(x)r2(x)r2(y)w1(y)c1c2

s is final state equivalent to either one of the two possible serial orders,

for one transaction is read-only. However, the schedule is clearly not view

serializable, for both serial histories differ from s in terms of the reads-from

relation.

The following theorem, stated here without proof, shows that the differ-
ence between FSR and VSR indeed lies in the treatment of steps that are alive:

THEOREM 3.4

Let s be a history without dead steps. Then s ∈ VSR iff s ∈ FSR.

Before we turn to the question of how to test membership in VSR, let us Lost update
and
inconsistent
read revisited

again consider from an intuitive level whether VSR is appropriate as a correct-
ness criterion for schedules. If VSR was appropriate, it would have to “filter
out” the undesirable situations we have identified for concurrently executed
transactions, namely, the lost-update and inconsistent-read problems. As we
have seen already, a canonical history representing a lost-update situation is

L = r1(x)r2(x)w1(x)w2(x)c1c2

Correspondingly, one representing an inconsistent read is

I = r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)c1c2
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Let us look at these histories in turn. For L, there are two possible serial
orderings, t1t2 and t2t1. So what we have to do is compare their RF relations:

RF(L) = {(t0, x, t1), (t0, x, t2), (t2, x, t∞)}
RF(t1t2) = {(t0, x, t1), (t1, x, t2), (t2, x, t∞)}
RF(t2t1) = {(t0, x, t2), (t2, x, t1), (t1, x, t∞)}

Since all RF relations are pairwise distinct, L does not have a view-equivalent
serial history.

Next we look at history I and have the following:

RF(I ) = {(t0, x, t2), (t0, y, t2), (t2, x, t1), (t0, y, t1),
(t2, x, t∞), (t2, y, t∞)}

RF(t1t2) = {(t0, x, t1), (t0, y, t1), (t0, x, t2), (t0, y, t2),
(t2, x, t∞), (t2, y, t∞)}

RF(t2t1) = {(t0, x, t2), (t0, y, t2), (t2, x, t1), (t2, y, t1),
(t2, x, t∞), (t2, y, t∞)}

Again, we find that the RF relations are pairwise different; hence I �∈ VSR, as
expected.

Regarding the third synchronization problem, the dirty-read problem, aDirty read
revisited canonical history is

D = r1(x)w1(x)r2(x)a1w2(x)c2

Since we are ignoring aborted transactions for the time being, there is little we
can state about D from the point of view of serializability, since if we omit
the aborted t1, D reduces to r2(x)w2(x)c2, for which nothing is wrong so far.
We take the fact that D hence seems acceptable under the VSR criterion as
an indication that there is something missing in terms of correctness. We will
return to this in Part III when we discuss recoverability.

3.7.2 On the Complexity of Testing View Serializability

We now consider the question of how expensive it is to test membership in VSR
(and hence in FSR). Of course, the brute force approach described earlier is still
applicable: test all possible serial histories for view equivalence to a given his-
tory. We will now show that most likely no significantly better approach exists:

THEOREM 3.5

The problem of deciding for a given history s whether s ∈ VSR holds is NP

complete.
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In essence, NP completeness of a problem means that no deterministic al-
gorithm with polynomial running time can solve the problem, unless the uni-
versally accepted, albeit unproven, hypothesis “P �= NP” were disproven.

We will not give the proof of Theorem 3.5 in full detail, since that would NP
completeness of
VSR testing

take us way beyond the topic of this book; however, we will give sufficient
detail on how the proof proceeds. Two steps are the essence:

1. With a given history, a generalization of directed graphs—a polygraph—
is associated; for a suitably chosen notion of acyclicity of polygraphs,
it can then be shown that a history is in VSR iff its associated poly-
graph is acyclic. This part of the proof of Theorem 3.5 will be given
below.

2. It remains to be shown that testing acyclicity of polygraphs is NP com-
plete. To this end, we refer you to the literature cited in the Bibliographic
Notes of this chapter, since this requires a variety of preparations and ar-
guments from complexity theory that would deviate considerably from
the subject under discussion here (in particular since, due to this negative
complexity result, view serializability will be abandoned as a correctness
criterion for transaction histories shortly).

A polygraph is a triple P = (V, E, C), where (V, E) is a directed graph and Polygraph
C ⊆ V × V × V is a set of choices such that (u, v, w) ∈ C implies u �= v, u �= w,
v �= w, and (w, u) ∈ E . Figure 3.6 shows a sample polygraph P. In this figure,
a choice of the form (u, v, w) is shown as two dashed arrows (u, v) and (v, w),
which are connected by a partial circle around v. Note that the figure shows
four different choices of the form (u, v, w), which we have not distinguished
through indexes.

Now let P = (V, E, C) be a polygraph, and let G = (V, E ′) be a directed
graph with the same nodes. G is called compatible with P if E ′ is a minimum
set of edges with the following properties (where “minimum” refers to set
inclusion):

u

w

v

v

w

u

v

Figure 3.6 A sample polygraph P.
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u

w

v

v

w

u

v

G2:

Figure 3.7 Graphs compatible with polygraph P in Figure 3.6.

1. E ⊆ E ′, that is, the compatible graph G includes all “normal” edges
of the polygraph P , and may have (and usually does have) additional
edges;

2. (∀ (u, v, w) ∈ V × V × V ) (((u, v, w) ∈ C) ⇔ ((u, v) ∈ E ′ ∨ (v, w) ∈
E ′)), that is, each choice of the polygraph is represented by an edge
in the compatible graph G;

3. (∀ (u, v, w) ∈ V × V × V ) (((u, v) ∈ E ′ ⇔ (v, w) �∈ E ′) ∧ ((u, v) �∈ E ′

⇔ (v, w) ∈ E ′)), that is, each choice is represented by exactly one
edge.

In other words, a compatible G “covers” the choices of its underlying poly-
graph. Now a polygraph P is called acyclic if there exists a directed acyclic
graph (DAG) G that is compatible with P.

For the sample polygraph from Figure 3.6, Figure 3.7 shows two distinct
graphs G1 and G2 that are compatible with P (where node labels, as before,
may stem from different choices). However, while G1 is cyclic, only G2, which
is acyclic, can be used to verify that the original P is an acyclic polygraph.

Our next goal is to associate a polygraph with a given history. To this end,Polygraph
associated with

a history
we will assume for the remainder of this subsection that our history under
consideration contains committed transactions only, and is equipped with ini-
tializing transaction t0 and final transaction t∞. Let s be a history such that
trans(s) = T ∪ {t0, t∞}. The polygraph P (s) = (V, E, C) associated with s is
defined as follows:

1. V = trans(s)

2. E = {(t0, t) | t ∈ T} ∪ {(t, t∞) | t ∈ T} ∪ {(t, t ′) | t ′ reads some data item
from t}

3. C = {(t ′, t ′′, t) | (t, t ′) ∈ E ∧ t ′ reads x from t ∧ some w(x) from t ′′

appears somewhere in s}
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t2

t0 t∞

t3t1

Figure 3.8 A polygraph associated with a history.

Note that condition (3) above implies that the write step of t ′′—call it
w′′(x)—either precedes the write step of t or follows the read step of t ′, for
t ′ would not read x from t if w′′(x) were between w(x) and r ′(x). The two
possible orderings, either w′′(x) <s w(x) or r ′(x) <s w′′(x), are captured by
the two possible compatible edges that are derivable from the corresponding
choices. As an example, consider the following history:

s = w0(x)w0(y)c0r1(x)w2(y)w1(y)c1r3(y)c3w2(x)c2r∞(x)r∞(y)c∞

The associated polygraph P (s) is shown in Figure 3.8. Notice in this figure
that some of the solid edges (namely, (t0, t2), (t0, t3), and (t3, t∞)) are required
only by (part (2) of) the definition, but are not involved in choices. Also notice
that not every edge representing a reads-from relationship gives rise to a choice
(e.g., (t2, t∞)).

LEMMA 3.1

Let s and s ′ be two histories for the same transactions. If s ≈v s ′ then P (s)
= P (s ′).

Proof

From Theorem 3.2, we know that s ≈v s ′ iff D(s) = D(s ′). Now if D(s) is

given, the polygraph P (s) can easily be derived:

1. collapse all nodes from D(s) belonging to the same transaction into one

node;

2. create a choice for each edge e of D(s) from t to t ′ and each transaction

t ′′ �= t, t ′ that writes the data item that gave rise to edge e.

Since D(s) = D(s ′), it follows that P (s) = P (s ′).
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LEMMA 3.2

Let s be a history as before. If s is serial, then P (s) is acyclic.

Proof

Let T be the set of transactions in s, and consider the following graph:

G = (T ∪ {t0, t∞}, E)

where

E = {(t, t ′) | t, t ′ ∈ T ∪ {t0, t∞} ∧ t <s t ′}

G thus has edges between any pair of nodes, and since s is assumed to be

serial, G must be acyclic.

The claim now is that G is compatible with P (s); if this is true, the lemma

follows. First consider an edge (t, t ′) of P (s); this edge must also be in G
since it indicates that t writes a data item later read by t ′. Second, con-

sider a choice (t, t ′, t ′′) of P (s), which indicates that some step p of t ′

writes a data item that is read by t from t ′′. Now we need to consider two

cases:

1. If p occurs before the write step from t ′′ on the data item in question,

then p must occur in s before all of t ′′, since s is serial. Thus, t ′ occurs in

s before t ′′, and hence (t ′, t ′′) is an edge in G.

2. p occurs after the read step from t: now all of t ′ occurs after all of t in

s, which means that (t, t ′) is in G.

The following theorem now completes what we want to show here:

THEOREM 3.6

For each history s, s ∈ VSR iff P (s) is acyclic.

Proof

(only if) Let s ∈ VSR. Then there is some serial history s ′ such that s ≈v s ′.
By Lemma 3.1, P (s) = P (s ′); by Lemma 3.2, acyclicity of P (s ′) implies

acyclicity of P (s).

(if) Let P (s) be acyclic, and let G be a DAG compatible with P (s). Note

that in G, t0 is a source node (i.e., a node without incoming edges) and

t∞ is a sink node (i.e., a node without outgoing edges); thus G can be

completed to a total ordering G′ of the transactions such that t0 appears in

the beginning and t∞ in the end of G′. This total order can be constructed in

ascending order by a procedure known as topological sorting. We start out
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by selecting a node without incoming edges (which is guaranteed to exist

in a DAG); if there are several nodes with this property, we can arbitrarily

select one of them. Then we remove the selected node and all its outgoing

edges from the graph, which renders other nodes to become sources. This

simple step is iterated until the graph becomes empty. The order in which

the nodes are removed by this procedure is a total order that extends the

history’s given partial order.

Let s ′ be a serial history corresponding to G′; we will show that s ≈v s ′.
Suppose, on the contrary, some step r (x) from t reads from a step w (x) from

t ′ in s, but reads from t ′′ in s ′. Then P (s) contains the choice (t, t ′′, t ′), and

G, which is compatible with P (s), contains the edge (t ′, t); thus, t ′ <s ′ t.
On the other hand, since t reads from t ′′ in s ′, it must be the case that

t ′ < t ′′ and t ′′ < t in s ′. Thus, G contains neither the edge (t, t ′′) nor the

edge (t ′′, t ′). However, P (s), as we have said, contains the choice (t, t ′′, t ′),
a contradiction to compatibility.

We may therefore conclude that D(s) = D(s ′) and hence s ∈ VSR.

The crucial part is to prove the following theorem:

THEOREM 3.7

The problem of deciding whether a given polygraph is acyclic is NP complete.

As we said, we are not going to prove this here. As with every NP complete-
ness statement, the proof has two parts: (1) Showing that the problem is in NP
is easy: simply guess an “embedded” graph for a given polygraph and verify its
compatibility as well as—eventually—its acyclicity. (2) To show completeness,
a version of the well-known satisfiability problem for Boolean formulas in con-
junctive normal form (generally known as SAT) can be reduced to the problem
of deciding acyclicity of polygraphs, details of which are beyond the scope of
this book.

The bottom line of all this is that, due to the high complexity of its recog- Projection
operationnition problem, view serializability is inappropriate as a correctness notion for

practical scheduling algorithms. However, it turns out that this is not the only
reason; to show at least one other, we need the following: Let s be a schedule,
T ⊆ trans(s). �T (s) denotes the projection of s onto T , that is, the schedule
s ′ with operations op(s ′) = op(s) −

⋃
t �∈Top(t) obtained by erasing from s all

steps not from transactions in T . For example, if

s = w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)c1a2
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and T = {t1, t2}, then

�T (s) = w1(x)r2(x)w2(y)r1(y)w1(y)c1a2

DEFINITION 3.11 Monotone Classes of Histories

A class E of histories is called monotone if the following holds: if s is in E ,

Monotonicity

then �T (s) is in E for each T ⊆ trans(s). In other words, E is closed under

arbitrary projections.

Monotonicity of a history class E is a desirable property, since it preserves
E under arbitrary projections. Taken the other way around, if a projection of
some history s does not belong to a given class E in a dynamic scheduling
situation, then it does not make sense to process s any further (or to extend it
with additional operations).

If we now consider the class VSR for E , we can easily verify that VSR is
not monotone. Indeed, all we need to exhibit is a counterexample—that is, a
history s ∈ VSR such that for some T ⊆ trans(s), �T (s) �∈ VSR. To this end,
consider

s = w1(x)w2(x)w2(y)c2w1(y)c1w3(x)w3(y)c3

Then s ≈v t1t2t3 ≈v t2t1t3. Thus, s ∈ VSR. However, �{t1,t2}(s) �∈ VSR. Intu-
itively, in this sample history, the last transaction t3 “covers” whatever effects
have previously been created by the (interleaved) transactions t1 and t2; hence,
if t3 disappears by way of a projection, the correction it brings along does not
apply anymore.

So in conclusion, VSR as covered here so far is insufficient as a correct-
ness criterion for histories, which is why further restrictions are needed, to be
introduced next.

3.8 Conflict Serializability

Our next notion of serializability, conflict serializability, is the one that is most
important for the practice of transactional information systems, in particular
for building schedulers. As will be seen, it is computationally easy to test and
thus differs significantly from the notions of serializability discussed so far. In
addition, conflict serializability has a number of interesting theoretical proper-
ties that can justify an exploitation of this concept in practice in a variety of
ways. Finally, it can be generalized to other transaction models and different
data settings, as will be demonstrated in subsequent chapters.



3.8 Conflict Serializability 93

3.8.1 Conflict Relations

Conflict serializability is based on a simple notion of conflict that was men-
tioned already in connection with partially ordered histories and is appropriate
for the syntactical nature of read/write transactions:

DEFINITION 3.12 Conflicts and Conflict Relations

Let s be a schedule, t, t ′ ∈ trans(s), t �= t ′:

Conflicts

1. Two data operations p ∈ t and q ∈ t ′ are in conflict in s if they access

the same data item and at least one of them is a write, i.e.,

(p = r (x) ∧ q = w (x)) ∨ (p = w (x) ∧ q = r (x)) ∨ (p = w (x) ∧ q
= w (x))

2. conf(s) := {(p, q) | p, q are in conflict in s and p <s q } is called the

conflict relation of s.

Naturally, only data operations can be in conflict in a schedule; note that
the conflict relation of a schedule does not take the termination status of a
transaction (i.e., committed or aborted) into account. If aborted transactions
were present in a given schedule s, they could, however, simply be ignored, and
their conflicts with other transactions omitted from conf(s). For example, if

s = w1(x)r2(x)w2(y)r1(y)w1(y)w3(x)w3(y)c1a2

where t1 is committed, t2 is aborted, and t3 is still active, we have

conf (s) = {(w1(x), w3(x)), (r1(y), w3(y)), (w1(y), w3(y))}

Now we are ready to introduce the following notion of equivalence:

Conflict
equivalence

DEFINITION 3.13 Conflict Equivalence

Let s and s ′ be two schedules. s and s ′ are called conflict equivalent, denoted

s ≈c s ′, if they have the same operations and the same conflict relations,

i.e., if the following holds:

1. op(s) = op(s ′) and

2. conf(s) = conf(s ′).

Thus, two schedules are conflict equivalent if all conflicting pairs of steps
from distinct transactions occur in the same order in both schedules. As an
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example, let

s = r1(x)r1(y)w2(x)w1(y)r2(z)w1(x)w2(y)

and

s ′ = r1(y)r1(x)w1(y)w2(x)w1(x)r2(z)w2(y)

Then op(s) = op(s ′) and conf(s) = conf(s ′); therefore, s ≈c s ′.
Clearly, the notion of conflict equivalence is easy to test: for two givenConflicting-step

graph schedules over the same set of operations, derive their conf relations and test
them for equality. Similarly, to view equivalence, this can be described in terms
of graphs: let s be a schedule, and let a graph D2(s) := (V, E) be defined by
V = op(s) and E = conf(s). Graph D2(s) is called the conflicting-step graph of
schedule s. Then we can prove that

s ≈c s ′ ⇐⇒ D2(s) = D2(s ′)

Notice that if s is given as a partially ordered schedule, D2(s) is essentially
derived by considering the edges that represent intertransactional conflicts (the
dashed edges in Figure 3.2(b)).

3.8.2 Class CSR

We are now ready to introduce a third notion of serializability:

DEFINITION 3.14 Conflict Serializability

A history s is conflict serializable if there exists a serial history s ′ such that

Conflict
serializability,

class CSR
s ≈c s ′.

Let CSR denote the class of all conflict-serializable histories.

For a first example, history

r1(x)r2(x)r1(z)w1(x)w2(y)r3(z)w3(y)c1c2w3(z)c3

from Figure 3.2(a) is in CSR. Next, for history s = r2(y)w1(y)w1(x)c1w2(x)c2,
we have s �∈ CSR. For s ′ = r1(x)r2(x)w2(y)c2w1(x)c1 we find s ′ ∈ CSR.

Next let us briefly check again on the (undesirable) histories L and I seenLost update
and

inconsistent
read revisited

in the lost-update and inconsistent-read examples, where

L = r1(x)r2(x)w1(x)w2(x)c1c2
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and

I = r2(x)w2(x)r1(x)r1(y)r2(y)w2(y)c1c2

For L, we have

conf(L) = {(r1(x), w2(x)), (r2(x), w1(x)), (w1(x)w2(x))}

Now the only possible serial histories are t1t2, whose conflict relation would
avoid the second pair of conflicting operations, and t2t1, whose conflict relation
would comprise the second pair only. Thus, L cannot be conflict serializable.
Next, for I we find

conf(I ) = {(w2(x), r1(x)), (r1(y), w2(y))}

which again cannot be obtained from t1t2 or from t2t1. Thus, I �∈ CSR. In other
words, conflict serializability avoids lost updates and inconsistent reads.

We next clarify the relationship between class CSR and the classes of seri-
alizable histories defined earlier:

THEOREM 3.8

CSR ⊂ VSR

Proof

The fact that CSR is a subset of VSR follows from the fact that graph D(s) is

uniquely determined by D2(s), provided the set of edges of D2(s) represents

the conflict relation conf(s) of s (in the sense of Definition 3.12).

Another way to show this is as follows: Consider an s ∈ CSR. By definition,

there is a serial history s ′ such that s ≈c s ′. We show that RF(s) = RF(s ′).
Suppose this is not the case, and let (ti , x, t j ) be in RF(s), but not in RF(s ′).
Then an r j (x) reads x from some wi (x) in s (and (wi (x), r j (x)) ∈ conf(s)),
but r j (x) reads x from some other wk(x), k �= i , in s ′ (and (wk(x), r j (x)) ∈
conf(s ′)). Clearly, wi (x) and wk(x) are also in conflict, and we find wi (x) <

wk(x) in s ′, but wk(x) < wi (x) in s, a contradiction to the fact that s ≈c s ′

(and hence the two histories have the same conflict relations). Therefore,

RF(s) = RF(s ′), and s ≈v s ′, which implies s ∈ VSR.

To see that the inclusion is strict, consider the following history:

s = w1(x)w2(x)w2(y)c2w1(y)c1w3(x)w3(y)c3

Then s �∈ CSR, but s ≈v t1t2t3, so s ∈ VSR.
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COROLLARY 3.3

CSR ⊂ VSR ⊂ FSR

The following can also be verified:

THEOREM 3.9

1. The class CSR is monotone.

2. s ∈ CSR ⇐⇒ (∀ T ⊆ trans(s)) �T (s) ∈ VSR (i.e., CSR is the largest

monotone subset of VSR).

Clearly, part (1) of this theorem is straightforward, whereas part (2) is not;
we leave it to you as an admittedly challenging exercise.

The important difference between CSR and the previously introducedConflict graph
(serialization

graph) of a
schedule

classes FSR and VSR now is that membership in the former can be tested
efficiently. To this end, we will characterize conflict serializability in graph-
theoretic terms via the conflict graph associated with a history; in this graph,
nodes represent committed transactions, and an edge from transaction t to
transaction t ′ indicates that there are steps p ∈ t and q ∈ t ′ such that p and q
are in conflict.

As a motivation why we can test conflict serializability by using a properly
defined graph, consider history

s = r1(y)r3(w)r2(y)w1(y)w1(x)w2(x)w2(z)w3(x)c1c2

Intuitively, s cannot be conflict equivalent to a serial history, since “r2(y)w1(y)”
says “t2 < t1 in an equivalent serial history,” while “w1(x)w2(x)” means “t1 < t2”;
obviously, this is impossible to meet simultaneously. The conflict graph of s
would represent each transaction as a node and each conflict as a (directed)
edge that respects the ordering of the conflicting steps. The result would be a
cycle in the graph, which indicates nonserializability.

DEFINITION 3.15 Conflict Graph (Serialization Graph)

Let s be a schedule. The conflict graph, also known as the serialization

graph, G(s) = (V, E) of s, is defined by

V = commit(s),
(t, t ′) ∈ E ⇐⇒ t �= t ′ ∧ (∃ p ∈ t)(∃ q ∈ t ′) (p, q) ∈ conf(s)

The conflict graph G(s) of a schedule s thus abstracts from individual con-
flicts between pairs of transactions and represents multiple conflicts between
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t1 t2

t3

Figure 3.9 Conflict graph G(s)
for Example 3.11.

the same (committed) transactions by a single edge. In this sense it contains
less information than the graph D2(s) defined earlier. As will be seen shortly,
however, this information suffices for testing membership in CSR.

EXAMPLE 3.11

Consider

s = r1(x)r2(x)w1(x)r3(x)w3(x)w2(y)c3c2w1(y)c1

The conflict graph G(s) is shown in Figure 3.9.

The following is widely known as the “(conflict) serializability theorem”:

THEOREM 3.10

Let s be a history. Then

s ∈ CSR iff G(s)

is acyclic.

Proof

(only if) Let s ∈ CSR, then there exists a serial history s ′ such that

op(s) = op(s ′) and conf(s) = conf(s ′), i.e., s ≈c s ′. Now consider t, t ′ ∈ V,

t �= t ′, with (t, t ′) ∈ E for G(s) = (V, E). Then we have

(∃ p ∈ t)(∃ q ∈ t ′) p <s q and (p, q) ∈ conf(s)

Since the conflict relations of s and s ′ are equal, p <s ′ q. On the other hand,

since s ′ is serial, all of t must hence occur before all of t ′ in s ′.

Now suppose G(s) were cyclic. Then there must be a cycle of the form, say,

t1 → t2 → . . . → t k → t1. The same cycle also exists in G(s ′), a contradic-

tion to the fact that s ′ is serial.

(if) Conversely, let G(s) = (V, E), where V = {t1, . . . , tn}, be acyclic. Then

G(s) can be topologically sorted to derive a total order of the nodes that in-

cludes partial order E ; call the result tρ(1) · · · tρ(n) = s ′ for some permutation
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ρ of {1, . . . , n}. Clearly, s ′ is a serial history. We now show s ≈c s ′: if

p ∈ t and q ∈ t ′ for t, t ′ ∈ V such that p <s q and (p, q) ∈ conf(s), then

(t, t ′) ∈ E . It follows that t is also before t ′ in the topological sort of s, that

is, in s ′. Since p and q are still in conflict, we conclude conf(s) ⊆ conf(s ′).
Conversely, if (p, q) ∈ conf(s ′) and p ∈ t, q ∈ t ′, then p <s q and hence

(p, q) ∈ conf(s). Thus, conf(s) = conf(s ′), and the theorem follows.

COROLLARY 3.4

Membership in CSR can be tested in time polynomial in the number of

transactions in the given schedule.

By the serializability theorem, the latter is due to the fact that the conflict
graph of a given history can be constructed in time linear in the number of
operations in the history, and this graph can be tested for cycles in time that is
at most quadratic in the number of nodes.

EXAMPLE 3.12

Consider the following histories:

s = r1(y)r3(w)r2(y)w1(y)w1(x)w2(x)w2(z)w3(x)c1c3c2 and

s ′ = r1(x)r2(x)w2(y)w1(x)c2c1

The corresponding conflict graphs G(s) and G(s ′) are shown in Figure 3.10.

Since G(s) contains a cycle, s �∈CSR; since G(s ′) is acyclic, s ′ ∈CSR.

Let us mention that “serializability theorems” in the style of Theorem 3.10
occur frequently in the literature. Indeed, generalizations of the read/write
transaction model, or completely different transaction models, can also give
rise to a graph-theoretic characterization of their correctness criterion (or at
least of one of their criteria), so that a theorem analogous to the previous
one is obtained. We will see several such theorems in the remainder of this
book.

t1 t2t1 t2

t3

G(s) G(s′)

Figure 3.10 Conflict graphs for Example 3.12.
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3.8.3 Conflicts and Commutativity

We next characterize conflict serializability in a different way. Our presentation
initially considers only totally ordered schedules since these are closer to the
“algebraic” nature of the following commutativity rules for page model data
operations. In these rules “∼” means that the ordered pair of actions on the
left-hand side can be replaced by the right-hand side, and vice versa.

Rule C1: ri (x)r j (y) ∼ r j (y)ri (x) if i �= j Commutativity
rulesRule C2: ri (x)w j (y) ∼ w j (y)ri (x) if i �= j, x �= y

Rule C3: wi (x)w j (y) ∼ w j (y)wi (x) if i �= j, x �= y

Rule C1 says that two read steps ri (x) and r j (y), i �= j , which occur in a
schedule in this order and are adjacent (with no other operation in between),
may be commuted. Similarly, C2 says that a read and write step can be ex-
changed if the steps are from distinct transactions and access different data
items. Finally, C3 says that two write steps can be commuted if they refer to
different data items.

The commutativity rules can be applied to a given schedule or history in a
stepwise fashion, as in the following example:

s = w1(x) r2(x)w1(y)︸ ︷︷ ︸ w1(z) r3(z)w2(y)︸ ︷︷ ︸ w3(y)w3(z)

C2
⇒ w1(x)w1(y) r2(x)w1(z)︸ ︷︷ ︸ w2(y)r3(z)w3(y)w3(z)

C2
⇒ w1(x)w1(y)w1(z)r2(x)w2(y)r3(z)w3(y)w3(z)
≡ t1t2t3

The above transformations have implicitly assumed that operations in a sched-
ule are totally ordered. With partial orders, we may need an additional trans-
formation rule as an auxiliary step for applying one of the commutativity rules.
This additional rule simply states that two unordered operations can be arbitrar-
ily ordered if they are nonconflicting. We refer to this rule as the ordering rule: Ordering

ruleRule C4: oi (x), p j (y) unordered

� oi (x)p j (y) if x �= y ∨ (o = r ∧ p = r )

We next use the commutativity rules for introducing another relation on
schedules:

DEFINITION 3.16 Commutativity Based Equivalence

Let s and s ′ be two schedules such that op(s) = op(s ′). Define s ∼ s ′ if s ′

can be obtained from s by a single application of C1, C2, C3, or C4 to the

steps of the schedule.
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Let “
∗
∼” denote the reflexive and transitive closure of “∼”, i.e., s

∗
∼ s ′ if s ′

can be obtained from s by a finite number of applications of C1, C2, C3,

and C4.

It is straightforward to verify that “
∗
∼” is an equivalence relation on the set

of all schedules for a given set of transactions.

THEOREM 3.11

Let s and s ′ be schedules such that op(s) = op(s ′). Then

s ≈c s ′ iff s
∗
∼ s ′

We leave the proof of this theorem as an exercise. A first exploitation of
these commutativity rules now is that finitely many applications of the rules
may transform a given history into a serial one, as in the example we have
seen.

DEFINITION 3.17 Commutativity Based Reducibility

A history s is commutativity based reducible if there is a serial history s ′ such

that s
∗
∼ s ′, i.e., s can be transformed into s ′ through a finite number of

allowed transformation steps according to rules C1, C2, C3, and C4.

COROLLARY 3.5

A history s is commutativity based reducible iff s ∈ CSR.

An important application of the alternative characterization of conflict
equivalence given above is that it can immediately be generalized. Indeed,
it is completely irrelevant to know of a schedule whether a step reads or
writes or which data item it accesses, as long as we know which steps of the
schedule are in conflict. The latter suffices for deciding about the correct-
ness of the schedules, even without any knowledge about the meaning of the
operations.

To see this, consider the following schedule, whose steps are not specified
any further:

s = p1q1 p2o1 p3q2o2o3 p4o4q3
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Suppose s is a schedule for transactions t1, t2, and t3, and assume we know
that the following pairs of steps are in conflict:

1. (q1, p2),

2. (p2, o1),

3. (q1, o2),

4. (o4, q3).

As before, we can now establish a conflict graph for this schedule (assuming
that all transactions are unaborted) and then see that s is not conflict serializable,
since that graph has a cycle involving transactions t2 and t3.

The important point here is that the steps of a schedule or history to which
an argument like the above is applied may be of a completely different type,
such as increment and decrement on a counter object, push and pop on a stack
object, or enqueue and dequeue on a queue object. We will later show how
to exploit this observation for coming up with notions of serializability that
are based on semantic information. In essence it suffices to state a conflict
or commutativity table for “new” operations and derive conflict serializability
from that table.

3.8.4 Restrictions of Conflict Serializability

We next look into several restrictions of conflict serializability that are impor-
tant in practical applications.

Order-Preserving Conflict Serializability

We first discuss a restriction of conflict serializability, order-preserving conflict Order
preservationserializability, which requires that transactions that do not overlap in time (i.e.,

that occur strictly sequentially in a given schedule) appear in the same order
in a conflict-equivalent schedule.

EXAMPLE 3.13

Consider s = w1(x)r2(x)c2w3(y)c3w1(y)c1. Figure 3.11 shows the conflict

graph of s; since it is acyclic, it follows that s ∈ CSR. Now observe that

the equivalent serial history is t3t1t2. However, t2 is already committed in

s before t3 starts. This contrast between the serialization order and the

actual execution order could be undesirable; for example, if a user wants

transactions executed in the order they are submitted to the system, he or
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t2t3 t1

Figure 3.11 Conflict graph for
Example 3.13.

she may be waiting for transactions to complete before submitting the next

one.

A situation like the one just described is avoided by the following criterion:

Order-
preserving

conflict
serializability

DEFINITION 3.18 Order Preservation

A history s is called order-preserving conflict serializable, if it is conflict

serializable; i.e., there exists a serial history s ′ such that op(s) = op(s ′) and

s ≈c s ′, and if the following holds for all t, t ′ ∈ trans(s): if t occurs completely

before t ′ in s, then the same holds in s ′.

Let OCSR denote the class of all order-preserving conflict serializable

histories.

The following is straightforward:

THEOREM 3.12

OCSR ⊂ CSR

Indeed, OCSR ⊆ CSR follows from the previous definition, and the sam-
ple history s from the previous example shows that the inclusion is strict:
s ∈ CSR – OCSR.

Commitment Ordering

We next present another restriction of class CSR, which will turn out to be
useful for distributed, possibly heterogeneous, environments as well. It is based
on the observation that for transactions in conflict, an ordering of their commits
in “conflict order” is sufficient for conflict serializability.

Commit order-
preserving

conflict
serializability

DEFINITION 3.19 Commit Order Preservation

Let s be a history. s is commit order-preserving conflict serializable (or has

the property of commit order preservation), if the following holds: for all

transactions ti , t j ∈ commit(s), i �= j , if (p, q) ∈ conf(s) for p ∈ ti , q ∈ t j ,
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then ci <s c j in s; i.e., for committed transactions, the ordering of opera-

tions in conflict determines the ordering of their Commit operations.

Let COCSR denote the class of all histories that are Commit order-preserving

conflict serializable.

The following result is a consequence of the serializability theorem:

THEOREM 3.13

COCSR ⊂ CSR

Proof

Let s ∈ COCSR and (ti , t j ) be an edge in the conflict graph G(s). By

the definition of COCSR, we may then conclude that ci <s c j (due to the

conflict between the two transactions). By induction, we can generalize

this statement from edges to paths in G(s) (details are omitted); that is,

if (t1, . . . , tn) is a path in G(s) from t1 to t n, then c1 <s c2, c2 <s c3, . . . ,

cn−1 <s cn.

Now suppose s �∈ CSR. Then, by the serializability theorem, G(s) has a

cycle. Without loss of generality, let that cycle have the form (t1, . . . , t n, t1).
By the above, we may then conclude that c1 <s c1, a contradiction.

To see that the inclusion is strict, consider the history s = r1(x)w2(x)c2c1,

for which s ∈ CSR − COCSR holds.

Our next theorem essentially states that a history is commit order preserv-
ing iff the ordering of the commits corresponds to some serialization order:

THEOREM 3.14

Let s be a history. s ∈ COCSR iff

1. s ∈ CSR and

2. there exists a serial s ′ such that s ′ ≈c s and for all t, t ′ ∈ trans(s),
t <s ′ t ′ ⇒ ct <s ct ′ .

Proof

“=⇒:” Let s ∈ COCSR. By Theorem 3.13, s ∈ CSR. Thus, there is a serial

history s ′ such that s ′ ≈c s. Now consider transactions t, t ′ ∈ trans(s) =

trans(s ′) such that t <s ′ t ′. Since s and s ′ are conflict equivalent, it follows

that if operations from t and t ′, say, p and q, are in conflict in s, then p <s q.

Due to the COCSR property, this implies ct <s ct ′ .
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“⇐=:” Assume that s �∈ COCSR. Thus, for two transactions ti , t j ∈

commit(s) there are operations p ∈ ti and q ∈ t j such that (p, q) ∈ conf(s),
but c j < ci . Since s ∈ CSR, let s ′ be the conflict-equivalent serial schedule,

due to the conflict between ti and t j , ti <s ′ t j . However, by our assumption

this implies ci <s c j , a contradiction.

We next investigate the relationship between OCSR and COCSR; to this
end it turns out that COCSR is even more restrictive than OCSR:

THEOREM 3.15

COCSR ⊂ OCSR

Proof

Let s ∈ COCSR, and suppose s �∈ OCSR. Then there exists a serial history

s ′ such that s ≈c s ′, but for two transactions ti , t j ∈ trans(s), i �= j , we

have that ti <s t j , while ti �<s ′ t j . From the assumption that s is in COCSR

we know that ti <s t j implies ci <s c j . Now we need to consider two

cases:

1. ti and t j are in conflict, that is, there are two data operations p from

ti and q from t j such that (p, q) ∈ conf(s). Since s ≈c s ′, it follows

that (p, q) ∈ conf(s ′), which implies ti <s ′ t j , since s ′ is serial, but this

contradicts our finding above.

2. If ti and t j are not in conflict, then our assumption that ti and t j are

reordered in s ′ must be due to a third transaction tk, k �= i, j , such

that:

(a) tk is in conflict with ti , implying ck <s ci , and

(b) t j is in conflict with tk, implying c j <s ck,

both by the COCSR property. Thus, c j <s ck <s ci , again a contradiction.

The fact that the inclusion is strict is implied by Figure 3.12, which shows
the relationship between classes CSR, OCSR, and COCSR, and in which the
histories mentioned are as follows:

s1 = w1(x)r2(x)c2w3(y)c3w1(y)c1 ∈ CSR – OCSR
s2 = w3(y)c3w1(x)r2(x)c2w1(y)c1 ∈ OCSR – COCSR
s3 = w3(y)c3w1(x)r2(x)w1(y)c1c2 ∈ COCSR
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s3

s2

s1CSR

OCSR

COCSR

Figure 3.12 Relationship between classes
CSR, OCSR, and COCSR.

3.9 Commit Serializability

Following the discussion in Section 3.8 it should be clear that conflict serializ-
ability is a reasonable starting point for a correctness criterion for histories even
in practical applications. However, conflict serializability alone is certainly not
enough since, for example, the dirty-read problem again remains undetected.
In this section, we will present further observations of this kind, and will pro-
vide corresponding “corrections” for the deficiencies we will recognize on the
serializability notions we have already established.

The choice of serializability as a correctness criterion for histories is partially
based on the idealized assumption that transactions are processed in a failure-
free environment so that each individual transaction always reaches a point
of successful termination, and that additionally the system never crashes. In
reality, however, this is not always the case, since transactions can abort and
the system can be interrupted at any point. For these reasons, the following
aspects are relevant to our discussion (and need consideration):

1. Since each transaction that is still active in a schedule can abort in the fu-
ture (because it is not yet committed), and since a system crash can even
force every active transaction to abort, a correctness criterion should ac-
tually take only the committed transactions into account.

2. Since a system crash can stop the processing of a schedule at any point,
for a correct schedule each of its prefixes should also be correct.

We will now formalize these requirements as closure properties of schedule
properties, an approach we have encountered already when discussing mono-
tonicity. To this end, we will use schedule projections as introduced earlier in
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this chapter. Later we will often refer specifically to the projection of a scheduleCommitted
projection of a
schedule

s onto the set commit(s) of its committed transactions, that is, to �commit(s)(s);
therefore, we will use the shorthand notation “CP(s)” (committed projection of s)
for this particular projection.

DEFINITION 3.20 Closure Properties of Schedule Properties

Let E be a class of schedules.

1. E is prefix closed if

for every schedule s in E each prefix of s is also in E .

2. E is commit closed if

for every schedule s in E CP(s) is also in E .

Now requirements (1) and (2) above translate into the requirement thatPrefix commit
closedness a correctness criterion for schedules that are processed in a not necessarily

failure-free environment should exhibit both closure properties; in other words,
it should be prefix commit closed. It follows that if a schedule class E is prefix
commit closed, we have that if E holds for some schedule s, then E also holds
for CP(s ′), where s ′ is an arbitrary prefix of s.

The concrete schedule properties we will look at are membership in one of
the classes FSR, VSR, and CSR; thus, we investigate whether membership in
one of these classes is prefix commit closed. To start with, we have the negative
result that membership in classes FSR and VSR is not prefix commit closed. For
VSR, this follows immediately from the fact that membership in VSR is not
monotone; hence it cannot be prefix closed. For FSR, the following schedule
is a counterexample:

s = w1(x)w2(x)w2(y)c2w1(y)c1w3(x)w3(y)c3

As is easily verified, s ≈v t1t2t3. Thus, s ∈ VSR and hence s ∈ FSR. Now
consider the prefix s ′ = w1(x)w2(x)w2(y)c2w1(y)c1 of s. Clearly, CP(s ′) = s ′;
in addition, s ′ �≈ f t1t2 as well as s ′ �≈ f t2t1. Thus, s ′ �∈ FSR. In other words, we
have identified a history s ∈ FSR such that CP(s ′) (= s ′) �∈ FSR for some of its
prefixes s ′. This proves the claim.

As we have already recognized FSR and VSR as unsuited for our purposes
for reasons of complexity, this is not a “tragic” result. Fortunately, the following
holds for CSR:

THEOREM 3.16

Membership in class CSR is prefix commit closed.
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Proof

Let s ∈ CSR. Then G(s) is acyclic. For each restriction s ′ of s, G(s ′) then is

a subgraph of G(s) and hence acyclic as well. In particular, for each prefix

s ′ of s, the conflict graph of the projection onto those transactions already

committed in s ′, i.e., the graph G(CP(s ′)), is acyclic. Thus, CP(s ′) ∈ CSR.

We next define commit serializability as a kind of “correction” for the situa-
tion discovered above for classes FSR and VSR, which intuitively requires that,
in a correct execution, the already committed transactions have at any point in
time been processed in a serializable way.

DEFINITION 3.21 Commit Serializability

A schedule s is commit serializable if CP(s ′) is serializable for every prefix s ′

Commit
serializability

of s.

In detail, we need to distinguish the following classes of commit-serializable

schedules:

CMFSR: class of all commit final state serializable histories

CMVSR: class of all commit view serializable histories

CMCSR: class of all commit conflict serializable histories

From this definition, we can immediately deduce the following statements:

THEOREM 3.17

1. Membership in any of the classes CMFSR , CMVSR, and CMCSR is prefix

commit closed.

2. CMCSR ⊂ CMVSR ⊂ CMFSR

3. CMFSR ⊂ FSR

4. CMVSR ⊂ VSR

5. CMCSR = CSR

Proof

Statements (1) and (2) are straightforward from the definition of commit

serializability as well as from the respective definitions of the underlying

serializability notions and their relationships. The strictness of the inclusions

mentioned in (2) is demonstrated by the following sample histories:

s = w1(x)r2(x)w2(y)w1(y)c1c2w3(x)w3(y)c3 ∈ CMFSR − CMVSR
s ′ = w1(x)w2(x)w2(y)c2w1(y)w3(x)w3(y)c3w1(z)c1 ∈ CMVSR − CMCSR
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(3) Let s ∈ CMFSR. According to the definition of class CMFSR we then have

CP(s) ∈ FSR, since s is a prefix of itself. Let trans(s) = {t1, . . . , t n}, and let

without loss of generality commit(s) = {t1, . . . , tk}, abort(s) = {tk+1, . . . ,
t n}. Then CP(s) ≈ f tρ(1) . . . tρ(k) for a permutation ρ of {1, . . . , k}, which

implies

s ≈ f tρ(1) . . . tρ(k)tk+1 . . . tn

Therefore, s ∈ FSR, or CMFSR ⊆ FSR. The sample history s used above to

prove that membership in FSR is not prefix commit closed suffices to show

that this inclusion is even strict.

(4) The proof is analogous to (3).

(5) The proof of CMCSR ⊆ CSR is also analogous to (3). To show inclusion

in the other direction, consider some history s ∈ CSR. Since membership

in CSR is prefix commit closed, CP(s ′) ∈ CSR for every prefix s ′ of s. Since

s is by definition complete, the claim follows.

The equality mentioned under (5) in the previous theorem has the fol-
lowing practical implication: since commit conflict serializable histories are
always conflict serializable, and vice versa, conflict serializability is easily de-
cided even for prefixes of a history by inspecting the projection onto committed
transactions.

Wrapping up, we now have identified the relationships between classesSummary of
classes of serializable and of commit-serializable histories, as shown in Figure 3.13,

where the histories mentioned are as follows:

s1 = w1(x)w2(x)w2(y)c2w1(y)c1

s2 = w1(x)r2(x)w2(y)c2r1(y)w1(y)c1w3(x)w3(y)c3

s3 = w1(x)r2(x)w2(y)w1(y)c1c2

s4 = w1(x)w2(x)w2(y)c2w1(y)c1w3(x)w3(y)c3

s5 = w1(x)r2(x)w2(y)w1(y)c1c2w3(x)w3(y)c3

s6 = w1(x)w2(x)w2(y)c2w1(y)w3(x)w3(y)c3w1(z)c1

s7 = w1(x)w2(x)w2(y)c2w1(z)c1

s8 = w3(y)c3w1(x)r2(x)c2w1(y)c1

s9 = w3(y)c3w1(x)r2(x)w1(y)c1c2

s10 = w1(x)w1(y)c1w2(x)w2(y)c2

3.10 An Alternative Correctness Criterion:
Interleaving Specifications

We conclude this chapter by presenting another notion of correctness for trans-
actions in the read/write model, which on one hand is less restrictive than



3.10 An Alternative Correctness Criterion: Interleaving Specifications 109

Serial
histories

s9COCSR

s10

s8OCSR

s1

s2

s3

s4

s5

s6

s7CSR

CMVSR Full

Full

CMFSR

FSR

All histories (full)

VSR

Figure 3.13 The landscape of serializable histories.

conflict-based serializability and, on the other, represents an attempt to take
semantic information about transactions into account. Clearly, the possibilities
to incorporate or exploit semantic information in the context of the read/write
model are limited, but the considerations that follow can be, and have been,
used in more general contexts as well.

Serializability is essentially based on the premise that a transaction has the
ACID properties and in particular is a unit of isolation. In a correct schedule all
steps of a transaction appear to be executed indivisibly to all other transactions
in that schedule. There are two immediate generalizations to this: (1) consider
units of isolation that do not necessarily consist of all the steps of a transaction,
but of certain portions of the steps, and (2) consider varying units of isola-
tion with respect to other transactions; that is, some steps may constitute an
indivisible unit to some transactions, but not to others.

MotivationTo motivate the discussion by way of a concrete application scenario, con-
sider a bank where checking accounts belong to individuals, but savings ac-
counts are shared by all members of a family. For simplicity, assume that the
bank has only one couple as customers; so we need to manage two individual
checking accounts, say, a and b, and a common savings account, say, c. Now
consider three types of transactions on such accounts:



110 CHAPTER THREE Concurrency Control: Notions of Correctness for the Page Model

A transfer transaction moves money from one of the checking accounts
to the savings account. So, we obtain the following two transaction
instances:

t1 = r1(a)w1(a)r1(c)w1(c) and

t2 = r2(b)w2(b)r2(c)w2(c)

A balance transaction retrieves the balance of all accounts of the family,
in our example:

t3 = r3(a)r3(b)r3(c)

An audit transaction is initiated by the bank itself; it retrieves the balance
of all accounts and writes the total into a special record, denoted z, for
auditing purposes:

t4 = r4(a)r4(b)r4(c)w4(z)

Now the question is whether this specific application bears some ex-
ploitable semantics that can be used when scheduling bank transactions. To this
end, first notice that a bank audit should have strong interleaving constraints; it
should indeed be executed as an indivisible unit with respect to transfer trans-
actions, and vice versa. However, the interleaving constraints for transfer and
balance transactions may be less stringent, since family members are assumed
to trust each other. For example, it could be tolerated that a balance transaction
“misses” some money because of a concurrently ongoing transfer transaction.
After all, a customer should be used to taking into account the possibility of
money transfers by her or his spouse. With this intuition in mind, two sample
schedules that the application could consider as acceptable are

1. r1(a)w1(a)r2(b)w2(b)r2(c)w2(c)r1(c)w1(c)

2. r1(a)w1(a)r3(a)r3(b)r3(c)r1(c)w1(c)

The first schedule is characteristic for the allowed interleavings of different
transfer transactions. Note that this schedule is still conflict serializable. The
second schedule, on the other hand, shows that a balance transaction can be in-
terleaved with a transfer transaction in a relaxed manner such that the resulting
execution is no longer conflict serializable, yet tolerable by the application. Of
course, this shall not mean that all possible interleavings of these transactions
are acceptable. For example, the following two example schedules should be
disallowed:

1. r1(a)w1(a)r2(b)w2(b)r1(c)r2(c)w2(c)w1(c)

2. r1(a)w1(a)r4(a)r4(b)r4(c)w4(z)r1(c)w1(c)
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The first of these two schedules would result in a lost-update anomaly, and the
second one would not meet the stringent consistency demands of the bank’s
audit transaction.

Note that in reality, the transactions would be specified as high-level pro- Disclaimer
about
immediate
practicality

grams, typically using the SQL language embedded in some host language
(e.g., Java), and these programs would be parameterized. So the specific ac-
counts that are involved in a transaction instance are merely the actual param-
eter values of a general pattern, and each of the above transaction types could
spawn a large number of different transaction instances. In full generality, it
could even be the case that the transactions that result from a single program
differ not only in the arguments of their read and write actions but also in
their length and overall read/write pattern if the program contains conditional
branches or loops. Exploiting the application-specific interleaving semantics
would actually have to consider all possible transaction instances that result
from a high-level program. In the following, however, we will disregard this
substantial complication and rather assume that all transaction instances are
explicitly given in advance. Indeed, we do not claim that the approach that we
are going to develop in this section can be directly applied in practice. Never-
theless, the discussion will provide valuable insight into alternative correctness
criteria.

FormalizationIn the definitions that follow, we will formalize the approach by specify-
ing for each pair of given transactions the indivisible units of one relative to
the other. We can think of the borderline between two consecutive indivisible
units of the same transaction as a “breakpoint” at which a transaction may be
interleaved with another, and we can moreover think of such breakpoints as
being specified in advance. In other words, if an application programmer who
has to specify a transaction has sufficient knowledge of the semantics of the
application for which the transaction is written, he or she may be able to state
which interleavings with other transactions are acceptable and which are not.

For ease of exposition, we consider a static situation in what follows, in
which a fixed set of transactions is given or known in advance. In addition,
we restrict the attention to sequences of steps (i.e., total orders) when con-
sidering transactions, although the theory could also be generalized to partial
orders.

Indivisible unitsDEFINITION 3.22 Indivisible Units

Let T = {t1, . . . , tn} be a set of transactions. For ti , t j ∈ T , i �= j , an indivis-

ible unit of ti relative to t j is a sequence of consecutive steps of ti such that

no operations of t j are allowed to be executed within this sequence.

Let IU(ti , t j ) denote the ordered sequence of indivisible units of ti relative

to t j , and let IUk(ti , t j ) denote the k-th element of IU(ti , t j ).



112 CHAPTER THREE Concurrency Control: Notions of Correctness for the Page Model

EXAMPLE 3.14

Consider the following three transactions:

t1 = r1(x)w1(x)w1(z)r1(y)
t2 = r2(y)w2(y)r2(x)
t3 = w3(x)w3(y)w3(z)

The following specification may be given for these transactions relative to

each other:

IU(t1, t2) = 〈 [r1(x)w1(x)], [w1(z)r1(y)] 〉
IU(t1, t3) = 〈 [r1(x)w1(x)], [w1(z)], [r1(y)] 〉

IU(t2, t1) = 〈 [r2(y)], [w2(y)r2(x)] 〉
IU(t2, t3) = 〈 [r2(y)w2(y)], [r2(x)] 〉

IU(t3, t1) = 〈 [w3(x)w3(y)], [w3(z)] 〉
IU(t3, t2) = 〈 [w3(x)w3(y)], [w3(z)] 〉

For example, IU(t1, t2) is meant to say that if operations from t2 have to

be executed within t1, then they may only be executed between w1(x) and

w1(z), i.e., between IU1(t1, t2)= [r1(x)w1(x)] and IU2(t1, t2)= [w1(z)r1(y)].

We will say that an operation q ∈ t j is interleaved with the element
IUk(ti , t j ) of IU(ti , t j ) in the context of a schedule s if there exist operations p
and p′ from IUk(ti , t j ) such that p <s q and q <s p′.

Clearly, the meaning of a given indivisible unit IUk(ti , t j ) will be that, for a
schedule s to qualify for being “correct,” no operations from t j are interleaved
in s with that unit.

EXAMPLE 3.15

Consider IU(t1, t2) in Example 3.14: in a correct schedule, no operation

from t2 may occur inside any of the two units IU1(t1, t2) and IU2(t1, t2), but

only before, after, or in between. Indeed, consider the schedule

s1 = r2(y)r1(x)w1(x)w2(y)r2(x)w1(z)w3(x)w3(y)r1(y)w3(z)

Apparently, s1 is not a serial schedule and not even a serializable one; how-

ever, it is correct with respect to the relative isolation specification given

in the previous example: operations of t1 are executed between r2(y) and

w2(y)r2(x), i.e., the isolation of t2 relative to t1 follows the specification

and is hence preserved. As is easily seen, the same holds for the other

interleavings in this schedule.
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As a second example, consider the schedule

s2 = r1(x)r2(y)w2(y)w1(x)r2(x)w1(z)r1(y)

that interleaves the two transactions t1 and t2 in a way that would not be

compliant with the allowed interleavings according to IU(t1, t2). Note, how-

ever, that this schedule could be easily transformed into another schedule

s ′2 by exchanging w1(x) with all actions of t2 such that w1(x) would precede

t2. This transformation seems perfectly legal, as all actions of t2 are conflict

free (i.e., commutative) with regard to w1(x), and the resulting schedule s ′2
would be acceptable according to IU(t1, t2).

The example of schedule s2 above shows that it is desirable to combine
the “traditional” reasoning about conflicts with the specification of indivisible
units in order to allow more concurrent executions. In the following, we are
aiming at a notion of serializability based on an equivalence relation to serial
executions that reconciles interleaving specifications with conflict equivalence.

DEFINITION 3.23 Dependence of Steps

Let s be a schedule.

Depends-on
relation on steps

1. A step q directly depends on a step p in s, denoted p � q, if p <s q and

either p, q ∈ t for some transaction t ∈ trans(s) and p <t q, or p and q
are from distinct transactions and p is in conflict with q.

2. Let
∗
� (“depends on”) denote the reflexive and transitive closure of �.

Thus, the depends-on relation of a schedule is derived from conflicts and
the internal structure of transactions.

The depends relation between steps now allows us to define the analog of
serial schedules for the setting considered here. In a “relatively serial” schedule,
an operation q from a transaction t j may be interleaved with an indivisible unit
of a transaction ti relative to t j if neither q is depending on an operation in that
unit nor does an operation from that unit depend on q.

DEFINITION 3.24 Relatively Serial Schedule

A schedule s such that trans(s) = T is relatively serial if for all transactions

Relatively serial
schedule

ti , t j ∈ T , i �= j , the following holds: if an operation q ∈ t j is interleaved

with IUk(ti , t j ) for some k, then there is no operation p ∈ IUk(ti , t j ) (p ∈ ti )

such that p
∗
� q or q

∗
� p.
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t1 t2

t3

Figure 3.14 Conflict graph of schedule s3

from Example 3.16.

EXAMPLE 3.16

Consider the specification from Example 3.14 again as well as the following

schedule:

s3 = r1(x)r2(y)w1(x)w2(y)w3(x)w1(z)w3(y)r2(x)r1(y)w3(z)

Here operation r2(y) is interleaved with IU1(t1, t2) = [r1(x)w1(x)], but no-

tice that neither r1(x)
∗
� r2(y) nor r2(y)

∗
� w1(x) holds. Similarly, w1(z) is

interleaved with IU2(t2, t1) = [w2(y)r2(x)] and IU1(t3, t1) = [w3(x)w3(y)],
but there are no dependencies between the operations involved. Finally,

r2(x) is interleaved with IU2(t1, t2)= [w1(z)r1(y)], but again neither w1(z)
∗
�

r2(x) nor r2(x)
∗
� r1(y) holds. Thus, schedule s3 is relatively serial according

to Definition 3.24. On the other hand, the conflict graph of s3 is shown in

Figure 3.14. The conflict graph is obviously cyclic, so that s3 �∈ CSR.

We should think of a relatively serial schedule as the analog of a serial
schedule in the theory we have developed earlier in this chapter. Thus, sched-
ules that are relatively serial should always be acceptable, and schedules that are
not relatively serial should be acceptable as long as they are conflict equivalent
to a relatively serial schedule:

DEFINITION 3.25 Relative Serializability

A schedule s is relatively serializable if it is conflict equivalent to some

relatively serial schedule.

Relative
serializability

EXAMPLE 3.17

Consider the following schedule over the specification from Example 3.14:

s4 = r1(x)r2(y)w2(y)w1(x)w3(x)r2(x)w1(z)w3(y)r1(y)w3(z)

Notice that s4 is no longer relatively serial, since now w1(x) is interleaved

with IU2(t2, t1) = [w2(y)r2(x)], and w1(x)
∗
� r2(x). However, s4 is conflict
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equivalent to schedule s3 from Example 3.16, since steps w2(y) and r2(x)
have only been moved beyond other steps with which they commute. Thus,

s4 is relatively serializable.

We mention that the classical theory of conflict-serializable schedules as
developed in Section 3.8 is a special case of what we have decribed in this sec-
tion. Indeed, traditionally, entire transactions are the only units of isolation, so
that every serial schedule is also relatively serial since each operation of a serial
schedule is not interleaved with the single indivisible unit of any transaction.
However, it is easy to see that not every relatively serial schedule is serial un-
der traditional isolation, basically because relatively serial schedules still allow
interleavings of operations with the indivisible unit of other transactions that
do not have any dependencies between them.

If a given schedule is not relatively serial, it may still be relatively serial-
izable and hence acceptable from a semantic point of view. The latter may be
the case if there are interleavings of operations with indivisible units of other
transactions that should be forbidden (or at least avoided) due to dependencies
between the operations involved. In particular, an operation that is interleaved
with an indivisible unit can sometimes be “moved out” of the indivisible unit
by allowed commutations.

EXAMPLE 3.18

Consider an indivisible unit [w1(x)r1(z)] of a transaction t1 with respect to

a transaction t2, and let

w1(x) <s r2(x) <s r1(z)

occur in a schedule s. Clearly, that schedule cannot be relatively serial since

w1(x)
∗
� r2(x), but if the context of the schedule does not require other-

wise, we can commute r2(x) and r1(z) in order to obtain

[w1(x)r1(z)] <s r2(x)

So, in a sense, we have pushed r2(x) forward in a conflict-preserving way Push forward
and thereby (locally) restored relative seriality.

Next, suppose the same schedule s also contains a situation

r3(z) <s w2(y) <s r3(y)

but the specification requires that [r3(z)r3(y)] be an indivisible unit with Pull backward
respect to t2. By a similar argument, we can correct this situation by pulling

w2(y) backward in front of the indivisible unit, again by an allowed
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commutation. We obtain

w2(y) <s [r3(z)r3(y)]

which again contributes to making this particular schedule acceptable.

We now formalize these observations by introducing the notions of pushing
forward or pulling backward an operation. We will then be able to introduce
a graph that contains edges representing these actions and that can be used to
characterize relative serializability.

DEFINITION 3.26 Push Forward and Pull Backward

Let ti and t j be distinct transactions, and let IUk(ti , t j ) be an indivisible unit

of ti relative to t j . For an operation pi ∈ IUk(ti , t j )(pi ∈ ti ) let

1. F (pi , t j ) be the last operation in IUk(ti , t j ),

2. B(pi , t j ) be the first operation of IUk(ti , t j ).

Intuitively, F (pi , t j ) denotes the earliest operation from ti beyond which an
operation from t j interleaved with IUk(ti , t j ) can be pushed forward in order
to restore relative isolation, and correspondingly B(pi , t j ) denotes the latest
operation from ti before which an operation from t j interleaved with IUk(ti ,
t j ) can be pulled backward. In Example 3.14 we have for IU(t1, t2)

F (r1(x), t2) = w1(x) and
B(r1(y), t2) = w1(z)

We will now use these notions for graphically capturing ways to reorganize
a given schedule so as to make it relatively serial, or to test a schedule for
relative serializability:

DEFINITION 3.27 Relative Serialization Graph

Let s be a schedule. The relative serialization graph RSG(s) = (V, E) of s

Relative
serialization

graph is defined by V := op(s) and E ⊆ V × V containing four types of edges as

follows:

1. if p and q are consecutive operations of the same transaction in s, then

(p, q) ∈ E (internal or I edge);

2. if p
∗
� q for p ∈ ti , q ∈ t j , i �= j , then (p, q) ∈ E (dependency or D

edge);
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3. if (p, q) is a D edge such that p ∈ ti and q ∈ t j , then (F (p, t j ), q) ∈ E
(push forward or F edge);

4. if (p, q) is a D edge such that p ∈ ti and q ∈ t j , then (p, B(q, ti )) ∈ E
(pull backward or B edge).

EXAMPLE 3.19

Consider the following three transactions:

t1 = w1(x)r1(z)
t2 = r2(x)w2(y)
t3 = r3(z)r3(y)

Let the following interleaving specification be given for these transactions:

IU(t1, t2) = 〈 [w1(x), r1(z)] 〉
IU(t1, t3) = 〈 [w1(x)], [r1(z)] 〉

IU(t2, t1) = 〈 [r2(x)], [w2(y)] 〉
IU(t2, t3) = 〈 [r2(x)], [w2(y)] 〉

IU(t3, t1) = 〈 [r3(z)], [r3(y)] 〉
IU(t3, t2) = 〈 [r3(z)r3(y)] 〉

Now consider the following schedule:

s5 = w1(x)r2(x)r3(z)w2(y)r3(y)r1(z)

Notice that we have analyzed the situation we see in this schedule in part

in Example 3.18 already. The relative serialization graph of s5 is shown in

Figure 3.15.

LEMMA 3.3

If s is relatively serial, then RSG(s) is acyclic.

Proof

We show for RSG(s) = (V, E) that

(p, q) ∈ E implies p <s q

This is trivial for I as well as for D edges. Hence consider an F edge of the

form (r, q), where q ∈ t j , r = F (p, t j ), r, p ∈ ti , and (p, q) is a D edge. This

situation implies that p, r ∈ IUk(ti , t j ), p <s r , and r is the last operation of
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F

Figure 3.15 Relative serialization graph of
schedule s5 from Example 3.19.

this unit. Since p
∗
� q and s is relatively serial, q appears after IUk(ti , t j ) in s.

Thus, r <s q. The corresponding statement for B edges is shown similarly.

The following can now be proven:

THEOREM 3.18

A schedule s is relatively serializable iff RSG(s) is acyclic.

Proof

(only if) If s is relatively serializable, then there exists an s ′ that is relatively

serial such that s and s ′ are conflict equivalent. We first show RSG(s) =

RSG(s ′). To this end, both graphs have the same set of nodes, and both

have the same I edges. Moreover, D edges are the same in both graphs due

to equal I edges as well as to conflict equivalence of the two schedules.

Since F and B edges depend on the D edges and on the indivisible units,

the claim follows. Now since s ′ is relatively serial, RSG(s ′) is acyclic by the

previous lemma. Thus, RSG(s) is acyclic as well.

(if) Let RSG(s) be acyclic, and let s ′ be obtained by topologically sort-

ing RSG(s). Clearly, s and s ′ are conflict equivalent and hence RSG(s) =
RSG(s ′). It remains to be shown that s ′ is relatively serial. Assume, on the

contrary, that it is not; that is, there exists a unit IUk(ti , t j ) for some k, ti ,

and t j that has some q ∈ t j interleaved, but there is also some p ∈ ti in
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IUk(ti , t j ) such that p
∗
� q or q

∗
� p in s ′. Let r be the last operation in

IUk(ti , t j ). If p
∗
� q, then there is an F edge (r, q) in RSG(s); hence, in any

topological sort of RSG(s), we have r < q. However, in s ′, which is such

a topological sort, we find q < r due to the assumed interleaving, which

gives a contradiction. A similar argument applies if q
∗
� p, since RSG(s) in

that case has a corresponding B edge. The theorem follows.

Since the relative serialization graph of a schedule can be constructed effi-
ciently, the characterization given in Theorem 3.18 provides a test for relative
serializability, which is polynomial in op(s). As an example, schedule s4 above,
which has an acyclic relative serialization graph, is relatively serializable.

3.11 Lessons Learned

We conclude this chapter by summarizing the discoveries we have made. First
of all, the page-level transaction model, which may seem very simple and insuf-
ficient at first glance, turns out to give rise to a rich theory of serializability that
allows for numerous concepts and approaches to schedule correctness. How-
ever, parts of this theory (in particular, those leading to classes FSR and VSR),
although seemingly appropriate from a semantic point of view, are unrealistic
for practical purposes, so that conflict serializability is the correctness notion
of choice for the construction of schedulers. This is due to the high (and hence
unacceptable) complexity of the decision problems related to final state as well
as to view serializability.

Conflict serializability has a number of interesting properties that make it
particularly amenable to real-world implementations: its decision problem is
polynomial in the number of transactions considered, it enjoys desirable closure
properties, and it allows establishing subclasses, or sufficient conditions, that
capture additional and relevant properties. The ones we have seen here are
order-preserving conflict serializability and commit order preservation.

In addition, the previous section has uncovered a first attempt to go be-
yond traditional conflict based serializability theory. Indeed, the idea of taking
semantic information of the database or of the transactions (or maybe even of
the application programs from which the transactions are issued) into account
when considering the correctness of schedules is nearly as old as the notion
of serializability itself, and relative serializability constitutes an interesting ap-
proach in this direction. Clearly, as the read/write model of transactions is of a
highly syntactic nature, more can be expected in terms of semantic considera-
tions when higher-level transaction models are employed.

We will reuse the notion of conflict serializability several times in subse-
quent chapters. In particular, we will demonstrate for completely different
types of operations, such as update operations along the lines of SQL for
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relational databases, that a theory of serializability can mostly follow what
we have described in this chapter, and that “serializability theorems” in the
style of Theorem 3.10, which characterize (conflict) serializability in graph-
theoretic terms, can be obtained for a variety of settings. In this sense, what we
have done and seen in this chapter is on the one hand a major preparation for
the practical aspects of concurrency control and of scheduler design that we
will study next, but is on the other hand representative of a kind of method-
ology that is available for deriving transaction models and their correctness
criteria.

Exercises

3.1 Consider the following histories:

s = r1(x)r2(y)w1(y)r3(z)w3(z)r2(x)w2(z)w1(x)c1c2c3

s ′ = r3(z)w3(z)r2(y)r2(x)w2(z)r1(x)w1(y)w1(x)c3c2c1

Compute H[s] and H[s ′] as well as the respective RF and LRF relations.
Show the step graphs of these histories.

3.2 Suppose the following schedule is given:

s = r1(x)r3(x)w3(y)w2(x)c3r4(y)w4(x)c2r5(x)c4w5(z)w1(z)c1c5

Now assume that it is known that for some transactions, the function
computed by a write step is the identity function in one of its arguments,
i.e., for wi (x) we have that fi x(v1, . . . , vm) = v j for some index j (such a
function is a copier since it just copies information it has read into a data
item). Compute the (Herbrand) semantics of s given the information that
t3 and t4 are copiers. Note: Strictly speaking, this is no longer a Herbrand
semantics, since some function symbols in H[s] are now interpreted.

3.3 Suppose that in a given schedule the functions corresponding to the write
steps represent increments of a counter, i.e., f (x) = x + 1. Compute
the (Herbrand) semantics of the following schedules using this semantic
information:

s = r3(z)r1(y)w3(z)w1(y)r1(x)r2(y)w2(y)w1(x)r2(x)w2(x)c1c2c3

s ′ = r3(z)w3(z)r2(y)w2(y)r1(y)w1(y)r2(x)w2(x)r1(x)w1(x)c3c2c1

3.4 Consider the following history:

s = r1(x)r3(x)w3(y)w2(x)r4(y)c2w4(x)c4r5(x)c3w5(z)c5w1(z)c1

Into which of the classes FSR, VSR, CSR does this schedule fall?
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3.5 Complete the proof of Theorem 3.2, i.e., show that for any two schedules
s and s ′, s ≈v s ′ iff D(s) = D(s ′).

3.6 Consider s = r1(x)w1(x)r2(x)r2(y)w2(y)c2w1(y)c1. Show that s ∈ FSR –
VSR.

3.7 Prove Theorem 3.4, i.e., show that VSR and FSR coincide in the absence
of dead steps.

3.8 Show that VSR = CSR in the absence of blind writes, i.e., if each write
step on a data item x is preceded by a read step on x of the same trans-
action.

3.9 Let s = r1(z)r3(x)r2(z)w1(z)w1(y)c1w2(y)w2(u)c2w3(y)c3. Show s ∈

VSR – CSR.

3.10 Consider s = r1(x)w1(z)r2(z)w1(y)c1r3(y)w2(z)c2w3(x)w3(y)c3. Using
the conflict graph of s as an argument, show that s ∈ CSR. Does s ∈

OCSR also hold?

3.11 Show:

(a) Membership in class CSR is monotone.

(b) s ∈ CSR ⇐⇒ (∀ T ⊆ trans(s)) �T (s) ∈ VSR (i.e., CSR is the largest
monotone subset of VSR).

3.12 Consider the traditional case where entire transactions are the only units
of indivisibility with respect to other transactions. Show by way of an ex-
ample that, in this setting, not every relatively serial schedule is also serial.
Also show that under this kind of “absolute” isolation, every relatively
serial schedule is conflict equivalent to some serial schedule.
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A step ri (x) ∈ s of a transaction ti ∈ trans(s) reads the value writ-
ten by the last w j (x) ∈ s, j �= i , that occurs before ri (x), such that
a j �∈ s.

The seemingly innocent addition at the end that t j should not be aborted
in schedule s has interesting consequences. Indeed, consider the following
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(fragment of a) schedule:

s1 = wi (x)w j (x)rk(x)

According to what was said above, step rk(x) reads the value of x written by
w j (x), since (1) there is no other step in between the two, and (2) a j is not
around. Next, suppose a scheduler appends a j to s1 to obtain

s2 = wi (x)ciw j (x)rk(x)a j

Now since t j is aborted, step rk(x) no longer reads from w j (x), but from (the
committed) step wi (x). If a j would have been there just a little earlier, as in

s3 = wi (x)ciw j (x)a jrk(x)

it would have been clear from the outset that rk(x) does not read from w j (x).
The problem we encounter in this little discussion is that the “reads-from
definition” above formally introduces a well-defined notion (since s1 �= s2);
however, in a dynamic situation s2 could be produced from s1, and then the
value read by rk(x) changes! We take this as evidence that failures are difficult
to model, at least in a setting (as discussed in this chapter) where correctness of
transaction executions is the focus, and have therefore decided not to consider
aborted transactions in this chapter. See Lechtenbörger and Vossen (2000) for
a recent discussion of this topic.

Presumably, the first publication that used the Herbrand semantics to char-
acterize the correctness of schedules was by Casanova and Bernstein (1980).
The notion of (final state) serializability along with the relations RF and LRF
has been introduced by Papadimitriou (1979) as well as Bernstein et al. (1979).
The notion of view serializability has been made fully explicit by Yannakakis
(1984). Vidyasankar (1987) has extended this work, as well as that of Ibaraki
et al. (1983) and Katoh et al. (1985), by introducing a generalized notion of S
serializability where the subset S of the set of transactions under consideration
reads the same values in a given schedule as in some serial execution. S serializ-
ability is then characterized in terms of an acyclic transaction precedence graph
that expresses useful reads as well as useless writes. Moreover, S serializability
coincides with view serializability if S contains all transactions in question.

The step graph construction and the proof that equality of reduced step
graphs is equivalent to the fact that the histories in question are final state se-
rializable is from Papadimitriou (1986). The NP completeness result on view
serializability is from Papadimitriou (1979); a complete proof appears in Pa-
padimitriou (1986). The latter source has also proven that conflict equivalence
can be characterized in terms of commutativity. The related notion of weak
view serializability of degree k (introduced in the Exercises above) is from
Tuzhilin and Spirakis (1985). The most relevant notion of conflict serializability
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for practical purposes and the characterization of membership in CSR by the
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Eswaran et al. (1976).

Order-preserving serializability was already discussed by Papadimitriou
(1979) as well as Bernstein et al. (1979), originally named “strict” serializability;
we should mention that order preservation makes sense not only for conflict-
serializable schedules but also for those in FSR or in VSR, which then gives
rise to restricted classes OFSR and OVSR, respectively. While the complex-
ity of testing membership in OFSR or OVSR remained open in Papadimitriou
(1979), Sethi (1982) clarified this by showing that order-preserving serializ-
ability of a history s can be decided in polynomial time for transactions in the
two-step model (see Exercises in Chapter 2), provided all write steps in s are
alive; the problem is NP complete in general.

The property of commit order preservation, discussed in Section 3.8.4, was
proposed under different names by Weihl (1989), Breitbart and Silberschatz
(1992), as well as Raz (1992, 1994); Raz (1992, 1994) and Guerraoui (1995)
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theory, which we have here restricted to the (lowest) read/write level only, has
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to individual operations, not entire transactions, which may result in multiple
F and B edges between nodes in a relative serialization graph.
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CHAPTER FOUR

Concurrency Control
Algorithms

The optimist believes we live in the best of all

possible worlds. The pessimist fears this is true.

—Robert Oppenheimer

Next week there can’t be any crisis.

My schedule is already full.

—Henry Kissinger

4.1 Goal and Overview

In this chapter we will present a number of algorithms—called scheduling algo- Scheduling
algorithms
(schedulers)

rithms, or schedulers for short—that a data server could use to produce serializ-
able schedules for multiple concurrent transactions. Following our discussion
from the previous chapter, we will concentrate on schedulers that produce
conflict-serializable schedules. We will also follow the previous chapter in that
we do not yet consider transaction aborts or system failures; as before, we
assume that system components other than the scheduler are capable of han-
dling them properly. Later, in Part III of the book, we will expand the notion
of schedules to make the implementation of aborts explicit. (This will lead to
notions such as prefix reducibility in Chapter 11.)

We will place some emphasis in this chapter on the question of how to de-
sign scheduling protocols in general, and on how to verify a given protocol and
prove it correct. With respect to the latter, we will be interested in two criteria:
First, each protocol that we present has to be safe in the sense that all histories it
outputs have to be members of CSR, the class of conflict-serializable schedules.
Second, we are interested in the scheduling power of a protocol, or in its ability
to produce some class of serializable histories (e.g., class CSR) in its entirety or
partially only. For example, if scheduler S1 can produce every history in CSR,
and scheduler S2 can produce a strict subset of CSR only, then S1 intuitively has
more options than S2 to choose a CSR schedule for a given set of transactions,
and hence has more scheduling power. In other words, the scheduling power
of a scheduler is a kind of measure for the amount of parallelism it can utilize.
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After some general considerations on the design of schedulers in Section 4.2,Locking
schedulers we will first look, in Section 4.3, at the most prominent type of schedulers,

which are schedulers based on locking. As will be seen, this amounts to a rich
class of scheduling protocols that essentially exploits a variety of options in the
use of locks. Locking protocols are also the most important ones in practice,
since they mostly (but not always) outperform all other scheduling protocols,
are easy to implement, incur little run-time overhead, and can be generalized
to various transaction-related settings. In particular, we will see that locking
protocols can be successfully employed for both major computational models
of this book—the page model considered here and the object model considered
later. A second major class of protocols, discussed in Section 4.4, does not useNonlocking

schedulers locking at all, but replaces this mechanism with other constructs, such as time-
stamps in the timestamp ordering protocol or validation in so-called optimistic
protocols. Finally, Section 4.5 briefly presents hybrid protocols that combineHybrid

schedulers elements from both locking and nonlocking methods.

4.2 General Scheduler Design

Before we look at actual protocols, we briefly provide a conceptual view
of the system environment in which transaction processing takes place in a
data server. To this end, we recall Figure 1.4 from Chapter 1, which gave an
overview of the layered components involved in a data server such as a database
system. We now consider an extension and, at the same time, a convenient ab-
straction of such a layered architecture by putting the scheduler component
in its appropriate place. Conceptually, we insert a transaction manager (TM)Transaction

manager (TM) as an additional component between two layers, typically (but not necessar-
ily) between the query execution layer and the access layer or between the
access layer and the storage layer. This TM intercepts all calls from one layer
to the next lower layer, takes the necessary steps for concurrency control (and
also recovery), and then passes the calls on to the lower layer to execute the
invoked operation. With this abstract architecture, the further processing of
the operations by the lower layer and the other layers underneath is not really
relevant for the TM, nor is it observable by the TM anyway. Therefore, we
can conceptually collapse all layers beneath the TM into a single “virtual” sys-
tem component that we refer to as the data manager (DM). This architectural
model and the dynamic behavior of a scheduler are illustrated in Figure 4.1. The
scheduler dynamically interleaves data operations that result from the requests
of multiple clients.

The TM’s main task is bookkeeping and in particular managing the lists
trans, commit, abort, and active that we introduced for our model of schedules
and histories. In addition it keeps a list of ready-to-execute steps for all the
active transactions. From this list it selects individual steps and sends them
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Figure 4.1 A transaction scheduler.

to the scheduler. In that way, the scheduler receives an arbitrary input schedule
from the TM, and its task is to transform that into a serializable output schedule.

Since we have assumed in Chapter 3 that termination steps of transactions
only become relevant in the context of a schedule or a history, we can assume
now that the TM can recognize the beginning and the end of a transaction. Thus
a transaction is delimited by its Begin transaction and Commit transaction (or,
infrequently, Rollback transaction) calls. We furthermore assume that the TM:

outputs a step ci to the scheduler when it sees the Commit transaction
request of ti and no failures have occurred (from the TM’s point of view)
during the execution of ti (normal termination),

outputs a step ai as soon as it recognizes an error situation for ti (includ-
ing the case that the transaction program explicitly requests a rollback).

Recall from Chapter 1 that this is in line with the way commercial data
servers such as database systems operate when accessed through an application
program; there are explicit commands such as Commit and Rollback for con-
trolling transaction termination.

In addition, a scheduler can autonomously decide to abort a transaction,
for example, if it discovers a situation that is no longer serializable. We remark
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Figure 4.2 States of a transaction.

at this point that a transaction can be in various states during its lifetime, as
shown in Figure 4.2.

Upon its Begin transaction call a transaction becomes active. An active
transaction can execute a data operation or await the execution of the next such
operation. In the former case it is in state Running; in the latter it is Blocked.
The end of an active transaction can be either Aborted or Committed, where
the latter state is the normal outcome.

Now the scheduler receives steps of the form r , w, a, and c in an inputScheduler
actions schedule and has to transform that into a serializable output schedule. To this

end, it can perform one of the following actions:

1. Output: The step is output right away, that is, attached to the end of
the present output schedule (which is initially empty) to form a new
output schedule; in this case, the step can be an r , w, a, or c action.

2. Reject: The step is not output (e.g., since it is already clear that its ex-
ecution would destroy the serializability of the output). In this case,
it can only be an r or a w; the transaction in question is then aborted
(terminated by an a).

3. Block: The step is neither output nor rejected, but considered as
“currently not executable” and thus postponed. The execution of this
step will then be retried later; again, the step in question can only be an
r or a w. (Under special circumstances, the step could also be a c, e.g.,
if the scheduler is desired for COCSR.)

The data manager (DM) executes the steps of a (serializable) output sched-
ule in the order that has been determined by the scheduler; in other words,

for an r it reads a data item,

for a w it writes a data item,
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for a c it initiates steps to make the results of the transaction persistent,

for an a it initiates steps to undo the transaction.

In this chapter our main interest is in the scheduler, or in protocols on which
such a device can be based. Regarding the design of a scheduling protocol, we
already know that its output should at least fall into CSR. Once such a design
goal has been fixed, a scheduler can conceptually be seen as a “filter,” which lets
exactly the members of that class pass unmodified. Thus, if the input schedule
is from that class, it coincides with the output schedule; the serializable input
schedules then form the scheduler’s fixpoint set. Now a generic scheduler can
be described roughly as follows:

Generic
scheduler

scheduler ( ):

var newstep: step;

{ state :=initial state;

repeat

on arrival(newstep) do

{ update(state);

if test(state, newstep)

then output(newstep)

else block(newstep) or reject(newstep) }

forever };

For a concrete scheduling algorithm we will now have to make precise:

1. what information characterizes a state and how the scheduler updates
that information depending on a current step,

2. what makes up the test that decides upon the scheduler’s next action
(execute, block, or reject).

Depending on how the test result looks most of the time, schedulers can Scheduler
classificationbe classified as optimistic or pessimistic. A scheduler is

optimistic, sometimes also referred to as “aggressive,” if it mostly lets Optimistic
schedulerssteps pass and rarely blocks; clearly, this bears the dangers of “getting

stuck” eventually when the serializability of the output can no longer
be guaranteed;

pessimistic, sometimes also referred to as “conservative,” if it mostly Pessimistic
schedulersblocks (upon recognizing conflicts); in the extreme, albeit unlikely case,

the output could become a serial schedule or history, namely, if all trans-
actions but one were blocked.

Locking schedulers, which we will consider in the next section, belong to the
class of pessimistic schedulers. Nonlocking schedulers, on the other hand, to
be considered in later sections, can be either optimistic or pessimistic.
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Regarding the safety as well as the scheduling power of a protocol, we will
use the following notions and notations:

CSR safety DEFINITION 4.1 CSR Safety

A scheduler is called CSR safe if every output it produces is (conflict) serializ-

able. If S denotes a scheduler, then Gen(S) denotes the set of all schedules

that S can generate as an output. Thus, a scheduler S is CSR safe if Gen(S) ⊆
CSR.

4.3 Locking Schedulers

We now embark on a discussion of the first major class of scheduling protocols,
the locking schedulers. We do this here from a purely conceptual point of view,
in order to clarify the methodology as well as the options and implications
behind it. For the time being, we entirely neglect implementation techniques
such as lock tables, where each lock is represented as one entry with hash-based
access on data item and transaction identifier, or multiple granularity, where
transactions can choose an appropriate level of granularity depending on how
many data items they intend to access and the contention for these items.
Here we consider a uniform level of granularity like pages, which suffices for
the discussion of this chapter. We will discuss such implementation issues in
Chapter 10.

4.3.1 Introduction

In a nutshell, the idea of a locking scheduler is to synchronize access to sharedLock request,
lock conflict,

lock wait, and
lock release

data by using locks, which can be set on and removed from data items on behalf
of transactions. The intuitive meaning is that if a transaction holds a lock on a
data item, the item is not available to other, concurrent transactions (i.e., those
transactions are “locked out”). When a transaction requests a lock (or, actually,
the scheduler requests the lock on behalf of a transaction), the scheduler checks
whether the lock is already held by another transaction (in a conflicting mode,
as we will explain shortly). If so, the lock request is considered to be a lock
conflict, and the requesting transaction is suspended—it suffers a lock wait and
becomes blocked. Otherwise, the requested lock can be granted, and we say
that the transaction acquires the lock. Eventually, each transaction releases its
locks that it holds at appropriate points in time. At this time the scheduler
checks whether any waiting transaction can be resumed; if so, the scheduler
will now grant the transaction’s lock request that has formerly led to the lock
wait, and the transaction can go ahead accessing the data item of interest.
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Table 4.1 Lock mode compatibility.

Lock requested

r li (x) wli (x)

Lock r l j (x) + −

held wl j (x) − −

Since in our model, transactions can read or write data items, we will Lock modes:
(shared) read
lock,
(exclusive)
write lock

associate two types of locks, or lock modes, with every data item x: a read lock
rl(x), also known as shared lock, and a write lock wl(x), also known as exclusive
lock. As we do for other steps in a schedule, we use subscripts to distinguish the
transactions that issue lock operations. We thus use r l and wl both to denote
the lock status and mode of a data item and the operation that sets the lock.
Even further, we neglect the distinction between requesting a lock on a data
item and acquiring a (previously requested) lock; all of this should be subsumed
by r l and wl .

The following is now near at hand: two locks pli (x) and ql j (y) are in con- Compatibility
of locksflict if x = y, i �= j , and the data operations p and q are in conflict (i.e., p = r

∧ q = w or p = w ∧ q = r or p = w ∧ q = w). The immediate consequence of
this is that our notion of conflict carries over to locks; we will encounter sim-
ilar regulations in other transaction models later. It is common to describe the
compatibility of locks (or lock modes) in tabular form, as shown in Table 4.1.

The table is to be read as follows: if a transaction ti has already set a lock
pli (x) and a transaction t j , j �= i , requests a lock ql j (x), this latter lock can be
granted (it is compatible or not in conflict with the former) if the corresponding
table entry is a +; otherwise, it cannot be granted.

For unlocking data items—in other words, for releasing locks—we will use
similar notations: ru(x) will stand for “read unlock,” wu(x) for “write unlock”
with respect to a data item x.

When using locks, a scheduler has to manage their usage by controlling
the order in which transactions set and release locks. In light of the generic
scheduling algorithm shown earlier, this proceeds as follows: Let a step oi (x)
arrive as next input (o ∈ {r, w}). If oli (x) is not set, the scheduler has to test
whether some pl j (x), j �= i , p ∈ {r, w}, has been set:

1. If this is not the case, oli (x) will be set.

2. If it is the case, the scheduler has to test whether oli (x) is in conflict
with locks on x already set on behalf of other transactions:

(a) If there is no conflict, then oli (x) is set (actually, a lock on x is not
set again, but the scheduler records in a lock table that now ti also
holds a lock on x).

(b) If there exists a conflicting lock, transaction ti is blocked.
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Formally, a locking scheduler augments every transaction it processes by
new actions of type r l , wl , ru, and wu, resulting in a “locked transaction.” It now
makes sense to restrict the use of locks by some near-at-hand rules; specifically,
we will from now on require that for each transaction ti that appears completely
in a schedule s produced by the locking scheduler in question, the following
locking well-formedness rules hold:

Rules for
well-formed

locking

LR1: If ti contains a step of the form ri (x) [wi (x)], then schedule s also
contains a step of the form r li (x) [wli (x)] before the data operation
(i.e., a lock on x is held at the point of the operation on x). Moreover,
s contains a step of the form rui (x) [wui (x)] somewhere after the
operation.

LR2: For each x accessed by ti , schedule s has at most one r li (x) and at
most one wli (x) step; in other words, locks of the same type are set
at most once per transaction and per data item.

LR3: No step of the form rui (.) or wui (.) is redundant (i.e., executed per
transaction more than once).

These rules apply to schedules (i.e., incomplete histories) in an analogous
fashion. For example, for an arbitrary schedule s, rule LR1 reads as follows:

If ti contains a step of the form ri (x) [wi (x)], then s also contains a step of
the form r li (x) [wli (x)] before the data operation. Moreover, s will eventu-
ally be augmented so that it also contains a step of the form rui (x) [wui (x)]
somewhere after the operation.

In slight abuse of the terminology just introduced, we will also say that the
rules above apply to a transaction, which then means that they apply to the
transaction in the context of a schedule in which it occurs.

EXAMPLE 4.1

Consider transactions t1 = r1(x)w1( y) and t2 = w2(x)w2( y) as well as the

following history:

s1 = r l1(x)r1(x)ru1(x)wl2(x)w2(x)wl2( y)w2( y)wu2(x)wu2( y)c2

wl1( y)w1( y)wu1( y)c1

Clearly, s1 satisfies rules LR1–LR3; the same applies to the following history:

s2 = r l1(x)r1(x)wl1( y)w1( y)ru1(x)wu1( y)c1wl2(x)w2(x)wl2( y)

w2( y)wu2(x)wu2( y)c2

Notice that s2 is even serial.

The schedules (and eventually the histories) produced by a locking sched-
uler contain data operations, termination operations, and lock and unlock steps.
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Since it will sometimes be useful to distinguish schedules without lock and
unlock operations from schedules in which these occur, we introduce the fol-
lowing notation: for some schedule s, let DT(s) denote the projection of s onto
the steps of type r, w, a, c (i.e., onto Data and Termination operations).

EXAMPLE 4.2

Let s1 and s2 be as in the previous example; then we have

DT(s1) = r1(x)w2(x)w2( y)c2w1( y)c1

DT(s2) = r1(x)w1( y)c1w2(x)w2( y)c2 (= t1t2)

Note that history s1 of the above example cannot be an acceptable exe-
cution, since DT(s1) �∈ CSR. The reason is that between ru1(x) and wl1( y)
both data items are written by t2, so that a conflict-equivalent serial history
would have to satisfy “t1 < t2” with respect to x, but “t2 < t1” with respect to
y, which contradict each other. Clearly, a CSR safe scheduler has to avoid such
situations.

Whenever there is no ambiguity, we will use the notation s rather than
the above notation DT(s) in order to refer to a schedule or history that is free
of lock and unlock operations; however, keep in mind that there is a formal
difference between the output produced by a locking protocol and the output
needed to determine correctness.

We mention that our locking rules LR1–LR3 apply to every transaction in
a schedule produced by a locking scheduler; in particular, they apply not only
to active, but also to aborted transactions, where we assume for aborted trans-
actions that the execution of the Abort operation also takes care of releasing
all locks set on behalf of that transaction.

Transaction ti holds a lock on data item x at all points in between ti ’s lock
acquisition (i.e., the r li (x) or wli (x) operation) and the corresponding lock
release (i.e., the rui (x) or wui (x) operation). In general, we say that a scheduler
operates according to a locking protocol if the following holds for each output s:

LR1–LR3: s satisfies the locking rules LR1–LR3,

LR4: if x is held locked by both ti and t j for ti , t j ∈ trans(s), i �= j ,
then these locks are not in conflict (i.e., they are compatible).

4.3.2 The Two-Phase Locking Protocol

We now present the first concrete scheduler based on locking, the two-phase
locking protocol (2PL). This protocol is the one used most in commercial database
systems.
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Within the family of locking protocols, two-phase locking is characterized
by the following rule regarding the timepoints of lock releases:

Two-phase
locking (2PL)

DEFINITION 4.2 Two-Phase Locking (2PL)

A locking protocol is two-phase if for every output s and every transaction

ti ∈ trans(s) it is true that no qli step follows the first oui step, o, q ∈ {r, w}.

A two-phase locking protocol is abbreviated 2PL or 2PL scheduler.

In words, a locking protocol is two-phase if for every transaction a phase
during which locks are set is distinguished from and strictly followed by a phase
during which locks are released. (Later we will see deviations from this two-
phase rule in which the two phases of a transaction are allowed to overlap; for
the time being, this is not the case.)

EXAMPLE 4.3

Consider history s1 from the previous example again: it obviously violates

the two-phase rule since ru1(x) <s wl1( y). A possible correct execution

order is history s2 from the same example.

The next example, besides showing how a 2PL scheduler might process aLock conversion
(lock upgrade) given input, also shows how a transaction that first reads a data item and later

writes it may start out by getting a read lock, and later upgrade this read lock
to a write lock. Such an upgrade is also called lock conversion.

EXAMPLE 4.4

Consider the following input schedule:

s = w1(x)r2(x)w1( y)w1(z)r3(z)c1w2( y)w3( y)c2w3(z)c3

A 2PL scheduler could transform s into the following output history (which,

of course, is not uniquely determined):

wl1(x)w1(x)wl1( y)w1( y)wl1(z)w1(z)wu1(x)r l2(x)r2(x)wu1( y)

wu1(z)c1r l3(z)r3(z)wl2( y)w2( y)wu2( y)ru2(x)c2wl3( y)w3( y)

wl3(z)w3(z)wu3(z)wu3( y)c3

Here t3 upgrades its read lock on z to a write lock, so that only the latter

needs to be released at the end of t3. Also note that locks need not be

released in the same order in which they were set. The resulting execution
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t1

w1(x) w1(y) w1(z)

t2

r2(x) w2( y)

t3

r3(z) w3(y) w3(z)

Figure 4.3 Example execution under the 2PL protocol.

is also illustrated in Figure 4.3, where time proceeds from left to right and

dashed lines correspond to lock waits.

We now discuss the (CSR) safety of the 2PL protocol. To this end, we need
to verify that DT(s) ∈ CSR holds for each output s created by a 2PL scheduler.
The argument, which will deliver a positive result, goes along the following
lines:

LEMMA 4.1

Let s be the output of a 2PL scheduler. Then for each transaction ti ∈
commit(DT(s)) the following holds:

1. If oi (x) (o ∈ {r, w}) occurs in CP(DT(s)), then so do oli (x) and oui (x)
with the sequencing oli (x) < oi (x) < oui (x). (Here CP(.) again denotes

the committed projection of a schedule, introduced in Chapter 3.)

2. If t j ∈ commit(DT(s)), i �= j , is another transaction such that some

steps pi (x) and q j (x) from CP(DT(s)) are in conflict, then either pui (x)<
ql j (x) or qu j (x) < pli (x) holds. (If two steps are in conflict, then so are

their lock operations; locks in conflict are not set simultaneously.)

3. If pi (x) and qi ( y) are in CP(DT(s)), then pli (x) < qui ( y), i.e., every lock

operation occurs before every unlock operation of the same transaction.

LEMMA 4.2

Let s be the output of a 2PL scheduler, and let G := G(CP(DT(s))) be the

conflict graph of CP(DT(s)). Then the following holds:

1. If (ti , t j ) is an edge in G, then pui (x) < ql j (x) for some data item x and

two operations pi (x), q j (x) in conflict.

2. If (t1, t2, . . . , tn) is a path in G, n ≥ 1, then pu1(x) < qln( y) for two data

items x and y as well as operations p1(x) und qn( y).

3. G is acyclic.
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Proof

(1) If (ti , t j ) is an edge in G, then CP(DT(s)) comprises two steps pi (x) and

q j (x) in conflict such that pi (x) < q j (x). According to (1) in Lemma 4.1,

this implies pli (x) < pi (x) < pui (x) and ql j (x) < q j (x) < qu j (x). Ac-

cording to (2) in Lemma 4.1, we moreover find (a) pui (x) < ql j (x) or (b)

qu j (x) < pli (x). Case (b) means ql j (x) < q j (x) < qu j (x) < pli (x) <

pi (x) < pui (x) and hence q j (x) < pi (x), a contradiction to pi (x) <

q j (x). Thus, pui (x) < ql j (x) (which is case (a)), which had to be shown.

(2) The proof goes by induction on n. The induction base n = 2 follows

directly from part (1): If (t1, t2) is an edge in G, there is a conflict between

t1 and t2. Thus, pu1(x) < ql2(x), i.e., t1 unlocks x before t2 locks x. In

other words, when t2 sets a lock, t1 has already released one.

Now assume our claim holds for n transactions on a path through

G, and consider a path of length n + 1. The inductive assumption now

tells us that there are data items x and z such that pu1(x) < oln(z) in

s. Since (tn, tn+1) is an edge in G, it follows from (1) above that for

operations vn( y) and qn+1( y) in conflict we have vun( y) < qln+1( y).
According to (3) of Lemma 4.1, this implies oln(z) < vun( y) and hence

pu1(x) < qln+1( y).

(3) Assume that G is cyclic. Then there exists a cycle, say, of the form (t1,

t2, . . . , tn, t1), n ≥ 1. By (2), pu1(x) < ql1( y) for operations p1(x), q1( y),
a contradiction to the two-phase rule (or to (3) of Lemma 4.1).

Since the conflict graph of an output produced by a 2PL scheduler is acyclic,
and since by the serializability theorem (Theorem 3.10) we have proved in the
previous chapter acyclicity of a conflict graph characterizes membership of the
respective history in class CSR, we have thus shown:

THEOREM 4.1

A two-phase locking scheduler is CSR safe, i.e., Gen(2PL) ⊆ CSR.

Formally, the Gen(S) of a locking scheduler S contains DT(s) only for
every output schedule s.

We note that the inclusion just proved is strict, that is, 2PL is unable to
generate all of CSR:

EXAMPLE 4.5

Let s = w1(x)r2(x)c2r3( y)c3w1( y)c1. As in a previous example we have s ∈

CSR, since s ≈c t3t1t2. On the other hand, it is easily verified that s cannot
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be produced by a 2PL scheduler. The simple reason is that 2PL would start

out by setting a write lock for t1 on x; that would immediately block t2.

The next lock operation possible would then be to set a read lock for t3
on y; once t3 finishes, t1 can set a lock on y and finish. Only thereafter t2
would run, so if s was the input to 2PL, the following would be output:

s ′ = w1(x)r3( y)c3w1( y)c1r2(x)c2.

A fully formal proof of the infeasibility of s under 2PL proceeds as fol-

lows. First, by Lemma 4.2(2), we know that wu1(x) < r l2(x) and ru3( y) <

wl1( y). Second, the well-formedness rules for locked schedules require

r l2(x) < r2(x) and r3( y) < ru3( y). Third, the schedule itself includes the

order r2(x) < r3( y). Putting all these ordering constraints together and us-

ing transitivity, we infer that wu1(x) < wl1( y), which contradicts the fun-

damental rule of the 2PL protocol. Therefore, the schedule is not feasible

under 2PL, regardless of how lock and unlock operations may be inserted.

The example shows that the fact that a history has been created by 2PL OCSR
is sufficient for membership in CSR, but not necessary. The latter can even
be refined; to this end, recall the definition of OCSR from Definition 3.18: A
history s is order preserving conflict serializable, if it is conflict serializable, that
is, there exists a serial history s ′ such that op(s) = op(s ′) and s ≈c s ′, and if the
following holds for s ′ and all t, t ′ ∈ trans(s): if t occurs completely before t ′ in
s, then the same holds in s ′. OCSR denotes the class of all order-preserving
conflict-serializable histories. Now we have

THEOREM 4.2

Gen(2PL) ⊂ OCSR

To see that the inclusion is proper, consider the schedule

w1(x)r2(x)r3( y)r2(z)w1( y)c3c1c2

This schedule, which is a slight variation of the sample schedule for showing
that 2PL cannot generate all of CSR, is CSR and trivially falls into OCSR
(as there is no pair of strictly sequential transactions), but is still not feasible
under 2PL. In Section 4.3.5, we will discuss an alternative to 2PL that is capable
of generating every schedule in OCSR.

In the output of a 2PL scheduler, for each transaction a growing phase
(in which locks are set only) can be distinguished from a shrinking phase
(in which locks are released only). This is illustrated in Figure 4.4. We will
exploit this observation later for designing variants of 2PL.
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Figure 4.4 Growing and shrinking phase of a transaction under 2PL.

4.3.3 Deadlock Handling

As locking protocols require transactions to wait when requested locks cannotDeadlocks
be granted immediately, a set of transactions, each holding some locks and
requesting an additional one, may end up being mutually blocked. For example,
in the simplest case with only two transactions t1 and t2, t1 may have requested
a lock that t2 is holding in a conflicting mode so that t1 is waiting for t2 to
release this lock, while at the same time t2 has requested a lock held by t1
in a conflicting mode. Such cyclic wait situations are commonly known as
deadlocks.

For an implementation of the 2PL protocol it is important to realize that
it is not deadlock free. To see this, consider the above scenario, refined into the
following input schedule:

r1(x)w2( y)w2(x)c2w1( y)c1

Let this schedule be submitted to a 2PL scheduler. The scheduler processes the
input from left to right and hence creates

r l1(x)r1(x)wl2( y)w2( y)

At this point, it has to stop, since the next action would be wl2(x), which is
incompatible with r l1(x), so that w2(x) has to be blocked. The only step left
would then be w1( y), requiring lock operation wl1( y), which is incompati-
ble with wl2( y). Notice that the scheduler cannot even execute ru1(x), since
thereafter t1 could no longer acquire new locks due to the two-phase rule.
Hence the scheduler has encountered a deadlock. This situation is illustrated
in Figure 4.5, with time proceeding from left to right and lock waits indicated
by dashed lines.

There is another situation that can cause deadlocks, namely, the already
mentioned lock conversion. Suppose a transaction t first reads and later writes

Lock conversion
leading to
deadlock a data item, and initially sets r l(x); then it needs to upgrade this to wl(x) at
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t1

r1(x) w1(y)

t2

w2(y) w2(x)

Figure 4.5 A deadlock.

some later point. If two transactions do this at the same time, the following
can happen: let t1 = r1(x)w1(x) and t2 = r2(x)w2(x)c2, and let the scheduler
execute

r l1(x)r1(x)r l2(x)r2(x)

Again, this prefix cannot be extended following the two-phase rule, since an
upgrade of r l1(x) to wl1(x) would be in conflict with r l2(x), and analogously
wl2(x) with r l1(x).

If a protocol allows deadlocks, such as 2PL does, it needs appropriate mea- Deadlock
detectionsures to detect and resolve them. There are various categories of approaches

to handle deadlocks, which are discussed next. The first category, designed
to allow deadlocks as in situations like the ones just described, comprises ap-
proaches for deadlock detection. Strategies for deadlock detection are generally
based on the notion of a waits-for graph (WFG), which is a graph G = (V, E)
whose nodes are the active transactions, and in which an edge of the form (ti , t j )
indicates that ti waits-for t j to release a lock that it needs. Clearly, a cycle in
WFG exhibits a deadlock.

For deadlock detection, a WFG needs to be built and maintained explicitly.
In this approach the question arises, how often should a WFG be tested for
cycles? There are essentially two options for this issue:

Under continuous detection, the WFG is always kept cycle free by check-
ing for cycles (and eventually breaking them) whenever a lock request
is not granted immediately, that is, every time a transaction blocks.

Under periodic detection, the WFG is tested only periodically for cycles,
for example, once per second. Clearly, selecting an appropriate time
interval for periodic detection is not an easy task and may even impact
performance to some extent.

When the scheduler detects a cycle (or several cycles), it has to resolve Deadlock
resolutionthe corresponding deadlock(s) by aborting at least one transaction from every

cycle. Again, there are several victim selection criteria, including the following:

1. Last blocked: Pick the transaction that blocked most recently, that is, the
one that just blocked in the case of continuous detection.

2. Random: From those involved in a deadlock cycle, pick one transaction
randomly.
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3. Youngest: Pick the transaction with the most recent start-up time, that
is, the one that began running most recently.

4. Minimum locks: Pick the transaction that holds the fewest locks.

5. Minimum work: Pick the transaction that has consumed the least amount
of resources (e.g., CPU time) so far.

6. Most cycles: Pick the transaction that breaks the largest number of cycles
simultaneously.

7. Most edges: Pick the transaction that eliminates as many edges as possible.

The idea of the youngest, minimum locks and minimum work strategies isStarvation
(livelock) aimed at minimizing the amount of wasted work, for the victim’s work so far is

lost, the cost of the rollback itself is proportional to that work, and in most cases
the transaction will be restarted some time after the rollback is completed. The
three strategies are heuristics that approximate this goal to a certain extent,
with the subsidiary goal of keeping the overhead extremely low. A problem
with all victim selection strategies is that they are susceptible to livelocks—
situations where a transaction (or, strictly speaking, different incarnations of
the same transaction) is repeatedly chosen as deadlock victim, rolled back, and
restarted, and thus appears to make progress from a microscopic perspective,
but does not really come any closer to its commit from a global viewpoint. In
essence, such a transaction would “starve,” hence the other name, starvation, for
this phenomenon. Heuristics for fixing this problem so that starvation freedom
can be guaranteed are the subject of Exercise 4.3.

For the most cycles strategy, consider the example shown in Figure 4.6,
where an insertion of the dashed edge in either graph closes several cycles
simultaneously.

t6 t5 t4

t1 t2 t3

t6

t8

t7

t5 t4

t1 t2 t3

t9

t10

Figure 4.6 Waits-for graphs.
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t5 t1

t6

t3

t4

t5 t1

t6

t3

t4 t2

t5

t6

Abort of t2 Abort of t1

Figure 4.7 On choosing a deadlock victim.

For the most edges option, Figure 4.7 shows a WFG with a cycle and
candidate victims t1 and t2. Depending on which of the two transactions is
aborted, either two or four edges remain in the graph, and clearly the former
is more desirable.

The second category of approaches to handle deadlocks is deadlock preven- Deadlock
preventiontion, in which a WFG is not explicitly maintained. Since prevention amounts

to never allowing blocked states that can lead to circular waiting, it is clear
that conservative protocols are now needed. Possible restrictions include the
following:

1. Wait-die: If a lock request from transaction ti leads to a conflict with
t j , resolve as follows: if ti started before t j , it is blocked (ti “waits for”
t j ); otherwise, it is restarted (ti “dies”). In other words, a transaction can
only be blocked by a younger transaction.

2. Wound-wait: If a lock request from transaction ti leads to a conflict with
another transaction t j , resolve as follows: if ti started before t j , then t j
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is restarted (ti “wounds” t j ); otherwise, ti is blocked (ti “waits for” t j ).
Thus, a transaction can only be blocked by an older transaction, and a
transaction can kill any younger one it conflicts with.

3. Immediate restart: If a lock request from ti leads to a conflict with another
transaction t j , simply restart ti . Thus, no transaction is ever blocked.

4. Running priority: If a lock request from ti results in a conflict with t j ,
resolve as follows: if t j is currently waiting due to another conflict,
then restart t j and grant ti ’s lock request; otherwise, block ti . Thus,
blocked transactions are not allowed to impede the progress of active
ones.

Notice that in these approaches to deadlock prevention, a transaction that
is restarted has not necessarily been involved in a deadlock, which indicates the
conservativeness of the approaches.

Finally, the third category for dealing with deadlocks comprises just theTimeouts
timeout strategy: For each transaction t the scheduler maintains a timer that is
activated as soon as a step of t is blocked. If the timer times out, t is aborted
under the assumption that it has been involved in a deadlock. Clearly, this
decision may be wrong, so the choice of the time period for which the timer
runs is crucial. Again observe that an aborted transaction has not necessarily
been involved in a deadlock.

4.3.4 Variants of 2PL

From Figure 4.4 above we can immediately derive the following two variants
of 2PL:

DEFINITION 4.3 Conservative 2PL

Under static or conservative 2PL (C2PL) each transaction sets all locks that

it needs in the beginning, i.e., before it executes its first r or w step. This is

also known as preclaiming all necessary locks up front.

The conservative 2PL variant is illustrated in Figure 4.8. An advantage ofConservative
2PL

(preclaiming)
C2PL over 2PL is that deadlocks are avoided, since a transaction can only ac-
quire all its locks prior to execution if these do not conflict with any others;
thus, the scheduler never needs to abort transactions due to their involve-
ment in a deadlock. On the other hand, each transaction has to declare its
entire read set as well as its write set to the scheduler in advance, which is
possible in restricted application scenarios only. When read and write sets of
a transaction are known to the scheduler, it can try to obtain all necessary



4.3 Locking Schedulers 143

L
o
ck

s 
o
f 

a
tr

an
sa

ct
io

n

Time

Figure 4.8 Conservative 2PL (preclaiming).

locks on behalf of that transaction; if that is impossible, the transaction has
to wait. It follows that, under C2PL, a blocked transaction never holds
a lock.

DEFINITION 4.4 Strict 2PL

Under strict 2PL (S2PL) all (exclusive) write locks that a transaction has

acquired are held until the transaction terminates.

The strict 2PL variant is illustrated in Figure 4.9, assuming that all locks Strict 2PL
are exclusive. Strict 2PL is the protocol most often used in real-world imple-
mentations. The strict variant of 2PL is motivated by the observation that a
scheduler—as long as the schedule it produces is incomplete—cannot be sure
that a transaction t will not need any further locks and hence cannot release a
lock held by t until the end of t. An S2PL scheduler has the interesting addi-
tional property of producing “strict” histories as output, which we will return
to later in the context of transaction recovery.
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Figure 4.9 Strict 2PL (locking until end of transaction).
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It can be shown that it can make a difference whether all locks of a trans-
action are held until its commmit, or this is true for write locks only. This leads
to the following third variant of 2PL:

DEFINITION 4.5 Strong 2PL

Under strong 2PL (SS2PL), all locks (i.e., both (exclusive) write and (shared)

read locks) that a transaction has acquired are held until the transaction

terminates.

The difference between strict and strong 2PL, in terms of their scheduling
power, becomes clear in the following theorem. Note that all inclusions in the
theorem are proper.

THEOREM 4.3

Gen(SS2PL) ⊂ Gen(S2PL) ⊂ Gen(2PL)

Moreover, the following relationship holds, to be exploited in the context
of distributed systems:

THEOREM 4.4

Gen(SS2PL) ⊂ COCSR

We will return to this issue in Chapter 11 when we discuss correctness
notions for transaction recovery.

4.3.5 Ordered Sharing of Locks

In this subsection we introduce a generalization of 2PL that is less restrictive
than 2PL, and which allows the generation of a larger subclass of CSR sched-
ules. Recall the example from the end of Section 4.3.2 that showed that 2PL
cannot generate all schedules in the class OCSR of order-preserving conflict-
serializable schedules. This example, history

s = w1(x)r2(x)r3( y)c3r2(z)c2w1( y)c1

is not in Gen(2PL), since an initial write lock of t1 on x would block t2. On
the other hand, s ∈ CSR and even s ∈ OCSR. The relaxation we are about to
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introduce will allow situations such as the one in s for the first two operations,
and will allow the two conflicting locks to be held simultaneously.

The two lock modes we have used so far are exclusive (or nonshared ) and
nonexclusive (or shared ), and one of the locking rules said that only two non-
exclusive locks on the same data item may be set on behalf of distinct trans-
actions at the same time, in order to share that data item. We now define a third
lock mode as follows, thereby relaxing the compatibility of locks used so far:

Two locks on the same data item, whether due to conflicting operations
or not, can be held simultaneously by distinct transactions as long as the
lock operations and the corresponding data operations are executed in the
same order.

Note that the corresponding scheduler thus needs to be more sophisti-
cated than a “pure” lock manager, as it needs some bookkeeping about the
ordering of operations in addition to the lock table.

We call this third mode ordered sharing and denote the corresponding re- Ordered
sharinglationship between lock operations by pli (x) → ql j (x), i �= j . Thus, given a

schedule s, pli (x) → ql j (x) implies pli (x) <s ql j (x) and pi (x) <s q j (x). Or-
dered sharing from transaction ti to transaction t j hence indicates that t j can
acquire a lock on data item x, even though ti holds a (possibly conflicting) lock
on x, as long as the ordered sharing property will be guaranteed.

Ordered sharing is of course meant to replace the former exclusive mode,
and in terms of Table 4.1, the lock compatibility table shown earlier, we can
replace each “−” in this table by “→,” individually or in combination. We thus
obtain eight compatibility or lock tables, as shown in Figure 4.10. As before,
transaction ti holds a lock in these tables, whereas transaction t j is requesting
one, and each table shows which types of locks can be shared, ordered shared,
or not shared. Notice that lock table LT1 is the one previously used in 2PL, in
which no exclusive lock is replaced by ordered sharing.

EXAMPLE 4.6

Consider the following history:

s1 = w1(x)r2(x)r3( y)c3w1( y)c1w2(z)c2

Suppose locks are set as requested by the operations as given, and imagine

we replace the old lock compatibility table, i.e., table LT1 in Figure 4.10, by

lock table LT2. A corresponding scheduler could then produce the following

output:

wl1(x)w1(x)r l2(x)r2(x)r l3( y)r3( y)ru3( y)c3wl1( y)

w1( y)wu1(x)wu1( y)c1wl2(z)w2(z)ru2(x)wu2(z)c2
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LT2

rlj(x)

wlj(x)

rli(x)

+

–

wli(x)

–

LT5

rlj(x)

wlj(x)

rli(x)

+

wli(x)

–

LT4

rlj(x)

wlj(x)

rli(x)

+

–

wli(x)

–

LT7

rlj(x)

wlj(x)

rli(x)

+

–

wli(x)

LT1

rlj(x)

wlj(x)

rli(x)

+

–

wli(x)

–

–

LT3

rlj(x)

wlj(x)

rli(x)

+

wli(x)

–

–

LT6

rlj(x)

wlj(x)

rli(x)

+

wli(x)

–

LT8

rlj(x)

wlj(x)

rli(x)

+

wli(x)

Figure 4.10 Selective use of ordered sharing in lock tables.

In particular, the write lock of t1 on x and the read lock of t2 on the same

data item are now permitted simultaneously. Notice that lock tables LT5,

LT7, and LT8 would allow the same history.

Next consider the following history:

s2 = r1(x)w2(x)r3( y)c3w1( y)c1w2(z)c2

By a similar argument, s2 would be in the fixpoint set of a scheduler based

on LT3 (i.e., admitted by the scheduler without any blocks or reorderings of

steps), and the same holds for schedulers based on LT5, LT6, or LT8. Finally,

s3 = w1(x)w2(x)r3( y)c3w1( y)c1w2(z)c2

would be allowed by a scheduler based on table LT4, LT6, LT7, or LT8.

Although it should be intuitively clear how a locking protocol based onLock
acquisition

rule for
ordered sharing

one of the tables from Figure 4.10 works, we now discuss this in more detail.
Specifically, we need to extend our previous definitions by the following lock
acquisition rule:

OS1: In a schedule s, for any two operations pi (x) and qi (x), i �= j , such
that pli (x) → ql j (x) is permitted, if ti acquires pli (x) before t j ac-
quires ql j (x), then the execution of pi (x) must occur before the
execution of q j (x).
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The lock acquisition rule OS1 alone is not sufficient for guaranteeing con-
flict serializability. Consider the following counterexample:

wl1(x)w1(x)wl2(x)w2(x)wl2( y)w2( y)wu2(x)wu2( y)c2wl1( y)w1( y)wu1(x)
wu1( y)c1

This schedule would be allowed by the locking rules LR1–LR4 and OS1. The
order of lock acquisitions on x entails a serialization order with t1 before t2.
Once t2 holds its write lock on y and has actually written y, t1 would no longer
be granted a write lock on y, as this would lead to the contradicting order with
t2 before t1. In fact, rule OS1 disallows this lock acquisition. However, when
t2 commits and thus releases all its locks, there is no “marker” left that would
prevent t1 from acquiring the lock on y at some later point. This situation leads
to a conflict cycle in the sample schedule above. The solution to this problem
is also to enforce an ordering of unlock steps. If t2 would be prevented from
unlocking y until after t1 starts its unlocking phase and thus would no longer be
able to acquire new locks under a two-phase regime, then the second half of the
above incorrect schedule would be disallowed but would still allow situations
like the ordered sharing of the two write operations on x.

So for a correct protocol, we need a rule for unlocking. If we have a rela- Lock release
rule for
ordered sharing

tionship pli (x) → ql j (x) of ordered sharing between two transactions ti and t j ,
and ti has not yet released any lock, t j is called order dependent on ti . If there
exists any such ti , transaction t j is on hold. Now we have

OS2: While a transaction is on hold, it cannot release any of its locks.

In summary, we now obtain a family of locking protocols by using

1. locking rules LR1–LR4,

2. rules OS1 and OS2,

3. the two-phase property,

4. one of the eight compatibility tables shown in Figure 4.10.

Notice that these protocols reduce to ordinary 2PL if ordered sharing is not O2PL
used and locking is correspondingly based on table LT1. If locking is based on
LT8, we will call the resulting protocol the O2PL protocol for a reason that will
become clear shortly.

EXAMPLE 4.7

Consider an O2PL scheduler that receives the following input:

s = r1(x)w2(x)r3( y)w2( y)c2w3(z)c3r1(z)c1
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t1

r1(x) r1(z)

t2

w2(x) w2(y) c2

t3

r3(y) w3(z) c3

Figure 4.11 Example execution under the O2PL protocol.

It will produce the following output:

s ′ = r l1(x)r1(x)wl2(x)w2(x)r l3( y)r3( y)wl2( y)w2( y)wl3(z)w3(z)

ru3( y)wu3(z)c3r l1(z)r1(z)ru1(x)ru1(z)wu2(x)wu2( y)c2c1

This resulting execution is also illustrated in Figure 4.11, where dashed lines

correspond to waiting periods. Notice that t2 is order dependent on t1 and

t3, so it is on hold when c2 arrives. According to lock rule OS2, t2 cannot

release any lock until the others have, which here means it has to unlock last.

The following can now be verified:

LEMMA 4.3

Let x be locked by pli and ql j in ordered shared mode, i.e., pli (x) → ql j (x),
and let pli (x) < ql j (x), then pi (x) < q j (x).

The above follows from the lock acquisition rule OS1, and the following
is a consequence of the unlock rule OS2:

LEMMA 4.4

If pli (x) → ql j (x) and pli (x) < ql j (x), then there exists an unlock opera-

tion of ti preceding all unlock operations of t j .

Finally, for truly incompatible locks, for which ordered sharing is disallowed
according to the chosen lock compatibility table, the previous property can be
strengthened as follows, corresponding to what can be said about standard 2PL:

LEMMA 4.5

If pli (x) is incompatible with ql j (x) (i.e., without allowing order sharing)

and pli (x) < ql j (x), then pui (x) < ql j (x). That is, if ti locks x before t j
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and the two locks needed by these transactions are incompatible, then ti
has to release its lock on x before t j can set one. (Note that this case does

not occur in the O2PL protocol, as its lock compatibility table LT8 allows

ordered sharing for all conflict pairs.)

Now we can establish an argument similar to the one we had for the
correctness of 2PL. Indeed, let s be a history produced by a two-phase protocol
based on any of the new lock tables. Then an edge (t, t ′) in G(s), the conflict
graph of s, indicates that there exists an unlock operation of t preceding all
unlock operations of t ′. The same holds along a path in G(S), so if G(s) were
cyclic, an unlock operation of some t along the path would precede all unlocks
of t itself, a contradiction. Thus we have

Safety of
ordered sharing

THEOREM 4.5

Let Gen(LTi ), 1 ≤ i ≤ 8, denote the set of histories produced by a protocol

defined as above and using lock table LTi , then Gen(LTi ) ⊆ CSR.

Theorem 4.5 in particular implies that O2PL (i.e., the protocol based on
LT8) generates histories in CSR. Let s ∈ Gen(O2PL). Then there is a serial
history s ′ conflict equivalent to s in which all conflicting operations occur in
the same order as in s, due to the use of the ordered shared mode now for
every pair of conflicting operations. Since s ′ is serial, this proves membership
of s even in OCSR. In conclusion, we have

THEOREM 4.6

Gen(O2PL) ⊆ OCSR

An interesting point is that the converse of this latter statement is also Scheduling
power of O2PLtrue. To this end, consider some s ∈ OCSR. For each data operation in s the

corresponding lock can be set immediately prior to the operation; note that
even O2PL allows this. Let t1 . . . tn be the order-preserving conflict-equivalent
serial order of the transactions in s; we may further assume that all unlock
operations occur after all data operations in s, yet are in serialization order.
Since O2PL permits that locks are released in exactly that order, it is possible
to generate s using the O2PL protocol. Thus we have

THEOREM 4.7

OCSR ⊆ Gen(O2PL)
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COROLLARY 4.1

Gen(O2PL) = OCSR

Despite these intriguing properties and its theoretical superiority over 2PL,
ordered sharing is not necessarily the method of choice in practice. The reason
is that it is not a truly “pure” locking protocol in that its implementation cannot
be solely based on a lock table. Rather, ordered sharing needs to enforce the
proper ordering of data accesses whenever it allows the sharing of write locks.
Thus, an implementation requires additional data structures for bookkeeping
and would incur additional run-time overhead. Depending on application and
workload characteristics, the gain in concurrency may not be worth this addi-
tional overhead.

4.3.6 Altruistic Locking

We next present an extension to the 2PL protocol based on the following ob-Long
transactions servation. Suppose we are given a transaction of long duration—a transaction

that reads and writes many database items, performs extensive computations,
pauses for user input, maybe all this in combination, and hence lives longer than
most other transactions. Processing such a transaction with 2PL may result in
serious performance problems, due to the fact that locks are held by this trans-
action for long periods of time, and hence other transactions wishing to access
the same items have to face delays. In addition, long transactions are more likely
than short ones to get involved in deadlocks. One conceivable way of handling
long transactions could be to use the approach of interleaving specifications,
which we have described in Chapter 3, and to specify how long transactions can
interleave with others, thus relaxing serializability. However, as pointed out in
Chapter 3, such techniques require additional considerations in the application
design, as opposed to the automatically provided guarantee of serializability.

In this subsection, we look at another approach, which does preserve seri-
alizability and whose motivation derives from the following example.

EXAMPLE 4.8

Consider a database D = {a, b, c, d, e, f, g }, and suppose that transaction

t1 needs to access all seven items, say, in alphabetical order a through g .

Further assume that while t1 is accessing item d, three short transactions

with the following data requirements attempt to run:

t2 : access to a and b
t3 : access to c and e
t4 : access to f and g



4.3 Locking Schedulers 151
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Figure 4.12 A long transaction delay-
ing short ones.

If 2PL is used for scheduling these transactions, both t2 and t3 have to wait

until t1 finishes, since both want to access data items that are still locked

by t1. Note that, under 2PL, t1 cannot unlock an item until it has obtained

a lock on the last item g. On the other hand, t4 can obtain locks on f
and g and hence execute concurrently with t1. The situation is illustrated in

Figure 4.12.

With a little additional information, the scheduler could also allow t2 to run

concurrently with t1. Suppose that, although t1 still holds locks on a and

b, it has finished accessing these items. As long as t2 (and similarly, other

transactions) accesses only such data items that t1 is finished with, it can

appear in a serialization of the schedule in question after t1.

The key point of the above example is that the short transactions t2 through
t4 access only subsets of the data items that are read or written by the long
transaction t1, and that such access profiles are often (but not always) known
in advance. What is needed for such situations is a mechanism by which trans-
actions like t1 can inform the scheduler that they are finished with operating
on a data item. This information could then be used to let other transactions
access that item.

Such a mechanism is delivered by an extension of the 2PL protocol called Idea of
altruistic
locking
(AL)

altruistic locking (AL). As before, a transaction locks and unlocks items in a two-
phase manner. However, unlike 2PL, and similar to ordered sharing discussed
in the previous subsection, several transactions may hold conflicting locks on
an item simultaneously under certain conditions. In terms of Example 4.8, AL
will allow t2 to acquire locks on items a and b, although t1 holds locks on them.
In order to make this work, AL uses a third access control operation, besides
lock and unlock, which is called donate. The donate operation is used to inform
the scheduler that access to a data item is no longer required by the transaction
that has currently locked the item, so that the item can be “donated” for access
to another transaction. The donating transaction is free to acquire other locks
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in the future, so that lock and donate operations do not need to follow a two-
phase rule; but other than that, the transaction still has to be two-phase with
respect to unlock operations.

The use of donate on item x by transaction ti , subsequently denoted di (x),
has to follow certain rules, which are stated next:

AL1: Items cannot be read or written by ti once it has donated them; that is,
if di (x) and oi (x) occur in a schedule s, o ∈ {r, w}, then oi (x) <s di (x).

AL rules

AL2: Donated items are eventually unlocked; that is, if di (x) occurs in a
schedule s following an operation oi (x), then oui (x) is also in s and
di (x) <s oui (x).

AL3: Transactions cannot hold conflicting locks simultaneously, unless one
has donated the data item in question; that is, if oi (x) and p j (x),
i �= j , are conflicting operations in a schedule s and oi (x) <s p j (x),
then either oui (x) <s pl j (x), or di (x) is also in s and di (x) <s pl j (x).

EXAMPLE 4.9

Consider again the situation from Example 4.8, and suppose that each

access by one of the transactions is a write operation. Then the follow-

ing schedule (in which t1 and t3 are unfinished) obeys the AL rules just

stated:

s = wl1(a)w1(a)d1(a)wl2(a)wl1(b)w2(a)w1(b)d1(b)wl2(b)w2(b)

wl1(c)ul2(a)w1(c)ul2(b)c2d1(c)wl3(c)w3(c)wl4( f )w4( f )

wl1(d)wl4(g )w4(g )w1(d)ul4(g )ul4( f )c4d1(d)

Notice how t2 can run concurrently with t1, once t1 starts donating items a
and b. Transaction t4 can even run independently of t1, since t1 has not yet

reached items f and g . However, t3 cannot yet finish, as only part of the

items it wants to access are already donated by t1.

Example 4.9 gives rise to some more terminology: intuitively, if transactionWake and
indebtedness t j locks a data item that has been donated and not yet unlocked by transaction

ti , i �= j , we say that t j is in the wake of ti . More formally, we have the following:

1. An operation p j (x) from transaction t j is in the wake of transaction
ti , i �= j , in the context of a schedule s if di (x) ∈ op(s) and di (x) <s

p j (x) <s oui (x) for some operation oi (x) from ti .

2. A transaction t j is in the wake of transaction ti if some operation from
t j is in the wake of ti . Transaction t j is completely in the wake of ti if all
of its operations are in the wake of ti .
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3. A transaction t j is indebted to transaction ti in a schedule s if oi (x), di (x),
p j (x) ∈ op(s) such that p j (x) is in the wake of ti and either oi (x)
and p j (x) are in conflict or some intervening operation qk(x) such that
di (x) <s qk(x) <s p j (x) is in conflict with both oi (x) and p j (x).

The notions wake and indebtedness are the basis for another AL rule, which
is motivated by the following examples. First consider the following history:

s1 = wl1(a)w1(a)d1(a)r l2(a)r2(a)r l2(b)r2(b)ru2(a)ru2(b)c2

r l1(b)r1(b)wu1(a)ru1(b)c1

Clearly, s1 is conflict serializable. Moreover, when d1(a) is dropped from s1, the
remaining history is in Gen(2PL). However, s1 should not be admissible under
altruistic locking, since transaction t2 first enters the wake of t1 by issuing r l2(a)
and then leaves the wake again by issuing r l2(b), which should be prohibited.
The intuitive reason is that, once a transaction has entered the wake of another
transaction, it should get in there completely (and stay there) until that other
transaction issues its first unlock operation, since otherwise it can no longer
be guaranteed in general that the two get serialized in the appropriate order
(determined by the wake relationship). For example, if in history s1, above,
r1(b) were replaced by w1(b), the resulting schedule would no longer be conflict
serializable, but the locking protocol would not be able to prevent this conflict
cycle, as t2 has already released its lock on b by the time t1 acquires its lock on b.

The solution to avoid this problem is to require t2 to stay in the wake of
t1 once it has made use of t1’s donation and issued an operation that conflicts
with t1. Obviously, this makes sense only if it is known at this point that t2
needs to access only a subset of the data items that have been or are going to
be read by t1. Most typically, this is the case when t1 performs a table scan and
t2 is confined to accessing a few records of this table. If this kind of opportunity
cannot be inferred at the time of the first conflict between t1 and t2, t2 may
choose to ignore the donation up front and wait for t1 to unlock the requested
data item.

Now consider the following history:

s2 = r l1(a)r1(a)d1(a)wl3(a)w3(a)wu3(a)c3r l2(a)r2(a)wl2(b)

ru2(a)w2(b)wu2(b)c2r l1(b)r1(b)ru1(a)ru1(b)c1

History s2 shows that if a transaction is forced into another transaction’s wake
only when one of its locks conflicts with a donated lock, this can still result in
incorrect behavior. Indeed, in s2, transaction t2 is now assumed not to enter the
wake of t1 when it reads data item a since t1 also just reads this item. However,
s2 �∈ CSR. This tells us that even indirect conflicts between t1 and t2 (i.e., the or-
der r1(a)w3(a)r2(a), with a third transaction’s intermediate operation being in
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conflict with both t1 and t2) matter for the requirements on when a transaction
must stay in the wake of another transaction.

The notion of indebtedness is intended to establish a condition under which
a transaction should enter the wake of another transaction. We state this con-
dition as another AL rule:

AL4: When a transaction t j is indebted to another transaction ti , t j mustAnother AL
rule remain completely in the wake of ti until ti begins to unlock items.

That is, for every operation p j (x) occurring in a schedule s, either
p j (x) is in the wake of ti or there exists an unlock operation oui ( y)
in s such that oui ( y) <s o j (x).

With these preparations, it is now easy to establish the altruistic lockingAL protocol
protocol, which we again abbreviate AL: a scheduler operates according to the
AL protocol (or is an AL scheduler) if it is a 2PL scheduler and obeys the
AL rules AL1–AL4. In the following theorems, let Gen(AL) denote the set of
histories that the AL protocol can generate as output. Now the following is
straightforward:

THEOREM 4.8

Gen(2PL) ⊂ Gen(AL)

The reason why the AL protocol can generate at least all histories that are
admissible under 2PL is because the 2PL rules are contained in the AL proto-
col; indeed, if no donations are performed, AL reduces to 2PL. The following
history shows that the inclusion is strict:

s = r1(x)w2(x)c2w3( y)c3r1( y)c1

Under 2PL, a read lock on x set by t1 would conflict with a write lock on x
from t2, so t2 (or t3, because of y) would not be allowed to run concurrently with
t1, so s �∈ Gen(2PL). Under the AL protocol, however, transaction t1 can donate
x to t2, thereby allowing t2 to become indebted to t1 and to run in its wake.

Thus, AL provides more concurrency than 2PL. On the other hand, not
all conflict-serializable histories can be generated by the AL protocol.

THEOREM 4.9

Gen(AL) ⊂ CSRCorrectness of
the AL protocol

The full proof that Gen(AL) is contained in CSR is left to be worked out

in Exercise 4.10). It essentially follows a standard argument, namely, that

any AL-generated history s has an acyclic conflict graph G(s) (from which
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containment then follows by the serializability theorem from the previous

chapter). It can be shown that each edge of the form ti → t j in such a

graph G(s) is either a “wake edge,” indicating that t j is completely in the

wake of ti , or a “crest edge,” indicating that ti unlocks some item before

t j locks some item. In addition, for every path t1 → . . . → tn in G(s), there

is either a wake edge from t1 or tn, or there exists some tk on the path such

that there is a crest edge from t1 to tk. These properties suffice to prove the

claim. To see that the containment is strict, consider history

s∗ = r1(x)r2(z)r3(z)w2(x)c2w3( y)c3r1( y)r1(z)c1

Clearly, s∗ ≈c t3t1t2, so s∗ ∈ CSR. On the other hand, either x or y
(or both) must be locked by t1 between operations r1(x) and r1( y). By

rule AL1, either x or y (or both) must be donated by t1 for w2(x) and w3( y)
to occur, so either t2 or t3 (or both) must be indebted to t1. However, neither

r2(z) nor r3(z) are allowed to be in the wake of t1 if the latter is well formed,

since t1 later reads z. Hence either t2 or t3 violate rule AL4.

We mention (without proof ) that the set Gen(AL) has other interesting
properties. For example, it has a nonempty intersection with the class COCSR
of commit order-preserving histories (as any serial history is in both classes),
but is otherwise incomparable with respect to set inclusion with COCSR.
Indeed, a slight modification of history s∗ above in which c2 is moved to the
very end makes s∗ commit order preserving, but still not acceptable under AL.
Conversely, history

r1(x)w2(x)c2c1

is in Gen(AL), but not in COCSR. We finally mention that a similar observation
can be made for class OCSR discussed in the previous subsection and in Chapter
3; again it has a nonempty intersection with Gen(AL), but is otherwise incom-
parable to it. To this end, recall from the previous subsection that in a schedule
s, pli (x) → ql j (x) (i �= j) implies pli (x) <s ql j (x) and pi (x) <s q j (x), and op-
erations pi and q j (or, more precisely, transactions ti and t j ) must not finish in
arbitrary order. In particular, t j has to wait before releasing its locks until ti is
finished, which is no longer the case under AL.

4.3.7 Non-Two-Phase Locking Protocols

A crucial point for most of the schedulers discussed so far has been a guarantee
of the two-phase property of transactions. We now present protocols that can
do without this property, and that are even deadlock free. We should note up
front, however, that these protocols are geared for very specific access patterns.
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Thus, although they are developed as general-purpose protocols, they perform
well only under such specific conditions and may be susceptible to degradation
in settings for which they are not suited.

As we will show, the two-phase property is essentially replaced by ordering
the accesses performed on the data; in other words, transactions have to follow
certain access patterns. To this end, we will first assume that the access patterns
follow a hierarchical organization of the data items; that is, the data items are
viewed as the nodes of a tree, and accesses have to follow a path down the
tree. If all accesses performed are write operations only, it is easily seen that the
two-phase property can be relaxed. However, when transactions are allowed
to perform read and write operations as before, we will show that additional
measures are needed to ensure serializability, since one transaction could now
bypass another while moving down the tree. The extra condition that avoids
such races in the tree carries over to database organizations that are arbitrary
directed acyclic graphs (DAGs).

Write-Only Tree Locking

In this subsection, we consider a restricted transaction model in which read op-
erations are missing. Thus, a transaction can write a data item (or you may think
of read and write applied to the same item as collapsed into one operation).
Now consider a data item tree shown in Figure 4.13. Note that this tree is a
“virtual” data organization only, in that the actual relationships (e.g., references)
among data items may be quite different from such a hierarchy. The important
point is that transactions exhibit treelike access patterns and are essentially top-
down traversals of the tree. So we will require that write accesses to data items
have to follow the order given by the tree. For example, if an access to item d is

a

b

dc

hf g i

e

j k

Figure 4.13 Tree organization of data items.
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requested in the tree of Figure 4.13, a and then b must be accessed first. Note
that the view that data accesses have to follow some order is frequently given
in reality, for example, through the existence of index structures such as B+

trees, which are accessed before actual data is touched. Specific protocols for
B+ tree indexes will be presented in Chapter 9, where we will show that the
generic tree-oriented protocols that we are going to derive now form valuable
building blocks for concurrency control on search structures.

It turns out that the enforcement of a certain access order for data items Write-only
tree locking
(WTL)

can serve as a replacement for the two-phase property. Under the write-only
tree locking (WTL) protocol, lock requests and releases must obey the locking
rules LR1–LR4 and the following additional rules for each transaction:

WTL1: If x is any node in the tree other than the root, wli (x) can be set
only if ti currently holds a write lock on y, where y is the parent
of x.

WTL2: After a wui (x), no further wli (x) is allowed (on the same data
item x).

Rules WTL1 and WTL2 of the protocol imply that the scheduler can
unlock an item x only after it has obtained locks on the relevant children of x.

EXAMPLE 4.10

Consider the tree from Figure 4.13 as well as transaction t = w(d )w(i)w(k).
Under the WTL protocol, t will be transformed into the following locked

transaction (where accesses are underlined):

wl(a)wl(b)wu(a)wl(d)wl(e)wu(b)w(d)wu(d)wl(i)wu(e)w(i)
wl(k)wu(i)w(k)wu(k)

As a verification of the WTL protocol, let (x, z1, . . . , zn, v) be a path in a Safety
of WTLgiven database tree from x to v, and assume (1) that ti locks x before t j does, and

(2) that both ti and t j lock v. Then we can conclude that, due to the existence
of wli (x), lock wl j (x) cannot be set, and wli (z1) < wui (x) (rule WTL1). Thus,
wli (z1) < wl j (z1), and the same holds along the entire path, which proves the
following:

LEMMA 4.6

If transaction ti locks x before t j does, then each successor v of x in the

data tree that is locked by both ti and t j is also locked by ti before it is

locked by t j .
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Now this implies:

THEOREM 4.10

Gen(WTL) ⊆ CSR

Proof

Let (ti , t j ) be an edge in the conflict graph G of an output of the WTL

protocol. Then there are operations wi (x) and w j (x) in conflict such that

wi (x) occurs before w j (x) in the output. According to the WTL rules, ti
unlocks x before t j locks x. By Lemma 4.6, ti locks the root of the data tree

before t j does, since x is a successor of the root and every transaction locks

the root, and otherwise a contradiction to the lemma would result. But then

ti unlocks the root before t j locks it. By induction it is then easily seen that

the same applies to transactions ti and t j , which are connected via a path

in G. Now if G were cyclic, say, with cycle (t1, t2, . . . , tn, t1), it would follow

that t1 unlocks the root before t1 locks it, an obvious contradiction to rule

WTL2.

A similar consideration reveals that the WTL protocol has the nice property
of being immune to deadlocks.

THEOREM 4.11

The WTL protocol is deadlock free.

Proof

If ti waits for a lock on the root, it cannot have set any other lock yet. If ti
waits-for a lock held by t j (on a node that is not the root), then t j unlocks

the root before ti locks it. Again by induction we may then conclude that if

the waits-for graph has a cycle involving ti , then ti unlocks the root before

ti locks it, a contradiction.

We mention that the WTL protocol can be generalized in various direc-
tions, which may, however, require additional rules. For example, it could be
allowed to lock any node in the data tree first and thereafter only data items in
the subtree rooted at this node; in other words, locking the root initially is no
longer required.

Finally, note that, although the protocol is specifically geared for treelike
access patterns, it is a general-purpose protocol in the sense that it can be
applied to arbitrary data access patterns, too. However, being forced to obey the
protocol’s four tree-oriented locking rules could then easily result in too many
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locks or unacceptable lock duration. For example, if a transaction were to access
the nodes f , i , and b of the tree in Figure 4.13 in this order, these three accesses
would have to be embedded in a virtual top-down tree traversal, requiring locks
as if the transaction accessed all paths to these nodes. In particular, we would
need to acquire a lock on the root a first, and this lock would have to be retained
until we learn about the transaction’s last access to b and acquire a lock on b;
only then can we release the lock on the root a. So the lock on the critical root
would be held for almost the entire duration of the transaction. Obviously,
performance is likely to degrade in such situations. The bottom line is that tree
locking is beneficial only for truly treelike access patterns, but it can cope with
occasional nontreelike transactions.

Read/Write Tree Locking

We now generalize the WTL protocol introduced in the previous subsection
“back” to read and write operations. To see what could cause a problem and
why we looked at write operations only in the first place, consider once more
the tree from Figure 4.13. Let t1 and t2 be two transactions, both accessing
items a, b, e, i , and k in that order. Then the following could be a prefix of an
acceptable schedule:

wl1(a)w1(a)wl1(b)ul1(a)wl2(a)w1(b)wl1(e)w2(a) . . .

As we said in the previous subsection, the crucial points are that trans-
actions need to move along the tree by at least keeping neighboring nodes
locked (as in wl1(b)ul1(a)), and that two transactions doing the same thing
must strictly follow each other. The important implication of this is that no
transaction can pass another transaction; in the example, both t1 and t2 have to
follow the a–b–e–i–k pattern.

Now consider the case where reads and writes are again allowed, and as-
sume we still follow the WTL rules from above. Since a transaction might not
want to read and write each data item it encounters, it may just read some
items, in order to get to those it wants to write. As an example, consider the
following two transactions operating on the tree of Figure 4.13:

t1 = r1(a)r1(b)w1(a)w1(b)r1(e)r1(i)c1

t2 = r2(a)r2(b)r2(e)r2(i)w2(i)c2

Using the WTL rules but allowing read locks to be shared, the two transactions
could result in a schedule like the following:

r l1(a)r l1(b)r1(a)r1(b)wl1(a)w1(a)wl1(b)ul1(a)r l2(a)r2(a)w1(b)r l1(e)ul1(b)

r l2(b)r2(b)ul2(a)r l2(e)r l2(i)ul2(b)r2(e)r1(e)r2(i)wl2(i)w2(i)wl2(k)ul2(e)

ul2(i)r l1(i)ul1(e)r1(i) . . .



160 CHAPTER FOUR Concurrency Control Algorithms

This example, albeit along the lines of tree locking, is no longer serializable,
since there are conflicts between w1(a) and r2(a) as well as between w2(i) and
r1(i); so the conflict graph is cyclic. The point is that we see here how the shared
locks allow t2 to pass t1 in the schedule, since item i is the first item that t2
writes; so it can read to this point faster than t1 can, which starts writing items at
the top and hence needs to spend more time on obtaining the appropriate locks.

We now introduce the read/write tree locking (RWTL) protocol as a wayPitfalls
to overcome the problem shown above. The trick is to require the two-phase
property on certain subtrees, which are given as a “neighborhood” of read op-
erations called a pitfall. Here, having the two-phase property on a set of data
items means that the projection of the schedule onto these data items satisfies
the rules of the two-phase locking protocol. Let t be a transaction accessing a
database tree by read and write operations. The read set RS(t) of t is the set of
items read by t, and the write set WS(t) of t is the set of items written by t. In
the presence of a tree, RS(t) spawns a subtree that will generally split into a
number of connected components, say, C1, . . . , Cm. A pitfall of t is a set of the
form

Ci ∪ {x ∈ WS(t) | x is a child or parent of some y ∈ Ci }, 1 ≤ i ≤ m

As an example, consider the database tree shown in Figure 4.14. We assume
that transaction t is given by RS(t) = { f, i, g } and WS(t) = {c, l , j, k, o}. Then
RS(t) has two connected components { f, i} and {g }, and t has two pitfalls
p f1 = {c, f, i, l , j} and p f2 = {g , c, k}, which are the shaded areas in Figure
4.14. Notice that pitfalls do not need to be disjoint.

f g

i j

l m

k

on

a

db c

e h

pf1

pf2

Figure 4.14 Another tree organization
of data items.
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We are now ready to state the RWTL protocol. The rules for each tran- Read/write
tree locking
(RWTL)

saction ti are those of the WTL protocol with the addition of one extra rule:

RWTL1: The transaction has the two-phase property on each of its pitfalls;
that is, for each pitfall the transaction follows a two-phase rule
with respect to setting and releasing locks on elements of that
pitfall.

As is easily seen, our last schedule above on the tree from Figure 4.13
exhibits for transaction t1 a read set RS(t1) = {a, b, e, i}, which equals a pitfall
of t1; however, t1 is not two-phase on that pitfall. The argument here is that this
is a reason why WTL, if naively extended to reads and writes, fails to produce
CSR schedules.

In order to show the safety of the RWTL protocol, the following observa-
tions need to be proven:

LEMMA 4.7

Let T be a given database tree, and let t be a transaction on T that obeys

the rules of the RWTL protocol. Let V ⊆ RS(t) ∪ WS(t) span a connected

subtree of T . Then the restriction �V(t) of t to V also follows the rules of

RWTL.

This is simply because for doing all the accesses to items in V, t just needs
to act as before, that is, according to the RWTL rules.

LEMMA 4.8

Assume that transaction t has the two-phase property on V ⊆ RS(t) ∪

WS(t), and let W ⊆RS(t)∪WS(t). Then �W(t) has the two-phase property

on V ∩ W.

These lemmata can be used to show the safety of RWTL:

THEOREM 4.12

Gen(RWTL) ⊆ CSR

Once again, the proof assumes that the conflict graph of a schedule s ∈

Gen(RWTL) has a cycle and derives a contradiction; it proceeds by induction
on the length of a cycle.
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We conclude this section by mentioning that the RWTL protocol can beDAG locking
generalized further, in particular to DAGs leading to the DAG locking protocol,
essentially by allowing a transaction to lock any node in the given database graph
first (the “entry point” of the transaction), and by replacing rule WTL1, which
makes sure the access pattern of a transaction obeys the node ordering of the
given tree, by the following rule:

DAG1: A transaction may lock an item x (which is not the entry point into
the graph) if it currently holds locks on the majority of predecessors
of x.

4.3.8 On the Geometry of Locking

We conclude our discussion of locking schedulers by briefly mentioning a
geometric interpretation of locking. To this end, we first give such an interpreta-
tion for the notion of conflict serializability and then extend that to transactions
with lock and unlock operations.

We restrict our attention to the case of two transactions for reasons ofSchedules
as curves simplicity; however, what we present in this subsection can be generalized to

more than two transactions. We assume that our two transactions are com-
pletely known. For each transaction its sequence of steps is represented as a
sequence of equidistant integer points on one of the axes spanning the Eu-
clidean plane. The two transactions then define a rectangular grid in that plane,
and a schedule becomes a monotone curve starting in the origin of the co-
ordinates. A grid point is a conflict point if the two steps corresponding to its
coordinates (one on the x axis, the other on the y axis) are in conflict.

EXAMPLE 4.11

Consider the two transactions t1 = r1(x)w1( y) and t2 = w2(x)r2( y). The

schedule s = r1(x)w2(x)r2( y)w1( y) can be represented geometrically, as

shown in Figure 4.15. Conflict points are (r1(x), w2(x)) and (w1( y), r2( y)).

A schedule for two transactions separates given conflict points if, informally,
these points occur on both sides of the curve; for example, such a situation is
given in Figure 4.15. We note that the schedule shown in that figure has a cyclic
conflict and hence does not belong to CSR. That this is not a coincidence is
shown by:

THEOREM 4.13

A schedule s for two transactions t1 and t2 is in CSR iff the curve representing

s does not separate any two conflict points.
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t2

t1

r2(y)

r1(x)

w2(x)

w1(y)

s

Figure 4.15 Geometrical representation
of a schedule.

The geometric interpretation can be directly generalized to transactions Locked
transactionscomprising lock and unlock operations: All steps of both transactions are now

interpreted as points along the axes of a coordinate system spanning a plane,
where only the data operations have integer coordinates. A schedule is a curve
as before. Conflict points turn into conflict regions, which are delimited by
pairs of conflicting locks of the two transactions together with their respective
unlock operations. Blurring the distinction between read and write locks for
a moment, let us for the sake of simplicity use a single type “l(x)” of lock
operations and a single type “u(x)” of unlock operation; then any two lock
operations of the two transactions referring to the same data item are in conflict.
Moreover, the conflict region (“of x”) is the square defined by the following pairs
of coordinates:

(l1(x), l2(x))

(u1(x), l2(x))

(l1(x), u2(x))

(u1(x), u2(x))

EXAMPLE 4.12

Consider the following schedule consisting of two transactions:

s = l2(z)w2(z)l1(x)w1(x)l1( y)w1( y)u1( y)l2( y)u2(z)l1(z)w1(x)

u1(x)l2(x)w2( y)w2(x)u2(x)w2( y)w1(z)u1(z)c1u2( y)c2

(The fact that write operations may occur multiple times is allowed and

of course determines the duration for which a lock needs to be held.)

The geometrical interpretation of s in terms of conflict regions is shown

in Figure 4.16.
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Figure 4.16 Schedule separating conflict regions.

Notice that each region corresponds to exactly one data item, and that each

point within a conflict region represents a state in which both transactions

hold conflicting locks on the same data item.

Now it is clear that a schedule should avoid conflict regions, since, as we
noticed, every point inside such a region means that two conflicting locks are set
simultaneously. In other words, a schedule has to “bypass” conflict regions; how-
ever, it cannot do so in an arbitrary fashion due to the following generalization
of the previous theorem:

THEOREM 4.14

Let s be a schedule for two transactions t1 and t2 containing lock and

unlock operations for the transactions. Then DT(s) ∈ CSR iff the curve

representing s does not separate conflict regions.

These results have interesting applications from a theoretical point of view,Safety of
lockings since they allow us to reason about the “safety” of a system of locked transactions
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as well as on the scheduling power of locking protocols. Call a locked transac-
tion a transaction in which lock and unlock operations have been placed in a
syntactically correct manner (i.e., following the locking well-formedness rules
LR1 through LR3 of Section 4.3.1). For a given set T of transactions, let L(T)
denote a set of locked transactions such that there is a transaction in T for each
element of L(T), and vice versa. Note that L(T), which is called a locking of
T , is not uniquely determined.

A schedule s ∈ shuffle(L(T)) is legal if a step of the form u(x) occurs
between any two steps of the form l(x) (i.e., a data item must be unlocked
before it can be locked again). For example, the schedule shown in Example
4.12 is legal. Next, a schedule s ∈ shuffle(T) is legal with respect to L(T) if
there exists a legal schedule s ′ ∈ shuffle(L(T)) such that DT(s ′) = s. A locking
L(T) of T is safe if all legal schedules of T with respect to L(T) are (conflict)
serializable. As an illustration, since the schedule from Example 4.12 is not in
CSR, the locking it is based on, that is,

l1(x)w1(x)l1( y)w1( y)u1( y)l1(z)w1(x)u1(x)w1(z)u1(z)

l2(z)w2(z)l2( y)u2(z)l2(x)w2( y)w2(x)u2(x)w2( y)u2( y)

is not safe.
The interest in efficient algorithms for deciding whether a given locking Preanalysis

locking
(PAL)

L(T) is safe can be motivated as follows. Suppose a scheduler S is given a set
T of transactions; from T , scheduler S produces a locking L(T). If L(T) were
known to be safe, S could output any schedule satisfying the simple syntactic
condition of legality, since the safety of L(T) guarantees the CSR membership
of any legal schedule. Thus, if all transactions were completely given in ad-
vance (in the form of partially ordered read and write actions on data items),
the scheduler could be based on generating appropriate locks for conflict re-
gions among transaction pairs, without requiring explicit locks on data items
at run time. In terms of the allowed concurrency, this method could possibly
outperform the more traditional data-oriented locking protocols. However, the
method would require a potentially expensive preanalysis of the transactions
and a “compile time” test for safety along with the appropriate lock genera-
tion. The latter could be based on exploiting the geometric interpretation as
follows:

A legal schedule avoids conflict regions. However, not every legal schedule
is serializable, since it could avoid, yet separate such regions. On the other
hand, the previous theorem says that a legal schedule is in CSR iff its
curve does not separate conflict regions. Moreover, it can be shown that
a locking is safe iff the geometrical “closure” of the conflict regions is
connected. This opens a door for the use of computational geometry in
the context of database transactions, further details of which can be found
in the references cited at the end of the chapter.
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4.4 Nonlocking Schedulers

In this section we present various alternatives to locking schedulers; the pro-
tocols discussed next can all guarantee the safety of their output without us-
ing locks. Their use in commercial database systems is limited, but they may
be suited for distributed systems and can also be used in hybrid protocols
(see Section 4.5).

4.4.1 Timestamp Ordering

A first approach to getting rid of locks is to use timestamps. Generally, these
are values from a totally ordered domain; for simplicity, we will use natu-
ral numbers. The transaction manager assigns to each transaction ti a unique
timestamp ts(ti ), for example, by retrieving a clock value at the beginning of ti
or by maintaining a counter that is incremented every time a new timestamp
is needed. The timestamp of a transaction is inherited by every operation of
that transaction. A scheduler based on the use of timestamps now has to order
conflicting operations based on their timestamps; therefore, it is said to operate
according to a timestamp ordering (TO) protocol. The central TO rule is asTimestamp

ordering rule
(TO rule)

follows:
If pi (x) and q j (x), i �= j , are operations in conflict, the following has to

hold:

pi (x) is executed before q j (x) iff ts(ti ) < ts(t j )

THEOREM 4.15

Gen(TO) ⊆ CSR

Proof

Let s be a history generated by the TO protocol, and let (ti , t j ) be an edge

in the conflict graph G of s. Then there are operations pi (x) and q j (x) in

conflict such that pi (x) <s q j (x). By the TO rule, this implies ts(ti ) < ts(t j ).

Now if a transaction tk is involved in a cycle of G, by induction we find that

ts(tk) < ts(tk), a contradiction. Thus, G is acyclic, which means that s ∈ CSR.

We next briefly discuss an approach for implementing the TO rule.
A simple, optimistic implementation is to transfer each operation submitted by
the TM to the data manager for execution right away, with the only exception
of those that arrive “too late”: operation pi (x) is too late if it arrives after the
scheduler has already output a conflicting operation q j (x) such that i �= j and
ts(t j ) > ts(ti ).
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If pi is too late, it can no longer be output without violating the TO rule.
Thus, pi (x) must be rejected, which implies that ti has to be aborted. It can
then be restarted later, at which point it will receive a timestamp with a larger
value so that some, or ideally all, of the previous conflicts will now appear in
the proper order.

In order to determine whether an operation has arrived too late, a basic Basic
timestamp
ordering (BTO)

TO (BTO) scheduler has to record the following timestamps for every data
item x:

1. max-r -scheduled(x): the value of the largest timestamp of a read oper-
ation on x already sent to the data manager;

2. max-w-scheduled(x): the value of the largest timestamp of a write op-
eration on x already sent to the data manager.

When some operation pi (x) arrives, then ts(ti ) is compared to max-q-
scheduled(x) for each operation q that is in conflict with p. If ts(ti ) < max-q-
scheduled(x) holds, pi (x) is rejected, since it has arrived too late. Otherwise
it is sent to the data manager, and max-p-scheduled(x) is updated to ts(ti ) if
ts(ti ) > max-p-scheduled(x).

The behavior of the BTO protocol is illustrated in Figure 4.17, where
transactions t2 and t1 are eventually aborted because they issue operations “too
late” relative to their timestamps (i.e., the begin of these transactions).

An important point here is that the scheduler has to make sure that the
data manager executes all operations in the order the scheduler sends them.
Note that 2PL enforces this automatically, since an operation is not output
as long as conflicting operations already scheduled still hold their locks. A
BTO scheduler can send an operation pi (x), ready for being scheduled, to
the data manager only if every conflicting and previously sent q j (x) has been
executed.

The data manager hence has to acknowledge the execution of every oper-
ation, and the scheduler has to await that acknowledgment for operations in
conflict that are to be scheduled in timestamp order; such an alternating way
of operation is commonly called a handshake.

t1

r1(x) r1(z)

t2

w2(x) w2(y)

t3

r3(y) w3(z) c3

Abort

Abort

Figure 4.17 Example execution under the BTO protocol.
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If a BTO scheduler receives new operations in an order that largely deviates
from the timestamp order, it is likely to reject many of them and to abort the
respective transactions. This suggests the use of more conservative variants,
such as one in which operations could be blocked artificially: when oi (x) is
received, a conflicting operation with a smaller timestamp could be received
later. Thus, if oi (x) is retained, such conflicting operations hopefully arrive
“on time.” Clearly, the choice of the time slice for which an operation gets
blocked artificially can be a critical performance factor.

4.4.2 Serialization Graph Testing

The next class of scheduling protocols we are going to present follows imme-Serialization
graph
testing
(SGT)

scheduler

diately from the serializability theorem from Chapter 3, which characterizes
conflict serializability via the absence of cycles in the conflict graph. A serial-
ization graph tester (SGT protocol for short) maintains a conflict graph in which
nodes and edges are added or removed dynamically depending on the opera-
tions that arrive at the scheduler. The CSR property of the output is preserved
by making sure that this graph remains acyclic at any time.

In more detail, an SGT protocol works as follows. Whenever a new oper-
ation pi (x) arrives from the transaction manager, the scheduler

1. creates a new node for transaction ti in the current graph G if pi (x) is
the first operation it sees from ti ;

2. inserts edges of the form (t j , ti ) into G for each operation q j (x) that is
in conflict with pi (x), i �= j , and that has been output previously; now
two cases can arise:

(a) The resulting graph G is cyclic. If pi (x) were executed, the resulting
schedule would no longer be serializable. Thus, pi (x) is rejected and
ti aborted, and the node for ti and all its incident edges are removed
from G.

(b) G is (still) acyclic. Then pi (x) can be output—that is, added to the
schedule already output—and the tentatively updated graph is kept
as the new current one.

In an implementation, it would, in analogy to the BTO protocol, be essen-
tial to output a pi (x) (case (2b)) only if all conflicting operations previously
output have been acknowledged by the data manager. Otherwise, pi (x) needs
to be blocked until these acknowledgments have arrived.

THEOREM 4.16

Gen(SGT) = CSR
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For the proof, note that “⊆” is trivial. The inverse inclusion can be proven
by induction on the length of a schedule s ∈ CSR.

The description of SGT given above suggests that the conflict graph main-
tained by the scheduler grows indefinitely. However, from time to time infor-
mation can also be removed from that graph. Unfortunately, the most obvious
idea, that a transaction can be removed from the graph when it commits, does
not work correctly. To see why, consider the following example:

s = w1(x)w2(x)w2( y)c2 . . . w1( y)

This schedule is clearly not in CSR. If we remove the node for t2 upon the
transaction’s commit, c2, then it would later be impossible to recognize the
serialization graph cycle when transaction t1 issues its w1( y) action. Note that
the latter could possibly be a very long time after the commit of t2. So this very
simple idea is not feasible. To obtain more insight about when nodes can safely
be removed from the graph, let us look at another example.

EXAMPLE 4.13

Consider

s = rk+1(x) w1(x)w1(y1)c1︸ ︷︷ ︸
all of t1

w2(x)w2(y2)c2︸ ︷︷ ︸
all of t2

. . . wk(x)wk(yk)ck︸ ︷︷ ︸
all of tk

. . .

The serialization graph of s is shown in Figure 4.18. Now suppose the next

operation the scheduler receives is wk+1(z). According to what we stated

above, wk+1(z) can be output if z �∈ {x, y1, . . . , yk} holds. In order to test

whether this is the case, the information on the ti , 1 ≤ i ≤ k, must still be

available, although these transactions are already committed.

tk+1

t1

t2

tk

Figure 4.18 Serialization graph for
Example 4.13.
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As the example suggests, an SGT scheduler can remove a transaction ti
from its conflict graph, provided ti will not get involved in a cycle anymore—
not even at an arbitrary point in the future. Now, a node on a cycle has at least
one incoming and one outgoing edge, and as the example shows, it may happen
that outgoing edges are added to a node even after the respective transaction has
already terminated. On the other hand, for a finished transaction there will be
no more incoming edges added to its node; if ti does not have incoming edges, it
cannot be involved in a cycle. So the rule for eliminating a transaction from the
conflict graph of an SGT scheduler is simply the following: If ti is finished and
is a source (a node with outgoing edges only) in G, then it can be removed from G.

Finally, note that an SGT scheduler, although attractive from a theoret-
ical point of view since it is a simple approach to generating all of CSR,
is not practical to implement. For example, the (worst case) space required
to maintain the serialization graph grows with the square of the number of
relevant transactions, some of which are not even active anymore. We even
need to keep around the information about the read sets and write sets of
such already committed transactions. In addition, and even more importantly,
the testing of cycles in the graph, albeit only linear in the number of edges
(i.e., quadratic in the number of nodes in the worst case), may be unac-
ceptable at run time simply because such a test would be invoked very fre-
quently. After all, concurrency control measures are part of a data server’s
innermost loops, and their run-time overhead is thus an extremely critical
issue.

4.4.3 Optimistic Protocols

So far we have tacitly assumed that schedulers run in a transactional envi-
ronment where conflicts are frequent events, so that measures must always
be available for coping with them. Indeed, we have assumed that a scheduler
needs to decide, on the spot, for each newly arriving step whether to execute, to
reject, or to block it. Schedulers based on this assumption are called pessimistic
schedulers. A different class of schedulers results from the opposite assumption
that conflicts are rare events.

Consider, for example, a product catalog application where 99% of the
transactions just read price information and descriptions of products. From
time to time, prices are updated or new products are added, but this occurs
with a very low frequency compared to their read events. If our application
scenario were like that, a 2PL scheduler that keeps acquiring locks would be
too restrictive, since it would waste a considerable amount of time managing
locks instead of reading data items.

Under the assumption that conflicts between transactions and their oper-Validation
protocols ations are rare, we can design optimistic schedulers that essentially let newly
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Read Validation Write

Figure 4.19 The three phases of a
transaction under an
optimistic scheduler.

arriving operations simply pass, but test from time to time whether the sched-
ule produced so far is still a serializable one. In other words, they have to
validate their output occasionally, which is why they are also known as valida-
tion protocols (sometimes also called certifiers). Clearly, we do not interrupt the
production of a schedule in order to validate what and how the scheduler has
been doing so far, but we build this validation into the transactions themselves.
To this end, it makes sense to perceive a transaction’s execution as taking place
in three phases (see Figure 4.19):

1. Read phase: The transaction is executed, but with all writes applied to a
workspace that is private to the transaction only (not to the database).
So the private “versions” of data items written by a transaction are not
visible to other transactions (yet).

Notice that at the end of the read phase of a transaction t, its read
set RS(t) as well as its write set WS(t) are known.

2. Validation phase: A transaction that is ready to commit is validated; that
is, the scheduler tests whether its execution has been “correct” in the
sense of conflict serializability, and whether the transaction’s result can
be copied into the database. If this is not the case, the transaction is
aborted; otherwise, the next phase is entered.

3. Write phase: The workspace contents are transferred into the database
to conclude the transaction’s commit.

We here assume as a simplification that phases (2) and (3) are executed
indivisibly as a noninterruptible “critical section,” meaning that all other trans-
actions are suspended during such a critical section. We correspondingly call
this combined phase the val-write phase. Note that the indivisibility of this
phase may be quite problematic in a real implementation. If the write phase
merely needs to modify a few entries in a page allocation table, for example,
then the critical section is not really harmful. However, if the write phase needs
to copy records from a working space into disk pages, suspending all concurrent
transactions for such an extended time period would inevitably result in signifi-
cant performance losses. If, on the other hand, the indivisibility condition were
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to be relaxed, the write phase of one transaction would be concurrent with the
read phases of others. With the validation preceding the write phase, it is clear
that additional measures would now be needed to ensure that these writes do
not lead to conflict cycles. One possibility would be to introduce some limited
form of exclusive locking during the write phase, but this would require read
locks during the read phases as well and would obviously render the whole
family of optimistic protocols much less attractive. To keep things simple, we
thus assume indivisible val-write phases and leave the further discussion of
relaxations as an exercise (see Exercise 4.18).

Since we are still interested in conflict-serializable schedules or, equiv-
alently, schedules with an acyclic conflict graph, we can reduce the goal of
transaction validation to keeping an acyclic graph acyclic after the insertion of
a new node. The following lemma will turn out to be a key observation for
what follows.

LEMMA 4.9

Let G be a DAG. If a new node is added to G in such a way that no edges

start from the new node, then the resulting graph is still a DAG.

The simple reason why the lemma is true is that if a new node is added
to an acyclic graph and the graph thereby becomes cyclic, then the new node
must be involved in the cycle. But in order to be on a cycle, there would
have to be at least one edge going into the node and at least one coming
out.

We will use Lemma 4.9 as a guideline for the validation of transactions un-
der an optimistic protocol. Indeed, we will establish “validation rules” by which
acyclic serialization graphs will be kept acyclic if newly validated transactions
are added.

We will essentially use two different types of validation approaches, based
on the available options:

Backward-
oriented

and forward-
oriented

validation
(BOCC and

FOCC)

Under backward-oriented optimistic concurrency control (BOCC), a trans-
action under validation executes a conflict test against all those transac-
tions that are already committed.

Under forward-oriented optimistic concurrency control (FOCC), a transac-
tion is validated against all transactions that run in parallel, but that are
still in their read phase.

Let us look at the two options in turn. Under BOCC validation, a transac-
tion t j is positively validated (or “accepted”) if one of the following holds for
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each transaction ti that is already committed (and hence has previously been
accepted):

ti has ended before t j has started (which implies that all of ti has been
executed before all of t j ); in this case, if there is a conflict between
operations from t j and ti , the corresponding conflict edge will be of the
form (ti , t j ), and not vice versa.

Otherwise, RS(t j ) ∩ WS(ti ) = ∅, and the val-write phase of ti has ended
prior to the val-write phase of t j (assuming a “critical section” as dis-
cussed earlier). Thus, t j has not had a chance to read from ti , and again
if there are conflicts at all, they give rise to an edge from ti to t j , but one
in the opposite direction is impossible.

So we may conclude, using Lemma 4.9, the following:

THEOREM 4.17

BOCC validation produces acyclic conflict graphs only, i.e., Gen(BOCC) ⊆
CSR.

If the second case above fails (i.e., if RS(t j ) ∩ WS(ti ) �= ∅), it may be the
case that t j still did not read from ti , since the schedule could look like this:

. . . r j (x) . . . wi (x) . . . . . . validate(t j )

Following BOCC, we would abort t j during its validation, although it has been
clear much earlier (at the time ti wrote x) that it would eventually fail. To
accommodate such situations, the alternative to BOCC is FOCC, which vali-
dates a transaction t j against all concurrent transactions ti that are still reading.
Let RSn(ti ) denote the read set of ti at some time n. Then t j is accepted under
FOCC at that time n if the following holds for all transactions ti that are still
reading at time n:

WS(t j ) ∩ RSn(ti ) = ∅

Notice that this condition is immediately satisfied if t j is read-only, a particularly
nice property. The following can now be verified:

THEOREM 4.18

FOCC validation produces acyclic conflict graphs only, i.e., Gen(FOCC) ⊆
CSR.
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t1

r1(x) r1( y) Validate

Read
phase

Write
phase

w1(x)

t2

r2( y) r2(z) Validate w2(z)

Validate
t3

r3(x) r3( y)

Abort

Validate
t4

r4(x) w4(x)

Figure 4.20 Example execution under the BOCC protocol.

In order to prove this theorem, the idea is again to use Lemma 4.9 forFOCC ensures
COCSR showing that under the given prerequisites, an insertion of t j into a conflict

graph that has so far been acyclic does not destroy this property. Details are
left to be worked out in Exercise 4.13. Note that FOCC even guarantees that all
output schedules are commit order preserving conflict serializable (COCSR).
This is an immediate consequence of the fact that transactions validate against
ongoing transactions, and the validation order corresponds to the commit or-
der, with a critical section encompassing both the validation and the write
phase.

As example executions under the BOCC and FOCC protocols, consider
Figures 4.20 and 4.21. Both figures show the read, validation, and write phases
of several concurrent transactions, with time proceeding from left to right.

t1

r1(x) r1(y) Validate w1(x)

Read
phase

Write
phase

t2

r2(y) r2(z) w2(z)Validate

t3

r3(z)
Abort

Validate
t4

r4(x) r4(y) w4(y)

t5

r5(x) r5(y)

Figure 4.21 Example execution under the FOCC protocol.
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In the BOCC scenario of Figure 4.20, transaction t1 is trivially validated, as
there is no concurrent, previously committed transaction. t2 then is successfully
validated against t1, as its read set, RS(t2) = {y, z}, does not overlap with the
write set of t1, WS(t1) = {x}. Next, t3 must validate against both t1 and t2; its
read set, RS(t3) = {x, y}, is disjoint with the write set of t2 but has data item
x in common with the write set of t1, hence t3 must be aborted. Finally, t4 has
started after the commit of t1, so it must validate only against the committed,
concurrent transaction t2. Its read set, RS(t4) = {x}, does not overlap with the
write set of t2; thus, t4 is successfully validated.

In the (different) FOCC scenario of Figure 4.21, transaction t1 must vali-
date against the concurrent transaction t2 by comparing its write set, WS(t1) =
{x}, with the current read set of t2, RS(t2) = {y}, as of the time of t1’s valida-
tion phase. Later, when t2 initiates its validation, it detects that its write set,
WS(t2) = {z}, is disjoint with the current read sets RS(t4) = {x, y} and RS(t5) =
{x}, but does overlap with the current read set of t3, which is RS(t3) = {z}.
Now, unlike under a BOCC protocol, FOCC allows t2 to choose among sev-
eral options. In the specific situation, either t2 could abort itself, or it could
enforce the abort of the “troublesome” concurrent transaction t3. Since t2 has
been running for quite a while, whereas t3 has just begun, we assume that t3
will be aborted to minimize the amount of wasted work. A third option turns
out to be profitable for the validation of transaction t4, as that transaction de-
tects that its write set, WS(t4) = {y}, overlaps with the current read set of the
concurrent transaction t5, RS(t5) = {x, y}. In addition to aborting either t4 or
t5, the third option for t4 is to wait (indicated by the dashed line in Figure 4.21)
and let the conflicting transaction t5 validate first, in the optimistic anticipation
that t5 would not lead to a (potential) conflict cycle and could thus successfully
validate. Indeed, t5 turns out to be a read-only transaction (i.e., its write set is
empty) and therefore trivially validates. Subsequently, the validation of t4 is
resumed and now succeeds, as there are no more concurrent transactions. As
the example shows, a significant practical advantage of FOCC over BOCC lies
in the flexibility of choosing abort victims or even avoiding some aborts by
forcing transactions to wait in their validation phase.

4.5 Hybrid Protocols

Figure 4.22 summarizes the protocols we have presented so far. The key dis-
tinction between the two major classes, pessimistic and optimistic proto-
cols, is that the pessimistic methods conservatively perform tests that guarantee
an acyclic conflict graph as early as possible (e.g., lock conflict tests, or search-
ing for cycles in the conflict graph whenever a new edge is added); where-
as optimistic methods postpone this testing until a transaction is ready to
commit.
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Concurrency control protocols

Pessimistic Optimistic

Nonlocking Locking BOCC

TO SGT

FOCC

Two-phase Non-two-phase

AL O2PL WTL RWTL

2PL

C2PL S2PL

SS2PL

Figure 4.22 Summary of concurrency control
protocols.

The number of protocols shown in this figure could even be squared byIdea of
hybrid

protocols
decomposing the concurrency control problem into the following two sub-
problems, which could then be solved individually by possibly distinct
protocols:

1. rw (and wr ) synchronization: read operations are synchronized against
write operations, or vice versa;

2. ww synchronization: write operations are synchronized against other
write operations, but not against reads.

If these synchronization tasks are distinguished, a scheduler can be thought
of as consisting of two components, one for each of the respective synchroniza-
tion tasks. Since the two components need proper integration (as demonstrated
by way of examples shortly), such a scheduler is called a hybrid scheduler.

For correctly integrating possibly distinct protocols for the two subtasks,
the definition of conflicts from the previous chapter needs to be modified in
order to account for the intended synchronization.

For rw (and wr ) synchronization: two operations are in conflict if they
access the same data item, and one is an r step, the other a w step.
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For ww synchronization: two operations are in conflict if they access
the same data item, and both are write operations.

EXAMPLE 4.14

Consider a hybrid scheduler that uses 2PL for rw synchronization and SGT

for ww synchronization. The 2PL scheduler will now block an operation

wi (x) only if some t j , j �= i , has a read lock on x. Thus, if several transactions

hold write locks on the same data item, the 2PL scheduler does not care,

since this is now the task of the other scheduler. Conversely, for the SGT

scheduler an edge (ti , t j ) in the conflict graph only indicates that there is a

ww conflict between ti and t j .

To prove a hybrid scheduler correct, an obvious approach is to consider
the two conflict graphs Grw(s) and Gww(s) of an output s that we now have
and that represent distinct conflicts; whereas the single conflict graph we have
so far been considering abstracted from the particular nature of conflicts. Since
all protocols that we have discussed are CSR safe, we only need to make sure
that the two graphs we now have represent compatible serialization orders; that
is, if ti occurs “before” t j in one of the graphs, then the same holds for the other.
In other words, the union of the two graphs now has to be acyclic. This may
require additional preparations, as we now show.

Consider a hybrid scheduler that uses SS2PL for rw (and wr ) synchro- SS2PL + TO
nization, and that wants to use TO for ww synchronization. Observe that if a
TO scheduler receives a step wi (x) after a step w j (x), where ts(ti ) < ts(t j ), then
wi (x) should be rejected, since the two are out of timestamp order. However,
since the scheduler is interested in ww synchronization only, a rejection is
not necessary. Indeed, if wi (x) is simply ignored, the effect will be the same,
namely, that w j (x) writes x last. Thus, executing a sequence of write operations
in timestamp order produces the same result as executing exclusively the write
operation that carries the largest timestamp. This observation leads to a ww
synchronization approach known as Thomas’ Write Rule (TWR): Let t j be the Thomas’ Write

Rule (TWR)transaction that has written x and that has the largest timestamp prior to the
arrival of wi (x). If ts(ti ) > ts(t j ), then wi (x) is processed as usual; otherwise, it
is ignored, and the execution of ti continues. Notice that TWR applies to pairs
of write steps only.

EXAMPLE 4.15

Consider w1(x)r2( y)w2(x)w2( y)c2w1( y)c1, where ts(t1) < ts(t2). w1( y)
is ignored (i.e., not executed at all) by TWR. The resulting output schedule

(with w1( y) omitted) is conflict serializable.
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On the other hand, consider the following variation of the example:

w1(x)r2( y)w2(x)w2( y)c2r1( y)w1( y)c1

The hybrid SS2PL/TWR protocol would still allow this schedule, and again

TWR would suppress the w1( y) step of t1. However, the r1( y) step would

be executed, leading to a conflict cycle between t1 and t2. So although each

of the two protocols works correctly as far as its limited perspective is con-

cerned, the combination does not properly guarantee conflict serializability.

As the second example indicates, an integration of SS2PL and TO or TWR
has to be done cautiously. If the protocols are used as described above, the
following holds for every output s: (1) Grw(s) is acyclic (due to the use of
SS2PL), and (2) Gww(s) is acyclic (due to TWR). To guarantee that G(s) =
Grw(s) ∪ Gww(s) is acyclic as well, it apparently suffices to state the following:

(1) (ti , t j ) ∈ Grw(s) ⇒ ts(ti ) < ts(t j )

Since Gww(s) already satisfies the corresponding condition, we conclude that
G(s) is acyclic, provided (1) holds. In order to guarantee (1) we note that if
(ti , t j ) ∈ Grw(s), then t j cannot terminate before ti releases a lock that t j needs.
Under SS2PL, every transaction holds its locks until commit, so (ti , t j ) ∈ Grw(s)
implies that ti ends successfully before t j ends. Thus, condition (1) can be
met by

(2) if ti commits before t j does, then ts(ti ) < ts(t j ).

For assuring (2), the scheduler needs to block the assignment of a times-
tamp to ti until it reaches its commit point. Such commit order-preserving
timestamping also entails deferring the setting of timestamps in the written
data items. This can be accomplished with a workspace concept, in analogy to
the deferred write approach of optimistic protocols. All writes are performed
in a transaction’s private workspace and transferred into the database only upon
the transaction’s commit.

Another, practically intriguing form of hybrid protocols is based on par-Hybrid
protocols for
partitioned

data

titioning the set of data items, D, into disjoint subsets D1, D2, . . . , Dn (with
n ≥ 2, Di ∩ Dj = ∅ for i �= j , and

⋃n
i=1 Di = D). Then, different concurrency

control protocols could be used for each of the n partitions, provided, and this
may be the crux, that the union of the conflict graphs over all partitions remains
acyclic at each point. Such a setting naturally arises in a distributed federation
of heterogeneous data servers. We will discuss this case in detail in Part IV.

Another application case for hybrid protocols within a centralized data
server is to intentionally classify data items into disjoint classes according to
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their specific access characteristics. For example, a data server may manage a
small set of very frequently modified data items—so-called hot spots—that con-
stitute subset D1, a large set of less frequently modified data items that form
subset D2, and a remaining subset D3 of data items that are never updated
online. Such a setting suggests using the protocol with the highest possible
concurrency for D1 regardless of its overhead (as D1 is small), a low-overhead
concurrency control protocol for the bulk of data items D2, and no concur-
rency control at all for D3. For example, we could combine SGT for D1 with
FOCC for D2. However, we need to ensure that this combination preserves
the acyclicity of the global conflict graph that is formed by the union of the
two conflict graphs for D1 and D2. This is all but trivial for the two considered
protocols, and may in fact require some additional cycle testing across both par-
titions. Such global overhead may, however, render the use of the “lightweight”
FOCC protocol pointless, as the overhead of cycle testing would eventually
be incurred for all of D1 ∪ D2. A less adventurous combination would thus be
using SS2PL for D1 and FOCC for D2. In this case, the fact that both protocols
are commit order preserving conflict serializable (COCSR) eliminates the need
for global checks. More considerations along these lines will be presented in
Part IV in the context of distributed systems.

4.6 Lessons Learned

In this chapter, we have seen a variety of concurrency control protocols for
the page model of transactions. There are two broad categories: locking sched-
ulers, which require the explicit locking and unlocking of data items for the
purpose of read or write access, and nonlocking schedulers that can do with-
out locks. Moreover, locking schedulers can be two-phase, meaning that, on
a per-transaction basis, locks precede unlocks; or they can be non-two-phase,
provided access ordering is controlled in some other way.

We will show in subsequent chapters that as far as concurrency control
is concerned, these are the fundamental ideas around. Indeed, we will ap-
ply the ideas underlying the protocols discussed in this chapter to various
other (often more general) contexts as well. For example, an SGT proto-
col is immediately available, once a serializability theorem has been proven
that relates conflict based serializability to the acyclicity of a suitably defined
graph.

We will also show that, although there are a variety of algorithmic ap-
proaches to concurrency control, the strict variant of 2PL, S2PL, is actually
the protocol around and hence the one most commonly found in commercial
transactional servers for its versatility as well as robustness and the observation
that it outperforms the other protocols in most practical situations.
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Exercises

4.1 For each of the following (input) schedules, show the output produced
by 2PL, S2PL, SS2PL, O2PL, BTO, and SGT:

s1 = w1(x)r2( y)r1(x)c1r2(x)w2( y)c2

s2 = r1(x)r2(x)w3(x)w4(x)w1(x)c1w2(x)c2c3c4

4.2 A lock point of a transaction t denotes a point in time at which t has
obtained all locks it needs, but has not yet released any. Show that for each
history s produced by a 2PL scheduler there exists a conflict-equivalent
serial history s ′ in which all transactions occur in the same order of lock
points as in s.

4.3 Under the 2PL protocol it is possible for transactions to “starve” in the
following sense: A transaction gets involved in a deadlock, is chosen as the
victim and aborted. After a restart, it again gets involved in a deadlock, is
chosen as the victim and aborted, and so on. Provide a concrete example
for such a situation, and describe how 2PL could be extended in order to
avoid starvation of transactions.

4.4 Describe the waits-for graphs resulting from the use of 2PL for each of
the histories in Exercise 4.1.

4.5 Show that the wait-die and wound-wait approaches to deadlock preven-
tion both guarantee an acyclic WFG at any point in time.

4.6 Consider s = w1(x)w1( y)r2(u)w2(x)r2( y)w2( y)c2w1(z)c1. Extend this his-
tory by syntactically valid lock and unlock operations, and represent the
result as a curve in the plane. Then determine the conflict regions and
decide whether DT(s) is in CSR.

4.7 Consider the schedule whose geometrical interpretation is shown in
Figure 4.16. Exhibit a point in the plane of that figure that represents
a deadlock.

4.8 Consider the following input schedules to the O2PL protocol (i.e., the
ordered sharing generalization of 2PL, based on the lock compatibility
table LT8):

(a) s1 = w1(x)r2(x)c2r3( y)c3w1( y)c1

(b) s2 = w1(x)r2(x)r3( y)c3r2(z)c2w1( y)c1

Which are the corresponding output schedules produced by O2PL?
For each of the two schedules, give the details about when locks are
requested, granted, attempted to be released, and eventually released.

4.9 Show that O2PL is susceptible to deadlocks (i.e., it is not deadlock
free).
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4.10 Show that Gen(AL) ⊆ CSR—i.e., complete the proof of Theorem 4.9.

4.11 Investigate the relationship between Gen(BTO) and Gen(2PL). Is one
more powerful than the other?

4.12 Consider the following condition for removing nodes (and edges) from
the serialization graph in the SGT protocol: remove ti when it is finished
and none of the transactions that were active at the commit or abort of
ti are active anymore. Show that this condition, albeit seemingly natural,
would lead to incorrect behavior of the SGT protocol.

4.13 Prove Theorem 4.18, thereby showing that FOCC is a CSR safe protocol.

4.14 Consider the following alternative variant of a BOCC protocol. Transac-
tion t j is successfully validated if one of the two following condi-
tions holds for all other transactions ti that are already successfully
validated:

(a) ti terminates before t j starts its read phase,

(b) RS(t j ) ∩ WS(ti ) = ∅ and ti finishes its read phase before t j enters its
write phase (i.e., relaxing the original BOCC condition that ti must
finish its write phase before t j initiates its validation).

Construct an example of a nonserializable schedule that would be al-
lowed under this BOCC variant. On the other hand, prove that this vari-
ant guarantees conflict serializability under the additional constraint that
WS(tk) ⊆ RS(tk) holds for all transactions tk.

4.15 Consider an alternative variant of BOCC where a transaction validates
by comparing its write set against the read sets of concurrent, previously
validated transactions. Would such a variant work correctly, i.e., ensure
that all output schedules are CSR?

4.16 Consider the following input schedule of three concurrent transactions:

r1(x)r2(x)r1( y)r3(x)w1(x)w1( y)c1r2( y)r3(z)w3(z)c3r2(z)c2

Which are the resulting output schedules under the BOCC and FOCC
protocols? Remember that write steps are actually performed on private
workspaces, the commit requests initiate the validation, and the write
steps are performed on the shared database only after a successful valida-
tion.

4.17 Construct an example execution that demonstrates that FOCC may pro-
duce nonserializable schedules if the critical section condition for the
val-write phases were dropped.

4.18 Develop variants of the BOCC and FOCC protocols that no longer need
the critical section for the val-write phases of transactions. Discuss the
pros and cons of such a relaxation, in comparison to locking protocols.
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CHAPTER F IVE

Multiversion
Concurrency Control

A book is a version of the world. If you do not like it, ignore it;

or offer your own version in return.

—Salman Rushdie

What’s the use of a good quotation if you can’t change it?

—Anonymous

5.1 Goal and Overview

In this chapter we will consider an aspect of transaction processing that is both
theoretically attractive and practically relevant. So far the underlying assump-
tion has been that data items exist in exactly one copy each. As a result, write
operations overwrite existing data items, and reads-from relationships between
distinct transactions may fail to observe the transactional isolation requirement.
Now imagine that more than one copy of each data item were allowed! This
would, for example, render it possible to keep the “old” version of a data item
that is subject to overwriting, at least until the transaction that writes a “new”
version commits. More generally, distinct transactions could be given distinct
versions of the same data item to read, or to overwrite.

In this chapter we will discuss the impact of allowing multiple versions on
the various components of the framework we have developed so far: schedules,
serializability, and concurrency control protocols. It will turn out that version-
ing demands some reasonable extensions of serializability theory, and, as will
be shown in Part III, versioning is connected to recovery, as versions of modified
data (before images or after images, or both) are sometimes maintained in some
form by a recovery manager anyway. We will also look at the storage space
needed to hold multiple versions. While theoretical considerations tend to as-
sume space to be an unlimited resource, it turns out that the picture changes
significantly should this not be valid anymore. In particular, we will show how
multiversion serializability is affected by limiting the (total) number of versions
around.

185
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An important assumption we will make in this chapter is that versioning is
transparent to the outside world. In other words, users or applications will not
be aware of the fact that data items can appear in multiple versions. Note that
such an assumption is different from versioning in design environments such as
CAD (computer-aided design) or CASE (computer-aided software engineer-
ing), where database users need to play around with versions of data items in
order to develop, change, alternate, or experiment with their designs. This type
of versioning that users are aware of is also of increasing importance in the
context of repositories for change and configuration management.

In this book we restrict ourselves to transparent versioning of data items.
We will first derive, in Section 5.2, a suitable abstraction for such a setting from
the read/write model. Intuitively, the idea is that because of the transparency
requirement, correctness of histories and schedules “looks and feels” as if ver-
sioning were not applied, at least from a user’s perspective. In Section 5.3 we
will generalize our serializability notions to the augmented setting. After that,
in Section 5.4 we take an in-depth look at the assumption, made in the very
beginning, that the number of versions a system is capable of keeping around
is unbounded; we will indicate how the picture changes if the total number of
versions stored is limited. Finally, in Section 5.5 we look at concurrency control
protocols and generalize some of those presented in the previous chapter to
the management of versions.

The discussion in this chapter continues to consider unaborted transactions
only.

5.2 Multiversion Schedules

In order to motivate the studies of this chapter more concretely, we start with
an example to show that the presence of multiple versions of data items can
indeed affect the correctness of histories or schedules.

EXAMPLE 5.1

Consider the following history:

s = r1(x)w1(x)r2(x)w2( y)r1( y)w1(z)c1c2

Obviously, s �∈ CSR, since there is a cyclic conflict between t1 and t2. Infor-

mally, the reason for this is the fact that y has already been overwritten by

t2 when step r1( y) arrives at the scheduler; in other words, r1( y) is “too

late” for making the schedule that already has a conflict (on x) between t1
and t2 an acceptable one.

Now suppose that the old value of y (in this case the initial value of y)

were still available when r1( y) arrived. Then it would be possible to create
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a history equivalent to

s ′ = r1(x)w1(x)r1( y)r2(x)w2( y)w1(z)c1c2

which would be correct since s ′ ∈ CSR.

The existence of multiple versions of data items is based on the assumption
that write operations are no longer executed “in place.” Instead, the result of
each and every write operation is individually kept as a new version of the data
item in question. In Example 5.1 this would imply that old values would still be
accessible for read operations that arrive “too late.” Clearly, a scheduler would
still have to decide which version of a data item is read by a particular read
operation. We will look at this and other questions in what follows.

Our first goal will be an appropriate formalization of histories and schedules
in the presence of multiple versions of data items. Since we are concerned with
transparent versioning only, the transaction model can remain unchanged; only
the interpretation of a transaction changes. Basically, a read step of the form
r (x) reads an (existing) version of x, and a write step of the form w(x) (always)
creates a new version of x (or overwrites an existing one). For simplicity of
notation, we assume that each transaction writes every data item at most once;
thus, if t j contains operation w j (x), we can denote the version of x created by
this write by x j . Now we can define:

Version
function

DEFINITION 5.1 Version Function

Let s be a history with initialization transaction t0 and final transaction t∞. A

version function for s is a function h, which associates with each read step

of s a previous write step on the same data item, and which is the identity

on write steps.

Since we have already assumed that a step w j (x) creates version x j of x,
we may write the following when using a version function h in the context of
a schedule s:

1. h(ri (x)) = w j (x) for some w j (x) <s ri (x), and ri (x) reads x j ,

2. h(wi (x)) = wi (x), and wi (x) writes xi .

Thus, h(ri (x)) essentially denotes the version of x that has been assigned to be
read by ri (x). In slight abuse of the notation, we also write w j (x j ) for the write
step that creates x j , and we write ri (x j ) for the read step that has been associated
with w j (x j ) by version function h. So following, the result of applying a version
function to a read operation could be any of (1) the associated write operation,
(2) the version assigned for reading, or (3) the “versioned” read operation.
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Since all three possibilities are basically equivalent, this should not cause any
confusion.

Multiversion
schedule

A version function translates each write step into a version creation step
and each read step into a version read step. We are now ready to introduce the
formal notion of a multiversion schedule, which is essentially a schedule (in
the sense used so far) together with a version function:

DEFINITION 5.2 Multiversion Schedule

Let T = {t1, . . . , tn} be a (finite) set of transactions.

1. A multiversion history (or complete multiversion schedule) for T is a pair

m = (op(m), <m), where <m is an order on op(m) and

(a) op(m) = h(
⋃n

i=1 op(ti )) for some version function h (here we assume

that h has been canonically extended from single operations to sets

of operations)

(b) for all t ∈ T and all operations p, q ∈ op(t) the following holds:

p <t q ⇒ h(p) <m h(q)

(c) if h(r j (x)) = r j (xi ), i �= j , and c j is in m, then ci is in m and ci <m c j .

2. A multiversion schedule is a prefix of a multiversion history.

In words, a multiversion history contains versioned read and write opera-
tions for its transactions whose ordering respects the individual transaction or-
derings. We mention that condition (1c) is needed here since otherwise CP(m),
the committed projection of a schedule m, is not necessarily complete (i.e., not
a history).

EXAMPLE 5.2

The following is a totally ordered multiversion schedule for the history from

Example 5.1 with a version function h that assigns, for example, version y0

to the read step r1( y), i.e., h(r1( y)) = w0( y) where t0 is the initialization

transaction (which is not mentioned explicitly in the schedule).

m = r1(x0)w1(x1)r2(x1)w2( y2)r1( y0)w1(z1)c1c2

Conventional schedules, as we have discussed them in the previous chap-
ters, can be viewed as a special case of multiversion schedules. Such a monover-
sion schedule is obtained by restricting the version function of a multiversion
schedule so that each read step reads the version produced by the last preceding
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write step. In other words, the effect of a monoversion schedule is the same as
if only a single version of each data item is kept.

DEFINITION 5.3 Monoversion Schedule

A multiversion schedule is called a monoversion schedule if its version func-

tion maps each read step to the last preceding write step on the same data

item.

An example of a monoversion schedule is

m = r1(x0)w1(x1)r2(x1)w2( y2)r1( y2)w1(z1)c1c2

Notice that the example differs from the previous multiversion example only in
that now we have h(r1( y))=w2( y). Because the version function of a monover-
sion schedule is uniquely determined by the order of steps, we can also write
m as if it were a conventional schedule, omitting version subscripts:

s = r1(x)w1(x)r2(x)w2( y)r1( y)w1(z)c1c2

In the discussions that follow we will often use monoversion schedules as
in previous chapters, as well as multiversion schedules in the sense just intro-
duced; in order to distinguish them, we will continue to use s, s ′, and so on,
for the former, and we will use m, m′, and so on, for the latter.

5.3 Multiversion Serializability

We next study various types of multiversion serializability. To this end, we will
begin by following our previous practice, namely, devising a notion of view
serializability and investigating whether it is feasible. Not surprisingly, it will
again exhibit an NP complete decision problem, which motivates to look for a
notion of conflict serializability. In addition, another important aspect will be
to limit the number of versions that can be stored, and hence kept around, at
the same time. As we will see in Section 5.4, such a limit drives home an entire
hierarchy of classes of serializable schedules.

5.3.1 Multiversion View Serializability

As we have mentioned already,when making serializability precise for mul-
tiversion schedules, we have to keep in mind that we are here talking about
transparent versioning, that is, versioning that is not visible to the outside world,
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in particular to application programs or even the user. Thus, from a user’s point
of view a “correct” multiversion schedule should be equivalent to an ordinary
serial schedule without versions. To make equivalence precise, conflict equiv-
alence of the usual style (i.e., according to Chapter 3) is not an appropriate
candidate, as the following example indicates.

EXAMPLE 5.3

Consider the serial (monoversion) schedule s =w0(x)c0w1(x)c1r2(x)w2( y)c2.

A multiversion schedule exhibiting the same “step syntax” is

m = w0(x0)c0w1(x1)c1r2(x0)w2( y2)c2

Notice that while s shows three different conflicts (between w0(x) and

w1(x), between w0(x) and r2(x), and between w1(x) and r2(x)), m exhibits

only one conflict, the one between w0(x0) and r2(x0), since t1 now writes

a new version of x. Although we could define that a multiversion schedule

m is conflict equivalent to a serial monoversion schedule s if all pairs of

conflicting operations occur in m in the same order as in s (so that the

two schedules shown above are indeed equivalent), the problem remains

that the respective reads-from relations may be different, which is intuitively

undesirable.

Already in this example we find that in s, transaction t2 reads data item x
from t1, while in m, transaction t2 reads the version of x produced by t0;

in other words, under the no-interpretation schedule semantics adopted so

far (i.e., the Herbrand semantics, see Chapter 3), we should assume that

both schedules yield distinct values of item y.

Considerations like the one just shown motivate the use of view equiva-
lence for defining serializability in this context, suitably adapted to the presence
of versions.

Reads-from
relation

DEFINITION 5.4 Reads-From Relation

Let m be a multiversion schedule, ti , t j ∈ trans(m).

The reads-from relation of m is defined by

RF(m) := {(ti , x, t j ) | r j (xi ) ∈ op(m)}

Now, following our general methodology from Chapter 3 in developing
correctness criteria, we can directly obtain an appropriate notion of equivalence
based on the reads-from relations of schedules.
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DEFINITION 5.5 View Equivalence

Let m and m′ be two multiversion schedules such that trans(m′) = trans(m).

View
equivalence of
multiversion
schedules

m and m′ are view equivalent, abbreviated m ≈v m′, if RF(m) = RF(m′).

A difference between this notion of view equivalence and the one intro-
duced in Chapter 3 for monoversion schedules is that a consideration of final
write operations is now irrelevant, for the simple reason that two multiversion
schedules with identical sets of transactions always have the same final writes
(since writes produce versions that are not erased anymore). As we will show
shortly, this statement no longer holds, however, if the number of versions that
can be stored is limited.

EXAMPLE 5.4

Let m = w0(x0)w0( y0)c0r3(x0)w3(x3)c3w1(x1)c1r2(x1)w2( y2)c2 and

m′ = w0(x0)w0( y0)c0w1(x1)c1r2(x1)r3(x0)w2( y2)w3(x3)c3c2.

Then m ≈v m′.

For defining (view) serializability, it is not sufficient to require that a given
multiversion schedule m is view equivalent to a serial multiversion schedule
m′. As the following example demonstrates, the reason is that even a serial m′

does not necessarily have a reads-from relation that is compatible with a serial
monoversion schedule.

EXAMPLE 5.5

Let m = w0(x0)w0( y0)c0r1(x0)r1( y0)w1(x1)w1( y1)c1r2(x0)r2( y1)c2.

If each ri (x j ) occurring in m is replaced by an ri (x), and correspondingly

each wi (xi ) by a wi (x), the following monoversion schedule results:

s = w0(x)w0( y)c0r1(x)r1( y)w1(x)w1( y)c1r2(x)r2( y)c2.

Both schedules are serial; however, in s, transaction t2 reads data item x
from t1, while in m, it reads x from t0.

To address this problem, we need to be careful when defining view serial-
izability for multiversion schedules. We actually need to compare multiversion
schedules to monoversion schedules in terms of their reads-from relations. In
fact, this insight should not be a big surprise given that versioning should be
completely transparent to all application programs.
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The schedule m from the previous example has a reads-from relation that
differs from the reads-from relation of the corresponding monoversion sched-
ule (as derived according to Definition 3.7 given in Chapter 3 for conven-
tional schedules), since t2 reads x0, but not the version x1 that was written last.
Moreover, we can show that m’s reads-from relation differs from the reads-
from relation of every possible serial monoversion schedule for the same trans-
actions. This means that m cannot be view equivalent to a serial execution
without versions, and should thus not be accepted as a correct multiversion
schedule.

This example-driven discussion leads directly to the following correctness
criterion:

DEFINITION 5.6 Multiversion View Serializability

Let m be a multiversion history. Then m is called multiversion view serializable

Multiversion
view

serializability
if there exists a serial monoversion history m′ for the same set of transactions

such that m ≈v m′.

Let MVSR denote the class of all multiversion view-serializable histories.

Thus, for a history m ∈ MVSR there is always a serial monoversion history
s for the same set of transactions such that m ≈v s, where “≈v” is now well
defined. The following example illustrates the relationships just described.

EXAMPLE 5.6

Let m = w0(x0)w0( y0)c0w1(x1)c1r2(x1)r3(x0)w3(x3)c3w2( y2)c2 and

m′ = w0(x0)w0( y0)c0r3(x0)w3(x3)c3w1(x1)c1r2(x1)w2( y2)c2.

Then we have m ≈v m′. Moreover, m′ is view equivalent to history

s = w0(x)w0( y)c0r3(x)w3(x)c3w1(x)c1r2(x)w2( y)c2.

The previous definition can be generalized to arbitrary schedules in a
straightforward way: a multiversion schedule m is multiversion view serializ-
able if there exists a serial monoversion history m′ such that CP(m) ≈v m′.
Furthermore, we can now define multiversion view serializability even for con-
ventional (input) schedules: a schedule is multiversion view serializable if there

Casting
conventional

schedules into
multiversion

schedules
is a version function such that casting the schedule into a multiversion sched-
ule with this version function yields a multiversion schedule whose committed
projection is in MVSR.
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5.3.2 Testing Membership in MVSR

A natural question now is what the complexity of recognizing members of
MVSR is. To this end, it may not be expected that this problem is simpler than
the corresponding one for VSR, since we have:

THEOREM 5.1

VSR ⊂ MVSR

Inclusion of VSR in MVSR holds since every view-serializable history can
be perceived as a monoversion history and hence as a specific multiversion
history (in MVSR). The fact that the inclusion is strict can be seen from the
following example; consider

m = w0(x0)w0( y0)c0r1(x0)w2(x2)w2( y2)c2r1( y0)c1

Interpreted as a monoversion schedule by omitting the version subscripts, this
schedule is the canonical example of an inconsistent read and clearly does
not fall into class VSR. By having t1 read an older version y0, the multiversion
schedule is, however, acceptable under the MVSR criterion, and is indeed view
equivalent to the serial monoversion schedule with the order t0 < t1 < t2. This
once again demonstrates the significant performance improvements achievable
by transparent versioning.

The previous theorem implies that the membership test for MVSR can
intuitively not be easier than the one for VSR, since MVSR is a relaxation of
conditions over VSR; in other words, with additional restrictions (in VSR) over
MVSR, we obtain an NP complete decision problem. Indeed we can show the
following:

THEOREM 5.2

The problem of deciding whether a given multiversion history is in MVSR is

NP complete.

Proof

In order to show that the problem is in NP, we just “guess” a serial mono-

version history m′ for a given multiversion history m and test m ≈v m′. Based

on Theorem 5.1, this can be done in polynomial time simply by comparing

the two sets of operations.

In order to show that the problem is NP complete, we reduce the corre-

sponding decision problem for VSR to it: Let s be a monoversion history.
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Transform s into a multiversion history m by replacing each operation wi (x)
with wi (xi ), and each operation r j (x) with r j (xi ), provided t j reads item x in

s from ti . By the definition of view serializability, it follows that m ∈ MVSR iff

there exists a serial monoversion schedule s ′ such that m ≈v s ′. Now s ′ exists

iff s ∈ VSR. Thus, we have m ∈ MVSR iff s ∈ VSR, and our claim follows.

Different from the situation for monoversion histories, for multiversion
histories there is a graph-theoretic characterization of membership in MVSR
with a graph that has transactions as nodes (as opposed to the step graph con-
structions in Chapter 3, where a graph has the steps of a schedule as its nodes).
This will become relevant later in this chapter when we discuss concurrency
control protocols, since they will all guarantee this graph property. Thus, the
characterization developed next will be used as a sufficient condition for mem-
bership in MVSR in the verification of protocols. We first recall the definition
of a conflict graph given in Chapter 3, which can be simplified for multiversion

Conflict graph

schedules due to the fact that only conflicts of the form (wi (xi ), r j (xi )), i �= j ,
can still occur. Thus, the conflict graph G(m) of a multiversion schedule m has
an edge between (committed) transactions ti and t j (of the form ti → t j , i �= j)
simply if r j (xi ) is in m. The following is then obvious:

THEOREM 5.3

For any two multiversion schedules m and m′, m≈v m′ implies G(m)=G(m′).

The converse of this theorem is not true. Consider the multiversion sched-
ules m = w1(x11)r2(x0)w1( y1)r2( y1) and m′ = w1(x11)r2(x1)w1( y1)r2( y0) that
have the same conflict graph but differ significantly in their version functions
and their reads-from relations. So conflicts alone, in the limited sense that we
consider version writes and reads on exactly these versions, are insufficient to
reason about multiversion serializability.

We now extend the conflict graph of a multiversion schedule m as follows:

Version order DEFINITION 5.7 Version Order

If x is a data item, a version order for x is any nonreflexive and total ordering

of all versions of x that are written by operations in m. A version order ≪

for m is the union of all version orders of data items written by operations

in m.

Note that the version order is independent of the execution order in which
the versions of a data item were created. So it is possible that for versions xi
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and x j , such that wi (xi ) preceded w j (x j ) in the schedule, the version order
is x j ≪ xi . The version order rather serves to help determine the serialization
order of transactions, that is, the order in which versions appear in an equivalent
serial monoversion schedule.

EXAMPLE 5.7

Let m be the following schedule:

m = w0(x0)w0( y0)w0(z0)c0r1(x0)r2(x0)r2(z0)r3(z0)w1( y1)w2(x2)w3( y3)

w3(z3)c1c2c3r4(x2)r4( y3)r4(z3)c4

A version order for m could be

x0 ≪ x2, y0 ≪ y1 ≪ y3, z0 ≪ z3

Multiversion
serialization
graph (MVSG)

DEFINITION 5.8 Multiversion Serialization Graph (MVSG)

For a given schedule m and a version order ≪, the multiversion serialization

graph MVSG(m, ≪) of m then is the conflict graph G(m) = (V, E) with

the following edges added for each rk(x j ) and wi (xi ) in CP(m), where

k, i , and j are pairwise distinct: if xi ≪ x j , then (ti , t j ) ∈ E , otherwise

(tk, ti ) ∈ E .

So for each triple of operations w j (x j ), rk(x j ), and wi (xi ) on the same data
item x, the MVSG contains two out of the three potential edges:

An edge from t j to tk is always present.

In addition, there is either an edge from ti to t j , namely, if the version
order is xi ≪ x j , meaning that in an equivalent monoversion schedule
wi (xi ) would precede w j (x j ), or

an edge from tk to ti , namely, if the version order is x j ≪ xi so that
wi (xi ) would follow w j (x j ) in an equivalent monoversion schedule and
consequently has to follow also rk(x j ), as tk needs to read the most recent
version in a monoversion schedule.

EXAMPLE 5.8

Let m and ≪ be as in Example 5.7. The graph MVSG(m, ≪) is shown in

Figure 5.1. In this example the only edges that do not occur in G(m) are
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Figure 5.1 Multiversion serial-
ization graph.

the following:

(t1, t2): r1(x0), w2(x2) ∈ op(m), and x0 ≪ x2

(t1, t3): w1( y1), r4( y3) ∈ op(m), and y1 ≪ y3

(t2, t3): r2(z0), w3(z3) ∈ op(m), and z0 ≪ z3

If a multiversion history happens to have an acyclic conflict graph, we can
apply topological sorting to obtain a total order or, equivalently, a serial mul-
tiversion history; however, this schedule obtained does not need to be view
equivalent to a serial monoversion history, since reads-from relationships may
change during the transition from a multiversion to a monoversion history.
Version order edges can be used to detect such situations: if rk(x j ) and wi (xi )
are in CP(m), a version order enforces that either wi (xi ) occurs before w j (x j )
or after rk(x j ); in both cases, the reads-from relation remains invariant from
a transition to a monoversion history. A topological sorting of a multiversion
serialization graph is possible only if the conflict graph is still acyclic after the
addition of the version order edges. With these considerations, the following
can be verified:

THEOREM 5.4

m ∈ MVSR iff there exists a version order ≪ such that MVSG(m, ≪) is

acyclic.

Proof

(if) Since MVSG(m, ≪) is acyclic, it can be sorted topologically into a serial

history m′ such that RF(m) = RF(m′), i.e., m ≈v m′. It remains to be shown

that m′ can be perceived as a monoversion history. To this end, suppose that

m′ contains operations rk(x j ), k �= j , as well as wi (xi ), i �= j and i �= k. If

xi ≪ x j , the graph contains version order edge ti → t j , which enforces

ti <m′ t j . Conversely, if x j ≪ xi , then by definition the graph contains edge

tk → ti enforcing tk <m′ ti in m′. Thus, no transaction writes x between t j

and tk in m′, so that version numbers can essentially be dropped from m′

without changing the reads-from relation.
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(only if) For a given history m and version order ≪, let MV(m, ≪) denote

the graph that contains version order edges only. Since version order edges

depend only on the operations in m and the version order, but not on the

sequencing of the operations in m, we can conclude that if m and m′ are

multiversion histories such that trans(m) = trans(m′), then MV(m, ≪) =
MV(m′, ≪) for every version order ≪.

Now let m ∈ MVSR, and let m′ be a serial monoversion history for the same

transactions such that m ≈v m′. By the remark just stated, MV(m, ≪) =
MV(m′, ≪) for every version order ≪. By Theorem 5.3, G(m) = G(m′).
Clearly, G(m′) is acyclic (since m′ is serial), hence so is G(m). Now define a

specific version order

xi ≪0 x j :⇐⇒ ti <m′ t j

(i.e., if ti → t j is in G(m′)). Thus, if MV(m′, ≪0) is added to G(m′), the

resulting graph MVSG(m′, ≪0) remains acyclic, and the same holds if

MV(m′, ≪0) = MV(m, ≪0) is added to G(m) [= G(m′)].

Notice that the decision problem for MVSR is not made easier by this
result, since for a given schedule m it cannot necessarily be tested in polynomial
time whether a version order of the desired form exists. On the other hand,
multiversion schedulers always produce such an order, so that their correctness
can be verified on the basis of this theorem.

5.3.3 Multiversion Conflict Serializability

We next describe a subclass of MVSR that has a polynomial-time member-
ship problem, which immediately results from a specific notion of multiversion
conflicts:

Multiversion
conflict

DEFINITION 5.9 Multiversion Conflict

A multiversion conflict in a multiversion schedule m is a pair of steps ri (x j )
and wk(xk) such that ri (x j ) <m wk(xk).

We emphasize that this notion of multiversion conflicts is fundamentally
different from our earlier definition of conflicts where we had simply carried
over the conventional notion of conflicts to a versioned setting in a syntactic
manner so that only wr operation pairs on the same version counted as conflicts.
In contrast, the above definition essentially says that in a multiversion schedule
(including the special case of monoversion histories) the only relevant kind of
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conflicts are rw operation pairs on the same data item, not necessarily on the
same version. It is easy to see that ww pairs on the same data item no longer
count as conflicts, as they create different versions and it is up to the read steps
to choose the proper version. To realize that wr pairs are not really conflicts is
a bit more involved. The essence of a conflict pair pq is that we are not allowed
to commute p with q. For wr pairs, however, commuting the pair so that
the read would precede the write is admissible because it restricts the version
selection choices for the read that can still render the schedule correct (i.e.,
MVSR). So if the resulting schedule, with the read before the write, is MVSR,
the original schedule with the wr pair would definitely be MVSR as well. This
is the rationale for considering wr pairs (on the same data item) as conflict free.
The third remaining type of operation pairs, rw pairs, has the opposite effect: by
commuting an rw pair so that the read would follow the write, we end up with
a schedule that has one more choice in selecting an appropriate version for the
read step. So, if we succeed in verifying that the resulting schedule is MVSR, this
would still not say anything about the correctness of the original schedule. Thus,
rw pairs on the same data item constitute conflicts in a multiversion setting.

Because of the above asymmetry in the treatment of wr and rw pairs, the
notion of a multiversion conflict cannot be easily used for defining an equiv-
alence relation on multiversion schedules. Rather it leads to an asymmetric
notion of transforming one schedule into another by means of repeatedly com-
muting conflict-free operations. This obviously resembles the notion of com-
mutativity based reducibility introduced in Chapter 3, with the decisive dif-
ference, however, that we do not have a symmetric commutativity relation in
our current setting. If we can eventually produce a serial monoversion history
by commuting operations such that we always (i.e., after each transformation
step) respect the ordering of rw conflict pairs, then we know that a multiver-
sion schedule is guaranteed to be MVSR. From this argument we can already
suspect that this is only a sufficient but not necessary condition for membership
in MVSR; this conjecture will soon be confirmed.

The above consideration leads to the following correctness criteria (which,
for simplicity, is stated only for totally ordered multiversion histories, and would
have to be extended, in a straightforward manner, by an ordering rule in the
sense of Chapter 3, Section 3.8.3, to cover partial orders as well):

Multiversion
reducibility

DEFINITION 5.10 Multiversion Reducibility

A (totally ordered) multiversion history m is multiversion reducible if it can

be transformed into a serial monoversion history by a finite sequence of

transformation steps, each of which exchanges the order of two adja-

cent steps, (i.e., steps p, q with p < q such that o < p or q < o for all

other steps o) but without reversing the ordering of a multiversion conflict

(i.e., rw) pair.
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Multiversion
conflict
serializability
(MCSR)

DEFINITION 5.11 Multiversion Conflict Serializability

A multiversion history m is multiversion conflict serializable if there is a serial

monoversion history for the same set of transactions in which all pairs of

operations in multiversion conflict occur in the same order as in m. Let MCSR

denote the class of all multiversion conflict-serializable histories.

From what we have discussed above, the following theorems can be de-
rived.

THEOREM 5.5

A multiversion history is multiversion reducible iff it is multiversion conflict

serializable.

THEOREM 5.6

MCSR ⊂ MVSR.

In order to see that this inclusion is strict, consider the following multiver-
sion history, which is effectively a monoversion history:

m = w0(x0)w0( y0)w0(z0)c0r2( y0)r3(z0)w3(x3)c3r1(x3)w1( y1)c1w2(x2)c2

r∞(x2)r∞( y1)r∞(z0)c∞

The pairs r1(x3) and w2(x2) as well as r2( y0) and w1( y1) of operations can
apparently not be exchanged without m losing its monoversion property; hence
m �∈ MCSR. On the other hand, m ≈v t0t3t2t1t∞, which implies m ∈ MVSR.

It can be shown that membership of a history in class MCSR can be char-
acterized in graph-theoretic terms using the following notion of a multiversion
conflict graph.

Multiversion
conflict graph

DEFINITION 5.12 Multiversion Conflict Graph

Let m be a multiversion schedule. The multiversion conflict graph of m is a

graph that has the transactions of m as its nodes and an edge from ti to tk
if there are steps ri (x j ) and wk(xk) for the same data item x in m such that

ri (x j ) <m wk(xk).
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Not surprisingly, we obtain:

THEOREM 5.7

A multiversion history is MCSR iff its multiversion conflict graph is acyclic.

So MCSR has a polynomial membership test, and all practical multiver-
sion concurrency control protocols fall into this class. Note, however, that the
equivalent serial monoversion history for an acyclic multiversion conflict graph
cannot simply be derived by topologically sorting the graph. Rather the above
theorem only states that acyclicity of the graph is a sufficient and necessary
condition for the existence of a sequence of transformation steps (in the sense
of the definition of multiversion reducibility) that yields a serial monoversion
history. For proving the correctness of protocols, the graph characterization
of the larger class MVSR along with an appropriately chosen version order
turns out to be an elegant and more practical tool, as we will show in the next
section.

Figure 5.2 summarizes the relationships between the various classes of
histories studied in this chapter so far. In the histories of this figure, transaction
t0 is not explicitly shown, and neither is t∞. Moreover, all histories are shown
as monoversion histories, but it should by now be clear how versioning comes

All histories

MVSR

VSR
CSR MCSR

s1

s2
s3 s4

s5

s1 = r1(x)r2(x)w1(x)w2(x)c1c2
s2 = w1(x)c1r2(x)r3(y)w3(x)w2(y)c2c3
s3 = w1(x)c1r2(x)r3(y)w3(x)w2(y)c2c3w4(x)c4
s4 = r1(x)w1(x)r2(x)r2(y)w2(y)r1(y)w1(y)c1c2
s5 = r1(x)w1(x)r2(x)w2(y)c2w1(y)w3(y)c1c3

Figure 5.2 Classes of multiversion serializ-
able histories.
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into the picture. For example, s2 is a representative for history

w1(x1)c1r2(x1)r3( y0)w3(x3)w2( y2)c2c3

5.4 Limiting the Number of Versions

In our discussion so far we have always assumed that enough storage space
is available for holding any number of versions. Thus, we have never put a
limit on the number of versions of a particular data item, or on the number
of versions of all data items taken together. While this is reasonable from a
theoretical point of view, in that it has allowed us to develop a serializability
theory for multiversion histories that indeed generalizes the monoversion case,
it is rarely practical, since the number of versions will never be allowed to
grow indefinitely. Even though disk space is relatively inexpensive, we cannot
assume that a data server will be given unlimited space to manage its versions,
nor can we assume that managing extremely large numbers of versions can be
done efficiently. Therefore, it appears reasonable to impose an upper limit on
the number of versions that the system can distinguish or keep around simul-
taneously. The important point we want to make in this section is that limiting
the number of versions can make a difference, in the sense that schedules that
are multiversion serializable if no upper bound on the number of versions ex-
ists may lose this property in the presence of a limit on the total number of
versions.

As an example, we consider the following monoversion history:

m = w0(x0)c0r1(x0)w3(x3)c3w1(x1)c1r2(x1)w2(x2)c2

This history is obviously in MVSR, with the version order x0 ≪ x1 ≪ x2 ≪ x3.
However, it is not equivalent to any serial schedule that maintains at most two
versions of x simultaneously. As is easily verified, there are six different serial
monoversion histories for the three transactions t1, t2, and t3 in m; they are as
follows:

m1 = w0(x0)c0r1(x0)w1(x1)c1r2(x1)w2(x2)c2w3(x3)c3

m2 = w0(x0)c0r1(x0)w1(x1)c1w3(x3)c3r2(x3)w2(x2)c2

m3 = w0(x0)c0r2(x0)w2(x2)c2r1(x2)w1(x1)c1w3(x3)c3

m4 = w0(x0)c0r2(x0)w2(x2)c2w3(x3)c3r1(x3)w1(x1)c1

m5 = w0(x0)c0w3(x3)c3r1(x3)w1(x1)c1r2(x1)w2(x2)c2

m6 = w0(x0)c0w3(x3)c3r2(x3)w2(x2)c2r1(x2)w1(x1)c1

Since m ≈v m1, we first observe that m ∈ MVSR. Now let us assume that the
total number of versions that can exist at the same time is, for whatever reasons,
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limited to k = 2; since m and the serial histories for m’s transactions only write
x, this means only the last two versions of x that are written in a schedule will
be stored.

For m1 this means the following: First t0 and t1 produce x-versions x0 and
x1, respectively. Next t2 will overwrite version x0, which is older, and t3 will
overwrite x1. So when m1 terminates, the database will comprise versions x2

and x3. Notice that history m will produce versions x1 and x2 as those that are
written last; thus m can no longer be considered equivalent to m1.

It can be verified by similar arguments that m is also not equivalent to any
of the other serial monoversion schedules shown above, since the following
holds:

1. m2 (like m1) produces versions x2 and x3,

2. m3 and m4 both produce versions x1 and x3,

3. m5 and m6 produce x1 and x2 (as does m), but m5 comprises operation
r1(x3), while m6 comprises r2(x3), both of which do not occur in m.

Since m is not equivalent to any of the monoversion histories possible in this
example, we may conclude that, different from the general case, history m is
not a member of class MVSR if only two versions are allowed.

The above observations can be formalized. In the presence of an upper
bound for the total number of data item versions, view equivalence of histories
is again defined as in Chapter 3, namely, by asking for identical reads-from
relations and equal final write operations. To be even more precise, we can
furthermore incorporate a given bound k for the number of versions into the
definition and hence speak of k-version view serializability; the corresponding
classes of histories will be denoted by kVSR, k > 0.

For the sample schedule m discussed above, it then follows immediately
that

m ∈ MVSR − 2VSR

In addition, it is easily verified that

VSR = 1VSR

and that

MVSR =
⋃

k>0

kVSR

Since we have stated above that MVSR has an NP complete decision problem,
it moreover follows that the problem of deciding whether a given multiversion
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schedule is in class kVSR is NP complete for every k > 0. Finally, it can be A hierarchy of
classesshown that the various classes of k-version view-serializable histories form a

strict hierarchy, that is,

VSR = 1VSR ⊂ 2VSR ⊂ 3VSR ⊂ . . . ⊂ MVSR

5.5 Multiversion Concurrency Control Protocols

We now develop concurrency control protocols for multiversion databases, or
enhancements of known protocols for a multiversion environment. For all of
them, the important point is that they produce total version orders, so that their
correctness follows from the characterization of membership in class MVSR
stated in Theorem 5.4. In the discussion that follows we will assume (unless
stated otherwise) that all versions written can be stored (so that limiting the
number of available versions is not an issue). We will discuss enhancements of
the TO, 2PL, and SGT protocols (in this order).

5.5.1 The MVTO Protocol

A multiversion timestamp ordering (MVTO) scheduler essentially processes op- MVTO
schedulererations in first-in-first-out (FIFO) fashion. In particular, it transforms data op-

erations into operations on versions of data items, and processes them in such
a way that the result appears as if it had been produced by a serial monover-
sion schedule with transactions in the order of timestamps that are assigned at
the beginning of a transaction. Each version carries the timestamp ts(ti ) of the
transaction ti by which it has been created. In detail, an MVTO scheduler acts
as follows:

1. A step ri (x) is transformed into a step ri (xk), where xk is the version of x
that carries the largest timestamp ≤ ts(ti ) and was written by tk, k �= i .

2. A step wi (x) is processed as follows:

(a) If a step of the form r j (xk) such that ts(tk) < ts(ti ) < ts(t j ) has al-
ready been scheduled, then wi (x) is rejected and ti is aborted,

(b) otherwise, wi (x) is transformed into wi (xi ) and executed.

3. A commit ci is delayed until the commit c j of all transactions t j that
have written new versions of data items read by ti have been processed.
(This part of the protocol is optional and included in order to ensure
correct transaction recovery, e.g., avoiding anomalies such as dirty reads.
This will be considered in depth in Chapter 11.)
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t1

r1(x0) r1(y0)

t2

r2(x0) r2(y0) w2(y2)w2(x2)

t3

r3(x2) r3(z0)

t4

r4(x2) w4(x4) r4(y2) w4(y4)

Abort

t5

r5(y2) r5(z0)

Figure 5.3 Sample execution under the MVTO protocol.

Note that we do not consider the case where a transaction can read an item
after having written it; if this were allowed, a transaction would have to be able
to see a version it has itself produced (see step 1).

The important observation for proving the MVTO protocol correct, thatCorrectness of
MVTO is, for showing that

Gen(MVTO) ⊆ MVSR

holds, is that a version order can be defined as follows:

xi ≪ x j ⇐⇒ ts(ti ) < ts(t j )

Figure 5.3 shows a sample execution under the MVTO protocol. The in-
terleaved execution of transactions t1 and t2 once more illustrates the great
performance enhancement of multiversion concurrency control: as a monover-
sion schedule, the execution would have been a classical case of inconsistent
reading; with versioning, however, the situation is perfectly acceptable, as t1
simply reads the old version y0, thus ensuring consistency with its previous
reading of x0. With MVTO in particular, this is the result of t1’s timestamp
being smaller than that of the concurrent transaction t2. Transaction t3 needs
to wait (as indicated by the dashed line in the figure) right before its commit,
because it has read the uncommitted version x2 (and indeed had to read this
version because its timestamp is larger than that of t2); once t2 is committed, t3
can commit as well. Transaction t4 is an example for a “late” writer: it creates
the new version y4; however, transaction t5 has already read the version y2. As
the timestamp ordering prescribes the serialization order t2 < t4 < t5, t5 should
actually have read y4 (which, of course, was impossible, as that version did not
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yet exist at the time of t5’s read). Thus, t4’s write occurs “too late,” and t4 must
be aborted according to the MVTO rules.

5.5.2 The MV2PL Protocol

We next describe a scheduler that uses locks and a strong two-phase discipline
(i.e., the SS2PL rules as far as unlocking is concerned). We first assume as a
simplification that all versions of data items ever written are kept around; this
will be relaxed later by considering a special case in which at most two versions
of a data item exist simultaneously. We generally distinguish

committed versions, which have been written by transactions that are
already committed,

the current version of a data item, which is the committed version of
that data item written by the transaction that was committed last,

uncommitted versions, which are all remaining versions (created by trans-
actions that are still active).

The scheduler makes sure that at each point in time there is at most one MV2PL
scheduleruncommitted version of any data item. Depending on whether read steps are

allowed to read only the current version or also uncommitted versions, several
variants of this protocol can be distinguished. Moreover, the scheduler treats the
final step of a transaction differently from the other steps, where “final” refers to
the last data operation before the transaction’s commit or to the commit itself.
(Both interpretations are feasible under this protocol.) An individual step is
handled as follows.

1. If the step is not final within a transaction:

(a) an r (x) is executed right away, by assigning to it the current version
of the requested data item, i.e., the most recently committed version
(but not any other, previously committed one), or by assigning to it
an uncommitted version of x;

(b) a w(x) is executed only when the transaction that has written x last
is finished, so that there are no other uncommitted versions of x.

2. If the step is final within transaction ti , it is delayed until the following
types of transactions are committed:

(a) all those transactions t j that have read the current version of a data
item written by ti ,

(b) all those t j from which ti has read some version.

The following example indicates how such a scheduler works.
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EXAMPLE 5.9

Assume the MV2PL scheduler is supplied with the following sequence of

steps:

s = r1(x)w1(x)r2(x)w2( y)r1( y)w2(x)c2w1( y)c1

Then it proceeds as follows:

1. r1(x) is assigned to x0 and is executed: r1(x0)

2. w1(x) is executed since no other transaction is still active: w1(x1)

3. let r2(x) be assigned to x1 and executed: r2(x1)

4. w2( y) is executed: w2( y2)

5. let r1( y) be assigned to y0 and executed: r1( y0)

6. if w2(x) were not the final step of t2, it would be delayed since t1 is

still active and has written x1. However, as it is the final step of t2, the

final-step rules need to be applied. It turns out that t2 nonetheless has

to wait for the following reason:

(a) t1 has read the current version of data item y (y0), and t2 overwrites

this version,

(b) t2 has read x1 from t1.

7. w1( y), the final step of t1, is executed since

(a) t2 has not read a current version of a data item written by t1 (current

versions are x0, y0),

(b) t1 has not read a version written by t2. w1( y1)

8. finally, w2(x) can be executed: w2(x2)

In the following further elaboration of the protocol, we restrict ourselves2V2PL protocol
to a special case of MV2PL that is particularly relevant in applications, namely,
the 2V2PL protocol (two-version 2PL), which keeps at most two versions of
any data item at each point in time. These two versions are those that a
data server may need to keep around (in some form) for recovery purposes
(see Part III). Suppose that ti writes data item x, but is not yet committed,
the two versions of x are its before image and its after image. As soon as ti
commits, the before image can be dropped since the new version of x is now
stable, and old versions are no longer needed nor maintained. In other words, a
2V2PL scheduler always maintains a current version for a data item as well
as, in the presence of transactions that write, candidates for successor ver-
sions. It is a characteristic property of the 2V2PL variant that at most one
such uncommitted candidate is allowed at every point of time. So it is mostly
read operations that benefit from versioning, and in 2V2PL read operations
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Table 5.1 Lock mode compatibility for 2V2PL.

rl(x) wl(x) cl(x)

rl(x) + + −

wl(x) + − −

cl(x) − − −

are restricted to reading current versions only (i.e., the last committed ver-
sion).

2V2PL uses three kinds of locks on data items (i.e., not on individual
versions), all of which are kept until the termination of a transaction:

1. rl (read lock): An r l(x) is set immediately prior to an operation r (x)
with respect to the current version of x.

2. wl (write lock): A wl(x) is set (immediately) prior to an operation w(x)
for writing a new uncommitted version of x.

3. cl (certify (or commit) lock): A cl(x) is set prior to the execution of the
final step of a transaction (i.e., usually upon the transaction’s commit
request) on every data item x that this transaction has written.

The lock compatibilities for these three types of locks are given in Table 5.1
(as usual, + denotes compatibility and − incompatibility). Notice that unlock
operations need to obey the 2PL rule.

The role of the write locks is to ensure that at most one uncommitted
version can exist for each data item at each point in time. The key point to
ensure that the resulting output schedules are multiversion serializable is the
acquisition of the certify locks. The tests regarding the admissible orderings of
reading current versions and creating new ones is encoded in the compatibility
checking of read locks and certify locks. In this sense, certify locks play the role
that write locks have in conventional, nonversioned locking. However, the fact
that certify locks are acquired only at the end of the transaction and are thus
usually held for a much shorter time is a great performance advantage over
conventional, monoversion 2PL.

EXAMPLE 5.10

Consider the input schedule

r1(x)w2( y)r1( y)w1(x)c1r3( y)r3(z)w3(z)w2(x)c2w4(z)c4c3

and let x0, y0, z0 denote the current versions that exist before this in-

put schedule starts. The 2V2PL protocol produces the following output
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t1

r1(x0) r1(y0) w1(x1)

t2

w2(y2) w2(x2) c2

t3

r3(y0) r3(z0) w3(z3)

t4

w4(z4)

Figure 5.4 Sample execution under the 2V2PL protocol.

schedule, where ul denotes unlock operations that remove all locks of a

transaction:

r l1(x)r1(x0)wl2( y)w2( y2)r l1( y)r1( y0)wl1(x)w1(x1)cl1(x)ul1c1

r l3( y)r3( y0)r l3(z)r3(z0)wl2(x)cl2(x)wl3( y)w3(z3)cl3(z)ul3c3

cl2( y)ul2c2wl4(z)w4(z4)cl4(z)ul4c4

The output schedule is also illustrated in Figure 5.4. Note that cl2( y) would

be requested right before the begin of t4, but cannot be granted until the

commit of t3 because of the conflicting read lock held by t3. Further note

that wl4(z) causes a lock wait, too, because of its incompatibility with the

still held wl3(z); so t4 is blocked until after the commit of t3.

The correctness of the 2V2PL protocol follows from three facts. First, theCorrectness of
2V2PL order of the transactions’ final steps (usually their commit requests) provides

us with a total ordering from which we can derive a suitable version order.
Second, because write locks on the same data item are incompatible, at most
one uncommitted version can exist at a given time, so that the following choice
of the version order is unambiguous: xi ≪ x j ⇐⇒ fi < f j , with fi , f j denoting
the final steps of two transactions ti and t j that have both written (new versions
of ) x. Third, read operations are always directed to the current version, and
certify locks of concurrent writers, which are incompatible with read locks,
serve to determine situations when a new committed version is produced while
a reader is still in progress. In the latter case the commit of the writer is blocked
until the reader is terminated. Putting these three observations together allows
us to construct the multiversion serialization graph for the specific version
order, and to show that this graph is guaranteed to be acyclic.
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The following example shows that, just like 2PL, 2V2PL (and hence
MV2PL) is not deadlock free. Consider the following scheduler input:

r1(x)r2( y)w1( y)w2(x)c1c2

From this input, the scheduler produces

r l1(x)r1(x0)r l2( y)r2( y0)wl1( y)w1( y1)wl2(x)w2(x2)

where x0 and y0 denote the current versions as of the begin of the exam-
ple schedule. Next t1 needs a certify lock cl1( y), which is incompatible with
r l2( y), and t2 needs another certify lock cl2(x), which is incompatible with
r l1(x). Thus, the scheduler is stuck in a deadlock. There are various techniques
to cope with such a situation, as we already discussed in Chapter 4 for the
ordinary 2PL protocol.

5.5.3 The MVSGT Protocol

A final multiversion scheduler we look at is another SGT protocol, now en-
hanced for managing multiple versions. We note that it is no longer possible,
as in the monoversion case, to provide a protocol capable of generating exactly
MCSR. Instead there now exists an unlimited number of schedulers, each of
which generates a distinct subset of MCSR such that the union of all of them
equals MCSR. We sketch a general framework for such schedulers here, which
comprises certain nondeterministic steps; if these steps are made more precise,
the various schedulers result.

The general scheduler maintains a multiversion conflict graph G whose MVSGT
schedulernodes are the various transactions including t0. In the beginning, G has edges

from t0 to all other nodes; in the end, when the input has been processed
completely, Gwill contain all edges from the conflict graph plus a few additional
ones, depending on the result of the nondeterministic steps.

Let us first consider the assignment of a new version to some read step:
Assume that ri (x) arrives at the scheduler; candidates from which ti can read
are t0 as well as all w j (x), which have already been scheduled. However, the
following have to be excluded:

1. those t j on a path that originates from ti , since these are supposed to
follow ti in an equivalent serial schedule; let us call them late;

2. those t j for which a path exists from t j to another candidate tk that
writes x and from tk to ti , since in an equivalent serial schedule, tk writes
x after t j ; let us call them early.
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t4

t7

t5

t1

t6

t2

t3

Figure 5.5 A conflict graph.

Now a first nondeterministic step consists of choosing a version for ri (x)
among those written by transactions that are neither late nor early.

EXAMPLE 5.11

Let us consider the situation shown in Figure 5.5, where t0 as well as the

edges from t0 to any other transaction ti , i ∈ {1, . . . , 7}, are not shown.

Suppose that r1(x) arrives at the scheduler, and that t2 through t7 have

already written x; hence they are “candidates” in the sense just discussed.

Late transactions are t2 and t3, while early ones are t0 and t4. Thus, there is

a choice between candidates t5, t6, and t7.

Now if the conflict graph G is acyclic, then for each read step there is at
least one candidate that is neither late nor early. The simple reason is that not
all transactions in a schedule are late; among those that are not late, choose one
without pathwise connection to other nonlate candidates. The latter one is not
early. The multiversion conflict graph G is now maintained as follows:

1. If wi (x) is executed, an edge of the form (t j , ti ) is added to the graph
for each t j for which an r j (x) has already been scheduled; in this way,
G remains a supergraph of the MVSG. If G becomes cyclic, then wi (x)
is not executed; otherwise the version newly written is kept.

2. If ri (x) is scheduled and receives the version written by w j (x), an edge
of the form (t j , ti ) is added to G; since t j is not late, this does not close
a cycle. In addition, an edge of the form either (tk, t j ) or (ti , tk) is added
to G for each step wk(x) already scheduled, where tk is neither late nor
early.
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Consider the previous example again: If t7 is chosen from the set of can-
didates, the new edges (t7, t1), (t5, t7) (edge (t1, t5) would close a cycle), and
(t1, t6) (alternatively (t6, t7)) result. More precisely, a choice is made such that
(tk, ti ) if there exists a path from tk to ti in G, and (ti , tk) otherwise. It can be
shown that in this way G remains acyclic; in addition, each schedule produced
is in MCSR.

5.5.4 A Multiversion Protocol for Read-Only Transactions

Many modern data-intensive applications exhibit workloads with a dominant
fraction of read-only transactions that read and analyze large amounts of data. In
the presence of (at least a nontrivial fraction of) concurrent update transactions,
concurrency control is crucial to ensure that the read-only transactions “see”
consistent data. In fact, such situations pose a stress test for the concurrency
control component, because of the long duration of the read-only transactions.
Under a conventional monoversion scheduler, say, a 2PL protocol, such long
transactions would often lead to a high probability of blocking the update
transactions and eventually to disastrous performance (e.g., unacceptably high
response times).

Multiversion concurrency control protocols, on the other hand, can avoid
many of these blocking situations by assigning “old” versions to readers. How-
ever, as we have seen in the previous subsections, such protocols can become
fairly complex, are all but easy to implement, and are likely to incur noticeable
run-time overhead. In this subsection we consider a simple hybrid protocol
that aims to reconcile the simplicity of conventional (S)2PL or simple time-
stamping with the performance benefits of versioning. It does so by exploiting
versioning only for read-only transactions, thus “picking the low-hanging fruit”
in the sense that, say, 10 percent of the complexity of multiversion protocols
is sufficient to achieve, say, 90 percent of the benefit. To this end, read-only
transactions must be explicitly marked as such upon their beginning.

In practice, this is often feasible; if in doubt, a transaction would simply
have to be marked as a (potential) updater. This dichotomy of transactions is
the basis for the following combined protocol:

1. Update transactions are subject to the conventional S2PL protocol. They
acquire conventional locks for both read and write steps, which are re-
leased according to the two-phase rule, with write locks held until com-
mit (and possibly even read locks held until commit if the strong variant
SS2PL is used). In contrast to the conventional monoversion setting,
however, each write step creates a new version rather than overwriting
the data item; each version is timestamped with the timestamp of its
transaction that corresponds to the commit time of the transaction. So
update transactions do not benefit from versioning at all, but provide
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t5

r5(z0) r5(x2)

t4

r4(z0) r4(x0)

t3

r3(x2) w3(x3)

t2

r2(x0) w2(x2) r2(y0) w2(y2)

t1

r1(x0) r1(y0)

Figure 5.6 Sample execution under the ROMV protocol.

the potential to benefit the read-only transactions while keeping the
overhead of the protocol as low as possible.

2. Read-only transactions are handled by a multiversion timestamp proto-Read-only
multiversion

protocol
(ROMV)

col, similar to the MVTO rules but with a twist on committed versus
uncommitted versions. Each such transaction is assigned a timestamp
that, unlike the update transactions, corresponds to the begin of the
transaction (rather than its commit). Now the key point of the protocol
is that a read operation by a read-only transaction is assigned to the most
recent version that has been committed at the time of the reader’s begin.
In other words: the read-only transactions always access the version with
the largest timestamp that is smaller than the transaction’s timestamp
(assuming that timestamps of different transactions are never equal).

Figure 5.6 shows a self-explanatory scenario of how the protocol works,
with update transactions t2, t3, and read-only transactions t1, t4, and t5. The
lock wait of t3 because of the (conventional) wr lock conflict on x is indicated
by a dashed line.

A correctness proof for this protocol, let us call it read-only multiversionCorrectness of
ROMV protocol (ROMV), is relatively straightforward: the version order for a data

item is given by the commit order (and thus timestamp order) of the update
transactions, and read-only transactions are placed in the serialization order
according to their timestamps (i.e., between the update transactions). This
argument could be further formalized by explicitly showing that the multiver-
sion serialization graph is acyclic for the given version order. In fact, the ROMV
protocol generates only schedules in the MCSR subclass, and another simple
proof of its correctness would thus amount to showing the following: a serial
monoversion history can be derived from a given ROMV-generated history by
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commuting conflict-free operations of update transactions and commuting the
steps of read-only transactions with preceding writes such that each read-only
transaction eventually follows right after the transaction with the most recent
commit as of the transaction’s begin.

Although the ROMV protocol is very simple, it does raise a number of Garbage
collection of old
versions

nontrivial implementation issues. In particular, as versions are transient and
merely serve concurrency control purposes, it is desirable to have some form
of garbage collection for old versions that are definitely no longer beneficial
for any read-only transaction. A simple sufficient condition for a version being
eligible for garbage collection would be that it is (1) not the most recent com-
mitted version (which, of course, must not be garbage collected), and (2) its
timestamp is older than the timestamp of the oldest active read-only transac-
tion. This approach assumes that there is no explicit limit for the number of
simultaneously kept versions of a data item. If there is such a limit, an additional
complication is that some read-only transactions may have to be aborted be-
cause the version that they would have to read according to the timestamping
rule is no longer available. Another nontrivial implementation issue is how to
manage the timestamps for the versions themselves; this may be somewhat
tricky because timestamps are assigned only upon the commit of a transaction.
A straightforward solution could be to place timestamps in the versions them-
selves (e.g., in page headers, assuming that data items are pages), but this would
require revisiting all accessed pages at commit time. Alternative approaches
include additional data structures that temporarily maintain write sets and
timestamps of committed update transactions.

5.6 Lessons Learned

Keeping multiple versions of data items around is an attractive idea, and at
the same time it is a practical one, as we will show when we discuss recovery.
From a theoretical point of view, an adaptation of serializability theory to a
multiversion setting is straightforward, as soon as the appropriate versioning
restrictions have been identified. A tricky situation, considerably different from
the general case, arises for a limited number of versions, as an entire hierarchy
of classes of serializable histories enters the picture.

From a more practical point of view, adapting the various scheduling pro-
tocols to a multiversion setting is not too difficult, once the appropriate locks
(or alternative synchronization mechanisms) have been found. Intuitively, mul-
tiversion protocols allow various degrees of freedom for assigning, or choosing,
versions to process within a schedule. The special case of providing consistent
views of the data to read-only transactions, discussed in Section 5.5.4, is of very
high practical relevance and greatly benefits from versioning; protocols like the
one described there are used in several commercial database systems.
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Exercises

5.1 For the following three histories, test whether they are monoversion his-
tories or members of MVSR or MCSR; in case a schedule is a member of
MVSR, additionally find out for which values of k > 0 the history is in class
kVSR.

m1 = w0(x0)w0( y0)w0(z0)c0r3(x0)w3(x3)c3w1(x1)c1r2(x1)w2( y2)w2(z2)c2

m2 = w0(x0)w0( y0)c0w1(x1)c1r3(x1)w3(x3)r2(x1)c3w2( y2)c2

m3 = w0(x0)w0( y0)c0w1(x1)c1r2(x1)w2( y2)c2r3( y0)w3(x3)c3

For schedules in MVSR, also give an appropriate version function for a final
transaction t∞.

5.2 For the multiversion schedule

m = w0(x0)w0( y0)c0r1(x0)w1(x1)r2(x1)w2( y2)w1( y1)w3(x3)

test whether there exists a version order ≪ such that MVSG(m, ≪) is
acyclic. If there is an acyclic graph, find an appropriate version function for
a final transaction t∞ such that the graph remains acyclic.

5.3 Prove: In the “no blind writes” model, where each data item written by a
transaction must have been read before in the same transaction, MCSR =

MVSR.

5.4 Prove: In the “action” model, where each step is a combination of a read
operation immediately followed by a write operation on the same data
item, MVSR = VSR.

5.5 Consider the following schedule, given in “conventional” form without a
specific version function:

r1(x)r2(x)r3( y)w2(x)w1( y)c1w2(z)w3(z)r3(x)c3r2( y)c2

Show that this schedule is multiversion serializable, i.e., could be allowed
by a multiversion concurrency control. Give a feasible version function and
also a feasible version order. What do the resulting executions (i.e., output
schedules) under the MVTO and the 2V2PL protocols look like?

5.6 Consider the input schedule:

w1(x)c1r2(x)r3(x)c2r4(x)w3(x)c4c3

Give the resulting output schedule under the MVTO protocol.

5.7 Consider the input schedule of the MV2PL Example 5.9:

s = r1(x)w1(x)r2(x)w2( y)r1( y)w2(x)c2w1( y)c1

Apply the specialized 2V2PL protocol to this input and give the resulting
output.
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5.8 Complete the proof sketches for the correctness of the MVTO, 2V2PL,
and ROMV protocols.

5.9 Reconsider the ROMV protocol that has been specifically geared for read-
only transactions. What happens if the protocol is relaxed in such a way
that update transactions use the timestamp-based version selection for their
read steps? That is, update transactions would still use conventional exclu-
sive locks for writes but would exploit versioning for reads by selecting
the most recent version that was committed at the time of the update
transaction’s begin. Is this protocol still correct in that it guarantees MVSR
schedules?
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CHAPTER S IX

Concurrency Control on
Objects: Notions of

Correctness

No matter how complicated a problem is, it usually can be reduced to a simple

comprehensible form which is often the best solution.

—An Wang

Every problem has a simple, easy-to-understand, wrong answer.

—Anonymous

6.1 Goal and Overview

After the previous chapters’ detailed exploration of page model concurrency
control methods, we will now make a major step to enrich our underlying
computational model by turning to the object model. This means, as you may
recall from Chapter 2, that transactions are now modeled as trees of operation
invocations rather than “flat” sequences (or partial orders) of simple read or
write steps. The major incentive for studying the richer but also more complex
object model lies in its potential for higher concurrency by exploiting specific
semantic properties of the operations, in particular commutativity of higher-
level operations such as Deposit or Withdraw on Bank account objects.

The goal of this chapter is to develop correctness criteria for concurrent
executions of object model transactions. Analogously to the flow of arguments
for the page model, these criteria will then serve as the basis for practical con-
currency control algorithms, to be developed in the subsequent chapters. In our
quest for appropriate correctness criteria we have to address two major differ-
ences from the page model: (1) the operations of a transaction are more general
than merely read and write, and (2) operations can themselves invoke other
operations, thus leading to a transaction tree. After introducing the syntactical
notions of object model histories and schedules in Section 6.2, we will address
these two issues in two steps: in Section 6.3 we will consider flat schedules
with semantically rich operations; then we will look into the general case of
transaction trees in Section 6.4.

217
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It will turn out that allowing general operations but sticking to the flat struc-
ture of transactions is a relatively straightforward extension of what we have
discussed within the framework of the page model. In particular, we will be
able to generalize the notion of conflict serializability in an appropriate manner.
Coping with transaction trees poses more fundamental difficulties. Here we will
see that neither view serializability nor conflict serializability can be generalized
directly, and we will thus need to develop a more elaborate correctness crite-
rion, in the style of (commutativity based) reducibility, as briefly discussed in
Chapter 3. This fundamental criterion, to be coined tree reducibility, will be the
subject of Section 6.4. The need for algorithmic tractability will then motivate
our exploration of sufficient, more “constructive” conditions for correctness in
Section 6.5. These considerations will emphasize a particularly interesting spe-
cial case of the object model, namely, the case of layered transactions, where the
nodes of the transaction trees correspond to operations of a strictly layered sys-
tem architecture (such as the five-layer database server sketched in Chapter 1).
In the final Section 6.6, we will give an outlook on exploiting further semantic
properties of operations, beyond the property of general (state-independent)
commutativity.

6.2 Histories and Schedules

Let us first briefly recall from Chapter 2 how transactions are characterized
in the object model. The dynamic invocations of operations by a transaction
spawn a tree of labeled nodes, where each node corresponds to an invoked
operation together with its input and possibly also output parameters. The
parent of a node is the operation from which the node’s operation was called,
and the children of a node are the operations called by the node. Ultimately,
each invoked operation results in calls of read and write operations, which thus
form the leaves of the tree. As we again want to allow concurrent or parallel
threads, even within a transaction, the execution order is modeled as a partial
order of the leaves; the ordering (or nonordering, i.e., concurrent execution) of
higher-level operations is derived from the leaf order: we say that p precedes q if
p terminates before q begins, or more technically, the last leaf-level descendant
of p precedes the first leaf-level descendant of q.

The next step is to consider interleavings of such transaction trees. Not
surprisingly, this leads to a notion of partially ordered forests:

Object model
history

DEFINITION 6.1 Object Model History

Let T = {t1, . . . , tn} be a (finite) set of transaction trees, where each t i ∈ T
is a pair (opi , <i ) of labeled tree nodes along with a partial order of the

leaves. A history s (or complete schedule) for T is a partially ordered forest
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(op(s), <s) with node set op(s) and partial order <s such that:

1. op(s) ⊆
⋃n

i=1 opi ∪
⋃n

i=1{a i , ci }, and
⋃n

i=1 opi ⊆ op(s), i.e., s contains

the operations of the given transaction trees and a termination operation

ci (commit) or a i (abort) for each transaction t i ∈ T ;

2. (∀i, 1 ≤ i ≤ n) ci ∈ op(s) ⇔ a i /∈ op(s);

3. a i or ci is a leaf node with the transaction ti as its parent;

4.
⋃n

i=1 <i ⊆ <s , i.e., all transaction orders are contained in the partial

order given by s;

5. (∀i, 1 ≤ i ≤ n) (∀p ∈ opi )p <s a i or p <s ci ;

6. any pair of leaf operations p, q ∈ op(s) from distinct transactions ac-

cessing the same data item such that at least one is a write operation

must be ordered in s, i.e., either p <s q or q <s p.

Like the individual transaction trees, the partial order of a history refers to
the leaves of the forest, and we can derive a partial order among all nodes by
the following convention:

Tree-consistent
node ordering

DEFINITION 6.2 Tree-Consistent Node Ordering

In an object model history s = (op(s), <s) the ordering <s of leaf nodes

is extended to arbitrary nodes as follows: two nodes p and q are consid-

ered as ordered, i.e., p <s q if for all leaf-level descendants p′ and q′ of p
and q, respectively, the order p′ <s q′ holds according to the original (i.e.,

nonextended) <s . Such an ordering is called tree consistent.

Now the notion of a prefix of a history, which we introduced in Chapter 3
for the flat histories of the page model, can be applied to transaction forests:
a prefix of a history s = (op(s), <s) is a forest s ′ = (op(s ′), <′

s) with op(s ′) ⊆
op(s) and <′

s ⊆ <s such that for each p ∈ op(s ′) all ancestors of p and all nodes
q ∈ op(s) with q <s p must be in op(s ′), too, and <′

s equals <s when restricted
to op(s ′). Now the definition of an object model schedule is obvious:

DEFINITION 6.3 Object Model Schedule Object model
schedule

An object model schedule is a prefix of an object model history.

As an example consider a simplified version of the funds transfer transaction
from Chapter 2, consisting of a Withdraw and a Deposit operation on two bank
accounts. In contrast to the more elaborate example in Chapter 2, we assume
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t1

Withdraw(a) Withdraw(b) Deposit(c) Deposit(c) c c

r (p) r (q)

t2

w(p) w(t) w(t) r (r) w(r) r (r) w(r)w(q)

Figure 6.1 Example of an object model history.

that both of these operations are directly “translated” into page operations, that
is, reads and writes. Figure 6.1 shows a history (i.e., concurrent execution) of
two instances of such an object model transaction: t1 transfers money from
account a to c, and t2 transfers money from b to c. We assume that the relevant
records for accounts a, b, and c reside on pages p, q, and r , respectively, and
that all Withdraw operations also need to access page t to obtain and track an
(automatically generated) approval code; for simplicity, we disregard steps for
locating these pages (e.g., index traversals). We also simplify the notation in
that we only list those parameters of the invoked operations that are relevant
for the discussion; for example, the Withdraw operation actually has two input
parameters and one result parameter, namely, the ID of the bank account on
which it operates, the amount of money to be withdrawn, and a returncode that
states whether the withdrawal was successful or not. Figure 6.1 shows only the
first argument, but in other examples we may need to make more parameters
explicit as well.

In examples such as Figure 6.1 we will indicate the ordering of operations
by drawing the leaf nodes in their execution order from left to right. As the
caller-callee relationship in transaction trees is captured by vertical or diago-
nal arcs, the crossing of such arcs indicates that two (nonleaf ) operations are
concurrent. In Figure 6.1, for example, the two Withdraw operations that orig-
inate from t1 and t2, respectively, are concurrent. Of course, for nontotal leaf
orders, we need a more explicit specification such as drawing directed arcs be-
tween ordered pairs of operations, as mentioned already in Chapter 3 for flat
schedules.

Sometimes it may also be necessary to indicate the caller-callee relationshipNotation for
caller-callee
relationship

more explicitly rather than drawing the arcs of the trees; we will then use
subscripts for tree nodes as follows: (1) the subscript of a root ti is i , and (2) the
subscript of the j-th child of a node with subscript ω is ω j (i.e., the parent’s
subscript with j appended). So, in Figure 6.1, for example, the w(t) operation
belonging to t1 would be denoted as w113(t), thus bearing the identification of
its entire ancestor chain.

Now that we have both a formal definition and an intuitive understanding
of object model schedules, the notion of a serial schedule can be defined in a
straightforward way:
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DEFINITION 6.4 Serial Object Model Schedule

An object model schedule is serial if its roots are totally ordered and for

Serial
schedule

each root and each i > 0 the descendants with distance i from the root are

totally ordered.

The first condition in this definition states that transactions (i.e., the roots)
are executed sequentially, and the second condition additionally requires that
all steps within a transaction are also sequential. Note that it is not enough to
require that all leaves of a root are ordered, as this would still allow interleaved
executions of some inner-node operations.

A concept that is related to the notion of serial executions is the following:

Isolated
subtree

DEFINITION 6.5 Isolated Subtree

A node p and the corresponding subtree in an object model schedule s are

called isolated if

1. for all nodes q other than ancestors or descendants of p the property

holds that for all leaves w of q either w <s p or p <s w,

2. for each i > 0 the descendants of p with distance i from p are totally

ordered.

The second condition is identical to one of the two requirements in Def-
inition 6.4, simply stating that the subtree corresponds to a strictly sequential
execution. The first condition requires that no other subtree can have any leaf
operation between one of the leaves of subtree p (with the trivial exception
of p’s ancestors or descendants, including p itself ). So the subtree rooted at p
forms an indivisible unit. Note, however, that it is allowed for another subtree
to have some leaves both preceding and following p. In the sense of the theory
of relative serializability developed in Section 3.10, our notion of an isolated
subtree p makes a statement only about the indivisible units of p relative to
other subtrees, namely, forcing all of p to be a single indivisible unit; but we do
not say anything about the interleavings of other subtrees (i.e., their indivisible
units relative to p). A very strong special case is when all roots of a schedule
are isolated: such a schedule must be serial.

The example in Figure 6.1 is special in that the two interleaved transac- Layered
histories and
schedules

tion trees are both perfectly balanced trees, meaning that all leaves, with the
exception of the Commit operations, have the same distance from their roots.
This is not by accident in the example; rather it captures a common case that
the invoked operations correspond to fixed levels of a strictly layered system



222 CHAPTER SIX Concurrency Control on Objects: Notions of Correctness

architecture. We accounted for this specific structure already by drawing the
tree nodes of Figure 6.1 in three levels: page accesses at the bottom level,
method invocations on account objects at the middle level, and transactions
at the top level. We refer to such highly structured object model schedules as
layered schedules.

DEFINITION 6.6 Layered History and Schedule

An object model history is a layered history if all leaves other than Com-

mit or Abort operations have identical distance from their roots. A layered

history with a leaf-to-root distance of n is called an n-level history. In an

n-level history, operations with distance i to the leaf level are called level-i
operations (Li operations) (i.e., leaves are at level L0 and roots at level Ln).

A layered schedule is a prefix of a layered history.

So, according to this definition, the example of Figure 6.1 is a two-level
history, with levels numbered from 0 to 2 in a bottom-up manner. Other ex-
amples, to be studied later, would include two-level histories with transactions
at level L2 that consist of record accesses at level L1 that are translated into
page accesses at level L0. It is worth mentioning that page model schedules are
a special case of n-level schedules with n = 1.

Two examples of nonlayered histories are shown in Figure 6.2. Both are
similar to the previous funds transfer scenario, with the following differences:
In the upper example, Withdraw operations do not include the step for ob-
taining and tracking an approval code, so that the transactions must invoke the

t1

Withdraw(a) Withdraw(b) Deposit(c) Deposit(c)

r (p) r (q)

t2

w(p) w(t) w(t) r (r) w(r) r (r) w(r)w(q)

t1

Withdraw(a) Withdraw(b)

r (p) r (q)

t2

w(p) w(t) w(t) r (r) w(r) r (r) w(r)w(q)

Figure 6.2 Two examples of nonlayered object model schedules.
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data server operations that correspond to this specific step directly (resulting
in the w(t) operations). In the lower example, the deposit steps are no longer
explicitly represented, and the corresponding page operations are invoked di-
rectly by the transactions. The latter scenario may appear a bit odd: why would
the withdrawals be explicit, whereas the Deposit operations no longer show
up? This may have (at least) two different explanations: First, it could happen
that the transactions do, for efficiency or other reasons, “bypass” the object in-
terface, avoiding the call of the Deposit method, although they do observe the
encapsulation of account objects as far as withdrawals are concerned. The sec-
ond possible explanation simply is that the histories on which we reason about
correctness are merely models of the actual executions in that they track par-
ticularly relevant actions but do not necessarily need to be complete pictures
of everything that happened in the underlying server. So it could well be that
the read and write operations on page r were invoked on behalf of explicitly
invoked Deposit operations, but these Deposit operations are not observed,
and we only know the transactions to which these page operations belong. Of
course, it is usually up to ourselves how completely and accurately we devise
our modeling of some specific system, but the above should be taken as a word
of caution that such “nonstandard” scenarios may arise and should be tractable
within our framework.

6.3 Conflict Serializability for
Flat Object Transactions

Within the class of layered schedules, a special subclass of particular interest
is what we call flat object schedules. These are two-level schedules with object
method invocations at the higher level L1 and ordinary read/write operations
at the lower level L0. The decisive particularity, however, is that we essentially
disallow concurrent L1 operations in this subclass. In other words, transactions
may be interleaved, but for each pair of object method executions we require

Flat object
schedule

an ordering.

DEFINITION 6.7 Flat Object Schedule

A two-level schedule s is called a flat object schedule if for each pair p, q
of L1 operations the following two conditions hold:

1. (∀p′ ∈ child (p), q′ ∈ child (q)) p′ <s q′ or

(∀p′ ∈ child (p), q′ ∈ child (q)) q′ <s p′

2. (∀p′, p′′ ∈ child (p)) p′ <s p′′ or p′′ <s p′

where child (p) denotes the set of children of operation p.
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t1

Withdraw(a) Withdraw(b) Deposit(c) Deposit(c)

r (p) r (q)

t2

w(p) w(t) w(t) r (r) w(r) r (r) w(r)w(q)

Figure 6.3 Example of a flat object schedule.

The first condition requires a total order among L1 operations; the second
condition demands that each L1 operation is itself a serial execution of page
accesses.

Figure 6.3 shows an example of a flat object schedule. Note that the total
ordering of L1 operations and their sequentiality are easily recognized by the
observation that none of the caller-callee arcs from the L1 operations to their
L0 children cross each other.

Our specific interest in flat object schedules lies in the fact that their struc-
ture is as close as possible to conventional, one-level schedules. As object-level
operations are executed sequentially, the resulting page-level accesses are ac-
tually not of specific interest as far as concurrency control is concerned. So an
intriguing abstraction step now is to disregard the page-level operations com-
pletely, effectively constructing a one-level schedule that consists of abstract,
yet indivisible operations. It is in this sense that we now have a situation com-
parable to that for conventional page model schedules, with the key property
of operations being their indivisibility.

The natural next step is to reconsider the technical approaches that we
explored toward correctness criteria for the page model as to whether they are
potentially applicable to our current setting as well. It is fairly obvious that the
notions of view serializability and the underlying reads-from relation cannot
be generalized to flat object schedules without “degrading” all operations into
read and write actions and losing their richer semantics. The simpler notion of
conflict serializability and its related notion of commutativity based reducibil-
ity, on the other hand, are indeed promising candidates for this purpose. In fact,
a conflict between operations is nothing but the observation that the operations
do not commute, and this is obviously something that can also be applied to
semantically richer operations.

DEFINITION 6.8 Commutative Operations

Two operations p and q (on some objects) are commutative (or they com-

Commutative
operations

mute) if for all possible sequences of operations α and ω, the return pa-

rameters in the concatenated sequence αpqω are identical to those in the

sequence αqpω.
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So, for example, two operations deposit(a, 10) and deposit(a, 20) that de-
posit $10 and $20 into account a can be tested by various numbers of successive
Withdraw operations to see that both possible orderings of the two Deposit
operations achieve the same effects.

The above definition emphasizes the encapsulated nature of objects; the State-
independent
commutativity

state of an object is observable only through explicitly invoked methods rather
than being exposed to arbitrary reads. In this sense, commutativity demands
that the ordering of two operations is irrelevant: different orderings cannot
be distinguished as far as other explicit method invocations are concerned. So
if two operations p and q are not commutative, the difference between the
two possible orderings should be observable in the result parameters of p or
q or some subsequently invoked operation. In the latter case, the operation
to observe the noncommutativity of p and q is not necessarily the next one
after p and q; the difference may become visible only after a finite number
of additional operations (i.e., the sequence ω in the definition). Finally, note
that we want commutativity to hold in every possible state of the object(s)
on which p and q operate. As states are not directly visible, this means that
we must take into account that p and q are executed after some (finite) his-
tory of operations that result in a certain state (i.e., the sequence α in the
definition). We will refer to this most general notion of commutativity also as
state-independent or general commutativity, and will discuss possible relaxations
later in Section 6.6.

Commutativity can be a delicate property, which is all but trivial to spec-
ify. As soon as the programming language in which object methods are writ-
ten is sufficiently expressive, the commutativity of two methods is, like most
other interesting metaproperties of programs, undecidable. Our escape from
this dilemma is that rather than automatically inferring such properties, we
expect an application expert to assert the commutativity of operations. In
doing this, the expert may be conservative in that operations are assumed
as noncommutative if she is in doubt about a positive statement. After all,
operations that may superficially appear commutative may have side effects
on other objects that ultimately render them noncommutative. For example,
two customer orders for different items (or even for the same item if the
item is guaranteed to be in stock) are commutative as long as we consider
only operations like PlaceOrder, Shipment, and Payment, but they turn out
to be noncommutative if we add the twist that the customer who places the
hundred-thousandth order wins a car. It is for exactly such reasons that we have
avoided establishing a one-to-one correspondence between methods and ob-
jects in our above definition. Rather, we do allow methods to operate on more
than one object, possibly in a transitive manner. Likewise, we do not infer from
the disjointness of two operations’ parameter lists that they are necessarily
commutative.

Despite these potential pitfalls, we will, in many practical situations, pos-
itively assume that noncommutative operations arise only on the same object
type, thus declaring operations on different object types as pairwise conflict
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Table 6.1 Commutativity table for bank account operations.

Withdraw(x, �2) Deposit(x, �2) GetBalance(x)

Withdraw (x, �1) − − −

Deposit (x, �1) − + −

GetBalance (x) − − +

free. For the object type Bank account, for example, we may consider three
methods Withdraw, Deposit, and GetBalance, all of which have an object ID as
a primary input parameter. Withdraw and Deposit operations have an amount
of money as a second parameter and merely return a binary status about the
success or failure of the operation, and Get Balance operations return the cur-
rent balance of a bank account.

For this setting, two Deposit operations are commutative because of the
fact that both merely increment the account’s balance, without caring about
the prior or resulting value of the balance. In contrast, a Withdraw opera-
tion does not commute with a Deposit operation, as withdrawals usually
enforce an overdraft protection, so that money can no longer be withdrawn
once the balance drops below a certain threshold. Thus, if an account’s bal-
ance had a value equal to this threshold and a Deposit operation first incre-
mented the balance, a Withdraw operation would succeed if the requested
amount is at most as high as the deposited amount, whereas the withdrawal
would fail to withdraw money if the Deposit operation were second in the
ordering.

A complete commutativity specification for these three operation types is
given in Table 6.1, with + standing for commutativity and − for noncommuta-
tivity. x denotes the account parameter of the operations and � the amount of
money that is withdrawn or deposited. Strictly speaking, the table should also
consider the case of two operations on different account objects x and y, but
this is generally assumed as a + and therefore omitted. Also, we would typi-
cally assume that each of the three operations commutes with all operations
on other object types such as customer objects.

Now that we have established a (symmetric) commutativity relation among
the invoked operations, we can directly apply the notion of commutativity
based reducibility to flat object schedules, essentially repeating the arguments

Commutativity
based

reducibility

from Chapter 3.

DEFINITION 6.9 Commutativity Based Reducibility

A flat object schedule s is commutativity based reducible if it can be trans-

formed into a serial schedule by applying the following rules finitely many

times:
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1. Commutativity rule: The order of two ordered operations p and q with,

say, the order p <s q can be reversed if

(a) both are isolated, adjacent in that there is no other operation r with

p <s r <s q, and commutative, and

(b) the operations belong to different transactions, or if they belong to

the same transaction t i , the reversal does not contradict the specified

order <i within t i .

2. Ordering rule: Two unordered leaf operations p and q can (arbitrarily) be

ordered, i.e., assuming either p < q or q < p if they are commutative

(i.e., both are reads, or they operate on different data items).

Note that the ordering rule is merely an auxiliary rule to cope with par-
tial orders at the leaf level. Further note that the isolation condition is ac-
tually redundant for flat object schedules with a total ordering of the L1

(i.e., object-level) operations. We nevertheless state this explicitly as it will
play a crucial role when we turn back to the general case of object model
schedules.

Consider the example of Figure 6.3. All we need to do to transform this
schedule into a serial one is to exchange the order of t1’s Deposit operation with
the deposit of t2 and then, in a second transformation step, with the withdrawal
of t2. These steps pull t1’s Deposit operation back, out of the interleaving with t2.
Note once again that the transformations are feasible only because the affected
L1 operations are already isolated in that their page-level executions are strictly
sequential.

A dual way of reasoning would be to consider the conflicts (i.e., noncom-
mutative pairs of operations) and test for conflict equivalence with a serial
schedule. This leads to the following criterion:

Conflict
equivalence,
conflict
serializability

DEFINITION 6.10 Conflict Equivalence and Conflict Serializability

Two flat object schedules s and s ′ are conflict equivalent if they consist of the

same operations and both have the same ordering for all noncommutative

pairs of L1 operations.

A flat object schedule is conflict serializable if it is conflict equivalent to a

serial schedule.

Obviously, the conflict graph construction of Chapter 3 can be carried
over to flat object schedules as well. Indeed, for a flat object schedule s, the
corresponding conflict graph is a graph with the transactions of s as nodes and
an edge from t i to t j if there are noncommutative L1 operations pi and q j

belonging to t i and t j , respectively. Now the following theorem is obvious:
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THEOREM 6.1

Let s be a flat object schedule. Then s is conflict serializable iff its conflict

graph is acyclic. Furthermore, s is conflict serializable iff it is commutativity

based reducible.

The conflict graph for the example of Figure 6.3 does not have any edges
because all L1 operations commute, and thus it is trivially acyclic. Note, how-
ever, that a conventional conflict graph derived from the L0 operations (i.e.,
page accesses of the two transactions) would have a cycle caused by the con-
flicts on pages t (with t1 preceding t2) and r (with t2 preceding t1). This shows
exactly the benefit of exploiting the “semantic knowledge” about the object-
level operations for withdrawals and deposits. We can now allow schedules that
would be disallowed under the purely read/write based viewpoint of the page
model.

6.4 Tree Reducibility

To generalize the notions of reducibility or serializability to nonflat and, ul-
timately, even nonlayered schedules, recall the example of Figure 6.1 from
Section 6.2. The decisive difference between this schedule and a flat object
schedule is that its object-level operations are again interleaved at the page
level. So if we could reason that the page-level execution was equivalent to a
schedule with isolated L1 operations, then we would be in a position to abstract
from the details of the page accesses and simply ignore the page level. This is
essentially what we have done with flat object schedules anyway, with the only
difference that we knew in advance about the isolation of the L1 operations
and thus found it easy to justify the abstraction step.

At this point it should be no surprise that the arguments for showing
equivalence to operations being isolated are again commutativity arguments.
In Figure 6.1, for example, the second and third page access of operation
withdraw11(a), namely, w112(p) and w113(t), both commute with the preced-
ing r211(q) operation belonging to t2; hence the two write accesses of t1 can
be pulled back so that t1’s Withdraw operation would completely precede the
Withdraw operation of t2. Then, once we have “disentangled” the two inter-
leaved Withdraw operations, the argument from the previous section is appli-
cable: all object-level operations are isolated and commute with each other, so
that the entire schedule is equivalent to either of the two possible serial orders
of t1 and t2.

The key abstraction in the entire reasoning, disregarding the operations
inside isolated subtrees, boils down to reducing such a subtree to its root. By
adding an appropriate tree pruning rule to the notion of commutativity based
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reducibility, we finally arrive at the desired generalized type of reducibility,
which we coin tree reducibility, as it is indeed applicable to the entire class of
object model schedules.

DEFINITION 6.11 Tree-Reducible History Tree
reducibility

An object model history s = (op(s), <s) is tree reducible if it can be trans-

formed into a total order of its roots by applying the following rules finitely

many times:

1. Commutativity rule: The order of two ordered leaf operations p and q
with, say, the order p <s q, can be reversed provided that

(a) both are isolated, adjacent in that there is no other operation r with

p <s r <s q, and commutative; and

(b) the operations belong to different transactions, or if they belong to

the same transaction t i , the reversal does not contradict the specified

order < i within the transaction t i ; and

(c) the operations p and q do not have ancestors, say, p′ and q′, respec-

tively, which are noncommutative and totally ordered (in the order

p′ <s q′).

2. Ordering rule: Two unordered leaf operations p and q can (arbitrarily) be

ordered, i.e., assuming either p < q or q < p if they are commutative

(i.e., both are reads, or they operate on different data items).

3. Tree pruning rule: An isolated subtree can be pruned in that it is replaced

by its root.

An object model schedule is tree reducible if its committed projection is tree

reducible.

Applying the tree pruning rule results in trees that are, strictly speaking, no Abstractions of
object model
schedules

longer object model schedules according to the definition of an object model
transaction given in Chapter 2. The reason for this subtlety is that our original
definition has required the leaves of such transactions to be page model read or
write operations. Once we prune a tree, this condition is obviously no longer sat-
isfied. To resolve this syntactic mismatch, we now relax the definition of object
model schedules so that they are allowed to contain transactions whose leaves
are high-level operations (i.e., have pruned the original page model leaves),
provided that these high-level operations are guaranteed to appear as if they
were indivisible operations. Indeed this is the whole point of pruning the tree:
when we know that some lower-level interleaving has the same effect as if each
of the corresponding high-level operations were an indivisible unit, then and
only then can we safely prune the descendants of such high-level operations.
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This is the key abstraction that we exploit in our reasoning about object model
schedules; so object model schedules are now also allowed to contain abstrac-
tions of object model transactions in the above sense. Note, however, that the
abstraction cannot be reversed: it does not make sense to expand again leaves
of pruned trees, which correspond to high-level operations, into “full” trees
with page model operations as leaves.

Compared to the earlier definitions of commutativity based reducibility
for page model and flat object model schedules, the commutativity rule in
Definition 6.11 has become more sophisticated by adding the third condition
regarding ancestors. The reason for this addition is a subtle, yet important one.
Whenever two higher-level operations are totally ordered and do not commute,
this ordering is a hard constraint for their descendants. Reversing the ordering of
two leaves that belong to such higher-level operations and, in the end, possibly
reversing even the order of higher-level operations is not legitimate, as this
could lead to different effects of the higher-level operations themselves. As
the higher-level operations are in conflict, a reversal of their order would in
general not preserve the original return values. As an example consider two
serial Withdraw operations on the same bank account such that the first one
is successful in withdrawing money, whereas the second one is unable to do so
because of the account’s overdraft protection. If we could rearrange the leaves
of these two operations such that, ultimately, the second withdrawal preceded
the first one, it would be impossible for the operations to have their original
return values. So the fundamental problem is that reordering commutative leaf
operations without carefully taking into account their ancestors would open
a “back door” for implicitly (almost “unconsciously,” so to speak) reordering
these ancestors, even if such reordering were unacceptable.

Such subtleties never arise in the commutativity based reasoning for the
page model and for flat object schedules, as the only possibly affected ancestors
are the transaction roots. Different transactions, however, are usually assumed
to be “independent” in the sense of being commutative; this is exactly the
reason why the page model serializability theory considers each possible serial
transaction order as acceptable.

As a second example for applying our new fundamental concept of tree
reducibility, consider Figure 6.4 with record-level operations Store, Fetch, and
Modify inside a database server, which are dynamically translated into page
accesses. The example assumes that records w, x, and y initially are all located
on page p, and that all operations first look up some address translation table
on page t, say, for translating record identifiers into page numbers. During the
execution of a store(z) operation for a new record z, record x is moved from
p to q, say, for lack of space on page p, and the address translation table on
page t is updated accordingly. Recall from our overview of database system
internals in Chapter 1 that such situations are commonplace inside a data
server.
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t1

Store(z) Fetch(x) Modify(y) Modify(y) Modify(w)

r (t) r (p) r (t)r (q)

t2

r (p) w(q) w(t) r (t) w(p)r (p) r (t)w(p) r (p) w(p) w(p)r (p)r (t)

Figure 6.4 Example of a correct object model schedule with record-level op-
erations.

In this example, the interleavings of the Store and Fetch pair and of the
last two Modify operations can both be eliminated by pulling back the two
page reads of fetch(x) so that they are placed in front of store(z), and pushing
forward the r (t) operation issued by t2’s modify(y) operation. The resulting
schedule has all object-level operations isolated, so that the page-level subtrees
can be pruned, with the following outcome:

fetch21(x) store11(z) modify12(y) modify13(w) modify21(y)

Now the only noncommutative pair of operations consists of the two Mod-
ify operations on record y; so we rearrange the commutative operations (e.g.,
by pushing forward t2’s fetch(x) operation) to produce a serial order with all
operations of t1 preceding all of t2. Now the transactions themselves (i.e., the
roots in the forest) are isolated, and we can prune their record-level operations
as well. In this way we have finally proven that the execution in Figure 6.4 can
be reduced and thus is equivalent to a serial order of the transaction roots with
t1 < t2.

Note that the serialization order with t1 preceding t2 is the only feasible
one in the example of Figure 6.4. This may appear somewhat strange, as this
order would imply that the fetch(x) operation of t2 followed t1’s store(z) and
thus the movement of record x from page p to page q. So it seems that the
fetch21(x) operation should have a read access to q among its children; how-
ever, this was not the case in the original schedule where x has still been read
from p. The explanation for this seemingly confusing observation simply is
that we do not claim to have an equivalent serial execution with every detail
of the necessary page accesses. Rather, the abstraction step of pruning these
details once we have isolated subtrees cannot be reversed by later expanding
the transactions with their original descendants. In the serial execution with
t1 < t2, the fetch(x) operation of t2 would again issue its descendants dynam-
ically depending on the current internal state of the underlying data pages.
However, this in no way affects the validity of our overall argumentation that
the actual execution, as given by Figure 6.4, is equivalent to a serial execution
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t1

Store(z) Fetch(x)

r (t)

t2

r (p) r (q) w (p) r (t) r (p) w(t)w(q)

Figure 6.5 Example of a disallowed object model
schedule with record-level operations.

from the perspective of the transactions. The point is that the low-level details
such as the specific pages on which the various records reside do not matter
at a higher level of abstraction, provided that no internal (i.e., storage-level)
inconsistency can arise.

To demonstrate that subtree isolation is all but trivial, consider another
example with record-level operations, shown in Figure 6.5. Here, because of
the page-level conflicts between w115(p) and r212(p) on one hand and r211(t)
and w116(t) on the other, it is impossible to rearrange the page-level operations
toward isolating the store(z) and fetch(x) operations. Hence the schedule is
not tree reducible. Note that it does not help in this situation that the subtree
rooted at the fetch(x) operation is already isolated right away (but not the
other subtree rooted at store(z)). We could thus prune the Fetch subtree first
rather than trying to commute leaves, but then it would be impossible to apply
commutativity arguments to the fetch(x) operation with regard to the r and w
leaves of the Store subtree; so we could still not isolate the Store subtree. In fact,
the shown interleaving of page accesses would result in an inconsistent view
of the underlying storage structures: fetch21(x) would see the “old” contents of
the address translation table, as of before the relocation of record x, and then
erroneously access page p, although the record has meanwhile been moved
to q. It is of crucial importance to prevent such anomalies, and this is well
reflected in the tree reducibility criterion.

As a final example in this section, consider the nonlayered schedule in
Figure 6.6. As mentioned before, tree reducibility can be applied to this most
general class of schedules as well. The example shows two transactions that is-
sue operations for electronic purchases; these operations are then dynamically
transformed into steps for checking the availability of the desired items, initi-
ating their shipping, and handling the customer’s payment. For simplicity, all
parameters are omitted in the figure. The CheckItem operations are assumed
to initate stock refillings by means of appending appropriate entries to a list of
items with low quantity-on-hand. The two invocations of the Payment opera-
tion result in two different subtrees reflecting different types of payment; so this
again illustrates the dynamic nature of the transaction trees that are spanned
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t1

CheckItem CheckItem

Append Append CheckCard
CheckCash

Shipment Payment Payment

r (p) r (r) r (s) w(s)w(r)

t2

w(p) r (p) r (q) w(q) r (q) w w(p) r (s) w(t) w(s) r (t) w(t)r (t)(q)

Figure 6.6 Example of a correct object model schedule from an e-Commerce
scenario.

during the execution, depending on actual parameters and the current states of
objects. The Payment operations also put entries into some kind of audit trail,
stored on page t, for tracking purposes. It is for the importance of tracking and
reproducing the exact timing of financial aspects that we consider Payment op-
erations to be noncommutative among themselves. In contrast, the Shipment
and CheckItem operations are assumed to be commutative with each other
and also with Payment. Finally, CheckCard and CheckCash, the operations for
verifying a credit card (or some form of cybercash), are assumed to be commu-
tative; whereas Append operations on a list obviously do not commute. Under
all these (admittedly arbitrary, but reasonably natural) assumptions, it is now
left to you to verify that the schedule shown is indeed tree reducible, arriving
at the serial order t2 < t1.

6.5 Sufficient Conditions for Tree Reducibility

The fundamental notion of tree reducibility is very intuitive, and it is easy to use
for checking the correctness of a given schedule. However, it is not constructive
in the sense that we can immediately derive from it a concurrency control algo-
rithm that reconciles the higher concurrency that object model schedules give
us over page model schedules with an efficient, low-overhead implementation.
The purpose of this section is to introduce a number of sufficient conditions for
tree reducibility that are more suitable for efficient scheduling algorithms. We
will again focus on the special, but very important case of layered schedules first.

An obvious idea for layered schedules is to conceive concurrency control
in the form of layers of conventional, conflict-driven schedulers, where each
scheduler is modular in that it sees only operations of a particular level and
knows about the parents of these operations but nothing else. For further elab-
orating this idea, the following notion of a level-to-level schedule is a convenient
construct:
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DEFINITION 6.12 Level-to-Level Schedule

Let s = (op(s), <s) be an n-level schedule with layers L0, . . . , Ln (in bottom-

Level-to-level
schedule

up order). The level-to-level schedule from Li to Li−1 with i > 0, or Li -to-

Li−1 schedule for short, is a one-level schedule s ′ = (op(s ′), <s ′ with

1. op(s ′) consisting of the Li−1 operations of s,

2. <s ′ being the restriction of the extended order <s to the Li−1 operations,

3. the Li operations of s as the roots,

4. the parent-child relationship identical to that of s.

So a level-to-level schedule narrows down our view of the entire object
model schedule to a pair of adjacent layers, with all ordering relationships of the
original schedule being fully preserved. In terms of operation semantics, such as
commutativity, we focus on the leaves of the resulting one-level schedule, that
is, on Li−1. The roots of the one-level schedule (i.e., the Li operations) serve as
transactions of the one-level schedule in that they denote the contexts for the
Li−1 operations. In other words, the new roots tell us which new leaf operations
belong together. Note that we implicitly generalize our initial definition of an
object model schedule, as the latter would actually require all leaves to be
read/write operations in the page model sense. This syntactic restriction will
be dropped when we consider level-to-level schedules that are derived from a
full-fledged object model schedule.

As an example, Figure 6.7 shows the two level-to-level schedules that can
be constructed from our initial example in Figure 6.1. The operation subscripts
are given explicitly to highlight the connection to the original schedule; the
new roots of the L1-to-L0 schedule are cast into mere placeholders of the form
t i j , as we will not consider their semantics in this specific one-level schedule.

t1 L2

L1

L1

L0

Withdraw11(a) Withdraw21(b) Deposit22(c) Deposit12(c) c13 c23

t2

t11 t21 t22

r111(p) r211(q) w112(p) w113(t) w212(q) w213(t) r221(r) w222(r) r121(r) w122(r)

t12

Figure 6.7 Level-to-level schedules constructed from the layered object model
schedule of Figure 6.1.
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Note that the L2-to-L1 schedule has partially ordered leaves, and the order is
explicitly indicated by the directed arcs in the figure. This partial order is exactly
the original schedule’s partial order of the L1 operations as derived from the
ordering of their leaves (i.e., the original L0 operations). For simplicity, we
do not draw these arcs for the L1-to-L0 schedule, as this one still has totally
ordered leaves.

Now the idea is to view each of the resulting level-to-level schedules as
a flat object schedule and apply conflict serializability to each of them sepa-
rately. To this end we need a conflict specification or, equivalently, its positive
counterpart, a commutativity relation, for all operation types that belong to
the same layer. As mentioned before, this cannot be derived automatically, say,
from the code of the methods that belong to an encapsulated object, but intel-
lectually defining a (possibly conservative) conflict/commutativity table does
usually not pose any (insurmountable) difficulties.

What many of you may now intuitively expect is that a layered schedule is
tree reducible if (or possibly even if and only if ) all its level-to-level schedules
are conflict serializable when viewed as flat object schedules. This modular
decomposition principle is formally captured in the following conjecture; as we
will see in a short while, this conjecture is not true, but with some appropriate
amendments it will point us toward the correct theorems.

CONJECTURE 6.1

Let s be an n-level object model schedule. If for each i , 0 < i ≤ n, the

Li -to-Li−1 schedule derived from s is conflict serializable (CSR, see Chap-

ter 3), then s is tree reducible.

In checking this criterion, a minor technical difficulty is that we may en-
counter conflicting but unordered operations in one of the level-to-level sched-
ules, for example, two Withdraw operations on the same bank account. This
is not the case in our example, but when such situations arise they are rather
straightforward to rectify: as serial schedules have all operations ordered, an
unordered conflict pair prevents a schedule from being equivalent to any serial
schedule. In other words, unordered conflict pairs render a schedule nonseri-
alizable. In the example of Figure 6.7, however, both level-to-level schedules
are conflict serializable: the L1-to-L0 schedule is equivalent to the serial or-
der t11 < t21 < t22 < t12, and the L2-to-L1 schedule is equivalent to t1 < t2 as
well as t2 < t1. Intuitively, the serializability of the L1-to-L0 schedule is an
argument for being able to prune the L0 level, that is, apply the tree prun-
ing rule to the subtrees rooted at the L1 operations of the original two-level
schedule. Then the ordering and the commutativity rules can be applied to the
L1 operations to arrive at either of the two possible serialization orders for t1
and t2.
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t1 L2

L1

L0

f11(x) g21(x) h31(z) f12(y) g22(y)

t2 t3

r111(p) w112(p) r211(p) w212(p) w213(t) w311(q) r121(q) r221(p) r222(t) w312(t)

Figure 6.8 Non-tree-reducible layered object model schedule with conflict-
serializable level-to-level schedules.

The above argumentation works perfectly for our example. However, it
is treacherous, and it turns out that there are cases where the conflict seri-
alizability of all level-to-level schedules does not imply tree reducibility. The
problem is that reordering commutative leaves regardless of what their ances-
tors look like could have undesirable or even unacceptable “side effects” on
these ancestors. Figure 6.8 shows such an example. In the example, we con-
sider object methods f , g , and h, where f and g are assumed to be in conflict
when applied to the same object and h is assumed to commute with both f ,
g , and itself. The level-to-level schedule from L2 to L1 is conflict serializable,
as each of t1’s two operations strictly precede, in terms of a total order, t2’s
corresponding operations that lie in conflict with t1; so the L2-to-L1 schedule
is equivalent to t1 < t2 < t3. In fact, t3 can be arbitrarily ordered with regard
to t1 and t2, as its operation h does not conflict with f or g . Between levels L1

and L0, on the other hand, we also observe a conflict-serializable level-to-level
schedule, equivalent to the serial order t11 < t21 < t22 < t31 < t12. However, it
is impossible to isolate all three subtrees, t31, t12, and t22, by means of the com-
mutativity rule; hence the schedule is not tree reducible due to part 1(c) of
Definition 6.11.

The decisive problem with the schedule of Figure 6.8 is that the serializa-
tion order for the L1-to-L0 schedule reverses the actual execution order of the
two conflicting L1 operations f12(y) and g22(y): f12(y) is completely executed
before g22(y), but serialized the other way around as far as the underlying page
accesses are concerned. This signals that there may be a major problem. If we
know that these two L1 operations are serialized in the order with g22(y) pre-
ceding f12(y), we would no longer consider the L2-to-L1 schedule serializable,
as this observation contradicts the conflict order on object x. The fundamen-
tal reason for this troublesome situation is that the serialization order for the
L1-to-L0 schedule does not preserve the execution order at level L1; that is, the
level-to-level schedule from L1 to L0, albeit conflict serializable, is not order
preserving conflict serializable.

So we cannot completely modularize the concurrency control for layered
schedules in that we consider level-to-level schedules in an absolutely sep-
arated, essentially “myopic” manner. But once we insist on order-preserving
conflict serializability for each level-to-level schedule, we essentially add a
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“handshake” between successive level-to-level schedules by ensuring that the
serialization order for the “lower” schedule is compatible with the execution
order observed for the “higher” schedule. Indeed the following theorem holds:

OCSR
level-to-level
schedules imply
tree reducibility

THEOREM 6.2

Let s be an n-level object model schedule. If for each i , 0 < i ≤ n, the Li -to-

Li−1 schedule derived from s is order preserving conflict serializable (OCSR,

see Chapter 3), then s is tree reducible.

Proof

Order-preserving conflict serializability from level 1 to level 0 allows us to

apply the ordering and commutativity rules to isolate the subtrees rooted at

level L1 such that the execution order of L1 is preserved. Then we can prune

all operations of L0 by the tree pruning rule. Now consider the new leaves

of the pruned transaction forest (i.e., the operations at level 1). Any non-

commutative operations among these new leaves must have been executed

in total order, and because of the order-preserving serialization, this origi-

nal execution order is retained. So the outcome of pruning all operations

of level 0 is a transaction forest whose new leaf ordering is compatible

with the original ordering of the operations at level 1 in the sense that

all “critical” orderings between noncommutative operations are included,

some previously unordered but commutative operations may have become

ordered, and the original ordering of some commutative operations may

have been switched. Thus, since the original level-to-level schedule from

level 1 to level 0 is assumed to be OCSR, this property also holds for the

result of the first pruning round. Then the same argument can be iterated,

and by induction on the number of levels, we see that we arrive at a total

order of the transaction roots.

The converse of the implication in the above theorem does not hold: there
are schedules that are tree reducible without all their level-to-level schedules
belonging to OCSR. Figure 6.9 shows an example. The L1-to-L0 schedule is

t1 L2

L1

L0

f11(x) g21(x) h31(z) h12(y) h22(y)

t2 t3

r111(p) w112(p) r211(p) w212(p) w213(t) w311(q) r121(q) r221(p) r222(t) w312(t)

Figure 6.9 Tree-reducible layered object model schedule with non-OCSR
level-to-level schedule.
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not order preserving conflict serializable. The only possible serialization would
reverse the order of h12( y) and h22( y), contradicting their actual execution or-
der. In this case, however, this does not cause any harm, as the two h operations
are commutative so that any arbitrary serial order is acceptable.

As the example in Figure 6.9 shows, the order preservation condition for
all level-to-level schedules may sometimes be overly restrictive. What really
matters is not order preservation in general but to prevent the serialization at
one level from reversing the actual execution order of conflicting operations
of the next higher level. This unacceptable effect would be impossible if the
noncommutative higher-level operations would also lead to conflicting opera-
tion pairs at all lower levels. The reason why this situation fixes our problem
is that even non-order-preserving conflict serializability can never reverse the
order of a conflict pair. We refer to this setting as conflict faithful and define it
formally as follows:

DEFINITION 6.13 Conflict Faithfulness

A layered object model schedule s = (op(s), <s) is conflict faithful if for

Conflict
faithfulness

each pair p, q ∈ op(s) that are noncommutative and each i > 0 the cor-

responding sets of descendants with distance i to p and q contain at least

one operation pair p′, q′ where p′ and q′ are descendants of p and q,

respectively, and are in conflict.

Conflict faithfulness is a fairly natural property. What it boils down to
is that some noncommutative operations at a semantically high level of
abstraction must have conflicts on all lower levels of abstraction, where de-
tails such as storage representations are taken into account. For example, two
Withdraw operations on the same bank account must touch and, in fact, write
common records and ultimately common pages. It is natural for low-level
conflicts to become irrelevant at higher abstraction levels, but not the other
way around. Proving that schedules are conflict faithful is often fairly easy
by studying properties of the underlying system layers rather than inspecting
individual schedules. For example, all schedules that properly capture execu-
tions at the record and the page level of a database system must be conflict
faithful.

An alternative way of ensuring conflict faithfulness is to consider opera-
tions as conflicting only if they have at least one conflict at a lower level and
are semantically noncommutative in that their return values and side effects
are dependent on the order. So if operations are specified as generally noncom-
mutative, but do not exhibit a single lower-level conflict during their execution
(as their behavior is dependent on the current states of the underlying objects),
they would be considered as conflict free. Obviously, this condition would need
to be checked for each schedule individually; from a system perspective, this
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would mean that the various subsystems across which a schedule extends (e.g.,
in a federated environment, see Chapter 1) need to report conflicts to their
callers.

The nice property of conflict faithfulness is that it renders conflict serializ-
ability of all level-to-level schedules a sufficient condition for tree reducibility:

THEOREM 6.3

A layered object model schedule s = (op(s), <s) is tree reducible if it is

conflict faithful and all its level-to-level schedules are conflict serializable.

Proof

The proof is by induction on the number n of nonroot levels. For n = 1,

we consider a conventional single-layer flat object model or page model

schedule, and the claim trivially holds. Now assume that our claim holds

for n − 1 (n > 1) nonroot levels, and consider a schedule with n nonroot

levels. By the induction hypothesis, we can prune all subtrees rooted at

level n − 1 such that the resulting transaction forest preserves the original

execution order of all noncommutative operations at level n − 1. Because

of this property and since the level-to-level schedule from level n to level

n − 1 is conflict serializable, we can isolate the operations at level n and

once again prune subtrees (i.e., their children). What remains to be shown

is that this pruning step must also preserve the execution order of any non-

commutative operations at level n. So suppose that two such noncommu-

tative level n operations, f and g with the original execution order f < g ,

are rearranged by the transformation steps for isolating the level n opera-

tions such that g precedes f in the resulting transaction forest. Now the

property of conflict faithfulness tells us that f and g have children, say,

f ′ and g ′, that are noncommutative at level n − 1. Since the original exe-

cution order is f < g , f ′ must have preceded g ′ originally. Therefore, the

(conflict-serializable) serialization of the level-to-level schedule from level

n to level n − 1 must have preserved this ordering. So it is impossible to

violate the original execution order of noncommutative operations at

level n.

As examples for this sufficient condition for tree reducibility, consider again
the two scenarios of Figures 6.8 and 6.9. In both examples, all level-to-level
schedules are conflict serializable. The schedule in Figure 6.9 is conflict faithful
because the only L1 conflict pair, f11(x) and g21(x), also exhibits page access
conflicts on page p. The argumentation for the schedule in Figure 6.8 is more
subtle: here we would additionally have to consider the two L1 operations
f12(y) and g22(y) as nonconflicting simply because their execution did not pro-
duce any page-level conflicts. So, although these operations may not commute
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t1 L2

L1

L0

Modify11(x) Fetch21(x) Fetch22(y) Modify12(y)

t2

r111(t) r211(t) r112(p) r212(p) w113(p) r221(t) r222(p) r121(t) r122(p) w123(p)

Figure 6.10 Tree-reducible schedule with concurrent, conflicting L1 operations.

in general, the executions in the particular context of the given schedule turn
out to be commutative.

A final observation is that the conjunction of level-to-level serializability
and conflict faithfulness is not a necessary condition for tree reducibility. The
point is that conflicting higher-level operations may be allowed to run concur-
rently (i.e., unordered) as long as they are properly serialized at the underlying
implementation levels. Such concurrency would not be allowed by a conflict-
serializable level-to-level schedule. Figure 6.10 shows a concrete example with
conflicting, unordered record operations fetch(x) and modify(x). The schedule
is tree reducible to the transaction order t2 < t1.

6.6 Exploiting State Based Commutativity

In this section we will discuss possible relaxations of general commutativity to
further enhance concurrency. As this issue solely involves operations on the
same object type, all previous considerations on the underlying operation invo-
cation trees can be carried over without modification. Thus, for ease of presen-
tation, we will assume that operations on ADT (abstract data type) objects are
already isolated and restrict the discussion to flat object schedules, sometimes
not even bothering to show the isolated page-level subtrees underneath.

General commutativity is a powerful means for enhancing concurrency be-
yond what a pure page-level perspective would allow; however, it also has its
limits. For example, the following totally ordered object-level schedule would
be considered inadmissible because the first two operations are in conflict with
the ordering t1 < t2, whereas the second pair of Deposit and Withdraw opera-
tions conflicts with the order t2 < t1 (based on Table 6.1 from Section 6.3):

withdraw1(x, 30) deposit2(x, 50) deposit2(y, 50) withdraw1(y, 30)

In this example, we have stated the amounts of money withdrawn or de-
posited as explicit parameters (e.g., $30 for the first operation). Knowing these
additional parameters alone does not help much. However, in conjunction
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with knowledge about the original balance of the account (i.e., before t1’s first
Withdraw operation is invoked), we may be in a position to approve the above
schedule as one that is equivalent to a serial execution. For example, if the origi-
nal balance was known to be $40 and the threshold for the overdraft protection
was zero, then the first Withdraw operation could be viewed as commutative
with the two deposits, thus eliminating the conflict cycle and rendering the
schedule equivalent to the transaction order t2 < t1. The key point is that this
equivalence is given only in a specific state of the bank account against which
the entire schedule is run. For example, if the initial balance of the account
was $20 only, the first Withdraw operation would have signaled the overdraft
protection and failed to obtain money, whereas it would be successful if it
followed the first Deposit operation. We refer to the first mentioned, posi-
tive case with the initial balance of $40 as a state-dependent commutativity
argument.

DEFINITION 6.14 State-Dependent Commutativity State-dependent
commutativity

Two operations p and q on the same object are commutative in object state

σ if for all possible sequences of operations ω, the return parameters in the

concatenated sequence pqω applied to state σ are identical to those in the

sequence qpω applied to σ .

So from a state-dependent commutativity viewpoint, the sample sched-
ule above is acceptable, whereas it cannot be allowed under general, state-
independent commutativity. Unfortunately, exploiting state knowledge poses
severe difficulties in a real system environment. First, the notion of a state is
not easy to define, given that operations may have side effects on more than
one object, some of which may be observed much later. Second, even if we
had a clean definition of object states, we would still need an algorithm for
inspecting states. With encapsulated objects these methods may not be avail-
able, and even if they could, in principle, be added, they could be highly in-
efficient or even considered as a breach of the encapsulation and modularity
(ultimately violating the information-hiding principle of good software engi-
neering practice). With Bank account objects, for example, we may internally
use the GetBalance method for testing the object state upon each Withdraw
method, but this could result in inefficiencies and may no longer be sufficient
if the internal state of objects also included an audit trail of cash flows, say, in
the form of a list of balance modifications. In fact, the latter situation may ren-
der Withdraw and Deposit operations again noncommutative in every possible
state.

So rather than actually inspecting states, we restrict ourselves to observing
only operation parameters, but we can extend this approach to observing re-
sult parameters as well. In the case of Withdraw operations, the two possible
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outcomes—successful withdrawal or overdraft protection—would yield two
different return values OK or No. Obviously, these return values are related to
the object state against which an operation runs; so this provides a means
for making particular facets of the object state visible without any addi-
tional steps. Commutativity arguments should then refer not only to operation
types and their input parameters but also to the return values of the invoked
operations.

This idea leads to the following definition of what we call return value com-
mutativity and what can be considered as an indirect kind of state-dependent
commutativity that respects the object encapsulation. To this end, we will
now denote operation executions in the form f (↓ x1, . . . , ↓ xm, ↑ y1, . . . , ↑ yn),
where the xi are input parameters and the y j output parameters, or in the sim-
pler form f (x1, . . . , xm) ↑ y when there is only a single output parameter, the
return value.

DEFINITION 6.15 Return Value Commutativity

An operation execution

Return value
commutativity

p (↓ x1, . . . , ↓ xm, ↑ y1, . . . , ↑ yn)

is return value commutative with an immediately following operation exe-

cution

q (↓ x′
1, . . . , ↓ x′

m′ , ↑ y′1, . . . , ↑ y′n′)

if for every possible sequence of operation executions α and ω such that

p and q have indeed yielded the above return parameters in the sequence

αpqω, all operations in the sequence αqpω yield identical return parameters.

Note that the restriction of the considered sequences α is essential for
enhanced concurrency: we consider only sequences α, and thus implicitly the
resulting states, such that p and q yield the given return values when executed
in the order p < q right after α. This is a subset of all possible α sequences.
For example, when p is a withdraw(x, 30) ↑ OK operation execution, only α

sequences are relevant that resulted in an account balance of at least $30, since
otherwise the withdrawal would have returned No rather than OK. Further
note that this subtle but important restriction of the implicitly observed initial
states makes the notion of return value commutativity asymmetric. The set
of relevant α sequences for the ordered pair pq may differ from that for the
ordered pair qp. As an example assume p = withdraw(x, 30) ↑ OK as above
and q = deposit(x, 50) ↑ OK. For the execution order pq the set of α has the
above restriction, whereas for qp we implicitly remove this restriction, and
Definition 6.15 thus refers to all possible α sequences because deposits return
“OK” in every possible state.
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Table 6.2 Return value commutativity table for bank account
operations.

Withdraw Withdraw Deposit
(x, �2) ↑ OK (x, �2) ↑ No (x, �2) ↑ OK

Withdraw(x, �1) ↑ OK + − +

Withdraw(x, �1) ↑ No + + −

Deposit(x, �1) ↑ OK − + +

Return value commutativity for a given object type can be stated in the
form of a table, similar to general commutativity tables but with the difference
that the entries refer to operation executions including return values rather
than operation invocations with input parameters only. An example for the
Bank account object is given in Table 6.2 (ignoring the GetBalance operations
for simplicity), where Withdraw has two different possible return values and
Deposit always returns “OK.” The rows of the table are the p operations of
Definition 6.15, and the columns are the q operations. Note the asymmetry
that we discussed above.

The entry for the two successful withdrawals, for example, has the follow-
ing intuitive explanation: since both operations returned “OK” in the considered
α sequences, there must have been enough money in the account to cover the
sum of �1 and �2; hence reversing the order of the withdrawals would lead to
the same result. The entry for the unsuccessful withdrawal and a subsequent
deposit, on the other hand, must state noncommutativity, as the withdrawal
could have become successful if the deposit preceded it (without changing
anything in the prior history α).

The table for return value commutativity could be further refined by adding
conditions on the actual values of the input parameters. For example,

withdraw(x, �1) ↑ OK

could be considered commutative with a subsequent withdraw(x, �2) ↑ No if
�2 > n�1 and �1 ≥ x(0)/m, with n and m being constants such that m ≤ n,
where x(0) denotes the initial account balance (before the schedule begins),
and we assume an overdraft protection threshold of zero. Namely, in this case
we can infer that in the original schedule the value x(0) of the account bal-
ance before the first withdrawal must have been at least as high as �1, but the
resulting balance, x(0) − �1, must have been smaller than �2. All these inequal-
ities together yield x(0) ≤ m�1 < m

n �2, and we can infer x(0) < �2 because of
m ≤ n. So the second withdrawal operation would have been unsuccessful even
if it were executed first. Such a kind of reasoning is, however, fairly involved.
Therefore, we will not consider explicit constraints in a commutativity table any
further, and will rather restrict ourselves to entries with plain+ or− statements.
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The manipulation of account balances by Withdraw and Deposit opera-Return value
commutativity

for counters
tions is merely an example of the general concept of incrementing and decre-
menting counters. Counters arise in many highly relevant applications such as
stock inventory where the quantity-on-hand of sales items is tracked, or reser-
vation systems for airlines, hotels, rental cars, and so on, where the number
of available seats, rooms, and cars needs to be maintained. So general consid-
erations for highly concurrent counters surely pay off over a wide variety of
applications. The approach is quite simple: counters are viewed as ADT objects
with incr(x, �) and decr(x, �) as operations typically used in the operational
transactions (e.g., for reserving seats on a flight) and an additional getvalue(x)
that will infrequently be used to read the actual counter value. If counters
were absolutely unconstrained, then incr and decr would generally commute.
However, in almost all applications, counters have lower bounds (e.g., zero in
reservation systems), or upper bounds (e.g., the stock capacity in inventory
management), or both. Since we lose general commutativity in such a setting
but observe “uncritical” situations such as “plenty of seats still available” most of
the time, state-dependent or return value commutativity is the intriguing resort.
In fact, both incr and decr can be designed and implemented in such a way that
they either return “OK” or “No” depending on whether they were successful in
modifying the counter or hit a lower or upper bound and then did not modify
the counter at all.

Working out the corresponding return value commutativity table is left as
an (easy) exercise (see Exercise 6.6). Here we merely give an example of a
highly concurrent schedule on objects x and y of type Counter, both with
a lower bound of 0 and an upper bound of 50. Figure 6.11 shows this ex-
ample schedule. The actual, encapsulated, and thus usually nonobservable
intermediate states of the counters are shown for clearer illustration. This
layered schedule is tree reducible when return value commutativity is allowed
at the ADT level, namely, equivalent to the serial execution with t1 preceding
t2, but it would not be feasible under general state-independent commutativity.

t1

Decr(x, 20)↑No

t2

r (p)

Incr(x, 30)↑OK Decr(y, 20)↑OK Incr(y, 30)↑No

r (p) w(p) r (p) w(p) r (p)

x = 15
y = 45

x = 15
y = 45

x = 45
y = 45

x = 45
y = 25

x = 45
y = 25

Figure 6.11 Example schedule on counter objects.
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Another practically important standard ADT for which exploiting return Return value
commutativity
for queues

value commutativity is feasible and may be worthwhile is the FIFO (first-in-
first-out) queue. Such queues are of great benefit in implementing message han-
dling systems such as mail servers or even distributed workflow management
systems, as mentioned in Chapter 1. Queues provide operations for enqueue-
ing entries (e.g., messages) at the tail of the queue and for dequeueing entries
from its front. Transactional concurrency control is not necessarily required
for messaging applications, but it can be of great benefit in order to ensure cer-
tain consistency guarantees such as preserving the order of a multiple-messages
multicast to a number of recipients and other things along these lines. It should
be emphasized at this point that messaging systems often need to serve a very
large number of clients concurrently and that the underlying queue objects may
well become hot spots in terms of their update frequency. Therefore, a liberal,
yet consistency-preserving concurrency control for queues may be crucial.

The two most important queue operations, Dequeue (or Deq for short) and
Enqueue (or Enq), obviously do not commute in general. However, when the
queue already contains at least one entry, then the order of an Enqueue and a
subsequent Dequeue operation does not matter in that the two different orders
cannot be distinguished by the application. As it would again be problematic
to directly inspect the actually encapsulated queue state for the purpose of
higher concurrency, we rather enrich the two operations by appropriate return
values: Dequeue returns “OK” if it finds the queue nonempty and removes the
front entry, otherwise it returns “empty.” Enqueue returns “OK” when it adds an
entry to an already nonempty queue, otherwise it reports the special case of an
initially empty queue by returning “one” (for a new queue length of one). With
these modifications we can construct the return value commutativity Table 6.3
(where the trivial input parameters are omitted).

The table contains some combinations that cannot occur, and they are
marked as such. Note that without the exploitation of return value commu-
tativity, all queue operations would be in conflict with each other, as both
operations update the queue state. Thus, now allowing dequeueing and en-
queueing on a nonempty queue to proceed without raising a conflict is already
a great win in terms of the achievable concurrency of transactions.

Note that two Enqueue operations are still noncommutative regardless of
whether we attempt to exploit return value information or not. The simple

Table 6.3 Return value commutativity table for queue operations.

Enqueue ↑ OK Enqueue ↑ one Dequeue ↑ OK Dequeue ↑ empty

Enqueue ↑ OK − impossible + impossible
Enqueue ↑ one − impossible − impossible
Dequeue ↑ OK + − − −

Dequeue ↑ empty − − impossible +
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reason is that two entries enqueued in a specific queue will be dequeued in
exactly this order; so a different order would later be observable. Here we
simply touch on the essence of a FIFO queue. Further improving the concur-
rency among Enqueue operations can only be achieved by relaxing the FIFO
semantics.

Such a relaxation is indeed possible by redefining the Dequeue operationSemi-queues
such that it nondeterministically selects and removes an arbitrary entry from the
queue. A relaxed queue ADT is sometimes called a semi-queue or weak queue in
the literature. In fact, it could as well be regarded simply as a set (or bag) of en-
tries since the ordering of entries is now irrelevant; in conjunction with messag-
ing applications, using a special name may be desirable. We leave a discussion of
the return value commutativity of semi-queues as an exercise (see Exercise 6.8).

6.7 Lessons Learned

This chapter has made a major step in going beyond and generalizing the classi-
cal page model of transaction theory. We have introduced the technical details
of a very powerful model for reasoning about transactions in semantically richer
object-style settings, where an object may itself invoke operations on other ob-
jects to implement an operation provided at the object’s interface. The resulting
caller-callee relationships have been modeled as transaction trees, and the con-
current execution of several such trees has led us to a notion of transaction
forests, the most general form of object model histories.

Transaction trees can be specialized in various ways, the practically most
relevant one being a layered form where objects correspond to the implemen-
tation layers of a system. An even more specialized case is the restriction to a
single layer, with the underlying assumption that the operations of this layer are
executed one at a time, so that it is indeed justified to disregard the implemen-
tation of an individual operation. This argument has guided us to the general
principle of reasoning about a transaction forest being equivalent to a sequential
execution of the transactions: we first need to show that concurrently executed
operations can be isolated in the sense of being transformable into a sequential
execution, and only then can we abstract from these operations’ implementa-
tion details and prune their corresponding subtrees. The technical correctness
criterion that captures this kind of reasoning is the notion of tree reducibility. In
addition, we have introduced a couple of simpler criteria that provide us with
sufficient conditions for a layered object model schedule to be correct. These
criteria will be the main tool for showing the correctness of several practically
relevant protocols that we are going to present in the next chapter.

We have shown in this chapter that the classical notion of conflict, or
noncommutative pairs of operations, is still the key to our correctness reasoning,
but it now captures more semantics of operations and needs to be applied at
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different levels of object model transaction forests. We have also shown that the
traditional state-independent form of commutativity can be further generalized
for appropriate operations, bearing potential enhancements of the allowable
concurrency.

Exercises

6.1 Consider the two-level schedule shown in Figure 6.12, which consists of
two funds transfer transactions and a balance lookup transaction. Assume
that the GetBalance operations do not commute with Withdraw opera-
tions nor with Deposit operations. Is this schedule tree reducible? If so,
which is the equivalent serial execution? If not, how would the schedule
have to be changed (as little as possible) so as to render it tree reducible?

6.2 Consider a data server with an SQL-style interface (see Chapter 1) and a
database with a Person table whose rows contain a unique Name attribute
and a City attribute. The server executes operations like

Select * From Person Where City = c, where c is a parameter for
looking up all persons living in a given city, and

Update Person Set City = c Where Name = n, for recording that
a given person has moved to a new city.

Let us abbreviate these two operation types as select(c) and update
(n, c), respectively. The server executes these operations by decompos-
ing them into index lookups (search(key)), record fetches (fetch(r id )),
record modifications (modify(r id )), and index maintenance steps (insert
(key, r id ) and delete(key, r id )). Assume that B+ tree index structures
exist for each of the two relevant attributes, and that both of these trees
have depth two, i.e., consist of a root node and a leaf level. All of the
mentioned record and index operations are finally transformed into page
reads and writes.

Now consider a transaction that finds all persons from two differ-
ent cities, say, Los Angeles and New York, and a second transaction that

t1

Withdraw(a) Withdraw(b) GetBalance(a) GetBalance(c) Deposit(c) Deposit(c)

t2 t3

r (r) r (r) r (p) r (p) r (p)r (p)w(p) w(p)r (r) r (r) r (p) w(p)w(p) r (p)r (r) r (r)

Figure 6.12 Two-level schedule of banking transactions.
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records the moving of a couple, say, Liz and Jerry Smith, from Los Ange-
les to New York. Model the executions of both transactions as three-level
transactions, and discuss possible schedules for them. Give (nontrivial,
e.g., nonserial) examples for three-level schedules that are (a) tree re-
ducible and (b) not tree reducible and thus not admissible.

6.3 Consider the two nonlayered schedules of Figure 6.2. Are these tree re-
ducible?

6.4 Consider again the example of Figure 6.6. Give the necessary transforma-
tion steps, using the commutativity and the tree pruning rules, for proving
that the schedule is tree reducible.

6.5 Consider the layered schedule in Figure 6.13, where i means (record)
insert, d stands for (record) delete, s means store, m stands for modify,
and e is for erase. Which of its level-to-level schedules are CSR, which
ones are OCSR, and which ones satisfy the conflict faithfulness property?
Is the schedule tree reducible?

6.6 Consider a counter object with operations with lower and upper bounds
as constraints. The counter interface supports three operations: Increment
adds a specified value � to the counter and returns “OK” if the up-
per bound is not exceeded; otherwise it returns “No” and leaves the
counter unchanged. Analogously, decrement subtracts a given value from
the counter or returns “No” if the lower bound was violated. Finally,
getvalue returns the counter value. Give a return value commutativity
table for these three operations. Discuss possible improvements of con-
currency by taking into account explicit constraints among operation
parameters.

r1(p)

s1(x)

i1(�)

t1

r1(o)

m1(a)

r1(p)

s1(z)

i1(�′′)

r1(q)r2(p)

e2(y)

d2(�′)

t2

r2(o)

m2(a)

r2(q)w1(p) w1(q) w1(p)w2(p) w2(q)

Figure 6.13 Layered schedule tree.
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6.7 Construct a sample schedule with operations on FIFO queues that demon-
strate the higher concurrency that return value commutativity can achieve
over general commutativity.

6.8 Construct the return value commutativity table for a semi-queue. Show,
by means of sample schedules, that semi-queues allow higher concurrency
than FIFO queues.

6.9 Consider the following execution of operations on an initially empty
queue q where a, b, and c are entries added to the queue:

enq1(q, a) enq2(q, b) deq3(q) enq1(q, c) deq3(q)

Discuss whether this schedule is serializable assuming (a) general com-
mutativity, (b) return value commutativity for queues, and (c) return
value commutativity for semi-queues with nondeterministic selection of
entries by Dequeue operations. In the last setting, which entries should
be selected by the two Dequeue operations of t3 to produce an intuitively
correct execution?

6.10 Design an abstract data type “mailbox” with operations like Send (i.e.,
add a message to the mailbox), Receive (i.e., extract a message from the
mailbox), and so on. Discuss the operations’ commutativity relation for
(a) general (i.e., state-independent) commutativity and (b) return value
commutativity. Devise an implementation of mailbox objects in terms of
queues, records, and ultimately, pages. Sketch the resulting transaction
trees. Give an example of a concurrent execution, with as much concur-
rency as possible, for two transactions, where one sends two messages to
two different mailboxes and the other receives all messages from one of
the two mailboxes.

6.11 Even if two operations do not commute in the strict sense, the different
effects that result from the two possible orderings may be considered as
“effectively equal” from an application viewpoint. We could then simply
declare the two operations as compatible and treat them as if they were
commutative. An example would be a Deposit operation together with
a new style of Withdraw operation that allows overdrafting but claims a
penalty of, say, $10 each time the account balance is below the specified
threshold and money is withdrawn. So the code for this relaxed variant
of Withdraw would be

relaxed withdraw (x, �):

x.balance := x.balance - �;

if x.balance < 0 then

x.balance := x.balance - 10 fi;

Give a sample schedule with these operations that is conflict serializ-
able relative to the compatibility of the operations, but is not conflict
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serializable under a strict interpretation of commutativity. Discuss the
acceptability of the resulting (worst-case) situations from an application
viewpoint, of both the bank and the customer.
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CHAPTER SEVEN

Concurrency Control
Algorithms on Objects

A journey of a thousand miles must begin with a single step.

—Lao-tzu

The roots of education are bitter, but the fruit is sweet.

—Aristotle

7.1 Goal and Overview

In this chapter we will introduce practical concurrency control algorithms for
systems based on the object model, with particular focus again on the important
special case of layered systems. We will show that the presented protocols are
correct in that they produce tree-reducible schedules only, or even the more
restricted class of schedules where all level-to-level schedules are OCSR or CSR
and conflict faithful. As the latter kind of decomposition already suggests, we
will show that the conventional page model protocols can be used as building
blocks in the construction of object model protocols. For the most part, we will
even concentrate on locking protocols and particularly 2PL.

Throughout this chapter we will assume that commutativity is specified as
a simple table on a per-object type or on a per-layer basis. Thus, operations on
different object types can safely be assumed to be commutative, unless—as will
be seen—one object type serves to implement the other, which will cause some
complications. We will mostly focus on exploiting state-independent commu-
tativity, and consider return value commutativity only in the final section of
this chapter.

7.2 Locking for Flat Object Transactions

The commutativity table for an object can be directly interpreted as a lock mode
compatibility table. For each operation f (x1, . . . , xn) with input parameters
x1, . . . , xn a lock is acquired in lock mode f on items x i1 , . . . , x im (m ≤ n),

251
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Deposit(a) Deposit(b)

t1

t2

Withdraw(c) Withdraw(a)

Figure 7.1 2PL applied to a flat object schedule.

where the x i1 , . . . , x im form a subset of the parameters relevant for deciding on
conflicts. Most often, m will be 1. This case can be interpreted as follows: there
is a “primary” object to which the operation refers; operations on different
primary objects imply commutativity, whereas commutativity on the same
object depends only on the operation type, not on the other input parameters.

As for the actual locking protocol—that is, the discipline according to
which locks are acquired and released—we can apply 2PL, S2PL, or SS2PL to
the enhanced setting of object model operations in a straightfoward way, and
all correctness arguments also carry over in an almost trivial way. Note, how-
ever, that the object-level operations themselves need to be executed strictly
sequentially (i.e., concurrency is limited to interleavings at the highest level
below the transaction roots). The reason is that flat object schedules always
assume that their object-level operations are indivisible (see Chapter 6).

Figure 7.1 shows an example of two concurrent transactions, consisting
of Deposit and Withdraw operations, under the S2PL protocol driven by a
commutativity based lock mode conflict table. As in previous illustrations of
this style, dashed lines denote lock waits. Transaction t2, which requests a with-
draw lock on account a, has to wait until t1, which holds an incompatible
deposit lock on a, commits and releases its locks.

7.3 Layered Locking

When higher-level operations can be executed concurrently on lower levels,
one way to ensure tree reducibility is to enforce the order-preserving conflict
serializability (OCSR) of the level-to-level schedules. This can in turn be guar-
anteed by applying an appropriate flat concurrency control protocol between
each pair of adjacent levels. One suitable protocol is 2PL or its derivatives S2PL
and SS2PL; in fact, this family provides the most versatile and robust protocols
that are known for flat schedules and are therefore our methods of choice.

When 2PL is applied to layered schedules, we arrive at a nicely modularInner node
operations as

subtransactions
architecture: the scheduler between level Li+1 and Li needs to know only
the operations at level Li and the identifiers of their Li+1 parents. From the
viewpoint of this scheduler, the Li+1 operations are transactions and the Li
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operations are the steps of these transactions. To better distinguish this role of
Li+1 operations in a level-to-level schedule from the actual transaction roots,
we will refer to them in the current context as subtransactions.

After these considerations, we are ready to give the rules for what we call Layered 2PL
layered 2PL for n-level schedules:

1. Lock acquisition rule: When an Li operation f (x) with parent p is issued,
an f -mode lock on x needs to be acquired before the operation can start
its execution. This lock is called an Li lock.

2. Lock release rule: Once an Li lock, originally acquired by an operation
f (x) with parent p, is released, no other child of p is allowed to acquire
any Li locks.

3. Subtransaction rule: Upon the termination of an Li operation f (x), all
locks at level Li−1 that have been acquired for the children of f (x) are
released.

So the key principle of layered 2PL is that locks at a certain level, say, Li ,
are held on behalf of the corresponding subtransactions, the Li+1 operations.
With SS2PL, this amounts to holding locks for the duration of a subtransaction,
but no longer. It is exactly this “early release” of low-level locks such as page
locks that makes layered 2PL such a powerful protocol. In terms of the possible
concurrency, it is, by a large margin, superior to the conventional page model
2PL and other page model concurrency control methods.

As for the correctness of layered 2PL, we can now leverage the theory
developed in Chapter 6 and obtain the following correctness proof with little
effort:

THEOREM 7.1

Layered 2PL generates tree-reducible schedules only.

Proof

All level-to-level schedules are OCSR, hence the schedule is tree reducible

according to Theorem 6.2.

To illustrate the layered 2PL protocol, reconsider the example from Fig-
ure 6.4 with operations on the record and page levels. Figure 7.2 shows a
possible execution of this schedule under layered 2PL. This is an example for
employing record-level locking in combination with short-term page locking
for the duration of subtransactions, an extremely important case in practice.
The subtransactions that define the scope of the page locks are highlighted
by the gray triangles. As usual, lock waits are indicated by dashed lines, and
we show that such a protocol may incur both record-level and page-level lock
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Store(z)

Fetch(x)

Modify(y)

Modify(y)

Modify(w)

r(t) r(p)

r(t) r(p)

r(q) r(t)r(p) w(p) r(p)r(t) w(p)

r(t) r(p) w(p)

w(q) w(p) w(t)

t1

t12 t13t11

t21
t22

t2

L1

L0

Figure 7.2 Layered 2PL applied to the record and page levels of a two-level schedule.

waits. Moreover, we also show that page lock waits are much shorter than they
would be under pure page-level locking, where page locks would be held for
the duration of the entire transactions.

A special case of the above setting would be a system where all record-levelSpecial case:
page latches for

single-page
record

operations

operations access only a single page, like the fetch(x) operation in Figure 7.2. If
we knew that all operations on a given set of records have such a structure, the
necessary subtransaction-duration 2PL can be further streamlined. It would be
sufficient to “latch” the affected page during the record operation, by atomically
setting or resetting a bit in the page header, rather than acquiring a “full-fledged”
page lock. The functionality of latching is similar to that of semaphores pro-
vided by an operating system, but latching avoids expensive operating system
calls as much as possible. In comparison to explicit locking, latching does not
provide higher concurrency, but its overhead is much lower than that of a lock
manager. For example, latching does not keep a queue of waiting requestors,
nor does it need to check for deadlocks. For this reason, commercial database
systems use such latching techniques whenever they are applicable. However,
as the example shows, storage structures can be fairly complex and may require
multipage record-level operations, especially when dealing with hierarchically
structured records as storage representations of composite objects or XML
documents in object relational database systems.

So latching surely has its limits. In particular, latching is not easily appli-Opportunities
for index

locking
cable to index operations such as searching a key in a B+ tree, which involves
multiple pages in the tree traversal. Obviously, the situation becomes even more
complicated for insertions and deletions of (key, RID) pairs, as this may trigger
node splits in the B+ tree. Nevertheless, this case is still special in that it leads
to a limited class of page access patterns only, so that specialized concurrency
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control protocols could be attractive for such subtransactions (e.g., the tree
locking protocol from Chapter 4). As index management is among the most
important issues in data management with regard to performance, we postpone
the details of this discussion and will look into this issue in a separate chapter,
Chapter 9.

Another special case would be the situation where all object-level oper- Special case:
all-
commutative
chained
subtransactions

ations are a priori known to commute. Then no object-level locks would be
necessary at all, and transactions are effectively decomposed into sequences of
chained subtransactions. Locking would be strictly confined to the duration of
subtransactions so that very high concurrency is possible. The caveat with re-
gard to this approach is that the application must be designed very carefully to
ensure an all-commutative object layer. Typically, this is feasible only for very
specialized, functionally restricted applications. An example would be the in-
terbank funds transfer application known as SWIFT, where all Withdraw and
Deposit operations are declared to be commutative or, actually, “compatible,”
tolerating the application-wise “negligible” differences in the effect of differ-
ently ordered withdrawals. Note, of course, that this system would typically be
used only for relatively small amounts of money, and it also relies on the legal
rules and mutual guarantees for interbank business.

Layered 2PL is, of course, applicable to more than two levels as well. As an
example, consider the three-level schedule shown in Figure 7.3. It shows SQL-
style query-level operations at level L2, which are translated into record and
index operations at level L1, which finally result in page-level read and write
operations. Recall from Chapter 1 that L2 Insert operations need to maintain
all indexes at level L1, namely, indexes on the Age and City attributes of the
Persons table in the example. Queries, on the other hand, may exploit multiple

t1

Insert into Persons
Values (Name = ...,
City = “Austin,”
Age = 29, . . . )

Select Name
from Persons
where City = “Seattle,”
Age = 29

Select Name
from Persons
where Age = 30

t2

Store(x) Insert
(CityIndex,
“Austin,”
@x)

Insert
(AgeIndex,
29, @x)

Search
(CityIndex, “Seattle”)

Search
(AgeIndex, 29)

Search
(AgeIndex, 30)

Fetch(y) Fetch(z)

r(p) w(p) r(r) r(n) r(r) r(r ’) r(n’) r(l’)r(n)r(l ) r(l )w(l ) r(r ’) r(r ’)r(n’) r(n’)r(l’) w(l’) r(l’)r(p) r(p)w(p) w(p)

Figure 7.3 Example of a three-level schedule with query, record, and page level.
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r(r)r(n)r(l)
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r(p) w(p)
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t21

t11
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t2
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r(r)r(n)r(l)w(l) r(r ′)r(n′) r(l′)
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L1

L2

L0

r(r ′)r(n′)r(l′)w(l′)

t113

r(p) w(p)
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r(r′)r(n′) r(l′) r(p) w(p)

t212 t213

Insert into Persons
Values (Name = ..., City = “Austin,” Age = 29,...)

Select Name from Persons
where Age = 30
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Figure 7.4 Layered 2PL applied to the query, record, and page levels of the three-level
schedule of Figure 7.3.

indexes by looking up RID lists for the specified values of different attributes,
intersecting the RID lists, and finally fetching only the records that satisfy the
conjunction of the specified conditions.

The execution that results from this schedule under a three-level lay-
ered 2PL is shown in Figure 7.4. Subtransactions are again highlighted as
shaded triangles, with different shading patterns used for the two transactions
of the example. Here we assume that the locks at the query level L2 are
some form of predicate locks. The lock for the Select operation of t2 essen-
tially locks the conjunctive condition City= “Seattle” and Age=29, whereas
t1’s Select operation locks the condition Age=30, and t1’s Insert operation es-
sentially locks the conjunction of the inserted record’s attribute values, namely,
Name= . . . and City= “Austin” and Age=29 and . . . . A lock conflict exists
whenever the predicates of two lock requests intersect. More precisely, this
means that the conjunction of the two predicates is satisfiable in that it could
possibly be satisfied by some record regardless of whether this record actually
exists in the database. Conversely, when the predicates of two lock requests
are disjoint in that their conjunction evaluates to false and is thus unsatisfi-
able, we can safely assume that no conflict exists at the query level L2. We
will further elaborate on the concept of predicate locking in Chapter 8. In the
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example, no predicate lock conflict exists at L2, whereas conflicts arise for the
index search keys at L1 and incur lock waits. Note the lock wait of t21 in Figure
7.4 when it requests a lock for the operation search(AgeIndex, 29) at level
L1. t21 has to wait until the conflicting lock for operation insert(AgeIndex,
29, @x) is released at the end of t11. For this reason, t212 is forced to sequen-
tially follow t113, which explains the difference in the interleavings between
these two subtransactions compared to the (input) schedule shown in
Figure 7.3.

Layered 2PL can hence be applied to an arbitrary number of levels. How-
ever, although this may, in principle, be beneficial for concurrency, the in-
evitable overhead for the lock management suggests keeping the number of
levels rather small, typically two or three. When given an n-level schedule with
large n, the question is whether we can apply layered 2PL to a limited sub-
set of the levels and still guarantee that the schedule will be tree reducible. It
turns out that locks do not need to be acquired at all layers of such an n-level
schedule. Rather, we can skip certain layers, say, layer Li , by extending the
scope of the subtransactions above Li , which effectively leads to longer lock
durations of the locks below Li . So, for example, Li−1 locks could be held for
the duration of the corresponding operations’ grandparents, that is, the Li+1

subtransactions. In essence, this removes an entire layer from the schedule it-
self, as far as concurrency control is concerned, and extends the caller-callee
relationship by connecting the Li−1 nodes in the transaction tree directly to
their grandparents. Once this is accomplished, we have again a layered sched-
ule with one level less, and we can apply our standard reasoning for layered
schedules.

This consideration leads to a selective layered 2PL with the following rules,
where out of the n + 1 layers Ln, . . . , L0 of an n-level schedule a subset
Li0 , . . . Lik , with 1 ≤ k ≤ n, iν > iν+1, and i0 = n, ik = 0, can be selected with
the following locking rules (which are merely slight modifications of the ori-
ginal layered 2PL rules):

1. Lock acquisition rule: When an Liν (ν > 0) operation f (x) with Liν−1

ancestor p is issued, an f -mode lock on x needs to be acquired before
the operation can start its execution. This lock is called an Liν lock.

2. Lock release rule: Once an Liν lock, originally acquired by an operation
f (x) with Liν−1 ancestor p, is released, no other Liν descendant of p is
allowed to acquire any Li locks.

3. Subtransaction rule: At the termination of an Liν operation f (x), all locks
at level Liν +1 that have been acquired for the Liν +1 descendants of f (x)
are released.

Reconsider the example of Figure 7.3, whose resulting three-level layered
2PL execution was shown in Figure 7.4. With selective layered 2PL, applied to
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Figure 7.5 Selective layered 2PL applied to the query and page levels of the schedule of
Figure 7.3.

the query level L2 and the page level L0, the resulting execution keeps page-
level locks longer and leads to a longer lock wait for the L0 operation r211(l),
as shown in Figure 7.5.

We have shown that a given layer manages the locks on behalf of the sub-Layered 2PL
with intra-
transaction
parallelism

transactions that it sees, regardless of the further ancestors of these subtransac-
tions. So a page-level lock manager that handles subtransactions, each of which
corresponds to a record-level operation, does not even need to know to which
transactions the various subtransactions belong. Thus, a nice observation is that
the same lock manager could handle parallel subtransactions that originate
from the same transaction without any additional means.This form of intra-
transaction parallelism is, of course, only possible if the higher-level operations
are conflict free and the transaction program or the server’s query processing
engine does not require any execution precedence among such high-level op-
erations. When subtransactions are issued in parallel, the underlying layer will
guarantee equivalence to some serial order, and this works even for parallelized
update statements. As an example, consider the scenario shown in Figure 7.6.

In this scenario, transaction t1 issues two subtransactions, t14 and t15, in par-
allel, to reflect the modification of record x in the index on the City attribute.
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Figure 7.6 Layered 2PL with intra-transaction parallelism.

The RID for x is removed from the RID list associated with key “Austin” and
added to the RID list for “Dallas.” These two operations do not conflict con-
ceptually, but they do have a page-level conflict on page l (i.e., the two keys
happen to reside on the same leaf page of the index). The protocol takes care
of this conflict by blocking one of the two subtransactions for a short while. In
addition, a third subtransaction, t21, issued by another transaction, t2, has a sim-
ilar conflict and exhibits a short lock wait, too. Note that without page locks
(or some equivalent, carefully designed, latching protocol) intra-transaction
parallelism for update statements would not be feasible despite the fact that
there is no conflict at level L1, as t14 and t15 could then interleave in an arbitrary
way and render the index inconsistent.

7.4 Locking on General Transaction Forests

When trying to generalize the layered 2PL to nonlayered schedules, the main
problem is exactly the missing layering and the resulting difficulty in identifying
the appropriate scopes of locking. As an example, consider the schedule in
Figure 7.7, where account objects are assumed to be implemented by a counter
for the account balance and a list for recording all cash flows on the account.
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t1

Deposit(x) Deposit(y)

t2

Incr(a) Decr(a)Append(l) Incr(b) Append(l)Append(l)

r (p) w(p) r (p) w(p)r (q) w(q) r (q) w(q) r (p) w(p) r (q) w(q) r (p) w(p) r (q) w(q)

Figure 7.7 Example of a schedule for which layered locking does not work.

The decisive point is that t2 “bypasses” the account abstraction and chooses to
manipulate the counter and the list directly. (See Chapter 6 for a discussion
of why and how such bypassing may occur.) At the time when the second
transaction t2 starts, we would expect t1 to hold a deposit lock on account x
and no other locks. The increment and append locks on the counter a and the
list l would have been released already at the end of subtransaction t11 (i.e.,
the deposit(x) operation). The page locks for the underlying page reads and
writes would have been released even much earlier, at the end of t111 and t112,
respectively. Now, when t2 requests a decrement lock on counter a, it would
not find any existing locks on a, and the lock request could be granted. The
same situation holds for the subsequently needed append lock on list l .

The net result is that the schedule shown would be allowed under such a
locking protocol. However, this concurrent execution is admissible only under
specific assumptions on the semantics of t2’s operations. If we knew that the
Decrement and Append operations of t2 together implement an abstract op-
eration that commutes with t1’s deposit, then the situation is acceptable. For
example, if t2 decrements the counter by a constant amount to charge a monthly
fee for maintaining the account, this would be considered commutative with
a deposit. On the other hand, if the Decrement and the Append together
implement a withdrawal, the noncommutativity of Withdraw and Deposit op-
erations should actually tell the lock manager that t2 must not be allowed to
run at this point. Analogous arguments could be made about the subsequent
read/write children of t2. Without any clue on the abstract semantics of t2’s
operation sequence, we would conservatively have to assume a conflict with
t1’s high-level Deposit operation.

The question now is when we can allow a low-level operation to proceed
in a situation where incomparable high-level operations of concurrent trans-
actions still hold locks. The answer lies in inspecting the ancestors of both the
requesting transaction and the potentially conflicting high-level operations of
the other transactions. If operation r of the requestor (e.g., t2’s Decrement) has
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an ancestor for which we know that it commutes with a previous operation h
(e.g., t1’s Deposit) and such a condition holds for every transaction that holds
an incompatible lock, then operation r can be allowed to proceed; otherwise it
should be blocked. Since lock conflicts are actually detected only among opera-
tions on the same objects, the negative one of the two cases requires additional
information for the previous operations on the object to which the requestor r
refers. Essentially, we need to know that a lock on that object was held on behalf
of a higher-level operation h but has meanwhile been released. For example,
t2’s Decrement operation should be alerted by remembering the previous lock
of t1’s Increment on a. Realizing that this is a potentially problematic situation
should then lead to a more elaborate conflict test involving the ancestors of the
operations.

A technical means for accomplishing the above ancestor conscious con-
flict testing is to retain the original locks of completed subtransactions for the
purpose of alerting subsequent operations that access a lower-level object di-
rectly, bypassing the higher-level abstraction. In an implementation, regular
locks would be converted into a special kind of retained locks upon the comple-
tion of the corresponding subtransaction. Retained locks merely serve the alert-
ing bypassing operations; operations that are invoked on behalf of higher-level
operations that have properly passed all conflict tests in a complete top-down
descent along an object implementation hierarchy should never be blocked by
a retained lock.

Putting all these considerations together, we arrive at the following princi-
ple: An operation r , the requestor, can ignore a retained lock, originally held by
operation h, if and only if both operations have ancestors r ′ and h′ such that h′

is already completed and r ′ and h′ commute. Otherwise, the retained lock of h
is still considered “active” as far as r is concerned. In the worst case, the ances-
tor of h by which r could become blocked would be the transaction root of h.
This would be the case in our example of Figure 7.7: decr21(a) would conflict
with the retained lock, originally held by incr11(a), but the only “commutative”
ancestors of the two operations are the transactions themselves. So decr21(a)
would have to wait until the completion of t1. Note that it is important that the
ancestor of the retained lock holder h is completed; otherwise, we could end
up with subtrees for commutative high-level operations for which we cannot
guarantee isolation of the subtrees themselves.

We coin this protocol the (general) object model 2PL. It is completely Object model
2PLdescribed by the following rules:

1. Lock acquisition rule: When an operation f (x) with parent p is issued,
an f mode lock on x needs to be acquired before the operation can start
its execution.

2. Lock conflict rule: A lock requested for operation r (x) (called the re-
questor) is granted only if
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(a) either no conflicting lock on x is held,

(b) or when for every transaction that holds a conflicting lock on behalf
of an operation h(x) (called the holder) the following condition
is satisfied: the lock of h(x) is a retained lock and r and h have
ancestors r ′ and h′, respectively, such that h′ is already terminated
and commutes with r ′.

In the second case, if no such ancestors exist, r (x) needs to wait until
the completion of the lowest ancestor h′ of h such that r has an ancestor
r ′ that commutes with h′. In the “worst case,” this lowest ancestor h′

would be the transaction root to which h belongs.

3. Lock release rule: Once a lock, originally acquired by an operation f (x)
with parent p, is released, no other child of p is allowed to acquire any
locks.

4. Subtransaction rule: At the termination of an operation f (x), all locks
that have been acquired for the children of f (x) are converted into
retained locks.

5. Transaction rule: At the termination of a transaction, all locks of its
descendants are released.

The correctness arguments for this protocol are quite a bit more involved
than those for the layered variant. By proper case analyses and application of
the tree reducibility transformation rules, we arrive at the following result:

THEOREM 7.2

The object model 2PL generates tree-reducible schedules only.

Proof

First assume that all operations in a transaction tree retain all their locks until

the commit of the transaction root. In this case each object model schedule

would follow a flattened SS2PL protocol that gradually acquires locks for

all nodes of an entire transaction tree and releases them in one stroke

at the very end of the transaction. So in reasoning about the correctness

of the actual protocol that allows certain operations to ignore retained

locks, we can focus on the operations that are in conflict with a retained

lock but have an ancestor that commutes with a completed ancestor of

the retained lock’s holder. So the canonical situation to be inspected more

closely is the following: there is a retained lock holder f1 (somewhere within

a transaction tree) that is already completed, has a completed ancestor h1,

and belongs to active transaction t1, and there is a lock requestor f2 that

would conflict with f1, belongs to active transaction t2, and has at least

one active ancestor h2 that commutes with h1. This situation is depicted in
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t1 t2

h1 h2

f1
f2

Figure 7.8 Canonical situation for conflict testing
against a retained lock under the object
model 2PL protocol.

Figure 7.8. All other cases are uncritical because of the locking nature of the

protocol. For example, if t1 was already completed when the lock for f2 is

requested, f2 could immediately proceed; in this case it is guaranteed that t1
and t2 can be isolated from each other by commutativity and tree pruning

arguments such that t2 follows t1. Another uncritical situation would be

when no ancestor h2 of f2 exists that commutes with h1; in that case, t2
would have to wait until the completion of t1.

For the canonical type of critical situation we now show that the subtrees

rooted at h1 and h2 can always be isolated, with both of the two possible

serialization orders among them being acceptable. We do so by induction

on the longest path from a leaf to h1 or h2, whichever yields the maximum.

For the base case with maximum path length 1, both f1 and f2 must be

leaves, and h1 and h2 are their immediate parents. In this case, the flat 2PL

protocol for the tree leaves ensures that h1 and h2 can be disentangled (if

they are concurrent), with h2 following h1.

Now suppose that the claim holds for all paths up to length i , and consider

h1 and h2 such that the longest path from the leaves to one of these

operations has length i + 1. By the induction hypothesis, we can isolate and

then prune all subtrees rooted at the children of h1 and h2. Now consider

two children g1 and g2 of h1 and h2. If g1 and g2 commute, then we can

rearrange their order to whatever is needed for isolating h1 and h2. So

assume that there is a conflict between g1 and g2. Since under the object

model 2PL all conflicts are lock conflicts, one of the two operations must
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hold a lock that the other operation requests in a conflicting mode. We

need to distinguish two cases with respect to the ordering: g1 precedes

g2, or vice versa. In the first case, if h1 is still active at the point when g2

is invoked, g2 needs to wait until the completion of h1; then the 2PL rule

would ensure that g2 can be pushed after the entire subtree of h1. If h1 is

already terminated at the point when g2 is invoked, the lock for g1 must

be a retained lock; so g2 follows the entire subtree of h1 anyway and does

not present any problems in isolating the subtrees of h1 and h2. At the next

stage, when the subtrees rooted at h1 and h2 are pruned, it is perfectly

acceptable to forget this serialization ordering between g1 and g2, for h1

and h2 are known to be commutative. In the second case, where g2 precedes

g1, the same arguments can be applied analogously. The fact that the g2

has a descendant f2 that follows a conflicting descendant f1 of g1 does not

matter anymore, since, by the induction hypothesis, it is possible to isolate

and prune g1 and g2, with both possible serialization orders among them

being equally acceptable. This completes the induction.

The result about h1 and h2 holds for all possible pairs of this kind and all

possible path lengths from the leaves. Thus, we can now simply specialize

h1 and h2 to become t1 and t2, the transaction roots. So, as a corollary,

we obtain that the conflict between f1 and f2 does not interfere with the

isolation of t1 and t2. Note that this does not yet say that t1 and t2 can

be isolated with either serialization order, as there may be other operations

that dictate such an order or may even prevent the isolation. However, those

other operations are either of the same kind as f1 and f2, or are taken care

of by the 2PL rule for nonretained locks.

A selective form of the protocol, where certain objects in the invocation
trees are skipped, is also conceivable, and is analogous to the selective lay-
ered 2PL. However, as we do not need to explicitly model each and every
invoked object method in the schedule in the first place, the same effect can be
achieved by a less comprehensive form of schedule. So the concurrency con-
trol would not “see” the less important operations anyway. For this reason and
because the selective version of the object model 2PL becomes notationally
complex, we do not further elaborate on it here.

In summary, although the developed general object model 2PL is a fairly
complex protocol, it is worth employing in situations where the discussed
kind of bypassing object abstraction is possible. The alternative would be to
resort to standard locking at the common lower-level objects, but this could
severely limit the allowable concurrency. As we mentioned earlier, it is unlikely
that the concurrency control is presented with very deep method invocation
trees. So, in a practical application situation, it may also be possible to sim-
plify and streamline the object model 2PL to a more restricted setting such as
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generalized two-level schedules where the object level L1 can be bypassed by
some transactions.

7.5 Hybrid Algorithms

Different protocols may be used at distinct levels of a layered system. For
example, we could use an optimistic protocol or timestamping at the page
level and 2PL at the record level. This can be advantageous, as the Li operation
patterns of subtransactions may have more specific characteristics than the
patterns of the entire transactions, so that protocols that are specifically geared
toward particular patterns could be favored. For example, with record-level
and page-level concurrency control in a two-level system, the fraction of read-
only subtransactions at the page level would typically be much higher than the
fraction of read-only transactions (i.e., roots).

Thus, particularly attractive hybrid protocols for two-level schedules are
the following:

a combination of 2PL at the (object or record) level L1 and the forward-
oriented optimistic concurrency control, FOCC, at the page level L0;

a combination of 2PL at L1 and the multiversion concurrency control
protocol that uses timestamping for read-only (sub-)transactions and
2PL for update (sub-)transactions, coined ROMV in Chapter 5, at level
L0.

In both of these combinations, read-only subtransactions are treated par-
ticularly favorably and with extremely low overhead. Further note that both
FOCC and ROMV can be implemented very easily and efficiently for very
short (sub-)transactions on pages, whereas their implementation is much more
problematic for longer transactions at the record level.

The correctness of the 2PL/FOCC combination follows more or less di-
rectly from the fact that both protocols generate OCSR schedules, thus leading
us to the following result:

THEOREM 7.3

For two-level schedules, the combination of 2PL at L1 and FOCC at L0

generates tree-reducible schedules only.

Tree reducibility is also guaranteed by the 2PL/ROMV combination, but
as ROMV does not generate CSR L1-to-L0 schedules, we need to use the tree
reducibility transformation rules to show equivalence to a serial order of the
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roots. The transformation rules can be applied in a strictly layered manner,
first isolating record-level operations, then pruning their subtrees, and finally,
applying CSR-style commutativity arguments at the record layer to isolate
transactions. The commutativity based reordering of the page-level children to
isolate the record-level operations is a bit more sophisticated than with 2PL
or similar protocols at the page layer. In addition to the usual commutativity
relationship, a page read operation issued by a read-only record-level opera-
tion commutes with all page writes whose parents are concurrent with the
read operation’s parent. The read does not commute, however, with a write
step whose parent terminated before the read’s parent began. This notion of
commutativity reflects the version function of the ROMV protocol. Then it
is straightforward to see that record-level operations can be isolated without
reversing any orderings among nonconcurrent record-level operations, and this
yields the following result:

THEOREM 7.4

For two-level schedules, the combination of 2PL at L1 and ROMV at L0

generates tree-reducible schedules only.

The dual version of this combination with ROMV at the record layer L1

and 2PL at the page layer L0 is an intriguing protocol, too. As long as we restrict
ourselves to simple Fetch and Modify operations at the record level, the above
arguments are sufficient to prove the correctness of this protocol as well. To
incorporate insertions and deletions of records, we can assume that deletions
actually leave some form of marker in the underlying storage structures rather
than removing the record (and its prior versions). With semantically richer
operations like predicate-oriented SQL-style search commands, however, we
would need to reconsider and extend the notions of a version function and a
conflict relation. Thus we have

THEOREM 7.5

For two-level schedules, the combination of ROMV at L1, applied to record-

oriented Fetch, Modify, Store, and Erase operations, and 2PL at L0 generates

tree-reducible schedules only.

In commercial database systems, 2PL at the page layer would often be
replaced by a carefully designed latching protocol for reduced overhead.
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7.6 Locking for Return Value Commutativity
and Escrow Locking

Locking protocols can also be fed by return value commutativity for defining
the compatibility between different lock modes. In this case, each operation
type in combination with its return value forms a separate lock mode. For
example, in the bank account example, we would introduce lock modes like
Withdraw↑ OK, Withdraw↑ NO, Deposit↑ OK, and GetBalance↑ OK. The lock
mode compatibility would be derived from the table for return value commu-
tativity in a straightforward way. As before, a lock can only be granted if no
other transaction already holds a lock on the same object in an incompatible
mode, and, of course, the rules of (layered or object model) 2PL also need to
be in effect.

A problem with this approach is that return values and hence the necessary Deferred lock
conflict test
at end of
subtransaction

lock modes are known only at the end of an operation execution; so we cannot
know in which mode to acquire the lock for the operation before it starts. The
solution is to allow the execution without the appropriate lock; once we know
the return value, a lock is requested in the corresponding mode. If there is no
lock conflict at this point, the lock is granted and we do not need anything
special. On the other hand, if we detect a lock conflict, this means that, in
retrospect, we should not have been allowed to execute the operation at all.
In this case, the escape is to roll back the operation, request the lock as if
the operation were about to start just now, and—because the conflicting lock
is already held—force the requesting transaction to wait until the current lock
holder releases its lock. Note that it is only the operation that is rolled back, not
the entire transaction. The approach can be viewed as an optimistic execution
of the subtransaction that corresponds to the operation. Note that it is crucial
for this subtransaction to acquire locks for its children in order to ensure that all
of the semantically rich operations for which we want to exploit return value
commutativity are indeed isolated. With this prerequisite, we can show that
the sketched protocol guarantees that all resulting schedules are tree reducible.

A special case of locking based on return value commutativity has been
studied intensively for objects of the abstract data type Counter, a practically
important case for reservation systems, inventory control, and other applica-
tions along these lines. In these applications, counters are typically constrained
from both below and/or above. Recall that for counters without any constraints,
Increment and Decrement operations generally commute, and return value
commutativity would not be needed. So each counter object x is associated
with a lower bound, low(x), and an upper bound, high(x), within which the
value must be guaranteed to stay.

When transactions request to increment or decrement a counter, the lock- Escrow locking
on counter
objects

ing protocol needs to ensure that the requested operation commutes with all
previously executed Increment and Decrement operations issued by ongoing
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transactions. As these transactions are still active and as we cannot take for
granted that their effects will always be eventually committed, we need to
consider a value interval within which the “true” value of a counter is guar-
anteed to stay, even if some of the active transactions abort. So for each such
object x, the concurrency control maintains two values inf(x) and sup(x), the
infimum and supremum of the possible value range for x. Return value commu-
tativity is then tested against the infimum and supremum of a counter, which
can be done very efficiently. This approach is called escrow locking, and the
Increment and Decrement operations are referred to as escrow operations in
this context, as they can be viewed as requesting some quantity of a resource
into escrow, under the supervision of a notary. A concrete application example
for this metaphor could be selling or buying stocks for a (constrained) portfolio
or maintaining the quantity-on-hand of some item in a warehouse.

Following these considerations, the concurrency control code for the two
escrow operations Incr and Decr is as follows:

incr (x, �):

if x.sup + � ≤ x.high then

x.sup := x.sup + �; return ok

else if x.inf + � > x.high then

return no

else wait fi fi;

decr (x, �):

if x.low ≤ x.inf - � then

x.inf := x.inf - �; return ok

else if x.low > x.sup - � then

return no

else wait fi fi;

In this pseudocode wait means waiting until the end of one of the active
transactions that has operated on the corresponding counter. Upon the Com-
mit or Abort of a transaction t the uncertainty interval of a counter value is
reduced by increasing the infimum of a counter for each Increment operation
and decreasing the supremum in the case of a Commit, or vice versa when the
transaction aborts. To this end, the concurrency control also needs to maintain
a list of all Increment and Decrement operations that have been issued by each
active transaction. With this data structure at hand, the code to be executed
upon Commit or Abort looks as follows:

Commit of transaction t:

for each operation incr(x,�) executed by t do

x.inf := x.inf + � od;

for each operation decr(x,�) executed by t do

x.sup := x.sup - � od;
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t1

  x(0) x(4)

Decrease(x, 75)

t2

Decrease(x, 10)

t3

Incse(x, 50)

t4

Decre(x, 10)

Abort

Decr(x, 75)

Decr(x, 10)

Incr(x, 50)

Decr(x, 20)

Abort

[25, 100]

[15, 100]

[15, 150]

[15, 75]

[25, 75]

[5, 75]

[55, 75]

[x.inf, x.sup]

100 = 55=

Figure 7.9 Example execution under escrow locking.

Abort of transaction t:

for each operation incr(x,�) executed by t do

x.sup := x.sup - � od;

for each operation decr(x,�) executed by t do

x.inf := x.inf + � od;

When no transaction is active, x.inf and x.sup for a counter x coincide again,
yielding the actual value of the counter. An example scenario under the escrow
locking protocol is shown in Figure 7.9, assuming that x.low is zero and
x.high unbounded. In this figure, the vertical dotted lines show the actual
value of x at the begin and end of the schedule as well as the infimum and
supremum of x at the intermediate points. t4 is forced to wait until t2 termi-
nates (by abort), for at the time when t4 issues its decr(x, 20) operation request
x.inf is 15 (and x.sup equals 75). With the abort of t2, x.inf becomes 25 so
that t4’s decrement can safely proceed.

Like most locking protocols, escrow locking is susceptible to deadlocks.
Such a situation is shown in Figure 7.10, where transaction t4 waits for an
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t1

t2

Decrease(x, 10)

t3

Increase(x, 50)

t4

Incr(x, 10) Update(y)

Incr(x, 10) Update(z)

Incr(x, 10)

Getval(y) Getval(z) Decr(x, 20)

  x(0) = 0

Figure 7.10 Example of a deadlock with escrow locking.

escrow lock but already holds “conventional” locks, and thus causes t1 and t2 to
become blocked when they request conflicting locks. The resulting lock waits
are illustrated by dashed lines. A particularity that arises here is that the lock
waits are not simply blocking situations between pairs of transactions. Rather,
transaction t4 actually waits for a quantity of 20 of the resource managed by
counter x. Once we know that the infimum of x is at least 20, t4 could be
resumed. With the three still-active transactions t1, t2, t3, the infimum is still
0, but it would be sufficient that any two of these three transactions commit
to increase the infimum to 20. So, in essence, t4 is waiting for any two of the
three transactions t1, t2, t3; and t1 and t2 each wait for t4. This form of deadlock
would require some kind of “or edges” in a waiting graph and is more general
than the kind of deadlocks that we are used to with conventional locking. In
fact, it turns out that detecting that a deadlock exists is computationally more
expensive than using simple waits-for graphs. However, given that escrow lock-
ing only serves to reduce lock waits, and deadlocks should be rare anyway, this
additional complexity in deadlock handling is not a severe caveat.

An interesting twist on exploiting state based commutativity on counters isTolerating
bounded

inconsistency
to relax the correctness requirements and tolerate some bounded inconsistency.
More precisely, rather than guaranteeing that all reads of counter objects yield
consistent values that are in line with a serializable history, an approximate
value that falls into some form of “confidence interval” may be sufficient for
the application. In contrast to a confidence interval used in statistics, however,
the retrieved value should be guaranteed to be within the interval’s bounds
rather than having this property merely with very high probability.

In certain situations this behavior could be achieved without any concur-
rency control at all (other than short-term locks for the duration of a high-level
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operation), namely, when the � by which the counter value can be changed
by a single transaction is very small and thus negligible relative to the abso-
lute counter value. In such a situation (e.g., when the counter is the total of
a large number of individual counters and updates manipulate only the in-
dividual counters), the number of concurrently active transactions times the
maximum � per individual transaction yields the maximum deviation from the
actual value that could be observed when all transactions run in a serializable
manner.

However, in other situations, this kind of confidence interval may be unac- ǫ serializability
ceptably large, and we would wish to have explicit control over the observable
deviation from the actual value. A criterion along these lines is the notion of ǫ

serializability, which assures that each read operation sees a value that deviates
by at most ǫ from the value that it would see in a serial schedule. Obviously, the
approach of tracking the infimum and supremum of a counter’s value that we
discussed for escrow locking points us to possible implementation techniques
for ǫ serializability: basically, a read operation needs to be blocked when the dif-
ference between the supremum and the infimum is larger than the acceptable ǫ.

The ǫ serializability approach can even be generalized to incorporate up-
dates that are not necessarily commutative: as long as the value of the counter
remains within a distance of ǫ from the value that would be produced in a
serial schedule, the situation may be considered acceptable (depending on the
application). This generalization requires additional mechanisms known as “di-
vergence control” in the literature. An elegant property of the entire approach
is that standard serializability is included as a special case, namely, for ǫ = 0. In
practice, a difficulty that could easily be underestimated is to understand the
application well enough to derive a truly acceptable setting for ǫ. These are
exactly the difficulties that are avoided by serializability (i.e., the case ǫ = 0),
which frees application architects and developers from thinking about the pit-
falls of concurrency.

7.7 Lessons Learned

Based on the previous chapter’s results on transaction forests with semanti-
cally rich operations, we have developed a couple of 2PL-based concurrency
control protocols for the object model. In the simpler form, layered 2PL, we
assume a layered structure of the transaction trees and simply apply 2PL at
each layer. This is the fundamental concept in record granularity locking that
industrial-strength data servers support: record locks are held for transaction
duration, and short-term page locks are held for the scope of record operations
to ensure that the corresponding subtransactions can be isolated. In practice,
the restricted nature of record operations may even allow us to further relax
the subtransaction 2PL to the extreme point where pages merely need to be
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latched while being accessed. The latter technique can be viewed as a very
lightweight form of subtransaction locking.

The same principles carry over to other protocols, where 2PL is replaced
by another conventional protocol at selected levels, as long as this protocol
guarantees order-preserving conflict serializability. This way, optimistic or mul-
tiversion protocols can be integrated in a layered architecture, and even hybrid
protocols are feasible with different concurrency control techniques at different
levels.

For arbitrary transaction forests that do not conform to a layered struc-
ture, the protocol becomes more complex, as it needs to deal with situations
where some transactions access certain data only through some ADT object
interface, whereas others access that data directly. The notion of retained locks
allows us to generalize the key properties of the layered 2PL to such an ar-
chitecture, but the need to remember low-level locks past the completion of
subtransactions and the additional complexity of the lock conflict testing may
incur noticeable overhead. So although the general object model 2PL can cope
with arbitrary collections of business objects, a performance-conscious system
design will probably strive to limit the depth of the transaction forests or may
even choose to embed the transaction forests into a layered structure.

Throughout most of this chapter, we have assumed a state-independent
notion of commutativity. As a special case, when all direct children of all trans-
action roots are a priori known to be commutative (or more generally, some
slice of operations across all transaction trees has this property), it is sufficient
to provide concurrency control measures for the subtransactions that corre-
spond to the roots’ children. In such a setting, which is known as decomposed
transactions with chained subtransactions, the subtransactions can be treated as if
they were independent transactions as far as concurrency control is concerned.
Exploiting this special case is, however, highly dependent on the application
design. In a similar vein, special-purpose application objects may even want
to exploit state-dependent commutativity. To this end, we have presented the
efficient escrow locking protocol that is specifically geared for objects of type
Counter with possible constraints on the counter value. This protocol can be in-
tegrated into the general object model 2PL or the layered variant on a per-object
basis.

Exercises

7.1 Investigate what kind of deadlocks can arise in a layered system with layered
2PL, and how they can be detected and eliminated. Under what conditions
is it sufficient that each layer tests only for “local” deadlocks caused by lock
waits of one layer only? Under what conditions is it necessary to consider
lock waits of all layers “globally” to detect all deadlocks?
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7.2 Discuss the pros and cons of the selective layered 2PL. As an example,
consider query-, record-, and page-level operations along the lines of
Figure 7.4. Does having all three levels involved in locking rather than
only two result in performance advantages? If locking should be limited to
two levels, are there arguments for choosing certain levels over others?

7.3 Trace the lock requests, conflict tests, lock acquisitions, and lock releases for
the execution of the schedule in Figure 7.7 under the general object model
2PL with an SS2PL variant. How would the sample execution change if
the Append operations were dropped and t2’s Decrement operation was
replaced by an incr(a) operation that commutes with other increments?
How would the execution change if t2 started first and t1 was spawned after
all of t2’s operations but before the commit of t2?

7.4 Develop pseudocode for a restricted version of the object model 2PL,
where a generalized form of two-level schedules is considered, with some
transactions bypassing the object level L1 and invoking L0 operations di-
rectly. This setting is, for example, of interest in the context of federated
information systems, where global transactions access a variety of databases
through a federation layer, using commutativity based 2PL for high-level
operations exported by the underlying databases, but local transactions are
still allowed to access a database directly. Such an architecture is sometimes
called a federation of “autonomous” databases.

7.5 Apply the following hybrid protocols to the schedule of Figure 7.3 in a
selective way so that only two levels are involved in concurrency control:

(a) the forward-oriented optimistic concurrency control (FOCC, see
Chapter 4) at the page level and strong 2PL at the record level,

(b) the forward-oriented optimistic concurrency control at the page level
and strong 2PL at the query level,

(c) the hybrid multiversion protocol ROMV (see Chapter 5) at the page
level and strong 2PL at the record level,

(d) the hybrid multiversion protocol ROMV at the page level and strong
2PL at the query level.

Sketch the resulting executions.

7.6 Prove the correctness of the 2PL protocol for two-level schedules with
deferred lock conflict testing based on return value commutativity sketched
in Section 7.6.

7.7 Trace the intermediate states of the escrow data structure (i.e., the infimum
and supremum values) for the counter object x in the example execution
of Figure 7.9.

7.8 Consider two counter objects x and y, with initial values x = 100 and y =

50. Both counters have zero as a lower bound and no upper bound. Apply



274 CHAPTER SEVEN Concurrency Control Algorithms on Objects

the escrow locking method to the following schedule of three transactions,
one of which aborts:

decr1(x, 60)incr2(x, 20)incr1(x, 10)decr3(x, 50)decr2(y, 60)incr2(x, 20)a2

decr1(y, 10)c1c3

7.9 Escrow operations can be further generalized into conditional Increment
and Decrement operations, where the conditions may be stronger than the
actual resource quantity needed, taking the form:

conditional decr (x, ǫ, �):

if x ≥ ǫ then x := x - � fi;

and an analogous Conditional Incr operation. For the Conditional Decr,
the value of the ǫ parameter would be larger than or equal to the operation’s
� value, and the situation would be the other way around for the
Conditional Incr operation. In addition to such operation-specific condi-
tions, the global invariants for x.low and x.high must be satisfied at all
times. Discuss the notions of general and return value commutativity for
these generalized escrow operations.
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CHAPTER E IGHT

Concurrency Control on
Relational Databases

Knowledge without wisdom is a load of books on the back of an ass.

—Japanese proverb

Do not fear to be eccentric in opinion, for every opinion now accepted

was once eccentric.

—Bertrand Russell

8.1 Goal and Overview

In this chapter we take a closer look at semantic approaches to concurrency Exploiting
semantic
knowledge

control. While there are many ways to do so, we restrict the attention to a par-
ticular data model, the relational model, as this is the most widely used and,
as will be seen, allows for a variety of interesting observations and develop-
ments related to transactional concurrency control. In terms of what has been
discussed in the previous chapters, we here consider a specific object model,
in which the objects are relations that are manipulated as a whole by (query
or update) operations. This is in line with layered object models, where, for
example, operations on relations or sets of tuples are implemented through
record-level operations, which in turn give rise to page operations. The impor-
tant observation we have already made is that semantic knowledge available at
a higher abstraction level can often be exploited in such a way that histories
or schedules that are unacceptable from a read/write point of view become
acceptable when considered from that higher level, as syntactic conflicts essen-
tially disappear when the semantics of operations is taken into account. This is
the kind of observation we will elaborate here for relational databases.

In the terminology of Chapter 6, we restrict ourselves to studying flat
object schedules and histories—that is, two-level schedules with higher-level
operations at level L1 and read/write operations at level L0 such that all L1

operations are isolated a priori. The generalization to nonflat or even nonlayered
schedules is straightforward, using the results of Chapters 6 and 7, and not
specific to the subject of the current chapter. The higher-level operations we
are particularly interested in are the SQL query and update operations. We will

277
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essentially look at three approaches that indicate the variety of studies that can
be conducted in the context of a particular object model.

The first is predicate-oriented concurrency control. Here the idea is to
derive granules that are subject to locking from the relational query or update
expressions that trigger the data accesses. For example, the WHERE condition in
a SELECT expression determines a set of tuples (in a descriptive manner by
means of a logical formula) that can serve as a unit of locking. Predicate-oriented
concurrency control has already been mentioned in Section 7.3 in connection
with layered locking.

The second approach is based on a model for update transactions in re-
lational databases that takes SQL commands as the basic building blocks for
database operations. A theory of concurrency control can be established for
transactions formed from such updates that exploits semantic equivalence in
a variety of ways. For example, while there are classes of serializable histories
that resemble the classes FSR and CSR we have seen in the read/write model,
there is also a rich hierarchy of history classes in between, all of which can be
recognized in polynomial time. Moreover, functional dependencies, as special
calls of database consistency constraints, allow for a state-dependent notion of
correctness, and goal orientation marks a radical departure from serializability
that emphasizes a user’s view on transaction cooperation.

Finally, we will look at a way of exploiting transaction program seman-
tic information as it can be derived from SQL operations, by chopping trans-
actions into semantically equivalent smaller pieces that can be scheduled
independently.

Note that these three approaches may be understood as samples of what
can be done to utilize semantic knowledge; a host of additional ways and options
can be found in the literature. However, we also point out right away that,
although such semantic approaches to concurrency control appear attractive
and elegant from a theoretical point of view, up to now they are hardly of
practical relevance. The reason is that an efficient implementation is difficult
to achieve, which is not surprising, as it is generally recognized in computer
science that semantics is more complex than syntax.

Also, to avoid misunderstandings, we emphasize once again that the state
of the art for concurrency control in relational database systems is record-
level locking, as discussed in Chapter 7 (in combination with index locking,
to be discussed in Chapter 9). So the advanced approaches covered in the
current chapter should be understood as additional, potential enhancements
that provide specific options.

8.2 Predicate-Oriented Concurrency Control

In Section 7.3 we discussed layered locking and in particular layered 2PL
as a way of applying locking-based concurrency control to layered schedules.
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An important point there was the fact that lock modes can be attached to
operations (such that locks are in conflict if the corresponding operations do
not commute), and scheduling can be done in a level-by-level fashion. The
semantically rich, high-level operations of the previous chapter, such as “Select
Name from Persons where Age=30,” already suggest that predicates that are
employed to determine a certain set of objects can be associated with locks.
We will look into this view in more detail next.

We are using the relational data model as our platform of explanation. We Relational
databasesassume you are familiar with the relational data model and its standard query

language SQL at an elementary level. For our purposes, it suffices to view a
relational database as a set of relations. Each relation, also known as a table, has
a schema (also known as table header), which consists of a name R and a set
of attributes (also known as columns) A1, A2, . . . , An and which is written in
the form R = (A1, . . . , An). Associated with each attribute Ai , 1 ≤ i ≤ n is a
finite domain dom(Ai ), so that a concrete relation (or an instance of a relation
schema) can be considered as a set r ⊆ dom(A1) × . . . × dom(An) whose ele-
ments are called tuples. Additionally, a relation schema may comprise a set of
integrity constraints such as functional or key dependencies; in the presence of
dependencies, a relation that is to be considered valid or consistent has to
observe the constraints.

When database relations are subject to transactional access, there are at Transactions on
relationsleast two extremes with respect to locking: entire relations and individual tu-

ples. When a transaction locks an entire relation, it prevents other transactions
from simultaneously accessing any subset of tuples from that relation; hence
there will in general be unnecessary delays. Conversely, if a transaction locks
each tuple that it touches individually, a large number of locks may result,
which can create a lock administration problem. We postpone a discussion of
this trade-off to Chapter 10, where we will introduce a pragmatic solution
known as multiple granularity locking. Unfortunately, locks on individual tuples
are also problematic from a correctness viewpoint, as the following example
shows.

EXAMPLE 8.1

Consider a relation schema Emp holding employee information, with at-

tributes Name, Department, Position, and Salary. The following is a sample

relation over this schema:

Emp Name Department Position Salary

Jones Service Clerk 20000

Meier Service Clerk 22000

Paulus Service Manager 42000

Smyth Toys Cashier 25000

Brown Sales Clerk 28000

Albert Sales Manager 38000
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Now consider a transaction for reorganizing a department that consists of

the following steps: (a) fire the manager of the service department, (b) hire

a new manager for this department, (c) move all employees of the service

department (other than the new manager) to the sales department, (d)

hire someone new for the service department to do the work under the

supervision of the new manager. These steps translate into the following

SQL statements:

(a) Delete the former manager (strictly speaking, all former managers) of

the service department:

DELETE FROM Emp

WHERE Department = ’Service’

AND Position = ’Manager’

This removes the employee named Paulus from the database.

(b) Insert a new manager of the service department named Smith with a

salary of $40,000:

INSERT INTO Emp

VALUES (’Smith’, ’Service’, ’Manager’, 40000)

(c) Move all employees who are not managers from the service to the sales

department:

UPDATE Emp

SET Department = ’Sales’

WHERE Department = ’Service’

AND Position <> ’Manager’

(d) Insert a new employee named Stone into the service department with a

salary of $13,000:

INSERT INTO Emp

VALUES (’Stone’, ’Service’, ’Clerk’, 13000)

Now consider a second transaction that consists of a query asking for name,

position, and salary of all employees of the sales department. In SQL this is

expressed as follows:

SELECT Name, Position, Salary

FROM Emp

WHERE Department = ’Service’

The issue that arises with this retrieval transaction is whether it can be
interleaved with the four-step update transaction and if so, at which points the
interleaving can be admitted. If the retrieval transaction ran right after step (a),
the deletion of the old manager, it would see a department without a manager.
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If it ran between steps (b) and (c), it would see the department with a new
manager and the old staff. Finally, if it ran between (c) and (d), it would see a
department with the new manager and no clerks for doing the actual work. So
all conceivable interleavings are illegal in that they lead to an inconsistent view
of the data.

The next question is whether standard locking protocols are good enough Phantom
problemto prevent these illegal interleavings. Assume that both transactions lock exactly

the tuples (or underlying stored records) of the Emp table that they are actually
manipulating. So step (a), the deletion of the old manager Paulus, locks the
tuple with name Paulus, and nothing else. If the retrieval transaction ran at this
point, there would be no tuple left for the query to “trip” on a lock conflict. The
query could not lock the tuple for the new manager Smith either, for this tuple
does not yet exist in the database. Such tuples that have been deleted or are not
yet existing but will be inserted in the future appear as “phantoms” to the query:
they have latent relevance for the query’s outcome but cannot be seen by the
query, hence are not locked. For this analogy the problem situation discussed
here is generally referred to as a phantom problem. A similar effect would occur
if the retrieval transaction ran between steps (c) and (d), as the query could no
longer lock the now “invisible” former clerks of the service department.

This discussion seems to suggest that in the presence of INSERT or DELETE Predicate
lockingstatements transactions need to lock entire tables (i.e., the Emp in the example),

and such very coarse-grained locking would seem to be necessary even for
UPDATE statements as they implicitly insert or delete tuples from the set of
tuples that satisfy a given search predicate. Table locking would indeed be a
feasible solution to the above problem, but it would come at the very high
price of restricting concurrency to at most one active transaction on the same
table at every point of time. Fortunately, there is a much better alternative
to table locking that eliminates the phantom problem, too. It is based on the
observation that relation accesses are commonly expressed through predicates
such as those occurring in the WHERE clause of an SQL SELECT, UPDATE, or
DELETE statement. So rather than locking individual tuples in a relation, a
lock request can refer to a predicate that specifies, in a descriptive way and
independently of the current contents of tables, a subset of the database to be
locked. In logic, such predicates that capture the time-invariant meaning of a
specification are also called intensional, as opposed to extensional, which refers
to the current extension of a database.

To be more precise, we consider predicates like those used in the above
example, which are either simple conditions of the form

attribute name comparison operator value

for example,

Department = ‘Sales’



282 CHAPTER EIGHT Concurrency Control on Relational Databases

or conjunctions of simple conditions, such as

Department = ‘Service’ ∧ Position = ‘Manager’

Clearly, SQL allows more complex conditions to be expressed, but conjunc-
tions of simple conditions will be sufficient for our purposes.

In general, let R = (A1, . . . , An) be a relation schema, and let C be a setConditions
of conditions over the attributes of R such that each condition in C is of the
form “Ai = a” or “Ai �= a,” where 1 ≤ i ≤ n and a is a value from dom(Ai ).
It is obvious what it means for a tuple over R to satisfy a condition or a set
of conditions. For simplicity, we will only consider sets of conditions that are
satisfiable (i.e., do not contain conditions that are mutually exclusive).

A set C of conditions over a given attribute set specifies a set H(C) of
tuples in a straightforward manner:

H(C) = {μ ∈ dom(A1) × . . . × dom(An) |μ satisfies C}

We use the notation H(C) since such a set is sometimes called a hyperplane (in a
multidimensional “vector space” generated by the n attributes) in the literature.

Note that, given a relation r over R = (A1, . . . , An) and a condition C over
the attributes of R, it may happen that

r ⊆ H(C), or

H(C) ⊆ r , or

R ∩ H(C) = ∅, or just

R ∩ H(C) �= ∅.

Thus, a hyperplane may specify a superset or a subset of the tuples in a given
relation, it may have a nonempty intersection with the relation, or it may be
disjoint from the relation. Notice that this resembles the situation we have
encountered in the previous example, where we were tempted to lock tuples
that either moved out of the database (through a DELETE or an UPDATE) or
were newly introduced into the database (through an INSERT or an UPDATE).

We can now imagine that an update or retrieval operation of transaction tCompatibility
of predicate

locks
comes with (1) a predicate or condition Ct specifying the tuples to be locked,
and (2) a lock mode mt stating whether the elements of H(Ct) are to be locked
in shared or exclusive mode (i.e., whether they are to be read or written). Next,
two lock requests on behalf of transactions t and t ′ with associated predicates
Ct and Ct ′ as well as lock modes m t and m t ′ are compatible if

t = t ′, or

both mt and mt ′ are read (shared) mode, or

H(Ct) ∩ H(Ct ′) = ∅ (i.e., no tuple satisfies both conditions).
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EXAMPLE 8.2

Returning to Example 8.1, consider the following predicates for the update

transaction:

Ca: Department = ‘Service’ ∧ Position = ‘Manager’

Cb: Name = ‘Smith’ ∧ Department = ‘Service’ ∧ Position = ‘Manager’ ∧

Salary = 40000

Cc : Department = ‘Service’ ∧ Position �= ‘Manager’

C ′
c : Department = ‘Sales’ ∧ Position �= ‘Manager’

Cd: Name= ‘Stone’∧Department= ‘Service’∧ Position= ‘Clerk’∧Salary=

13000

Note that the UPDATE statement for step (c) has two conditions associated

with it, one referring to the tuples that are to be modified and one that

characterizes the result of the modification. These two conditions need to be

locked separately; so each of them sets a predicate lock. This is necessary

because such an UPDATE statement affects queries for both the service

department and the sales department. The retrieval transaction, on the

other hand, needs to acquire a lock on the condition

Cq : Department = ‘Service’

In addition, consider another retrieval transaction that reads all employees

of the sales department and thus needs a lock on

Cp: Department = ‘Sales’

It is straightforward to verify that the following holds:

1. H(Ca) ∩ H(Cq) �= ∅, H(Cb) ∩ H(Cq) �= ∅, H(Cc) ∩ H(Cq) �= ∅,

H(Cd) ∩ H(Cq) �= ∅

2. H(C ′
c) ∩ H(Cq) = ∅

3. H(Ca) ∩ H(Cq) = H(Cb) ∩ H(Cp) == H(Cc) ∩ H(Cp) = H(Cd) ∩

H(Cp) = ∅

4. H(C ′
c) ∩ H(Cp) �= ∅

Thus, the SELECToperation for the sales department, which is based on

Cp and which uses a lock in shared mode, would be compatible with the

UPDATE statements of steps (a), (b), and (d), and also with the first one of

the two predicate locks for step (c), but it would conflict with the second

lock for step (c). The SELECToperation for the service department, based

on Cq , on the other hand, is in conflict with all of the locks set by the four

update steps except the lock for C ′
c set by step (c).

A scheduler based on predicate locking has to keep track of the predicates Scheduling
for which locks have already been granted. When a new lock request arrives,
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the scheduler performs a compatibility test and grants the lock only if the test
shows no conflict (i.e., only disjoint predicates are locked in conflicting mode).
Assuming SS2PL, when a transaction commits, its predicate locks are released,
and the scheduler should now wake up blocked transactions that may be able
to continue. Note, however, that with predicate locks, a transaction that has
requested a lock for condition C may be blocked by two different predicates,
say, P and Q, which could themselves be disjoint. Thus, when one of these
two predicate locks, say, the one for P , is released, all the scheduler can do is
to retry the lock request for C, but this transaction would still have to wait
until the lock Q is released, too. This brief consideration already indicates that
the implementation of lock waiting queues and the management of transaction
threads in a data server are more complex with predicate locking than for locks
on discrete (individually named) data items.

Although conceptually elegant, predicate locking is not exactly the method
of choice in practical systems. This is mostly for the reason that testing whether
two predicates are compatible, such as whether H(Ct) ∩ H(Ct ′) = ∅ holds
for given Ct and Ct ′ , amounts to testing a Boolean formula for satisfiabil-
ity, which is known to be an NP complete problem. In other words, predi-
cate locking is prohibitively expensive in general. However, very limited spe-
cial cases are of practical interest, and we will reconsider a very simple form
of predicate-oriented locks in Chapter 9 on concurrency control for index
structures.

A variant of predicate locking called precision locking avoids the satisfiabil-Precision
locking ity test, but still is not a lightweight protocol. The scheduler grants all lock

requests right away, without testing predicates for compatibility. However,
when a transaction reads or writes a tuple, this tuple is tested for compati-
bility with all other outstanding predicates of other transactions. A tuple read
or write is rejected if the tuple in question intersects the hyperplane of another
transaction’s predicate and the corresponding lock modes conflict.

So precision locking tests discrete (or, in logic terminology, extensional)
writes against predicate-oriented (intensional) reads; there are no predicates as-
sociated with write operations. Therefore, to detect conflicts between predicate-
oriented UPDATE statements, such a statement needs to be handled as a predicate-
oriented read (for the statement’s retrieval part) followed by a discrete write of
the qualifying tuples. For example, the predicate conflict between the two
operations

DELETE FROM Emp

WHERE Department = ’Toys’ And Position = ’Clerk’

and

INSERT INTO Emp VALUES

(’Johnson’, ’Toys’, ’Clerk’, 19000)
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would be detected by conceptually splitting the DELETE statement into a query
with the search condition Department = ‘Toys’ ∧ Position = ‘Clerk’ and a
sequence of simple, record-oriented deletions for the tuples in the query result.
The inserted tuple for the new employee “Johnson” would satisfy the query’s
predicate, and a conflict would be signaled.

8.3 Relational Update Transactions

In this section we take a different look at relational concurrency control, where
Insert, Update, and Delete operations are taken as the constituents of flat object
model transactions. The theory presented here has been investigated for Update
operations only; we leave it as an exercise to extend it in such a way that queries
are covered as well (see Exercise 8.6). So the transactions to be considered next
will consist of Update operations of the form shown earlier in Example 8.1;
that is, they will be sequences of Insert, Delete, and Modify (formerly called
Update) operations, hence the name IDM transaction model.

8.3.1 Syntax and Semantics

We continue to use the conditions that were introduced in the previous section Relational
Update
operations

for describing Update operations and introduce a simple language for expressing
updates next. Let R be a relation schema:

1. An insertion is an expression of the form iR(C), where the conditions
in C specify a complete tuple over R. This corresponds to the SQL
statement

INSERT INTO R VALUES C

2. A deletion is an expression of the form dR(C), where C is a set of condi-
tions over R. In SQL we would write

DELETE FROM R WHERE C

3. A modification is an expression of the form mR(C1; C2), where C1 and
C2 are sets of conditions over R, and for each attribute A of R either
C1|A = C2|A or “A= a” ∈ C2 holds; the equalities occurring in C2 but
not in C1 state how the tuples in H(C1) are modified. In SQL, we would
write

UPDATE R SET C2 WHERE C1
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In the following, an Update operation is an insertion, a deletion, or a modifi-
cation.

The semantics of the Update operations, called their effect, should intu-
itively be the following. Let r be a relation (set of tuples) over schema R:

1. The effect of iR(C ) is

eff [iR(C )](r ): = r ∪ {C }

2. The effect of dR(C ) is

eff [dR(C )](r ): = r − H(C )

3. The effect of mR(C1; C2) is

eff [mR(C1; C2)](r ) := (r − H(C1)) ∪ {mR(C1; C2)(μ) |μ ∈ H(C1) ∩ r }

Here, the modified version mR(C1; C2)(μ1) of a tuple μ1 ∈ H(C1) under
mR(C1; C2) is the tuple μ2 ∈ H(C2) such that

μ2(A) =

{
μ1(A) if C1|A = C2|A

a if “A= a” ∈ C2

for each A∈ X, where μi (A), i = 1, 2, stands for the A component of
tuple μi .

Thus, as mentioned above, an Insert operation inserts a completely specified
new tuple. A Delete operation deletes all tuples satisfying a given condition,
and a Modify operation takes out tuples to be modified and reinserts their
modified versions.

With these preparations, we can now formally define the IDM relational
transaction model:

DEFINITION 8.1 IDM Transaction

An IDM transaction over a database schema D is a finite sequence of Update

IDM
transactions

operations over D.

If t = u1 . . . um is an IDM transaction over a given database, the effect of t,
written eff(t), is defined as

eff(t) := eff[u1] ◦ eff[u2] ◦ . . . ◦ eff[um]

where ◦ denotes function composition.
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This definition of (the semantics of) a transaction immediately leads to a
notion of transaction equivalence:

DEFINITION 8.2 Transaction Equivalence

Two IDM transactions t and t ′ over the same database schema are equiva-

Equivalence of
IDM
transactions

lent, written t ≈ t ′, if eff(t)= eff(t ′), i.e., if t and t ′ have the same effect.

It has been shown in the literature (see the Bibliographic Notes for this
chapter) that equivalence of IDM transactions is “easy” to test, that is, for
given IDM transactions t and t ′ it can be decided in polynomial time whether
t ≈ t ′. There are two ways to exhibit a constructive proof of this statement:
one is through the specification of a sound and complete axiomatization of
equivalence; the other is through a graphical illustration of transaction effects.
We will not look into details of any of these, but concentrate on a subset of the
set of axioms that cover update commutativity.

For the exposition that follows, we mention that the effects of Update
operations over distinct relations can be shown to be independent of each
other, so that it suffices to consider transactions over a single relation in what
follows. Most of the time, we even look at the simplest schema possible, which
has a single attribute only. Thus, when we write i(3), d(2), or m(1; 4), we mean
that value 3 is inserted into, 2 is deleted from, and 1 is modified to 4 in the
single-attribute relation at hand.

8.3.2 Commutativity and Simplification Rules

When performing Update operations on a relational database, it may or may not Commutativity
rulesmatter in which order a certain sequence of operations is applied. For example,

two Insert operations commute if they refer to distinct tuples. In general, the
following commutativity rules for IDM transactions hold, with C1, C2, C3, and
C4 being sets of conditions that describe pairwise disjoint hyperplanes:

1. i(C1)i(C2) ≈ i(C2)i(C1)

2. d(C1)d(C2) ≈ d(C2)d(C1)

3. d(C1)i(C2) ≈ i(C2)d(C1) if C1 �= C2

4. m(C1; C2)m(C3; C4) ≈ m(C3; C4)m(C1; C2) if C3 �= C1, C2 and C1 �= C4

5. m(C1; C2)i(C3) ≈ i(C3)m(C1; C2) if C1 �= C3

6. m(C1; C2)d(C3) ≈ d(C3)m(C1; C2) if C3 �= C1, C2

Formally, these rules generate a relation “↔” on the set of all transactions (for
a fixed database), whose reflexive and transitive hull we denote by *↔; thus,
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t1 *↔ t2 means that the equivalence of t1 and t2 can be proved using only
the commutativity rules. Notice that t1 *↔ t2 is sufficient for t1 ≈ t2, but not
necessary.

Another group of axioms needed for a complete characterization of equiv-
alence consists of simplification rules, which are to be applied from left to right;
as before, let C1, C2, and C3 be sets of conditions describing pairwise disjoint
hyperplanes:

Simplification
rules

1. i(C1)i(C1) =⇒ i(C1)

2. d(C1)d(C1) =⇒ d(C1)

3. i(C1)d(C1) =⇒ d(C1)

4. d(C1)i(C1) =⇒ i(C1)

5. m(C1; C1) =⇒ ǫ

6. m(C1; C2)i(C2) =⇒ d(C1)i(C2)

7. i(C1)m(C1; C2) =⇒ m(C1; C2)i(C2)

8. m(C1; C2)d(C1) =⇒ m(C1; C2)

9. m(C1; C2)d(C2) =⇒ d(C1)d(C2)

10. d(C1)m(C1; C2) =⇒ d(C1)

11. m(C1; C2)m(C1; C3) =⇒ m(C1; C2) (C1 �= C2)

12. m(C1; C2)m(C2; C3) =⇒ m(C1; C3)m(C2; C3)

We emphasize again that the commutativity rules as well as the simplifi-
cation rules alone are not enough for a complete axiomatization of transaction
equivalence; however, for our purposes in this chapter these will suffice.

8.3.3 Histories and Final State Serializability

We are now ready to define a straightforward notion of histories for IDM trans-IDM histories
actions. Let T = {t1, . . . , tn} be a given set of IDM transactions. Then a history
s for T contains all operations from each t ∈ T in a way that preserves their
original order. A history is serial if all transactions appear strictly one after the
other. We could also consider termination operations here, but for simplicity
just assume that all transactions eventually commit.

EXAMPLE 8.3

Let T = {t1, t2} with t1 = d(3)m (1; 2)m (3; 4) and t2 = d(3)m (2; 3). Then

s = d2(3)d1(3)m1(1; 2)m2(2; 3)m1(3; 4)

is a history for T .
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Notice that, in a static situation, we could even imagine that a history is

optimized before it gets processed. For example, we could obviously apply

some simplification rules to s in order to obtain the following history:

s ′ = d(3)m (1; 4)m (2; 4)m (3; 4)

We have eff(s)= eff(s ′); however, from the latter history we can no longer

tell from which transaction an update stems.

We can define a notion of serializability for IDM transactions that is anal-

IDM final state
serializability

ogous to final state serializability, which we defined earlier for read/write page
model transactions. Because of the similarity between the two notions, we can
even keep the same name:

DEFINITION 8.3 Final State Serializability

A history s for a set T = {t1, . . . , tn} of IDM transactions is final state seri-

alizable if s ≈ s ′ for some serial history s ′ for T .

Let FSRIDM (or FSRIDM(T )) denote the class of all final state serializable

histories (for T ).

Notice that this notion is now defined via the semantics of a history con-
sidered as an IDM transaction, where the semantics is captured in the effects
of the updates that are present.

EXAMPLE 8.4

Consider again t1 = d(3)m (1; 2)m (3; 4), t2 = d(3)m (2; 3), and

s = d2(3)d1(3)m1(1; 2)m2(2; 3)m1(3; 4)

as in the previous example. The final effect of s is that value 3 is deleted,

and 1 and 2 get modified to 4 (provided these values are present). We now

find that s �≈ t1t2, since the latter serial history would first delete 3, then

modify 1 and 2 to 3, and leave everything else unchanged. Next, we also

find s �≈ t2t1, since now the serial history would delete 2 and 3, then modify

1 to 2. Thus, s �∈ FSRIDM.

According to common understanding, s would hence not be considered

acceptable. However, the IDM model can allow for a more relaxed approach

if transaction simplification is applied. Indeed, we can optimize the first

transaction to omit the last update, which is redundant since value 3 is

already deleted by the first update (provided it occurs in the current state).

In other words, t1 ≈ t ′1 = d(3)m(1; 2). If the same update is removed from
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s, we find for the resulting history s ′:

s ′ = d2(3)d1(3)m1(1; 2)m2(2; 3) ≈ t1t2

Thus, s ′ is acceptable as an execution sequence for T . However, s ′ is no

longer a history in the strict sense, since not all updates from the given

transactions are still there; s ′ is only equivalent to some serial history for T
and can therefore be considered a member of FSRIDM.

In general, we can eventually improve histories by removing redundant
updates or by simplifying individual transactions and hence the history itself;
as Example 8.4 indicates, this can make the difference between serializability
and nonserializability.

A second generalization of the notion of history derives from another form
of optimization, now applied to the updates of several distinct transactions
occurring in a history. If we consider history s ′ from the previous example as
an individual transaction, we find that

s ′ ≈ s ′′ = d(3)m(1; 3)m(2; 3)

s ′′ is another simplification of s ′ in terms of the tuple operations to be executed,
although the updates remaining in s ′′ can no longer be directly associated with
t1 and t2. We will not consider this form of generalization further here, but we
mention that it can easily be exploited in the context of a concurrency control
device that does some preprocessing on the (prefix of a) history that it is about
to schedule.

We now briefly look into the question of how to test a given history for
membership in class FSRIDM. As for read/write transactions, we can obviously
do this for given s and T = {t1, . . . , tn} by checking for each permutation ρ of
{1, . . . , n} whether s ≈ tρ(1) . . . tρ(n). Again, it can be verified that most likely
there is no significantly simpler test:

THEOREM 8.1

The problem of testing whether a given history is in FSRIDM is NP complete.

We are not giving the proof of this theorem in full detail here, but just
mention two things about it. First, testing whether a given history s is in NP is
as straightforward as it was for read/write transactions: just guess a permutation
of the transactions and test whether s is equivalent to it. The latter can be done
in polynomial time by looking at the corresponding transition specifications.
Second, to show that the problem is indeed NP complete, the problem of
testing whether a directed graph contains a Hamiltonian cycle can be reduced
to it. To this end, with a given directed graph Gwith n nodes, a set of n + 1 IDM
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transactions and a history s can be associated in such a way that G has a cycle
containing each node exactly once iff s ∈ FSRIDM. Details of this reduction can
be found in the literature.

This result is not surprising, since it is unreasonable to expect that testing
membership in FSRIDM becomes any easier when semantic information on
transactions is available. On the other hand, it does not become any harder
than in the read/write setting either, and as before it motivates looking for
restrictions of the correctness notion that are decidable in polynomial time.

8.3.4 Conflict Serializability

A near-at-hand restriction of final state serializability results from establishing
a suitable notion of conflict for IDM transactions; this is now easy (and fully
in line with what we have done in the page model) using the commutativity
rules shown earlier:

DEFINITION 8.4 Conflict Serializability

A history s for a set T of n transactions is conflict serializable if

IDM conflict
serializability

s
∗
↔ tρ(1) . . . tρ(n)

for some permutation ρ of T , i.e., if the equivalence of s to a serial history

can be proven using the commutativity rules alone.

Let CSRIDM denote the class of all conflict-serializable histories.

Thus, for conflict serializability, we only take commutativity rules into ac-
count (in a similar way that we did for page model transactions in Chapter 3),
and nothing else. In particular, the simplification rules listed earlier (or other
rules that would contribute to an axiomatization of equivalence) are not con-
sidered for the moment.

As we could do for read/write transactions, we can test membership of a
given history in class CSRIDM by testing a suitably defined conflict graph that
shows violations of commutativity rules through cycles:

DEFINITION 8.5 Conflict Graph

Let T be a set of IDM transactions and s a history for T . The conflict graph

IDM conflict
graph

G(s) = (T, E) of s is defined by

(t i , t j ) ∈ E :⇐⇒ (∃ t i , t j ∈ V, j �= i)(∃ u ∈ t i )(∃ u ′∈ t j )
(u <s u ′ and uu ′ �≈ u ′u).
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In words, the conflict graph of a given history has the transactions as nodes
and contains an edge of the form (t, t ′) between two transactions t and t ′ if an
update from t does not commute with a subsequent update from t ′.

EXAMPLE 8.5

Consider s = d1(0)m1(0; 1)m2(1; 2)m1(2; 3). Then G(s) = (V, E), where

V = {t1, t2} has exactly one cycle that results from the fact that m2(1; 2)
commutes neither with its left nor with its right neighbor.

Now we have

THEOREM 8.2

Let s be a history for a set T of transactions. Then s ∈ CSRIDM iff G(s) is

acyclic.

Proof

Let G(s) be acyclic. We show by induction on |T | that s
∗
↔ s ′ holds for

a serial history s ′ for T . Clearly, the claim is trivial for |T | = 1. Let it be

valid for all sets of less than n transactions, and consider a set T such that

|T | = n; let s be a history for T such that G(s) is acyclic. Then there exists

a node t ∈ V with out-degree 0 (i.e., that has no outgoing edge). For each

pair (u, v) of updates such that u ∈ t, v �∈ t, and u <s v it follows that u
and v commute. Therefore, s

∗
↔ s0t, where s0 = πT−{t}(s). Since G(s0) is a

subgraph of G(s), G(s0) is again acyclic. Using the induction hypothesis,

we may thus conclude that s0
∗
↔ s1, where s1 is a serial history for T − {t}.

Hence s
∗
↔ s1t, that is, s ∈ CSRIDM.

Conversely, let s be a history for T such that G(s) = (V, E) has a cycle, and

suppose that s ∈ CSRIDM. The latter implies that there is a serial history s ′

for T such that s
∗
↔ s ′. Since G(s) is cyclic, s ′ cannot contain the transac-

tions from T in topological order. Thus, there exist transactions t i , t j ∈ V
for which s = . . . t i . . . t j . . . , but (t j , t i ) ∈ E . In addition, there exist Update

operations u j ∈ t j and ui ∈ t i such that s = . . . u j . . . ui . . . and u j ui �≈ ui u j .

This implies that the equivalence of s ′ and s cannot be shown by using only

the commutativity rules, a contradiction.

We conclude this subsection by mentioning that, not surprisingly,

CSRIDM ⊂ FSRIDM

By definition, each conflict-serializable history is final state serializable.
Moreover, the inclusion is strict due to the fact that sometimes conflicts
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between pairs of updates from distinct transactions are compensated by their
context.

EXAMPLE 8.6

Let s = m2(1; 2)m1(2; 3)m2(3; 2). Here G(s) is cyclic, so s �∈ CSRIDM. On

the other hand, s ≈ m1(2; 3)m2(1; 2)m2(3; 2), and hence s ∈ FSRIDM.

We also mention that a straightforward scheduling protocol for dynamically
generating the class CSRIDM of conflict-serializable IDM histories is obtained
by adapting the protocol of serialization graph testing (SGT) appropriately.

8.3.5 Extended Conflict Serializability

So far we have established a direct analogy to the page model of transactions,
namely, “global” (final state) serializability with an NP complete decision prob-
lem, and “local” (conflict based) serializability, where the latter is (again) a
strong restriction of the former. A natural question to ask now is whether there
is something in between. As will be seen next, it is here where the full power
of IDM concurrency control arises.

Recall that conflict serializability only takes local conflicts into account,
whereas final state serializability looks at the entire context at once. An inter-
mediate approach would therefore be to look at some portion of the context
only, and we will show next that in the IDM model of transactions this can be
done in various ways.

We will first look at an approach that seems particularly amenable to dy-
namic scheduling, as the idea is to look at conflicts between single updates u
from one transaction and prefixes of other transactions occurring in a given
history prior to u. As for ordinary conflicts, a notion of serializability can be
defined by means of an appropriately chosen graph:

DEFINITION 8.6 Extended Conflict Graph and Serializability Extended IDM
conflict graph

Let s be a history for a set T = {t1, . . . , tn} of transactions.

1. The extended conflict graph EG(s) = (T, E) of s is defined as follows:

(t i , t j ) ∈ E :⇐⇒ (∃ u ∈ t j ) s = s ′us ′′ and π{t i }(s
′)u �≈ uπ{t i }(s

′)

(Here π{t i }(s
′) denotes the projection of s ′ onto {t i }.)

2. s is extended conflict serializable if EG(s) is acyclic.

Let ECSRIDM denote the class of all extended conflict-serializable histories.



294 CHAPTER EIGHT Concurrency Control on Relational Databases

Thus, while ordinary conflict serializability looks at pairs of updates from
distinct transactions only and whether they commute, extended conflict se-
rializability looks at a transaction prefix as well as an update from another
transaction and tests whether they commute. Now the effect of the entire pre-
fix is taken into account, no longer just that of an arbitrary update within that
prefix. As can be seen, this is a relaxation of conflict serializability, since inside
a prefix there may exist updates that compensate or even completely reset the
effect of others.

EXAMPLE 8.7

Let s be as in Example 8.5. Then s ∈ ECSRIDM, since

s ≈ m2(1; 2)d1(0)m1(0; 1)m1(2; 3) = t2t1

EXAMPLE 8.8

Consider s = m1(0; 1)m2(1; 2)m1(2; 3)d1(1)d1(3). Then s �∈ ECSRIDM, but

s ∈ FSRIDM.

Notice that an application of the commutativity rules alone to pairs of
updates is not sufficient for testing whether a prefix projection of a history s
of the form π{t i }(s

′) commutes with a subsequent update u ∈ t j , since this pro-
jection and update u might commute even if u does not commute with each
individual update in the projection. Thus, we exploit the transaction’s seman-
tics, and we can easily test whether given π{t i }(s

′) and u commute by looking
at the corresponding transition specifications.

Since the extended conflict graph of a given history can also be constructed
and tested for acyclicity in polynomial time, membership in class ECSRIDM is
again efficiently decidable.

THEOREM 8.3

For every database schema, CSRIDM ⊂ ECSRIDM ⊂ FSRIDM.

Proof

Clearly, CSRIDM ⊆ ECSRIDM, since the extended conflict graph of a given

history s is acyclic if the same holds for the ordinary conflict graph of s. We

next show by induction on |T | that ECSRIDM ⊆ FSRIDM for every T : the

claim trivially holds for |T | = 1. Now suppose it holds for every T such that

|T | < n. Let T be a set of transactions such that |T | = n, and let s be a

history for T such that s ∈ ECSRIDM. Since, by assumption, EG(s) is acyclic,
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there exists a node t in EG with out-degree 0. Then s can be modified in

such a way that all updates from t occur at the end: Let u be the first update

from t occurring in s. Since t has no outgoing edge, u can be moved to the

right in s by using the commutativity rules, until it hits the second update,

say, u ′ from t. If u ′ is followed by an update v from another transaction,

the pair uu ′ and v can be exchanged (since t has out-degree 0 and is hence

not in conflict with a subsequent transaction). In this way, we can “collect”

all updates from t and move them to the end of s. As a result, we obtain a

history

s ′ = πT−{t}(s)t

for which s ′ ≈ s holds. Since πT−{t}(s) has less than n transactions and

EG(πT−{t}(s)) is acyclic, our induction hypothesis applies; hence s ∈ FSRIDM.

We have already seen in examples that the two inclusions are strict.

As for class CSRIDM, a protocol that can generate histories in class ECSRIDM

can be based on SGT scheduling, since a decision on conflicts is made based
on the knowledge that a scheduler already has about prefixes of transactions as
well as on individual operations.

8.3.6 Serializability in the Presence of Functional Dependencies

We next present a further possibility for exploiting semantic information to
enrich existing notions of serializability. The major difference from what we
have done so far in this chapter will be that we are now going to take state
information into account. In particular, we will assume that for each relational
database on which we run transactions, there will not only be relations and at-
tributes, but also functional dependencies (FDs) as semantic integrity constraints.
For a relation R with attributes A1, . . . , An a functional dependency is a logical
invariant of the form

Ai1 . . . Aik → Aj (k ≤ n)

with the meaning that for all tuples t, t ′ in relation R, either present or con-
ceivable, the logical condition

t.Ai1 = t ′.Ai1 ∧ . . . ∧ t.Aik = t ′.Aik ⇒ t.Aj = t ′.Aj

must be true. In words, if two tuples have the same value for the attributes on
the left side of an FD, they must have the same value for the attribute on the
right as well. Primary key constraints are obviously a special case, but FDs can
capture a wider class of integrity constraints.
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Intuitively, when testing a given history for serializability, we can then
restrict our attention to the effect of the history on states that satisfy the FDs.
In other words, a history s is no longer required to have the same effect as a
serial one for the same transactions on every state, but only on those respecting
the FDs.

This intuition could suggest the following definition: Let R be a relationSerializability
with regard to

FDs
schema with attributes X and a set F of FDs over X. A history s for a set T of
transactions over R is serializable with regard to F if there exists a serial history
s ′ for T such that eff(s)(r ) = eff(s ′)(r ) holds for every relation r over schema
R that satisfies F . Here, eff(s)(r ) denotes the effect of s on r , analogously
for s ′.

Unfortunately, it can be shown that the class of histories that is serializable
with respect to a given set F of FDs coincides with FSRIDM (for each F ),
so that an alternative definition of serializability is required for appropriately
exploiting the additional semantic information provided by FDs. The following
example motivates how such a definition can be obtained:

EXAMPLE 8.9

Consider a relation schema R with two attributes A and B as well as anMotivating
example FD A →B, and let the following history s be given (for two transactions t1

and t2 over R):

s = m1(A= 0, B = 0; A= 0, B = 2)m2(A= 0, B = 0; A= 0, B = 3)
m2(A= 0, B = 1; A= 0, B = 3)m1(A= 0, B = 1; A= 0, B = 2)

It is easily verified that s �∈ CSRIDM, s �∈ ECSRIDM, and even s �∈ FSRIDM.

However, a detailed analysis of the conflicts occurring in s reveals the fol-

lowing: the first two modifications that imply a conflict between t1 and t2
apparently affect tuple (0, 0); similarly, the last two modifications affect

tuple (0, 1). Therefore, the first conflict is relevant only to a relation con-

taining (0, 0), while the second is relevant only to a relation containing

(0, 1). The point now is that these two tuples cannot occur simultaneously

in a relation satisfying A → B! Thus, in any valid relation, at most one of

the two conflicts will be relevant, so that depending on the current state, s
is always equivalent either to t1t2 or to t2t1.

The above observation motivates a novel notion of serializability for which
equivalence to seriality is state dependent:

DEFINITION 8.7 State Serializability

Let R be a relation schema with attributes X and FDs F . A history s for

IDM state
serializability

a set T = {t1, . . . , tn} of transactions is state serializable with respect to F
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if for each relation r satisfying F there exists a serial history sr for T that

depends on r such that eff(s)(r ) = eff(sr )(r ).

Let SSRF (or more precisely SSRF(T)) denote the class of all histories that

are state serializable with respect to F .

Notice that the particular permutation whose effect on r equals that of s
is thus dependent on r itself. Now Example 8.9 demonstrates that there exist
histories s �∈ FSRIDM that are state serializable with respect to a given set F of
FDs. More generally, it can be shown that FSRIDM is a strict subset of SSRF for
each F containing at least one nontrivial FD. In addition, the tests for member-
ship in CSRIDM and in FSRIDM described earlier in this chapter can be general-
ized in such a way that state information is taken into account.

We are not presenting the latter in full detail here, but just sketch how it can
be accomplished for the case of class CSRIDM. The basic idea follows directly
from Example 8.9. For a given history s and a set F of FDs, a conflict graph
G(s) is constructed to represent the auxiliary information of which hyperplane
is relevant to what conflict edge. Next, if a given database state d has an empty
intersection with every hyperplane that is relevant to an edge (ti , t j ), then the
conflict between ti and t j (represented by this edge) can be ignored when
history s is executed on state d. If G(s) contains a cycle, it can be tested (using a
particular form of the well-known chase procedure for enforcing FDs) whether
there exists a state d satisfying the FDs that has a nonempty intersection with
at least one relevant hyperplane of each edge on the cycle. If no such state can
be found for any cycle of G(s), history s is apparently state serializable with
respect to F —in other words s ∈ SSRF .

We mention that the test just sketched is a sufficient condition for mem-
bership in class SSRF only; that is, not every state serializable history can be
recognized in this way. Correspondingly, the class of histories recognized is
denoted CSSRF (for “conflict state serializable histories”). Moreover, the algo-
rithm for testing membership in CSSRF has exponential time complexity (due
to the fact that there are exponentially many choices for sets of hyperplanes
to which the chase procedure is applied). Instead of going further into details,
we present another example showing the essence of what has been discussed
in this subsection.

EXAMPLE 8.10

Consider a relation schema R with attributes ABC and FDs A→ C, C →

B. Let the following history be given:

s = d1(A = 3)m1(A = 0, B = 0, C �= 0; A = 3, B = 0, C �= 0)
d2(A = 2)m2(A = 0, B = 0, C �= 0; A = 2, B = 0, C �= 0)
d2(A = 0, B �= 0, C = 1)d2(A = 1, C = 0)d1(A = 5)
m1(A = 0, B �= 0, C = 1; A = 5, B �= 0, C = 1)
d1(A = 1, C = 0)m1(A = 0, C = 0; A = 1, C = 0)
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Note that both t1 and t2 are consistency preserving when considered in

isolation. Obviously, s �∈ CSRIDM, since its conflict graph has edges (t1, t2)
and (t2, t1) and is hence cyclic. However, we can associate labels with these

edges as follows:

l((t1, t2)) = {C1}

l((t2, t1)) = {C2, C3}

where

C1 = {A = 0, B = 0, C �= 0}
C2 = {A = 0, B �= 0, C = 1}
C3 = {A = 0, C = 0}

Thus, there are two choices for sets of hyperplanes, {C1, C2} as well as

{C1, C3}. For both, the chase procedure will not be successful, meaning

that no state will intersect a hyperplane from each edge simultaneously.

It follows that s is conflict state serializable with respect to F , i.e., s ∈

CSSRF −CSRIDM.

The following theorem summarizes what can be shown for the scenario
incorporating integrity constraints and hence state information outlined above:

THEOREM 8.4

For each set F of FDs with at least one nontrivial element, the following

holds:

CSRIDM ⊂ CSSRF ⊂ SSRF

8.3.7 Summary

The IDM transaction model as described in this section is a model of transac-
tions that is essentially “located” at the conceptual level of a database, where
a user is not concerned with pages or other internal objects of the system,
but only looks at relations, their attributes, their values, and maybe their in-
tegrity constraints. As has been indicated, this view, as a particular case of
flat object schedules as treated in Chapter 6, renders a number of investiga-
tions possible, of which we have presented only a few: commutativity based
serializability, conflict serializability that takes an entire history prefix into ac-
count, or state based serializability. There are various other issues to investigate.
For example, it can be shown that there is an infinite hierarchy of classes of
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serializable histories between CSRIDM and FSRIDM, which, in a sense, approx-
imates the class FSRIDM; the more time a scheduler is willing to invest, the
closer it can get to unrestricted serializability. Yet there is still room for fur-
ther study, in particular when it comes to scheduler design. Indeed, efficient,
low-overhead management of the semantic information available in a model
like this is a nontrivial problem, as we have also shown in previous chapters.
For this particular transaction model, efficient implementations are yet to be
seen.

8.4 Exploiting Transaction Program Knowledge

The third approach to exploiting semantic information is not particularly tied
to the relational model, but again fits well with it. The ideas described in this
section can be combined with predicate-oriented concurrency control, as dis-
cussed earlier in this chapter. They are also closely related to the approach of
interleaving specifications, as introduced in Section 3.10. The key difference,
however, is that we will now preserve serializability despite a more sophisti-
cated interpretation of isolation, whereas the approach in Section 3.10 deliber-
ately allowed deviating from serializability. The approach developed here can
be viewed as a way of automatically deriving, by means of complete knowledge
of transaction programs, those interleaving specifications that are compatible
with serializability.

8.4.1 Motivating Example

The approach described in this section aims to reflect the basic tuning princi-
ple of “making transactions short” in order to reduce the probability of many
conflicts and long delays. It is motivated by application scenarios along the
following lines.

EXAMPLE 8.11

Suppose that a bank allows customers to withdraw a certain amount in cash Bank example
per day from their accounts. At night, an update transaction inspects each

account that has been accessed during the day, updates its balance, and

then updates the corresponding branch total. The update transaction will

typically be of long duration, and due to account accessibility through the

Internet, the bank wants to move away from running the update transaction

only at night. In order to improve service, solutions along the following lines

are conceivable:
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1. The single large update transaction is replaced by many small ones, each

of which updates one customer’s account and the corresponding branch

total. Clearly, the small transactions can now execute in parallel, and the

effects on the individual accounts will be the same. Also, if additional

transactions read a single customer’s account balance, these will not see

any difference compared to the original setting either.

2. As the small update transactions may now interfere with each other

when updating the branch total, each of the small transactions could

be decomposed further into two transactions, one that updates the cus-

tomer’s account and one that updates the corresponding branch total.

Note that the short transactions that result from this kind of “chopping”

are not only perfectly tolerable from an application viewpoint, but they

do in fact behave as if the original, long transactions were executed in a

serializable manner. So it is conceivable that the chopping is automatically

inferred from the transaction programs themselves, without any need for

an application expert to provide additional semantic hints. However, the

correctness of the above decomposition crucially builds on the fact that

there are no other transaction programs that could, for example, access the

accounts of all customers and compare their total to the sum of the bank’s

branch totals. Such a transaction would have an inconsistent view of the

data, but if we knew that this type of access pattern does not occur, the

chopping would be acceptable.

The sample scenario just described makes a point for short transactions,
since long ones acquire more locks and therefore cause potentially more lock
contention. However, as indicated by the example, whether or not a transaction
can be broken into smaller pieces depends on which other transactions may
possibly be running concurrently.

To cast the above considerations into a precise model, let us make the
assumption that we know exactly which transactions may be running con-
currently during some time period. To this end, let us continue the previous
example and describe the transactions in terms of a straight-line sequence of
parameter-less SQL calls. For simpler notation, we will abbreviate the SQL
calls, which are very simple SELECT and UPDATE statements anyway, as if they
were read and write steps on the account and branch objects. Later we will
reconsider the approach and its practicality in the light of real application pro-
grams that have rich control flow and contain parameterized SQL calls.

EXAMPLE 8.12

Let us return to the bank example we considered in the previous example

and assume from now on that the three types of transactions we discussed

above exist as an alternative decomposition:
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1. a transaction updating a single customer’s account as well as the corre-

sponding branch balance,

2. a transaction reading a customer’s account balance,

3. a transaction comparing the grand total of all account balances with the

sum of the branch balances.

Assume further that accounts A1, A2, and A3 belong to branch B1, and

that A4 and A5 belong to B2. Let the transactions be as follows:

t1 = r1(A1)w1(A1)r1(B1)w1(B1)
t2 = r2(A3)w 2(A3)r2(B1)w2(B1)
t3 = r3(A4)w 3(A4)r3(B2)w3(B2)
t4 = r4(A2)
t5 = r5(A4)
t6 = r6(A1)r6(A2)r6(A3)r6(B1)r6(A4)r6(A5)r6(B2)

Transactions t1–t3 update a customer’s account balance as well as the corre-

sponding branch balance; transactions t4 and t5 read a customer’s balance;

and transaction t6 compares the grand totals of customer accounts to the

sum of the branch totals.

Note once again that the transaction programs actually consist of SQL state-

ments rather than read and write steps. So t1, for example, would in reality

be as follows:

SELECT Balance INTO :oldbalance FROM Accounts

WHERE AccountNo = A1;

UPDATE Accounts SET Balance = :newbalance

WHERE AccountNo = A1;

SELECT Total INTO :oldtotal FROM Branches

WHERE BranchNo = B1;

UPDATE Branches SET Total = :newtotal

WHERE BranchNo = B1;

It is only for more concise notation that we have denoted these statements

as r and w steps.

8.4.2 Transaction Chopping

Assume that there are n transaction programs that can execute within some
given interval, leading to n possibly concurrent transaction executions. If a
program can be invoked multiple times within the considered interval, we
treat it as if these were two different programs. We further assume that each
program consists of a straight-line sequence of SQL statements with parameter-
less WHERE clauses. Decomposing, or chopping, a transaction program amounts
to changing the program as follows:
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DEFINITION 8.8 Transaction Chopping

Let t i be a transaction program. A chopping of t i is a decomposition of

Transaction
chopping

t i into ordered pieces t i1 , . . . , t ik (k ≥ 1, most often k ≥ 2) such that every

database operation invoked by t i is contained in exactly one piece, and the

order of operation invocations is preserved.

In practice this transformation could be done simply by inserting addi-
tional COMMIT WORK statements into the original programs at all points where
one piece ends and the next one begins. This is straightforward as long as the
programs are indeed straight-line sequences of SQL statements, without any
branching or loops. Also, the assumption that the pieces that result from the
chopping of a transaction program obey the execution order of the original
program is virtually self-guaranteed in our simplified setting.

If a piece that results from the chopping of a transaction program is aborted
due to a deadlock, it needs to be restarted repeatedly until it commits. If a piece
is aborted due to a program-initiated rollback (e.g., as a result of an explic-
itly coded consistency check), no other pieces of the same transaction should
execute, and only the first piece is allowed to contain such program-initiated
rollback statements. These assumptions need to be guaranteed by the programs
themselves in combination with the underlying run-time system. In particular,
the property that once the first piece is successfully committed, all subsequent
pieces must be executed to completion exactly once, so that the atomicity of
the original transaction is preserved, requires elaborate considerations on re-
covery. We will come back to this issue in Chapter 17, where a straightforward
solution based on transactional message queues will be presented.

Our next goal is to test whether a given chopping for a set of transaction
programs is correct in that it preserves serializability of the transactions that
would be spawned by the original programs. This can be done by a simple
form of static program analysis. For simplicity, we will again use the convenient
read/write notation rather than SQL, and we will henceforth no longer ex-
plicitly distinguish between a straight-line transaction program and the totally
ordered transaction or sequence of pieces that originate from the program. For
the analysis, we introduce a particular kind of chopping graph defined as follows:

DEFINITION 8.9 Chopping Graph

Let T be a given set of transactions, and let a chopping of the transactions

Chopping graph

in T be given. A chopping graph C(T) is an undirected graph such that:

1. The nodes of C(T) are the transaction pieces occurring in the chopping.

2. Let p, q be pieces from two different transactions. If p and q contain
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operations that are in conflict, C(T) contains an undirected edge be-

tween p and q labeled with a c (for “conflict”).

3. If p and p ′ are pieces from the same transaction, C(T) contains an

undirected edge between p and p ′ labeled with an s (for “sibling”).

Note that no edge in a chopping graph can have both an s and a c label.
We say that a chopping graph contains an sc cycle if it contains a cycle with at
least one s and at least one c edge.

EXAMPLE 8.13

Consider the following three transactions:

t1 = r1(x)w1(x)r1(y)w1(y)
t2 = r2(x)w2(x)
t3 = r3(y)w3(y)

Let t1 be chopped into two pieces as follows:

t11 = r11(x)w11(x)
t12 = r12(y)w12(y)

The corresponding chopping graph is shown in Figure 8.1. Obviously, there

is no sc cycle.

Our goal is to deal only with choppings that are “correct” in the following
sense:

t12t11

t2 t3

s

c c

Figure 8.1 A chopping graph.
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DEFINITION 8.10 Correct Chopping

A chopping of T ={t1, . . . , tn} is correct if every execution of the transaction

Correct
chopping

pieces according to the following execution rules is conflict equivalent to

some serial history for the original transactions T .

Rule 1: When transaction pieces execute, they obey the precedence rela-

tionship defined by the original transaction program.

Rule 2: Each piece will be executed according to some concurrency con-

trol protocol that ensures conflict serializability and will commit its

changes when it ends.

The following can now be proven:

THEOREM 8.5

A chopping is correct if the associated chopping graph does not contain an

sc cycle.

The proof assumes that transaction pieces are executed—for example, ac-
cording to the two-phase locking protocol—and then exploits the fact that this
protocol guarantees an acyclic conflict graph for the committed transactions.

EXAMPLE 8.14

Let us return to the bank example we considered in the previous two ex-

amples, where we already established the following transactions:

t1 = r1(A1)w1(A1)r1(B1)w1(B1)
t2 = r2(A3)w2(A3)r2(B1)w 2(B1)
t3 = r3(A4)w3(A4)r3(B2)w3(B2)
t4 = r4(A2)
t5 = r5(A4)
t6 = r6(A1)r6(A2)r6(A3)r6(B1)r6(A4)r6(A5)r6(B2)

We first chop t6 into two pieces as follows:

t61 = r61(A1)r61(A2)r61(A3)r61(B1)
t62 = r62(A4)r62(A5)r62(B2)

A look at the corresponding chopping graph, which is shown in Figure 8.2,

indicates that the obtained chopping is correct.
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t1 t2 t3

t5t4

s
t61 t62

c c c

c

c

Figure 8.2 Chopping graph without sc cycle.

We next try to chop transaction t1 into the following pieces:

t11 = r11(A1)w11(A1)
t12 = r12(B1)w12(B1)

Now we obtain the chopping graph shown in Figure 8.3, which contains

an sc cycle; hence, this chopping is not correct.

Example 8.14 indicates the fact that making a chopping finer can introduce
sc cycles, and it is clear that once such a cycle has occurred, it cannot be
broken again by chopping further (since a cycle has at least one c edge, and
further choppings always introduce additional s edges). On the other hand, an
algorithm can be devised for finding the “finest” chopping possible among a
given set of transactions. This algorithm, which can be found in the references
cited in the Bibliographic Notes, is based on the following observation:

From a given set T = {t1, . . . , tn}, take any transaction t i and chop it into
ti1 , . . . , ti k . If the graph with nodes {t1, . . . , t i−1, t i1 , . . . , t ik , t i+1, . . . , tn}

does not contain an sc cycle, this chopping is a private chopping of t i . If
for each t ∈ T , a private chopping can be found, a chopping of T is simply
obtained by taking the union of the n private choppings.

t12t11 t2 t3

t5t4

s
t61 t62

cc c c

c

cs

Figure 8.3 Chopping graph with sc cycle.
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8.4.3 Applicability of Chopping

Chopping is a compile-time technique that transforms programs by inserting
additional COMMIT WORK statements such that upon execution, the program
issues a sequence of short transactions (coined pieces) rather than a single,
longer transaction. The semantic knowledge that is necessary for applying the
chopping algorithm can in a real-world situation, such as SQL application pro-
grams, be derived from the predicates in queries and UPDATE statements (i.e.,
the WHERE clauses). This information allows us to reason about high-level con-
flicts between statements, as discussed in the previous sections of this chapter.
For example, if a database contains a relation Accounts with attributes such as
Balance, AccountType, City, and a key AccountNo, then statements such as

SELECT AccountNo, Balance FROM Accounts

WHERE City = ’Austin’

and

UPDATE Accounts SET Balance = Balance * 1.05

WHERE City = ’San Francisco’

are not in conflict from a conceptual point of view, since disjoint records will
be read (or, in the terminology used earlier, since the hyperplanes associated
with the two conditions are disjoint). However, if the underlying relational
database system actually employs page locking and accounts from the two
different cities may possibly reside on the same page, or if the system uses
record locking but there is a non-zero probability for a conflict on some auxiliary
storage structures such as addressing or free space management tables; then the
two SQL statements shown above would conservatively have to be assumed
to be conflicting. Obviously this would lead to more c edges in a chopping
graph, and may significantly limit chopping opportunities. So chopping would
perform best if the underlying database system employed predicate-oriented
concurrency control (which no commercial system does at this point).

Another form of conservativism is in order when we consider parameter-
ized SQL statements, which contain program variables (see Chapter 1), de-
noted by prefixing the variable name with a colon. For example, consider the
two statements

SELECT AccountNo, Balance FROM Accounts

WHERE AccountType = ’savings’ AND City = :x

and

UPDATE Accounts SET Balance = Balance * 1.05

WHERE AccountType = ’checking’ AND City = :y
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We could safely infer that these two statements do not have a conflict at the
level of the SQL predicates. However, for two instantiations of the second
statement (the UPDATE statement), nothing could be concluded anymore, as
the two instances of the program variable :y could possibly be bound to the
same city value.

In this way, chopping relevant information can be extracted even from
parameterized SQL programs, and this observation can be extended to entire
application programs with embedded SQL statements, provided that these are
“straight-line” programs without any control-flow branching. So in this lim-
ited setting the chopping method would be ready for practical use. For general
application programs, however, where the statements are often part of loops
or if-then-else constructs, the simple chopping algorithm does not work any-
more. In this realistic setting the idea would be to conservatively construct a
parameter-less straight-line program that covers all possible executions of the
actual program. A chopping graph would then be established for this synthe-
sized program, and the chopping algorithm could be applied.

For example, the program fragment

SELECT AccountNo, Balance FROM Accounts

WHERE AccountType = ’savings’ AND City = :x;

if not found then

SELECT AccountNo, Balance FROM Accounts

WHERE AccountType = ’checking’ AND City = :x;

fi;

would lead to the following straight-line, parameter-less fragment that covers
the actual program:

SELECT AccountNo, Balance FROM Accounts

WHERE AccountType = ’savings’;

SELECT AccountNo, Balance FROM Accounts

WHERE AccountType = ’checking’;

Whether this conservative method is practically viable is an open issue.
Skeptics may suspect that the covering straight-line, parameter-less program
would often have to be so conservative that no real chopping is feasible any-
more, but the true answer to such conjectures lies in more experimental re-
search.

In Chapter 3 we discussed interleaving specifications as a way of gener-
alizing the assumption underlying serializability that all steps of a transaction
should appear to be executed indivisibly to all other transactions in a correct
schedule. In particular, we discussed the following options: (1) to consider
units of isolation that do not necessarily consist of all the steps of a transaction,
but of certain subsets of the steps, and (2) to consider varying units of isola-
tion with respect to other transactions—that is, some steps may constitute an
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indivisible unit to some transactions, but not to others. We formalized this by
specifying for each pair of given transactions the indivisible units of one trans-
action relative to the other. The intuition was to think of the borderline between
two consecutive indivisible units of the same transaction as a “breakpoint” at
which a transaction may be interleaved with another transaction, and these
breakpoints needed to be specified in advance. A similar intuition underlies
transaction chopping. Indeed, if an application programmer specifying trans-
actions has sufficient knowledge of the semantics of the application for which
the transactions are written, she may be able to state which mutual interleav-
ings or individual choppings are acceptable and which ones are not. In this
sense, chopping can be considered as an approach to automate the derivation
of an interleaving specification, which can basically be “read off” a chopping
graph. Thus, when it comes to scheduling, it is not even necessary to develop
a separate scheduler for handling interleaving specifications, but any scheduler
yielding histories (for transaction pieces) in CSR will do.

8.5 Lessons Learned

The exposition in the chapter can be seen as a case study revealing the op-
portunities that arise with respect to concurrency control from the semantics
of a particular object model. As we have shown, there are multiple options
for the important case of relational databases, ranging from exploiting predi-
cates as they arise in query expressions or integrity constraints like functional
dependencies, to the systematic chopping of transactions into shorter pieces.
The basic abstraction underlying all three approaches is the predicate or set
of conditions that determines a set of tuples (those satisfying the predicate).
These tuples may or may not be in the current database state, which could
give rise to the phantom problem, but which is now elegantly covered by the
uniform handling of predicates.

There is an obvious catch, however, to such case studies, which lies in the
fact that the results obtained, though elegant and interesting, are hardly of im-
mediate practical relevance. For example, testing the satisfiability of predicates
is an NP complete problem, as is testing of final state serializability in the IDM
transaction model. Nevertheless, there are “approximations” derived from the
general scenarios discussed in this chapter that are practically relevant. For ex-
ample, the ideas underlying predicate-oriented concurrency control are used in
index key locking, as will be described in the following chapter, and they are also
relevant to federated database systems, which will be covered in Chapter 18.

Exercises

8.1 Discuss how predicate locking can be extended to disjunctive conditions
such as queries of the form



Exercises 309

SELECT Name FROM Emp

WHERE Position = ’Manager’ OR Department = ’Research’

Also discuss how join queries such as

SELECT Emp.Name, Emp.Department FROM Emp, Dept

WHERE Emp.Position = ’Manager’ AND Dept.City = ’Toronto’

AND Emp.Department = Dept.Department

could be (conservatively) handled by predicate locking.

8.2 The sample histories we studied for IDM transactions in this chapter
mostly referred to a database with one relation and one attribute. Show
the following: if the database has more than one relation, the serializ-
ability of each projection of a given history onto an individual relation
does not imply serializability of that history in general. Use the following
scenario as a counterexample: let database schema D contain relation
schemata R and S, where R has attributes A and B, and where S has
attributes B and C, and consider the following transactions and history:

t1 = mR(A = 1; A = 2)mS(C = 5; C = 6)
t2 = mR(A = 2; A = 3)mS(C = 4; C = 5)
s = mR

1 (A = 1; A = 2)mR
2 (A = 2; A = 3)mS

2(C = 4; C = 5)

mS
1(C = 5; C = 6)

8.3 Consider a restricted IDM transaction model without Modify operations
(i.e., a model of “ID transactions”). Show the following:

(a) Not every modification can be simulated by deletions followed by
insertions; more precisely, such that t1 = m(0; 1) �≈ t2 = d(0)i(1)
(by exhibiting a counterexample state).

(b) Show that s = i1(1)d2(1)i2(2)d1(2)i3(1)i3(2) ∈ FSRIDM −CSRIDM.

(c) Show that testing membership in FSRIDM can be tested in polynomial
time for histories of ID transactions.

8.4 The following approach is intended to “approximate” exact testing of
membership in FSRIDM by combining local and global testing in various
degrees. Consider the following family of algorithms, which is based on
an “exactness parameter” k determining the amount of exact testing a
concrete algorithm will perform. The higher k, the more precisely FSRIDM

is approximated and the higher the particular algorithm’s complexity.
In the following description, let “coalesce(Tk, G(s))” denote the graph
obtained from the conflict graph G(s) of a history s by collapsing all nodes
whose transactions belong to Tk ⊆ T into one node and by correcting the
edge relation correspondingly (a node outside Tk is connected to Tk if it
is connected to any node in Tk in G(s)).
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Algorithm SR(k)

Input: A strict history s for a set T of n transactions;
Output: “yes” or “no”
Method:

{ for eachTk ⊆ T, |Tk| = k do

if coalesce(Tk, G(s)) acyclic then

if πTk (s) ∈ FSR then

write(“yes”); stop fi fi od;

write(“no”)

}.

Notice that s
∗
↔ s ′πTk(s)s ′′ holds if coalesce(Tk, G(s)) is acyclic, where

s ′s ′′ is a serial history for T − Tk and s ′ only contains complete transac-
tions. Thus, s is serializable if πTk(s) is; therefore, the algorithm performs
an exact test in step 3 for πTk(s).

(a) Show that the SR(k) algorithms are of polynomial time complexity
for any given k.

(b) Let SRk denote the set of histories for which algorithm SR(k) returns
“yes.” Show the following:

(i) SR0 = SR1 = CSRIDM,

(ii) SRk ⊂ SRk+1 ⊂ FSRIDM for each k ≥ 1,

(iii) for each strict and final state serializable history s there exists an
integer k > 0 such that s ∈ SRk.

Thus, the classes SR(k) of “degree-k serializable” histories form an
infinite hierarchy of classes of serializable histories and “converge” toward
FSRIDM.

8.5 Show for the IDM model of transactions:

(a) Final state serializability is not monotone.

(b) Final state serializability is not prefix commit closed.

(c) Conflict serializability is monotone.

(d) Extended conflict serializability is monotone.

(e) Both conflict and extended conflict serializability are prefix commit
closed.

8.6 Extend the IDM transaction model by a suitably chosen SELECT operation
and adapt the formalism, in particular the equivalence of schedules, ap-
propriately. SELECT operations read values from a relational database, and
two SELECT operations over the same relation must yield identical values
in equivalent histories. Which of the theorems on IDM transactions can
be generalized to such an extended model of “IDMS” transactions?
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8.7 Consider the transactions from Example 8.13 again. Determine whether
decomposing t11 any further still results in a correct chopping.

8.8 Consider the following transactions:

t1 = r1(x)w1(x)r1(y)w1(y)
t2 = r2(x)
t3 = r3( y)w3(y)

Try to decompose t1 into three pieces such that the result is a correct
chopping.

8.9 Prove Theorem 8.5.

8.10 Show that if a set of chopped transactions contains an sc cycle, any further
chopping of any of the transactions will not render the graph acyclic.

8.11 Suppose that a purchase program processes the purchases made by a com-
pany by adding the value of an item purchased to the inventory and by
subtracting the money paid for it from cash. The application specification
requires that the value of cash never becomes negative, so that a transac-
tion recording a purchase has to abort if subtracting the money from cash
would make that value negative. The structure of such a program is given
by a parameterized procedure purchase(i, p) recording the purchase of
item i for price p, whose body can be written as follows:

if (p > cash ) then rollback

else inventory[i] := inventory [i] + p;
cash := cash − p;

Discuss under which conditions and to what extent chopping can be
applied to this scenario.
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CHAPTER NINE

Concurrency Control
on Search Structures

Here grows the tree, the tree, whose roots are full of life.

—Pablo Neruda

When you come to a fork in the road, take it.

—Yogi Berra

9.1 Goal and Overview

Search structures such as B+ tree indexes are among the most fundamental
concepts for ensuring efficient data accesses. Therefore, we devote a separate
chapter to the concurrency control issues for search structures. We will focus on
B+ tree indexes, but many of our considerations can potentially be generalized,
or carried over, to other search structures.

The framework for our discussion is layered schedules with the access layer
and the page layer of a data server. (See Chapter 1 for a brief overview of the lay-
ered architecture of database systems and similar data servers.) At first glance,
this suggests considering record operations and the resulting page accesses. As
for the access layer, paying attention to record operations alone falls short of en-
suring serializability in the presence of “intensional,” predicate-oriented record
searches. In particular, merely locking the records that are fetched, updated, in-
serted, or deleted cannot prevent the so-called phantom problem. Recall from
Chapter 1 that such problems arise when newly inserted, deleted, or updated
records satisfy the search predicates of queries by concurrent transactions, al-
though these records are not returned (and, in fact, possibly not even touched)
by those queries themselves.

As an example, consider transaction t1 that moves all 50-year-old and older
people who live in Dallas, Texas, to Phoenix, Arizona, by issuing an SQL-style
Update Persons Set City = “Phoenix” Where Age ≥ 50 And City =“Dallas.”
Concurrently, a second transaction t2 first asks for all people who live in Phoenix
and later submits a query to retrieve all people from Dallas; the update by t1

313
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is assumed to take place between these two queries. Now suppose that the
update affects only a single record x representing the person who moves from
Dallas to Phoenix. Further suppose that t2’s first query returns records p and
q, and its second query returns d and e. So, record x is not found by either
of the two queries, although the two together are supposed to find everybody
from Dallas or Phoenix. If locking at the access layer is restricted to the actu-
ally accessed records, x for t1 and p, q, d, and e for t2, this phantom anomaly
cannot be prevented. So instead we also need to lock either the predicates
of the queries and the update themselves or the appropriate information in
the underlying access paths that are used to execute these query-level oper-
ations. In the example, the above SQL operations could use a B+ tree index
on the City attribute of the Persons table. Recall from Chapter 1 that the
leaf pages of such an index contain searchable (key, RID) pairs, where the
key is one of the City values and RID is a pointer or a list of pointers to
the records with this City value. So locking the keys “Dallas” and “Phoenix”
(which appear in the above SQL operations) in this index, on behalf of both
transactions, would render an explicit lock conflict and thus ensure a proper
serialization.

Thus, concurrency control needs to consider index search keys in addition
to the stored records. Furthermore, as with layered schedules, additional page
locks are needed to ensure that the underlying search structures are properly
traversed and manipulated, so as to ensure that the search and other operations
of the access layer appear isolated. The default solution for this purpose would
be to apply a protocol like 2PL (or even S2PL or SS2PL) to the subtransac-
tions that correspond to index searches as well as insertions and deletions of
(key, RID) pairs. Because of the special structure of index trees and the result-
ing highly specialized page access patterns, it is, however, possible to devise
tailored protocols that allow more concurrency on the index pages than stan-
dard 2PL would. As concurrency control on search structures is a potential
bottleneck in many high-performance applications, we should definitely strive
for the best possible protocol.

This chapter provides solutions to the above issues that are structured ac-
cording to our two-layer setting. Section 9.3 addresses the necessary locking
of index keys for the operations at the access layer, postulating isolation of the
operations themselves, for example, by assuming 2PL for the duration of the
corresponding subtransactions. Section 9.4 then improves the underlying page
layer protocol by introducing advanced techniques that are specifically geared
for B+ trees and similar structures. Finally, Section 9.5 looks into additional
optimization techniques that mostly aim to reduce the overhead of the entire
two-level protocol. To provide the necessary background on how search struc-
tures are typically implemented in data servers, we begin with a short review
of B+ trees in Section 9.2.
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9.2 Implementation of Search Structures by B+ Trees

In this section we briefly review implementation techniques for search struc- B+ trees
tures to the extent that this background is relevant for the discussion of concur-
rency control. The prevalent data structure for the implementation of the ADT
“search structure” is the B+ tree. This is a page-structured search tree whose
nodes correspond to pages and where all leaf nodes are at the same tree level
(i.e., have the same distance from the root node). An example B+ tree for an
index on the Name field of a Person table is shown in Figure 9.1. This tree has
height 2; it consists of a root node and three leaf nodes at the next lower level.
The leaf nodes contain all values of the indexed field that exist in the database.
Each value is followed by a list of RIDs to the corresponding records. Such a
combination of a key value and a RID list is called a leaf node index entry. A
leaf node consists of one or more of those entries, typically between ten and a
few hundred. The nonleaf nodes of the index consist of inner-node index entries,
each of which contains a value and a pointer to an index node of the next lower
level. The semantics of such an entry is that the value is the largest key value
that exists in the subtree to which the pointer refers. For example, the entry
in the root that points to the leftmost leaf has the value “Carl,” as this is the
(lexicographically) largest key value in that subtree.

An index entry that points to the rightmost child of a nonleaf node does not
have a key value but merely consists of a pointer. In the example of Figure 9.1,
the third entry of the root simply points to the rightmost leaf, meaning that all
key values in this rightmost subtree are higher than the key value “Eve” in the
preceding entry of the root. Note that this technique not only is applicable to
the root, but avoids an explicit key value in the index entry for the rightmost
subtree among the children of the same node at all levels. The highest possible
key value within such a rightmost subtree is then determined by the index
entry for all subtrees with the same parent, which can be found in that parent’s

Carl Eve

Adam Bill Carl Dick Eve Hank Jane Jill Tom 

B+ tree

RIDs

Root node

Leaf nodes

Figure 9.1 Example of a B+ tree.
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parent. As a consequence, each nonleaf node has one more pointer to the next
index level than it has key values.

Because of this invariant between index entries and subtrees, inner-nodeSearch
algorithm index entries can serve as routing entries for a root-to-leaf key search in the tree.

A search for a given key value starts at the root node. It determines within
the currently inspected node the routing entry whose value is the smallest
value that is larger than or equal to the given search key, and then follows
the pointer of this routing entry. If the search key is larger than the highest
value among the routing entries of the index node, then the search follows the
pointer to the rightmost child. Within an index page, a simple binary search
is performed, assuming that the index entries are kept sorted. This step per
node is recursively applied until the leaf level is reached. There, either the
given search key is found, and then we directly obtain the desired RID list for
the qualifying records, or we realize that the search key is not present at all
in the database. In the example tree, a search for the key “Dick” would follow
the “Eve” router in the root and find the key in the middle leaf. In contrast, a
search for the key “Joe” would follow the router to the rightmost leaf, where
it would detect that this key does not exist in the database.

A range lookup is implemented in a similar manner: it searches for the
lower-bound key, which would lead to the smallest existing key that is larger
than or equal to the lower bound. From there the range lookup can scan all leaf
nodes to the right of this starting entry until it reaches a key that is larger than
the upper bound of the range. To this end, a typical implementation of a B+

tree embeds both forward and backward pointers in the leaf nodes, so that all
leaf nodes are linked in the sorting order of the indexed field’s domain. (These
pointers are not shown in Figure 9.1.)

As long as it is guaranteed that the tree is balanced in the sense that allI/O cost of
index lookups leaf nodes occur at the same level, the I/O costs of an index lookup are log-

arithmic in the size of the underlying data, namely, one disk I/O per index
level (disregarding caching effects and the follow-up leaf accesses in a range
lookup). In fact, the base of this logarithm is usually fairly high, as it coincides
with the fan-out of the tree. Given that the inner nodes contain only short
routing entries, fan-outs on the order of several hundred are typical in practice.
You may even further increase the fan-out by compressing the routing entries’
values. As these merely serve routing purposes, they do not necessarily have to
be equal to the largest key in the corresponding subtree. Rather, any value that
separates the key-value sets of two adjacent subtrees is eligible. For example,
the routing value “Eve” in the root of Figure 9.1 could be compressed into a
separator “Ex” or even “F,” as both are lexicographically larger than “Eve” but
still smaller than the smallest key value in the adjacent subtree to the right and
thus satisfying (a slightly relaxed form of ) the tree invariant that facilitates the
logarithmic search. The resulting effect is a typical tree height of at most 3
in most database applications or at most 4 in some extremely large databases,
and this is equal to the number of page accesses for an exact match lookup
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Carl Eve

Adam Bill Carl Dick Eve Hank Jane Jill Tom  

Carl Eve

Adam Bill Carl Dick Ellen Eve Hank Jane Jill Tom  

+ Ellen, + Bob

Bob

Figure 9.2 Insertion into a B+ tree.

(disregarding the case of very long RID lists per key value that would span
multiple pages).

A B+ tree is an extremely efficient index structure for large collections of
data records, provided it is guaranteed that it always remains balanced in the
presence of insertions and deletions. There are simple cases of insertions that
do not pose any problem at all. Consider the cases illustrated in Figure 9.2.
Two new keys, “Ellen” and “Bob,” along with RIDs of two new data records, are
to be inserted into our example tree. In both cases, the key is first searched to
check if it already exists. If it exists, then the new RID would simply be added
to the RID list of the key. Otherwise the (unsuccessful) search stops in the leaf
node where the key should reside if it existed. Hence this is exactly the leaf
into which the key should be inserted. If this leaf still has sufficient free space
available, the insertion is straightforward. This is exactly what happens in the
cases of “Ellen” and “Bob.”

Next consider the case when the leaf node into which a key is to be inserted Node split
does not have enough free space. This case is illustrated in Figure 9.3. The new
key value “Sue” is to be inserted into the rightmost leaf of the example tree,
illustrated by the gray-filled box, but this causes what is known as a page over-
flow. A simple-minded remedy could now start building up a chain of linked
pages that are anchored at the overflowed leaf, but this would obviously be
susceptible to degeneration in that arbitrarily long overflow chains and thus
poor search performance could not be ruled out. The actual solution, which is
efficient as well as elegant, is based instead on an incremental reorganization of
the tree that is known as a node split and grows the tree in a way that it remains
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Carl Eve

Adam Bill Dick Eve Hank Jane Jill Tom 

Carl Eve

Ellen

+ Sue

SueCarlBob

Jill

Leaf node split

Adam Bill CarlBob Dick Ellen Eve Hank Jane Jill Tom  Sue

Figure 9.3 Insertion into a B+ tree with a leaf node split.

balanced. This incremental reorganization proceeds in three steps:

1. A new, initially empty page is allocated as a new leaf node. This pageGrow
will become the right sibling of the overflowed page.

2. The index entries of the overflowed page, including the new entry,Split
are partitioned across the overflowed and the newly allocated page.
This is the actual split operation. A typical constraint here is that both
pages end up with approximately the same number of entries or the
same percentage of used space. This serves to ensure that the filling of
all tree nodes is above a certain threshold of 50%; otherwise the tree
would stay nominally balanced, but its height could become larger than
necessary.

3. The partitioning of the index entries ensures that the largest key valuePost
that remains in the original page is smaller than the smallest key value
in the new page. Then, the last step consists of “posting” the largest key
values of the two pages, along with the corresponding page pointers,
as new index entries in the parent of the original node. So both pages
will have the same parent node. The original index entry that pointed
to the overflowed page is removed from the parent (or, equivalently,
substituted by one of the two new index entries).
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In the example, the keys “Hank,” “Jane,” and “Jill” remain in the split leaf
node, and “Tom” and the new key “Sue” are placed in the newly allocated
sibling. Consequently, the largest key that remains in the split page, along with
pointers to the two sibling nodes that are separated by this router value, are
posted in the parent node. As in the simple insertion case, all modified pages
and entries are marked as shaded boxes in Figure 9.3.

The final case that we need to consider for insertions is now rather obvious:
what if the parent node of a split page does not have sufficient space for the
two new routing entries (after the removal of the original router to the split
page) and becomes itself overflowed? The solution is to apply the above split
operation recursively, going upward in the tree. In fact, we already described
the three steps of a split operation in a generic way in that they can be applied
not only to leaf pages but to all node levels in the tree. The recursive split prop-
agation stops when the root level is reached. When the root node overflows,
its split operation creates a sibling node.

Since we cannot have two root nodes in a tree, we now have to create a new
root node that points to the old root and its new sibling. In other words, the
tree grows by adding another root level on top of the old root level. This case is
illustrated in Figure 9.4, where the insertion of the new key “Betty” leads to a
split of the leftmost leaf, as shown in the top of the figure. The posting of “Bill”
as a new router in the root node then causes the root to split. The resulting
situation with a tree of height 3 is shown in the lower part of the figure.

The split operations ensure that a B+ tree always remains perfectly bal-
anced, while the operations themselves are very efficient, namely, with I/O
costs that are logarithmic in the size of the tree. A dual solution can be devised
for handling the deletions of keys in a tree. The counterpart to a split operation
would be the merging of two adjacent siblings and the subsequent removal of a
router from the parent node. One of the two merged pages can then be deallo-
cated from the tree and returned to the free space management. So altogether,
a B+ tree can grow and shrink, both in width and height, dynamically in an
incremental manner while guaranteeing that the filling of the allocated pages
does not fall below a specified threshold of 50%. In practice, since insertions are
so much more frequent than deletions, rather than implementing the merging-
based algorithms for deletions, pages are often allowed to become underfull
(i.e., filled less than 50%) due to deletions. Only when a tree node becomes
completely empty would both the page and its routing entry in the parent
be removed from the tree. Finally, updates of data records that cause the value
of an indexed field in an existing data record to change are usually treated as a
pair of key deletion and key insertion as far as the index structure is concerned.

The dynamic grow-and-post reorganization principle can be generalized to
a much wider class of tree-based index structures, including indexes for multi-
dimensional, spatial, or temporal search operations. Modern database systems
therefore offer a broad repertoire of index choices and other physical design
options to the database administration and tuning staff. For B+ tree indexes
alone, this spectrum includes the choice of fields or field combinations that
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Figure 9.4 Insertion into a B+ tree with a root node split.

are to be indexed—a choice between storing only keys and RIDs versus entire
data records in the index leaves, the latter often called a cluster or clustered
index—and many other fine-tuning options. Database systems make these op-
tions available to the database administrator in the form of parameters to the
CreateIndex command of SQL.

9.3 Key Range Locking at the Access Layer

We assume an ADT interface for a search structure that provides the following
operations:

insert(key, RID)
delete(key, RID)
search(key)
range search(lowkey, highkey)
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The Insert operation adds a (key, RID) pair to an index entry (stored in a leaf Search
structures
as an ADT

node of a search tree in the most common implementation of the index ADT).
If the index is a unique one (i.e., allows at most one occurrence of each key), or
if the new key is not yet present, then the Insert operation creates a new index
entry. Analogously, the Delete operation removes a (key, RID) pair, possibly
removing the entire index entry if no other RID exists for that key. The Search
operation returns all RIDs for a given key, by looking up the appropriate index
entry (by means of top-down descent from the root to the appropriate leaf
node if in the search tree implementation). Finally, the Range Search operation
returns all RIDs of records that contain a value in a specified range between
“lowkey” and “highkey” (including both of these bounds). Its implementation
(on a search tree) would initially search for the smallest index entry whose key
is equal to or larger than “lowkey,” and would then scan all following index
entries’ leaf nodes of the index tree until it reaches an index entry with a key
that is larger than “highkey.” Recall from Chapter 1 that this procedure is known
as an index scan or range scan.

Simple commutativity arguments tell us that Insert and Delete operations
commute between each other, unless we consider a unique index. In the lat-
ter case, a delete followed by an insert for the same key would result in the
key being present, whereas the other way around, the insert would fail as an
attempt at adding a duplicate, and the subsequent delete would remove the
key from the index. For simplicity, we will mostly assume that the index un-
der consideration is not unique. The analogous derivations for the case of a
unique index are left as an exercise (see Exercise 9.1). We can further infer
that Search operations do not commute with inserts or deletes if they refer to
the same key; otherwise they are conflict free from the viewpoint of the access
layer. Finally, the Range Search operation is in conflict with an Insert or Delete
operation if the inserted or deleted key falls into the range from the “lowkey”
to the “highkey” value of the range search.

With these considerations, we can immediately derive a possible locking Simple key
range
locking

protocol for the above search structure operations. Insert, Delete, and Search
operations acquire locks on the specified keys, and Range Search operations
lock their corresponding key ranges. The lock conflict test must consider the
equality of keys and the containment of a key in a key range. As for lock releases,
the usual 2PL (or a stronger) discipline is used. This protocol, which we will
refer to as the simple key range locking method, can be viewed as a very restricted
form of predicate locking: it considers only the predicates of the form indexed
attribute= key value or “lowkey”≤ indexed attribute≤ “highkey.” These simple
conditions are the result of decomposing the actual query’s predicates into the
operations at the access layer. This form of locking at the access layer is indeed
sufficient to prevent anomalies and guarantee full serializability.

At this point, you may wonder how phantoms can be avoided when no
index is used for executing predicate-oriented queries. In this case, a table scan
must be used for finding qualifying records, and that table scan needs to look
up a list of pages on which the records of the corresponding table reside. This
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list, which is part of the data server’s storage layer metadata (for addressing and
free space management, see Section 1.5), can be viewed as a key range from
minus infinity to plus infinity (assuming numerical attributes) that is effectively
read-locked by the lookup. Any concurrent insertion or deletion would have
to inspect and actually modify this list, too, and would therefore need a write
lock, thus revealing a lock conflict. So key range locking is a method that is not
necessarily tied to the existence or usage of an index. An actual implementation
may choose a different approach in the scenario sketched, but, in principle,
all possible execution plans are correctly covered by the key range locking
protocol. For the following, we simplify the presentation by assuming that an
index is used for all queries.

Simple key range locking entails two major problems:

First, it requires a lock manager that can manage value ranges, not just
individual values, and has an efficient method for testing the contain-
ment of a value in an interval. Although this is surely not a dramatically
challenging problem, the solution would inevitably incur more overhead
than that of a standard lock manager for individual values only. As lock-
ing is part of a data server’s innermost loops, such increased overhead is
a concern.

Second, a range search specifies the key range to be locked upon its
start. At this point, the entire range is locked, although values close to
the interval’s upper bound (i.e., the “highkey” value) will be reached
only in a while. The effect is similar to preclaiming: we lock out Update
operations that refer to keys close to the upper bound for at least the
entire duration of the range search. It would suffice, however, to start
blocking updates once the range scan arrives at a certain key.

So we would like to improve key range locking with respect to its over-Incremental
key range

locking
(previous key

locking)

head and its concurrency by gradually building up the lock on a key range in
an incremental manner; and, if possible, all locks should be implemented as if
they were individual key locks. This will lead us to an incremental and implicit
key range locking protocol, also known as previous key locking in the literature,
for reasons that become clear in a short while. To this end, we first modify the
interface of the index ADT by breaking up a range scan into multiple short
steps that correspond to the actual implementation: a range search is viewed
as a single key search followed by a sequence of Next operations that return
the next index entry unless the specified “highkey” value was exceeded. So the
“highkey” value of a range search serves as a stopping condition for the index
scan. The Next operation is obviously a context-sensitive operation; it always
takes up from where the scan was left by the previous Next or an initial Search
operation. A sequence of Next calls must always be preceded by a Search call.
Each Next call expects a current “cursor” position as an input parameter, in the

Index scans as
sequences of

Next operations

form of the last visited key and the page number of the leaf node on which that
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key resided. So the detailed form of Next operations and the preceding initial
search is

search(searchkey) ↑ key ↑ page

next(currentkey, currentpage, highkey) ↑ key ↑ page

with input parameters searchkey, currentkey, currentpage, and highkey and re-
turn parameters key and page, where key is the found key and page is the page
on which the returned key resides (which will become the currentkey and cur-
rentpage parameters for the subsequent Next call). A Range Search(“lowkey,”
“highkey”) operation is mapped onto the following call sequence:

search(lowkey) ↑ currentkey ↑ currentpage

next(currentkey, currentpage, highkey) ↑ currentkey ↑ currentpage

next(currentkey, currentpage, highkey) ↑ currentkey ↑ currentpage

etc.

which terminates when a called operation finds that the next key in the scan
is higher than the specified “highkey” and then yields nil for its return parame-
ters. In the following discussion we will often use these operations without all
parameters explicitly listed; the missing parameters are either irrelevant or can
be easily derived from the context.

The second consideration toward a more efficient variant of key range
locking is to restrict the lockable intervals to those that are actually present
in the index. For example, if the index contains index entries with keys 22,
25, 29, and 30 but not the other values between 22 and 30, then the intervals
[22, 25), [25, 29), and [29, 30) are among the lockable ranges. In general, a
lockable interval is a one-sided open interval that starts from a key present in
the index, including this key itself, and extends to the next higher key that
occurs in the index, excluding this one. The fact that these intervals are one-
sided open serves to make different intervals disjoint and allows us to uniquely
name the intervals as follows. By identifying an interval with its left end (i.e.,
lower bound), we can lock an interval by acquiring a lock on its left-end value.
So this simplifies the actual lock management, but we nevertheless use the
convention that such a lock covers the entire interval.

The choice of exactly these intervals is, of course, not arbitrary. Rather,
these are the intervals that are touched by the sequences of Next operations in
a range scan. So now we are also close to the desired kind of incremental lock
acquisition for range searches: each of the initial search and the subsequent
next steps acquires a lock on the interval whose left-end value it returns to
the caller. Using the above “encoding” convention of mapping intervals to their
left-end value, this kind of locking eliminates both of our concerns about simple
key range locking: locks are no longer acquired prematurely, and they can be
managed with very little overhead.
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Figure 9.5 Sample B+ tree index.

As an example, consider the B+ tree index shown in Figure 9.5. A range
search of the form range search (23, 34) would lead to the sequence of opera-
tions and lock requests shown in Table 9.1.

Note that, in the end, the range search will have locked the entire inter-
val [22, 36), thus properly covering the specified query range [23, 34]. The
difference between this and the simple key range locking is that this interval
comprises the smaller intervals that represent the actually present keys, and
the entire interval is incrementally locked by gradually acquiring the locks on
the constituent intervals.

Now we need to consider the necessary locking for Insert and DeletePrevious key
locks operations that would conflict with a range search (i.e., whose keys fall into

the Search operation’s specified range). An Insert operation for a key x would
naturally lock x itself, representing the interval from x to the next present key.
This holds regardless of whether x was already present or is newly inserted.
For example, inserting the new key 27 into the index of Figure 9.5 should
definitely acquire a lock for the interval [27, 31). If the insert preceded the
Next operation of the range scan that proceeded forward from 25 (i.e., with
25 as the last value returned by the previous Next call), the conflict between
the two operations would be detected, as that Next operation would then have
to acquire a lock on key 27, too. However, if the Insert operation followed the
entire range search, no conflict would be signaled, as the formerly absent key 27

Table 9.1 Sample operations and lock requests on B+ tree index.

Operation Lock request

Search(23) ↑ 25 ↑ p Lock (22), representing the interval [22, 25)
Next(25, p, 34) ↑ 31 ↑ p Lock (25), representing the interval [25, 31)
Next(31, p, 34) ↑ 33 ↑ q Lock (31), representing the interval [31, 33)
Next(33, q, 34) ↑ nil ↑ nil Lock (33), representing the interval [33, 36)
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has, of course, not been locked by any of the Next operations. So the problem
is to detect that key 27 falls into the interval [25, 31) by merely inspecting the
left-end points of intervals.

The solution is to have an Insert operation also lock the interval that pre- Dual variant:
next key lockingcedes its primarily locked interval. In our example, insert(27) needs to lock

the interval [25, 27), too; and the technical means would be to write-lock the
previous key 25, hence the name previous key locking for this protocol. Note
that it is, in fact, fairly natural for the Insert operation to acquire this lock,
too, as its effect is to split the former interval [25, 31) into two intervals. The
literature also considers a dual variant of previous key locking that is known as
next key locking. That protocol essentially requires operations to lock the key
on which they operate and the next higher key (with some relaxations of this
base scheme). We leave a discussion of the “isomorphism” between previous
key and next key locking as an exercise (see Exercise 9.5.)

Analogous considerations for Delete operations suggest that a delete(x)
operation should lock both x and the largest preceding key that is present in the
index, as its removal of key x potentially merges the interval starting at x with
the preceding interval, thus connecting the original interval’s right-end point
with a different, smaller left-end point. Although this intuitive explanation
would strictly hold only if the index entry for x contained only a single RID,
we apply the same locking rule to the general case when x is still present after
the delete of one (key, RID) pair. We will come back to possible relaxations of
this rule for the latter case in Section 9.5.

Finally, an exact match search(x) operation can proceed in the most natural
way, by merely acquiring a read lock on the key x that it searches for. However,
if this key does not exist yet, but is later added by an Insert operation, it
must still be possible to detect this conflict between the Search and the Insert
operations. This is done by having the “unsuccessful” Search operation lock the
interval starting at the next lower, currently present key, as this one would be
the previous key lock to be acquired by a subsequent Insert operation. Again,
this is, in fact, fairly intuitive. Not having found a key is a specific result that
must be reflected in a proper serialization order, and one way of capturing the
missing key is by remembering what next key was found in the place where
the missing key would have had to be. For example, for the index in Figure 9.5,
a search(25) operation would lock key 25 (i.e., the interval [25, 31)), and a
search(24) operation would lock key 22 (i.e., the interval [22, 25)).

Putting all of the above considerations together, we arrive at the following Incremental key
range (previous
key) locking
rules

set of lock acquisition rules for the operations of the index ADT:

An operation search(x) requests a read lock on x if key x is present in the
index; otherwise a lock on the largest key smaller than x is requested.

An operation next(currentkey, currentpage, highkey) requests a read
lock on currentkey.
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An operation insert(y, RID) requests write locks on y and the largest
key smaller than y that is present in the index.

An operation delete(y, RID) requests write locks on y and the largest
key smaller than y that is present in the index.

In addition, the 2PL rules on lock releases and the usual well-formedness
rules for all locking protocols must be in effect. Somewhat more liberal rules
are conceivable, but we postpone a discussion of such additional optimizations
to Section 9.5. All rules together ensure the correctness of the protocol, as
captured by the following theorem:

THEOREM 9.1

Previous key locking generates only conflict-serializable schedules as far as

index operations are concerned.

Proof

The proof shows that all potential conflicts between Search, Range Search,

Insert, and Delete operations are correctly recognized by acquiring key range

locks. Since all locks are held according to the 2PL discipline, this is sufficient

to prove serializability.

First, a conceptual conflict between a search(x) operation and insert(y, RID)

or delete(y, RID) exists only for x = y. Since all three operations acquire

a lock on the primarily affected key, this conflict is surely detected. For an

unsuccessful search(x) operation, it is important for serializability to prevent

a subsequent insertion of x as long as the search transaction has not com-

mitted (e.g., if the search transaction repeated its search after the insertion

or accessed some other data that is logically related to the presence or ab-

sence of x). Since both an unsuccessful Search and Insert operation need

to acquire a lock on the largest key smaller than x, this conflict situation is

detected.

Second, there is a conceptual conflict between a range search(lowkey,

highkey) operation and insert(y, RID) or delete(y, RID) if the key y falls

into the range from “lowkey” to “highkey” (including both bounds). This

case is the decisive one that necessitates previous key locks. To see that such

conflicts are properly detected, we only need to observe that a range search

gradually acquires locks, through its initial search and the subsequent Next

calls, on all existing keys starting from the largest existing key that is smaller

than or equal to “lowkey” and ending with the largest existing key that

is no larger than “highkey.” Since both insert(y, RID) and delete(y, RID)

operations request a lock on the previous key of y, they must have at least

one lock conflict with the sequence of Search and Next operations of a

conceptually conflicting range search.
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Third, two Insert operations potentially conflict only if they refer to the

same key, and even this is only a real conflict if the index is a unique one,

disallowing duplicates. The remaining cases of two Delete operations or an

Insert and Delete pair are analogous.

A further difficulty that arises once implementation considerations come
into play is that the keys on which the various operations need to acquire locks
are only partly known when the operation starts. The “previous keys” that need
to be locked on behalf of inserts and deletes become known only during the
execution of the operations. However, as the index operations themselves are
performed as subtransactions, with an isolation guarantee by the underlying
page layer, there is also no problem with acquiring access layer (i.e., higher-
level) locks in the course of an operation’s execution. This means that the lock
requests of the two relevant layers, the access and the page layer, are inter-
leaved rather than being timewise separated, as in the layered 2PL presented
in Chapter 7. Recall, however, from Chapter 7 that the exploitation of return
value commutativity also involved high-level lock acquisitions after the begin
(and, in fact, not before the completion) of the corresponding high-level op-
erations. So locks of both layers are dynamically acquired at the latest possible
point, right when the “resources” to be locked become known. For example,
an insert(27) index operation on the index structure of Figure 9.5 would go
through the sequence of lock requests and execution steps, shown in Table 9.2,
assuming a subtransaction scope 2PL discipline on the page layer.

We will come back to the interplay of index key and page locks when
discussing more relaxed, B+ tree–specific page lock release policies and other
similarly “liberal” concurrency control methods in the next section.

9.4 Techniques for the Page Layer

Before we embark on the presentation of various algorithms for the page layer
concurrency control of search structure operations, let us first illustrate once
again the kinds of problems that arise. Throughout this section we focus on

Table 9.2 Operations and lock requests for sample insert into B+ tree index.

Operation Lock request

Read(r ) Lock page r
Read(n) Lock page n
Read(p) Lock page p
Find the previous key 25 Lock key 25, representing the interval [25, 31)
Add the new key 27 Lock key 27, representing the interval [27, 31)

Release page locks on r , n, and p
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B+ trees as the most important case and also a paradigmatic example of search
structures for disk-resident data. Consider the B+ tree index shown in the top
third, labeled “stage 0,” of Figure 9.6, and assume that an insert(30) operation
takes place on this index. After the operation has located the leaf p into which
the new key would have to be inserted, but finds that page p is already com-
pletely full, it initiates a leaf node split of p, creating a new sibling p′ (“stage 1”
in Figure 9.6). The final stage, labeled “stage 2” in the figure, consists of posting
this split in the parent of p and p′, by adjusting the routing keys and pointers
in node n (see Section 9.2).

Now suppose that a concurrent search(31) operation takes place. As a worst
possible scenario, this Search operation could perform its top-down descent of
the tree between the leaf node split but before the split is posted in the parent
node n. So this operation would see the intermediate state shown in stage 1 of
the insert. The routing keys in nodes r and n would direct the Search operation
to the leaf node p, but would no longer find the key 31 there; so this search
would erroneously return a “key not found” result. As an even worse scenario,
suppose that an insert(31) operation rather than a search is interleaved in the
above way with the split operation, and that the index is a unique index so that
duplicate insertions should be disallowed. As the insert(31) would likewise be
erroneously directed to the already split node p, nothing would prevent it from
inserting another instance of the key 31 (together with some RID). As a result,
the uniqueness condition would become violated, and the database would be
inconsistent.

The most obvious way to prevent these problems and ensure serializability
of the subtransactions that correspond to index operations is to employ 2PL
(or S2PL, or even SS2PL) for such subtransactions. The purpose of this section,
however, is to develop even better solutions in terms of the possible concur-
rency, taking specific advantage of the tree traversal access patterns and the
special structure of B+ tree indexes. The various approaches are classified into
three types:

lock coupling, which is essentially a refinement of the tree locking pro-
tocol that we introduced in Chapter 4,

the link technique, which exploits a specific implementation aspect of
B+ tree–like search structures,

the giveup technique, which is an optimistic variant.

9.4.1 Lock Coupling

The first method to be presented, coined lock coupling, follows the approach of
the tree locking protocol introduced in Chapter 4. For simplicity, first consider
only Search and Insert operations (i.e., no range searches or Next operations,
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and also no deletions). These operations basically perform a top-down descent
into the tree, following exactly one path of the tree, and the Search operations
even have the nice property that they never revisit a node again. This very
specific page access pattern immediately suggests the use of the tree locking
protocol. Recall that the basic principle of this protocol is to lock a node only
after holding a lock on its parent, but to release the parent lock as early as
possible, once we know that the operation will not go up in the tree again.

Unfortunately, the latter is exactly what Insert operations may occasionally
do, namely, when they have to split a leaf node and need to post the split along
the ancestor chain. So, although Search operations could release nonleaf node
locks early, Inserts would have to hold all locks until they know that no split
occurs. This consideration can be made stronger by exploiting the fact that
most splits propagate only one tree level upward; only very infrequently, inner
nodes need to be split, too, which would then necessitate adjustments (or even
further splits) in additional ancestors. Now, when the Insert operation performs
its top-down descent, it can observe information about the space utilization
of the various nodes and whether a node can spacewise accommodate the
posting of an additional routing key and child pointer. When the free space in
a node suffices to hold an additional key and pointer from a node split at some
level farther below, then we know for sure that the split will not propagate
farther upward in the tree. So the parent of the node under consideration will
definitely not have to be updated at all, which means that it will for sure not
be revisited again by the Insert operation. We call such a parent node of a
node with sufficient free space a split safe node. In the example of Figure 9.6, Split safe tree

nodesassuming a node capacity of four keys and pointers, node r can be recognized
as split safe once the insert(30) operation has proceeded to node n and finds
that node n can accommodate the posting of a split farther below without itself
having to be split. In the implementation, the test for “sufficient free space”
is complicated by the fact that keys can be of variable length. However, by
assuming conservative upper bounds for the length of a routing key in an inner
node, a proper decision can always be made.

These considerations immediately lead to a locking protocol for Search and
Insert operations that is known as lock coupling and is driven by the following
rules:

1. Search operations need to request a read lock on a node before the node
can be accessed; Insert operations need to request a write lock.

2. A lock on a node can be granted only if no conflicting lock is currently
held and the requesting operation holds a lock on the node’s parent.

3. Search operations can release the lock on a node once they have acquired
a lock on a child of that node.

4. Insert operations can release the lock on a node if (a) the node is split
safe and (b) they have acquired a lock on a child of that node.
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Figure 9.6 Stages of a B+ tree leaf node split.

For the above example scenario with concurrent operations insert(30) and
search(31) on the index of Figure 9.6, a possible execution under the lock
coupling protocol is given in Table 9.3.

The correctness of this protocol is reflected in the following theorem:

THEOREM 9.2

The lock coupling protocol for Search and Insert operations generates only

schedules that are OCSR.



9.4 Techniques for the Page Layer 331

Table 9.3 Sample execution of Insert and Search under
lock coupling.

Insert(30) Search(31)

Write lock r
Write lock n
Unlock r

Read lock r
Request read lock on n

Write lock p
Allocate new page p′

Write lock p′

Split contents of p onto p and p′

Adjust contents of n
Unlock n, p, and p′

Acquire read lock on n
Unlock r
Read lock p′

Unlock n
Return RID for key 31
Unlock p′

The easy proof can be based on the fact that the protocol is a special case of
the general tree locking protocol. Note that, although we allow both read and
write locks, we do not encounter any problems with “pitfalls” in the sense of the
read/write tree locking protocol of Chapter 4, as Insert operations acquire only
write locks from the beginning. An alternative that requires a bit more thought
for ensuring correctness would be to have Insert operations also start with ac-
quiring only read locks on nonleaf nodes (but still a write lock on the leaf, of
course); and only upon realizing the need for a split would read locks be con-
verted to write locks. This is indeed a feasible option, but it entails the danger
of deadlocks among Insert operations. Yet another alternative that has turned
out to perform fairly well would be to start out with read locks and roll back
an Insert operation once it realizes the need for a split. Note that only the ope-
ration should be rolled back, not the entire transaction, and this is more or less
for free anyway since no updates have been made yet. Then, the Insert opera-
tion would be repeated, but now acquiring the necessary locks in write mode.

Now let us add range searches, or equivalently, Next operations to our
considerations. A range search follows the forward linked chain among leaf
nodes (see Chapter 1). So we are actually dealing with a DAG structure here,
no longer a pure tree. Fortunately, as you may recall from Chapter 4, tree
locking can be generalized to DAGs by requiring that a lock on a node can
be granted only if the requestor holds locks on the majority of the node’s
predecessors. Strictly speaking, the leaf linked B+ tree considered here is a
dynamically evolving DAG, not a static one as originally assumed by the DAG
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locking protocol, but we will ignore this potential complication. As each leaf
node has two predecessors—its parent in the tree and the preceding leaf—
range searches would also have to visit and lock all inner nodes that point to
the accessed leaves, and operations like Search and Insert that perform a top-
down descent also need to acquire a lock on the leaf that precedes their actual
target leaf. So, although we can in principle construct a working protocol from
these considerations, chances are that it would not be very efficient.

On the other hand, we have a special situation that we can exploit to
simplify the rule about having to lock the majority of predecessors. First, we
have a clear separation between operations that need write locks and those that
need read locks: searches need only read locks, and Insert operations could be
implemented by acquiring only write locks. This suggests the following mod-
ification of the “majority rule”: a read lock can be granted if a lock on at least
one predecessor is held, and the prerequisite for granting a write lock on a
node would then be holding write locks on all predecessors. This way, searches
would have to acquire locks only along a single path to the leaf level, and range
searches would only need locks for the leaf chain. There would still be a se-
vere penalty on Insert operations, having to acquire locks on two leaves rather
than one (in the no-split case). Fortunately, however, there is another partic-
ularity that we can exploit: splits create only new successors of a node, never
a new predecessor (i.e., we always split “to the right”). With this restriction
we can safely relax the lock-all-predecessors condition for insertions. It suf-
fices that inserts lock the path to their target leaf and possibly a newly created
leaf node.

These considerations bring us to the following extended version of lockLock coupling
with range

searches
coupling, now including range searches:

1. Search and Range Search operations need to request a read lock on a
node before the node can be accessed; Insert operations need to request
a write lock.

2. For Search and Insert operations as well as the initial descent of Range
Search operations, a lock on a node can be granted only if no conflicting
lock is currently held and the requesting operation holds a lock on the
node’s parent.

3. Search operations can release the lock on a node once they have acquired
a lock on a child of that node.

4. Insert operations can release the lock on a node if (a) the node is split
safe and (b) they have acquired a lock on a child of that node.

5. Range Search operations can acquire a lock on a leaf node only if they
hold a lock on the leaf’s parent in the tree or on the preceding leaf. The
first case is relevant during the initial descent of the tree, locating the
first relevant leaf; the second case covers the progress along the linked
chain of leaf nodes.
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Now recall from the previous section that a range search is effectively
broken down into a regular Search operation and a sequence of Next operations.
In the protocol described above, all these operations would still be considered
as a single subtransaction as far as their page locks are concerned. There is
nothing wrong with this interpretation; after all, Next operations are context
dependent. The question, however, is whether this could be further relaxed.
In particular, would it even be possible to release all page locks on behalf of a
range search between two successive Next operations? The answer is positive.
Because of the special structure of a B+ tree and, particularly, the fact that splits
are performed always “to the right,” we can indeed treat each Next operation as
a separate subtransaction. This actually relaxes the lock coupling rule assumed
so far: a Next operation first reacquires a lock on the leaf that the previous
Next or the initial Search operation had last locked, and it does so without
holding a lock on the parent or preceding leaf. Once the Next operation then
finds that it has to access the next leaf to retrieve the following key, it needs
to acquire a lock on that leaf, now under the “protection” of already holding
a lock on the preceding leaf. In essence, this prevents the preceding leaf from
being split right in the moment of traversing the link to the next leaf.

These specific considerations for Next operations are captured by the fol- Lock coupling
with Next
operations

lowing additional rule for lock coupling:

6. A next(currentkey, currentpage, highkey) operation needs to acquire a
read lock on currentpage, and it can acquire a read lock on any other
leaf page only if it holds a read lock on that page’s preceding leaf.

THEOREM 9.3

Lock coupling with Next operations generates only OCSR schedules.

Proof

First note that without Next operations we would simply apply the tree

locking protocol of Chapter 4. The special twist of not releasing locks on

nodes that are not split safe is fully in line with standard tree locking. So

the only complication is Next operations.

Assume that there is a conflict cycle among index operations, i.e., subtrans-

actions, that involves a Next operation reading the two adjacent leaves p
and q. The only way of forming such a cycle is to have at least one Insert or

Delete operation between the r (p) and r (q) steps of the Next operation.

However, that Insert or Delete operation would not be able to acquire a

lock on p once p has been read by the Next operation. So the “worst case”

is that the insert or delete takes place on q. If there is a split, it would affect

only leaves to the right of q, never the left neighbor p. Therefore, such an

insert or delete must follow the Next operation in the serialization ordering.
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The order preservation of the protocol is easy to verify, as tree locking by itself

ensures order-preserving conflict serializability, and the above consideration

on Next operations already shows that their addition does not undermine

this property.

Note that the equivalent serialization order for a schedule of Search, Next,
and Insert operations may have a range search interleaved with inserts, as the
above theorem only ensures that the individual next steps can be isolated from
the inserts, but this does not consider the broader context of an entire range
search. In combination with the incremental key range locks that an entire
range search acquires and in fact holds for the duration of the entire transac-
tion, we can guarantee that inserts that run concurrently with a range search
can be “disentangled” by means of commutativity based transformations and
tree pruning. An important observation toward the proof of this claim is that
an insert can never take place behind the current “cursor” position of an on-
going range search, unless the insert key is smaller than the the range search’s
“lowkey.” The reason for this property is that both the range search and the
insert need key range locks at the access layer. So inserts can only occur after
the current cursor position, and in this case one of the subsequent next steps
of the range search would become blocked by the insert’s key range lock (un-
less the inserted key is even higher than the “highkey” of the range search).
This effectively means that such inserts should precede the range search in the
resulting serialization order, but as all access layer locks would be held until
the end of the entire transaction, no incompatible ordering of other operations
is possible. This yields the following theorem:

THEOREM 9.4

Lock coupling at the page layer together with incremental key range locking

at the access layer ensure the tree reducibility of all two-level schedules with

these two layers.

Proof

Note that Theorems 9.1 and 9.3 together already show that schedules with

Search, Insert, and Delete operations alone are tree reducible. This follows

from the result of Chapter 6 that conflict serializability at the higher level of

a two-layered system and order-preserving conflict serializability for the sub-

transactions of the lower level together guarantee tree reducibility. So again

the complication is caused by Next operations on behalf of Range Searches.

We already know from Theorem 9.3 that Insert, Delete, Search, and Next

operations, if viewed as individual subtransactions, can be isolated by means

of commutativity arguments. This argument is, however, not yet sufficient
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for isolating entire Range Searches that consist of an initial search and a

sequence of Next calls. So the case to be considered is of the following form:

. . . searchi (lowkey)

. . . insertk(x, RID1)

. . . nexti (currentkey1, highkey)

. . . insertl(y, RID2)

. . . nexti (currentkey2, highkey) . . .

where a Range Search of transaction ti is interleaved with Insert operations

of two concurrent transactions tk and tl . The situation with interleaved

Deletes would be analogous and is not discussed here further (and an in-

terleaved Search or Range Search of another transaction could trivially be

pushed outside ti ’s Range Search to form an isolated subtree).

Because of Theorem 9.3, such a pattern can be transformed into one with

no interleaving of page accesses for the Search, Insert, and Next operations.

Furthermore, the same arguments that we used in the proof of Theorem

9.1 show that the first Insert operation’s key x cannot fall into the range

[lowkey, currentkey1], as this would have provoked a lock conflict. So this

Insert operation can be pushed to the left to precede ti ’s initial search and

thus becomes an isolated subtree. By the same token, the second Insert

operation’s key y cannot fall into the range [lowkey, currentkey2]; so it

can again be commuted with the preceding steps of ti ’s Range Search. The

general observation thus is that an Insert operation that is interleaved with

a Range Search cannot refer to any key in the range that the Range Search

has seen so far. On the other hand, if it refers to a key that will be visited

by later Next steps of the Range Search, then the Insert can always be

pushed to the front of the Range Search, thus preceding it in the equivalent

serialization order.

This consideration shows that Inserts, Deletes, Searches, and entire Range

Searches can always be isolated, and in conjunction with Theorem 9.1 con-

cludes the proof of tree reducibility.

As an illustrative example of the complete lock coupling protocol and its
combination with incremental key range locking at the access layer,
Table 9.4 shows the necessary lock requests, acquisitions, and releases for a
range search(24, 35) operation that runs concurrently with an insert(30) ope-
ration on the B+ tree shown as stage 0 of Figure 9.6.

Finally, let us add Delete operations to make the protocol truly compre-
hensive. If deletes were also to initiate complex minireorganizations of the
tree, we might need to revise our previous findings quite substantially. For
example, if a leaf node whose space utilization falls below a certain threshold
were to be merged with its left sibling, the correctness of the lock coupling for



Table 9.4 Sample execution of range search and insert
under lock coupling with key range locking.

Range search(24, 35) Insert(30)

Search(24)

Read lock r
Read lock n
Unlock r
Read lock p
Unlock n
Read lock key 22

Unlock p
Return 25, p

Insert(30)

Write lock r
Write lock n
Unlock r

Next(25, p, 35)

Read lock p
Read lock key 25

Unlock p
Return 27, p

Write lock p
Next(27, p, 35)

Request read lock on p
Write lock key 30

Write lock key 27

Write lock p′

.

.

.

Unlock p, p′, n
Acquire lock on p
Request read lock on key 27

.

.

.

Commit transaction

Acquire lock on key 27

Read lock p′

Unlock p, p′

Return 30, p′

Next(30, p′, 35)

Read lock p′

Read lock key 30

Unlock p′

Return 31, p′

Next(31, p′, 35)

Read lock p′

Read lock key 31

Read lock q
Unlock p′, q
Return 33, q
Next(33, q, 35)

Read lock q
Read lock key 33

Unlock q
Return nil, nil
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Next operations would become questionable, as reorganizations would no Drain
technique for
empty nodes

longer be confined “to the right” of the primarily affected node. Fortunately,
these complications can be easily avoided. It is common practice (see also
Chapter 1) that deletes do not trigger any such local reorganizations. Rather we
would simply wait until a node becomes completely empty, leaving it connected
within the B+ tree structure, and only then would it be detached from both its
parent and the linked chain of leaf nodes. But once we adopt such a lazy free
space reclamation policy, we can wait even a bit longer to ensure that no concur-
rent operation has already seen a pointer to the empty page from one of its pre-
decessors and henceforth attempts to follow this pointer after the empty node
has been deallocated. A simple sufficient condition to ensure the avoidance of
such problems is to deallocate an empty node only when no transaction that was
active at the time when the node became empty is active anymore. Because of
this delayed deallocation, this simple trick has been called the drain technique.
Note that until its deallocation, an empty node would still have its forward link
to the next leaf; so if a concurrent Next operation steps on such a node, it would
simply continue traversing the linked chain until it finds the next existing key.

9.4.2 Link Technique

In the lock coupling technique with Next operations, an important point was
that range searches with a cursor on a page to be split do not need to prevent
the split, but rather have their next Next operation be prepared to follow the
leaf link to the newly created sibling node. For example, assume that a leaf
node contains keys 11, 12, 14, 15, 16, 17, 18, and 19, and that the last Next
call of a range search for the interval [15, 18] was positioned on key 16, and
a concurrent insert(13) operation splits the page, moving keys 16, 17, 18, and
19 to a new leaf. When the range search continues with another Next call, it
would reacquire a lock on the split page but then immediately follow the link
to the new sibling to proceed with key 17. Note that in this case there is no
access layer conflict between the range search and the insert.

This forward stepping behavior built into Next operations can be gener-
alized and adopted by single-key Search operations as well. The principle is
that whenever the key being looked for is not found on the page where it is
presumed to reside, the operation simply follows the forward-link chain of the
leaves until it either finds the key or realizes that the key is definitely not present,
regardless of whatever concurrent reorganizations may blur the picture. This
behavior is called the link technique, and it allows us to avoid holding multiple
node locks simultaneously for both range searches and exact match searches.
So unlike lock coupling, during the descent in the tree, only the currently pro-
cessed page needs to be kept locked, and no parent lock is needed to acquire
a lock on a node. Likewise, range scans do not need to hold a predecessor lock
before they can acquire a lock on the next leaf. The reasons why this seem-
ingly spectacular relaxation still works correctly is that all tree reorganizations
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work by pushing existing keys to the right, so that they will inevitably be found
by every sufficiently persistent Search operation. Furthermore, the ordering of
keys along the leaves is guaranteed at all times, even during splits. Even if a
range search is initially directed to a page, say, p, which is split multiple times
into p′, p′′, and so on, before the range search actually accesses p, the worst
thing that could happen is that the “lowkey” that the range search is looking
for has been moved to some node p′′ or p′′′ more than one “hop” away from
where the search expected it to be. But even in this case, all the search needs
to do is to follow the leaf chain to the first key that is equal to or smaller than
its “lowkey” parameter.

Deletes do not present any problems if we again simply use the drain tech-
nique (and avoid getting into the hairy business of merging adjacent nodes).
Insert operations, however, would still need to follow the lock coupling pro-
tocol, so that they are properly synchronized among each other. Putting the
resulting protocol together into a set of locking rules is left as an exercise (see
Exercise 9.8). Here we restrict ourselves to illustrating the lock requests and
releases for our initial problem scenario with search(31) being executed con-
currently to insert(30) in Table 9.5.

As a final word of caution, notice that although the link technique may
superficially appear strictly superior to lock coupling, there are cases where it
reveals limitations, whereas lock coupling is more robust with regard to possible

Table 9.5 Sample execution of insert and search using the
link technique.

Insert(30) Search(31)

Read lock r
Unlock r
Read lock n
Unlock n

Write lock r
Write lock n
Unlock r
Write lock p

Request read lock on p
Allocate new page p′

Write lock p′

Split contents of p onto p and p′

Adjust contents of n
Unlock n, p, and p′

Acquire read lock on p
Unlock p
Read lock p′

Return RID for key 31
Unlock p′
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generalizations. One such generalization of practical relevance concerns range
searches that deliver their result in descending order. Such a search would most
naturally locate its “highkey” first and then traverse the linked list of leaf nodes
in backward order. Obviously this would require a bidirectionally linked chain
among the leaves, which is indeed what many commercial implementations
of B+ trees have. Now the fact that splits always reorganize to the right is no
longer that helpful, as “backward scans” proceed from right to left (assuming
that left to right means ascending key order). In this setting, the link technique
in the presented form no longer works correctly. Lock coupling, on the other
hand, can be made to work again with moderate effort.

9.4.3 Giveup Technique

Another interesting technique for synchronizing index tree traversals with local
reorganizations like node splits is the giveup technique. This is essentially an
optimistic variant based on the premise that conflicts are rare. So tree traversals
on behalf of both searches and inserts or deletes proceed in their top-down
descent without any locks, or merely holding a short-duration lock or latch on
the currently processed node (but none of the operations ever holds locks on
two different nodes simultaneously).

For detecting conflicts with a possibly ongoing reorganization like a node
split, a special range field is maintained in the page header of each node (both
leaves and inner nodes). This range field contains a lower bound and upper
bound for the keys that could potentially reside in the subtree rooted at the
given node. So when no reorganization is in progress, then for a node n with
left sibling l and right sibling r such that the parent of n, l , and r has routing
entries that form the ordered sequence (. . . , @l , x, @n, y, @r, . . .) (with @l de-
noting a pointer to node l), the range field should be the interval (x, y]. For
example, for the stage 0 tree of Figure 9.6, the range of nodes r , n, p, and q
are (−∞, +∞), (−∞, 38], (18, 31], and (31, 38], respectively. These range
fields are redundant information, but their point is that they can be maintained
(namely, shrunk) by splits on a per-node basis. So in stage 1 of the split shown
in Figure 9.6, the range field of node p has been modified to (18, 27], and the
range field of the new sibling p′ has been set to (27, 31]. Note that these modi-
fications are done, and can indeed be done, before the new routing key 27 is
posted to p’s parent n. Note also that in this particular example, the range field
of the inner node n stays the same, but when splits propagate across multiple
tree levels, range fields have to be adjusted at all affected levels, one node at
a time.

The range fields of nodes enable a Search operation to detect when a split
(or, more generally, some tree reorganization) is in progress in the part of the
tree that the search is traversing. When a top-down descent searching for key
k is directed to a certain subtree and then finds that the range field of the
subtree’s root node n does not contain the search key k, this indicates that
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node n has been split but the necessary posting farther up in the tree has not
been completed. In this case the descent is simply rolled back and retried a
short while later. We say that the tree traversal operation “gives up” at this
point, and repeats the entire descent, giving the ongoing split some time to
be posted in the parent (or ancestors in general). Since such reorganizations
should not involve disk I/O in the “critical phase,” the retrial of the given-up
traversal would typically have to wait for only a few milliseconds.

The giveup technique has extremely low overhead, and it is fairly attractive
in terms of its performance, as long as tree reorganizations are infrequent. For
example, when the workload mostly consists of searches with occasional inserts
that may trigger splits only once in a while, then the giveup technique would
perform very well. For workloads with many concurrent inserts and a higher
rate of node splits, however, the two other techniques presented above are
likely to perform better.

9.5 Further Optimizations

After having covered the principles of both layers of index concurrency control
and their interrelationships, we introduce additional performance optimiza-
tions. In the following four sections, we will address improvements in terms
of lock management overhead as well as special considerations on enhancing
concurrency in certain situations.

9.5.1 Deadlock-Free Page Latching

Lock coupling at the page layer is still sufficiently close to the basic tree locking
protocol of Chapter 4 that it can be implemented in a deadlock-free manner.
Recall from Chapter 4 that deadlock freedom can be guaranteed when all lock
request patterns follow the node ordering of a tree or DAG. If, during the
upward propagation of leaf splits, additional locks are acquired, this guarantee
can no longer be given. So for deadlock freedom, either the version of lock
coupling with lock releases only for split safe nodes must be used, or splits
have to be performed in a second tree traversal with more stringent locking up
front (as briefly discussed in Section 9.4).

Once deadlock freedom is ensured, it is no longer necessary to manageLatch coupling
the short-term locks on index pages in an explicit lock table. Rather, a com-
mon trick to reduce the overhead of such special page locks is to use so-called
latches instead of locks. Latches are lightweight semaphores for mutual exclu-
sion of concurrent processes or threads within a process. Latches are usually
implemented in the form of flags in page headers that are manipulated through
special, indivisible machine instructions of the test-and-set style. Both shared
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and exclusive access can be provided this way. So in contrast to full-fledged
semaphores as provided by the operating system or a thread package, latches
do not necessarily support fair queueing or deadlock detection (although some
variations in this regard are conceivable). Within the context of index con-
currency control, using latches instead of page locks effectively turns the lock
coupling protocol into a latch coupling protocol.

9.5.2 Enhanced Key Range Concurrency

The incremental key range locking protocol demands Insert operations to ac- Fewer and less
restrictive locks
for inserts

quire exclusive locks on both the inserted key (or key to which a new (key,
RID) entry is added) and the previous key. These two locks serve to alert con-
current readers (i.e., Search and Next operations). However, they also prevent
concurrent inserts in the locked key range, even if these insertions refer to
different keys. Obviously this is unnecessarily restrictive. An initial solution is
relatively straightforward: we simply make the specific semantics of Insert op-
erations more explicit by introducing an insert lock mode and requiring inserts
to request the two key range locks in insert mode rather than exclusively. Insert
locks on the same key ranges are compatible with each other, but incompatible
with read locks. This allows concurrent key insertions without any blocking
among each other. Note that this is perfectly legal even if two Insert operations
add entries to the same key. (Some subtleties may arise if the key to which the
two inserts refer was not present at all in the index before the two operations
were executed, but we do not delve into all these details here.)

Once we conceptually view the locking requirements for Insert operations Instant
duration lock
on previous key
for inserts

under the two facets of synchronizing inserts with other inserts and deletes and
synchronizing inserts against concurrent readers, we should reconsider whether
we may also relax the second type of synchronization to some extent. It is
important for Insert operations to realize when they would insert a new key in
a key range that has already been visited by a concurrent but not yet committed
reader; this is what requires the previous key lock. However, when an Insert
operation precedes a reader, it is sufficient that the reader will eventually be
blocked at the inserted key. In other words, reading the previous key should
still be admissible. This asymmetry in the execution ordering of readers and
inserts can be exploited as follows. The Insert operation merely needs to check
if a read lock is held on the previous key. If this is the case, then the insert must
wait until the read lock is released, to guarantee serializability. If no read lock is
currently held, however, the insert can proceed without really having to acquire
a lock on the previous key. Technically, this protocol can be implemented by
having Insert operations acquire an instant duration lock in insert mode: once
the lock is granted, it is immediately released again. Note that this relaxation
holds only for the previous key; the insert lock on the newly inserted key must
be held until commit.
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Although it may seem intriguing to introduce an analogous relaxation for
Delete operations, there is an inherent asymmetry between inserts and deletes
that would lead to correctness problems if we applied the corresponding op-
timization to deletes. The asymmetry lies in the fact that a deleted key dis-
appears from the index and thus will no longer cause concurrent inserts or
readers to realize the conflict at the point of the deleted key itself. Therefore,
locking the previous key until commit is crucial for deletes (at least in certain
situations).

The situation becomes different, however, if we could distinguish whenFewer locks
for “deferred”

deletes
a Delete operation merely removes one RID from a key’s RID list without
becoming empty so that the key continues to exist in the index. This would
indeed reestablish the symmetry with Insert operations. From this observation
we can derive a technique that we will refer to as “deferred” deletes, where
Delete operations never remove a key from the index, even if they delete the
last RID from the corresponding RID list. In such a situation, the key would
be kept with an empty RID list, essentially serving as a marker for concurrent
inserts and readers to realize conflicts. Some systems refer to such a marker
as a ghost key, which will be garbage-collected in the background at some
appropriate later time, namely, when all transactions that may have ever seen
the ghost key (or, for more efficient testing of this situation, the page on which
the ghost key resides) are terminated. With this technique of deferred deletes
it turns out that it is not even necessary to acquire an instant duration lock on
the previous key; rather, the lock on the key to which the delete refers is fully
sufficient to synchronize deletes versus inserts and readers.

Note that the write lock on a deleted key is not compatible with insert
locks. Of course, we could introduce an operation-specific delete lock mode,
but its compatibility with other lock modes would have to be as restrictive as an
exclusive lock. Otherwise, allowing the insert of a new, seemingly nonexisting
key right after the deletion of that key and before the commit of the deleting
transaction would incur correctness problems if the index has a uniqueness
constraint and the deleting transaction aborts and thus needs to reinsert the
deleted key.

In summary, the outlined optimizations relax the incremental key range
locking rules for insert and “deferred” delete operations as follows:

An operation insert(y, RID) requests an insert lock on y, to be held until
transaction commit, and an instant duration insert lock on the largest
key smaller than y that is present in the index.

An operation delete(y, RID) requests a write lock on y, to be held until
transaction commit.

A final opportunity for further optimization lies in distinguishing unique
versus non-unique indexes, that is, indexed attributes that either disallow or
allow duplicate key values. It is fairly obvious that unique indexes may require
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more stringent concurrency control measures to preserve the uniqueness of
keys in the presence of concurrent Insert and Delete operations. Conversely,
non-unique indexes can be more liberal in terms of concurrency. A case analysis
along these lines is left as an exercise (see Exercise 9.1).

9.5.3 Reduced Locking Overhead

Key range locking at the access layer of an index is complementary to the locking
of the actual data records, and it applies to all indexes affected by an opera-
tion. Thus, every index lookup for an exact match query on a single indexed
attribute incurs two object-level locks to be held for transaction duration—the
index key lock and the record lock. For an Insert or Delete operation on a table
with n indexes, n + 1 locks need to be maintained in total (not counting ad-
ditional short-term locks on pages). Under certain circumstances the time and
especially the space overhead of managing this number of locks may be critical.
The alternative then is to combine the index key and data record locks for an
operation into a single lock, possibly trading a potential loss of concurrency for
reduced bookkeeping overhead.

A concrete protocol along these lines would treat the (key, RID) pairs of RID locks only
an index as the actual locking granules rather than locking keys or key ranges
and RIDs separately, or would even lock only RIDs. In both variations, all index
operations still need to follow the rules of the incremental key range locking
(or its optimized versions). For example, a Delete operation for RID 1133 with
key value 25 has to acquire an appropriate previous key lock in addition to the
lock on the entry (25, 1133) itself. If this key has duplicates, say, RIDs 1117,
1129, and 1137, the previous key to be locked would be the entry (25, 1129);
if there are no duplicates, the last RID of the preceding key, for example, (22,
1135), would need to be locked. These locks could be managed in a lock table
by the corresponding RIDs alone, effectively locking simply the RIDs 1133 and
1129 in the above scenario with duplicates or 1133 and 1135 in the scenario
without duplicates.

RID locks can be interpreted either in conjunction with a specific index or
globally with regard to all indexes. In the first case, the RID lock for an index
lookup is relevant only for other operations on the same index, thus allowing
concurrent updates on other attributes of the same record. However, this still
requires n locks for an Insert or Delete operation on a table with n indexes. This
overhead is further reduced by the second option, at the expense of disallow-
ing concurrent updates on the same record regardless of which attributes are
affected. So in this second case, only a single RID lock is required for inserting
or deleting a record.

The main incentive for combining index key and record locks into RID
locks is to reduce overhead, possibly at the expense of less concurrency. How-
ever, in specific cases this technique can even improve concurrency, because
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RIDs for keys with long RID lists are locked in a more incremental manner
compared to the baseline version of incremental key range locking.

9.5.4 Exploiting Transient Versioning

Yet another enhancement of index concurrency control at the access layer is to
extend the presented incremental key range locking protocol by keeping tran-
sient versions of index entries and exploiting them for read-only transactions
along the lines of the ROMV protocol described in Chapter 5. Here the unit of
versioning is a (key, RID list) pair. So each Insert or Delete operation leads to
a new version of the index entry, and now it is mandatory that a Delete opera-
tion that removes the last RID for a given key leaves a “ghost” entry as a special
marker. For each index entry, the most recent version should reside directly
in the appropriate index leaf page; whereas older versions may reside some-
where else and could, for example, be connected to their “successor” version
in a doubly linked chain. More details about the implementation of transient
versioning in general can be found in Chapter 10.

9.6 Lessons Learned

Concurrency control for search structures like B+ tree indexes may appear
highly intricate upon first glance, because of the interplay between steps at the
access layer and the page layer. By making these two layers explicit and separat-
ing their concerns, the state-of-the-art protocols become more comprehensible
and easier to verify.

At the access layer, a limited form of predicate locks is needed to ensure
the serializability of transactions. These locks refer to keys or key ranges, and
can be cleverly encoded into what appears to be single keys by interpreting
a key as a semi-open interval from one key in the index to the next higher
existing key. Range queries should acquire such key range locks incrementally
for higher concurrency, hence the name incremental key range locking. Further
analysis shows that Insert and Delete operations then each have to acquire two
of these key range locks as they change the existing key ranges in the index.
The presented version of such protocols required inserts and deletes to lock also
the largest key smaller than the one inserted or deleted, that is, the “previous
key.” In Section 9.5 we then discussed how this principal locking pattern at the
access layer can be relaxed again by exploiting specific properties of Insert and
Delete operations.

At the page layer, short-term locks or merely page latches are needed to
isolate the individual index operations (i.e., to ensure order-preserving seri-
alizability of the corresponding subtransactions). In particular, tree traversals
must be guaranteed to arrive at the correct leaf in the presence of concurrent
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node splits. The main technique for this purpose, coined lock or latch coupling,
builds on the tree locking protocol, presented earlier in Chapter 4, to avoid 2PL
for subtransaction duration. The basic principle is to allow acquiring a lock on
a tree node only if the lock requestor holds a lock on the node’s parent (or
leaf-level predecessor in the case of index leaf scans); other than that, locks
can be released as early as possible and do not have to follow the 2PL disci-
pline. For Insert operations, the possibility of leaf splits that propagate upward
in the tree requires additional care in that locks on “unsafe” nodes that may
possibly be affected by a split must be held farther on. Alternatively, inserts
that trigger splits could release all page locks or latches and simply initiate a
second tree traversal with more stringent locking up front. This approach can
be implemented in a deadlock-free manner, so that lightweight latches may be
used instead of explicit page locks. Other concurrency control techniques for
the page layer of B+ tree–like indexes include the link and giveup approaches,
and also various combinations of these techniques are feasible. Although we
focused our presentation on B+ trees as the prevalent form of search structures
in data servers, many of our considerations can be carried over to a broader
class of search structures, including indexes for multidimensional range queries
or similarity search (with additional adjustments, however).

Exercises

9.1 Discuss how the incremental key range locking protocol on index keys has
to be changed for a unique index. Discuss also how unique and non-unique
indexes may be treated differently by the various optimizations sketched
in Section 9.5.

9.2 Discuss which lock(s) need to be acquired by an unsuccessful exact match
query for a key that is smaller than the smallest key that exists in the
index. How can you ensure that a subsequent insertion of this particular
key “steps” on a lock conflict?

9.3 Incremental key range locking based on read and write locks on index
keys, as explained in Section 9.3, does not allow two Insert operations
in the same, previously unoccupied key interval to proceed concurrently.
For example, in the index of Figure 9.5, an insert(27) would block a later
insert(28) operation, although none of these keys is initially present and
the two operations should be considered as commutative. Discuss whether
the resulting blocking of one of the two operations can be safely avoided
and how this could be accomplished. Also discuss the analogous situation
for Delete operations and the combination of Insert and Delete operations.

9.4 Discuss the locking requirements for an unsuccessful Insert operation on a
unique index, i.e., when the key to be inserted already exists in the index.
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9.5 In the presented form of the incremental key range locking protocol of
Section 9.3, Insert and Delete operations are required to lock previous
keys (hence the protocol’s alias “previous key locking”). There is a dual
variant that requires an operation of these two types to request a next-key
lock, i.e., a lock on the interval immediately following the interval that is
primarily affected by the operation. Elaborate on the detailed locking rules
of this dual variant, which is known as “next key locking” in the literature.

9.6 Consider the following B+ tree index on the attribute AccountNumber of
an Accounts table. Assume that all tree nodes have a space capacity for
holding up to four entries.

1 3 5 12 13 1715 16 20 28 30

7 8 9 22 24

13

r

p1

q1 q3 q4

q5

q6

q2

p2

5 9 20 24

Which locks need to be requested for the execution of the following trans-
action, assuming incremental key range locking at the access layer and lock
coupling at the page layer?

begin transaction;

Select Count(*) From Accounts

Where AccountNumber Between 11 And 25;

Insert Into Accounts (AccountNumber,. . .) Values (27,. . .);

commit transaction;

9.7 Consider a situation where a node p in a B+ tree is not split safe, but has
a split safe descendant q, with both p and q on the traversal path of an
Insert operation. Discuss how the lock coupling technique should handle
this situation to minimize lock contention.
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9.8 State explicit rules for lock requests and lock releases for the link technique
(in a form similar to our presentation of locking rules for the lock coupling
technique).

9.9 Assume that the leaf nodes of a B+ tree index are linked bidirectionally
(rather than only in forward direction). This may be useful to support
range scans in descending key order, which in turn is of interest for returning
qualifying records in descending sort order (as requested, for example, by
a decision support query). Discuss the consequences of this bidirectional
linkage with regard to the lock coupling and the link techniques for the
page-level concurrency control. If possible, generalize these techniques to
accommodate the new feature.
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subtle algorithms.

Shasha (1985) also realized that the page-level measures for a single index
operation were only one aspect of index concurrency control, and already sug-
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in the work of Dadam et al. (1983, 1985), Barbara et al. (1996), Kaufmann and
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CHAPTER TEN

Implementation and
Pragmatic Issues

All theory, my friend, is grey; but the precious tree of life is green.

—Johann Wolfgang von Goethe

Between theory and practice, some talk as they were two.

Between theory and practice, both can be gained.

—Bhagavad Gita 5:4

10.1 Goal and Overview

So far we have emphasized a conceptual view of algorithms and techniques so
as to separate the fundamental principles from the implementation issues in
a specific system environment. In this chapter we provide an overview of the
most important among such additional implementation and other pragmatic
techniques that systems builders need to cope with.

We begin with implementation techniques for locking and transient ver-
sioning in Sections 10.2, 10.3, and 10.4. Next we consider the special aspect
of lock management for multi-threaded transactions (i.e., with parallel threads
within a single transaction) in Section 10.5. We discuss a variety of tuning
techniques for concurrency control, both at the system and application level,
in Section 10.6, and finally dedicate Section 10.7 to the specific issue of over-
load control.

10.2 Data Structures of a Lock Manager

As pointed out several times already, locking is the concurrency control method
of choice for a wide spectrum of workloads and system settings. To imple-
ment an industrial-strength lock manager requires careful considerations on
the underlying data structures, which are driven by the following three key
requirements:

349
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When a lock is requested, we need an efficient way of checking whether
a conflicting lock is already held by another transaction.

When a lock is released, transactions that requested conflicting locks
earlier and have therefore been suspended should now be considered
for being resumed.

When a transaction terminates, all locks (still) held on behalf of the
transaction are released at once.

The first requirement dictates that we need an in-memory search struc-Resource
control blocks ture for locks with associative access on the identifiers of the resources that are

locked or requested to be locked. The most efficient choice for this purpose
is a hash table. Recall that almost all locking protocols that we have covered
in this book and that are used in practice are designed to map whatever ab-
stract resources they need to lock (e.g., key ranges in an index) to concrete
resources with unique identifiers (e.g., individual keys that occur in the in-
dex). Thus, it is indeed sufficient to use a single key hash table that merely
supports exact match search on identifiers. The entries in the hash table then
are pointers to some form of resource control blocks (RCBs), which are either
dynamically allocated or, even better with respect to performance, taken from
a preallocated pool of such control blocks. Hash conflicts are most often re-
solved by linking all RCBs with the same value of the hash function into a
chain anchored at the corresponding entry of the hash table. With this kind
of data structure, checking for a lock conflict merely requires a hash table
lookup.

With shared locks, multiple locks can be simultaneously held for the sameLock
control blocks resource, and multiple lock requests may be waiting to be granted for that

resource. The bookkeeping for this kind of situation amounts to managing
a queue of lock control blocks (LCBs), which are attached to the same RCB.
This queue can in turn be easily implemented as a linked list anchored at
the RCB, with the ordering in the list determining the order in which wait-
ing lock requests should be considered for being resumed. So the linked list
of LCBs would typically have zero, one, or more LCBs with shared locks at
its front, followed by at least one request for an exclusive lock, which could
then be followed by an arbitrary number of both shared or exclusive lock re-
quests. Note that, for fairness reasons (i.e., to avoid starvation), a shared lock
request, in most situations, should not be allowed to pass a previously issued
exclusive request that is already waiting for one or more shared locks to be
released.

Finally, the third requirement stated above makes it necessary to quicklyTransaction
control blocks identify all LCBs that belong to the same transaction. This can be implemented

in a straightforward manner by maintaining a transaction control block (TCB) for
each active transaction and including in the TCB the anchor of a linked list of
the transaction’s LCBs. Then, upon the commit or abort of the transaction, the
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Figure 10.1 Data structures of a lock manager.

list of LCBs is traversed, and the LCBs should be removed from the queues of
the corresponding RCBs. The successor LCBs in these resource-specific queues
are the candidates for being resumed (in queue order).

This entire set of fairly simple data structures is illustrated in Figure 10.1.
Whenever these structures are manipulated by the lock manager on behalf
of a transaction, either upon a lock request or a lock release, some form of
semaphore or “latch” (i.e., a flag that can be tested and set by an indivisible
instruction) is needed to ensure the lock manager’s internal consistency in a
multi-threaded data server. To prevent this critical section from becoming a
performance bottleneck, typically each entry in the hash table has its own
latch, often implemented as a bit in the hash table entry itself.

To conclude this section, we point out that the outlined implementation
is extremely versatile in the sense that it can be used for whatever locking
units are considered appropriate. So RCBs can equally represent pages, records,
index entries, or whatever “semantic locks” are needed for advanced object
model locking, as long as the conflict test itself merely requires checking the
equality of identifiers (as opposed to checking, for example, the disjointness
of predicates or the inclusion of a value in a value interval). In the context of
layered (or general object model) locking, either all locks of all layers could be
managed in the same lock table, or multiple layer-specific lock tables could be
instantiated.
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10.3 Multiple Granularity Locking
and Dynamic Escalation

From the previous section, it follows that a lock manager may create some non-
negligible overhead in terms of memory consumption. Although the overhead
for the various data structures is modest, a heavily loaded data server may end
up with hundreds of TCBs and many thousands of RCBs and LCBs simultane-
ously, thus possibly occupying up to several megabytes of memory. Although
this would still be a small amount relative to the large memory sizes of today’s
amply equipped servers, the point arises as to whether this memory fraction
could and should be better used for other purposes, especially for caching data,
rather than mere bookkeeping. To this end, it would be convenient to allow the
lock manager to choose dynamically between fine-grained and coarse-grained
locking, depending on the characteristics of the active transactions. Particularly
for long transactions that would acquire many fine-grained locks such as record
and index key locks, it may be worthwhile to reduce the space overhead of the
lock manager at the expense of diminishing the possible concurrency. When
concurrency is most critical, however, fine-grained locking would still be the
method of choice.

The tension between fine-grained and coarse-grained locking granularitiesReconciling
coarse-grained

and
fine-grained

locking

can be reconciled by supporting both kinds of locks, or possibly an entire hi-
erarchy of locking granularities, in a form of multiple granularity locking. The
practically most important case of this approach is to support the coexistence of
record or page locks on the one hand, and locks on entire tables or tablespaces
on the other. A tablespace is a logical unit of storage that can hold several
database tables or indexes, and that may be subdivided into smaller units such
as containers, which in turn may be a file system directory, a physical file, or a
device such as a hard disk.

The problem that now arises is to test conflicts among such disparateIntention locks
granularities. For example, when a transaction requests a lock on an entire ta-
blespace, how can we quickly find out if this request conflicts with some page
locks that are already held? While this is not exactly a deep issue, system ar-
chitects have developed a specific solution with the benefit of a particularly
low overhead, which is always a concern, as locking is part of a server’s in-
nermost processing loops. The solution is based on intention locks to be set on
the coarser granularities of the hierarchy by those transactions that prefer fine-
grained locking. These locks serve to mark a path in the granularity hierarchy
that leads to the items that are actually locked in shared or exclusive mode. This
way, other transactions that prefer coarse-grained locking can easily detect con-
flicts by testing their shared or exclusive locks against the intention locks on the
coarser granularities. This consideration leads to the lock mode compatibility
matrix between shared and exclusive locks, on one hand, and the two corre-
sponding intention lock modes, called IS and IX, on the other hand, shown
in Table 10.1.
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Table 10.1 Lock mode compatibility.

S X IS IX SIX

S + − + − −

X − − − − −

IS + − + + +

IX − − + + −

SIX − − + − −

A common special case that has been added to Table 10.1 in the form
of another lock mode, coined SIX, is table scans that read a large number of
pages and may update a very small fraction of these pages. For such transactions,
page locking should be ruled out for the sake of lower overhead, but locking the
entire tablespace would require an exclusive lock and thus prevent all other
transactions from reading any page of that tablespace. The escape from this
dilemma is to have such a transaction acquire both a shared lock and an IX
lock on the entire tablespace, so that individual pages can still be locked in the
exclusive mode when they turn out to have updates. These two locks can be
conveniently combined into a single new lock mode, coined SIX in Table 10.1.
Its compatibility properties are derived from the conjunction of an S lock and
an IX lock.

Driven by such a lock compatibility table, the protocol for multiple gran-
ularity locking simply boils down to the following two rules (in addition to the
usual rules for 2PL or whatever lock protocol is employed):

1. A transaction can lock any granule in S or X mode, depending on
whether only reads or writes are intended.

2. Before a granule can be locked in S or X mode, the transaction has to
hold an IS or IX lock, respectively, on all coarser granules that contain
the one to be locked.

Sometimes it is hard to choose between fine-grained or coarse-grained Lock escalation
locking when a transaction starts. It may turn out only in the course of the
transaction execution that it acquires a large number of locks and may create
too much overhead in the lock manager. In such a situation, we would wish
to dynamically convert the fine-grained locks already held into a single (or a
few) coarse-grained lock(s). Such a conversion is known as lock escalation in
the literature. It consists of first requesting a coarser-grained lock that implicitly
comprises all currently held fine-grained locks, and only then the fine-grained
locks can be released in a second step. So, although locking is then no longer
two-phase in a narrow technical sense, the resulting behavior is as if the trans-
action would still hold its prior fine-grained locks and thus is equivalent to
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two-phase locking. In commercial systems, lock escalation is typically triggered
by exceptions that are raised when the total amount of memory for RCBs
and LCBs or the number of locks of an individual transaction exceed certain
thresholds.

10.4 Transient Versioning

As explained in great detail in Chapter 5, transiently keeping around versions of
modified pages, records, or index entries provides opportunities for enhanced
concurrency by means of a multiversion concurrency control protocol. The
most practical among the protocols presented in Chapter 5 is the read-only
multiversion protocol (ROMV) that applies standard two-phase locking to
update transactions and assigns versions to the retrieval operations of read-
only transactions based on timestamps. More specifically, as you may recall
from Chapter 5, new versions are timestamped with the commit time of the
transaction that creates them, and read-only transactions read the most recent
committed versions as of the transaction’s begin.

In this section we sketch some implementation details for this kind of
protocol. One of its salient properties is that it can be efficiently implemented
at both the access layer, with versions of records and index entries, and the page
layer. Here we focus on transient versioning of records, as this is the technique
that is actually implemented in several commercial database systems. Other
multiversion concurrency control protocols, such as the 2V2PL protocol of
Chapter 5, would use similar implementation techniques and are not explicitly
covered here.

The key concept for transient record versioning is to keep the most recentVersion pool
version of a record (with a given RID) always in the place where the record
would reside if there were no versioning, and to store all older versions in a
separate area called the version pool, which may reside in memory or on disk.
This way the most recent data stays organized as compact as possible so that
transactions that access only current versions do not lose efficiency because
of versioning. In particular, if the current data is organized by some specific
clustering scheme, say, with records physically placed into pages in ascending
order of a specific sorting key, this organization is in no way affected by the
existence of old versions. Another advantage of a separate version pool is that
it is much easier to perform garbage collection. In some systems, the version
pool is even combined with the organization of recovery-related, temporary
information (so-called logging entries, as we will see in Part III of the book) and
therefore referred to as rollback segments.

Each version carries, as two extra fields, its creation timestamp and a pointer
to the previous version of the same RID (or the same index key when versioning
is applied to index entries). An Update operation on a record (or index entry)
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Figure 10.2 Storage organization for transient versioning.

copies the pre-update version of the record as a new version into the version
pool, overwrites the current record, and maintains the linked chain among the
record’s versions. At commit time of the corresponding update transaction, all
modified records are timestamped. This deferred timestamping is feasible, as
readers would never be directed to an uncommitted version anyway. When a
record is deleted, its last state is copied to the version pool, and a specially
flagged “marker version” is kept in the place where the record used to reside.
Figure 10.2 depicts this organization of the version pool. Here the record with
RID 1141 was deleted at time 9:33; so its current version simply is a marker
with a deleted flag. Versions with no predecessor, such as the current version
of the record with RID 1135 or the version of RID 1143 that was created at
time 9:20, were created by the insertion of a new record.

A read-only transaction, with a timestamp that reflects its begin, simply
accesses the current versions of records and index entries that it requests to
read, and then follows the corresponding linked chain until it finds a version
whose timestamp is smaller than the transaction’s timestamp. For example,
with the data shown in Figure 10.2, a read-only transaction with timestamp
9:26 that requests to access RID 1141 would follow the version chain of the
record’s current version back to the version with creation timestamp 9:22 and
return that version as the result of the read operation.

Instead of a linked chain for the versions of a given record, an alternative
organization would be to store within the current version a small version selec-
tion table that contains the timestamps of and pointers to the older versions.
The noncurrent versions themselves would again be kept in a separate version
pool. This organization is particularly attractive when the number of versions
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for the same record is typically very small, say, two or three, or the underlying
multiversion concurrency control protocol even enforces such a limit for the
number of simultaneously existing versions. In this case it may even be con-
sidered to keep the noncurrent versions of a record or index entry in the same
page as the current version, the justification being that this storage overhead is
low for a strictly limited number of versions. A typical scenario could then be
that out of, say, 100 records in a page, 90 records have only a current version
and 10 have one or at most two additional noncurrent versions.

Garbage collection is needed to identify and discard old versions that areGarbage
collection no longer needed, and to reclaim the storage space used by those versions.

With the ROMV protocol, the identification of obsolete versions is straightfor-
ward: all noncurrent versions that have a successor (i.e., more recent version)
whose timestamp is smaller than the timestamp of the oldest active read-only
transaction can be safely discarded.

When versions are kept in the version pool in ascending order of their suc-
cessor’s creation timestamp, garbage collection can be implemented by keeping
a roving pointer that marks the logical begin of the version pool as follows. As-
sume that the oldest active read-only transaction has timestamp TS. Then a
noncurrent version with a timestamp less than TS is of interest and must not
yet be garbage-collected only if its successor version has a timestamp greater
than TS (i.e., if it is the youngest version with a timestamp less than TS for
the given record). Phrased positively, all noncurrent versions whose succes-
sor in the corresponding record’s chain has a timestamp less than TS can be
safely discarded. Thus, by organizing the noncurrent versions in ascending order
of successor timestamps and assuming that timestamp TS is itself not assigned
to any version (as timestamps are unique among all transactions), the version
whose successor has the smallest timestamp larger than TS divides the version
pool into the garbage part and the “live” part that must be kept. Note that
this ordering of versions in the version pool is, in fact, the most natural or-
der, as versions are moved into the version pool at the time their successor is
created.

In the example of Figure 10.2, the five versions shown in the version pool
have ascending successor timestamps, namely, 9:27, 9:28, 9:33, 9:34, and 9:37.
Thus, assuming that the timestamp of the oldest active read-only transaction
is 9:30, the oldest two versions among the five shown versions can be garbage-
collected (i.e., the ones for RID 1132 with timestamp 9:25 and RID 1141
with timestamp 9:22). The actual storage reclamation is easily implemented
by simply moving the logical begin pointer of the version pool to the first
version that must be kept (i.e., the one for RID 1141 with timestamp 9:28 if
only the five shown versions were present).

If storage space is not a bottleneck, the garbage collection should discard
only versions that are definitely obsolete in the sense that no transaction would
ever have to access them. When storage is scarce, which could especially be the
case when the version pool resides in memory or some specifically reserved,
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limited-size disk area, garbage collection may be forced to drop old versions
more readily. Then it may happen that a long read-only transaction with a
fairly old timestamp would have to access, for consistency, an old version that
has been garbage-collected already. In such cases the data server would simply
generate an error message to the application program and abort the transaction.
In some commercial database systems this event is known as a “snapshot too
old” message.

10.5 Nested Transactions for Intra-transaction
Parallelism

When a transaction consists of multiple, parallel threads, locking protocols need
to be refined a little in order to ensure that different threads of the same trans-
action are serialized as well. Otherwise, although different transactions could
still be isolated, the execution within a transaction might no longer correspond
to a serial computation. Note that this was no problem at all from the abstract
viewpoint of the correctness criteria for concurrency control, as these simply
treated such cases of intra-transaction parallelism by partial orders. The pur-
pose of this section is to add the necessary protocol elements so that two-phase
locking can cope with parallel threads inside a transaction.

In the literature, multi-threaded transactions are often referred to as nested Multi-threaded
transactions
or nested
transactions

transactions in that parallel threads form subtrees of a common parent that
asynchronously spawned the threads. This consideration naturally leads to a
tree whose leaves are the actual read and write data operations; siblings in
the tree correspond to parallel threads. This computational model obviously
resembles our notion of object model transactions, and can indeed be cast into
the object model. The difference, however, is that with nested transactions, we
cannot usually associate a semantically richer operation with an inner node of
a transaction tree. So as far as concurrency control is concerned, the leaves of
a nested transaction tree are all we need to consider; the inner nodes merely
reflect parallel execution of threads.

The additional issue that arises in a nested transaction is that two parallel
threads need to be synchronized in order to make sure that their combined
execution is equivalent to a serial one. Since we assume a locking protocol
anyway, the solution is rather straightforward: each thread, also called a “sub-
transaction” in this context, acquires locks according to the 2PL protocol. This
automatically serializes parallel threads of the same transaction. When a thread
terminates, it could allow a sibling (i.e., parallel thread of the same transaction)
to proceed even if that sibling needs locks that were held by the terminated
thread. After all, all these threads belong to the same transaction; so there is
no need for isolating threads beyond their termination. Rather, threads can
be viewed as cooperative lightweight processes. However, the locks of the
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terminated thread cannot simply be released; they are still needed to prevent
other transactions from potentially creating conflict cycles. The technical solu-
tion is to keep these locks by having the parent of a thread inherit them upon
the thread’s termination. Then, of course, we need to reconsider the rules for
lock conflicts: within a transaction, a thread’s lock request can be in conflict
only with a parallel thread, not with an already terminated one. So if a conflict-
ing lock is held by an ancestor of the requesting thread, the lock can be safely
granted.

These considerations lead to the following set of protocol rules:

The leaves of a transaction tree acquire locks as needed by the corre-2PL for
nested

transactions
sponding data operations. These locks are held according to the 2PL for
the duration of the transaction.

Upon terminating a thread, all locks held by the thread are inherited by
its parent.

A lock request by a thread is granted if no conflicting lock on the same
data item is currently held or the only conflicting locks are held by
ancestors of the thread.

This protocol again resembles the concept of retained locks used in the general
object model 2PL. Note, however, that the retained locks there serve an entirely
different purpose, namely, to synchronize different transactions that operate
on different abstraction levels. In contrast, inherited locks, as we prefer to call
them, serve the intra-transaction synchronization among parallel threads of
the same transaction. The specific objective of the nested transaction 2PL is
to serialize the threads of a transaction tree, as stated more precisely in the
following theorem:

THEOREM 10.1

The 2PL protocol for nested transactions generates only schedules that

are equivalent to a serial execution of transactions where each transaction

executes all its sibling sets serially.

Finally, we mention that parallel threads in a transaction can, of course,
be combined with object model operation invocation trees. The protocol for
this setting would then need both higher-level, operation-type specific “se-
mantic” locks on objects, possibly even in the form of retained locks, and lock
inheritance of leaf-level, typically page-level, locks. Although this combination
sounds complicated, it is fairly straightforward to reconcile the rules of both
protocols to implement the combined case.
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10.6 Tuning Options

Two-phase locking is widely used for the concurrency control of commercial
data servers. Its popularity primarily draws on the simplicity, versatility, and
robustness of the protocol. So, unless we have specific information about an
application’s workload characteristics, 2PL is indeed the method of choice in
most cases. In a given application setting, however, it may be desirable to tune
the use of 2PL toward specific access patterns and application needs for en-
hanced concurrency and/or reduced overhead. To this end, most commercial
data servers provide the administration staff and sometimes even application
developers with a number of “tuning knobs” that refer to the locking protocol.
This section serves to point out the most important of these tuning options.
It should be stressed, however, that appropriate use of these options may be
a delicate matter. When used inappropriately, tuning options may even lead
to inconsistent data. So the techniques presented below are for true applica-
tion and system experts only, and even the experts should use extreme caution
when they exert options that deviate from standard protocols like 2PL.

10.6.1 Manual Locking

Many commercial data servers allow application developers to choose among
different settings for locking granularity, mode, and duration dynamically when
a transaction starts or even upon each client-server interaction (e.g., an SQL
command) that initiates locking steps.

Locking granularity can be influenced by choosing one of the granular- Locking
granularityities supported under a multigranularity locking protocol, for example, table

locks versus page or record locks. Typically, a system administrator can spec-
ify a preferred locking granularity for each transaction program individually.
In addition, the application programmer may sometimes specify the locking
granularity dynamically on a per-program-invocation basis. In this case, the
command that opens a new transaction would be parameterized to choose ei-
ther coarse-grained or fine-grained locking. The application developer can, for
example, program this decision based on user-provided input parameters to
the program invocation, as these may affect the estimated number of locks the
transaction would have to acquire.

Lock conversions—that is, “upgrading” a shared lock into an exclusive Lock
modeslock on the same object—are a frequent cause of deadlocks. It may be more

desirable to block one transaction earlier rather than risking a deadlock. To
this end, some servers provide commands by which a transaction program can
advise the server to acquire a stronger exclusive lock earlier. For example, when
transactions iterate over query result sets via an SQL command like “open
cursor” (and subsequent Fetch calls), they may have to update a fraction of
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the retrieved data records. Usually, the server would first acquire only shared
locks on these records and would convert these into exclusive locks only on
those records that need to be updated and only when the update command is
issued. To alleviate the deadlock probability for multiple concurrent instances
of this transaction type, the server may consider acquiring exclusive locks on the
retrieved records up front (and possibly “downgrading” them to shared locks as
soon as it is clear that a record is not updated). It is, however, very hard for the
server to determine when this form of preclaiming (i.e., acquiring stronger locks
ahead of time) is beneficial and when it would be better to tolerate the lock
conversions. Therefore, programs can provide guidance to the server via special
commands or additional parameters to the usual commands. These parameters
may be implicit; for example, the SQL command “open cursor” has a variant
of the form “open cursor for update,” which is interpreted by some servers as
a hint to acquire exclusive locks in the first place.

The dynamic tuning of lock modes sketched above already influences theLock
durations duration for which exclusive locks are held. Some servers are even more liberal

in this regard in that they allow programs to “manually” acquire locks at specific
times and possibly also release locks when the program(mer) considers the situ-
ation “safe” enough. So rather than having the server acquiring and releasing all
locks automatically on behalf of the transaction program’s usual calls (e.g., SQL
commands), programs can direct the server to manage locks via explicit Lock
and Unlock calls. An example for this kind of extremely flexible, but also po-
tentially dangerous tuning capability can be found in the concurrency services
of CORBA-style object request brokers. Because it is then the program(mer)
that determines the actual locking protocol, consistency preservation would be
completely dependent on the overview and care of the application architect
or developers. Thus, as far as the comfort and ease of use of transactions is
concerned, such tuning options are actually a step backward, but they may oc-
casionally be convenient for performance improvements of special applications.

10.6.2 SQL Isolation Levels

The idea of manually controlling the lock duration on a per-application or even
a per-transaction basis, discussed in the previous section, can be made safer by
allowing only a limited number of “locking style” options that the application
architect or developer can choose from. These options are known as isolation
levels, one of them being the usual notion of conflict serializability, and they
have even been incorporated into the SQL standard. A specific isolation level
is chosen by issuing a corresponding SQL command “set isolation level . . . ”

The isolation levels supported by the SQL standard are defined in terms of
controlled deviations from (strongly) strict two-phase locking. They should be
understood, however, as schedule classes that, albeit generated by specific lock-
ing protocols, can be enforced by whatever appropriate concurrency control
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algorithm a server chooses to employ. The practically most important isolation
levels are defined as follows:

DEFINITION 10.1 Isolation Levels

A schedule s is said to run under isolation level read uncommitted (also

known as dirty-read or browse level) if write locks are acquired and released

according to S2PL, i.e., all write locks are held until the end of a transaction.

A schedule s is said to run under isolation level read committed (also known

as cursor stability level) if write locks are acquired and released according to

S2PL, and read locks are held (at least) for the duration of each data server

operation issued by a client.

A schedule s is said to run under isolation level (conflict) serializability if it

can be generated by the S2PL protocol.

The three isolation levels differ in their lock durations for shared and exclu- Isolation level
read
uncommitted

sive locks. Essentially, read uncommitted does not require any read locks, and
is useful for mere browsing or statistical evaluations where a consistent view of
the data is not required (e.g., computing the average price of several thousand
books, where the few books whose price is changed during the statistical anal-
ysis do not matter much). The long-duration write locks superficially appear to
prevent the persistent data from becoming inconsistent, but this, in fact, cannot
be guaranteed, since the data values that are written may now depend on arbi-
trarily inconsistent, even “dirty” (i.e., uncommitted and later aborted), reads.

The read committed level alleviates such problems to some extent; in Isolation level
read committedparticular, it eliminates dirty-read anomalies. It is characterized by short read

locks and long write locks. Thus, it reduces the possible data contention, espe-
cially between long readers and short update transactions. This is a particularly
useful and widely used option in practice, but it must be used with extreme
caution as it can actually render the persistent data inconsistent. In fact, the
read committed isolation level is still susceptible to lost-update anomalies, as
the following example shows:

r1(x)r2(x)w2(x)c2w1(x)c1

Some commercial data servers and even the SQL standard further distin- Isolation levels
serializability
vs.
repeatable read

guish between the level of full (conflict) serializability and a relaxed, ad hoc
form of serializability that would tolerate phantom problems but “no other”
types of inconsistencies. The latter is often referred to as the “repeatable read”
level, although this is sometimes also used as a synonym for serializability. This
ad hoc notion is not precisely defined, as the category of “other” inconsistencies
is left somewhat vague.
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As mentioned earlier, the above isolation levels are defined in terms of
locking rules, but we can surely design other kinds of concurrency control al-
gorithms that enforce a specific isolation level. If we wanted to employ even
multiversion concurrency control protocols, the notion of a conflict that under-
lies the locking rules does not carry over directly. To this end, some commercial
systems have introduced additional isolation levels that assume a multiversion
concurrency control algorithm and specify a controlled relaxation from multi-
version serializability.

DEFINITION 10.2 Multiversion Read Committed and Snapshot Isolation

Levels

A transaction run under the multiversion read committed isolation level

Multiversion
read

committed,
snapshot
isolation

reads the most recent versions of the requested data items that were com-

mitted at the time the read operation is issued. All writes that the transaction

may invoke are subject to (nonversioned) exclusive locking with locks held

until the transaction’s termination.

For a transaction run under the snapshot isolation level, all operations read

the most recent versions as of the time the transaction began. In addition,

the write sets of each pair of concurrent transactions must be disjoint.

Of these two levels, snapshot isolation is the stronger one. While mul-
tiversion read committed is still susceptible to lost updates (despite the fact
that it has consistent reads), snapshot isolation is fairly close to full serializ-
ability. In fact, if it were applied only to read-only transactions, all transactions
would have a consistent view of the data, and the persistent data itself could be
guaranteed to remain consistent. This can be easily seen by observing that the
read-only multiversion (ROMV) protocol introduced in Chapter 5 generates
histories that exactly match the above definition of snapshot isolation. How-
ever, the following history (with data item subscripts denoting versions) shows
that snapshot isolation for update transactions can lead to situations that are
not multiversion serializable:

r1(x0)r1(y0)r2(x0)r2(y0)w1(x1)c1w2(y2)c2

As a concrete interpretation, assume that x and y are two numerical data
items, both of which have the initial value 5 and are interrelated by a consistency
constraint dictating x + y ≥ 0. Now imagine two concurrent transactions, both
of which read x and y and subtract 10 from one of the two data items. Under
the read uncommitted level, this could result in the above history, which is
not serializable and would result in both data items having a value of −5, thus
violating the consistency constraint.
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A nice property of snapshot isolation, on the other hand, is that it can be
formalized and studied in a rigorous manner. Our above definition can be cast
into the theory of multiversion concurrency control (see Chapter 5) as follows:

DEFINITION 10.3 Formal Definition of Snapshot Isolation

A multiversion schedule of transactions T = {t1, . . . , tn} satisfies the crite-

Formal
definition of
snapshot
isolation

rion of snapshot isolation if the following two conditions hold:

1. The version function maps each read action ri (x) to the most recent

committed write action w j (x) as of the time of the begin of t i ; that is:

ri (x) is mapped to w j (x) such that w j (x) < c j < bi < ri (x) and there are

no other actions wh(x) and ch (h �= j ) with wh(x) < bi and c j < ch < bi ,

where bi denotes the beginning of t i .

2. The write sets of two concurrent transactions are disjoint; that is, if for

two transactions ti and t j , either bi < b j < ci or b j < bi < c j , then ti
and t j must not write a common object.

The class of snapshot isolated schedules and the class MVSR are incompa-
rable. On the one hand, snapshot isolation is a special case of MVSR in that it
uses a particular version function, and it is more restrictive because of the write
set disjointness condition. On the other hand, snapshot isolation does not re-
quire a reads-from relation that is compatible with that of a serial monoversion
schedule; it is more liberal than MVSR in this respect.

The criterion of snapshot isolation can be easily characterized by a graph
construction:

DEFINITION 10.4 Snapshot Isolation Serialization Graph

The snapshot isolation serialization graph of a multiversion history s is a

directed graph with the transactions as nodes and the following edges: For

each operation r j (xi ) in the schedule there is an edge ti → t j labeled x. For

each pair of operations rk(x j ) and wi (xi ) there is an edge

1. t i → t j if ci < c j and

2. tk → t i if c j < ci

labeled x in both cases.

THEOREM 10.2

Let s be a multiversion schedule that has a version function according to

the snapshot isolation criterion and in which each write step on object x



364 CHAPTER TEN Implementation and Pragmatic Issues

is preceded by a read step on x within the same transaction. Then the

following holds:

1. s is MVSR iff its corresponding snapshot isolation serialization graph is

acyclic, and

2. s is snapshot isolated iff there is no object x such that the corresponding

snapshot isolation graph has a cycle consisting only of edges labeled x.

Snapshot isolation can be implemented using the ROMV protocol intro-
duced in Chapter 5, for all read operations (i.e., even those of update transac-
tions) with an additional mechanism for ensuring the disjointness of the write
sets of concurrent transactions. A straightforward approach for the latter would
be to remember write sets and perform an explicit disjointness test upon the
commit request of a transaction. If the test indicates overlap, the transaction is
aborted. A better way, which can detect nondisjointness earlier and thus avoid
wasting work in transactions that would eventually be aborted anyway, is to
acquire locks for writes as usual and check these locks against the write sets of
concurrent transactions that committed earlier. Note that this requires more
than just the usual lock conflict test, as the already terminated transactions no
longer hold their locks; rather, we need to consider the write locks that they
held at their commit time.

10.6.3 Short Transactions

A well-known tuning principle is to strive for short transactions. The extent to
which this is feasible depends, of course, on the application. Ideally, knowledge
about the application semantics and structure of programs should be fed into
automated methods, like “transaction chopping” discussed in Chapter 8, that
decompose long transactions into shorter ones. In practice, however, such rea-
soning is more typically an intellectual task of the application designers. Not
infrequently, the considerations along these lines are fairly pragmatic and ex-
ploit the fact that humans are, to a large extent, indulgent creatures and users
can tolerate and cope with certain “pathological” situations.

One particularly popular rule of thumb is that a transaction should never
span beyond dialog steps with the human user (also known as “user I/O”). This
is to prevent locks from being held during (or the scope of other concurrency
control measures extending over) the user’s think time between receiving some
output from the computer application and providing the next input. Instead, a
“well-behaved” transaction program should accept an input message, begin and
execute a database transaction, commit this transaction, and deliver a single
output message. So applications such as flight reservations are broken down
into a sequence of independent transactions. Finding out whether a particular
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flight has seats available and reporting the result to the user (i.e., the airline
customer or the airline agent who speaks to the customer) would be a first
transaction; then, once the customer has made up her mind, the actual book-
ing of the flight would be a second transaction. Thus, it is possible that the
customer sees available seats, but the attempt to book them a few minutes
or even seconds later could possibly fail with a notification that the flight is
fully booked. (Of course, it is common practice to overbook flights, but there
should be some reasonable limit (say, 110% of the flight capacity), even with
this relaxation.) Twenty years ago, such experiences were considered accept-
able by the airlines, as they would happen infrequently enough and annoy only
a tiny fraction of unlucky customers. Meanwhile most airlines seem to have
fixed such inconveniences by taking care of the problem at the level of the
application programs, while still employing the principle of short transactions.
One solution could be to make a tentative reservation when the availability
is checked, by explicit UPDATE statements on the underlying database. This
reservation would be associated with an expiration period, and if the customer
does not finalize the booking within this period, the tentative reservation is
automatically dropped by a background program.

This example shows that striving for short transactions is not a panacea, and
often comes at the expense of additional complexity at the application level, if
feasible at all. A related pragmatic approach is to structure application programs
such that the more critical write locks are held for the shortest possible time
period, by moving UPDATE statements toward the end of the transaction and
thus acquiring these exclusive locks as late as possible. So in this regard, a
“good” transaction would have a read phase for querying information first,
defer updates to permanent data by “making notes” about what needs to be
done in the program’s temporary, private variables and data structures, and
finally, submit the corresponding UPDATE statements to the data server in a
short write phase right before the transaction commit. This approach closely
resembles the optimistic concurrency control method discussed in Chapter 4,
where writes were deferred by means of a private workspace.

In contrast to this method where the workspace resides on the server and
the deferral of writes is completely masked to the application programs, the
outlined pragmatic approach requires additional programming discipline and
efforts by application developers. On the other hand, such an application-
level approach would work for all kinds of data servers regardless of whether
the server uses locking, or optimistic methods, or whatever. Recall also that
the workspace concept of optimistic concurrency control can be efficiently
implemented for page-oriented methods, but may be impractical for record-
oriented and index concurrency control. The deferral of Update calls in the
application program can be seen as a way of simulating optimistic concurrency
control for finer granularities.

The technique of postponing updates toward the end of a transaction, for Optimistic
lockingthe sake of short lock duration, is, in practice, often combined with choosing
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relaxed isolation levels for the read phase. Many application developers have
adopted the habit of choosing merely read committed as the isolation level.
This, of course, neither ensures consistent reads nor prevents lost updates. A
widely used practice that eliminates at least lost updates and thus eliminates
the worst possible inconsistencies (but still cannot guarantee truly consistent
data under all circumstances) is known as optimistic locking. So transactions read
data without transaction duration locks (hence the name of the technique) but
acquire locks for the updates in the application program’s write phase. To rule
out the possibility of lost updates, the UPDATE statements should be modified
such that they include a test of whether the objects to be updated have been
changed since they were initially read within the same transaction.

This test usually requires specific programming conventions and additional
efforts. One popular way of implementing it for embedded SQL programs is
to extend each database object with an additional counter field that serves as
a timestamp or version number. During the read phase, all queries need to re-
trieve the corresponding counter value, and the program must remember these
values in local variables. In the write phase, all SQL UPDATE statements are ex-
tended by an extra condition in the WHERE clause that tests the counter field’s
current value for equality with the previously read and remembered value. If
the test fails, the UPDATE statement will not modify any data; the application
program would be notified by an appropriate SQL returncode and would thus
know that another transaction has concurrently modified the database object
in question. Then, the application program would abort the transaction, initi-
ating its rollback. So, for example, the code for retrieving and later modifying
an account balance, say, after computing interest and fees, would have to be
modified as follows:

SELECT Balance, Counter INTO :b, :c

FROM Accounts

WHERE AccountNo = :x;

...

compute interest and fees

set b to appropriate value

...

UPDATE Accounts

SET Balance = :b, Counter = Counter + 1

WHERE AccountNo = :x

AND Counter = :c;

Note that the Counter field is not part of the application’s original database
design, but needs to be added to the schema to enable this kind of optimistic
locking technique. This approach resembles the notion of snapshot isolation,
but it is implemented at the application level rather than inside the server, and
it is strictly weaker as it does not even guarantee consistent reads. Needless
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to say, despite the popularity of this technique, we would not at all encourage
application builders to use it, and we are skeptical that such tricks are practically
viable in the long term. The popularity of the approach mostly comes from the
fact that it allows smart application builders to develop multiuser applications
with decent performance even if the underlying data server uses only page
locking and would otherwise be a major bottleneck. The real solution, however,
would be to use a better data server that employs high-performance, state-of-
the-art techniques as presented in the previous chapters of this book.

10.6.4 Limiting the Level of Multiprogramming

Locks or, with respect to more general scheduling algorithms, data items are Data
contention
thrashing

an abstract resource that concurrent transactions are competing for, in order
to ensure consistent views of the data. This competition is known as data
contention. Like many other forms of resource contention (e.g., memory con-
tention), data contention is susceptible to “performance disasters,” also known
as thrashing phenomena. The reason for data contention thrashing is that with
increasing concurrency, the probability of a lock request not being granted and
the duration for which a transaction needs to wait upon a lock conflict increase
superlinearly. In fact, when too many transactions run concurrently, we may
end up with a situation where most transactions are blocked because of lock
conflicts and only a few transactions are still running. It can be shown, both
mathematically and experimentally, that this problem arises even if no dead-
locks occur (e.g., if lock requests were ordered in accordance with data item
numbers). Frequent deadlocks are an additive danger, possibly leading to CPU
and disk I/O contention as well when many transactions need to be aborted
and restarted for another trial.

To avoid performance disasters of the above kind, virtually all data servers
allow administrators to limit the multiprogramming level (MPL) (also known
as the degree of multiprogramming), which is the maximum number of transac-
tions that are allowed to run concurrently. When this limit is reached, newly
arriving transactions are held in a transaction admission queue. In this case, one
of these transactions is admitted for execution only upon the completion of
a running transaction; the admission order typically is FIFO (also known as
first-come-first-served, or FCFS for short) for fairness. Since the waiting time
that a transaction spends in the transaction admission queue also adds to the
response time that is perceived by the client, the MPL should be set as high as
possible, but also sufficiently low to prevent data contention thrashing (for the
usual workload characteristics of the server). When the MPL is set too high
and thrashing occurs, the transaction throughput drops sharply and response
times increase drastically, ultimately approaching infinity.

This behavior is illustrated in Figure 10.3, which shows typical curves for
transaction throughput and mean response time as functions of the number of
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Figure 10.3 Data contention thrashing.

concurrently active transactions. So without limitation of the MPL, the server
would operate in the catastrophic region on the right side of the charts, at least
during load peaks. Figure 10.4 illustrates the impact of the MPL limit on a high
server load, say, with 100 users who continuously submit transactions (with vi-
rtually no think time, or equivalently on the order of 1000 users with several sec-
onds’ think time). For overly conservative MPL, at the left end of the chart,
many transactions spend a long time in the transaction admission queue, whereas
for an unduely high MPL limit, at the right end of the chart, thrashing sets in.

Determining an appropriate MPL setting for a given workload is a delicate
tuning problem. For workloads with short, frequently arriving transactions that
acquire only a few locks, most of which are read locks only, the MPL can and
should be set quite high—up to a few hundred, for example. On the other hand,
when some of the transactions in the workload are fairly long, holding locks
for an extended duration, or when their access patterns are highly skewed in
that some very frequently updated data items form so-called hot spots, a much
lower MPL is needed—often less than 10. Even worse, the variability of trans-
action lengths in a mixed workload is an important factor to consider as well.
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Among two workloads that have the same mean duration of transactions, one
of which has constant transaction length whereas the other has a high variance,
the one with the high variance of the lock duration is much more suscepti-
ble to data contention and the danger of thrashing. For this reason, some data
servers or TP monitor–style application servers even support MPL limitations
on a per-transaction-class basis. For example, in an electronic commerce ap-
plication, you could specify that up to 10 concurrent order entry transactions
are acceptable, up to 20 concurrent payment transactions, but only up to 3
market analysis transactions. In addition, you would potentially have to con-
sider subsets of these transaction types as well, for example, by allowing only
up to 8 concurrent transactions that are either order entry or market analysis
transactions, and so on. These kinds of tuning decisions are extremely difficult.
In practice they are often based on a mix of guesswork by experienced admin-
istrators and extensive trial-and-error experimentation before an application
system is deployed for real-world service. This makes tuning very expensive in
terms of human time and cost, but it does correspond to the current state of
the art as far as industry practice is concerned. In Section 10.7, we will present
approaches toward automating this specific kind of tuning decision, which we
hope will penetrate into commercial products soon.

10.7 Overload Control

Tuning the multiprogramming level, as discussed in the previous section, has
the inherent disadvantage of relying on human intervention. It requires a highly
skilled and expensive administration staff, and reaches manageability limits
with increasingly complex workloads. In addition, a fundamental drawback of
manual tuning methods is that they do not allow the system to react to the
dynamics of workloads. It may be necessary to limit the MPL only during partic-
ular peak load periods with a particular mix of transactions, while the same lim-
itation would be counterproductive during other periods. As these time periods
are a priori unknown, a system administrator would need to monitor the system
continuously, sitting in a pilot seat with a control stick for real-time adjustments
to the MPL limit. Such a scenario is clearly infeasible, and therefore automatic
methods for preventing overload are called for. Appropriate methods, driven
by feedback from the server’s performance, are presented in this section.

10.7.1 Feedback-Driven Method

The basic approach that we are going to present is an overload control method
driven by feedback from the observed system performance, more specifically,
a metric, coined the conflict ratio, that reflects the current degree of data
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Figure 10.5 Overview of the conflict-ratio driven load control
method.

contention in the server. This method resembles the “system pilot” analogy
given above, except that the administrator is replaced by a piece of software.
The basic principle, illustrated in Figure 10.5, is a feedback loop consisting of
observation, prediction, and reaction steps. The method continuously monitors
the conflict ratio or another appropriate metric. Based on these observations
and possibly statistical knowledge about future transaction behavior (e.g., the
expected number of locks yet to be acquired by the currently active transac-
tions of specific types), the method predicts how the degree of data contention
will evolve in the near future. When the data contention indicator is about to
exceed a critical threshold, the overload control considers two kinds of appro-
priate reactions:

1. Admission control: Newly arriving transactions are no longer admitted forAdmission
control

and
cancellation

control

execution; rather, they are held in a transaction admission queue. This
measure effectively limits the multiprogramming level to its current
value.

2. Cancellation control: In addition, it may be necessary to reduce the
current multiprogramming level. This can be achieved by selecting a
transaction as a cancellation victim, forcing it to abort and putting it
back into the transaction admission queue. This step is repeated until
the data contention indicator drops below the critical threshold.

Transactions that have become cancellation victims should not be allowedRestart control
to restart immediately, as this could easily lead to unstable, oscillating behavior
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with a high probability of immediately reentering the zone of critical data
contention or even thrashing. It has been shown to be beneficial that an aborted
transaction, either a deadlock or a cancellation victim, should be restarted
only after all transactions by which the victim was blocked are successfully
terminated. This restart policy is sometimes referred to as restart waiting.

A related issue is the problem of how to select a cancellation victim. Fol-
lowing similar considerations on deadlock resolution (see Chapter 4), a heuris-
tically good choice is the transaction that holds the fewest locks, but only such
transactions should be eligible that are blocked and do themselves block other
transactions. Transactions that are not blocked are making progress and should
be exempt from cancellation; likewise, transactions that do not block any other
transaction do not cause much harm toward data contention thrashing. As with
deadlock victims, this kind of selection bears the danger of starvation, where the
same transaction is chosen for cancellation over and over again (strictly speak-
ing, different “incarnations” of the same transaction). To prevent starvation and
ensure a certain fairness, the victim selection policy needs to be rectified: one
practically viable possibility is to choose as a cancellation victim the transac-
tion with the smallest product of the number of locks currently held × number
of previous restarts.

The key decision in such a feedback-driven approach is the choice of an
appropriate metric as a data contention indicator and robust value for the
critical threshold. For a homogeneous workload, where all transactions are of
the same type and acquire approximately the same number of locks, it has
been shown, both analytically and experimentally, that the fraction of blocked
transactions is a good indicator for the degree of data contention. As long
as the fraction of blocked transactions is below a critical value around 0.25,
the server can maintain a high throughput. When this fraction exceeds the
critical value, however, the risk of thrashing becomes unbearably high, and
with more than 30% of the transactions being blocked, the system is usually
thrashing.

Unfortunately, this metric is too simple to capture heterogeneous work- Conflict ratio
loads with transactions of highly variable length. Depending on the number of
locks that the various transactions hold, different values of the blocked transac-
tion metric can be tolerated, so that it is impossible to derive a critical threshold
that is meaningful across a wide spectrum of workloads. Therefore, a more ap-
propriate metric is the conflict ratio, defined as the following quotient:

total number of locks currently held by all transactions

total number of locks currently held by all nonblocked transactions

Note that this metric implicitly attaches weights to the various currently
active transactions: transactions that hold many locks have a higher weight.
When all transactions have the same number of locks, which is the expected
steady state situation under a homogeneous workload, the conflict ratio directly
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reflects the fraction of blocked transactions. With widely varying transaction
lengths, however, it becomes crucial to factor the variability into the data con-
tention metric. Analytic modeling as well as experimental studies have shown
that there exists a value for the conflict ratio, coined the critical conflict ratio,
that can serve as a reliable indicator for the onset of thrashing, and that value is
approximately the same, namely, about 1.3, for a wide range of workload char-
acteristics. So the critical conflict ratio can be viewed as a constant, and this
renders the conflict ratio an appropriate metric for a robust, feedback-driven
load control method.

The complete feedback-driven load control method, with the conflict ratioPseudocode for
the

conflict-ratio
driven

load control
method

as a data contention indicator, is described by the following pseudocode.

upon the begin request of transaction t:

if conflict ratio < critical conflict ratio

then admit t

else put t in the transaction admission queue

fi

upon a lock wait of transaction t:

update conflict ratio

while not (conflict ratio < critical conflict ratio)

among the transactions that are blocked and block

other transactions

determine the transaction v with the smallest product

number of locks held * number of previous restarts

(with the transaction with the highest product

being exempt)

abort v and put in the transaction admission queue

if no eligible transaction found then exit loop fi

od

upon the termination of transaction t:

if conflict ratio < critical conflict ratio then

for each transaction q in the transaction admission

queue do

if (q will be started the first time) or

(q has been a deadlock victim or cancellation victim

before and all transactions that q was waiting for in its

previous execution have been successfully terminated)

then admit q

fi

od

fi
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10.7.2 Wait-Depth Limitation

An alternative approach to overload prevention that is a bit more aggressive in
causing more transaction cancellations than the conflict-ratio driven method is
known as wait-depth limitation. The wait depth of a transaction is recursively
defined as follows:

a running (i.e., nonblocked) transaction has wait depth 0, and

a transaction that is blocked by a transaction with wait depth i (and no
transaction with higher wait depth) has wait depth i + 1.

The wait depth of the currently active transactions can be viewed as an
indicator of data contention. In particular, a wait depth of 2 or higher indi-
cates that one or more blocked transactions do in turn block other transactions.
Consequently, it has been suggested that transactions should be canceled when-
ever a wait depth of 1 is exceeded. A case analysis of these situations is illus-
trated in Figure 10.6, with existing lock waits indicated by solid edges and a
newly arising lock wait by a dashed edge. In Case 1 of the figure, transaction
tk should be canceled (and put into the transaction admission queue as in the
conflict-ratio driven method). In Case 2, we can cancel either tk or ti1 to bring
the maximum wait depth down to 1. In that case, a subsidiary victim selection
policy should be used by canceling, for example, the “troublemaker” tk unless
it is the transaction with the largest number of currently held locks, in which
case it appears more favorable to prioritize tk and cancel ti1.

Compared to the conflict-ratio driven load control, wait-depth limitation
is a bit simpler to implement. When CPU and I/O resources are ample, its
performance is about as good as that of the conflict-ratio driven method.

tk1

tkn

tk

ti1

tin

ti

tk1

tkn
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ti1

tin
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Case 1

Case 2

...

...

...

...

Figure 10.6 Case analysis for the wait-
depth limitation method.
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However, it tends to cancel more transactions under high data contention,
and the resulting restarts may lead to a higher utilization of the CPU and
the disks so that these resources could become bottlenecks in extreme
situations.

10.8 Lessons Learned

Locking, as the concurrency control method used in most commercial systems,
can be efficiently implemented with hash-based organization of lock control
blocks. To control the overhead, especially the memory consumption, of the
lock manager, locking protocols have been extended to cope with multiple
granularities so that some loss in concurrency may be dynamically traded for
reduced memory usage.

Locking controls can be enhanced by transient versioning and by exploiting
versions for read-only transactions. We have shown that the storage manage-
ment for versioning can be implemented with affordable overhead, and that
effective and efficient garbage collection is feasible.

Parallel threads within a transaction can be elegantly supported by the
model of nested transactions, but there are also other ways of supporting intra-
transaction parallelism within a lock manager. Nested transactions should not
be confused with object model transactions. The latter are sometimes referred
to as open nested transactions because of the early release of low-level locks;
nested transactions, which could then consequently be referred to as closed
nested transactions, do not have this salient property of increased concurrency
among independent transactions.

For system administrators and, to some extent, application developers, a
suite of tuning knobs is available in the form of system-provided options or ap-
propriate structuring of application programs. In particular, the various choices
for SQL isolation levels are widely used, especially the read committed and the
snapshot isolation levels. However, we would like to warn once again that these
options should be used with extreme caution: if in doubt, do not use them. It
is only in conjunction with specific properties of applications that they lead to
acceptable behavior; if carelessly employed, they may lead to inconsistent data.
So serializability (or multiversion serializability when transparent versioning is
supported) remains by far the most appropriate choice for the safe and most
productive development of multiuser applications.

Finally, we have shown that all concurrency control methods are suscepti-
ble to a performance catastrophe known as data contention thrashing, during
load peaks. To avoid thrashing and ensure that performance deteriorates grace-
fully even under sudden load bursts, an explicit form of load control is needed.
This is typically implemented by allowing system administrators to limit the
server’s multiprogramming level, but better “self-tuning” methods have been
developed in the literature.
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Exercises

10.1 Discuss to what extent lock escalation may incur deadlocks or livelocks.

10.2 Discuss if and under which conditions a form of lock de-escalation could
make sense. De-escalation would essentially be the opposite of lock
escalation—converting one (or a few) coarse-grained lock(s) into several
fine-grained locks while a transaction is executing.

10.3 Give examples of schedules that fall into the following five isolation-
level classes (but not into the next larger, surrounding class): not even
read uncommitted, read uncommitted, read committed, repeatable read,
serializability.

10.4 Give an example for a snapshot isolated history violating the consistency
of the persistent data. Explain what kinds of inconsistencies may arise.

10.5 Design a concurrency control protocol that can guarantee snapshot isola-
tion (and can indeed generate all snapshot isolated histories).

10.6 Give examples for showing that MVSR and snapshot isolation are incom-
parable classes of histories, i.e., neither one is included in the other.
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CHAPTER ELEVEN

Transaction Recovery

And if you find a new way, you can do it today.

You can make it all true. And you can make it undo.

—Cat Stevens

Take heart, I said to myself: don’t think of Wisdom now;

ask the help of Science.

—Umberto Eco

11.1 Goal and Overview

With this chapter we begin Part III of the book, in which we consider recovery
methods to ensure the atomicity and persistence of transactions. This chapter
focuses on the issue of transaction recovery, which is needed to implement
transaction rollbacks while the server continues to process other transactions.
A rollback is necessary when a transaction is aborted either because of an unac-
ceptable exception in the application program currently executing at the client
site (e.g., a pointer error) or upon detecting inconsistencies in the server’s data
that would arise from the current transaction’s further execution. In addition,
the server may choose to abort a transaction for internal reasons such as dead-
lock or overload (see Chapters 4 and 10). In all these cases, which are commonly
subsumed under the term “transaction failures,” the server continues to oper-
ate and is expected to restrict its recovery measures to the actually affected
transaction while processing other transactions as usual.

Thus, the issue in transaction recovery is not so much to provide fault- Undo of
aborted
transaction

tolerant service, which is something we will discuss in subsequent chapters
when we consider server failures. Rather, this chapter focuses on the problem of

Dirty-read
anomaly

how to undo the effects of an aborted transaction in the presence of concurrent
transactions. This problem is all but trivial; in particular, it is not avoided by
serializability-enforcing measures alone, nor is it avoided by simply suspending
all currently active transactions while an aborted transaction is being rolled
back. As a canonical example for illustrating the problem, reconsider the dirty-
read anomaly from Chapter 2:

w1(x)r2(x)c2a1

379
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This history should be considered unacceptable, since t2’s effects depend on
having read a “dirty” (i.e., not yet committed) update that t1 has made earlier.
Later on, when t1 aborts, we would expect some form of “cascading abort” that
includes the dependent transaction t2 as well, but at this point it is too late
to abort the already committed transaction t2. On the other hand, a scheduler
based on serializability would surely accept this history, since it is perfectly
conflict serializable. (Notice in this little discussion that an exchange of the two
termination operations would immediately solve the problem, as the outcome
of t1 would be known at the end of t2.)

In order to establish a class of acceptable schedules that takes both serializ-Log of inverse
operations ability and transaction recovery issues into account appropriately, we will first

make the necessary actions for rolling back a transaction explicit in that we ex-
pand a transaction abort into actual data operations that undo the transaction’s
prior updates. These actions can be determined from a log of each transaction’s
updates that is kept at the server. As the server itself is not affected by a single
transaction failure, this log can be maintained in the server’s volatile mem-
ory. For the same reason, the exact implementation of the log does not really
matter; we will later pay more attention to the design of its underlying data
structure once we start considering server failures in Chapter 12. For the time
being, we can think of logs as lists of page values prior to the corresponding
page write operations, organized on a per-transaction basis. More generally, a
log can be perceived as a list of inverse data operations.

Once the previously implicit undo steps for an abort action are made ex-
plicit in what we will call an expanded schedule, we can again use serializability
based arguments along the lines of commutative operations for reasoning about
the correctness of transaction aborts and their interdependencies with concur-
rent transactions. We will present the theory that builds upon this idea for the
page model of transactions first: we will introduce a notion of reducibility that
takes Undo operations into account; then we will study a number of easy-to-
implement, and syntactical, yet sufficient conditions for ensuring correctness,
and we will finally look into the question of how to augment already known
scheduling protocols in such a way that transaction aborts are correctly handled
and anomalies like dirty reads are eliminated. Once the simpler case of page
model transactions is completely covered, we will consider the more advanced
case of object model transactions, and we will see that again some fundamen-
tal principles from the page model can be carried over, but need appropriate
generalizations.

The chapter is organized as follows. Section 11.2 formalizes the concept
of an expanded schedule. On this basis Sections 11.3 and 11.4 discuss fun-
damental correctness criteria, sufficient conditions that are more easily imple-
mentable, and further relationships among the various schedule classes that
are of theoretical interest. Section 11.5 then exploits the conceptual under-
pinnings by showing how page model concurrency control methods can be
easily extended to cope with transaction aborts. As the fundamental reasoning
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behind expanded schedules can be carried over to transaction executions with
semantically rich operations and operation invocation trees, correctness criteria
and algorithms for the object model can be discussed in a concise manner in
Sections 11.6 and 11.7.

11.2 Expanded Schedules with Explicit
Undo Operations

A major goal in this chapter is to derive a general correctness criterion for recov-
ery that will be called prefix reducibility, and to characterize the corresponding
class of schedules in a way that indicates how to augment known scheduling
protocols in this direction. To begin with, we give an overview of the approach
and summarize the underlying ideas.

11.2.1 Intuition and Overview of Concepts

The essence behind our approach to treating recovery from a conceptual point
of view is to make the actions that are associated with an Abort operation
occurring in a schedule or history explicit, and to treat them in the same way
as ordinary operations. After a transaction failure, the goal is to restore the
database to the state it was in before that transaction started; since this is
not always possible in the presence of multiple transactions that are executing
concurrently, let us consider it sufficient to undo the write operations that the
transaction to be aborted has executed. If we include corresponding operations
in the transaction that is to be terminated abnormally, Abort operations become
obsolete, since what they need to accomplish is now explicit in the schedule
or history in question.

As an example, consider the following history: A history . . .

s = r1(x)w1(x)r2(x)a1w2(x)c2

Obviously, we show a dirty-read situation here, since the second transaction
reads a value of x produced by the first, but since transaction t1 aborts, that
value should not have been made available to transaction t2. We choose to
“implement” operation a1 by writing back the original value of x preceding
w1(x) (assuming that this value can be obtained from the log); after that, we
simply commit the transaction as if it had been successful. So now we are
looking at the following history:

. . . and its
expansion

s ′ = r1(x)w1(x)r2(x)w−1
1 (x)c1w2(x)c2
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We assume that the two writes of t1 on x are inverse to each other, so that the
second compensates for the first. Thus, t1 has no effect on the database, and
now the problem is a different one: since s ′ has a cyclic conflict, it is an ordinary
scheduling problem to avoid nonserializability, which can be accomplished by
any of the known protocols. Notice that a 2PL scheduler, for example, would
allow the original history s, as it is perfectly conflict serializable, but would
detect the unacceptable behavior in the expanded history s ′. Thus, if we make
sure that s is replaced by s ′ prior to execution, we are guaranteed that no
unacceptable history will result.

11.2.2 The Formal Model

We now make the idea of expanding schedules in response to a request to abort
a transaction precise, and we will show that expanded schedules give rise to
a uniform correctness criterion. As was briefly mentioned already, expanding
schedules is essentially based on the following concepts:

1. All actions related to failures are made explicit in a schedule, that is,Idea of
expansions they are added to a given schedule as additional steps, and any Abort

operation is replaced by a Commit operation.

2. A schedule so expanded is treated by ordinary serializability arguments,
where special attention is paid to the interaction between steps on behalf
of transaction aborts and regular steps.

Since we assume log-based recovery, we may assume that a transaction that
will be aborted and hence needs its effects undone can simply be compensated
for by “inverse” write operations: if s is a history such that ti ∈ abort(s) and
wi (x) ∈ op(s), then the Undo operation corresponding to wi (x) is yet another
write operation on x that restores the original value of x; such an operation is
denoted by w−1

i (x) in what follows.
Read operations, on the other hand, will not need special treatment when

aborting a transaction; we can assume that the results of a read are simply
“forgotten,” so that the steps themselves can be considered as “null steps.”

Now each Undo operation of the form w−1
i (x) undoes a previously exe-

cuted operation of the form wi (x) of transaction ti , so that it makes sense to
put Undo operations in reverse order of the corresponding Do operations in
a history. If an aborted transaction has been expanded in this way, it can be
treated like a committed one from that point on, so that we arrive at the fol-
lowing basic expansion strategy: if ti ∈ abort(s) holds in a given history s (i.e.,
ai ∈ op(s)), then ai is replaced by the Undo operations of all write steps of ti

(in reverse order), followed by ci .
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EXAMPLE 11.1

Consider history Replacing
aborts by
inverse writess = r1(x)w1(x)r2(y)w1(y)w2(y)a1r2(z)w2(z)c2

According to what was just said, s is rewritten into the following history

(which will be called the expansion of s or the expanded history for s):

s ′ = r1(x)w1(x)r2(y)w1(y)w2(y)w−1
1 (y)w−1

1 (x)c1r2(z)w2(z)c2

So far we have considered histories, and of course, we will need an extension
of our approach to prefixes of histories (i.e., to schedules). Indeed, in a running
scheduling situation, a scheduler commonly sees prefixes of histories only; if
there is no explicit Abort operation yet, it is not immediately clear how to
place abort actions in a schedule for a transaction that is still active.

To this end, we now make the following assumption: if s is a schedule and
not a history—that is, for some transactions in s it is still open how they will
end (i.e., active(s) �= ∅)—s will be treated as if a system failure had occurred
after the last operation in s so far. In other words, all transactions ti ∈ active(s)
will be (implicitly) aborted and then of course be treated in the way described
above. The only aspect that is different is the fact that now the reverse ordering
of operations is no longer local to a single transaction, but global with respect
to all aborted transactions.

EXAMPLE 11.2

Consider schedule Terminating
active
transactionss = w1(x)w2(x)w2(y)w1(y)

Since t1, t2 ∈ active(s), s still appears acceptable, although there is already a

cyclic conflict between t1 and t2. If both transactions are aborted according

to the assumption above, we must be careful in sequencing the correspond-

ing abort operations. Indeed, neither the ordering a1a2, resulting in

s ′ = w1(x)w2(x)w2(y)w1(y)w−1
1 (y)w−1

1 (x)c1w−1
2 (y)w−1

2 (x)c2

nor the ordering a2a1, resulting in

s ′′ = w1(x)w2(x)w2(y)w1(y)w−1
2 (y)w−1

2 (x)c2w−1
1 (y)w−1

1 (x)c1

represents a correct execution. Instead, a correct undo can in this case only

be guaranteed if the undos corresponding to different aborts are executed
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in an overlapping fashion. Thus, the appropriate expansion of s must look

as follows:

s ′′′ = w1(x)w2(x)w2(y)w1(y)w−1
1 (y)w−1

2 (y)w−1
2 (x)w−1

1 (x)c2c1

We could formally capture situations like the one just seen through the
notion of a group abort, representing the collective abort actions of all active
transactions. However, we can do without explicit group aborts as long as we
keep in mind that active transactions need a slightly different treatment than
aborted ones.

We are now ready to make the above considerations precise as follows:

DEFINITION 11.1 Expansion of a Schedule

Let s be a schedule. The expansion of s, denoted exp(s), is defined as

Expansion of a
schedule

follows:

1. Steps of exp(s):

(a) ti ∈ commit(s) ⇒ op(ti ) ⊆ op(exp(s))

(b) ti ∈ abort(s) ⇒ (op(ti ) − {ai }) ∪ {ci } ∪ {w−1
i (x) | wi (x) ∈ ti } ⊆

op(exp(s))

(c) ti ∈ active(s) ⇒ op(ti ) ∪ {ci } ∪ {w−1
i (x) | wi (x) ∈ ti } ⊆ op(exp(s))

2. Step ordering in exp(s):

(a) all steps from op(s) ∩ op(exp(s)) occur in exp(s) in the same order

as in s;

(b) all inverse steps of an aborted transaction occur in exp(s) after their

original steps and before the respective Commit operation;

(c) all inverse steps of transactions in active(s) occur in exp(s) after the

original steps of s and before their corresponding commits;

(d) the ordering of inverse steps is the reverse of the ordering of the

corresponding original steps.

EXAMPLE 11.3

Consider schedule

s = r1(x)w1(x)r2(y)w2(y)r3(z)w3(z)r4(y)w4(y)a1c3r2(z)w2(z)

Then we have

exp(s) = r1(x)w1(x)r2(y)w2(y)r3(z)w3(z)r4(y)w4(y)
w−1

1 (x)c1c3r2(z)w2(z)w−1
2 (z)w−1

4 (y)w−1
2 (y)c2c4
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11.3 Correctness Criteria for the Page Model

Now that we have fixed a way to treat aborted transactions such that serializ-
ability based schedulers could be enabled to discover undesirable situations that
stem from transaction failures, we need to cast this approach into a formally
precise correctness criterion. To this end, we will present a series of correctness
criteria that, as will be seen, are in a sense orthogonal to each other. For prac-
tical purposes, we will later choose the one that exhibits the most attractive
properties.

11.3.1 Expanded Conflict Serializability

As indicated above, the notion of serializability can be extended to expanded

Expanded
conflict
serializability

histories and schedules without further restrictions or constraints. In particular,
our well-known notion of conflict remains the same as before: two steps from
distinct transactions are in conflict if they access the same data item and at least
one of them is a (direct or inverse) write operation.

DEFINITION 11.2 Expanded Conflict Serializability

Let s be a schedule s is expanded conflict serializable if its expansion exp(s)
is conflict serializable.

Let XCSR denote the class of all expanded conflict-serializable schedules.

EXAMPLE 11.4

Consider

s = r1(x)w1(x)r2(x)a1c2

Then we have

exp(s) = r1(x)w1(x)r2(x)w−1
1 (x)c1c2

Since exp(s) exhibits a cyclic conflict between its two transactions, it follows

that s �∈ XCSR. Next consider

s ′ = r1(x)w1(x)a1r2(x)c2

Now we find

exp(s ′) = r1(x)w1(x)w−1
1 (x)c1r2(x)c2

Since exp(s ′) is equivalent to the serial execution t1t2, it follows that s ′ ∈
XCSR.
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Since the inverse write operations occurring in an expanded schedule can at
most add to the conflict relation of a given schedule, it should be clear that if we
omit them, we obtain a subhistory of the expanded schedule; if the expansion
is conflict serializable, so is its subhistory. Thus, we find that class XCSR is a
subclass of class CSR, and the first schedule in the previous example shows
that this inclusion is strict:

LEMMA 11.1

XCSR ⊂ CSR

Although expanded conflict serializability is already a reasonable step to-
ward a formal treatment of transaction failures, it is too restrictive in certain
situations. The reason is that some intuitively correct histories do not belong
to XCSR, as shown in the following example:

EXAMPLE 11.5

Suppose all transactions in a given history are aborted, as inProblems with
XCSR

s = w1(x)w2(x)a2a1

For this history, we find

exp(s) = w1(x)w2(x)w−1
2 (x)c2w−1

1 (x)c1

which apparently has a cyclic conflict; thus, s is not in XCSR. On the other

hand, the cycle is technically irrelevant, as both transactions are aborted. In

that sense, s is acceptable.

In Example 11.5, the acceptability of s crucially depends on the fact that
the Undo operation of t2 immediately follows its corresponding Do operation,
so that in principle we can remove this pair of operations from s without
changing its effect. Note that this would no longer be the case if the two abort
steps of s were in reverse order.

If we perform the removal, we obtain

w1(x)c2w−1
1 (x)c1

Since no operation from t2 is left, we can drop c2. Now w1(x) and its inverse
operation have become adjacent, and by the same argument we just applied to
t2, we can now eliminate t1 from s. So we are left with an empty schedule that
does not perform any actions at all, which is exactly the desired effect, as both
transactions were aborted.
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We will now pursue this observation further and establish another cor-
rectness criterion that will ultimately serve as the goal of scheduling in what
follows.

11.3.2 Reducibility and Prefix Reducibility

If a write operation and its inverse happen to be adjacent—that is, they occur Transformation
rulesright after one another—it is guaranteed that no operation can be between the

two that is in conflict with either of them. If a write operation and its inverse are
not adjacent, it may be possible to make them adjacent by performing allowed
commutations in the given schedule, that is, by moving them together through
pairwise exchanges with other operations. We will next cast this intuition into
transformation rules that allow us to reorder and modify a given schedule in
certain ways. Note that the notion of expanded serializability as introduced
above does not exploit information about the presence of inverse operations
or about their adjacency.

DEFINITION 11.3 Reducibility

A schedule s is reducible if its expansion exp(s) can be transformed into a se-

Reducibility

rial history by finitely many applications of the following rules (in any order):

1. Commutativity rule (CR): If p, q ∈ op(exp(s)) such that p < q and (p, q) �∈
conf(exp(s)), and if there exists no step o ∈ op(exp(s)) such that p <

o < q, then the order of p and q can be reversed.

2. Undo rule (UR): If p, q ∈ op(exp(s)) are inverses of each other (i.e., of

the form p = wi (x), q = w−1
i (x)) with p < q) and if there is no step

o ∈ op(exp(s)) in between, i.e., p < o < q, then the pair p, q of steps

can be removed from exp(s).

3. Null rule (NR): If p ∈ op(exp(s)) has the form p = ri (x) such that

ti ∈ active(s) ∪ abort(s), then p can be removed from exp(s).

4. Ordering rule (OR): Two commutative, unordered operations can be ar-

bitrarily ordered.

Let RED denote the class of all reducible schedules.

Notice that the presence of UR, the undo rule, will in most cases have
the effect that the original schedule is not just transformed into a serial his-
tory (if possible), but that it will indeed be reduced to something equivalent
(and serial, if possible). Ultimately, a given reducible schedule may be reduced
to a sequence of Commit operations only, which is trivially serial (and also
considered to be an “empty” schedule).
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EXAMPLE 11.6

Consider

s = r1(x)w1(x)r2(x)w2(x)a2a1

Then we have

exp(s) = r1(x)w1(x)r2(x)w2(x)w−1
2 (x)c2w−1

1 (x)c1

By using rules CR, UR, and NR, exp(s) can be reduced as follows:

by UR: r1(x)w1(x)r2(x)c2w−1
1 (x)c1

by NR: r1(x)w1(x)c2w−1
1 (x)c1

by NR: w1(x)c2w−1
1 (x)c1

by CR: w1(x)w−1
1 (x)c2c1

by UR: c2c1

As a result, s ∈ RED.

Notice that conflicts are defined for data operations only, so Commit oper-

ations can freely be commuted with reads or writes as long as the ordering

of steps given by a transaction is not modified.

EXAMPLE 11.7

Consider

s = w1(x)r2(x)c1c2

Here, by CR , the only relevant transformation is into

w1(x)c1r2(x)c2

which is serial, so s ∈ RED. Notice, however, that in this case the reduction

of s has not really removed any operation.

The notion of reducibility thus respects not only the commutativity of
operations that are not in conflict in a given history or schedule, but also the
elimination of adjacent Do and Undo operations.

As we have done for ordinary histories when we defined conflict serializ-
ability, we need to be able to decide about the reducibility of a given history by
looking at a prefix only. As before, the reason for this is that a scheduler must
be able to decide on the executability of a given operation without having seen
the entire transaction or even the history under construction. In particular, the
scheduler must take into account the fact that a transaction can be aborted at
any moment.
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EXAMPLE 11.8

Consider

s = w1(x)w2(x)c2c1

Suppose a scheduler has already executed the two write operations, and

then commits t2. If at that point t1 would abort, the resulting schedule (i.e.,

prefix of s) would be expanded into

s ′ = w1(x)w2(x)c2w−1
1 (x)c1

which is neither in XCSR nor in RED. The latter holds since none of the

reduction rules applies (except for ones involving the Commit operations,

which does not help here), so reduction leaves the schedule essentially

unchanged. Thus, s should not be acceptable, since it has an “unsafe”

prefix.

We are therefore interested in the closedness of expandability as well as of
reducibility under taking prefixes; since the latter is the more important notion,
this is defined next. (For the other, see Exercise 11.6.)

DEFINITION 11.4 Prefix Reducibility

A schedule s is prefix reducible if each of its prefixes is reducible.

Prefix
reducibility

Let PRED denote the class of all prefix-reducible schedules.

LEMMA 11.2

PRED ⊂ RED

Proof

Since every schedule is trivially a prefix of itself, the inclusion is straightfor-

ward. Next consider s = w1(x)w2(x)c2c1 from Example 11.8 once more.

Obviously, s ∈ RED – PRED; in particular, prefix w1(x)w2(x)c2 of s is not

reducible.

EXAMPLE 11.9

Consider

s = w1(x)w2(x)a2a1
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As we have discussed in Example 11.5 already, s �∈ XCSR. On the other

hand, s ∈ RED, since our discussion following Example 11.5 has already

revealed that s can be reduced into a serial schedule. Moreover, it is easily

verified that every prefix of s is also reducible. Thus, s ∈ PRED.

To conclude this section, we establish the following relationships between
the classes of schedules introduced so far:

THEOREM 11.1

1. XCSR ⊂ RED

2. XCSR and PRED are incomparable with respect to set inclusion.

Proof

1. Consider some s ∈ XCSR. By definition, exp(s) is thus conflict serializ-

able, so there exists a serial history s ′ that is conflict equivalent to exp(s).
Clearly, exp(s) can be transformed into s ′ using the rules from Defini-

tion 11.3 (except for UR and NR), performing allowed commutations, or

ordering previously unordered steps only. Thus, s ∈ RED. History s from

Example 11.5 shows that the inclusion is strict.

2. In order to show that XCSR and PRED are incomparable with respect to

set inclusion, it suffices to consider the following histories:

w1(x)w2(x)c2c1 ∈ XCSR – PRED (Example 11.8)

w1(x)w2(x)a2a1 ∈ PRED – XCSR (Example 11.5)

Part (2) of the previous theorem states that reducibility is independent from
the considerations on prefixes we have done above. We will later prove another
theorem, which states that PRED contains all intuitively correct schedules.

11.4 Sufficient Syntactic Conditions

Consider again the history we looked at in the beginning of this chapter:Dirty-read
anomaly

w1(x)r2(x)c2a1

We have already discussed why this history is not acceptable, and that a serial-
izability based scheduler would nevertheless consider it valid. In this section we
discuss correctness criteria for transaction recovery that are exclusively based
on simple syntactical restrictions on the allowed schedules. Essentially, these
restrictions state in what relative order the termination operations from vari-
ous transactions that have interdependencies (such as read-from situations) are
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allowed to occur. And as you will see, putting more and more restrictions on
the allowed placement of termination operations or on the relative ordering of
reads, writes, aborts, and commits increasingly simplifies transaction recovery,
but also limits the amount of parallelism that can be achieved. Compared to
the criteria we have introduced earlier in this chapter, which emphasize a way
of processing aborts, the syntactic notions presented next can be seen as suffi-
cient conditions for correct recovery, as will become clear when we examine
the relationships that exist between the various notions.

11.4.1 Recoverability

Our first syntactic notion is intended to avoid dirty-read situations that may
arise when one transaction has read a data object from another and then com-
mits “too early.”

DEFINITION 11.5 Recoverability

A schedule s is recoverable if the following holds for all transactions ti , t j ∈

Recoverability

trans(s), i �= j : if ti reads from t j in s and ci ∈ op(s), then c j <s ci .

Let RC denote the class of all recoverable schedules.

Thus, in a recoverable schedule, each transaction can only be committed
after all transactions from which it has read have been committed.

EXAMPLE 11.10

Consider

s1 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w3(u)c3c2w1(z)c1

Then t2 reads y from t1 and c2 ∈ s, but c1 �<s c2. It follows that s1 �∈ RC.

Next consider

s2 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w3(u)c3w1(z)c1c2

Then s2 ∈ RC, since the Commit operation of t2 follows after that of t1.

11.4.2 Avoiding Cascading Aborts

In history s2 in the previous example we can identify another problem: if
t1 is aborted right after operation r2(y), we would again encounter a dirty-
read situation, and the abort of t1 would imply the abort of transaction t2. In
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other words, sometimes aborts “cascade,” and we can avoid this by a suitable
restriction of class RC:

DEFINITION 11.6 Avoiding Cascading Aborts

A schedule s avoids cascading aborts if the following holds for all transac-

Avoiding
cascading

aborts
tions ti , t j ∈ trans(s), i �= j : if ti reads x from t j in s, then c j <s ri (x).

Let ACA denote the class of all schedules that avoid cascading aborts.

Note that the cascading abort in Example 11.10 (s2) is an inconvenience,
but unlike the canonical dirty-read anomaly considered before, it does not in-
cur any correctness problems, as the dirty reader transaction now is not yet
committed at the time the other transaction would abort.

Thus, while recoverability of a schedule means that each transaction reaches
its commit point after all transactions from which it has read are committed, the
ACA property means that a transaction can only read values written by trans-
actions that are already committed, that is, whose presence in the database is,
in a sense, “guaranteed.”

EXAMPLE 11.11

For s2 from Example 11.10 we thus have s2 �∈ ACA. However, for

s3 = w1(x)w1(y)r2(u)w2(x)w1(z)c1r2(y)w2(y)w3(u)c3c2

we can verify that s2 ∈ ACA.

History s3 is still not entirely free of problems: suppose that t1 aborts right
after w2(x); then there is no need to abort t2 as well, but the database is brought
back into the state that it was in prior to the beginning of t1, although t2 has
already written a new value of data item x. As we mentioned earlier, by far the
most practical approach to implement transaction rollbacks is to undo oper-
ations of aborted transactions. In contrast, some schedules allowed under RC
or ACA are intuitively recoverable only by first going back to a potentially
very old state and then redoing a potentially long sequence of committed
transactions. Obviously, such an approach is inordinately expensive for merely
rolling back a single transaction while the server is continuing to process other
transactions.

EXAMPLE 11.12

Consider a numeric data item x with an initial value of x = 1, and let sched-

ule s = w1(x, 2)w2(x, 3)c2a1 be given, where wi (x, n) means that wi writes
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value n for x. Thus, the undo of w1(x, 2) would restore the value as it was

immediately before the operation was executed, setting x to 1; however,

after a1 the current value of x should be 3. So in this example, the only

correct form of transaction recovery for t1 would be to restore the value

as of the beginning of the entire schedule and then redo the write of the

already committed transaction t2.

The general problem here is that the values that have to be restored after
a transaction abort can differ from those that immediately preceded the write
operations of the aborted transaction. Such differences generally result from
mutual overwrites performed by active transactions whose outcome is open at
the time they write.

11.4.3 Strictness

To avoid being forced to perform a more expensive transaction recovery dif-
ferent from the simple undo approach, we impose yet another syntactical re-
striction on schedules.

DEFINITION 11.7 Strictness

A schedule s is strict if the following holds for all transactions ti ∈ trans(s)

Strictness

and for all pi (x) ∈ op(ti ), p ∈ {r, w}: if w j (x) <s pi (x), i �= j , then a j <s

pi (x) ∨ c j <s pi (x).

Let ST denote the class of all strict schedules.

In words, a schedule is strict if no data item is read or overwritten until the
transaction that wrote it last has ended (either by commit or by abort).

EXAMPLE 11.13

For s3 from Example 11.11 we find s3 �∈ ST. Next, for

s4 = w1(x)w1(y)r2(u)w1(z)c1w2(x)r2(y)w2(y)w3(u)c3c2

we can verify that s3 ∈ ST.

11.4.4 Rigorousness

Our next class of recoverable schedules is a restriction of ST that is based on the
following intuition: a schedule that is in class ST informally avoids write/read
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as well as write/write conflicts between uncommitted transactions; a schedule
in the class RG defined next completes that picture by additionally avoid-
ing read/write conflicts between uncommitted transactions. As will be seen
shortly, this extra provision makes a remarkable difference in the relationship to
serializability.

DEFINITION 11.8 Rigorousness

A schedule s is rigorous if it is strict and additionally satisfies the following

Rigorousness

condition: for all transactions ti , t j ∈ trans(s), if r j (x) <s wi (x), i �= j , then

a j <s wi (x) ∨ c j <s wi (x).

Let RG denote the class of all rigorous schedules.

In words, a schedule is rigorous if it is strict and no object x is overwritten
until all transactions that read x last are finished.

EXAMPLE 11.14

For s4 from Example 11.13 we find s4 �∈ RG. Next, for

s5 = w1(x)w1(y)r2(u)w1(z)c1w2(x)r2(y)w2(y)c2w3(u)c3

we can verify that s5 ∈ RG.

The relationship between the syntactical classes of schedules is intuitively
such that they continuously put further restrictions on the set of admissible
schedules, as suggested by our samples s1–s5. More formally, we can show the
following theorem:

THEOREM 11.2

RG ⊂ ST ⊂ ACA ⊂ RC

Proof

The fact that RG ⊆ ST immediately follows from the definition of RG. That

the inclusion is strict is verified by s4 from Example 11.14 (s4 ∈ ST\RG).

Next let s ∈ ST, and let ti read x from t j in s, i �= j . By the definition

of the reads-from relation, w j (x) <s ri (x) and a j �<s ri (x) then hold. By

the definition of class ST, this implies c j <s ri (x), i.e., s ∈ ACA. Thus,

ST ⊆ ACA; s3 from Example 11.11 proves that the inclusion is strict (s3 ∈

ACA\ST).
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Next consider some schedule s ∈ ACA, and suppose that ti reads x from

t j in s, i �= j , and that ci ∈ s. Since s ∈ ACA, it follows that c j <s ri (x).
Clearly, we also have w j (x) <s c j and ri (x) <s ci . This implies c j <s ci , i.e.,

s ∈ RC. Thus, ACA ⊆ RC; s2 from Example 11.10 moreover shows that

this inclusion is also strict (s2 ∈ RC\ACA).

Another property that is easily verified by the definitions of RG, ST, ACA,
and RC is that membership in any of the four classes is prefix commit closed;
that is, if a schedule is, say, in ACA, the same holds for the committed projection
of each of its prefixes (see Exercise 11.4).

We next look at the relationship between our syntactic classes of schedules
and the serializable ones, where we restrict the attention to the most important
class of conflict-serializable schedules: schedules whose committed projections
are histories in CSR. Surprisingly, this relationship essentially is such that ST,
ACA, and RC are incomparable to CSR with respect to set inclusion, while
RG is not. This is illustrated in Figure 11.1, where the various histories men-
tioned are those from Examples 11.10, 11.11, 11.13, and 11.14, respectively.
Moreover, history

w1(x)w2(x)w2(y)c2w1(y)c1

is an example of a history that is in RC, but not in CSR. Note that Figure 11.1
can be extended so that it also includes the classes of commit view seri-
alizable (CMVSR) and commit final state serializable (CMFSR) histories
(see Chapter 3 for these classes).

CSR

s1

RC

ACA
ST

RG s5

s4

s3

s2

Figure 11.1 Relationship between schedule
classes RC, ACA, ST, RG, and
CSR.
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While the incomparability between CSR and classes ST, ACA, and RC
with respect to set inclusion is easily established through examples, contain-
ment of RG in CSR is implied by the following observation regarding RG
and COCSR, the subclass of CSR containing all schedules whose commit-
ted projection is a commit-ordered conflict-serializable history: membership
of a schedule s in class RG actually means that for any two operations p ∈

op(ti ) and q ∈ op(t j ), i �= j , that are in conflict in s such that p <s q, com-
mit operation ci also comes before q in s (provided that ci indeed occurs in
s). On the other hand, since q precedes c j (if c j occurs in s), we may con-
clude that ci precedes c j . Thus, we have shown that RG ⊆ COCSR. His-
tory s = r1(x)w2(x)c1c2 ∈ COCSR\RG additionally shows that this inclusion
is strict, so we have

THEOREM 11.3

RG ⊂ COCSR

Figure 11.2 summarizes the relationships just described. Thus, RG is the
only class of schedules among the “syntactic” ones that is comparable to CSR
with respect to set inclusion. In other words, recoverability, avoidance of cas-
cading aborts, and strictness are properties of schedules that are orthogonal to
serializability; thus, a history may be, say, strict without being conflict serializ-
able. As a consequence, two criteria are required in order to make history and
schedule “correctness” precise, as long as serializability and anything strictly
“above” RG are preferable. This is no longer true for RG, clearly at the expense
of disallowing some histories.

As the next theorem will show, RG is, in a sense, in line with the class of
prefix-reducible schedules, as these also fall into the intersection of the classes of

CSR

ST

COCSR

RG

Figure 11.2 Relationship between schedule
classes CSR, COCSR, RG, and
ST.
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conflict-serializable and of recoverable schedules, so that rigorousness or prefix
reducibility alone suffices as a correctness criterion for schedules. However,
class PRED is somewhat “better off” than RG, since the intersection of CSR
and ST is contained in PRED, not vice versa. In detail, we can state the following
theorem, a result that underlines the general importance of prefix reducibility
in the context of database transactions:

THEOREM 11.4

CSR ∩ ST ⊂ PRED ⊂ CSR ∩ RC

Proof

Let us look at the left inclusion first and suppose that schedule s is both

PRED vs. ST
and RC

in CSR and ST. Let s ′ be an arbitrary prefix of s; since CSR and ST are both

prefix closed, it follows that s ′ ∈ CSR ∩ ST. Now assume that s ′ �∈ RED.

Then exp(s ′) cannot be transformed into a serial history using rules CR,

NR, UR, and OR alone. However, since s ′ itself is serializable, this can only

be caused by do/undo pairs of the form (wi (x), w−1
i (x)) that cannot be

brought together by the transformation rules. Thus, there must exist an

action p j , p ∈ {r, w}, j �= i that is in conflict with wi (x) and with w−1
i (x),

and which must be ordered as follows:

wi (x) < p j < w−1
i (x)

We now consider both possible cases individually:

1. wi (x) < r j (x) < w−1
i (x): In this case, t j must terminate with a commit

operation, since the read operation would otherwise have been elimi-

nated from the expanded schedule by rule NR. However, this contradicts

the fact that s ′ ∈ ST, since t j can read item x only after ti is finished.

2. wi (x) < w j (x) < w−1
i (x): This immediately contradicts the fact that s ′

is strict.

As both cases lead to a contradiction, our assumption that s ′ �∈ RED was

false, which concludes the first portion of the proof.

For the second inclusion stated by the theorem, consider a schedule s ∈

PRED. If s was not in CSR, the conflict graph of s would contain a cycle of

the form t1 → t2 → . . . → tn → t1 involving a committed transaction. But

then s cannot be transformed into a serial history by the reduction rules,

which contradicts our assumption that s ∈ PRED.

Next assume that s �∈ RC. This can only happen in one of the following

situations:

1. wi (x) < r j (x) < c j < ci : In this case, the prefix comprising the first three

operations only is not reducible, a contradiction.
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2. wi (x) < r j (x) < c j < ai : Here, the argument is the same as in case (1).

3. wi (x) < r j (x) < ai < c j : In this case, the expanded schedule cannot be

prefix reducible, again a contradiction to the assumption s ∈ PRED.

11.4.5 Log Recoverability

Our next goal is to define a correctness criterion that is based on recoverability
and in addition places an order on the termination operations of transactions
that are involved in a write/write conflict. As it will turn out, this new criterion,
if combined with serializability, can serve as a characterization of class PRED.

DEFINITION 11.9 Log Recoverability

A schedule s is log recoverable if the following two properties hold:

1. s is recoverable; i.e., for all transactions ti , t j ∈ trans(s) (i �= j ) we have:

if ti reads from t j in s and ci ∈ s, then c j <s ci .

2. For all transactions ti , t j ∈ trans(s) (i �= j ) we additionally have: if there

is a write/write conflict of the form wi (x) < w j (x) in s, then ai < w j (x)
or ci < c j if t j commits, and a j < ai if ti aborts.

Let LRC denote the class of all log-recoverable schedules.

In essence, the definition of LRC is about the correct placement of ter-
mination operations in such a way that an isolated undoing of transactions in
conflict can be guaranteed. We illustrate the basic effect on two prototypical
schedules next. Let us first look at

s = w1(x)r2(x)

Here, the first part of the definition of class LRC applies, and as Table 11.1
shows, the cases that are not log recoverable are also not in PRED.

Next, we look at schedule

s = w1(x)w2(x)

to which the second part of the definition of class LRC applies. Interestingly,
the unacceptable termination possibilities are again exactly those that are not
in PRED, as shown in Table 11.2.

The following theorem shows that the above observations are not just a
coincidence:



11.4 Sufficient Syntactic Conditions 399

Table 11.1 Distinguishing wr cases for
membership in PRED.

Case History Property

1 w1(x)r2(x)a1a2 ∈ PRED
2 w1(x)r2(x)a1c2 �∈ PRED
3 w1(x)r2(x)c2c1 �∈ PRED
4 w1(x)r2(x)c2a1 �∈ PRED
5 w1(x)r2(x)a2a1 ∈ PRED
6 w1(x)r2(x)a2c1 ∈ PRED
7 w1(x)r2(x)c1c2 ∈ PRED
8 w1(x)r2(x)c1a2 ∈ PRED

Table 11.2 Distinguishing ww cases for
membership in PRED.

Case History Property

1 w1(x)w2(x)a1a2 �∈ PRED
2 w1(x)w2(x)a1c2 �∈ PRED
3 w1(x)w2(x)c2c1 �∈ PRED
4 w1(x)w2(x)c2a1 �∈ PRED
5 w1(x)w2(x)a2a1 ∈ PRED
6 w1(x)w2(x)a2c1 ∈ PRED
7 w1(x)w2(x)c1c2 ∈ PRED
8 w1(x)w2(x)c1a2 ∈ PRED

THEOREM 11.5

A schedule s is prefix reducible iff it is log recoverable and (its committed Characterization
of class PREDprojection is) conflict serializable, that is, PRED = LRC ∩ CSR.

To prove this theorem we need the following lemma:

LEMMA 11.3

If s ∈ LRC, then all operations of uncommitted transactions can be elimi-

nated from exp(s) using rules CR, UR, NR, and OR.

Proof

The claim is trivially satisfied for read operations, since read operations of

uncommitted transactions can always be dropped from exp(s) for any s.
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Therefore, we only need to prove the lemma for write operations of un-

committed transactions in s. Let transaction ti be uncommitted in s such

that wi (x) ∈ op(s). Assume that n operations are performed on x and pre-

ceding w−1
i (x) in exp(s). We will show by induction on n that wi (x) can

be eliminated from some modification of exp(s).

First observe that for case n = 0, a direct application of rule UR eliminates

wi (x) from exp(s). Next, if wi (x) and w j (x) are such that wi (x) <s w j (x)
and ai �<s w j (x), we will say that wi (x) and w j (x) are in active conflict.

Observe that if wi (x) and w j (x) are not in active conflict, but wi (x) <s

w j (x), then in exp(s) we have w−1
i (x) < w j (x).

Now for the induction step, let n > 0, and assume the lemma holds for all

k < n. Assume that o j (x) is the last operation with respect to the ordering

in exp(s) among the n operations satisfying wi (x) < o j (x) < w−1
i (x) in

exp(s). If i = j , then o j (x) = ri (x), since each transaction contains at most

one write operation per data object. But then ri (x) can be dropped from

exp(s), leaving us with n − 1 operations between wi (x) and its inverse, and

by the induction hypothesis we conclude that wi (x) can be eliminated from

exp(s). If i �= j , we consider three cases:

1. o j = r j : If transaction t j is committed in s, then s �∈ LRC, a contradic-

tion to our general assumption. If t j is not committed, then r j can be

eliminated from exp(s) using rule NR, and by the induction hypothesis

our claim holds.

2. o j = w j : If wi (x) and w j (x) are in active conflict, transaction t j cannot

be committed in s, since otherwise s would not be in LRC. Thus, t j is

either active or aborted in s, and in both cases exp(s) must have wi (x) <

w j (x) < w−1
j (x) < w−1

i (x). Thus, w j (x) is not the last operation on x
with respect to the ordering in exp(s). Now if wi (x) and w j (x) are not in

active conflict, then in exp(s) we have wi (x) < w−1
i (x) < w j (x), which

contradicts our assumption.

3. o j = w−1
j : If wi (x) and w j (x) are in active conflict in s, we have w−1

j (x) <

w−1
i (x) in exp(s), and hence wi (x) < w j (x). Operation w j (x) together

with its inverse w−1
j (x) can be eliminated from exp(s) using the inductive

assumption, as can be operation wi (x). If wi (x) and w j (x) are not in

active conflict, i.e., ti aborts before operation w j (x) in s, then we have

w−1
i (x) < w j (x) in exp(s). This again contradicts our assumption that

w−1
j (x) is the last operation on x before w−1

i (x).

Proof of Theorem 11.5

“⊇:” Let s ∈ LRC ∩ CSR, and assume that s �∈ PRED. Then there exists a

prefix s ′ of s that is not reducible. From the definition of LRC it follows that
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s ′ is also in LRC; since membership in CSR is prefix closed, s ′ is also in CSR. By

Lemma 11.3, all operations of uncommitted transactions can be eliminated

from exp(s ′); call the result of this elimination s ′′. Thus s ′′ contains the

committed transactions of s ′ only. Since s ′ ∈ CSR, s ′′ can be transformed

into a serial history by a finite number of applications of commutativity rule

CR. Thus, s ′ is reducible, a contradiction. Consequently, our assumption

was false, and s ∈ PRED.

“⊆:” Conversely, let s ∈ PRED, and assume that s �∈LRC∩CSR. If s �∈CSR,

s cannot be in PRED by definition, so it suffices to assume that s ∈CSR–LRC.

Suppose s contains a conflict of the form wi (x)w j (x). Since s �∈LRC, either

(a) t j commits and either ti does not commit or commits after t j , or

(b) ti aborts and either t j does not abort or aborts after ti .

Consider (a): If t j commits and ti does not commit, then we have wi (x) <s

w j (x) <s c j . Therefore, in exp(s) we have wi (x) < w j (x) < w−1
i (x), which

is not reducible, a contradiction. If both t j and ti commit and c j <s ci , then

the prefix of s containing c j but not ci is not reducible, by the same reason

as in the previous case, which again yields a contradiction.

Next consider (b): Assume that ti aborts and t j does not abort. Since ti and

t j are in active conflict, we have that wi (x) <s w j (x) <s ai . If t j commits,

it follows that wi (x) < w j (x) < w−1
i (x) in exp(s), which is not reducible.

If t j does not terminate in s, we find wi (x) < w j (x) < w−1
i (x) < w−1

j (x)
in exp(s), which is also not reducible. So we are again faced with a con-

tradiction. Finally, if both ti and t j abort such that ai <s a j , then the prefix

of s containing ai but not a j is not reducible by the same reason as in the

previous case, which again yields a contradiction to s being prefix reducible.

Similarly it can be shown that s must also be recoverable; in particular, note

that a prefix of the form wi (x) <s r j (x) <s c j is not prefix reducible. This

concludes the proof of Theorem 11.5.

The important point about Theorem 11.5 lies in the fact that there is now
a syntactically testable condition available that, together with CSR, can charac-
terize all of PRED. In particular, this condition places two rules on termination
actions, which, as will be shown below, can easily be incorporated into schedul-
ing protocols. Thus, the characterization of PRED provided by Theorem 11.5
is indeed a constructive one.

Figure 11.3 gives a more complete picture of the landscape of correctness
criteria that refer to expanded schedules. Clearly, the “uniformity” exhibited
by prefix reducibility is desirable, as a scheduler no longer needs to observe two
distinct properties during operation; instead, it can now be sure that its output
is correct as long as a single property is guaranteed. Note that Figure 11.3 also
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CSR      RC

RED

XCSR

PRED = LRC      CSR

CSR      ST

RG

Figure 11.3 Relationship between reducible schedules and strict ones.

mentions the relationship between rigorousness and membership in XCSR
(see also Exercise 11.6).

11.5 Page Model Protocols for Schedules
with Transaction Aborts

In this section we present extensions of traditional concurrency control pro-
tocols we have examined in Chapter 4, suited to recognize schedules in the
classes we have introduced in this chapter. We mainly concentrate on three of
them, ST, RG, and PRED, as these have turned out to be most desirable.

11.5.1 Extending Two-Phase Locking for Strictness
and Rigorousness

Recall the 2PL protocol from Chapter 4—a simple, yet effective protocol for
generating histories in CSR. In Section 4.3.4., we briefly mentioned several
variants of the basic 2PL protocol, among them strict 2PL (S2PL), which holds
write locks of a transaction until that transaction terminates, and strong 2PL
(SS2PL), which holds all locks of a transaction until that transaction terminates.
Moreover, we have already shown that

Gen(SS2PL) ⊂ Gen(S2PL) ⊂ Gen(2PL), and

Gen(SS2PL) ⊂ COCSR.
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Earlier in this chapter we additionally found out that

RG ⊂ COCSR.

We next complete this picture with the following result:

SS2PL
produces
exactly RG

THEOREM 11.6

Strong two-phase locking (SS2PL) generates exactly the class of rigorous

schedules, i.e., Gen(SS2PL) = RG.

The proof is left as an exercise (see Exercise 11.7).
If we relax SS2PL to S2PL, we arrive at the following result (which can

serve as a justification for the name “strict 2PL”):

THEOREM 11.7

Strict two-phase locking (S2PL) generates only schedules that are both

CSR and strict, i.e., Gen(S2PL) ⊆ CSR ∩ ST.

Proof

Consider a schedule s produced by an S2PL scheduler. Then for wi (x) <s

o j (x), i �= j , o ∈ {r, w} we first find

1. wli (x) < wi (x) < wui (x), and

2. oli (x) < o j (x) < oui (x)

due to the fact that an S2PL scheduler is in particular a 2PL scheduler.

Since wli (x) and oli (x) conflict, it follows that either (a) wui (x) < ol j (x),
or (b) ou j (x) < wli (x). However, (b) together with (1) or (2) leads to a

contradiction (o j (x) < wi (x)). Hence (a) applies. Now if the scheduler keeps

write locks until transaction termination, it follows that either ai < wui (x)
or ci < wui (x), which means that either ai < o j (x) or ci < o j (x). The claim

of the theorem follows.

11.5.2 Extending Serialization Graph Testing
for Log Recoverability

We next look at concurrency control protocols, or extensions thereof, capable
of generating schedules in class PRED. The general basis of these extensions
is the characterization seen in Theorem 11.5, which states that PRED equals
the intersection of CSR and LRC, the class of all log-recoverable schedules.
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We study an extension of the SGT protocol first and then briefly look at other
protocols for which the extensions are similar.

The basic idea is to add sufficient bookkeeping to recognize essential or-Basic idea:
deferred

commits and
cascading

aborts

derings of commit and abort events that need to be enforced. The enforcement
itself is based on deferring commits and enforcing cascading aborts whenever
necessary. In essence, a write/read or write/write conflict from transaction ti

to t j creates a commit ordering dependency, so that t j must commit only after
ti . If t j requests its commit before ti is committed, t j ’s commit request must
wait. Conversely, if ti aborts (in which case t j must not yet be committed), it
requires aborting t j as well, and that abort must be performed first.

To develop the details of this approach, consider a schedule s. We useAnnotated
conflict graph a refinement of the ordinary conflict graph G(s) that (1) considers conflicts

between any two transactions, not only committed ones, and in which (2) the
edges are annotated with the respective type of conflict (rw, wr , or ww). Let
us call this refinement the fully annotated conflict graph. What we are aiming
at is a protocol that, according to the definition of LRC, produces schedules in
RC (i.e., watches wr conflicts) and in addition takes appropriate care of ww
conflicts. So what we actually want to look at is a partially annotated conflict
graph that is obtained from the fully annotated one by dropping all edges that
do not correspond to wr or ww edges (and also dropping all nodes that do not
have any incoming or outgoing edges).

We can now restate the LRC property as follows: A schedule s is in classLRC revisited
LRC if for every edge of the form (ti , t j ) in the partially annotated conflict
graph the following holds: if ti commits, then it commits before t j does so, and
if ti aborts, then either ti and t j abort jointly in a group abort or ti aborts after
t j aborts. As a schedule in PRED must be in LRC and CSR, we additionally
need that, for a given schedule s, the ordinary conflict graph of the committed
projection of s is acyclic.

We next define two sets of transactions related to an arbitrary transaction
taken from a partially annotated conflict graph G(s) = (V, E):

1. For t j ∈ V, let precede(t j ) := {ti ∈ V | (ti , t j ) ∈ E}; in other words,
precede(t j ) contains the immediate predecessors of transaction t j .

2. For t j ∈ V, let follow(t j ) := {tk ∈ V | tk can be reached from t j }; thus,
follow(t j ) contains the transactions that are direct or transitive succes-
sors of t j .

With these preparations, we are ready to outline a (pessimistic) serialization
graph tester as follows:

1. When an operation oi that is neither an Abort nor a Commit operation
arrives, the scheduler creates a node for ti in the serialization graph, if
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it is not already there; in addition, the scheduler adds all relevant ww,
wr , and rw edges. If a cycle occurs, transaction ti is aborted; that is, ai

is executed.

2. When a commit ci arrives, the scheduler checks whether precede(ti ) =
∅. If this is the case, ci is executed; afterward all Commit operations of all
successors of ti that are waiting to commit are scheduled for execution.
Then ti is removed from all immediate predecessor lists as well as from
all successor lists. If ti is a source in the serialization graph, it can also
be removed from the graph. If precede(ti ) �= ∅, ti is placed in a queue
of transactions waiting to commit.

3. When an abort ai arrives, the scheduler checks whether follow(ti ) = ∅;
if so, ai can be executed. Otherwise, a j is submitted for execution for
every transaction t j ∈ follow(ti ); thereafter, all aborted transactions are
removed from a queue of transactions waiting to commit, from the seri-
alization graph, and from all immediate predecessor and successor lists.

Let us call the above protocol extended SGT or ESGT for short. Note that Extended SGT
it is possible that an Abort operation is issued when the transaction in question
has already been aborted as a result of cascading aborts. It is also assumed in
this protocol that the scheduler has some mechanism for ensuring that no two
conflicting operations are processed at the same time.

The correctness of ESGT is established by the following theorem:

THEOREM 11.8

Gen(ESGT) ⊆ PRED

Proof

We use the characterization of membership in class PRED given in Theo-

rem 11.5: by rule 1 of the ESGT protocol presented above, each schedule

generated by ESGT is conflict serializable. With respect to the LRC proper-

ties, we observe the following: in case of a direct conflict of the form

wi (x)r j (x)

ci < c j is ensured by rule 2. This is because t j cannot commit until

precede(t j ) is empty. By definition, ti ∈ precede(t j ), so ti must have been

committed or aborted (in the latter case, t j will also be aborted). Thus, ESGT

produces schedules in RC.

In case of a direct conflict of the form

wi (x)w j (x)

we have that
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(a) either ci < c j (by rule 2, similar to the previous case),

(b) or ci < a j (once ti commits, it does not impose any further restric-

tions on t j ),

(c) or a j < ci (as rule 3 does not depend on the precede set),

(d) or a j < ai (an abort of t j does not affect ti at all, so ti can still be

committed or aborted once t j aborts).

No other combination is possible, since rule 2 does not allow t j to commit

until ti terminates, and rule 3 forces the abort of t j before ti can be aborted.

EXAMPLE 11.15

Suppose that w1(x)w2(x)w2(y) has already been executed, and that w1(y)
arrives at the scheduler. Clearly, the scheduler finds a cycle in the conflict

graph, so w1(y) is rejected, and by rule 1 a1 is executed instead. More-

over, the scheduler finds follow(t1) = {t1, t2}, so by rule 3 a2 is executed as

well.

EXAMPLE 11.16

Suppose that w1(x)r2(x) has been executed, and that c2 is submitted. The

scheduler now finds precede(t2) = {t1}. Therefore, t2 is put on the queue

of transactions waiting to be committed (rule 2). After that, c1 is submitted

for execution. Since precede(t1) = ∅, c1 is executed right away. Thereafter,

t2 is removed from the waiting queue, and c2 is submitted for execution.

The above protocol is “pessimistic” in that a cycle test on the conflict
graph is executed frequently, that is, whenever a new edge has been added. An
optimistic variant of the protocol would perform such a test less frequently,
for example, only upon processing a transaction’s commit request; this can
be accomplished at the expense that processing a commit gets slightly more
complex.

11.5.3 Extending Other Protocols for Log Recoverability

A protocol along the lines of ESGT presented in the previous subsection can
be implemented to recognize all LRC (and hence all PRED) schedules. How-
ever, every SGT-style protocol incurs significant overhead related to the proper
maintenance of the conflict graph. So an alternative would be to extend the
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two-phase locking (2PL) protocol for PRED, again on the basis of its charac-
terization through LRC.

In order to guarantee that the basic 2PL protocol generates schedules in Extended 2PL
(E2PL)class LRC, the protocol must be extended with additional rules that constrain

the ordering of commits and aborts of all transactions. To this end, we again
assume the maintenance of sets precede(ti ) and follow(ti ) for each transaction ti

as for the ESGT protocol. The extension of 2PL is then obtained by combining
standard 2PL with rules 2 and 3 of the ESGT protocol.

It can be shown that not every LRC schedule can be generated in this
way. For example, history w1(x)w2(x)w3(y)w1(y)c3c1c2 is in LRC, but not in
Gen(E2PL), since t1 would have to release the write lock on x before acquiring
the write lock on y.

Another protocol that can be considered for extension is the timestamp Extended TO
(ETO)ordering (TO) protocol. Once again, the idea is to combine the standard TO

rule with rules 2 and 3 from the ESGT protocol presented above, and again
the result is such that some schedules from LRC are missed. For example,
w2(x)w1(x)c2c1 is in LRC, but not in Gen(ETO), if we assume that t1 has a
smaller timestamp than t2.

11.6 Correctness Criteria for the Object Model

In this section we extend our considerations regarding transaction recovery
by looking at correctness criteria for the object model of transactions. We no
longer do this in the general way that we have examined correctness for the
page model, but restrict our attention to practically relevant cases.

Essentially and as before, there are two types of object schedules to look
at: flat ones and general ones. We will look at flat ones first and indicate that the
theory developed earlier in this chapter mostly carries over to this model. In par-
ticular, the notions of expanded serializability and prefix reducibility can readily
be adapted to this model. Thus, we can again establish rules (such as an “undo
rule”) for testing whether operations and their inverses can safely be eliminated
from a given history or schedule, and we can design scheduling protocols based
on appropriate characterizations. For general object schedules, it may be possi-
ble to apply such rules in a level-by-level fashion, but we can also refer back to
the syntactic conditions we have established earlier for page-level schedules.

11.6.1 Aborts in Flat Object Schedules

To generalize expanded serializability as well as prefix reducibility to flat ob-

Inverse
operations
(compensating
steps)

ject schedules, all we need to do is to make sure that undo rule UR can be
applied to semantically richer operations as well. Undoing an operation such
as Withdraw simply amounts to invoking an inverse operation; such inverses
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have also been coined compensating steps in the literature. The inverse of an
operation depends on the type of the original operation, its input parameters,
and often its output parameters as well. Thus, inverses are derived dynamically
when the “forward” operation to which an inverse refers executes, as opposed
to a static definition of operation pairs. For example, the inverse of a successful
withdrawal consists of depositing the same amount of money back into the
account, and the inverse of an unsuccessful withdrawal (i.e., a Withdraw op-
eration with return value “no”) is empty and can be viewed as a special “null
operation” without any effects. It is important to note that inverses refer to
the same abstract view that underlies the commutativity considerations of the
corresponding forward operations. For example, if an unsuccessful withdrawal
leaves an entry in an audit trail, depositing the money back could be viewed as
an appropriate inverse, even if it does not remove that entry. It is for this reason
that some people prefer the term compensating step, as we do not necessarily
need “exact inverses” that undo each and every detail of the forward operations’
effects.

DEFINITION 11.10 Inverse Operation

An operation f ′(x′
1, . . . , x′

m ′ , ↑ y ′
1, . . . , ↑ y ′

k ′) with input parameters x′
1

Inverse
operation

through x′
m ′ and output parameters y ′

1 through y ′
k′ is the inverse opera-

tion of operation f (x1, . . . , xm , ↑ y1, . . . , ↑ yk) if for all possible sequences

α and ω of operations on a given interface (e.g., an object type), the return

parameters in the concatenated sequence

α f (. . .) f ′(. . .)ω

are identical to those in the sequence αω.

We will also write f −1(. . .) rather than f ′(. . .) in this case and will omit the

parameters whenever the context is clear.

Once a method for deriving the inverse operation from the input and
output parameters of an executed forward operation is defined, all our prior
considerations on expanded schedules and prefix reducibility carry over in a
straightforward way.

Prefix
reducibility

EXAMPLE 11.17

Consider the following schedule of two funds transfer transactions:

s = withdraw1(a)withdraw2(b)deposit2(c)deposit1(c)c1a2
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The expanded schedule that makes the undo steps for the abort of trans-

action t2 explicit looks as follows:

exp(s) = withdraw1(a)withdraw2(b)deposit2(c)deposit1(c)
c1reclaim2(c)deposit2(b)c2

where the Reclaim operation is an unconditional withdrawal without over-

draft protection, thus commuting with deposits. This expanded schedule

can be reduced to a serial order of t1 and the empty transaction t2, or

equivalently to t1 alone. As a consequence, s is reducible in a sense gener-

alized to flat object schedules.

The complete transaction trees for the expansion of Example 11.17, includ-
ing the underlying page-level actions for the isolated object-level operations,
are depicted in Figure 11.4. Note that the high-level inverse operations do
not have page-level children in the expansion. In the actual implementation,
the inverse operations will, of course, again spawn lower-level page operations,
but these are created dynamically during their execution and are not precisely
known in advance. For example, the reclaim2(c) operation issued on behalf
of t2’s abort may actually access a page q different from the page p that its
corresponding forward operation accessed. This may occur if the record that
represents the account object c has been moved to a different page by a low-
level storage reorganization in between the forward and the inverse operation.
(See Chapter 1 for a brief outline of such storage management issues.)

t1

Withdraw11(a)

r111(p) w112(p)

t2

Withdraw21(b)

r211(p) w212(p)

Deposit22(c)

r221(p) w222(p)

Deposit12(c) c1 a2

r121(p) w122(p)

t1

Withdraw11(a)

r111(p) w112(p)

t2

Withdraw21(b)

r211(p) w212(p)

Deposit22(c)

r221(p) w222(p)

Deposit12(c)

r121(p) w122(p)

Reclaim23(c) Deposit24(b)

Expansion

Figure 11.4 Example of an expanded schedule for the flat object model.
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t1

Withdraw11(a)

r111(p) w112(p)

t2

Withdraw21(b)

r211(p) w212(p)

Deposit22(c)

r221(p) w222(p)

Deposit12(c) c1 a2

r121(p) w122(p)

t1

Withdraw11(a)

r111(p) w112(p)

t2

Withdraw21(b)

r211(p) w212(p)

Deposit22(c)

r221(p) w222(p)

Deposit12(c)

r121(p) w122(p) w-1
23(p) w-1

24(p)

Incorrect “expansion”

Figure 11.5 Incorrect “expansion” of the example of Figure 11.4.

Figure 11.5 illustrates why, in Example 11.17, the abort of t2 cannot simplyPage-level undo
is incorrect for

object model
transactions

be implemented by issuing inverse page-level writes to undo t2’s effects. The
resulting incorrectly “expanded” schedule is not tree reducible, and there is no
way of commuting the page-level writes such that the inverse writes of t2 and
its forward write steps become adjacent operations.

As the previous example indicates, object-level operations and their in-
verses or their compensations need to be considered at the same level of abstrac-
tion, and compensation cannot simply be achieved by looking at the “technical”
level of page writes.

EXAMPLE 11.18

For another example, consider

s = insert1(x)delete2(x)insert3(y)a1a2a3

We can expand s as before to obtain the following

exp(s) = insert1(x)delete2(x)insert3(y)insert−1
1 (x)c1

delete
−1
2 (x)c2insert−1

3 (y)c3

Since delete2(x) and insert−1
1 (x) do not commute, we cannot eliminate

t1 from exp(s), so s is not reducible. Note that s is also not expanded

serializable, as there is a conflict from t1 to t2 on x as well as one from t2 to

t1, also on x.
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Table 11.3 Ordinary commutativity
relation.

r j (x) w j (x)

ri (x) + –
wi (x) – –

Thus, we may find flat object schedules reducible or nonreducible accord-
ing to the same rules as before, and the same applies to the notion of conflict
serializability when that is based on commutativity or noncommutativity of
operations. Thus, scheduling protocols can again be designed as generalizations
of the protocols we have previously introduced, such as 2PL and its variants;
especially the strict 2PL (S2PL) protocol turns out to be relevant in this context.

Locking protocols generally base their notion of conflicting locks on the
corresponding notion of conflicting operations. For example, in the page model
with its read and write operations, we have seen earlier that the ordinary com-
mutativity relation is that shown in Table 11.3, where + indicates commuta-
tivity and − indicates the contrary.

We can extend Table 11.3 for inverse operations in a straightforward way,
as in Table 11.4. Here it is assumed that an inverse read is actually an all-
commutative “null operation” and can thus be omitted.

The latter commutativity relation has an interesting property: if two op-
erations p and q commute, then all other combinations of these operations or
their inverses—that is, p with q−1, p−1 with q, and p−1 with q−1—commute as
well, provided that none of these operations is a null operation (which trivially
commutes with every other operation). Moreover, if p and q do not commute,
the same holds for all their other combinations. A commutativity relation ex-
hibiting this property is called perfect. In the general setting of object-level
schedules, we formally have the following definition:

DEFINITION 11.11 Perfect Commutativity

Given a set of operations for an object type, such that for each operation

Perfect
commutativity

f (x, p1, . . . , pm) an appropriate inverse operation f −1(x, p ′
1, . . . , p ′

m ′) is

included. A commutativity table for these operations is called perfect if the

following holds:

f (x, p1, . . . , pm) and g (x, q1, . . . , qn) commute

⇔ f (x, p1, . . . , pm) and g−1(x, q ′
1, . . . , q ′

n′) commute

⇔ f −1(x, p ′
1, . . . , p ′

m ′) and g (x, q1, . . . , qn) commute

⇔ f −1(x, p ′
1, . . . , p ′

m ′) and g−1(x, q ′
1, . . . , q ′

n ′) commute
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Table 11.4 Commutativity relation including inverse writes.

r j (x) w j (x) w−1
j (x)

ri (x) + – –
wi (x) – – –

w−1
i (x) – – –

For object types with perfect commutativity, the S2PL protocol is directlyDeadlock
freedom
during

rollback

applicable. A particularly nice property of perfect commutativity becomes ob-
vious in the context of deadlock resolution. When we choose a transaction as
a deadlock victim and initiate its rollback by means of appropriate inverse op-
erations, these inverse operations could, in principle, request additional locks.
Consequently, a transaction that is being rolled back could again become in-
volved in a deadlock. It is not that this situation could not be handled, but
to ensure freedom of starvation for deadlock victims, it is most desirable to
avoid acquiring additional locks during rollback. With perfect commutativity,
such additional locks are unnecessary, since the locks that have been acquired
on behalf of the transaction’s regular “forward” operations are sufficient for the
inverse operations as well. Of course, this consideration does not hold for lower-
level locks that are needed within a subtransaction (e.g., short-term page locks
for the duration of a high-level inverse operation). Such short-term locks will
still have to be acquired during rollback, but usually do not present a problem
regarding starvation.

We next show that for semantically rich operations, perfect commutativity
may not always be achievable:

EXAMPLE 11.19

Consider the following operations on an object of type Set:

1. insert(x) inserts element x into a given set and returns 1 if x was actually

inserted, and 0 otherwise (x was already contained in the set),

2. delete(x) deletes element x from a given set, and returns 1 if x was

actually deleted, and 0 otherwise (x was not present in the set),

3. test(x) returns 1 if x is a member of a given set, and 0 otherwise.

Let inverses for these “forward” operations be defined as follows:

1. insert−1(x), where x is either the value that was inserted by the corre-

sponding forward operation or 0 if the value was present already, deletes

x from the given set if x �= 0, and does nothing otherwise; it always re-

turns 0.
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2. delete
−1

(x), where x is either the value that was deleted by the corre-

sponding forward operation or 0 if the value was not present, inserts x
if x �= 0, and does nothing otherwise; it also returns 0.

3. test−1(x) is a null operation that will not be further considered.

The commutativity relation for these operations is shown in the following

table:

Insert(x) Delete(x) Test(x) Insert−1(x) Delete−1(x)

Insert(x) – – – – –
Delete(x) – – – – –
Test(x) – – + – –

Insert−1(x) – – – + –

Delete−1(x) – – – – +

Notice that, for example, insert(x) does not commute with itself due to

the different return values resulting from an attempt to insert the same

element twice. On the other hand, insert−1(x) does commute with itself,

and similar comments apply to delete. Thus, the commutativity table shown

is not perfect.

From a lock-based scheduler’s point of view, for non-perfect commuta-
tivity an inverse operation may need an additional, stronger lock that has not
already been obtained with the lock for its corresponding forward operation.
This problem can be rectified by forcing the lock manager to preclaim the
necessary stronger lock already with the forward operation, effectively using a
somewhat coarser version of the lock compatibility table derived as follows:

DEFINITION 11.12 Perfect Closure

The perfect closure of a commutativity table for the operations of a given

Perfect closure
of a lock
compatibility
table

object type is the largest perfect subset of the original commutativity table’s

commutative operation pairs.

Analogously, the perfect closure of the corresponding lock compatibility

table contains the smallest number of − entries such that all − entries

of the original lock compatibility table are included and for each operation

pair f (. . .) and g (. . .), either all four combinations among f (. . .), f −1(. . .),
g (. . .), and g−1(. . .) have + entries or all four have − entries.

Thus, considering the perfect closure of a commutativity table that is not
perfect is a convenient workaround for a scheduler. It does not need additional
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Table 11.5 Perfect closure of commutativity relation for set operations.

Insert(x) Delete(x) Test(x) Insert−1(x) Delete−1(x)

Insert(x) – – – – –
Delete(x) – – – – –
Test(x) – – + – –

Insert−1(x) – – – – –

Delete−1(x) – – – – –

locks for inverse operations, as these are already covered by the locks acquired
for the corresponding forward operations, and the potential loss in concurrency
compared to using the original, non-perfect commutativity table is marginal
in practice. Also, as mentioned earlier, this way there is no danger that rolling
back a transaction as a deadlock victim can again lead to deadlocks.

For the operations of Example 11.19, we obtain the perfect closure shown
in Table 11.5. Although it may appear that by having replaced two + entries
with − entries, resorting to the perfect closure could result in significantly
more lock conflicts, we should note that this is rarely the case, as only inverse
operations are affected and transaction aborts should be infrequent anyway.

Another restriction on commutativity relations that is closely related to
the notion of perfectness is the following:

DEFINITION 11.13 Normal Commutativity Table

A commutativity table for a given object type is normal if for all operations

Normal
commutativity

f (. . .) and g (. . .) the following holds: if f (. . .) does not commute with

g (. . .), then f −1(. . .) does not commute with g (. . .) and f (. . .) does not

commute with g−1(. . .) (provided that these inverse operations are not null

operations, in which case commutativity is self-guaranteed).

Obviously, every perfect commutativity table is also normal, but in general
the converse does not hold. The property is of theoretical interest because it can
be shown (see the literature cited in the Bibliographic Notes) that classes PRED
and LRC ∩ CSR coincide for normal commutativity tables, which generalizes
Theorem 11.5 to the flat object model. The same holds for perfect commu-
tativity; yet normal commutativity is a weaker prerequisite for the equality of
the two classes PRED and LRC ∩ CSR.

At this point, we have all the ingredients to apply prefix reducibility to
flat object schedules, but we know well that this is not a constructive method
to build practical schedulers. So, in perfect analogy to our considerations in
the page model, we should now look out for syntactic, easily implementable
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conditions that imply prefix reducibility. In doing this, we are willing to sacrifice
generality by assuming that commutativity tables are perfect. From the above
mentioned generalization of Theorem 11.5 we know that conflict serializability
in combination with log recoverability would be such a syntactic condition, and
that this one would even be sufficient and necessary (under the assumptions
about commutativity tables). However, notwithstanding our sketch of LRC-
based extended concurrency control algorithms for the page model in Section
11.5, practical systems often require simpler methods with very low overhead.
For this reason, the most intriguing syntactic criterion toward such practically
viable protocols is the notion of strictness. In the flat object model, strictness
needs to be redefined as follows:

DEFINITION 11.14 Strictness

A flat object model schedule s (with a perfect commutativity table) is strict if

Strictness

for all L1 actions pi (. . .) and q j (. . .) of transactions ti and t j , i �= j , such that

pi is an update operation (i.e., not a read-only operation) and pi (. . .) and

q j (. . .) do not commute, the ordering pi <s q j implies that either ci <s q j

or ai <s q j .

As in the page model, the class of strict schedules is denoted as ST.

This notion of strictness is the intuitive analog of the notion of strictness
we have introduced earlier in this chapter for the page model, as there the
operation that came first was a write, and strictness meant that no data item
is read or overwritten until the last writer has terminated. At a higher level,
a writer is more generally an update operation that yields a write operation at
the page level, so we essentially require the same condition here.

Now recall Theorem 11.4, which for the page model showed that prefix
reducibility contains the intersection of CSR and ST. It does not come as a
surprise that a corresponding result can be proved for flat object schedules and
the generalized notion of strictness just introduced:

THEOREM 11.9

A flat object schedule s (with a perfect commutativity table) that is conflict

serializable and strict is also prefix reducible.

This theorem implies that the relationships between the various classes of
schedules in the flat object model are essentially those that were shown earlier
in Figure 11.3 for the page model. For example, an obvious corollary from the
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preceding theorem is that rigorousness implies prefix reducibility as in the page
model. In a similar way, other results carry over to the model in question here.

11.6.2 Complete and Partial Aborts in General Object
Model Schedules

In the general object model, a complication is that not only entire transactions
may abort and have their inverse operations interleaved with other transactions,
but also subtransactions may abort without rolling back the entire transaction.
This option, sometimes called a partial rollback (as far as the transaction root is
concerned), is available for every nonleaf operation in a transaction tree. From
a performance viewpoint, partial rollbacks are an attractive option, as they can
be used, for example, to resolve a deadlock between two subtransactions and
later automatically restart the deadlock victim without resorting to an abort of
the entire transaction. As far as our formal model and correctness reasoning is
concerned, the first preparation to cope with this additional complication of
complete versus partial aborts is to attach a termination operation, Commit or
Abort, to each subtransaction as follows:

DEFINITION 11.15 Terminated Subtransactions

An object model history has terminated subtransactions if each nonleaf

node pω has either a child aων or a child cων that follows all other children

of pω (assuming that there are ν − 1 such children). So each inner node oper-

ation has a termination operation, Abort or Commit, for the corresponding

subtransaction.

An object model schedule has terminated subtransactions if it is a prefix of

an object model history with terminated subtransactions. (See Chapter 6

for the proper notion of prefix in the context of transaction forests.)

Thus, an object model history with terminated subtransactions has termi-
nation operations at all levels (except the highest). In the following we consider
only histories and schedules that have terminated subtransactions.

An example of an object model schedule in which both a subtransaction
and an entire transaction are aborted is shown in Figure 11.6.

Now the next step will be to define the expansion of a history or schedule
in the general object model. Basically, the approach is as before: aborts are
replaced by inverse operations and a commit, while active transactions get arti-
ficially terminated. However, for various reasons the situation is now far more
complex: First of all, Abort operations can occur at any level, and any Li (i > 0)
operation can already have been undone at the next lower level, so that it does
not have any effect at all (and hence does not even need a compensation in
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t1

Withdraw(a)

r(p)

t2

Withdraw(b)

r(q) w(p) c  w(q) a

Withdraw(b)

r(q) w(q) c

Deposit(c)

r(q) w(q) c

Deposit(c) c      a

r(q) w(q) c

Figure 11.6 Example of an object model schedule with both partial
and complete aborts.

response to an abort). Next, compensating operations at higher levels Li , i > 0
yield subtransactions at their lower levels, where the implementation—that is,
the sequence of operations that actually does the compensation—is generally
state dependent and hence can be determined dynamically at run time only.
The following definition reflects these complications.

DEFINITION 11.16 Expanded Object Model Schedule

Let s be an object model schedule with terminated subtransactions. The

Expanded
schedule with
partial aborts

expansion of s, denoted exp(s), is an object model history that is derived

from s in the following way:

1. All operations whose parent has a commit child are included in exp(s).

2. For each operation whose parent pω has an abort child aων , an inverse

operation for each of p’s ν − 1 forward operations is added, provided the

forward operations themselves have a commit child, the abort child of

p is removed, and a child cω(2ν−1) is added to p. The inverse operations

have the reverse order of the corresponding forward operations and

follow all forward operations; the Commit operation follows all other

children of p. All new children of p precede an operation q in exp(s) if

the abort child of p preceded q in s.

3. For each transaction in active(s), inverse operations and a final com-

mit child are added as children of the corresponding transaction root,

with their ordering defined analogously to the above case of an aborted

subtransaction.

With this generalized kind of expansion, the resulting schedules look as
if they were normal object model schedules. As a consequence, the natural
correctness criterion to be applied simply needs to adopt both notions of tree
reducibility and (prefix) reducibility simultaneously by allowing all the under-
lying transformation rules, as summarized in the following definition (which
we no longer state explicitly for prefixes of object model schedules):
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DEFINITION 11.17 Extended Tree Reducibility

An object model schedule s is called extended tree reducible if its expansion,

Extended tree
reducibility

(ETRED) exp(s), can be transformed into a serial order of s’s committed transaction

roots by applying the following transformation rules finitely many times:

1. the commutativity rule applied to adjacent leaves, i.e., two adjacent

leaves that are not in conflict can be commuted;

2. the tree pruning rule for isolated subtrees, i.e., if all Li operations of a

transaction are isolated, then its Li−1 operations can be eliminated;

3. the undo rule applied to adjacent leaves, i.e., two adjacent leaf opera-

tions p and p−1 that are inverses of each other can be replaced by a null

operation;

4. the null rule for read-only operations;

5. the ordering rule applied to unordered leaves.

Let ETRED denote the class of all extended tree-reducible object model

schedules.

Notice that extended tree reducibility extends tree reducibility as intro-
duced in Chapter 6 (see Definition 6.11) by the undo and null rules.

The expanded schedule that results from the schedule of Figure 11.6 is
given in Figure 11.7. The figure has inverse operations underlined to highlight
them. As before, reclaim is an unconditional Withdraw operation to compen-
sate the effect of a deposit. For simplicity, we have omitted all commit steps of
subtransactions and transactions in the figure, as the expansion has only com-
mits and no aborts anyway. It is rather straightforward to reduce the expanded
schedule to a serial order of t1 and t2. Removing empty subtransactions and
transactions further reduces the schedule to the committed transaction t1 alone.

Notice that the schedules we have been looking at so far are indeed layered
object model schedules as we have defined them in Chapter 6. Recall that in a
layered schedule all leaves other than commits or aborts have the same distance

t1

Withdraw(a)

r(p)

t2

Withdraw(b)

r(q) w(p) w(q) w(q)

Withdraw(b)

r(q) w(q)

Deposit(c)

r(q) w(q)

Deposit(c) Reclaim(c) Deposit(b)

r(q) w(q)

Figure 11.7 Expanded schedule for the example of Figure 11.6.
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from their roots, a condition that (a) makes a transaction tree a regular and
balanced structure and (b) allows levelwise testing of the tree for correctness.
Indeed, we have seen in Chapter 6 that a sufficient condition for a layered
object model schedule to be tree reducible is that it is conflict faithful and all
its level-to-level schedules are conflict serializable. Keeping this in mind, and
considering the results we have obtained earlier in this chapter, the following
generalization does not come as a surprise:

THEOREM 11.10

A layered object model schedule s (with perfect commutativity tables at all

levels) is extended tree reducible, i.e., in class ETRED, if all its level-to-level

schedules are conflict serializable and strict and s is conflict faithful.

Moreover, it turns out that conflict faithfulness—that is, the situation that a
pair of noncommutative operations at a higher level of a transaction tree must
have conflicts among their descendants at all lower levels of the tree—can
be replaced by requiring that the level-to-level schedules are order preserving
conflict serializable.

THEOREM 11.11

A layered object model schedule s (with perfect commutativity tables at

all levels) is in ETRED if all its level-to-level schedules are order preserving

conflict serializable and strict.

Intuitively, if a level-to-level schedule is both in OCSR and ST, we can ap-
ply the undo and commutativity rules to the respective layer as in a flat object
schedule, then prune the layer in question and proceed farther up. Repeating
this for every layer, we finally obtain extended tree reducibility. From a sched-
uler’s point of view, we thus need to make sure that a corresponding protocol
yields OCSR and ST level-to-level schedules only. We look at such a protocol,
again derived from the well-studied S2PL, in the next section.

11.7 Object Model Protocols for Schedules
with Transaction Aborts

With respect to concurrency control protocols for object model schedules
that exhibit complete as well as partial aborts, we again restrict ourselves to
layered schedules and mostly focus on the practically most important class of
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2PL protocols. Recall from Chapter 7 that layered 2PL is a reasonable way
to generate tree-reducible schedules, since it can make sure that level-to-level
schedules are OCSR; moreover, its strict variant (S2PL) assures that these level-
to-level schedules are strict. Together with the conditions we just saw at the
end of the previous subsection, we thus have

THEOREM 11.12

The layered S2PL protocol generates only schedules in ETRED.

Recall from Theorem 6.2 that if all level-to-level schedules derivable from
a given schedule s are OCSR, then s itself is tree reducible; morever, recall from
Chapter 7 that the layered 2PL protocol assures this prerequisite and hence
produces tree-reducible schedules only. Next, layered strict 2PL additionally
guarantees that every level-to-level schedule is in ST; this implies extended tree
reducibility because we can simply apply undo and commutativity rules to one
layer, exactly like on a flat object schedule, then prune that layer and proceed
farther up the transaction tree.

As a concrete scenario for applying the layered S2PL protocol to a two-level
schedule, consider the sample schedule from Figure 11.6 once more, in which
both a complete rollback (transaction abort) occurs at level L1 and a partial
one (subtransaction abort) occurs at level L0. At the page level, the schedule
shown could be executed by the protocol as given, since the subtransactions
spawned by operations withdraw1(a) and the first withdraw2(b) do not require
conflicting locks. Likewise, there is no lock conflict at the object level, for the
Deposit operations on c commute with each other, and deposit1(c) also com-
mutes with the inverse operation of deposit2(c), the unconditional reclaim2(c).
Note that the mode of the lock that t2 acquires for the Deposit operation must
implicitly cover the potentially necessary inverse operation as well (under strict
2PL with perfect commutativity table), but this does not cause a lock conflict
with the given operations.

We conclude this section by mentioning that other extensions to layered
concurrency control protocols are also feasible in this context, for example, ex-
tensions of optimistic protocols that assure properties of level-to-level sched-
ules like ST, RG, or LRC; however, locking remains the most important tech-
nique for practical applications.

11.8 Lessons Learned

In this chapter we have introduced and studied the theoretical foundations of
transaction recovery. As we have shown, there are essentially two approaches: a
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“syntactic” one that merely pays attention to a proper sequencing of Commit or
Abort operations, and a more “semantic” one that tries to make the actions that
have to be performed in response to an Abort operation as explicit as possible.
The latter leads to interesting classes of schedules, due to the fact that some
fall into the intersection of the classes of conflict-serializable and of recoverable
schedules, while CSR and RC are otherwise incomparable with respect to set
inclusion. Moreover, the class PRED of prefix-reducible schedules, which is
the most important one of the semantic categories, can be characterized in a
way that gives rise to fairly straightforward extensions of standard concurrency
control protocols. Thus, we have seen in this chapter that it is indeed possible
to obtain an appropriate conceptual framework for transaction recovery that
can be easily built into known protocols.

Besides the “uniform” criterion that is rendered possible through prefix
reducibility, additional beauty lies in the fact that PRED can also be adapted to
the object model. Indeed, the framework we have set up here for transactions
in the page model carries over to the object model of transactions. To this end,
the major issue is to properly define the “undo” operations for the object-level
operations considered, and to determine what properties the corresponding
commutativity relations have. As a result, this approach to transaction recovery
is also suitable for flat object schedules as well as for layered transaction systems.
The sufficient conditions known from the page model can be generalized, as
can protocols such as S2PL.

The combination of tree reducibility introduced in Chapter 6 with rules
that take care of undoing operations into the notion of extended tree reducibil-
ity (ETRED) shows that even in the object model, a modular approach to trans-
action recovery is possible that uses the individual criteria as its building blocks.
Moreover, the resulting combinations can be easily implemented, for example,
by the strict two-phase protocol, first adapted to object model schedules (as
done in Chapter 7) and implicitly geared for transaction recovery conditions.

Exercises

11.1 Let s1 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)a2w1(z)c1 and
s2 = w1(x)w1(y)r2(u)w2(x)r2(y)w2(y)w1(z)a1c2

Determine exp(s1) and exp(s2) as well as the corresponding reductions.

11.2 Which of the properties RC, ST, RG, PRED, and LRC are satisfied by
the following schedules:

s1 = r1(a)r2(a)w1(a)c1c2

s2 = r1(a)w1(a)r2(b)w2(b)w2(a)c2c1

s3 = r1(a)incr2(a)incr2(b)incr3(b)c3a2c1
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Some of the above properties cannot be applied to a schedule with
operations other than read and write, such as schedule s3 above. Try to
define generalizations of these properties to flat object schedules with
arbitrary operations.

11.3 For each of the following schedules, determine to which of the classes
RC, ACA, or ST it belongs:

s1 = w1(x)r2(y)r1(x)c1r2(x)w2(y)c2

s2 = w1(x)r2(y)r1(x)r2(x)c1w2(y)c2

s3 = w1(x)r2(y)r2(x)r1(x)c2w1(y)c1

11.4 Show that membership in each of the classes RC, ACA, ST, RG, and
PRED is a prefix commit closed property.

11.5 Consider COCSR, the class of all histories that are commit order pre-
serving conflict serializable, and show the following:

(a) COCSR ∩ RC �= ∅, COCSR �⊆ RC, RC �⊆ COCSR

(Thus, COCSR ∩ RC ⊂ COCSR and COCSR ∩ RC ⊂ RC.)

(b) COCSR ∩ ACA ⊂ ACA

(c) COCSR ∩ ACA ⊂ COCSR ∩ RC

(d) COCSR ∩ ST ⊂ ST

(e) COCSR ∩ ST ⊂ COCSR ∩ ACA

11.6 A schedule s is prefix expanded conflict serializable if each of its prefixes is
expanded conflict serializable. Let PXCSR denote the class of all prefix-
expanded conflict-serializable schedules. Show the following:

(a) PXCSR ⊂ XCSR

(b) PXCSR ⊂ PRED

(c) RG ⊂ PXCSR

(d) PXCSR = ST ∩ XCSR

(e) Based on results (a)–(d), complete Figure 11.3.

11.7 Prove Theorem 11.6 stating that Gen(SS2PL) = RG.

11.8 Consider a database consisting of positive integers with the following
operations defined on them:

incr(x): increments x if x > 0 and returns 1; otherwise does nothing
and returns 0.

incr−1(x, y): decrements x if y is the return value of the correspond-
ing forward operation and y �= 0; otherwise does nothing, always re-
turns 0.

reset(x): resets x to 1 and returns the old value of x.
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reset−1(x): sets x to value y, where y is the return value of the cor-
responding forward operation; always returns 0.

retrieve(x): returns the current value of x.

retrieve−1(x): is a null operation and returns an empty sequence.

decr(x): decrements x and returns 0.

decr
−1

(x): increments x and returns 0.

Determine the commutativity relation for these operations, and find
out whether it is perfect or normal. If one of the latter properties does
not hold, try to restrict the relation in such a way that this respective
property is achieved.

11.9 Prove Theorem 11.5 for an object model in which the relevant opera-
tions have a normal commutativity relation.

11.10 Consider an implementation of transaction recovery that makes use of
transaction-private workspaces in that all updates are initially executed
on such workspaces and thus deferred until the transaction’s commit as
far as the shared, persistent data is concerned. Upon the commit of a
transaction, the workspace updates would be reexecuted against the
shared data; upon a transaction abort, the workspace would be dis-
carded.

Is it possible to apply the notions of ST, PRED, and LRC to such
a workspace-based deferred update implementation? Is it meaningful?
If appropriate, try to redefine these properties for a deferred update
setting.
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1. if w j (x) <s ri (x), then cr
j <s ri (x),

2. if w j (x) <s wi (x), then a j <s wi (x) or cr
j <s wi (x),

3. if cr
j <s cr

i and c j ∈ s, then c j <s ci .

It can then be shown that if s is partially strict and for no transaction ti ∈

trans(s) we have cr
i <s ai , then s ∈ RC.
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CHAPTER TWELVE

Crash Recovery: Notion
of Correctness

Hansel and Gretel left behind a trail of crumbs which would allow them to retrace

their steps (by following the trail backwards) and would allow their parents to find

them by following the trail forwards. This was the first undo and redo log.

Unfortunately, a bird ate the crumbs and caused the first log failure.

—Jim Gray

We will meet again if your memory serves you well.

—Bob Dylan

12.1 Goal and Overview

This chapter and the next three discuss a notion of correctness and algorithms Crash recovery
goal: failure
resilience, fault
tolerance,
reliability

for the crash recovery of a data(base) server. We denote as a crash all kinds
of failures that bring down the server and cause all data in volatile memory
to be lost, but leave all data on stable secondary storage intact. Then, in a
nutshell, the goal of a crash recovery algorithm is to restart the server and bring
its permanent data back to its most recent, consistent state. More precisely,
this amounts to ensuring the atomicity and durability of transactions. Thus, the
most recent, consistent state is defined as including all updates of committed
(and hence durable) and no update of uncommitted or previously aborted
(and hence to be “eliminated”) transactions, in the serialization order of the
original pre-crash execution. Being able to maintain or reconstruct a consistent
state in the presence of failures is often referred to as failure resilience, fault
tolerance, or, in most general terms, reliability of the data server. (In some fraction
of the literature, subtle differences are made between these terms, but these
are negligible for our purposes.)

The main challenge of crash recovery beyond the scope of the trans- Redo and undo
recoveryaction recovery of Chapter 11, lies in efficiently implementing transactional

durability. Since a crash may lose updates that have not yet been reflected in
stable secondary storage, crash recovery will have to consider the redo recovery
of affected data updates that were made by committed transactions. For
uncommitted transactions, on the other hand, the atomicity property of the

427
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ACID paradigm dictates the undo recovery of updates. Algorithms for the latter
are conceptually identical to those that we presented for transaction recovery in
Chapter 11. However, a crash recovery algorithm has to take into account the
potentially delicate interplay between redo and undo steps as well. As we will
show in this chapter and the next, an important idea to keep crash recovery
relatively simple and manageable is to minimize this interplay by separating
redo versus undo considerations as much as possible.

The failure model that we assume in this chapter is sometimes referredFailure model:
soft, fail-stop

crash
to as the soft crash case, since it leaves all data on secondary storage intact, un-
like a hard crash that corrupts secondary storage media. We will consider hard
crashes later in Chapter 16. The soft crash model is fairly general and comprises
most of the failures that cause outages of data servers in real applications, most
notably, software errors in the operating system or database system code, and
also errors made by system administrators. Traditionally, power outage is often
mentioned as the most typical cause of a soft crash, but with battery-backed un-
interruptible power supplies, this failure type has become more of an anecdote
than a practically pressing concern. The real culprits are errors in the system
software. Empirical studies have shown that those errors that lead to system
crashes typically have some mean properties: they occur in a “nondeterministic”
manner, often related to concurrent execution threads, under high load or oth-
erwise uncommon situations, and they are difficult if not impossible to track
down and reproduce. For these reasons, such errors cannot be easily eliminated
by more extensive software testing. Jim Gray has coined the term “Heisenbugs”
for this class of errors, after Heisenberg’s uncertainty relation.

All practical experience with large applications has shown that the best
way of dealing with Heisenbugs is to bring down the server as quickly as pos-
sible, recover the server’s permanent data to a consistent state based on redo
and undo according to the ACID paradigm, and restart the server. Because this
recovery procedure reinitializes the server, it turns out that Heisenbugs are ex-
tremely unlikely to occur again after the restart. In contrast, approaches that
aim at continuing the server’s “forward processing” based on a fault-tolerant
hardware and OS platform have turned out to be less effective in coping with
Heisenbugs. The most successful of these approaches (e.g., tandem computer
systems) have eventually limited their nonstop processing capabilities to the
underlying hardware resources (e.g., by “failing over” to another processor in a
cluster) and adopted transactional crash recovery algorithms at a higher soft-
ware layer. An important ingredient in this currently prevalent solution is that
failures should have the fail-stop property, in the sense that the server is indeed
brought down immediately after detecting an error. Strictly speaking, this is
only an idealized behavior, as error detection will not be perfect, but it can be
sufficiently well approximated in real systems by intensive self-checking.

While performing crash recovery after a system failure, a server and its data
are unavailable to clients. Therefore, minimizing the recovery or restart time
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is our most important performance goal. Assume that, on average, a server Recovery
performance
and system
availability

fails once every MTTF time units, where MTTF stands for mean time to failure.
Upon a failure, the recovery takes on average MTTR time units, where MTTR
stands for mean time to repair. Then, the availability of the system, which is the
probability that a randomly probing client finds the server ready to serve data
requests, is given by

MTTF

MTTF + MTTR
(12.1)

For example, a server that fails once a month and takes 2 hours to recover
has an availability of approximately 99.7%, which translates into an expected
downtime of 26 hours per year. This would be insufficient for many mission-
critical applications. If, on the other hand, the server fails once every 48 hours
but can be recovered and restarted in 30 seconds on average, then the availabil-
ity would be increased to 99.98% or, equivalently, to an expected downtime
of 105 minutes per year. This consideration shows that fast recovery is the
key to high availability (given that, in practice, Heisenbugs pose limits to the
improvement of the MTTF).

A second performance metric that is of great importance for a crash recov-
ery algorithm is the additional resource consumption that is required during
normal operation of the system to make crash recovery work when the system
fails. For example, logging data updates on a log file requires additional disk
I/O. If this extra work becomes too high, then it could adversely affect the
performance of regular data requests during normal operation.

A requirement that may appear trivial at first glance is that crash recovery Correctness of
recovery
algorithms

should work correctly under all possible circumstances. However, it cannot
be overemphasized that recovery algorithms need to cope with a tremendous
state space and that it is all but trivial to make sure that the state space is
exhaustively covered by the algorithm. Crashes are rare events, relative to the
normal processing speed of a server, but even crashes during the recovery from
a crash are possible and do actually occur, and not that infrequently, in real
applications. As the often cited Murphy’s Law puts it: “whatever can go wrong,
will go wrong.” And developers who have implemented a full-fledged crash
recovery algorithm may add that Murphy was an optimist!

The large state space that crash recovery has to deal with also makes the Simplicity and
testabilitytesting and debugging of a recovery algorithm very hard, much harder than

testing, for example, a cache manager. At the same time, the recovery code is
much more critical than all other components of a data server. Errors in the
query processor, for example, cause only transient damage and are likely to
be limited to specific queries. An erroneous recovery algorithm, on the other
hand, amounts to risking permanent, irreversible damage to mission-critical
data. It is for these reasons that we heavily emphasize correctness reasoning.
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An important step toward correct crash recovery is to keep the algorithms as
simple as possible (but no simpler, to paraphrase Einstein). Simplicity eases
correctness reasoning, and it also supports software testing. The latter aspect
particularly suggests reusing code for the recovery algorithm that has been
written and is executed for the system’s normal operation, as this code can be
and typically has been much more stress tested. We will point out examples of
this pragmatic consideration later.

Simplicity is highly desirable, but it should not come at the expense ofCorrectness
reasoning overly degrading the recovery algorithm’s performance, especially the restart

time. Unfortunately, there is a trade-off in this regard: simplicity versus per-
formance. Therefore, we will discuss various recovery algorithms in the subse-
quent chapters, in increasing order of complexity. Some of them are actually
too simple to be practically viable, but they serve as starting points and will
subsequently be extended and refined. In this way, we greatly simplify the cor-
rectness reasoning. We will first show certain invariants to hold for the simpler
algorithms, and will then verify that subsequent extensions and optimizations
leave the invariants valid.

The chapter is organized as follows: Section 12.2 discusses the archi-
tectural issues that are relevant for crash recovery, and Section 12.3 intro-
duces an abstract model as the basis for correctness reasoning. Section 12.4
then develops the criterion that correctly working crash recovery must satisfy.
Finally, Section 12.5 gives a brief survey and taxonomy of recovery algorithms
that have been proposed in the literature. Detailed algorithms for crash re-
covery along with correctness arguments will then be presented in the next
chapters.

12.2 System Architecture and Interfaces

The components of the system architecture that are relevant for crash recovery
and are thus considered throughout this and the subsequent chapter are the
following:

1. The stable database is organized as a set of pages that reside in stableStable database
storage. Here stable storage is an abstraction comprising all storage media
that are resilient to the soft crash failures that we aim to recover from.
Most typically, this abstraction is implemented by secondary storage
on magnetic disks, but it could also be nonvolatile RAM along with
additional protection steps to guard its contents from software errors
such as runaway pointers.

2. The database cache consists of a (dynamically evolving) subset of theDatabase cache
stable database pages that is copied into volatile memory. All database
modifications are performed on the cache and are later copied back
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into the stable database by an explicit “flush” action. Therefore, the
cached version of a page may be more recent than the page’s stable
version in that its contents captures more updates. At each point in time,
the database cache and the noncached fraction of the stable database
together constitute the cached database (or current database) on which
all regular data requests operate.

3. The stable log consists of a set of log entries that describe the history of Stable log
updates on the cached database, and possibly additional bookkeeping
records on the system history. In its most general form, the log entry
for an update contains sufficient information that allows the recovery
either to undo or redo the update depending on the outcome of the
corresponding transaction. However, more specialized formats of log
entries are conceivable as well. The stable log resides on stable storage,
typically implemented as one or more disk-resident files.

4. The log buffer is a data structure in volatile memory that serves as a buffer Log buffer
in writing log entries to the stable log. Log entries are first created in
the log buffer, and are explicitly copied to the stable log by means of a
“force” action.

As far as crash recovery is concerned, the contents of these four compo-
nents entirely determine the system state. Since database cache and log buffer
reside in volatile memory, which is lost in a crash, the recovery algorithm itself
relies on the stable database and the stable log as its input. The stable log is
most often implemented as a sequential append-only file. However, our archi-
tectural model is general enough to allow alternative implementations such
as organizing versions of database pages in a random access file (sometimes
referred to as a shadow database).

Stable log and log buffer taken together also provide the undo information Transaction
recovery
reconsidered

for rolling back aborted transactions during normal operation. Thus, log entries
serve both transaction recovery and crash recovery. A transaction recovery al-
gorithm may, however, choose to keep an additional copy of log entries in a
separate data structure in memory for faster access. This holds especially for
entries in the stable log, where a transaction abort would require random disk
access and could interfere with the otherwise sequential write patterns of the
stable log.

During normal operation, the system performs various types of actions that Actions during
normal
operation

modify the system state in a way that affects the recovery algorithms. The fol-
lowing list contains these actions, grouped into different categories. Each action
performed by the system is assigned a unique sequence number, so that ac-
tions can be referred to by the various system components and also by other
actions. The sequence numbers are guaranteed to be monotonically increasing
among all actions that refer to the same page and among all actions that refer Sequence

numbersto the same transaction.
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1. Transaction actions:

(a) begin(t): marks the beginning of a transaction identified by t.

(b) commit(t): marks the successful completion of the transaction iden-
tified by t. Its effect is that all updates of the transaction become
committed and will be guaranteed to persist even in the presence of
a soft crash.

(c) rollback(t): marks the unsuccessful completion of the transaction
identified by t. Its requested effect is that all updates of the trans-
action be undone, so that none of the updates remain in the cached
database.

(d) save(t): marks a savepoint inside a transaction. The transaction can
request to roll back to a savepoint, preserving all updates that were
made before the savepoint, rather than having to roll back the entire
transaction.

(e) restore(t, s): rolls back the transaction identified by t to the savepoint
identified by the sequence number s.

Thus, we now need more detailed operations for the development
of recovery algorithms than we needed for devising the page model of
transactions from a conceptual point of view; the same holds for the
action categories described below.

We will ignore the action types save and restore in Chapters 13
and 14; they will be reconsidered and incorporated into the algorithms
developed in Section 15.3 of Chapter 15.

2. Data actions:

(a) read(pageno, t): reads the page identified by pageno on behalf of
the transaction identified by t. In particular, this involves pinning
the page to a fixed virtual-memory address in the database cache, so
that it can neither be dropped from the cache nor moved in memory;
reading the page contents; and finally, unpinning the page.

(b) write(pageno, t): reads and writes the page identified by pageno on
behalf of the transaction identified by t. As with reads, this involves
pinning and later unpinning the page in the database cache, with the
difference that the page is explicitly declared as modified or “dirty”
when it is unpinned. Since this notion of a write action includes a
previous read, it also captures page modifications that refer to byte-
level operations inside a page, such as moving a byte sequence (e.g.,
a data record) within a page. This type of write action has been
referred to as a “physiological action” by Gray and Reuter (1993).

(c) full-write(pageno, t): writes the page identified by pageno on behalf
of the transaction identified by t. In contrast to the previous, general
write action type, a full-write does not read the page before modify-
ing it. Rather, full-writes assign a (new) value to all bytes of a page.
This type of action has often been referred to as a “physical action.”
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(d) exec(op, obj, t): executes the database operation op on the database
object identified by obj on behalf of the transaction identified by t.
This execution in turn triggers other actions, in particular, read and
write actions on database pages, but it may also invoke the execu-
tion of other database operations. These database operations can be
“native” operations of the system interface, such as storing a data
record or retrieving a set of data records based on a search key, or
they can be a user-defined operation on an instance of an imported
abstract data type.

3. Caching actions:

(a) fetch( pageno): copies the previously noncached page identified by
pageno from the stable database into the database cache.

(b) flush( pageno): copies the cached page identified by pageno to the
stable database, but also leaves the page in the cache. A flush action
is only invoked on a dirty page whose cached version is more recent
than its stable version. The purpose of this action thus is to bring
the stable version up-to-date and to reset the cached page’s status
from “dirty” to “clean” (i.e., identical to the stable version).

4. Log actions:

(a) force( ): forces all log entries in the log buffer to be copied to the
stable log.

The four major system components and the actions that operate on them
are illustrated in Figure 12.1.

Log entry
Database

page

Database
page

Database cache

Database server

Log buffer

Read

Write
Write

Begin

Commit, rollback

Fetch Flush Force
Volatile
memory

Stable
storage

Stable
database

Stable
log Log entry

Figure 12.1 Overview of the system architecture components
relevant to crash recovery.
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When the system is started, the recovery algorithm is the first step invoked.
So the system always assumes that it is started immediately following a crash,
and we will refer to the entire recovery procedure as the restart(.) action. Only
if the restart finds evidence on stable storage that the last event in the system
history was a normal shutdown, as opposed to a failure terminating the system,
can it skip all further recovery steps. As will be seen in the next chapter, the
details on how the necessity of recovery work is recognized depend on the
recovery algorithm itself.

12.3 System Model

This section casts the system architecture we have introduced in the previous
section into more rigorous definitions, which will then be used as the basis for
the correctness reasoning throughout Chapter 13. Since our goal is to show that
the recovered database preserves the effects of exactly all committed updates
in the serialization order of the executed transactions, the system history is
an important reference point for the correctness of the recovery. Compared
to earlier chapters, we need some extensions in defining the system history.
In particular, caching actions are of interest for the recovery and therefore are
included in the history.

Extended
history

DEFINITION 12.1 Extended History

The extended system history of a transactional data server is a partially

ordered forest of actions, with the set of actions denoted by A, where

the roots are transaction identifiers or caching actions (fetch or flush);

the leaves are read, write, or full-write actions or transaction actions

(begin, commit, rollback, . . . );

only exec actions can appear as intermediate nodes;

the ordering of actions, denoted by <, is tree consistent (i.e., for a nonleaf

node i and an arbitrary node j , the relationship i < j ( j < i) holds if

p < j ( j < p) holds for all leaves p that are descendants of i ).

A specialization that we will consider first is the one for the page model,
which is characterized by the absence of exec nodes. Then, an extended history
specializes to a forest where all trees have depth 2. In the rest of the chapter
we always consider extended histories rather than “plain” histories. Therefore,
there is no need to distinguish the two notions explicitly, and we will henceforth
refer to extended histories simply as histories.
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Since the stable log keeps bookkeeping records about the system history,
it can be defined by its relationship to the extended history as follows:

DEFINITION 12.2 Stable Log

For a given system history, the stable log is a totally ordered subset of the

history’s action set such that the log ordering is compatible with the history

order (i.e., does not contradict <). These logged actions are referred to as

log entries.

As mentioned earlier, a log entry may contain information for both the

Stable log

undoing and the redoing of an update action, as an outcome of the correspond-

Log entries

ing transaction is usually still unknown at the time the log entry is created.
In the abstract model, however, we do not explicitly distinguish the undo and
redo parts of a log entry. Rather we treat the logged action itself as the redo
information and assume that we can always infer from the log entry an inverse
action, in the sense of Chapter 11, which serves as the original action’s undo
information. We have to keep in mind, however, that the implementation of
log entries needs to incorporate additional details; for example, input parame-
ters of an inverse action may depend on result parameters of the original action
and have to be remembered explicitly in the log entry.

Thus, the log is essentially a linearization of the system history. We assume
that all logged actions carry sufficient information to identify their ancestors
in the history. In particular, all log entries carry a transaction identifier. Most
recovery algorithms restrict the log entries to certain action types, as we will
see in detail later. In particular, almost all algorithms avoid logging reads.

Now the log buffer can be defined simply as the “tail” of the history (or,
actually, the logged part of the history) that captures the most recent actions
that are not yet recorded on the stable log.

Log bufferDEFINITION 12.3 Log Buffer

For a given system history, the log buffer is a totally ordered subset of the

history’s action set such that the log ordering is compatible with the history

order and all entries in the log buffer follow (with respect to the total order)

all entries in the stable log for that history.

Finally, as for the stable database and for the cached database, an impor- Database state
tant consideration is that we do not need to formalize all aspects of the data
organization itself. Rather, our focus is on tracking which updates are present
or absent in the database, how these updates relate to the logged actions, and
how the recovery advances the database state. To this end, it is appropriate to
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view the state of a database also as a set of update actions, namely, those actions
that have led to the state.

Obviously, the resulting state depends on the order in which the actionsPage sequence
numbers as

state identifiers
were performed on the database; so we need to include some knowledge about
action ordering in our formal definition. To remain consistent with practical
considerations, we have to consider that the exact order in which updates
were performed cannot be inferred from a given database alone. However, by
including additional information in the database itself, we can obtain some
partial knowledge of the order. To this end, we assume that each database
page is tagged with a sequence number, by which we can keep track of the
most recent action of certain types that were executed on that page. This page
sequence number, or page state identifier, is assumed to be embedded in the
page itself. Therefore, it is always carried along when a page is fetched into
the database cache or flushed back from the cache to the stable database. The
existence of such a page sequence number is a special assumption that we are
making, but note that it is perfectly in line with all implemented systems that we
are aware of. Indeed, page sequence numbers can be easily implemented with
very little overhead as a field in the page header. Contrast this with conceivable
assumptions on tagging all data records with a sequence number or transaction
identifier, whose implementation would not be at all clear and would be likely
to incur high overhead.

The key point of a page sequence number is that it can give us some partial
knowledge about the order of the write actions (including full-write actions)
that have been performed on it. Namely, for a page with sequence number s,
we know that all write actions on that page with a sequence number less than s
must precede the write action with sequence number s in the history order <.
We still do not have any knowledge about the ordering among those earlier
actions, but we will see that this knowledge is not necessary for a recovery
algorithm anyway.

These considerations lead to the following definitions of cached and stable
databases, respectively. The only difference between the two is that the page
sequence numbers of the cached database correspond to the most recent write
actions in the history; whereas in the stable database the sequence number of a
page corresponds to the most recent write action before the most recent flush
action for that page.

DEFINITION 12.4 Cached Database

For a given system history, the cached database is a partially ordered set

Cached
database

of all write actions in the history, including full-write actions, such that

the ordering is a subset of the history order, and for each page number

p, the maximum element among the write actions on p in the history is

also the maximum element among all write actions on p in the cached

database.
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DEFINITION 12.5 Stable Database

For a given system history, the stable database is a partially ordered subset

Stable database

of the history’s write actions, including full-write actions, such that the

ordering is a subset of the history order, and for each page number p,

all write actions on p that precede the most recent flush(p) action in the

history are included in the stable database,

the maximum element among all those included write actions in the

history is also the maximum element among all write actions on p in the

stable database.

By casting all system components into partially ordered sets of actions, these
definitions allow us to relate and directly compare the stable database to the sta-
ble log and the stable log in turn to the system history. These cross-relationships
lead us to the correctness criterion developed in the following section.

12.4 Correctness Criterion

Now that we have defined the building blocks of a formal model, we can
precisely state the correctness criterion that every algorithm for crash recovery
has to satisfy. In doing so, we assume that the database history is order preserving
serializable and log recoverable; in other words, it must be reducible to the roots
of the committed transactions (see Chapter 11). From our earlier discussion of
concurrency control and transaction recovery, it is clear that this assumption
is not a severe restriction. Correct crash recovery then simply means that the
equivalence to the roots of the committed transactions is preserved despite
possible system failures.

DEFINITION 12.6 Correct Crash Recovery

A crash recovery algorithm is correct if it guarantees that after a system

Correct crash
recovery

failure, the cached database will eventually—that is, possibly after repeated

failures and restarts—be equivalent to a serial order of the committed trans-

actions that coincides with the serialization order of the history.

Note that this definition intentionally refers “merely” to the cached database
rather than the stable database. It is our goal to complete the recovery as quickly
as possible to maximize the system availability. Once the cached database is
brought into the desired state, we wish to allow new transactions to access the
data as soon as possible and therefore consider the recovery as already com-
plete at this point. The stable database, on the other hand, can be brought
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to its desired state subsequently, by simply performing a sufficient number of
flush actions to write back all dirty pages of the cache. If no new transactions
were executed and no further crashes occurred, the stable database would be
guaranteed to reach the same state as the cached database. But note that this
is an implication of the cache manager rather than a result of the recovery al-
gorithm, and therefore we do not consider the final state of the stable database
as a goal in our correctness criterion.

A potential fallacy in our above definition is that we do not guarantee
termination of the algorithm; we use the adverb “eventually” with good rea-
son. Indeed, we can conceive of an infinite series of crashes where the recov-
ery algorithm is invoked after each crash but the system crashes again before
the recovery achieves any “crash surviving” progress. However, this scenario is
extremely unlikely and would indicate a fundamental problem with the en-
tire system rather than the recovery algorithm. Therefore, we will not further
consider the theoretically possible problem of nontermination. Rather we “ax-
iomatically” assume that only a finite number of crashes can occur before the
recovery eventually completes without being interrupted.

At this point, without already narrowing the scope of possible algorithms,
no more specific correctness criteria can be stated. However, without referring
to the steps during restart, we can already consider necessary conditions for
ensuring that the stable log does indeed contain all necessary information for
recovery. These conditions, which refer to the relationship between the sta-
ble database and the stable log during normal operation, constitute a sanity
check for a recovery algorithm: without the proper information on the log, no
recovery algorithm can achieve its goal.

DEFINITION 12.7 Logging Rules: Redo Rule, Undo Rule, Garbage Collec-

tion Rule

A recovery algorithm (or, actually, its logging component during normal

Logging rules

operation) satisfies

the redo logging rule if for every transaction t in the history such that

the history contains a commit(t) action, all data actions of t that oc-

cur in the history are contained in the stable log or in the stable data-

base;

the undo logging rule if for every data action p of transaction t in the

history such that the history does not contain a commit(t) or rollback(t)
action, the presence of p in the stable database implies that p is con-

tained in the stable log;

the garbage collection rule if for every data action p of transaction t in

the history, the absence of p from the stable log implies that p is in the

stable database if and only if the history contains a commit(t) action.



12.5 Road Map of Algorithms 439

These rules capture invariants that must hold in the relationship between
the stable database and the stable log in order to facilitate recovery. From an
implementation viewpoint, the rules initiate the forcing of the log buffer upon
certain events:

The redo logging rule requires forcing all redo information of a transac-
tion to the stable log when a transaction becomes committed. In fact, a
transaction is usually only viewed as committed (and includes the com-
mit in the history) if and only if a commit log entry has been written to
the stable log.

The undo logging rule requires forcing the undo information for a page
to the stable log before that page is flushed to the stable database. This
rule is historically referred to as the write ahead logging rule, or WAL rule
for short, but this name may bear misleading connotations with specific
implementations.

The garbage collection rule disallows removing a log entry from the
stable log unless it is guaranteed that this log entry will no longer be
needed for recovery. Note that, although this rule may appear to be
an optional element, the option of removing obsolete log entries and
effectively truncating the stable log is a crucial optimization in order to
speed up recovery and achieve high availability.

We will later verify these rules for a complete family of recovery algorithms
as a fundamental first step in the correctness reasoning and a simplification of
the reasoning about the actual recovery during a restart.

12.5 Road Map of Algorithms

The three logging rules of the previous section are fundamental invariants upon
which every correct recovery algorithm relies. Some algorithms are, however,
even more restrictive in terms of the relationships allowed between the cached
database, the stable database, and the stable log. These additional invariants can
be used to categorize a wide spectrum of crash recovery algorithms; in fact,
all algorithms that have ever been proposed in the literature naturally fit into
this categorization. The main idea is to distinguish algorithms by their need to
perform undo and/or redo steps during restart. This leads to a taxonomy with
four cases, as discussed next.

1. No-undo/no-redo algorithms: This class of algorithms maintains the in- No-undo/
no-redo
algorithms

variant that the stable database contains exactly the actions of all com-
mitted transactions. Thus, during restart, neither undo nor redo recovery
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is needed; the “magic” of crash recovery is completely embedded in the
additional work during normal operation. More formally, the invari-
ant reads as follows: if an action p of transaction t in the history is
in the stable database, then there must be a commit(t) action in the
stable log, and if the stable log contains a commit(t) action of transac-
tion t, then all data actions of transaction t must be present in the stable
database.

To ensure the first condition of the invariant, a recovery algorithm
has to guarantee that no page is ever flushed to the stable database if
it contains any dirty updates made by uncommitted transactions. This
property has been coined the “no-steal property” by Härder and Reuter
(1983) because its most straightforward implementation is to build into
the database cache manager that no such page can be “stolen” out of the
cache as a replacement victim. For the second condition of the invariant,
all pages that contain updates of a committed transaction must obviously
be flushed at the commit point. Because of these “forced” disk I/Os on
the stable database, this property has been coined the “force property”
by Härder and Reuter.

2. No-undo/with-redo algorithms: This class of algorithms maintains the in-No-undo/
with-redo

algorithms
variant that the stable database contains no actions of an uncommitted
transaction. More formally, this reads as follows: if an action a of trans-
action t in the history is in the stable database, then there must be a
commit(t) action in the stable log. This is the first condition of the no-
undo/no-redo invariant. Correspondingly, algorithms in this class are
also known as no-steal algorithms. Restart after a crash potentially re-
quires redo steps, but no undo recovery.

3. With-undo/no-redo algorithms: This class of algorithms maintains the in-With-undo/
no-redo

algorithms
variant that the stable database contains all actions of committed transac-
tions. More formally, this reads as follows: if there is a commit(t) action
for a transaction t in the stable log, then all data actions of transaction
t must be present in the stable database. This is the second condition
of the no-undo/no-redo invariant. Correspondingly, algorithms in this
class are also known as force algorithms. Restart after a crash potentially
requires undo steps, but no redo recovery.

4. With-undo/with-redo algorithms: This class of algorithms does not main-With-undo/
with-redo

algorithms
tain any special invariants other than the general logging rules of the
previous section. Therefore, it is also known as the class of no-steal no-
force algorithms. Restart after a crash potentially requires both undo and
redo steps.

Algorithms of the two no-undo categories are also referred to as deferred-Deferred-
update

algorithms
update algorithms, since they have to postpone updates to the stable database
until after the updates become committed. Such algorithms can be imple-
mented in a variety of ways, based on different organizations of the stable log:
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With a no-steal database cache, the stable log can be implemented in its
“standard form” as a sequential append-only file of log entries, where
log entries need to capture only redo information, and various formats
of log entries are possible.

In a shadowing approach, the stable log organizes updates of uncom-
mitted transactions in pages such that these pages can be assigned to
the (cached) database in an atomic manner. A simple and reasonably
efficient implementation is to keep two versions of the database page
addressing table, which is the table that translates page numbers into
on-disk addresses such as extent or file numbers along with an offset.
When performing (not yet committed) updates, new versions of the af-
fected pages are created and registered in one version of the addressing
table, while the other version of the addressing table is left unchanged.
At commit time, the system switches from the unchanged, old version
of the addressing table to the new version by atomically changing a sta-
ble “master pointer.” At this time, old page versions that are no longer
needed are released by giving them back to the free space management.
The old page versions that temporarily coexist with the new ones are
often referred to as shadow pages and the entire unchanged database
as a shadow database. In addition to the new page versions, the stable
log still needs to keep redo information in this approach, usually in a
separate file, unless shadowing is coupled with a policy that forces the
new page versions to disk before commit.

In a general versioning approach, the stable log file maintains versions of
database objects, not necessarily in a page-oriented organization. These
versions serve as a differential file to the database; the cached database
and hence also the stable database are left unchanged until reaching a
commit point. Updates of uncommitted transactions create new ver-
sions, and the commit of a transaction moves all versions that were cre-
ated by the transaction into the cached database. Similar to shadowing,
pointer switching techniques may be employed on a per-object basis for
“installing” the new versions, or physical copying of versions if nec-
essary. When commutativity properties of semantically rich database
operations are exploited for higher concurrency, such operations may
even have to be reexecuted to install their effects into the (cached)
database. In this case, the differential file is more appropriately called
an intention list. As with shadowing, the redo part of the stable log is
still necessary in a versioning approach, unless new versions are forced
to disk before commit.

Algorithms of the two with-undo categories, on the other hand, are com- Update-in-place
algorithmsmonly known as update-in-place algorithms, as updates are performed directly

on the original database pages. The entire taxonomy of crash recovery algo-
rithms discussed above is summarized in Figure 12.2.
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Crash recovery algorithms

Update-in-place
(with-undo)

With-undo/with-redo
(steal/no-force)

No-undo/with-redo
(no-steal/no-force)

No-undo/no-redo
(no-steal/force)

With-undo/no-redo
(steal/force)

Deferred-update
(no-undo)

Figure 12.2 Taxonomy of crash recovery algorithms.

Our overriding performance goal of minimizing recovery time after a crash
seems to make a strong case for the no-undo/no-redo algorithms as the method
of choice. These algorithms achieve virtually instantaneous recovery by guaran-
teeing that the stable database is always in its correct state. However, focusing
on recovery time alone would be too shortsighted. We also need to consider the
extra work that the recovery algorithm incurs during normal operation. This is
exactly the catch with the class of no-undo/no-redo algorithms. By and large,
they come at the expense of a substantial overhead during normal operation
that may increase the execution cost per transaction by a factor of two or even
higher. In other words, it reduces the achievable transaction throughput of a
given server configuration by a factor of two or more.

The bad news on performance degradation needs to be explained in more

The case for
with-undo/

with-redo
algorithms

Cost of no-undo
detail. First consider the no-undo or deferred-update aspect of an algorithm. Its
implementation is relatively inexpensive with a page-oriented shadowing ap-
proach. However, since such an algorithm is inherently restricted to installing
complete pages at commit time, it works correctly only in combination with
page-granularity concurrency control. The detailed arguments for this impor-
tant observation are essentially the same as in Chapter 11 on transaction re-
covery. Thus, this approach would rule out fine-grained concurrency control.
We could resort to a general versioning approach, but there the commit of a
transaction incurs substantial additional work, in the worst case, the copying
of all new versions or even the reexecution of the transaction’s update actions.
This causes the factor-of-two degradation in terms of disk I/O.

Now consider the no-redo aspect, which is even worse. The only wayCost of no-redo
to avoid redo recovery is by flushing all modified pages at the commit of a
transaction—the force property. However, this would typically cause as many
random disk I/Os on the stable database as the number of pages that were
modified by the committing transaction. Compared to the sequential disk I/Os
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for appending the corresponding log entries to a stable log file, the extra cost for
the no-redo guarantee may exceed a factor of 10. Therefore, the force policy
of a no-redo algorithm is absolutely unacceptable in terms of performance.

The above discussion has brought up compelling arguments against both
no-undo and no-redo algorithms, leaving us with the class of with-undo/with-
redo algorithms. This latter class is indeed the most general one in that it does
not make any assumptions on the relationships between cached database, stable
database, and stable log during normal operation (other than the three logging
rules) and provides means for both undo and redo steps if these are necessary
after a crash. As we will see in the course of the next chapter, there are effective
ways to limit the amount of undo and redo work during a restart and hence
bound the recovery time at an acceptable level (on the order of one minute).
In addition, the with-undo/with-redo algorithms provide high flexibility with
regard to trading off an increased overhead during normal operation for faster
restart. This can be achieved simply by intensifying the cache manager’s ac-
tivity of flushing dirty pages, without changing anything in the crash recovery
algorithm.

For these reasons, the class of with-undo/with-redo algorithms is the only
one that has found its way into commercial systems, and we have seen strong
arguments that this choice is not incidental: the other classes are inherently
inferior in significant aspects. Finally, a salient property of the with-undo/with-
redo algorithms is that they require relatively little (but subtle and carefully
designed) changes when we want to move from the page model with page-
granularity concurrency control to the more general object model. For all these
reasons, we restrict ourselves in the following chapters to the class of with-
undo/with-redo algorithms.

Throughout this chapter, and the subsequent chapters, an inherent assump- Simplifications
for sequential
execution

tion is that transactions are executed concurrently during normal operation.
This has consequences on crash recovery in that it rules out very simple so-
lutions. Under certain conditions, however, it can make sense to completely
abandon concurrency and execute transactions strictly sequentially. Such a
radical solution is attractive for servers where all data fits into main mem-
ory and the throughput requirement for transactions can be met by a unipro-
cessor computer. In such a setting, concurrency is no longer needed to fully
exploit the underlying hardware resources (disks and processors). Concurrent
transaction scheduling may still be needed to cope with highly variable trans-
action lengths, for example, to prevent long transactions from monopolizing
resources. However, there are certain applications, for example, in financial
trading, where virtually all transactions are short. Then, under these premises,
sequential transaction execution is perfectly acceptable, and crash recovery can
be greatly simplified. In particular, a no-undo algorithm that atomically writes
redo information to the stable log upon transaction commit could be imple-
mented very easily and efficiently in such a setting. For the remainder of the
book, however, we will not make such radical assumptions about excluding
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concurrency, but we will briefly come back to the issue of main-memory data
servers in Chapter 15.

12.6 Lessons Learned

In this chapter we have laid the foundations for crash recovery algorithms,
which include three major preparations for the detailed discussion of algorithms
in subsequent chapters:

1. We have more precisely identified the kinds of failures that crash recov-
ery should cope with.

2. We have introduced a concise model for the system components that are
relevant to crash recovery algorithms—namely, stable log, log buffer, sta-
ble database, and cached database—and we have identified the relevant
operations on these components. This model abstracts from details of
concrete implementations such as commercial database systems while
allowing us to describe crash recovery algorithms in a compact manner
and reason about their correctness.

3. Based on this abstract system model we have defined a notion of cor-
rectness that requires the cached database to be restored after a crash
such that its contents, viewed as system history, are equivalent to a serial
execution of the committed transactions in the serialization order of the
original history. Logging rules that describe invariants between the log
and the stable database are necessary, but not sufficient conditions for
the ability to perform correct recovery after a crash.

Finally, an important point already visible here is a trade-off between the
simplicity of a recovery algorithm and its performance, and, with regard to
the latter, also a trade-off between the algorithm’s overhead during normal
operation and its efficiency during restart. These aspects will also guide the
discussion of concrete algorithms in the subsequent chapters.

Exercises

12.1 Assume that both the database cache and the log buffer are, to a large
extent, crash resilient (i.e., they survive a system failure and are thus
accessible with their pre-crash contents during restart) by using battery-
backed, nonvolatile RAM (also known as RAM disk or flash memory).
Discuss which types of failures still need recovery measures. How safe is
such a safe-RAM approach?
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12.2 Assume again that both the database and the log buffer reside in safe
RAM. In addition, assume that virtual-memory page protection bits are
used to carefully control the software access to these data structures during
normal operation. Discuss again which types of failures still need explicit
recovery measures. For the class of system failures (i.e., soft crashes),
which of the following statements are true, which ones are false?

(a) Undo recovery is no longer needed at all.

(b) Redo recovery is no longer needed at all.

(c) When a page is flushed from the database cache during normal oper-
ation, the log buffer must be forced beforehand.

(d) When a page is flushed from the database cache during restart, the
log buffer must be forced beforehand.

(e) When a transaction commits (during normal operation), the log buffer
must be forced beforehand.
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CHAPTER T H I R T E E N

Page Model Crash
Recovery Algorithms

History is written by the winners.

—Alex Haley

History is a people’s memory, and without a memory,

man is demoted to the lower animals.

—Malcolm X

13.1 Goal and Overview

Partial writes
vs. full-writes

This chapter discusses with-undo/with-redo crash recovery algorithms for the
page model. So according to our correctness considerations from the previous
chapter, we essentially restrict the database history to the roots and leaves of
the executed transaction trees. In particular, the only data actions that are of
interest to recovery algorithms are (partial) write actions that modify certain
bytes in a single page as well as full-write actions that overwrite all bytes of a
page. A major difficulty that we will encounter with partial writes and need to
address in detail is that such operations are not necessarily idempotent: when
an operation is described as a “function” that, for example, shifts certain bytes
in a page by a specified offset, invoking the function twice yields an effect that
is different from performing it (exactly) once. Note that such functions could
always be logged as full-writes, by simply recording the complete state of the
page that results from the operation’s execution. However, as pages are rather
large and typically only a few bytes are modified, treating all writes as full-writes
would not exploit a potential for performance improvement. By keeping the
amount of logged data as small as possible, the data server’s throughput during
normal operation may be enhanced (or at least logging does not become a
bottleneck); furthermore, the time for processing the log during recovery can
often be reduced, thereby increasing the server’s availability.

As discussed in the previous chapter, we assume that disk-based stable Crash-resilient
stable storage
and page action
atomicity

storage is resilient to (transient) system failures, so that both the stable database
and the stable log are not affected by crashes. Single write (or full-write) actions
are assumed to be atomic, and the same assumption is made for single flush
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actions that write a page from the cache back into the stable database on
disk. Low-level techniques for detecting interrupted actions on a single page
and ensuring action atomicity involve maintaining special checksums at the
beginning and at the end of a page and keeping a temporary, volatile page copy
for backup. (These implementation techniques are described in great detail in
the 1993 book by Gray and Reuter.)

Throughout this chapter we assume that histories during normal operation
are prefix reducible in the sense of Chapter 11. So execution histories are
constrained to be conflict serializable in terms of their page read/write conflicts
and log recoverable in terms of the allowed orderings of commit and abort
actions (see Chapter 11).

Page model algorithms are limited to work only in combination with page-
granularity concurrency control. Nevertheless, these algorithms are interest-
ing for two reasons. First, since they are simpler than the object model algo-
rithms, they are perfectly suited for applications that exhibit very little data
contention even with page-granularity concurrency control (e.g., read-mostly
applications). Second and most importantly from a pedagogical viewpoint, page
model algorithms already contain many concepts and techniques that form the
building blocks of more sophisticated object model algorithms. In general, the
presentation in this chapter will develop simpler algorithms first, which may be
inefficient or even incomplete in certain ways, and will then gradually refine and
extend the algorithms until we obtain state-of-the-art and industrial-strength
solutions. The key advantage of this approach is that it allows us to provide
correctness arguments in an incremental and concise manner.

In our discussion of the recovery steps performed during restart, we dis-Redo-winners
vs. redo-history

paradigm
tinguish two approaches that differ fundamentally, each with its own virtues.
The first approach, coined the redo-winners paradigm, limits redo steps to the
updates of committed, so-called winner transactions. The second approach,
coined the redo-history paradigm, extends redo steps to all updates that oc-
curred before a given crash, thus essentially reestablishing the database state as
of the crash, from which undo recovery then proceeds further. We postpone a
discussion of the pros and cons of the two paradigms until we have seen the
algorithms in more detail.

Both paradigms have a number of fundamental points in common:

Redo steps are performed for logged operations in chronological order,
and essentially repeat the serialization order of the transactions before
the crash. This requires a forward pass over the log, and may involve a
number of important optimizations, for example, so-called checkpoints,
to minimize the work during this pass.

Undo steps for so-called loser transactions that have not yet been com-
mitted at the time of the crash are performed in reverse chronological
order. This requires a backward pass over the log.
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With partial writes that are not necessarily idempotent, the recovery
needs to be careful to avoid performing a certain redo or undo step
twice. Without special care, this could happen, for example, when the
server crashes again during the recovery and a second restart is initi-
ated. The solution involves testing the state of a page, using timestamp-
like sequence numbers, before it is decided to perform a given redo or
undo step.

Transactions that have been aborted and completely rolled back during
normal operation (or, even worse, whose rollback is interrupted by a
crash) require special care as well. The reason is that unless we tightly
control the cache manager’s page flushing activity and thus compromise
the server’s disk I/O performance, an arbitrary subset of such a transac-
tion’s regular “forward” operations and rollback-induced inverse opera-
tions may become lost by the crash, and other transactions, both winners
and losers, may have subsequently modified some of the affected pages.
The best solution to address the resulting problems involves logging in-
verse operations as well, and treating these so-called compensation log
entries appropriately during restart.

The remainder of this chapter is organized as follows: Section 13.2 in-
troduces the basic data structures upon which virtually all industrial-strength
recovery algorithms are built. Sections 13.3 and 13.4 develop, in a step-by-step
manner, the two major types of algorithms, referred to as the redo-winners and
the redo-history algorithms. Finally, Section 13.5 puts the various pieces to-
gether by summarizing the method of choice for page-level crash recovery.
Note that the goal of the chapter is not only to learn the best recovery algo-
rithm, but also to understand why the algorithm is good, which entails learning
about trade-offs, design alternatives, and so on.

13.2 Basic Data Structures

Throughout this section we build on the abstract model for the various com-
ponents of the system architecture that we have described in Section 12.3 of
Chapter 12. However, for concrete notation, we also introduce specific data
structures that correspond to the components of the model. The data structures
give an implementation-oriented view, whereas the abstract model captures
the system state in a more formal and concise manner. We will state the exact
relationship between the concrete data structures and the abstract model.

We assume that the stable log is implemented as a sequential append-
only file, or a set of such files that are used in round-robin manner (see also
Chapter 16). We further assume that log entries are tagged with chronologically
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increasing sequence numbers, referred to as log sequence numbers (also abbre-
viated as LSNs), and that each page in the stable database and the database
cache carries a page sequence number that is coupled with the log sequence
numbers of the log entries for this page in a specific manner so that we can test
the presence of a logged update in the page’s state. As we will later discuss in
more detail, a straightforward method to facilitate this kind of state testing is
to define the page sequence number of a page as the maximum log sequence
number of the log entries for this page. Sequence numbers are also used to
“locate” log entries in the stable log, and page numbers are used to “locate”
pages in the stable database and the database cache. We use arraylike subscript
notation for such indexed sets. For example, StableLog[s] denotes the log
entry with sequence number s on the stable log. Other than that, our notation
is Pascal-like, and should be self-explanatory.

/∗ Basic data structures of page model recovery algorithms: ∗/Basic data
structures type Page: record of

PageNo: identifier;

PageSeqNo: identifier;

Status: (clean, dirty); /∗ only for cached pages ∗/

Contents: array [PageSize] of char;

end;

persistent var StableDatabase:

set of Page indexed by PageNo;

var DatabaseCache:

set of Page indexed by PageNo;

type LogEntry: record of

LogSeqNo: identifier;

TransId: identifier;

PageNo: identifier;

ActionType: (write, full-write, begin, commit, rollback);

UndoInfo: array of char;

RedoInfo: array of char;

PreviousSeqNo: identifier;

end;

persistent var StableLog:

ordered set of LogEntry indexed by LogSeqNo;

var LogBuffer:

ordered set of LogEntry indexed by LogSeqNo;

type TransInfo: record of

TransId: identifier;

LastSeqNo: identifier;

end;

var ActiveTrans:

set of TransInfo indexed by TransId;
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In comparison to the architectural model of Section 12.3, the major changes Page structure
are that the structure of pages and, especially, log entries are refined and made
more explicit. In addition to its actual byte contents of fixed length (PageSize)
and the page sequence number (PageSeqNo) in its header, a page has a status
associated with it. This status is not part of the page itself, and it is relevant (and
maintained) only for pages that currently reside in the database cache. Its value
is either “dirty,” meaning that the cached version of the page contains more Status of

cached pages:
dirty or clean

recent updates than the one in the stable database, or “clean,” meaning that the
cached version is identical to the stable one. In terms of page sequence num-
bers, a cached page is dirty if and only if its page sequence number is greater
than the page sequence number of the page’s version in the stable database.
Note that this use of the term dirty is different from our use in Chapter 11 on
transaction recovery, where dirty meant modified by an uncommitted transac-
tion. As the term is commonly used both ways and the context always renders
it unambiguous, there is no harm in sticking with this overloaded term.

The structure of a log entry includes the entry’s LSN and, furthermore, Structure and
backward
chaining of log
entries

the action type, the page number, and the transaction identifier of the logged
action. Furthermore, each log entry for a transaction t contains the LSN of
the transaction’s previous log entry. So log entries are effectively backward
chained on a per-transaction basis. We will use nil to denote an undefined
value for such log entry pointers. The anchors for these chains are maintained
in the volatile ActiveTrans structure. The backward chaining of log entries is
also beneficial for transaction recovery during normal operation, to retrieve all
log entries of an aborting transaction in reverse chronological order. However,
transaction recovery algorithms could also choose to use their own separate
data structures for this purpose.

Figure 13.1 illustrates the use of sequence numbers in log entries and page
headers. In this figure, pages q and z in the cache are dirty, which can be
seen from their page sequence numbers being strictly larger than those of the
corresponding page versions in the stable database; pages b and p, on the other
hand, are clean. The last update on page q, with sequence number 4219, is
not yet recorded on the stable log, but this is compatible with the logging
rules because this log entry belongs to an uncommitted transaction, t17, and
the update is not yet contained in the stable database either.

The information in a log entry to undo or redo the action can be encoded Physical log
entries: before
images, after
images

in different ways; so we simply define it as a variable-length byte string. For
full-write actions, the redo information is the full contents of the page after the
modification, often referred to as the after image, and the undo information is
the full page contents before the modification, known as the before image of
the page. Note that the data server mostly reads a page before overwriting it,
but if the read action is “strictly local” in that the read data does not affect any
of the further actions other than the immediately following write, then we do
not bother mentioning the read in the history at all and denote the write as a
full-write.
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Figure 13.1 Sequence numbers in log entries and page headers.

For arbitrary write actions, before images and after images are feasiblePhysiological
log entries encodings of the undo and redo information, too, and in this case we simply

treat the write as a full-write as far as the recovery is concerned. In general,
there are other options for write actions as well. For example, you can merely
log the old and new values of the byte range that was actually modified in the
page. In some cases, you can describe the update by an operation such as shifting
a certain number of bytes by a certain offset, or the undo and redo information
may even refer to the storage layout of the data records (at least as long as
data records do not span pages). In any case, however, such write operations
must be confined to depend on and affect only a single page; no other database
pages must be read, and all input values that the page modification depends
on must be part of the log entry’s UndoInfo or RedoInfo fields (or retrievable
from the page itself ). This class of log entries has been coined physiological log
entries, as they describe logical operations on physical units (namely, pages). A
frequent property of such physiological operations is that they are not necessarily
idempotent; so performing such an operation twice has a different effect on the
page than performing it once.

The state of the above data structures can be translated into the state of ourCorrespondence
of data

structures and
abstract model

abstract system model in the following straightforward manner. The key point
is that the page sequence number of a page, say, s, tells us that all data actions
on that page that have sequence numbers less than or equal to s are reflected in
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the page contents. Conversely, none of the data actions with sequence numbers
higher than s have made any effect on that page (version).

An action with sequence number s is contained in the stable log if and
only if LSN s is in StableLog.

A write or full-write action with sequence number s on page p (i.e., the
page with page number p) is contained in the stable database if and only
if

StableDatabase[p].PageSeqNo ≥ s

A write or full-write action with sequence number s on page p is con-
tained in the cached database if and only if p is in DatabaseCache and

DatabaseCache[p].PageSeqNo ≥ s

or

StableDatabase[p].PageSeqNo ≥ s

These relationships are “axiomatic” in the sense that they state the intrin-
sic (and unprovable) connection between the data structures of the system
and our abstract model. It becomes very clear at this point that the abstract
model disregards some details but, other than that, essentially captures the
same information as the concrete data structures.

The most straightforward and most widely employed way of ensuring the
above relationships is by defining for all pages p:

DatabaseCache[p].PageSeqNo := max{s.LogSeqNo|s is a log entry,
in the log buffer or in the stable log, with s.PageNo = p}

So the page sequence number of a page is set to be the maximum log
sequence number of the log entries that refer to this page, which is very easy to
implement. In particular, it is sufficient to maintain the page sequence numbers
of the pages in the database cache; when such a page is written back to the
stable database, it automatically carries the correct page sequence number.

13.3 Redo-Winners Paradigm

In this section we present crash recovery algorithms that are based on the
redo-winners paradigm. Thus, during restart, redo steps are performed only
for updates of committed transactions. We begin our presentation with a pre-
cise description of the actions during normal operation in Section 13.3.1, and
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then consider a simple three-pass recovery algorithm in Section 13.3.2. ForTransaction
aborts

disregarded
pedagogical reasons, we first disregard transactions that have been aborted and
rolled back during normal operation; so undo steps are limited to transactions
that are still in progress at the time of the crash. The following Sections 13.3.3
and 13.3.4 then remove this simplification and gradually add more sophis-
ticated steps to the simple algorithm to make it complete and improve its
efficiency.

13.3.1 Actions during Normal Operation

Based on the concrete data structures introduced in Section 13.2, we can pre-Actions during
normal

operation
cisely describe the various actions that occur during normal operation. We use
a Pascal-like pseudocode notation for this purpose, which is sufficiently formal
to allow rigorous arguments on invariants. For sets or arrays, respectively, we
use the notation += and -= to denote the insertion and deletion of one or more
elements.

write or full-write (pageno, transid, s):

DatabaseCache[pageno].Contents := modified contents;

DatabaseCache[pageno].PageSeqNo := s;

DatabaseCache[pageno].Status := dirty;

newlogentry.LogSeqNo := s;

newlogentry.ActionType := write or full-write;

newlogentry.TransId := transid;

newlogentry.PageNo := pageno;

newlogentry.UndoInfo := information to undo update

(before image for full-write);

newlogentry.RedoInfo := information to redo update

(after image for full-write);

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := s;

LogBuffer += newlogentry;

fetch (pageno):

DatabaseCache += pageno;

DatabaseCache[pageno].Contents :=

StableDatabase[pageno].Contents;

DatabaseCache[pageno].PageSeqNo :=

StableDatabase[pageno].PageSeqNo;

DatabaseCache[pageno].Status := clean;
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flush (pageno):

if there is logentry in LogBuffer with logentry.PageNo = pageno

then

force ( );

end /∗if∗/;

StableDatabase[pageno].Contents :=

DatabaseCache[pageno].Contents;

StableDatabase[pageno].PageSeqNo :=

DatabaseCache[pageno].PageSeqNo;

DatabaseCache[pageno].Status := clean;

force ( ):

StableLog += LogBuffer;

LogBuffer := empty;

begin (transid, s):

ActiveTrans += transid;

ActiveTrans[transid].LastSeqNo := s;

newlogentry.LogSeqNo := s;

newlogentry.ActionType := begin;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo := nil;

LogBuffer += newlogentry;

commit (transid, s):

newlogentry.LogSeqNo := s;

newlogentry.ActionType := commit;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ( );

Note that the force action can be invoked by the system itself rather than Correctness
reasoningbeing invokable only on behalf of a transaction. Typically, the system will force

the log buffer whenever it is filled up, but it can also do so anytime at its
discretion. While the disk I/O for writing the log buffer contents to the stable
log is in progress, the server cannot append new log entries to the log buffer, or it
needs appropriate low-level synchronization (i.e., using latches or semaphores)
for the management of memory space. To prevent such synchronization from
becoming a potential performance bottleneck, most systems simply have two
log buffers and use them in an alternating way. So while one log buffer is being
written to disk, the other one is used for new log entries, and these roles are
switched at the next force action.
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Also note that replacement of cached pages (based on a policy such as
LRU or its variations and generalizations) is assumed to be under the control
of the cache manager and thus not shown in the pseudocode. When the cache
manager decides to drop a dirty page from the cache, it must initiate a flush
action for this page and wait for its completion before reusing the corresponding
memory space that held the page. Clean pages, on the other hand, can simply
be overwritten when the cache manager decides that they should be dropped
from the cache.

Other than that, the above pseudocode is straightforward. In terms of
its correctness, we can show that the code satisfies the three invariants that
we coined as logging rules in Section 12.4 of Chapter 12. Recall that these
rules—the redo logging rule, the undo logging rule, and the garbage collection
rule—dictate the following invariants: log entries of committed transactions
must be kept in a stable place, log entries for pages modified by uncommitted
transactions must be in a stable place once such a page is written into the stable
database, and log entries of committed transactions must be kept until all their
modified pages are written back into the stable database. The following the-
orem certifies that during normal operation, the three invariants always hold,
and, therefore, all necessary information for correct recovery is available during
restart.

THEOREM 13.1

During normal operation, the redo logging rule, the undo logging rule, andValidity of
logging rules the garbage collection rule are satisfied.

Proof

First let us make a subtle point about when exactly an action is part of

the history. This matters because we require certain actions of the history

to be in the stable database or stable log. The only reasonable answer is

to consider an action to be in the history if either the pseudocode of the

action is completely executed or at least one of the stable components of

the system, stable database or stable log, contains some evidence of the

action. So an action that is in progress when the system fails and has so

far not affected the stable components—neither flushed a modified page

to disk nor written any log entry to the stable log—is not considered part

of the history because its partial execution leaves no traces at all and no

return-code has been given to the action’s caller.

Next we can observe from the pseudocode that every action in the history

immediately creates a log entry in the log buffer (i.e., before the action’s

pseudocode completes). Now consider the three rules.

Redo logging rule: A commit(t) action causes the log buffer to be forced

to the stable log. Therefore, all data actions of transaction t are contained
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in the stable log, which is a sufficient condition for the redo logging

rule.

Undo logging rule: The only way of inserting a data action into the stable

database is by flushing the corresponding page. However, a flush action

first forces the log buffer to the stable log and thereby inserts the data

action into the stable log.

Garbage collection rule: This invariant can be inferred from the other two

rules because the stable log is monotonically increasing: the pseudocode

(as specified so far) never removes any entries from the stable log. This

monotonicity will be relaxed later, and we will then reconsider the validity

of the garbage collection rule.

In terms of its performance impact during normal operation, the major Cost of forced
log I/O during
normal
operation

overhead of logging arises from forced and thus synchronous I/O on the stable
log. Such force actions are triggered by flush actions by the cache manager,
due to the undo logging rule, and by commit actions, due to the redo logging
rule. The first class of trigger events should be relatively infrequent with a
sufficiently large database cache and an intelligent cache replacement policy
that avoids replacing dirty pages that have been modified by active transactions
whenever possible. The second class, however, occurs at a rate that equals the
transactions’ completion rate. The latter in turn equals the transactions’ arrival
rate, because almost all transactions should terminate with a commit action.
Therefore, the commit-induced forced log I/Os are a potential bottleneck that
may limit the server’s transaction throughput: the maximum log I/O rate that
can be sustained with the disk(s) on which the stable log resides is an upper
bound for the transaction throughput.

A technique that overcomes this potential throughput bottleneck is the Group commit
for log I/O
batching

batching of log I/Os. This requires postponing a log I/O for a while so that
it can be combined into a single longer I/O together with other log entries
that are created in the meantime. Trading multiple short I/Os for a single long
I/O yields a high benefit because it avoids rotational delays and can therefore
utilize the disk bandwidth much better. In the specific context of the forced log
I/O upon a commit event, this batching technique is known as group commit.
When a transaction issues a commit request, the corresponding log entry is
created in the log buffer, but the force action for writing the log buffer to
the stable log is postponed until a “group commit timer” expires or the log
buffer is full and must be written to disk anyway. The timer ensures that the
group commit technique does not incur unduly long deferrals under light load
when commit actions are infrequent. The timer’s initial value is a fine-tuning
parameter whose optimization presents fairly difficult mathematical problems.
Fortunately, however, it is not that hard to find a reasonably robust, albeit
suboptimal, setting in practice, usually on the order of 100 milliseconds.
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13.3.2 Simple Three-Pass Algorithm

The simplest recovery algorithm for the redo-winners paradigm proceeds in
three phases, each of which performs a pass over the stable log:

1. The analysis pass starts at the beginning of the stable log and reads allAnalysis pass
log entries in ascending order of LSNs until it reaches the end of the
log. During this pass, the transaction identifiers in the log entries are
inspected, and two lists of transactions are collected:

winner transactions (or “winners” for short) are those transactionsWinner
and loser

transactions
for which a commit log entry is encountered,

loser transactions (or “losers” for short) are those for which no
commit log entry exists in the stable log.

The entries in the loser list also track the LSN of the most recent data
action for each transaction; these are referred to as the last LSNs.

Note that it may be nontrivial to locate the beginning and the end ofStart and end
of the stable log the stable log, depending on how the log is actually implemented. State-

of-the-art implementations use a set of preallocated fixed-size files, with
dynamic truncation of the actually used part and cyclic reuse (which is
not yet incorporated in our simple algorithm). Then the beginning of the
log is usually located by looking up a master record on stable storage thatMaster record
is maintained as truncations are performed. In the pseudocode given
below, we refer to the beginning of the stable log by the oldest LSN,
with the understanding that this is determined from the master record.
The end of the log cannot be determined this way without a severe per-
formance penalty, the reason being that a master record pointing to the
end would have to be updated on stable storage with every force action,
which we expect to be much more frequent than log truncations. Rather,
the end of the log is determined as the log scan progresses by checking
the monotonicity of timestamps that are embedded in the blocks of the
stable log file(s): we realize that we have reached an older, previously
truncated part of the log when we see a decreasing timestamp. In the
pseudocode given below we do not capture such low-level implemen-
tation techniques, and rather refer to the end of the log by the highest
occurring LSN, with the understanding that this log sequence number
is a priori unknown to the recovery algorithm and merely indicates the
point where all forward-scanning passes over the stable log stop.

Note also that we expect the list of loser transactions to be small,
as it contains only the transactions that were running at the time of the
crash. Thus, it is no problem to build this list in memory during the
analysis pass. In contrast, the list of winner transactions may become
fairly large depending on the time period that is covered by the stable
log and the load intensity of the system during this period. However, if



13.3 Redo-Winners Paradigm 459

the size of the winner list is a concern, we can easily avoid maintaining
it explicitly. In fact, every transaction that does not eventually show up
in the loser list must be a winner. So it suffices to maintain the loser list.

2. The redo pass starts again at the beginning of the log and reads the Redo pass
entire stable log in ascending order of LSNs. Whenever it encounters a
log entry that describes a data action on a page p that was performed
by a transaction that is not in the loser list, the page is fetched from
the stable database, and the data action is repeated based on the redo
information in the log entry.

3. The undo pass looks up all log entries for data actions of loser transactions Undo pass
in descending order of their LSNs, fetches the corresponding page, and
performs an inverse write action based on the undo information in the
log entry. Note that the ordering of log sequence numbers is a global
one across all loser transactions. This traversal of several backward chains
of log entries is implemented by performing a backward pass over the
stable log starting from its current end (which is now known from the
analysis pass) and locating the highest LSN among all “last LSNs” in
the loser list. Then, whenever an undo step for a loser transaction t has
been performed, the last LSN of t in the loser list is replaced by the
LSN of the transaction’s preceding log entry. The latter is given by the
PreviousSeqNo field in the log entry itself (i.e., the backward chaining
of log entries on a per-transaction basis). Thus, the overall effect of this
procedure can be viewed as if all log entries of all loser transactions are
dynamically merged into a globally descending sorted list. Note that
although the undo pass locates a set of log entries in a random-access
manner, it is advantageous to embed this access sequence into sequential
disk I/Os because of the ordering and the expectation that the requested
log entries are relatively close to each other in the stable log (as they
belong to the same small set of fairly recent transactions).

After these three passes, the restart is completed by flushing all dirty pages
from the cache back to the database and then reinitializing the stable log (i.e.,
conceptually discarding all log entries). According to the general objective of
crash recovery, this global flushing would not be necessary, as we merely need
to establish a correct state of the cached database, and the resulting amount
of random disk I/O is indeed a major shortcoming in terms of restart duration
and thus availability. We will discuss in Section 13.3.4, under Undo Comple-
tion, why this relatively drastic measure is necessary unless we add other tech-
niques for restart completion, and we will then present much more efficient
alternatives.

For reasons that will become clear in a short while, we restrict the data
actions for this algorithm to be full-writes. The complete pseudocode for the
algorithm looks as follows.
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Simple
three-pass crash

recovery

/∗ Simple three-pass crash recovery algorithm: ∗/

restart ( ):

analysis pass ( ) returns losers;

redo pass ( );

undo pass ( );

for each page p in DatabaseCache do

if DatabaseCache[p].Status = dirty then flush (p); end /∗if∗/;

end /∗for∗/;

reinitialize StableLog;

analysis pass ( ) returns losers:

var losers: set of record

TransId: identifier;

LastSeqNo: identifier;

end indexed by TransId;

losers := empty;

min := LogSeqNo of oldest log entry in StableLog;

max := LogSeqNo of most recent log entry in StableLog;

for i := min to max do

case StableLog[i].ActionType:

begin:

losers += StableLog[i].TransId;

losers[StableLog[i].TransId].LastSeqNo := nil;

commit:

losers -= StableLog[i].TransId;

full-write:

losers[StableLog[i].TransId].LastSeqNo := i;

end /∗case∗/;

end /∗for∗/;

redo pass ( ):

min := LogSeqNo of oldest log entry in StableLog;

max := LogSeqNo of most recent log entry in StableLog;

for i := min to max do

if StableLog[i].ActionType = full-write and

StableLog[i].TransId not in losers

then

pageno = StableLog[i].PageNo;

fetch (pageno);

full-write (pageno)

with contents from StableLog[i].RedoInfo;

end /∗if∗/;

end /∗for∗/;
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undo pass ( ):

while there exists t in losers

such that losers[t].LastSeqNo ‹› nil

do

nexttrans = TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry = losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = full-write

then

pageno = StableLog[nextentry].PageNo;

fetch (pageno);

full-write (pageno)

with contents from StableLog[nextentry].UndoInfo;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /∗if∗/;

end /∗while∗/;

An observation that can be made about the simple three-pass algorithm Correctness
reasoningis that it is “perfectly idempotent” in the following sense: when the system

crashes again during a restart (i.e., before the point when new transactions
are admitted), the recovery algorithm performs exactly the same steps as it
did during the previous restart, regardless of whether the system flushes pages
during restart. Note that this idempotence property is all but trivial, as full-
write actions, and also their redoing or undoing, take place only in the cache,
and the cache manager can arbitrarily flush pages during restart. Further note
that no additional log entries are created by the recovery algorithm. The reason
why this behavior is valid lies in our restriction to full-writes as data actions.
For each page that is affected by recovery, it is only the very last full-write
that matters. This observation is a key point in the proof of the following
theorem.

Correctness of
simple
algorithm with
full-writes

THEOREM 13.2

When restricted to full-writes as data actions, the simple three-pass recovery

algorithm performs correct recovery.

Proof

First recall our basic assumption that the original history before the crash

(before the first crash following the last fully completed restart, to be pre-

cise) is conflict serializable and log recoverable. This implies that for each
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page, the order of writes from different transactions coincides with the

order in which the transactions terminated. We need to show that after

the completion of the recovery algorithm, the cached database contains

exactly all updates of committed transactions in the serialization order of

the original history. The reasoning why this is true proceeds in three steps,

corresponding to one of the three phases of the algorithm.

1. Analysis pass: It is clear from the pseudocode that at the end of the

analysis pass, set losers consists of all transactions with at least

one log entry, but no commit entry in the stable log. What remains

to be shown is that these are exactly the uncommitted transactions

of the history that require undo recovery. This can be verified in two

steps:

(a) First, we know from the redo logging rule that the committed

transactions of the history must have a commit entry in the stable

log. Conversely, we obtain that the transactions in losers are

indeed uncommitted in the history.

(b) Second, the undo logging rule tells us that any transaction that

has made an update to the stable database must have an entry

in the stable log. Therefore, the uncommitted transactions of the

history that are missing in losersmust be irrelevant in that their

updates have been restricted to the database cache and the log

buffer.

Analogous arguments show that the LastSeqNo field of the ele-

ments in losers does indeed point to the most recent stable log

entry of the corresponding transaction. Again, any log entries that

were merely in the log buffer and have become lost in the crash do

not matter since their effects on the database must have been lost

by the crash, too.

Finally, a side effect of determining the set losers is that we can

test if a transaction is a winner by checking that it is not in losers.

All transactions with at least one log entry in the stable log that

do not appear in losers must have a commit log entry and are

therefore winners.

2. Redo pass for winners: First note that the redo pass redoes all full-

write actions of all committed transactions, because these writes are

guaranteed to be on the stable log by the redo logging rule (and the

fact that the stable log is never truncated in this simple algorithm),

and the log scan does not skip any log entries other than those of

losers. Further note that the full-writes are redone in the original

order of the history, because log entries are created immediately

and their order is preserved by force actions. So for each page p
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that was modified by at least one winner transaction, we obtain a

sequence of full-write actions with the following structure:

si1 : w(p, Tn1 ) . . . si2 : w(p, Tn2 ) . . . sik : w(p, Tnk )
crash1 si1 : w(p) . . . crash2 . . .

. . .

crashm si1 : w(p) . . . sik : w(p)

This entire sequence is equivalent to the very last full-write with

sequence number sik , and this full-write does in turn contain all the

committed full-writes, with sequence numbers si1 through sik , that

occurred before the original, first crash. By the basic assumption that

the original history was conflict serializable and log recoverable, the

final full-write reflects the original serialization order of all committed

transactions.

If there were no loser transactions at all, then the proof would al-

ready be complete. As for the interrelationship of winner and loser

log entries, we know that the history is log recoverable and can

therefore infer that for every page p, all loser updates must follow

all winner updates on p. (Recall that we have excluded transactions

that have been completely rolled back before the crash.) Further

note that a full-write of page p with sequence number s includes all

actions on p with sequence numbers up to s and removes all actions

on p with higher sequence numbers. Therefore, all pages with at

least one winner update are in their correct state at the end of the

redo pass: the cached database, restricted to those pages, contains

exactly all write actions of the committed transactions in their seri-

alization order. Furthermore, the idempotence of a full-write action

ensures that this property holds even after repeated crashes and

restarts, once the redo pass is completed.

For all remaining pages, which have been modified only by loser

transactions, the database (still) contains all writes that precede the

most recent flush action of the corresponding page.

So in more formal terms, what we have shown is that throughout

the redo pass the following invariant holds:

∀ log sequence numbers s ∈ stable log such that
the log has been processed for redo up to and including s :
∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :

(o belongs to t and refers to p ∧ t is a winner ∧ o ≤ s )
⇒ o ∈ cached database

where o ≤ s refers to the order of log entries in the stable log, which

in turn corresponds to the order of the extended history. So as the
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log sequence number s is advanced to the end of the stable log, all

winner writes are eventually contained in the cached database.

3. Undo pass for losers: From the observation that uncommitted writes

must follow all committed writes on a page, we know that none

of the undo steps will undo any of the committed and possibly

redone winner updates. Thus, we need to show that the undo pass

does indeed cover all loser updates that have affected the stable

database. The argument on the analysis pass has already shown

that for each page, the most recent uncommitted write that was

followed by a flush action before the crash is covered: this must be

one of the LastSeqNo values in the losers set. Then, by following

the backward chains of all loser transactions, we see that all those

writes are included. Further, by conceptually merging all log entries

of all backward chains into a single descending order, we see that the

loser writes are undone in the reverse order of the history. Therefore,

if the original loser write is actually present in the stable database

after the crash, the undo step performs its corresponding inverse

action. At the end of the undo pass, all loser writes are undone by

inverse actions.

The only case that needs further analysis is when an undo step is

performed although the original loser write has become lost by the

crash and is not contained in the stable database (and thus not in

the post-crash cached database either). In this case, by performing

a full-write based on the page before image, the undo step actually

inserts into the cached database the original full-write action that

preceded the “undone” action within the loser transaction. From

this point on, all subsequent undo steps for the affected page find

all prior updates to be included in the cached database. This process

terminates with inverting all updates from a page that followed the

page’s most recent committed write (or the page’s initial state if no

committed write exists).

Finally, we need to consider the possibility of repeated crashes. How-

ever, this does not introduce any new types of situations: if a page is

flushed during the restart after having performed an undo step on

it, the effect is simply as if the page were certain not to be flushed

after the corresponding original write action before the crash. This

case is handled correctly by the undo pass.

In formal terms, the undo pass satisfies the following invariant:

∀ log sequence numbers s ∈ stable log such that all more recent
log entries of losers, including s, have been processed for undo :
∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :

(o belongs to t and refers to p ∧ t is a loser ∧ o ≥ s)
⇒ o �∈ cached database
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So when the log sequence number s finally reaches the oldest loser

update during the backward pass over the log, none of the loser up-

dates is contained in the cached database anymore. Furthermore,

because of the assumption that the original history is conflict seri-

alizable and log recoverable, all loser writes for a given page must

follow all winner actions on the same page in the history. Therefore,

the logical invariant that resulted from the redo pass (see above) re-

mains unaffected by the undo pass and continues to hold. Together

the two formulas imply that the cached database contains exactly

all winner writes at the end of the entire restart.

It may be worthwhile to point out that the same result would have

been achieved by switching the order of the redo and undo passes;

that is, first performing the undo pass and then the redo-winners

pass would be equally correct. Note, however, that a crucial prereq-

uisite in this result is that all loser writes for a page follow all winner

writes for the same page in the history. Once this is relaxed (and

we will do so later), the order with redo first and undo second will

become essential.

The simple three-pass algorithm for full-writes is illustrated by the example
in Figure 13.2. A pictorial overview is given in Figure 13.3. The example shows
the actions and resulting effects for four transactions (t1 through t4) on six differ-
ent pages (a through f ); flush actions are introduced at arbitrarily chosen points
to illustrate their effects. The example assumes a repeated crash during the redo
pass of the recovery. Thus, the actions are grouped into three parts: normal op-
eration, first incomplete recovery attempt, second and completed recovery.

It may be worthwhile to point out a few special situations that occur in the
example, all of which are correctly handled by the algorithm without special
code:

The log entry with sequence number 21 is lost in the crash, since it was
only in the log buffer at the time of the failure. This is harmless, as the
corresponding transaction, t5, must be a loser transaction.

For page d, the actions with sequence numbers 8 and 11 are redone in the
first recovery attempt, although the stable database already contained
these actions. This is feasible because the actions are full-writes whose
effects include all prior writes on the same page.

Because of the flush action for page d after the redo step for sequence
number 8, the first recovery attempt leaves page d in a state that is
actually older than the state after the original crash where the page
sequence number in the stable database was 11. So the first recovery
leads to even more “losses” of committed updates. However, this situa-
tion is by no means abnormal. It is guaranteed that once the redo pass
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: commit(t3) 14: commit(t3) 11, 12, 13, 14
15: flush(d) d: 11
16: write(d, t4) d: 16 16: write(d, t4)
17: write(e, t2) e: 17 17: write(e, t2)
18: write(b, t5) b: 18 18: write(b, t5)
19: flush(b) b: 18 16,17,18
20: commit(t4) 20: commit(t4) 20
21: write( f, t5) f : 21 21: write( f, t5)

System crash

Restart
Analysis pass: losers = {t2, t5}
redo(3) a: 3
redo(6) b: 6
flush(a) a: 3
redo(8) d: 8
flush(d) d: 8
redo(11) d: 11

Second system crash

Second restart
Analysis pass: losers = {t2, t5}
redo(3) a: 3
redo(6) b: 6
redo(8) d: 8
redo(11) d: 11
redo(16) d: 16
undo(18) b: 6
undo(17) e: 0
undo(13) a: 3
undo(7) c: 0

Second restart complete: resume normal operation

Figure 13.2 Example scenario for the simple three-pass recovery algorithm with full-writes.
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Figure 13.3 Overview of the example scenario.

completes, all committed writes are contained in the cached database.
In the example, we can easily verify that this is indeed the case after the
second restart is completed.

Incorporating General Write Actions as Physiological Log Entries

In the simple three-pass algorithm described so far we have exploited the prop-
erty that a full-write on a page contains all prior write actions on that page and
also the resulting idempotence of full-writes. Because of these properties, we
did not need any special care with regard to repeated crashes. In the scenario of
Figure 13.2, for example, the fact that the redoing of the action with sequence
number 8 on page d takes place twice, in both of the two restarts, does not lead
to any incorrect results. Likewise, redoing that action at all, despite the fact
that it is already included in the stable database at the time of the first crash, is
correct because of the nature of full-writes. In contrast, if these write actions
and their corresponding redo steps were general, nonidempotent writes, then
the steps in the example of Figure 13.2 would lead to an incorrect database.
The action with sequence number 8 would be executed three times in total.
When this action corresponds to a physiological action such as shifting a byte
range within a page, the result clearly differs from executing the action only
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once. More precisely, the second and third executions should not be regarded
as repetitions of the original action but rather as additional, “new” actions that
are erroneously “invented” by the recovery algorithm.

The solution to this problem is to ensure that every winner action is ex-State testing
during the
redo pass

ecuted only once, regardless of the number of repeated crashes and restarts.
Thus, the recovery algorithm must guarantee that it does not redo an action
that has already been contained in the stable database before the original crash
or has been redone and flushed to the stable database in an earlier, incomplete
restart. The key to this guarantee is to exploit the page sequence number that
is embedded in a database page. By comparing an action with a given sequence
number against the page sequence number of the affected page, we can tell if
that action is already included in the current state of the page. This test needs
to be performed for each possible redo step, and the corresponding action is re-
done only if the test indicates that the action is not yet present in the page state.
Furthermore, if the action needs to be redone, we need to protect ourselves
from erroneously redoing it again during a later restart. Again, page sequence
numbers come in handy for this purpose. All we need to do is to set the page
sequence number to the sequence number of the redone action, and once the
page gets flushed to the stable database, we can later (i.e., after one or more
further crashes) easily test that that action is already present.

The complication with general, not necessarily idempotent writes arises notState testing
during the
undo pass

only for the redo recovery but also during the undo pass. Here the situation
to be avoided is that an action is “undone” although the original action has
been lost by the crash or has already been undone in an earlier restart that
subsequently flushed the affected page back to the stable database. In both
cases, the undo pass is confronted with the problem that the action under
consideration is not (or no longer) present in the page state. “Undoing” the
action would then erroneously add another, “new” inverse action.

Not surprisingly, testing the page sequence number again provides the
solution. If the page sequence number is smaller than the sequence number of
the considered action, then we must not invoke an undo step for that action.
This is the dual solution to the one for the redo pass. And similarly, when we
perform an undo step, we must make the resulting state modification testable
by adjusting the page sequence number.

In the undo case, the appropriate new value of the page sequence number
would be the sequence number of the page’s most recent action that preceded
the undone action. Determining this predecessor sequence number would,
however, require introducing another pagewise backward chaining of log en-
tries. Although the necessary additional storage space is surely not a tremen-
dous overhead, it can be avoided by the following trick: rather than identifying a
page’s predecessor of an undone action, it is sufficient to set the page sequence
number to any value that lies between the sequence number of the undone
action and its predecessor. This value may actually correspond to the sequence
number of an action on a different page, but this does not matter at any point
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in the algorithm; there is no danger of misinterpretation. Rather, the new value
of the page sequence number perfectly serves its purpose in that it tells us,
upon a state test, that the undone action is no longer present, whereas all pre-
ceding actions are still present. In practice, the concrete value of the new page
sequence number is usually chosen by decrementing the original value by one.

The solution to incorporate arbitrary physiological actions into the redo
and undo pass of the simple algorithm can be summarized as follows:

When a log entry for page p with sequence number i is encountered
during the redo pass, the logged action is redone only if i is larger than
the page sequence number of p. In this case, the page sequence number
of p is then set to i .

When a log entry for page p with sequence number i is encountered
during the undo pass, the logged action is undone only if i is smaller
than or equal to the page sequence number of p. In this case, the page
sequence number of p is then set to i − 1.

The necessary changes to the pseudocode of the simple three-pass recovery
algorithm are given below.

redo pass ( ): Redo pass with
general writes...

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ‹ i

then

read and write (pageno)

according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /∗if∗/;
...

undo pass ( ): Undo pass with
general writes...

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ›= nextentry.LogSeqNo

then

read and write (pageno)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := nextentry.LogSeqNo − 1;

end /∗if∗/;
...
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Note that state testing based on merely a page sequence number is feasible
only because flush actions have the effect of including all write actions up
to a certain sequence number, and both the redo pass and the undo pass pro-
ceed in chronological order and inverse chronological order, respectively. If this
were not the case, then allowing physiological log entries would require a more
general state testing capability for arbitrary, not necessarily chronologically con-
secutive sets of actions. Such generality would surely incur much higher im-
plementation overhead. The simplification that results from chronological pro-
cessing is also exploited in the correctness reasoning for the following theorem.

Correctness of
simple

algorithm with
general writes

THEOREM 13.3

The simple three-pass recovery algorithm with sequence number testing

performs correct recovery for general writes.

Proof

The proof needs to show that

1. all write actions of winner transactions are executed exactly once in

chronological order of the original history, and

2. all write actions of loser transactions are inverted exactly once in reverse

chronological order.

Once we have established these properties, the rest of the correctness rea-

soning is identical to the arguments given in the proof of Theorem 13.2

and therefore omitted here.

(1) The redo pass still considers all winner actions in their original history

order. It suppresses only actions that are already included in the cached

database according to the page-state test. These actions must have been in

the stable database already after the most recent crash, or they must have

been redone earlier in the current restart. In the first case, we know that

no further redo step or flush action for that page can remove the action

under consideration. Therefore, the action will never be redone (again). In

the second case, if the page is flushed later in the same restart, then the

page sequence number in the stable database is automatically increased

and indicates that the considered action is now included. Otherwise, that

is, if the system crashes again before the restart completes or the page is

flushed, the subsequent restart will correctly redo the action again. In more

formal terms, the redo pass satisfies the following invariant in every step:

∀ log sequence numbers s such that
the log has been processed for redo up to but excluding s :
∀ pages p : ∀ transactions t :

(s belongs to t and refers to p ∧ t is a winner)
⇒ (s is redone ⇔ s �∈ stable database)
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After s is redone, it is contained in the cached database. Since the cached

database is (re-) initialized from the stable database right after each crash

and the redo pass processes each winner log entry at most once in between

two crashes, we can formally infer the same invariant that we observed for

the algorithm with full-writes only:

∀ log sequence numbers s ∈ stable log such that
the log has been processed for redo up to and including s :
∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :

(o belongs to t and refers to p ∧ t is a winner ∧ o ≤ s)
⇒ o ∈ cached database

(2) The undo pass considers all loser actions in reverse chronological order.

When it actually performs an undo step, reducing the affected page’s se-

quence number by one guarantees that no loser action is skipped, and the

reverse ordering in which these actions are considered is not affected ei-

ther. When an undo action is suppressed because of the page-state test, the

cached database must already contain the inverse action for the considered

action (so that this pair has been reduced to “null”). If this holds for the

stable database as well (because of a previous flush action), it is guaranteed

that the undo is never repeated again. Otherwise, if the system crashes

again before the restart completes or the page is flushed, the subsequent

restart will correctly undo the action again.

These correctness arguments can be further formalized analogously to our

above elaboration for the redo pass. Since the state testing during the

undo pass is perfectly dual to that of the redo pass, we omit this additional

formalization.

To illustrate the algorithm and especially its use of page-state testing with
a concrete example, we reconsider the scenario of Figure 13.2. Figure 13.4
shows again all actions during normal operation and during the first and second
restart; this time, however, we assume that all writes are physiological actions
rather than physical full-writes. The actions during normal operation are, of
course, identical to the earlier example (Figure 13.2) but listed again for self-
containedness. In the restart part, we also list and explicitly mark redo and
undo steps that are considered but not performed because the state testing
indicates so.

The necessity and correcting effect of the page-state testing becomes obvi-
ous at several points. For example, both the first and the second restart consider
redoing actions on page d, but those redo steps with sequence numbers less
than or equal to the (stable) page sequence number 11 are suppressed. In
Figure 13.4, the suppressed steps are denoted as “consider-redo” steps (as op-
posed to the actually performed “redo” steps). During the undo pass of the
second restart, none of the considered undo steps except the one on page b
is actually performed because the page sequence numbers indicate that the
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: commit(t3) 14: commit(t3) 11, 12, 13, 14
15: flush(d) d: 11
16: write(d, t4) d: 16 16: write(d, t4)
17: write(e, t2) e: 17 17: write(e, t2)
18: write(b, t5) b: 18 18: write(b, t5)
19: flush(b) b: 18 16, 17, 18
20: commit(t4) 20: commit(t4) 20
21: write( f, t5) f : 21 21: write( f, t5)

System crash

Restart
Analysis pass: losers = {t2, t5}
redo(3) a: 3
consider-redo(6) b: 18
flush(a) a: 3
consider-redo(8) d: 11
consider-redo(11) d: 11

Second system crash

Second restart
Analysis pass: losers = {t2, t5}
consider-redo(3) a: 3
consider-redo(6) b: 18
consider-redo(8) d: 11
consider-redo(11) d: 11
redo(16) d: 16
undo(18) b: 17
consider-undo(17) e: 0
consider-undo(13) a: 3
consider-undo(7) c: 0

Second restart complete: resume normal operation

Figure 13.4 Example scenario for the simple three-pass recovery algorithm with physiological write actions.
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corresponding original actions with sequence numbers 17, 13, and 7 were lost
in the first crash. The only action that requires undo is the one with sequence
number 18 on page b. After having performed the undo step, the page sequence
number of b is set to 18 − 1 = 17. Although there has never been an action
with sequence number 17 on page b, the new page sequence number perfectly
serves its purpose in that it indicates that action 18 is no longer present, whereas
all actions on b up to 17 are included in the current page state.

13.3.3 Enhanced Algorithm: Log Truncation, Checkpoints,
Redo Optimization

The simple three-pass recovery algorithm presented in the previous subsection Performance
bottleneckshas a number of fundamental drawbacks that give rise to severe performance

bottlenecks:

1. The analysis pass has to scan the entire stable log. This may be fairly
long, equivalent to hours of server operation, and often only a short tail
fraction, say, the last five minutes, contains loser transactions at all.

2. The redo pass has to scan the entire stable log. Again, if the log captures
hours of operation, we would expect that most of the logged winner
actions are already in the stable database because of flush actions.

3. The redo pass incurs many random I/Os to fetch pages from the stable
database. Note that this cost arises even if the subsequent page-state test
indicates that no redo step is necessary.

These bottlenecks affect the restart time after a crash and therefore reduce
the system availability in a possibly dramatic manner. Recall from Section 12.1
that this compromises our most important design objective. In the following,
we will further elaborate on the three-pass recovery algorithm to eliminate
these bottlenecks. To this end we will introduce effective ways of log truncation
to shorten the scan time for the stable log. Furthermore and most importantly,
we will introduce periodic checkpoints that establish additional invariants be-
tween the cached database and the stable database so as to limit the fraction
of the stable log that needs to be scanned at all. Finally, we will consider the
logging of flush actions for further optimization of the redo pass with the goal
of minimizing the number of random database I/Os during restart.

Log Truncation

Over time, the stable log collects a large number of log entries, some of which,
we can infer, are no longer relevant regardless of when and how exactly the
system crashes (as long as the stable database remains intact, which is our basic
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premise in this chapter). More specifically, we know that

a log entry for page p with sequence number s is no longer needed for
redo recovery if the page sequence number of p in the stable database
is equal to s or higher,

a log entry is needed for undo recovery only as long as the corresponding
transaction is not yet completed.

All log entries that are no longer needed, neither for redo nor for undo,Advancing the
start of the

stable log
can be removed from the stable log as a form of garbage collection. However,
it is not at all easy to implement this garbage collection on a log file without
interfering too much with the concurrent sequential I/Os for appending new
log entries. Therefore, we restrict the scope of the garbage collection to re-
move only entire prefixes of the stable log. The implementation then simply
requires advancing the pointer to the start of the stable log, which is kept in
a separate master record on stable storage. The new start pointer is chosen to
be the maximum LSN such that all log entries with smaller sequence numbers
are obsolete. This point is computed by taking the minimum value over the
following “lower bounds” for the still essential log entries:

For each cache resident and dirty page p, the sequence number of theSystemRedoLSN
oldest write action on p that was performed after the last flush action
for p. This sequence number is called the redo (log) sequence number
or RedoLSN of p. The minimum among the redo sequence numbers
of the dirty cache pages is called the system redo sequence number or
SystemRedoLSN.

The sequence number of the oldest write action that belongs to anOldestUndoLSN
active transaction. This sequence number is called the oldest undo (log)
sequence number or OldestUndoLSN.

The oldest undo sequence number can be computed easily by remem-
bering, in memory, the sequence numbers of the “begin” log entries for all
currently active and, therefore, potential loser transactions. Determining the
redo sequence number of a page requires a small and extremely low-overhead
extension of the cache manager: it remembers, in its bookkeeping data struc-
tures in memory, the sequence number of the first write action on a page after
that page has been fetched into the cache. When a page is flushed but remains
in the cache, this remembered sequence number is reset to “undefined,” just as
the page becomes “clean” again by the flush action. So this extension requires
merely an additional sequence number field for each page frame of the cache.

Log truncation can occur at any arbitrary point, but in practice it is good
enough to invoke it only periodically, say, every five or ten minutes. A log trun-
cation is in effect once the master record has been updated on stable storage.
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Subsequently, both the analysis pass and the redo pass are accelerated by scan-
ning a shorter log. An inconvenient situation that can arise when a log trun-
cation is attempted is the following. If the very first, that is, the very oldest,
log entry in the stable log is still needed, then no truncation is possible, even
if this first entry is immediately followed by a large number of obsolete en-
tries. Such a “blocking” of the log truncation is unlikely to occur because of
the oldest undo sequence number; this would only be possible if a transaction
can remain active for the time frame of the entire stable log, typically hours.
This is an unlikely situation, because truly long running activities such as work-
flows are not based on a single transaction. So the real troublemaker would
be the oldest redo sequence number among the dirty pages in the cache. It is
not very likely that it would be hours before a dirty page was flushed back to
the stable database, but if the situation were so, there is a fairly simple remedy
to enable the log truncation. At this point, a flush action should be enforced
for the corresponding page, removing the page from the list of dirty pages. As
a consequence, the minimum of the redo sequence numbers would then be
advanced to the lowest redo sequence number among the remaining pages.

The overall procedure for log truncation is given by the pseudocode below.

log truncation ( ): Log truncation
during normal
operation

OldestUndoLSN :=

min {i|StableLog[i].TransId is in ActiveTrans};

SystemRedoLSN := min {DatabaseCache[p].RedoLSN};

OldestRedoPage := page p such that

DatabaseCache[p].RedoLSN = SystemRedoLSN;

NewStartPointer := min{OldestUndoLSN, SystemRedoLSN};

OldStartPointer := MasterRecord.StartPointer;

while OldStartPointer - NewStartPointer

is not sufficiently large

and SystemRedoLSN ‹ OldestUndoLSN

do

flush (OldestRedoPage);

SystemRedoLSN := min{DatabaseCache[p].RedoLSN};

OldestRedoPage := page p such that

DatabaseCache[p].RedoLSN = SystemRedoLSN;

NewStartPointer := min{OldestUndoLSN, SystemRedoLSN};

end /∗while∗/;

MasterRecord.StartPointer := NewStartPointer;

The correctness of the log truncation procedure follows directly from the
garbage collection rule introduced in Section 12.4. A log truncation removes
a subset of the log entries that can be eliminated according to the garbage
collection rule. We do not consider a more formal statement or proof to be
necessary here.
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If the stable log contains full-write log entries, then log truncation can beLog truncation
for full-writes even more aggressive. As a full-write contains all prior write actions on the

same page, such a log entry renders all preceding log entries obsolete as far as
the redo steps for that page are concerned. It is sufficient to keep only the most
recent after image for each page that has been updated by a winner transaction.
Furthermore, our previous consideration on flush actions is still valid: no after
image needs to be kept when the page has been flushed to the stable database
after its most recent winner update.

Both considerations together yield the result that, as far as redo recoveryDatabase safe
is concerned, the stable log can be minimized to contain at most one after
image for each currently cache resident dirty page. Such a stable log can be
implemented in an extremely compact manner: the name database safe has
been proposed for it in the literature. Its size is on the same order as the server’s
database cache size, and if we keep the log entries for undo separately, the redo
pass boils down to merely loading the database safe into the cache. Thus, we
can obtain an extremely efficient restart with such an implementation.

The database safe approach is a special case of our general three-pass recov-
ery algorithm, with redo logging being restricted to complete page after images.
Managing the safe still requires continuous or periodic log truncation, based
on tracking redo sequence numbers, as discussed above. The major drawback
of the approach is that it seems to require a second stable log that holds before
images for undo recovery. An alternative, where before images are held in the
cache only (under the assumption of a no-steal cache replacement policy, see
Chapter 12), has been worked out in the literature, and it is also possible to
extend the method such that before images are appended to the safe as well so
that a single stable log holds all physical log entries. In any case, however, us-
ing before images for undo recovery is inherently restricted to the page model
where page-granularity concurrency control is required. Therefore, we do not
further consider the special database safe approach in the rest of this chapter.

Note that it is perfectly feasible for a log manager with physiological logCombining
physiological
and physical

log entries

entries to occasionally create full page after images and append them to the
stable log, thus mixing physiological and physical log entries in the same log.
This way the log manager can advance the RedoLSN of a critical page without
depending on the cache manager to flush the page. This combined approach
reconciles the advantages of physiological logging (lower log space consump-
tion) with those of physical logging (more aggressive log truncation and faster
redo) in a dynamically controllable manner. In the following, we will simply
consider page after images as a special case of log entries, and will continue to
focus on the more general notion of physiological log entries.

Periodic Checkpoints

We already mentioned that log truncation can be initiated continuously or peri-Heavyweight
checkpoint odically. We also explained that the cache manager can facilitate more effective
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log truncation by enforcing flush actions for dirty pages. A periodically invoked
log truncation along with flushing all dirty pages to the stable database is known
as a checkpoint. Because flushing all dirty pages incurs a substantial amount
of additional work during normal operation, we refer to this specific variant
as a heavyweight checkpoint. (As you can easily guess, we will later consider a
lightweight variant.)

The effect of flushing all dirty cache pages back to the stable database is that Acceleration of
the redo passall previous log entries are rendered obsolete at once, as far as redo recovery is

concerned. Technically, the redo sequence numbers of all dirty cache pages are
reset after the flushing is complete. Consequently, the oldest undo sequence
number is the limiting factor in the log truncation; all log entries up to that
point are discarded. If it happens that no transaction is active at the time the
checkpoint is taken, then the stable log can even be completely reinitialized as
the empty set. But this special situation would be rather exceptional.

Once a checkpoint is taken, the redo pass after a subsequent crash can safely Checkpoint log
entriesignore all log entries that are older than the checkpoint. In fact, it does not need

to scan the part of the stable log that precedes the most recent checkpoint. To
take this additional advantage, however, we need to be able to determine the
position in the stable log when the checkpoint occurred. This can be achieved
easily by creating a special checkpoint log entry as a marker in the log and forcing
this entry to the stable log when the checkpointing activity, especially the flush-
ing of dirty pages, is complete. Then the sequence number of the checkpoint
can be stored in the master record on stable storage, so that after a crash, the
most recent checkpoint log entry can be located in the stable log and forms the
starting point of the redo pass.

So far a checkpoint benefits only the redo pass of the recovery algorithm. Acceleration of
the analysis
pass

The undo pass is rather uncritical with regard to restart performance in that
it is typically based on the most recent tail of the stable log, and it may even
skip major parts of the log file in its backward reading scan when loser log
entries are sufficiently sparse. The analysis pass, however, would then form the
major bottleneck, as it still has to scan the entire stable log. To overcome this
bottleneck, additional bookkeeping efforts can be included in the checkpoint
activity so that the analysis pass does not need to consider the part of the
log that precedes the most recent checkpoint. The required information for
this purpose is simply a list of transactions that are active at the time of the
checkpoint. This list serves to initialize a potential loser list, which is then
brought up-to-date in the analysis pass by scanning the part of the log that
follows the checkpoint.

At the end of the analysis pass, we have an accurate list of loser transactions.
We should note, however, that the undo pass later also needs a pointer to the
last log entry for each of these loser transactions. If a loser transaction has
at least one log entry between the most recent checkpoint and the end of
the log, then the correct value for the LastSeqNo field in the “losers” list is
found by the analysis pass’s log scan. If, however, the last log entry of a loser
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Master record
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Stable log

Begin(t i) Begin(tk) Write(..., t i) Write(..., tk) Write(..., t i)
Checkpoint
ActiveTrans:

{t i, tk}

LastSeqNo's

Analysis pass

Redo pass

Undo pass

Figure 13.5 Heavyweight checkpoints.

transaction lies in the part of the log that precedes the checkpoint, then we
need another way of deriving this information. The solution is to include in
our additional bookkeeping at the time of the checkpoint the last log entry
of each potential loser transaction as of that time. These values initialize the
LastSeqNo fields and are brought up-to-date by the analysis pass at no extra
cost. A final issue to be resolved is where to store this additional bookkeeping
information. Since its size is bounded by the maximum number of concurrently
active transactions, we are dealing with a relatively small, compact structure. It
is therefore easy to include it in the checkpoint log entry that is written to the
stable log anyway. (Alternatively, we could also use the master record for this
purpose.)

The major aspects of this notion of heavyweight checkpoints are illustrated
in Figure 13.5. The figure shows especially the portions of the stable log that
are now relevant for the three passes during restart. Detailed pseudocode for
the activities during a checkpoint and the resulting modifications of the analysis
pass and redo pass are given below. Note that the undo pass is in no way affected
by the presence of checkpoints.

Pseudocode for
heavyweight

checkpoint

checkpoint ( ):

for each p in DatabaseCache do

if DatabaseCache[p].Status = dirty

then flush (p);

end /∗if∗/;

end /∗for∗/;

logentry.ActionType := checkpoint;
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logentry.ActiveTrans :=

ActiveTrans (as maintained in memory);

logentry.LogSeqNo := new sequence number;

LogBuffer += logentry;

force ( );

MasterRecord.LastCP := logentry.LogSeqNo;

Analysis
pass with
heavyweight
checkpoint

analysis pass ( ) returns losers:

cp := MasterRecord.LastCP;

losers := StableLog[cp].ActiveTrans;

max := LogSeqNo of most recent log entry in StableLog;

for i := cp to max do

case StableLog[i].ActionType:

...
maintenance of losers

as in the algorithm without checkpoints

...
end /∗case∗/;

end /∗for∗/;

Redo pass with
heavyweight
checkpoint

redo pass ( ):

cp := MasterRecord.LastCP;

max := LogSeqNo of most recent log entry in StableLog;

for i := cp to max do

...
page-state testing and redo steps

as in the algorithm without checkpoints

...
end /∗for∗/;

We illustrate the algorithm with our previous scenario (first introduced in
Figure 13.2). The table in Figure 13.6 shows the differences that result from
the existence of a checkpoint (at an arbitrarily chosen point) in boldface type.
For self-containedness the full scenario before the crash is given again, but we
now assume that the first restart completes successfully.

Note that the flush action for page d with sequence number 16 is stated
only as a “leftover” from the original scenario. It is meaningless and would no
longer be initiated by the cache manager at this point, because the page has
already been flushed by the preceding checkpoint and is still “clean” at the
point of sequence number 16.
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: checkpoint 14: CP 11, 12, 13

a: 13, b: 6, c: 7, d: 11
ActiveTrans:
{t2, t3, t4, t5} 14

15: commit(t3) 15: commit(t3) 15
16: [flush(d)] d: 11
17: write(d, t4) d: 17 17: write(d, t4)
18: write(e, t2) e: 18 18: write(e, t2)
19: write(b, t5) b: 19 19: write(b, t5)
20: flush(b) b: 19 17, 18, 19
21: commit(t4) 21: commit(t4) 21
22: write( f, t5) f : 22 22: write( f, t5)

System crash

Restart
Analysis pass: losers = {t2, t5}
redo(17) d: 17
undo(19) b: 18
consider-undo(18) e: 0
undo(13) a: 12
undo(7) c: 6

Restart complete: resume normal operation

Figure 13.6 Example scenario for the simple three-pass recovery algorithm with physiological write actions
and heavyweight checkpoints.

Some particularly noteworthy points about the example scenario are

the ordering of the individual steps at the checkpoint: first force the log
buffer if dictated by the undo rule, then flush the dirty pages, and finally,
force the checkpoint log entry and update the master record (not shown
in the example);
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the resulting effect that the redo pass is shortened drastically;

the side effect that the undo pass has to perform more work because
the stable database contains more loser actions.

The latter point may sound more spectacular than it really is. In typical situ-
ations, the increase in the number of undo steps that need to be performed
should be rather negligible. In fact, we would not expect many loser actions
preceding the most recent checkpoint.

The frequency at which checkpoints should be taken is usually a tuning
parameter of the data server. Frequent checkpoints typically yield shorter up-
per bounds for the restart time, whereas less frequent checkpoints reduce the
overhead during normal operation. This tuning problem can be expressed as
an optimization issue, where the goal could be to maximize the transaction
throughput over multiple periods of normal operation and restart. Mathemat-
ical approaches along these lines can be found in the literature (see the Biblio-
graphic Notes at the end of this chapter). In practice, however, the checkpoint
frequency is chosen based on rules of thumb, like initiating a checkpoint at
least once every five minutes but not more often than once a minute. Fine-
tuning within this range is usually a matter of trial and error. We will soon
show, however, that the tuning problem is less of an issue with a different,
more lightweight notion of checkpoints.

As a final remark, we point out that checkpoints are “merely” an optimiza-
tion feature to shorten the restart time. They should not be confused with the
different notion of checkpoints that is sometimes used for storing the state of
long-running computations to limit the amount of lost work upon a failure. In
this case, checkpoints are obviously a fundamental prerequisite for achieving
the desired effect. We will see the difference more clearly when we next “relax”
the activity of a checkpoint to a mere bookkeeping event without direct impact
on the stable database.

Lightweight Checkpoints

The major drawback of a heavyweight checkpoint lies in its flushing of all Lightweight
checkpointdirty cache pages. With the general trend of increasing cache sizes, the num-

ber of affected pages may be fairly large so that such a checkpoint incurs a
significant burst of disk I/O load. Because of contention for disk I/O time, reg-
ular page fetches may then end up being delayed in the disk I/O queue, so
that the response time of transactions is degraded whenever a checkpoint is in
progress.

A better approach that minimizes the impact of flush actions on the perfor- Write-behind
daemonmance of page fetches is to invoke flush actions continuously by a low-priority

background process rather than creating periodic load bursts. Such a back-
ground process is referred to as a write-behind daemon by various products. In
addition to smoothing out the disk I/O load over an extended time period and
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exploiting disk idle periods, it also offers a better potential for I/O batching and
seek-time optimizations, for example, by combining flush actions with fetch
actions for pages on the same disk track or cylinder.

Flushing dirty pages is the decisive step in reducing the amount of work
during the redo pass. However, to fully exploit this opportunity, the redo pass
must have some information that tells which pages require redo steps and
from which LSN(s) the redo should start. Otherwise, the redo pass would still
have to fetch every page for which it encounters a winner log entry, often
only to find that no redo is necessary. Not having to perform some redo steps
is an important cost savings, but the savings would be substantially higher if
we could avoid fetching such pages from the database in the first place. The
solution is to include certain bookkeeping information about dirty pages and
their redo sequence numbers in the stable log, and the best way of doing this
is to put this information into a checkpoint log entry. This leads us directly to
the notion of a lightweight checkpoint: without enforced flush actions, but with
additional bookkeeping information. In the literature, this type of checkpoint is
also referred to by the historical name fuzzy checkpoint, in contrast to a “sharp”
heavyweight checkpoint, but these terms can easily be misinterpreted. We will
see that there is nothing fuzzy about the concept of a lightweight checkpoint,
and we will avoid the historical terminology.

The information about dirty pages that is needed to drive the redo passDirty page list
is similar to what we considered for log truncation in general. Our goal is to
limit the portion of the stable log that precedes the most recent checkpoint
and needs to be considered for redo. This can be determined by recording in
the checkpoint log entry

the set of cached pages that are dirty at that time and

for each such page, the sequence number of the oldest write action that
followed the page’s most recent flush action (or its last fetch action if
no flush action took place in the meantime).

The set of dirty pages is commonly referred to as the dirty page list, and
the relevant LSNs that we need to record are exactly what we coined the redo
sequence number of these pages when we discussed log truncation.

The minimum among the redo sequence numbers in the dirty page list
gives us the starting point of the redo pass. Furthermore, when we encounter
a winner log entry for a page of the dirty page list in the part of the stable
log that precedes the most recent checkpoint, we can check if the action to
be redone is already in the stable database so that the page does not have to
be fetched at all at this point. We may still fetch some pages unnecessarily,
namely, if a page has been flushed after the most recent checkpoint. With the
information available to us so far, it is impossible to determine this situation
without fetching the page. However, once we have fetched a page for the first
time during the redo pass, we know its page sequence number and can then
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use that number as the page’s redo sequence number. A more far-reaching
extension based on additional log entries is discussed further below.

Thus, lightweight checkpoints accelerate the redo pass without the dis- Analysis pass
reconsideredadvantage of having to flush all dirty pages upon a checkpoint. They do not

incur much overhead that could affect the performance of ongoing transac-
tions. Therefore, there is no longer a need for careful tuning of the checkpoint
frequency. Lightweight checkpoints can be initiated in almost arbitrarily short
intervals; in practice, taking a checkpoint once every minute is usually suffi-
ciently frequent. As for the analysis pass and undo pass, a lightweight check-
point is no different from a heavyweight checkpoint. In fact these two passes
are usually not critical with regard to restart time. Note, however, that the
fact that lightweight checkpoints can be taken more frequently without any
disadvantages also shortens the analysis pass.

In addition, the analysis pass can contribute to another efficiency gain I/O
optimization
for fetching
dirty pages

for the redo pass by enhancing the information about dirty pages. Namely,
it can complete the dirty page list, starting with the list as of the most recent
checkpoint and then adding pages that potentially require redo steps during its
forward scanning of the log tail. Then, at the end of the analysis pass, we know
the full set, or possibly a superset, of the pages that need to be accessed dur-
ing the redo pass. Thus, we are in a position to asynchronously prefetch pages
from the stable database shortly before they are needed by a redo step.

But even better optimizations are possible. Since the order in which redo
steps are performed matters only if the same page is affected, we can sort the
dirty page list and process pages in an order that minimizes the disk seek time.
This savings can be substantial, given that we would otherwise perform random
disk I/Os on the database. A prerequisite for this optimization, however, is that
the relevant log entries can be kept in memory for the time period between
reading them from the stable log and fetching the corresponding page to apply
the redo steps. Otherwise, we would have to scan the stable log more than
once during the redo pass. If memory is too small to keep all relevant log
entries for the required period, this I/O optimization can still be performed
for groups of pages that occur in a certain fraction of the stable log. As far
as that memory demand is concerned, physiological log entries have a clear
advantage over complete page after images because of their smaller size. On
the other hand, if a database administrator is particularly concerned about
restart time, giving extra memory to the system during the restart would be
very beneficial. For example, the administrator could suspend other operating
system and application processes, or defer their start upon rebooting. This
temporarily obtains additional memory for the database cache, which will be
returned to the operating system when the redo pass is complete.

As for the undo pass, the amount of work there depends mostly on the Undo pass
reconsideredlength of transactions (i.e., their number of actions) and the multiprogramming

level (i.e., the maximum number of concurrent transactions), as the latter is an
upper bound for the number of loser transactions. None of these factors can
be influenced by whatever notion of checkpoint is employed.
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Figure 13.7 Lightweight checkpoints.

The major aspects of lightweight checkpoints are illustrated in Figure 13.7.
As in the illustration of heavyweight checkpoints, we again highlight the por-
tions of the stable log that are relevant for the three passes during restart.
Detailed pseudocode for the activities during a checkpoint and the resulting
modifications of the analysis pass and redo pass (without the additional I/O
optimization) are given below.

checkpoint ( ):Pseudocode for
a lightweight

checkpoint
DirtyPages := empty;

for each p in DatabaseCache do

if DatabaseCache[p].Status = dirty

then

DirtyPages += p;

DirtyPages[p].RedoSeqNo :=

DatabaseCache[p].RedoLSN;

end /∗if∗/;

end /∗for∗/;

logentry.ActionType := checkpoint;

logentry.ActiveTrans :=

ActiveTrans (as maintained in memory);

logentry.DirtyPages := DirtyPages;

logentry.LogSeqNo := new sequence number;

LogBuffer += logentry;

force ( );

MasterRecord.LastCP := logentry.LogSeqNo;

Analysis pass
with lightweight

checkpoint
analysis pass ( ) returns losers, DirtyPages:

cp := MasterRecord.LastCP;
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losers := StableLog[cp].ActiveTrans;

DirtyPages := StableLog[cp].DirtyPages;

max := LogSeqNo of most recent log entry in StableLog;

for i := cp to max do

case StableLog[i].ActionType:

...
maintenance of losers

as in the algorithm without checkpoints

...
end /∗case∗/;

if StableLog[i].ActionType = write or full-write

and StableLog[i].PageNo not in DirtyPages

then

DirtyPages += StableLog[i].PageNo;

DirtyPages[StableLog[i].PageNo].RedoSeqNo := i;

end /∗if∗/;

end /∗for∗/;

redo pass ( ): Redo pass with
lightweight
checkpoint

cp := MasterRecord.LastCP;

SystemRedoLSN := min{cp.DirtyPages[p].RedoSeqNo};

max := LogSeqNo of most recent log entry in StableLog;

for i := SystemRedoLSN to max do

if StableLog[i].ActionType = write or full-write

and StableLog[i].TransId not in losers

then

pageno := StableLog[i].PageNo;

if pageno in DirtyPages

and i ›= DirtyPages[pageno].RedoSeqNo

then

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ‹ i

then

read and write (pageno)

according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

else

DirtyPages[pageno].RedoSeqNo :=

DatabaseCache[pageno].PageSeqNo + 1;

end /∗if∗/;

end /∗if∗/;

end /∗if∗/;

end /∗for∗/;
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We treat the checkpoint log entry as a single entry for simplicity, but an
implementation could actually split the entry into separate begin-checkpoint
and end-checkpoint log entries with the possibly long DirtyPageList and the
ActiveTransactionList written in multiple pieces between the two boundary-
marking log entries. Then, the checkpoint would be considered complete when
the “end-checkpoint” entry is written to the stable log, but the start pointer
in the master record should point to the begin-checkpoint entry. Such details
of how checkpoints are taken are, however, more a matter of implementation
convenience, with virtually no impact on the overall recovery algorithm.

We illustrate the recovery algorithm once more with our example scenario.
As in the previous example with heavyweight checkpoints, we again assume
that the first restart completes successfully. The table in Figure 13.8 shows the
differences that result from taking a lightweight checkpoint (at the same point
as the heavyweight checkpoint in the previous Figure 13.6) in boldface type.

The most important point to be noted in this scenario is that the redo
pass can skip the redo log entry with sequence number 8 without fetching the
affected page d from the database at all.

Flush Log Entries

As already mentioned, the dirty page list that is recorded in a lightweight check-
point still does not perfectly prevent us from unnecessarily fetching database
pages during the redo pass. The case where this can arise is when a page is
flushed after the most recent checkpoint. If the page also occurs in the check-
point’s dirty page list, then the page’s redo sequence number must have been
encountered before the redo pass crosses the checkpoint log entry, and the
page must have been fetched at this point. Once the page has been fetched, its
page sequence number tells us the actual point from which redo steps must be
performed. So there is nothing to optimize further in this case.

The interesting case, on the other hand, is when a page is not included
in the checkpoint’s dirty page list but is updated and later flushed at one or
more points after the checkpoint. To avoid having to fetch such a page at least
once to determine its page sequence number, additional information can be
placed into the stable log. If we know the sequence numbers of the page’s flush
actions or, more specifically, the page’s last flush action before the crash, we
can skip all log entries for that page with sequence numbers smaller than the
one of its last flush action. The straightforward implementation of this idea is
also to create log entries for flush actions and append them to the log (buffer)
just like the other log entries. Since these log entries are very small and do
not require any forced log I/Os, this additional logging is indeed a viable, low-
overhead solution. It has been adopted by at least one commercial database
system.

During restart, flush log entries are exploited in the analysis pass to improve
the quality of the information in the dirty page list. The pseudocode for this
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: checkpoint 14: CP

DirtyPages:
{a, b, c, d}

RedoLSNs:
a: 3, b: 6, c: 7, d: 11

ActiveTrans:
{t2, t3, t4, t5} 11, 12, 13, 14

15: commit(t3) 15: commit(t3) 15
16: flush(d) d: 11
17: write(d, t4) d: 17 17: write(d, t4)
18: write(e, t2) e: 18 18: write(e, t2)
19: write(b, t5) b: 19 19: write(b, t5)
20: flush(b) b: 19 17, 18, 19
21: commit(t4) 21: commit(t4) 21
22: write( f, t5) f : 22 22: write( f, t5)

System crash

Restart

Analysis pass: losers = {t2, t5}
DirtyPages = {a, b, c, d, e}
RedoLSNs: a: 3, b: 6, c: 7, d: 11, e: 18

redo(3) a: 3
consider-redo(6) b: 19
skip-redo(8)

consider-redo(11) d: 11
redo(17) d: 17
undo(19) b: 18
consider-undo(18) e: 0
consider-undo(13) a: 3
consider-undo(7) c: 0

Restart complete: resume normal operation

Figure 13.8 Example scenario for the simple three-pass recovery algorithm with physiological write actions
and lightweight checkpoints.
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additional optimization is given below. The redo pass does not require any
modification to benefit from the improved dirty page list.

Analysis pass
with lightweight
checkpoint and
flush log entries

analysis pass ( ) returns losers, DirtyPages:

cp := MasterRecord.LastCP;

losers := StableLog[cp].ActiveTrans;

DirtyPages := StableLog[cp].DirtyPages;

max := LogSeqNo of most recent log entry in StableLog;

for i := cp to max do

case StableLog[i].ActionType:

...
maintenance of “losers”

as in the algorithm without checkpoints

...
end /∗case∗/;

if StableLog[i].ActionType = write or full-write

and StableLog[i].PageNo not in DirtyPages

then

DirtyPages += StableLog[i].PageNo;

DirtyPages[StableLog[i].PageNo].RedoSeqNo := i;

end /∗if∗/;

if StableLog[i].ActionType = flush

then

DirtyPages -= StableLog[i].PageNo;

end /∗if∗/;

end /∗for∗/;

The additional benefit of flush action logging is illustrated by our example
scenario in Figure 13.9, in which boldface type highlights the differences in
merely using lightweight checkpoints.

The point to be noted here is that the updated dirty page list after the
analysis pass now contains a higher redo sequence number for page d, so that
another log entry, the one with sequence number 11, can be skipped during
the redo pass. Also, page b is removed from the dirty page list so that it does
not have to be considered at all during the redo pass. In general, this kind of
situation pays off most. In the particular example, however, the last update on
page b is a loser update so that the page must be fetched during the undo pass
anyway. Note, however, that this is indeed a particularity of the example and
not necessarily a frequent case.

We complete this subsection by considering again the correctness of the
recovery algorithm. At this point we benefit from our approach of incremen-
tally introducing additional features. It suffices to show that the extensions of
the enhanced three-pass algorithm do not affect the behavior of the simple
three-pass algorithm in an essential way.
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8 10: flush(d)

11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: checkpoint 14: CP

DirtyPages:
{a, b, c, d}

RedoLSNs:
a: 3, b: 6, c: 7, d: 11

ActiveTrans:
{t2, t3, t4, t5} 10, 11, 12, 13, 14

15: commit(t3) 15: commit(t3) 15
16: flush(d) d: 11 16: flush(d)

17: write(d, t4) d: 17 17: write(d, t4)
18: write(e, t2) e: 18 18: write(e, t2)
19: write(b, t5) b: 19 19: write(b, t5)
20: flush(b) b: 19 20: flush(b) 16, 17, 18, 19
21: commit(t4) 21: commit(t4) 20, 21
22: write( f, t5) f : 22 22: write( f, t5)

System crash

Restart
Analysis pass: losers = {t2, t5}
DirtyPages = {a, c, d, e}
RedoLSNs: a: 3, c: 7, d: 17, e: 18

redo(3) a: 3
consider-redo(6) b: 19
skip-redo(8)
skip-redo(11)

redo(17) d: 17
undo(19) b: 18
consider-undo(18) e: 0
consider-undo(13) a: 3
consider-undo(7) c: 0

Restart complete: resume normal operation

Figure 13.9 Example scenario for the simple three-pass recovery algorithm with physiological write actions,
lightweight checkpoints, and flush action logging.
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THEOREM 13.4

Extending the simple three-pass recovery algorithm with log truncation,Correctness of
the enhanced

three-pass
algorithm

heavyweight or lightweight checkpoints, and flush action logging (or any

subset of these features) preserves the correctness of the crash recovery.

Proof

First we verify that the log truncation observes the garbage collection rule; so

we do not discard any essential log entries prematurely. It is straightforward

to realize that the log truncation retains all log entries of losers and also

all winner log entries that correspond to writes that are not yet in the

stable database. The latter is ensured as the redo sequence numbers of

the cached pages reflect the oldest corresponding write that is not yet in

the stable database at the time of the truncation.

The optimizations from checkpointing and flush log entries affect the anal-

ysis pass and the redo pass. Since the analysis pass determines losers (and

then infers winners implicitly) and starts with the active transactions as of

the checkpoint time, it is sufficient for correct analysis to consider only the

transaction begins and terminations that follow the checkpoint.

Finally, the correctness of the redo pass follows immediately from the ob-

servation that only such log entries are skipped for which we know that

the corresponding writes are already in the stable database. This argument

holds for all log entries that precede a page’s redo sequence number (or

the last checkpoint itself if heavyweight checkpointing is in effect); and this

information can be inferred either from the checkpoint log entry, from the

page’s sequence number after reading it from the stable database during

recovery, or from a flush log entry. Any one of these three possibilities pro-

vides correct information. In formal terms, the invariant during the redo

pass that makes the redo optimizations feasible is

∀ pages p : ∀ operations o ∈ stable log :
(o refers to p ∧ (p �∈ DirtyPages ∨ o < DirtyPages[p].RedoSeqNo))
⇒ o ∈ stable database

provided that flush log entries have been created and analyzed before the

redo pass starts. Without flush log entries, the invariant is a bit weaker in that

the term p �∈ DirtyPages is missing, so that we may have more uncertainty

about whether an operation is already in the stable database. In this case,

we can still view reading the page from the stable database and looking up

its sequence number as if the DirtyPages information were brought more

up-to-date during recovery. So conceptually the above formula holds for all

the discussed variants of redo optimizations.
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13.3.4 The Complete Algorithm: Handling Transaction Aborts
and Undo Completion

So far we have considered only two classes of transactions: committed ones
and those that were left incomplete by the crash. However, a third class that
a complete algorithm must be able to handle is that of transactions aborted
and rolled back during normal operation. In this subsection we discuss how to
incorporate such transactions. In addition, we reconsider and solve the related
problem, pointed out in the discussion of log truncation, that loser transactions
can prevent log truncation even after the restart is complete.

Handling Transaction Aborts

The seemingly most straightforward, but as it turns out rather naive, approach Aborted
transactions
treated as losers

would be to treat aborted transactions as loser transactions. Superficially, it
seems that this would allow us to apply the three-pass recovery algorithm
without any changes at all. However, such an approach would have drastic
implications:

First, to determine all “loser” transactions in this extended sense would
now require that the analysis pass has to read the entire log rather than
restricting itself to the log tail following the most recent checkpoint.
Even worse, there is no longer an easy way of truncating the log at all,
once we view all aborted transactions as relevant for the undo pass.

Second, performing undo steps for aborted transactions leads to severe
problems, as it is quite different from the undo of incomplete trans-
actions. The reason is that it is now possible that a “loser” transaction
precedes a committed transaction in the history (and the serialization
order), whereas we could so far build on the invariant that all incomplete
transactions follow all committed ones.

Whereas the first problem is “only” a matter of inefficiency, the second
one endangers the correctness of the recovery algorithm. To see this problem
more clearly, consider the scenario given in Figure 13.10, which is also shown
in pictorial form in Figure 13.11. To keep the example simple, we assume that
no checkpoints occur and flush action logging is not in effect.

The problematic point is when the undo pass encounters the log entry with Incorrect
handling of
aborted
transactions

sequence number 5 that belongs to the aborted transaction t2. Executing an
undo step for this action at this point is incorrect because we would then have
the action sequence

. . . 5 : write(a, t2) . . . 8 : write(a, t3) . . . write−1(a, t2)

where a winner action for page a lies between the loser action and the
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: write(a, t1) a: 2 2: write(a, t1)
3: commit(t1) 3: commit(t1) 1, 2, 3
4: begin(t2) 4: begin(t2)
5: write(a, t2) a: 5 5: write(a, t2)
6: abort(t2) 6: abort(t2) 4, 5, 6
7: begin(t3) 7: begin(t3)
8: write(a, t3) a: 8 8: write(a, t3)
9: commit(t3) 9: commit(t3) 7, 8, 9
10: begin(t4) 10: begin(t4)
11: write(b, t4) b: 11 11: write(b, t4)
12: write(a, t4) a: 12 12: write(a, t4)
13: flush(a) a: 12 10, 11, 12

System crash

Restart
Analysis pass: losers = {t2, t4}
consider-redo(2) a: 12
consider-redo(8) a: 12
undo(12) a: 11
consider-undo(11) b: 0
undo(5) a: 4

Figure 13.10 Example scenario for the problem caused by aborted transactions.

Flush(a)

Crash

t4

t3

t2

t1

w(a)

w(a)

w(a)

w(a)w(b)

Rollback

Figure 13.11 Pictorial overview of the “abort problem” scenario.
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corresponding inverse action. As these actions are in general not commutative,
this sequence cannot be reduced to the winner action alone. In other words,
we would violate the equivalence to a history that contains only the winner
transactions in their original serialization order. This problem is fundamental.
Note that it cannot be eliminated by performing the undo pass before the redo
pass, which may be superficially viewed as a last resort. In the example, this
would not change anything about the nonreducible action sequence shown
above, since page a has been flushed right before the crash. But it would create
additional, even more bizarre problems with regard to the page-state testing.
As the undo step for the “loser” action 5 should decrease the page sequence
number, setting it to 4, a redo pass after the undo pass would be misguided
to erroneously redo again the winner action 8. If this winner action is not
idempotent, then the resulting state of the page is clearly incorrect.

A similar, yet more subtle problem with nonidempotence also arises with
the undo step for the aborted transaction itself. Since the transaction was
aborted and rolled back during normal operation, its action with sequence
number 5 has already been undone by means of an inverse action before the
crash and, most importantly, even before the subsequent winner transaction t3
started. Since the page was flushed later on, the effect of inverting action 5 is
already present in the page state after the crash. Then undoing action 5 again
by invoking the inverse action a second time results in an incorrect page state
unless we make very restrictive assumptions on idempotence.

The latter observation points the way to solving our problem with transac- Aborted
transactions are
winners

tion aborts. Whenever a rollback is completed during normal operation, we can
actually view an aborted transaction as a winner, as its total effect is equivalent
to a null action or an empty transaction at this point. All we have to do is to
ensure that this effect is not modified in retrospect by the steps of the crash
recovery.

By far the simplest approach to guarantee that the recovery algorithm does
not introduce additional, unwanted effects is to expand the aborted transaction
by making its inverse actions explicit. This is the same approach that we intro-
duced in Chapter 11 for correctness reasoning on transaction recovery; now we
use it to revise our crash recovery algorithm. Once the inverse actions during a
rollback are explicit “first-class citizens,” it is perfectly logical that they should
be logged as well. So we assume that each inverse action creates a log entry in
the log buffer. Then, when the rollback is completed, the log buffer is forced
just as if the transaction were committed.

Note that there is no real need to distinguish the log entries for inverse Compensation
log entriesactions from those for regular write actions. For better illustration, however,

we will refer to them as compensation log entries, abbreviated as CLEs, and we
will indicate them as a new action type compensation in the log entry. This
distinction will also turn out to be useful later when we consider the redo-
history paradigm, and especially for object model recovery.
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The elegance of this solution is underlined by the fact that the only change
in our algorithm affects the steps during normal operation, more specifically,
only the algorithm for transaction rollbacks that we have not given so far any-
way. Pseudocode for transaction rollbacks is given below. Note that it requires
a forced log I/O upon completing a rollback. However, given that transaction
aborts should be infrequent if not exceptional, these I/Os should not present
any significant performance problem. In addition, the group commit technique
is applicable here, so that log entries for an aborted transaction can be effec-
tively piggybacked on the forced log I/O for a batch of committed transactions.

abort (transid):

logentry :=

ActiveTrans[transid].LastSeqNo;

while logentry is not nil and

logentry.ActionType = write or full-write

do

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in logentry;

newlogentry.UndoInfo :=

inverse action of the inverse action

of the action in logentry;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;

LogBuffer += newlogentry;

write (logentry.PageNo)

according to logentry.UndoInfo;

logentry := logentry.PreviousSeqNo;

end /∗while∗/

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ( );

A situation that may require additional thought is when a transaction has
Handling of a

crash during
transaction

rollback
started to roll back during normal operation and this rollback is interrupted and
left incomplete by a crash. However, by our approach of treating the rollback
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itself as an expansion of the transaction, we can consider the transaction as
if it were a to-be-committed transaction that is interrupted and turned into a
loser. Thus, this case is in no way different from our general handling of loser
transactions.

The uniformity and resulting simplicity of handling transaction aborts more
or less like transaction commits is illustrated by applying the complete algo-
rithm to our previous example scenario of Figure 13.10. To make it more
interesting, we now assume that transaction t4 has initiated but not yet com-
pleted its rollback before the crash. The table in Figure 13.12 illustrates the

Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: write(a, t1) a: 2 2: write(a, t1)
3: commit(t1) 3: commit(t1) 1, 2, 3
4: begin(t2) 4: begin(t2)
5: write(a, t2) a: 5 5: write(a, t2)
6: abort(t2)
7: compensate

(5: write(a, t2)) a: 7 7: compensate(a, t2)
8: rollback(t2) 8: rollback(t2) 4, 5, 7, 8
9: begin(t3) 9: begin(t3)
10: write(a, t3) a: 10 10: write(a, t3)
11: commit(t3) 11: commit(t3) 9, 10, 11
12: begin(t4) 12: begin(t4)
13: write(b, t4) b: 13 13: write(b, t4)
14: write(a, t4) a: 14 14: write(a, t4)
15: abort(t4)
16: compensate

(14: write(a, t4)) a: 16 16: compensate(a, t4)
17: flush(a) a: 16 12, 13, 14, 16

System crash

Restart
Analysis pass: losers = {t4}
consider-redo(2) a: 16
consider-redo(5) a: 16
consider-redo(7) a: 16
consider-redo(10) a: 16
undo(16) a: 15
undo(14) a: 13
consider-undo(13) b: 0

Restart complete: resume normal operation

Figure 13.12 Example scenario for the correct handling of aborted transactions.
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expansion of transaction aborts and the creation of compensation log entries as
well as the straightforward treatment of these log entries during restart.

A particularly important point about the example is that the undo pass
undoes both the inverse action 16 and the original action 14 that was inverted
by 16 before the crash occurred. So our solution involves the possibility of
“doubly” inverse actions to undo inverse actions. This may look like a compli-
cation upon first glance, but it actually is a great simplification to handle such
cases in a uniform manner. Also, from a performance viewpoint, the overhead
of occasionally performing such doubly inverse actions is negligible given that
it arises only for rollbacks that are interrupted by a crash, which is clearly a
rare case. We will nevertheless reconsider this approach to inverse actions later
(in Section 13.4) as we encounter new aspects, and we will then introduce a
way of avoiding the doubly inverse actions.

We conclude this subsection, as we did the previous one, with a statement
on the correctness of our extension for handling transaction rollbacks.

THEOREM 13.5

The extension for handling transaction rollbacks during normal operationCorrectness of
the complete

three-pass
recovery

algorithm

preserves the correctness of the three-pass crash recovery algorithm.

Proof

Transactions that are aborted are treated as winners if their rollback is com-

pleted before the crash, and as losers otherwise.

In the first case, forcing the log buffer upon completing the rollback (which

is the same as what we do upon a transaction commit) ensures that all

log entries for both the transaction’s regular forward operations and the

rollback-induced inverse operations are on the stable log. By the assumption

that the original history is conflict serializable and log recoverable, redoing all

these operations by means of regular and compensation log entries repeats

the effect of the original transaction without affecting any other transaction.

Because the original history was prefix reducible (in the sense of Chapter 11

on transaction recovery), the effect is that of an empty transaction that is

isolated from all concurrent transactions. So the redo pass correctly repeats,

if necessary (i.e., using page-state testing), the rollback that was carried out

before the crash.

In the second case, if the transaction’s rollback was interrupted by the crash,

then the stable log will contain all writes, both original ones and inverse

operations, that have already affected the stable database. These will be

undone, by treating the transaction as a loser and employing the usual

page-state testing, in reverse chronological order. So the undo pass es-

sentially performs standard transaction recovery as if the transaction were
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still alive, the only difference being that some of the newly generated in-

verse operations could actually be doubly inverse operations. If the server

crashes repeatedly, the transaction remains a loser. When its rollback even-

tually completes, the resulting effect will be that of an empty transaction.

Because of the assumption that the original history was conflict serializable

and log recoverable, this resulting effect appears isolated from all other

transactions.

Undo Completion

In the simple algorithm we have assumed that the entire restart procedure is
completed by flushing all dirty pages from the cache back to the database and
reinitializing the stable log. This is a drastic measure that incurs a potentially
large amount of random disk I/O, significantly increases the restart duration,
and thus adversely affects availability, as the admission of new transactions has
to be postponed until all pages are flushed. We will now discuss the nature of
the underlying problem, and will devise a more efficient solution.

Assume that we would not flush dirty pages at the end of the restart proce-
dure. Then the problem would arise that only the cached database is brought to
a correct state by the restart itself; in particular, the stable database could still
contain loser updates. So we would also depend on subsequent page flushes,
during normal operation, to gradually bring the stable database to a correct
state. This does not seem to be a fundamental issue, as crash recovery is gen-
erally idempotent and it is therefore sufficient to recover the cached database,
but the consequences are drastic and even lead to a subtle correctness prob-
lem. First note that we need to continue keeping loser log entries on the stable
log even after normal operation is resumed. So the oldest loser log entry (i.e.,
the one with the “oldest undo sequence number”) remains relevant beyond
the restart and would severely hamper or even prevent log truncation. Flush-
ing all dirty pages as a final step of the simple recovery algorithm is merely a
brute force solution to avoid this problem, but it facilitates log truncation upon
restart completion. In addition, however, once we accept this global flushing,
it is mandatory that the stable log be reinitialized at this point. Otherwise, we
may later, upon the next crash after a period of normal operation, be mistakenly
led to consider log entries of losers from previous crashes for undo if these log
entries are still on the (nongarbage part of the) stable log. This would present
a correctness problem, for the redo pass that precedes the undo pass could
increase the sequence number of a page such that we would later erroneously
reexecute undo steps for an old loser of the previous crash.

The handling of aborted transactions as if they were winners, discussed
earlier in Section 13.3.4, under Handling Transaction Aborts, suggests a better
solution. Namely, we can record the fact that the undo of a loser transaction
is complete by an additional log entry, say, an “undo-complete” marker, whose
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further handling should be equivalent to a commit log entry. In particular, a
transaction with an “undo-complete” log entry should not need any further
undo recovery when the system crashes once again. This is the key idea to
allow discarding the transaction’s log entries and ultimately truncating the log.

Unfortunately, this approach still has a catch. When the undo-complete
log entry is created, the undo is really completed only in the cached database,

Sequence number: Change of Change of Log entry Log entries
action cached database stable database added to added to

[PageNo: SeqNo] [PageNo: SeqNo] log buffer stable log
[LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: write(a, t1) a: 2 2: write(a, t1)
3: commit(t1) 3: commit(t1) 1, 2, 3
4: begin(t2) 4: begin(t2)
5: write(a, t2) a: 5 5: write(a, t2)
6: abort(t2)
7: compensate

(5: write(a, t2)) a: 7 7: compensate(a, t2)
8: rollback(t2) 8: rollback(t2) 4, 5, 7, 8
9: begin(t3) 9: begin(t3)
10: write(b, t3) b: 10 10: write(b, t3)
11: commit(t3) 11: commit(t3) 9, 10, 11
12: begin(t4) 12: begin(t4)
13: write(b, t4) b: 13 13: write(b, t4)
14: write(a, t4) a: 14 14: write(a, t4)
15: abort(t4)
16: compensate

(14: write(a, t4)) a: 16 16: compensate(a, t4)
17: flush(a) a: 16 12, 13, 14, 16
18: begin(t5) 18: begin(t5)
19: write(c, t5) c: 19 19: write(c, t5)
20: begin(t6) 20: begin(t6)
21: write(d, t6) d: 21 21: write(d, t6)
22: flush(c) c: 19 18, 19, 20, 21

System crash

Restart
Analysis pass: losers = {t4, t5, t6}
consider-redo(2) a: 16
consider-redo(5) a: 16
consider-redo(7) a: 16
redo(10) b: 10
consider-undo(21) d: 0
undo(19) c: 18
undo(16) a: 15
undo(14) a: 13
consider-undo(13) b: 10
flush(a) a: 13
flush(c) c: 18
23: undo-complete(t4) 23: undo-complete(t4)
24: undo-complete(t5) 24: undo-complete(t5)
25: undo-complete(t6) 25: undo-complete(t6)
force 23, 24, 25

Restart complete: resume normal operation

Figure 13.13 Example scenario for the undo completion method.
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whereas the stable database may still contain loser updates. Only flushing the
relevant pages adds the transaction’s inverse actions to the stable database. So
the solution is to enforce the flushing of those pages at the end of the undo—
not exactly a low price but a lot better than flushing the entire cache. Once
this flushing is complete, the undo-complete log entries of the now completely
and permanently undone loser transactions are created and forced to the stable
log. From now on, these transactions are handled as if they no longer exist. If
the system crashes again, the log entries of these transactions are ignored. The
undo-complete markers essentially render those log entries obsolete, and this
enables further log truncation.

Note that it would not be correct to treat the completely undone trans-
actions as winners in a subsequent restart after another crash. This would er-
roneously redo their original updates without also redoing the inverse actions.
In this respect, the handling of loser transactions differs from that of aborted
transactions that have been completely rolled back during normal operation.
This does not sound like an elegant method, and we will indeed see later in
Section 13.4 that there is a simpler solution that treats aborted and undone
transactions in a uniform manner. However, this more elegant solution is based
on the redo-history paradigm, whereas we are still focusing on the redo-winners
paradigm in the current subsection.

The algorithm for undo completion during restart is illustrated by the
scenario in Figure 13.13, with the newly introduced flush and undo-complete
actions typed in boldface.

The pseudocode for the complete undo pass now looks as follows.

undo pass ( ): Complete
undo passFlushList := empty;

while there exists t in losers

such that losers[t].LastSeqNo ‹› nil

do

nexttrans := TransNo in losers

such that losers[TransNo].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry = losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = write

then

pageno := StableLog[nextentry].PageNo;

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ›= nextentry.LogSeqNo;

then

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := nextentry.LogSeqNo − 1;

FlushList += pageno;
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end /∗if∗/;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /∗if∗/;

end /∗while∗/;

for each p in FlushList do

flush (p);

end /∗for∗/;

for each t in losers do

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := undo-complete;

newlogentry.TransId := losers[t].TransId;

LogBuffer += newlogentry;

end /∗for∗/;

force ( );

The correctness arguments for the undo completion method are summa-
rized in the following theorem.

THEOREM 13.6

The method for undo completion preserves the correctness of the three-Correctness
of undo

completion
pass crash recovery algorithm.

Proof

When a loser transaction is completely rolled back during the undo phase

of a restart, flushing all pages that have been modified on behalf of undo-

ing the transaction includes all operations of the transaction into the stable

database. This holds regardless of whether the transaction was a regular,

active transaction or was in the course of being rolled back when the crash

hit. It is possible that during restart only a subset of the transaction’s orig-

inally modified pages is updated by inverse operations. However, this can

happen only if the missing pages were already modified by inverse opera-

tions during a prior incarnation of the undo phase (i.e., a previous restart

in the case of repeated crashes) or a rollback during normal operation, and

these pages were already written into the stable database earlier. So by the

end of the undo phase, all pages that are affected by loser transactions are

in the stable database. Therefore, it is valid to “forget” all their log entries

by truncating the log. If, on the other hand, some of these log entries are

not immediately discarded, there is no harm either: the analysis pass of the

next restart will recognize the nature of these transactions from their undo-

complete log entries, and all their log entries will then simply be disregarded

by both the redo and the undo pass.
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13.4 Redo-History Paradigm

The intriguing property of the redo-winners paradigm is the fact that its redo
pass considers only winners and thus aims to minimize the recovery work in that
phase. However, as seen in the previous section, this property entails certain
complications in the handling of transaction aborts and the effective log trunca-
tion after the undo phase. In this section, we consider the alternative paradigm
of redoing the entire history, that is, all actions of both winners and losers
in chronological order and also including aborted transactions. Thus, the redo-
history family of algorithms first reconstructs the state of the (cached) database
as of the time of the crash, and then undoes loser transactions from there.

An immediate consequence of this approach is that the restart may end
up first redoing certain loser actions that are subsequently undone in the undo
phase, thus increasing the overall amount of work. Given that the number
of loser transactions is bounded and fairly small, this “double work” is not a
critical concern in terms of restart performance. On the other hand, we will
see in this section that the redo-history paradigm simplifies the overall recovery
algorithm substantially in that it allows us to treat winners, losers, and aborted
transactions more uniformly. This uniformity will also result in some efficiency
gains during restart; namely, we will show that the redo-history algorithm never
has to flush any pages during restart. (Recall that the redo-winners algorithm
has to flush pages that were modified in the undo phase in order to complete
the undo phase and facilitate log truncation.) Another characteristic property
of the redo-history paradigm is that its undo phase requires creating new log
records. But similarly to the double-work issue mentioned above, switching on
the logging activity during the restart simplifies the overall algorithm and has
only marginal overhead.

13.4.1 Actions during Normal Operation

The redo-history paradigm differs from the redo-winners algorithms only in
its actions during restart. During normal operation, it proceeds exactly like the
algorithms presented in Section 13.3.1. Also, the redo-history algorithm makes
use of page sequence numbers (introduced in Section 13.3.2) in the same way
as the redo-winners paradigm, in order to cope with general, nonidempotent
write actions. In what follows, we will always assume general write actions,
implicitly covering the special case of full-writes.

13.4.2 Simple Three-Pass and Two-Pass Algorithms
Three-pass
redo-history
algorithm

Like the redo-winners paradigm, the restart of a redo-history algorithm pro-
ceeds in three phases:
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1. The analysis pass locates the relevant start point of the log (which isAnalysis pass
usually the most recent checkpoint log entry when checkpointing is in
effect) from the master record, and scans the log in forward direction to
identify all loser transactions, that is, all transactions for which neither
a commit nor rollback log entry is found on the stable log.

2. The redo pass starts from the oldest log entry that has not “survived”Redo pass
the crash in the sense that it is not reflected in the stable database. This
point is either the beginning of the log (when no checkpoint is avail-
able) or the SystemRedoLSN that is recorded in or derived from the
information of the most recent checkpoint log entry. All updates that
follow the SystemRedoLSN are then considered for redo, and those that
are not yet reflected in the stable database, as indicated by testing page
sequence numbers or looking up the DirtyPages information if avail-
able, are actually redone. Note that this redo pass does not discriminate
winner versus loser transactions; it redoes all updates regardless of theReconstructing

the “crash state” transaction status. The net effect of the redo pass and fundamental in-
variant of the entire redo-history paradigm is that it reconstructs the
exact state of the cached database as of the time of the crash.

3. Once the crash state has been reconstructed, the undo pass can nowUndo pass
proceed as if the system were already operational, or in other words, as if
the crash had never happened. In particular, it can treat loser transactions
as if they were still active or reincarnated again and simply initiate abort
actions for them. Thus, the undo of loser transactions more or less usesTreating loser

transactions
as rollbacks

the algorithm for rolling back a transaction that is aborted during normal
operation. However, since locking information (or whatever information
the concurrency control is based on) usually becomes lost in a crash,
the system cannot really admit new transactions until the entire undo
phase is completed. Otherwise, the reads and writes of new transactions
could become interleaved with the undo steps in a way that would no
longer be equivalent to a serializable schedule of exactly all committed
transactions. (An advanced technique for relaxing this constraint will be
presented in Chapter 15.)

Treating the loser transactions as rollbacks of aborted transactions in the
undo phase is the decisive difference from the redo-winners paradigm and
the key to the (relative) simplicity of the redo-history approach. It is made
possible by starting from the database state as of the crash. So this is where
the (marginally) larger amount of work of the redo-history phase pays off. An
important implication is that the undoing of a loser transaction does in turn
create log entries during restart, namely, compensation log entries, as described
in Section 13.3.4. These inverse actions would later be redone in the next
restart if the system should fail once more during the undo phase. This may
appear somewhat complicated at first glance, but incurs absolutely no extra
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complexity, as this procedure is necessary for transaction rollbacks anyway. In
fact, this approach achieves the desirable property that the code for crash recov-
ery reuses code that is used during normal operation. As we already pointed
out in the introduction to this chapter (Section 13.1), this leads to simpler,
much better stress-tested, and ultimately more robust recovery procedures.

Pseudocode for the redo phase and the undo phase of the redo-history
algorithm is given below. The code for the analysis phase remains identical to
that of Section(s) 13.3.2 (and 13.3.3 when checkpointing is added).

redo pass ( ): Redo pass of
the simple
three-pass
redo-history
algorithm

min := LogSeqNo of oldest log entry in StableLog;

max := LogSeqNo of most recent log entry in StableLog;

for i := min to max do

pageno = StableLog[i].PageNo;

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ‹ i

then

read and write (pageno)

according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /∗if∗/;

end /∗for∗/;

Undo pass of
the redo-history
algorithm

undo pass ( ):

ActiveTrans := empty;

for each t in losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /∗for∗/;

while there exists t in losers

such that losers[t].LastSeqNo ‹› nil do

nexttrans := TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType in {write, compensation}

then

pageno := StableLog[nextentry].PageNo;

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ›= nextentry.LogSeqNo;

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;
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newlogentry.RedoInfo :=

inverse action of the action in nextentry;

newlogentry.UndoInfo :=

inverse action of the inverse action

of the action in nextentry;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;

end /∗if∗/;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /∗if∗/;

if StableLog[nextentry].ActionType = begin

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

losers -= transid;

end /∗if∗/;

end /∗while∗/;

force ( );

To illustrate the behavior of the algorithm, consider the example in Figures
13.14 and 13.15, the two parts of which are based on the scenario of Figure
13.4 that we initially considered in Section 13.3.2. The actions during normal
operation are identical to those of the earlier example. To make the scenario
more illustrative in the context of the redo-history paradigm, we now assume
that the second crash occurs during the undo phase of the first restart.

A number of entries in the tables of Figures 13.14 and 13.15 should be
singled out to illustrate the intrinsic features of the algorithm:

The undo phase never performs any page-state testing. This is unnec-
essary as the redo-history paradigm ensures that the undo phase always
starts with the state as of the crash and thus “sees” all log entries that
survived the crash reflected in the cached database.

The undo phase creates a new compensation log entry for each of its
undo steps. These need not be forced to the stable log, unless flushing a
page triggers a forced log I/O. Thus, compensation log entries may get
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: commit(t3) 14: commit(t3) 11, 12, 13, 14
15: flush(d) d: 11
16: write(d, t4) d: 16 16: write(d, t4)
17: write(e, t2) e: 17 17: write(e, t2)
18: write(b, t5) b: 18 18: write(b, t5)
19: flush(b) b: 18 16, 17, 18
20: commit(t4) 20: commit(t4) 20
21: write( f, t5) f : 21 21: write( f, t5)

System crash and restart

Figure 13.14 Example scenario for the simple three-pass redo-history recovery algo-
rithm, part 1.

lost in another crash. In the example, among the four log entries that
are created during the first restart, only the entries with log sequence
numbers 22 and 23 survive the second crash.

The redo pass may explicitly redo an action that later needs to be undone
in the undo pass. For example, during the first restart of the scenario, this
is the case for log entries 13 and 17, whereas log entry 18 was already
reflected in the stable database before the original crash and thus would
have needed explicit undo in the redo-winners approach, too. The situa-
tion appears “even worse” in that the redone action 13 becomes reflected
in the stable database during the first restart by flushing page a, although
the action 13 is already known to belong to a loser transaction. These
are examples of the additional work that the redo-history algorithm
may end up doing. But note that these specific situations are included
in the scenario on purpose, almost in a contrived manner. The fact that
they appear so prominently and almost dominate the scenario should,
however, not misguide us. In a realistic setting we would perform a lot
more redo work on behalf of winner transactions, so that the possible
double work on behalf of loser transactions would most likely constitute
a negligible fraction of the overall recovery work.

Unlike the redo-winners algorithms, the undo pass no longer decreases
the page sequence number when an undo step is performed on a page.
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

Analysis pass: losers = {t2, t5}
redo(3) a: 3
consider-redo(6) b: 18
flush(a) a: 3
redo(7) c: 7
consider-redo(8) d: 11
consider-redo(11) d: 11
redo(13) a: 13
redo(16) d: 16
redo(17) e: 17
consider-redo(18) b: 18
flush(a) a: 13
22: compensate(18) b: 22 22: compensate(18: b, t5)
23: compensate(17) e: 23 23: compensate(17: e, t2)
flush(b) b: 22 22, 23
24: compensate(13) a: 24 24: compensate(13: a, t5)
25: rollback(t5) 25: rollback(t5)

Second system crash and second restart

Analysis pass: losers = {t2, t5}
consider-redo(3) a: 13
consider-redo(6) b: 22
redo(7) c: 7
consider-redo(8) d: 11
consider-redo(11) d: 11
consider-redo(13) a: 13
redo(16) d: 16
redo(17) e: 17
consider-redo(18) b: 22
consider-redo(22) b: 22
redo(23) e: 23
26: compensate(23) e: 26 26: compensate(23: e, t2)
27: compensate(22) b: 27 27: compensate(22: b, t5)
28: compensate(18) b: 28 28: compensate(18: b, t5)
29: compensate(17) e: 29 29: compensate(17: e, t2)
30: compensate(13) a: 30 30: compensate(13: a, t5)
31: rollback(t5) 31: rollback(t5)
32: compensate(7) c: 32 32: compensate(7: c, t2)
33: rollback(t2) 33: rollback(t2)
force 26, 27, 28, 29, 30,

31, 32, 33

Second restart complete: resume normal operation

Figure 13.15 Example scenario for the simple three-pass redo-history recovery algorithm, part 2.
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Rather, the page sequence number is increased to capture the fact that
the compensation action was performed. This way of tracking the state
of a page is perfectly in line with the fact that compensation actions are
themselves logged.

During the second restart, compensation log entries that have survived
the second crash are themselves redone. In the example, this holds for
log entries 22 and 23, for which the undo then creates again compen-
sation log entries describing the inverse actions for the inverse actions
of the original actions. Note that this seemingly complicated behavior is
perfectly in line with the redo-history paradigm: in the given scenario,
the redo pass of the second restart reconstructs the database state as of
the time of the second crash. Also note that creating compensation log
entries for possibly undoing undo steps is actually a very natural thing to
do, once we think of the loser transactions as reincarnated active transac-
tions that are to be rolled back (possibly after having already performed
some undo steps in their prior incarnation). We will nevertheless come
back to this issue in Section 13.4.4 for efficiency reasons.

When a loser transaction is eventually rolled back completely, this is
marked in the log by creating a rollback log entry, exactly like we handled
transaction aborts in Section 13.3.4. Finally, when the undo pass, and
thus the entire restart, is completed, it is desirable to force the log entries
of the undone transactions to the stable log. In this way we avoid another
reincarnation of these transactions if the system were to fail again shortly
afterward. However, this forced log I/O is optional; the algorithm would
work correctly without it.

The relative simplicity of the redo-history paradigm, in comparison to the
redo-winners approach, also leads to fairly straightforward correctness reason-
ing. In particular, it nicely separates the issue of redo recovery from the argu-
ments about undo recovery. Here only the latter needs to consider the inter-
leaving of transactions, whereas the redo phase merely repeats the chronology
of logged events and thus simply reinstatiates the pre-crash serialization or-
der, including all incomplete transactions. The correctness arguments about
the transaction interleaving for undo recovery, however, are more or less the
same that we have used for reasoning about transaction recovery during normal
operation in Chapter 11. The modularity and simplicity of these correctness
arguments are reflected in the fairly straightforward proof of the following
theorem.

Correctness
of simple
three-pass
redo-history
algorithm

THEOREM 13.7

The simple three-pass redo-history recovery algorithm performs correct

recovery.
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Proof

The analysis pass is identical to that of the redo-winners algorithm. The

redo pass reconstructs the state as of the crash time, including all regular

“forward” operations of winners as well as losers and inverse operations of

transactions that were being rolled back when the crash hit. Thus, by the

end of the redo phase, the following invariant holds:

∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :
(o belongs to t and refers to p) ⇒ o ∈ cached database

The undo pass simply performs transaction recovery following Chapter 11,

as if the server had to perform aborts for a group of transactions during nor-

mal operation. Note that the undo pass does not even need to perform any

page-state testing, as it knows that the preceding redo pass has redone all

writes. Specifically, the undo pass generates inverse operations for all logged

operations of loser transactions, covering regular forward operations as well

as inverse operations from transactions whose rollback during normal op-

eration was interrupted by the crash. From the assumption that the original

history was conflict serializable and log recoverable, it follows that for each

page, all writes of loser transactions must follow the writes of winners.

Therefore, by applying the transformation rules of Chapter 11 on transac-

tion recovery, the inverse operations generated during the undo pass can be

commuted back and pairwise combined with their corresponding forward

operations, and finally reduced to null steps without any effect. For the

entire loser transactions, this means that they are reduced to empty trans-

actions. Thus, by the end of the undo phase, the following invariant holds:

∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :
(o belongs to t and refers to p ∧ t ∈ losers) ⇒ o �∈ cached database

Since loser writes must follow winner writes in the history, the (redone) ef-

fects of winner transactions are untouched by the undo phase, so that the

invariant after the redo pass is now tightened to:

∀ pages p : ∀ transactions t : ∀ operations o ∈ stable log :
(o belongs to t and refers to p ∧ t ∈ winners) ⇒ o ∈ cached database

A final complication that we should explicitly consider is the fact that the

server may crash again during either the redo pass or the undo pass. In the

first case—another crash during the redo pass—the situation is no different

from the redo-winners algorithm: the redo phase in its entirety is idempo-

tent due to the page-state testing upon each redo step, so that we can

simply reinitiate the redo pass.

In the second case, the situation differs from the redo-winners algorithm.

Each inverse operation that has been generated during the prior undo pass

has created a compensation log entry; so the history has become longer

by these actions during the previous restart. Note that only such undo
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steps leave these traces whose compensation log entries have made it to

the stable log before the crash; however, the ones whose log entries have

become lost in the log buffer do not matter, as they cannot have made any

impact on the stable database anyway (given that the undo logging rule is

in effect during the restart as well). The prolongation of the history during

the undo phase affects only loser transactions and is guaranteed to stay log

recoverable, because the operations to be undone are considered in reverse

chronological order. This is the same result that we would get from initiating

a group abort, in the sense of Chapter 11, for the entire history of loser

transactions. So the bottom line is that the situation after a crash during

the undo pass is not really any different from what the previous undo pass

had to clean up. In combination with the fact that the preceding redo pass

will always redo whatever prolonged history it finds on the stable log (i.e.,

including doubly or multiple-times inverse operations), these considerations

prove the idempotence of the undo pass.

Since the redo pass of the redo-history paradigm redoes all updates regard- Two-pass
redo-history
algorithm

less of whether they belong to winner or loser transactions, it is clear that the
redo pass itself does not depend on having an analysis pass preceding it. The
undo pass still needs to know the set of loser transactions and thus requires
some prior analysis of the log. However, the redo phases’s traversal of the log
typically includes the part of the log that would be inspected by the analysis
pass. Therefore, the redo pass can perform the task of identifying loser transac-
tions without any extra I/O cost. So we realize that we could easily change the
three-pass redo-history algorithm into a two-pass algorithm by simply discard-
ing the explicit analysis pass, thus saving one scan of (a fraction of ) the log.

An analysis pass is indeed merely optional under the redo-history paradigm.
However, it can still be beneficial, and a three-pass algorithm may still possibly
outperform a two-pass algorithm in terms of the overall restart time. To see this
point, we should first realize that the redo pass is guaranteed to include the frac-
tion of the log that the analysis pass would scan only if no redo optimizations,
in the sense of Section 13.3.3, are performed. Of course, without an analysis
pass, these optimizations are no longer feasible, for the most part; in particular,
the SystemRedoLSN is then really guaranteed to precede, in terms of LSNs,
the point where the analyis pass would start (i.e., the most recent checkpoint,
or the beginning of the stable log in the worst case). However, once we in-
corporate redo optimizations like the inclusion of DirtyPages information in
checkpoint log entries and the logging of flush actions, the SystemRedoLSN
that we determine in the analysis pass may well turn out to be higher than the
LSN of the point where the analysis pass starts.

The bottom line from this discussion is that the redo pass can be op-
timized only if it is preceded by an explicit analysis pass that determines
sufficiently recent DirtyPages information. The I/O savings from these redo
optimizations may be worth an additional prior pass over the relevant fraction
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of the log. Whether this is indeed the case depends on many workload and
system-tuning parameters such as page reference locality or checkpointing fre-
quency, and these dependencies are inherently hard to analyze mathematically,
if not intractable. Thus, we cannot give a definitive answer on whether a two-
pass or three-pass algorithm is preferable. From a system builder’s viewpoint,
both options could easily be implemented, and a database administrator could
choose the one that is more appropriate for a given application. However, this
merely puts the burden on the administrator staff, making system tuning more
complicated and ultimately more expensive. Therefore, we would like to offer
at least a “first order” approximative answer, which advocates the three-pass
algorithm. The argument for this preference is that the analysis pass can po-
tentially reduce the amount of random I/O activity on the stable database in a
possibly significant way, whereas reducing the number of log scans from three to
two merely saves sequential I/Os on the log tail, which may be tightly bounded
in size anyway.

13.4.3 Enhanced Algorithms: Log Truncation, Checkpoints,
and Redo Optimization

All checkpointing and I/O reduction techniques that we introduced in
Section 13.3.3 for the redo-winners paradigm apply equally to the redo-history
approach without any modification. In particular, these techniques are appli-
cable to both the three-pass and the two-pass redo-history algorithms. Note
that the two-pass algorithm, despite not having an analysis phase, still benefits
fundamentally from checkpointing in that it shortens the redo pass. It can also
exploit DirtyPages information to avoid fetching pages unnecessarily from the
stable database. None of these techniques requires any special adaptations of
the redo algorithm that we gave for the redo-winners approach (other than
the obvious difference that loser updates are now redone as well). Also, all
correctness arguments presented in Section 13.3.3 can be carried over to the
redo-history paradigm in a trivially straightforward manner.

13.4.4 Complete Algorithms: Handling Transaction Rollbacks
and Undo Completion

In the redo-winners paradigm, we encountered problems with the completionUndo
completion of the undo phase, as a naive approach could prevent further log truncation

indefinitely, which would be a serious problem (see Section 13.3.4). The rea-
son was that when an undo-complete log entry is created for a loser transaction,
the undo is really completed only in the cached database, whereas the stable
database may still contain loser updates. Thus, we cannot discard any log en-
tries of loser transactions until we definitely know that all undo-affected pages
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have been flushed from the database cache. Enforcing flush actions for those
relevant pages at the end of the undo phase also adds the loser transactions’
inverse actions to the stable database, and this was the solution that we adopted
for the redo-winners paradigm.

Under the redo-history paradigm, a much better solution is obtained from
the fact that undo steps will be logged again and will be redone if another crash
occurs. Thus, the redo-history approach ensures that, by redoing the undo
step if necessary, the effects of the undo step are guaranteed to survive further
crashes. In terms of the durability of the undo steps, this is as good as if the
undo-affected pages were flushed, but without the I/O cost of the flush actions.
In addition, creating compensation log entries for all undo steps provides us
with a way of exactly tracking the progress of the undo phase. If the system
crashes again before the undo phase is completed, redoing the effects of the
compensation actions will again reconstruct the state as of the most recent
crash, from where we know exactly which steps still need to be undone. As
already pointed out in Section 13.4.2, this whole approach can be viewed as if
loser transactions were reincarnated and treated like active transactions that are
to be rolled back during normal operation. An example for how this approach
works was already given in Figures 13.14 and 13.15 in Section 13.4.2.

Log truncation, which was our original motivation for “completing” the Log truncation
undo phase, is now straightforward. We only have to take into accout the
redo sequence numbers of the cached pages (as maintained in the DirtyPages
information), and this is what we do for log truncation anyway. Moreover, we
can directly leverage our repertoire for advancing the oldest redo sequence
number (i.e., the SystemRedoLSN) that we introduced in Section 13.3.3. So
the undo phase of the restart no longer complicates the important issue of log
truncation at all.

The algorithm for the undo phase, as given in the pseudocode of Section Inverse actions
of inverse
actions

13.4.2, so far has the somewhat peculiar property that it may end up performing
inverse actions of inverse actions if the system crashes during a restart. For
example, assume a loser transaction ti that has performed write actions on
pages a, b, and c, all of which have been recorded on the stable log, before the
system crashes the first time. Suppose that the system crashes a second time
after having undone the update on pages c and b. When the system is restarted
once more and the undo phase finally completes, we obtain the history shown
in Figure 13.16 (as far as this transaction is concerned).

In Figure 13.16, numbers 10, 20, and so on, are arbitrarily chosen LSNs. So
the second restart first redoes the actions with LSNs 10 through 50, and then
initiates, in its undo phase, the action with sequence number 60, which is the
inverse action of the inverse action 50 of the original action 20, and so on. This
effect, which we already encountered in the scenario of Figures 13.14 and 13.15
of Section 13.4.2, may appear somewhat confusing at first glance, but it is actu-
ally as straightforward as it could be and does not present any implementation
difficulties at all. In fact, we have already proven in Theorem 13.7, using very
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10 : write(ti , a) 20 : write(ti , b) 30 : write(ti , c)
. . . first crash . . .

40 : write(ti , c)−1 50 : write(ti , b)−1 . . .

. . . second crash . . .

60 : (write(ti , b)−1)−1 70 : (write(ti , c)−1)−1 80 : write(ti , c)−1

90 : write(ti , b)−1 100 : write(ti , a)−1

. . . second restart complete

Figure 13.16 Example transaction with multiple-times in-
verse actions.

simple reduction arguments in the style of Chapter 11, that such a sequence of
original actions, inverse actions, and multiple-times inverse actions is guaran-
teed to be equivalent to a “null” action, not leaving any traces in the database.

So, neither from a correctness nor from an implementation viewpoint doProblem with
multiple-times
inverse actions

we see any problems with the possibility of multiple-times inverse actions.
However, the approach may be considered moderately harmful in terms of the
restart efficiency under certain circumstances. To see this point, notice that in
Figure 13.16, the second restart needs to perform more work than the first
restart. The reason is that the second restart (1) needs to redo not only the
original actions of ti but also the already executed inverse actions of the first
restart’s undo phase, and (2) then needs to perform doubly inverse actions
of the first restart’s inverse actions and inverse actions of the original actions.
So if the system crashes repeatedly without completing any of its restarts, the
duration of successive restarts increases. In general, we cannot even give any
upper bounds on the nesting depth of multiple-times inverse actions and the
resulting restart duration.

Of course, such repeated crashes should be extremely rare and would beAvoidance of
multiple-times
inverse actions

an indication of some other instability problem anyway; so we do not consider
a typical, critically important case here. However, if this problem ever occurs,
it could be potentially troublesome. Fortunately, there is a relatively simple
way of fixing this problem. As it will turn out later in Chapters 15 and 16 in
the contexts of intra-transaction savepoints and media recovery, this remedy
proves very useful in much wider generality. The solution is to figure out, from
the compensation log entries during the redo pass, which of the original actions
of a loser transaction have already been undone in the previous restart. Those
actions do not need to be considered anymore at all; in particular, neither the
compensation actions nor the original, compensated actions require any further
inverse actions. Given that the redo pass covers all compensation actions as well,
we further know that all undo steps that have created compensation log entries
on the stable log are indeed successfully undone in the sense that each pair of
original action and inverse action together leaves a “null” effect on the database.
Finally, by having the compensation log entries on the stable log, we also have
at hand the information about which of the original actions have not yet been
compensated and still need undo steps.
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Technically, an elegant solution for identifying those loser actions that still NextUndoSeqNo
backward
chaining

require inverse actions is based on introducing a backward chain among the
log entries of a transaction. Note that this chain is in addition to the usual
PreviousSeqNo linking of log entries; we introduce a new next undo (log)
sequence number field (NextUndoSeqNo for short) into the data structure of
log entries. The linking in this additional backward chain is the following:

For log entries of original actions, the NextUndoSeqNo field is identical
to the PreviousSeqNo; that is, it points to the previous log entry of the
same transaction that would indeed be the next one to be undone within
this transaction.

For a compensation log entry (CLE), the NextUndoSeqNo field points
to the predecessor (within the same transaction) of the log entry whose
update is undone by the inverse action described in the CLE. That is,
the NextUndoSeqNo of the CLE is set to the PreviousSeqNo of the
original action that is compensated.

Thus, for the above simple example of Figure 13.16 with transaction ti
updating pages a, b, and c, we would obtain the sequence of actions and log
entries shown in Figure 13.17. A graphical illustration of the log for this sce-
nario is given in Figure 13.18, with compensation log entries shown as white
boxes.

Note that the second restart in the example identifies the first log entry
that requires an undo step—the entry with LSN 10 in this case—by looking up
the NextUndoSeqNo field of the transaction’s most recent log entry, which is
the entry with LSN 50 in the example.

The pseudocode for the complete undo pass looks as follows. As usual,
the code assumes that the preceding analysis pass has built up the “losers” data
structure reflecting the state as of the most recent crash.

10 : write(ti , a), NextUndoSeqNo = nil
20 : write(ti , b), NextUndoSeqNo = 10
30 : write(ti , c), NextUndoSeqNo = 20
. . . first crash . . .

. . . redo10, 20, 30 . . .

40 : write(ti , c)−1, NextUndoSeqNo = 20
50 : write(ti , b)−1, NextUndoSeqNo = 10
. . . second crash . . .

. . . redo10, 20, 30, 40, 50 . . .

60 : write(ti , a)−1, NextUndoSeqNo = nil
. . . second restart complete

Figure 13.17 Example transaction with
NextUndoSeqNo backward
chain.
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Log

Begin(t i)
10:

Write(t i,a)
20:

Write(t i,b)
30:

Write(t i,c)
40:

Write(t i,c)
50:

Write(t i,b)
60:

Write(t i,a)

PreviousSeqNo's

NextUndoSeqNo's

Figure 13.18 The NextUndoSeqNo backward chain for the example of Figure 13.17.

Undo pass with
compensation

log entries and
NextUndoSeqNo

backward
chaining

undo pass ( ):

ActiveTrans := empty;

for each t in losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /∗for∗/;

while there exists t in losers

such that losers[t].LastSeqNo ‹› nil

do

nexttrans := TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation then

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo;

end /∗if∗/;

if StableLog[nextentry].ActionType = write then

pageno = StableLog[nextentry].PageNo;

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ›= nextentry.LogSeqNo

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo :=

nextentry.PreviousSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in nextentry;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;
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LogBuffer += newlogentry;

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;

end /∗if∗/;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /∗if∗/;

if StableLog[nextentry].ActionType = begin then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

losers -= transid;

end /∗if∗/;

end /∗while∗/;

force ( );

A prerequisite of the above undo algorithm is that the NextUndoSeqNo Transaction
rollbackschain is maintained during normal operation and in the undo phase itself. This

must include the processing of transactions that are to be aborted. So the al-
gorithm for transaction rollback has to maintain the NextUndoSeqNo chain,
too, while it is creating compensation log entries. An additional benefit of this
uniform procedure is that the undo work after a crash is also bounded for
transactions that were in the process of rolling back when the system was hit
by the crash. Actions that have already been undone, on behalf of the transac-
tion abort, before the crash do not require further undo steps during restart.
Let us emphasize once again (and for the last time in this chapter) that this is
feasible because the redo pass also redoes the compensating actions that were
performed and logged before the crash. The pseudocode for transaction roll-
backs is given below. The differences to the pseudocode given in Section 13.3.4
are rather small: (1) we have to add the maintenance of the NextUndoSeqNo
chain, and (2) the compensation log entries no longer need to contain any undo
information (i.e., the inverse action of the inverse action of the original action),
as the complete recovery algorithm will only consider redoing compensation
log entries but never needs to undo a compensation action anymore.

abort (transid):

logentry :=

ActiveTrans[transid].LastSeqNo;
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while logentry is not nil andTransaction
rollback during

normal
operation using

NextUndoSeqNo
backward

chaining

logentry.ActionType = write or full-write

do

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in logentry;

newlogentry.NextUndoSeqNo :=

logentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;

LogBuffer += newlogentry;

write (logentry.PageNo)

according to logentry.UndoInfo;

logentry := logentry.PreviousSeqNo;

end /∗while∗/

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nil;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ( );

For completeness of the presentation, the algorithm for undo completion
during restart is illustrated by the scenario in Figure 13.19. The example is based
on the scenario in Figures 13.14 and 13.15 of Section 13.4.2; the differences
are in the undo phase of the two restarts, where we now make use of the
NextUndoSeqNo chaining technique. The log entries whose NextUndoSeqNo
fields are important appear in boldface type.

We conclude this section by casting the already presented correctness ar-
guments for the undo completion method in the rigorous form of a theorem.

THEOREM 13.8

The method for undo completion, based on executing compensation ac-

Correctness
of undo

completion with
NextUndoSeqNo

backward
chaining

tions and creating compensation log entries that are backward chained to

reflect the next undo log sequence numbers, preserves the correctness of

the three-pass redo-history recovery algorithm.



Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1) 1: begin(t1)
2: begin(t2) 2: begin(t2)
3: write(a, t1) a: 3 3: write(a, t1)
4: begin(t3) 4: begin(t3)
5: begin(t4) 5: begin(t4)
6: write(b, t3) b: 6 6: write(b, t3)
7: write(c, t2) c: 7 7: write(c, t2)
8: write(d, t1) d: 8 8: write(d, t1)
9: commit(t1) 9: commit(t1) 1, 2, 3, 4, 5, 6, 7, 8, 9
10: flush(d) d: 8
11: write(d, t3) d: 11 11: write(d, t3)
12: begin(t5) 12: begin(t5)
13: write(a, t5) a: 13 13: write(a, t5)
14: commit(t3) 14: commit(t3) 11, 12, 13, 14
15: flush(d) d: 11
16: write(d, t4) d: 16 16: write(d, t4)
17: write(e, t2) e: 17 17: write(e, t2)
18: write(b, t5) b: 18 18: write(b, t5)
19: flush(b) b: 18 16, 17, 18
20: commit(t4) 20: commit(t4) 20
21: write( f, t5) f : 21 21: write( f, t5)

System crash and restart

Analysis pass: losers = {t2, t5}
redo(3) a: 3
consider-redo(6) b: 18
flush(a) a: 3
redo(7) c: 7
consider-redo(8) d: 11
consider-redo(11) d: 11
redo(13) a: 13
redo(16) d: 16
redo(17) e: 17
consider-redo(18) b: 18
flush(a) a: 13
22: compensate(18) b: 22 22: compensate(18: b, t5)

NextUndoSeqNo: 13
23: compensate(17) e: 23 23: compensate(17: e, t2)

NextUndoSeqNo: 7
flush(b) b: 22 22, 23
24: compensate(13) a: 24 24: compensate(13: a, t5)

NextUndoSeqNo: nil
25: rollback(t5) 25: rollback(t5)

Second system crash and second restart

Analysis pass: losers = {t2, t5}
consider-redo(3) a: 13
consider-redo(6) b: 22
redo(7) c: 7
consider-redo(8) d: 11
consider-redo(11) d: 11
consider-redo(13) a: 13
redo(16) d: 16
redo(17) e: 17
consider-redo(18) b: 22
consider-redo(22) b: 22
redo(23) e: 23
26: compensate(13) a: 26 26: compensate(13: a, t5)

NextUndoSeqNo: nil
27: rollback(t5) 27: rollback(t5)
28: compensate(7) c: 28 28: compensate(7: c, t2)

NextUndoSeqNo: nil
29: rollback(t2) 29: rollback(t2)
force 26, 27, 28, 29

Second restart complete: resume normal operation

Figure 13.19 Example scenario for the undo completion of the three-pass redo-history recovery
algorithm.
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Proof

For operations of loser transactions that already have an inverse operation

on the stable log (in the form of a compensation log entry), the redo pass

will redo both the forward and the inverse operation; so this pair already

reduces to a null step. By traversing the NextUndoSeqNo backward chain,

the undo pass considers exactly those operations for which no inverse oper-

ation has been tracked on the stable log; so these operations to be undone

must be regular forward operations. By creating a compensation log entry

whose NextUndoSeqNo pointer bypasses the undone operation, this prop-

erty keeps holding even if the server crashes again immediately after the

undo step. In formal terms, the invariant that holds throughout the undo

pass is

∀ log sequence numbers s ∈ stable log such that all more recent
log entries of losers, including s, have been processed for undo :
∀ operations u ∈ stable log with u.LogSeqNo ≥ s.LogSeqNo :
∀ operations o ∈ stable log :

(u.TransId ∈ losers ∧ o.TransId = u.TransId ∧ o.LogSeqNo
> u.NextUndoSeqNo) ⇒ o �∈ cached database

13.5 Lessons Learned

This section summarizes the method of choice for page model crash recovery,
putting together the various optimizations of the previous sections. Overall,
we consider the redo-history algorithm as preferable over the redo-winners
paradigm because of its uniform and thus simpler treatment of winner versus
loser transactions and transaction rollbacks. This uniformity also results in a
potentially significant performance advantage by not being forced to flush any
pages during restart, unlike the undo phase of the redo-winners algorithm. It
further pays off in that it makes the overall algorithm conceptually simpler,
which usually results in a more robust implementation. However, the two
recovery paradigms still have more commonalities than differences. The major
building blocks common to both algorithms are

a three-pass structure for log analysis, redo recovery, and undo recovery;

lightweight checkpoints as an effective and low-cost way of log trunca-
tion, accelerating both the analysis pass and the redo pass;

additional flush log entries for further cost savings during the redo pass;

compensation log entries for transaction rollbacks during normal oper-
ation, and the completion of loser transactions during the undo phase
of the restart to facilitate further log truncation.
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In addition, the redo-history algorithm has its unique way of handling loser
transactions:

a redo pass that includes all actions of loser transactions,

an undo pass that completes loser transactions as if they were winners
(including the creation of new log entries for the necessary compen-
sation actions), thus simplifying the undo algorithm and completely
eliminating the need for having flush pages during restart.

The algorithms developed in this chapter allow both physiological and
physical log entries. The only forced log I/Os are those due to the undo rule and
upon commit actions, including the group commit option. Thus, the logging
overhead during normal operation is no bottleneck.

For fast restart, the recovery algorithm should be complemented by a write-
behind daemon that flushes dirty cache pages to support log truncation upon a
checkpoint. The algorithm’s ability to handle the coexistence of physiological
and physical log entries is also beneficial with regard to restart time in that
it allows further advancing the redo sequence number of a page when the
analysis or redo pass encounters a full-write log entry. In addition, the recovery
algorithm may even generate and log its own full-write actions during normal
operation, in order to discard older log entries for a page without having to
flush the page. So the recovery algorithm performs excellently in terms of
restart time, and can thus achieve very high system availability.

13.5.1 Putting Everything Together

Pseudocode for the complete algorithm of choice, including the various opti-
mizations, is given below. There is no need for another discussion of correctness,
given the incremental arguments of the previous sections. The pseudocode is
based on the following data structures; the difference from the basic data struc-
tures introduced in Section 13.2 is that we now include all details related to
checkpoints and the I/O optimizations during the redo pass.

/∗ Data structures for the page model recovery algorithm Data structures
for page model
recovery
algorithm

of choice: ∗/

type Page: record of

PageNo: identifier;

PageSeqNo: identifier;

Status: (clean, dirty);

Contents: array [PageSize] of char;

end;

persistent var StableDatabase:

set of Page indexed by PageNo;
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var DatabaseCache:

set of Page indexed by PageNo;

type LogEntry: record of

LogSeqNo: identifier;

TransId: identifier;

PageNo: identifier;

ActionType: (write, full-write, begin, commit, rollback,

compensate, checkpoint, flush);

ActiveTrans: set of TransInfo;

/∗ present only in log entries of type checkpoint ∗/

DirtyPages: set of DirtyPageInfo;

/∗ present only in log entries of type checkpoint ∗/

UndoInfo: array of char;

RedoInfo: array of char;

PreviousSeqNo: identifier;

NextUndoSeqNo: identifier;

end;

persistent var StableLog:

ordered set of LogEntry indexed by LogSeqNo;

var LogBuffer:

ordered set of LogEntry indexed by LogSeqNo;

persistent var MasterRecord: record of

StartPointer: identifier;

LastCP: identifier;

end;

type TransInfo: record of

TransId: identifier;

LastSeqNo: identifier;

end;

var ActiveTrans:

set of TransInfo indexed by TransId;

typeDirtyPageInfo: record of

PageNo: identifier;

RedoSeqNo: identifier;

end;

var DirtyPages:

set of DirtyPageInfo indexed by PageNo;

The pseudocode for the actions during normal operation then looks as
follows.

Actions during
normal

operation

write or full-write (pageno, transid, s):

DatabaseCache[pageno].Contents := modified contents;

DatabaseCache[pageno].PageSeqNo := s;

DatabaseCache[pageno].Status := dirty;
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newlogentry.LogSeqNo := s;

newlogentry.ActionType := write or full-write;

newlogentry.TransId := transid;

newlogentry.PageNo := pageno;

newlogentry.UndoInfo := information to undo update

(before image for full-write);

newlogentry.RedoInfo := information to redo update

(after image for full-write);

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := s;

LogBuffer += newlogentry;

if pageno not in DirtyPages then

DirtyPages += pageno;

DirtyPages[pageno].RedoSeqNo := s;

end /∗if∗/;

fetch (pageno):

DatabaseCache += pageno;

DatabaseCache[pageno].Contents :=

StableDatabase[pageno].Contents;

DatabaseCache[pageno].PageSeqNo :=

StableDatabase[pageno].PageSeqNo;

DatabaseCache[pageno].Status := clean;

flush (pageno):

if there is logentry in LogBuffer with logentry.PageNo = pageno

then

force ( );

end /∗if∗/;

StableDatabase[pageno].Contents :=

DatabaseCache[pageno].Contents;

StableDatabase[pageno].PageSeqNo :=

DatabaseCache[pageno].PageSeqNo;

DatabaseCache[pageno].Status := clean;

newlogentry.LogSeqNo := next sequence number to be generated;

newlogentry.ActionType := flush;

newlogentry.PageNo := pageno;

LogBuffer += newlogentry;

DirtyPages -= pageno;

force ( ):

StableLog += LogBuffer;

LogBuffer := empty;
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begin (transid, s):

ActiveTrans += transid;

ActiveTrans[transid].LastSeqNo := s;

newlogentry.LogSeqNo := s;

newlogentry.ActionType := begin;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo := nil;

LogBuffer += newlogentry;

commit (transid, s):

newlogentry.LogSeqNo := s;

newlogentry.ActionType := commit;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ( );

abort (transid):

logentry :=

ActiveTrans[transid].LastSeqNo;

while logentry is not nil and

logentry.ActionType = write or full-write

do

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in logentry;

newlogentry.NextUndoSeqNo :=

logentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;

LogBuffer += newlogentry;

write (logentry.PageNo)

according to logentry.UndoInfo;

logentry := logentry.PreviousSeqNo;

end /∗while∗/

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := transid;
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newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nil;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ( );

log truncation ( ):

OldestUndoLSN :=

min {i|StableLog[i].TransId is in ActiveTrans};

SystemRedoLSN := min {DirtyPages[p].RedoSeqNo};

OldestRedoPage := page p such that

DirtyPages[p].RedoSeqNo = SystemRedoLSN;

NewStartPointer := min{OldestUndoLSN, SystemRedoLSN};

OldStartPointer := MasterRecord.StartPointer;

while OldStartPointer - NewStartPointer

is not sufficiently large

and SystemRedoLSN ‹ OldestUndoLSN

do

flush (OldestRedoPage);

SystemRedoLSN := min{DatabaseCache[p].RedoLSN};

OldestRedoPage := page p such that

DatabaseCache[p].RedoLSN = SystemRedoLSN;

NewStartPointer := min{OldestUndoLSN, SystemRedoLSN};

end /∗while∗/;

MasterRecord.StartPointer := NewStartPointer;

checkpoint ( ):

logentry.ActionType := checkpoint;

logentry.ActiveTrans := ActiveTrans (as maintained in memory);

logentry.DirtyPages := DirtyPages (as maintained in memory);

logentry.LogSeqNo := next sequence number to be generated;

LogBuffer += logentry;

force ( );

MasterRecord.LastCP := logentry.LogSeqNo;

Finally, the pseudocode for the three phases of the restart is given “in
one piece” below. (All ingredients appeared earlier in this chapter, but were
scattered throughout the discussion.)

Recovery
algorithms

restart ( ):

analysis pass ( ) returns losers, DirtyPages;

redo pass ( );

undo pass ( );
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analysis pass ( ) returns losers, DirtyPages:

var losers: set of record

TransId: identifier;

LastSeqNo: identifier;

end indexed by TransId;

cp := MasterRecord.LastCP;

losers := StableLog[cp].ActiveTrans;

DirtyPages := StableLog[cp].DirtyPages;

max := LogSeqNo of most recent log entry in StableLog;

for i := cp to max do

case StableLog[i].ActionType:

begin:

losers += StableLog[i].TransId;

losers[StableLog[i].TransId].LastSeqNo := nil;

commit:

losers -= StableLog[i].TransId;

full-write:

losers[StableLog[i].TransId].LastSeqNo := i;

end /∗case∗/;

if StableLog[i].ActionType = write or full-write or compensate

and StableLog[i].PageNo not in DirtyPages

then

DirtyPages += StableLog[i].PageNo;

DirtyPages[StableLog[i].PageNo].RedoSeqNo := i;

end /∗if∗/;

if StableLog[i].ActionType = flush

then

DirtyPages -= StableLog[i].PageNo;

end /∗if∗/;

end /∗for∗/;

redo pass ( ):

SystemRedoLSN := min {DirtyPages[p].RedoSeqNo};

max := LogSeqNo of most recent log entry in StableLog;

for i := SystemRedoLSN to max do

if StableLog[i].ActionType = write or full-write or compensate

then

pageno = StableLog[i].PageNo;

fetch (pageno);

if pageno in DirtyPages and

DirtyPages[pageno].RedoSeqNo ‹ i

then

fetch (pageno);
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if DatabaseCache[pageno].PageSeqNo ‹ i

then

read and write (pageno)

according to StableLog[i].RedoInfo;

DatabaseCache[pageno].PageSeqNo := i;

end /∗if∗/;

end /∗if∗/;

end /∗if∗/;

end /∗for∗/;

undo pass ( ):

ActiveTrans := empty;

for each t in losers

do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /∗for∗/;

while there exists t in losers

such that losers[t].LastSeqNo ‹› nil

do

nexttrans := TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation

then

losers[nexttrans].LastSeqNo := StableLog[nextentry].NextUndoSeqNo;

end /∗if∗/;

if StableLog[nextentry].ActionType = write or full-write

then

pageno = StableLog[nextentry].PageNo;

fetch (pageno);

if DatabaseCache[pageno].PageSeqNo ›= nextentry.LogSeqNo

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.PreviousSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in nextentry;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;
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DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;

end /∗if∗/;

losers[nexttrans].LastSeqNo =

StableLog[nextentry].PreviousSeqNo;

end /∗if∗/;

if StableLog[nextentry].ActionType = begin

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

losers -= transid;

end /∗if∗/;

end /∗while∗/;

force ( );

Exercises

13.1 Consider the action history given in Figure 13.20, including checkpoints
and flush actions. Assume that there is a system crash right after the last
action. Determine the necessary logging actions during normal operation
and the recovery actions during restart by completing the table. First con-
sider the case where heavyweight checkpoints are used and flush actions
are not logged; then consider lightweight checkpoints; and finally, discuss
the additional effect of keeping log entries for flush actions. In all cases,
assume that the redo-history paradigm is employed.

Now consider the extended scenario given in Figure 13.21. In con-
trast to the previous scenario, this action history contains two transaction
rollbacks during normal operation, one of which is completed before the
crash, whereas the second one is interrupted by the crash. Determine
again the necessary logging and restart actions for this scenario by com-
pleting Figure 13.21.

13.2 Consider the redo-winners three-pass recovery algorithm for the page
model. Reconsider the undo pass for the following variations: assume that
the history, rather than being log recoverable, is only recoverable or strict.
Especially, for the strict case, show that it is feasible to undo each loser
transaction separately in arbitrary transaction order rather than having to
merge all loser backward chains into a single ordering.

13.3 Consider the following specialization of the redo-winners algorithm. As-
sume that all updates are logged as full-writes, so that log entries have
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1)
2: write(p, t1)
3: write(q, t1)
4: commit(t1)
5: flush(p)
6: begin(t2)
7: write(p, t2)
8: write(r, t2)
9: checkpoint
10: commit(t2)
11: begin(t3)
12: flush(p)
13: write(p, t3)
14: write(q, t3)
15: flush(q)
16: write(r, t3)

Figure 13.20 Sample history for Exercise 13.1.

the form of page before images or after images. Further assume that the
database cache is large enough to have the no-steal property, which guar-
antees that a page that has been modified by an active (i.e., incomplete)
transaction is never flushed. In addition, assume that the log buffer is also
large enough to contain all before images of all active transactions. De-
sign a special recovery algorithm under this premise that (a) should be
simpler than the general-purpose redo-winners algorithm and (b) aims
to shorten the restart duration as much as possible. In particular, ad-
dress the following issues: Are checkpoints still needed at all (under the
no-steal premise)? How can you handle transaction aborts? Is there a
way of gracefully degrading the special algorithm if the no-steal prop-
erty cannot be guaranteed but the database cache is almost always large
enough to avoid flushing pages whose last modification belongs to an
active transaction?

Hint: The DB Cache algorithm of Bayer and Elhardt (1984) is such
an algorithm (see Bibliographic Notes).

13.4 Reconsider the redo pass of the redo-history algorithm. Show that writes
for a page that originate from loser transactions and are not followed by
any winner writes on the same page do not need to be redone during
the redo pass. Design a variant of the redo-history algorithm, both the
redo and the undo pass, that avoids redoing writes in the above category,
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Sequence number: Change of Change of Log entry added Log entries added
action cached database stable database to log buffer to stable log

[PageNo: SeqNo] [PageNo: SeqNo] [LogSeqNo: action] [LogSeqNo’s]

1: begin(t1)

2: write(p, t1)

3: write(q, t1)

4: commit(t1)

5: flush(p)

6: begin(t2)

7: write(p, t2)

8: write(r, t2)

9: checkpoint

10: abort(t2)

11: compensate(8:write(r, t2))

12: compensate(7:write(p, t2))

13: rollback(t2) complete

14: begin(t3)

15: flush(p)

16: write(p, t3)

17: write(q, t3)

18: flush(q)

19: write(r, t3)

20: abort(t3)

21: compensate(18:write(r, t3))

22: begin(t4)

23: compensate(17:write(q, t3))

24: write(s, t4)

25: flush(q)

26: commit(t4)

Figure 13.21 Sample history with rollbacks for Exercise 13.1.

thus reducing the overall work of the redo pass. Note that this reduction is
usually not a major gain, as it affects only a small fraction of log entries; this
variant is interesting in that it consolidates and deepens the understanding
of the relationships between the redo and the undo pass.

Hint: The ARIES/RRH algorithm by Mohan and Pirahesh (1991) is
such a variant of the redo-history algorithm (see Bibliographic Notes).

Bibliographic Notes

The algorithmic state of the art for the page model is documented by Crus
(1984), with the commercial database system DB2 from IBM as a reference
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implementation. This system already employed a redo-history algorithm, and
it made use of compensation log entries, coined “compensation log records
(CLRs)” there. Mohan, Haderle, et al. (1992) made the redo-history paradigm
explicit, generalized it, and provided enhanced algorithmic techniques. Mohan
coined the name “ARIES” (Algorithm for Recovery and Isolation Exploiting
Semantics) for the redo-history algorithm. Mohan and Pirahesh (1991) stud-
ied certain variations of the ARIES algorithm. Lindsay et al. (1979) provided a
detailed discussion of checkpointing techniques, and is also the original source
of the redo optimization based on the logging of page flushes; detailed discus-
sions of checkpointing can also be found in the seminal articles by Gray (1978)
and Härder and Reuter (1983). Full implementation details, down to the level
of C code, on many of the discussed aspects (such as implementing a sequential
log file and the log file buffer) can be found in the book by Gray and Reuter
(1993).

A specialized page model recovery method that is tailored to a no-steal
database cache was elaborated by Elhardt and Bayer (1984) into a method
called “DB Cache algorithm.” This method was initially limited to physical
log entries for full-writes, but has been generalized by Moss et al. (1987) to
allow physiological log entries as well. Another approach along these lines, with
more advanced techniques for garbage collection of unneeded log entries, has
been proposed by Keen and Dally (1997). Rosenblum and Ousterhout (1992)
have even developed an entire log-structured file system organization based on
full-write logging with efficient garbage collection.

The group commit technique has been explicitly mentioned by Gawlick
and Kinkade (1985); commercial implementations such as IMS Fast Path pre-
dated the published account of this technique. The optimization of group com-
mit timers has been analyzed by Helland et al. (1987). Mathematical consid-
erations for the optimization of (heavyweight) checkpoint intervals have been
presented by Chandy et al. (1975), Gelenbe (1979), and Reuter (1984). Alter-
native algorithms that do not belong to the with-undo/with-redo family have
been developed by Lorie (1977), who introduced the concept of shadow stor-
age; Reuter (1980), who considered transaction-oriented variants of shadow
storage; Severance and Lohman (1976); as well as Aghili and Severance (1982),
who presented deferred-update techniques based on differential files.

Attempts to formalize the correctness reasoning on crash recovery algo-
rithms have been made by Hadzilacos (1988), Kuo (1996), Wallace et al.
(1995), Lomet and Tuttle (1995), and Martin and Ramamritham (1997). In
particular, a variant of Theorem 13.1 has been presented by Hadzilacos (1988).
Performance issues were studied by Reuter (1984), Kent et al. (1985), as well as
Agrawal and DeWitt (1985a), with a focus on analyzing the normal operation
overhead and its impact on system throughput, and by Jhingran and Khedkar
(1992) as well as Goes and Sumita (1995), who also considered restart duration
and system availability.
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CHAPTER FOURTEEN

Object Model Crash
Recovery

This we know. All things are connected.

—Chief Seattle

Already know you that which you need.

—Yoda

14.1 Goal and Overview

In this chapter we extend the discussion of crash recovery to the object model.
We will mostly focus on layered executions, and our exposition will present
the special case of two-level systems first and in great detail, and later gener-
alize the presented algorithms to the general case of nonlayered object model
executions. Note that the two-level case is of utmost practical importance, as it
captures the transaction management at the access layer of modern, industrial-
strength database systems with fine-grained record and index-key locking. In
addition, a layer of object-style application services on top of a data server,
such as e-Commerce services, is also appropriately described by the two-level
architectural model.

Our approach in this chapter is to leverage insights from the previous
chapters. In particular, we will focus on the redo-history paradigm for crash
recovery and ignore any other conceivable algorithmic approaches. In fact, the
arguments for a redo-history algorithm are even more compelling in the con-
text of the object model; a redo-winners algorithm would encounter extreme
difficulties in the generalization to higher-level operations. The basic principle
of redoing history, as explained in Chapter 13, is to reconstruct a system state
as of the time of the crash, and once this is established, the further recovery
steps can essentially proceed as if the system were running normally and simply
initiate transaction recovery steps as in Chapter 11. This is, of course, a simpli-
fied picture of what we need for object model crash recovery, but it underlines
the simplicity and elegance of the approach, with simplicity and modularity
being important assets for increasing our confidence in the correctness of algo-
rithms. For the same reason, we will again develop the recovery method in an
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incremental manner, starting out with a simple, not necessarily very efficient
algorithm, and gradually refining and enhancing it into a highly optimized,
industrial-strength method.

Throughout this chapter we will assume that the history during normal
operation is tree-prefix reducible. Recall from Chapter 11 what this means:
the combined effect of higher-level operations—both “forward” and inverse
operations on behalf of transaction aborts—and the underlying low-level op-
erations is equivalent to a serial execution of the roots of committed transac-
tions. Moreover, this equivalence can be proven by reducing the history to these
roots using simple transformation rules. Furthermore we assume, for simpler
explanation, that all nonleaf operations in a transaction are totally ordered. So
we essentially rule out the option for parallel subtransactions within the same
transaction. Generalizing the algorithms developed to cover this case is not par-
ticularly difficult; we thus leave this task for you to complete in Exercise 14.4.

The chapter is organized as follows. Section 14.2 presents the fundamental
principles of object model crash recovery based on the redo-history paradigm.
Section 14.3 then develops a simple, yet complete recovery algorithm for two-
level executions. Section 14.4 enhances this algorithm by integrating various
performance improvements, but is still restricted to the two-level framework.
Finally, Section 14.5 generalizes the developed algorithm so that it is applicable
to all object model executions, layered as well as nonlayered ones.

14.2 Conceptual Overview of Redo-History
Algorithms

The additional difficulty that an object model crash recovery method has to
address is the handling of semantically rich, high-level operations such as incre-
ment and decrement on counters or operations on index structures for search-
ing, inserting, or deleting keys, to recall just two prominent examples. This
problem entails two issues:

1. How to redo the effects of high-level operations if they belong to a
winner transaction.

2. How to undo the effects of high-level operations if they belong to a loser
transaction.

With regard to the undo issue, we do not have much of a choice. TheThe necessity of
high-level undo arguments that dictate using high-level inverse operations for undo steps given

in Chapter 11 in the context of transaction recovery (i.e., transaction rollbacks
during normal operation) apply to the crash recovery setting as well. Once
we allow two commutative update operations on the same object to proceed
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concurrently and later face the need for undoing the effect of the first operation
while wishing to retain the effect of the second operation, invoking a high-level
inverse operation that commutes with the second operation is the only correct
form of undo recovery.

As for the redo issue, however, we have more flexibility. We may choose The case for
page-level redoto redo transactions, if necessary, by reinvoking their high-level operations and

executing them again in full-fledged form; or alternatively, we may simply redo
the page writes that were issued on behalf of the original high-level operations.
Between these two alternatives, the page-oriented redo is much preferred for
the following reason. The duration of the redo pass is the most critical factor
in the restart time and thus in the server’s availability. Reexecuting high-level
operations would, however, duplicate most of the operation’s original work,
typically including many page reads from the underlying disk-resident database
or files. Contrast this amount of work with merely having to read and write the
pages that were actually written in the original execution, which is often more
than an order of magnitude less work. So in view of this restart cost comparison,
the choice in favor of the purely page-oriented redo method is obvious.

This discussion leads us directly to the following three-phase recovery
method:

1. The analysis phase works exactly like the page model algorithms to
determine loser transactions; there is nothing special about high-level
operations in this phase.

2. The redo phase performs redo steps for all logged page writes (regard-
less of whether they belong to winners or losers), based on physical or
physiological page-oriented log entries. All optimizations introduced in
Chapter 13 for the page model redo pass apply here as well.

3. The undo phase invokes inverse high-level operations for all logged high-
level operations of loser transactions, based on scanning appropriate “log-
ical” log entries in reverse chronological order.

So the “big picture” is quite simple and not that dissimilar from the page
model recovery method. There are, however, two major complications that
were not present in the page model:

First, high-level operations are not atomic by themselves, so that an invoked Problem:
atomicity
of high-level
operations

inverse operation may find the data in a state that contains partial results of
high-level operations. Note that this can occur by the crash interrupting an
ongoing high-level operation or because of having flushed some but not all of
the pages that were written by an operation. In either case, the inverse operation
is no longer well defined in the state reconstructed by a redo-history pass. For
example, suppose that a server crashes right after having inserted a new index
key that led to a split (or even crashes in the middle of this split), and the newly
created index leaf survives the crash (i.e., has been flushed before the crash);
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whereas the update to the affected leaves’ parent becomes lost due to the crash.
The necessary inverse operation (deleting the key) cannot be executed on the
resulting state, as it would perceive the index structure itself as corrupted.

The second problem has to do with the fact that high-level operationsProblem:
idempotence of

high-level
operations

such as incrementing or decrementing a counter are often not idempotent. In
the page model, we used page sequence numbers (i.e., LSNs in page headers)
to allow the recovery method to test a page’s state with regard to which writes
were present and which were absent. In particular, before we introduced com-
pensation log entries (CLEs), our method for tracking the progress of undo
steps was to decrease the page sequence number in the header of the affected
page. In the object model, however, we need to generalize this kind of state
testing to higher-level operations beyond the scope of individual pages. For ex-
ample, suppose that the Delete operation for the above index example has been
performed as part of the recovery’s undo phase. We cannot simply reset the
affected page sequence numbers to the LSNs of the original writes’ immediate
predecessors as we did in the (simple) redo-winners algorithm for the page
model. Rather, we need to take into account that one or more of the affected
pages may contain chronologically later winner updates as well that were re-
done before the undo pass. If such a page was flushed to disk after the undo step
and the server failed again, the subsequent restart would erroneously redo the
winner update a second time. So the fundamental problem that we encounter
here is that the same page may contain both winner and loser updates such that
the loser update preceded the winner update in the history. This situation is
inherent in fine-grained, object model–style concurrency control. The bottom
line is that state tracking and testing is no longer possible by page LSNs, at least
not by page LSNs alone. We will see in a short while that appropriate use of
CLEs and always increasing page sequence numbers provide a solution that is
very similar to the complete redo-history algorithm for the page model.

As a more concrete illustration of the two problems, consider the sample
execution in Figure 14.1, with time proceeding from left to right, and assume
that the server crashes after the commit of t2 but before t1 is completed. Further
assume that each of the Increment operations in the scenario needs to write
two different pages, for example, to maintain some derived data as part of the
operations’ ADT semantics. The restart after the failure would first redo all
page writes of the example and then needs to undo t1 by issuing two appro-
priate Decrement operations on y and x, respectively. But then, no matter how
we set the page LSN of page p, which was modified by both t1 and t2, we lose
the ability to test for the presence of each of the two operations: resetting the
page LSN to a value preceding t11 would no longer indicate the presence of t21,
even if the page was flushed after (the redo of) t21; leaving the page LSN’s value
as it was set by t21, on the other hand, can no longer detect whether the inverse
operation of t11 has been successfully carried out. Even more obvious than this
subtle pitfall with regard to idempotence is the atomicity problem. Suppose
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Incr(x)

Incr(x) Incr(y) Incr(z)

t2

r(p) w(p) r(r) w(r)

t1

t12 t13

t11

t21

L1

L0

r(p) w(p) r(q) w(q) r(s) w(s) r(r) w(r) r(s) w(s)

Crash

Figure 14.1 Example execution illustrating the problems of object model
crash recovery.

that the server crashes right after t11’s write operation on page p and that p
has been flushed to disk before the crash. In this state, it may be impossible
to execute the inverse decr(x) operation correctly, as this operation would see
only one of the two relevant pages in the state after the original incr(x).

The solution to these problems is twofold:

1. We need to ensure the atomicity of subtransactions by keeping page-level Solution:
subtransaction
atomicity by
page-level undo

undo log entries, in the physical or physiological form, in addition to the
high-level undo log entries for inverse operations. Then, during restart,
we need to augment the redo pass with page-level undo steps that elim-
inate all partial effects of subtransactions. So strictly speaking, we need
an additional phase during recovery, but this does not create much over-
head and may even be viewed as an implicit extension of the redo pass.
Together these measures constitute the page-level stage of a two-level
crash recovery scheme. The result of this page-level stage is to recon-
struct the effects of exactly all subtransactions that were completed at
the time of the crash and ensure that no other effects are present. The
implementation of the page-level recovery stage can essentially adopt
the best-known techniques from Chapter 13, simply replacing the word
“transaction” with “subtransaction.”

2. Once the page-level recovery stage completes and leaves only the ef-
fects of completed subtransactions, the object-level stage of the two-level
recovery scheme is in a position to initiate inverse operations for the
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high-level operations of loser transactions, by looking up the “logicalSolution:
object-level

idempotence by
logging during

restart

undo” entries in the log. Since page LSNs are no longer useful in this
stage, tracking the progress of the undo must be based on re-creating
log entries during restart. This is very similar to the creation of CLEs for
aborted transactions and during the undo phase of the page model redo-
history algorithm, as discussed in Chapter 13. Once each successfully
complete inverse operation is logged on the stable log, we can later
perform an analysis on these log entries to avoid erroneously invoking
the inverse operation a second time. However, this holds only if the first
execution of the inverse operation is guaranteed to survive the crash,
and is guaranteed so in its entirety. This guarantee is obtained from the
underlying page-level stage of the recovery, as we consider a completed
subtransaction. So the page-level stage should redo page writes of the
inverse operation, so that the existence of an object-level CLE-style log
entry correctly reflects the absence of the original high-level operation
(or, equivalently, the presence of the compensation) in the current state
of the data.

14.3 A Simple Redo-History Algorithm
for Two-Layered Systems

In this section we present a simple recovery algorithm for two-layered systems
based on the redo-history paradigm. We emphasize conceptual clarity for the
sake of confidence in the algorithm’s correctness. In subsequent sections, we
will derive more efficient enhanced algorithms from this simple baseline.

14.3.1 Actions during Normal Operation

The simple recovery algorithm uses separate logs for the two levels of ope-
rations:

the L0 log contains physical or physiological undo/redo log entries for
page writes on behalf of subtransactions,

the L1 log contains logical undo log entries (i.e., sufficient information
about the inverse of a high-level operation) on behalf of transactions.

Both logs can be viewed simply as different instantiations of the logL0 log
structures described in Chapter 13 for the page model. The L0 log is, in
fact, absolutely identical to the page model log, with the only difference be-
ing that all its elements refer to subtransactions rather than transactions. In
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particular, all algorithms for the page model’s redo-history recovery can be
carried over without any changes. This also holds for the full spectrum of
optimizations such as checkpointing, flush log entries, and CLEs that we dis-
cussed in Chapter 13. All we need to do is to replace transaction identifiers by
subtransaction identifiers, but as far as the actual management of the L0 log
is concerned, there is no difference. For clarity of the presentation, we will,
however, use the terms “subbegin,” “subcommit,” and “subrollback” when re-
ferring to L0 log entries. During restart, the L0 recovery will redo all completed
subtransactions—that is, those for which it finds a subcommit or subrollback
log entry—and will undo all incomplete ones.

The L1 log can also be viewed as an instantiation of the log structure of L1 log
Chapter 13. The difference, however, is that we will never perform any redo
steps using this log, and the undo steps inferred from the log correspond to the
invocation of inverse operations rather than page-oriented undo. The latter was
occasionally referred to as compensation in Chapter 13, too, for example, when
we introduced CLEs; in fact, there is no real conceptual difference between
page-oriented low-level compensation and the high-level compensation that we
need now for the L1 operations. Other than the specific content of log entries
and their restriction to undo purposes, the L1 log is identical to a page model log.
In particular, the technique of creating CLEs for undo steps and completing
the undo of a transaction with a rollback log entry should be adopted here,
too. Note that the fact that the L1 log merely serves the undo of transactions
renders our repertoire of redo optimizations pointless; so there is no notion of
checkpointing for the L1 log, for example.

Each of the two logs consists of a log buffer and a stable log. So we need Log force rules
to analyze at what points one or both of the log buffers have to be forced for
correctness:

The L0 log buffer needs to be forced whenever a dirty page is flushed
to the stable database and the log buffer contains log entries for this
page. This is the usual application of the undo log rule from Chap-
ter 12, and not at all specific to the object model. Note that without
this forcing we would not be able to guarantee that incomplete sub-
transactions can be undone and would lose the subtransaction atomicity
guarantee.

The L1 logbuffer needs to be forced upon the commit of a transaction.
This is the usual application of the redo log rule from Chapter 12. As
in the page model, it is the existence of the commit log entry on the
stable log that really makes a transaction committed, and the transaction
commit log entries belong to the transaction-oriented L1 level in the
object model.

However, the existence of the commit log entry on the L1 log im-
plies the promise that the transaction’s effects can be redone. So at this
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point, we need to ensure that the log entries for the L0 redo steps are
on stable storage, too. This requires forcing the L0 log, too, and this writ-
ing of the L0 log buffer onto disk must precede the forcing of the L1 log
buffer. So each commit of a transaction requires forcing both log
buffers.

Once a subtransaction commits (or actually, subcommits) on the L0

log, it will later be redone by the L0 recovery if the server crashes. As
long as it belongs to an incomplete transaction, however, we need to
ensure that we have the necessary information to logically undo the
transaction at the L1 level. This consideration leads to the third and last
log force rule: the L1 log buffer needs to be forced each time the L0

log buffer is written to the stable log, and the L1 forcing must precede
the forcing of the L0 log. So we are guaranteed to have the proper
inverse operation in our stable log for each subtransaction that survives
the crash or will be redone at level L0. Note, however, that we may
find an inverse L1 operation on the stable log even if the corresponding
subtransaction does not survive the crash and will not be redone either.
This case may arise if the server fails after having forced the L1 log but
before forcing the L0 log. We will discuss how to handle this situation in
Section 14.3.2.

Note that the two requirements of forcing the L0 log before the L1 log
and forcing the L1 log before the L0 log, stated in the second and third items
above, are not contradictory, as they refer to different events. The first of the
two orderings applies to transaction commits, and the second one to situations
where the L0 log buffer is full or forced because of flushing a dirty page.

It is important to notice that the L0 log buffer does not need to be forced
upon a subcommit. In this respect, the behavior of the L0 log differs from simply
using a page model log for subtransactions as ACID units. Subtransactions need
to be made atomic by the L0 logging, but unlike transactions, they do not have
to be made persistent upon each subcommit. This point is important because
the number of forced log I/Os is the most influential factor as far as the server’s
overhead during normal operation and potential throughput limitations are
concerned. The good news about our approach for object model recovery is
that, compared to the page model, this overhead is only moderately increased:
we have essentially the same number of events that trigger the forcing of a log
buffer, but the undo logging rule requires forcing both the L1 and the L0 log
buffers sequentially, and the commit logging rule requires forcing the L0 and
the L1 log buffers, again sequentially. We will show in Section 14.4 how this
extra burden can also be eliminated in an enhanced version of the algorithm,
by merging the log entries for both levels into a single log.

Given that the algorithmics for almost all action types fall out from the
page model algorithms and log force rules discussed above, we merely give
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pseudocode for the L1 exec actions, which are the only actions during normal
operation that are specific to the object model. Note that the log entry cre-
ated for an L1 operation may sometimes be generated only at the end of the
corresponding subtransaction (i.e., after having performed all its underlying
L0 read/write steps), the reason being that the inverse of such an operation
may depend on the forward operation’s return values and sometimes even on
specific observations on internal state during the execution. In the latter case,
the creation of an undo log entry would have to be integrated into the imple-
mentation of the ADT to which the operation belongs. In most cases, observing
input parameters and return values should suffice, however. Finally, note that
the log entry for an L1 exec action contains both a transaction identifier and
a subtransaction identifier; the latter will be seen to be useful in the following
subsection.

14.3.2 Steps during Restart

Given the two logs that are available after a crash, the overall algorithm for the
restart is fairly straightforward:

First, page-level recovery is carried out by means of the L0 log. This
essentially reconstructs the state as of the crash with all partial ef-
fects of incomplete subtransactions removed. Some of the very recently
completed subtransactions may be lost, too, if their log entries were
not yet forced to the stable log, but no subtransaction of a committed
transaction can be lost. As in the page model, this stage of the recov-
ery requires three passes over the log and is based on the redo-history
paradigm.

Second, the L1 recovery performs an analysis pass over the L1 log to
determine loser transactions, and then performs an undo pass over the
L1 log to initiate the necessary inverse operations for all subtransactions
whose (complete) effects are present in the cached database after the
L0 recovery.

The overall restart procedure is summarized in the pseudocode below.
Note that the L0 analysis pass needs to report not only losers but also an
explicit list of winner (i.e., completed and possibly redone) subtransactions.
This is necessary for the L1 undo pass, as it may encounter a log entry for
a subtransaction that has been undone by the L0 recovery or did not leave
any traces after the crash at all. Recall that this situation may occur because
the L1 log buffer is forced before the L0 log buffer when the L0 log buffer
is full or a dirty page is about to be flushed. Now the L1 undo pass has to
have a means for testing whether or not a subtransaction is present in the
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reconstructed state. This is done by looking up the explicit winner list of the

Execution of
high-level
operation

L0 recovery.

exec (op, transid, inputparams, ↑returnvalues, s):

subbegin ( ) ↑subtransid;

execute operation;

newlogentry.LogSeqNo := s;

newlogentry.ActionType := exec;

newlogentry.TransId := transid;

newlogentry.SubtransId := subtransid;

newlogentry.UndoInfo := information on the

inverse operation and its parameters;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := s;

L1LogBuffer += newlogentry;

subcommit (subtransid);

The list of winner subtransactions may be represented in a compact manner,
so that it does not incur severe overhead during the L0 recovery. For example, a
specific implementation could use the same unique and monotonically increas-
ing log sequence numbers for both logs together, and the L0 log analysis could
determine the maximum LSN of subbegin log entries in the L0 log. When a
subtransaction has a subbegin log entry on the stable log and is not a loser,
then it must be a winner. This observation can be exploited by including the
subbegin LSN in the L1 log entry for the corresponding high-level operation
(e.g., instead of, or in addition to, the subtransaction identifier). Then, when
we inspect the L1 log entry during the L1 undo pass, we compare the entry’s
subbegin LSN with the maximum subbegin LSN found during the L0 analysis
pass to distinguish the following cases:

If the L1 entry’s subbegin LSN is higher than the maximum subbegin
LSN on the L0 log, then the subtransaction is not a winner and its further
L1 log entries can be ignored.

If the L1 entry’s subbegin LSN is smaller than or equal to the maximum
subbegin LSN on the L0 log and the subtransaction is not in the loser
list produced by the L0 log analysis, then it is an L0 winner and must be
undone at level L1.

In the remaining case—that is, when the L1 entry’s subbegin LSN is
smaller than or equal to the maximum subbegin LSN on the L0 log and
the subtransaction is in the L0 loser list—then the subtransaction must
not be undone at level L1.

So it suffices for the L0 analysis pass to keep the much shorter list of
winners and determine the maximum subbegin LSN. This information gives
us a low-overhead state-testing mechanism for the L1 undo pass.
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restart ( ):

L0 analysis pass ( ) returns losers, winners, DirtyPages;

L0 redo pass ( );

L0 undo pass ( );

L1 analysis pass ( );

L1 undo pass ( );

Since all passes of the L0 recovery and the L1 analysis pass follow the

Simple
two-level
recovery
algorithm

standard algorithms that we derived for the page model in Chapter 13 (in-
cluding the various optimizations such as checkpointing or CLEs), we provide
pseudocode only for the L1 undo pass. Note that L0 logging is again in effect
during the execution of high-level inverse operations (which is not shown ex-
plicitly in the pseudocode, but can be inferred from the fact that the execution
spawns a subtransaction) and that the L1 undo pass also generates CLEs and
links them into undo backward chains, just like the page model redo-history
algorithm. Overall, the L1 undo algorithm is not that different from the L0

undo pass; the only fundamental difference is the testing of whether an L1 log
entry corresponds to a winner subtransaction.

L1 undo passL1 undo pass ( ):

ActiveTrans := empty;

for each t in L1 losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /*for*/;

while there exists t in losers

such that losers[t].LastSeqNo < > nil

do

nexttrans := TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation then

if StableLog[nextentry].CompensatingSubtransId is in L0 winners then

losers[nexttrans].LastSeqNo := StableLog[nextentry].NextUndoSeqNo;

else

losers[nexttrans].LastSeqNo := StableLog[nextentry].PreviousSeqNo;

end /*if*/;

end /*if*/;

if StableLog[nextentry].ActionType = exec then

if StableLog[nextentry].SubtransId is in L0 winners then

subbegin ( );

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;
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newlogentry.PreviousSeqNo:= ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo:= nextentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

execute inverse operation

according to StableLog[nextentry].UndoInfo;

subcommit ( );

end /*if*/;

losers[nexttrans].LastSeqNo := StableLog

[nextentry].PreviousSeqNo;

end /*if*/;

if StableLog[nextentry].ActionType = begin then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

losers -= transid;

end /*if*/;

end /*while*/;

force ( );

A complete example of how the simple two-level recovery algorithm works
is given in Figures 14.2 (actions during normal operation) and 14.3 (steps during
restart), using the scenario given earlier in Figure 14.1. For ease of presentation,
no checkpoints or other redo pass optimizations are included in the example.
Also, we do not distinguish between log entries in log buffers versus those on
stable logs; rather we assume that all log entries are appended to stable logs
before the crash. Note that in the example scenario, the high-level inverse op-
erations like incr−1(x, t1) with the LSN 2 can already be created upon invoking
the corresponding L1 “forward” operation, as they do not depend on any result
parameters of the forward operations. In general, however, it could be that the
L1 inverse operation is known only upon the subtransaction’s subcommit; then
the corresponding log entry would be generated and would carry a higher LSN.

Further note that in Figure 14.3 the notation “compensate(. . .) ↑ ti j ” in-
dicates that the invocation of an inverse operation itself spawns a new sub-
transaction ti j . For example, “compensate(11, t12) ↑ t14” means that an inverse
operation has been initiated for the logged operation with LSN 11, which cor-
responded to subtransaction t12, and that this inverse operation has in turn
spawned a new subtransaction t14.

As a final remark, note that it may be worthwhile to reconsider special
derivatives of the redo-history algorithm as a building block in the specific
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Sequence number: Cached Stable Log entry added Log entry added
action changes changes to L0 log to L1 log

[PageNo: [PageNo: [LogSeqNo: action] [LogSeqNo: action]
SeqNo] SeqNo]

1:begin(t1) 1: begin(t1)
2: incr(x, t1) 2: incr−1(x, t1)
3: subbegin(t11) 3: subbegin(t11)
4: write(p, t11) p: 4 4: write(p, t11)
5: write(q, t11) q: 5 5: write(q, t11)
6: subcommit(t11) 6: subcommit(t11)
7: begin(t2) 7: begin(t2)
8: incr(x, t2) 8: incr−1(x, t2)
9: subbegin(t21) 9: subbegin(t21)
10: write(p, t21) p: 10 10: write(p, t21)
11: incr(y, t1) 11: incr−1(y, t1)
12: subbegin(t12) 12: subbegin(t12)
13: write(s, t12) s: 13 13: write(s, t12)
14: flush(p) p: 10
15: write(r, t21) r : 15 15: write(r, t21)
16: flush(s) s: 13
17: subcommit(t21) 17: subcommit(t21)
18: commit(t2) 18: commit(t2)
19: write(r, t12) r : 19 19: write(r, t12)
20: subcommit(t12) 20: subcommit(t12)
21: incr(z, t1) 21: incr−1(z, t1)
22: subbegin(t13) 22: subbegin(t13)
23: write(s, t13) s: 23 23: write(s, t13)

System crash

Figure 14.2 Example scenario for the simple two-level crash recovery algorithm.

context of two-level recovery. Particularly, the “database safe” approach men-
tioned in Section 13.3.3, under Log Truncation (also known as the DB Cache
method in the literature, see the Bibliographic Notes in Chapter 13), which is
based on physical logging of full-writes, could be attractive for the page level
L0, given that we now deal with subtransactions that are much shorter than
full transactions. The database safe method keeps before images separately
from after images, and is designed to hold before images in memory in most
cases, which is feasible for short subtransactions. Then, the actual log, coined
safe in this method, consists only of after images, and unlike physiological log
entries, the log truncation can be implemented very effectively with very little
overhead. As a result, the duration of the redo pass can essentially be bound
to the time for reloading the cache. This attractive property is usually out-
weighed by the fact that this method works only in combination with page
model concurrency control. But when applied to subtransactions, this is not
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Sequence number: Cached Stable Log entry added 
to L0 log
[LogSeqNo: action]

Log entry added
to L1 log
[LogSeqNo: action]

action changes changes
[PageNo: [PageNo:
SeqNo] SeqNo]

Restart
L0 analysis pass: L0 losers = {t13}, L0 winners = {t11, t21, t12}

consider-redo(4)
redo(5) q: 5
consider-redo(10)
consider-redo(13)
redo(15) r : 15
redo(19) r : 19
redo(23) s: 23
24: compensate(23) s: 4 24: CLE(23), next = nil
25: subrollback(t13) 25: subrollback(t13)
L1 analysis pass: L1 losers = {t1}
consider-compensate(21, t13)
26: compensate(11, t12) ↑ t14 26: CLE(11, t12, t14), next = 2
27: subbegin(t14) 27: subbegin(t14)
28: write(s, t14) s: 28 28: write(s, t14)
29: write(r , t14) r : 29 29: write(r , t14)
30: flush(r ) r : 29
31: subcommit(t14) 31: subcommit(t14)
32: flush(q) q: 5
33: compensate(2, t11) ↑ t15 33: CLE(2, t11, t15), next = nil

Second system crash

Second restart
L0 analysis pass: L0 losers = {t15}, L0 winners = {t11, t21, t12, t13, t14}

consider-redo(4)
consider-redo(5)
consider-redo(10)
consider-redo(13)
consider-redo(15)
consider-redo(19)
redo(23) s: 23
redo(24) s: 24
redo(28) s: 28
consider-redo(29)
34: subrollback(t15) 34: subrollback(t15)
L1 analysis pass: L1 losers = {t1}
35: compensate(2, t11) ↑ t16 35: CLE(2, t11, t16), next = nil
36: subbegin(t16) 36: subbegin(t16)
37: write(p, t16) p: 37
38: write(q, t16) q: 38
39: subcommit(t16) 39: subcommit(t16)
40: rollback(t1) 40: rollback(t1)

Second restart complete: resume normal operation

Figure 14.3 Example scenario for the simple two-level crash recovery algorithm, continued.
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a limitation anymore. There are, however, some nontrivial problems with this
approach to L0 recovery; these problems and their solutions are the subject of
Exercise 14.2.

14.4 An Enhanced Redo-History Algorithm for
Two-Layered Systems

An obvious improvement to the previous section’s simple algorithm is to com- Single,
combined logbine the two logs into one. One advantage of this lies in the manageability of

the stable log: stable logs exhibit sequential append-only access patterns dur-
ing normal operation that should result in sequential I/Os on the underlying
disk, and these are an order of magnitude more efficient than random I/Os.
However, this holds only if we can more or less dedicate a disk to the log. With
two separate logs, this condition is obviously harder to guarantee than with a
single, combined log.

There is another benefit from merging the two level-specific logs. Recall Simplified log
force rulesthat the L1 log buffer had to be forced immediately before the L0 log buffer

was written to disk. The reason was that we wanted to ensure that the L1 undo
log entry survives the crash if the corresponding subtransaction’s subcommit
log entry survives the crash. With a single, combined log, we can do even better
than this: we can ensure that the L1 undo log entry is present in the stable log
if and only if the corresponding subtransaction completely survives the crash.
The way to achieve this very nice effect is to combine the L0 subcommit
log entry and the L1 undo log entry into a single log entry. In other words:
we simply need to write the L1 undo log entry as the very last log entry of
the subtransaction and then reinterpret it as the subtransaction’s subcommit
entry.

The reason why this interpretation of the L1 undo log entry as a subcommit No state testing
needed during
L1 undo pass

is a great simplification for the recovery procedure is that it renders the state
testing during the L1 undo pass unnecessary. Now we know for sure that each
L1 undo log entry that we encounter on the stable log is associated with a
winner subtransaction. Of course, during the L1 undo pass, the L1 undo log
entries still serve to provide the information about the appropriate inverse
operations, in addition to the role as subcommit log entries.

So the merging of the two logs into a single one has significant advantages.
On top of this, note that we do not have to change the algorithms for the restart
procedure other than simplifying it. So we can still use the previous section’s
structure for the entire crash recovery—the usual three passes for L0 and the
analysis and undo passes for L1—only all of these passes operate on the same
combined log. Also, each of these passes remains essentially identical to what
we presented in the previous section; the noticeable exceptions being that the
L0 analysis pass does not need to determine winner subtransactions and the L1

undo pass no longer needs to test the status of subtransactions.
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There is, however, an opportunity to reduce the number of passes overReduced
number of

passes over the
log

the combined log with the following enhancements:

The two analysis passes can be easily combined, as they cover the same
part of the log anyway (i.e., typically starting from the most recent
checkpoint). So a single analysis pass is sufficient to determine the
DirtyPages list, the list of loser subtransactions, and the list of loser
transactions.

The two undo passes can be combined as well. All we need to do is
to identify the type of log entry—for example, by including appro-
priate tags in the log entries—and either perform page-oriented undo
steps for loser subtransactions or invoke an inverse operation for a high-
level L1 operation. The latter case spawns a new subtransaction during
restart, which will again generate L0 log entries. Both types of log en-
tries that require undo lead to the creation of CLEs to track the undo
progress.

The reason why both types of undo steps can be combined into a single
backward pass over the log is that incomplete subtransactions can never precede
a completed subtransaction whose L1 operation is in conflict with that of the
incomplete subtransaction. This is a consequence of the fact that all histories
must be conflict serializable and log recoverable. Furthermore, for each loser
transaction, if there is an incomplete subtransaction, it must correspond to
the transaction’s very last L1 operation before the server crashed. So if the
undo were organized on a per-transaction basis, we would first encounter the
relevant L0 log entries in the backward scan, and once we find the first L1 log
entry, we no longer need to consider incomplete subtransactions. The conflict
serializability and log recoverability of the history then allows us to cover all
loser transactions in the usual single, “global” backward pass over the log.

These considerations provide us with the following result:

THEOREM 14.1

The enhanced two-level crash recovery method, with three passes over the

combined log, provides correct recovery.

Proof

First note that by reconstructing the state as of the crash time, the redo pass

establishes all winner updates in the cached database, plus all updates of

loser transactions, where the latter may include effects of partially executed

high-level operations. The undo pass gradually removes these loser effects,

without affecting any of the winner updates, on the assumption that the

original history was tree-prefix reducible and the undo steps are identical to

what a group abort (in the sense of Chapter 11) would generate. So writes
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of incomplete subtransactions are undone by inverse write operations, and

the effects of completed subtransactions are undone by inverse high-level

operations.

The undo pass traverses the NextUndoSeqNo backward chains of the loser

transactions. At each point, all log entries that are reachable by the Next-

UndoSeqNo chains of the transactions in the ActiveTrans data structure are

exactly those loser updates that are still present in the cached database. In

formal terms, the following invariant holds throughout the undo pass:

∀ log sequence numbers s ∈ stable log such that
s = ActiveTrans[t].LastSeqNo for some loser transaction t :
∀ operations o ∈ stable log :

(o belongs to t) ⇒
(o is reachable along ActiveTrans[t].NextUndoSeqNo ⇔

o ∈ cached database)

Note that these reachable loser operations include both L0 writes of incom-

plete subtransactions and L1 high-level operations. So by the end of the

undo pass, all effects of loser transactions are removed from the cached

database such that the history prolonged by these undo steps is reducible

to the roots of the winner transactions.

The final thing to show is that the above invariant during the undo pass

is not destroyed by a subsequent crash. Here the argument is simple: the

redo pass of the restart following another crash will again redo history. This

includes CLEs for all undo steps that have already been executed in the prior

undo pass. These CLEs refer to both L0 writes of incomplete subtransactions

and L1 high-level operations that correspond to subtransactions that were

completed before the most recent crash. In addition, the log is also guaran-

teed to include regular log entries for all L0 writes that were executed on

behalf of high-level undo steps. By redoing history, the redo algorithm en-

sures that exactly those loser updates will be present in the cached database

that were still present at the time of the crash. Furthermore, all these log

entries created during restart will be appropriately linked in the NextUndo-

SeqNo backward chain. So the undo pass of this second restart after the

original crash starts out with the same invariant, given above, that the undo

pass of the first restart was based on, and then proceeds, maintaining the

invariant. At no point does the undo pass need to know whether the most

recent crash occurred during normal operation or during a previous restart.

Eventually, the traversal of the NextUndoSeqNo backward chains of the loser

transactions will reach the very first log entries of the involved transactions

(i.e., the begin log entries or the first write log entry) and terminate. At this

point, the above invariant states that no loser effect is present in the cached

database anymore.
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To streamline the implementation of the enhanced undo pass as much
as possible, we extend our use of the transaction-oriented NextUndoSeqNo
backward chaining (see Chapter 13) of log entries as follows:

As usual, a log entry for an L0 write action points to the transaction’s
preceding L0 log entry, unless it is the first write of a subtransaction.
The log entry for this first L0 write points to the L1 log entry for the
preceding (and definitely completed) subtransaction.

A log entry for an L1 high-level operation points to the transaction’s
preceding L1 log entry.

Finally, as in the page model, a CLE points to the predecessor, with
regard to the NextUndoSeqNo backward chain, of the log entry whose
undo is represented by the CLE. This holds for both L0 and L1 log
entries.

The relationships among log entries are schematically illustrated in Fig-
ure 14.4.

With these extensions to the NextUndoSeqNo backward chains, the undo
pass can cover both L0 and L1 log entries in a uniform way, generating CLEs for
both of them. When traversing the backward chains of the loser transactions,
the undo pass simply needs to distinguish the three types of possible log entries:
CLEs do not require any action in the undo pass and merely serve to follow
their NextUndoSeqNo pointer to the first relevant log entry; regular L0 log
entries that describe page-level forward operations require a page-level undo
step and the generation of a CLE; and regular L1 log entries that describe high-
level forward operations require the invocation of a high-level inverse operation

Begin(t1) w111 w112

exec11
−1

(=subcommit
(t11))

exec12
−1

(=subcommit
(t12))

w121 w122 w123 w131 w132

w141 w142

CLE exec12
−1

(=subcommit
(t14))

CLE exec11
−1

(=subcommit
(t15))

Combined L0/L1 log...

...during
   normal
   operation

CLE
w132

−1
CLE
w131

−1 w143 w151 w152 Commit(t1)

Crash

...continued
   during
   restart

NextUndoSeqNo
backward chain

Figure 14.4 Schematic illustration of log entries and their NextUndoSeqNo chaining on the com-
bined L0/L1 log.
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and the generation of a CLE. The pseudocode for this undo procedure is given
below.

undo pass ( ): Combined
L0/L1 undo
pass

ActiveTrans := empty;

for each t in losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /*for*/;

while there exists t in losers such that losers[t].LastSeqNo < > nil

do

nexttrans = TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo|x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation then

losers[nexttrans].LastSeqNo := StableLog[nextentry].NextUndoSeqNo;

end /*if*/;

if StableLog[nextentry].ActionType = write or full-write then

pageno := StableLog[nextentry].PageNo; fetch (pageno);

if DatabaseCache[pageno].PageSeqNo > = nextentry.LogSeqNo then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.PreviousSeqNo;

newlogentry.RedoInfo := inverse action of the action in nextentry;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;

end /*if*/;

losers[nexttrans].LastSeqNo := StableLog[nextentry].NextUndoSeqNo;

end /*if*/;

if StableLog[nextentry].ActionType = exec then

subbegin ( );

execute inverse operation according to StableLog[nextentry].UndoInfo;

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.NextUndoSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

subcommit ( );

losers[nexttrans].LastSeqNo := StableLog[nextentry].NextUndoSeqNo;

end /*if*/;
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if StableLog[nextentry].ActionType = begin then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid; losers -= transid;

end /*if*/;

end /*while*/;

force ( );

As an example, we show again in Figures 14.5 and 14.6 the logging activity
and the recovery steps for our earlier scenario (see Section 14.3), using the
enhanced two-level crash recovery algorithm.

Sequence number: Cached Stable Log entry added
action changes changes [LogSeqNo: action]

[PageNo: [PageNo: [NextUndoSeqNo]
SeqNo] SeqNo]

1: begin(t1) 1: begin(t1), next = nil
2: incr(x, t1)
3: subbegin(t11)
4: write(p, t11) p: 4 4: write(p, t11), next = nil
5: write(q, t11) q: 5 5: write(q, t11), next = 4
6: subcommit(t11) 6: incr−1(x, t1), next = nil
7: begin(t2) 7: begin(t2)
8: incr(x, t2)
9: subbegin(t21)
10: write(p, t21) p: 10 10: write(p, t21), next = nil
11: incr(y, t1)
12: subbegin(t12)
13: write(s, t12) s: 13 13: write(s, t12), next = 6
14: flush(p) p: 10
15: write(r, t21) r : 15 15: write(r, t21), next = 10
16: flush(s) s: 13
17: subcommit(t21) 17: incr−1(x, t2), next = nil
18: commit(t2) 18: commit(t2)
19: write(r, t12) r : 19 19: write(r, t12), next = 13
20: subcommit(t12) 20: incr−1(y, t1), next = 6
21: incr(z, t1)
22: subbegin(t13)
23: write(s, t13) s: 23 23: write(s, t13), next = 20

System crash

Figure 14.5 Example scenario for the enhanced two-level crash recovery
algorithm.
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Sequence number: Cached Stable Log entry added
action changes changes [LogSeqNo: action]

[PageNo: [PageNo: [NextUndoSeqNo]
SeqNo] SeqNo]

Restart
Analysis pass: losers = {t1}; LastSeqNo(t1) = 23
consider-redo(4)
redo(5) q: 5
consider-redo(10)
consider-redo(13)
redo(15) r : 15
redo(19) r : 19
redo(23) s: 23
24: compensate(23) s: 24 24: CLE(23), next = 20
25: compensate(20, t12) ↑ t14

26: subbegin(t14)
27: write(s, t14) s: 27 27: write(s, t14), next = 20
28: write(r, t14) r : 28 28: write(r, t14), next = 27
29: flush(r ) r : 28
30: subcommit(t14) 30: CLE(20, t12, t14), next = 6
31: flush(q) q: 5
32: compensate(6, t11) ↑ t15

Second system crash

Second restart

Analysis pass: losers = {t1}; LastSeqNo(t1) = 30
consider-redo(4)
consider-redo(5)
consider-redo(10)
consider-redo(13)
consider-redo(15)
consider-redo(19)
redo(23) s: 23
redo(24) s: 24
redo(27) s: 28
consider-redo(28)
33: compensate(6, t11) ↑ t15

34: subbegin(t15)
35: write(p, t15) p: 35 35: write(p, t15), next = 6
36: write(q, t15) q: 36 36: write(q, t15), next = 35
37: subcommit(t15) 37: CLE(6, t11, t15), next = nil
38: rollback(t1) 38: rollback(t1)

Second restart complete: resume normal operation

Figure 14.6 Example scenario for the enhanced two-level crash recovery algorithm,
continued.
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During the first restart of Figure 14.6, the undo pass for the loser transaction
t1 starts with LSN 23, which was an L0 write of an incomplete subtransaction,
and then proceeds backward along the NextUndoSeqNo chain, abbreviated as
“next” in the figure, to undo the operations with LSNs 20 and 6, both of which
were completed L1 high-level operations. As shown in Figure 14.6, these undo
steps create new log entries. The CLEs among these new log entries point to
the predecessor, with regard to the NextUndoSeqNo backward chain, of the
undone operation. For example, the CLE with LSN 24 points to LSN 20 (after
the undo of the L0 operation with LSN 23), and the CLE with LSN 30 points
to LSN 6 (after the undo of the L1 operation with LSN 20). During the second
restart of Figure 14.6, the undo pass for the loser transaction t1 starts with LSN
30, but as the log entry with this LSN is a CLE, it immediately proceeds with
the NextUndoSeqNo predecessor, which is the log entry with LSN 6.

Note that the compensation of the encountered L1 high-level operations
involves spawning new subtransactions denoted by the ↑ symbol in the figure.
For example, compensate(20, t12) ↑ t14 means that an inverse operation has
been initiated for the logged operation with LSN 20, which corresponded to
subtransaction t12, and the newly spawned compensating subtransaction has
the identifier t14. Finally, note that regular log entries are created for the L0

writes of these compensating subtransactions; in the example, these are log
entries with LSNs 27 and 28 on behalf of t14 and log entries with LSNs 35 and
36 on behalf of t15.

14.5 A Complete Redo-History Algorithm for
General Object Model Executions

Let us now address the most general case of nonlayered object model transac-
tions. It turns out that this is not that much more difficult than the two-level
case that we have considered so far. We will see shortly that the enhanced
two-level recovery algorithm with three passes over a combined log already
provides a suitable framework and needs only relatively simple adaptations to
the more general setting. But let us first reconsider an example of the gen-
eral case, to analyze what kinds of additional problems we face. The example is
shown in Figure 14.7. Its operations Shipment and Payment refer to a simplified
e-Commerce scenario, where Payment includes Withdraw operations on the
customers’ bank accounts, a Discount operation that modifies one customer’s
discount rate because of sales volume or purchasing frequency, and also write
steps whose semantics is not explicitly reflected. For simplicity, no read steps
are shown in the figure.

Assume that the server fails right after the last operation shown in Fig-
ure 14.7 and that t2 is committed. Further assume that all subtransactions of t1
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t1

w111(r) w112(t)

t2

Withdraw211(x)

w2111(s) w2112(t)

Withdraw121(x)

w1211(s) w1212(t)

Discount122(a)

w1221(p) w1222(t) w123(q) w124(t)

Shipment11 Payment21 Payment12c

Crash

Figure 14.7 Example of a nonlayered object model history.

are completed (for simplicity, their commits are not shown in the figure), but
t1 itself is not yet committed.

As far as the analysis pass and the redo pass are concerned, the recovery al-
gorithm of the previous section is applicable without any changes. So the redo
pass takes care of the winner transaction t2 and also redoes, if necessary, all
updates of t1 up to the point of the crash. The remaining issue is how we deter-
mine which actions need to be undone on behalf of the loser transaction t1. The
overall rationale for this undo phase is the same as for the transaction recovery
discussed in Chapter 11 (i.e., transaction rollbacks during normal operation).
We need to identify all incomplete subtransactions, including the transaction
roots, and invoke inverse operations for each of these subtransactions’ children
(unless these children are themselves aborted subtransactions, a case that we
disregard in this chapter for ease of explanation). As in transaction recovery, all
the necessary inverse operations need to be executed in reverse chronological
order, and they should ideally be organized into a single backward pass over
the log. To be prepared for these undo steps, all we need to do during normal
operation is to create a log entry, in the log buffer, with sufficient information
about the inverse operation, whenever a subtransaction is about to commit. As
in the previous section, this log entry also serves as a subcommit log entry, and
this holds regardless of any layering and thus generalizes to our current setting
without any modifications.

In the example, the inverse operations to be spawned for undoing t1 are, in
the given order (i.e., the reverse order of the corresponding forward operations):

write−1(t) write−1(q) discount
−1

(a) withdraw
−1

(x) shipment
−1

If the crash had interrupted the subtransaction t122 (i.e., t1’s Discount opera-
tion), say, after the write step on p, then we would need to undo this write step
and then proceed with the inverse operation of the preceding and completed
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Withdraw operation and finally compensating the Shipment. If, on the other
hand, the crash had occurred after the completion of the subtransaction t12 but
still before the transaction’s commit (and no other actions in between), then
the low- and intermediate-level undo steps would have to be replaced by a
single inverse operation for the commit subtransaction payment12.

These example-driven considerations show that the necessary undo stepsTransaction
undo stack for an incomplete subtransaction vary as subtransactions commit or new sub-

transactions are spawned in the course of a transaction’s execution. This natu-
rally leads to a kind of transaction undo stack that contains all relevant inverse
operations for a given transaction at a given point in time. Its maintenance, on
a per-transaction basis, is driven by two rules:

Upon each exec(op, trans, . . .) action or write step, information about
the appropriate inverse operation is pushed on the stack.

Upon each subcommit, the stack is popped until the committing sub-
transaction’s inverse operation becomes the top of the stack. So this
removes all inverse operations for descendants of the committing sub-
transaction.

For the example of Figure 14.7, the undo stack of the transaction t1 varies
during the execution (with the stack top on the right end), as shown in
Table 14.1.

Table 14.1 Undo stack for t1 from Figure 14.7.

Action Undo stack

shipment11 shipment−1
11

write111(r ) shipment−1
11 write−1

111(r )

write112(t) shipment−1
11 write−1

111(r ) write−1
112(t)

subcommit(t11) shipment−1
11

payment12 shipment−1
11 payment−1

12

withdraw121(x) shipment−1
11 payment−1

12 withdraw−1
121(x)

write1211(s) shipment−1
11 payment−1

12 withdraw−1
121(x) write−1

1211(s)

write1212(t) shipment−1
11 payment−1

12 withdraw−1
121(x) write−1

1211(s) write−1
1212(t)

subcommit(t121) shipment−1
11 payment−1

12 withdraw−1
121(x)

discount122(a) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a)

write1221(p) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a) write−1
1221(p)

write1221(t) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a) write−1
1221(p) write−1

1222(t)

subcommit(t122) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a)

write123(q) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a) write−1
123(q)

write124(t) shipment−1
11 payment−1

12 withdraw−1
121(x) discount−1

122(a) write−1
123(q) write−1

124
(t)
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A similar undo stack needs to be maintained for the winner transaction t2 as Embedding the
undo stacks
into the log

well, up to the point when it commits; at this point, the stack is popped as many
times as the number of the transaction root’s children and then becomes empty
and is dropped. Now it could be intriguing to simply make these transaction-
specific undo stacks recoverable as the basis for undo recovery, but then it would
be unclear what kind of data structure is needed for holding all stacks of all
active transactions to make the undo phase as efficient as possible. A better idea
toward log-based undo with a single backward pass of the log during restart is to
embed the information from these undo stacks into the log by appropriate log
entries, and with appropriate UndoNextSeq backward chaining to “emulate”
the stack pop operations. So push operations on a stack simply correspond to
creating a log entry and appending it to the log buffer, and pop operations
correspond to a new log entry whose NextUndoSeq pointer skips all preceding
log entries whose corresponding stack entries are to be popped.

With this kind of log entry backward chaining it is indeed possible to per-
form the entire undo phase with all relevant inverse operations of all loser
transactions in a single backward pass over the log. So the transaction-specific
undo stacks exist only conceptually, and the implementation is solely log based
as before. In fact, this approach also solves another difficulty that we swept
under the rug in the discussion of the undo stack approach: the inverse oper-
ation for a nonleaf operation can often be determined only at the end of the
subtransaction, that is, after its children and further descendants were pushed
onto the stack. Then the inverse operation of the entire subtransaction would
actually have to replace all its descendants atomically. It is not at all obvious
how to implement a sequence of pop operations followed by a single push op-
eration as an atomic stack operation. However, achieving this effect with the
log-based approach is straightforward: writing the log entry for the subtransac-
tion’s inverse operation along with a NextUndoSeq backward pointer that skips
all its children is a simple, atomic step. If this log entry survives the crash, then
the subtransaction must have been committed, and its undo requires an inverse
operation; otherwise, the undo can be performed by undoing the operation’s
children.

In summary, we apply the following rules for setting the NextUndoSeq
pointer of a log entry:

If the operation that corresponds to the log entry is not the first child
of its parent, then its NextUndoSeq pointer points to its immediately
preceding sibling.

If the operation is the first child of its parent, its NextUndoSeq pointer
points to its parent’s immediately preceding sibling if there is one, and
to the transaction root otherwise.

For CLEs that are created during the undo pass or during a transaction
rollback, the NextUndoSeq pointer points to the predecessor of the
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forward operation that is matched by the CLE. Here “predecessor”
means the forward operation’s immediately preceding sibling if there
is one, or the immediately preceding sibling of its parent (or if this does
not exist either, to the transaction root).

The way these rules are phrased seems to require that all operations within
a transaction are totally ordered. They can, however, be rephrased to cover the
case of partial orders as well; so parallel subtransactions within a transaction
can also be supported with this approach. We leave the details for you to work
out in Exercise 14.4. The log entries for our example scenario above are shown
in Figure 14.8.

We conclude this section by pointing out that the pseudocode for the
restart procedure is absolutely identical to that of the enhanced two-level al-
gorithm. The analysis pass and the redo pass are identical to those of the page
model redo-history algorithm anyway, and the undo pass simply follows the
NextUndoSeqNo backward chains of the loser transactions. The generalization
compared to the enhanced two-level algorithm simply lies in the fact that these
chains contain log entries of action type exec that correspond to all committed
subtransactions with uncommitted parents, regardless of any layering.

14.6 Lessons Learned

The redo-history paradigm for the redo phase of the crash recovery has been
the key asset to cope with the complexity of object model transactions: the
restart procedure first reconstructs the state of the data as of the time of the
crash, and then initiates what is essentially transaction recovery for loser trans-
actions as if these transactions were to be rolled back during normal opera-
tion. Furthermore, performing the redo pass solely by means of page-oriented
physical or physiological writes makes this most critical phase of the overall
recovery very efficient, and allows us to carry over the clever optimizations
from the page model. As for the undo pass, once we merged the log entries
for the operations of the various levels into a single log, the use of the Next-
UndoSeqNo backward chaining to capture the undo stack of a loser transaction
appeared fairly natural, and the avoidance of undoing already undone opera-
tions made possible by compensation log entries could be carried over from the
page model and applied to higher-level operations as well without significant
changes.

In summary, a state-of-the-art object model crash recovery algorithm in-
cludes the following techniques:

applying page-oriented redo of both winner and loser updates by means
of physical or physiological log entries;
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Sequence number: Log entry added
action [LogSeqNo: action]

[NextUndoSeqNo]

1: begin(t1) 1: begin(t1), next = nil
2: shipment11

3: subbegin(t11)
4: write111(r ) 4: write111, next = nil
5: write112(t) 5: write112, next = 4

6: subcommit(t11) 6: shipment−1
11 , next = nil

7: begin(t2) 7: begin(t2), next = nil
8: payment21

9: subbegin(t21)
10: withdraw211(x)
11: subbegin(t211)
12: write2111(s) 12: write2111(s), next = nil
13: write2112(t) 13: write2112(t), next = 12

14: subcommit(t211) 14: withdraw−1
211(x), next = nil

15: subcommit(t21) 15: payment−1
21 , next = nil

16: commit(t2) 16: commit(t2)
17: payment12

18: subbegin(t12)
19: withdraw121(x)
20: subbegin(t121)
21: write1211(s) 21: write1211(s), next = 6
22: write1212(t) 22: write1212(t), next = 21

23: subcommit(t121) 23: withdraw−1
121(x), next = 6

24: discount122(a)
25: subbegin(t122)
26: write1221(p) 26: write1221(p), next = 23
27: write1222(t) 27: write1222(t), next = 26

28: subcommit(t122) 28: discount−1
122(a), next = 23

29: write123(q) 29: write123(q), next = 28
30: write124(t) 30: write124(t), next = 29

Figure 14.8 Log entries for the general object model
example of Figure 14.7.

merging log entries for all levels into a single log, and performing crash
recovery with a single undo pass (in addition to the usual analysis and
redo passes);

treating log entries for high-level operations as subcommit log entries for
the corresponding subtransactions, thus making subtransactions atomic;

encoding the undo stack of inverse operations of different levels that are
necessary to undo a loser transaction into an appropriate linking of log
entries in the NextUndoSeqNo backward chain;
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generating compensation log entries for inverse operations of all levels to
track the undo progress and make the undo pass effectively idempotent;

finally, treating high-level inverse operations that are invoked during the
undo pass again as subtransactions that create low-level log entries for
redo purposes and a concluding compensation log entry upon the sub-
transaction’s subcommit, so that subtransaction atomicity is also main-
tained during restart.

Although the entire recovery algorithm is a fairly complex procedure that
would be hard to understand all at once, each of its above constituents is
relatively straightforward. Our general approach of starting out with a simple,
albeit restricted algorithm and gradually adding extensions and optimizations,
which we already used in several of the book’s chapters, has again paid off in
providing us with high confidence in the correct and efficient behavior of the
final algorithm.

Exercises

14.1 Consider the algorithm for object model recovery. Assume that the undo
information and the redo information for an action are recorded in sepa-
rate log entries, rather than always being combined in one log entry. What
is the impact on the algorithm? In particular, what are the implications
for the order in which log entries must be created and the forcing of the
log buffer? Sketch the modified algorithm.

14.2 Consider the DB Cache method (see Exercise 13.3), applied to subtrans-
actions, for implementing the L0 recovery of the simple two-level re-
covery algorithm. When adopted in a straightforward way, this method
would force after images to the stable log, coined the safe, upon each
subcommit. Discuss under which conditions these forced log I/Os can
be avoided. As a hint, assume that a set of after images can be written
to the safe atomically, and analyze what happens when the forcing of a
subtransaction’s after images is deferred until the transaction’s commit.
In particular, analyze how to deal with subtransactions, belonging to the
same or different transactions, whose write sets have pages in common.
How do such “dependencies” between subtransactions affect the deferral
of forced log I/Os?

14.3 Consider the two-level action history given in Figure 14.9, with opera-
tions on records (store, modify) and index keys (insert, delete). For the
latter operations, the first parameter denotes a key and the second pa-
rameter the RID (i.e., address) of a stored record. Assume that there is a
system crash right after the last action. Determine the necessary logging
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Sequence number: Cached Stable
action changes changes Log entry added

[PageNo: [PageNo: [LogSeqNo: action]
SeqNo] SeqNo] [NextUndoSeqNo]

1: begin(t1)
2: modify(x, t1)
3: subbegin(t11)
4: write(p, t11)
5: begin(t2)
6: store(y, t2)
7: subbegin(t21)
8: write (q, t21)
9: write(r, t21)
10: subcommit(t21)
11: write(r, t11)
12: subcommit(t11)
13: delete(a, @x, t1)
14: subbegin(t12)
15: write(l , t12)
18: subcommit(t12)
19: insert( f, @x, t1)
20: subbegin(t13)
21: write(l , t13)
22: write(k, t13)
23: write(n, t13)
24: subcommit(t13)
25: begin(t3)
26: store(z, t3)
27: subbegin(t31)
28: write(q, t31)
29: write(r, t31)
30: subcommit(t31)
31: insert(h, @z, t3)
32: subbegin(t32)
33: write(k, t32)
34: subcommit(t32)
35: commit(t3)
36: insert(b, @y, t2)
37: subbegin(t22)
38: write(l , t22)

Figure 14.9 Two-level history for Exercise 14.3.

actions during normal operation and the recovery actions during restart,
by completing the table. Use the enhanced two-level recovery algorithm
with a single log from Section 14.4.

14.4 Discuss which (minor) adaptations are necessary for the general recov-
ery algorithm to work with parallel subtransactions within a transaction
(i.e., partially ordered operations in general object model transactions).
In particular, explain how the NextUndoSeqNo backward chain of log
entries must be organized so as to guarantee that the proper inverse op-
erations will be invoked in the correct order during the undo phase, using
a single backward pass over the log.

Hint: The ActiveTrans and losers data structures need to be extended
so that they can maintain multiple LastSeqNo entries whenever more than
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one subtransaction of the same transaction is in progress or incomplete
simultaneously.
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CHAPTER F IFTEEN

Special Issues of Recovery

Success is a lousy teacher.

—Bill Gates

It’s not easy being green.

—Kermit

15.1 Goal and Overview

The crash recovery algorithms developed in the previous chapters, for the page
and the object model, are as general as possible in that they can handle arbi-
trary kinds of data servers with arbitrary kinds of objects. For specific objects,
however, special considerations may be worthwhile for further optimizations
of the logging space and time overhead or efficiency during restart. Likewise,
specific architectural settings—for example, multiprocessor computers with
very large main memory or computer “clusters” as platforms for data servers—
offer the potential for tailored adaptations and additional improvements to the
general-purpose algorithms. In this chapter we discuss various extensions and
adaptations of the previously developed recovery algorithms to accommodate
and exploit such specific settings.

The chapter is organized as follows. Section 15.2 presents special logging
considerations for the recovery of B+ tree index structures and large data ob-
jects such as images or mail attachments that are typically manipulated in a
specifically constrained manner. Section 15.3 adds a “convenience” feature to
our repertoire of supported recovery cases, namely, the possibility of dynam-
ically declaring savepoints within a transaction and initiating partial rollbacks
to a previous savepoint rather than rolling back an entire transaction. Section
15.4 introduces advanced techniques for speeding up the restart after a crash
by exploiting parallelism and making the server available for normal operation
as quickly as possible. The last two sections, Sections 15.5 and 15.6, address
the performance opportunities of specific hardware settings for data servers,
namely, servers where all data fits into main memory and so-called data shar-
ing clusters that combine a small number of computers into a shared disk,
distributed memory system.

561
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15.2 Logging and Recovery for Indexes
and Large Objects

Special object types that are of great importance in various classes of server
types and are manipulated in a highly specific manner are index structures,
such as B+ trees, and large objects, such as images and mail attachments. Ap-
plying standard logging to these object types may result in a fairly high amount
of logging volume. This is not necessarily a dramatic problem, as the log I/O
bandwidth can be easily scaled up by striping the log across multiple disks.
However, there are methods that can reduce the logging costs for these struc-
tures, as discussed next.

15.2.1 Logical Log Entries for the Redo of
Index Page Splits

Index structures such as B+ trees are handled by the enhanced variant of theObject model
recovery

applied to index
structure

general-purpose crash recovery algorithm for the object model (or, more specif-
ically, the two-level case) as follows:

■ For each index page that is modified by the insertion or deletion of a
(key, RID) pair, a physical or physiological log entry is created. These
log entries serve to ensure the atomicity of the subtransaction that cor-
responds to the Insert or Delete operation, and the persistence of the
entire transaction to which the index operation belongs.

■ At the end of the index operation, a higher-level, logical log entry is
created that describes the inverse operation of the executed index op-
eration, that is, deleting or reinserting the affected (key, RID) pair. The
purpose of the log entry is to provide the ability to undo the surround-
ing transaction by means of compensation (if the transaction turns out
to be a loser). This log entry follows all of the index page–oriented log
entries mentioned above, and also serves as a subcommit log entry for
the subtransaction.

Note that none of the above log entries requires forcing the log buffer.
So the standard procedure is already fairly efficient as far as logging costs are
concerned. As an example, consider an operation inserti j (k, @x) for key k and
the RID of record x, executed as the j-th operation of transaction ti . Assume
that the operation traverses a B+ tree of height 3, starting from the root page
r , proceeding through an intermediate-level page n, and ending at leaf page
l , which turns out to be split into l and the newly allocated leaf page m and
requires posting a new routing entry in the parent node n. The log entries
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created for this operation are

writei j1(l) writei j2(m) writei j3(n) insert−1
i j (k, @x)

Recall that the last log entry has the additional implicit meaning of a
subcommiti j log entry for the corresponding subtransaction ti j .

During crash recovery, the write steps will be redone; subsequently, if ti is
a loser transaction and the log entry for the inverse Insert operation is found
on the stable log, the inverse operation will be invoked during the undo pass. If,
on the other hand, the server crashed with only some of the write log entries on
the stable log and without remembering the inverse operation, these surviving
write steps will be undone in a page-oriented manner. Recall that both cases
can be handled uniformly within a single undo pass on a single log. The same
principle also works fine for all other kinds of local reorganizations in B+ trees
(e.g., splits that propagate all the way up to the root node and may even split
the node and increase the tree height) and also for most other kinds of index
trees, including R trees on multidimensional data. For simplicity, the following
discussion restricts itself to the above B+ tree split scenario, which captures the
most typical practical case.

The amount of logged data in our example above is actually larger than it Problem with
physical logging
of index page
splits

may appear upon first glance. Even with physiological logging, a leaf page split
eventually winds up putting the contents of the original and the newly created
leaf node on the log. Even worse, the log entries include both undo and redo
information, so that all (key, RID) pairs of the original leaf may even appear
twice on the log. With the current trend toward larger index pages, driven by
the increasing ratio of sequential versus random disk I/O times and page sizes
currently on the order of 64KB, the space for these log entries is no longer a
completely minor issue.

The key observation toward further reducing this amount of logged data is
that the split itself does not really modify any of the previously existing (key,
RID) pairs; it merely redistributes them across two pages. We surely cannot
avoid logging the split, as we need to ensure the atomicity of the current and
also subsequent index operations, but we can choose to record the split event
in a logical, higher-level form. During the redo pass after a crash, we may then
end up having to reexecute such an operation, something we carefully avoided
so far for the sake of restart speed. However, in this very specific case, we could
indeed favor logical log entries over physiological ones, even for redo purposes.
So the general idea is to trade off a small if not negligible increase of the restart
duration for a significant reduction in logging costs; for the special case of index
page splits, there is no additional restart cost at all (compared to the restart cost
of physiological logging).

Deriving the logical log entry for the split itself is straightforward: we Logical logging
of detached split
operations

merely need to record the page numbers of the original and newly created leaf
and the median of the affected keys, which will be the highest key to remain
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on the originally existing leaf. The difficulty with this approach lies in the
interdependencies between the Split operation and the Insert operation that
triggered the split: first, we also need to log the Insert operation for possible
undo or redo of the surrounding transaction, and second and above all, we still
need to ensure the atomicity of the entire index operation.

For the first point, we detach the local reorganization of the index tree
from the insertion of a new (key, RID) pair, turning it into a completely sepa-
rate “system-induced” transaction. So whenever an Insert operation encounters
a leaf page with insufficient space, the server first initiates a separate split trans-
action that consists solely of splitting the affected leaf page. Once this special
transaction is committed, the Insert operation can proceed without causing any
reorganization (as the probability for being passed by so many other concurrent
Insert operations that the freshly split page becomes full again is very close to
zero). Further note that from this point, the log entry for the split transaction
is needed for redo purposes only; if the surrounding transaction should be un-
done later, the inserted (key, RID) pair will be removed, but the split will not
be undone.

As for the second point—the atomicity of the detached split transaction—
we can exploit the special page access pattern of this transaction (and we will
later generalize these considerations). The split reads pages l (the original leaf
to be split) and n (the parent of l on which the split must be posted), and it
writes pages l , m (the new sibling of l), and n. A crash may “lose” any subset of
the three modified pages, depending on which pages are flushed to the stable
database before the crash. So redoing the split will be faced with some pages
in their old state (i.e., as of a time before the split) and some in their new
state (i.e., including the effects of the split). The redo step for the logged split
operation must therefore distinguish the following eight cases:

1. All three pages are in their old state.

2. l is in the new state, and m and n are in the old state.

3. m is in the new state, and l and n are in the old state.

4. n is in the new state, and l and m are in the old state.

5. l and m are in the new state, and n is in the old state.

6. l and n are in the new state, and m is in the old state.

7. m and n are in the new state, and l is in the old state.

8. All three pages are in the new state.

Clearly, the easy cases are 1 and 8, as they preserve the atomicity of the orig-
inal split operation; in case 1 the split is completely reexecuted, and in case 8
nothing needs to be done. These two cases are indeed detectable by inspecting
the LSNs of the three involved pages during the redo pass and comparing them



15.2 Logging and Recovery for Indexes and Large Objects 565

to the LSN of the logged split operation. This standard state-testing procedure
can also discriminate the six remaining cases, assuming that the page numbers
of the three pages are included in the split’s log entry. But now the redo step
must proceed carefully, as the prior execution of the split has left partial effects
in the stable database. Among cases 2 through 7, the cases where the newly
allocated leaf m is in its new state (i.e., cases 3, 5, and 7) are easy to handle:
the redo step needs to remove the (key, RID) pairs that are above the split key
from the originally existing leaf l and post the split to the parent n (in case 3),
or merely post the split (in case 5), or it needs to remove the (key, RID) pairs
that are now on l ’s sibling m from l (case 7). In case 4, where only the parent
node n is in the new state, the split itself needs to be repeated, and if the newly
allocated sibling of l turns out to be different from the one that was posted to n
in the original execution, this can be fixed easily by changing the page number
of the routing entry in n. (Note that such a situation could occur because of
liberal page allocation policies that do not necessarily comply with the seri-
alization order of transactions.) Finally, the remaining two cases, 2 and 6, are
the only ones that are indeed troublesome: in both of these cases, the original
leaf l is in its new state, but the intended sibling m is still in its old state. This
means that we have only the lower half of the originally existing (key, RID)
pairs available in l but have lost the upper half that has been moved to m.
In these cases, having logged the Split operation merely in a logical manner is
insufficient to perform the redo step.

The way out of this dilemma is to prevent the two troublesome cases, 2 Careful flush
orderingand 6. This can be achieved by controlling the order in which pages are flushed

from the cache during normal operation. All we need to do is to make sure
that the originally existing leaf node l is not flushed earlier than the new leaf m.
If we want to avoid possibly readjusting the page number in the newly posted
routing entry of the parent node n (case 4 above), we can further constrain
the flush ordering by making sure that n can be flushed only after flushing m.
So altogether we arrive at a flush order m ≺ l ≺ n, where ≺ denotes the order
in which flush actions must take place. This technique of enforcing a specific
flush order for the pages in an operation’s (or transaction’s) write set is also
known as careful (cache) replacement in the literature.

Note that the cache manager can enforce such an ordering relatively easily
by maintaining a flush graph according to the ≺ relation. In system environ-
ments where this would be considered too much overhead, a lightweight vari-
ation could further decompose the entire split transaction into a first part that
affects only the leaf nodes l and m and a second part that treats the posting of
the routing entry in the parent node m as a separate system-induced transaction.
Since the latter affects only a single page, its atomicity is self-guaranteed and
the posting can be logged in compact logical form. The first part, sometimes
referred to as a half-split operation, now involves only two pages. By creating an
additional physical or physiological log entry for the page that would have to be
flushed first (i.e., the new leaf node m), the flush-order dependency becomes
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obsolete. This would still save the log space for one physical or physiological
log entry (namely, for the l).

Note that the log entry for the posting would follow the log entries for
the half split in the stable log; so when we redo the posting as a separate
transaction, it is guaranteed that both leaves are in their new state. The only
remaining problem arises when the server crashes between the half split and the
posting transaction. In this case, however, we can resort to the link technique for
B+ tree–style index structures that we discussed for index concurrency control
in Chapter 9. This technique assumes that each node in the index tree has a
pointer to its right sibling and follows this pointer upon an unsuccessful search
until it can definitely determine the absence or presence of the searched key.
In Chapter 9, the link technique was intended for situations where a Search
operation would end up on a leaf that was just split by a concurrent operation
without having seen a routing entry for the new leaf in its descent through the
tree. Here we can consolidate the analogous case where such a situation is the
result of the half split surviving the crash and the posting being lost. Whenever
a Search operation detects this situation during normal operation, it would
simply initiate the posting, again as a separate system-induced transaction.

As a final remark on logical logging for index page splits, note that the
approach in the form described above works only if there is at most one Split
operation along a path through the tree. This is not a severe restriction, as it
is rather unlikely that multiple splits with nodes in common are in progress
simultaneously. For example, a case that we would disallow, by means of ap-
propriate concurrency control techniques (see Chapter 9), would be a split of
a leaf node p (say, into p and q) that has the same parent as l , namely, node
n, and executes concurrently with the split of l . Concurrent splits in disjoint
branches of the index tree are, however, feasible anytime. We will see in the
next subsection that the restriction can nevertheless be relaxed by using a more
general notion of flush-order dependencies.

15.2.2 Logical Log Entries and Flush Ordering for
Large-Object Operations

The logging of operations on large objects such as images or mail attachments
poses problems and gives rise to optimization opportunities similar to what we
have discussed above for index structures. Consider a copy(a, b) operation that
copies the contents of large object a onto object b. The usual kind of physical or
physiological log entries would end up putting all pages of the modified object
b on the log for redo purposes, possibly on the order of megabytes. If object b
existed before, the undo information of the log entry may be of similar size. On
the other hand, if we knew that object a would remain unchanged, we could
simply create a logical log entry for the Copy operation, and read a from the
stable database during recovery to redo the operation. We may still have to log
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a large amount of data for the undo information, but the savings for the redo
part would be a significant gain. Note that reading the original contents of a
from the database during recovery rather than reading the redo information
for b from the log is almost equivalent from a performance viewpoint: since
large objects typically comprise megabytes of data and reside on contiguous
disk space, reading from the database leverages sequential disk I/O in this case,
too. This is an important difference from the case of relatively short records,
for which we would favor the sequential reading from the log over the random
access to the database.

A major complication that we need to address lies in the fact that other
operations may later modify the source object a of the considered copy(a, b)
operation, and these modifications may be flushed to the stable database before
the crash. Then, during recovery, the redo step for the copy(a, b) operation can
no longer read the original value of a and thus cannot restore the proper value
of b. The solution to avoid this kind of problem is again to constrain the order
in which the involved objects a and b are flushed. As these objects may reside
on a large number of pages, such flush-order dependencies actually refer to sets
of pages. However, for simpler explanation, we first assume that each object
occupies only a single page; for simplicity of notation, we refer to these two
pages by the same names as the objects—a and b, respectively. Now the flush-
order dependency requires that b be flushed before a. Once this is guaranteed,
the case where the redo step for copy(a, b) finds the source page a already
overwritten by a later operation is no longer disturbing: the redo step may read
this page, but when trying to write into the target page b, it would realize, by
testing the page’s LSN, that b is already in a more recent state, and the write
therefore must not be performed.

The fundamental reason for the above kind of flush-order dependency is Redo
dependencythat there is a read/write dependency (in the sense of the page model conflict

serializability theory of Chapter 3) between the two involved operations for
which we consider logical redo. This observation suggests the following general
definition: there exists a redo dependency from the logged operation f (. . .) to
the logged operation g (. . .) if f precedes g on the log and there exists a page
x such that x ∈ readset( f ) and x ∈ writeset(g ). From this redo dependency Flush-order

dependencyrelation among operations we can derive the relevant flush-order dependencies
for modified pages: page y must be flushed before page z if there are operations
f and g with y ∈ write set( f ), z ∈ write set(g ) and a redo dependency (due to
some page x) from f to g . As an example consider Figure 15.1, which is a con-
crete instantiation of our above scenario for Copy operations on large objects.

The flush order can be enforced by the cache manager with little overhead,
by maintaining a graph for the flush-order relation. A page can be flushed only
if it has no predecessors in this graph; in other words, when the cache manager
intends to flush a page it must first initiate the flushing of that page’s (transitive)
predecessors. A conceptual difficulty arises, however, when the flush-order
relation turns out to be cyclic. Such a situation is depicted in Figure 15.2.
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LSN 100
copy(a, b)
read set: {a}
write set: {b}

LSN 200
copy(c, a)
read set: {c}
write set: {a}

Time

Flush-order
dependency

Redo dependency

Page b
written by: 100

Page a
written by: 200

Figure 15.1 Example of a redo dependency and the derived
flush-order dependency.

In this example, two additional operations merge(b, c, a), which merges the
contents of two objects b and c (e.g., images) into object a, and merge(a, c, b)
create another flush-order dependency that requires b to be flushed before a
and thus produces a cycle in the flush-order graph.

Cyclic dependencies of this kind are obviously much harder to deal with
by the cache manager. In full consequence, all pages that are related by a
flush-order cycle would have to be flushed in a single atomic action. With
random-access writes into the stable database, such a multipage action would
again require some form of logging to ensure atomicity, which seems highly

LSN 300
merge(b, c, a)
read set: {b, c}
write set: {a}

LSN 400
merge(a, c, b)
read set: {a, c}
write set: {b}

LSN 100
copy(a, b)
read set: {a}
write set: {b}

LSN 200
copy(c, a)
read set: {c}
write set: {a}

Time

Flush-order
dependencies

Redo dependencies

Page b
written by:100,

400

Page a
written by: 200,

300

Figure 15.2 Example of cyclic flush-order dependencies.
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unattractive given our goal of reducing the amount of logged data. Fortunately,
there is a much less expensive method for coping with flush-order cycles. First
observe that rather than really flushing all affected pages, it is actually sufficient
to create physical log entries (i.e., full after images) for those pages in the log
buffer as if there were a full-write action on each of the pages, and to make
sure that the log buffer is appended to the stable log atomically. The latter is
straightforward to implement with sequential I/O, by marking the last block
to be written atomically.

Once all these full after images are on the stable log, the cache manager no Atomic groups
of physical log
entries dissolve
cyclic
dependencies

longer needs to care about these pages as far as flush-order dependencies are
concerned. The pages are still dirty in the sense that they need to be written
back into the stable database before they can be dropped from the cache, but
determining the appropriate time for this is now completely at the discretion
of the cache manager and no longer dependent on redo dependencies. The
reason for this removal of flush-order dependencies lies in the fact that during
recovery, the redo pass will eventually restore all affected pages to a state
as captured by the logged after images. This state includes all prior (partial)
writes to those pages, so that the effect of logically redoing operations that
appear earlier in the log will eventually be overwritten anyway. As a seemingly
irritating consequence, the logical redo of an operation may result in a possibly
inconsistent state that never existed in the chronological history, namely, if
only some of the pages in its write set have been flushed between the time
of the operation and the crash. However, it is guaranteed that all pages that
are inconsistently modified by such redo steps will be overwritten by later
redo steps with their correct state. Note that all logical redo steps still read
all pages for which the state matters in the proper version, since flush-order
dependencies for pages that were not involved in the dissolved cycle would
still have been enforced by the cache manager.

Upon a closer look at this problem, it becomes clear that it is not even Selective subsets
of physical log
entries dissolve
cyclic
dependencies

necessary to create physical log entries for all pages in a flush-order cycle to
dissolve the cycle. Creating a physical log entry for a page conceptually allows
us to remove, in retrospect, the page from the write sets of the preceding
operations, as this page no longer needs to be reconstructed by the logical redo
of these operations. However, this optimization in the sketched simple form is
feasible only if the page has not been read between a write and the physical
logging, for otherwise these reads could possibly see an improper version of
the page during redo recovery. In the presence of such intermediate reads, the
remedy would be to make sure that the write sets of the intermediate readers
are flushed or physically logged first, before the cycle-breaking page is flushed
(i.e., the page that initially triggered this optimization).

Note that flush-order dependencies may arise even within a single opera- Cyclic
flush-order
dependencies
within a single
operation

tion, whenever there is a read/write dependency among the operation’s page
accesses. To this end, we refine the notion of flush-order dependency as follows
(with slightly fewer dependencies than in the earlier definition): for operations
f and g such that page x is contained in f ’s read set and g ’s write set and
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LSN 500
swap(a, b)
read set: {a, b}
write set: {a, b}

LSN 1000
half-split(1)
read set: {1}
write set: {1, m}

Time

Flush-order
dependencies

Redo dependencies
(read/write dependencies)

Page m
written by: 1000

Page 1
written by: 1000

Page a
written by: 500

Page b
written by: 500

Figure 15.3 Flush-order dependencies within an operation.

f ’s read precedes g ’s write, there is a flush-order dependency from every page
in write set( f ) − {x} to x. With this definition, f and g may be the same opera-
tion. Figure 15.3 shows two examples, one referring to an operation swap(a, b),
which exchanges the contents of two large objects, and the other reconsider-
ing the half-split operation on index leaf nodes discussed earlier. The index
example leads to the requirement that the newly created sibling m be flushed
before the originally existing leaf node l (assuming that m does not need to be
read by the redo step for the operation). So we see here the general princi-
ple behind the technique of careful flush ordering introduced in the previous
subsection. The presented method based on an explicit flush-order graph even
allows concurrent split operations on nondisjoint paths in the index tree, a case
that was disregarded in the previous subsection. The example with the swap
operation even exhibits a flush-order cycle, as there are both read and write ac-
tions for each of the two involved pages. The cycle can be dissolved by creating
a physical log entry for either of the two pages.

A special kind of “large object” for which logical logging may be attractive isLogical logging
of stored

procedure
execution state

recoverable stored procedures. By this term we mean that a stored procedure that
executes in the address space of the data server can be made failure resilient by
logging its state modifications, where the state includes not only the contents
of the procedure’s variables but also cursor positions for fetching query result
sets and temporary files. Once we view the procedure’s state simply as a large
object under the control of the data server, we realize that many of its operations
are of the style whereby some possibly large contents is read from some data
objects into the “procedure object,” resembling the case of Copy operations on
large objects. By logging these operations in logical form we can provide redo
recovery for the state of executing procedures in a relatively cost-effective
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manner. So after a crash, the restart would reestablish the most recent state
of the procedure, and the procedure could then be resumed from this point.
This is an important step toward making applications recoverable, as opposed
to merely providing data recovery. The sketched technique is, however, fairly
limited in that it could cope only with “mini-applications” that are directly
embedded in the data server. We will address the recovery problem for full-
fledged client-server applications in Chapter 17.

In summary, the presented methods for coping with flush-order depen- Mixing logical
and
physiological
log entries

dencies allow us to log operations in logical form (for redo purposes) with the
guarantee that the redo steps for these operations “see” the underlying pages in
an appropriate state and can thus be assumed atomic, or they will be overwrit-
ten by a later redo step anyway. Such redo steps must still perform the usual
LSN-based state test on each of the pages that are considered to be modified
and suppress modifications when a page’s LSN is more recent than the LSN
of the logged operation. The key advantage of the logical redo approach is the
savings in logging costs, which is significant for specific operations on large ob-
jects or index structures. For conventional operations on short records, logical
logging is still inferior to physiological logging because of the higher redo costs
and the resulting increase of the restart time. Fortunately, it is easy to combine
the different kinds of log entries and redo techniques on a per-operation basis.
So the log and recovery manager can arbitrarily mix logical, physiological, and
physical log entries even for the same object.

15.3 Intra-transaction Savepoints
and Nested Transactions

Application programs may sometimes find it convenient to be able to roll back The case for
partial
rollbacks

only a part of an ongoing transaction to some explicitly established point within
the transaction. Such intra-transaction savepoints are dynamically created by ex-
plicit calls of the program, and the rollback to a previously established savepoint
is initiated upon another explicit call. These types of calls extend our reper-
toire of actions to be supported by the recovery algorithm (as briefly mentioned
already in Chapter 12):

■ save(t) creates a savepoint inside a transaction, returning a savepoint
identifier s (which could be just a (log) sequence number).

■ restore(t, s) rolls back the transaction to savepoint s, undoing all updates
that were made after the savepoint.

An executing transaction program may create multiple savepoints and can
later choose to which savepoint the rollback should be performed. We re-
fer to such rollbacks that undo only a portion of the transaction’s updates as
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partial rollbacks. Supporting this feature can be very convenient for application
structuring. For example, a transaction may initiate certain logical consistency
checks against the data (e.g., by means of firing an SQL trigger or as the effect of
a declarative SQL assertion) at any point. When such a check reveals a logical
inconsistency (e.g., promising the express shipment of an ordered product that
is out of stock), the transaction can back out just a bit and try an alternative
in its execution path (e.g., shipping another product that the customer would
consider equivalent) while retaining most of its prior work (e.g., the processing
of other products in the same customer order).

Partial rollbacks may also be initiated by the data server itself to resolvePartial
rollbacks for

deadlock
resolution

deadlocks among concurrent transactions. The idea is to roll back one of the
affected transactions to a point where the deadlock did not yet exist. In ef-
fect, this partial rollback releases the locks that were acquired after the corre-
sponding savepoint and led to the deadlock. In this case savepoints are internal
ones, invisible to the transaction program. Typically, the scope of these system-
induced partial rollbacks is limited to an individual SQL statement (or data
server call in general) issued by the application. After the rollback, the same
SQL statement is reinvoked by the data server. Note that this can be done
transparently to the application program, whereas rolling back to some point
farther back would require the program to be resumed from this earlier point,
which cannot be masked to the program and would therefore require explicit
program-established savepoints. Nevertheless, system-induced partial rollbacks
for deadlock resolution can provide significant performance gains, as they re-
duce the work to be undone and subsequently retried.

Supporting savepoints and partial rollbacks in the recovery algorithm is
not that difficult. Whenever a savepoint is created, by an executing transaction
program or internally by the data server, a “savepoint” log entry is created in
the log buffer, along with a corresponding log sequence number (LSN). This
LSN internally serves as the savepoint identifier. Later, in a rollback to a prior
savepoint s by a restore(t, s) call, the recovery algorithm simply traverses the
transaction’s backward chain of log entries, through the PreviousSeqNo point-
ers of log entries and starting from the LastSeqNo pointer in the ActiveTrans
data structure (see Chapter 13), until it encounters the savepoint log entry.

A complication arises, however, when a transaction that has been rolledProblem: nested
rollbacks back to a savepoint is later interrupted by a crash and becomes a loser trans-

action. Now we need to find out which updates were already undone by the
partial rollback during normal operation. Fortunately, in Chapter 13 we have
already shown and successfully solved very similar problems, such as a crash
occurring in the middle of the rollback for an aborted transaction. The solution
devised there was to create compensation log entries (CLEs) for undo steps
and link these CLEs back to the predecessor of the undone action’s log entry
through the additional NextUndoSeqNo backward chain. The same technique
solves the above problem of partial rollbacks as well. It also copes with even
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Figure 15.4 NextUndoSeqNo backward chain of log entries in the presence of nested rollbacks.

trickier situations, all of which fall into the category of some form of nested
rollbacks. For example, a transaction that has been restored to a previous save-
point may later initiate another partial rollback to an older savepoint, and may
eventually become aborted entirely, but the complete rollback becomes inter-
rupted by a server crash. Figure 15.4 illustrates the log entries and their proper
NextUndoSeqNo backward chain for such a scenario. For simplicity, the figure
shows only the nontrivial NextUndoSeqNo pointers, that is, those that do not
point to the immediate PreviousSeqNo predecessor. It should be clear that the
algorithms for the analysis, redo, and undo passes of the redo-history crash re-
covery can be used in exactly their previously developed form (see Chapters 13
and 14) to handle this case correctly as well.

Once the appropriate use of the NextUndoSeqNo backward chaining is

Savepoint
algorithm

clear, the algorithms for the savepoint and restore actions fall out in a
straightforward manner and are given below in pseudocode form.

savepoint (transid):

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := savepoint;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;
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restore (transid, s):

logentry := ActiveTrans[transid].LastSeqNo;

while logentry is not equal to s

do

if logentry.ActionType = write or full-write

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in logentry;

newlogentry.NextUndoSeqNo := logentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

write (logentry.PageNo) according to logentry.UndoInfo;

logentry := logentry.PreviousSeqNo;

end /*if*/;

if logentry.ActionType = restore

then

logentry := logentry.NextUndoSeqNo;

end /*if*/

end /*while*/

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := restore;

newlogentry.TransId := transid;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := s.NextUndoSeqNo;

LogBuffer += newlogentry;

The presented algorithm also handles system-induced partial rollbacks for

Restore
algorithm

(partial
rollback)

deadlock resolution in a proper manner. Note that for this purpose, it is cru-
cial that the locks that were acquired for the operations to be undone can be
released. Therefore, it is important that a subsequent rollback, partial or com-
plete, whose scope includes the previous one does not attempt to undo any of
the undo steps for the previous rollback. This is not a critical issue for the undo
steps during crash recovery where concurrency is strictly under the control of
the recovery algorithm, but during normal operation where concurrent transac-
tions could interfere with the transaction that is undergoing a nested rollback,
anomalies could arise. By releasing the locks after the first partial rollback is
complete, a concurrent transaction could perform noncommutative operations
on the corresponding data, and a subsequent second rollback would have to
reacquire locks, thus violating the two-phase locking protocol and leading to
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incorrect behavior. The following example illustrates this case:

l1(x)w1(x)l1(y)w1(y)w−1
1 (y)u1(y)l2(y)w2(y)c2l1(y)

(

w−1
1 (y)

)−1
w−1

1 (y)w−1
1 (x)

Here l stands for lock acquisitions, u for unlocking (i.e., lock releases), and c
for commit with the release of all held locks; the first w−1

1 (y) action is issued
by a partial rollback, and the actions after c2 are the undo steps initiated by
the abort of the entire transaction t1. The execution is not prefix reducible
in the sense of Chapter 11; so it is incorrect when we take into account the
interleaving of regular forward operations and the inverse operations executed
on behalf of (partial) rollbacks. It could be made prefix reducible by requiring t1
to continue holding its lock on y even after the partial rollback, thus preventing
t2 from accessing y in between the partial rollback and the eventual abort of t1.
However, this remedy would render partial rollbacks useless for the purpose of
deadlock resolution, where the whole point is to release locks. In contrast, the
presented algorithm for nested rollbacks does indeed allow releasing of locks for
undone actions and handles the above situation correctly by guaranteeing that
the traversal of the NextUndoSeqNo backward chain never results in invoking a
doubly inverse operation. With this technique the above execution would look
as follows, meeting the correctness criterion of prefix reducibility and being
feasible under two-phase locking:

l1(x)w1(x)l1(y)w1(y)w−1
1 (y)u1(y)l2(y)w2(y)c2w−1

1 (x)

A specific form of specifying savepoints and initiating partial rollbacks is by Nested
transactions
denote intra-
transaction
savepoints

embedding all data operations of a transaction program in a nested transaction.
Recall from Chapter 10, where we introduced this kind of nesting for multi-
threaded transactions, that a nested transaction corresponds to a tree whose
leaves are read and write operations. In contrast to the transaction trees of
the object model, the inner nodes of a nested transaction do not correspond
to higher-level operations (at least not necessarily) and rather are of syntactic
nature only. Figure 15.5 shows an example of a nested transaction. Assume
for now that there is no concurrency among subtransactions (although this is
a major feature of nested transactions, as you may recall from Chapter 10). So
at each point, no two siblings in the tree can be active simultaneously, and the
leaf nodes read from left to right denote the execution history.

In a nested transaction, the begin of a subtransaction implicitly creates a
new savepoint. When the transaction program requests the abort of a subtrans-
action, it essentially initiates to restore the corresponding savepoint. Because
of the nesting of subtransactions, savepoints are nested, too. The savepoints
for the example of Figure 15.5 are indicated by the black arrows in the fig-
ure. Since completed subtransactions can no longer be aborted other than
by aborting an incomplete parent, only those savepoints that correspond to
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Figure 15.5 Example of a nested transaction and the corresponding save-
points.

active subtransactions can be referred to by a partial rollback. In the figure,
it is assumed that t12, t122, and t1222 are not yet terminated, and their save-
points and corresponding rollback scopes are highlighted by thick arrows and
rectangles, respectively. In addition, the begin of the entire transaction t1 is an
implicit savepoint, too. So at each point, the “available” savepoints that can be
used by a restore action correspond to the set of active subtransactions that
form a single ancestor chain in the tree. This is obviously a restricted style of
specifying savepoints, but the strict form of nesting offers an easy-to-use way
of structuring the creation of savepoints in an application program. Once this
relationship between intra-transaction savepoints and nested transactions has
become clear, supporting subtransaction aborts is merely a special case of the
partial rollback algorithm given above.

This matter becomes a bit more difficult when we allow concurrent sub-Coping with
intra-

transaction
parallelism

transactions in more than one ancestor chain within a nested transaction. This
means that two or more subtransactions, neither of which is an ancestor of
the other (e.g., being siblings), can execute concurrently in multiple threads.
For example, if transaction t1 of Figure 15.5 would spawn both of its children
asynchronously in separate threads without waiting for the completion of the
previously initiated subtransaction, and the same would be done for the chil-
dren and further descendants of t11 and t12, then all 10 subtransactions of the
example could be simultaneously active. Then all five savepoints shown in the
example for the subtransactions t1222, t122, t12, t1122, and t112 (plus the implicit
one for the entire transaction t1) would be available to be used by a restore ac-
tion. In addition, the other five active subtransactions would correspond to five
further savepoints (not shown in the figure) for subtransactions t1221, t121, t1111,
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t111, and t11. Aborting a subtransaction now means undoing all write actions
that are descendants of the corresponding node in the tree. For example, abort-
ing t112 requires a partial rollback that undoes the write actions on c, d, e and
nothing else. When concurrent subtransactions access nondisjoint page sets,
the concurrency control must, of course, constrain the allowable concurrency
(see Chapter 10).

The solution for this case of multi-threaded nested transactions is to orga-
nize the log entries of each simultaneously active ancestor chain of subtrans-
actions into separate NextUndoSeqNo backward chains. The oldest log entry
of a given subtransaction would then point to the most recent log entry of
the subtransaction’s siblings that were already completed at the time when the
subtransaction was spawned. If there is no such preceding sibling, the subtrans-
action’s oldest log entry points to the parent’s begin log entry, and this begin
log entry in turn points to the most recent log entry of the lowest ancestor’s
descendants that were completed when the considered subtransaction began.
Equivalently, the begin log entries may be skipped in these chains and could
then be completely omitted. Aborting a subtransaction then involves a back-
ward traversal of all chains of its active descendants. These backward chains will
be “confluent” in the sense that they have common prefixes once they reach a
common ancestor.

This technique may sound complicated, but it is relatively straightforward
to implement. In fact, it is more or less identical to the logging and recovery
algorithm for the general object model when we allow concurrent high-level
operations, or subtransactions within the same transaction (see the last section
of Chapter 14). Nested transactions are even simpler to handle, as we need
undo/redo log entries only for the leaves of the transaction trees, and all other
log entries are mere bookkeeping to remember the scopes of the subtransac-
tions. As with intra-transaction parallelism for the general object model, the
only more fundamental extension of the recovery algorithm is that the Active-
Trans data structure needs to hold a LastSeqNo pointer for each active sub-
transaction. An abort request for a specific subtransaction can then be easily
translated into rollbacks for all its descendants, whose ActiveTrans entries serve
as starting points for the backward traversal on the log. Note in particular that
subtransaction aborts during normal operation do not raise any complications:
we simply create compensation log entries for undone actions (to be redone
after a crash) and maintain the NextUndoSeqNo backward chains as usual.

15.4 Exploiting Parallelism during Restart

As emphasized already a number of times, fast restart is crucial for high avail- Parallelized
redoability of the data server. Thus, it is highly desirable to parallelize the recovery

work to the greatest possible extent. One technique that we already mentioned
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in Chapter 13 is to exploit asynchronous and possibly batched disk I/O for
fetching pages from the stable database during the redo pass. The necessary
information for such optimizations can be collected during the analysis pass
by reconstructing the DirtyPages data structure as of the time of the crash
(see Chapter 13). Since large databases reside on multiple disks, this technique
provides a great performance improvement to reduce the restart duration.

An even more far-reaching approach is to parallelize the log scan. To thisParallelized log
scans end we need to partition the stable log into multiple fragments on different

disks that can be processed in parallel. For example, the log entries could be
assigned to fragments based on a hash function on page numbers. Of course,
with such a log that is spread across multiple files, LSN-based pointers among
log entries need to be global (i.e., valid across files), and specific log entries
like checkpoint log entries could be (redundantly) present in all log files. This
organization of the stable log allows parallelizing the analysis pass, with one log-
scanning thread per file and a common data structure for determining losers
and the DirtyPages data structure. Once the analysis pass is complete, the redo
pass, which is usually the largest portion of work during restart, can process the
log fragments in parallel without any further synchronization, as all log entries
for the same page are guaranteed to be in the same log file. This parallelized
redo phase, which achieves the major speedup, assumes that log entries for redo
purposes are physiological or physical, so that each log entry refers to exactly
one page—our standard assumption throughout the previous chapters. With
logical redo, as discussed in Section 15.2, such an approach would become
much more involved. Finally, the undo pass can be parallelized as well byParallelized

undo creating one parallel thread for each loser transaction. However, each of these
threads may have to access multiple, possibly all log fragments, if the undo
information in the log entries is not page oriented and rather refers to high-
level inverse operations. So the undo threads should be coordinated with one
or more additional log-scanning threads to avoid inefficient, random disk I/O
on the log files.

In addition to speeding up the restart after a crash, another, orthogonalEarly
admission

of new
transactions

way of improving the server’s availability is to allow new transactions to access
“uncritical” portions of the data even before the restart is complete. Of course,
such an approach needs to preserve the prefix reducibility (i.e., serializability
and correct handling of undo steps) of the original history, and the difficulty
lies in determining exactly what data objects are uncritical in this regard. The
basic technique for supporting this optimization is to reacquire locks for loser
transactions during the analysis or redo pass, and to admit new transactions
once all locks that will possibly be needed for transaction undo are held again.
In essence, this amounts to reincarnating all loser transactions and proceedingReacquiring

locks for loser
transactions

as if they were active again during normal operation. Reacquiring the locks held
before the crash prevents new transactions from accessing data that still needs
to undergo undo steps. So we continue a strict two-phase locking protocol
(with perfect or perfectly closed commutativity, see Chapter 11) beyond the
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crash, and this is what ensures prefix reducibility according to the corresponding
theorem of Chapter 11.

The exact nature of the locks that need to be reacquired before new trans-
actions can be admitted depends on the locking method employed by the server.
With page locking, the relevant locks can be seen directly from the log because
each (redo) log entry includes a page number. Of course, only exclusive locks
have to be reacquired, and in fact, only these can be inferred from the log. With
high-level locks for object model transactions, it may be more difficult to derive
the proper locks from the log information alone. In this case, we may have to
know input and also result parameters in addition to the operation type of the
original forward operation and not just the (minimum) information about the
inverse operation that is kept on the log. If high server availability is of utmost
importance for a given application, we can simply enhance the log entries writ-
ten during normal operation so that they include all necessary information for
lock reacquisition during restart.

So once again, a system or application architect needs to carefully trade
off the server availability versus the logging overhead during normal operation.
This is a highly delicate task, but such advanced optimization techniques do
exhibit inherent trade-offs whose complexity is beyond the state of the art in
autotuning capabilities. In fact, even the reacquisition of exclusive page locks
during recovery may create an overhead that is not acceptable in every system
environment. Fortunately, there are several techniques for conservatively ap-
proximating the necessary locks at much lower expense. A simple technique
is to reacquire only coarse-grained locks, such as tablespace locks, rather than
page locks or even object model–style locks. Of course, this would block more
of the newly admitted transactions and thus reduce the advantage of resuming
normal operation early, but it is still better than allowing new transactions only
after the undo phase is completed.

Other low-overhead techniques along these lines exploit the information Low-overhead
testing of page
accessibility
during restart

gathered during the usual analysis pass on the log. Specifically, the Oldest-
UndoLSN is usually determined for future log truncation anyway. This LSN
denotes the oldest log entry of a loser transaction, and is easily derived from the
information in the most recent checkpoint log entry and the forward pass of
the log analysis. With page locking or any other coarser locking, the undo pass
will not need to access any page whose page LSN (i.e., the LSN stored in the
page’s header) after the redo pass is lower than the OldestUndoLSN. In other
words, such a page has not been modified after the oldest loser began. Since
advanced recovery algorithms already know the eventual page LSN of a page
after the analysis pass by having reconstructed the DirtyPages data structure, we
can derive immediately after the log analysis a set of pages that are definitely
not involved in any of the following redo or undo steps: namely, all pages
that are not in the DirtyPages list and whose page LSN must be older than
the OldestUndoLSN. Those pages can be made accessible for newly admitted
transactions during the redo pass. Once new transactions start acquiring locks,



580 CHAPTER FIFTEEN Special Issues of Recovery

the pages in this category can be identified either by keeping an explicit list
(possibly using hash-based bit vector approximations for compact space) or by
performing the above LSN test upon their first access and then setting a specific
bit in their page headers.

Note that the comparison with the OldestUndoLSN is a conservative one:
a page whose page LSN is more recent than the OldestUndoLSN may still be
irrelevant for undo if the more recent updates are winner updates. One way of
making this test more “precise” would be to determine an OldestUndoLSN for
each page or some appropriate coarser granule (e.g., tablespaces) separately.
Then a page is known to be uncritical for undo if its page LSN is older than
the page-specific OldestUndoLSN. Of course, if new transactions are already
admitted during the redo pass, the page must not be dirty in addition, in order
to be accessible right away. Determining page-specific OldestUndoLSNs incurs
more overhead, however, as it requires additional information in checkpoint
log entries, and this is why this technique is more appropriate for tablespaces
or similarly coarse granules than for individual pages.

15.5 Special Considerations for Main-Memory
Data Servers

Modern data servers are often equipped with huge amounts of memory, and
the technological and price trends will allow more and more databases to re-
side entirely in the server memory, thus eliminating all disk I/O on the data
itself. Such databases are commonly called main-memory databases. For certain
classes of performance-critical applications, avoiding disk I/O is indeed crucial
in order to guarantee real-time response times. In particular, telecommunica-
tion applications require extremely fast lookups of switching and customer
information for call routing and billing (e.g., for service call centers or cellular
phone numbers and mobile clients in general).

Main-memory databases thus allow higher transaction throughput andThe case for
main-memory

databases
stronger (but still stochastic) guarantees for real-time response times, such that,
for example, 99% of all transactions are completed within 100 milliseconds.
On the other hand, with all regular disk I/O eliminated, they also suggest a
data organization that may radically differ from that of disk-resident databases.
For example, index structures may no longer be page oriented, and the entire
notion of a page, with its embedded header, slot array, and so on, may be sub-
stituted with substantially larger “segments” that serve as containers for loading
a main-memory database.

The usual methods for crash recovery may have to be reconsidered asCrash recovery
needs to load

the entire
database

well in such a drastically changed system environment. It turns out, however,
that the overall log-based redo-history paradigm is still the method of choice,
but certain details may have to be revised. Most importantly, crash recovery
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for a main-memory database amounts to loading the entire database. This is a
particularity that we can optimize for. Within the framework used in this book,
the most promising option is to move from physiological to physical log entries
as far as redo is concerned. So entire after images of pages or an appropriately
sized kind of segments (see above) are read from the stable log during the
redo pass, and there is no longer a need for randomly fetching pages from the
stable database, which is now merely a backup for the main-memory database.
In the most radical approach, the stable log could be viewed as the stable
database, or equivalently, the stable database itself could be organized more like
a sequential log. In this case, log truncation should strive for discarding all after
images of a page other than the most recent one. It is also feasible, however,
to combine physical with physiological log entries in such an approach, so
that small changes can still be logged as a byte-oriented operation rather than
a full-fledged after image; but then the log manager should make sure that
complete after images are created sufficiently frequently for an effective log
truncation.

The above sketched approach essentially views the stable log as the backup
database from which the main-memory database is reloaded after a crash. In a
less radical approach, where at least the not so frequently modified data pages
or segments reside in a conventionally organized disk-based stable database,
the task of checkpointing and flushing dirty pages is the key issue. Recall from
Chapter 13 that asynchronous checkpoints that write DirtyPages information
on the stable log are preferable over synchronous checkpoints that really flush
dirty pages at checkpoint time. This is still the case for a main-memory database,
as synchronous flushing would incur delays for ongoing transactions. Rather, as
discussed in Chapter 13, a background process should flush pages back into the
stable database more or less continuously. In a main-memory database, where
such flushing is the only disk I/O during normal operation, this background pro-
cess can be specifically optimized toward strictly sequential, high-bandwidth
I/O. In the literature on main-memory databases, this process is commonly
referred to as a fuzzy checkpoint. In fact, it resembles the process of creating a
database backup for media recovery, to be discussed in Chapter 16, and thus
extends our standard meaning of the term “checkpoint.”

For main-memory databases, the outage during crash recovery is an even Incremental
redo on
demand

more severe problem than usual, given their otherwise excellent responsiveness
during normal operation and the fact that many target applications require ex-
tremely high availability, especially in the telecommunication industry. Thus,
the techniques presented in the previous section for early admission of new
transactions are of utmost importance for main-memory data servers. In ad-
dition, it can be worthwhile to devise the entire recovery in an incremental
manner, where recovery steps for a certain data unit are performed only when
the first new transaction requests that data. So the main-memory database
would be accessible immediately after the analysis pass. Then, when certain
data is requested by a regular transaction and thus needs to be brought into



582 CHAPTER FIFTEEN Special Issues of Recovery

memory anyway, the necessary redo steps and undo steps for this data unit are
performed on the fly. Of course, the usual redo recovery should nevertheless be
initiated right after the analysis pass, too, as a background process. The key dif-
ference from standard redo is that the order in which data units are recovered
is no longer solely driven by the chronological ordering of log entries but rather
takes the demands of new transactions into account. This technique requires
an appropriate organization of the stable log, possibly with some auxiliary data
structures built up in memory during the analysis pass (e.g., lists of all relevant
LSNs for critical data units) and an appropriate choice of “data units,” which
may be much larger than a page.

All of the above considerations mostly refer to redo recovery, which con-
stitutes the bulk of the work during restart. The undo pass does not differ from
the conventional recovery algorithms of Chapters 13 and 14, but may also in-
clude certain optimizations in the underlying log organization. In particular,
with very large memory, it should be feasible to avoid writing undo informa-
tion to the stable log at all. The main-memory database can easily employ a
no-steal caching policy (see Chapter 12), where pages or segments with un-
committed updates are never written back to the stable database. Since the
database is all-cache anyway, all it takes to this end is to coordinate with the
fuzzy checkpoint background process that flushes dirty pages, and possibly keep
two versions of a page temporarily in memory—a before image and an after
image. Upon transaction commit, all relevant after images or the redo portion
of the corresponding physiological log entries are atomically appended to the
stable log, and the before images or undo portion of the log entries can then
be discarded. The deferral of writing log entries to the stable log may require
a somewhat larger log buffer than usual, but in general, the slight increase in
the memory requirements for logging and recovery should be negligible with a
main-memory data server. Making log entries stable may even be based on safe-
RAM technology (i.e., battery-backed, nonvolatile memory, see Chapter 12)
for an extended notion of log buffer, removing the need for (synchronous) disk
I/O even at commit time. But this issue is not really specific to main-memory
data servers.

For object model transactions where undo necessitates high-level inverse
operations, the atomic appending of a transaction’s redo log entries needs to be
extended. Recall from Chapter 14 that each high-level operation corresponds
to a subtransaction. Upon the end of the subtransaction, both the physical or
physiological redo log entries of the subtransaction and the undo information
about the high-level inverse operation are appended to the stable log in a single
atomic write. This guarantees the atomicity of subtransactions, which is nec-
essary for the applicability of the high-level inverses and also the persistence
of the subtransaction’s low-level writes (unless compensating steps are later
invoked for transaction undo). With low-level page locks held for the dura-
tion of a subtransaction, as in the layered or general object model two-phase
locking protocols of Chapter 7, the written log entries contain only effects of
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committed subtransactions. Forcing the log buffer upon each subtransaction
commit is inexpensive with safe RAM, but may be unacceptable if it requires
disk I/O. In the latter case, the log writes for subtransactions can be deferred
and batched to combine multiple committed subtransactions; the log is still
forced at transaction commit at the latest. This batching is straightforward to
implement as long as the chronological order of log entries is respected. With
physical log entries, an obvious additional enhancement could be to write only
the latest after image of a page to the stable log onto disk.

15.6 Extensions for Data-Sharing Clusters

Servers for data-intensive applications with very high throughput and very
high availability guarantees are often built as data-sharing systems, also known
as clusters. A cluster is a small number of computers, typically between two and
eight, that share all their disks through a special high-speed interconnect. Each
of these computers, which we will henceforth refer to as the individual servers
of the cluster, runs its own copy of the operating system, database system,
and so on, and could be a powerful shared memory multiprocessor. The key
characteristic of a cluster is, however, that each server has its own “private”
memory; there is no shared memory across servers. This architecture provides
much better failure containment (i.e., no failure propagation across servers)
than the tight coupling of processors with shared memory. So when a server
fails, the other servers of the cluster continue operating and may take over the
load of the failed server. The necessary actions for this kind of failover procedure
can be performed significantly faster than a full-fledged restart for the failed
server, hence the very high availability of a cluster. Note that it is crucial for
this purpose that the “surviving” servers can access the failed server’s disks; in
fact, in such a shared disk setting, a data disk is not associated with any specific
server.

Clusters can be configured for very high throughput by simply adding disks Data-sharing
clusters for
very high
availability and
throughput

and servers (in addition to upgrading the number of processors and memory
size per server, but this is less robust in terms of availability), and this approach
provides reasonable scalability. The practical viability of cluster architectures
has been demonstrated in many high-end database applications and also for
high-end Web servers. Transactions are typically routed to one of the servers
of a cluster complex in a round-robin manner or driven by tables on workload
profiles and the “affinity” of transaction types to data units such as tablespaces, in
order to coarsely balance the load across the servers. In most implementations,
a transaction is then executed entirely on a single server. When a transaction
accesses a page, this page is brought into the memory of the corresponding
server, either from the shared disks on which the data resides permanently or
from the memory of another server that happened to have that page in its cache.
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This operational principle is known as data shipping. The flexibility of beingData shipping
able to make each page accessible on each server provides good load sharing
and usually results in good load balance across servers, at least when certain
tuning options (which have no relevance for the scope of this book) are exerted.
In addition to data shipping, such a system could also dynamically distribute
operations of a transaction to servers other than the transaction’s origin for
better data locality or parallelization, which is known as function shipping, but
this is rarely used in practice and not considered here.

As far as crash recovery is concerned, the key characteristic of a clusterCoherency
control for

dynamic page
transfers

is that each server has its private page cache, and there are intensive, dynamic
page transfers between these caches. A problem that arises in this setting, and
is even present independently of the notion of transactions, is how to ensure
that a server does not access a stale version of a page. This could happen if a
page resides in more than one cache for an extended period and is modified
in one of these caches without notifying the other servers. To prevent this
incorrect behavior, a coherency control protocol must be used in these kinds
of distributed memory systems. All servers of the cluster complex must have
sufficient bookkeeping and agree on a message-based protocol, so that stale
pages are invalidated and it is known where an up-to-date version of a page
can be fetched if needed by a server. We do not delve into the details of such
a protocol here, as this will be a subject of Chapter 18 in conjunction with
how concurrency control responsibilities are distributed across servers. For the
context of the current section, it is sufficient to realize the main invariants that
each page-oriented coherency control protocol needs to ensure:

■ Multiple caches can hold up-to-date versions of a page simultaneously
as long as the page is only read.

■ Once a page has been modified in one of the caches, this cache is the
only one that is allowed to hold a copy of the page. (So we can assume
that all other caches “immediately” discard their copies of the page upon
this write access.)

As a consequence of these invariants, each page undergoes the following
cycle in terms of the number of its simultaneously valid copies: Initially, there
is only one copy in the stable database on disk. The first access to the page
creates a copy in one of the caches. Then, as long as no write takes place, the
page may be transferred to other caches, thus creating multiple copies. Upon
the first write, all copies but one are discarded, so that only one cache holds
a copy. This brings us back to the second stage in the cycle, from which the
page can again be shipped to other caches. Finally, when the page is dropped
from all the caches that happen to hold it at some point (by being chosen as
a regular page replacement victim), we are back to the first stage of the cycle:
the page only resides on disk.
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Figure 15.6 A data-sharing cluster.

Coherency control is usually performed on a per-page basis, although other
granularities are conceivable. Note, however, that this by no means implies that
concurrency control is page oriented. We can still employ object model con-
currency control schemes such as record and index-key locking in conjunction
with page-oriented coherency control. Consequently, a page may be transferred
back and forth multiple times between two caches during two concurrently ex-
ecuting transactions.

The data-sharing cluster architecture is illustrated in Figure 15.6. The num-
bers in the headers of the various pages denote (log) sequence numbers to in-
dicate when they were last modified. Note that pages p and q reside in two
different caches, and the sequence numbers of the two copies must be identi-
cal by the above coherency invariant. Further note that the cached version of
page p is more recent than the one in the stable database on disk, as indicated
by their sequence numbers. This is possible, as we do not necessarily require
flushing the page to the stable database before we transfer a modified page
to another cache; rather it should be allowed to ship pages directly from the
memory of one server into another server’s memory.
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As for logging, life would obviously be simple if all servers of a cluster
wrote to a single shared log; then the usual redo-history recovery algorithm
could be applied without any changes. However, the log could possibly be a
bottleneck in such an approach, requiring synchronization among servers and
impeding scalability. So a cluster should instead have a private log, both log“Private” log for

each server buffer and stable log file, for each of its servers, as shown in Figure 15.6. We
will discuss details of the figure’s log entries in a short while.

Ideally, each server should write only its own local log, and this is indeed
easily achievable for all undo-related log entries, as these are transaction ori-
ented, and each transaction is executed entirely on a single server. With redo-
related log entries, however, such perfect locality is much harder to achieve.
One approach could be to partition the logging responsibilities for the data
pages across the servers, so that all (redo) log entries for the same page would
be appended to the same log file. Analogously to the parallel logging scheme
mentioned in Section 15.4, this could be implemented by using a hash function
on the page number to determine the log file to which a log entry is assigned.
However, depending on the details of the interconnect between the disks and
the computers in the cluster, such “nonlocal” logging may lead to unduly high
consumption of interconnect bandwidth, and the bandwidth should better be
used for transferring data pages between disks and memory or directly between
caches.

So for the sake of lower communication costs and better scalability, weLocal logging
to private log assume that each server writes log entries only locally to its private log. Thus,

we can encounter the situation depicted in Figure 15.6, where the log entries
for a single page, x or y, for example, are dispersed across multiple logs. In this
figure, the log sequence numbers in the log entries and the page versions on disk
and in memory capture the chronology of page modifications. Note that it is
possible for a page, such as x, to have log entries in multiple logs, all of which are
more recent than the page’s sequence number in the stable database. This can
occur if pages can be transferred directly between caches rather than flushing
a page to disk before it can be fetched again into another cache. If each page
transfer is accompanied by flushing the page, then this situation is prevented,
and we would know that all log entries of a page that are really relevant for redo
(i.e., are more recent than the page sequence number in the stable database)
must reside in a single cache, namely, one where the page is currently cached
and was updated last. In Figure 15.6, this simpler situation is assumed for page
y. For generality and because memory-to-memory transfer is significantly faster
than transferring a page via two disk I/Os, we do not restrict ourselves to the
case of a single relevant log, however.

The general case, where redo-relevant log entries for the same page mayGlobally
monotonic

sequence
numbers

be dispersed across multiple private logs, still requires some form of handshake
among the different log managers to ensure that log sequence numbers are
properly coordinated. It would be easy to create globally unique log sequence



15.6 Extensions for Data-Sharing Clusters 587

numbers by simply padding a server identifier to the local sequence numbers.
These numbers would even form a clusterwide total order, but the problem
is that this order does not reflect the chronological order of modifications at
different servers. If among two updates to the same page at different servers,
the one that occurred later could end up having a lower sequence number, the
tracking of page states via log sequence numbers in page headers and, in fact, the
entire redo-history paradigm would become incorrect. Fortunately, it is not that
difficult to construct appropriately coordinated log sequence numbers. To this
end, note that it is sufficient to have globally monotonically increasing sequence
numbers for each page separately, as these numbers are relevant only for redo
steps (assuming a redo-history algorithm with compensation log entries for
undo steps, see Chapter 13). So when a page is freshly transferred to a server
and modified there, the local log manager must only ensure that the newly
assigned log sequence number is larger than all of the page’s prior log entries
including the sequence number in the page header. This is achieved by setting
the new sequence number as follows:

new sequence number for update to page p :=
max { current sequence number in the page header of p,

largest local log sequence number used so far } + 1

Similar techniques have been devised for synchronizing global clocks in
distributed systems. Note that this kind of coordination does not require any
extra messages; all the relevant information is implicitly piggybacked (in the
page headers) on the regular page transfers between servers. A minor complica-
tion is that such globally pagewise monotonic sequence numbers can no longer
be used for direct byte addressing in a log file, but appropriate solutions can be
constructed easily (e.g., by storing both chronological sequence numbers and
byte addresses where needed).

The careful design of how log entries are created in a data-sharing cluster, Very fast
recovery from
single-server
failure

as outlined above, provides the basis for the actual recovery algorithm when a
server fails. In this case, we do not have to wait for the failed server to come up
again; instead one of the other, surviving servers can take over the role of the
failed server and initiate the necessary recovery steps immediately. This is feasi-
ble because all data and log disks are still accessible. Even better, such a failover
technique can shorten the recovery time substantially, as the surviving servers
may still have up-to-date information about the dirty pages in the failed server’s
cache. Note that such bookkeeping information is maintained and disseminated
according to particular rules by the coherency control protocol anyway.

The server in charge of the recovery for the failed server first needs to read
and conceptually merge the private log files of all servers that could possibly
hold redo-relevant log entries for dirty pages that were in the cache of the failed
server. The merging would, of course, be pipelined with the actual redo steps,
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so that all affected log files can still be scanned with maximum-speed sequential
I/O and need to be scanned only once. Once the redo pass is completed, the
recovery initiates the usual undo pass to roll back the effects of transactions that
were active on the failed server. This undo pass is based solely on the private
log of the failed server.

Reading and merging multiple log files can be avoided if a dirty page is
always flushed to the stable database when it is transferred to another server.
The page transfer itself can still be of the memory-to-memory form and the disk
I/O on the stable database may be asynchronous, thus alleviating this variant’s
costs during normal operation. In this case, the only redo-relevant log entries
must reside in the private log of the failed server itself. On the other hand,
having to access multiple logs is not as much of an overhead as it may appear
upon first glance. If the information about the failed server’s dirty pages is
(still) known to the surviving servers, the fraction of the stable logs that needs
to be scanned would typically be very short. Moreover, there is no need for
an analysis pass, at least not for reconstructing the DirtyPages data structure.
Only determining the set of loser transactions requires an analysis pass, but this
involves only the private log of the failed server.

The above recovery procedure has very little overhead during normal op-Recovery from
failure of entire

cluster
eration and still allows very fast recovery after a single server failure. Another
recovery case that is very unlikely but still possible arises when a software fail-
ure brings down an entire cluster. If all information on disk is still undamaged,
the global restart then involves analysis passes, redo passes, and undo passes
over all of the cluster’s stable logs. Furthermore, the redo passes must be per-
formed in a way that the logs are merged on the fly, so that all log entries for
the same page are seen in chronological order.

Despite the additional complexity of the recovery procedures outlinedLog shipping
and recovery for

client caching
architectures

above, data-sharing clusters are a widely deployed architecture for scalable
throughput and especially very high availability. The developed algorithms
can also be carried over to a popular variation of client-server database sys-
tems where clients cache data pages within and also beyond long-running
transactions. Such client caching architectures do not make much sense for
conventional OLTP applications, but are intriguing for computer-aided design
applications on top of object-oriented databases. The architecture bears many
resemblances to data-sharing clusters in that caching is distributed, a page-
oriented coherency control protocol is used, and log entries are created in
a dispersed manner. In contrast to clusters, however, the overall work is not
distributed among peers; rather there is still a notion of a central server that
simplifies logging and recovery. The main design issue in logging is to decide
when and in which form client-created log entries are shipped to the server, and
how this can be optimized in conjunction with transferring dirty pages from a
client back to the server. The more data management functionality we impose
on the clients, for example, allowing them to write log entries to a stable log
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locally and defer their shipping to the server, the more the clients act as if they
were servers in a data-sharing system. In the extreme, there is no longer a real
difference from a full-fledged cluster.

15.7 Lessons Learned

In this chapter we have discussed various extensions of the crash recovery meth-
ods introduced in the previous chapters. These extensions yield benefits along
several dimensions: (1) logging overhead may be reduced by creating logical
log entries for redo purposes; (2) application convenience and the efficiency of
deadlock resolution can be enhanced by supporting intra-transaction savepoints
and partial rollbacks (with nested transactions being a specific case); (3) server
availability is enhanced by parallelizing recovery and admitting new transac-
tions after the analysis pass, with reacquired locks for loser transactions or
some conservative low-overhead approximation of such locks; and (4) specific
architectural settings of great practical importance like main-memory databases
and data-sharing clusters are accommodated, with various optimizations cus-
tomized to these architectures.

An important insight from having considered such a variety of extensions,
adaptations, and optimizations is that the algorithmic framework for crash
recovery that we developed in Chapters 13 and 14 is still the backbone of
the extended methods. All extensions introduced in the current chapter can
be integrated into the previous chapter’s standard methods in a localized and
incremental way. Furthermore, most of the extensions do not replace the prior
techniques, but rather complement them in that they cover additional cases or
can be combined with the prior techniques so as to choose the most appropriate
option at run time on a per-operation basis. A good example for the latter is
the reconciliation of logical, physiological, and physical redo log entries into a
single algorithm.

Exercises

15.1 Reconsider the two-level action history in Figure 15.7, which was al-
ready discussed in Exercise 14.3. It contains operations on records (store,
modify) and index keys (insert, delete); for the latter operations, the first
parameter denotes a key and the second parameter the RID (i.e., address)
of a stored record. Assume that the insert( f, @x, t1) operation initiates
a split of leaf page l , creating the new leaf page k and posting the split
to the parent node n. Discuss to what extent logical log entries for the
higher-level operations are feasible for redo purposes. (For undo, such
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Sequence number: Cached Stable Log entry added
action changes changes [LogSeqNo: action]

[PageNo:] [PageNo:] [NextUndoSeqNo]
[SeqNo] [SeqNo]

1: begin(t1)
2: modify(x, t1)
3: subbegin(t11)
4: write(p, t11)
5: begin(t2)
6: store(y, t2)
7: subbegin(t21)
8: write (q, t21)
9: write(r, t21)
10: subcommit(t21)
11: write(r, t11)
12: subcommit(t11)
13: delete(a, @x, t1)
14: subbegin(t12)
15: write(l , t12)
18: subcommit(t12)
19: insert( f, @x, t1)
20: subbegin(t13)
21: write(l , t13)
22: write(k, t13)
23: write(n, t13)
24: subcommit(t13)
25: begin(t3)
26: store(z, t3)
27: subbegin(t31)
28: write(q, t31)
29: write(r, t31)
30: subcommit(t31)
31: insert(h, @z, t3)
32: subbegin(t32)
33: write(k, t32)
34: subcommit(t32)
35: commit(t3)
36: insert(b, @y, t2)
37: subbegin(t22)
38: write(l , t22)

Figure 15.7 Two-level history for Exercise 15.1.

log entries are needed anyway.) Can we avoid creating physiological log
entries altogether? Which flush-order dependencies need to be observed
for the execution?

15.2 Give all log entries and their proper NextUndoSeqNo backward chains
for the nested transaction scenario of Figure 15.5. Assume that all of t11 is
executed sequentially in the sense that a new subtransaction begins only
after its previously initiated siblings are terminated, and that t12 is spawned
after the termination of t11. Within t12 assume that all subtransactions are
spawned asynchronously in separate threads; so at the end of the scenario
all subtransactions of t12 are simultaneously active. Describe the necessary
steps to abort subtransaction t12.
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15.3 Revise the pseudocode for the undo pass of the page model redo-history
algorithm given at the end of Chapter 13 so that it processes different
loser transactions in parallel. Use appropriate primitives for spawning new
threads, suspending a thread to wait for an event, and raising an event to
resume waiting threads.

15.4 Develop pseudocode for the lock conflict test of new transactions that
are admitted during the redo pass of a restart, assuming that the Oldest-
UndoLSN and the DirtyPages data structures have been determined by
the analysis pass and serve as an approximate test for “uncritical” pages
that require neither redo nor undo steps. Assume that page locking is
used, but no explicit locks are reacquired during the restart, to keep the
overhead low.

15.5 Reconsider and streamline the pseudocode for the analysis and redo pass
of the page model redo-history algorithm given at the end of Chapter 13
so that it is particularly suitable for a main-memory database.

15.6 Design a scenario, with concrete page numbers, transaction identifiers, log
sequence numbers, and so on, that shows the need for synchronizing the
local log sequence numbers created at different servers of a data-sharing
cluster. Construct anomalies that would arise if the global sequence num-
bers merely were local numbers padded with server identifiers.

15.7 Develop pseudocode for the crash recovery in a data-sharing cluster, based
on the algorithms outlined in Section 15.6. Assume that all undo-related
log entries for the same transaction are confined to a single private log, but
redo log entries for the same page may be dispersed across multiple logs.
Further assume that pages can be directly transferred between the caches
of different servers, without having to be flushed to disk. Distinguish two
cases:

(a) recovery from a single server crash, where one of the other servers
takes over the failed server’s role,

(b) recovery from a software failure that brings down the entire cluster
(which is unlikely, but still possible), assuming that none of the disks
is damaged.
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CHAPTER S I X T E E N

Media Recovery

More than any time in history mankind faces a crossroads. One path leads

to despair and utter hopelessness, the other to total extinction. Let us pray

that we have the wisdom to choose correctly.

—Woody Allen

Don’t worry, be happy.

—Bobby McFerrin

16.1 Goal and Overview

The failure category of server crashes that we have considered in the previous Media
failureschapters assumes that disk-resident data always survives failures without be-

coming corrupted. Now we extend our failure model to consider damage to
disk-resident data. So that it also includes other storage technologies such as
tapes or optical disks, this failure category is referred to as media failures, and
the corresponding measures to recover data from such failures are summarized
under the notion of media recovery. Our goal is to ensure that no data is ever
lost in the presence of single media failures, that is, when a single disk or other
storage unit becomes damaged. Multiple failures of this type within a short
window of vulnerability may lead to data losses, however. The techniques that
we are going to present in this chapter can be easily generalized to protect
the data against simultaneous failures of two or more disks, but this comes
at an additional cost that is not always warranted. Disk storage technology is
highly reliable, so multiple failures have very low probability. Therefore, we
will mostly focus on recovery from a single disk failure, and merely point out
occasionally how to cope with multiple failures.

Modern disks and their controllers are smart enough to detect failures
themselves by means of appropriate error-detecting codes. Typically, this means
that a particular set of disk blocks, such as a specific track, are no longer readable.
To some extent, disk controllers provide recovery by automatically remapping
such blocks to other areas on the disk platters. However, when the block con-
tents is not available elsewhere and can no longer be read from the original disk
address, the block is declared as corrupted. Of course, it is also possible, albeit
unlikely, that an entire disk becomes damaged at once, for example, because

593
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of mechanical problems with the disk-arm assembly. In either case, media re-
covery needs to be initiated by the data server, to recover either a smaller set
of affected blocks or all blocks of a disk.

In addition to the hardware failures discussed so far, a server’s data blocks
can also become corrupted because of software bugs, for example, in the code
of the database system’s index manager. In theory, this should never happen,
but we all know that modern software is so complex that such bugs cannot
be ruled out completely. For this reason, the software may itself maintain ad-
ditional redundant information in page headers or storage-level metadata so
that it can at least detect corrupted pages as soon as possible. Then, the server
software would initiate media recovery, and we will show that the same kind
of recovery steps also apply to this case.

We can further broaden the class of failures that we aim to consider withEnvironmental
failures respect to media recovery measures to what is best characterized as environ-

mental failures. This would include cases such as finding out, in retrospect, that
the server has been operating with a software release that contained serious
bugs over some time period (e.g., one week), having run certain transactions
with erroneous user input that was not captured by any consistency checks,
and so on. Also and most importantly, damage by fire, broken water pipes, and
so on, falls into the class of environmental failures. For the latter cases, media
recovery can be generalized into what is known as disaster recovery, leverag-
ing the techniques for dealing with simple disk failures. For the more bizarre
problems, such as having used incorrect server software for a while, recovery
can be provided only to a very limited extent and in a highly heuristic manner.
In this chapter we will only point out how the techniques for conventional
media recovery can also be helpful with regard to these more exotic, yet not
unrealistic cases.

All approaches to media recovery must necessarily be based on some formTaxonomy:
log-based

method
vs.

redundant
storage

of data redundancy. The traditional approach is to periodically create a backup
of the data on tapes or additional disks, say, once a week. Upon a media fail-
ure, we can then restore the damaged data by replacing the failed disk with a
new one (or simply remapping unreadable disk blocks) and copying the backup
data. However, this would result in a possibly week-old database, and we would
lose committed transactions. To preserve the transactional ACID contract, es-
pecially the durability guarantee, the notion of logging needs to be extended:
the server keeps an extended log, the archive log, which can be applied to the
backup data to redo lost effects of committed transactions and restore the data
up to the point of the media failure. A salient property of this log-based method
is that it can also be easily enhanced to provide some meaningful recovery steps
with regard to environmental failures.

The other category of recovery methods is based on building redundancy
into the storage system, without any knowledge about transactions. Often, ap-
propriate measures are provided directly by the storage hardware, for example,
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in the controller of a disk array (but, strictly speaking, much of the controller
intelligence is implemented in embedded software). Very popular storage ar-
chitectures along these lines are RAID systems (with RAID standing for “re-
dundant array of independent disks”) or mirrored disks. The common feature
among these architectures is that they provide very effective protection against
media failures in the narrow sense, but are unsuitable for addressing server
software bugs that lead to corrupted pages or other forms of environmental
failures. Therefore, mission-critical servers frequently combine both kinds of
redundancy—backups with archive logging as well as RAID storage technology.

The criteria for assessing the effectiveness of a media recovery method are Assessment
criteria:
availability,
survivability,
mean time
to data
loss (MTTDL)

threefold:

The availability of the data is the probability that a client request issued
at a random point in time can actually obtain the desired data (see also
Chapter 12). Availability is dependent on the length of the outage after
a media failure, the mean time to repair (MTTR), and the mean time to
disk failure (MTTF). Some approaches even allow new transactions to
be processed while the repair is being performed; then the availability
would not be compromised at all. But these methods only cope with
disk failures in the narrow sense.

The survivability level of the data is the number of simultaneous me-
dia failures that can be sustained without permanently losing any data.
Here, “simultaneous” actually refers to a certain time window of vulner-
ability, depending on the details of the recovery; typically, the duration
of this window is on the order of the mean time to repair for a single
media failure. The minimum and also typical survivability level that we
consider in this chapter is one; that is, we should be able to survive a
single failure without permanent data loss.

The mean time to data loss (MTTDL) is the expected time until some
data becomes permanently lost (i.e., cannot be recovered by the media
recovery procedures that are in effect). This metric refines the surviv-
ability level along the time dimension. The MTTDL depends on the
degree of redundancy, and the MTTR for a single failure is a second,
very critical factor that influences the MTTDL. If we can repair a single
failure fast enough before another failure occurs (or a third one, etc.),
then chances are higher that we can operate the server for a very long
time before we will eventually encounter the worst possible failure-
cascade scenario that leads to data loss. Note that the MTTDL is always
finite (i.e., eventual data losses are inevitable), but media recovery can
provide the means for an extremely high MTTDL, on the order of geo-
logical time frames, so that by all practical standards, we can achieve the
best possible protection against data losses.
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The chapter is organized as follows. Section 16.2 discusses the most versa-
tile recovery approach based on an archive log and periodic backups. Section
16.3 then presents the techniques for media recovery in the narrow sense, based
on redundancy built into the storage system. Finally, Section 16.4 sketches how
the various techniques can also be employed to provide some protection against
disasters such as fire.

16.2 Log-Based Method

The log-based media recovery method relies on periodic backups of the data
and an archive log in order to restore damaged data after a failure. The unit
of backup and restore is typically a tablespace or some other storage-oriented
unit that may comprise a number of semantically related tables or collections
(e.g., mail folders in a mail server) and their indexes. In addition, however, it is
possible to restore only a single page or small number of corrupted pages (e.g.,
all pages of the same disk track) by the same method.

In either case, the recovery is generally structured into two phases: in the
first phase, after replacing the failed disk or remapping the damaged disk blocks,
the relevant pages from the backup are copied to the stable database (i.e., onto
the corresponding blocks of the new disk); in the second phase, the archive log
is used to redo the updates since the backup was taken. This redo phase itself
is essentially identical to the method for crash recovery; in particular, it is also
based on the redo-history paradigm, observes compensation log entries (CLEs)
for aborted or undone transactions, and so on. Also, it is usually preceded by an
analysis phase for determining loser transactions that were active at the time
of the disk failure, and it is followed by an undo phase for these losers.

Note that, as with crash recovery, the redo-history paradigm greatly simpli-
fies the recovery procedure. With a redo-winners approach, the proper handling
of transactions that were rolled back during normal operation or undone dur-
ing the restart after a soft crash would be very complicated (see Chapter 13).
Particularly note that it is not that unlikely to have server crashes and restarts
between the time the backup was taken and the media recovery is initiated; so
dealing with undone transactions is a common case in media recovery. Finally,
note that the archive log is typically at least an order of magnitude longer than
the stable log that is used for crash recovery redo. So, the simplicity and speed
of the redo pass is practically the only thing that counts for media recovery.

The log-based redo also opens up opportunities for coping with limitedLimited,
pragmatic

forms of
environmental

recovery

forms of environmental failures. For example, the media recovery may skip
certain time periods or transactions that are known to be “polluted” by having
used software versions with severe bugs, or may skip the redoing of individual
transactions that were later found to be based on erroneous user input. This
skipping of log entries is, however, feasible only if the subsequent log entries
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are self-contained, in that they do not depend on the ones that were skipped.
Purely physiological log entries that describe mini-reorganizations within a
page as an operation can be troublesome in this regard. Also, redo log entries
for index operations may depend on earlier actions like page splits; so these page
splits cannot simply be skipped. With log entries that are closer to physical log
entries—to page after images in the extreme case—it is, however, often possible
to employ such corrective measures for specific kinds of environmental failures.
It should be stressed that such techniques are highly heuristic and can at best
be seen as pragmatic efforts. So, when commercial database systems provide
tools along these lines, administrators have to be extremely careful in using
them.

In the following two subsections, we will first describe the procedures for
taking data backups and maintaining an archive log during normal operation,
and will then discuss details of the actual media recovery upon a failure.

16.2.1 Database Backup and Archive Logging during
Normal Operation

A backup of a tablespace or a similar unit can be complete in that it copies all Complete or
incremental
backup

data pages of that unit, or incremental in that it copies only pages that have been
modified since the previous backup. It is up to the server administrator staff to
choose among these options and generally define the backup policies for the
various tablespaces. Database systems typically provide flexible options along
these lines (but only little support for optimized or even meaningful settings).
For example, the administrator may specify a daily complete backup for certain
critical tablespaces, and a complete backup for the other tablespaces only once
a week with daily incremental backups. Furthermore, to spread the overhead
of taking backups over the low-load periods of all weekdays, she may specify
that certain tablespaces are backed up every Monday, another set of tablespaces
every Tuesday, and so on.

A naive backup method would deactivate the server so that no transaction is Naive backup
methodactive, and then start copying the tablespace(s) to be backed up onto separate

disk(s) or tape(s). The advantage would be that the backup reflects only up-
dates of committed transactions, and it reflects exactly those transactions that
terminated before the backup. However, such an approach would effectively
take the server offline for an extended period, and this is unacceptable from an
availability viewpoint for many applications. So this method is usable only in
limited settings that can tolerate long, preplanned outages.

A much better and generally applicable method is to take backups during Online backup
methodonline operation as a background process without any noticeable interrup-

tion of the ongoing, regular transactions. This online backup method creates
a “fuzzy” copy of the data that contains partial effects of in-flight transactions
and possibly also effects of transactions that become aborted or undone later.
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So the backup alone is an inconsistent image of the database, but this can and
will be rectified during media recovery by the redo pass. All we need is for the
redo pass to employ the usual LSN-based state testing and also to redo inverse
operations documented by compensation log entries (CLEs) of aborted or un-
done transactions to arrive at an image that reflects the state as of the failure.
Analogously to crash recovery, a subsequent undo pass is then needed to undo
the effects of transactions that were active at the time of the failure. In prin-
ciple, this undo pass can be based on the stable log that the system keeps for
crash recovery anyway. It is essentially the redo pass that requires an additional
archive log over an extended time frame, as discussed below.

A backup is taken by scanning the free space management tables (or some
form of page-mapping table) of the affected tablespaces and then copying
physically contiguous pages in larger groups (e.g., one or more adjacent tracks).
This way, backup mostly performs large sequential I/Os, and we can also avoid
copying empty (i.e., unallocated) pages. For incremental backup, flags in the
free space management tables indicate whether a page has been modified since
the last backup; these flags need to be set by regular transactions and are reset by
the backup process. Note that pages that constitute the free space management
tables are themselves subject to crash recovery if the server should fail when the
update flags have been manipulated by incomplete transactions or the backup
process. The copy procedure of the backup may bypass the server’s page cache
for code efficiency and to avoid “polluting” the page cache; so it may copy a
stale version of a page, and this needs to be taken into account during recovery,
as discussed below.

When the backup process itself becomes interrupted by a soft crash, it
should ideally be able to resume the backup at its current scan position after
the server has been restarted. Starting the backup all over again should be
avoided. Note that backups take a long time; so server crashes while a backup
is in progress are not that unlikely. One way of preserving the prior work of
the backup process is by recording the current scan position of an ongoing
backup in the checkpoint log entries of the stable log. After restart, the backup
will then start its scan and copying procedure from this position, and will thus
repeat only a very small portion of work in the worst case.

The archive log simply collects all regular log entries of the stable logArchive logging
(maintained for crash recovery) since the last backup. This includes page-
level redo/undo log entries as well as high-level undo log entries for object
model transactions, and also CLEs for aborted and undone transactions. The
implementation could simply replicate the stable log on independent disk(s)
or tape(s), or it could periodically copy the stable log into the separate archive
log. For the latter approach it is convenient to organize the stable log into a
set of files that are used in a round-robin fashion so that currently passive files
can be copied without interfering with the I/Os on the stable log. The begin
and end of when a backup is taken is recorded in the log by creating special
“begin-backup” and “end-backup” log entries.
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All this assumes that the system needs to recover only from a single disk
failure, so that either the stable database or the stable log may be lost but not
both at the same time; more far-reaching protection against double or triple
disk failures can be achieved by replicating the stable log.

We noted above that the archive log comprises all log entries since the Archive log
truncation,
MediaRecovery-
LSN

last complete backup. As the backup itself is a fuzzy one, we need to refine
this rule to ensure the correctness of log truncation. Garbage collection for the
archive log (or, equivalently, the portion of the stable log that has not yet been
copied to the archive log) requires additional restrictions to avoid discarding
log entries too early. We need to observe the following rules:

All log entries that follow the begin-backup log entry must be kept until
the next complete backup is completely taken. This is necessary because
the pages that are scanned last may not be copied before the end of the
backup.

When the backup bypasses the database cache and may thus copy stale
versions of pages (which have more recent versions in the cache), all
log entries that follow the SystemRedoLSN for the crash recovery as
of the time of the begin-backup point must be kept (including that log
entry itself ). This marker remains relevant even if the SystemRedoLSN
is advanced later.

As the backup may include updates of transactions that turn out to be
losers soon afterward, all log entries that follow the OldestUndoLSN for
the crash recovery must be kept (including that log entry itself ). How-
ever, this only holds until the OldestUndoLSN is advanced. So, with ex-
tremely high probability, this rule is insignificant for the truncation of the
archive log, but in principle, there could be very long transactions that
live throughout the period between the begin and the end of a backup.

Putting the three rules together means that only log entries that precede
the minimum of these positions can be garbage-collected. This minimum po-
sition is known as the MediaRecoveryLSN. It can actually be kept for each ta-
blespace separately, and the administrator has to make sure that all tablespaces
are backed up completely at a sufficient rate to avoid problems with trun-
cating the archive log. Alternatively, the archive log could be partitioned by
tablespaces, effectively maintaining it on a per-tablespace basis.

16.2.2 Database Restore Algorithms

The algorithm for restoring a lost tablespace or a set of corrupted pages is
straightforward and given by the following pseudocode. Note that the analysis
pass and the undo pass can be performed on either the archive log or the stable
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log; if the analysis is carried out on the archive log, it is only the relatively
tiny portion between the most recent checkpoint and the end of the log that
needs to be scanned for this purpose. Further note that it does not matter if this
analysis precedes the redo-history pass or is performed subsequently. This is in
contrast to the crash recovery algorithms, where the analysis pass also serves
to determine the DirtyPages information to optimize the redo pass. In media
recovery, such optimizations are not feasible.

restore (pageset):

for each page in pageset do

identify the most recent (incremental or complete) backup

that contains a copy of the page;

copy the page onto the replaced disk;

end /*for*/;

perform redo pass on the archive log using the redo-history algorithm,

starting from MediaRecoveryLSN and

ignoring all log entries that do not refer to pages in pageset;

perform analysis pass on the log, starting from most recent checkpoint,

to identify loser transactions;

perform undo pass on the log for loser transactions;

The fact that media recovery simply performs a redo-history pass, which
starts from the available backup and uses LSN-based page-state testing to avoid
redoing writes that are already present in the backup itself, and subsequently
initiates a crash recovery undo pass, immediately gives us the following cor-
rectness result, without any need for a detailed proof:

THEOREM 16.1

The backup/log-based media recovery algorithm provides correct recovery

after media failures, i.e., the data is reconstructed such that it captures

exactly all winner transactions in the original serialization order.

To speed up the redo pass, parallelism may be exploited along the lines ofAdvancing
the

backup
(shadow

database)

the log partitioning techniques introduced in Chapter 15. The redo pass can
also be shortened by merging multiple incremental backups into a complete
backup, so that very old portions of the archive log become obsolete. In a simi-
lar vein, portions of the archive log may be merged into a complete backup on
a separate computer. Effectively, this redoes some of the history on the backup
to produce a more recent backup. Such methods are sometimes referred to as
maintaining a shadow database (or backup database, as opposed to a merely
passive backup) on a separate, possibly dedicated computer. Because of the ad-
ditional resources needed for this purpose, it may be worthwhile to maintain a
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shadow database only for very critical tablespaces. Upon a media failure of the
actual data server, the shadow database is viewed as the most recent backup,
and the media recovery can start by copying data from the shadow database.
The archive log can be truncated accordingly, so that the redo pass is drastically
shorter.

The same recovery methods are applicable to restore individual, corrupted
pages (as opposed to restoring entire tablespaces). To this end, it is advisable
to partition the archive log by page numbers (e.g., hashing log entries onto a
moderate number of logs, using the log entries’ page numbers as the arguments
of the hash function), even if the incentive is not parallelism. This way, the
amount of log data that simply needs to be scanned during the redo pass for a
small number of corrupted pages can be substantially reduced. In contrast to
crash recovery, where the random database I/Os for redoing updates on dirty
pages are the main performance issue, the mere scanning of the archive log is
a major factor for the duration of the media recovery.

As mentioned earlier, the availability of the data is determined by the
MTTR. For the log-based method, this is the time to copy data from the backup
and redo the relevant updates from the archive log. For large databases, the
recovery time after a disk failure would be on the order of 10 minutes to an
hour, assuming that the server has spare disks attached that are ready to use
immediately. This is already a severe impact on the availability, and motivates
additional measures at the level of the disk storage components, which we will
discuss in the next section. Note, however, that the log-based method is much
more versatile than the redundant storage methods in that it can also cope with
software-induced page corruptions, and so on. For this reason, backups and
archive logs are maintained even if the disk storage system provides protection
against disk failures.

The survivability level of the log-based method depends on the degree
of redundancy that is chosen for the backups and especially the archive log.
With no replication of these components, the method can sustain only a single
media failure at a time. If, on the other hand, you are willing to pay the price
for replicating both backups and archive logs m times, then the approach can
tolerate m simultaneous media failures.

The mean time to data loss for the backup/log-based media recovery, de-
noted MTTDLbackup/log-based recovery below, can be analyzed using Markov chain
or other stochastic state-transition models. For the baseline case of nonrepli-
cated backups, and nonreplicated archive logs, the following can be derived
(under certain simplifying assumptions):

MTTDLbackup/log-based recovery =
MTTF

3
∗

MTTF

2 (MTTRrec + MTTRback)

A simplified explanation of the formula considers the reciprocals of the
two factors. First the server is in high danger of losing data if one of the



602 CHAPTER SIXTEEN Media Recovery

three involved disks (or storage devices in general) becomes corrupted: the
database disk, the backup disk, or the disk on which the archive log is kept.
The probability of one of these three components failing is proportional to

1
MTTF times 3. Once we have lost one disk, the server enters a critical
window of vulnerability. Here we need to distinguish two cases. First, if it
is the database disk that was lost, then we cannot afford losing either the
backup disk or the log disk during the MTTRrec of the media recovery for
the database disk. The probability of this type of second failure is propor-
tional to MTTRrec

MTTF times 2, where the factor 2 accounts for the fact that a
failure of either the backup disk or the log disk results in data loss. The second
case of entering the window of vulnerability is when either the backup or the log
disk fails, but the database disk is still in good shape. In this situation the server
has to take a new backup, but if a second disk failure occurs before the backup
is completed, which takes MTTRback time units on average, we end up losing
data. The probability of this second failure thus is proportional to MTTRback

MTTF times
2, where again the factor 2 accounts for the fact that a failure of either of
the two surviving disks (the database disk from which the backup is taken or
the disk on which the archive log resides) means data loss. The above two
cases refer to disjoint events; so the probabilities are additive, and this is why
their reciprocal leads to the factor MTTF

2 (MTTRrec + MTTRback) in the formula for the
MTTDL. A more elaborate derivation of the above formula will be given shortly
in Section 16.2.3.

Note that the mean time to repair is the most critical factor; so it is crucial
also from the viewpoint of minimizing data losses (i.e., not just from the avail-
ability perspective) to perform the media recovery as fast as possible. Since
typical disks have an MTTF of at least 500,000 hours (50 years), a short MTTR
of at most 1 hour pays off in an MTTDL of approximately 12.5 million years.
Of course, this astronomically large figure is hard to interpret; after all, it is
merely an expected value derived from a probabilistic model—we could still
have the bad luck of losing data after a week of operation, but only with very
low probability. In practice, such figures are used to compare the quality of dif-
ferent options relative to each other and relative to empirical behavior. Under
this perspective, an MTTDL of several million years is typically good enough
for almost all data servers, except perhaps some extremely mission-critical ap-
plications such as online trading at stock exchanges or aircraft traffic control.

Figure 16.1 summarizes the overall architecture of backups, (replicated)
logs, and the relevant markers in the archive log, in an illustrative manner.

16.2.3 Analysis of the Mean Time to Data Loss

A full-fledged derivation of the MTTDL formula given above models the sys-Stochastic
state-transition

model for
MTTDL

tem as a stochastic state-transition model where a finite number of states re-
flects the possible combinations of the database, the backup, and the log disk
(or more generally, device) being damaged or still available. Transitions between
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Figure 16.1 Components of log-based media recovery.

states reflect failures of disks or the successful repair of a failed component. For
example, the database disk’s state changes from “failed” to “ok” when the me-
dia recovery completes. Such a state-transition model for the backup/log-based
method is given in Figure 16.2. In this model, the state with number 4, denoted
“db failed; backup or log failed,” is a so-called absorbing state from which we can
no longer repair the data. So such absorbing states are exactly the ones that
capture data loss. Note that our state space does not distinguish the two cases
where either the backup or the log disk has failed. These two cases are equiv-
alent in that they render the server susceptible to exactly the same data loss
event, namely, when the database disk fails while either the backup or the
log is still not completely repaired. Also, both cases require the same repair
measures, namely, taking a new backup. Note that even if it is the archive log
that has failed, the backup alone is insufficient to restore the database if the
database disk should fail. Since we cannot repair the archive log but can only
continue to collect new log entries in the archive log, the server must take a new
backup in this situation. Recall that simply copying the backup to the database
produces a stale image of the data, losing the effects of possibly many winner
transactions; even worse, since the backup is itself merely a fuzzy image taken
over an extended period during which many transactions arrive and complete,
we would not be able to reconstruct a consistent database even if out-of-date
data were acceptable.



604 CHAPTER SIXTEEN Media Recovery

1

db ok;
backup and
log ok

2

db failed;
backup and
log ok

4

db failed;
backup or
log failed

3

db ok;
backup or
log failed

1/MTTF

1/MTTRrec

2/MTTF

1/MTTRback 1/MTTF

2/MTTF

Figure 16.2 Stochastic state-transition model for
deriving the MTTDL of the backup/
log-based media recovery technique.

We associate with each transition between two states a transition rate,
which can be interpreted as the mean number of occurrences per time unit
that the system moves between the two states connected by the transition.
(More precisely, a rate is the limit of the probability that a given state is left
within time �t divided by �t for �t approaching zero.) In our model, the
rates are assumed to be constant and, especially, independent of the state-
transition path on which the state has been reached. Such models are known
as Markov chains and enjoy particularly nice mathematical properties. When
a component fails, the transition into the resulting state has the failure rate
of that component as its transition rate. Likewise, when a repair is completed
and the system moves back into a better state, the corresponding transition
rate is the repair rate of the affected component. These failure and repair rates
are exactly the reciprocals of the component-specific MTTF and MTTR val-
ues. For simplicity we assume that all three components (i.e., the database, the
backup, and the log disk) have the same MTTF values, although in practice
the backup and the log may have a higher MTTF than the database, as they
are less susceptible to software errors. As for the MTTR values, we distinguish
the database and the backup disks, for repairing the latter requires taking a
new backup. In the model of Figure 16.2 the rate from the initial state with all
disks in good shape into state 3, denoted “db ok; backup or log failed,” is 2

MTTF

rather than 1
MTTF because this transition takes place when either the backup

or the log disk fails. Analogously, the transition rate from state 2 into state 4 is
also 2

MTTF .
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Generally, the reciprocal of the sum of the rates of a state’s outgoing tran-
sitions can be shown to be the mean time that the system stays within a state
between entering the state and leaving it. (More specifically, this mean state-
residence time can be shown to be an exponentially distributed random variable
for each state, with state-specific mean value.) From this information we can
now infer the mean time that it takes the system to reach one of the absorb-
ing states after having been started in the initial state where all components
are “ok.” To this end we define the following probabilistic measures for states
i, j, k, where from now on we use state numbers rather than the mnemonic
labels for convenient notation; “P[. . . ]” and “E[. . . ]” denote probabilities and
expectation values, respectively, and ri j is the transition rate from state i to
state j :

Ei j = E [time from entering state i until entering state j]

H i = E [time between entering and leaving state i]

= 1/
∑

j �=i

ri j

pik = P [transition from i to k | state i is left]

= rik/
∑

j �=i

ri j

Now we can construct a linear equation system that correlates the Ei j val-
ues with the expected state-residence times H i and the state-transition prob-
abilities pik. The following equation must hold for all states i, j :

Ei j = H i +
∑

k �=i

pik Ekj

These equations should be read as follows: the mean time from entering
state i until entering state j is the mean time spent in i plus the time from
entering some other state k until entering j , where we consider all possibilities
for the choice of k and “condition” the Ekj values by the probabilities that k is
entered upon leaving i. Naturally, the values of Ei j for i = j are zero, and the
values of Ei j for state pairs such that j is not reachable at all from state i are
set to zero, too. Ei j is also known as the “first passage time” of state j , provided
the system starts in state i. For our model of Figure 16.2, we obtain the linear
equation system, where the H i and pik values are given (i.e., easily derived
from the transition rates according to their definitions), and the Ei j values are
the unknowns to be solved for

E12 = H1 + p13 E32

E13 = H1 + p12 E23
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E14 = H1 + p12 E24 + p13 E34

E21 = H2

E23 = H2 + p21 E13

E24 = H2 + p21 E14

E31 = H3

E32 = H3 + p31 E12

E34 = H3 + p31 E14

Such a system of linear equations can be easily solved using standard math-
ematical methods. Then, with initial state 1 and absorbing state 4, the value
of E14 yields the MTTDL for the backup/log-based recovery. Substituting all
the H i and ri j values with the concrete values according to Figure 16.2, we
arrive at

E14 =
H1 + p12 H2 + p13 H3

1 − p12 p21 − p13 p31

=

MTTF
3 + 1

3

(

1/
(

2
MTTF + 1

MTTRrec

))

+ 2
3

(

1/
(

1
MTTF + 1

MTTRback

))

1 − 1
3

(

2
MTTRrec

/
(

2
MTTF + 1

MTTRrec

))

− 2
3

(

1
MTTRback

/
(

1
MTTF + 1

MTTRback

))

≈
MTTF2

6 (MTTRrec + MTTRback)

The final approximation, after some lengthy term manipulations, is by ne-
glecting all terms other than those that are quadratic in MTTF. This way we
arrive at the formula that we gave in the previous subsection. While the result
is not surprising and the derivation may not be that exciting for mathematically
uninitiated readers, we want to point out that the presented kind of stochastic
model and the methodology can be used to analyze much more sophisticated
reliability techniques. We will present results from such analyses in the follow-
ing section, but will no longer delve into the actual derivations.

16.3 Storage Redundancy

The techniques that exploit storage redundancy for media recovery can be
categorized into two classes: the first one mirrors (replicates) data on two or
more disks, and the second one maintains error-correcting codes (ECCs) in
addition to the otherwise nonreplicated data. Both can sustain a single disk
failure in their baseline variants; and both can be enhanced to cope with mul-
tiple simultaneous disk failures, but this is rarely needed in practice. Another



16.3 Storage Redundancy 607

commonality is that these methods are typically implemented within storage
system controllers, for example, in a disk array controller. However, host-based
implementations in the server itself are feasible as well, for example, as part of
the server’s operating system or the storage layer of a database system.

A salient feature of the storage redundancy approaches is that they do not Continuous
availabilitylead to any outages upon a media failure. So all data remains 100% available,

although the performance of data accesses will typically be degraded after a
failure until the repair completes. The general procedure for the recovery is to
replace a failed disk with a hot-standby spare disk that is already attached to the
storage controller and ready for use; then the recovery restores the data blocks
of the failed disk on the spare, with details depending on the actual form of
redundancy.

In the next two sections we will discuss these details of the mirroring and
the ECC-based techniques, respectively. Note once again that these techniques
only address media failures in the more limited sense of disk failures or unread-
able disk blocks, and are not amenable to software-induced page corruptions or
even more extended forms of environmental failures. Therefore, database sys-
tems typically still employ backup and archive logging policies, in addition to
using storage redundancy, and sometimes only the backup/log-based method
is used alone (i.e., without any disk-level storage redundancy).

In the following, what we will consider as read and write requests for disk-
resident data are actually fetch and flush actions on pages as far as the data
server is concerned; so reads and writes that merely affect cached pages are not
considered. To follow the standard storage system terminology but to avoid
confusion with our earlier notion of reads and writes, we will call these disk
operations disk-reads and disk-writes.

16.3.1 Techniques Based on Mirroring

Simple mirroring replicates all data blocks on a pair of disks (or conceivably Simple
mirroringa triplet of disks if this were required), with all disk-writes going to both disks

simultaneously. Disk-read requests, on the other hand, are directed to one of
the two disks only. A common option is to use the disk whose disk arm is
closer to the track where the requested block(s) resides. Alternatively or in
combination with this seek-time optimization, the disk scheduling can aim to
balance the load across both disks and minimize queueing delays by giving each
disk approximately the same number of disk-read requests.

The two disks that form the mirrored pair should have independent fail-
ure modes: they should be addressable through different, multiported disk
controllers, they should have independent power supply, and so on. For these
reasons, mirrored disks are provided by storage system vendors as complete,
ready-to-use solutions, along with spare disks, online pluggability of disks to be
replaced, and other robustness features along these lines. The server software
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Figure 16.3 Mirrored disk pairs.

typically addresses a pair of mirrored disks as if it were a single device. The
architecture of mirrored disks is illustrated in Figure 16.3.

Upon a disk failure, all subsequent disk-read and disk-write requests are
directed only to the surviving disk of the affected mirror pair. So the failure can
be completely masked to the server software, and all data remains continuously
available as long as there is only a single failure. After replacing the failed disk
with a spare disk, the data is reconstructed by copying the blocks from the
surviving disk. This can be and is typically done in parallel to the regular work-
load, without any offline time. The copying from the surviving disk onto the
activated spare disk proceeds in large batches, on one or more contiguous tracks.

Regular disk-write requests that arrive during this repair period must there-
fore be sent to both disks. For regular disk-read requests that refer to blocks
that have already been copied to the activated spare disk, the disk scheduling
can choose among the two disks, but the optimization is now complicated by
the fact that both disks need to sustain the reconstruction load, too. At the be-
ginning of the reconstruction, the disk-read load of the surving disk is doubled,
whereas more and more disk-reads are eligible for being directed to the spare
disk as the reconstruction makes progress. Now the optimization problem to
be solved is what fraction of disk-reads should be sent to which disk at which
point during the repair (i.e., for a given fraction of data already copied to the
spare disk). References to solving this problem are given in the Bibliographic
Notes at the end of this chapter.

The MTTDL of the simple mirroring technique can be derived as follows:

MTTDLsimple mirroring =
MTTF

2
∗

MTTF

MTTRsimple mirroring

An intuitive, albeit simplified, explanation would be similar to the one
already given for the MTTDL of the backup/log-based recovery. The factor 2
accounts for the fact that we lose data upon another failure (within the critical
time period of length MTTR) of one out of two disks. So this formula holds
for a single pair of mirrored disks. With N such mirrored pairs—that is, a total
of 2N disks—the overall, systemwide MTTDL would be only one N-th of the
above value.
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A major problem with simple mirroring is the drastic performance penalty Declustered
mirroringin the “degraded mode” when the surviving disk essentially needs to take over

the failed disk’s load and also has to sustain the reconstruction load during the
repair. So with most regular disk requests being reads, the load of the surviving
disk is more than doubled temporarily. This in turn may create queueing de-
lays that adversely affect the regular requests’ response time and also make the
MTTR longer. A possible remedy that has led to the enhanced concept of declus-
tered mirroring is to spread the replicas of a disk’s blocks across multiple disks in a
disk group, rather than mirroring them one-to-one all on the same disk of a pair.
For a group of size G disks, the replicas of the blocks of disk j (1 ≤ j ≤ G) are
simply placed round-robin style on disks j + 1, . . . , G, 1, . . . , j − 1, . . . . So
the replica of the block numbered k of disk j , denoted j.k, resides on disk
( j + 1 + (k mod (G− 1))) mod G + 1 (with the numbering of both disks and
blocks starting at 1). This placement of block replicas is illustrated in Figure
16.4 for G = 4. The picture assumes that each disk has two separate areas, each
physically contiguous, for storing its “primary” blocks and the replicas of other
disks. The local addresses of replicated blocks can then be computed easily;
with more flexible layouts on each disk, the blocks’ local addresses could be
determined by appropriate mapping tables.

Upon the failure of one of the G disks of a declustered mirroring group,
the disk-reads for blocks of the failed disk are evenly distributed across the
G− 1 surviving disks. So the load of each disk is increased by one (G− 1)th
of a single disk’s load in the worst case. On top of this, each surviving disk is
involved in the reconstruction of the failed disk’s data on the activated spare
disk, but again this extra load is spread evenly across all G− 1 survivor disks.

So the key advantage of declustered mirroring is that it eases the perfor-
mance degradation after a failure and potentially shortens the MTTR compared
to simple mirroring. The drawback is that we now lose data as soon as a sec-
ond disk within a group of G disks fails, as opposed to a specific second disk
with simple mirroring. For this reason, a good choice of G is all but trivial. In
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Figure 16.4 Declustered disk mirroring.
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practice, a value on the order of 4 to 16 is a good compromise between the
per-disk load reduction after a failure and the higher risk of a second failure in
the same group. The MTTDL for declustered mirroring with group size G is
given by

MTTDLdeclustered mirroring =
MTTF

G
∗

MTTF

(G− 1) ∗ MTTRdeclustered mirroring

and the MTTDL for an entire storage system with a total of N disks is

MTTDLdeclustered mirroring

N/G

assuming for simplicity that N is a multiple of G.

16.3.2 Techniques Based on Error-Correcting Codes

A major cost factor in mirrored disk architectures is the duplication of the
disk space. By keeping a block of error-correcting code (ECC) information for
groups of blocks from different disks, this extra cost can be scaled down at the
expense of a certain performance penalty during normal operation and during
the reconstruction of a failed disk. The simplest but also practically prevalent
case stores the parity of a number of blocks in a separate parity block on a
separate disk. This approach is widely known as a RAID architecture. More
precisely, the idea gives rise to a family of RAID architectures, with different
options for the scope and placement of parity blocks. The simple mirroring of
the previous section can even be viewed as a special case, known as RAID-1,
as the parity block derived from a single block (i.e., a group of size one) is a
replica of that block. In the following we will look at various alternatives for
placing parity blocks onto disks, and will then discuss the consequences for the
reconstruction of failed disks.

Storage Organizations

The simplest variant of a parity-based RAID architecture is the RAID-4RAID
architectures

with parity
groups

method illustrated in Figure 16.5. We assume N + 1 disks, N of which hold data
blocks and one of which is dedicated to hold parity blocks. The N data blocks
that reside at the same block address of the N data disks form a parity group.
The bitwise parities of the bits of these N blocks are kept in a separate parity
block that is stored at the same block address on the parity disk. Sometimes,
parity groups are also referred to as stripes, but this term primarily refers to the
regular partitioning and allocation of application data across the N data disks,
which is actually an orthogonal issue not related to media recovery. So instead
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Figure 16.5 A parity-based RAID-4 storage architecture.

of lumping these aspects together, as it is often done in the storage systems
community, we will avoid the term stripe.

During normal operation, a disk-write, say, of block k of disk j must be Parity
maintenance:
small-write
penalty

extended to maintain the parity block. One way of doing this is to fetch all
blocks of the same parity group from the disks, compute the new parity from
the blocks 1.k, . . . ( j − 1).k, ( j + 1).k, . . . , N.k and the new value of the block
j.k to be written, and initiate disk-writes for both the affected data block j.k
and the corresponding parity block. It is obvious that this method is expensive
in terms of the additional I/O cost. A much better way, however, is to compute
the new parity block incrementally, and this is feasible because of the fact that
the parity can be obtained by a logical XOR (exclusive-or) operation, denoted
⊕, on the underlying bits, and by exploiting properties of the ⊕ function. Since
only one data block of a parity group is modified, the new contents of the
parity block can be computed by applying the ⊕ function to the old contents
of the block to be written, that block’s new contents, and the old contents of
the parity block:

new parity(1.k, . . . , N.k) :=

old parity(1.k, . . . , N.k) ⊕ old contents( j.k) ⊕ new contents( j.k)

In terms of extra I/O load, this method requires two additional disk-reads,
to obtain the old contents of the data block and the parity block, and an
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additional disk-write for the new parity block. This overhead is known in the
literature as the small-write penalty of RAID architectures. Since in transaction-
oriented servers most data blocks are typically read before written, appropriate
caching (e.g., in the disk array controller) can often avoid the additional read
for the old contents of the data block, but the maintenance of the parity block
is still a significant overhead for disk-writes: two additional disk I/Os versus
one with mirroring. The overhead becomes smaller when applications mostly
issue disk-writes for all data blocks of a parity group together; hence the name
small-write penalty. This can be achieved for some application classes that
mostly manage large uninterpreted byte containers such as images, by appro-
priate layout of the data blocks across disks. For transaction processing and
other server applications that deal with fine-grained information (e.g., by mak-
ing intensive use of indexes), such special write patterns are usually infeasi-
ble or unattractive. So within our setting, parity-based RAIDs have a penalty
with regard to I/O throughput; so for the same application workload, they
would require a larger number of disks to sustain the I/O load (but typi-
cally less than twice the number of disks, as most workloads are dominated by
disk-reads).

The small-write penalty is especially troublesome in a RAID-4 architecture,
as the extra I/O load for the parity blocks refers to a single disk, the parity disk.
Once this disk becomes saturated, the overall throughput of the entire disk array
cannot be increased further regardless of how many disks might be added. To
avoid this kind of bottleneck created by the parity disk, the overall array could
be partitioned into groups of G disks, each consisting of G− 1 data disks and
one parity disk whose parity blocks are computed over the data blocks within
the group. However, because small groups introduce larger storage costs as the
ratio of parity blocks and data blocks becomes smaller, RAID-4 groups are not
the best possible solution. Rather, it is advantageous to spread the parity blocks
across all disks of a group and thus avoid the parity disk bottleneck regardless
of the group size—a concept known as RAID-5 architecture.

The RAID-5 architecture, as illustrated in Figure 16.6, spreads all parityRAID-5
architecture

with
parity block

striping

blocks in a round-robin manner across all disks of a group. Such regular round-
robin placements of disk blocks in a disk array are often referred to as striped
placements or striping; therefore we will use the term parity block striping for
this simple but effective layout. So, with N + 1 disks, the parity block for the N
data blocks with number k, which are located on disks (k − 1) mod(N + 1) + 1
through (k + N − 2) mod(N + 1) + 1, resides on disk (k + N − 1) mod
(N + 1) + 1 (assuming that disks and block numbers start with one). This way,
the I/O load for maintaining the parity information is nicely balanced across
all disks.

The MTTDL of a RAID-5 group with G+ 1 disks can be shown to be

MTTDLRAID-5 =
MTTF

G+ 1
∗

MTTF

G ∗ MTTRRAID-5
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Figure 16.6 RAID-5 storage architecture with parity striping.

With a total number of N disks in the system and assuming that N is a multiple
of G+ 1, the systemwide MTTDL is a factor of N

G + 1 smaller.

RAID-5 still exhibits the same small-write penalty as RAID-4. However, Reducing the
small-write
penalty

its less rigid placement is already a step in the right direction. To further alleviate
the penalty of small-writes, we should place parity blocks such that they incur
as little I/O costs as possible. For example, it would be most convenient if we
could write them onto a dynamically chosen track of any disk that does not
hold a data block of the affected parity group; then we could select locations
in the vicinity of the current arm positions of eligible disks. This way, at least
the cost of the parity block disk-writes is minimized. The price for such a
flexible allocation of parity blocks, also known as floating parity, is that we Floating parity

blocks,
parity block
logging

need to maintain a more elaborated block-mapping table. Since modern disks
can easily be equipped with a suitable amount of nonvolatile RAM (using
battery backup for the power supply), this approach is indeed cost-beneficial.
Yet another approach in a similar vein would be to defer the disk-writes of
modified parity blocks, holding them in the nonvolatile RAM for a while and
then writing them sequentially in large batches to dedicated log areas onto one
of the disks. The log areas would be spread across all disks and should be used
so as to balance this extra I/O load. This approach is known as parity logging
and is probably the best in terms of reducing the small-write penalty.

An improvement of the MTTR—and thus the duration of the time pe- Declustered
parity blocksriod with degraded performance and, indirectly, the MTTDL—is possible by

spreading the reconstruction load for a failed disk across an even larger num-
ber of disks so that each individual disk receives a smaller amount of extra
work. The key to achieving this goal is to relax the placement invariants for
the RAID-5 architecture: we now consider groups of C disks for placing the
parity blocks, each of which is still computed over G+ 1 < C data blocks,
and we allow more flexible placements beyond the simple parity block striping
scheme of RAID-5. This approach has been coined parity block declustering, but
is also known by the name clustered RAID, as the group of C disks is referred
to as a disk cluster. Note that the condition G+ 1 < C is essential; otherwise
(i.e., with G+ 1 = C), we would again arrive at a placement that is equivalent
to RAID-5. An example of a declustered parity block placement is given in
Figure 16.7, with G = 3 and C = 5.
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Figure 16.7 Parity block declustering scheme (with C = 5, G = 3).

Declustered parity block schemes should ideally satisfy a number of com-
binatorial properties. Consider C disks that hold a total of n parity groups each
consisting of G+ 1 blocks (G data blocks and a parity block) with G < C.
The n*(G+ 1) blocks should be placed on the C disks so that the following
conditions hold:

For each group, the G+ 1 blocks of the group must reside on different
disks (the standard condition of all RAID architectures). Otherwise, we
could not recover from a single disk failure.

Each disk holds n/C parity blocks. So the parity maintenance load during
normal operation is distributed evenly across all C disks.

For the m = n * (G+ 1)/C different groups that are represented by the
blocks of a given disk, the m ∗ G blocks that belong to these groups
but reside on other disks are distributed evenly across all other C − 1
disks. This condition ensures that if the considered disk should fail, the
reconstruction work for the disk’s m blocks induces the same amount
of work on each of the surviving disks.

Placement schemes that satisfy the above properties fall into the family
of so-called combinatorial block designs. Finding such block designs for given
values of G and C is a very difficult problem. Thus, implementations have
been developed in an approximative manner, using specific kinds of random
permutations and a mapping table for the actual block allocations.

The higher the difference between G and C, the better the load balancing
of the reconstruction work after a failure and the lower the extra load on each
of the surviving disks. However, a second failure on any of the C − 1 surviving
disks results in a data loss. For this reason, C cannot be chosen arbitrarily high.
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The MTTDL of the declustered parity block architecture is

MTTDLparity block declustering =
MTTF

C
∗

MTTF

(C − 1) ∗ MTTRparity block declustering

With reasonably chosen values for G and C, this architecture achieves very
high MTTDL and, most importantly, a much shorter MTTR than RAID-5
architectures as well as significantly less performance degradation during the
repair. In the worst case (i.e., with all requests being disk-reads) RAID-5 would
double the load per disk after a disk failure. This is so because a disk-read
sent to the failed disk induces a disk-read on each of the surviving disks. In
contrast, with declustered parity blocks the increase of the per-disk load in the
degraded mode after a failure is only a fraction of G

C−1 of a single disk’s regular

load.
All the various RAID architectures discussed above have a survivability Coping with

multiple
failures
(RAID-6)

level of one; so they can sustain only a single disk failure, and a second failure
before the reconstruction of the failed disk is completed leads to data loss. As
this is sufficient for most applications with the very high reliability of modern
disks, we do not further elaborate on the more advanced techniques that can
be adopted within a RAID to achieve a higher survivability level. The key idea
is to substitute the simple parity by advanced ECCs that contain sufficient re-
dundancy to reconstruct the data of two (or even more) simultaneously failed
disks. Such approaches have sometimes been referred to as RAID-6 architec-
tures, with different choices used for the ECC (e.g., Reed-Solomon codes).
All these approaches do, however, come at the expense of a significant reduc-
tion in the disks’ sustainable I/O throughput during normal operation and a
potentially increased MTTR after failures.

We conclude this subsection by giving pseudocode for all basic operations
of a RAID architecture. The pseudocode holds for RAID-5 as well as its en-
hanced derivatives with parity logging, declustered parity blocks, and so on.
For the ease of notation, we assume a basic RAID-5 system with N + 1 disks,
and without loss of generality we assume that a disk that will be hit by a media
failure has the number N + 1. Note that the pseudocode for disk-reads during
normal operation is trivial and thus omitted. We use the terms fetch and flush

for transferring a block from a single disk into the disk array controller or from
the controller back onto disk.

disk-write (data block j.k) during normal operation: Disk-writes
during
normal
operation

fetch (data block j.k) from disk j,

unless the block’s old contents are still available

in RAM;

fetch (parity block of the parity group to which

j.k belongs);
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compute new parity block :=

old contents of parity block XOR

old contents of data block j.k XOR

new contents of data block j.k;

flush (data block j.k) onto disk j;

flush (new contents of parity block);

disk-read (block (N+1).k):Disk-reads
in degraded

mode
fetch (block 1.k);...; fetch (block N.k)

using the algorithm as during normal operation;

return 1.k XOR 2.k XOR ... XOR N.k

as the contents of block (N+1).k;

disk-write (block (N+1).k):Disk-writes
in degraded

mode
fetch (block 1.k);...;fetch (block N.k);

old contents of block (N+1).k := 1.k XOR

2.k XOR ... XOR N.k;

let j.k be the parity block of this parity group;

flush (block (N+1).k) using the block’s new contents;

compute new parity block j.k :=

old contents of block j.k XOR

old contents of block (N+1).k XOR

new contents of block (N+1).k

flush (block j.k) using new parity as block contents;

reconstruct (disk N+1) on spare disk:Reconstruction
of failed

disk
for each block k of the failed disk N+1 do

disk-write (block (N+1).k)

using the algorithm for disk-writes in degraded mode;

end /*for*/;

Rebuild Algorithms

The algorithm for rebuilding the failed disk after its replacement with a spare
disk has already been given in the previous subsection. As this rebuilding takes
place online under potential contention with regular disk requests, it is worth-
while to investigate additional optimizations. The first and most important
enhancement is to avoid reading an entire parity group on behalf of a regular
disk-read request once the requested block has already been reconstructed on
the activated spare disk. Then, we save disk I/O work by redirecting disk-reads
to the new disk. To be able to do so, we need to track the progress of the
rebuilding process, using a simple table. Similarly, disk-writes to an already re-
built block can be performed by reading and writing merely this block and the
corresponding parity block, rather than reading the entire parity group.
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A second possible optimization has to do with the scheduling of the disk
I/Os for the rebuilding of the failed disk. As the entire rebuilding is a back-
ground process anyway, whose priority should be set lower than that of regular
requests, it is intriguing to batch the rebuilding I/Os and dispatch them at par-
ticularly convenient points. One specific opportunity for rebuilding a block is
when we need to serve a regular disk-read request for this block anyway. All
we need to do is to keep the reconstructed block in a dedicated area in RAM
(typically within the disk array controller), and when we have collected a suffi-
ciently large number of such reconstructed blocks we can write them onto the
new disk in a sequential sweep. So, in essence, the rebuilding work is piggybacked
on regular disk-reads. An especially intriguing point of this approach is that it
tends to rebuild frequently accessed blocks first, so that these blocks no longer
suffer from the degraded performance of yet-to-be-reconstructed blocks. On
the other hand, you have to make sure that all blocks are eventually rebuilt on
the spare disk.

Both of these optimizations—redirecting disk-reads as soon as possible and
piggybacking disk-reads for the rebuilding process on the regular requests—are
included in the following pseudocode.

disk-read (block (N+1).k): Optimized
disk-reads
in degraded
mode

if block (N+1).k has already been rebuilt then

fetch (block (N+1).k);

else

fetch (block 1.k);...; fetch (block N.k)

using the algorithm as during normal operation;

contents of block (N+1).k := 1.k XOR

2.k XOR ... XOR N.k;

return the contents of block (N+1).k;

flush (block (N+1).k)

at the discretion of the disk scheduling for disk N+1;

mark block (N+1).k as rebuilt;

end /*if*/;

disk-write (block (N+1).k): Optimized
disk-writes
in degraded
mode

if block (N+1).k has already been rebuilt then

fetch (block (N+1).k)

unless the block is still available in RAM;

fetch (parity block j.k of the parity group to which

(N+1).k belongs);

else

fetch (block 1.k);...; fetch (block N.k);

old contents of block (N+1).k := 1.k XOR

2.k XOR ... XOR N.k;

let j.k be the parity block of this parity group;
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end /*if*/;

compute new parity block j.k :=

old contents of block j.k XOR

old contents of block (N+1).k XOR

new contents of block (N+1).k

flush (block (N+1).k) using the block’s new contents;

flush (block j.k) using new parity as block contents;

mark block (N+1).k as rebuilt;

rebuild (disk N+1) on spare disk:Optimized
online

rebuilding
of failed disk

for each block k of the failed disk N+1 do

if the block has not yet been rebuilt

disk-write (block (N+1).k)

using the algorithm for disk-writes in degraded mode,

with low priority for the resulting fetch and

flush I/O requests;

end /*if*/;

end /*for*/;

16.4 Disaster Recovery

The log-based method for media recovery can be generalized to protect the
data against environmental disasters such as fire by maintaining remote copies
of both the backups and the archive log. This involves dedicated high-speed
communication lines to a second computer center in sufficient distance. With
the more frequent disasters such as fire or broken water pipes in mind, it suffices
to have the second center about a mile away, so that the appropriate commu-
nication technology for this distance is available at reasonable costs. Obviously,
such a setup would not provide much protection against earthquakes and other
more global disasters, but such special concerns are beyond our scope.

Algorithmically, there is not much difference from what we do for mediaRemote backup
recovery: backups are taken remotely by copying pages to the second center,
and the archive log can be continuously copied to the remote place, too. How-
ever, unless the primary center’s stable log is duplicated at the second site as
well, the remote archive log may lag a little behind the primary’s log. This
can be avoided by actually running all transactions as distributed transactions
that would at least create log entries at both sites simultaneously or may even
update replicated data at both sites. However, as we will show in Part IV of
the book, such distributed transactions have to pay an extra price in terms ofDistributed

transactions
vs. log

shipping

communication, forced logging, and some potential response-time delays. So
this solution, which would otherwise be straightforward, is not always accepted
in practice.
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Without the use of distributed transactions, the remote archive logging
amounts to having to ship large portions of the primary’s archive log to the
remote site. Then, when the primary site is hit by a disaster, the remote site
may still miss some of the most recent log entries. This may result in losing some
updates of committed transactions. In any case, however, the log entries should
be shipped such that only transactions at the tail of the log may be lost. In other
words, the correctness criterion for this log shipping method is the following:
if the remote site has received all log entries of a committed transaction t, then
it must have received all log entries of all committed transactions that preceded
t in the primary’s serialization ordering.

Once we are willing to live with the possibility of losing some committed
transactions and the log shipping is not done in firm real time, an intriguing
performance enhancement is to ship redo log entries of winner transactions
only (but note that these would include CLEs of transactions that were rolled
back to facilitate redo-history recovery). This simplifies the recovery at the
remote site, as it would merely have to perform the redo-history pass using the
archive log entries that it has received. Furthermore, without the complications
of the additional undo pass at the remote site, it is simpler to parallelize the
recovery, for example, by partitioning log entries based on page numbers, so
that the data becomes available again as early as possible.

For extremely mission-critical servers, the remote site may even serve as Hot-standby
backup servera hot-standby backup server in that it prepares for more or less immediate

takeover once it is detected that the primary server has failed. Note that this
may also be useful for failures that are not as drastic as a fire. To this end,
the backup server essentially maintains a shadow database, as mentioned in
Section 16.2. So log entries that are shipped from the primary server while
it is still operational are continuously applied to the shadow database. The
backup server, albeit designed for immediate failover, may serve its own regular
workload. So after the failover, its load is increased until the primary server
becomes available again.

This architecture can be viewed as a variation of a data-sharing cluster
introduced in Chapter 15, with the following differences:

Servers have larger physical distance: different buildings or even cities
as opposed to the same room.

The data sharing is conceptually implemented by “lazy” replication, as
opposed to physically shared disks: all servers maintain a database copy
with updates propagated lazily via log shipping (or within distributed
transactions).

Consequently, there is no perfect coherency control across servers (un-
less distributed transactions are used), so that a backup copy (shadow
database) may be slightly out of date, which becomes relevant only upon
failover.
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Maintenance of the shadow database incurs continuous extra work on the
backup server. So it is important to keep that extra work as small as possible.
Optimizations along these lines entail batched processing of redo log entries
on the shadow database. Once the failover takes place, however, it is crucial to
process whatever log entries still need to be applied as fast as possible to min-
imize the unavailability of the data, and this may entail additional techniques
for parallel processing of redo log entries.

16.5 Lessons Learned

The combination of taking archive backups during normal operation and redo-
ing writes of corrupted pages or entire disks from the archive log is the baseline
method of choice that every industrial-strength data server should support.
Note that the actual recovery algorithm is very close to that for crash recov-
ery: both follow the redo-history paradigm, both exploit LSN-based page-state
testing for idempotence of redo steps, and both depend on the presence of
compensation log entries to identify updates that were already rolled back or
undone during the restart after a server crash. Furthermore, the redo pass of the
media recovery is followed by a standard crash recovery undo pass as if there
had been a soft server crash. The main difference from crash recovery is that
the media recovery redo pass starts with a usually much older LSN, coined the
MediaRecoveryLSN, which is the minimum of the begin-backup log entry’s
LSN for the most recently completed backup and the SystemRedoLSN as of the
time when that backup was initiated. Other than that, media recovery greatly
leverages the previous chapter’s fundamental considerations on crash recovery.

Media recovery based on archive logging is the most versatile among the
presented techniques in that it can cope with individual page corruptions,
disk failures, and certain classes of software-induced environmental failures.
Furthermore, it can be easily carried over to a setting where the backup and
the archive log are shipped to a remote site so as to protect the server against
disasters such as fire.

Nevertheless it is often desirable to complement backups and archive log-
ging with additional techniques based on storage redundancy at the disk level.
Such techniques, whose popularity has come along with the advent of so-called
RAID or disk array storage systems, either mirror data blocks on two or more
disks or place error-correcting codes for groups of disk blocks on appropri-
ately chosen disks. All these techniques can mask a single disk failure without
any interruption of the server, provided that a spare disk is already plugged in
and available without human intervention. So the advantage compared to the
backups and archive logging lies in maintaining 100% availability, as long as we
consider only a single disk failure at a time and limit ourselves to “traditional”
failures of the disk hardware. A second disk failure while the previously failed
disk is rebuilt on the spare disk would lead to data loss. Therefore, a number
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of optimization techniques for minimizing the mean time to repair are of great
importance for such approaches. Most notably, the technique of declustering
mirrored blocks or parity blocks across a larger number of disks can be very
beneficial, so as to balance the reconstruction load across the surviving disks
and to keep the extra load that each disk has to sustain during repair below a
certain threshold.

Exercises

16.1 Reconsider the MediaRecoveryLSN for the method based on backups
and archive logging. Give concrete examples, with histories referring to
concrete page numbers, etc., to show each of the following points:

(a) It is insufficient to start the redo pass of the media recovery at the
most recent begin-backup log entry if this most recent backup was
not completed before the media failure occurred.

(b) It is insufficient to start the redo pass of the media recovery at the
begin-backup log entry of the most recently completed backup if the
copying procedure for a backup bypasses the server’s page cache.

(c) It may be necessary (albeit extremely unlikely) to start the
redo pass of the media recovery at the OldestUndoLSN as of the
time when the most recent complete backup was initiated.

16.2 Investigate the mean time to data loss (MTTDL) for mirrored disks as
well as for “triple mirroring,” where each block is replicated on three
different disks. To this end, design a stochastic state-transition model
and derive from it an exact formula for the MTTDL, in close analogy
to the derivation that we carried out in Section 16.2.

16.3 Design an efficient procedure for shipping log entries to a remote site
such that the remote server is able to redo winner transactions in serial-
ization order and may lose only a few such transactions from the tail of
the serialization order. In other words, if transaction tk is redone at the
remote site and transaction ti precedes tk in the serialization order of
the original history, then it must be ensured that the remote site redoes
ti as well.

Bibliographic Notes

The media recovery method based on backups and archive logging was
already sketched by Crus (1984) and has been in use in commercial database
systems for a long time. Mohan, Haderle, et al. (1992) have also leveraged



622 CHAPTER SIXTEEN Media Recovery

the redo-history paradigm in the context of media recovery explicitly, and
presented the ARIES algorithm to cover both crash and media recovery in an
integrated form. Mohan and Narang (1993) have presented detailed algorithms
for creating database backups, including many low-level optimizations that are
relevant in industrial-strength commercial systems. The duration of creating
a backup and recovering corrupted data from the backup and archive log has
been analyzed by Stoerl (1997). Mathematical underpinnings for our analysis
of the MTTDL, based on a Markov chain model, can be found, for example,
in the textbook by Tijms (1994).

An excellent overview of storage redundancy techniques, with emphasis on
RAID architectures, has been given by Chen et al. (1994). The original RAID
concept was proposed by Patterson et al. (1988); a mathematical analysis of
the MTTDL for various RAID configurations can be found in Gibson (1992).
Disk mirroring, on the other hand, has been in use in commercial systems long
before it was scientifically studied in the paper by Bitton and Gray (1988).
The same holds for declustered mirroring; its advantages in terms of MTTR
and MTTDL have been analyzed by Copeland and Keller (1989). Additional
generalizations of declustered replication in the context of highly available,
multisite data servers have been investigated by Torbjornsen (1995).

Variations of parity-based RAID architectures have been an intensive sub-
ject of the last decade’s research and development. Rebuild algorithms have first
been studied systematically by Muntz and Lui (1990). Thomasian and Menon
(1994) and Thomasian (1998b) have presented thorough performance eval-
uations for various rebuild algorithms. Flexible placement schemes for parity
blocks have been investigated, for example, by Menon et al. (1993), Stodolsky
et al. (1993), and Mogi and Kitsuregawa (1994). The concept of parity block
declustering was first proposed by Muntz and Lui (1990) and later was further
studied by Merchant and Yu (1992), Holland et al. (1994), and Alvarez et al.
(1998). Foundational work on such advanced placement schemes and more
general error-correcting codes that can mask multiple disk failures has been
done by Rabin (1989) and Gibson et al. (1989).

Using remote backups and log shipping as a protection against site disasters
has been studied in much detail by King et al. (1991), Mohan et al. (1993), and
Humborstad et al. (1997). These sources also contain some information about
and additional pointers to disaster recovery support in commercial systems.
The log shipping methods that may lose a few winner transactions have been
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Application Recovery

The 9000 series is the most reliable computer ever made. No 9000

computer has ever made a mistake or distorted information. We are all,

by any practical definition of the words, foolproof and incapable of error.
. . .

I’ve just picked up a fault in the AE35 unit. It’s going to go 100% failure

in 72 hours.
. . .

It can only be attributable to human error.

—HAL

Basic research is what I’m doing when I don’t know what I’m doing.

—Wernher von Braun

17.1 Goal and Overview

In this chapter we shift the focus from the server to the clients of a transactional
information system. So we now take it for granted that the consistency of the
server’s data is ensured to the best possible extent, but we ask ourselves how
clients may and should react to “bad” returncodes that signal transaction aborts,
server failures, and other unusually long delays that the client may interpret as
a server outage.

Exactly-once
execution

The server ensures the all-or-nothing atomicity of each transaction, but
the client is actually interested in executing a user request to completion and
achieving this exactly once. So upon receiving a returncode that indicates the
“nothing” outcome for a transaction, it is the client’s responsibility to reini-
tiate the transaction until it eventually succeeds. This should happen trans-
parently to the human user on behalf of which the client acts, and it involves
reinitializing the application program and starting the transaction again as a
new transaction. The difficulty in this procedure lies in the fact that the client
cannot always determine the outcome of a previously initiated transaction with
100% certainty. So if the server crashed after committing the transaction but
before sending the returncode to the client, the client would be tempted to
initiate the transaction again. Then, as the transaction’s behavior is usually

623
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not idempotent and the server, after having been restarted, sees the transac-
tion as a new one with no connection to its previous incarnation, such an ap-
proach would violate the desired exactly-once semantics of transactional client
requests.

Process
recovery,
message
recovery

This chapter presents techniques for guaranteeing the exactly-once seman-
tics of client requests. The failure types that we consider in this chapter include
client failures as well as server failures, in the sense of both soft process crashes
and limited forms of communication failures, in that messages may be lost
because of process failures. So in addition to the data recovery that we have
addressed in the previous chapters, we will discuss how to provide process re-
covery and message recovery. In full generality, no industrial-strength solution
is known yet, despite the fact that the fault-tolerant and distributed comput-
ing communities have been tackling the problem area for many years. We will
restrict our setting to typical transaction-style applications. In particular, we
will consider only request-reply communication patterns between clients and
a server, as opposed to arbitrarily asynchronous message exchanges between
peer processes.

We will first consider, in Section 17.2, the special case of transactions that
consist of a single request-reply pair between the client and the server and
relatively small and simple application programs. Albeit very special, this case
is a common one in classical OLTP application programs: users provide input
by completing a form, this triggers a transaction on the server, and the result is
displayed to the user in that form. The solution will involve the management
of request and reply messages in persistent and recoverable message queues.
Transactions that utilize such queues are commonly referred to as queued
transactions.

In Section 17.3 we will generalize our considerations to applications that
involve conversations with the human user; so they consist of a sequence of
request-reply pairs. Often each request-reply pair corresponds to one transac-
tion on the server, a case that is known as pseudo-conversational transactions. In
contrast to the first case above, an application program needs to maintain local
state data in between interactions with the server: such an application is called
stateful, as opposed to the stateless programs that consist of a single request-
reply pair. It has turned out, however, that many traditional OLTP applications
(e.g., in banking or reservation systems) need to hold only a small amount of
local data, say, a few local variables, so that the process state of the executing
process is very compact. We emphasize this fact because it can be exploited in
the technical solution for process recovery. Section 17.3 is specifically devoted
to this case, and we will show that recoverable queues can be nicely leveraged
for pseudo-conversational transactions as well.

Section 17.4 takes these considerations one step further and addresses fail-
ure resilience in long-lived workflows that involve heterogeneous and largely
autonomous servers. Recall from Chapter 1 that workflows such as travel plan-
ning or insurance claim processing consist of multiple activities, each of which
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may be a transaction. So a workflow usually does not have the ACID property
in its entirety; more specifically, isolation is relaxed or even completely given
up. However, we do desire a guarantee that a workflow is executed completely
once it has been started (without prejudicing any one of multiple possible
outcomes) and that it is executed exactly once. We will see that queued trans-
actions are very convenient in achieving this goal.

Finally, we consider the most general case in Section 17.5, where appli-
cations may spawn long-running processes with large state data. This case be-
comes relevant if the application is itself a semantically rich generic service,
for example, an office tool, a software repository, or a workflow engine. In this
case, a full-fledged approach to process recovery is needed, which involves pe-
riodically saving the application process’s state as well as logging interactions
with the user and the data server.

Embedding into
system
architecture

For a large part of this chapter we restrict ourselves to two-tier system ar-
chitectures with clients (i.e., home or office PCs) connected to data servers and
application programs running on the clients. For ease of presentation, we will
mostly focus on a single client and a single data server, but it is trivial to incorpo-
rate multiple clients with each running its own application. The generalization
to multiple data servers in a federated system is also straightforward, provided
we understand how to handle distributed transactions; we will cover this base
technology in Part IV of the book and simply assume support for transactional
updates across multiple data servers for the scope of the current chapter.

Extensions to three-tier architectures with an application server (e.g., a
Web server) as “middle man” are feasible, too, and widely used in practice.
Recall from Chapter 1 that in a three-tier system the client merely handles
presentation issues (i.e., the interactions with the human user) and the actual
application logic resides in a program that is run under the control of the ap-
plication server (e.g., a Web servlet executed as a thread within the application
server’s address space). As long as the various application programs that simul-
taneously run on the application server do not have any shared-state data (e.g.,
shared data structures within a common address space or common events) at
the application level, the application server’s different threads can simply be
perceived as if each of them were a single client. This way, application recovery
for two-tier client-server systems carries over to three-tier systems in a fairly
straightforward manner.

17.2 Stateless Applications Based on Queues

Behavior of a
stateless client

In this section we consider only applications that are stateless in the sense that
the underlying application programs never have to remember anything beyond
a user interaction. So the execution of an application program consists of the
following steps:
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1. The user sends input to a computer, typically her PC but possibly
also through a chipcard, a cellular phone, or other device. That com-
puter, the client, spawns a program execution on behalf of this input.
(Technically, the computer would have a program running already that
polls for user input, but this can be viewed as part of the operating
system.)

2. The executing application program constructs a request to a data server
and sends it there.

3. The data server receives the request, processes it as a transaction, con-
structs a reply to the client, and sends it there.

4. The client receives the reply, derives a suitable output message to the
user, and presents it to the user.

At the end of the last step, the stateless application can forget every-
thing about the prior history; the next user input will initiate a new, inde-
pendent invocation of the same or a different program. This is why this kind
of application is called stateless; there is no notion of a user session. De-
spite this limitation, this application class is highly relevant in practice, and
this is the reason for considering it in detail. The next subsection will ex-
tend this application model to capture richer behavior. Here, we will sim-
plify the above model even further by disallowing any asynchronous requests
of clients. So a client is not allowed to continue its program execution af-
ter having sent a request to a data server; rather the client needs to “pause”
until it receives the reply. As a consequence, a client can have at most one
outstanding request for the completion of which it is waiting. This restric-
tion could be relaxed, but it simplifies the presentation and allows us to con-
centrate on the salient features of the techniques that we are going to
develop.

Message
recovery by
persistent,

recoverable
message queues

The main difficulty in coping with such stateless applications lies in han-
dling the message traffic between the user, the client, and the data server. The
particular question within the framework of recovery is, of course, how we
should deal with message losses induced by client or server crashes, and how
we can ensure that the user’s input is processed and the output is eventually
delivered despite such failures. The solution for message recovery that we study
in this section is based on persistent, recoverable message queues: all messages are
delivered via such queues; the sender enqueues a message, and the receiver
dequeues it.

Queue
manager

A message queue itself is an ADT-style persistent object that is imple-
mented on (page-structured) persistent storage and managed by a server with
appropriate measures for crash recovery and concurrency control, as a queue
may be accessed by many clients. Such a server is often referred to as a queue
manager. For concurrency control it can and should exploit the semantics of the
queue operations, Enqueue and Dequeue, often relaxing the queue behavior
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to that of a non-FIFO queue (see Chapter 7), and for recovery it can employ
the standard techniques for data recovery of the previous chapters.

The queue manager may be embedded in the data server, which is what
we will assume for ease of presentation, or it may be provided by a middle-
tier application server in a three-tier architecture (see Chapter 1). In practice,
the latter case is prevalent and typically involves deploying a TP monitor or
advanced ORB product (see Chapter 1) or the corresponding functionality of
a business application framework such as SAP R/3. It is important that the
operations on a message queue, Enqueue and Dequeue, can be included in
transactions, and that the queue manager has the technical provisions for guar-
anteeing the ACID contract. When the queue manager is part of an explicit
application server separated from the data server, we will actually need dis-
tributed transactions. This will involve standard techniques to be presented in
Part IV of the book, but conceptually there is no difference from a centralized
transaction, and we can therefore simplify the presentation by assuming that
message queues are under the direct control of the data server.

Queued
transactions

The key to ensuring that user input is not lost and will eventually be pro-
cessed is to place the input in a recoverable place as soon as possible. This is
what recoverable message queues are intended for. As a client program does
not involve much computation before the request to the data server is derived
from the user’s input, the natural solution is to enqueue the request within a
transaction and commit that transaction right away. Once this is done, the user
input is guaranteed to survive crashes by the recovery measures of the queue
manager. This step essentially amounts to force-logging the user input imme-
diately after receiving it (namely, by committing the enqueueing transaction).

Exactly-once
execution
guarantee

The next issue then is to ensure that this request to the data server is pro-
cessed exactly once, and the reply will definitely be delivered to the client. This
is the part where we strive for a correctness criterion beyond the traditional
ACID contract. The atomicity of a server transaction would merely require
an all-or-nothing outcome; so rolling back an incomplete transaction and “for-
getting” it would be legitimate. From the application viewpoint, however, the
transaction would have to be retried until it eventually succeeds; this is some-
times called an at-least-once execution guarantee. The way to achieve this is to
include the dequeueing of the request into the actual transaction that the data
server runs against its data. So if the transaction is aborted before its completion,
the dequeueing of the request will be undone, too, so that it is still available
in the message queue to the server once the transaction or crash recovery has
been carried out. Then the server simply needs to check its request queue again
to automatically retry the transaction. To arrive at an exactly-once execution
guarantee, the server needs to ensure that a request is never processed twice
with the corresponding transaction committing. Again, this can be achieved by
exploiting the transaction support of the queue manager: we simply include
the enqueueing of the server’s reply in the same transaction that initially de-
queued the request. The effect is that a transaction abort or a server failure
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Figure 17.1 Queued transactions.

will undo all three steps if necessary: the reply is removed from the queue, the
transaction’s effects on the data are undone, and the request will be returned
to the request queue. The reply message becomes visible to the client only
upon the commit of the server transaction. To make sure that the client does
not accidentally lose the reply message, the dequeueing of the message will
again be enclosed in a transaction. This entire protocol is known as a queued
transaction. Note, however, that it actually consists of three transactions—two
client-initiated ones and the one by the server. An illustration of this simple,
yet highly effective technique is shown in Figure 17.1.

As discussed above, the illustration of Figure 17.1 assumes a two-tier ar-
chitecture in which the application runs on the client. The request received by
the data server would, for example, spawn a stored procedure or some other
form of ADT-style method invocation on encapsulated data, and the result
of the procedure execution would be returned to the client. If the client is-
sues a sequence of individual query and update commands using some form of
embedded SQL API (e.g., ODBC) rather than invoking an entire stored pro-
cedure, then the server would open its transaction upon dequeueing the first
call and close the transaction upon receiving the application program’s commit
request and enqueueing the reply message to the client. In between, all SQL
commands and their results can be exchanged directly between the data server
and the client without using the transactional queues since there is not yet any
output to the user, but all the effects of these calls on the server’s data must be
part of the server transaction.

In a three-tier architecture with an explicit application server between the
client and the data server, the picture changes a bit, but its fundamental char-
acteristics remain the same. Now the client simply forwards the user input to
the application server, which typically runs the queue manager and is in charge
of enqueueing the request derived from the user input. The server transaction
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Figure 17.2 Queued transactions in a three-tier architecture.

that dequeues the request and initiates its processing on the data server side
is now a distributed transaction that involves both the application server and
the data server. All operations on queues take place on the application server,
and all operations on persistent data take place on the data server. Again, the
data server may either execute merely a stored procedure or a sequence of
SQL commands issued by the application program on the application server.
This use of queued transactions in a three-tier architecture is illustrated in
Figure 17.2, assuming the case of an SQL command sequence. Conceptually
and within our current context, the fact that the two servers together execute
a distributed transaction does not make any essential difference to the case of
a two-tier architecture. The important point is that the servers together fulfill
the ACID contract for this transaction. In Part IV of the book we will discuss
which additional handshakes between the two servers are involved in such a
distributed transaction.

Queued transactions incur a significant overhead. On the other hand, they
also constitute a major added value in that they enhance the all-or-nothing
guarantee of ACID transactions into an exactly-once execution guarantee for
each user-initiated request. As far as the user output is concerned, however, the
guarantee is a bit weaker in that we can ensure only at-least-once delivery. The
reason is that the client could fail in between sending the output to the user and
committing the transaction that dequeues the server reply. Then, the recovery
would put the reply back into the queue, so that the restarted client would
see it again. Now the client has absolutely no way to determine whether it has
already sent the output. So, unless it receives some form of acknowledgment
from the user, it should try resending the output message. The acknowledgment
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may be an implicit one, like observing that the user already sends her next
input message and thus must have seen the previous output (or is no longer
interested in it). Note that this less-than-ideal behavior should be extremely
infrequent because it happens only when a client failure occurs within a very
small window of vulnerability.

Testable output If nonidempotent output messages to users are so critical that sending
them twice is absolutely unacceptable, we need an explicit way of testing the
state of the output device to resolve the potential ambiguity. An important
example is automatic teller machines that hand out cash to customers. These
machines have special hardware counters that can be read by the software, and
are automatically incremented each time cash is dispensed. Then, the client
transaction that dequeues the server reply can read the counter before initiat-
ing the output and write it to a persistent, failure-resilient place. So the value
of the counter is remembered across client failures, and the client is the only
entity that can manipulate the counter. Therefore, after a restart, the client
can simply read the current value of the hardware counter and compare it to
the remembered value to suppress initiating the output a second time. Note
that in this scenario, the client is the automatic teller machine itself (i.e., its
software). Further note that it is not possible to embed this kind of user out-
put in the client transaction itself, as the output is an inherently non-undoable,
real-world effect. So dispensing cash is nontransactional, but it is testable. Over-
all, these considerations lead to the following correctness criterion that queued
transactions can satisfy in a way that can be proven:

THEOREM 17.1

With the queued transaction protocol for stateless applications, the follow-

ing guarantees hold:

1. Once the user-input transaction is committed, a request is executed by

the server exactly once.

2. Once the user-input transaction is committed, the user output is delivered

at least once.

3. If user output is testable, the user output is delivered exactly once, pro-

vided the user-input transaction has been committed.

Proof

The proof is essentially a case analysis that considers client and server failures

at various stages in the processing.

First, assume that the client fails after the user input is successfully enqueued

(which is our overall premise). The server is not affected by this failure and

can dequeue the request independently of the client. If the client restarts, it

no longer cares about the request queue; so it is irrelevant how far the server
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has progressed in executing the request. If the server has already enqueued

the reply message before the client completes its restart, the client will find

the reply there and will process it and deliver output to the user as if there

were no failure at all. If the reply message is not yet (committed) in the reply

queue, the client will wait until the message appears and can be dequeued.

So again, this is the usual client behavior during normal operation. In either

case, the client will eventually dequeue the reply and send it at least once

to the user. If the user output is testable, the client can determine whether

it had already delivered the same output once and would suppress it in this

case.

The second case is that the server fails at some point in the processing.

If it fails before it dequeues the request message, there is nothing to do

upon the server restart: the request will still be available in the queue. If

the server failure occurs after the dequeueing but before the commit of

the server transaction, the server recovery will undo all effects on both the

data and the queue. So the request message will be placed back into the

queue by the standard procedure for crash recovery. Upon restart, the server

will find it there as if it were a new message and will again process it.

Since the prior incarnation’s updates on the server’s data have been undone

as well, the fact that the request appears as a new message is perfectly

acceptable. Further note that the request message can be assumed to be

“self-describing” in that its contents tells the server which stored procedure

or other method it should invoke to process the request; so the server does

not need to remember anything across crash-restart cycles other than what

is in the queue. Assuming that the server will eventually be operational

long enough to completely execute the transaction and commit the reply

message in the reply queue, the server’s part of the overall execution has

been performed exactly once. So the request has been executed exactly

once, and it is up to the client to deliver the output message (see the first

case above).

To conclude this section, the details for the client and server behavior
during normal operation are given in the following pseudocode. For simplic-
ity, we assume a two-tier architecture, with the application running on the
client and the queue manager on the data server. Furthermore, the pseudocode
does not capture the case of testable output devices; this is left as an exercise
(see Exercise 17.1).

user-input processing by client: Client during
normal
operation

begin transaction;

enqueue (request);

commit transaction;
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user-output processing by client:

wait until reply queue is not empty;

begin transaction;

dequeue (reply);

while user has not acknowledged the reply

or sent the next request

do

present reply to user;

end /*while*/;

commit transaction;

request-reply processing by data server:Server during
normal

operation
begin transaction;

dequeue (request);

perform data operations and generate reply;

enqueue (reply);

commit transaction;

After failures, the client and the server perform the following restart
procedures:

check reply queue;Client restart
if not empty then

process reply like during normal operation;

end /*if*/;

check request queue;Server restart
if not empty then

initiate processing of requests like during normal operation

end /*if*/;

17.3 Stateful Applications Based on Queues

The technique of using queued transactions that has been developed in the
previous section has so far been geared and restricted to the special case of
transactions with a single user input and a single user output. Now we will
consider the natural generalizations of transactions that contain entire conver-
sations with the user. Such a conversational transaction would still be initiated
by the first input message from the user, but the subsequent output message
should not close the server transaction. Rather it should be possible to combine
an entire sequence of user inputs, request-processing steps, and output mes-
sages into a single transaction as far as the atomicity, persistence, and isolation
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of the updates to the server’s data are concerned. And, of course, we would like
to preserve the exactly-once execution guarantee and the at-least-once output
delivery once the first user-input message has been successfully enqueued.

It turns out that it is not at all easy to include multiple user interaction steps
(i.e., message exchanges between the application program and the user) into
a single transaction, because that user output is not really undoable. When a
transaction aborts after sending output messages to the human user, we cannot
easily convince the user that these messages should be viewed as if they have
never been sent. Such behavior may be acceptable under specific conditions,
but we should strive for something better. The solution that has been estab-
lished in many commercial OLTP applications over the last three decades is
to break down the entire conversation into a sequence of transactions that are
chained together. The link between the transactions is provided by the queue
manager. Similar to the server not losing its request when the enqueueing of
the reply fails because of a transaction undo, we can combine two message
exchange steps between the client and the user into a transaction: when the
client dequeues the server reply and presents the output to the user, the client
does not immediately close the transaction, but waits for the subsequent user
input in the conversation and enqueues the resulting request that is still within
the same transaction.

Queue-based
message
recovery for
conversations

This chaining of multiple queued transactions is illustrated in Figure 17.3.
Its key point is that once the enqueueing of the initial user input has been
committed, the chain will never be “broken” by a server or client crash. In
positive terms, it is guaranteed, despite (temporary) computer and network
failures, that there will be at least one request or reply message in one of the
message queues; in fact, with our restriction to single-threaded application
programs that do not spawn requests asynchronously, there will be exactly
one message recovered from whatever client and server crashes will occur.

Application
process
(client)

Database
server

User

••• •••

••• •••

Figure 17.3 Pseudo-conversational queued transactions.
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Then, after the restart of the failed component, the entire conversation can
be resumed with this recovered message. So it is the queue-based message
recovery that keeps the conversation alive. This argument can be cast into the
following theorem:

THEOREM 17.2

With the queue-based message recovery for conversational multistep trans-

action chains, the following guarantees hold:

1. Once the initial user-input transaction that starts the entire conversa-

tion is committed, the entire transaction chain is executed by the server

exactly once.

2. Once the initial user-input transaction is committed, each user-output

message throughout the conversation is delivered at least once.

3. If user output is testable, each user-output message is delivered exactly

once, provided the initial user-input transaction has been committed.

Proof

The proof can be viewed as an extension of the proof of Theorem 17.1, de-

veloped in the previous section. The decisive invariant that holds throughout

the conversation is that either the last committed request or the last com-

mitted reply will be available after whatever failure might occur, assuming

our basic premise that the initial user input has been successfully enqueued.

To verify that this invariant holds, we need to consider all possible points of

failure of the client and the server, analogously to our case analysis in the

proof of Theorem 17.1.

As for client failures, the critical case is a failure in between dequeueing a

reply and sending the resulting user output. In this case, however, the recov-

ery will undo the client transaction and make the reply message available

again. The same holds if the failure occurs after sending the user output or

receiving the next user input, but before the next request is enqueued. In

these cases, the client may send an output message more than once, and

it may even have to prompt the user to repeat the last input message. The

latter behavior is undesirable and fairly unlikely but cannot be completely

ruled out; within the small window between receiving the user input and

forcing it to the queue by committing the client transaction, the client is

susceptible to losing user input. Note, however, that this undesirable behav-

ior refers only to the last user input immediately preceding a client crash. In

any case, it is only at the client transaction’s commit that the previous reply

message becomes definitely forgotten, but at this point the next request is

safely recorded in the queue.
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As for server failures, the situation does not really differ from that of

Theorem 17.1. The server dequeues a request at the beginning and en-

queues the corresponding reply at the end of the same atomic transaction.

So the invariant that the committed state of the queue always holds exactly

one message (either a request or a reply) is proven. All our claims follow

immediately from this invariant that the message chain never becomes bro-

ken. The exactly-once delivery of user-output messages requires a testable

user-output device, but once this is available, the situation is identical to

that of Theorem 17.1, as the problem of double output is independent of

the conversational context.

At this point, we point out that there are also some caveats with this queue-
based approach. First, the fact that the entire conversation is broken down into
multiple server transactions compromises the isolation of the application’s data
updates on the server. So for this approach to be feasible, we need to ensure
that this behavior is acceptable for the application. This corresponds to the
special case of chained transactions that we mentioned in Chapter 7 for the
object model concurrency control. Recall that this case builds on the fact that
all higher-level operations that correspond to the individual server transactions
are commutative or are at least viewed as compatible with each other. If this
condition does not hold, we would need to acquire semantic locks or provide
some other form of concurrency control for the high-level operations on the
server. Also, if the entire conversation were to be stopped prematurely by the
user, the server would have to initiate compensating transactions for the already
committed transactions. Note, however, that many applications can be designed
to provide such compensating transactions. Further note that server or client
crashes do not necessitate such compensating steps; rather the restart of the
server or the client would recover the last request or reply message and would
always roll the entire conversation forward.

Using queues to
recover “small”
process state

The second caveat affects the application programs themselves. Recovering
the last message is not good enough to resume an interrupted program execu-
tion, as the process in which the program executes could rely on the proper
and up-to-date state of its local variables. Here we apply a trick to support at
least a limited but common case of stateful application programs. As long as
the local state data that is needed to recover the process and resume the execu-
tion is sufficiently small, the client can store this state data into the recoverable
queues by combining it with the request messages that it enqueues. When the
server dequeues the request, it should extract and remember that state data
and put it back into the queue when it enqueues the reply message at the end
of the server transaction. This way, a failed client can always recover not only
the last relevant message but also the corresponding local process state. Thus,
client restart amounts to loading the corresponding program in an initial state,
extracting the relevant state data from the queue, and setting its local variables



636 CHAPTER SEVENTEEN Application Recovery

to these most recent values. In commercial implementations of this approach,
application programs have to be written in a stylized manner using special calls
for saving and extracting process state data with the queue manager.

So, in essence, the entire user/application conversation and the statefulPseudo-
conversational

transactions
process that executes the application program are both transformed into a se-
quence of quasi-stateless single-interaction steps, each of which corresponds
to a single transaction using the recoverable queues as intermediate store for
messages and (a small amount of) process state data. To reflect the specific,
essentially stateless and nonconversational nature of the resulting transactions,
this approach is known by the name pseudo-conversational transactions in the
commercial world. Despite its somewhat tricky nature and limitations, the ap-
proach has been widely successful in practice. For example, the widely popular
type of business application frameworks whose best-known archetype is SAP
R/3 have adopted this concept of queue-based conversations; in R/3 this is
termed a “logical unit of work.” In Section 17.4 we will show that the concept
can also be leveraged in general-purpose workflow management. In Section
17.5 we will finally consider a truly general, unrestricted, and possibly also con-
ceptually cleaner approach to message and process recovery for client-server
applications, but we will also show that the generality has a higher price in terms
of computational costs and especially complexity of the necessary protocols.

Typical application examples for queue-based pseudo-conversational trans-Applications:
travel

reservations,
electronic
shopping

action chains can be found in travel reservation systems. Suppose you wish to
book a package consisting of a flight, hotel, and rental car from a travel agency
or an automated, Internet-based travel agent. The client starts the conversa-
tion by entering data about the required transportation and accommodation
such as traveling dates, origin and destination sites, hotel and rental car pref-
erences, and so on. When the server dequeues this initial request, it could, for
example, first make flight reservations on the chosen airline’s data server and
commit the transaction of this first step. Part of this first server transaction is
enqueueing the reply message, which may include, for example, details about
the reserved flights such as departure and arrival time. In addition, and this is
the basic trick of pseudo-conversational transactions, it would also place all rel-
evant information about the initial user request in the enqueued message, for
example, the hotel preferences and the current state of the conversation, such
as the money “spent” so far on the airfare. Thus, when the user confirms that
the reserved flights are acceptable and requests to continue with the next step,
the client applies the same trick. Therefore, the next request that the server
dequeues will contain all the necessary information about the initial request
and the current state of the entire conversation, such as the currently “spent”
amount of money. This way, the server does not need to remember anything
across user interactions, other than what is kept in the queue. In the last step
of the conversation, the server finds all information about all the individual
reservations in the queue and can construct the billing statement as part of
its final reply. It is worthwhile to mention that in this application, the various
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steps that constitute the entire conversation are typically performed against
different data servers, since airlines, hotel chains, and rental car companies are
autonomous enterprises. But note that this does not require anything special
as far as the transactional recovery is concerned, as each step refers to exactly
one data server (plus the queue manager, which would reside on a separate
application server in a three-tier architecture).

Another application class that would benefit from the presented concepts
are electronic commerce services. When you shop electronically, say, in an
Internet-based book- or CD store, your PC essentially opens a conversation
with the store’s data server. The individual steps of this conversation would
consist, for example, of filling an electronic shopping cart, and the final step
would present the cart’s contents to the user for purchasing decisions. In terms
of the underlying structure, this application is very close to the travel reserva-
tion scenario, with the inessential differences that all steps interact with the
same server and that the number of these steps may be significantly higher,
depending on how much time the user spends browsing the store. This appli-
cation is stateful in that it has a conversation context that needs to be main-
tained across interactions, but this information is surely enough to be kept in
a transactional queue. The interesting and somewhat ironic fact about such
applications, which can be easily tried out on the Internet, is that most of them
are currently built in exactly this way, with the sad difference that they use
much less reliable, nontransactional concepts as intermediate store rather than
building on highly reliable queues. The typically used Web-style concepts are
cookies, which are local files on the client that are manipulated by the user’s
Internet browser to maintain context information, or—even worse—the URLs
of the server’s Web pages to which appropriate information is padded across
browsing steps. These tricks have evolved on the Internet to build conversa-
tions on top of the otherwise stateless HTTP protocol. So in some sense, today’s
e-Commerce applications have reinvented the concept of queue-based conver-
sations, but the sad point is that cookies or “padded URLs” do not provide
much failure resilience against client or server crashes at “inconvenient” points.
We are, therefore, convinced that the next generation of e-Commerce services
will adopt some of the transactional techniques presented in this book.

17.4 Workflows Based on Queues

WorkflowsWorkflow management for the enactment of computerized business processes
can greatly leverage transaction technology and, especially, queued transactions
as far as failure resilience and exactly-once execution are concerned. Recall
from Chapter 1 that a workflow consists of a set of automated or interactive
activities along with a formal specification of the control and data flow among
the activities. Such specifications can be expressed in different ways, ranging
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Figure 17.4 Use of queued transactions in travel planning workflow.

from various forms of logic-based and state-transition models to special script
languages. One particularly intriguing specification technique is the statechart,
which has been adopted by the UML industry standard for the modeling of
system behavior. Figure 17.4 gives an example of such a statechart specification,
repeating the example of a simplified travel planning scenario presented in
Chapter 1. For now, ignore the little queue and disk symbols in the figure,
whose meaning will be discussed shortly.

The workflow proceeds through different states (the ovals in the figure),
each of which corresponds to an activity for planning a trip to attend a con-
ference. States can be nested in the sense that a state again contains an entire
statechart, to express hierarchical designs. The control flow between states, or
actually the corresponding activities, is specified in terms of transition rules,
which are shown as annotations of the arcs in the figure. A transition fires in
a given state if a specified event occurs and a specified condition holds at this
point (the part of the arc annotations shown in brackets); the result is that a
specified action is executed (the part of the annotations following the slash),
and a new state is entered. When a business process allows parallelism, the state-
chart of a workflow enters multiple states in parallel; these are referred to as
orthogonal components and are graphically denoted by nested statecharts sepa-
rated by a dashed line within a surrounding state. In the example of Figure 17.4,
the states (and corresponding activities) CheckConfFee and CheckTravelCost

are orthogonal components, both of which are further refined into nested
statecharts.
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When a client initiates a workflow execution (e.g., an instance of our travel Workflow
engineplanning example), a workflow engine is responsible for the execution, particu-

larly, for maintaining the state and context of the workflow instance as it executes.
By the “state” of a workflow we refer to the states of the statechart specification
that are currently entered, and thus to the currently invoked activities. By its
“context” we mean the values of the statechart variables that capture input
and output parameters of activities and other data that drives the control flow
among activities. The workflow engine runs on a special kind of generic appli-
cation server, which we also refer to as a workflow server. This server essentially
interprets the workflow specification, plugs in parameter values, fires activities
according to the control flow, and invokes applications as required by the ac-
tivities. The applications themselves may run on different application servers
and typically access and manipulate various databases (and other information
sources) that are in turn managed by separate database servers.

Next, we briefly discuss how transactional technology and, especially,
queued transactions are extremely helpful in coping with failures and keep-
ing the state and context of ongoing workflows consistent throughout their
long-lived and possibly decentralized execution. In Section 17.4.1 we first con-
sider the case where a workflow executes entirely on a single workflow server.
Then, in Section 17.4.2 we extend our scope by including decentralized work-
flows that involve activities on different workflow servers according to the
organizational structure of the underlying enterprise(s).

17.4.1 Failure-Resilient Workflow State and Context

Consider a failure of the workflow server after the workflow execution has
entered the state CheckCost for the first time. If, upon being restarted, the
server had simply forgotten the state and context of the workflow, the client
would have to manually reinitiate the entire workflow, possibly being forced to
retype the same input, repeat dialogs, and so on. With realistic, long-lived work-
flows that would be much more complex than our simple example scenario,
a substantial amount of work over an extended period may be lost, and no-
body would ever be willing to rely on workflow technology for mission-critical
processes.

Workflow
execution on a
single server

The straightforward solution for the workflow server is to keep the state
and context of a workflow in a persistent, reliably managed store, and record
the necessary updates whenever the workflow performs a state transition or
the value of a workflow variable changes. The most obvious implementation
would use a database for this purpose; alternatively, the workflow server could
maintain its own stable log file. However, it is not sufficient simply to record
each change to the state or context separately. Rather it is crucial that all
variable changes that are associated with the completion of an activity and
the subsequently firing state transitions are embedded within a single atomic
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transaction. To see that this is indeed necessary, consider a situation where the
workflow has reached the state CheckCost and the value of the Cost variable
is 2000 with an allowed Budget of 1000. Now suppose the workflow server
records the state transition itself on persistent store but does not do so with the
updated value of the Cost variable. When the server fails at this point and is
later restarted, it would resume the workflow in the CheckCost state but with
an assumed value of 0 for the Cost variable (i.e., the variable’s last value before
the nonrecorded update). As a result, the workflow would then erroneously
enter the Go state.

So we require that all actions on behalf of the current state’s outgoing
transition are combined into an atomic transaction. This transaction includes

all updates to workflow variables that have been modified by the activity
that is run in the current state (i.e., the returncode and other result
parameters of the activity),

the state modification that results from the firing of the current state’s
outgoing transition,

all updates to workflow variables that are triggered by the transition
itself.

With this kind of transactional state and context tracking, problems such as
the one above are eliminated, and the server is guaranteed to recover from
a failure to the most recent, workflow-consistent state and context. So once
the initialization of a workflow execution has been successfully recorded on
the server, the server guarantees the complete execution of the workflow, and
more than that, an exactly-once execution.

17.4.2 Decentralized Workflows Based on Queued Transactions

Workflow
execution on

multiple servers

The issue of the previous subsection becomes more complicated when the
workflow execution is spread across multiple, independent workflow servers.
This will be the standard situation for workflows that span different enter-
prises, for example, to support so-called virtual enterprises in the context of
business-to-business electronic commerce (e.g., outsourcing of service provi-
sioning). In fact, even large enterprises often have largely autonomous organi-
zational units where the decentralized responsibilities for certain activities or
subworkflows typically entail a distributed workflow execution. In our exam-
ple scenario, this could be the case for the two parallel activities CheckConfFee
and CheckTravelCost (with the latter’s subactivities possibly being again de-
centralized across an airline and a hotel reservation server). So the firing of
the transition from state SelectConference to the superstate (left unnamed
in Figure 17.4) that contains the two parallel subordinate statecharts should
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spawn two follow-up activities. In a distributed execution, however, the two
corresponding servers need to be notified by the workflow server that was in
charge of SelectConference activity and the firing transition. If only one of
these two servers, say, the one for CheckTravelCost is successfully notified,
and the corresponding message to the other server is lost by a network or server
failure, the overall workflow system may end up with an inconsistent situation.
The sending server would have to repeat its notification message to the second
server, whereas the message to the first server must not be resent to ensure the
exactly-once semantics.

The solution to this problem is to combine the notifications of both re-
ceiving servers in a single, distributed transaction. Even better, we can combine
the update of the sending server’s state and context information with the two
notifications into a single, three-site transaction. The atomicity of this transac-
tion guarantees that the state transition out of the SelectConference state is
globally perceived as taking place exactly once.

There are, however, situations where the above solution incurs certain
inconveniences in terms of the independence and ultimately performance of
the involved servers. For example, if one of the receiving servers is temporarily
unavailable, it may not be possible to commit the three-party transaction. Then
even the activity of the available receiving server could not be started until
the other server is restarted (or reconnected to the network) and commits
the notification. As the processing times of activities may vary by orders of
magnitude, this delay of one out of two parallel activities could possibly become
a severe problem. So a better solution is to “decouple” the involved servers by
using a middleman in the form of failure-resilient, transactional queues. The
sender simply places the notification in two queues, one for each receiver, and
can immediately commit the update of its own local state and context. The
two receivers can now independently dequeue the notification. When doing
this, each of them must, however, still combine the dequeueing and its own
persistent recording into a single transaction. The benefit of this method is that
the dequeued message would automatically be placed back in the receiver’s
queue (by the undoing of the transaction) if the update to the receiver’s local
state and context fails. So the overall three-party protocol is broken down into
three transactions. Each of these three is still a distributed transaction, between
a workflow server and a queue manager. The net result is that the workflow can
progress across largely autonomous servers in a loosely coupled manner while
ensuring the exactly-once execution of the workflow.

The atomic update to the queues and a server’s persistent recording of the
local state and context data are illustrated by the queue and disk symbols in
Figure 17.4. Upon completing the SelectConference activity, the correspond-
ing server’s enqueueing and local recording steps are denoted by the three ar-
rows connecting the two queues and the server’s disk icon. For each of the
two receiving servers, the dequeueing and local recording are denoted by the
arrows that go out of the queues.
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17.5 General Stateful Applications

The applications that were allowed under the queue-based approaches of the
previous sections were limited in that they had to be stateless or quasi-stateless
in the sense that all necessary state information for an entire conversation could
be stored in the message queue. The current section presents a general approach
to client-server application recovery that can cope with arbitrarily “rich,” state-
ful applications. Such applications may include office automation or coopera-
tive work tools, software and other kinds of engineering design repositories, and
also workflow management, including arbitrarily invoked applications (which
were disregarded in the previous section). Throughout the section we restrict
ourselves to two-tier architectures, however, where such applications run on
the client side and interact directly with a data server.

Our goal is to provide recovery measures that can mask system failures to
human users in almost all cases, rare exceptions being duplicating an output
message or having to prompt the user for a previously entered input a sec-
ond time. The exactly-once execution guarantee for queue-based applications
encompasses user-transparent recovery. A key observation from the previous
sections that provides a conceptual starting point for generalization is that
failure-interrupted applications can be restarted if we can recover the last de-
cisive message(s). The decisive message is the initial user request in the case
of simple queued transactions, the last request or reply message in the case
of pseudo-conversational transactions, or a set of parallel request messages in
the case of queue-based workflows. Restarting the entire application then boils
down to reloading the application program and feeding the recovered decisive
message(s) into the program. With more general applications, we may have
to recover an entire history of messages, and we may have to feed all these
messages into the reloaded program as it is executed a second time. We refer to
this kind of message-based reexecution of an application program as replaying
the application. We will see in a short while that the message recovery itself
does not necessarily have to be based on queues, but may directly utilize some
form of message logging with possible improvements in performance.

Message logging
for message

recovery and
deterministic

program replay

Message-based replay makes one fundamental assumption, without which
we would face tremendous complications: applications are assumed to be piece-
wise deterministic in that potentially nonreproducible behavior is caused only
by exchanging messages with the server or the human user. This is usually
not a real limitation for business-oriented applications, but it would be pro-
hibitive in certain real-time applications that deal with interrupts and other
forms of asynchronous events. For a piecewise deterministic application, if we
can reconstruct all the original messages of a failed application process, we can
recover the process by reinitializing it and replaying its prior execution, feeding
the process with the original messages and possibly suppressing messages that
were already sent earlier. Obviously, the reconstruction of the original mes-
sages needs some form of message logging, which is what the queue manager
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effectively did in the previous sections. In this section we no longer refer to a
queue manager but rather analyze the minimum logging requirements for mes-
sages, thus aiming to minimize the overhead of the entire protocol. It will turn
out that a solution can be developed whose forced logging costs are actually
lower than that of a queue-based approach.

Installation
points for
process recovery
and reduced
program replay

Ideally this approach should be able to mask all failures to the user, so
that neither server nor client failures should be noticeable. However, this fai-
lure masking can be truly effective only if the outages after a failure are short
enough; long outages will be perceived as service disruptions by the user, even if
no message is lost or duplicated and the functional behavior is as smooth as dur-
ing normal operation. With general applications that maintain rich state data,
such as office tools or workflow engines, reexecuting the program from scratch
may take too long. Therefore, the process state should be periodically saved to
stable storage, and the execution after a failure and the client’s restart should
be resumed from the most recently saved state. We call this way of saving a
process’s state an installation point. The existing literature often refers to this
technique as program or process “checkpointing,” but we deliberately do not
adopt this terminology to avoid confusion with the different notion of check-
pointing in data recovery (see Chapter 13).

In the following, we will first, in Section 17.5.1, discuss design considera-
tions and alternatives from a conceptual viewpoint, thus stepwise developing
the design rationale for a specific algorithm coined server reply logging method.
Section 17.5.2 then provides an overview of this algorithm. The subsequent
Sections 17.5.3 through 17.5.8 present details of the algorithm in terms of
data structures, logging procedures during normal operation on the server and
the client side, log truncation, and the restart procedures for the server and
the client. We prove the algorithm’s correctness in Section 17.5.9, and we
conclude this entire section with a short discussion in Section 17.5.10 of the
presented algorithm’s applicability to three-tier and general multi-tier system
architectures.

17.5.1 Design Considerations

Message logging could be done on the server, on the client, or on both. However,
it can be shown that it is sufficient to force-log specific messages on only one
of the two parties. Upon a failure of the party that cannot reconstruct the
last relevant message, that party has to communicate with the other party
to obtain the message. Further analysis shows that it is advantageous if the
responsibility for force-logging messages is with the server, for the following
reasons:

The server communicates with many clients concurrently. Hence, it can
exploit batching to improve the disk I/O efficiency of logging.
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The server usually processes multiple requests of different clients con-
currently. Since it does not have to commit itself to an ordering of these
requests until it sends replies, it can perform optimizations that are im-
possible in a general message-passing framework. However, this means
that the server will not be piecewise deterministic between message
events unless it does sufficient logging to be able to reconstruct the ex-
act interleaving of database reads and writes. Such extensive logging can
be expensive. Not interleaving request executions is unacceptable, as it
leads to poor server throughput.

The server is much more reliable, because it is carefully administered,
than the clients are. Therefore, client applications may be willing to rely
on the server’s availability, but the server should never depend on the
clients—quite an asymmetric situation.

Client-server
problem
scenario

To illustrate the complications that arise from the fact that the server ex-
ecutes requests concurrently and is thus a priori not piecewise deterministic,
consider the example in Figure 17.5. When the first client fails and is restarted,
it would try to replay its original execution by extracting the original user-input
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Figure 17.5 Problem scenario with replaying general client-server applications.
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message from a log and reexecuting the program with this input until it reaches
the point where the client would again send the request to the server. Note
that it is guaranteed that the same request message will be constructed in the
replayed execution because the original user input is used (as opposed to ask-
ing the user for entering some input again). But then, when the server receives
the request again, it does not know whether it has previously processed the
request or received a new request. Once it starts executing the request, how-
ever, the server can no longer guarantee that it will produce the same reply as
the previous incarnation of the request, simply because the reply (and also the
exact effects on the data) depends on the nondeterministic interleaving with
other request-processing threads. In the example, because of the request pro-
cessing on behalf of the second client, the server may well produce a different
reply message this time. Once the client receives a different reply, however,
the application program could possibly produce a different output to the user.
Sending this output would definitely confuse the user, so that the failure is no
longer masked. Suppressing the output, on the other hand, may make things
even worse, because from now on the entire execution trajectory of the client
program differs from that of the previous incarnation. So from this point on,
application recovery in a way that is transparent to the human user becomes
infeasible.

Server
considerations

We could view the server’s concurrent request executions as a set of
message-passing threads, whose “messages” correspond to the interleaved ac-
cesses to the shared database, and each would have to be force-logged. For-
tunately, the fact that the execution of interleaved requests is not exactly re-
producible does not matter until the resulting effects propagate outside of the
server, that is, when a reply is sent to a client. Thus, sending a reply commits
the state of the server. From this point on, the server promises that it will deter-
ministically replay a previously executed request if a failed and restarted client
should resubmit the request. This commitment has three aspects:

Re-create reply: The reply for a resubmitted request must be identical to
the original reply.

Redo database updates: Effects of the original request on the server’s
database are redone if necessary, and the reexecution of a request is
idempotent.

Isolate other requests: The redo of database updates does not alter the
data values previously read by concurrently executed requests.

Client
considerations

Client applications, unlike the server, are piecewise deterministic between
requests. Hence, to recover the state of a client application, we need merely log
the external input that it has seen and initiate replay from a saved installation
point. The client exploits the recoverable request-reply mechanism when a
request-reply needs to be replayed to recover one of its applications. The replay
of the application up to the point of the request guarantees that the request is
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regenerated, the fundamental requirement placed on clients. A repeat of the
request causes the redelivery of the reply to the client application.

Application installation points are generated at the client, where the ap-
plication is executing. The client may choose to store its installation points
on a server for reliable storage, but the server then treats the installation point
information as regular data that it stores and retrieves upon the client’s demand.

The client must also deal with input and output messages from and to the
external world (e.g., the human user). It must log input messages and force
them to stable storage promptly to minimize the frequency with which the
user may have to resubmit input, so there is not much room for optimizations.
Responsibility for logging these messages lies naturally with the client as the
client receives them. For the rest of the discussion, we assume that the client
logs such external input messages. Note, however, that the input message log
entries should reside in the same stable log file that holds other client log entries.

There is no need to log output messages to the external world, as they can
be deterministically re-created if the application fails and restarts. During the
restart, previously sent output is suppressed, except when an output message
is immediately followed by a failure. Then, it is impossible to tell if the user
has already received the output, whatever logging might be done. Therefore,
such a message is resent and may thus be seen twice by the user.

17.5.2 Overview of the Server Reply Logging Algorithm

The above considerations strongly suggest that the server should be responsible
for the stable logging of reply messages. This enables fully independent server
recovery after a failure; that is, the server becomes available again without ex-
changing information with clients (that may be unavailable at this time). Server
independence is a major design goal. Once we decide on server reply logging,
most other aspects of the solution are natural consequences of our analysis. If
replies are recoverable, requests are recoverable as well. Client applications are
piecewise deterministic, and hence their replay re-creates the request. So the
server reply logging method need not perform any forced request logging on
client or server. This leaves us with only one forced log I/O for each request-
reply pair.

Server reply logging minimizes the server’s forced logging frequency while
providing the best solution in terms of recovery independence and fast server
restart. The only aspect where it may be inferior to more client-centric ap-
proaches is a possibly increased restart time for client applications and that
client recovery becomes dependent on the server. Given our design goals, es-
pecially server independence, and the fact that the client depends on the server
in any event, these disadvantages are surely acceptable. Therefore, our method
of choice is server reply logging. In this section we give a detailed descrip-
tion of the server reply logging method. We elaborate on the optimizations
to minimize forcing the log and on the subtle details of log truncation, on
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both server and clients, to speed up restart and, ultimately, guarantee very high
availability.

The server forces reply log entries to the log before sending a reply. It does
this by flushing the database log buffer, including the write log entries of the
corresponding request-reply pair, the reply log entry being the last log entry
that must be written. In addition, the server may perform an optimization
similar to group-commit (see Chapter 13); that is, it postpones sending a reply
until either a timeout occurs or a sufficiently large batch of log entries has
accumulated. It then writes the batch to the stable log in a single disk I/O.

The server can choose among a number of options for replaying requests.
It knows when a request execution is incomplete so that an undo scheme is
applicable given appropriate isolation. Equally, it can choose to replay a request
to completion. Replay would now be necessary only for incomplete requests
(i.e., when the reply is not yet stable). While these options require that the
request and all database reads be logged in addition to the normally logged
database writes, no additional forced log I/O is needed. Forcing the reply log
entry ensures that all preceding log entries are written to the stable log as well.
In fact, we will later show that there is an opportunity for further optimizations
in this regard.

Message lookup
table

A failed and restarting client may resubmit requests, hence asking the server
for some earlier replies. Because the server logs replies, the server is always able
to look up the corresponding reply and send it back to the client without
replaying its request. However, this may randomly access the server’s stable
log, a potential disk I/O efficiency problem. Therefore, the server keeps the
reply log entries in a separate randomly accessible data structure—ideally in
main memory—called the message lookup table. During recovery after a server
failure, the server rebuilds this table from its stable log to avoid random I/Os
to the log for resubmitted requests.

Lazy client
logging

From the client’s viewpoint, a drawback of this method is that client restart
time can be significantly longer than with client logging. Communication la-
tency with a potentially highly loaded server to obtain the reply log entries is a
serious issue. To ease this problem, the client can perform some lazy logging—
writing reply log entries to stable storage in a nonforced manner whenever
there is available disk bandwidth.

Log truncation
based on
stability
notifications

Client recovery dependency on log entries kept by the server causes subtle
difficulties for log truncation at the server. Without an additional mechanism,
the server would never be able to truncate its stable log, and the log scan time
during a restart would grow without bound. To avoid this, clients inform the
server when log entries are no longer needed by sending stability notifications
to the server whenever the client

generates an installation point (log entries preceding an installation point
are not needed for client recovery),

makes reply log entries stable by additional lazy logging of replies at low
priority.
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The client can piggyback stability notifications on its regular messages to
the server. Application recovery is not compromised when the server garbage-
collects reply log entries that will never be used by a client.

17.5.3 Data Structures

In addition to the usual recovery data structures, the server reply logging
method uses the following two data structures, instantiated at both the server
and the client:

an active application table (AT) that contains status information about
ongoing (possibly failed or restarting) applications that the server or the
client is responsible for

a message lookup table (MT) that contains (log entries about) messages
of active applications, most importantly, reply messages.

These data structures, illustrated in Figure 17.6 and described in detail in pseu-
docode notation below, reside in volatile storage with entries made stable by
forcing them to the log.
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Figure 17.6 Data structures for the server reply logging method.
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We explain the various fields as we discuss the algorithm. A message is
tagged with

an application identifier (AppID) that includes an encoding of the host
client and is unique across all applications of all clients,

a message sequence number (MSN) that is unique and monotonically
increasing within each client application.

Messages include the input and output messages documenting client interac- Data structures
of server reply
logging method

tions with the external world.

AT: array[AppID] of record /* Active Application Table */

LastMSN: integer;

/* MSN of application’s last message event (only relevant on client) */

StableMSN: integer;

/* MSN such that all prior message events of the application,

including this one, are known to be on stable storage locally

(only relevant on client) */

RedoMSN: integer;

/* MSN of the oldest non-obsolete message event

(for the client, this is always the most recent installation point

or the oldest MSN that follows it) */

RedoLSN: integer;

/* LSN of log entry that corresponds to the RedoMSN */

end;

MT: array[AppID,MSN] of record /* Message Lookup Table */

MsgType: (request, reply, input, output);

/* input and output are only needed for client-to-user messages */

MsgContents: array of char;

end;

LF: persistent array[LSN] of record /* Stable Log File */

LogRecType:

(write, read, undo, request, reply, input, IP, start-IP, term-IP, CP);

LogRecContents: array of char;

AppID: integer;

MSN: integer;

end;

For convenience, we consider an application installation point (IP) as a
message with an MSN, and we distinguish start and termination installation
points (start-IP and term-IP) from the regular ones.

The client tracks the last used MSN for each application, by recording it
as the LastMSN in the active application table. The client keeps two additional
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MSN fields. The RedoMSN is the oldest MSN that follows the most recent in-
stallation point of the application or the installation point MSN itself if no
more recent message exists. The StableMSN is the most recent MSN for which
it and all smaller MSNs of the client have stable log entries. The client’s
StableMSN is the server’s RedoMSN for the given application. All server message
log entries on its stable log with an MSN smaller than the server RedoMSN of
the corresponding application are obsolete and can be garbage-collected.

During the recovery analysis pass, relevant entries for the active applica-
tion table and the message lookup table are recovered in volatile storage with
information from the stable log. Thus, server recovery has the usual two scans
over the stable log (analysis pass and redo pass), yet all relevant information on
applications and reply messages is readily accessible for restarting clients.

17.5.4 Server Logging during Normal Operation

The server generates log entries for each of its database write operations and
each request and reply message, as well as some additional temporary log entries
to cope with incomplete requests, discussed below. These log entries are posted
in a conventional log buffer, which is forced to disk whenever it is full or
according to write-ahead-logging or force-at-commit rules. In addition, the log
entries for messages are kept in the message lookup table described in the
previous section. A reply log entry is forced to stable storage, by flushing the
database log buffer, before the reply message is sent to the client. Making
the reply log entry stable does not imply that we discard it from the message
lookup table. Because a restarting client may re-request a log entry, keeping the
reply in main memory can save random disk I/O on the stable log file.

To force a reply message, the server flushes its log buffer in a single atomic
write to the log. If the message lookup table still contains the corresponding
request message (which must have the largest preceding MSN of the applica-
tion), then this message can be discarded once the atomic write to the stable
log is completed.

Logging for
incomplete

requests

We need to take special care when the server fails in the middle of a request
execution. Note that this problem arises with at most one request per active
application, namely, the last, outstanding request of an application. The server
has two principal options to achieve this goal:

1. Roll back request and execute again: The server knows when the original
reply has not yet been sent to the client. Then it has no obligation to
deterministically replay as long as all database writes of concurrently
executed requests are kept isolated. Thus, the server can undo incom-
plete requests and reexecute them all as new requests with different
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interleaving and effects. This requires that the effects of incomplete
requests be kept isolated. Isolation typically holds if a request-reply in-
teraction is inside one ACID transaction that uses, for example, strict
two-phase locking. When a client request initiates a sequence of trans-
actions on the server (e.g., a request that starts a mini-batch stored pro-
cedure on the server), undo requires compensating transactions. The
effects of the original transactions would have to be kept quasi-isolated
at a higher level of abstraction, taking into account application
semantics.

2. Redo/continue request execution: To make the server’s nondeterministic
behavior deterministically replayable, the server logs all database reads
as well as writes. To ensure deterministic replay after the reply message
is sent, the server must flush the log buffer before sending the reply.
This makes stable all read and write log entries generated for the com-
pleted request execution. During server restart, a missing reply for an
unfinished request is reconstructed by redoing and completing the re-
quest. During replay, database reads and writes are intercepted. Writes
are applied to the database using LSN testing for idempotence. There
are two ways in which to handle reads:

(a) Log physical read operations that record the values read by database
reads. During recovery, read values are extracted from the logged
values. The danger is that logging read values can greatly increase
the amount of data logged.

(b) Log logical read operations that record the occurrence of a database
read and its source. During recovery, read values are reread from
the database. Thus, recovery must read the same versions as orig-
inally read. However, current cache managers write pages back to
the stable database in any order, and hence may overwrite the ver-
sion required by a read. Thus, the cache manager must not over-
write a page whose prior version is still needed to replay a read, by
tracking and enforcing flush-order dependencies (see Chapter 15).
A danger is that flush-order dependencies may prevent the flush-
ing of a dirty page (containing a version needed for recovery) for
a very long time. Forced logging of the reply ends this flush-order
dependency.

None of the options incurs additional forced log I/O for incomplete re-
quests. Also, request log entries and either undo log entries or read log entries
are irrelevant once the reply log entry is forced. Therefore, if any of these log
entries are still in the log buffer, they can be safely discarded without being
written. However, should these log entries be written to the stable log, they
must appear in the log in their chronological order for correct recovery.
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Figure 17.7 Server logging for replaying incomplete requests.

There is no clear choice among the above options. For concreteness, the
pseudocode below is based on logging read values and redoing/continuing
request executions (option 2a). This method based on read logging is illustrated
in Figure 17.7. In this example, the server interleaves the execution of request
20 by client 1 with the execution of request 10 by client 2. The resulting data
operations on behalf of client 1 are shown in black and labeled; all other data
operations, shown in light gray, are performed on behalf of client 2. Note that
this specific interleaving, which appears to be nonserializable, is feasible and
correct when a client request spawns a sequence of ACID transactions (e.g.,
from the execution of stored procedures) with intermediate commits or trans-
actions run under relaxed isolation levels (see Chapter 10). In this situation, the
server’s logging of data reads for request 20 (i.e., the additional logging of the
r (x) and r (y) actions that precede the w(y) update) allows the server to replay
the request’s execution up to its point of failure and continue from there with-
out interfering with the already externalized effects of the concurrent request
10 shown in light gray.

Checkpoint log
entries

As in standard database recovery, the server creates checkpoint (CP) log
entries that contain certain bookkeeping information to shorten the analysis
and redo pass of recovery. The CP log entries identify which parts of the log
are irrelevant and effectively truncate the log. However, since we need to take
into account both server and client needs, log truncation is more complicated
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than with database recovery alone. We postpone the detailed discussion of this Server during
normal
operation

until we have presented the client logging algorithm.

after receiving a request message with MSN m from client application a:

create log entry r in MT with r.MSN=m, r.AppID=a, r.MsgType=request,...

upon read or write operations in the execution of a request with MSN m

from client application a:

if operation type is write then

create a redo log entry r with r.MSN=m, r.AppID=a, r.LogRecType=write,...

else /* read operation */

create a read log entry r with r.MSN=m, r.AppID=a, r.LogRecType=read,...

end /*if*/;

before sending a reply message with MSN m to the client application a:

create log entry r in MT with r.MSN=m, r.MsgType=reply,...

append MT[a,m] to the database log buffer

remove from the database log buffer

all read and request log entries with MSN m - 1

atomically write the database log buffer to the stable log

if there exists MT[a,m-1] with MT[a,m-1].MsgType=request then

discard MT[a,m-1] from MT

end /*if*/;

upon detecting a stability notification ‹a,m› or ‹term-IP,a,m):

if AT[a] does not yet exist then AT += a end /*if*/;

AT[a].RedoMSN = m + 1

Discard from MT all entries MT[a,k] with k ≤ m

Create log entry r in the database log buffer with r.LogRecType=IP,

r.MSN=m,...

if type of IP is term-IP then

force log entry r to the stable log

AT -= a

send acknowledgment to client

end /*if*/;

upon creating a checkpoint log entry r:

r.LogRecType = CP

r.LogRecContents = copy of AT

(plus standard bookkeeping info, e.g., a copy of the DirtyPageTable)

When r is written to the stable log,...

write its LSN in the master record

17.5.5 Client Logging during Normal Operation

A client creates log entries for each request and reply exchange with the server.
In addition, it creates log entries for each input message from the external world
(human user or sensor/actor, e.g., in an embedded control system). These log
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entries are kept in a message lookup table with the same layout as on the server.
The client forces log entries for external input to the stable log immediately.
The other messages are not forced to the stable log. Rather, the client writes
them “lazily.”

The client maintains a StableMSN for each application, which tracks by
how much the client lags behind the server in terms of its stable message logging.
The StableMSN is increased when the client writes a set of (chronologically)
consecutive request and reply messages to the stable log. One concrete policy
is to ensure that this “backlog” (relative to the server) is limited, by initiat-
ing a write to the stable log whenever LastMSN − StableMSN reaches some
threshold.

Each application periodically generates an installation point, saving the
entire process state of an application onto stable storage on a per-application
basis, using a shadowing technique to provide atomicity of installation points.
Each installation point is tagged with the MSN assigned to it and is thus self-
describing. Once an installation point is completed, all earlier log entries of
the corresponding application can be discarded. They are now lower than the
RedoMSN for the application, which is advanced to the MSN of the IP log entry.

Like the server, the client can also occasionally write checkpoint log entries
to allow truncation of its log. Only the “discarded” log entries above are trun-
cated. The issue of log truncation is discussed in detail in the next subsection.

Client during
normal

operation

/* processing in response to messages received or sent */

CurrentMSN = AT[AppID].LastMSN ++;

After completing an installation point of application a:

AT[a].RedoMSN = CurrentMSN;

Discard all entries r from MT with r.MSN ‹ CurrentMSN;

if type is application start-IP or regular IP then

Create log entry r in MT

with r.MSN=CurrentMSN, r.AppID=a, r.MsgType=IP or start-IP

Piggyback stability notification ‹a,CurrentMSN› on next message to server

else /* type is application term-IP */

send stability notification message ‹term-IP,a,CurrentMSN› to server

wait until message is acknowledged

ActiveAppTable -= a

Create log entry r with r.MSN=CurrentMSN,r.AppID=a, r.MsgType=term-IP

end /*if*/;

Before sending a request message to the server:

Create log entry r in M with r.MSN=CurrentMSN, r.MsgType=request,...

After receiving a reply message from the server:

Create log entry r in M with r.MSN=CurrentMSN, r.MsgType=reply,...

After receiving an input message from the external world:

Create log entry r in M with r.MSN=CurrentMSN, r.MsgType=input,...

Force log entry r to the stable log
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/* processing independent of a specific message */

After writing a set R of message log entries from MT to the stable log:

for each application a with a message in R do

m = maxr.MSN | r in R and r.AppID=a

AT[a].StableMSN = m

Piggyback stability notification ‹a,m› on next message to server

Upon creating a checkpoint log entry r:

r.LogRecType = CP

r.LogRecContents = copy of AT

When r is written to the stable log,...

write its returned LSN in the master record

17.5.6 Log Truncation

Both server and client continuously truncate obsolete parts of both the stable
log file and the message lookup table. This is important to free disk and mem-
ory space and shorten the log tail scanned during the restart-redo pass. Log
truncation, a form of garbage collection, is especially important for the server.
If the server cannot delete log entries after some time, then its log processing
upon restart becomes excessively long, and the server’s availability is compro-
mised by its role in application recovery. Below, we first consider when clients
can discard log entries, which is the simpler of the two cases, and then discuss
server log truncation.

Client log
truncation

A client discards all log entries and message lookup table entries of an
active application at each new installation point for that application. However,
when the client runs multiple applications simultaneously, this does not yet
allow truncating the stable log, as other applications may still need old parts of
the log. The client marks the progress for the installed application in the active
application table by setting its RedoMSN entry to the MSN of the installation
point. (For convenience, installation points are viewed as messages here, so
that they can be identified by an MSN. We also tag installation points with the
MSN of their associated log entry.) The minimum RedoMSN among all active
applications then determines the part of the stable log that the client needs to
keep. To reconstruct the minimum RedoMSN after a failure without having to
scan the entire log, the client periodically generates a checkpoint log entry that
contains the active application table. This is a standard technique of database-
style logging and recovery, applied here to application message logging. The
applications play the role of dirty database pages.

As the server does not itself install applications, it has no direct information Server log
truncation
based on client
stability
notifications

about when it can safely discard log entries and thus truncate its stable log.
The server relies on the clients notifying it about their steps that allow it to
discard log entries. These stability notifications need not incur extra messages,
as the relevant information is piggybacked on the next request message. The
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Figure 17.8 Server log truncation based on stability notifications.

client steps that trigger a stability notification are an application installation
or the writing of reply log entries to the client stable log. In both cases, the
client increases its StableMSN, and it is this that is sent to the server. Upon
receiving a stability notification with StableMSN m, the server discards all
entries of its message lookup table with MSNs smaller than or equal to m. The
server also sets the application’s RedoMSN in the active application table to the
smallest MSN higher than m and adjusts the corresponding system RedoLSN
accordingly.

This technique is illustrated in Figure 17.8. In this scenario the client in
the figure’s upper half has recorded the events with MSNs 15, 20, 40, 45, and
70 (which correspond to the depicted client-server interactions) in its message
lookup table, but only the events up to MSN 40 have been written to the client’s
stable log. The request with MSN 70 then contains a stability notification
with StableMSN 40, which allows the server to advance its RedoMSN for
this particular client to 40 (or actually the smallest MSN of this client that
is larger than 40). This in turn may facilitate garbage collection on the server
log provided that no earlier log entries for other clients, depicted as light gray
boxes on the server log, are needed anymore.

The server does not need to make the changes to its message lookup ta-
ble and active application table stable. It should, however, generate a log en-
try to mark this event in the log, but this (very short) log entry need not
be forced. Consequently, when the server fails, it may not remember that
it effectively truncated its stable log, and it may scan the log starting from
overly old RedoMSNs. This does not affect correctness, and the stale RedoMSN
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information will usually be updated soon by the next stability notification from
the client.

The only case where a stale RedoMSN could result in a permanent and
critical problem is the server loss of a stability notification from a terminating
application that will not send more notifications. Log entries for this applica-
tion would become permanently unreclaimed garbage, forever preventing the
server from truncating its log. Thus, we require that stability notifications for
application termination be specially tagged. The server must force a term-IP log
entry to the log or generate a checkpoint log entry with an updated copy of the
entire active application table. The client must await an acknowledgment from
the server before it can remove the application from its own active application
table and thus commit the termination.

17.5.7 Server Restart

After a server failure, the server restarts by performing an analysis pass and
a redo pass over the stable log. The analysis pass starts from the most recent
checkpoint log entry (found by looking up the master record, see Chapter 13)
and scans all log entries until the end of the log. For application recovery,
this pass rebuilds the active application table. This table is reinitialized from
the checkpoint log entry, and is then updated whenever the log scan encoun-
ters an installation point log entry for an application. At the end of the anal-
ysis pass, the server knows for which applications it may have to re-create
replies. It also knows a RedoMSN and a corresponding RedoLSN for each ap-
plication, bounding the part of the log that contains the required reply log
entries.

The redo pass then starts from the minimum of RedoMSNs among active
applications or the minimum RedoLSN among dirty database pages, whichever
is older. For client application recovery, we focus on the redo of the message
log entries, understanding that request execution can write to pages of the
database, and hence that we must, in this redo scan, do normal database redo
as well. The server redo pass rebuilds the message lookup table, restoring it to its
state as of the crash. The server can then deliver logged replies to resubmitted
requests in case a client application has failed and is itself restarting.

A case that needs special consideration is the handling of incomplete re-
quest executions where the server has logged redo steps for database writes of
a request. Then the request log entry itself and corresponding undo or read
log entries are guaranteed to be on the stable log at their original points in the
interleaved request execution history. We consider two cases:

Undo log entries permit the server to undo the database writes of all
incomplete requests, subsequently reexecuting these requests as if they
were new requests and regenerating the corresponding replies (option
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1 in the earlier discussion of logging for incomplete requests, valid for
isolated request-reply interactions only).

Read log entries permit the server to deterministically replay the partial
execution of the incomplete requests and then continue executing the
requests to completion (options 2a and 2b in the discussion of logging
for incomplete requests).

The replies are then handled like replies during normal operation: they are
inserted into the message lookup table, forced to the stable log, and finally, sent
to the client. From this point on, the server is in its normal operation mode.
Client requests that are lost because the request log entry is not forced are
reexecuted when the client resubmits the request.Server restart

initialization:

locate most recent checkpoint log entry cp (from master record)

initialize AT = cp.AT /* and initialize DirtyPageTable, etc. */

initialize ReplayList = empty set

/* incomplete requests to be replayed and completed */

analysis pass:

for each log entry r between most recent checkpoint log entry and end of log

do

if AT[r.AppID] does not yet exist then AT += r.AppID end /*if*/;

case r.LogRecType of

term-IP: AT -= r.AppID

Other IP: AT[r.AppID].RedoMSN = r.MSN + 1

write: maintain DirtyPageTable (as in standard data recovery)

request: ReplayList += ‹r.AppID,r.MSN›

reply: ReplayList -= ‹r.AppID,r.MSN-1›

otherwise: skip log entry

end /*for*/;

restartMSN = min{a.RedoMSN such that a in AT}

restartLSN = min{min{a.RedoLSN | a in AT},

min{x.RedoLSN | x in DirtyPageTable}}

redo pass:

for each log entry r between restartLSN and end of log do

case r.LogRecType of

write: redo database update, using LSN testing for idempotence

read: if ‹r.AppID,r.MSN› in ReplayList then

pass r.LogRecContents (the read value)

to request execution thread end /*if*/;

reply: if AT[r.AppID] exists and r.MSN ›= AT[r.AppID].RedoMSN then

insert r into MT end /*if*/;

if MT[a,r.MSN-1] exists with MT[a,r.MSN-1].MsgType=request then

discard MT[a,r.MSN-1] end /*if*/;
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request: if AT[r.AppID] exists and r.MSN ›= AT[r.AppID].RedoMSN then

insert r into MT end /*if*/;

if ‹r.AppID,r.MSN› in ReplayList then

activate request execution thread end /*if*/;

otherwise: skip log entry

for each activated request execution thread ‹a,m› in ReplayList do

complete request execution and generate reply

17.5.8 Client Restart

Client restart also consists of analysis and redo passes over its stable log. The
analysis pass is identical to the server’s and rebuilds the active application table.
The redo pass, however, differs from the server’s. The server merely rebuilds
bookkeeping data that may be needed by failed clients. Client recovery actually
restarts the applications active at the client failure, resuming their execution
in a way that is transparent to the human user. This leads to the following
differences.

The RedoMSN of an application identifies the oldest log entry needed for
recovery, the installation point log entry, or the application log entry following
it. Note that the RedoMSN determined by the analysis pass is a lower bound
on the real RedoMSN. It is possible for an installation point to occur just before
the system fails and for the log entry describing it not to reach the stable log. In
this case, a better RedoMSN can be determined from reading the application
installation point and examining its tag MSN.

The redo pass scans the log from the oldest RedoMSN of all applications
in the reconstructed active application table. We process the log entries of all
applications at this client in a single pass over the log as opposed to making a
separate pass per application. This is an important optimization for clients run-
ning middle-tier application services with a large number of concurrently active
applications. Each application is reincarnated upon encountering its analysis-
determined RedoMSN log entry (i.e., the lower bound for the RedoMSN) dur-
ing the redo pass. The MSN that tags the application installation point is then
used to determine the true RedoMSN, which may be later because the system
may have failed before the stable writing of the log entry for this installation
point. All log entries for the application are ignored until the true RedoMSN
is encountered. This is the application analog to the way that updates to data
pages are bypassed when the log entry LSN for the update is less than the LSN
stored on the page.

An application then reexecutes asynchronously to the further redo pro-
cessing of the log (i.e., in a separate process or thread). As in normal operation,
application requests are intercepted. At these points, either client recovery has
already encountered the corresponding reply log entry or the application pro-
cess pauses until it is encountered. If the reply has been encountered, then it is
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replayed. Otherwise the application waits and replays the reply when it shows
up on the log. Application replay proceeds after the reply has been redone.
Note that with asynchronous application reexecution, restart is substantially
faster, which is especially important if applications perform long computations
between server interactions.

The redo pass over the log proceeds in parallel with application reexecu-
tion. It re-creates the message lookup table to the state as of the last stable log
entry. During the application reexecution, user-input messages are consumed
from the message lookup table, and output messages to the user can be re-
created as part of the application reexecution. All output messages that are
known to be followed by a log entry of that application are suppressed (i.e.,
not sent to the user), as they would be duplicated.

There is a chance of repeating the final output message or of missing the
final input message. Regardless of how quickly we force the log, a system fail-
ure can occur between the time of the input and the time when the input is
logged. The best that we can do is to reduce the probability that this will occur.
Similarly, on output, it is possible for the output to be lost before the user sees
it, even if it were sent. Regardless of logging, it is impossible to tell whether
the user has seen the output or not until the user acknowledges the message in
some way. Thus, the last (unacknowledged) output must be re-presented.

For requests and replies, the client’s analysis pass also reconstructs the
StableMSN for each active application. So the redo pass knows which log
entries it will eventually encounter on its stable log. All other, more recent
reply log entries have to be retrieved from the server. However, the client does
not know its exact point of failure; so it does not know if there are additional
log entries on the server. When application reexecution reaches the last locally
logged reply, application execution simply continues beyond this point and
reenters normal operation. The client executes the application until the next
interception point and sends the request to the server. The client cannot (and
does not have to) tell whether this request is a resend or if it is the original
send. On a resend, the server sends back a previously logged reply. For a new
request, the server does its normal request execution. An obvious optimization
is to ask the server, right after the client’s analysis pass, to asynchronously ship
the reply log entries that are more recent than the client’s StableMSN. This
approach is more complicated and therefore not pursued here.Client restart

initialization:

locate most recent checkpoint log entry cp (from master record)

initialize AT = cp.AT

analysis pass:

for each log entry r between most recent checkpoint log entry and end of log

do

AT[r.AppID].StableMSN=r.MSN;

case r.LogRecType of
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start-IP: AT += r.AppID

term-IP: AT -= r.AppID

Other IP: AT[r.AppID].RedoMSN = r.MSN

otherwise: skip log entry

end /*for*/;

for each a in AT do

inspect tag MSN of most recent IP file

if tag MSN › AT[a].RedoMSN then AT[a].RedoMSN = tag MSN

restartMSN = mina.RedoMSN | a in AT end /*if*/;

end /*for*/;

redo pass:

for each log entry r between restartMSN and end of log do

if r.AppID in AT then

if r.MSN = AT[r.AppID].RedoMSN

/* r is the application’s most recent installation point */

then

spawn execution thread and asynchronously execute application a

else

if r.MSN › AT[r.AppID].RedoMSN and r.LogRecType = reply or input

then insert r into MT else skip r end /*if*/;

end /*if*/;

else skip r

end /*if*/;

asynchronous execution of application a:

intercept application upon reaching a message event with MSN m

case MsgType of

request: if MT[a,m+1] exists /* corresponding reply is (already) in MT */

then generate reply from MT[a,m+1] and

resume application past event m + 1

else if m + 1 ‹= AT[a].StableMSN

then wait until message log entry m + 1 in the local redo pass

else send request to server (resume normal client operation)

end /*if*/;

end /*if*/;

input: if MT[a,m] exists then

generate input message from MT[a,m]

consume input into application state

and resume application past event m

else wait until message log entry m in the local redo pass

end /*if*/;

output: if analysis pass has seen a log entry with MSN higher than m then

suppress output

else send output to user

end /*if*/;
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17.5.9 Correctness Reasoning

In this section we present a correctness proof for the server reply logging algo-
rithm, with emphasis on the structure of the correctness reasoning rather than
on mathematically detailed proof steps. To this end, we first develop a formal
correctness criterion for the message exchanges between client and server and
the recovery of messages. Once this criterion is proven for the presented al-
gorithm, we can then easily derive the result that applications appear to the
human user as if they are executed exactly once.

Correctness
criterion

Consider a set of processes P1, . . . , Pm that exchange messages. Other
than being influenced by received messages, they perform deterministic state
transitions. The state of a process is volatile and may be lost upon a process
failure. The state can be saved to disk by creating occasional installation points.
We reason about dependencies among the states of the different processes and
the interaction events between them. A state of a process is defined as the
sequence of interaction events that the process is aware of in this state. Process
execution builds an expanding sequence of events. Note that this notion of
state is local to a process; there is no global state so far.

The relevant types of events are the following:

installi : Process Pi generates an installation point for its state.

sendi ( j, m): Process Pi sends message m to process P j (this is an event
in process Pi only).

receivei ( j, m): Process Pi receives message m from process P j (this is an
event in process Pi only).

For each process we distinguish three different states:

The volatile state of process Pi , VS(Pi ), is the state that contains all
events of Pi up to now.

The installed state of process Pi , I S(Pi ), is the state that contains all
events of Pi up to and including the most recent installation point of Pi .
(Note that “most recent” is well defined by referring to a sequence of
events.)

The recovered state of process Pi , RS(Pi ), is the state reconstructed dur-
ing restart after a failure, before new steps are executed. Reconstruction
is based on stable (i.e., failure-resilient) information that the process can
access, locally or remotely.

The installed state is always a subsequence (i.e., order-preserving subset)
of the recovered state, which in turn is a subsequence of the volatile state. (We
restrict ourselves to redo recovery and do not consider possible undo steps.)
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The human user or external world is modeled as a separate process whose
volatile state always coincides with its installed state.

Based on the presented computational model, we can now express the
following fundamental correctness criterion, which essentially states that each
message exchange is atomic for both the sender and the receiver and is re-
creatable once the message has been received:

If Pi is in volatile state sik and it has previously sent a message to P j , which
has received the message and is now in volatile state s jl (i.e., sendi ( j, m) ∈ sik

and receive j (i, m) ∈ s jl), then the following conditions must hold for all such
messages:

Causal
consistency

1. Enforce causal consistency:
receive j (i, m) ∈ RS(P j ) /* the receive is guaranteed to persist */
⇒ sendi ( j, m) ∈ RS(Pi ) /* if the sender fails, the send can be replayed */

Message
re-creatability

2. Ensure re-creatability of received messages:
sendi ( j, m) ∈ RS(Pi ) /* the send is guaranteed to persist */
⇒ receive j (i, m) ∈ RS(P j ) /* if the receiver fails, the message can be
re-created */

The first condition is the well-known causal consistency often encountered
in reasoning about distributed states. It is required to ensure deterministic
replay, which is our goal. The second condition copes with a process failing
shortly after having received a message. If the send persists, the receiver must
recover the receive, too. However, that the send is guaranteed to be recovered
does not imply that the message can be re-created, since the recovery of the
sender may be based on an installation point rather than replaying message
events. So the receive must itself be made part of the receiver’s recovered
state.

The major argument for the correctness of the server reply logging algo-
rithm is the following theorem:

THEOREM 17.3

The server reply logging algorithm ensures causal consistency and the re- Correctness
theoremcreatability of sent messages.

Proof

The argument is a case analysis on the various message types. We need to

consider three process classes: server, client, and user. For each case, we

can use induction on the length of a process state (recall that states are se-

quences of events) to construct the proof. We consider only one application

per client; the arguments trivially carry over to multiple applications.
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Case 1: Messages between client and server

We show that both request and reply messages are in RS(client) if and only

if they are in RS(server).

Case 1a: Reply messages

In the absence of failure, the server sends each reply. Either the client will

eventually log it or the client application will perform an installation point.

The reply then becomes part of RS(client). Hence, we consider server failure

and its restart, and the server’s efforts to preserve the reply messages upon

which the client relies.

Because the client relies on the server regenerating the reply, those replies

successfully preserved at the server will also be in RS(client). A reply message

becomes part of RS(server) once the server forces the reply to the log. Before

the server’s forced log I/O, the reply is obviously not in RS(client) either. After

this point, the reply is in both RS(server) and RS(client), in the absence of

log truncation at the server, which we consider next.

That the server does not discard log entries too early follows from the log
truncation protocol. The server keeps all reply log entries with an MSN
higher than the highest MSN declared to it in a client’s stability notification.
The stability notifications in turn have the client’s StableMSN as an upper
bound. Therefore, we obtain the invariant:

Server.RedoMSN ≤ {m | client has sent stability notification with MSN m} + 1
≤ Client.StableMSN + 1

Furthermore, the client garbage-collects only message log entries older than

its RedoMSN. The client RedoMSN is the oldest log entry needed to recover

the client. That is, either it is the MSN of the most recent application instal-

lation point or it is the first application log entry following that installation

point. Thus, all messages older than and including the client’s RedoMSN are

in RS(client). So we have the invariant:

Client.RedoMSN ≤ Client.MSN (most recent IP) + 1

Both invariants together show that server and client together cover the

entire interval of reply MSNs from the most recent installation point through

the last sent reply. The client is guaranteed to cover all MSNs until and

including its StableMSN, and the server is guaranteed to cover all MSNs

from the client’s StableMSN until the last sent reply.

Case 1b: Request messages

First, we claim that all request messages in the client’s volatile state, VS(client),

are also in its recovered state, RS(client). The reason for this is that a client is

piecewise deterministic. The client’s specific interaction pattern, apart from
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input and output messages, always alternates requests and replies, with the

client application suspended in between the two events.

First, we show that all output messages of VS(client) are in RS(client). To

verify this claim, consider the last message event of a client preceding an

output message. Because of the client’s passiveness when it waits for a

reply, the last preceding event cannot be a request. Input messages, reply

messages, and installation points are known to be in RS(client); so if the

last preceding event falls into one of these classes, the output message is

in RS(client) because the client can deterministically replay it. Therefore,

we need consider only the case when the last preceding event is also an

output message. For this case, we can now show by induction that all

output messages are in RS(client).

Now consider request messages. Analogously to the argument for out-

put messages, we consider the last message event of a client preceding

the request. This can be either an installation point, an input or output

message, or a reply message (but it can never be another request). Since

we know that all of these are in RS(client), the piecewise deterministic

execution of the client ensures that the request can be re-created and

hence is in RS(client).

Now assume that a request in RS(client) is not in RS(server), which is the

only case that could violate the correctness criterion. There are two cases

to consider:

When the server has already force-logged the reply for this request, then

the reply is in RS(server). Hence, the request is in RS(server), too, because

the server will simply deliver again the logged reply when the request is

re-presented.

When the server has not yet logged the reply, the client is guaranteed to

resubmit the request either upon a restart of a client failure or because

of a timeout if the server has failed. Therefore, in both cases the request

is also in RS(server).

Case 2: Messages between client and user

We must show that all input and output messages (except the last such

message, for which we do not provide complete recovery) are in RS(client)

if and only if they are in RS(user).

The RS(user) state, by definition of transparent recovery, has all input and

output messages that the user sends or receives, except perhaps the last

output message. So, it surely contains all but the last message. We need to

show that these messages are also in RS(client).

The client force-logs every input message promptly, i.e., before the next

input message arrives. Hence, all input messages, except perhaps the
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last, are on the client’s log. Hence, only the last input message might be

lost. All others are in RS(client) because they are on the client’s log.

For output messages, recall that the client application is piecewise de-

terministic. Hence, by having all input and reply messages in RS(client),

and by the argument presented in case 1 above, the client application is

deterministic and can reconstruct the output messages. Hence, all out-

put messages (including the last) are in RS(client) without their needing

to be explicitly logged.

This concludes the proof.

The atomicity and re-creatability of all message exchanges between client
and server in conjunction with the fact that user-input messages are immedi-
ately force-logged leads us to the following corollary:

COROLLARY 17.1

Once a client application has started (i.e., its start-IP has been taken), it is

guaranteed to appear to the human user as if it is executed exactly once.

This final corollary states that both client and application failures can be
recovered in a way that the failures are masked to the human user, to the best
possible extent. Only under rare circumstances, the last output message before
a client crash may be sent twice, or some entered user input that could not be
force-logged quickly enough before a client crash interrupted the application
process may have to be reentered.

17.5.10 Applicability to Multi-tier Architectures

Our detailed presentation of the server reply logging method in the preceding
subsections has been based on a two-tier client-server system architecture.
However, the algorithm is applicable in three-tier, and even more general multi-
tier, federated systems given that certain prerequisites are satisfied. The key
property on which we have built is that a client runs a single application process
and that this application is piecewise deterministic. So the application should
be single threaded, should use only synchronous messages where a process is
suspended after sending a message and waits until the reply message is received,
and should not depend on real-time events such as timers and other external
signals.

Although the above property appears to be fairly restrictive at first glance,
many Internet applications, including three-tier applications, easily meet these
conditions. The trick is that we can view a more complex, multi-threaded appli-
cation as if it were a set of virtual clients, each running its own single-threaded
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application. This approach works fine as long as there is no application-relevant
shared state among threads. So the only deeper problem would be asynchronous
events such as interrupting an application upon an external signal, but these
mechanisms are used very infrequently in mainstream business applications.

Once we have conceptually decomposed a complex application, we realize
that it also does not matter whether the application runs on a dedicated client
machine or on a middle-tier application server (e.g., a Web server). The ap-
plication server even runs multiple applications, but they can be handled as if
they were multiple clients unless there was shared state among the applications
of application-noticeable relevance (i.e., discounting low-level state data such
as request queues, buffers, etc.). The application server would run the server
part of the general algorithm developed in this section with regard to each of
its clients, and it would run the client part with regard to the data servers that
it interacts with. This way the algorithm can be cascaded along a hierarchy
of servers, so that even multi-tier federated applications fall into the scope of
applicability. This does not mean, however, that the algorithm is ready for all
possible e-Service applications on the Internet. There are, of course, complex
applications such as decentralized auctions or collaborative authoring that re-
quire even more far-reaching forms of application recovery. Such applications
call for future research on recovery guarantees for arbitrary multi-tier systems.

17.6 Lessons Learned

Application recovery involves recovery measures for data, messages, and pro-
cesses, the latter two being novel issues relative to the previous chapters’ focus
on data server recovery. A limited kind of message and process recovery that
has gained extreme importance in OLTP applications is based on transactional,
recoverable message queues. For simple applications that consist of a single
user interaction with a single data-oriented transaction in between the user in-
put and the delivery of the output, queued transactions are a simple paradigm
for ensuring an exactly-once execution. This solution consists of three trans-
actions: the first one, executed by the client, enqueues the user’s request; the
second transaction, executed by the server, dequeues the request, processes it
against the data, and enqueues the reply; the third one, again executed by the
client, finally dequeues the reply and delivers the user output. With testable
user-output devices, this approach can even guarantee that user output is de-
livered exactly once.

The fact that such simple, stateless applications do not “live” across user
interactions implies that there is no need for explicit recovery of the application
process. When we move on to conversational applications that repeat the above
input-processing-output cycle, some amount of process state information needs
to be maintained in a recoverable way. By keeping this state data in the recover-
able messages and continuing the transactional dequeueing and enqueueing of
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request and reply messages along the entire conversation, queued transactions
are generalized to provide exactly-once execution and at-least-once output de-
livery for some classes of stateful and conversational applications, including
long-lived workflows. In addition to the server transactions that combine op-
erations on their data and the message queue, this solution requires the client
to dequeue a reply, present output to the user, receive the next input, and
enqueue the next request all in one transaction. This way the chain of succes-
sive transactions never becomes broken. Because of the limitation to a small
amount of process state data and the fact that the approach provides isolation
only for a single step rather than the entire chain, this technique has become
known as pseudo-conversational transactions.

Despite their fairly wide practical applicability, the above techniques that
combine message and process recovery based on queues are inherently limited.
Modern applications with “rich” state, such as office automation or coopera-
tive work tools, require more general methods of application recovery with
explicit provision for process recovery in addition to message recovery. One
such method is the server reply logging algorithm, which we have presented in
much detail in this chapter. This algorithm makes the data server responsible
for recovering all reply messages. Under the assumption that client applications
are piecewise deterministic and force-log all user-input messages, applications
can thus be deterministically replayed, including their effects on the server in
the presence of concurrent request executions. This holds regardless of whether
the requests consist of multiple transactions on the server data or are embedded
in a single transaction across multiple request-reply pairs, and it also holds for
relaxed isolation levels that do not enforce transactional serializability.

For efficiency the server reply logging method maintains a message lookup
table at the server to aid the application recovery of its clients; if the server
crashes, its recovery reconstructs this table during the usual redo pass over the
stable log with very little extra cost for the server recovery. To speed up the
application restart at the client side, a client may periodically take an instal-
lation point, saving the application process state on disk, and may also lazily
write its own log entries for server replies in a nonforced manner. In summary,
this method provides transparent application recovery that masks almost all
failures to the human user for a very general class of client-server applications,
and it is even considerably more efficient, in terms of forced log I/O, than the
techniques based on queued transactions.

Exercises

17.1 Extend the pseudocode for stateless queued transactions in a two-tier ar-
chitecture, given in Section 17.2, to include the case of testable output de-
vices such as automatic teller machines. The extended pseudocode should
have the value-added property that, once a user input is successfully
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enqueued, the corresponding output message is delivered exactly
once.

17.2 State an explicit correctness theorem, similar to the ones given in Sec-
tions 17.2 and 17.3, for workflows whose state transitions are “protected”
by queued transactions as explained in Section 17.4.

17.3 Consider a conversational client application such as the travel reservation
scenario of Section 17.3. Compare the number and data volume of forced
log I/Os for running this application as a pseudo-conversational queued
transaction chain versus using the general server reply logging method
of Section 17.5, to provide application recovery. Assume that the queue
manager resides on the data server, and forced logging is required only
upon the commit of a transaction.

17.4 Construct a concrete example, with concrete transaction identifiers, page
numbers, and so on, that shows the necessity for the data server to log
data read operations on behalf of client requests for the general client-
server application recovery, based on the server reply logging method of
Section 17.5.

Hint: Consider, for example, a client request that invokes a stored
procedure on the data server whose execution consists of a sequence of
transactions.

17.5 Discuss possible generalizations of the server reply logging method for
general client-server applications in the following settings:

(a) client applications that interact with more than one data server;

(b) a data server that itself invokes requests on another data server, for
example, to resolve a higher-level data view or wrapped ADT-style
object interface by collecting some of the underlying data from a re-
mote site, or to propagate high-level updates onto the underlying base
data (e.g., by firing remote triggers), including the important case of
maintaining replicated data at multiple sites;

(c) a three-tier architecture where the applications run on the middle-tier
application server.

Hint: Lomet and Weikum (1998) provide some high-level ideas about
possible generalizations and also point out difficulties in specific kinds of
extensions.

Bibliographic Notes
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Alonso et al. (1995), Salzberg and Tombroff (1996), Muth et al. (1998), and
Weikum (1999).

Application recovery based on recoverable processes and messages was pio-
neered around 1980 for fault-tolerant computer architectures, as documented
in the papers by Bartlett (1981), Borr (1981, 1984), and Borg et al. (1983,
1989). Kim (1984) gave a survey on this generation of fault-tolerant systems,
which were typically used for extremely mission-critical high-end OLTP-style
applications only. Freytag et al. (1987) made an early proposal on how to gener-
alize such approaches. Gray (1986) and Härder (1987) have provided insight-
ful discussions on how fault-tolerant computer architectures can be combined
with the transaction paradigm. Application recovery as a “commodity” option
for modern applications has been revived by Lomet (1998a). Our exposition
on general-purpose client-server application recovery has followed Lomet and
Weikum (1998). Message logging and recovery for message-passing computa-
tions has been intensively investigated in the distributed computing research
community for many years, with major results contributed or reviewed in pa-
pers by Strom and Yemini (1985) as well as Strom et al. (1988), Johnson and
Zwaenepoel (1987, 1990), and Alvisi and Marzullo (1995). This work has had
little impact on deployed systems, however, for reasons related to impractical
assumptions as further explained by Huang and Wang (1995).
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CHAPTER E IGHTEEN

Distributed Concurrency
Control

No culture can live if it attempts to be exclusive.

—Mahatma Gandhi

People of the world together join to serve the common cause.

—Bertolt Brecht

18.1 Goal and Overview

Up to now we have continuously assumed that the data server under consider-
ation is centralized, meaning that all the data (at least conceptually) resides in
one place and that this place is under the control of one server that processes
the requests sent by clients or by application servers. As we have pointed out in
Chapter 1 already, for many present-day application scenarios this view is no
longer appropriate; it is often unreasonable to assume that all the information
processing needs of an application can be satisfied through a single data server.
Instead, modern enterprises are typically based upon a distributed architecture
comprising multiple application and data servers. These servers can be homo-
geneous or heterogeneous in terms of products, interfaces, and protocols, and
they can either be largely autonomous or reliant on other servers. As a result,
we are generally looking at a federated architecture as we have previously seen
in Figure 1.3. For ease of reference, we show this architecture here again in
Figure 18.1.

In this part of the book we look at concurrency control and recovery in fed- Homogeneous
vs.
heterogeneous
federations

erated architectures; this chapter will deal with the former topic and the next
one with the latter. When data is distributed across multiple servers, essentially
two cases can arise that have to be dealt with for both concurrency control and
recovery. First, the servers participating in the federation can logically be part
of a single system; we can then assume that they all run the same suite of pro-
tocols, and they may even be under the control of a “master site” that manages
global information pertaining to the entire system (however, this master site

673
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Users
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Application
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Figure 18.1 Federated system architecture.

will rarely be seen by applications). Second, the servers in the federation can
be entirely autonomous and independent of each other; it is just that they are
addressed together by some application server with a particular set of requests.
In this case, we cannot assume uniformity across the federation with respect
to protocols, and we will show that this makes the situation potentially harder
to deal with. On the other hand, the second, heterogeneous, scenario is the
more realistic one in applications; in the case of database servers, variations
that occur in a federation may specifically refer to the data model used, the
SQL version and options employed (e.g., isolation levels, see Chapter 10), and
the programming language interfaces adopted, as well as to system implemen-
tation concepts. We mention that federated systems in which all servers are
database servers are often called multidatabase systems in the literature.

From an application’s or user’s point of view, a homogeneous federation is
characterized by distribution transparency—the federation is perceived by the
outside world as if it were not distributed at all. Thus, for example, details of
data placement and locality or request servicing are hidden and need not be
taken into account when placing a request. Ideally, we can think of a homo-
geneous federation as providing identical functionality at all sites, so that it is
immaterial to which site a particular service request is sent. On the other hand,
in a heterogeneous federation the participating sites are autonomous, so that
an application placing a request may well have to decide which server(s) to
send the request to and how to handle results.
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With respect to transactions and concurrency control in federated sys- Local vs. global
transactions
and schedules

tems, we can use the same models as before: the page as well as the object
model, schedules and histories, and suitable adaptations of the various protocols
(details below). Conceptually, transactions in a homogeneous system are ordi-
nary transactions, whereas in a heterogeneous system a transaction accessing
several servers may interfere with transactions that a particular server is pro-
cessing locally. Thus, we have local as well as global transactions in the latter
case, and we only have to deal with global transactions in the former case. It
will turn out that this distinction puts some burden on the concurrency control
problem. In particular, this distinction carries over to schedules and histories;
that is, there are local histories under execution at a single server, and there are
global histories under execution by multiple servers, maybe even according to
different conditions. The crucial point will be to make local correctness—that
is, serializability at each site—sufficient for global correctness.

We start in Section 18.2 by reviewing correctness and looking at concur-
rency control in homogeneous federations, which are natural generalizations of
centralized servers as we have discussed them up to now in this book. Since all
transactions can essentially be assumed to be global, and since we can assume
that all servers run the same concurrency control protocol, it is near at hand to
study generalizations of protocols such as 2PL or TO, which are mostly straight-
forward, yet need to be equipped with some “global control” that makes sure
the individual servers produce compatible serialization orders. For example, if
one server serializes transaction t before transaction t ′, while another server
serializes t ′ before t, we obtain a cycle, which is locally invisible and globally
unacceptable. Another complication for homogeneous servers is the danger of
deadlocks, which are not as easy to detect and deal with, since again, control as
well as possibilities of observation are now distributed. We examine various al-
gorithmic approaches to the deadlock detection problem, which are important
in practice, in Section 18.3. The considerations in Sections 18.2 and 18.3 apply Applicability to

page model and
object model

equally to page model and object model transactions. For ease of explanation,
we will use page model terminology.

We start discussing transaction processing and concurrency control for het-
erogeneous federations in Section 18.4. For correctness purposes, we adapt
conflict serializability, which now has to account for the problems related to
the presence of local transactions. A new situation is that global transactions
that are not in conflict at all when considered by themselves may be involved
in indirect conflicts through the presence of a local transaction. Having estab-
lished a notion of global conflict serializability, we look in Section 18.5 into the
question of how to enforce this property. It will turn out that seemingly “inno-
cent” criteria such as rigorousness or commit ordering play an important role in
this context; if local sites stick to one of these conditions, global correctness is
guaranteed. Having laid the foundations for concurrency control protocols, we
present several such protocols in Section 18.6. The important point here will
be to make local conflicts between global transactions observable from a global
perspective; typical techniques involve the use of so-called tickets for global



676 CHAPTER EIGHTEEN Distributed Concurrency Control

transactions. Section 18.7 discusses the applicability of such techniques to the
object model and generalizations for handling global transactions with seman-
tically rich operations. Finally, we look at coherency and concurrency control
for data-sharing clusters in Section 18.8.

18.2 Concurrency Control in Homogeneous
Federations

In this section we look into the concurrency control problem for homogeneous
federations. As we have said already, this type of system does not require any
fundamental changes in our model of transactions, histories, and schedules.
However, since most notions are useful for heterogeneous federations as well
and as we later want to emphasize the differences, we collect a few prelim-
inaries first. Then, we consider the question of how to adapt the protocols
we have described in Chapter 4 for centralized systems to the situation where
transactions are globally executed in a distributed, but still homogeneous en-
vironment. We will not look at each protocol we have described previously in
the same detail as before. On the one hand, we have seen already that not all
of them are practically relevant; on the other hand, some are easy to generalize
to a distributed scenario, and some are not.

18.2.1 Preliminaries

We consider a fixed number of sites across which the data is distributed. The(Global)
transactions server at site i , 1 ≤ i ≤ n, is responsible for a (finite) set Di of data items; if there

are n pairwise disjoint such sets, the (global) database under consideration is
D =

⋃n
i=1 Di . For simplicity, we assume that no data item is replicated at any

two sites. So if there is replication, the various replicas will be treated as if
they were different data items, and transactions would have to explicitly access
multiple replicas of the same data item. All transactions are global, that is, they
potentially access multiple sites; importantly, we may assume that all relevant
knowledge about data locations and participating sites is generally available to
all servers. A client issuing a transaction sends the steps of this transaction to the
servers holding the desired data in a way that is transparent to the underlying
application. From a local perspective, the operations of one transaction can
be treated as a transaction in its own right, and these operations can hence be
incorporated in a schedule that is locally produced, or a local schedule. From the
global perspective, the transparency requirement implies that all transactions
have to be considered together when it comes to a decision on serializability.
This leads to the following definition:
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DEFINITION 18.1 Global History

Let the federation under consideration consist of n sites, and let T =

Global history

{t1, . . . , tm} be a set of (global) transactions. Finally, let s1, . . . , sn be local

histories.

A global history for T and s1, . . . , sn is a history s for T (in the sense defined

in Chapter 3) such that its local projection equals the local history at each

site, i.e., �i (s) = si for all i , 1 ≤ i ≤ n.

In the above definition, “�i (s)” denotes the projection of history Subtransactions
s onto site i (not onto the i-th transaction); such a projection hence restricts
history s to the steps of global transactions that execute at a given site. In the
following, we call the projection of a transaction t onto site i a subtransaction
of t, which comprises all steps of t at site i .

EXAMPLE 18.1

Consider a federation of two sites, where D1 = {x} and D2 = {y}. Then

s1 = r1(x)w2(x) and s2 = w1(y)r2(y) are local schedules, and

s = r1(x)w1(y)w2(x)c1r2(y)c2

is a global history. Note that �1(s) = s1 and �2(s) = s2 (up to the Commit

operations in either case).

For better readability, we will often write global histories and schedules in

the following form:

Server 1: r1(x) w2(x) . . .

Server 2: w1(y) r2(y) . . .

This way of writing schedules is intended to capture both where data is

accessed and the ordering of operations, which is assumed to be from left

to right.

Notice that global transactions formally have to have Commit operations
at all sites at which they are active, but we may omit these commits, as we
assume in this chapter that all transactions terminate successfully.

With respect to correctness of histories, the requirement pertaining to con- Global vs. local
serializabilitycurrency control continues to be conflict serializability, in particular that of

global histories under consideration. For global histories we call this property
global serializability; correspondingly, we speak of local serializability for local
histories. More formally, we have the following definition:
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DEFINITION 18.2 Conflict Serializability

A global [local] history s is globally [locally] conflict serializable if there exists

a serial history over the global [local] (sub-) transactions that is conflict

equivalent to s.

This definition can be applied to local histories that result from projecting
global histories onto specific sites; in this case the local transactions include
subtransactions of global transactions.

In a homogeneous setting, we can assume that each participating server
runs the same protocol for scheduling transactions, and this protocol can be
assumed to produce conflict-serializable schedules. However, local serialization
orders might not be compatible; indeed, one server may produce a history such
that t < t ′ for two transactions t and t ′, while another produces a history in
which t ′ < t.

EXAMPLE 18.2

Consider a scenario as in the previous example, but with the following

slightly different transactions:

Server 1: r1(x) w2(x) . . .

Server 2: r2(y) w1(y) . . .

Here, the scheduler at site 1 will produce a serialization in which t1 < t2,

while the scheduler at site 2 will opt for the reverse ordering. Thus, the

conflict graph of the corresponding global history will have a cycle and will

hence not be acceptable.

Thus, the question is how the servers can process transactions or operation
requests locally in such a way that global serializability is achieved. To this end,
the following result is fundamental:

THEOREM 18.1

Let s be a global history with local histories s1, . . . , sn involving a set T of

transactions such that each si , 1 ≤ i ≤ n, is conflict serializable. Then the

following holds:

s is globally conflict serializable iff there exists a total order “<” on T that

is consistent with the local serialization orders of the transactions, i.e.,

(∀ t, t ′ ∈ T, t �= t ′) t < t ′ =⇒

(∀ si , 1 ≤ i ≤ n, t, t ′ ∈ trans(si ))(∃ s ′
i , s ′

i serial, si ≈c s ′
i ) t <s ′

i
t ′
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Proof

(if) Suppose “<” is a total order of the transactions of the desired form,

and assume s is not globally conflict serializable, i.e., its conflict graph has

a cycle. Since each local schedule is conflict serializable by assumption,

there must exist transactions t1, . . . , tm ∈ T , m ≥ 2, such that t1 <si1
t2,

t2 <si2
t3, . . . , tm−1 <sim−1

tm, and tm <sim
t1. This must imply t1 < t2, t2 < t3,

. . . , tm < t1, which is a contradiction since < is a total order. Thus, s must

be globally serializable.

(only if) Let s be globally serializable. Then there exists a total order <s

such that for all transactions t, t ′ ∈ T either t <s t ′ or t ′ <s t. Suppose that

t <s t ′ for two distinct transactions, then t must also be serialized before t ′

in s j , 1 ≤ j ≤ n. As a result, <s satisfies the requirements of the total order

< we are looking for.

According to this theorem, the crucial point in all protocol adaptations
that follow will be to make sure that such a total order among the transactions
can be established.

18.2.2 Distributed 2PL

To start the discussion of protocols, let us consider the well-known two-phase
locking (2PL) protocol. For applying this to a homogeneous federation, the
basic idea is the following: each server runs a scheduler that operates according
to the 2PL protocol and locally maintains locks as needed for synchronizing
access to the data items (set Di , 1 ≤ i ≤ n) that it controls. Thus, an r (x) step or
a w(x) step is locally executed after the corresponding lock has been obtained,
which in turn depends on the locks that might already be held on object x. As in
the fully centralized case (see Chapter 4), the goal is to avoid conflicting locks
being held simultaneously. Moreover, locks on data items can be released as
soon as the object in question is no longer needed by the respective transaction;
however, releasing locks is again subject to the two-phase rule for the scope of
the entire global transaction.

The problem that has to be solved is to decide globally when a lock can be Releasing locks
released, since this determines the global order requested by Theorem 18.1.
Recall that a transaction may enter its unlock phase only if it will not request
any further locks. This now has to occur in a globally consistent fashion; in
other words, the situation must be avoided in which a transaction, having been
active at multiple sites, is already unlocking at one site but still obtaining new
locks at another. Thus, a local scheduler cannot release any locks held by a
transaction t as long as it does not know whether t is ready to release its locks
at all other sites where it has been active as well, or has reached its “lock point”
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(see Chapter 4). So as long as a transaction’s entry into the unlock phase is
synchronized, globally serializable schedules result.

The various proposals for determining whether a transaction has reachedPrimary site
2PL its lock point all assume just a simple 2PL protocol at each site. One is the

primary site 2PL, which assumes that lock management is done exclusively at
a distinguished site. Clearly, this site then has global knowledge about the lock
intentions of all transactions and can easily come to a consistent decision about
whether or not a transaction can enter its unlock phase. On the other hand, in
primary site 2PL, the central site can easily become a performance bottleneck,
and the entire system crucially depends on the availability of that site.

Another approach is to exploit the fact that the federation is a homoge-Distributed
2PL (D2PL) neous one, and hence all knowledge about the sites is available globally. In a

distributed 2PL (D2PL) protocol, this is exploited in one form or another. In
one approach, the information on all local schedules is repeated at all sites; thus,
each server always knows what the others are doing, which obviously requires a
lot of communication since each operation or lock request must be transmitted
to every member of the federation. In another approach, concurrency control
is more strictly separated from communication in that the latter only occurs
when necessary: when a server wants to start unlocking objects on behalf of a
transaction, it communicates with all other servers regarding the lock point of
that transaction. In either protocol, it is clear that additional overhead arises
due to the communication needed between servers.

As a side remark, we mention that the above scenarios can straightforwardlyStrong 2PL
be extended to account for recoverability as well. Indeed, if all locks acquired
on behalf of a transaction are held until the transaction wants to commit,
or, stated differently, if all servers run the strong 2PL (SS2PL) protocol, then
the resulting global history is not only conflict serializable but also strict. In
this case the global two-phase property is self-guaranteed without any explicit
measures.

A problem pertaining to the use of 2PL in a homogeneous distributed
setting as just described is the danger of deadlocks, as you may recall from
the centralized case. When using 2PL in one way or another, every scheduler
must be aware of deadlocks, and must be capable of detecting and resolving
them. However, deadlock detection in distributed databases is considerably
more difficult than in centralized ones and requires more advanced techniques;
for this reason, we devote a separate section to this topic below.

18.2.3 Distributed TO

Next, we consider the timestamp ordering (TO) protocol, which is particularly
easy to adapt to the distributed case. First recall the TO rule we described in
Chapter 4:
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If pi (x) and q j (x), i �= j , are operations in conflict, the following has to Timestamp
ordering (TO)
rule revisited

hold with unique timestamps ts(ti ), ts(t j ) assigned to transactions ti and t j :

pi (x) is executed before q j (x) iff ts(ti ) < ts(t j )

We have noted earlier that this rule is easy to implement if a (centralized) Distributed TO
scheduler makes sure that each newly arriving transaction gets a timestamp
larger than that of the transaction that committed last. In a homogeneous fed-
eration, each local scheduler executes its private TO protocol for synchronizing
data accesses in its portion of the database. The decision of whether a given op-
eration should be executed, delayed, or rejected depends only on concurrent
operations on the same data item, but not on anything outside the particu-
lar site. As all relevant information is available locally, a local scheduler can
make its decisions independently of other schedulers. However, timestamp as-
signment is more complicated due to the fact that each scheduler will have a
different view of which transaction committed last, even when the schedulers
are processing subtransactions from the same global transaction.

EXAMPLE 18.3

Consider again the scenario from the previous example:

Server 1: r1(x) w2(x) . . .

Server 2: r2(y) w1(y) . . .

If timestamps were assigned as in the centralized case, each of the two

servers would assign a value of 1 to the first transaction that it sees locally,

t1 on server 1 and t2 on server 2, which would obviously lead to globally

incorrect results.

So we need to find a way to assign globally unique timestamps to transac-
tions at all sites. There are essentially two ways to do so, a centralized one and
a distributed one.

In the centralized approach, a particular server is responsible for gener-

Generating
timestamps

ating and distributing timestamps; this server can use a logical counter
or its local clock to this end.

In the distributed approach, each server generates a unique local time-
stamp using a counter or its clock. A globally unique timestamp is de-
rived from these local ones by “scaling” them with a server’s identifier at
the server that executes the transaction’s first step. Once the timestamp
is assigned, it will be carried along by the transaction and seen by all
servers that subsequently execute steps of the transaction. In particular,
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if ts(ti ) is the value of the local timestamp for transaction ti at some site
whose identifier is, say, j , then a globally unique timestamp is obtained
by adding j in the least significant position(s), that is, by composing the
two into (ts(ti ), j).

EXAMPLE 18.4

Continuing the previous example, where

Server 1: r1(x) w2(x) . . .

Server 2: r2(y) w1(y) . . .

we would now obtain a timestamp of (1, 1) for transaction 1 and of (1, 2)

for transaction 2. According to lexicographical ordering,

(1, 1) < (1, 2),

so both servers would try to make sure that, in case of a conflict, transaction

1 is scheduled before transaction 2. Clearly, this would not be possible here,

so t2 would be aborted.

The scheme sketched above for generating globally unique timestamps mayLamport clock
get into trouble when some servers generate local timestamps at a faster rate
than others, since the faster ones will always have larger timestamps. To avoid
such anomalies, more refined techniques can be employed, such as Lamport
clocks, which solve the more general problem of fixing a notion of logical time
in an asynchronous network. A Lamport clock assumes that sites communicate
through messages, which—in our setting—invoke read or write steps or deliver
query results or returncodes for writes. As above, servers maintain local clocks
that are advanced when messages are received in order to keep them synchro-
nized appropriately. A logical time is a pair (c, i) where c is a nonnegative
integer and i is a transaction number; as before, pair ordering is lexicographic.
Initially, c = 0 at each server, and the clock variable gets increased by 1 at ev-
ery transaction operation (now including send and receive events) that occurs
for some ti . The logical time of an operation is defined as the value of the
clock immediately after the operation, again paired with the transaction ID
as a tiebreaker. Whenever transaction i performs a send, it first increments its
clock variable to obtain the value v for the Send operation, and then attaches
v as a timestamp to the operation being sent. When an operation is received
by a server, the corresponding clock variable is increased to be not only strictly
larger than its previous value but also strictly larger than the timestamp of the
operation received.

Since each transaction increments its clock at every step, it is easy to see
that a Lamport clock makes sure that no two operations are assigned the same
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logical time, and that the logical times of operations within each transaction
are strictly increasing.

18.2.4 Distributed SGT

Another pessimistic concurrency control protocol we introduced in Chapter 4 Distributed
SGTis serialization graph testing (SGT), which we look at next. For this protocol a

generalization to a distributed scenario is considerably more complicated than
it was for the two protocols discussed before, due to the fact that the central
serializability test is based on a dynamically maintained conflict graph, which
is an inherently global structure that is difficult to distribute across sites. In
particular, it is not sufficient that each local scheduler maintains its local conflict
graph and tests that for cycles, as demonstrated by the following example.

EXAMPLE 18.5

Consider again the scenario from above, where the transactions are as

follows:

Server 1: r1(x) w2(x) . . .

Server 2: r2(y) w1(y) . . .

If each server locally maintains a conflict graph, the one at server 1 would

have the edge (t1, t2), while the one at server 2 would have the reverse

edge. Thus, both local graphs are acyclic, whereas their union is not. The

point is that neither of the servers has all the knowledge needed to detect

the cycle.

The problem of testing a distributed conflict graph for cycles is closely
related to the problem of testing a distributed waits-for graph for cycles, which
also arises in distributed deadlock detection (see below).

We will next sketch a restricted possibility of building a distributed SGT Conflict
multigraphsscheduler. Let us for the moment assume that each transaction to be executed

is fully known in advance, that is, all steps have been predeclared. For a set T of
predeclared transactions, a centralized scheduler can construct a conflict multi-
graph M(T), which has the transactions as nodes and which has an undirected
edge for each individual conflict between two transactions; each edge is labeled
with the data item on which the potential conflict arises. As there may be
multiple conflicts between the same transactions (on distinct data items), this
graph may have multiple edges between any pair of nodes. A sample graph is
shown in Figure 18.2. The conflict multigraph of a set of transactions shows the
potential conflicts between the various operations at a glance; when schedul-
ing these transactions, multiple edges between nodes are (hopefully) shrunk
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t1: r(x)w(x)w(y)

t2: r(z)

t3: r(x)w(z)

t4: w(x)r(y)

M(T):

t1

t2

t4

t3

y

x x

x

z

Figure 18.2 Conflict multigraph (centralized case).

into single ones, provided the various conflicts between the two transactions
involved can all be resolved (directed) in the same way. Thus, if G(s) is the
conflict graph of a history s for the transactions in T , each edge of G(s) cor-
responds to one or more edges in M(T). If G(s) is cyclic, then M(T) has an
undirected cycle involving the same transactions as the (directed) cycle in G(s);
in general, for each cycle in G(s) there is a corresponding undirected one in
M(T). Conversely, if M(T) is acyclic, then G(s) is acyclic as well, and this holds
for each history s for T .

Now let us consider the distributed case. We now incorporate site infor-
mation into the conflict multigraph, for example, by distinguishing solid from
dotted lines to represent data items from two different sites, as in Figure 18.3.
M(T) still represents conflicts that the scheduler needs to resolve successively.
For example, if in Figure 18.3 w1(v) is placed by the local scheduler before
w2(v) in server S1, the conflict between t1 and t2 has been resolved such that t1
from now on has to precede t2 in every equivalent serial history. In other words,
the edge between t1 and t2 in M(T) has been directed from t1 to t2.

M(T ):

t1

t2

t3

y

x

v

t1: w(x)w(v)

w(z)

t2: w(y)w(u)

w(v)

t3: w(y)

S2

w(w)

w(x)

S1

Figure 18.3 Conflict multigraph (distributed
case).



18.2 Concurrency Control in Homogeneous Federations 685

Now we can imagine that an SGT scheduler resolves the conflicts given
in M(T) one after the other in such a way that the resulting conflict graph
never becomes cyclic. However, as the example above already demonstrates,
not every sequence of conflict resolution steps can occur: since w(x) <t1 w(v),
the conflict between t1 and t3 on x must have been resolved before the conflict
between t1 and t2 on v can be resolved by creating an edge of the form t1 → t2.

This consideration indicates that there is a partial order <t among the edges
of M(T) that join in node t. This order states that an edge e cannot be directed
before all edges e ′ such that e ′ >t e have been assigned an orientation. For the
multigraph shown above this ordering is as follows:

{t1, t2} <t1 {t1, t3}, {t1, t2} <t2 {t2, t3}, {t1, t3} <t3 {t2, t3}

Now a distributed SGT scheduler can roughly be realized as follows. Each Distributed
SGT with
predeclaration

site maintains a copy of the graph M(T), in which some node may already have
been assigned a direction. When a new step arrives at some server, the receiving
scheduler requests the current state of the multigraph from every other server.
When such a query arrives at a server, it responds with its current multigraph
and interrupts its scheduling until the result of the attempt of integrating the
new step into the schedule is known. As soon as the requestor has received
all answers from the other servers, it can assign directions to all edges that
have been directed in another site already; then the scheduler can test whether
the new step would close a cycle. If the latter is not the case, the step can be
executed; otherwise, it is rejected. In both cases all other servers are informed
about the result so that they can resume their execution.

It should be clear right away that this approach, on the one hand, has poly-
nomial complexity; on the other hand, it comes with communication costs that
are intuitively very high and that—relative to an appropriate formalization—
can even be shown to have a PSPACE-complete minimization problem. Thus,
the core of the problem remains unchanged, namely, that it is difficult to make
distributed SGT work efficiently.

18.2.5 Optimistic Protocols

Recall from Chapter 4 that there are application scenarios in which the pes-
simistic approach to concurrency control as supported by 2PL, TO, or SGT
is too restrictive, and that an optimistic approach assuming that conflicts be-
tween transactions are rare is more appropriate in such a situation. Under op-
timistic concurrency control, every transaction is essentially processed in three
phases:

1. Read phase: The transaction is executed, but with all writes applied to a
workspace that is private to the transaction only (not to the database).
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So the private “versions” of data items written by a transaction are not
visible to other transactions (yet).

2. Validation phase: A transaction that is ready to commit is validated; that
is, the scheduler tests whether its execution has been “correct” in the
sense of conflict serializability, and whether the transaction’s result can
be copied into the database. If this is not the case, the transaction is
aborted; otherwise, the next phase is entered.

3. Write phase: The workspace contents are transferred into the database
to conclude the transaction’s commit.

In a homogeneous federation, the same protocol, which comes in the vari-
ants of backward-oriented as well as forward-oriented optimistic concurrency
control (see Chapter 4), can be applied by every participating server. Thus,
subtransactions of global transactions execute in their various phases at the
servers where they access data, and the only crucial point is that validation
comes to the same result at every site where a global transaction has been
active. Several proposals have been devised for how to accomplish this, most
notably, by use of timestamps that are assigned to transactions. However, the
resulting protocols are rarely used even in prototype systems, which is why we
do not discuss them further here.

18.3 Distributed Deadlock Detection

In the previous section we have seen several situations where a cycle test hadGlobal
deadlock to be performed for a graph whose nodes and edges are distributed over the

various sites, that is, for which no single server has complete information. In
particular, this applies to the distributed 2PL protocol, which exhibits the
danger of running into deadlocks as in the centralized case. The sample situation
shown in Figure 18.4 indicates the core of the problem. Each server keeps a
waits-for graph locally for tracking which transaction is waiting for which other
transaction(s) to release a lock. The transaction waited for may itself wait for
a message from another site regarding the completion of an operation that has
to be performed before it can continue. In Figure 18.4, such a combination
of local lock waits and interserver communication waits is shown for the case of
three servers. Since the global deadlock cannot be detected by local means only,
the entire system will eventually be blocked.

Clearly, there is a simple workaround for the situation just described: intro-Centralized
detection duce some form of centralized monitor that collects local wait information from

all servers, analyzes it, and notifies the participating sites as soon as a deadlock
occurs. This approach may leave deadlocks undetected for some time, since a
cycle test would be performed only when a new lock wait message arrives, and
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Figure 18.4 Example of a global deadlock.

these messages could come with a certain delay. Moreover, detecting a deadlock
is not enough, but the centralized monitor would also have to make sure that
a deadlock is resolved once it is found. To this end, the monitor would have to
determine an appropriate victim (using selection criteria along the lines we dis-
cussed in Chapter 4), again by communicating (e.g., regarding rollback costs)
with individual sites. A global monitor could also become a bottleneck, and
when it is down, a new monitor has to be elected, or deadlocks could not be
handled anymore. So this centralized approach is attractive only for federations
with very fast and highly reliable communication connections between servers,
but typically infeasible for widely distributed servers that communicate over
the Internet.

The time delay with which messages may arrive at the global monitor Detection of
false deadlockscan have another undesired side effect. Consider the sample situation from

Figure 18.4 once more, and assume that immediately after the last edge that
closes a cycle has been recorded by the monitor, one of the transactions aborts.
Before the monitor learns about this, it has already decided that a deadlock
has occurred, and it may even have decided to abort a second transaction as
the deadlock victim. In this case, the monitor has detected a false deadlock—a
deadlock that no longer exists at the time it is detected (since at least one edge
on the corresponding cycle in the waits-for graph has already disappeared, and
the central monitor is not yet aware of this).

Although false deadlocks are a problem in general, and deadlock detection
algorithms need to be designed carefully such that they do not run into situ-
ations like the one just described, it can be shown that there is a relationship
between the occurrence of false deadlocks and the presence of “spontaneous”
(i.e., application-induced as opposed to server-enforced) aborts (as in our sam-
ple scenario):
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THEOREM 18.2

In the presence of a central monitor, false deadlocks do not occur if each

scheduler runs a 2PL protocol and no transaction spontaneously aborts.

Proof

Suppose that the central monitor detects a cycle of the form t1 → t2 →

. . . → tn → t1, but there is actually no deadlock. Since no transaction has

aborted, each will commit at some point, as none is stuck in a deadlock.

Thus, the conflict graph must contain an edge (ti+1, ti ) for each edge

(ti , ti+1) in the global waits-for graph, since each waiting conflict has ex-

isted at some point, and the waiting transaction is executed later. Therefore,

the conflict graph contains the same cycle as the waits-for graph, albeit in

reverse direction, which contradicts the correctness of 2PL.

We mention that it can be shown, using an argument based on probability
theory, that most cycles in a waits-for graph are of length 2, that is, involve only
two transactions blocking each other. Intuitively, it would then be preferable if
the two affected sites communicate directly, since the deadlock could then be
detected faster. In the worst case, however, each site would be communicating
with every other site, which may cause very high overhead.

So a centralized monitor is often replaced by a distributed one when theTimeouts
goal is to detect distributed deadlocks or, more generally, cycles in graphs whose
nodes are distributed over various places. We mention that, as in a centralized
system, it is again possible to use timeouts, where a server starts a timer as soon
as a transaction gets blocked, and starts aborting that transaction when the
timer expires. Since the transaction abort may be unnecessary, some overhead
is produced by this approach. As already discussed in Chapter 4, setting the
timeout to an appropriate value, neither too short nor too long, is a tricky
problem, and it is even more difficult for a distributed system.

So the most intriguing approach is a truly decentralized form of deadlock
detection. These approaches roughly fall into two categories: edge chasing and
path pushing algorithms.

In edge chasing, each transaction that becomes blocked in a wait relationshipEdge chasing
sends its identifier in a special message called a probe to the blocking transaction.
If a transaction receives a probe, it forwards it to all transactions by which it
is itself blocked, provided it is indeed waiting (otherwise, it just ignores the
probe). Now if a probe in this way comes back to the transaction by which it
was initiated—that is, if a transaction receives a probe with its own identifier—
this transaction will know that it is participating in a cyclic waiting situation and
is hence part of a deadlock. In order to resolve this deadlock, the transaction
can, for example, then initiate its own abort.

In a path pushing algorithm, entire paths are circulated between transactionsPath pushing
instead of single transaction identifiers, and individual sites can compose these
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in order to eventually obtain cyclic portions of a waits-for graph. In more detail,
the basic algorithm is as follows:

1. Each server that has a waits-for path from transaction ti to transaction
t j such that ti has an incoming waits-for message edge and t j has an
outgoing waits-for message edge sends that path to the server along the
outgoing edge, provided the identifier (or timestamp) of ti is smaller
than that of t j .

2. Upon receiving a path, the server concatenates this with the local paths
that already exist, and forwards the result along its outgoing edges again.
If there exists a cycle among n servers, at least one of them will detect
that cycle in at most n such rounds.

We illustrate this using the sample situation shown earlier in Figure 18.4.
Here, n = 3, and we assume that first, server A encounters a waits-for situation
of the form t1 → t2 with t2 waiting for a message from server B. It sends this
partial graph to server B, which has meanwhile detected a waits-for situation
t2 → t3 with t3 waiting for a message from server C. Thus, server B concatenates
the two partial graphs into t1 → t2 → t3 and forwards it to server C, which, we
assume, has already discovered a local waits-for situation t3 → t1. Server C is
hence able to detect the global deadlock. This is shown in Figure 18.5.

Note the asymmetry of the communication pattern. Server C does not re-
port its local waits-for edge t3 → t1 to server A because (the identifier of) t3
is larger than (that of) t1. This is the point of the condition about transaction
identifiers stated above; otherwise, path pushing would send unnecessary mes-
sages, and multiple servers would simultaneously and redundantly detect the
same deadlock.

In general, the path pushing approach may detect false deadlocks, but this
may only reduce its efficiency, not limit its correctness. A false deadlock re-
sults in transaction aborts that are actually unnecessary, but even this is easily
corrected by adding another round of verification messages whenever a server
believes to have determined a deadlock. Path pushing has the additional advan-
tage over edge chasing that, as soon as a deadlock is detected, all transactions
involved in this deadlock are known, so that a judicious choice of the victim
can be made.

t1 → t2
Server A t2 → t3

t1 → t2 → t3

Server B Server C

Knows t3 → t1
locally and detects
global deadlock

Figure 18.5 The path pushing algorithm.
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18.4 Serializability in Heterogeneous Federations

We now turn to the discussion of heterogeneous federations, which are federa-
tions of servers that, besides ordinary data servers, may involve legacy systems
that have been developed independently of the federation, or highly specialized
data servers that have been developed for a specific type of application, such
as a text database system for office documents. Such federations are generally
characterized by high autonomy requirements of the participants, so “global
knowledge” or participation in a “global protocol” is usually not an option. For
example, think of the servers of the various divisions of a multinational organi-
zation; here, it is unlikely that a distributed 2PL protocol can be employed, as
no division will allow other divisions to hold onto its resources for potentially
unbounded periods of time.

The distinction between homogeneous and heterogeneous federations boils
down to two major differences. From a conceptual point of view, local auton-
omy is a hard requirement; so all protocols used in concurrency control and
recovery have to be “localized” in one way or another and can no longer rely on
the ability to communicate with other arbitrary sites. From a more technical
point of view, we will have to take the presence of local transactions (in addition
to global ones) into account. As will be seen, this alone creates new problems
that do not exist in a homogeneous federation.

A heterogeneous federation is called a multidatabase system (MDBS) if all
servers are database servers. As before, a (local) database at server i is a (finite)
set Di of data items; if there are n pairwise disjoint databases of this type, the
global database under consideration is D =

⋃n
i=1 Di .

A transaction over D is local if the data items accessed by it belong to exactlyLocal vs. global
transactions one Di , 1 ≤ i ≤ n, only; otherwise it is again global. The basic scenario we now

look at is as follows (see Figure 18.6 for illustration). Global transactions submit
their operations to a global transaction manager (GTM), which controls their
execution and their distribution to the local transaction managers (LTMs) of the
individual servers, which now also process local transactions from local users.
We will assume here that the GTM runs at a particular site, but can be addressed
from each site in the system. Local transactions, on the other hand, submit their
operations to local servers only and are unknown to the GTM. We assume that
local transactions are even unknown to the LTMs, and that the latter handle
subtransactions of global transactions only. These assumptions reflect the fact
that many mission-critical data servers are operated mostly autonomously yet
wish to support participation in server federations.

It is tempting to assume that the situation we are confronted with in a
heterogeneous federation reduces to a homogeneous one if the participating
servers use the same concurrency control protocol and if each server locally
guarantees serializability. We will see shortly, however, that this is not the case,
but that we can hope for sufficient conditions under which global serializability
can be achieved.
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Figure 18.6 Multidatabase system model.

18.4.1 Global Histories

We continue to look at the page model of transactions, and for simplification
we assume that all transactions eventually commit.

A local history of Di , 1 ≤ i ≤ n, comprises the local transactions of that Local history
particular site as well as the subtransactions of those global transactions that
access data items from Di .

EXAMPLE 18.6

Consider a federation of two servers with local databases D1 = {a, b} and

D2 = {c, d, e}, i.e., globally we have the set D = {a, b, c, d, e} of data items.

Then the following transactions are local, as they access data items in one

of the two sites only:

t1 = r (a)w (b)
t2 = w (d)r (e)

On the other hand, the following transactions are global:

t3 = w (a)r (d)
t4 = w (b)r (c)w (e)

The following histories are local:

s1 = r1(a)w3(a)c3w1(b)c1w4(b)c4

s2 = r4(c)w2(d)r3(d)c3r2(e)c2w4(e)c4
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While a local history may contain both local transactions and subtransac-
tions of global transactions, a global history is now made up of all operations
from both local and global transactions. This way of looking at global histories,
which does not contradict the autonomy assumption mentioned earlier, can
be motivated by the fact that a GTM, although it is not capable of controlling
local scheduling, at least needs information about the sequencing in which the
global transactions it has to manage have been executed together with the local
transactions. For this reason, we modify the notion of a global history as follows
(and continue to call it global history as long as no confusion can arise):

DEFINITION 18.3 Global History

Let the heterogeneous federation under consideration consist of n sites,

Global history
revisited

and let T1, . . . , Tn be sets of local transactions at sites 1, . . . , n, T be a set

of global transactions. Finally, let s1, . . . , sn be local histories such that Ti ⊆

trans(si ) and T ∩ trans(si ) �= ∅ for 1 ≤ i ≤ n.

A (heterogeneous) global history (for s1, . . . , sn) is a history s for
⋃n

i=1 Ti ∪ T
(in the sense defined in Chapter 3) such that its local projection equals the

local history in each site, i.e., �i (s) = si for all i , 1 ≤ i ≤ n.

Regarding the correctness of histories, we can continue to use conflict
serializability; however, applying this criterion to global schedules is not as
easy as it may seen, as the following examples illustrate.

EXAMPLE 18.7

Consider two servers with local databases D1 = {a} and D2 = {b, c}, and

let the global transactions t1 = r (a)w (b) and t2 = w (a)r (c) as well as the

local transaction t3 = r (b)w (c) be given. Suppose now the GTM decides

to execute t1 first; thus, it will send all operations from t1 to the servers

before it starts processing t2. The GTM is hence conservatively attempting

to execute the global transactions in a serial fashion. This attempt may lead

to the following local histories (local Commit operations omitted):

Server 1: s1 = r1(a) w2(a)

Server 2: s2 = r3(b) w1(b) r2(c) w3(c)

Note that the two global transactions are executed strictly serially at both

sites in the same order. The global history in the sense of Definition 18.3

looks as follows:

s = r1(a)r3(b)w1(b)c1w2(a)r2(c)c2w3(c)c3
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Apparently, we have s1, s2 ∈ CSR, but s1 ≈c t1t2, while s2 ≈c t2t3t1. As a

consequence, the conflict graph of s contains a cycle, which implies that

the serial execution order t1t2 chosen by the GTM is not acceptable.

The notation t2t3t1 used in the previous example in connection with history
s2 is supposed to mean only the relevant local portion of a global transaction
as it applies to the site in question, that is, in this example, the sequence
r2(c)r3(b)w3(c)w1(b) of operations. Although a bit informal, we will sometimes
use this simplified notation without always pointing it out.

The previous example shows that in a heterogeneous federation not every Indirect
conflictsserial execution order of transactions is acceptable for global histories. More-

over, we can observe in the previous example that history s1 exhibits an ordinary
conflict between the two global transactions. However, in history s2 the global
transactions are in an indirect conflict caused by the local transaction present
in server 2. In particular, global transaction t2 is in a (direct) conflict with local
transaction t3, and t3 is in a (direct) conflict with global transaction t1; therefore,
t2 is transitively or indirectly in conflict with transaction t1. Thus, in order to
guarantee conflict serializability of global histories, a heterogeneous federation
has to take indirect conflicts into account as well.

The following example shows that indirect conflicts may even arise when
there is no direct conflict between global transactions.

EXAMPLE 18.8

Consider two servers with local databases D1 = {a, b} and D2 = {c, d},

respectively, as well as global transactions t1 = r (a)r (d) and t2 = r (b)r (c),
which are both read-only. Additionally, let the local transactions t3 =

r (a)r (b) w(a)w(b) and t4 = r (c)r (d)w(c)w(d) be given. Locally, the follow-

ing histories may be produced (where s2 can start only after s1 has finished):

Server 1: s1 = r1(a) r3(a) r3(b) w3(a) w3(b) r2(b)

Server 2: s2 = r2(c) r4(c) r4(d) w4(c) w4(d) r1(d)

Again, both local histories are conflict serializable, since s1 ≈c t1t3t2 and

s2 ≈c t2t4t1. However, as in the previous example, the global transactions

have different serialization orders at the two sites, so that a global history

whose local projections are s1 and s2 cannot be correct.

The previous examples have shown that indirect conflicts between global
transactions can lead to different local serialization orders. A solution to this
situation, to be formally presented in the next subsection, is reminiscent of
Theorem 18.1: as in the homogeneous case, correctness intuitively requires
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that global transactions have to maintain the same relative serialization order
at each site, even in the absence of (direct) conflicts between these transactions.

In general, we assume that the execution of a global transaction proceeds
in such a way that the GTM transmits newly arriving operations to the relevant
server individually, so that the sequence of operations received by a particular
server forms the subtransaction. However, before the GTM can send another
operation from some transaction to a server, it must wait for an acknowledg-
ment of the previous operation’s execution; in this way it can be guaranteed
that a local scheduler, receiving more than one operation from the same global
transaction, does not alter their ordering. In a dynamic situation, the global
history produced by the GTM will then reflect the order in which the oper-
ations from global transactions have been acknowledged by local transaction
managers (where acknowledgments arriving simultaneously at the GTM can be
ordered arbitrarily). This assumption makes sure that the global history satisfies
the conditions of Definition 18.3, even in a dynamic setting.

18.4.2 Global Serializability

In a heterogeneous federation, the global transaction manager (GTM) has no
direct control over local schedules; the best it can do is to control the serial-
ization order of global transactions by carefully controlling the order in which
operations are sent to local systems for execution and in which these get ac-
knowledged. We next define a notion of serializability intended to capture this,
and will then look into ways of guaranteeing serializability in that sense. In
particular, it will turn out that criteria known from Chapters 3 and 11 already
can be used as sufficient conditions in the present context.

We first formalize the types of conflicts we have already described by way
of examples for transactions operating in a heterogeneous federation:

DEFINITION 18.4 Direct and Indirect Conflict

Let si be a local history, and let t and t ′ be transactions from trans(si ), t �= t ′.

Direct and
indirect
conflicts

1. t and t ′ are in a direct conflict in si if the following holds:

(∃ p ∈ t)(∃ q ∈ t ′) (p, q) ∈ conf(si )

(i.e., the ordinary notion of conflict from Chapter 3).

2. t and t ′ are in an indirect conflict in si if there exists a sequence t1, . . . , tr
of transactions from trans(si ) such that t is in si in a direct conflict with t1,

t j is in si in a direct conflict with t j+1, 1 ≤ j ≤ r − 1, and tr is in si in a direct

conflict with t ′.

3. t and t ′ are in conflict in si if they are in a direct or indirect conflict in si .
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In what follows, a conflict can always be a direct or an indirect one. There- Conflict
equivalencefore, conflict equivalence of two local or two global histories means that the

histories in question contain the same operations and the same direct or indi-
rect conflicts; for simplicity, we again use the notation “≈c” to indicate this.

We also point out that operations in an indirect conflict do commute, mean- Commutativity
ing that they can be exchanged in a given history as long as the remainder of
the history is unchanged (see the next example). The simple reason for this is
the fact that an indirect conflict between two transactions t and t ′ requires the
presence of a third transaction with which neither t nor t ′ commutes; but as
t and t ′ are not in (direct) conflict, they can be exchanged in any schedule in
which they both occur.

EXAMPLE 18.9

Let D1 and D2 be as in Example 18.7. In the local history

s ′
1 = w2(a)r1(a)

t2 and t1 are in a direct conflict, whereas in the local history

s2 = r3(b)w1(b)r2(c)w3(c)

t2 and t1 are in an indirect conflict. Note that we can commute w1(b) and

r2(c) in s2 to obtain history

s ′
2 = r3(b)r2(c)w1(b)w3(c)

but this commutation obviously leaves their indirect conflict unchanged.

For global histories, it is easy to see that Theorem 18.1 still applies when
we take into account both direct and indirect conflicts, a fact that can again
be used to verify concurrency control protocols. Before we turn to this issue,
we prove an analog to the serializability theorem from Chapter 3 (Theorem
3.10), which characterizes serializability in graph-theoretic terms. To this end,
we first adapt the notion of a conflict graph to the modified setting:

DEFINITION 18.5 Global Conflict Graph

Let s be a global history for the local histories s1, . . . , sn; let G(si ) denote

Global conflict
graph

the conflict graph of si , 1 ≤ i ≤ n derived from direct and indirect conflicts.

The global conflict graph of s is defined as the union of all G(si ), 1 ≤ i ≤ n,

i.e.,

G(s) :=
n

⋃

i=1

G(si )
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It should be intuitively clear that an acyclic global serialization graph means
that the (committed) global transactions can be put in a serialization order that
is consistent with each ordering given by a local history. We will prove this next
and show that the converse is also valid.

THEOREM 18.3

Let the local histories s1, . . . sn be given, where each G(si ), 1 ≤ i ≤ n, isMultidatabase
serializability

theorem
acyclic (i.e., si ∈ CSR). In addition, let s be a global history for the si ,

1 ≤ i ≤ n. Then s is globally conflict serializable iff G(s) is acyclic.

Proof

(if) Let
⋃n

i=1 G(si ) be acyclic. Then there exists a total ordering “<” of all

transactions (obtainable through topologically sorting the global conflict

graph). The global transactions committed in s are then serialized in the

same order in each local history si . For any two such transactions t and t ′

such that t < t ′, there hence exists for each si in which subtransactions

of these transactions occur a conflict-equivalent serial history s ′
i such that

t <s ′
i

t ′, i.e., s is globally conflict serializable.

(only if) Conversely, let s be globally conflict serializable, and suppose that
⋃n

i=1 G(si ) has a cycle; without loss of generality, let the cycle be of length

2. Since by assumption all local graphs G(si ) are acyclic, there must ex-

ist transactions t and t ′ (t �= t ′) as well as local histories si and s j (i �= j )
such that G(si ) contains the edge (t, t ′), while G(s j ) contains the edge

(t ′, t). This contradicts Theorem 18.1, which states that for the (committed)

global transactions there exists a total ordering that is consistent with all sk,

1 ≤ k ≤ n.

In the next section, we look at various ways of obtaining global conflict
serializability, or of generating the required total ordering of global transactions.
Before we do so, we briefly discuss an alternative correctness criterion that has
been proposed in the literature.

18.4.3 Quasi Serializability

The alternative correctness criterion we are about to discuss is motivated by the
observation that guaranteeing global serializability could result in a low degree
of parallelism between transactions, or in a high number of transaction aborts.
To alleviate this problem, the alternative requires certain properties from the set
of all local histories only. Its basic idea is that in order to preserve global database
consistency, only global transactions need to be executed in a serializable way,
but with proper consideration of the effects of local transactions.
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The new notion in this context is that of a quasi-serial history, which differs Quasi seriality
from an ordinary serial history in that only global transactions are required to
execute one after the other. As will be shown later, this together with the se-
rializability of local histories suffices to guarantee global correctness. Formally,
we have: a set {s1, s2, . . . , sn} of local histories is quasi serial if si ∈ CSR for
1 ≤ i ≤ n and there exists a total order “<” on the set T of global transactions
such that ti < t j for ti , t j ∈ T , i �= j , implies that in each local history sk,
1 ≤ k ≤ n the ti subtransaction occurs completely before the t j subtransac-
tion (provided that both ti and t j occur in sk). The second condition intuitively
requests that global transactions that are in an indirect conflict in a local history
are already ordered in such a way in the history that no further reordering is
needed from a global scheduler’s point of view.

With this notion, we can say that a set {s1, s2, . . . , sn} of local histories is Quasi
serializabilityquasi serializable if there exists a set {s ′

1, s ′
2, . . . , s ′

n} of quasi-serial local histories
such that si ≈c s ′

i holds for 1 ≤ i ≤ n. The latter definition can immediately be
restated for global histories: a global history s (for s1, . . . , sn) is quasi serializable
if the set {�1(s), . . . , �n(s)} of its local projections is quasi serializable. Again,
this can be characterized in graph-theoretic terms.

EXAMPLE 18.10

Consider a federation consisting of D1 = {a, b} and D2 = {c, d, e}. Let

transactions t1 = w(a)r (d) and t2 = r (b)r (c)w(e) be global, and transac-

tions t3 = r (a)w(b) and t4 = w(d)r (e) be local. Moreover, local histories

are given as follows:

s1 = w1(a)r3(a)w3(b)r2(b)

s2 = r2(c)w4(d)r1(d)w2(e)r4(e)

Then the set {s1, s2} is quasi serializable, as it is element-wise conflict equiv-

alent to the quasi-serial set {s1, s ′
2}, where

s ′
2 = w4(d)r1(d)r2(c)w2(e)r4(e)

The global history

s = w1(a)r3(a)r2(c)w4(d)r1(d)c1w3(b)c3r2(b)w2(e)c2r4(e)c4

is also quasi serializable, since we have �1(s) = s1 as well as �2(s) = s2;

on the other hand, s is not globally serializable.

Since the quasi-serialization order is always compatible with the orderings
of subtransactions in the various local histories, quasi serializability is relatively
easy to achieve for a GTM. In a quasi-serial schedule a global transaction is per-
ceived by all other global transactions as an isolated, indivisible step, as these
transactions are executed serially. By the same token, global transactions are
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perceived by local transactions as isolated steps, since the local histories are se-
rializable. However, the crucial prerequisite is that the underlying global order
is known—a requirement that is easily overlooked. So quasi serializability is
an interesting alternative to explore further, but far from being an immediate,
universal solution.

18.5 Achieving Global Serializability
through Local Guarantees

The examples we have shown earlier have illustrated the central problem in
constructing globally serializable schedules: local transactions may cause indi-
rect conflicts between global transactions that may otherwise not be in conflict
at all. In particular, it may thus happen that local conflict edges arise that
cause a cycle in the global conflict graph. Essentially, this is a situation we have
encountered in homogeneous federations as well, and have found difficult to
handle there; what makes the problem easier to deal with now is the fact that
the GTM establishes a form of global control, which is either not available or
deemed unacceptable in a homogeneous system. In heterogeneous federations,
on the other hand, some form of GTM is inherently unavoidable anyway.

In order to avoid cycles in a global conflict graph, the GTM has to take
appropriate action; in the model considered here the GTM can assume that
local histories are conflict serializable. In general, its actions can be pessimistic
or optimistic, where the former means that the GTM will delay transactions
in order to avoid cycles in the global serialization graph. In an optimistic ap-
proach, real or potential cycles will be detected and resolved by aborting global
transactions.

In the following we will look at various scenarios for guaranteeing global
serializability, depending on additional knowledge the GTM may have on local
sites.

18.5.1 Rigorousness

Suppose the GTM can assume that local schedulers produce not only conflict-
serializable histories but also rigorous ones. Recall from Chapter 11 that a
history s is rigorous if it satisfies the following condition:

(∀ ti , t j ∈ trans(s))
p j (x) <s qi (x), i �= j, p, q in conflict ⇒ a j <s qi (x) ∨ c j <s qi (x)

As we have noted in Chapter 11, a fundamental property of the class RG of
rigorous histories is that RG is contained in both CSR and ST, where the latter
denotes the class of all strict histories. In particular, histories in RG avoid any
type of rw, wr , or ww conflict between uncommitted transactions.
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Our next goal is to show that rigorousness is also relevant in the context Use of
rigorousnessof multidatabase systems discussed here. However, as the following example

indicates, the requirement that all local histories in a federation are rigorous is
not sufficient for guaranteeing global serializability.

EXAMPLE 18.11

Consider two servers where D1 = {a, b} and D2 = {c, d}; moreover, let

global transactions t1 = w(a)w(d) and t2 = w(c)w(b) as well as local trans-

actions t3 and t4 be given such that the following local histories are formed:

s1 = w1(a)c1r3(a)r3(b)c3w2(b)c2

s2 = w2(c)c2r4(c)r4(d)c4w1(d)c1

Both s1 and s2 are rigorous, but they yield different serialization orders of

the two global transactions.

The two local histories in the previous example could have been formed as
follows. First, the GTM sends w1(a)c1 to server 1 as well as w1(d)c1 to server
2, then corresponding operation sequences for global transaction t2. The local
schedulers produce the local histories as given. The point is that the problem
of different global serializations can be avoided by restricting the treatment of
Commit operations of global transactions appropriately:

DEFINITION 18.6 Commit-Deferred Transaction

A global transaction t is commit-deferred if its Commit operation is sent by

the GTM to the local sites in which the transaction was active only after the

local executions of all data operations from t have been acknowledged at

all sites.

Now we can show:

THEOREM 18.4

Let s be a global history for s1, . . . , sn. If si ∈ RG for 1 ≤ i ≤ n and all global

transactions are commit-deferred, then s is globally serializable.

Proof

Let s be a global history for the given local ones. By Theorem 18.3, s is

globally serializable iff G(s) is acyclic. Now suppose this graph has a cycle

of the form (t1, . . . , tk) such that tk = t1. Since si ∈ RG, 1 ≤ i ≤ n, and since

RG ⊂ CSR, each local conflict graph is acyclic. Hence the global cycle is
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“distributed” over several local graphs, and let us assume it does so in such

a way that edge (t j , t j+1) is contained in G(s j ) for 1 ≤ j < k. Again, since

each local history is rigorous, we conclude that c j <s j c j+1 for 1 ≤ j < k.

Thus, t1 is committed in s1 before t2, and tk−1 is committed in sk−1 before

t1. In other words, t1 is already committed in s1, although it is still active

in sk−1, a contradiction to our assumption that all global transactions are

commit-deferred.

18.5.2 Commitment Ordering

We next look at another criterion giving rise to a sufficient condition for global
serializability—the notion of commit order-preserving conflict serializability
(COCSR), also introduced in Chapter 3. Membership of a history s in COCSR
is given if for any pair of transactions that are in conflict in s their Commit
operations occur in conflict order. The following example indicates that, just
like for rigorousness, the requirement that all local histories are commit or-
der preserving conflict serializable alone is not enough for guaranteeing global
serializability.

EXAMPLE 18.12

Let D1 and D2 be as in Example 18.11, and let the following local histories

be given:

s1 = r1(a)w3(a)w3(b)r2(b)c1c3c2

s2 = w4(c)r1(c)r2(d)w4(d)c2c4c1

Clearly, s1, s2 ∈ COCSR, but again the two histories have different serial-

ization orders.

Fortunately, just as in the case of rigorousness, the addition of a conditionUse of
commitment

ordering
that is easy to test in reality provides the solution:

THEOREM 18.5

Let s be a global history for s1, . . . , sn. If si ∈ COCSR for 1 ≤ i ≤ n and if

all global transactions perform their commits strictly sequentially, then s is

globally serializable.

The additional condition given in this theorem intuitively means the fol-
lowing. While the Commit operation of a global transaction is being distributed
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to the sites at which it has been active, the GTM does not issue a Commit op-
eration for any other global transaction.

EXAMPLE 18.13

Let us illustrate the effect of the condition just introduced by way of the

following two histories, which are slightly modified versions of those con-

sidered in Example 18.12 (in such a way that their Commit operations are

ordered the same way in either history in order to meet the condition of

the theorem):

s1 = r1(a)c1w3(a)w3(b)c3r2(b)c2

s2 = w4(c)r1(c)r2(d)r4(e)c1c2 [w4(d)c4]

Assume that s2 has been executed up to but excluding the portion shown

in brackets. Notice that the two global transactions run interleaved at site

2 (t2 reads data item d before t1 is committed). Now if server 2 assures that

each generated history is in COCSR, the continuation of s2 shown above

cannot occur, because the indirect conflict between t2 and t1 then caused

by t4 would require commitment of these transactions in the order of this

conflict, which is no longer possible. A COCSR scheduler would therefore

have to abort t4.

For commit order-preserving conflict serializability, it can moreover be
shown that (under additional prerequisites) the global history s is in COCSR
if the same holds for the si ∈, 1 ≤ i ≤ n. On the other hand, the following is
easily verified (see Exercise 18.6): if s is a global history, then

s ∈ COCSR =⇒ (∀i, 1 ≤ i ≤ n)�i (s) = si ∈ COCSR

Finally, note that similar considerations apply to the case where member-
ship in COCSR is required for global transactions only (i.e., not necessarily for
local transactions). To this end, we have the following:

DEFINITION 18.7 Extended Commitment Ordering

A (local or global) history s is extended commit order preserving conflict

Extended
commitment
ordering

serializable if for every pair of global transactions ti , t j ∈ commit(s), i �= j ,
that are in conflict in s such that an operation from t i conflicts with a

subsequent operation from t j , then ci <s c j holds.

Let ECOCSR denote the corresponding class of histories.

Clearly, the following holds, as the COCSR condition is no longer applied
to all transactions:
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COROLLARY 18.1

COCSR ⊂ ECOCSR

Now the statement made above for class COCSR can be restated for class
ECOCSR, subject to minor additional prerequisites.

18.6 Ticket-Based Concurrency Control

What the considerations at the end of the previous section suggest for practical
concurrency control in a heterogeneous federation is that (1) the local systems
are expected to produce CSR histories only (and the federation does not really
care which method they use in this respect), and (2) additional properties
like RG or COCSR have to be ensured locally to guarantee global correctness.
Under these conditions no global mechanism for federated concurrency control
is needed, and we do not really need an explicit GTM. Without such additional
local properties, global correctness requires further measures at the global level
of the federation. In this section we present the ticket method as a representative
of explicit measures for ensuring global serializability on top of a variety of
servers that are solely known to provide locally CSR schedules. The ticket
method is a particularly lightweight mechanism; one of its salient features is its
versatility in coping with a broad variety of server types and underlying local
protocols.

18.6.1 Explicit Tickets for Forcing Conflicts

As motivation consider the following example:

EXAMPLE 18.14

Let two servers be given with local databases D1 = {a, b} and D2 = {c, d}

(as previously in Example 18.8); let the global transactions be t1 = r (a)r (c)
and t2 = r (b)r (d). Also, let the local transactions t3 = w(a)w(b) and t4 =

w(c)w(d) be given. Similar to what we have seen in Example 18.8, the

following local histories do not lead to global correctness:

s1 = r1(a)c1w3(a)w3(b)c3r2(b)c2

s2 = w4(c)r1(c)c1r2(d)c2w4(d)c4

The reason is that s1 ≈c t1t3t2, whereas s2 ≈c t2t4t1.
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Now let us consider the case that the GTM has already executed t1, but has

not yet started t2. Locally we then have the following schedules of which

the steps shown in brackets are not yet executed:

s1 = r1(a)c1 [w3(a)w3(b)c3r2(b)c2]

s2 = w4(c)r1(c)c1 [r2(d)c2w4(d)c4]

The GTM wants to avoid the execution continuations shown in brackets in

either case, since that would result in the local histories seen before. One

way of achieving this is to delay the execution of t2 until the GTM can be

sure that a cycle involving t2 is no longer possible. Since the GTM has no

control over site 2, it cannot know when t4 will end; on the other hand,

it must make sure that t2 is executed after t4 at this site. The pessimistic

approach mentioned earlier hence does not work in this case. Similarly, an

optimistic approach does not work either.

A solution to the problem indicated in the previous example consists of Forced conflicts
locally forcing (direct) conflicts between global transactions, or to convert indi-
rect conflicts (which may exist, but are not observable by the GTM) into direct
(observable) conflicts. Suppose that in the previous example, transaction t1 was
forced to write a special data item at each site in which it is active, and that
transaction t2 was forced to read that object if it also becomes active in one of
these sites. Then the serialization ordering “t1t2” would be automatically en-
forced, provided the GTM starts executing t2 only after t1 has ended. In this
way, it would be assured that site 2 cannot produce a reverse serialization (i.e.,
one that reverses the actual execution order), since this would now result in a
cycle in the corresponding local conflict graph.

In the more general case that global transactions are not executed serially, Operations on
ticketsthe following approach can be used. Each local database maintains a special

data item called a ticket, which is accessed only by global transactions. We can
think of the ticket as a logical timestamp whose value is stored as a regular data
item on each server. Each subtransaction of a global transaction has to read the
ticket or issue a take-a-ticket operation, then increment it and write it back, so
that the value of the ticket at each point in time corresponds to the serialization
order of the global transactions at the site under consideration. We assume that
these ticket operations can be accomplished through ordinary reads and writes;
in particular, incrementing a ticket I and writing it back results in an operation
written as w(I + 1).

EXAMPLE 18.15

Consider a situation with two servers and local databases D1 = {a} and

D2 = {b, c}, global transactions t1 = r (a)w(b) and t2 = w(a)r (c), as well

as local transaction t3 = r (b)w(c). We have seen already in Example 18.7
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that a decision of the GTM to execute t1 first will result in the following

local histories:

Server 1: s1 = r1(a)c1w2(a)c2

Server 2: s2 = r3(b)w1(b)c1r2(c)c2w3(c)c3

As we noted earlier, s1, s2 ∈ CSR, but s1 ≈c t1t2, while s2 ≈c t2t3t1.

Using tickets, the local histories would look as follows:

s1 = r1(I1)w1(I1 + 1)r1(a)c1r2(I1)w2(I1 + 1)w2(a)c2

s2 = r3(b)r1(I2)w1(I2 + 1)w1(b)c1r2(I2)w2(I2 + 1)r2(c)c2w3(c)c3

Now the indirect conflict between the global transactions in history s2 has

been turned into an explicit one; as a result, s2 �∈ CSR, which implies that

s2 will no longer be allowed by the local scheduler (its conflict graph is now

cyclic). Clearly, the following local history would be acceptable at site 2:

s2 = r1(I2)w1(I2 + 1)w1(b)c1r2(I2)w2(I2 + 1)r2(c)c2r3(b)w3(c)c3

In the previous example, we assumed that transactions take their tickets at
the beginning of their local executions, which is not necessary. In fact, transac-
tions may take their tickets at any time during their execution without affecting
the correctness of the approach. The following theorem shows that the tickets
obtained by the subtransactions at each server are guaranteed to reflect their
relative serialization order.

THEOREM 18.6

If global transaction t1 takes its ticket before global transaction t2 in a server,

then t1 will be serialized before t2 by that server.

Proof

Suppose that, at a particular site, t1 takes its ticket before t2, i.e., r1(I ) <

r2(I ) in the local history. Since a subtransaction takes its ticket first and

then increments its value, only the following execution orders can

occur:

s1 = r1(I )r2(I )w1(I + 1)w2(I + 1)
s2 = r1(I )r2(I )w2(I + 1)w1(I + 1)
s3 = r1(I )w1(I + 1)r2(I )w2(I + 1)

However, among these schedules only s3 is serializable and hence allowed

by the local scheduler of the server under consideration. Therefore, t1 in-

crements the ticket value before t2 reads it, and t2 obtains a larger ticket

than t1.
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In order to show that t1 can now be serialized only before t2, it suffices to

note that the ticket operations of t1 and t2 create a direct conflict of the

form t1 → t2. But this conflict forces t1 and t2 to be serialized according to

the order in which they take their tickets. Specifically, we have to consider

two cases. For the first case assume that there are other conflicts between

t1 and t2, which may be indirect ones caused by local transactions, such

that t1 → t2. In this case, the local history remains serializable, and both t1
and t2 are allowed to commit. In the second case, where other (direct or

indirect) conflicts exist such that t2 → t1, the ticket conflict creates a cycle in

the local conflict graph, and the resulting history becomes nonserializable.

In conclusion, indirect conflicts can be resolved through the use of tickets,

even if the GTM cannot detect their existence.

So far we have seen that tickets make indirect conflicts visible to the GTM, Optimistic
ticket method
(OTM)

but in order to guarantee global serializability, the optimistic ticket method
(OTM) that we are discussing must ensure that the subtransactions of each
global transaction have the same relative serialization order in their correspond-
ing servers. To this end, the basic idea is to allow the subtransactions of each
global transaction to proceed, but to commit them only if their ticket values
have the same relative order in all participating sites.

Ensuring global serializability this way can be implemented by a graph- Ticket graph
based approach as follows. The GTM maintains a ticket (order) graph whose
nodes correspond to active global transactions. An edge of the form ti → t j in
this graph indicates that at least one subtransaction of global transaction ti has
read a ticket value that is smaller than the value read by t j (at the same site).
When a transaction t requests its Commit operation, the graph is tested for
cycles involving t: if there is no such cycle, t can be committed, otherwise it is
aborted.

OTM does not affect the way a server handles the execution of a global Problems with
OTMtransaction up to the point when the transaction requests its commit. However,

since global transactions may take their tickets in any order, OTM may suffer
from global aborts caused by ticket operations that occur out of order. Indeed,
if global transaction t1 obtains its ticket at one site before global transaction t2,
but is unable to do so at another site, the GTM will inevitably abort one of the
two transactions. Even worse, incompatible orders in which global transactions
take their tickets can lead to global deadlocks if the participating servers use
locking.

For these reasons, an alternative to OTM is the conservative ticket method Conservative
ticket method
(CTM)

(CTM), which avoids transaction aborts to a large extent. Like OTM, CTM
requires subtransactions of global transactions to take tickets at their corre-
sponding sites. However, CTM controls the order in which this happens and
ensures that the relative order of ticket taking is the same at all participating
servers.



706 CHAPTER EIGHTEEN Distributed Concurrency Control

It is important to emphasize that in both presented variants of explicit
ticket methods, tickets need to be taken only by subtransactions of global trans-
actions. Local transactions do not need to take tickets; their correct execution
is guaranteed by the local CSR property alone.

18.6.2 Implicit Tickets

Both ticket methods presented above, the optimistic and the conservative vari-
ant, merely require the underlying servers to guarantee local conflict serializ-
ability as a “lowest common denominator.” Often, servers in a federation may
have additional, slightly stronger properties that are, however, not as strong
as local rigorousness or the COCSR property. The question then is to what
extent the ticket method can leverage such additional properties for reducing
overhead and gaining efficiency.

This question has a positive, elegant answer for servers whose local sched-
ules are guaranteed to avoid cascading aborts (i.e., schedules with the ACA
property introduced in Chapter 11). The combination of CSR and ACA is
strong enough either to force a local conflict cycle at one of the servers or
ensure that all servers produce compatible ticket orders and thus compati-
ble serialization orders for the subtransactions of global transactions. In other
words, there is no longer a need for maintaining a ticket order graph or control-
ling the ordering of the take-a-ticket operations at the GTM level. This result
is captured in the following theorem:

THEOREM 18.7

If each server in a heterogeneous federation guarantees the CSR and ACA

properties for its local schedules, and each subtransaction of a global trans-

action includes a take-a-ticket operation, then all resulting histories are

globally conflict serializable.

Proof

From Theorem 18.6 we already know that the ticket order of subtransac-

tions at the same site reflects the local serialization order. What remains to

be shown is that every possible cycle at the global level that could result

from incompatible local serialization orders at different sites must imply a

local cycle at one of the sites. Assume that two global transactions ti and

t j are involved in a global cycle that results from two different ticket (and

thus local serialization) orders at sites A and B: ti before t j at A and t j be-

fore ti at B. Because of the local ACA properties, t j cannot read and write

the ticket at A before the commit of ti , and ti cannot read and write the

ticket at B before the commit of t j . So the global cycle would imply that
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the global commit of ti precedes the global commit of t j , and vice versa.

This is impossible (assuming a total ordering of global commits under an

appropriate distributed commit protocol that we will discuss in Chapter 19).

Thus, one of the two transactions cannot commit. If there is a conflict cycle,

it will arise locally at one of the two sites, caused by regular conflicts and

the forced conflict on the local ticket.

The above result is of high practical importance, because most practical
protocols for local schedulers satisfy the ACA property. Thus, the overhead
of maintaining an explicit ticket order graph at the GTM level is rarely ever
needed. Under such conditions we refer to the ticket-based approach as an
implicit ticket method.

The most far-reaching form of implicit tickets is, of course, when all un-
derlying servers even have the RG or COCSR property. In this case there is
no need for the take-a-ticket operation. In fact, this extreme form of implicit
tickets boils down to the solutions presented in Section 18.5 that rely solely on
local properties without an explicit GTM.

18.6.3 Mixing Explicit and Implicit Tickets

Realistic federations comprise servers of different quality levels: some provide
only CSR, some can guarantee CSR and ACA, and some even ensure local RG
or COCSR properties. But it is unlikely that all servers are uniform in terms of
these properties (in addition to their heterogeneity in terms of local protocols).
So it seems that we must resort to the lowest common denominator, the explicit
ticket method for servers with local schedules in CSR, if at least one underlying
server does not provide anything stronger than CSR. Fortunately, this is not the
case, and it is indeed a great strength of the ticket method family that it can
leverage different quality levels within one federation. It suffices to maintain
the ticket graph for the “weakest” servers only—those that guarantee only local
CSR—and take-a-ticket operations are needed only for subtransactions at those
sites that do not have the local RG or COCSR property. Thus, in addition
to being very easy to implement, the ticket technique has the particularly
appealing property of incurring as little overhead as possible on the underlying
servers.

A somewhat critical issue in using ticket methods for federated concurrency Using tickets
with TOcontrol is the appropriate choice for when to issue the take-a-ticket operation

on a specific server. For example, suppose that a server uses the TO protocol
for ensuring local serializability. TO assigns a timestamp ts(t) to the subtrans-
action t of a global transaction when it begins its execution. Let t ′ be another
subtransaction such that ts(t) < ts(t ′). If explicit tickets are used and the one
obtained by t has a larger value than that of t ′, t will be aborted; therefore,
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t has to take its ticket first under this timestamp order. More generally, it is
advisable that subtransactions do not take their tickets at arbitrary points in
time in the presence of TO, but as close as possible to the point when they are
assigned their timestamps, that is, at the beginning of their execution. Similar
considerations for other protocols are the subject of Exercise 18.8.

With TO as the underlying local protocol, we can actually turn the above
impediment into an opportunity, and eliminate explicit tickets. The GTM can
ensure that a global transaction t obtains a local timestamp smaller than the
timestamp of transaction t ′ by delaying the submission of t ′ until t has com-
pleted its first database operation. The submission order of the subtransactions
will then determine their local serialization order. The approach can hence be
applied to all servers that allow transactions to commit only if their respective
local serialization order reflects their local submission order. The net effect is
that such servers save the cost of explicit tickets and instead use the implicit
ticket method.

18.7 Object Model Concurrency Control
in Heterogeneous Federations

As mentioned in Section 18.1, most of the previous sections’ theoretical and
algorithmic considerations apply to both page model and object model transac-
tions. Our presentation has been in terms of page model operations, but most
results carry over to the semantically richer object model. Here we will briefly
reconsider our main results on (1) homogeneous federations, (2) local proper-
ties for global serializability in heterogeneous federations, and (3) additional,
explicit measures at the GTM level of a federation such as tickets. For the third
line of reasoning, the object model is indeed much more appropriate, and we
will explain why this is so.

As for homogeneous federations, Theorem 18.1 carries over to distributedObject model
transactions in

homogeneous
federations

object model transactions in a straightforward manner. Each site produces a
local serialization order, and the protocol used at all sites needs to ensure that
the local serialization orders are compatible with each other so that their union
remains acyclic. The standard protocols, most notably the 2PL family, ensure
this property, and this holds regardless of the kind of data items, operations,
and conflict relations that we consider. So the theorem and its implications
also hold, for example, for transactions that invoke high-level operations on
business objects such as Withdraw and Deposit on bank accounts. Recall from
Chapters 6 and 7 that such transactions are broken down into lower-level sub-
transactions, each of which corresponds to one of the high-level operations.
These subtransactions may themselves be distributed across sites (e.g., for an
operation funds transfer that spans different enterprises), but in practice they
would more typically be confined to steps at a single site. The bottom line is
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that we can simply combine the results derived from Theorem 18.1 with the
rich theory of object model concurrency control developed in Chapters 6 and 7
in order to obtain a practically viable solution for distributed transactions with
semantically rich operations.

In heterogeneous federations the approaches that build on local properties Object model
transactions in
heterogeneous
federations with
strong local
properties

like RG or COCSR and do not need an explicit GTM mechanism can be used
for object model transaction management without any additional considera-
tions. The local properties need to be ensured in terms of the involved servers’
interface operations, which are now semantically richer operations rather than
page reads and writes. This generalization of properties like RG and COCSR
is again straightforward, and has been discussed in Chapter 11. So we can eas-
ily compose a variety of object servers into a federated system as long as each
server locally provides rigorousness or at least commit order-preserving conflict
serializability with regard to the operations that the client invokes against the
servers’ interfaces. This is a fundamental result of great practical relevance for
multi-tier Internet-based e-Service applications, which we simply harvest from
the theoretical underpinnings of Section 18.5 as well as Chapters 6, 7, and 11.

In the most general case of heterogeneous federations with servers that Object model
transactions in
heterogeneous
federations with
explicit GTM
measures

merely provide local conflict serializability, the additional measures that are
needed in an explicit GTM at the federation level must refer to data items
and operations that are observable at the interfaces of the underlying servers.
So, our previous abstraction that “taking a ticket” amounts to a read and write
step on a single data item as in the page model is not quite accurate from
an implementation viewpoint. Rather, tickets need to be tested and manipu-
lated through the servers’ interface operations such as SQL commands. On the
other hand, this simple observation suffices to “lift” the presented page model
ticket method to federations with object model servers. All theorems from Sec-
tion 18.6 still hold, and the ticket method is immediately applicable to such
richer and realistic systems. In implementation terms, a ticket then is actually
a tuple in a relational table or an encapsulated object in an object-oriented or
object relational database. For data servers other than database systems similar
implementations are straightforward.

The layered form of object model transaction management is particularly
attractive for federated systems for two reasons. First, the GTM and LTM levels
naturally correspond to a two-level concurrency control scheme. Second, the
GTM can refer only to operations that are observable at the interfaces of the
underlying servers; these are often specifically exported methods on encapsu-
lated objects such as bank accounts, purchase orders, inventories, and so on.
Local operations at the page level of a server, on the other hand, are usually not
observable outside the server, which renders all GTM methods that explicitly
refer to page-level conflicts more or less impractical.

With layered transactions, each high-level operation that is passed to a
server is locally handled as if it were a separate, local, and short transaction. This
ensures atomicity and isolation of individual object-level operations. On top
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of this, the GTM layer needs to keep additional long-duration locks (or take
equivalent steps such as cycle testing on a serialization graph) in order to guar-
antee that the overall transactions appear atomic and semantically serializable
to their clients. If the object-level operations are SQL commands that consti-
tute the interface of a server, the federation layer needs to extract appropriate
predicates from them as the basis for global predicate locking; here techniques
from Chapter 8 can be leveraged. Of course, an inevitable consequence of com-
mitting each high-level operation as a separate transaction as early as possible is
that undoing an entire transaction, for example, on behalf of a client-requested
rollback, entails issuing compensating operations for those transactions that are
already committed on the underlying servers. This situation is not really dif-
ferent from what we have discussed in Chapters 11 and 14 on object model
recovery, and can be handled using methods developed in those chapters.

18.8 Coherency and Concurrency Control
for Data-Sharing Systems

In this section we consider concurrency control in a specific form of dis-Data-sharing
cluster tributed system, the data-sharing system, which we have encountered already in

Chapter 15. Recall that data servers for applications with very high throughput
and availability requirements are often built as data-sharing systems in which
independent computers or servers running the same software can access a com-
mon database, which in turn is kept on a collection of disks. Thus, the servers
share the disks and the data, while each has its individual main memory and
in particular its local page cache. This architecture is (once again) illustrated
in Figure 18.7. A data-sharing system, also known as a shared disk system, is
often realized in the form of a cluster in which the servers are locally close, for
example, in the same room, with a high-bandwidth, low-latency interconnect.

Server 1 Server 2 Server n

Interconnect

CacheCacheCache

Figure 18.7 Data-sharing system.
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Besides recovery from failures discussed in Chapter 15, the problems that
have to be solved for data-sharing systems are the concurrency control problem
and the cache coherency problem. Both stem from the fact that data pages can be
dynamically replicated in more than one server cache to exploit access local-
ity. Therefore, the synchronization of reads and writes requires some form of
distributed lock management, and invalidations of stale copies of data items or
propagations of updated data items must be communicated among the servers.
Both problems are closely related, and solutions to them are typically such that
they treat both aspects in an integrated manner. For reasons of clarity, however,
we will first look at the two issues separately and later discuss an integrated
solution known as callback locking.

A common assumption for data-sharing systems is that each individual Concurrency
controltransaction, once routed to a specific server within the cluster, is executed

solely on this server (i.e., the transaction does not migrate across servers during
its execution). For synchronizing concurrent transactions, data-sharing systems
mostly use locking protocols. Each server has a global lock manager and a local
lock manager. Data items are assigned to global lock managers in a static manner
(e.g., based on a hash function), so that each lock manager is “responsible” for a
fixed subset of the data items. We say that a specific global lock manager has the
global lock authority for a data item. A special case would be that all data items
are assigned to a single, centralized lock manager, but a much more scalable
variant is, of course, an assignment that partitions the data items among the
servers. The global lock manager for a data item knows at each point in time
whether the item is locked and, if so, by which servers and in which mode.
The local lock managers of the corresponding servers would then have detailed
information about which transactions hold locks.

When a transaction requests a lock or wants to release a lock, it first ad- Lock authorities
dresses its local lock manager, which can then contact the global lock manager.
The simplest solution is to forward all lock and unlock requests to the global
lock manager that has the global lock authority for the given data item. On
the other hand, if a local lock manager is authorized to manage at least read
locks locally, it can save message exchanges with the global lock manager. We
say that a local read authority enables a local lock manager to grant local read
locks for a data item, while a local write authority enables it to grant read or
write locks locally. These local lock authorities need to be “borrowed” from the
global lock manager that is responsible for a data item (i.e., has the global lock
authority). Clearly, write authority can only be “lent” to exactly one local lock
manager, and only if no other server currently holds a lock on the given data
item. A write authority has to be returned to the corresponding global lock
manager if another server wants to access the data item. A read authority, on
the other hand, can be held by several servers simultaneously, and has to be
revoked when some server wants to perform a write access to the data item.

The outlined approach is geared for exploiting access locality. Typically,
newly incoming transactions are routed to servers according to their transaction
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type (e.g., new order entry versus payment processing), or characteristic input
parameters (e.g., customer ID), or a combination of both and possibly further
factors. The aim is to establish a high degree of access locality at each of the
servers: a high probability that subsequent transactions find “their” data already
cached at the server and a low probability that data that is to be updated also
resides in the cache of another server. Under such conditions, most lock requests
could be handled solely locally once the necessary local lock authorities have
been granted to the corresponding server. Of course, this kind of locality is not
static and undergoes fluctuations as the profile of transaction arrivals and their
access characteristics vary and evolve over time. For this reason it is crucial
that local lock authorities are assigned in a dynamic manner (as opposed to the
static assignment of global authorities).

Access locality is also the overriding consideration for distributed cachingCache
coherency in a data-sharing system. In order to reduce data transfers and hence communi-

cation overhead within a cluster, servers keep frequently and recently accessed
pages in their local caches. Because the access profiles at different servers may
overlap and evolve over time, multiple copies of the same page may reside
in several caches across a cluster, and these copies need to be kept mutually
consistent. As we mentioned in Chapter 15, a cache coherency protocol is em-
ployed to this end, and the main invariants such a (typically page-oriented)
protocol needs to ensure is that

multiple caches can hold up-to-date versions of a page simultaneously
as long as the page is only read, and

once a page has been modified in one of the caches, this cache is the
only one that is allowed to hold a copy of the page.

Thus, each page undergoes the following cycle in terms of the number
of its simultaneously valid copies. Initially, there is only one copy in the stable
database on disk. The first access to the page creates a copy in one of the servers’
caches. Then, as long as no write takes place, the page may be transferred to
other caches, thus creating multiple copies. Upon the first write, all copies but
one are discarded, so that only one cache holds a copy. This brings us back
to the second stage in the cycle, from which we can again start shipping the
page to other caches. Finally, when the page is dropped from all the caches that
happen to hold it at some point (by being chosen as a regular cache replacement
victim), we are back to the first stage of the cycle, that is, the page only resides
on disk.

A protocol maintaining this invariant is owner-based coherency control, whichOwner-based
coherency

control
works as follows. Initially, each page is statically assigned to one of the servers in
the cluster; this server is called the home of the page. A server holding an up-to-
date and ready-to-access copy of a page is an owner of that page. When a server
requests a page for read access and is not yet an owner, it must obtain a recent
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copy from one of the owners and add itself to the list of owners, which is main-
tained at the page’s home. When a server requests a page for write access, it has
to identify all owners of the page (either by a lookup at the home or by broad-
cast to all servers in the cluster) and issue callback requests to all of them, by
which their copies are invalidated (or “revoked”); the server thereby becomes
the only owner of the page and can then perform the desired write access.

Note the high similarity to the dynamic assignment of lock authorities
for distributed concurrency control. Indeed, the home and owner(s) of a page
are, to a first approximation, equivalent to the global lock manager that is
responsible for the page and the local lock manager(s) that hold(s) a local lock
authority for the page. Another way of looking at this similarity is to view
the lock table entries for which a global lock manager is responsible as data
units that are dynamically cachable in the local lock managers; the dynamic
management of local lock authorities essentially boils down to a coherency
control protocol for the cached lock table entries.

A protocol that integrates concurrency and coherency control is known by Callback
lockingthe name callback locking and works as follows. For simplicity we first assume

that both concurrency and coherency control are page oriented, and will later
discuss how this assumption can be relaxed. Initially, the lock responsibility for
a page rests with its home. Every owner of a page holds a read lock authority
for the page and is therefore able to acquire and release read locks locally. An
exclusive owner of a page holds a write lock authority. Finally, the callback of
a page also revokes the local lock authority.

EXAMPLE 18.16

Consider the sequence diagram shown in Figure 18.8, with time proceeding

from top to bottom. Here, server A wants to set a read lock on page x on

behalf of transaction t1 and is granted read lock authority by the home

of x. Then server B wants to do the same on behalf of transaction t2 and

also becomes an owner of x with read lock authority. At a later stage,

transaction t1 commits at server A, and transaction t3 reads x at server

A, which still has read lock authority and can therefore grant the read lock

without contacting the home of x again. Next, transaction t4 wants to write

x at server C, which now requests write authority from the home of x. The

home, knowing that x has other owners, must send callback messages to

servers A and B, and needs to await acknowledgments (shown as “OK” in

Figure 18.8) from these two servers before server C can be granted write

lock authority. Server B, which still has an ongoing transaction with x in

its write set, lets this transaction finish its work and only then sends its

acknowledgment to the callback request. Finally, the home of x can grant

write lock authority to server C.
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Rlock(x)

Home(x) Server A Server B Server C

Rlock authority(x)

Callback(x)

Rlock(x)

r1(x)

c1
r3(x)

c3

r2(x)

Wlock(x)

Wlock authority(x)

w4(x)

Rlock authority(x)

Callback(x)

OK

OK
c2

Figure 18.8 Callback locking example.

As mentioned above, lock entries do not necessarily refer to pages; rather
they may be associated with finer granules such as records for higher concur-
rency. Also, at the level of global lock authorities, coarser granules such as ta-
blespaces may be an attractive alternative to minimize the overhead of granting
and revoking local lock authorities. And finally, both of these alternatives may
be combined in a multigranularity approach (see Chapter 10): coarse items for
global lock managers and fine items within local lock managers.

The implementation of flexible granularities in a data-sharing system re-Callback
locking with

flexible
granularities

quires certain extensions to the basic callback locking protocol. We conclude
this section by sketching three such extensions. Their key point is that pages
are still the unit of data shipping between servers, but the granularity of lock
authorities can be more fine grained or coarse grained depending on the relative
importance of data contention versus bookkeeping overhead.

1. Servers can be extended with fine-grained locking and referring to re-
cords, index entries, or some form of objects as follows. First consider
read operations. Records that reside in pages in a server’s cache can
be locally locked, read, and unlocked without interaction with other
servers. When a page that holds a requested record is not in the local
cache, the server queries the page’s home about other owners of the
page. If there is currently no owner, the server can fetch the page from
disk and becomes the only owner. Otherwise, the home ensures that
none of the current owners has a write lock on the requested record
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and then asks one of the owners to ship the page to the newly added
owner. When shipping the page, all records that are currently write-
locked by other transactions (at one or more of the already existing
owners) in an incompatible mode are marked as “unavailable.” Then the
receiving server can read all records in the page except those marked
unavailable. In other words, the server has obtained a local read lock
authority for all records except those that are already write-locked at
other servers. When the server wishes to update an object, it requests
a transaction-duration write lock for the record and, at the same time,
a short-term write lock on the page from the page’s home, which may
trigger a page callback from all other current owners of the page. This
callback does not revoke the local lock authorities held by the other
owners for the unavailable records in the page, but the page itself needs
to be re-obtained from the updating server in order to ensure that each
owner has an up-to-date copy of the page.

2. The callback mechanism just described can be improved based on the
observation that a page typically contains multiple records, which would
so far be handled by individual callback requests when a server wants
to update more than one record in the same page. In such cases the
requesting server may request a write lock authority for the entire page
from the page’s home. The home will initiate a callback for all records
that reside in the page, but this will be granted only when no other
server holds any locks on any of the affected records.

3. Finally, locking and callbacks can be done in an adaptive fashion with
regard to granularities. When a server wishes to read a record that is not
in its cache or is currently marked unavailable in a cached page, it sends
a read request to the page’s home, which then checks for conflicts at
both record and page granularity. If no other server holds a write lock on
any record in the requested page, a write lock authority for the entire
page can be granted. Otherwise, currently locked records are exempt
from the lock authority and marked as unavailable in the page that will
be shipped. Of course, if the requested record itself is currently locked
at another server, the read request will be blocked. If the read request
conflicts with a page-level write lock held by another server, that server
is asked to de-escalate its lock authority. To do so, it obtains record-level
write locks for all records that it has updated or is about to update;
then the page lock is released. After de-escalation, the server checks for
record-level conflicts and then proceeds along the lines of one of the
two cases above.

Note that the above extensions apply equally well to records or index
entries in a cluster of relational database servers (or other forms of data servers)
and to “true” objects in an object-oriented or object relational database system.
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A special case that is of particular interest for object-oriented client-server
systems is the situation where clients can locally cache objects that they fetch
from a common server. In this architecture, the server takes the role of the
home for all data, and clients can become owners on a dynamic basis as in the
general data-sharing architecture. Typical applications with this characteristic
include CAD systems where clients extract complex objects (e.g., geometry
descriptions of automobile or aircraft parts) from the server and run intensive
computations on the data in their local caches.

Existing systems exhibit two basic approaches with regard to the granular-
ity of the client-server interactions. In a page server architecture, clients request

Client caching
in (object-
oriented)

client-server
systems

pages from their servers and assemble them into the objects an application
requires. In an object server architecture, clients can talk to servers in terms of
objects, and can henceforth request entire objects on behalf of an application;
here it is the server that assembles the object from the pages on which it is phys-
ically stored. As mentioned before, both cases can be handled by variations of
the callback locking protocol for general data-sharing systems outlined above.

18.9 Lessons Learned

In this chapter we have looked at serializability and concurrency control in
homogeneous as well as heterogeneous federations. While the former type em-
phasizes transparency, the latter emphasizes autonomy. As we have seen, this
distinction has a minor impact on the notion of transactions (manifested in the
distinction between local and global transactions), but makes a big difference
for concurrency control. We can mostly reuse the various protocols we have
discussed for centralized systems at the local sites, but, in addition, we have to
ensure that the local serialization orders are mutually compatible.

Heterogeneous federations occur frequently in present-day applications
and are becoming more important than homogeneous ones. Technically, trans-
actions in heterogeneous federations may be subject to indirect conflicts, and
coping with these makes life harder. Fortunately, it turns out that global serializ-
ability in heterogeneous federations can be achieved by combining various de-
grees of local properties in combination with some form of global control. With
sufficiently strong local guarantees that all servers of a federation uniformly pro-
vide, there is no need for an explicit global control. Most importantly, these
local properties include rigorousness or commit order preservation in combi-
nation with local conflict serializability. In the most general case, where we can
rely only on local serializability, additional measures are needed at the global
federation level.

An important point from a practical perspective is that such explicit mecha-
nisms at the global level should refer only to operations and their effects that are
observable at the interfaces of the underlying, heterogeneous and autonomous,
servers. In this regard the ticket method is the most practical approach among
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the various alternatives that have been devised in the scientific literature. The
ticket method is easy to implement and lightweight in terms of the overhead
for the take-a-ticket operations and the maintenance of the global ticket graph.
Furthermore the ticket graph needs to capture ticket-order edges only for the
“weaker” servers of a federation, whereas the “stronger” ones that have local
properties such as rigorousness need only implicit tickets.

Both the approach that requires strong local properties and the ticket ap-
proach also work well in combination with object model transactions. In this
context semantically rich operations are typically confined to a single site, and
this case can be handled in a straightforward manner with object model con-
currency control at local sites and one of the presented approaches for global
serializability at the federation level. This way transaction management for
component-based global information systems can be implemented in a reason-
ably simple manner.

Finally, we have looked at concurrency and coherency control in data-
sharing systems, where data may be dynamically replicated in local caches,
giving rise to the need for some form of coherency control. We have seen that
callback locking is the method of choice here, which can be employed for a
variety of granularities.

Exercises

18.1 Consider the (partially ordered) distributed history shown in Figure 18.9
with transactions t1 through t5. Assume that data items x, y, and z are
managed by server 1, while data items u and v are under the control of
server 2. Describe an execution under each of the distributed 2PL and
TO protocols that results in s1.

r2(z) r1(x) r4(v)

r4(u)

w1(y)

r3(z)

s1:

s2: s3:

r1(y)

r5(u) w5(v)

w1(z) w2(z)

w2(x)

w4(v)

r1(y)

r1(x) w2(x)

r2(z)

r1(y)

r2(z) w1(y) w2(x)

r1(x)

Figure 18.9 Distributed history for Exercise 18.1.
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t1 t5

t6

t5 t3

t6 t4

Server A

Server C Server B

t1 t2 t3

Figure 18.10 Distributed waits-for graph
for Exercise 18.3.

18.2 Give a sample execution of a distributed history s such that (a) s itself
is not conflict serializable, but (b) each local projection of the execution
obeys the distributed 2PL protocol. In particular, state the exact order
in which a scheduler acquires and releases locks and executes read and
write steps.

18.3 Consider the distributed waits-for graph for transactions t1 through t6
running on servers A, B, and C shown in Figure 18.10. Assume that
transaction t1 now requests a lock on server A for which transaction
t2 already holds an incompatible lock. Simulate the path pushing al-
gorithm for deadlock detection at this point, and give the resulting
messages.

18.4 Apply the optimistic ticket method (OTM) to the local histories from
Examples 18.8, 18.11, and 18.12 and show how global serializability
can be obtained in each of these cases.

18.5 Prove Theorem 18.5.

18.6 Show the following for a global history s in a heterogeneous federa-
tion with servers 1 through n, where �i (s) is the projection of s onto
the steps at server i : if s ∈ COCSR then (∀ i, 1 ≤ i ≤ n) �i (s) = si ∈

COCSR. Furthermore, establish additional conditions under which the
converse is also true.

18.7 Find a sample history proving that the containment COCSR ⊂ ECOCSR
is proper.

18.8 Discuss appropriate points for the take-a-ticket operation during the
execution of a global transaction’s subtransaction under the assumption
that the underlying server uses (a) 2PL, (b) strict 2PL, (c) strong 2PL,
(d) BOCC, (e) FOCC, (f) ROMV (see Chapters 4 and 5) for its local
schedule. Consider the possibility that other servers on which the global
transaction executes may use different protocols.
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18.9 Discuss if and under which conditions the optimistic ticket method can
be used with servers that provide multiversion serializability for their
local schedules (as opposed to conflict serializability).

Hint: The key property that a server has to ensure is that the ticket
order reflects the local serialization order.

18.10 Discuss the use of the optimistic ticket method for servers that merely
guarantee local snapshot isolation, as opposed to local conflict serial-
izability (see Chapter 10 for the notion of snapshot isolation). What
global correctness criteria can be guaranteed this way? What are the
performance implications?

18.11 Consider a data-sharing system with three servers A, B, and C. Sup-
pose server C is the home of pages a, b, c, and d, and these pages are
dynamically accessed during the execution of transactions on servers
A and B. Give the necessary messages between these servers under a
page-oriented callback locking protocol for the following distributed
history:

A: r1(a)w1(a)r1(c) c1r3(a)w3(a)c3 r6(b)r6(d)c6

B: r2(c)c2 r4(a)r4(b)r4(d)c4r5(b)w5(b)r5(d)c5
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Further algorithms have been described by Badal (1986), Bukhres (1992),
Choudhary et al. (1989), Menasce and Muntz (1979), Roesler and Burkhard
(1989), Sinha and Natarajan (1985), or Krivokapic et al. (1999). Deadlock
detection under the specific constraints of multidatabase systems with au-
tonomous servers has been investigated by Breitbart, Litwin, and Silberschatz
(1991) as well as Scheuermann and Tung (1992).

Introductions to and surveys of the wide area of heterogenous federations
and their autonomy aspects have been given by Litwin et al. (1990), Sheth and
Larson (1990), Hurson et al. (1993), Bukhres and Elmagarmid (1996), and
Elmagarmid et al. (1998). Seminal work on concurrency control for such
systems has been done by Gligor and Popescu-Zeletin (1986), Breitbart and
Silberschatz (1988), Pu (1988), and Barker and Özsu (1990). Our exposi-
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CHAPTER NINETEEN

Distributed Transaction
Recovery

A distributed system is one where the failure of some

computer I’ve never heard of can keep me from getting my work done.

—Leslie Lamport

To marry is to halve your rights and to double your duties.

—Arthur Schopenhauer

19.1 Goal and Overview

Distributed system architectures with multiple servers present difficulties with
regard to recovery similar to the issue of centralized versus distributed concur-
rency control. More specifically, the all-or-nothing semantics of atomicity must
extend to a transaction’s updates on multiple servers. So either all updates on
all servers are committed, or all updates on all servers must be undone.

The fundamental reason for the extra complexity of distributed transac-
tions is that a distributed system can fail partially in the sense that one server
fails while others continue their normal operation. Furthermore, servers need
to exchange messages to agree upon whether a distributed transaction that has
accessed and manipulated data on multiple servers should be committed or
aborted. If some of these messages get lost—for example, because of a router
or gateway failure—it is all but trivial to guarantee a unanimous decision about
the transaction’s commit versus abort termination. When a server does not get
a message that it expects to receive from another server, it is impossible for
the receiving server to tell exactly whether the message got lost, whether the
sending server is simply extremely slow and the message is delayed, or whether
the sending server has failed. So the conservative assumption must be that the
sending server has crashed. Unfortunately, it is also impossible to figure out the
exact point of that crash. If one server has just started actions to commit its
part of the transaction while the other server has had the bad luck of failing
right before it could complete the decisive part of its side of the commit, we
end up with the unacceptable situation that the transaction’s updates on one
server become committed, but the other, failed, server will have to undo its
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updates of the transaction during restart. Such a case would lead to potentially
inconsistent data.

The solution out of this dilemma is to set up a special handshake protocolTwo-phase
commit (2PC) between the involved servers from a family of distributed commit protocols,

with the so-called two-phase commit (2PC) protocol being the most impor-
tant instantiation. This protocol builds upon each server’s local capabilities for
logging and transactional crash recovery. What it adds is a couple of message
rounds to establish a “contract” between the servers to ensure that either all
servers commit the transaction or the transaction will be undone on all servers,
and this contract must be fulfilled regardless of whether some servers fail (and
later become restarted) or messages get lost (and need to be resent as part of
the protocol).

As we will see in this chapter, the protocol inevitably implies that thereIn-doubt
(uncertain)

transactions
are certain circumstances under which a failed server must communicate to
other servers during its restart to find out the systemwide decision about the
termination status of one or more in-doubt transactions, also known as uncer-
tain transactions. In other words, servers are no longer autonomous in that they
can always independently recover “in splendid isolation.” This complication
is the inherent price for maintaining the consistency of distributed data. This
may sound very expensive, and many application architects have traditionally
been reluctant to use distributed transactions. However, the implementation
techniques that we will look at in this chapter are very efficient, and the gen-
eral progress on computer and network resources as well as server reliability
makes distributed commit protocols a practically viable cornerstone of modern
information systems.

Distributed commit protocols are mandatory for both homogeneous dis-
tributed database systems (i.e., one conceptual database partitioned or possibly
replicated across multiple sites, all of which run the same database system soft-
ware) and arbitrary federated systems that may involve a heterogeneous set of
database systems, mail servers, document servers, queue managers or workflow
servers, and so on. An elegant property of the protocol is that it makes very
few assumptions about how the various servers implement their local recov-
ery, as long as they understand the notion of winner versus loser transactions.
Therefore, it is also relatively easy to implement a distributed commit protocol
in a federated system. The requirement there is that the rules of the commit
protocol itself are followed by all parties; to this end the two-phase commit
protocol has been standardized and is generally accepted in the software in-
dustry. We will discuss the basic two-phase commit protocol in great detail in
Section 19.2.

Federated systems are multi-tier systems in the sense that each server may
outsource some work to another server or implement its business objects by
means of other, more primitive objects provided by other servers (see Chapter
1 for terminology and examples). In this setting a transaction often implicitly
manipulates data along entire hierarchies of servers and spans a tree of work
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units that are all subject to the distributed commit protocol. Such scenarios are
appropriately handled by a hierarchical protocol that iterates the basic behavior
of the two-phase commit protocol. We will discuss this generalization of the
flat two-phase commit to trees in Section 19.3.

Both the flat and the hierarchical variants of two-phase commit open a
number of opportunities for optimizations, especially the exploitation of spe-
cial properties of transaction profiles, server-specific strengths, and the com-
munication topology. Most optimizations aim to reduce the communication
and/or logging overhead of the protocol, and some of them also consider the
issue of maximizing the probability that servers can recover and resume normal
operation independently. Section 19.4 discusses the practically most important
optimizations from a large set of options.

19.2 The Basic Two-Phase Commit Algorithm

This section presents the basic two-phase commit algorithm in three subsec-
tions: we begin with the actual protocol that specifies the message exchange
and logging actions during normal operation, we will then cover the necessary
steps when failures occur, then finally discuss opportunities for and limitations
of independently recovering individual servers after a failure.

19.2.1 2PC Protocol

The protocol known as (basic) two-phase commit, or 2PC, that we are going to Participants
(agents)
running on
resource
managers

present in this section serves to ensure the atomicity of a distributed transaction.
The critical point within such a transaction that has made updates on more than
one data server is when the application program requests the commit of these
updates. Assume that this request initiates writing some kind of commit log
entry to the stable logs of all involved servers. Each server will be responsible
for the crash resilience of its local updates. In the following we will refer to
the participating servers as participants; this also denotes the parts of the trans-
actions on behalf of which the various servers act. The literature sometimes
denotes these local parts of the transaction as “agents,” but we will not explicitly
distinguish the different notions for a local agent and the corresponding server,
as no ambiguities arise. In the context of distributed commit, the servers
on which the participants run are usually referred to as resource managers
(especially in the standards and product literature) to emphasize that not only
traditional data servers (e.g., database systems) can participate in a transaction
but also more general servers, such as queue managers (see Chapter 17).

In the absence of shared storage among the participants, it is possible that
a subset of the participants succeeds with their local commits, whereas other
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participants fail and must later undo the transaction’s local updates. Note that
the latter may even have lost the log entries that would be necessary to redo
their part of the transaction, which is feasible because log buffers do not need
to be forced before commit. The committed participants, on the other hand,
will release the transaction’s local locks (or perform the analogous steps in
a nonlocking type of concurrency control protocol) so that new transactions
can see the updates and even modify the same data. This implies that, in full
generality, there is no way to undo the updates of the successfully committed
participants at some later point when it becomes known that one or more other
participants failed. Even the invocation of high-level compensation steps would
only be feasible if no subsequent transaction has performed a semantically
conflicting operation; otherwise we could not ensure the reducibility (in the
sense of Chapter 11) of the resulting schedule and would violate the isolation
property of the transactional ACID contracts.

The solution out of this dilemma is to introduce a transaction coordinator(Transaction)
coordinator that mediates between the application program’s commit request and the vari-

ous participants. In a certain sense, which will be made precise in the following,
the coordinator emulates the missing shared storage, but the coordinator is the
only one that can directly access this “storage,” and participants need to com-
municate with the coordinator via messages. The coordinator is a process that
can run on the client or any server; most often it is combined with one of the
participants by simply running it on the same data server in the same process
(possibly as an additional thread). The “shared storage” maintained by the co-
ordinator is nothing more than a stable log that holds log entries about the
commit status of a transaction (i.e., no log entries about data updates). When
the coordinator is combined with a participant, the coordinator’s log entries
are simply embedded in the stable log file of the server. In the following we
will nonetheless consider the coordinator as if it were a separate process with
a separate log, for ease of explanation.

The coordinator ensures a unanimous outcome of the transaction—eitherGlobal commit
needs

unanimous
local commits

all participants perform local commits or all perform local rollbacks—by initi-
ating two rounds of message exchanges with the participants (hence the name
two-phase commit). In the first round, the voting or preparation phase, the coor-
dinator conducts a form of voting, or poll, by asking every participant whether
it is ready to commit the transaction. For reasons that will become clear soon,
this message is usually called a prepare message or sometimes request-to-vote orFirst phase:

voting (prepare) request-to-prepare. A participant replies “yes” if it has all log entries on the stable
log that would be necessary for redoing the local updates; to this end it may
have to force its log buffer before sending the reply. If a participant has had a
recent crash or some other reason for not being able or willing to commit the
transaction’s local updates, it replies “no.” When the coordinator receives a yes
vote from all participants, it knows that the transaction can be safely commit-
ted at all underlying servers and announces the result of the voting phase by
sending a definitive “commit” message to every participant. This is the second
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of the two message rounds, the decision phase. Otherwise, when at least one
participant replied “no,” the coordinator announces “abort.” In either case, the
participants acknowledge the receipt of the coordinator’s message about the
transaction’s fate in the form of a special “ack” message.

This message exchange resembles the protocol in a wedding ceremony,

Second phase:
decision
(commit or
abort)

with the priest or judge in the role of the coordinator. (Obviously, getting mar-
ried is such a complicated endeavor that you need a third person to accomplish
it.) To make the analogy even closer, we assume that the bride and the groom
cannot talk to each other directly (i.e., neither of them hears what the other one
says) but only communicate with the coordinator (via messages, so to speak);
imagine, for example, that this is an Internet wedding. The priest asks the bride
whether she is willing to take the groom as her husband, and the bride replies
to the priest; then the groom is asked the same question and gives his reply.
Only if both bride and groom reply “yes” will the priest announce that they are
from now on a married couple; otherwise, the wedding party will be canceled.

The message exchange for the case of a positive transaction outcome is
depicted in Figure 19.1 as a sequence diagram, where time proceeds from top

Coordinator Participant 1 Participant 2

Send prepare

Send yes

Send prepare

Force-write
begin log entry

Force-write
commit log entry

Write
end log entry

Force-write
commit log entry

Force-write
commit log entry

Send yes

Force-write
prepared log entry

Force-write
prepared log entry

Send commit

Send commit

Send ack

Send ack

Figure 19.1 Sequence diagram for the two-
phase commit protocol in the case
of a global commit.
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to bottom, each of the three columns represents a process, and arcs that connect
two columns denote messages between the corresponding processes. The figure
also shows some local actions of the three processes, namely, writing log entries,
which we will discuss later.

Both protocols, distributed transaction commit and distributed marriage,
are susceptible to failures: messages can get lost (e.g., if the bride speaks too
low) or may be repeated (e.g., someone says “yes, yes, yes”), and any of the
involved parties, including the coordinator, may fail at any point (e.g., if the
priest faints or the groom runs away without saying a word). So the commit
protocol needs to be made failure resilient with regard to certain failure classes.
The failures that we consider here are as follows:Failure model:

message losses,
message

duplications,
transient

crashes

Message losses: a message does not arrive at the destination process be-
cause of a network failure (e.g., router failure or software failure in a
gateway).

Message duplications: some network component may end up duplicating
a message, for example, in an attempt to recover from a transient failure,
so that the same message arrives multiple times at its destination (but
possibly interleaved with other messages and therefore not trivial to
detect).

Transient process failures: one or more of the involved processes, partic-
ipants or coordinators, exhibit a soft crash (in the sense of Chapter 12)
and need to be restarted, but without any damage to data on secondary
storage.

It seems intriguing to distribute the responsibilities for handling the various
failure classes among the transactional federation and the underlying commu-
nication system. The latter could obviously be in charge of handling message
losses and duplicate messages. Message losses could be detected by requiring
system-generated acknowledgments for all messages as part of the network
protocol. So the communication software on a computer (often as part of
the operating system) would repeat sending a message until it receives an ac-
knowledgment from the communication software of the recipient. Duplicate
messages could be detected by establishing a session for every pair of communi-
cating processes with a session-specific message counter that is incremented by
one each time a new message is sent. This way the receiver can easily determine
when it receives a message for the second time, and it can even detect gaps in
a message sequence that can be used to guarantee order-preserving message
delivery regardless of the actual message routing. The TCP/IP protocol could
provide these guarantees if this was desired, and even more far-reaching com-
munication services, such as atomic multicasting to multiple recipients of the
same message, could be implemented as part of a powerful communication
system. However, these services, especially session-oriented communication as
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opposed to so-called datagrams, come at a high price in terms of their overhead.
Furthermore and most importantly, it turns out that two-phase commit cannot
be truly simplified by handling two of the above three failure classes already in
the communication system. Even with a perfectly reliable network there is no
reduction in complexity, say, by reducing the number of messages for the com-
mit of a distributed transaction, because of the need to cope with process fail-
ures among the participants and the coordinator. For these reasons, two-phase
commit does not make any assumptions about the underlying communication
system and works with datagrams as the simplest type of unacknowledged, ses-
sionless messages between processes (or, actually, between pairs of IP number
and port number in the prevalent Internet and LAN protocols).

All of the above failure types fall into the broad class of omission failures, as Distributed
consensus
(Byzantine
agreement)

opposed to commission failures, which would include messages with maliciously
manipulated contents (e.g., saying “yes” although the participant actually sent a
“no”). We assume that none of the participants of a transactional federation has
any interest in deceiving the other; therefore, we disregard commission failures.
Taking manipulated messages into account would lead us into an even broader
class of distributed consensus protocols, also known as Byzantine agreement. The
latter name stems from the hypothetical scenario that two generals planned to
jointly attack the ancient town of Byzantium (nowadays known as Istanbul in
Turkey) and needed an agreement on the timing of the attack. The generals’
armies were (assumed to be) on two hills so that they had to send messengers
for communicating the plan of attack. Messengers could get lost or, and this is
the point, could be caught by the enemy who could then deceive the generals
by sending their own people disguised as messengers. Note that manipulated
messages are critical here because unless both armies would attack at exactly
the same time, they would not be able to conquer Byzantium.

To leave the various analogies aside, the two-phase commit protocol Prepared log
entry for
in-doubt
transaction

sketched above needs to be able to cope with message and process omission
failures. In particular and most critically, it is possible that a participant replies
“yes” to the coordinator’s poll in the first message round and then crashes.
Now the participant can no longer simply perform local crash recovery as if
there were no distributed transactions at all. The fact that it is able to redo
the transaction’s local updates does not mean that this is the correct way of
recovery. Rather, the coordinator may decide that the entire transaction needs
to be rolled back because some other participant voted “no,” and this fact may
not even be known at the time the failed participant restarts (it is definitely
not known to the restarted participant itself ). The solution is that the restarted
participant needs to check back with the coordinator first before it can decide
to consider the transaction as a winner. This implies that the participant may
now learn from the coordinator that the transaction needs to be globally rolled
back. Therefore, every participant that votes “yes” must actually be prepared to
go either way—redo the transaction’s local updates or undo the updates. Fur-
thermore, the participant needs to have a means of detecting, during restart,
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that it already replied to the coordinator’s poll before the crash and now needs
to contact the coordinator (or wait until the coordinator resends the decision
once again). This problem is solved by writing a special log entry, called a pre-
pared log entry, to the participant’s stable log before sending a “yes” reply to the
coordinator. This does not require extra log forcing; when the log buffer is writ-
ten to disk it includes the prepared log entry and also all preceding undo/redo
log entries for the pending transaction (unless these were written to the stable
log even earlier). From this point on, the participant considers the transaction,
or actually, its local part, as prepared or in doubt, as the participant does not
yet know the decision about the transaction’s fate (global commit or global
abort). Note that before the participant sends its “yes” reply or if it replies “no,”
it can unilaterally abort the transaction and roll back its local part. Later on it
would simply reply “no” when asked by the coordinator, and the coordinator
would then have to announce global abort; so this option does not affect the
consistency of the transaction’s global outcome.

The fact that a participant becomes dependent on the coordinator, in thatSusceptibility to
blocking it has to communicate with the coordinator, once it is in the Prepared state can

be viewed as a certain loss of the participant’s autonomy. As the coordinator
may itself fail at the time a failed and restarted participant wants to contact the
coordinator to resolve its Prepared state (or messages between the coordinator
and this participant become lost), there is no guarantee that the transaction can
be globally committed or rolled back within a bounded time period. The same
holds even if the participant did not fail at all but simply does not receive any
messages from the coordinator after having sent its “yes” vote. So the partici-
pant may become blocked for an indefinite period by waiting for the decision
from the coordinator. Two-phase commit is therefore called a blocking pro-
tocol. This is a potentially critical aspect, as a blocked participant, without
knowledge about the transaction’s global fate, cannot release any locks that
are held on behalf of the prepared transaction’s local parts (and there may
be multiple prepared transactions at the same time). Recall from Chapter 11
on transaction recovery (i.e., rollbacks during normal operation) that this is
so because a rollback of the transaction, one of the two possible outcomes,
performs additional inverse operations that need to be reflected in the con-
currency control protocol. Two-phase commit has been criticized because of
this potential blocking property, but as we will soon show, there is no way of
ensuring global atomicity and global data consistency with absolutely no risk
of blocking. So operating federations of servers with distributed transactions
inherently implies that the participating data servers must accept some impact
on their autonomy. In practice, however, this issue is not nearly as critical as
it may sound, at least not with carefully operated, highly reliable servers and
network connections, and distributed transactions that do not span more than
a few (e.g., less than five) servers. There is impressive evidence for the practical
viability of two-phase commit in many industrial-strength information systems,
including Internet-based applications.
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In addition to the participants’ prepared log entries and the final commit
or rollback log entries, the coordinator needs to write additional log entries
to track the progress in the protocol. Specifically, the coordinator needs to
write a begin log entry before it starts its polling message round. This log entry
is usually forced to the stable log before the coordinator sends out messages.
Furthermore, the coordinator needs to write an end log entry at the end of the
second protocol phase once it has received ack messages from all participants,
but this log entry does not need to be forced immediately. In order to create
the end log entry at the appropriate time, the coordinator needs to have a list
of participants from which it anticipates ack messages, and this list should be
resilient to coordinator failures. To this end, the coordinator includes the list
of participants in the begin log entry.

These log writes are shown in Figure 19.1 for the case of a transaction

Begin log entry

End (forgotten,
done) log entry
for garbage
collection

commit. Analogous log entries are created when the transaction ends up as a
loser. In the figure, “force-write” means that a log entry is created in the log
buffer and the log buffer is then forced to disk. Note that the (nonforced) end
log entry, written by the coordinator at the end of the protocol, is important
for garbage collection on the coordinator log. At some point in the future, the
coordinator would like to discard log entries about distributed transactions that
have been terminated a while ago. Otherwise the coordinator log would grow
indefinitely, and log truncation is crucial for fast restart, especially given the
fact that the coordinator log is often embedded in a server’s regular log file.
So once the end log entry is on the stable log, the coordinator can forget the
transaction and consider its coordinator-specific log entries as garbage. For this
reason the end log entry is sometimes also referred to in the literature as a
“forgotten” or “done” log entry.

All these log entries serve to remember the last relevant state of a process,
with regard to an ongoing instance of the two-phase commit protocol. When
a process fails and is restarted, it resumes its part of the protocol in the last
locally remembered state. For example, when a participant is restarted in the
Prepared state, which is determined from the existence of a prepared log en-
try and the nonexistence of a commit or rollback log entry in the stable log,
it sends out its yes reply and waits for the coordinator’s decision. Note that
there is no way for the participant to detect from its stable log whether it has
already sent the reply before the crash or whether it crashed in between writing
the prepared log entry and sending the reply. Also note that this uncertainty
is inherent and cannot be eliminated by additional log entries, the reason be-
ing that it is not possible (with commodity hardware) to combine a disk write
and message send into an atomic unit. Such atomicity would itself require a
mechanism like distributed transactions; so assuming this kind of atomicity
for implementing distributed commit would be a circular and thus infeasible
argument. Likewise, when the coordinator fails and is restarted in the Begin

state—that is, with the begin log entry as the most recent trace of the trans-
action in the coordinator log—it simply reinitiates the poll by sending prepare



732 CHAPTER NINETEEN Distributed Transaction Recovery

Committed

Collecting

Initial

No1 or no2
/abort1;
abort2

/Prepare1; prepare2

Yes1 and yes2
/commit1;
commit2

Aborted

Ack1 and ack2 Ack1 and ack2

Initial1

Prepared1

Committed1 Aborted1

Prepare1/no1Prepare1/yes1

Commit1/ack1

Commit1/ack1 Abort1/ack1

Abort1/ack1

Coordinator Participant 1

Initial2

Prepared2

Prepare2/no2Prepare2/yes2

Commit2/ack2

Commit2/ack2 Abort2/ack2

Abort2/ack2

Participant 2

Forgotten Committed2 Aborted2

Figure 19.2 Statechart for two-phase commit protocol.

messages to all participants, possibly creating duplicate messages to some or
even all participants.

These considerations can be systematically cast into a finite state automa-Statechart
representation

of 2PC
ton that specifies the behavior of a participant or coordinator. Figure 19.2 gives
a full picture of the states through which the various processes proceed and
the messages that are sent and/or expected to be received in a given state.
More specifically, the figure shows a statechart specification—a formalism that
we already used in Chapter 1 in a different context, namely, to describe long-
lived business workflows. To briefly recapture this formalism, a statechart is
essentially a finite state automaton (or, equivalently, a set of communicating
automata whose cross-product forms the entire statechart) with logical condi-
tions attached to state transitions.

The ovals in Figure 19.2 show the states of a process; each state corre-
sponds to a specific log entry: the process is considered to be in this state if
and only if the stable log contains the corresponding log entry. In this sense
the coordinator’s Forgotten state corresponds to the presence of the end log
entry; the other states are self-explanatory. Initial states are indicated by in-
coming edges with a small point as origin; final states have no outgoing edges.
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Transitions are labeled with event-condition-action rules (ECA rules for short)
in the form “event [condition]/action,” where each component of the triple is
optional and omitted when insignificant (e.g., when no action is specified or
the condition is the constant “true”). A transition fires if the specified event
occurs and its condition is true; the state transition then executes the specified
action, the current state is left, and the new state is entered.

In our setting, events are message receipts and actions are message sends.
For example, the transition label Prepare1/yes1 from the first participant’s Ini-
tial1 state to the Prepared1 state indicates that the transition is made upon
the receipt of a prepare1 message and then sends the message yes1 as the tran-
sition’s action. Note that the origin and destination of each message is uniquely
determined by the protocol itself (e.g., the prepared1 message must originate
from the coordinator). The entire statechart of Figure 19.2 consists of three
orthogonal components, one for each process in the protocol, that can execute
in parallel but are synchronized by the message exchanges according to their
state transitions. Recall from Chapter 1 that orthogonal components are them-
selves full-fledged statecharts. The two participants have, of course, identical
behavior. They may thus be viewed as two instantiations of the same state-
chart, but we distinguish their states and messages by the number suffix to
avoid notational ambiguities.

19.2.2 Restart and Termination Protocol

The protocol of Figure 19.2 is robust with respect to failures in the sense that Process
behavior after
failures and
upon timeouts

each failed and restarted process resumes its work in the last remembered state.
However, this is not yet truly failure resilient in the sense that all processes
guarantee active progress toward a global commit or rollback, even after a
failure. For example, assume that the coordinator fails in the Collecting state
where it has already received one yes vote but is still waiting for the other
participant’s vote. If this other vote was sent during the coordinator’s outage, it
may never be sent again, and the restarted coordinator may end up waiting in
the Collecting state forever. Because messages can get lost without any of the
three involved processes failing, such problems can arise even during normal
operation. For example, we need to specify how the coordinator should behave
when it does not receive a vote from a participant for an extended period. An
obvious remedy could be to resend the prepare message once again and keep
doing so until the participant replies. Such periodic repetition of message sends
should be driven by timeouts.

Casting the above considerations into a systematic form leads us to two Restart and
termination
protocol

extensions of the basic two-phase commit protocol:

A restart protocol specifies how a failed and restarted protocol should
proceed.
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A termination protocol specifies how a process should behave upon a
timeout while it is waiting for some message.

As all participants follow the same protocol, we have to specify four cases:

1. The coordinator restart protocol: the continuation of the coordinator’s
protocol after a coordinator failure.

2. The coordinator termination protocol: the coordinator’s behavior upon
timeout, for example, when it suspects a failure of some participant or
a network problem.

3. The participant restart protocol: the continuation of a participant’s pro-
tocol after a failure of the participant.

4. The participant termination protocol: the participant’s behavior upon time-
out, for example, when it suspects a coordinator failure and is unable to
communicate with the coordinator.

Note that a process usually cannot distinguish whether a communication
partner has failed or whether there is “merely” a network problem. The ability
to distinguish these two cases would require additional networking services for
error diagnosis, but as network components such as routers can fail, too, there
is no foolproof way of accomplishing this kind of error analysis. Therefore, the
termination protocols handle both cases uniformly.

For the precise specification of restart and termination behavior, we extend
the statechart of Figure 19.2 by two kinds of additional transitions:

F transitions are triggered during restart after a process failure. Once the
process’s last state is determined from the log entries on the process’s
stable log, the transition is made without any further preconditions.

T transitions are triggered upon timeout and are also made without fur-
ther preconditions.

Figure 19.3 shows the complete 2PC statechart with T and F transitions
from all relevant states. Note that some states do not require any actions, such
as the Forgotten state of the coordinator. For other states, the termination or
restart behavior may require additional auxiliary states such as A-pending and
C-pending; these do not require any additional log entries, though, and are
thus not persistent across crashes.

The restart and termination transitions are crucial for progress toward a
global commit or rollback, as discussed in the following case analysis.

1. Coordinator restart: When the coordinator fails in the Initial state, it
automatically reinitiates the entire protocol (which does not require an
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Figure 19.3 Statechart for two-phase commit protocol with termination and
restart protocol.

additional F transition). Alternatively, the coordinator may simply forget
the transaction after a failure in this state, the effect of which would
be an implicit decision to abort the transaction. When the coordinator
fails in the Collecting state, it cannot remember whether it already
received some participant replies (at least not in this simple variant of
2PC) and needs to go back to the Initial state. Finally, and this is
the most interesting case, when it fails in the Committed or Aborted
state, it resends the commit or abort message, possibly duplicating some
messages, and waits (again) for the participants’ ack messages. So the
coordinator actively drives the protocol toward termination.

2. Coordinator termination: When the coordinator observes a timeout, be-
cause one or more participants have not replied (in time), it resends
messages according to its current state. The behavior is essentially the
same as in the coordinator restart protocol, and again, the coordinator
actively attempts to advance the states of the involved processes. In con-
trast to the restart protocol, the coordinator termination protocol could
be more selective in terms of resending messages. For example, in a



736 CHAPTER NINETEEN Distributed Transaction Recovery

situation where it has received the vote from one participant and a
timeout occurs for another participant, the prepare message does not
need to be resent to the first participant. For simpler presentation, this
refinement is not shown in Figure 19.3.

3. Participant restart: When a participant fails in its Initial state, it has not
yet given up its decision autonomy and can choose to unilaterally abort
its part of the transaction. When it is later asked for its vote, it would sim-
ply reply no. This option for unilateral abort is important because long
delays during a two-phase commit, with the pending transaction’s locks
being held for an extended period, could adversely affect the response
time of other transactions that are waiting for locks. On the other hand,
this option is available only in the Initial state. Once the participant
has entered the Prepared state, it must wait for the coordinator deci-
sion. This is why the F transition from the Prepared state simply leads
back into the same state. An alternative could be to make participants
more eager (after a failure and also upon timeouts) and have them ac-
tively contact the coordinator, or even other participants that may have
received the coordinator’s decision, to resolve the transaction’s in-doubt
state as quickly as possible. This extension is not specified in Figure 19.3,
but we will return to such considerations in Section 19.4.

4. Participant termination: The participant behavior upon timeout is essen-
tially the same as during restart. However, it could make sense to be
more patient in the Initial state, and rather than choosing the uni-
lateral abort option, the participant could stay for one or two timeout
periods in the Initial state. This is a reasonable alternative, as the tim-
ing in a server federation may have much higher variance than within
a single server, even during normal operation and especially in a wide
area network like the Internet.

Note that the statechart of Figure 19.3 provides complete algorithms for
coordinator and participant, as there are generic interpreters for statecharts. In
pseudocode form the algorithms look as follows:

2PC coordinator ( ):2PC
coordinator

algorithm
ParticipantReplies: array[1..max] of Boolean;

/∗ initiate protocol ∗/

n := number of participants;

for j:=1 to n do

ParticipantReplies[j] := false;

send prepare message to participant j;

od;

upon receiving a message from participant i:

case message type of
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yes: ParticipantReplies[i] := true;

if and(ParticipantReplies[j], j=1..n) = true then

write commit log entry; force ( );

for j:=1 to n do

ParticipantReplies[i] := false;

send commit message to participant j;

od;

fi;

wait for next message;

no: if rollback log entry already written

then ignore message else

write rollback log entry; force ( );

for j:=1 to n do

ParticipantReplies[j] := false;

send abort message to participant j;

od;

fi;

wait for next message;

ack: ParticipantReplies[i] := true;

if and(ParticipantReplies[j], j=1..n) = true

then write end log entry; fi;

/∗ termination protocol ∗/

upon timeout when waiting for a message:

case last coordinator log entry of

begin: for j:=1 to n do

if ParticipantReplies[j] = false then

send prepare message to participant j fi;

od;

commit: for j:=1 to n do

if ParticipantReplies[j] = false then

send commit message to participant j fi;

od;

rollback: for j:=1 to n do

if ParticipantReplies[j] = false then

send abort message to participant j fi;

od;

wait for next message;

/∗ restart protocol ∗/

analogous to termination protocol

2PC participant ( ): 2PC
participant
algorithm

upon receiving a message from coordinator:

case message type of
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prepare: if transaction not yet aborted then

write prepared log entry; force ( );

send yes to coordinator;

wait for commit or abort message;

else send no to coordinator;

fi;

commit: write commit log entry; force ( );

send ack to coordinator;

abort: if transaction not yet aborted then

roll back transaction:

write rollback log entry; force ( );

fi;

send ack to coordinator;

/∗ termination protocol ∗/

upon timeout when waiting for a message:

if prepared log entry does not exist then

roll back transaction;

else if no commit or rollback log entry exists then

wait for commit or abort message from coordinator; fi; fi;

/∗ restart protocol ∗/

analogous to termination protocol

From the formal specification of 2PC given in Figure 19.3 we can infer
a number of key properties. Most importantly, we can prove the correctness
of the 2PC protocol; for simplicity we disregard the coordinator’s Forgotten
state in the following and assume that Committed and Aborted are final states.

THEOREM 19.1

The 2PC protocol guarantees the atomicity of distributed transactions, in

that it ensures that if one process reaches a final state (i.e., its local Com-

mitted or Aborted state), then either all processes (i.e., all participants

and the coordinator) are in their Committed states or all of them are in

their Aborted states.

Proof

The proof assumes that all processes start in their initial states and con-

siders the possible state combinations as the protocol is executed. In the

following, we refer to the state combination of n + 1 processes, n partic-

ipants, and one coordinator, as the global state of the protocol. The set

of global states is a subset of the cross-product of the state sets of the

n + 1 individual processes. We refer to the latter as local states. Now we

can consider the set of possible computation paths, where a computation



19.2 The Basic Two-Phase Commit Algorithm 739

path is a feasible sequence of global states starting with the (n + 1)-tuple

(Initial, Initial, . . . , Initial) and entering new states as transitions

fire. The rules of the protocol, as specified by the statechart, eliminate cer-

tain combinations of local states as feasible global states. For example, it is

impossible for the system of processes to be in the global state (Initial,

Committed, . . . , Committed) where the first component of the (n + 1)-
tuple denotes the local state of the coordinator and the other components

refer to the participants. Such a global state is impossible because the partic-

ipants can leave their Initial states only after receiving a commit message

from the coordinator, but this message is sent only from the coordinator’s

Committed state and there is no path from this state back to the Ini-

tial state in the coordinator’s statechart. The set of feasible computation

paths constrains the possible global states even further, as we require that

a state must be reachable from the global Initial state by making state

transitions according to the given statechart specification.

After these preliminaries, it is now clear what we have to show for the

proof: no global state with at least one aborted and at least one committed

component is reachable via a computational path from the global Ini-

tial state. To see that such a global state is infeasible, we first observe

that a participant can enter its Committed (Aborted) state only after hav-

ing received a commit (abort) message, and such a message is sent only by

the coordinator and only when the coordinator is entering its Committed

(Aborted) state. So to arrive at the unacceptable global state, the coordi-

nator would have to be in the local state Committed at some point and

in the local state Aborted at another point. However, once the coordina-

tor is in either of these two states, it can never reach the other state, for

the simple reason that there is no path of connecting transition arcs be-

tween the Committed and the Aborted state. Therefore, a global state

in which some components are committed and others are aborted is not

reachable.

Proofs like the one just given that are essentially case analyses over a fi-
nite, but possibly very large, state space can even be automated using model
checking techniques. Model checking takes a (temporal) logical formula over
computation paths as an input argument and checks whether the given fi-
nite state automaton is a model of this formula, using clever techniques for
efficiency.

The above theorem guarantees a safety property in that a certain unaccept-
able outcome can be ruled out. Safety properties generally state that “nothing
bad will ever happen.” In addition, however, we are interested in a termination
guarantee, which falls into the class of liveness properties stating that “something
good will eventually happen.” So we would like to prove that the system of pro-
cesses will indeed reach either the global state (Committed, . . . , Committed)
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or the global state (Aborted, . . . , Aborted) after a finite number of state tran-
sitions (including T and F transitions from a state back to itself ). This liveness
property is captured in the following theorem under the assumption that there
is no infinite number of failures so that all processes are running for a sufficiently
long period of time.

THEOREM 19.2

For a finite number of failures (process failures with subsequent restarts or

message losses), the 2PC protocol will reach a final global state (with either

all participants committed or all participants aborted) with a finite number

of state transitions.

Proof

With a finite number of failures and a bounded restart time for each process,

the system of processes performs a finite number of transitions before it will

eventually reach a sufficiently long stable period to complete the protocol.

From this point a finite number of transitions will bring all processes to a

final local state because no local state is ever entered more than once unless

there is a failure or timeout.

So in the worst case none of the processes has made any progress during

the period of failures, and all of them will start from their Initial states

in the stable period. In reality, of course, the failure period and the stable

period are not separated. So some processes make progress while others

fail and restart, and this brings these processes even closer to a final state.

A general assumption throughout all our previous explanations has been
that the commit protocol is initiated only when the actual transaction execution
is finished. So none of the participants should perform any further data actions
(i.e., reads or writes of data items) once the commit protocol has begun. In
practice, this assumption, albeit extremely intuitive, does not always hold for
the reason that some data servers may have deferred some special operations
until commit time. This may apply, for example, to the checking of declaratively
specified consistency constraints and the modification of derived data to rectify
temporary inconsistencies. Such deferred operations can be implemented at the
application level using SQL triggers, but servers may also adopt such an option
for internal use (e.g., to check foreign key constraints in relational or object
relational databases and initiate cascading updates at commit time). These
options may be encapsulated by the involved servers, so that the transaction
coordinator is not necessarily aware of them.

The problem with these kinds of application-level deferred updates is thatReinfected
participants a participant that had already prepared itself and voted yes may need to per-

form additional updates during the second phase of the 2PC protocol. Such
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a participant is called reinfected. The solution is for the coordinator to wait with
its decision until it is definitely known that all of the potentially possible de-
ferred updates have been done and all participants are truly prepared. At this
point the coordinator may also have to update its list of participants, which is
relevant for determining from which processes the coordinator anticipates ack
messages. This can be done by simply including in the commit or rollback log
entry the network addresses of all those additional participants that were not
yet known at the time the begin log entry was written.

For a participant the reinfection problem implies that the participant may
need multiple prepare steps, namely, when it prepared itself and voted yes the
first time and subsequently when it becomes reinfected by the request for per-
forming a deferred operation that could originate from another participant. So
a participant that is already prepared and receives an additional data operation
request from a participant that is about to prepare itself needs to perform the
operation and prepare itself once again before it can reply that the requested
data operation has been successfully executed. If the data operation fails, there
is no harm, as the operation’s requestor cannot be prepared yet and would then
vote no.

19.2.3 Independent Recovery

From our earlier discussion we know that 2PC is a potentially blocking pro- Independent
process recoverytocol, which is a disadvantage. Now the natural question is whether we could

modify the protocol into a variant that would never block regardless of which
failures occur. More precisely, what we would wish to construct is a protocol
that ensures independent recovery for each process. This means that a failed and
restarted process can always make local transitions into a local final state with-
out communicating to any other process. We will soon see that such a protocol
is, in full generality, impossible, but under special assumptions we may be able
to guarantee independent process recovery. More specifically, we assume that
at most one process failure occurs during the execution of the commit protocol,
and no message losses occur other than the ones that result from the process
failure. This assumption is called the single-failure assumption.

THEOREM 19.3

Under the single-failure assumption, independent recovery can be guaran-

teed by an appropriately designed distributed commit protocol.

Before we outline the proof of this theorem, we discuss why it is hard to
guarantee independent recovery. For the purpose of this discussion we ignore
the coordinator’s Forgotten state (which is relevant only for garbage collec-
tion) and assume that Committed and Aborted are the actual final states. The
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critical problem is that a participant can be in its Prepared state while another
participant is already in a final state that can be either Committed or Aborted.
Such a situation rules out independent recovery, for the prepared participant
cannot determine from its own local state whether the other participant is
committed or aborted. This observation is stated in more general terms in the
following lemma.

LEMMA 19.1

A distributed commit protocol that contains reachable global states with the

property that one component is in a nonfinal local state while another com-

ponent can be in multiple local final states cannot guarantee independent

recovery even under the single-failure assumption.

The trick is to eliminate the troublesome situation that the lemma refers to.
When a component is in a local nonfinal state as part of some global state, there
should be only a single possibility for other components to be in a final state. So
when one participant is merely prepared, all possible computation paths that
lead to such a configuration must constrain the set of possible final states that
other processes may have reached to a single choice, and this choice must be the
same for all computation paths that continue from the given configuration. The
protocol that ensures independent recovery is a variation of 2PC that modifies
the meaning of the Prepared state of a participant and adds “Buffer state”
to the coordinator’s statechart in between the coordinator’s Collecting and
Committed states. When a participant fails in the Prepared state or observes
a timeout in this state, it simply chooses to proceed into the Aborted state. To
guarantee unanimous outcome among all processes, the coordinator’s behavior
needs to be adapted to this specific choice. To this end, it can no longer make
a direct transition from its Collecting state into the Commit state (because of
the above lemma). So when the coordinator decides to commit the transaction,
it merely enters a Buffer state named Willing-to-commit and sends the
commit message to all participants. At this point all participants must be in their
Prepared state if no process failure has occurred. If a participant fails in this
global state and later proceeds independently into the local state Aborted, the
coordinator will notice a timeout for the acknowledgment from this participant.
This is the signal for the coordinator that a process failure has occurred; note
that under the single-failure assumption there is no other explanation. In this
case the coordinator makes a transition from the Willing-to-commit state to
the Aborted state. Otherwise, if the coordinator receives all acknowledgments,
it does indeed proceed into the Committed state. This consideration completes
the constructive proof of Theorem 19.3.

As the outlined proof shows, the constructed protocol is highly tailored
to the single-failure assumption. The same construction would not work with
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multiple failures or a combination of a single process failure and message losses.
In fact, the major impossibility result in the area of distributed transactions is
the following theorem.

THEOREM 19.4

There exists no distributed commit protocol that can guarantee independent

process recovery in the presence of multiple failures.

Proof

Consider a system with two processes (i.e., one coordinator and one par-

ticipant) and assume that both can perform independent recovery from

every local state. When there are no failures, the distributed commit pro-

tocol proceeds on a computation path with global states G0, G1, . . . , Gm

with Gm having all components committed. When a process fails and is

restarted in the initial state G0 (or detects a timeout in this state and

thus suspects that the other process has failed), it should independently

proceed into its local aborted state, and this holds for both processes.

So along the computation path from G0 to Gm there must be a state

Gk with minimum k such that one of the two processes, say, Process 1,

would independently recover into the local committed state from Gk, but

both processes would independently recover into their local aborted states

from Gk−1. Since the two processes communicate via messages and do

not have globally shared storage, the global state transitions in the con-

sidered computation path change only one component at a time. So we

can assume that only the local state of Process 1 has changed in the step

from Gk−1 to Gk. Now, if the other process, Process 2, would fail in Gk,

too, it must still independently recover into its local aborted state from the

global state Gk. So Gk is a state that would lead to inconsistent results

if independent recovery were possible. Therefore, distributed commit with

all processes either committing or rolling back is impossible with indepen-

dent recovery once more than one failure can occur during the protocol’s

execution.

The multiple-failure situation that we considered in the proof of
Theorem 19.4 is not unrealistic: double failures within a short time window of
vulnerability, albeit very infrequent, do occur. So we have to accept that dis-
tributed commit and independent process recovery cannot be reconciled for
fundamental reasons. In other words, the potential for blocking under certain
conditions is an inherent property of every conceivable commit protocol, and
there is no point in searching for a protocol that would eliminate this weak
point of 2PC. (As we will see in Section 19.4, there are other reasons for and
ways of improving 2PC.)
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Double failures are not the only cause for the impossibility of independent
recovery. There are other situations in which two or more of the involved pro-
cesses may perceive timeouts as if there were a double failure but all processes
may still be running. Network partitioning is the most extensively studied failure
class along these lines. This type of failure situation occurs when a router or gate-
way fails, all processes are still alive, but are now partitioned into two or more
subsets such that the processes within a subset can still communicate, but the
communication across subsets has broken down because of the router failure.
Processes in one subset may interpret this as if the processes in another subset
had failed, and vice versa; hence the indistinguishability from a double failure.
The literature on communication networks has looked for ways to distinguish a
network partitioning from process failures. One obvious approach is to reduce
the probability of network partitioning by providing multiple communication
paths for each pair of processes, so that messages can be dynamically rerouted.
Indeed, modern network topologies like the Internet are unlikely to exhibit
network partitioning with a single router failure, but security firewalls and the
fact that many routers run the same highly complex and thus failure-prone
software again introduces single points of vulnerability. The bottom line is that
network partitioning is very infrequent, but cannot be completely ruled out.

19.3 The Transaction Tree Two-Phase
Commit Algorithm

In the previous section we have left open which of the processes involved

Network
partitioning
perceived as

double failure

in a transaction takes the role of the coordinator. A judicious choice of the
coordinator depends on many aspects:

Transaction initiator: Who is the initiator of the transaction? That is,
where does the program run that issues the commit or rollback request?
Is it a client (e.g., a home PC hooked up to the Internet) or an application
server (e.g., a Web server or an ORB)? Even a database server may itself
spawn new transactions from executing stored procedures.

Reliability and speed of participants: How many participants does the
transaction involve? What are the characteristics of the various partici-
pants: how reliable is a participant, how fast is its network connection,
how fast will it respond in the message rounds of the commit proto-
col (depending on the participant’s current load, speed of its hardware,
etc.)?

Communication topology and protocol: What network protocol does the
transaction initiator use to communicate to the participants while the
transaction is executing, and to what extent and by what means do par-
ticipants communicate to each other? For example, does the initiator
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establish sessions with each participant and participants do not com-
municate at all with each other, or is it possible that a participant that
receives a request for an update operation from the initiator itself issues
further requests to other data servers (e.g., because an SQL trigger fires
or an email notification is initiated) using datagrams or newly opened
sessions? In the latter case the newly involved servers dynamically join
the distributed transaction as additional participants.

In the simplest and seemingly most natural case, the transaction initiator is
chosen as the coordinator. This makes perfect sense if the initiator is a reliable,
fast, and well-connected application server. If the initiator is a client, it often
makes more sense to choose one of the participating data servers to fill the
coordinator role in the commit protocol. This choice can be made dynami-
cally when the initiator issues its commit request (via some local stub software
that can make this choice or contact one of the servers to choose a coordina-
tor). This approach is straightforward to implement when all participants can
communicate with each other without extra costs.

For example, in a LAN the network addresses of all servers are known,
and everybody can talk to everybody else using inexpensive datagrams or
even newly established sessions without incurring unacceptable overhead. In
a WAN environment like the Internet, on the other hand, when a participant
“transitively” submits requests to dynamically added participants, it is not at all
self-guaranteed that the initiator knows (the network addresses of) all partici-
pants at the time it issues the commit request and can communicate with all of
them directly and efficiently. Even if direct communication were, in principle,
possible, it might require opening new sessions, which could incur unacceptable
delays.

These considerations reveal three important observations:

During the execution of the transaction, the involved processes dynam- Process trees
rooted at
transaction
initiator

ically form a tree with the initiator as the root. Each edge in this process
tree corresponds to a dynamically established communication link over
which a process (i.e., the initiator or a participating server) submits a
request (e.g., an SQL update command or a remote method invocation)
to another participant and receives the corrresponding reply (e.g., a re-
turncode). These edges are created whenever a new participant is added
to the transaction. Once a link between two processes is established, it
can be reused for subsequent requests.

For the execution of the commit protocol (i.e., when the initiator has is-
sued its commit request), the process tree could be flattened by choosing
a coordinator, for example, the initiator itself, and having the coordina-
tor talk to each process in the tree directly (i.e., without using other
processes as intermediate nodes). Such flattening is feasible in most
cases because all processes could piggyback their network addresses and
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those of their callees upon the reply message that they send to their caller
anyway; so at commit time the initiator could have gathered all neces-
sary network addresses.

However, in a federation of servers, some servers may encapsulateFlattened or
hierarchical

commit
the fact that they outsource some requests to other servers, hiding this
fact from their own callers, and could thus be unwilling to pass the net-
work addresses of their callees farther up in the tree. In this case, or if
the flattening of the communication topology is too expensive because
it may require establishing new sessions, the commit protocol needs to
be organized in a hierarchical manner. The root of the process tree serves
as a global coordinator, and all other nodes are both participants with
regard to their caller (i.e., parent in the tree) and coordinator for their
callees (i.e., children) and, more generally, their subtree (i.e., descen-
dants). For leaf nodes, which do not have children, the coordinator part
is, of course, unnecessary. For this kind of hierarchical commit proto-
col, the communication topology that has been used during transaction
execution is reused for the commit protocol.

These two cases—flattened commit protocol and hierarchical com-
mit for a tree of processes—are depicted in Figure 19.4.

Flattening can be seen as a special case of restructuring the communica-
tion tree that arose during transaction execution for the purpose of opti-
mizing the execution of the commit protocol. For example, by picking
some inner node of the tree as the coordinator based on this node’s
high reliability, it could become the root of a newly constructed com-
mit communication tree. The commit communication tree could reuse
all existing communication links and simply “rotate” the tree around
the newly chosen coordinator. We will come back to such techniques in
Section 19.4.

Communication during
transaction execution

Communication during
commit protocol

Process 2 Process 4 Process 5

Process 1

Initiator
(Process 0)

Flattened 2PC

Process 3

Process 2 Process 4 Process 5

Process 1

Hierarchical 2PC

Process 3

Initiator
(Process 0)

Figure 19.4 Flattened vs. hierarchical commit protocol for a tree of
processes.
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In the hierarchical commit protocol the message flow and writing of log
entries follows from the two roles of an intermediate node, participant with
regard to its caller and coordinator for its subtree, in a straightforward manner. For
example, when a nonroot, nonleaf process receives a prepare message, it must
not immediately write its prepared log entry and reply yes to the caller. Rather,
because its reply will be interpreted as the unanimous vote of the entire subtree,
it first needs to take care of its own callees. So the process first sends prepare
messages to its children. This message flow cascades down the tree in a recursive
manner until it reaches the leaf nodes, which are mere participants. Then a reply
wave moves upward in the tree. When a nonroot, nonleaf process receives yes
votes from all its children, it can finally force-write its prepared log entry and
send a yes vote to its parent. If there is at least one no vote farther down in the
tree, all ancestors of the process that gave this negative reply are guaranteed to
reply no to their parent as well. In the second phase of the protocol, a commit
message wave moves down the tree, and finally ack messages are collected.

The hierarchical message flow is depicted in Figure 19.5 for the case of a
global commit with the processes and topology from Figure 19.4. In the figure,
Processes 1 and 3 are participants of the protocol coordinated by the initiator,
Process 0. At the same time, Process 1 is the coordinator for its child Process 2,
and Process 3 coordinates the participants 4 and 5.

Initiator Process 1 Process 2 Process 3 Process 4 Process 5

Prepare

Prepare

Prepare

Commit

Commit

Commit

Commit

Commit

Prepare

Prepare

Yes

Yes

Yes

Yes

Ack
Ack

Ack

Ack

Ack

Yes

Figure 19.5 Message flow for hierarchical 2PC in the com-
mit case.
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The correctness of hierarchical 2PC follows directly from the fact that it
is simply a finite number of instantiations of the basic 2PC protocol. All we
need to additionally ensure is that all intermediate nodes behave consistently:
if they decide, as a coordinator for their subtree, that the subtree should com-
mit the transaction, they must vote yes to their parent, and the same must
analogously hold for the abort case. This invariant is guaranteed. As for the
restart and termination protocol, we can simply adopt the specification from
Section 19.2.2. Each intermediate node needs to execute the statecharts for
the coordinator role and the participant role simultaneously, and simply has to
initiate the corresponding T and F transitions in both automata during restart
or upon timeout.

19.4 Optimized Algorithms for Distributed Commit

Two-phase commit incurs different kinds of execution costs and potential bot-
tlenecks that have led to a number of possible optimizations. The performance
dimensions that are addressed by a suite of extensions are the following:

1. Reducing the number of messages and the number of log writes, es-Fewer messages
and (forced) log

writes
pecially forced log writes, that are needed by the protocol, in order to
minimize run-time overhead and maximize the transaction throughput
that can be sustained with given computer and network resources.

2. Shortening the “critical path” from the begin of the commit protocolShorter critical
path to the point when local locks can be released, in order to minimize local

lock contention and response times.

3. Reducing the probability of blocking, or equivalently, striving for inde-Reduced
potential of

blocking
pendent recovery under as many cirumstances as possible.

The number of messages and forced log writes can be reduced by introduc-
ing specific conventions for the presumed behavior of a process (i.e., its default
reaction) in the absence of more explicit information. For example, if a par-
ticipant did not force a commit or abort log entry and could thus lose this
information in a local crash, this participant could by default contact the co-
ordinator to obtain the missing information. The difficulty in working out this
idea is to ensure an appropriate, globally consistent behavior even if the coor-
dinator has already truncated its log and forgotten the transaction. Protocols
along these lines are presented in Section 19.4.1.

Fewer messages and log writes can generally speed up the commit protocol
and thus contribute also to the second dimension of shorter time until lock
releasing. Parallelizing the message waves down and up an entire process tree
can have a similar effect, and so does the early elimination of subtrees from the
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protocol’s message rounds when these subtrees can be inferred to be irrelevant.
To this end, a read-only subtree optimization for the hierarchical commit protocol
will be presented in Section 19.4.2.

In the presence of failures, another key for minimizing the critical path
of participants is to make a judicious choice for the coordinator. It can be
beneficial, for example, to choose the most reliable server as coordinator or
the one that can communicate with all other participants most efficiently,
within existing sessions, to minimize message turnaround times. Such consid-
erations require a dynamic form of coordinator transfer that will be discussed in
Section 19.4.3.

All of the above optimizations also implicitly help to reduce the blocking
probability, as they aim to shorten the duration of the entire protocol and thus
the time window of susceptibility to blocking, and to reduce the probability
of a coordinator failure or nonreachability of the coordinator. In addition, the
2PC protocol itself can be extended, for example, by introducing additional
message rounds, to completely eliminate blocking in restricted situations such
as single failures and to minimize the blocking probability in the general case.
Approaches along these lines have sometimes been called nonblocking com-
mit protocols, although they can have this property only under very special
assumptions (see Section 19.2.3). Section 19.4.4 will discuss these extended
protocols.

19.4.1 Presumed-Abort and Presumed-Commit Protocols

The basic 2PC protocol as described in Section 19.2, when executed in its flat
form with n participants and an additional coordinator, incurs a total execution
cost of 4n messages and 2n + 2 forced log writes. The number of forced log
writes is derived from two log entries for each participant, namely, the pre-
pared and the commit or rollback log entry, and two forced log entries for the
coordinator, namely, the begin and the commit or rollback log entry.

The forcing of the coordinator’s begin log entry is necessary so that the Begin log entry
reconsideredcoordinator can remember the transaction and the need for driving its termi-

nation in the case that the coordinator fails before the commit or rollback log
entry is written. Therefore, if the process that fills the coordinator role has
already written some other evidence of the transaction’s existence to its stable
log during the transaction’s execution, there is no need for the begin log entry.
This is typically the case when the coordinator is an application server that most
likely has stably tracked the transaction when it began anyway. Likewise, when
the coordinator is one of the participants and does not separate the coordinator
log from the process’s regular stable log, it could first prepare itself, and then
its prepared log entry would also serve as a stable reminder of the transaction’s
existence. So in many cases the number of forced log entries can be reduced to
2n + 1 without explicit optimizations. Even if the coordinator did not have any
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stable clue about the transaction, there is no absolute need for the begin log en-
try: if the coordinator forgets the transaction after a failure and does not resume
the commit protocol, the transaction could simply be regarded as a loser, and
the participants could implicitly learn this by not hearing from the coordinator
for an extended (timeout) period or by receiving something like a “transaction
unknown” message when “pinging” the coordinator. This outcome could unfor-
tunately arise even if all participants were able to commit the transaction, and
we initially introduced the forced begin log entry exactly to avoid this situation.

The above discussion shows that there is a potential for reducing the mes-Basic 2PC =

presumed-
nothing (PN)

protocol

sage and forced logging cost of 2PC by making specific presumptions about a
process’s behavior when a certain piece of information is missing. This consider-
ation leads to two different variations of the 2PC, known as the presumed-abort
(PA) and presumed-commit (PC) protocols: one protocol whose default beha-
vior is to roll back a transaction when there is no information about the global
decision and also no way of reconstructing this information, and one proto-
col that presumes that the transaction should be committed in this kind of
situation. Of course, these protocols need to be cautiously designed to rule
out inconsistent behavior among the participating processes. Because the basic
2PC does not make any presumptions along these lines, it is also known as the
presumed-nothing (PN) protocol.

We may miss certain pieces of information during the commit protocol,
simply because we do not force certain log entries or do not send specific types
of messages: this is exactly the optimization potential for the protocols based
on presumptions. More specifically, the candidates for such relaxation are

the coordinator’s begin log entry (see the discussion above),

the participants’ commit or rollback log entries, whose forcing could be
avoided, as this information can be obtained again from the coordinator
(who must have a stable commit or abort log entry),

the participants’ ack messages in the second phase of the commit
protocol.

For loser transactions it is indeed possible to drop all three of the abovePresumed-abort
(PA) protocol pieces of information without risking globally inconsistent decisions. Assume

that no begin log entry is written, the participants’ rollback log entry is not
forced, and that no acknowledgments are sent during the second phase. With-
out acknowledgments the coordinator would either have to keep its log entries
about a transaction forever, adversely interfering with log truncation, or we
would have to assume that it can discard its log entries about a transaction
regardless of the presence or absence of ack messages. Let us assume the lat-
ter. When a participant fails after having received the coordinator’s decision
(the abort message) but before forcing its local rollback log entry, it would
contact the coordinator to query the transaction’s outcome. If the coordinator
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still has the rollback log entry on its stable log, it can tell the inquiring partic-
ipant once again that the transaction is a loser. If the coordinator has already
garbage-collected all log entries about this transaction, it could still resort to
the presumption that, in the absence of any information, the transaction should
be aborted. This default behavior guarantees a globally consistent transaction
outcome for the following reason. After having forgotten the transaction (i.e.,
garbage-collecting its log entries) the coordinator can no longer discriminate
the state of the transaction before the coordinator’s commit or rollback log
entry has been written (i.e., the first phase of the protocol) and the state after
the entire protocol is considered finished by the coordinator. Presuming that
the transaction should be aborted in both cases is perfectly fine and leads to a
globally consistent decision, and therefore the coordinator does not really have
to distinguish the two cases. Furthermore, this shows that even the coordinator
itself does not have to force the rollback log entry to its stable log, as the pre-
sumed decision does not depend on the stability of this log entry. The protocol
that we have just described is known as the presumed-abort (PA) protocol.

The described optimization works only for loser transactions; for winner
transactions the presumed-abort protocol cannot afford missing all three of
the above mentioned pieces of information. To see the problem, reconsider
the scenario that we just discussed, with the decisive difference that the co-
ordinator now sends a commit message. When the coordinator is pinged by
a participant that has lost its nonforced commit log entry in a local failure,
the coordinator is in trouble if it can no longer distinguish whether it is still
in the protocol’s first phase or already in a stage after the entire protocol is
finished and log entries are discarded. In the first case, the presumption that no
information about the transaction means that the transaction should be rolled
back is still acceptable, but in the second case the same presumption would
tell the inquiring participant to roll back the transaction, although it is possible
that other participants have already committed the transaction. The solution
to this problem is that for committed transactions (1) the participants must
still force commit log entries to their local logs, and (2) they also must still send
ack messages to the coordinator to notify the coordinator about the fact that
their local commit log entries are stable, and garbage collection can now start
legally discarding the coordinator’s information about the transaction. If either
of these two measures were missing, inconsistent decisions could arise.

The complete behavior of the presumed-abort protocol is depicted in
Figure 19.6 for both the rollback and the commit case, in the form of se-
quence diagrams. The figure’s scenario applies the protocol to a process tree
consisting of the coordinator as the root, Processes 1 and 2 as direct children
of the coordinator, and Process 3 as a child of Process 2. So Process 2 needs to
execute both the participant role (with regard to its parent, the coordinator)
and the (sub-) coordinator role (with regard to its child, Process 3). The figure
shows that once the presumed-abort optimization is fully understood, applying
it to the hierarchical form of 2PC is straightforward.
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Figure 19.6 Messages and log entries for the presumed-abort protocol.

So the presumed-abort protocol saves messages and forced log writes for
loser transactions, but is identical to the basic 2PC for winner transactions.
It is therefore intriguing to construct a dual version of presumed abort, the
presumed-commit protocol, whose basis is the presumption that a transaction
with missing information should be considered committed. By analogy or su-
perficial symmetry arguments the hope would be that presumed commit would
not need to force commit log entries and could also eliminate ack messages for
the much more frequent case of winner transactions. Unfortunately, this ver-
sion of presumption is much more intricate than the presumed-abort case, the
reason being that (unilateral) rollback is always feasible in the first phase of the
commit protocol, but commit really requires a global decision. In colloquial
terms, committing a transaction is a constructive endeavor that requires a true
commitment of all involved parties with stable memory of the fact that specific
promises were given. Rolling back a transaction, on the other hand, is like a
destructive act, much easier to achieve than moving forward.

To see this fundamental asymmetry between commit and abort, assume
that the presumed-commit protocol would indeed not force-write commit log
entries and would not include ack messages. So when a participant is restarted in
the prepared state and queues the coordinator about the transaction’s outcome,
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the coordinator can be in one of three different stages: (1) in the first phase of
the commit protocol before the coordinator’s commit log entry is written, (2)
in the second phase with a stable commit log entry still available, (3) after the
entire protocol with all log entries for the transaction already garbage-collected.
Again, the problem is that the coordinator cannot distinguish the first and the
third stage, and its presumption should be consistent with the correct behavior
in these two cases. Unfortunately, the appropriate decisions in the first stage, to
initiate rollback, and the third stage, to consider the transaction as committed,
are incompatible with each other. So the coordinator must definitely force-
write its commit log entry to discriminate the two cases, and it must not discard
this critical piece of information before receiving acknowledgments from all
participants in the second phase of the protocol.

Alternatively, we can work out another solution with force-written com- Presumed-
commit (PC)
protocol

mit but without ack messages. So once the coordinator’s commit log entry is
garbage-collected, later inquiries by participants should be answered according
to the commit presumption. To make sure that this third stage of the coordina-
tor is not confused with the first stage, the coordinator must have a stable log
entry that captures its being in the first phase of the protocol. We can use the
begin log entry of the basic 2PC for this purpose, but now forcing this entry to
the stable log is a must for correctness. These considerations are the character-
istic features of the actual presumed-commit (PC) protocol: forced begin and
commit log entries at the coordinator, no ack messages for winner transactions,
but explicit acknowledgments for losers. So the participants do not need to
force the commit log entry to their local log, which is still a significant savings
of logging costs.

Figure 19.7 depicts the behavior of the presumed-commit protocol for
both the abort and the commit case, in the form of sequence diagrams. The
figure’s scenario is identical to the one in Figure 19.6, and again we see that the
generalization to hierarchical commit for a process tree is straightforward. Note
that the intermediate node in this scenario, Process 2, would naturally force-
write a commit log entry in its role as a subcoordinator in the case of transaction
commit. However, this forcing is actually unnecessary for intermediate nodes,
as they could reobtain this information from the top-level coordinator, that
is, the root node. So the hierarchical presumed-commit protocol may contain
additional, minor optimizations compared to the mere cascading of presumed-
commit protocol instances.

In summary, the presumed-abort variant of the 2PC protocol for n par-
ticipants saves n messages (the ack messages) and n + 2 forced log writes for
aborted transactions (including the coordinator’s begin log entry, see the discus-
sion at the beginning of this subsection), and there are no savings for committed
transactions. The presumed-commit protocol, on the other hand, saves n mes-
sages and n forced log writes (for the participants’ commit log entries), and there
are no savings for the case of aborted transactions. So the savings in network
and disk resource consumption are slightly higher for the presumed-abort
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Figure 19.7 Messages and log entries for the presumed-commit protocol.

protocol, but it optimizes the much more infrequent case. However, as we
will see in Section 19.4.2, both of these presumption-based protocols can be
combined with other optimizations, most importantly, the read-only subtree
optimization. It turns out that the combination with this other optimization
gives a significant advantage to the presumed-abort protocol. We will see that
intermediate nodes in a process tree need to force-write a begin log entry un-
der the presumed commit protocol even if their entire subtree is read-only,
and this cost does not arise with the presumed-abort protocol. For this reason,
presumed abort has been considered as the method of choice and has been
selected as the basis for the industry standard XA, the officially standardizedXA standard
version of the hierarchical presumed abort 2PC. However, for the flattened
version of 2PC, presumed commit is certainly the more attractive approach.

An interesting variation of the presumed-commit protocol is to eliminatePresumed-
commit with

nonforced begin
log entry

the need for forcing the begin log entry at the expense of making garbage
collection more complicated and potentially incomplete. The idea is to infer
from the coordinator log approximative, but conservative, information about
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the identifiers of transactions that might have been active at the time of a coor-
dinator failure. A specific technique for this purpose could be based on main-
taining lower and upper bounds for those transaction identifiers that would
be periodically written to the log (i.e., in a lazy, usually nonforced manner).
During restart after a crash the coordinator is able to refine this candidate
set into a set of potential loser transactions about which pending participants
may possibly still send inquiries, by removing all transactions with a commit
log entry. This set of potential losers is approximative in that it may contain
transaction identifiers of transactions that did not enter the commit protocol
or even nonexisting transactions; however, it is conservative in the sense that
it never contains a winner transaction. Now the trick is to keep this list of
potential losers with possibly outstanding inquiries in compressed form and
separately from the log itself. This way the stable log can be garbage-collected
as usual, but the potential loser list may have to be kept forever. When a
participant later queries the outcome of a transaction, the coordinator pre-
sumes commit only if the transaction is not in the potential loser list. So
the list allows the coordinator to discriminate transactions that were in the
first stage (i.e., were not yet decided) from those whose commit has already
been forgotten. The size of the list has an upper bound on the order of the
number of transactions that were active while failures occurred throughout
the system lifetime. So under usual circumstances with sufficiently infrequent
crashes, the list requires only a modest amount of space (say, a few megabytes
at most).

Presumed-abort (PA) and presumed-commit (PC) 2PC (and also the Coexistence of
presumed abort
and presumed
commit

presumed-nothing (PN) basic 2PC) can coexist within the same federation of
servers. Usually, however, a consistent choice must be made for each trans-
action: either all participants and the coordinator of a transaction employ
the presumed-commit protocol, or all of them employ the presumed-abort
protocol. The choice needs to be made at the time the transaction initiator
issues the commit (or rollback) request and the actual commit protocol
begins. The choice can be made dependent on the number of participants, their
estimated reliability, the probability of certain subtrees being read-only, and
so on.

In a heterogeneous federation of servers it may, however, be the case that Presumed-any
protocola given server can handle only one out of the three protocols PA, PC, and

PN, and these capabilities vary across servers. So when a distributed trans-
action involves servers with different capabilities, the problem arises how to
reconcile PA, PC, and PN within a single transaction. The solution, recently
published as the presumed-any protocol, is to ensure that the coordinator in-
cludes sufficient information in the form of forced log entries to cope with
both PA and PC participants; no special steps are necessary for PN, as this
option essentially boils down to either PA or PC depending on the given trans-
action’s outcome. So a presumed-any coordinator force-writes begin, commit,
and rollback log entries, and it expects acknowledgments from PA participants
for committed transactions and from PC participants for aborted transactions.
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Figure 19.8 Messages and log entries for the
presumed-any protocol.

In a process tree the steps to cover both protocols must be made by each
subcoordinator (i.e., intermediate node in the tree) as well. In addition, the
coordinator (and again also subcoordinators) needs to know which of its chil-
dren uses which protocol. This way the coordinator knows when it can expect
acknowledgments and when it cannot. Note that this information is crucial
for the coordinator to facilitate log truncation. The coordinator remembers
this information even across failures by including the network addresses of
its participants and their choice of PA, PC, or PN in the stable begin log
entry.

Details of this unified presumed-any protocol can be found in the liter-
ature mentioned in the Bibliographic Notes for this chapter. For illustration,
Figure 19.8 shows a possible scenario with a coordinator and a PA and a PC
participant as direct children for a winner transaction.

19.4.2 Read-Only Subtree Optimization

In a process tree the coordinator does not know a priori all participants of
the transaction. Some participants may not have performed any updates on
their local data; these may include both intermediate nodes in the tree and leaf
nodes. However, it is often impossible to know these read-only participants at
the time the coordinator initiates the commit protocol. Therefore, an important
optimization is to eliminate read-only participants from the commit protocol’s
message and logging efforts as early as possible. To this end, we can introduce
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a third kind of vote, called “read-only,” in addition to the two options “yes” or
“no” that we considered so far. A participant that has voted “read-only” in the
first phase can be eliminated from the second message round: it does not need
to receive the coordinator’s decision. When it receives the prepare message
and has sent its read-only vote, the participant can immediately go ahead with
releasing its local locks without writing any log entries.

There are two complications with this highly intriguing and seemingly
straightforward optimization. First, intermediate nodes in the process tree can
vote read-only only if none of their descendants in the entire subtree has
performed any updates. So these subcoordinators first need to collect votes
from their subtrees, and respond to their parent with a read-only vote only
if they have received no “yes” or “no” vote. Second, this optimization needs
to be integrated with other optimizations, particularly the ones based on pre-
sumption. A closer analysis shows that the presumed-commit protocol still
needs to have forced begin log entries for the top-level coordinator and all
subcoordinators (i.e., intermediate nodes). (We have seen in the previous sub-
section that further optimizations are possible to eliminate the force-write
of subcoordinators or even the forcing of the top-level begin log entry, but
these additional optimizations have trade-offs with regard to other metrics
that are nontrivial to quantify.) So there is a significant logging cost under the
presumed-commit protocol even if the entire process tree is read-only. Un-
der the presumed-abort protocol, on the other hand, read-only subtrees do
not need any log entries at all, and transactions that are read-only on all in-
volved servers have zero logging cost. It is for this reason that presumed abort
is widely considered superior to presumed commit, at least for hierarchical
commit.

A final complication arises when participants can perform deferred oper-
ations during the commit protocol, that is, after having received the prepare
message. We have mentioned this problem of reinfection already in Section
19.2.2. In combination with the read-only optimization, such reinfection may
create a serious correctness problem. Once a participant has voted read-only, it
can release its local locks (or, equivalently, consider its local part of the transac-
tion finished under a nonlocking concurrency control protocol). When another,
reinfected participant later performs deferred operations, that other participant
may have to acquire additional locks. So such a transaction violates the two-
phase property of the 2PL concurrency control at the global level. We have seen
in Chapter 18 that although each participant still obeys 2PL locally, we may
end up with a globally nonserializable schedule under these conditions. The
only solution is to exert the read-only optimization with caution: it should be
used only when it is sure that a transaction does not trigger deferred operations
in the voting phase. Another conceivable alternative would be that participants
that vote read-only still keep their locks until the decision phase, but this would
come at the expense of having to send commit or abort messages to read-only
participants (but still without logging at read-only participants).
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19.4.3 Coordinator Transfer

For reliability or communication efficiency reasons it may be desirable to choose
a coordinator that differs from the transaction initiator. For a process tree this
amounts to choosing a new root and “rotating” the tree around this new root
node. This new tree has exactly the same edges as the old one, but the parent-
child relationship is reversed for all edges along the path from the new root
to the old one. Figure 19.9 shows an example for this simple transformation.
Note that the resulting commit tree uses exactly the same bilateral communi-
cation links between processes that were already established during transaction
execution. So the commit protocol does not have to open new sessions in the
case that the communication is generally session oriented.

The choice of the coordinator and the corresponding conceptual rotation
of the tree can be dynamically carried out when the initiator has issued the
commit (or rollback) request. Once this is done, the commit protocol is exe-
cuted as usual. So the full spectrum of optimizations (presumed abort, etc.) is
available. For special but frequently occurring communication topologies, we
can go one step further and tailor the actual commit protocol to the specific
type of dynamic coordinator transfer. This is particularly attractive and has
been proposed as one of the very earliest 2PC optimizations for linear commu-
nication where the process tree forms a single, nonbranching path. Even if the
tree has more general shape, we could derive a linear communication structure,
possibly at the expense of having to establish new bilateral sessions. However,
the case that the tree is already a linear path with a small number of processes,
often only two, is very frequent in practice. The optimization that we are go-
ing to describe for this case is therefore known as the linear 2PC. The major
benefit of this 2PC variant is gained from choosing the last participant in the
chain—the leaf of the linearized tree—as the coordinator. This choice is known
as the last-agent optimization. (We do not call it “last-participant” optimization
to be consistent with the majority of the literature.)

In linear 2PC with the last-agent optimization the dynamic coordinator
transfer is part of the first phase of the commit protocol, and it is piggybacked

Linear 2PC
with last-agent

optimization

on the prepare messages that are sent down the tree (i.e., along the linear chain

CB

HG

A

D FE

A FE

HGB

D

CInitiator Coordinator

During transaction execution During commit protocol

Figure 19.9 Example of coordinator transfer.
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Figure 19.10 Linear 2PC with last-agent optimization.

in our special case). Each process, starting with the initiator and proceeding
along the linear chain, prepares itself before sending the prepare message and
delegates the choice of the coordinator to its successor process. So the prepare
message here actually means: “I am prepared and you decide.” When the last
participant in the chain receives the prepare message, it has implicitly become
the coordinator. As it knows that all its predecessors in the chain are prepared,
it can go ahead and make the final decision about the transaction outcome.
So when the last participant sends its reply up the tree, it is not simply a
yes vote, but actually a definitive commit or abort message. The net effect of
using these combined message types is that the entire process chain can be
committed with fewer messages. In addition, the last participant being also
the coordinator and force-writing only a single log entry reduces the logging
cost. This protocol is illustrated in Figure 19.10 for the case of a committed
transaction.

For the rollback case, when a process is unable to prepare itself and forward
the prepare message, it can simply abort unilaterally and send an abort message
to both its predecessor and successor in the chain. So in this case the first
process with a no vote becomes the coordinator.

The improvement of the last-agent optimization is most significant for the
frequently occurring case of transactions with exactly two participants, one of
which is the initiator. Note that this is the case, for example, when a transaction
is initiated by an application server that also serves as a transactional queue
manager (see Chapter 17) and this transaction operates on exactly one data
server. In this situation the commit protocol needs only three messages and
three forced log writes for a winner transaction.
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The last-agent optimization is not necessarily tied to linear 2PC but can also
be applied to the basic 2PC or the various optimizations based on presumption.
In this case, all processes but one carry out the first phase of the basic 2PC proto-
col. Once all but the last process are prepared, the last participant is notified and
asked to be the coordinator. This option is attractive if there is one particularly
critical server that insists on staying independent for recovery. By making this
server the coordinator at the time all other processes are prepared, the server
can always unilaterally abort the transaction and is never prone to blocking.

The idea of choosing as coordinator the process that is prepared and firstDynamic
2PC knows that all other processes are prepared as well can be generalized to arbi-

trary tree topologies but requires more complex message flow. The resulting
protocol has been coined dynamic 2PC. The goal of the protocol is to find a
coordinator with the above property as soon as possible by initiating parallel
waves of yes votes both downward and upward in the tree. In the first phase
of the protocol, the transaction initiator (i.e., the root of the tree) initiates the
wave of prepare messages down the tree. When leaf nodes receive the prepare
message they prepare themselves and send a yes vote to their parent. Now,
usually a nonleaf node would wait for the yes votes from all its children before
it prepares itself and sends yes to its parent. In the dynamic 2PC protocol,
however, a nonleaf node waits only until it has received votes from all but one
of its neighbors (i.e., children and parent). At this point, the node prepares
itself and sends a yes vote to this last neighbor, delegating the responsibility for
the node’s subtree to this neighbor. The last neighbor can be either the node’s
parent, which corresponds to the standard case in hierarchical 2PC, or one of
the node’s children. In the latter case the node essentially uses the last-agent
optimization by telling this child that everybody else in its “proximity” is pre-
pared, including the node itself. So to reemphasize the key point, the decisive
rule for dynamic 2PC is the following:

A node can consider itself prepared (in the sense of the last-agent opti-
mization) and send a yes vote to its neighbor if it has received yes votes
from all but one of its neighbors (now being sufficiently prepared as a
subcoordinator) and has itself written a prepared log entry to its stable log
(also being prepared as a participant).

Of course, when a node is not able to prepare itself it will send a no vote to its
neighbors, and the entire procedure works analogously.

It can be shown for the dynamic 2PC protocol that exactly one node will
receive yes votes from all its neighbors, and this distinct node will be the co-
ordinator. Let us emphasize once again that this node will be determined dy-
namically, depending on the speed of the various messages and the nodes’ local
logging. In this sense the coordinator will be an arbitrary node, but the goal
of the protocol has merely been to find a coordinator as quickly as possible. If
additional considerations like node reliability are a concern, then dynamic 2PC
should not be used or would have to be specifically adapted.
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Figure 19.11 Example execution of the dynamic 2PC
protocol.

Figure 19.11 shows a sample execution of the dynamic 2PC protocol for
a tree with seven nodes labeled A through G. The time line of prepare and yes
messages is given by the numbered arrows in the picture and the annotations
in the right half of the figure. In this scenario the root A receives the yes
votes from its left branch faster than from its right child C. Since only one
neighbor’s yes vote is missing, namely, that of process C, process A prepares
itself and sends a yes vote down the right branch of the tree (i.e., to C).
This is the key difference from the basic form of hierarchical 2PC where A
would have to wait for the vote coming up the right branch of the tree (i.e.,
ultimately sent from C). By eagerly pushing its vote to its last neighbor C, it
is eventually process C that has received votes from all neighbors (F, G, and
A) and becomes the coordinator. The second phase of the protocol then fol-
lows the standard procedures using the presumed-nothing, presumed-abort, or
presumed-commit rules.

To conclude this subsection, we briefly mention an interesting approach
to the reduction of 2PC logging costs that follows a completely different route
than the above optimizations. The idea is to allow log sharing among the par-
ticipants and the coordinator of a transaction: all these processes write their
log entries to the same stable log file, which is kept, for example, at the co-
ordinator’s site and accessed by the participants via remote procedure calls.

Log sharing

Obviously, such an approach bears a great potential for reducing forced log
writes and is attractive for LAN-based federations where a shared log file is
easy to implement efficiently. So this approach somewhat redefines the prob-
lem of distributed commit into a centralized commit. But note that it is still a
coordination problem that involves distributed servers that communicate via
messages. So the details of such a log-sharing 2PC variant are not trivial.

19.4.4 Reduced Blocking

As we have seen in Section 19.2.3, 2PC is prone to blocking, and this holds for
all of the above mentioned optimized variants, too. Theorem 19.4 has indeed
shown us that the impossibility of independent recovery is an inherent property
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of the distributed commit problem. So the best we can do is to decrease the
probability of running into blocking situations as much as possible. One way
of doing this is to refine a commit protocol such that it eliminates blocking
in certain relatively simple situations like single process failures and to make
sure that it behaves correctly under all possible circumstances (but is then
susceptible to blocking).

Following the proof outline of Theorem 19.3 in Section 19.2.3, the basicThree-phase
commit (3PC) idea for such a protocol is to avoid global states whose set of possible succes-

sor states contains both local commit and local rollback states. A full-fledged
protocol based on this idea is the three-phase commit (3PC) protocol. In 3PC
the coordinator first collects votes and causes participants to become prepared,
then it disseminates the outcome of the voting phase to all participants, waiting
until it is certain that all participants know the result. Only after this newly
introduced message round does the coordinator finally ask the participants to
commit or roll back (i.e., initiate the actual decision phase).

So there are three message rounds in 3PC (hence the name), each accom-
panied by (forced) log entries: the voting phase, the dissemination phase, and
the decision phase. Since the transaction outcome is known to each participant
before the participants make the decisive move into the Committed or Aborted
state, independent recovery is possible even if the coordinator fails. However,
consistent and independent recovery can be guaranteed only if there is at most
one process failure, the single-failure assumption that we already considered in
Section 19.2.3. Multiple failures within a short time window could lead to in-
correct behavior, or we would have to give up independent recovery. The latter
is still all but trivial, as the protocol needs to infer that more than one failure has
occurred. It is feasible to enhance the 3PC protocol so that it can cope with
multiple failures correctly and becomes a full-fledged, general-purpose solu-
tion. For details see the literature mentioned in the Bibliographic Notes. The
entire family of 3PC and other nonblocking commit protocols has not gained
much practical relevance, however; the advantage of being able to avoid block-
ing in certain highly specific situations is outweighed by the significantly higher
message and logging costs.

Another approach to avoid blocking when the coordinator fails or becomesCooperative
termination unreachable because of communication failures is the following. When a par-

ticipant is prepared and desires to learn the transaction fate to cease its un-
certainty, it can actively contact other participants. If the coordinator has sent
out some (but possibly not all) commit or rollback messages before the failure,
there is a good chance that at least one other participant knows the decision.
This approach is called cooperative termination. The key point for making it
work is that all participants need to have a list of other participants. This in-
formation can be piggybacked on the prepare message in the first phase of the

Voting,
dissemination,

and decision
phases

protocol.
Finally, the literature has also suggested a brute force, extremely pragmaticHeuristic

commit or abort way of getting out of blocking situations, known as heuristic commit or abort.



19.5 Lessons Learned 763

The approach is to define a default termination rule for a server when blocking
situations persist too long. So that a server does not become “hostaged” in
its control over lock releases and its local performance by being a blocked
participant in a transactional federation, we could simply specify that such “in
doubt” should be aborted after a sufficiently long “grace period.” Likewise, we
could specify local commit as the default measure in such extreme situations.
Of course, this may lead to inconsistent results at the global level, with some
participants being committed and others rolled back. But in practice, such
drastic measures could still be better than leaving the transaction pending and
not being able to release local locks indefinitely. After all, in some applications
the coordinator could be a home PC that may have been switched off too early,
and it could take days before the user starts the PC again and thereby resumes
the transaction coordinator. Heuristic commit or abort makes sense, still from
an extremely pragmatic viewpoint but as a matter of practicality in the real
world, when associated with specific transaction types. For example, a bank
might specify heuristic commit when its part of a distributed transaction is a
deposit and heuristic abort when its part is a withdrawal.

19.5 Lessons Learned

Two-phase commit (2PC) is a fundamental asset of transactional technology for
ensuring consistent effects of distributed transactions. Its two-phase structure
consists of a voting and decision phase, both driven by a coordinator process.
The first phase ensures that all participants of a transaction move into the pre-
pared state, equally ready for either commit or rollback, and that they send their
votes to the coordinator. The second phase disseminates the global decision to
the participants and ensures that the coordinator can eventually garbage-collect
its log entries about the transaction. Altogether, the basic 2PC protocol has ex-
ecution costs of 2n + 2 forced log entries and 4n messages for n participants
plus the coordinator. For process trees that result from iterating remote method
invocations on servers in a federated system, 2PC can either flatten the com-
munication structure at commit time or employ a hierarchical form of 2PC,
with intermediate nodes taking both the role of a participant with regard to
their parent and the role of a subcoordinator with regard to their children.

To understand the correctness of the 2PC protocol, we have used the formal
notation of a statechart, a variant of finite state automata. To cope with process
failures and timeouts because of failures of message losses, we introduced ad-
ditional failure and termination transitions into the protocol automaton. This
way we were able to formally verify that 2PC guarantees consistent transac-
tion outcome and achieves this goal in a finite number of steps. In addition,
we obtained insight into the limitations of distributed commit from the formal
statechart model. We have proven the impossibility of a commit protocol that
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can cope with arbitrary process and network failures but at the same time al-
lows independent recovery so that a failed and restarted process could always
terminate its part of the protocol without communicating to other processes.
This negative result shows that the susceptibility to blocking is an inherent,
unavoidable property of distributed transactions.

The message and logging costs of 2PC can be reduced by making pre-
sumptions about how a process should behave in the absence of information
about the transaction. This idea has led us to the presumed-abort (PA) and
presumed-commit (PC) protocols. In the first case, the coordinator and the
participants can afford to be more relaxed about aborted transactions (no
forced logging of rollback log entries and no ack messages); in the second
case, similar savings apply to committed transactions. Although both super-
ficially appear to be symmetric versions, presumed commit needs one addi-
tional forced log write (namely, for the begin log entry) to distinguish the
situations of an early aborted transaction and a committed transaction whose
information has been forgotten (i.e., garbage-collected). Both protocols also
save messages in specific cases. Both can also be combined with an optimiza-
tion for read-only participants or entire subtrees, which can be left out of the
protocol’s decision phase after having sent a read-only vote. The presumed-
commit protocol still needs to force-write begin log entries even for entirely
read-only transactions, and for this reason presumed abort is widely considered
as the better protocol, although a detailed assessment depends on other issues
as well, such as the communication topology and applicability of additional
optimizations.

Two equally important aspects to optimize are the critical path until the
participants can release their locks and the probability of a participant be-
coming blocked. To this end, we have discussed various options for flexible
coordinator transfer, in order to choose a particularly reliable server as coor-
dinator or to choose the coordinator such that the entire protocol terminates
as quickly as possible. Along the latter lines, we have presented the last-agent
optimization for linear 2PC and the dynamic 2PC for arbitrary process trees.
Recall that speeding up the protocol’s execution also implicitly reduces the
danger of blocking by shortening the window of vulnerability. Other means for
reduced blocking include three-phase commit that completely avoids blocking
in single-failure situations at the expense of always requiring three rather than
two message rounds, and the cooperative termination protocol that gives more
flexibility to participants in the case that they have lost connectivity with the
coordinator but can still communicate to other participants.

For a long time, 2PC has been considered with very mixed feelings in prac-
tice because of its susceptibility to blocking, and many applications have been
designed to avoid distributed transactions. It is still true that 2PC does not ex-
actly scale up to transactions that span hundreds of servers, but for a small num-
ber of participants on carefully administered and thus highly reliable servers,
the benefit of achieving distributed data consistency in an easy-to-program way
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largely outweighs the small danger of creating performance problems. Even in
heterogeneous federations with autonomously operated servers, the standard-
ized form of distributed commit, known as XA and supported by all important
commercial systems, is an excellent option to build applications with decen-
tralized, interrelated data like e-Commerce and more advanced e-Services on
the Internet.

As 2PC can incorporate general classes of resource managers including mes-
sage queue servers, an important alternative to transactional updates on multi-
ple data servers is to use queued transactions to preserve the atomicity of trans-
action chains with relaxed isolation. This option is attractive in situations when
global serializability is not needed, and even as a compromise when the per-
formance degradation caused by 2PC and especially the impact of potentially
prolonged lock duration on the “native” local transaction workload of a critical
server are considered as an unacceptable breach of the server’s local autonomy.

Exercises

19.1 Give a complete statechart specification for the 2PC variant that guaran-
tees independent recovery under the single-failure assumption (see the
proof of Theorem 19.3).

19.2 Consider the following scenario. A transaction is initiated from a PC to
make reservations for a vacation. The initiator communicates directly
with a travel agency and a rental car company. The travel agency com-
municates with a travel wholesaler, which books two of the necessary
flights (or flight legs) on the servers of the corresponding airlines, and
also with two other airlines to book the rest of the necessary flights.
All these steps belong to one distributed transaction, and all involved
participants are able and willing to commit the transaction. The com-
munication structure of this transaction is illustrated in Figure 19.12.

(a) Give the message flow and log entries for the hierarchical 2PC pro-
tocol for this scenario. Indicate which log entries need to be imme-
diately forced to the stable log.

(b) Which of the various optimizations that we discussed in this chapter
are applicable and promising for the given scenario? What are the
implications for the protocol’s message and logging costs?

(c) How does the protocol and its execution cost change if the coordi-
nator role is transferred to the server of the travel agency (at the time
the initiator issues its commit request)?

(d) Give the message flow and log entries for the case that the server of
airline 3 is unable to commit and votes no in the hierarchical 2PC
protocol.
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Figure 19.12 Process tree for travel booking.

(e) Apply the presumed-abort protocol to the case where the server of
airline 3 votes no. Give the resulting message flow and log entries.

19.3 Consider a binary, perfectly balanced tree of processes of height n where
all leaf nodes have the same distance from the root; so there is a total
number of m = 2n − 1 nodes in the tree. Assume that the root is the
coordinator of the commit protocol. Determine the number of mes-
sages and forced log writes for the presumed-nothing (i.e., basic 2PC),
presumed-abort, and presumed-commit protocols for the following
situations:

(a) all processes have performed updates and the transaction commits,

(b) all processes have performed updates and the transaction aborts,

(c) all nonroot nodes are read-only and the transaction commits,

(d) all leaf nodes are read-only and the transaction commits.

19.4 Develop a protocol that combines the presumed-commit optimization
with the last-agent optimization. Give sequence diagrams for the mes-
sages and logging for the commit and abort cases. Do the same exercise
with the presumed-abort optimization.
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CHAPTER TWENTY

What Is Next?

This is the end, my only friend, the end.

—Jim Morrison

When shall we three meet again, in thunder, lightning, or in rain?

—William Shakespeare

20.1 Goal and Overview

To conclude the book’s intensive tour of technical material, this chapter steps
back again and sketches a “big picture” of the achievements and opportunities of
transactional technology from both application and research perspectives. We
summarize the most important highlights of transactional concurrency control
and recovery in Section 20.2 and point out, once again and for the last time,
their contributions to modern information systems. We will then briefly dis-
cuss selected subjects that are closely connected to transactional information
systems but could not be covered in this book for obvious space reasons. Each
of these subjects could easily fill a book by itself. We will sketch various issues
of data replication in Section 20.3, advanced e-Services and workflow man-
agement in Section 20.4, and the elusive goal of performance and availability
guarantees in Section 20.5.

20.2 What Has Been Achieved?

In this section we briefly review the most important algorithms and their un-
derlying fundamentals. We consider three levels of sophistication:

developers (and also undergraduate students) who need ready-to-use
“recipes,”

advanced system builders (and ambitious undergraduate students who
would like to pursue a career as a system architect) who need in-depth
knowledge of the very best practically viable solutions,

771
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researchers (including graduate students) who want to understand com-
plex issues and are looking for further challenges to advance the state of
the art.

20.2.1 Ready-to-Use Solutions for Developers

For the first level, the page model is a sufficient basis for building systems
that provide transactional ACID contracts. For the isolation property, conflict
serializability (CSR) is the adequate correctness criterion, and strict or even
strong two-phase locking (S2PL or SS2PL) is the method of choice to guarantee
CSR schedules. Under these protocols, all write locks (or even all locks under
SS2PL) are held until transaction commit, and no locks can be acquired once
the first lock has been released. Locking can be implemented with very low
overhead, using lock control blocks in an appropriately designed hash table,
which is crucial because lock requests take place in some of the innermost
loops of the server code. Both S2PL and SS2PL have the additional advantage of
ensuring the strictness property for correct and efficient handling of transaction
aborts.

To guarantee atomicity and persistence in the presence of system failures
(soft crashes) and media failures, logging on stable storage is mandatory. For
the efficiency of this restart procedure and thus for overall system availability,
it is crucial that the log is periodically truncated based on appropriate garbage
collection rules. Recovery from such failures is most effectively performed by
the redo-history algorithm in three passes over the stable log: an analysis pass
to identify loser transactions that were active at the time of the crash and to
collect information about dirty pages for more efficient redo; a redo pass that
repeats all page writes based on physiological log entries using a page versus
log sequence number (LSN) comparison for idempotence; and an undo pass
that executes inverse page writes for loser transactions in reversed chronolog-
ical order. The algorithm for media recovery, including the reconstruction of
individual corrupted pages, is very similar, except that it starts from a backup
version of the data and its redo pass covers an extended time span captured in
the archive log.

These are the core assets for the implementation of concurrency control“Recipes” for
developers and recovery of a simple transactional data server. In addition, the prolifera-

tion of applications that interact with multiple servers in a federated manner,
such as Internet-based e-Services and workflows, requires that a server supports
the standardized two-phase commit (2PC) protocol. Finally, it is important to
understand that global serializability is not a self-guaranteed property in a dis-
tributed system. For many applications this is not a real problem, but for those
cases that do require stringent control over distributed executions in order to
ensure data consistency, either all underlying servers need to guarantee com-
mit order-preserving conflict serializability (COCSR) (or even rigorousness), or
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additional conflict-testing measures must be taken at the federation or appli-
cation layer.

The above assets are fundamental for developers of transactional servers
(e.g., specialized e-Commerce servers), but also for application developers (e.g.,
of personalized e-Commerce agents), understanding the principles, limitations,
and performance impact of transactional concurrency control and recovery is
indispensable.

20.2.2 State-of-the-Art Techniques for Advanced
System Builders

At the level of more sophisticated and more ambitious system architects and
developers, we have covered techniques for high-performance, highly available
servers suitable for advanced applications such as highly dependable e-Services
(e.g., high-traffic e-Commerce or auction servers). In such settings, lock con-
tention (or, in more general terms, data contention due to concurrency control)
can be a bottleneck so that page-granularity locking (or page-granularity con-
flict testing) would be critical. Transient versioning can significantly reduce
lock contention for workloads with a very large fraction of read accesses or
even a large fraction of read-only transactions. The fundamental concept that
underlies this option is the multiversion serializability (MVSR) criterion, and
the most widely adopted protocol along these lines is the ROMV protocol that
combines timestamping for read-only transactions with standard locking for
update transactions. Other means to alleviate data contention include the use
of relaxed isolation levels that no longer guarantee serializability and the use of
optimistic conflict-testing techniques in application programs. However, these
are very brittle options that should be employed with extreme caution, as the
application correctness now depends on intellectual insights of the application
architects and their detailed understanding of the application’s consistency re-
quirements and synchronization needs. In contrast, protocols that guarantee
CSR or MVSR executions provide an automatic, foolproof solution to concur-
rency control, and thus lead to much higher productivity and lower cost of
application development.

For the above techniques the page model is still sufficient for explanation State-of-the-art
techniques for
advanced
system builders

and correctness reasoning. However, page-oriented concurrency control has
inherent limitations (even with transient versioning and other enhancements)
that can be overcome only with a finer granularity of locking or conflict test-
ing. The best commercial database systems use record-granularity locking, and
future generations of business object managers or federation mediators with
persistent objects need to adopt (and possibly adapt) these solutions if they
want to provide competitive performance. The most important concern in this
context is index concurrency control, to minimize the lock duration on index
pages while also ensuring full serializability for predicate-oriented data access.
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To explain sophisticated solutions like the incremental key range locking with
short-term page latching and to obtain insight into why it works, we have made
intensive use of the object model and its fundamental correctness criterion of
tree reducibility. The object model and its special case of layered systems also
play an overriding role in concurrency control on ADT (abstract data type)
objects, where commutativity properties of semantically rich operations can
be exploited for higher concurrency at the ADT interface level, and subtrans-
action locks at the underlying implementation level(s)—ultimately the page
level—ensure the isolation of individual ADT operations. Special techniques
along these lines, such as escrow locking for (bounded) counters (e.g., quantity-
on-hand in a warehouse), are extremely useful for high-end applications such as
stock trading or auctions, and more general solutions will gain practical impor-
tance as Web application architectures move toward multi-tier systems with
business object components.

Once we exploit the additional expressiveness of the object model for
enhanced concurrency, recovery also becomes more complex, as we can no
longer roll back a transaction in isolation by undoing its page writes. Rather,
high-level semantic operations need to be invoked for compensating the ef-
fects of an aborted transaction. To reason about the correctness of interleaving
transaction rollbacks with regular forward operations of (to-be-) committed
transactions, the criterion of tree reducibility has been extended and applied to
the expansion of a schedule where all undo steps of transaction rollbacks are
made explicit, “first-class” operations. With this proper understanding of how
rollbacks need to be implemented, extending the redo-history crash and media
recovery algorithm to the object model is made relatively simple by viewing
high-level operations as subtransactions. The undo pass needs to invoke high-
level compensation steps for completed subtransactions and low-level undo
steps for incomplete subtransactions in the appropriate order. The analysis
pass and the redo pass remain the same as in the page model; in particular,
page-oriented redo is usually preferred for fast restart. Recovery idempotence
is ensured by keeping track of both forward and compensation steps using
a clever backward chaining of compensation log entries. We have also seen
that the redo-history recovery algorithm forms a framework into which a suite
of other optimizations can be incorporated when the given workload makes
them beneficial. Most importantly, the recovery algorithm can be adapted to
the special architecture of a data-sharing cluster where multiple computers
have shared access to the disk system and a server crash is handled by “failing
over” to one of the surviving servers in the cluster. This setup avoids delays for
software initialization (rebooting the OS, starting the database system, reestab-
lishing sessions, etc.) and is thus the architecture of choice for applications with
stringent availability requirements.

Media recovery based on backups and archive logging can be further opti-
mized to minimize downtime, and combined with redundancy in the storage
system, based on mirroring or error-correcting codes, to mask disk failures
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without service interruption. Recovery can also be extended to cope with disas-
ters that hit an entire computer complex (e.g., a fire in the computer building)
via log shipping to a remote backup server during normal operation and failing
over to that server when a disaster occurs. To simplify the exception handling
code of application programs and to improve the availability at the applica-
tion level as perceived by the end users, we have also described techniques
for application recovery with failure-resilient messages and processes, based
on transactional message queues for simple, stateless or pseudo-conversational
applications or specific logging and restart techniques for general stateful ap-
plications. All these techniques complement data recovery so that virtually all
failures can be masked to the human users. Last but not least, we have also dis-
cussed transaction management in heterogeneous server federations, including
concurrency control techniques that can cope with diverse local protocols and
various optimizations to the standardized 2PC protocol for distributed atom-
icity with lower overhead and lower blocking probability.

20.2.3 Methodology and New Challenges for Researchers

Finally, for the most advanced readers and particularly those with ambitions
to pursue their own research in the area of transactional information systems
(e.g., graduate students), our aim has been not just to present the prevalent
techniques but to discuss why they work and why they are more versatile,
efficient, or robust than other conceivable alternatives. This is why we have
emphasized the foundations of these algorithms and included a thorough dis-
cussion of alternative algorithms for the same problem setting and the various
trade-offs, for example, the pros and cons of physical, physiological, and logical
logging, or redo-history versus redo-winners algorithms for crash recovery. We
have also included a good fraction of promising but somewhat immature (or
incomplete) directions such as interleaving specifications and other very high-
level forms of semantic concurrency control. After all, technology moves on
and the workload characteristics and requirements of typical applications will
change over time, so that researchers should continue to reassess and improve
existing algorithms and devise new departures.

A particularly important point of our pedagogical concept has been rea- Research
methodology
and new
challenges for
graduate
students

soning about the correctness of the presented algorithms. More advanced algo-
rithms are more complex, thus it is more difficult to gain confidence in their
correctness. Consequently, we have added many correctness proofs, with em-
phasis on the structure of the proof arguments rather than trying to cover all
cases in painstaking detail. This is why we have gradually relaxed the mathe-
matical rigor in the presentation. For most of the presented material it should
still be possible to refine the correctness arguments into whatever detail is de-
sired by a skeptical reader or extremely careful system builder. However, for
some of the most advanced material, working out all system-relevant details of
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the algorithms and proving their correctness (e.g., for the most general form
of comprehensive application recovery) still poses significant challenges and,
we believe, rewarding research subjects for the next generation of graduate
students.

20.3 Data Replication for Ubiquitous Access

Data replication deals with the maintenance of multiple copies of the same data
items placed on different servers; these copies are also referred to as replicas. A
replication control component serves to ensure the consistency among the same
data item’s multiple copies, which is in contrast and complementary to concur-
rency control considering the consistency across different, logically interrelated
data items.

Replication is of great practical relevance for two reasons: (1) data avail-Relevance of
replication ability, to mask outages of servers that would otherwise hold the only copy of a

requested data item, and (2) responsiveness, to compensate for servers with poor
performance by accessing a copy on a faster server. It is obvious that replication
is beneficial for applications with a high fraction of read accesses, whereas hav-
ing to maintain multiple copies is usually not worthwhile for update-intensive
applications. As modern applications are typically dominated by read access,
replication plays a key role in many Internet-based information systems. In par-
ticular, replication is an indispensable asset for mobile clients (e.g., notebooks,
palmtops, or cellular phones) that do not have continuous server connectivity.
Similarly, worldwide Internet applications with a very large number of clients
all over the globe, such as e-Commerce services or business portals, often repli-
cate data on a number of decentralized sites closer to the clients. Distributed
Web caching can be viewed as a form of dynamic replication along these lines.

Ideally, replication would be transparent, analogously to versioning in mul-Eager
(synchronous)

replication
tiversion concurrency control. So a client could access an arbitrary copy of a
replicated data item, for example, the closest one in terms of access speed, and
would be guaranteed to see the most up-to-date value of the data. Correspond-
ingly, updates to a copy would be propagated immediately to all other copies
of the same data item with negligible delays, to prevent concurrent readers
of other copies from seeing out-of-date values. The correctness criterion for
this kind of transparent replication is known as one-copy serializability: a history
with read and write steps that refer to individual copies must be equivalent to
a serial history with only one copy per data item. If both read and write steps
always accessed all copies of a data item under the transactional isolation guar-
antee of the concurrency control component, one-copy serializability would
be self-guaranteed. For example, this would amount to locking all copies of
all data items in a transaction’s read and write set within the transaction. The
point of replication, however, is that read access should be much faster and



20.3 Data Replication for Ubiquitous Access 777

much less expensive than reading all of a data item’s copies. A replication con-
trol method is an algorithm that determines which copies need to be read and
written, or tested, eagerly (synchronously) within the transaction boundaries to
ensure one-copy serializability. For updates, copies that are not written within
the transaction itself still need to be brought up-to-date, but this can be done
“lazily” outside the transaction.

The simplest and probably earliest replication control protocol is the Primary copy
methodprimary copy method. In this method, each data item has a designated copy

that serves as an anchor point, the primary copy. All measures of the concur-
rency control, for example, requesting a lock on a data item, are directed to the
primary copy of the corresponding data item. Once the concurrency control
has approved the access, for example, when the lock is acquired, the replica-
tion control passes a timestamp (or sequence number or version number) to
the transaction, reflecting the last update to the primary copy, and the trans-
action is then allowed to read any copy. It does not necessarily have to read
the primary copy, but may choose to access a copy that is closer to the client.
However, the transaction tests that copy’s timestamp against the one obtained
from the primary copy, and the transaction gives up on the closer copy if it
turns out to be out of date. The point is that this test should be successful most
of the time, and then the long message for reading a data item has low cost;
whereas the short message for obtaining the primary copy’s timestamp is un-
avoidable in this protocol. Writes are always directed to the primary copy, and
it is sufficient to update the primary copy eagerly, that is, within the transaction
boundaries. All other copies can be updated lazily in the background. So, in
summary, the primary copy serves as a bookkeeping anchor to make sure that
no transaction can access a stale copy.

A critique of the primary copy method is the observation that a failure Read-one
write-all
method
(ROWA)

of the server where a given primary copy resides renders all other copies of
the same data items useless. Even if other copies are available, no transaction
is allowed to access them as long as they cannot check the primary copy. This
situation is avoided with an alternative known as the read-one write-all method
(ROWA). As the protocol’s name suggests, a read request can access any arbi-
trary copy without any restrictions and without any prior testing. Write steps,
on the other hand, now have to update all copies eagerly. This ensures that all
copies of a data item are up-to-date when the transaction commits.

In between the primary copy and the ROWA methods there is a spectrum Majority voting
of intermediate strategies to trade off read costs versus write costs. A method
that penalizes reads and writes by equal terms is majority voting: both reads
and writes have to eagerly access a majority of the copies that exist for a given
data item. For example, with three copies, read steps need to test the recency
of two out of the three copies (and read the actual value of the data item from
one of them), and write steps need to update two copies eagerly within the
ongoing transaction. If only two copies exist, the protocol degenerates into a
read-all write-all variant.
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The point of majority voting is to ensure that for every pair of conflictingQuorum
consensus
(weighted

voting)

operations on a data item, the sets of eagerly accessed copies of that data item
are nondisjoint. In this way the replication control enables the concurrency
control to detect the conflict, although the concurrency control is completely
unaware of replication. This principle can be generalized by introducing a read
quorum and a write quorum, which are numbers of copies that need to be
accessed such that the sum of read and write quorums exceeds the total num-
ber of copies for the data item, and the same must hold for twice the write
quorum. In this way the replication control can tune the costs of read versus
write steps on a per-data-item basis. To further take into account the different
failure rates (or expected downtimes) and response times of the various servers
that hold copies, the various copies can be given different weights in the voting
scheme. Then the sum of read and write quorums and also the sum of two write
quorums need to exceed the total of the weights. This generalization is known
as quorum consensus or weighted voting. Although this method is already very
flexible and customizable to the target environment, yet another generaliza-
tion is to allow dynamic adjustment of voting weights and quorums to consider
longer outages of servers. Such dynamic voting schemes need careful consider-
ations for detecting outages (as opposed to network partitioning, see Chapter
19) and for handling the reintegration of servers after some downtime period.
A special case of the dynamic approach is the read-one write-all-available pro-
tocol that limits eager updates to the copies that reside on currently running
servers (provided that this distinction can be safely made).

The use of eager replication control methods as outlined above is limitedLazy
(asynchronous)

replication
to small degrees of replication (i.e., small numbers of copies per data item) for
the simple reason that none of the protocols scales up to tens or hundreds of
replicas. For larger degrees of replication, for example, in the World Wide Web,
applications typically resort to completely lazy (asynchronous) replication. In
these approaches transactions read and write any copy, and merely initiate
the updates to other copies as a background task outside the transaction. It is
up to the application to cope with access to stale copies, and in many Web
applications, out-of-date information is even exposed to the human users (so
the application does not really do anything on this matter).

In a large-scale distributed system it is still all but trivial to ensure that theEpidemic
replication update to one copy will eventually reach all other copies and that all copies

of the same data item will converge to the same value. Algorithms for this
purpose are often referred to as epidemic replication and involve a fair amount
of distributed bookkeeping.

With lazy replication it can happen that two different copies of the same
data item are simultaneously updated by two different transactions. Later, when
these two updates are propagated to all other copies, these other copies will
be faced with the problem of having to decide which of the two updates they
should apply. Under an epidemic replication protocol, acceptance of both up-
dates will be avoided, for this would likely result in different update orderings
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at the various replicas. The goal instead is to ensure at least eventual consis-
tency among copies, meaning that all copies converge to identical updates if
all update activity was phasing out. The decision on which update a copy will
accept can be based on real-time timestamps—the younger update wins—or
more sophisticated distributed timestamping (e.g., so-called vector clocks), or
on the origin of the updates—the more “important” server on which the origi-
nal update occurred wins. Combinations are also possible, and the notion of an
important, or primary, server may be a dynamically adjustable one. For exam-
ple, updates that originate from the server in San Francisco win during daytime
in the Pacific time zone, and updates from the server in Frankfurt, Germany,
win during nighttime (i.e., daytime in Europe). Such flexible conflict resolution
policies are supported by most commercial database systems.

Under specific conditions that restrict the access patterns of transactions,
the communication topology and network properties, and/or the way data is
replicated, enhanced forms of lazy replication can still ensure one-copy se-
rializability. See the Bibliographic Notes for publications that have proposed
protocols along these lines.

In summary, the proliferation of Web-based applications has made replica-
tion control a very important aspect for ubiquitous data access, and replication
in this setting still poses many exciting research problems. In particular, we
still need a much better understanding of the complex trade-off between con-
sistency and scalability and how to make judicious design choices for specific
applications with regard to this fundamental trade-off.

20.4 E-Services and Workflows

Recall from Chapter 1 that one of the most challenging application classes for
transactional concepts is workflows, which are defined as long-lived collections
of activities (or steps) that have to be executed together in order to achieve
certain business goals. Workflows are also at the heart of advanced, business-
to-consumer (B2C) or business-to-business (B2B) e-Services on the Internet,
for example, electronic auctions (B2C) or supply chains (B2B). As an example,
we have already considered (in Chapters 1 and 17) the activities that occur in
planning a trip to a conference; the graphical representation is repeated here
in Figure 20.1.

The overall workflow involves the following activities. First, a conference
is selected; if nothing suitable is found, the process is terminated. Next, the
cost of the trip to the selected conference is checked, typically by delegation
to a travel agency. In parallel, the applicable registration fee for the conference
is determined. Thereafter, the total cost of attending is compared to the bud-
get allowance, and a decision is made whether or not the conference can be
attended.
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CheckConfFee

CheckTravelCost
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/Budget := 1000;
Trials := 1;

[ConfFound]
/Cost := 0

[!ConfFound]

/Cost :=
ConfFee +
TravelCost

[Cost > Budget
and Trials ≥ 3]

[Cost ≤ Budget]

[Cost > Budget and Trials < 3]/Trials ++

Figure 20.1 The travel planning workflow.

Writing down the activities of a workflow together with their data andWorkflow
specification by

statecharts
control flows amounts to specifying a workflow as a collection of activities that
may be nested within each other, that may involve human as well as software
processing entities, and in which the executing participants can play various
roles. For the specification of workflow, various models and methods have been
proposed and various tools developed. As mentioned previously, the illustration
shown in Figure 20.1 is based on statecharts, where each oval denotes a state in
which the workflow can be during its execution. Each state in turn corresponds
to one activity; the activity is spawned when the state is entered. When the
workflow is started, an initial state (SelectConference) is entered, and the
workflow terminates when a final state (Go or No) is reached.

Alternatives to statecharts include variants of Petri nets (e.g., condition-
event nets or predicate-transition nets), temporal logic, process algebras, or event-
driven process chains. In any of these formalisms, important workflow aspects
to be specified may include, besides the various activities involved, pre- and
postconditions for each activity; the control flow among activities; data items
that are manipulated by an activity or passed from one activity to the next (i.e.,
the data flow among activities); requirements on the processing elements that
execute an activity; deadlines or time intervals; and so on.

An important distinction to be made here is between local conditions thatLocal vs. global
correctness apply to individual activities or their nearby context, and global conditions that

affect the workflow as a whole. Indeed, workflows are typically designed such
that they represent enterprise operations and hence have goals or maintain
constraints that are global in nature and largely independent of the resources
used while the workflow is being executed. On the other hand, an individual
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activity within a workflow may just have to assure conditions that are local to
the database on which it is run. Think, for example, of a credit approval work-
flow in a bank. The clerk in charge may issue data accesses on the customer’s
bank account and its income, which are executed as queries on an underlying
database and eventually also updates when the credit request is approved and
money is transferred into the customer’s account. Such local activities need to
maintain the consistency of the bank’s database. From a global perspective, on
the other hand, a bank must be careful in responding to credit requests in order
to avoid undue risk because of too many approvals; thus, the overall workflow
has to maintain the condition that the bank retains enough money for staying
in healthy business after every such transfer. This observation can be modeled
by associating distinct invariants with activities and with workflows, which ex-
press constraints to be preserved locally or globally. A local invariant has to be
respected by individual activities of a workflow, whereas a global one must be
maintained by workflow executions as a whole.

While the specification of a workflow often leads to a state-transition dia-
gram such as the one shown in Figure 20.1 as well as to allowed states and their
contexts, workflow execution must rely on a specific infrastructure, in partic-
ular a workflow engine that can read a specification, instantiate new workflow
instances, and execute them according to the data and control flow that has
been specified. In general, the control flow allows conditional execution as well
as loops based on high-level predicates; in addition, it allows parallel execution
(e.g., of the two states CheckConfFee and CheckTravelCost). The underlying
workflow engine has to take care of these execution options. The engine can
be a centralized one, or it can be distributed in the sense of a server federation;
that is, portions of an executable workflow are handled by different workflow
engines.

The activities within a particular workflow can be completely automated
or based on interaction with a human user. This implies that workflows can be
long-lived activities that last up to several days or weeks or even months and
years. A typical characteristic of workflows is that the activities are distributed
across different responsible persons and different, independent information sys-
tems, possibly across different enterprises. In particular, an activity can spawn
requests to an arbitrary “invoked application” that is provided by some appli-
cation server independently of the current workflow. From the point of view
of transactions, various scenarios can now be envisioned.

First, the activities themselves can spawn requests to information systems Activities as
ACID
transactions

that lead to transactional executions in these systems. For example, this can
be assumed for the CheckTravelCost activity in the travel planning work-
flow, which most likely will figure out prices as well as make reservations in
the underlying databases. Obviously, booking a flight to a certain city and a
hotel room in that city makes sense only if both reservations are successful.
If either of the two is unavailable, the whole trip no longer makes sense. So
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these two steps need to be tied together into a single transaction. Note that
this transaction is a distributed one, but we can imagine that the servers that
participate in its execution can guarantee transactional properties. In general,
we can think of a workflow in execution as being composed of a number of
ACID transactions. Each server involved in the execution of the activity would
then have to guarantee an exactly-once execution as described in Chapter 17.
Regarding the invariants expressing local or global conditions we mentioned
above, the ideal situation becomes that (1) a schedule is serializable in the
traditional sense (i.e., equivalent to some serial schedule and hence preserving
the local invariant), and (2) the global invariant is implied by the schedule as
well; in other words, local correctness implies global correctness.

If we consider the nested structure that a workflow specification mightActivities as
layered object

model
transactions

have, it makes sense to distinguish low-level activities such as database op-
erations from higher-level activities such as reservation activities. Under this
perception, a workflow execution boils down to an object model transaction
that exhibits a layered structure. As we have seen in previous chapters, concur-
rency control for such executions can be done by using different levels.

Taking into account the fact that workflows may be long-running activities,Compensating
activities it may happen that a number of activities in a workflow end successfully, but

the entire workflow (or some larger portion of it) may have to be unsuccessfully
terminated at some point. From a layered transaction perspective, this means
that some subtransactions are committed already when the root transaction
ultimately aborts. The transactional concepts we have seen in Chapters 11
and 14 suggest solutions even in these cases, namely, by injecting into the
root transaction compensating subtransactions that account for whatever state
changes the already committed subtransactions have previously made. Such a
rollback of an entire workflow spawning compensating activities is correct if the
latter commutes with interleaving activities of concurrent workflows, for which
such concepts like tree reducibility (see Chapter 6), layered locking and locking
for return value commutativity (see Chapter 7), or transaction chopping (see
Chapter 8) are applicable.

Returning to our trip reservation example, note that the outcome of the
flight and hotel reservations affects the further processing of the workflow. The
requests against the various information systems technically return status codes
that should be stored in variables associated with the workflow and would be
relevant for the future control flow. For example, not being able to make one
of the two necessary reservations in the selected city should trigger going back
to the initial SelectConference state for another trial. Thus, it is desirable (if
not mandatory) that the modification of the workflow’s variables be embedded
in the same transaction that accesses the airline and hotel databases. In other
words, the state of the workflow application should be under transactional con-
trol as well. We could model this into the workflow specification of Figure 20.1
by adding a new activity such as ContactCustomer, which makes sure that the
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travel agent informs the customer if the hotel or the flight reservation fails, so
that a change in the itinerary can be worked out.

An alternative way of handling the situation described above is by defining Compensation
spheresappropriate spheres of compensation that combine the partial rollback of (com-

posite) activities. A compensation sphere allows collections of activities to be
grouped together at specification time. A compensation sphere with one or
more “semantically failing” activities is aborted by running appropriate com-
pensation activities, and the abort of such a sphere can be requested at any
time, even if the control flow has already left the sphere. Note that transac-
tional activities and nontransactional ones may be mixed in a compensation
sphere. In particular, if one activity in the sphere does not execute successfully,
all others that have already been executed must also be corrected via compen-
sating activities. In our example, the activities whose failure may have resulted
in customer contact are now put in a compensation sphere; more precisely, the
flight and hotel reservation activities lead to corresponding cancellation actions
as compensations.

Although the concept of spheres of compensation appears attractive, mak-
ing it work is a nontrivial problem. Indeed, the workflow specification language
must be extended appropriately so that a user or a workflow designer can define
compensation spheres as needed by the application or the process in question.
Typically, this requires rule-based languages for expressing which activities are
combined into a compensation sphere under what conditions. Moreover, the
underlying workflow execution engine must be equipped with mechanisms to
coordinate a rollback that occurs inside a sphere.

In summary, transactional technology as presented in this book provides
major building blocks and great leverage for dependable execution of long-lived
workflows and e-Services. However, the seamless integration of semantically
rich workflow specifications, the underlying full-fledged workflow engines, and
the transactional capabilities of the involved activity servers still require further
research. In particular, the full formalization and rigorous correctness reasoning
for a comprehensive workflow system remains an important open issue.

20.5 Performance and Availability Guarantees

Throughout this book, our discussion of different algorithms has laid much em-
phasis on performance and, for recovery algorithms, on availability. However,
all our comparisons have been qualitative, and we have not quantified how
well a particular algorithm would perform in a particular system setting under
a particular workload. In many cases a qualitative assessment was sufficient
to obtain insight into the relative performance potential, for example, of differ-
ent locking policies (by characterizing their admissible schedules) or different
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levels of optimizations for crash recovery. For a number of reasons, we should
still aim at providing a quantitative assessment of the various algorithms and
their interplay in a complex system:

Often there are trade-offs among different algorithms. One algorithm is
better with regard to a specific metric (e.g., performance during normal
operation), whereas the other is better with regard to another metric
(e.g., restart performance and thus availability). These trade-offs can be
very subtle (e.g., admissible concurrency on one hand and overhead for
concurrency control bookkeeping on the other hand).

The pros and cons of the considered algorithms typically depend on the
underlying hardware resource parameters (i.e., CPU speed, memory
size, number and type of disks, and also very subtle parameters such
as CPU cache effectiveness and the resulting rate of memory stalls).
Additional influences are the workload characteristics of the application
(e.g., length of transactions, fraction of update statements, etc.). In view
of these trade-offs and environmental dependencies we are naturally
interested in knowing by how much a certain algorithm outperforms an
alternative in a given setting and whether the winner in this situation is
still competitive in certain other settings.

Because performance depends on the underlying hardware resources,
system administrators are faced with the problem of determining an
appropriate system configuration (e.g., memory size and also software
tuning parameters such as data cache size). For this kind of capacity
and configuration planning, considering the current or an anticipated
workload (e.g., number of clients of a server and their rate of gener-
ating transactions), a quantitative assessment of the overall system for
different, often hypothetical, configurations is crucial.

Finally, predictability of the system behavior, including its performance
under usual as well as stressful conditions (e.g., during the peak busi-
ness hour) is of utmost importance in a world that critically depends
on IT infrastructure. The 1998 report of the U.S. President’s Advisory
Committee on Information Technology has clearly stated that “our abil-
ity to analyze and predict the performance of the enormously complex
software systems that lie at the core of our economy are painfully inad-
equate.” Ultimately, information systems should be deployed together
with performance and service quality guarantees for highly dependable
services that users can truly rely on.

So quantitative analysis of the performance of transactional information
systems and, as building blocks of the analysis, their underlying concurrency
control and recovery algorithms is of extremely high importance. The metrics
that we are most interested in include (but are not necessarily restricted to)
the following:
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Throughput: the maximum number of transactions per second that a
system can sustain over an extended period.

Response time: the time span between initiating a transaction from a
client or application server and receiving the response (e.g., a commit
acknowledgment).

Reliability: the probability that the system does not have a nonrepairable
failure (i.e., one that leads to data loss, in our context of data servers)
within a given lifetime or observation period. (The mean time to data
loss that we have considered in Chapter 16 is closely related to
reliability.)

Availability: the probability that the system is running and can serve
incoming requests at a randomly chosen point in time, within a given
observation period. (The observation period is often assumed to be in-
finitely long, provided that the corresponding mathematical limit, the
so-called stationary availability, exists.)

Response time can refer to the mean response time, averaged over all
transactions, or to specific transaction classes formed by types of underlying
programs (e.g., processing a new order versus preparing a daily sales report
in an online sales application) or different user/customer categories (e.g., fre-
quent flyers versus standard customers in an airline reservation system). An
orthogonal issue is whether we consider merely the mean response time or
also its variance or even percentiles of the response time distribution. The
latter is often important for ensuring that the system’s responsiveness is ac-
ceptable most of the time; for example, we could require that 95% or 99%
of all transactions (of a specific class) should have a response time of two
or five seconds at most. These requirements may be stated as explicit per-
formance goals of the system, which in turn require appropriate, all but
trivial, capacity and configuration planning and also specific transaction
processing techniques that use priorities for different transaction classes.
Such approaches are sometimes referred to as goal-oriented transaction
processing.

Availability measures the system’s capability to quickly recover from tran- Performability
sient, repairable failures. As we discussed in Chapters 15 and 16, there are
techniques to keep the system available even during the recovery from certain
failures (e.g., disk failures if there is sufficient storage and data redundancy
or server failures in a data-sharing cluster). However, during such degraded
periods the performance will not be as good as if all resources (disks, proces-
sors, server processes, etc.) were up simultaneously and no recovery actions
were in progress. Note that planned downtimes of components for software
maintenance also lead to degraded states. For large system complexes with
substantial degrees of (data and process) replication, the system will be in a
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degraded mode relatively often, and the resulting effects on the overall, long-
term response times should be taken into account. The performability metric
combines the performance and availability dimensions by weighting the perfor-
mance in degraded states in proportion to the expected duration of the degraded
period.

Among the above metrics, response time is usually most difficult to analyze
for two fundamental reasons:

Response time depends on many factors and their complex interplay.
With regard to concurrency control alone, lock conflict probabilities,
lock waiting times, deadlock probabilities, and so on, all contribute to
the overall transaction response time. Additional, equally important fac-
tors include the database cache hit ratio, the disk I/O rate and access
patterns in the processing of queries and transactions, the CPU time con-
sumption, and so on. Thus, predicting the overall performance at the
system level requires a detailed analysis of all these underlying factors,
each of which in turn already poses significant difficulties.

Response time needs to be analyzed under the constraint that the system
sustains a certain throughput that corresponds to the total user-induced
load (e.g., an arrival rate of operations or a number of concurrently
active users). This gives rise to the complication that response time
involves queueing delays because of contention for system resources
(e.g., memory, disk I/O, network bandwidth, locks on data), an effect
that is largely underrated, yet can become disastrous during load peaks.
Network and server queueing is exactly what makes many services on
the World Wide Web so awfully slow.

Queueing is an inherently stochastic phenomenon, since it depends on the
user activity as it evolves over time and the resulting workload characteristics,
which can usually be characterized only statistically. For example, the vari-
ability in the load patterns, such as arrivals of new transactions or transaction
lengths, can have a dramatic influence on performance. This is analogous to
and indeed has the same fundamental causes as the well-known effect of auto-
mobile speed variability on traffic jams. Likewise, the complexity of the system
internals suggests that the system behavior itself (e.g., patterns of lock con-
flicts) be best modeled in terms of random variables with specific probability
distributions. Finally, similar considerations hold for the analysis of availability
or performability as well: failures cannot be deterministically predicted and
rather need to be characterized stochastically, which in turn renders recovery
time a random variable (with a priori unknown distribution).

In certain applications, it is paramount that queueing delays, includingReal-time
transaction
scheduling

lock waits, be bounded so that certain response times can be guaranteed for
all transactions (of certain classes), not just for a very large percentile of them.
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So at the time a transaction arrives it is assigned a deadline that its execution
has to meet. Such applications are known as real-time applications and include,
for example, the trading platforms of stock exchanges or air traffic control.
Applications may also exhibit a mix of real-time and non-real-time transac-
tion classes or may tolerate infrequent violations of deadlines under certain
conditions. Regardless of these variations, a real-time application setting re-
quires a deadline-conscious CPU scheduler, and this has drastic consequences
for concurrency control and further aspects of a transactional data server. For
example, a transaction that holds locks and blocks another transaction that has
a pressing deadline should either be canceled (i.e., forced to be rolled back)
or itself be expedited to release its locks as quickly as possible. It turns out
that such considerations lead to a new set of trade-offs among optimistic and
pessimistic concurrency control protocols, and generally need careful integra-
tion with CPU and disk scheduling of the underlying operating system. This
area has been researched to some extent (see the Bibliographic Notes), but still
poses challenges and opportunities for future research.

For all these reasons, stochastic models and especially so-called queueing
models are of overriding importance for the performance analysis and pre-
dictability of information systems. The “only” reason for having excluded such
material from this book is because it is a major subject of its own (see the
Bibliographic Notes for textbooks) and would thus have required far too much
additional space and also special mathematical prerequisites. The strategic im-
portance of this area is best underlined by the observation that Web-based
services especially become increasingly complex to configure, administer, and
operate with acceptable performance and continuous availability while the cost
of human system administrators and tuning experts increasingly dominates the
overall cost of these information services.
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Grabs, T., K. Böhm, and H.-J. Schek (1999): A Document Engine on a DB
Cluster. In Proc. International Workshop on High Performance Transaction
Processing Systems.
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ǫ serializability, 271
2PC. See two-phase commit (2PC) protocol
2PL. See two-phase locking (2PL) protocol
2PL/FOCC algorithm, 265
2PL/ROMV algorithm, 265–266
2V2PL protocol, 206–209

aborted transactions, 491–496
abort(s), 24, 65, 66

cascading, avoiding, 391–393
cascading, enforcing, 404
complete, 417
group, 384
partial, 417
replacing, by inverse writes, 383
See also transaction rollbacks, transaction

recovery
abstract data types (ADTs)

search structure, 320
ACA, 394–395
access layer, 29
ACID properties, 23, 37, 109

contract, 25, 26
workflow and, 625

actions
abort, 522–523
begin, 455, 522
caching, 433
checkpoint, 523
commit, 455
data, 432–433
fetch, 454, 521
flush, 454–455, 473, 521
force, 455, 521
full-write, 520–521
inverse, 499, 511–512
write, 454, 520–521

Active Application Table (AT), 648, 650
active transactions, terminating, 383
activities, 781–782
admission control, 370

after images, 451
altruistic locking (AL), 150–155
analysis pass

client restart, 660
with flush log entries, 488
full writes and, 462
with heavyweight checkpoint, 479
with lightweight checkpoint, 484–485
performance bottlenecks, 473
three-pass redo-history algorithm, 502
See also simple three-pass algorithm

application recovery, 623–668
general stateful applications, 642–667
stateful applications based on queues,

632–637
stateless applications based on queues,

625–632
for two-tier client-server systems, 625
workflows based on queues, 637–641
See also recovery

applications
multi-tier federated, 667
OLTP, 667
piecewise deterministic, 642
real-time, 787
stateful, 624, 632–637, 642–667
stateless, 624, 625–632

architectures 16, 17
crash recovery, 433
database server, 27–37
data-sharing cluster, 585
federated system, 20–22, 674–675
multi-threaded, 28
system, 430–434
three-tier, 16–20, 666–667
two-tier, 20, 666–667

archive log, 598–599
“begin-backup” entry, 598, 599
“end-backup” entry, 598, 599
remote, 619

at-least-once execution, 627

829



830 Index

atomicity, 23–24
debit/credit example, 8–9
high-level operations and, 533–534
subtransaction, 535, 582
workflow, 15

availability, 27, 783–787

B+ tree indexes, 33–34, 313, 315–318, 562
search structure implementation by,

315–320
structure recovery, 561
See also index structures

backups, 597–598
remote, 618

backward-oriented optimistic concurrency
control (BOCC) validation, 172–175

See also validation protocols
basic timestamp ordering (BTO), 167–168

See also timestamp ordering (TO)
batching, log I/Os, 457
before images, 451

database safe method, 543
See also after images

begin log entry, 731
blind write, 47
BLOBs (Binary Large OBjects), 31
Blocking
blocks. See pages
bounded inconsistency, tolerating,

270–271
business objects, 18ff

See also abstract data types, object model
Byzantine agreement. See distributed

consensus protocols

cache coherency
See also data sharing systems

cached database, 431
no-steal, 441

cached pages
replacement of, 456
status, 451

caching actions, 433
callback locking, 713–716
caller-callee relationship, 220
cancellation control, 370
cascading aborts

avoiding, 391–393
enforcing, 404
See also abort(s)

certifiers. See validation protocols
certify lock, 209

chained subtransactions
all-commutative, 255–258
decomposed transactions with, 272
See also subtransactions

checkpoint log entries, 477, 486,
652, 657

checkpoints
heavyweight, 476–477, 478
lightweight, 481–486, 581

chopping, 301–308
chopping graph, 302–303
classes of schedules and histories

ACA, 394
CMCSR, 107–108
CMFSR, 107–108, 395
CMVSR, 107–108, 395
COCSR, 103–105, 700–701
CSR, 94–98
ECOCSR, 701–702
FSR, 82–83, 85–86
LRC, 398–399
MCSR, 199–201
MVSR, 192–197
OCSR, 102, 104–105
PRED, 397–398, 421
RC, 391
RED, 388
RG, 394
ST, 393
VSR, 84–85, 86–92
XCSR, 386–387

clients
caching, 716
in general stateful applications, 645–646
installation point, 646
restart, 632, 659–661
stateless, 625–626
See also server(s)

closed nested transactions, 374
closure properties of schedule properties,

105, 106
clusters

See also data sharing systems
CMCSR, 107–108
CMFSR, 107–108, 395
CMVSR, 107–108, 395
coarse-grained locking, 352
COCSR, 155, 179, 700–701, 772
combined log, 545

undo pass, 549–550
See also L0 log; L1 log

commit operation, 65, 66
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commit order preserving conflict
serializability, 102–103

commit protocols
flattened, 745–746
hierarchical, 746–747
nonblocking, 749
optimized, 748–763
presumed-abort (PA), 750–753
presumed-commit (PC), 750, 753
See also two-phase commit (2PC) protocol

commit serializability, 105–109
See also serializability

commit-deferred transactions, 669
commit transaction call, 23–24, 25
commitment ordering, 102–105

extended, 701–702
commutative operations, 224–225
commutativity, 53, 242, 335

conflicts and, 99–101
normal, 414–415
perfect, 411, 412
return value, 242–243
return value, for counters, 243–244
return value, for queues, 245–246
state-dependent, 240–246
state-independent, 225–226, 240

commutativity based equivalence, 99–100
commutativity based reducibility, 100
compensating steps. See inverse operation
compensation

activities, 16, 782
spheres, 783

compensation log entries (CLEs), 512, 547,
552

for inverse operations, 558
L1 undo pass, 541
object-level, 536
undo pass with, 514–515

complete schedules, 66, 67
computational models, 4, 41–57

See also object model; page model
concurrency

canonical problems, 62–65
debit/credit example, 6–7

concurrency control, 26, 54
backward-oriented optimistic (BOCC),

172–175
cache coherency integration, 713
in data sharing systems, 711
distributed, 673–721
forward-oriented optimistic (FOCC),

172–175

in homogeneous federations, 676–686
on index structures, 314
multiversion, 185–213
notions of correctness for page model,

61–120
on ADT objects, 774
optimistic, 685
page-oriented, 44, 448
pessimistic, 685
predicate-oriented, 278–285
on search structures
ticket-based, 702–708

concurrency control on objects, 251–272
notions of correctness, 217–247

concurrency control on relational databases,
277–308

predicate-oriented, 278–285
concurrency control on search structures,

313–345
page layer techniques, 327–340

concurrency problems, 62–65
dirty-read, 64–65
inconsistent-read, 63–64
lost-update, 62–63
See also page model

conflict equivalence, 93–94
in heterogeneous federations, 695
testing for, with serial schedule, 227–228

conflict faithfulness, 238–240
level-to-level serializability and, 240

conflict graphs, 96–98
2PL scheduler, 136
annotated, 404
extended for IDM transactions, 293–295
global, 695–696
local, 703
multiversion, 199–201

conflict multigraphs, 683–685
centralized case, 684
distributed case, 684

conflict points, 162
conflict regions, 163

conflict ratio, 371–372
critical, 372
fraction of blocked transactions and, 371–372
load control, 370, 372

conflict regions, 163
conflict relations, 93–94
conflict resolution policies, 779
conflict serializability, 92–105, 291

commit order preserving, 102–103
commutativity rules and, 291
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conflict serializability (cont.)
conflict equivalence and, 227–228
dirty-read problem and, 105
expanded, 385–387
extended, 293–295
for flat object transactions, 223–228
in homogeneous federations, 678
for IDM transactions, 291
level-to-level schedules, 235, 236
lost updates/inconsistent reads and, 95
multiversion, 197–201
order preserving, 101–102, 419
in presence of functional dependencies,

295–298
restrictions of, 101–105
testing, 96
See also serializability

conflicting-step graph, 94
conflicts

commutativity and, 99–101
direct, 694
forced, 703
forcing, with explicit tickets, 702–706
indirect, 153, 693, 694
local, 293
lock, 261
multiversion, 197–198
rw synchronization, 176
ww synchronization, 177

conservative 2PL, 142–143
See also two-phase locking (2PL) protocol

conservative ticket method (CTM), 705
consistency, 37

causal, 663
preservation, 24

conversational transactions, 632
cookies, 637
cooperative termination, 762
coordinator, 726

algorithm, 736–737
choice, 744–745
restart, 734–735
termination, 734, 735–736
See also two-phase commit (2PC) protocol

coordinator transfer, 749, 758–761
coordinator choice, 758, 760
dynamic, 758

CORBA (Common Object Request Broker
Architecture), 18, 22

correctness,
of 2V2PL, 208–209
of AL protocol, 154–155

of complete three-pass algorithm, 496–497
of enhanced three-pass algorithm, 490
of histories, 71–73
of layered 2PL, 253
of log truncation, 475
of MVTO, 204–205
of recovery algorithms, 429
of ROMV, 212–213
of schedules, 71–73
of simple three-pass algorithm with

full-writes, 461–465
of simple three-pass algorithm with general

writes, 470–471
of three-pass redo-history algorithm,

507–509
of two-phase commit (2PC) protocol,

738–739
of undo completion, 500
See also concurrency control

correctness criterion,
interleaving specifications, 109–119
for object model, 407–419
for page model, 385–390

counters
escrow locking on, 267–270
incrementing/decrementing, 244, 267
return value commutativity for, 243–244
state-dependent commutativity on, 270

crash recovery, 427–444
algorithms, 429, 439–444
architecture components overview, 433
correctness criterion, 437–439
performance goal, 428–429
system architecture and interfaces, 430–434
system model, 434–437
See also recovery algorithms

critical conflict ratio, 372
CSR, 94–98, 772

inconsistent read and, 94–96
lost update and, 94–96
membership testing, 98
safety of 2PL protocol, 135–137
as subset of VSR, 95
See also conflict serializability

data
access, 32–34
actions, 432–433
consistency, 10
operations, 66
records, 30
redundancy. See storage redundancy
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shipping, 584
storage, 30–32

data contention thrashing, 367–369
data manager (DM), 126, 128
data replication, 776–779

eager, 776–777
epidemic, 778
eventual consistency, 779
lazy, 778
majority voting, 777
primary copy method, 777
quorum consensus, 778
ROWA method, 777

data servers, 16, 19
failures, 24
main-memory, 580–583

data sharing systems, 710–716
cache coherency, 711
cluster, 710
concurrency control, 711

database pages. See pages
database restore algorithms, 599–602
database safe, 476
database servers, 3–4, 19

architectural layers, 27–30
concepts and architecture of, 27–37

database systems
access layer, 29
architectural layers, 27–30
data access, 32–34
data storage, 30–32
distributed, 27–28
embedded transaction management, 30
language and interface layer, 28–29
metadata, 32
parallel, 37
query decomposition and optimization

layer, 29
query execution layer, 29
query/update execution, 35–37
storage layer, 29–30

database(s)
backup, 597–598
cached, 30, 431, 436
main-memory, 580–583
shadow, 431, 441, 600–601
stable, 430, 437
state, 435–436

data-sharing clusters, 561
architecture, 585
logging and, 586–587
recovery from failure of entire cluster, 588

recovery from single-server failure, 587–588
for very high availability and throughput,

583
DCOM (Distributed Component Object

Model), 18, 22
deadlock detection, 139

centralized, 686–687
continuous, 139
distributed, 686–689
of false deadlocks, 687–688
latches and, 341
periodic, 139
WFG, 139

deadlock-free page latching, 340–341
deadlock prevention, 141–142

running priority, 142
wait-die, 141
wound-wait, 141–142

deadlocks
causes, 138–139
escrow locking and, 269–270
false, 687–688
freedom during rollback, 412–414
global, 686, 687
handling, 138–142
homogeneous servers and, 675
lock conversion leading to, 138–139
resolution, 139–140, 572
victims, choosing, 141
WTL protocol and, 158

debit/credit example, 5–9
declustered mirroring, 609–610

MTTDL, 610
See also mirroring

declustered parity blocks, 613–614
MTTDL, 615
See also parity blocks

deferred update algorithms, 440–441
See also recovery algorithms

degree of multiprogramming.
See multiprogramming level (MPL)

delete operation, 321, 335–337
drain technique and, 338
RIDs and, 321

depends-on relation, 113
differential file, 441
direct conflicts, 694
directed acyclic graphs (DAGs), 67, 88, 156
dirty pages

flushing all, 477
I/O optimization for fetching, 483
list, 482, 486
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dirty-read anomaly, 390–391
dirty-read problem, 64–65

conflict serialization and, 105
VSR criterion and, 86
See also concurrency problems

disaster recovery, 618–620
distributed transactions vs. log shipping,

618–619
hot-standby backup server, 619
remote backup, 618

disk array, 595
disk-reads

optimized, in degraded mode, 617
redirected, 616
regular, piggybacking on, 617

distributed concurrency control, 673–721
2PL, 679–680
for data sharing systems, 710–716
deadlock detection in, 686–689
for homogeneous federations, 676–686
object model, in heterogeneous federations,

708–710
SGT, 683–685
ticket-based, 702–708
TO, 680–683
See also concurrency control

distributed consensus protocols, 729
distributed deadlock detection,

686–689
edge chasing, 688
false deadlocks, 687–688
path pushing, 688–689
timeouts, 688

distributed SGT, 683–685
conflict multigraphs, 683–685
with predeclaration, 685
See also serialization graph testing (SGT)

distributed TO, 680–683
Lamport clock and, 682–683
See also timestamp ordering (TO)

distributed transaction recovery, 723–765
distributed commit , 723–763
independent recovery, 741–744
in-doubt transactions, 724
optimized algorithms, 748–763
two-phase commit (2PC), 724,

725–748
distributed transactions

coordination of, 671–768
log shipping vs., 618–619

distribution transparency, 674
divergence control, 271
donate operation, 151–152

drain technique, 337
durability, 8, 25
dynamic 2PC, 760–761

See also two-phase commit (2PC) protocol
dynamic voting, 778

eager (synchronous) replication, 776
ECOCSR, 701–702
e-Commerce services, 637
EJB (Enterprise Java Beans), 18
encapsulated objects, 241
end log entry, 731
enhanced key range concurrency, 341–343
enhanced redo-history recovery algorithm,

510
See also redo-history algorithms

enhanced three-pass recovery algorithm,
473–490

See also page model crash recovery
algorithms

environmental recovery, 596–597
epidemic replication, 778
equivalence relation, 72, 100
error-correcting codes (ECCs), 606

rebuild algorithms, 616–618
storage organizations, 610–616
See also storage redundancy

escrow locking, 267–270
e-Services 779–783
exactly-once execution, 623–624

stateless applications, 627–628
expanded conflict serializability, 385–387

See also conflict serializability
expanded schedules, 384

with partial aborts, 417
See also schedules

explicit tickets
for forcing conflicts, 702–706
mixing implicit tickets with, 707–708
See also tickets

extended 2PL (E2PL), 406–407
extended commitment ordering, 701–702
extended conflict serializability, 293–295

See also conflict serializability
extended histories, 434–435

See also histories
extended SGT (ESGT), 403–406
extended timestamp ordering (ETO),

407
extended tree reducibility, 418–419, 421

F(ailure) transitions, 734
failover procedure, 583
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fail-stop property, 428
failure(s), 23

data server, 24
fail-stop property, 428
masking, 23
mean time to (MTTF), 429
network partitioning and, 744
partial, 723
resilience to, 427
transient process, 728

false deadlocks, 687–688
See also deadlocks

fault tolerance, 427
federated system architectures,

20–22
local vs. global transactions, 675
multidatabase systems, 674

feedback-driven method, 369–372
admission control, 370
cancellation control, 370
conflict ratio, 369–370, 371–372
restart control, 370–371
See also overload control

final state serializability, 76–82
for IDM transactions, 289–291
testing, 81
See also serializability

fine-grained locking, 352
first-in-first-out (FIFO) queues, 203,

245, 246
fixpoint set, 129
flat object schedules, 223–225

2PL applied to, 252
aborts in, 407–419
commutativity based reducible, 226
conflict equivalent, 227
conflict serializable, 227
expanded schedule for, 409
locking for, 251–252
prefix reducible, 415
strictness, 415
See also schedules

floating parity, 613
flush actions, 454–455, 479

during normal operation, 454–455
logging of, 473

flush log entries, 486–490
flush order dependencies, 567–568

cyclic, 568
flush ordering, 565–566

for large objects, 566–571
forced conflicts, 703
force-logging, 643–644

forward-oriented optimistic concurrency
control (FOCC) validation, 172–175

acyclic conflict graphs, 173
COCSR and, 174–175
See also validation protocols

free space management table, 32
FSR, 82

VSR vs., 85
See also final state serializability

full-writes, 461–467
analysis pass and, 462
function shipping, 584
log truncation for, 476

functional dependencies (FDs)
chase procedure for enforcing, 297
as semantic integrity constraints, 295
serializability in presence of, 295–299

fuzzy checkpoints. See lightweight checkpoints

garbage collection, 356–357
garbage collection rule, 438

See also logging rules
general commutativity. See state-independent

commutativity
ghost keys, 342
giveup technique, 339–340

See also page layer techniques
global conflict graph, 695–696
global deadlocks, 686
global flushing, 497
global histories, 691–694

heterogeneous, 692
homogeneous, 677

global lock authority, 711
global serializability, 293

by commitment ordering, 700–702
in heterogeneous federations, 694–696
in homogeneous federations, 677
with local guarantees, 698–702
by rigorousness, 698–700

global transaction manager (GTM), 694
granularity

locking, 359
locking authority, 714
multiple, 130, 279, 352–354
page, 448

group aborts, 384
group commit, 457
growing phase (of 2PL), 137, 138

half split operation, 565
hard crash, 428

See also media failures
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heavyweight checkpoints, 476–477
analysis pass with, 479
redo pass with, 479
three-pass recovery algorithm scenario

with, 480
See also checkpoints

Heisenbugs, 428
Herbrand semantics, 74

of schedules, 73–76
Herbrand universe, 75
heterogeneous federations, 674, 690

homogeneous federations vs., 673–674, 690
indirect conflicts, 693
local vs. global transactions, 690
MDBS, 690
object model concurrency control in,

708–710
quasi serializability, 696–698
serializability in, 690–698
See also federated system architectures

heuristic commit/abort, 762–763
high-level operations

atomicity and, 533–534
execution of, 540
idempotence of, 534–535

histories, 66
AL-generated, 154
commit conflict serializable, 108–109
commit order preserving conflict

serializable, 102–103
expanded, 386
extended, 434
global, 677, 691–694
of IDM transactions, 288–289
with initial and final transaction, 78
k-version view serializable, 203
layered, 222–223
local, 691–692
multiversion, 188
for nonlayered object-model, 553
for object model, 220
order preserving conflict serializable,

102
for partially ordered transactions, 67
prefix reducible, 389
prefixes of, 67, 219
recoverable, 391
RG, 698
schedules vs., 66
serial, 67, 288
serializable, 108
syntax of, 65–71
totally ordered, 69–70

two-level, 222
view serializable, 85
without dead steps, 85

homogeneous federations, 674
concurrency control in, 676–686
conflict serializability, 678
deadlocks and, 675
distributed 2PL, 679–680
distributed SGT, 683–685
distributed TO, 680–683
distribution transparency, 674
forward-oriented concurrency control,

686
global history, 677
global vs. local serializability, 677
heterogeneous vs., 673–674, 690
optimistic protocols, 685–686
subtransactions, 677
transactions, 675
See also federated system architectures

hot spots, 179, 368
hot-standby backup server, 619
hot-standby spare disk, 607
HTML (Hypertext Markup Language), 17
HTTP (Hypertext Transport Protocol), 18
hybrid algorithms, 265–266

2PL/FOCC, 265
2PL/ROMV, 265–266
hybrid schedulers, 175–179
for partitioned data, 178–179
SS2PL + TO, 177
Thomas’ Write Rule (TWR), 177–178
See also schedulers

hyperplane, 282

I/O parallelism, 28
idempotence

of high-level operations, 534–535
object-level, by logging during restart, 536

IDM transactions, 286–287
commutativity rules, 287–288
conflict graph, 291–292
conflict serializability, 291
equivalence of, 287
extended conflict serializability, 293–295
final state serializability, 289–291
histories of, 288–289
simplification rules, 288
state serializability, 296–298

immediate restart, 142
implicit tickets, 706–707

mixing explicit tickets with, 707–708
See also tickets
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inconsistent-read problem, 63–64, 83
CSR criterion and, 94–96
FSR criterion and, 83
VSR criterion and, 85–86
See also concurrency problems

incremental key range locking, 322
lock coupling with, 334–335
operation delete, 326
operation insert, 326
operation next, 325
operation search, 325
See also key range locking

indebtedness, 153, 154
independent recovery, 741–744

single-failure assumption, 741–742
index locking, 254–255
index lookup, 33
index scans, 33, 321

predecessor locks and, 337
as sequences of next operations, 322–324

index structures, 562
B+ trees, 34–35, 315–318
object model recovery applied to, 562–563

index-page splits
logical log entries for redo of, 562–566
physical logging problem, 563

indirect conflicts, 153, 694
in heterogeneous federations, 693
See also conflicts

indivisible units, 111–113, 308
in-doubt transactions, 724

prepared log entry for, 729–730
initializing transactions, 74, 75, 77
inner-node index entries, 315

as routing entries, 316
insert operation, 321, 341

lock coupling and, 329, 332
installation points, 643, 649
installed state, 662
instant duration locks, 341
integrity constraints, 279
intention list, 441
intention locks, 352
interleaving specifications, 109–119
intra-transaction parallelism, 258–259,

576–577
nested transactions for, 357–358

inverse actions, 499, 511
multiple-times, 512

inverse operation, 380, 408
CLEs for, 558
high-level, 558, 582
undo stack of, 557

isolated subtrees, 221
isolation, 24–25

concurrency control techniques for, 6–7
debit/credit example, 6–7

isolation levels, 360–364
multiversion read committed, 362
read committed, 361
read uncommitted, 361
serializability vs. repeatable read, 361
snapshot, 362

k-version view serializability, 202, 203
key dependencies, 279
key locks, 322
key range locking, 320–327

incremental, 322
simple, 321–322

L0 log, 536–537
buffer, 537
entries, 537, 546
forcing, 538
See also combined log; simple redo-history

algorithm
L1 log, 536, 537

buffer, 537, 545
commit log entry, 537
entry, 546
forcing, 538
See also combined log; simple redo-history

algorithm
L1 undo pass, 541–542

state testing and, 545
Lamport clock, 682–683
large objects, 562

flush ordering for, 566–571
last-agent optimization, 758–760
latches, 340, 341

coupling, 340–341, 345
layered 2PL, 253–254

all-commutative chained subtransactions,
255–258

applied to arbitrary number of levels, 257
with intra-transaction parallelism,

258–259
lock acquisition rule, 253
lock release rule, 253
page latches for single-page record

operations, 254
selective, 257
subtransaction rule, 253
See also two-phase locking (2PL) protocol

layered histories, 222–223
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layered locking, 252–259
See also layered 2PL

layered schedules, 222–223, 233
2PL applied to, 252
tree reducible, 235
See also schedules

layered transactions, 218
lazy (asynchronous) replication, 778
lazy logging, 647
leaf nodes

index entries, 315
split, 317–318

level-to-level schedules, 234
commutativity, 234
conflict faithfulness and, 240
conflict serializable, 235, 236
order-preserving condition, 238
partially ordered leaves, 235
See also schedules

lightweight checkpoints, 482
analysis pass with, 484–485
dirty page list, 482, 486
redo pass with, 485
undo pass and, 483
See also checkpoints

linear 2PC with last-agent optimization,
758

link technique, 337
insert execution with, 338
search execution with, 338
See also page layer techniques

live reads-from relation, 79
livelocks. See starvation
liveness properties, 739–740
local histories, 691

quasi serial, 697
See also histories

local read authority, 711
local schedules, 676, 694
local serializability, 293
local transaction managers (LTMs),

690
local write authority, 711
lock acquisition rule, 146–147

layered 2PL, 253
object model 2PL, 261
selective layered 2PL, 257

lock authorities, 711–714
lock conflict rule, 261–262
lock control blocks (LCBs), 350
lock conversion, 134, 359

leading to deadlock, 138–139

lock coupling, 328
incremental key range locking with,

334–335
insert execution under, 336
with next operations, 333–335
range search execution under, 336
with range searches, 332–333
split safe tree nodes, 329–332
See also page layer techniques

lock escalation, 353
lock manager

implementation, 349
lock control blocks (LCBs) and, 350
resource control blocks (RCBs) and,

350
transaction control blocks (TCBs) and,

350
lock mode compatibility, 352

multiple granularity locking and, 353
lock modes, 131, 359–360

compatibility, 131
dynamic tuning of, 360
ordered sharing, 145
read, 131
write, 131

lock release rule, 147
for layered 2PL, 253
for object model 2PL, 262
for selective layered 2PL, 257

lockable intervals, 323
locked transactions, 163–164
locking

altruistic, 150–155
callback, 713–716
coarse-grained, 352
DAG, 162
escrow, 267–270
fine-grained, 352
for flat object transactions, 251–252
geometry of, 162–165
granularity, 359
index, 254–255
key range, 320–327
layered, 252–259
manual, 359–360
multiple granularity, 279, 352–354
next key, 325
on general transaction forests, 259–265
optimistic, 365–366
overhead, reducing, 343–344
preanalysis, 165
precision, 284–285
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predicate, 281–282
previous key, 324–325
protocols, 133
read/write tree, 159–162
record granularity, 271
for return value commutativity,

267–271
scopes, 259
of a transaction set, 165
well-formed, rules for, 132–133
write-only tree, 156–159

locking schedulers, 130–165
2PL variants, 144
altruistic locking, 150–155
data oriented, 165
deadlock handling, 138–142
defined, 126, 130
introduction, 130–133
locking geometry, 162–165
non-two-phase, 155–162
ordered sharing of locks, 144–150
as pessimistic schedulers, 129
scheduling power of, 165
two-phase (2PL), 136
See also schedulers

lock(s), 207, 209
coarse-grained, 579
compatibilities, 207
conflicting, 130, 131, 261
conflicting, held simultaneously, 145
deferred, 267
for “deferred” deletes, 342
escalation, 353–354
exclusive, 131
fine-grained, 353
incompatible, 148
instant duration, 341
intention, 352
key, 322
ordered sharing of, 144–150
page, 260
predicate, 256
previous key, 324–325
release of, 130, 131
request, 130
retained, 261, 262
RID, 343
rl, 207
semantic, 358
shared, 131
wait, 130
wl, 207

log-based method, 596–606
archive logging, 598–599
database backup, 597–598
database restore algorithms, 599–602
MTTDL analysis, 602–606
periodic backups, 596
redo, 596
See also media recovery

log buffer, 431, 435
forcing, 496

log entries
backward chaining of, 451
begin, 731
checkpoint, 477, 486, 652, 657
compensation, 493, 512
in data-sharing clusters, 587
end, 731
flush, 486–490
logical, 563, 566–571
physical, 451, 569
physiological, 452, 571
physiological redo, 582
read, 658
sequence numbers in, 452
undo, 657–658
“undo complete,” 498
writing, deferral of, 582

log I/Os, 457
log recoverability, 398

extending serializability graph testing for,
403–406

log scans, parallelized, 578
log sequence numbers (LSNs), 450, 465, 552,

572, 772
MediaRecoveryLSN, 599, 620
NextUndoSeqNo, 513–515
oldest undo (OldestUndoLSN), 474, 579,

580
page, 534
redo (RedoLSN), 474
SystemRedoLSN, 620

log sharing, 761
log shipping

for client caching architectures, 588–589
distributed transactions vs., 618–619

log truncation, 473–476
based on stability notifications, 647–648
client, 655
during normal operation, 475
for full-writes, 476
general stateful applications, 655–657
redo-history algorithm, 511
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logging
archive, 598–599, 620
client, during normal operation, 653–655
data-sharing clusters and, 586
for incomplete requests, 650–652
lazy, 647
logical, 563–564
of operations on large objects, 566
parity-block, 613
physical, 563
physiological, 563
server, during normal operations,

650–653
server reply, 643, 646–648

logging rules, 438
garbage collection, 438, 439
redo, 438, 439, 456
undo, 438, 439, 456

logical log entries, 563
for large-object operations, 566–571
mixed physiological log entries, 571
for redo of index-page splits, 562–566

logical logging
of detached split operations, 563–564
of stored procedure execution state,

570–571
long transactions, 150–151

2PL processing and, 150
lookups

index, 33, 36
loser transactions

aborted transactions treated as, 491
reacquiring locks for, 578–579
redo-history algorithm and, 519
treated as rollbacks, 502–503
See also winner transactions

lost-update problem, 62–63, 83
CSR criterion and, 94–96
FSR criterion and, 83
VSR criterion and, 85–86
See also concurrency problems

LRC, 398–399, 404

main-memory databases, 580–583
crash recovery, 580–581
incremental redo on demand, 581–582
no-steal caching policy, 582
See also database(s)

majority voting, 777
manual locking, 359–360
Markov chains, 604
master record, 458

MCSR, 199–201
multiversion conflict graph, 199–201

mean time to data loss (MTTDL)
analysis of, 602–606
for backup/log-based media recovery, 601
declustered mirroring, 610
declustered parity-block architecture, 615
simple mirroring, 608
stochastic state-transition model for,

602–606
mean time to failure (MTTF), 595

component-specific, 604
mean time to repair (MTTR), 429, 595, 601
MTTDL and, 595

media failures, 593
media recovery, 593–622

backup-based, 774–775
disaster, 618–620
log-based method, 596–606
storage redundancy, 606–618
See also recovery

MediaRecoveryLSN, 599, 620
message logging, 642–644
message lookup table, 650

log truncation and, 656
recovery, 650

message queues, 626
message recovery, 624

by persistent recoverable message queues,
626

message logging for, 642–643
queue-based, for conversations, 633–635
See also recovery

metadata, 32
middleware, 21–22

remote method invocation and, 22
mirrored disks, 595, 608
mirroring, 607–610

declustered, 609–610
MTTDL, 608, 610
See also storage redundancy

model checking, 739
monotonicity, 92
monoversion schedules, 188–189

multiversion schedules comparison, 191
reads-from relation and, 191
See also schedules

multidatabase systems (MDBS), 674, 691
serializability theorem, 696
See also federated systems architectures

multilevel transactions, 52
See also layered transactions
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multiple granularity locking, 279, 352–354
multiple times inverse action, 511–512
multiprogramming level (MPL)

limiting, 367–369
multi-threaded transactions. See nested

transactions
multi-tier architectures. See three-tier

architectures; two-tier architectures
multiversion concurrency control, 185–213

MV2PL protocol, 205–209
MVSGT protocol, 209–211
MVTO protocol, 203–205
for read-only transactions, 211–213
See also concurrency control

multiversion conflict graph, 199–201
multiversion conflict serializability, 197–201

See also conflict serializability
multiversion conflicts, 197–198
multiversion read committed isolation level,

362
multiversion reducibility, 198
multiversion schedules, 186–189

serial, 191
“step syntax,” 190
totally ordered, 188
view equivalence of, 191
See also schedules

multiversion serializability, 189–201
conflict, 197–201
view, 189–192

multiversion serialization graph (MVSG),
195–197

multiversion timestamp ordering (MVTO)
scheduler, 203–205

See also timestamp ordering (TO)
multiversion view serializability, 189–201
MV2PL scheduler, 205–209
MVSGT scheduler, 209–211
MVSR, 192–197, 773

conflict graph, 194
MVSG, 195–197
version order, 194–195

nested rollbacks, 572–573
NextUndoSeqNo backward chaining and,

573
nested transactions

2PL for, 358
closed, 374
denoting intra-transaction savepoints,

575–576
for intra-transaction parallelism, 357–358

multi-threaded, 577
open, 374

network partitioning, 744
next key locking, 325
NextUndoSeq pointer, 555–556
NextUndoSeqNo backward chaining, 513–515

correctness of undo completion with,
516–518

of loser transactions, 547, 556
nested rollbacks and, 573
transaction rollback using, 515–516
traversal, of loser transactions, 547
undo pass with, 514–515

n-level schedules, 253
See also layered schedules

node splits, 317–318
B+ tree insertion with, 318

non-2PL protocols, 155–162
read/write tree locking, 159–162
write-only tree locking, 156–159
See also locking schedulers; two-phase

locking (2PL) protocol
nonblocking commit protocols, 749
noncommutativity, 53
nonlocking schedulers, 126, 166–175

optimistic protocols, 170–175
as optimistic/pessimistic schedulers, 129
serialization graph testing, 168–170
timestamp ordering, 166–168
See also schedulers

normal commutativity table, 414
no-undo/no-redo algorithms, 439–440
no-undo/with-redo algorithms, 440
NP completeness, 86–87

of VSR testing, 87
Null Rule (NR), 387

O2PL protocol, 147–149
object model 2PL, 261–265

lock acquisition rule, 261
lock conflict rule, 261–262
lock release rule, 262
selective version of, 264
subtransaction rule, 262
transaction rule, 262
See also two-phase locking (2PL) protocol

object model, 43, 47–53
concurrency control in heterogeneous

federations, 708–710
correctness criteria for, 407–419
database system layers example, 48–49
expanded schedule, 417
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object model (cont.)
history, 218–219
layered schedules, 222
nonlayered history, 553
nonlayered schedules, 222
page-level undo and, 410
protocols for schedules with aborts,

419–420
transactions, 50–151, 217
tree reducible layered, 237
See also computational models

object model crash recovery, 531–558
applied to index structure, 562–563
compensation log entries, 558
complete redo-history algorithm, 552–556
enhanced redo-history algorithm, 545–552
high-level inverse operations, 558
high-level operation log entries, 557
redo-history algorithm overview, 532–536
simple redo-history algorithm, 536–545
undo stack of inverse operations, 557
See also crash recovery

object model schedules
complete and partial aborts in, 416–419
non-tree-reducible layered, 236
with record-level operations, 231
serial, 221
See also schedules

object request brokers (ORBs), 18
objects

commutativity table, 251
encapsulated, 241

OCSR
2PL protocol, 137
COCSR relationship with, 104
CSR/COCSR relationship with, 104–105
level-to-level schedules, 237–238

ODBC (Open Database Connectivity), 19, 29
omission failures, 729
one-copy serializability, 777
online backup method, 597
online transaction processing (OLTP)

debit/credit example, 5–9
open nested transactions, 374

operations
abort, 65, 66, 73, 383
commutative, 224–225
commutativity, 53
data, 66
delete, 321, 335–337
deletion, 285
dequeue, 245

donate, 151
dynamic invocations of, 218
enqueue, 245
escrow, 268
half split, 565
indivisible, 224
inner node, 52
insert, 321, 338
insertion, 285
interleaved, 112
inverse, 407–408
inverse data, 380
modification, 285
noncommutative, 53, 225, 231
object-level, 224
page, 51
projection, 91
queue, 245
read, 382
search, 329, 338
take-a-ticket, 703, 706
termination, 62, 65–66
ticket, 703–704
undo, 382
update, 286
write, 410

optimistic concurrency control, 685–686
backward-oriented, 686
forward-oriented, 686
read phase, 685–686
validation phase, 686
write phase, 686
See also concurrency control

optimistic locking, 365–366
lost updates and, 366

optimistic schedulers, 170–175
BOCC, 172–175
FOCC, 172–175
pessimistic vs., 175
transaction phases, 171
validation protocols, 170–172
See also schedulers

optimistic ticket method (OTM), 705
order preserving conflict serializability,

101–102
layered object model schedule, 419
level-to-level schedules, 419
See also conflict serializability

ordered sharing, 145–146
lock acquisition rule for, 146–147
lock release rule for, 147
safety of, 149
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ordering
commitment, 102–105
flush, 565–566
inner node, 52–53
of keys, 338
partial, 46
relative, 391
serialization, 619
timestamp, 166–168, 203–205,

680–683
ordering rule, 99–101

reducibility, 387
overload control, 369–374

feedback-driven method, 369–372
wait-depth limitation, 373–374

owner-based coherency control, 712–713

page action atomicity, 448
page layer techniques, 327–340

giveup technique, 339–340
link technique, 337–339
lock coupling, 328–337
See also concurrency control on search

structures
page model, 42, 43–47

commutativity rules, 99
concurrency problems, 62–65
correctness criteria for, 385–389
protocols for schedules with aborts,

402–407
transaction, 46
See also computational models

page model crash recovery algorithms,
447–526

basic data structures, 449–453
complete, 491–500
data structures, 519–520
enhanced, 473–490
page-granularity concurrency control and,

448
redo-history paradigm, 501–518
redo-winner paradigm, 453–500
restart pseudocode, 523–526
simple three-pass, 458–473
three-pass redo-history, 501–509
two-pass redo-history, 509–510
write-behind daemon and, 519
See also crash recovery

page overflow, 317
page sequence numbers, 436
page-level redo, 533
page-level undo, 535

pages
cached, 451, 456
data items as, 43–44
headers, 30
operations on, 51
shadow, 441
storage layout, 30–31
trailers, 30

parallel threads, 358, 374
parallelism, 6

exploiting, during restart, 577–580
I/O, 28
intra-transaction, 258–259, 357–358,

576–577
parallelized log scans, 578
parallelized redo, 577–578
parallelized undo, 578
parity blocks, 610

declustered, 613–614
floating, 613
striping, 612–613

parity groups
RAID architectures with, 610–611

parity logging, 613
parity maintenance, 611
parity striping, 612–613
partial order, 46

prefixes of, 68
partial rollbacks, 416, 571–572

for deadlock resolution, 572
inverse operations executed on behalf of,

575
locks, releasing, 574
See also transaction rollbacks

partial writes, 447, 449
participants, 725, 726

algorithm, 737–738
reinfected, 740–741
restart protocol, 734, 736
termination protocol, 734, 736
See also two-phase commit (2PC) protocol

path pushing, 688–689
perfect closure, 413–414
perfect commutativity, 412–415
performability, 785–786
performance

ACID properties and, 27
analysis, 784
availability guarantees and, 783–787
metrics, 26, 785

periodic checkpoints, 476–481
periodic detection, 139
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pessimistic schedulers
optimistic vs., 175

phantom problem, 281
physical log entries, 451

atomic groups of, 569
combined with physiological log entries, 476
selective subsets of, 569

physical logging, 563
physiological log entries, 452

combined with physical log entries, 476
mixed with logical log entries, 571

piecewise deterministic applications, 642
pipelining, 36
polygraphs, 87–92

acyclic, 88, 90, 91
associated with histories, 88–92
graphs compatible with, 87–88
testing acyclicity of, 87

preanalysis locking (PAL), 165
precision locking, 284–285
PRED, 397–398

characterization of, 399, 421
ST and RC vs., 397–398

PRED vs., 397–398
predicate locks, 281–284
predicate-oriented concurrency control,

278–285
predicates, 281
prefix commit closedness, 106–107
prefix reducibility, 381, 389–390, 408–409

for flat object schedules, 415
prepared log entry

for in-doubt transactions, 729–730
presumed-abort (PA) protocol, 750–753, 764

for hierarchical commit, 757
messages and log entries, 752
with nonforced begin log entry, 754–755
presumed-commit (PC) coexistence, 755
See also commit protocols

presumed-any protocol, 755–756
presumed-commit (PC) protocol, 750, 753,

764
for hierarchical commit, 757
messages and log entries, 754
with nonforced begin log entry, 754–755
presumed-abort (PA) coexistence, 755
See also commit protocols

presumed-nothing (PN) protocol.
See two-phase commit (2PC) protocol

previous key locking, 324–325
See also incremental key range locking

primary copy method, 777

primary site 2PL, 680
process recovery, 624

independent, 741–743
installation points for, 643

projection operation, 91
pseudo-conversational transactions, 624, 636
pull backward, 115–116
push forward, 115

quasi serializability, 696–698
See also serializability

query decomposition and optimization layer,
29, 35

query execution layer, 29
queue manager, 626–627
queued transactions

correctness criterion, 630–631
decentralized workflows based on, 640–641
multiple-queued, chaining, 633
pseudo-conversational, 633
stateless applications, 627–631
in three-tier architecture, 629

queues
atomic update, 641
FIFO, 203, 245, 246
of lock control blocks (LCBs), 350
operations, 245
return value commutativity for, 245–246
stateful applications based on, 632–637
stateless applications based on, 625–632
transaction admission, 367
using, to recover “small” process state, 635
workflows based on, 637–641

queuing, 786, 787
quorum consensus, 778

RAID
architectures with parity groups, 610
clustered, 613–614
disk-read, 616
disk-write (degraded mode), 616
disk-write (normal operation), 615–616
failed disk reconstruction, 616
parity-based, 612
RAID-1, 610
RAID-4, 612
RAID-5, 612–613
RAID-6, 615

range lookups, 33, 316
range scans. See index scans
RC, 391

PRED vs., 397–398
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read committed isolation level, 361
read log entries, 658
read operation, 382
read phase, 171, 685–686
read set, 160, 161
read uncommitted isolation level, 361
read/write model. See page model
read/write tree locking (RWTL), 159–162

DAG locking, 162
read-one write-all method (ROWA), 777
read-only multiversion protocol (ROMV),

212–213, 354, 773
snapshot isolation implementation, 364

read-only subtree optimization, 749,
756–758

read-only transactions, 211–213
reads-from relation, 78–79

live, 79
of schedules, 190–191
with serial monoversion schedules, 191

real-time applications, 787
rebuild algorithms, 616–618
records, 30
recoverability, 391
recoverable stored procedures, 570
recovery, 55

application, 623–668
B+ tree index structure, 561
crash
disaster, 618–620
distributed transaction, 723–765
main-memory database, 580–581
media, 593–622
message, 624, 626
object model, 531–558
page model, 447–526
process, 624
special issues, 561–589
transaction
versioning and, 185

recovery algorithms
correctness criterion, 437–439
deferred update, 440–441
logging rules and, 438–439
no-undo/no-redo, 439–440
no-undo/with-redo, 440
page model, 447–526
taxonomy of, 442
with undo/no-redo, 440
with undo/with-redo, 440, 442–443
update-in-place, 441
See also crash recovery

redirecting disk-reads, 616
redo dependency, 567
redo logging rule, 438, 456

See also logging rules
redo pass

acceleration of, 477, 483
client restart, 659, 660
with general writes, 469
with heavyweight checkpoint, 479
with lightweight checkpoint, 485
state testing during, 468
three-pass redo-history algorithm, 502
three-pass redo-history algorithm

pseudocode, 503
See also simple three-pass algorithm

redo recovery, 427
redo-history algorithms, 532–536

complete, 552–556
enhanced, 545–552
simple, 536–545

redo-history paradigm, 501–518
aborted transactions, 449
actions during normal operation, 501
complete algorithms, 510–518
loser transactions and, 519
partial writes, 449
redo steps, 448
simple three-pass algorithm, 501–509
simplicity, 507
transaction rollbacks, 515
two-pass algorithm, 509–510
undo completion, 510–511
undo steps, 448
See also page model crash recovery

algorithms
redo-winners paradigm, 453–500

aborted transactions, 449
partial writes, 449
redo steps, 448
simple three-pass algorithm, 458–473
undo steps, 448
See also page model crash recovery

algorithms
reducibility, 387–389

commutativity based, 226–227
Commutativity Rule (CR), 387
extended tree, 418–419
Null Rule (NR), 387
Ordering Rule (OR), 387
prefix, 381, 389–390, 408–409
tree, 228–233
Undo Rule (UR), 387
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relational databases
concurrency control on, 277–308
deletion operation, 285
insertion operation, 285
modification operation, 285
relational update transactions, 285–299

relations
transactions on, 279–281

relative serial schedules, 113–114
relative serializability, 114–116
relative serialization graph, 116–119
reliability, 27, 785
remote backup, 618
remote method invocation, 22
repeatable read isolation level, 361
replicas, 776
replication control, 776
request brokers, 18
requests, 664–665

incomplete, logging for, 650–651
incomplete, replaying, 652
redo-continue, 651
rolling back, 650–651

resource control blocks (RCBs), 350
resource managers, 725
response time, 26, 786
restart

client, 632, 659–661
control, 370–371
deadlock prevention and, 142
feedback-driven method and, 142
flush log entries during, 486
immediate, 142
page model recovery algorithm pseudocode,

523–526
parallelism exploitation during, 577–578
server, 657–659
simple redo-history algorithm procedure,

539–540
waiting, 371

restart protocol
coordinator, 734–735
participant, 734, 736
See also two-phase commit (2PC) protocol

retained locks, 261, 262
conflict testing, 263

return value commutativity, 242–246
for counters, 243–244
locking for, 267–271
for queues, 245–246
See also commutativity

RG, 394, 698

RIDs (record or row IDs), 30
lists, 315, 316, 342, 344
locks only, 343

rigorousness, 393–395
extending 2PL for, 402–403
global serializability, 698–700

rl (read lock), 207
rollback segments, 354
root nodes, 320
rw synchronization, 176–177

See also synchronization

safety property, 739
satisfiability problem, 91
savepoints

intra-transaction, 575–576
schedulers, 65, 127–179

AL, 154–155
based on predicate locking, 283–284
block, 128
classification, 129
conflict-driven, 233
fixpoint set, 129
generic, 129
hybrid, 126, 175–179
locking, 126, 130–165
MV2PL, 205–209
MVSGT, 209–211
MVTO, 203–205
nonlocking, 126, 166–175
O2PL, 147–149
optimistic, 129
pessimistic, 129
S2PL, 143
scheduling power, 125
SGT, 168–170

schedules, 42, 61
committed projection of, 105–106
complete, 66, 67
conflict equivalent, 93–94
conflict graph, 96–98
correctness of, 71–73
depends-on relation of, 113
equivalence relation, 72
equivalent, 73, 82, 83
expanded, 380, 381–384
flat object, 223–225
geometrical representation of, 162–163
Herbrand semantics of, 73–76
histories vs., 66
layered, 222–223, 233
legal, 165
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level-to-level, 233–237
local, 676
monoversion, 188–189
multiversion, 186–189
n-level, 253
object model, 219, 229–233
step graphs of, 79–82
syntax of, 65–71
totally ordered, 69–70
transaction sets of, 70–71

scheduling power, 125
of locking protocols, 165

search key, 32
search operations, 329, 338
search structures

ADT interface, 320
concurrency control on, 313–345
implementation by B+ trees, 315–320

search trees, 33
selective layered 2PL, 257–258

lock acquisition rule, 257
lock release rule, 257
subtransaction rule, 257

semantic locks, 358
semi-queues, 246
sequence numbers, 431

globally monotonic, 586–587
log (LSNs), 450, 465, 552, 572,

579, 580
page, 436

serial histories, 67
serial object model schedules, 221
serializability

ε, 271
commit, 105–109
conflict, 92–105
final state, 76–82
global, 293, 677, 694–696, 698–702
level-to-level, 240
local, 293, 677
multiversion, 189–201
one-copy, 776
quasi, 696–698
with regard to FDs, 296
relative, 114–116
view, 82–92

serialization graph testing (SGT), 168–170
distributed, 683–685
extended, 403–406
transaction removal, 170

serialization graphs. See conflict graphs
serialization ordering, 101, 619

server reply logging algorithm, 643
data structures for, 648, 649
message lookup table, 647

server(s)
application, 16
data, 16, 19
database, 3–4, 19, 27–37
document, 19
during normal operation, 632, 653
federations of, 20–22
in general stateful applications, 645
restart, 632, 657–659
transactional, 4, 8, 26–27
workflow, 639
See also clients

shadow database, 441, 619–620
shadow pages, 441
shared disk systems. See data sharing systems
short transactions, 151, 300, 364–367

sequence of, 306
striving for, 364, 365

shrinking phase (2PL), 137, 138
shuffle product, 69
simple key range locking, 321–322

See also key range locking
simple mirroring, 607–608
simple redo-history algorithm, 536–545

actions during normal operation, 536–539
L0 log, 536–537
L1 log, 536, 537
L1 recovery, 539
L1 undo pass, 541–542
page-level recovery, 539
restart procedure, 539–540
steps during restart, 539–545
two-level, 540–541
See also redo-history algorithms

simple three-pass algorithm, 458–473
analysis pass, 458–459, 462
full-writes, 461–467
general writes, 467–473
redo pass, 459, 462–464, 468, 469
restart completion, 459
restart pseudocode, 523–526
undo pass, 459, 464–465, 468, 469
See also page model crash recovery

algorithms; three-pass redo-history
algorithm

simplification rules, IDM transactions, 288
single-failure assumption, 741–742
snapshot isolation level, 362–363
soft crash, 428
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spheres of compensation, 783
split safe tree nodes, 329–332
SQL (Structured Query Language), 19, 48,

49, 628
isolation levels, 360–364

ST, 393
stability notifications, 647–648

server log truncation based on, 656
stable database

differential file and, 441
stable log

advancing start of, 474
compensation log entries on, 512
log entries, 435
with no-steal database cache, 441
with shadowing approach, 441
with versioning approach, 441

stable storage
crash-resilient, 447–448

starvation, 140–141
state serializability, 296–298

for IDM transactions, 296–298
state testing

during redo pass, 468
during undo pass, 468–469

statecharts, 13
for two-phase commit protocol, 732
for two-phase commit protocol with

termination and restart protocol,
735

workflow specification by, 780
state-dependent commutativity, 241–242

on counters, 270
See also commutativity

stateful applications, 624
based on queues, 632–637
general, 642–667

state-independent commutativity, 225–226,
240

See also commutativity
stateless applications, 624

based on queues, 625–632
exactly-once execution, 627–628
queued transactions, 627–631

states, 13–14, 128, 662
nested, 638
recovered, 662
transactional, 640
transitions between, 14
volatile, 662, 663
workflow, 15, 639

step graphs
of histories, 80–81

reduced, 80, 81
of schedules, 79–82

steps, 101
alive, 78, 80, 81, 82
dead, 78, 80
dependence of, 113
depends-on relation on, 113
directly useful, 78, 81

stochastic models, 604, 786, 787
storage layer, 29–30
storage redundancy, 594, 606–618

ECCs, 606, 610–618
mirroring-based techniques, 607–610
rebuild algorithms, 616–618
See also media recovery

strict 2PL, 143–144, 402
layered, 420
See also two-phase locking (2PL) protocol

strictness, 393
extending 2PL for, 402–403
flat object model schedule, 415

striping, 612
parity-block, 612–613

strong 2PL, 144, 402
See also two-phase locking (2PL) protocol

subtransaction rule
layered 2PL, 253
object model 2PL, 262
selective layered 2PL, 257

subtransactions
aborting, 577
active, 575–576
all-commutative chained, 255–258
atomicity, 535, 582
chained, 255
decomposed transactions with chained, 272
deferred lock conflict test at end of, 267
homogeneous federations, 677
terminated, 416

synchronization
global clock, 587
rw, 176, 177
ww, 176, 177

SystemRedoLSN, 620

T(imout) transitions, 734
table scan, 32
tablespace, 352
take-a-ticket operation, 703, 706
terminated subtransactions, 416
termination operations, 62, 65–66

abort (a), 65–66
commit (c), 65
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termination protocol
coordinator, 734, 735–736
participant, 734, 736
See also two-phase commit (2PC) protocol

thin clients, 20
Thomas’ Write Rule (TWR), 177–178
threads, 28

in nested transactions, 357–358
parallel, 358, 374

three-pass redo-history algorithm,
501–509

analysis pass, 502
redo pass, 502
redo pass pseudocode, 503
restart pseudocode, 523–526
simplicity, 507
two-pass vs., 509–510
undo pass, 502
undo pass pseudocode, 503–504
See also redo-history paradigm

three-phase commit (3PC) protocol,
762

three-tier architectures, 16–20
general stateful applications, 666–667
queued transactions in, 629

throughput, 26, 785
ticket-based concurrency control,

702–708
CTM, 705
explicit/implicit ticket mix, 707–708
explicit tickets, 702–706
implicit tickets, 706–707
OTM, 705
See also concurrency control

ticket graph, 705, 706
tickets, 703

explicit, 702–706
implicit, 706–707
with TO, 707–708

timeouts, 142, 688
timestamp ordering (TO), 166–168, 681

basic (BTO), 167–168
distributed, 680–683
extended (ETO), 407
multiversion, 203–205
tickets with, 707–708
See also nonlocking schedulers

timestamps
deferred, 355
distributed generation, 681–682
read-only transaction, 355, 356
version management, 213
version selection table, 355

topographical sorting, 90
total order, 68
TP monitors, 18
transaction admission queue, 367
transaction control blocks (TCBs),

350
transaction equivalence, 287
transaction initiator, 744, 745
transaction manager (TM), 126
transaction processing, 3

goal-oriented, 785
online (OLTP), 3

transaction program knowledge
transaction chopping, 301–305

transaction programming interface, 25
transaction recovery, 379–421

distributed, 723–765
log-based, 382
syntactic conditions for, 390–402

transaction rollbacks
crash handling during, 494–495
nested, 572–573
with NextUndoSeqNo backward chaining,

515–516
partial, 571–572
redo-history paradigm, 515

transaction rule, object model 2PL, 262
transaction sets

locking of, 165
schedule, 70–71

transaction trees
consistent node ordering, 219
dynamic nature of, 232–233
interleavings of, 218
node subscripts, 220
pruning, 229
specialization, 246
See also trees

transaction undo stack, 554–555
transactional (data) servers, 4, 26–27
transactional scope, 14–15
transactions

aborted, 379
active, terminating, 383
atomicity, 641
chopping, 301–308
commit-deferred, 699
conversational, 632
debit/credit, 5
decomposed, with chained subtransactions,

272
distributed, 618–619, 671–768
donating, 151–152
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transactions (cont.)
flat object, 223–228, 251–252
fraction of blocked, 371–372
global, 676
in heterogeneous federations, 675
in homogeneous federations, 675
IDM, 286–287
indebtedness, 153, 154
in-doubt, 724
initializing, 74, 77
layered, 218
locked, 163–164
long, 150–151
loser, 458, 477, 491
multilevel, 52
nested, 357–358
object model, 50–51, 217
on relations, 279–281
page model, 46
partial ordering, 46
pseudo-conversational, 624, 636
queued, 624, 627
read phase, 171
read-only, 211–213
relational update, 285–299
rolling back, 752
semantics of, 44
short, 151, 300, 364–367
shuffle product of, 69
states, 128
syntax, 44
totally ordered, 47
as trees, 50–51
update, 211–212
validation phase, 171
wait depth of, 373
wake of, 152, 154
winner, 458, 493
workflows and, 14
write phase, 171

transaction-tree 2PC protocol, 744–748
coordinator choice, 744–745
flattened commit and, 745–746
hierarchical commit, 746
message flow, 747
process tree, 745
See also two-phase commit (2PC)

protocol
transient versioning, 344, 354–357

garbage collection, 356–357
storage organization, 355
version pool, 354–356

tree pruning rule
tree reducibility, 229

tree reducibility, 228–233, 246
commutativity rule, 229
with concurrent conflicting operations,

240
for layered schedules, 235
OCSR level-to-level schedules, 237–238
ordering rule, 229
sufficient conditions for, 233–240

trees
B+, 33–34, 315–316, 562
search, 33
transaction, 50–51, 218, 219, 220, 229,

232–233
tuning options, 359–369

limiting level of multiprogramming,
367–369

manual locking, 359–360
short transactions, 364–367
SQL isolation levels, 360–364

tuples, 279
two-pass redo-history algorithm, 509–510

three-pass vs., 509–510
See also redo-history paradigm

two-phase commit (2PC) protocol, 724,
725–744, 763–765

atomicity, 738
begin log entry, 731, 753
coordinator, 726
decision phase, 727
dynamic, 760–761
end log entry, 731
flat variant, 725
global commit, 726
hierarchical variant, 725
independent recovery, 741–744
linear, 758–759
message and forced logging cost reduction,

750
optimized, 748–763
participants, 725, 726
reinfected participants, 740–741
resource managers, 725
restart protocol, 733–741
sequence diagram, 727
statechart, 732, 735
susceptibility to blocking, 730
termination protocol, 733–741
transaction-tree, 744–748
voting phase, 726
See also commit protocols
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two-phase locking (2PL) protocol, 133–138
applied to flat object schedule, 252
applied to layered schedules, 252
conflict graph, 136
conservative, 142–143
CSR safety of, 135–137
distributed, 679–680
extended (E2PL), 406–407
growing phase, 137, 138
layered, 253–254
lock conversion, 134–135
for nested transactions, 358
object model, 261–265
OCSR, 137
primary site, 680
shrinking phase, 137, 138
strict, 143–144, 402
strong, 144, 402, 680
variants, 142–144
See also locking schedulers

two-tier architectures, 20
general stateful applications, 666–667

uncertain transactions. See in-doubt
transactions

undo completion, 497–500
NextUndoSeqNo backward chaining,

correctness, 516–518
redo-history algorithm, 510–511

undo log entries, 657–658
undo logging rule, 438, 456

See also logging rules
undo operations

in reverse order, 382
undo pass

combined log, 549–550
with compensation log entries and

NextUndoSeqNo backward chaining, 514
Undo Rule, 387
UndoNextSeq backward chaining, 555
update-in-place algorithms, 441
updates, 211–212

commutativity rules and, 294
deferring, 365
redo recovery, 427
relational, 285–299
undo recovery, 428

validation phase, 171, 686
validation protocols, 170–172

BOCC, 172–175
FOCC, 172–175

version function, 187
version order, 194–195
version pool, 354–356
version selection table, 355
versioning

recovery and, 185
transient, 344
transparent, 186, 189

versions
committed, 205
current, 205
garbage collection and, 356–357
limiting number of, 201–203
timestamp management, 213
uncommitted, 205

victim selection criteria, 139–140
view equivalence, 83

k-version, 202, 203
multiversion, 189–192
of multiversion schedules, 191
testing, 86–92
view serializability, 83
See also serializability

volatile state, 662, 663
voting

2PC protocol phase, 726
dynamic, 778
majority, 777
weighted, 778

VSR, 84–85
FSR vs., 85
testing, 85, 86–92

wait-depth limitation, 373–374
wait-die, 141
waits

interserver communication, 686
local lock, 686

waits-for-graph (WFG), 139
continuous detection, 139
periodic detection, 139

wake, 152, 154
weighted voting, 778
winner transactions, 458

aborted transactions as, 493
See also loser transactions

with undo/no-redo algorithms, 440
with-undo/with-redo algorithms,

442–443
See also recovery algorithms

wl (write lock), 207
workflow engine, 781, 639
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workflow management, 637
wound-wait, 141–142
write-behind daemon, 481–482
write-only tree locking (WTL), 156–159
write phase, 171, 686
write set, 160
writes

full, 447, 461–465
general, 469

inverse, 410
partial, 447, 449

ww synchronization, 176
conflicts, 177
See also synchronization

XA standard, 753–754
XCSR, 386–387
XML (Extensible Markup Language), 18
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