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INTRODUCTION1

1.1 INTRODUCTION TO  ROBOTICS

Recently there has been a lot of discussion about futuristic wars between 
humans and robots, robots taking over the world and enslaving hu-
mans. Movies like The Terminator, Star Wars, etc., have propogated 

these ideas faster than anything else. These movies are beautiful works of fi c-
tion and present us with an interesting point of view to speculate. However, 
the truth is much different but equally as interesting as the fi ction. If you 
look around yourself you will see several machines and gizmos within your 
surroundings. When you use a simple pair of spectacles, do you become non-
living? When an elderly person uses a hearing aid or a physically challenged 
person uses an  artifi cial leg or arm do they become half machine? Yes, they do. 
Now we are rapidly moving toward an era where we will have chips embedded 

In This Chapter

• Introduction to Robotics
• History of Robotics
• Current Research in Robotics around the World
• Classifi cation of Robotics
• An Overview of the Book

C h a p t e r
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inside our bodies. Chips will communicate with our biological sensors and will 
help us in performing several activities more effi ciently. An artifi cial retina is 
almost at the fi nal stages of its development. Now we are thinking in terms of 
nanobots helping us to strengthen our immune systems. Now we are already on 
the verge of becoming half machine. Chips will be implanted inside our bodies 
imparting telescopic and microscopic abilities in our eyes. Cell phones will be 
permanently placed inside the ear. We will communicate with different devices 
not through a control panel or keyboard; rather these devices will receive com-
mands from the  brain directly. The next level of development will be the part 
of the  brain being replaced by chips, which will impart more capability to the 
brain. You may ask, do we need all these? The answer is that the biological 
evolution has already become obsolete. It is unable to keep pace with the rate 
at which humans are growing. Many of our primary intuitions, such as mating 
behavior, are still millions of years old. Evolution happens only after millions 
of years. But humans have built the entire civilization in only 10,000 years. 
And now the rate of growth has become exponential. Now we need to replace 
our brain’s decision-making software with faster/better ones. So, where are we 
heading? Yes, we are slowly becoming robots. Robots are not our competitors 
on this planet. They are our successors. Robots are the next level in evolution; 
rather we can call it robolution. We will begin our journey with a brief history 
of robotics.

1.2 HISTORY OF ROBOTICS

Our fascination with robots began more than 100 years ago. Looking back, it’s 
easy to get confused about what is and is not a robot. Robotics’ history is tied to 
so many other technological advances that today seem so trivial we don’t even 

FIGURE 1.1
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FIGURE 1.2

FIGURE 1.3

think of them as robots. How did a remote-controlled boat lead to autonomous 
metal puppies?

Slaves of Steel

The fi rst person to use the word robot wasn’t a scientist, but a playwright. Czecho-
slovakian writer Karel Capek fi rst used the word robot in his satirical play, R.U.R. 
(Rossum’s Universal Robots). Taken from the Czech word for forced labor, the 
word was used to describe electronic servants who turn on their masters when 
given emotions. This was only the beginning of the bad-mouthing robots would 
receive for the next couple of decades. Many people feared that machines would 
resent their role as slaves or use their steely strength to overthrow humanity.

Wartime Inventions

World War II was a catalyst in the development of two important robot com-
ponents i.e., artifi cial sensing and autonomous control.  Radar was essential for 
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tracking the enemy. The U.S. military also created autocontrol systems for mine 
detectors that would sit in front of a tank as it crossed enemy lines. If a mine was 
detected, the control system would automatically stop the tank before it reached 
the mine. The Germans developed guided robotic bombs that were capable of 
correcting their trajectory.

Calculators and Computers

Mathematician Charles Babbage dreamed up the idea for an “Analytical En-
gine” in the 1830s, but he was never able to build his device. It would take 
another 100 years before John Atanassoff would build the world’s fi rst digi-
tal computer. In 1946 the University of Pennsylvania completed the  ENIAC 
(Electronic Numerical Integrator and Calculator), a massive machine made up 
of thousands of vacuum tubes. But these devices could only handle numbers. 
The UNIVAC I (Universal Automatic Computer) would be the fi rst device to 
deal with letters.

A Robot in Every Pot

For robotics, the ’40s and ’50s were full of over-the-top ideas. The invention 
of the transistor in 1948 increased the rate of electronic growth and the pos-
sibilities seemed endless. Ten years later, the creation of silicon microchips 
reinforced that growth. The Westinghouse robot Elecktro showed how far sci-
ence and imagination could go. The seven-foot robot could smoke and play 
the piano. Ads from the era suggested that every household would soon have 
a robot.

FIGURE 1.4
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Industrial-strength  Arms

As the demand for  cars grew, manufacturers looked for new ways to increase 
the effi ciency of the assembly line through telecherics. This new fi eld focused 
on robots that mimicked the operator’s movements from a distance. In 1961 
General  Motors installed the applied telecherics system on their  assembly line. 
The one-armed robot unloaded die casts, cooled components, and delivered 
them to a trim press. In 1978 the  PUMA (Programmable Universal Machine 
for Assembly) was introduced and quickly became the standard for commer-
cial telecherics.

FIGURE 1.5

FIGURE 1.6
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FIGURE 1.7

Early Personal Robots

With the rise of the personal computer came the personal robot craze of the 
early ’80s. The popularity of Star Wars didn’t hurt either. The fi rst personal ro-
bots looked like R2D2. The RB5X and the HERO 1 robots were both designed 
as education tools for learning about computers. The HERO 1 featured light, 
sound, and sonar  sensors, a rotating head and, for its time, a powerful micropro-
cessor. But the robots had a lighter side, too. In demo mode, HERO 1 would 
sing. The RB5X even attempted to vacuum, but had problems with obstacles.

 Arms in Space

Once earthlings traveled to space, they wanted to build things there. One of 
 NASA’s essential construction tools is the Canadarm. First deployed in 1981 

FIGURE 1.8
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FIGURE 1.9

aboard the Columbia, the Canadarm has gone on to deploy and repair satel-
lites, telescopes, and shuttles. Jet Propulsions Laboratories (JPL) in California 
has been working on several other devices for space construction since the late 
eighties. The Ranger Neutral Buoyancy Vehicle’s many  manipulators are tested 
in a large pool of water to simulate outer space.

Surgical Tools

While robots haven’t replaced doctors, they are performing many surgical tasks. 
In 1985 Dr. Yik San Kwoh invented the robot-software interface used in the 
fi rst robot-aided  surgery, a stereotactic procedure. The  surgery involves a small 
probe that travels into the skull. A CT scanner is used to give a 3D picture of the 
 brain, so that the robot can plot the best path to the tumor. The  PUMA robots 
are commonly used to learn the difference between healthy and diseased tissue, 
using tofu for practice.

The  Honda  Humanoid

The team who created the  Honda  Humanoid robot took a lesson from our own 
bodies to build this two-legged robot. When they began in 1986, the idea was 
to create an intelligent robot that could get around in a human world, complete 
with  stairs, carpeting, and other tough terrain. Getting a single robot mobile in 
a variety of environments had always been a challenge. But by studying feet and 
legs, the  Honda team created a robot capable of climbing  stairs, kicking a ball, 
pushing a cart, or tightening a screw.
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Hazardous Duties

As scientifi c knowledge grew so did the level of questioning. And, as with space 
exploration, fi nding the answers could be dangerous. In 1994 the CMU Field 
 Robotics Center sent Dante II, a tethered walking robot to explore Mt. Spurr in 
Alaska. Dante II aids in the dangerous recovery of volcanic gases and samples. 
These robotic arms with wheels (a.k.a. mobile applied telecherics) saved count-
less lives defusing bombs and investigating nuclear accident sites. The range of 
self- control, or autonomy, on these robots varies.

Solar-powered Insects

Some robots mimic humans, while others resemble lower life forms. Mark Til-
den’s BEAM robots look and act like big bugs. The name BEAM is an acronym 

FIGURE 1.10

FIGURE 1.11
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FIGURE 1.12

for Tilden’s philosophy: biology,  electronics, aesthetics, and  mechanics. Tilden 
builds simple robots out of discrete components and shies away from the  inte-
grated circuits most other robots use for intelligence. Started in the early 1990s, 
the idea was to create inexpensive, solar-powered robots ideal for dangerous 
missions such as landmine detection.

A Range of  Rovers

By the 1990s  NASA was looking for something to regain the public’s enthu-
siasm for the space program. The answer was rovers. The fi rst of these small, 
semiautonomous robot platforms to be launched into space was the Sojourn-
er, sent to Mars in 1996. Its mission involved testing soil composition, wind 
speed, and water vapor quantities. The problem was that it could only travel 

FIGURE 1.13
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FIGURE 1.14

short distances.  NASA went back to work. In 2004, twin robot  rovers caught 
the public’s imagination again, sending back amazing images in journeys of 
kilometers, not meters.

Entertaining Pets

In the late ’90s there was a return to consumer-oriented robots. The prolifera-
tion of the Internet also allowed a wider audience to get excited about robotics, 
controlling small  rovers via the Web or buying kits online. One of the real robotic 
wonders of the late ’90s was AIBO the robotic dog, made by Sony Corp. Using 
his sensor array, AIBO can autonomously navigate a room and play ball. Even 
with a price tag of over $2,000, it took less than four days for AIBO to sell out 
online. Other “pet robots” followed AIBO, but the challenge of keeping the pet 
smart and the price low remains.

1.3  CURRENT RESEARCH IN  ROBOTICS AROUND THE WORLD

According to MSN Learning & Research, 700,000 robots were in the industrial 
world in 1995 and over 500,000 were used in Japan, about 120,000 in Western 
Europe, and 60,000 in the United States– and many were doing tasks that are 
dangerous or unpleasant for humans. Some of the hazardous jobs are handling 
material such as blood or urine samples, searching buildings for fugitives, and 
deep water searches, and even some jobs that are repetitive—and these can run 
24 hours a day without getting tired. General  Motors Corporation uses these 
robots for spot welding, painting, machine loading, parts transfer, and assembly. 
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Assembly line  robots are the fastest growing because of higher precision and 
lower cost for labor. Basically a robot consists of:

■ A mechanical device, such as a wheeled platform, arm, or other construc-
tion, capable of interacting with its environment.

■  Sensors on or around the device that are able to sense the environment and 
give useful  feedback to the device.

■ Systems that process sensory input in the context of the device’s current situ-
ation and instruct the device to perform actions in response to the situation. 

In the manufacturing fi eld, robot development has focused on engineering 
robotic arms that perform manufacturing processes. In the space industry, robot-
ics focuses on highly specialized, one-of-kind planetary  rovers. Unlike a highly 
automated manufacturing plant, a planetary rover operating on the dark side of 

 (a) (b)
FIGURE 1.15 The older robots of the  MIT leg Lab. (a) Quadruped demonstrated that two-legged 
running algorithms could be generalized to allow four-legged running, including the trot, pace, and 
bound. (b) The 3D biped hops, runs, and performs tucked somersaults.
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the moon without  radio communication might run into unexpected situations. 
At a minimum, a planetary rover must have some source of sensory input, some 
way of interpreting that input, and a way of modifying its actions to respond to 
a changing world. Furthermore, the need to sense and adapt to a partially un-
known environment requires intelligence (in other words,   artifi cial intelligence). 
From military technology and space exploration to the health industry and com-
merce, the advantages of using robots have been realized to the point that they 
are becoming a part of our collective experience and everyday lives.

Several universities and research organizations around the world are engaged 
in active research in various fi elds of robotics. Some of the leading research or-
ganizations are  MIT (Massachusetts Institute of Technology), JPL (Jet Propul-
sion Lab.,  NASA), CMU (Carnegie Mellon University), and Stanford University. 

FIGURE 1.16 M2, a 3D bipedal walking robot that is currently being developed in the  MIT Leg 
Laboratory.



INTRODUCTION 13

These and many other organizations are involved in various fi elds of robotics. 
These fi elds of robotics can be broadly categorized as:

■ Robotic  Manipulator
■  Wheeled  Mobile  Robots
■  Legged Robots
■  Underwater Robots
■  Flying Robots
■  Robot  Vision
■   Artifi cial Intelligence
■  Industrial  Automation

The Leg Lab at  MIT is dedicated to studying legged locomotion and build-
ing dynamic legged robots. They are specialists in exploring the roles of balance 
and dynamic control. They are simulating and building creatures which walk, 
run, and hop like their biological counterparts. The preceeding pictures show a 
few of their research robots.

FIGURE 1.17 A JPL space exploration robot.
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M2 is a 3D bipedal walking robot that is currently being developed in the 
MIT Leg Laboratory.  The robot has 12 active degrees of freedom: 3 in each hip, 
1 in each knee, and 2 in each ankle.  It will be used to investigate:

■ Various walking algorithms.
■ Motion description and control techniques, particularly Virtual Model Control.
■ Force control actuation techniques, particularly Series Elastic Actuation.
■ Automatic learning techniques.

Jet Propulsion Laboratory is  NASA’s lead center for creating robotic space-
craft and  rovers. Robots can literally go where no person has gone before, to 
other planets where the environments are not suitable for humans until we have 
studied them in much greater detail. The robots and spacecraft we build are our 
eyes and ears on these distant planets. The preceeding is a picture of a robot that 
is being developed at JPL.

Carnegie Mellon University is another center that is involved in active 
research of robotics. There are several robots that are being researched 

FIGURE 1.18 Rover1 is a highly autonomous, programmable robot at CMU.
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at The Robotics Institute, CMU. One of these robots is Rover 1. One of 
the goals in designing the rover was to create a robot that could autono-
mously navigate in the dynamic environment of the home. It uses a visual 
navigation system dependent on static landmarks. The rover can also climb 
 stairs. 

Another project in The  Robotics Institute, CMU is Gyrover. Gyrover is a sin-
gle-wheel robot that is stabilized and steered by means of an internal, mechani-
cal gyroscope. Gyrover can stand and turn in place, move deliberately at low 
speed, climb moderate grades, and move stably on rough terrain at high speeds. 
It has a relatively large rolling diameter, which facilitates motion over rough ter-
rain; a single track and narrow profi le for obstacle avoidance; and is completely 
enclosed for protection from the environment.

FIGURE 1.19 Gyrover I, a single-wheel robot that is stabilized and steered by means of 
an internal, mechanical gyroscope.
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1.4 CLASSIFICATION OF   ROBOTICS

As mentioned, robotics can be classifi ed into the following:

■ Robotic Manipulator
■  Wheeled  Mobile Robots (WMR)
■  Legged Robots
■  Underwater Robots and  Flying Robots
■  Robot Vision
■  Artifi cial Intelligence
■  Industrial  Automation

1.4.1  Robotic Arms

Robotic arms have become useful and economical tools in manufacturing, medi-
cine, and other industries.

1.4.2  Wheeled  Mobile  Robots

 Wheeled mobile robots perform many tasks in industry and in the military.

FIGURE 1.20
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FIGURE 1.21

FIGURE 1.22

1.4.3  Legged Robots 

Locomotion on the ground can be realized with three different basic mechanisms:

(i)   Slider,
(ii)  Liver, and 
(iii) Wheel or track.

Out of the above three mechanisms, the fi rst two are walking mechanisms, 
and in these cases the robot moves on legs. So many robots have been designed 
that follow the walking mechanism. Walking mechanisms have their own advan-
tages and they become more reasonable when moving on soft, uneven terrains.
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The benefi ts that can be obtained with a legged robot are:

■ Better mobility
■ Better stability on the platform
■ Better energy effi ciency
■ Smaller impact on the ground

When choosing the mechanism for locomotion of a robot, one needs to keep 
his eyes on the following factors:

■ Terrain on which the robot mainly moves
■ Operational fl exibility needed when working
■ Power and/or energy effi ciency requirements
■ Payload capacity requirements
■ Stability 
■ Impact on the environment

In walking robots, the balance of the body is of prime importance and it 
becomes even more important if it is a two-legged robot. So the control system 
used in such robots should be used wisely. A motion  control system should con-
trol the motion of the body so that leg movements automatically generate the 
desired body movements.

A control system also needs to control gait i.e., the sequence of sup-
porting leg configurations and foot placement (motion of the nonsupport-
ing legs) to find the next foothold. While walking, the movement of the 
body which rests on the supporting legs should be considered and properly 
controlled.

Gait, which determines the sequence of supporting leg confi gurations dur-
ing movement, is divided into two classes:

(i)  Periodic gaits: They repeat the same sequence of supporting leg confi gura-
tions.

(ii) Nonperiodic or free gaits: They do not have any periodicity in their gait 
pattern.

The number of different  gaits depends on the number of legs.

1.4.4  Underwater Robots 

Camera-equipped underwater robots serve many purposes including tracking of 
fi sh and searching for sunken ships.
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1.4.5  Flying  Robots

Flying robots have been used effectively in military maneuvers, and often mimic 
the movements of insects.

1.4.6  Robot Vision

Vision-based  Sensors

Vision is our most powerful sense. It provides us with an enormous amount of 
information about the environment and enables rich, intelligent interaction in dy-
namic environments. It is therefore not surprising that a great deal of effort has 
been devoted to providing machines with sensors that mimic the capabilities of 
the human vision system. The fi rst step in this process is the creation of the sens-
ing devices that capture the same raw information light that the human vision 

FIGURE 1.23

FIGURE 1.24



ROBOTICS20

FIGURE 1.25

system uses. The two current technologies for creating vision sensors are CCD and 
CMOS. These sensors have specifi c limitations in performance when compared to 
the human eye. The  vision-based sensors are discussed in detail in Chapter 6.

1.4.7  Artifi cial Intelligence

Artifi cial Intelligence (AI) is a branch of computer science and engineering 
that deals with intelligent behavior, learning, and adaptation in machines. Re-
search in AI is concerned with producing machines to automate tasks requir-
ing intelligent behavior. Examples include control, planning and scheduling, the 
ability to answer diagnostic and consumer questions, handwriting, speech, and 
facial recognition. As such, it has become an engineering discipline, focused on 
providing solutions to real-life problems, software applications, traditional strat-
egy games like computer chess, and other video games.

Schools of Thought

AI divides roughly into two schools of thought: Conventional AI and Computa-
tional Intelligence (CI). Conventional AI mostly involves methods now classifi ed 
as machine learning, characterized by formalism and statistical analysis. This is 
also known as symbolic AI, logical AI, neat AI, and Good Old-Fashioned Artifi -
cial Intelligence (GOFAI). Methods include:

■  Expert systems: apply reasoning capabilities to reach a conclusion. An ex-
pert system can process large amounts of known information and provide 
conclusions based on them. 

Imager CCD 
or CMOS

Laser
Diode

JointCollecting 
Lens

Laser Stripe

Part A Part B

Fig. 1 Laser Triangulation Principle
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FIGURE 1.26

■ Case-based reasoning.
■ Bayesian networks.
■ Behavior-based AI: a modular method of building AI systems by hand. 

Computational Intelligence involves iterative development or learning (e.g., 
parameter tuning in connectionist systems). Learning is based on empirical  data 
and is associated with nonsymbolic AI, scruffy AI, and soft computing. Methods 
mainly include:

■  Neural networks: systems with very strong pattern recognition capabili-
ties. 

■  Fuzzy systems: techniques for reasoning under uncertainty, have been 
widely used in modern industrial and consumer product control systems. 

■  Evolutionary computation: applies biologically inspired concepts such 
as populations, mutation, and survival of the fi ttest to generate increasingly 
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better solutions to the problem. These methods most notably divide into 
 evolutionary algorithms (e.g.,  genetic algorithms) and swarm intelligence 
(e.g., ant algorithms). 

With hybrid intelligent systems attempts are made to combine these two 
groups. Expert inference rules can be generated through neural network or 
production rules from statistical learning such as in ACT-R. It is thought that 
the human  brain uses multiple techniques to both formulate and cross-check 
results. Thus, integration is seen as promising and perhaps necessary for true 
AI.

1.4.8  Industrial  Automation

Automation, which in Greek means self-dictated, is the use of control sys-
tems, such as computers, to control industrial machinery and processes, re-
placing human operators. In the scope of industrialization, it is a step beyond 
mechanization. Whereas mechanization provided human operators with 
machinery to assist them with the physical requirements of work, automa-
tion greatly reduces the need for human sensory and mental requirements 
as well.

FIGURE 1.27
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1.5 AN OVERVIEW OF THE BOOK

This book includes different aspects of a robot in modules. It also explores the 
different fi elds of  robotics. Chapter 2 covers theory of machines and mecha-
nisms, introduction to gears and gear trains, kinematics analysis, and synthesis of 
mechanisms. Section 2.6 covers a practical guide to using various mechanisms 
in robotic projects. 

Chapter 3 covers the basic introduction to electronics. It lays more stress on 
the issues related to practical electronic circuit design without going into much 
of the details of the theory. The chapter covers some fundamentals of sensors 
and microcontrollers. Section 3.7 covers a practical guide to use Embedded C 
programming for an 8051 microcontroller. It also covers how to use the parallel 
port and the serial port of the computer to control a few devices using common 
programming platforms like C++ and VB. Section 3.8 covers a basic introduction 
to geared  DC motors, stepper motors, and servo motors and practical circuits to 
interface them with digital systems. Section 3.9 covers tips to use some common 
things found in the neighborhood in projects. 

Chapter 4 goes into the details of  wheeled mobile robots, their kinemat-
ics, mathematical modeling, and  control. Section 4.5 covers the simulation of 
wheeled mobile robots using ODE23 of  MATLAB. A few examples will be pre-
sented. The simulation examples are also included on the CD-ROM. Section 4.6 
covers the step-by-step construction of the hardware and software of an all-pur-
pose practical research  WMR. 

Chapter 5 covers the kinematics of robotic  manipulators. The topics that 
this chapter covers are,  mapping of frames,  forward kinematics, and  inverse kin-
ematics. Chapter 5.5 includes the guide to make the hardware and software of a 
two-link arm and a three-link robotic arm. 

Chapter 6 talks about sensors that can be used in robots. Various sensors 
such as digital   encoders,  infrared sensors, radio frequency sensors, sonar, active 
beacons, digital compasses,  acceleretometers,  gyroscopes, laser rangefi nders, 
etc., will be discussed in this chapter. Section 6.12 includes two practical exam-
ples of making  sensors and interfacing them with digital circuits.

Chapter 7 covers some basic fundamentals about legged robots. It discusses 
the issues of static and dynamic balance, inverse pendulum model and the kine-
matics of leg design. The chapter includes a discussion about the gaits of various 
legged animals found in nature. Section 7.6 covers the dynamic considerations 
of leg design such as leg lengths and speed of travel, etc. 

There is far more to learn about a cross-disciplinary fi eld such as robotics 
than can be contained in this single book. We hope that this will be enough to 
place the reader in a comfortable position in the dynamic and challenging fi eld 
of robotics.
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C h a p t e r

2.1  INTRODUCTION TO THEORY OF MACHINES 
AND MECHANISMS

A mechanism is a device that transforms motion to some desirable pat-
tern and typically develops very low forces and transmits little power. 
A machine typically contains mechanisms that are designed to pro-

vide significant forces and transmit significant power. Some examples of 
typical mechanisms are a stapler, a door lock, car window wiper, etc. Some 
examples of machines that possess motions similar to the mechanisms above 
are an automobile engine, a crane, and a robot. There is no clear line of dif-
ference between mechanisms and machines. They differ in degree rather 
than definition. 

2
In This Chapter

• Introduction to Theory of Machines and Mechanisms
• Some Popular Mechanisms
• Gear and Gear Trains
• Synthesis of Mechanisms
• Kinematic Analysis of Mechanisms
• A Practical Guide to Use Various Mechanisms

BASIC MECHANICS
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FIGURE 2.1 Four-bar linkage.
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If a mechanism involves light forces and is run at slow speeds, it can some-
times be strictly treated as a kinematic device; that is, it can be analyzed kine-
matically without regard to forces. Machines (and mechanisms running at higher 
speeds), on the other hand, must be fi rst treated as mechanisms. A kinematic 
analysis of their velocities and accelerations must be done and then they must 
be treated as dynamic systems in which their static and dynamic forces due to 
accelerations are analyzed using the principles of kinetics. Most of the applica-
tions in robotics involve motions at lower speeds and low or moderate forces are 
involved. So we will restrict our discussion only to the kinematics of mechanisms 
in this chapter. However, there are certain instances where the study of the dy-
namics becomes very essential in robotics. A discussion of those instances is 
beyond the scope of this book.

2.2 SOME POPULAR MECHANISMS

2.2.1  Four-bar Mechanism

In the range of planar mechanisms, the simplest group of lower pair mechanisms 
is four-bar linkages. A four-bar linkage comprises four bar-shaped links and four 
turning pairs as shown in Figure 2.1. 
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The link opposite the frame is called the coupler link, and the links, 
which are hinged to the frame, are called side links. A link, which is free 
to rotate through 360 degrees with respect to a second link, will be said to 
revolve relative to the second link (not necessarily a frame). If it is possible 
for all four bars to become simultaneously aligned, such a state is called a 
change point. 

Some important concepts in link mechanisms are: 

1. Crank: A side link, which revolves relative to the frame, is called a crank. 
2. Rocker: Any link that does not revolve is called a rocker. 
3. Crank-rocker mechanism: In a four-bar linkage, if the shorter side link 

revolves and the other one rocks (i.e., oscillates), it is called a crank-rocker 
mechanism. 

4. Double-crank mechanism: In a four-bar linkage, if both of the side links 
revolve, it is called a double-crank mechanism. 

5. Double-rocker mechanism: In a four-bar linkage, if both of the side links 
rock, it is called a double-rocker mechanism. 

Before classifying four-bar linkages, we need to introduce some basic no-
menclature. In a four-bar linkage, we refer to the line segment between hinges 
on a given link as a bar where: 

■ s = length of the shortest bar 
■ l = length of the longest bar 
■ p, q = lengths of the intermediate bars

Grashof’s theorem states that a four-bar mechanism has at least one re-
volving link if 

 s + l <= p + q  (2.1) 

and all three mobile links will rock if 

 s + l > p + q. (2.2) 

All four-bar mechanisms fall into one of the four categories listed in Table 
2.1.

From Table 2.1 we can see that for a mechanism to have a crank, the sum 
of the length of its shortest and longest links must be less than or equal to the 
sum of the length of the other two links. However, this condition is necessary but 
not suffi cient. Mechanisms satisfying this condition fall into the following three 
categories: 
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1. When the shortest link is a side link, the mechanism is a crank-rocker mech-
anism. The shortest link is the crank in the mechanism. 

2. When the shortest link is the  frame of the mechanism, the mechanism is a 
double-crank mechanism. 

3. When the shortest link is the coupler link, the mechanism is a double-rocker 
mechanism. 

2.2.2  Slider-crank Mechanism 

FIGURE 2.2 Parameters of  slider-crank mechanisms.

TABLE 2.1 Classifi cation of  Four-bar Mechanisms

Case l + s vers. p + q Shortest Bar Type

1 <

Frame Double-crank

2 <

Side Rocker-crank

3 <
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4 = Any Change point

5 > Any Double-rocker
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FIGURE 2.3 Slider-crank mechanism.

The  slider-crank mechanism, which has a well-known application in engines, 
is a special case of the crank-rocker mechanism. Notice that if rocker 3 in Figure 
2.3a is very long, it can be replaced by a block sliding in a curved slot or guide as 
shown. If the length of the rocker is infi nite, the guide and block are no longer 
curved. Rather, they are apparently straight, as shown in Figure 2.3b, and the 
linkage takes the form of the ordinary  slider-crank mechanism. 

Inversion of the  Slider-crank Mechanism 

Inversion is a term used in  kinematics for a reversal or interchange of form or 
function as applied to kinematic chains and mechanisms. For example, taking a 
different link as the fi xed link, the  slider-crank mechanism shown in Figure 2.4a 
can be inverted into the mechanisms shown in Figures 2.4b, c, and d. Different 
examples can be found in the application of these  mechanisms. For example, the 
mechanism of the pump device in Figure 2.5 is the same as that in Figure 2.4b. 

FIGURE 2.4 Inversions of the crank-slide mechanism.
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Basic Mechanics

FIGURE 2.5 A pump device.

Keep in mind that the inversion of a mechanism does not change the mo-
tions of its links relative to each other but does change their absolute motions. 

2.2.3  Rack and Pinion

A ‘rack and pinion’ gears system looks quite unusual. However, it is still composed 
of two gears. The ‘pinion’ is the normal round gear and the ‘rack’ is straight or fl at. 
The ‘rack’ has teeth cut in it and they mesh with the teeth of the pinion gear.

FIGURE 2.6 

DriverDriven
linker



BASIC MECHANICS 31

A good example of a ‘rack and pinion’ gear system can be seen on trains that 
are designed to travel up steep inclines. The wheels on a train are steel and they 
have no way of gripping the steel track. Usually the weight of the train is enough 
to allow the train to travel safely and speed along the track. However, if a train 
has to go up a steep bank or hill it is likely to slip backward. A ‘rack and pinion’ 
system is added to some trains to overcome this problem. A large gear wheel is 
added to the center of the train and an extra track with teeth, called a ‘rack,’ is 
added to the track. As the train approaches a steep hill or slope the gear is low-
ered to the track and it meshes with the ‘rack.’ The train does not slip backward 
but it is pulled up the steep slope.

The railway system in Switzerland is probably the most advanced in the 
world. The entire system is punctual and modern as a result of fi nancial invest-
ment in railway building and locomotive technology. The cities and towns are 
linked by fast, effi cient trains running mainly on a electrifi ed network. On the 
other hand, the mountain trains rely on a combination of electrifi ed track and 
modern steam engines. The Swiss have been careful to develop a rail system that 
is not only extremely effi cient but also sensitive to the environment.

On such an incline, using a normal track is not practical as the locomotive 
would simply slip backward, down the track. The Figure 2.7 below shows the typi-
cal ‘rack and pinion’ track system. The two outer rails are the same as any normal 
rail track. However, the center track has teeth similar to those seen on a gear wheel 
(this is called the ‘rack’). When the locomotive is required to go up a steep incline a 
gear wheel (called the ‘pinion’) is lowered from the locomotive engine. This mesh-
es with the rack and pulls the locomotive and carriages up the steep slope.

FIGURE 2.7 Track with a rack.
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2.2.4  Cams and Cranks

Both cams and cranks are useful when a repetitive motion is desired. Cams make 
rotary motion a little more interesting by essentially moving the axle off-center. 
Cams are often used in conjunction with a rod. One end of the rod is held fl ush 
against the cam by a spring. As the cam rotates the rod remains stationary until 
the “bump” of the cam pushes the rod away from the cam’s axle.

Cranks convert rotary motion into a piston-like linear motion. The best ex-
amples of cranks in action are the drive mechanism for a steam locomotive and 
the automobile engine crankshaft. In a crank, the wheel rotates about a centered 
axle, while an arm is attached to the wheel with an off-centered peg. This arm is 
attached to a rod fi xed in a linear path. A crank will cause the rod to move back 
and forth, and if the rod is pushed back and forth, it will cause the crank to turn. 
On the other hand, cams can move their rods, but rods cannot move the cams. 
Cams can be used to create either a linear repetitive motion or a repetitive rota-
tional motion such as the one shown in Figure 2.8. 

2.3 GEAR AND GEAR TRAINS 

A wheel and axle  assembly becomes especially useful when gears and belts are 
brought into the picture. Gears can be used to change the direction or speed of 
movement, but changing the speed of rotation inversely affects the force trans-
mitted. A small gear meshed with a larger gear will turn faster, but with less 
force. There are four basic types of gears: spur gears, ‘rack and pinion’ gears, 
 bevel gears, and worm gears. Spur gears are probably the type of gear that most 

Cam Crank
FIGURE 2.8 Cams and cranks.
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people picture when they hear the word. The two wheels are in the same plane 
(the axles are parallel). With ‘ rack and pinion’ gears there is one wheel and one 
‘rack’, a fl at toothed bar that converts the rotary motion into linear motion. Bevel 
gears are also known as pinion and crown or pinion and ring gears. In  bevel 
gears, two wheels intermesh at an angle changing the direction of rotation (the 
axles are not parallel); the speed and force may also be modifi ed, if desired. 
Worm gears involve one wheel gear (a pinion) and one shaft with a screw thread 
wrapped around it. Worm gears change the direction of motion as well as the 
speed and force. Belts work in the same manner as  spur gears except that they 
do not change the direction of motion. 

In both gears and belts, the way to alter speed and force is through the size 
of the two interacting wheels. In any pair, the bigger wheel always rotates more 
slowly, but with more force. This “tradeoff” between force and speed comes 
from the difference in the distance between the point of rotation and the axle 
between the two wheels. On both the big and the small gear, the linear velocity 
at the point of contact for the wheels is equal. If it was unequal and one gear 
were spinning faster than the other at the point of contact, then it would rip 
the teeth right off of the other gear. As the circumference of the larger gear is 
greater, a point on the outside of the larger gear must cover a greater distance 
than a point on the smaller gear to complete a revolution. Therefore the smaller 
gear must complete more revolutions than the larger gear in the same time span. 
(It’s rotating more quickly.) The force applied to the outer surface of each wheel 
must also be equal otherwise one of them would be accelerating more rapidly 
than the other and again the teeth of the other wheel would break. The forces 
of interest, however, are not the forces being applied to the outer surfaces of the 
wheels, but rather the forces on the axles. Returning to the concept of levers, we 
know that the distance at which the force is applied affects the force yielded, and 
a wheel and axle works like a lever. Equal forces are being applied to each wheel, 
but on the larger wheel that force is being applied over a greater distance. Thus 
for the larger wheel the force on the axle is greater than the force on the axle for 
the smaller wheel. 

Gear Train

A gear train consists of one or more gear sets intended to give a specifi c velocity 
ratio, or change direction of motion. Gear and gear train types can be grouped 
based on their application and tooth geometry. 

2.3.1 Spur Gears

The most common type of gear wheel, spur gears, are fl at and have teeth pro-
jecting radially and in the plane of the wheel (see Figure 2.9). The teeth of these 
“straight-cut gears” are cut so that the leading edges are parallel to the line of the 
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axis of rotation. These gears can only mesh correctly if they are fi tted to parallel 
axles. 

Spur gears are inexpensive to manufacture. And they cause no axial thrust 
between gears. Although they give lower performance, they may be satisfactory 
in low-speed or simple applications. 

2.3.2  Helical Gears

Helical gears offer a refi nement over spur gears. The teeth are cut at an 
angle, allowing for more gradual, hence smoother, meshing between gear 
wheels, eliminating the whine characteristic of straight-cut gears. A disad-
vantage of helical gears is a resultant thrust along the axis of the gear, which 
needs to be accommodated by appropriate thrust bearings, and a greater 

FIGURE 2.9 Spur gear.

TABLE 2.2 Gear Types Grouped According to Shaft Arrangement

Parallel Axes Intersecting Axes Nonintersecting 
(Nonparallel) Axes

Rotary to  Translation

Spur gears Bevel gears: Hypoid gears  Rack and pinion

 Helical gears Straight bevel Crossed helical gears

Herringbone or double 
helical gears

Zerol bevel 
Spiral bevel

Worm gears
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degree of sliding friction between the meshing teeth, often addressed with 
specifi c additives in the lubricant. Whereas spur gears are used for low-speed 
applications and those situations where noise  control is not a problem, the 
use of  helical gears is indicated when the application involves high speeds, 
large power transmission, or where noise abatement is important. The speed 
is considered to be high when the pitch line velocity (i.e., circumferential 
velocity) exceeds 5,000 ft./min. or the rotational speed of the pinion (i.e., 
smaller gear) exceeds 3,600 rpm.

FIGURE 2.10  Helical gears.

2.3.3 Bevel Gears

Where two axles cross at point and engage by means of a pair of conical gears, 
the gears themselves are referred to as  bevel gears. These gears enable a change 
in the axes of rotation of the respective shafts, commonly 90°. A set of four  bevel 
gears in a square make a differential gear, which can transmit power to two axles 
spinning at different speeds, such as those on a cornering automobile.

  Helical gears can also be designed to allow a ninety-degree rotation of the 
axis of rotation. 
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2.3.4  Worm and Wheel 

The arrangement of gears seen below is called a worm and worm wheel. The 
worm, which in this example is brown in color, only has one tooth, but it is like 
a screw thread. The worm wheel, colored yellow, is like a normal gear wheel or 
spur gear. The worm always drives the worm wheel round, it is never the oppo-
site way as the system tends to lock and jam. The picture on the left is a typical 
setup for a motor and worm gear system. As the worm revolves, the worm wheel 
(spur gear) also revolves but the rotary motion is transmitted through a ninety-
degree angle.

FIGURE 2.11 Bevel gear in a fl oodgate.

FIGURE 2.12 
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The worm is always the driving gear. The worm gear can achieve a higher 
gear ratio than spur gears of a comparable size. Designed properly, a built-in 
safety feature can be obtained: This gear style will self-lock if power is lost to the 
drive (worm). It doesn’t work if the pinion is powered.

2.3.5  Parallel Axis Gear Trains 

Gear trains consist of two or more gears for the purpose of transmitting motion 
from one axis to another. Ordinary gear trains have axes, relative to the frame, 
for all gears comprising the train. Figure 2.13a shows a simple ordinary train in 
which there is only one gear for each axis. In Figure 2.13b a compound ordinary 
train is seen to be one in which two or more gears may rotate about a single 
axis. 

This is a good example of a ‘gear train.’ A gear train is usually made up of two 
or more gears. The driver in this example is gear ‘A.’ So far you have read about 
‘driver’ gears, ‘driven’ gears, and gear trains. An ‘idler’ gear is another important 

FIGURE 2.13 Ordinary gear trains.
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gear. Gear ‘A’ turns in a counter clockwise direction and also gear ‘C’ turns in a 
counter clockwise direction. The ‘idler’ gear is used so that the rotation of the 
two important gears is the same.

Velocity Ratio

We know that the velocity ratio of a pair of gears is the inverse proportion of the 
diameters of their pitch circle, and the diameter of the pitch circle equals the 
number of teeth divided by the diametric pitch. Also, we know that it is neces-
sary for the mating gears to have the same diametric pitch to satisfy the condition 
of correct meshing. Thus, we infer that the velocity ratio of a pair of gears is the 
inverse ratio of their number of teeth. 

For the ordinary gear trains in Figure 2.13a, we have:

 
3

4

4

3

2

3

3

2

1

2

2

1

ω
ω

ω
ω

ω
ω

N

N

N

N

N

N === . (2.3)

These equations can be combined to give the velocity ratio of the fi rst gear 
in the train to the last gear: 
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■ The tooth numbers in the numerator are those of the driven gears, and the 
tooth numbers in the denominator belong to the driver gears.

■ Gear 2 and 3 both drive and are, in turn, driven. Thus, they are called idler 
gears. Since their tooth numbers cancel, idler gears do not affect the magni-
tude of the input-output ratio, but they do change the directions of rotation. 
Note the directional arrows in Figure 2.13. Idler gears can also constitute a 
saving of space and money (if gear 1 and 4 mesh directly across a long center 
distance, their pitch circle will be much larger).

■ There are two ways to determine the direction of the rotary direction. The 
fi rst way is to label arrows for each gear as in Figure 2.13. The second way is 
to multiple mth power of “-1” to the general velocity ratio. Where m is the 
number of pairs of external contact gears (internal contact gear pairs do not 
change the rotary direction). However, the second method cannot be ap-
plied to the spatial gear trains. 

Thus, it is not diffi cult to get the velocity ratio of the gear train in Figure 
2.13b: 
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2.4 SYNTHESIS OF MECHANISMS 

Most engineering design practice involves a combination of synthesis and analy-
sis. However, one cannot analyze anything until it is synthesized into existence. 
Many mechanism design problems require the creation of a device with certain 
motion characteristics. An example could be moving a tool from position A to 
position B in a particular time interval. There could be endless possibilities. But 
a common denominator is often the need for a linkage to generate the desired 
motions. So, we will now explore some simple synthesis techniques to enable 
you to create potential linkage design solutions for some typical kinematic ap-
plications. 

2.4.1 Type, Number, and Dimensional Synthesis

Synthesis of a mechanism in most situations cannot be done in a strictly de-
fi ned manner. Since most real problems have more unknown variables than the 
number of equations that describes the system’s behavior, you cannot simply 
solve the equations to get a solution. So there are a number of methods avail-
able to approach the problem of synthesis. Each method can be approached in 
a qualitative or quantitative manner. If the number of unknowns is more than or 
equal to the number of equations, then quantitative synthesis can be employed. 
Most of the practical design situations actually have a lesser number of equa-
tions as compared to the number of variables. Hence, those cases are solved by 
a qualitative approach.

Type Synthesis refers to the defi nition of a proper type of mechanism 
best suited to the problem. It is a qualitative method and it requires some 
experience and knowledge of the various types of mechanisms that exist and 
which also may be feasible from a performance and manufacturing stand-
point. As an example, assume that the task is to design a device to track the 
straight line motion of a part on a conveyor belt and spray it with a chemical 
coating as it passes by. This has to be done at high, constant speed, with good 
accuracy and repeatability, and it must be reliable. Unless you have had the 
opportunity to see a wide variety of mechanical equipment, you might not 
be aware that this task could conceivably be achieved by any of the following 
devices:

■ A straight line linkage
■ A cam and follower
■ An air cylinder
■ A hydraulic cylinder
■ A robot
■ A solenoid
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Each of these solutions, while possible, may not be optimal or even practical. 
More details need to be known about the problem to make that judgment. The 
straight-line linkage may prove to be too large and to have undesirable accelera-
tions; the cam and follower will be expensive, though accurate and repeatable. 
The air cylinder is inexpensive, but noisy and unreliable. The hydraulic cylinder 
is more expensive as is the robot. The solenoid, while cheap, has high impact 
loads and high impact velocity. So, you can see that the choice of the device type 
can have a large effect on the quality of design. A poor design in the type synthe-
sis stage can create insoluble problems later on. 

Dimensional Synthesis of a linkage is the determination of the propor-
tions (lengths) of the links necessary to accomplish the desired motion. It can be 
a form of quantitative synthesis if an enough number of equations is available, 
but can also be a form of qualitative synthesis. Dimensional synthesis of cams is 
usually quantitative. However, dimensional synthesis of linkages is usually quali-
tative. Dimensional synthesis assumes that, through type synthesis, you have al-
ready determined that a linkage (or cam) is the most appropriate solution to the 
problem. We will discuss some analytical and graphical dimensional synthesis of 
linkages in the following sections of this chapter. 

Number Synthesis of a linkage is done to determine the number and 
order of links and joints necessary to produce motion of a particular DOF. 
Link order in this context refers to the number of nodes per link, i.e., binary, 
quaternary, ternary, etc. The value of number synthesis is to allow the exhaus-
tive determination of all possible combinations of links that will yield any 
chosen DOF. This then equips the designer with a defi nitive catalog of poten-
tial linkages to solve a variety of motion-control problems. Using the number 
synthesis method to determine all possible link confi gurations for one DOF 
motion, we can arrive at the following conclusion. There is only one four-link 
confi guration, two six-link confi gurations, and fi ve possibilities for an eight-
link confi guration. 

2.4.2 Function Generation, Path Generation, and Motion Generation

Function generation is defi ned as the correlation of an input motion with an out-
put motion in a mechanism. A function generator is conceptually a black box that 
delivers some predictable output in response to a known input. Historically, be-
fore the advent of electronic computers, mechanical function generators found 
wide application in artillery rangefi nders and shipboard gun-aiming systems, and 
many other tasks. They are in fact mechanical analog computers. The develop-
ment of inexpensive digital electronic microcomputers for control systems cou-
pled with the availability of compact servomotors has reduced the demand for 
these mechanical function generator linkage devices. Many such applications 
can now be served more economically and effi ciently with electromechanical 
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devices. Moreover, the computer-controlled electromechanical function genera-
tor is programmable, allowing rapid modifi cation in the function generated as 
demand changes. The cam-follower system is a form of mechanical function 
generator, and it is typically capable of higher force and power levels per dollar 
than electromechanical systems.

Path generation is defi ned as the control of a point in the plane such that it 
follows some prescribed path. This is typically achieved with at least four bars, 
wherein a point in the coupler traces the desired path. No attempt is made in 
path generation to control the orientation of the link that contains the point of 
interest. However, it is common for the timing of the arrival of the point at par-
ticular locations along the path to be defi ned. This case is called path generation 
with prescribed timing and is analogous to function generation in that a particu-
lar output function is specifi ed. 

Motion generation is defi ned as the control of a line in the plane such that it 
assumes some prescribed set of sequential positions. Here the orientation of the 
link containing the line is important. This is a more general problem than path 
generation. In fact, path generation is a subset of motion generation. An example 
of a motion generation problem is the control of the bucket on a bulldozer. The 
bucket must assume a set of positions to dig, pick up, and dump the excavated 
earth. Conceptually, the motion of a line, painted on the side of the bucket, must 
be made to assume the desired positions. A linkage is the usual solution. 

2.4.3 Two-position Synthesis

Two-position synthesis is a dimensional synthesis, which can be performed on 
any mechanism after the mechanism has been fi nalized in the type synthesis 
stage. There are several methods to accomplish this task. We will discuss the 
graphical method for a four-bar linkage. The graphical method is the simplest 
and quickest method for two-position synthesis. Simplest by no means suggests 
that it compromises over the quality of solution. The principles used in this 
graphical synthesis technique are simply those of Euclidean geometry. The fol-
lowing defi nitions are restated here, since they will be used repeatedly in the 
following texts.

1.  Crank: A side link, which revolves relative to the frame, is called a crank. 
2.  Rocker: Any link that does not revolve is called a rocker. 
3.  Crank-rocker mechanism: In a four-bar linkage, if the shorter side link 

revolves and the other side rocks (i.e., oscillates), it is called a crank-rocker 
mechanism. 

Here we will design a four-bar crank-rocker mechanism to give 45º of rocker 
rotation with equal time forward and back, from a constant speed motor input.
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You have to follow the following steps to design the above mechanism. 

1.  Draw the output link O4B in both extreme positions, B1 and B2 in any con-
venient location, such that the desire angle of motion θ4 is subtended.

2.  Draw the chord B1B2 and extend it in either direction.
3.  Select a convenient point O2 on line B1B2 extended.
4.  Bisect line segment B1B2, and draw a circle of that radius about O2.

FIGURE 2.14 Two-position function synthesis with rocker output 
(non-quick-return).
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5.  Label the two intersections of the circle B1B2 and extended A1 and A2.
6.  Measure the length of the coupler as A1 to B1 or A2 to B2.
7.  Measure ground length 1, crank length 2, and rocket length 4.
8.  Find the Grashof condition. If non-Grashof, redo steps 3 to 8 with O2 further 

from O4.
9.  Make a cardboard model of the linkage and articulate it to check its func-

tions and its transmission angles.
10.  You can input the fi le FO3-04.4br to program FOURBAR to see this exam-

ple come alive.

Note several things about this synthesis process. We started with the output 
end of the system, as it was the only aspect defi ned in the problem statement. 
We had to make many quite arbitrary decisions and assumptions to proceed be-
cause there were many more variables that we could have provided “equations” 
for. We are frequently forced to make “free choices” of “a convenient angle or 
length.” These free choices are actually defi nitions of design parameters. A poor 
choice will lead to a poor design. Thus these are qualitative synthesis approaches 
and require an iterative process, even for this simple an example. The fi rst solu-
tion you reach will probably not be satisfactory, and several attempts (iterations) 
should be expected to be necessary. As you gain more experience in designing 
kinematics solutions you will be able to make better choices for these design pa-
rameters with less iteration. A simple cardboard model should be made after this 
stage. You get the most insight into your design’s quality for the least effort by 
making, articulating, and studying the model. Figure 2.14 represents the graphi-
cal synthesis method pictorially. It is much easier to understand this method 
from the pictures. 

The problem discussed here is one of the simplest synthesis problems. More 
complicated synthesis can also be done using the above method. However, there 
is a detailed analysis of which is beyond the scope of this book. The interested 
reader can refer to texts of kinematics of  mechanisms and theory of machines for 
a detailed knowledge of the above topic.

The two-position graphical synthesis method is discussed in the following 
example applied in a practical situation for clearer illustration.

Application of the two-position method to a practical situation

This method uses the principle that a link pinned to the truck will move in a cir-
cle. Since we know that any point along a perpendicular bisector is equidistant 
to the endpoints, it can be deduced that the distance to the endpoints forms the 
radius of a circle that the link would follow. Note that this method allows you to 
choose a point along a line, while the next approach constrains you to just two 
points.
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2.4.4 Three-position Synthesis 

Three-position synthesis allows the defi nition of three positions of a line in the 
plane and will create a four-bar linkage confi guration to move it to each of those 
positions. This is a motion generation problem. The synthesis technique is a 

FIGURE 2.15 Two points (red and gray) are chosen on the bin and plotted on the two desired 
positions. This can be applied to transformations in a geometry classroom.

Two lines are drawn between 
the displayed points.

The perpendicular bisector of 
each line is drawn.

Any joint added to the truck 
along the perpendicular 
bisector allows the bin to pass 
through to the positions 
specified.
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logical extension of the method used in the previous section for two-position 
synthesis. Compass, protector, and rule are the only tools needed in the graphi-
cal method.

Here we will design a four-bar linkage to move the link CD shown from posi-
tion C1D1 to C2D2 and then to position C3D3. Moving pivots are at C and D.

1. Draw link CD in three-design position C1D1, C2D2, C3D3 in the plane as 
shown in Figure 2.17.

2. Draw construction lines from point C1 to C2 and from C2 to C3.
3. Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until 

they intersect. Label their intersection O2.
4. Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.
5. Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.
6. Line C1D1 is link 3. Line O2O4 is link 1.
7. Check the Grashof condition. Note that any Grashof condition is potentially 

acceptable in this case.
8. Construct a cardboard model and check its function to be sure it can get 

from initial to fi nal position without encountering any limit (toggle) posi-
tions.

Note that while a solution is usually obtained for this case, it is possible that 
you may not be able to move the linkage continuously from one position to the 
next without disassembling the links and reassembling them to get them past a 
limiting position. That will obviously be unsatisfactory. In the particular solution 
presented in Figure 2.17, note that link 3 and 4 are in toggle at position one, and 

FIGURE 2.16  Alternate constraining approach.
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link 2 and 3 are in toggle position at position three. In this case we will have to 
drive link 3 with a driver dyad, since any attempt to drive either link 2 or link 4 
will fail at the toggle positions. No amount of torque applied to link 2 at position 
C1 will move link 4 away from point D1, and driving link 4 will not move link 2 
away from position C3. 

The position graphical synthesis method is discussed for a practical situation in the 
following.

This method uses the same principle as the previous method, but it allows us 
to prescribe one more position. This is good to account for not hitting the truck 
cab, but bad because we constrain ourselves to using the two points determined 
by the intersection of the two mid-normals. Do you think that it would be pos-
sible to prescribe 4 positions? Why or why not?

There are many other approaches to synthesize mechanisms. We have dis-
cussed the graphical synthesis method in this text. The graphical synthesis meth-
od is highly intuitive and depends heavily on the experience and expertise of the 
person doing the synthesis. However, the graphical synthesis method becomes 
exceedingly diffi cult for more than three-position synthesis. For problems in-
volving synthesis of more than three points, the analytical method is applied. The 
analytical synthesis method is not discussed in this text. The purpose of this topic 
is to introduce the idea of synthesis. The interested reader can refer to texts of 
kinematics of mechanisms and theory of machines for a more rigorous study of 
the above topic.

FIGURE 2.17
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(a) Construction method. (b) Finished non-Grashof four bar.
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FIGURE 2.18 Two points (red and gray) are chosen on the bin and plotted on the three desired 
positions.

The perpendicular bisectors 
are drawn on each line.

The intersection of corre-
sponding mid-normals gives 
the base positions of each of 
the links (the other being the 
two points on the coupler 
link).

Lines are drawn between the 
displaced points.
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2.5 KINEMATIC ANALYSIS OF MECHANISMS

After the mechanism has been synthesized, it must be analyzed. A principal goal 
of kinematic analysis is to determine the accelerations of all the moving parts in 
the assembly, since dynamic forces are proportional to acceleration. We need to 
know the dynamic forces in order to calculate the stresses in the components. In 
order to calculate accelerations, we must fi rst fi nd the positions of all the links 
or elements in the mechanism for each increment of input motion, and then 
differentiate the position equations versus time to fi nd velocities, and then to 
differentiate again to obtain the expression for acceleration. 

This can be done in several methods. We could use a graphical approach 
to determine the position, velocity, and acceleration of the output links for all 
180 positions of interest, or we could derive the general equations of motion 
for any position, differentiate for velocity and acceleration, and then solve these 
analytic expressions for our 180 (or more) crank rotations. A computer will make 
this task much easier. If we choose the graphical approach to analysis, we have 
to do an independent graphical solution for each of the positions of interest. In 
contrast, once the analytical solution is derived for a particular mechanism, it 
can be quickly solved (with a computer) for all positions. In this chapter, we will 
discuss the graphical method and two analytical methods, namely the algebraic 
method and the complex algebra method, for the position analysis of a few pla-
nar mechanisms. 

2.5.1 Graphical Position Analysis Method

For any one-DOF linkage, such as a four bar, only one parameter is needed to 
completely defi ne the positions of all the links. The parameter usually chosen is 

FIGURE 2.19 
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FIGURE 2.20 Measurement of angles in the four-bar linkage.

the angle of the input link. This is shown as θ2 in Figure 2.20. We want to fi nd θ3 
and θ4. The link lengths are known. Note that we will consistently number the 
ground link as 1 and the driver link as 2 in these examples.

The graphical analysis of the problem is trivial and can be done using only 
high school geometry. If we draw the linkage carefully to scale with rule, com-
pass, and protector in a particular position (given θ2), then it is only necessary to 
measure the angles of links 3 and 4 with the protractor. Note that all link angles 
are measured from a positive x-axis. In Figure 2.18, a local x-y axis system, paral-
lel to the global XY system, has been created at point A to measure θ3. The accu-
racy of this graphical solution will be limited by our care and drafting ability and 
by the crudity of the protractor used. Nevertheless, a very rapid, approximate 
solution can be found for any one position.

Figure 2.21 shows the construction of the graphical position solution. 
The four link lengths a, b, c, d and the angle θ2 of the input link are given. 
First, the ground link (1) and the input link (2) are drawn to a convenient 
scale such that they intersect at the origin O2 of the global XY  coordinate 
system with link 2 placed at the input angle θ2. Link 1 is drawn along the x-
axis for convenience. The compass is set to the scale length of link 3, and an 
arc of that radius swung about the end of link 2 (point A). Then the compass 
is set to the scale length of link 4, and a second arc swung about the end of 
link 1 (point θ4).

These two arcs will have two intersections at B and B’ that defi ne the two 
solutions to the position problem for a four-bar linkage that can be assembled 
in two confi gurations, called circuits, labeled open and crossed in Figure 2.21. 
Circuits in linkages will be discussed in a later section.
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The angles of link 3 and 4 can be measured with a protractor. One circuit 
has angles θ3 and θ4, the other θ3’ and θ4’. A graphical solution is only valid for 
the particular value of input angle used. For each additional position analysis we 
must completely redraw the linkage. This can become burdensome if we need 
a complete analysis at every 1- or 2-degree increment of θ2. In that case we will 
be better off to derive an analytical solution for θ3 and θ4, which can be solved 
by computer.

2.5.2 Algebraic Position Analysis of Linkages

The same procedure that was used in Figure 2.21 to solve geometrically for the 
intersections B and B’ and angles of links 3 and 4 can be encoded into an alge-
braic algorithm. The coordinates of point A are found from: 

 Ax = a cos θ2

 Ax = a sin θ2.

The coordinates of point B are found using the equations of circles about A 
and O4

 b2 = (Bx  – Ax)
2 + (By – Ay)

2 (2.6)

FIGURE 2.21 Graphical position solution to the open and crossed 
confi gurations of the four-bar linkage.
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 c2 = (Bx – d)2 + By
2 (2.7)

which provide a pair of simultaneous equations in Bx and BY.
Subtracting equation 2.6 from 2.7 gives an expression for Bx.
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Substituting equation 2.8 into 2.7 gives a quadratic equation in By, which has 
two solutions corresponding to those in Figure 2.19.
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This can be solved with the familiar expression for the roots of a quadratic 
equation,
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 R = (d – S2) – C2 (2.13)
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Note that the solutions to this equation set can be real or imaginary. If the 
latter, it indicates that the links cannot connect at the given input angle or at all. 
Once the two values of By are found (if real), they can be substituted into equa-
tion 2.8 to fi nd their corresponding x components. The link angles for this posi-
tion can then be found from 
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A two-argument arctangent must be used to solve the above equations 
since the angles can be in any quadrant. The above can be encoded in any 
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computer language equation solver, and the value of θ2 varies over the linkage’s 
usable range to fi nd all corresponding values of the other two link angles.

2.5.3 Complex Algebra Method for Position Analysis

An alternate approach to linkage position analysis creates a vector loop (or loops) 
around the linkage. The links are represented as position vectors. Figure 2.22 
show a  slider-crank mechanism with an offset, where the links are drawn as posi-
tion vectors that form a vector loop. The term offset means that the slider axis 
extended does not pass through the crank pivot. This is the general case. This 
linkage could be represented by only three positions vectors, R2,,R3, and Rs, but 
one of them (Rs) will be a vector of varying magnitude and angle. It will be easier 
to use four vectors; R1, R2, R3, and R4 with R1 arranged parallel to the axis of slid-
ing and R4 perpendicular. In effect, the pair of vectors R1 and R4 is an orthogonal 
component of the position vector Rs from the origin to the slider. This loop closes 
on itself making the sum of the vectors around the loop zero. The lengths of the 
vectors are the link lengths, which are known.

It simplifi es the analysis to arrange one coordinate axis parallel to the axis 
of sliding. The variable-length, constant-direction vector R1 then represents the 
slider position with magnitude d. The vector R4 is orthogonal to R 1 and defi nes 
the constant magnitude offset of the linkage. Note that for the special-case, non-
offset version, the vector R4 will be zero and R1=Rs. The vectors R2 and R3 com-
plete the vector loop. The coupler’s position vector R3 is placed with its root at 
the slider which then defi nes its angle θ3 at point B. This particular arrangement 
of the position vector leads to a vector loop equation similar to the pin-jointed 
four-bar example:

FIGURE 2.22 Position vector loop for a four-bar slider-crank linkage.
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 R2 – R3 – R4 – R 1= 0. Vector R3 in each case. 

The angle è3 must always be measured at the root of vector R3, and in this ex-
ample it will be convenient to have angle è4 at the  joint labeled B. Once these ar-
bitrary choices are made it is crucial that the resulting algebraic signs be carefully 
observed in the equations, or the results will be completely erroneous. Letting 
the vector magnitudes (link lengths) be represented by a, b, c, and d as shown, 
we can substitute the complex number equivalents for the position vectors.

 01432 =−−− θθθθ jjjj decebeae  (2.17)

Substitute the Euler equations:

 a(cos θ2 – j sin θ2) – b(cos θ3 + j sin θ3) – c(cos θ4 + j sin θ4) 
 – d(cos θ1+ j sin θ1) = 0. (2.18)

Separate the real and imaginary components.
Real part ( x component):

 a cos θ2 – b cos θ3 – c cos θ4 – d cos θ1 = 0. (2.19)

But: 

 a cos θ2 – b cos θ3 – c cos θ4 – d = 0. (2.20)

Imaginary part (y component): 

 ja sin θ2 – jb sin θ3 – jc sin θ3 – jdθ1 =0. (2.21)

But: 
 θ

1
 = 0, and the j’s divide out, so:

 a sin θ2 – b sin θ3 – c sin θ4 =0. (2.22)

We want to solve equation 2.18 simultaneously for the two unknowns, link 
length d and link angle θ3. The independent variable is crank angle θ2. Link 
lengths a and b, the offset c, and angle θ4 are known. But note that since we set 
up the coordinate system to be parallel and perpendicular to the axis of the slider 
block, the angle θ1 is zero and θ4 is 900. Equation 2.22 can be solved for θ3 and 
the result substituted into equation 2.19 to solve for d. the solution is :

 ⎟
⎠
⎞⎜

⎝
⎛ −

=
b

ca 2
3

sin
arcsin
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θ
θ  (2.23)

 d = a cos θ2 – b cos θ3. (2.24)
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Note that there are again two valid solutions corresponding to the two cir-
cuits of the linkage. The arcsine function is multivalued. Its evaluation will give a 
value between + 900 representing only one circuit of the linkage. The value of d 
is dependent on the calculated value of θ3. The value of θ3 for the second circuit 
of the linkage can be found from:

 π
θ

θ +⎟
⎠
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⎝
⎛ −−

=
b

ca )sin(
arcsin 2

32
. (2.25)

2.6 A PRACTICAL GUIDE TO USE VARIOUS  MECHANISMS

2.6.1 Most Commonly Used Mechanisms in Projects

Wheels

There are three basic wheel types that are used in most wheeled platforms. 
These are discussed below.

A fi xed standard wheel has no vertical axis of rotation for steering. Its 
angle to the chassis is thus fi xed, and it is limited to motion back and forth along 
the wheel plane and rotation around its point of contact with the ground plane. 
The rolling constraint for this wheel enforces that all motion along the direction 
of the wheel plane must be accompanied by an appropriate amount of wheel 
spin so that there is pure rolling at the point of contact. The sliding constraint for 
this wheel enforces that the component of the wheel’s motion orthogonal to the 
wheel plane must be zero. Fixed standard wheels are used in most of the mobile 
robot applications. 

A steered standard wheel differs from the fi xed standard wheel only in 
that there is an additional degree of freedom: the wheel may rotate along a verti-
cal axis passing through the center of the wheel and the ground contact point. 
This type of wheel is used in most automobiles to enable them to turn. This is 

FIGURE 2.23 
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FIGURE 2.24 A steered wheel.

discussed in detail in Chapter 4. The disadvantage of this type of wheel is that 
the turning radius of the chassis becomes pretty large where this type of wheel 
is used. However, it is used mostly in outdoor applications, where the terrain is 
somewhat rugged and a very small turning radius is usually not required. 

Castor wheels are able to steer around a vertical axis. However, unlike the 
steered standard wheel, the vertical axis of rotation in a castor wheel does not 
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pass through the ground contact point. The actual  kinematics of castor wheels is 
somewhat complex, however, they do not impose any real constraint on the kin-
ematics of the robot chassis. Castor wheels are usually used to provide support 
to the structure. 

Pulleys can be used to simply change the direction of an applied force or to 
provide a force/distance tradeoff in addition to a directional change, as shown 
in Figure 2.26. Pulleys are very fl exible because they use ropes to transfer force 
rather than a rigid object such as a board or a rod. Ropes can be routed through 
virtually any path. They are able to abruptly change directions in three dimen-
sions without consequence. Ropes can be wrapped around a motor’s shaft and 
either wound up or let out as the motor turns. 

Ropes also have the advantage that their performance is not affected by 
length. If a lever arm were extremely long, then it would be unable to handle the 
magnitude of forces that a shorter version could withstand. In a lever, to move 
a given distance next to the fulcrum, the end of the lever must move a distance 
proportional to its length. As the length of the lever increases, it becomes more 
likely that the lever will break somewhere along its length. 

Figure 2.27 illustrates how a compound pulley ‘trades’ force for distance 
through an action/reaction force pair. In a double pulley, as the rope passes over 
the pulley the force is transmitted entirely but the direction has changed. The 

FIGURE 2.26 Pulleys.
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effort is now pulling up on the left side of the bottom pulley. Now, for a moment 
forget that the end of the rope is tied to the bottom of the top pulley. The me-
chanics are the same if the rope is fi xed to the ceiling. The important thing is that 
the end of the rope is immobile. The effort is once again transmitted entirely as 
the rope passes over the bottom pulley and there is a direction change. The end 
of the rope is attached to the ceiling so the rope is pulling down on the ceiling 
with the force of the effort (and half of the force of the load). We assume that the 
ceiling holds up, so this must mean that there is a force balancing out this down-
ward force. The ceiling pulls up on the rope as a reaction force. This upward 
force is equal to the effort and now there is an upward force on the right side of 
the bottom pulley. From the perspective of a free-body diagram the compound 
pulley system could be replaced by tying two ropes to the load and pulling up on 
each with a force equal to the effort. 

The disadvantages of pulleys, in contrast to machines that use rigid objects to 
transfer force, are slipping and stretching. A rope will permanently stretch under 
tension, which may affect the future performance of a device. If a line becomes 
slack, then the operation of a machine may change entirely. Also, ropes will slip 
and stick along pulley wheels just like belts. One solution to the problems associ-
ated with rope is to use chain. Chain is pliable like rope, and is able to transfer 

FIGURE 2.27 How compound pulleys work.
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force through many direction changes, but the chain links are infl exible in ten-
sion, so that the chain will not stretch. Chains may also be made to fi t on gears so 
that slipping is not a problem. 

The Screw 

The screw is basically an inclined plane (see Figure 2.28) wrapped around a 
cylinder. In an inclined plane, a linear force in the horizontal plane is converted 
to a vertical “lifting” force. With a screw, a rotary force in the horizontal plane is 
converted to a vertical “lifting” force. 

When a wood screw is turned, the threads of the screw push up on the wood. 
A reaction force from the wood pushes back down on the screw threads and in 
this way the screw moves down even though the force of turning the screw is 
in the horizontal plane. Screws are known for high friction, which is why they 
are used to hold things together. This is true for the LEGO worm gears used in 
ELEC 201. The friction between these gears and others can take away from the 
force transmitted through them. 

Springs 

A favorite device for storing potential energy is the spring. Everything from 
clocks to catapults makes use of springs. There are two distinctive forms of 

FIGURE 2.28 The screw.
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FIGURE 2.29 Bar spring.

no tension or compression

molecules 100 spread out

molecules 100 close

springs: the familiar coil and the bending bar. A common use for springs is to 
return something to its original position. A more interesting application is to use 
them to measure force—springs in scales. The third use is to store energy. All 
springs perform all three functions all of the time, but specifi c devices are built 
to exploit certain functions of the spring. 

A coil spring works for more or less the same reason as a bar spring, it’s just in 
a different shape. To understand a spring, one must zoom in to the microscopic 
level where molecules interact. Molecules are held together in rigid bodies be-
cause of electromagnetic forces. Some of these forces are repulsive, and some of 
them are attractive. Normally they balance out so that the molecules are evenly 
spaced within an object; however, by bending a bar, some molecules are forced 
farther apart and others are shoved closer together. Where the molecules have 
been spread out, the attractive forces strive to return the original spacing. Where 
molecules have been forced together, the repulsive forces work to return the 
object to the original shape.

Rubber Bands

A rubber band is just a kind of spring. A rubber band is slightly more versatile 
than a metal spring because of its fl exibility, just as pulleys are more versatile 
than their rigid cousin the lever. Using springs in ELEC 201 might take a small 
amount of imagination, but rubber bands almost scream to be used. There might 
be several small tasks that a robot performs only once during a round. It would 
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not make sense to devote an entire motor to such a task. It’s not worth carrying 
around the extra weight if the task could be accomplished just as well with rub-
ber bands. 

Rubber bands also prove useful in the case of repetitive motions. Rather 
than turning a motor forward then backward then forward and so on, one could 
make use of a cam and a rubber band to allow the motor to always turn in one 
direction. Look at the assembly in Figure 2.30 for an example. 

Counterweights

Counterweighing is a necessary evil in constructing even a simple robot. Exam-
ples of common counterweights are shown in Figure 2.31. If a robot that has 
been traveling along at a high speed suddenly comes to a halt, there is danger of 
the robot overturning if the location of the robot’s center of mass has not been 
well placed. The ELEC 201 robots carry around a fairly massive battery, and its 
placement within the robot’s structure is important. When an arm extends, the 
robot should remain stable. This is accomplished through the use of counter-
weights. 

Counterweighing might also prove useful to raise a bin carrying blocks. 
Rather than committing an entire motor to raising a bin, a set of counterweights 

FIGURE 2.30 Using a cam and a rubber band.
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FIGURE 2.31 Some common counterweights.

known to be heavier than the bin plus its contents could be suspended until the 
time when the bin should rise. Of course if a motor was used to take care of the 
counterweights then no motors have been saved. A motor could be used for 
more than one task if a mechanical transmission was employed. Another solution 
would be to use the high-current LED outputs to operate a solenoid. 

2.6.2 Use of Different Kinds of Gears and Their Advantages

We will discuss here the various conditions in which different gears are used. 
Spur gears are the most widely used gears. They are used for speed reduction 

and increase. The limitation of these types of gears is that they can transmit mo-
tion and power only in an axis parallel to the original direction. They can transmit 
motion in both directions. That means any gear can be the driving gear. 

Helical gears are used in situations similar to spur gears, but are used where 
more accurate motion transmission is required. The clearance in helical gears is 
very small as compared to the spur gear of the same dimensions. So these are 
used for high-speed motion transmission and lesser noise applications.

When motion is to be transmitted in a direction other than that of a parallel 
to the original axis of the driving gear,  bevel gears and worm can be used. Bevel 
gears can transmit motion in any direction to the original gear direction. But for 
most practical purposes  bevel gears transmit motion at 90 degrees to the original 
direction. One widely used bevel gear is in an automobile differential system. 
Bevel gears are used in situations where motion is to be transmitted in both di-
rections. That is, the driving gear can also become the driven gear. 

 Worm and wheel gears also transmit motion along a perpendicular direction 
to the original motion. But here the motion transmission is one-way. That is, the 
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motion can only be transmitted from the worm to the wheel not the other way 
round. Hence, it is used in situations that require locking in one direction. Many 
applications in robotics require one-way locking. For example, legged robots 
and robotic arms. Moreover, the  worm and wheel confi guration provides much 
higher gear reduction as compared to the other types of gears for similar dimen-
sions. So, due to these two features of  worm and wheel gears, they are the most 
widely used in robotic applications.

2.6.3 Measuring the Torque of a Motor

Torque 

To understand the importance of using a line of action when considering a force, 
think of a yard stick which has been pinned at the center. The yardstick is free 
to pivot around its center, so a downward force applied at different places (and 
thus through different lines of action) will yield different results. Pressing down 
directly over the pivot does not cause the stick to move or rotate, while pressing 
down at one end causes the stick to rotate about the pivot. By pressing down at 
the end, we have applied a torque to the stick and have caused it to rotate. 

A torque is a force applied at a distance from a pivot. When describing tor-
ques, one must include magnitude, direction, and perpendicular distance from 
the pivot. For torques the line of action is a circle centered on the pivot. As 
torque is a product of force and distance, one may be “traded” for the other. By 

FIGURE 2.32 Illustrating torque.
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applying more force closer to the pivot, one may produce the same torque. This 
concept of “trading” distance traveled/applied for force experienced/applied is 
key to many simple machines. 

A simple experiment can be performed to determine the torque rating of a 
motor. All that is needed is a motor to be measured, a power supply for the motor, 
a piece of thread, a mass of known weight, a table, and a ruler. The mass is attached 
to one end of the thread. The other end of the thread is attached to the motor shaft 
so that when the motor turns the thread will be wound around the motor shaft. 
The motor shaft must be long enough to wind the thread like a bobbin. 

The motor is put near the edge of a table with the mass hanging over the 
edge, as illustrated in Figure 2.33. When the motor is powered it will begin 
winding up the thread and lifting the mass. At fi rst this will be an easy task be-
cause the arm movement required to lift the mass is small—the radius of the mo-
tor shaft. But soon, the thread will wind around the shaft, increasing the radius at 
which the force is applied to lift the mass. Eventually, the motor will stall. At this 
point, the radius of the thread bobbin should be measured. The torque rating of 
the motor is this radius times the amount of mass that caused the stall. 

Alternatively, a LEGO gear and long beam can be mounted on the motor 
shaft, and a small scale (such as a postage scale) calibrated in grams can be used 
to measure the force produced by the stalled motor at the end of the lever rest-
ing on the scale. The torque in mN-m is given by (force in grams) x (lever length 
in cm) x (0.09807). The stall current can be measured at the same time. The 
measurement must be made quickly (1 second) because the large current will 
heat the motor winding, increasing its resistance, and signifi cantly lowering the 
current and torque.

FIGURE 2.33 Experiment to measure motor torque.
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C h a p t e r 3 BASIC ELECTRONICS

In This Chapter

• Introduction to Electronics
• Some Basic Elements
• Steps to Design and Create a Project
• Sensor Design
• Using the Parallel Port of the Computer
• Serial Communication: RS-232
• Using the Microcontroller
• Actuators

3.1 INTRODUCTION TO ELECTRONICS

The concept of electronics is used about electronic components,  integrated 
circuits, and electronic systems. Thirty years ago, no one ever thought of 
the expansive growth of the electronics, information, and communication 

technology we have seen the last few decades. Our new digital life is built on 
the development of miniaturized electronic circuits (microchips) and broadband 
telephone and  data transmission through optical fi ber and wireless networks. 

The computer has been a common tool both at work and at home. By 
continued miniaturization of digital electronic components and circuits, the 
PC and other advanced electronics have been commercially available for 
people in general. The capacity of computers almost doubles every year. This 
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expansion is achievable because of tighter packaging of the components onto 
the microchip.

Modern cars have been exposed by a tremendous development where the 
main parts of the functions have been controlled by the electronics. The cars are 
equipped with electronics like airbag systems, ABS brakes, antispinning system, 
and burglar alarm. Within transportation, we have obtained advanced electronic 
navigation systems, instrument landing systems for airplanes, and anticollision 
systems for ships and cars. Automatic toll rings around the largest cities provide 
money for new roads and attempts for environmentally friendly traffi c. 

Furthermore, modern electronics have revolutionized medical diagnosis by 
introducing new techniques like CT (Computer Tomography), MR (Magnetic 
Resonance), and ultrasonic imaging systems. 

Common for the realization of these new technical developments, besides 
digital circuits, are the sensors that can “feel” sound, light, pressure, tempera-
ture, acceleration, etc., and actuators that can “act,” i.e,. carry out specifi c opera-
tions like switch on a knob, or transmit sound or light signals. 

The base of all the big circuits is capacitors, resistors, and transistors. Any elec-
tronic device or equipment generally has these components as its starting point. So 
before going for the circuits, one needs to has some knowledge about these basic 
components. Some of these components are discussed below in detail.

3.2 SOME BASIC ELEMENTS 

Resistors, capacitors, and transistors are a few basic components that can be seen 
in most electronic circuits. Resistors come in different values. Their resistance 

FIGURE 3.1 Introduction.
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can be determined by considering the color codes on it. Different components 
are represented by different symbols. These components having symbolic names 
like a resistor, is represented by R, whereas a capacitor is represented by C.

3.2.1 Resistors

Fixed Resistors

Resistors are one of the most commonly used components in electronics. As its 
name implies, resistors resist the fl ow of electrons. They are used to add resist-
ance to a circuit. The color bands around the resistors are color codes that tell 
you its resistance value. Recall that a unit of resistance is an ohm. 

One last important note about resistors is their wattage rating. You should not 
use a 1/4-watt resistor in a circuit that has more than 1/4 watt of power fl owing. 

For example, it is not okay to use a 1/4-watt resistor in a 1/2-watt circuit. 
However, it is okay to use a 1/2-watt resistor in a 1/4-watt circuit. 

The tolerance band indicates the accuracy of the values. A 5% tolerance 
(gold band) for example, indicates that the resistor will be within 5% of its value. 
For most applications, a resistor within 5% tolerance should be suffi cient.

FIGURE 3.2 (a) A resistor. (b) Schematic symbol & name.

FIGURE 3.3 Shows the way to calculate the value of a resistor.
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To get the value of a resistor, hold the resistor so that the tolerance band is 
on the right.

The fi rst two color bands from the left are the signifi cant fi gures—simply 
write down the numbers represented by the colors. The third band is the multi-
plier—it tells you how many zeros to put after the signifi cant fi gures. Put them 
all together and you have the value.

There are resistors with more bands and other types for specifi c applications. 
However, 4-band resistors (the ones discussed here) are the most common and 
should work for most projects.

Variable Resistors

Variable Resistors, or potentiometers, often have three terminals and can 
change resistance easily.

Horizontally Adjustable Presets

These are miniature versions of the standard variable resistor. They are designed 
to be mounted directly onto the circuit board and adjusted only when the circuit is 
built. For example, to set the frequency of an alarm tone or the sensitivity of a light-
sensitive circuit, a small screwdriver or similar tool is used to adjust the presets.

Preset Symbol

Presets are much cheaper than standard variable resistors so they are sometimes 
used in projects where a standard variable resistor would normally be used. 

Multiturn presets are used where very precise adjustments must be made. 
The screw must be turned many times (10+) to move the slider from one end of 
the track to the other, giving very fi ne control.

NOTE

FIGURE 3.4 A variable resistor.
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A variable resistor is a potentiometer with only two connecting wires instead 
of three. However, although the actual component is the same, it does a very dif-
ferent job. The pot allows us to control the potential passed through a circuit. The 
variable resistance lets us adjust the resistance between two points in a circuit.

A variable resistance is useful when we don’t know in advance what resistor 
value will be required in a circuit. By using pots as an adjustable resistor we can 
set the right value once the circuit is working. Controls like this are often called 
‘presets’ because they are set by the manufacturer before the circuit is sent to 
the customer. They’re usually hidden away inside the case of the equipment, 
away from the fi ngers of the users! 

3.2.2 Capacitors

Capacitors are the second most commonly used component in  electronics. They 
can be thought of as tiny rechargeable batteries—capacitors can be charged and 
discharged. The amount of charge that a capacitor can hold is measured in Far-
ads or the letter F. However, 1F is too large for capacitors, so microfarads (µF) 
and picofarads (pF) are used:

FIGURE 3.5 Symbol for preset.

FIGURE 3.6 A capacitor.

121
Significant figures

multiplier

120 pf

micro = 1/1,000,000 and pico = 1/1,000,000,000,000 
 So, 100,000pF = 0.1µF = 0.0000001F.

We will only be discussing two types of the most commonly used capacitors: 
ceramic and electrolytic. 
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■ A ceramic capacitor is brown and has a disc shape. These capacitors are 
nonpolarized, meaning that you can connect them in any way. To fi nd the 
value, you simply decode the 3-digit number on the surface of the capacitor. 
The coding is just like the resistor color codes except that they used numbers 
instead of colors. The fi rst 2 digits are the signifi cant fi gures and the third 
digit is the multiplier. These capacitors are measured in pF.

■ Electrolytic capacitors have a cylinder shape. These capacitors are polar-
ized so you must connect the negative side in the right place. The value of 
the resistor as well as the negative side is clearly printed on the capacitor. 
These capacitors are measured in µF. 

3.2.3 Breadboard

Circuits can be modeled to make sure they work the way you want them to. 
Circuit modeling can be done either using a computer modeling application, 
or on a prototype board—also called a breadboard or Vero board—which is 
a board covered with small sockets into which components can be plugged and 
connected up. 

Figure 3.9 shows a breadboard with holes connected in two long rows at the 
top and bottom, and columns of fi ve linked holes elsewhere. Electronic compo-
nents and wires can be simply plugged into the board in order to make any re-
quired circuit connections. The top and bottom rows act as power supply chan-
nels for the circuit.

FIGURE 3.7 (a) A ceramic capacitor and (b) its schematic symbol and 
name.

FIGURE 3.8 (a) An electrolytic capacitor and (b) its schematic symbol and name.
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Evaluation and Testing

Evaluation and testing is about making sure that the product stays on track with 
the design specifi cation. You should plan to evaluate and test your project at a 
number of key stages of design and manufacture. These stages are referred to as 
critical control points.

The critical control points for evaluation and testing an electronic prod-
uct are:

1. Initial Design Phase: Check that you have used the correct value compo-
nents, and that the various systems work together. These checks can be done 
using a computer-simulation package.

2. Breadboard Phase: Use the  breadboard to check whether the circuit works 
properly. Test each part of the circuit using a millimeter or logic probe.

FIGURE 3.9 (a) A breadboard, (b) internal connection of a breadboard, 
and (c) a symbolic representation of a 555 mono stable timer circuit on a 
 breadboard.

555 timer 
chip

Capacitor 220R resistor LE

5 hole 
channel

Power 
Supply

10K resistor Input Switch (PTM)

(a) (b)

(c)

v the metal contacts 
arranged inside

A breadboard prototype for a 555 mono stable timer circuit might look 
like this:
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3. PCB Layout: Check that the components are in the correct positions and 
that you have used the optimum track layout. Make sure that the compo-
nents are located neatly and that joints are well soldered.

4. Manufacturing and Packaging Phase: After manufacture, check that the 
product conforms to its specifi cation. During packaging, check that the prod-
uct fi ts securely in the package, and that any conducting parts are insulated.

5. Finally, the Analysis Phase: Look back over the design and making process. 
Analyze how well it went, noting any modifi cations and improvements you 
would make if you were to do it again. These notes are an important part of 
your design portfolio.

3.2.4  Potentiometer 

A potentiometer (or “pot,” for short) is a manually adjustable, variable resistor. 
It is commonly used for volume and tone controls in stereo equipment. On the 
RoboBoard a 10k pot is used as a contrast dial for the LCD screen, and the 
RoboKnob of the board is also a potentiometer. 

In robotics, a potentiometer can be used as a position sensor. A rotary po-
tentiometer (the most common type) can be used to measure the rotation of a 
shaft. Gears can be used to connect the rotation of the shaft being measured to 
the potentiometer shaft. It is easiest to use if the shaft being measured does not 
need to rotate continuously (like the second hand on a clock), but rather rotates 
back and forth (like the pendulum on a grandfather clock). Most potentiometers 
rotate only about 270 degrees; some can be rotated continuously, but the values 
are the same on each rotation. By using a gear ratio other than 1:1, the position 
of a shaft that rotates more than 270 degrees can be measured. 

FIGURE 3.10 Potentiometer circuit.
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A potentiometer connected to a shaft and a lever can also be used to deter-
mine the distance to a wall and to make the robot follow a path parallel to the 
wall. The lever, perhaps with a small wheel on the end, would extend from the 
side of the robot and contact the wall; a rubber band would provide a restoring 
force. If the robot moved closer to the wall, the lever would pivot, turning the 
shaft and the potentiometer. The control program would read the resulting volt-
age and adjust the robot steering to keep the voltage constant. 

Electrical  Data 

 Potentiometers have three terminals. The outer two terminals are connected to 
a resistor and the resistance between them is constant (the value of the poten-
tiometer). The center terminal is connected to a contact that slides along the 
resistance element as the shaft is turned, so the resistance between it and either 
of the other terminals varies (one increases while the other decreases). 

The assembly instructions suggest wiring the potentiometer in the voltage 
divider confi guration, with the on-board pull-up resistor in parallel with one of 
the potentiometer’s two effective resistances. This will yield readings of greater 
precision (although they will not be linear) than if the pot were used as a two-ter-
minal variable resistor. You may want to try different circuits to determine which 
works best for your application. 

3.2.5 Diodes

In electronics, a diode is a component that restricts the direction of movement of 
charge carriers. Essentially, it allows an electric current to fl ow in one direction, 
but blocks it in the opposite direction. Today the most common diodes are made 
from semiconductor materials such as silicon or germanium. 

Semiconductor Diodes

Most modern diodes are based on semiconductor P-N junctions. In a P-N diode, 
conventional current can fl ow from the P-type side (the anode) to the N-type 

FIGURE 3.11 Diodes.
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side (the cathode), but not in the opposite direction. A semiconductor diode’s 
current-voltage, or I-V, characteristic curve is ascribed to the behavior of the so-
called depletion layer or depletion zone which exists at the P-N junction between 
the differing semiconductors. When a P-N junction is fi rst created, conduction 
band (mobile) electrons from the N-doped region diffuse into the P-doped re-
gion where there is a large population of holes (places for electrons in which 
no electron is present) with which the electrons “recombine.” When a mobile 
electron recombines with a hole, the hole vanishes and the electron is no longer 
mobile. Thus, two charge carriers have vanished. The region around the P-N 
junction becomes depleted of charge carriers and thus behaves as an insulator.

However, the depletion width cannot grow without limit. For each electron-
hole pair that recombines, a positively charged dopant ion is left behind in the 
N-doped region, and a negatively charged dopant ion is left behind in the P-
doped region. As recombination proceeds and more ions are created, an increas-
ing electric fi eld develops through the depletion zone which acts to slow and 
then fi nally stop recombination. At this point, there is a ‘built-in’ potential across 
the depletion zone.

If an external voltage is placed across the diode with the same polarity as the 
built-in potential, the depletion zone continues to act as an insulator preventing 
a signifi cant electric current. This is the reverse bias phenomenon. However, if 
the polarity of the external voltage opposes the built-in potential, recombination 
can once again proceed resulting in substantial electric current through the P-N 
junction. For silicon diodes, the built-in potential is approximately 0.6 V. Thus, 
if an external current is passed through the diode, about 0.6 V will be developed 
across the diode such that the P-doped region is positive with respect to the N-
doped region and the diode is said to be ‘turned on’ as it has a forward bias.

A diode’s I-V characteristic can be approximated by two regions of opera-
tion. Below a certain difference in potential between the two leads, the deple-
tion layer has signifi cant width, and the diode can be thought of as an open 

FIGURE 3.12 Diode schematic 
symbol.
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(nonconductive) circuit. As the potential difference is increased, at some stage 
the diode will become conductive and allow charges to fl ow, at which point it 
can be thought of as a connection with zero (or at least very low) resistance. 
More precisely, the transfer function is logarithmic, but so sharp that it looks 
like a corner on a zoomed-out graph.

In a normal silicon diode at rated currents, the voltage drop across a con-
ducting diode is approximately 0.6 to 0.7 volts. The value is different for other 
diode types—Schottky diodes can be as low as 0.2 V and light-emitting diodes 
( LEDs) can be 1.4 V or more (blue LEDs can be up to 4.0 V).

Referring to the I-V characteristics image, in the reverse bias region for a 
normal P-N rectifi er diode, the current through the device is very low (in the µA 
range) for all reverse voltages up to a point called the peak-inverse-voltage (PIV). 
Beyond this point a process called reverse breakdown occurs which causes the 
device to be damaged along with a large increase in current. For special-purpose 
diodes like the avalanche or zener diodes, the concept of PIV is not applicable 
since they have a deliberate breakdown beyond a known reverse current such 
that the reverse voltage is “clamped” to a known value (called the zener voltage 
or breakdown voltage). These devices, however, have a maximum limit to the 
current and power in the zener or avalanche region.

Zener Diode

Refer to the characteristic curve of a typical rectifi er (diode) in Figure 3.14. The 
forward characteristic of the curve we have previously described above in the 
diode section. It is the reverse characteristics we will discuss here. 

FIGURE 3.13 I-V characteristics of a P-N junction diode (not to scale).
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Notice that as the reverse voltage is increased the leakage current remains 
essentially constant until the breakdown voltage is reached where the current 
increases dramatically. This breakdown voltage is the zener voltage for zener 
diodes. While for the conventional rectifi er or diode it is imperative to operate 
below this voltage; the zener diode is intended to operate at that voltage, and so 
fi nds its greatest application as a voltage regulator. 
 
The basic parameters of a zener diode are:
(a)  Obviously, the zener voltage must be specifi ed. The most common range of 

zener voltage is 3.3 volts to 75 volts; however voltages out of this range are 
available.

(b)  A tolerance of the specifi ed voltage must be stated. While the most popular 
tolerances are 5% and 10%, more precision tolerances as low as 0.05% are 
available. A test current (Iz) must be specifi ed with the voltage and tolerance.

(c)  The power-handling capability must be specifi ed for the zener diode. Popu-
lar power ranges are: 1/4, 1/2, 1, 5, 10, and 50 watts.

Varactor Diode

The varactor diode symbol is shown in Figure 3.15 with a diagram representation.
When a reverse voltage is applied to a P-N junction, the holes in the P-

region are attracted to the anode terminal and electrons in the N-region are 
attracted to the cathode terminal creating a region where there is little current. 

FIGURE 3.14 Current-voltage characteristics of a typical P-N junction.
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This region, the depletion region, is essentially devoid of carriers and behaves as 
the dielectric of a capacitor.

The depletion region increases as the reverse voltage across it increases; and 
since capacitance varies inversely as dielectric thickness, the junction capaci-
tance will decrease as the voltage across the P-N junction increases. So by vary-
ing the reverse voltage across a P-N junction the junction capacitance can be 
varied. This is shown in the typical varactor voltage-capacitance curve below in 
Figure 3.16.

Notice the nonlinear increase in capacitance as the reverse voltage is de-
creased. This nonlinearity allows the varactor to also be used as a harmonic gen-
erator. 

Major varactor considerations are:

(a)  Capacitance value
(b)  Voltage
(c)  Variation in capacitance with voltage
(d)  Maximum working voltage 
(e)  Leakage current

FIGURE 3.15 (a) Varactor diode symbol and (b) its diagram representation.

FIGURE 3.16 Varactor voltage-capacitance curve.
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Tunnel Diode and Back Diode

Tunnel Diode 

A tunnel diode is a semiconductor with a negative resistance region that re-
sults in very fast switching speeds, up to 5 GHz. The operation depends upon 
a quantum mechanic principle known as “tunneling” wherein the intrinsic 
voltage barrier (0.3 volt for germanium junctions) is reduced due to doping 
levels which enhance tunneling. Referring to the curves below, superimpos-
ing the tunneling characteristic upon a conventional P-N junction, we show 
in Figure 3.17:

FIGURE 3.17 Combination of tunneling current 
and conventional P-N junction current resulting in 
a composite characteristic which is the tunnel diode 
characteristic curve.
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The negative resistance region is the important characteristic for the tunnel 
diode. In this region, as the voltage is increased, the current decreases; just the 
opposite of a conventional diode. The most important specifi cations for the tun-
nel diode are the Peak Voltage (Vp), Peak Current (Ip), Valley Voltage (Vv), and 
Valley Current (Iv).

Back Diode

A back diode is a tunnel diode with a suppressed Ip and so approximates a con-
ventional diode characteristic. See the comparison in the fi gures below:
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TABLE 3.1 Typical Tunnel Diodes Supplied by American Microsemiconductor

 Part 
Number

Ip

Peak
Point

Current 
(mA)

IV

Valley
Point 

Current
Max.

C
Capaci-
tance
Max.
(pF)
(mA)

VP

Peak
Point

Voltage
Typ.
(mV)

VV

Valley
Voltage

Typ.
(mV)
(mV)

Vfp

Forward
Peak

Voltage
Typ.

(GHz)

RS

Series
Resist.
Max.

(ohms)

-G
Nega-
tive

Conduc-
tance

(mhosx-
10-3)

fRO

Resis-
tive

Cutoff
Frequ-
ency
Typ.

1N3712 1.0 + 10% 0.18 10 65 350 500 4.0 8 Typ. 2.3

1N3713 1.0 + 2.5% 0.14 5 65 350 510 4.0 8.5 + 1 3.2

1N3714 2.2 + 10% 0.48 25 65 350 500 3.0 18 Typ 2.2

1N3715 2.2 + 2.5% 0.31 10 65 350 510 3.0 19 + 3 3.0

1N3716 4.7 + 10% 1.04 50 65 350 500 2.0 40 Typ. 1.8

1N3717 4.7 + 2.5% 0.60 25 65 350 510 2.0 41 + 5 3.4

1N3718 10.0 + 10% 2.20 90 65 350 500 1.5 80 Typ. 1.6

1N3719 10.0 + 2.5% 1.40 50 65 350 510 1.5 85 + 10 2.8

1N3720 22.0 + 10% 4.80 150 65 350 500 1.0 180 Typ. 1.6

1N3721 22.0 + 2.5% 3.10 100 65 350 510 1.0 190 + 30 2.6

FIGURE 3.18
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TABLE 3.2 Typical Ultra-high-speed Switching Tunnel Diodes Supplied by American 
Microsemiconductor

Part
Number

IP

Peak 
point

current
(mA)

IV

Valley
Point

Current
(mA)

C
Capaci-
tance
Max.
(pF)
 Max. 
(mV)

VP

Peak
Point

Voltage
(mV)

VV

Valley
Voltage
Typical
 l (mV)

Vfp

Forward
Voltage
Typica
Typical

RS

Series
 Resist.
Typical
(ohms)

T
Rise
Time

Typical
(psec.)

TD-261 2.2 + 10% 0.31 3.0 70 390 500-700 5.0 430

TD-261A 2.2 + 10% 0.31 1.0 80 390 500-700 7.0 160

TD-262 4.7 + 10% 0.60 6.0 80 390 500-700 3.5 320

TD-262A 4.7 + 10% 0.60 1.0 90 400 500-700 1.7 350

TD-263 10.0 + 10% 1.40 9.0 75 400 500-700 1.7 350

TD-263A 10.0 + 10% 1.40 5.0 80 410 520-700 2.0 190

TD-263B 10.0 + 10% 1.40 2.0 90 420 550-700 2.5 68

TD-264 22.0 + 10% 3.80 18.0 90 425 600 Typ. 1.8 185

TD-264A 22.0 + 10% 3.80 4.0 100 425 550-700 2.0 64

TD-265 50.0 + 10% 8.50 25.0 110 425 625 Typ. 1.4 100

TD-265A 50.0 + 10% 8.50 5.0 130 425 640 Typ. 1.5 35

TD-266 100 + 10% 17.50 35.0 150 450 650 Typ. 1.1 57

TD-266A 100 + 10% 17.50 6.0 180 450 650 Typ. 1.2 22

 

FIGURE 3.19 (a) LED symbol. (b) LED diagram.
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The reverse breakdown for tunnel diodes is very low, typically 200 mV, and 
the TD conducts very heavily at the reverse breakdown voltage. Referring to the 
BD curve, the back diode conducts to a lesser degree in a forward direction. It 
is the operation between these two points that makes the back diode important. 
Forward conduction begins at 300 mV (for germanium) and a voltage swing of 
only 500 mV is required for full-range operation.

3.2.6  LEDs

Defi nition: Light Emitting Diodes (LEDs) are compound semiconductor devices 
that convert electricity to light when biased in the forward direction. Because of its 
small size, ruggedness, fast switching, low power, and compatibility with integrated 
circuitry, LED was developed for many indicator-type applications.

Today, advanced high-brightness LEDs are the next generation of lighting 
technology and are currently being installed in a variety of lighting applications. 
As a result of breakthroughs in material effi ciencies and optoelectronic packag-
ing design, LEDs are no longer used in just indicator lamps. They are used as 
a light source for illumination for monochromatic applications such as traffi c 
signals, brake lights, and commercial signage.

LED Benefi ts

■ Energy effi cient
■ Compact size
■ Low wattage
■ Low heat
■ Long life
■ Extremely robust
■ Compatible with  integrated circuits

FIGURE 3.20 Parts of an LED.
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LED Structure 

■ Chip
■ Lead frame
■ Gold wire
■ Epoxy resin (plastic mold package)
■ Cathode
■ Anode

 
TABLE 3.3 Semiconductors for  LEDs

General GaP GaN GaAs GaA1As

Green, Red Blue Red, Infrared Red, Infrared

Super GaAIAs InAsP GaN InGaNGaP

Red Yellow, Red Blue Green Green

Ultra GaAIAs InGaAlP GaN InGaN

Red Yellow, Orange, 
Red

Blue Green

 

Classifi cation: Classifi cation of LEDs are defi ned by spectrum.
(i) Visible LED: Based on max. spectrum, produces red, orange, yellow, green, 

blue, and white.
(ii) Infrared LED: (IR LED).

Applications of LEDs

Visible LED: General-purpose application in various industries including indi-
cation devices for electronic appliances, measuring instruments, etc.
Bi-color (dual color) LED: Charger for cellular phones, showcase boards, traf-
fi c boards on highways, etc.
High & Ultra Brightness LED: Full-color display for indoor/outdoor, au-
tomotive signal lamps, high-mount lamps, indoor lamps, traffi c signal lamps, 
etc.
Infrared LED: With high output capacity, IR LED is used in remote controls, 
IrDa ( Infrared Data Storage Devices), etc.

3.2.7 Transistors

A semiconductor device consisting of two P-N junctions formed by either a P-type or 
N-type semiconductor between a pair of opposite types is known as a transistor.
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A transistor in which two blocks of N-type semiconductors are separated by 
a thin layer of P-type semiconductor is known as an NPN transistor.

A transistor in which two blocks of P-type semiconductors are separated by 
a thin layer of N-type semiconductor is known as a PNP transistor.

The three portions of a transistor are the emitter, base, and collector, shown 
as E, B, and C respectively in Figure 3.21.

The section of the transistor that supplies a large number of majority carri-
ers is called the emitter. The emitter is always forward biased with respect to the 
base so that it can supply a large number of majority carriers to its junction with 
the base. The biasing of the emitter base junction of an NPN and PNP transistor 
is shown in Figure 3.22. Since the emitter is to supply or inject a large amount of 
majority carriers into the base, it is heavily doped but moderate in size.

The section on the other side of the transistor that collects the major portion 
of the majority carriers supplied by the emitter is called the collector. The collec-
tor base junction is always reverse biased. Its main function is to remove major-
ity carriers (or charges) from its junction with the base. The biasing of collector 
base junctions of an NPN transistor and a PNP transistor is shown in Figure 3.21 
above. The collector is moderately doped but larger in size so that it can collect 
most of the majority carriers supplied by the emitter.

The middle section, which forms two P-N junctions between the emitter and 
collector, is called the base. The base forms two circuits, one input circuit with 
emitter and the other an output circuit with collector. The base emitter junction 
is forward biased providing low resistance for the emitter circuit. The base col-
lector circuit is reversed biased, offering a high-resistance path to the collector 
circuit. The base is lightly doped and very thin so that it can pass on most of the 
majority carriers supplied by the emitter to the collector.

Operation of an NPN Transistor

An NPN transistor circuit is shown in Figure 3.22. The emitter base junction is 
forward biased while the collector base junction is reversed biased. The forward 
biased voltage veb is quite small, where as the reversed biased voltage vcb is con-
siderably high.

FIGURE 3.21 
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As the emitter base junction is forward biased, a large number of electrons 
(majority carriers) in the emitter (N-type region) are pushed toward the base. 
This constitutes the emitter current i.e.. When these electrons enter the P-type 
material (base), they tend to combine with holes. Since the base is lightly doped 
and very thin, only a few electrons (less than 5%) combine with holes to consti-
tute base current ib. The remaining electrons (more than 95%) diffuse across the 
thin base region and reach the collector space charge layer. These electrons then 
come under the infl uence of the positively based N-region and are attracted or 
collected by the collector. This constitutes collector current ic.

Thus, it is seen that almost the entire emitter current fl ows into the collector 
circuit. However, to be more precise, the emitter current is the sum of the col-
lector current and base current i.e.,

ie=ic+ib.

Operation of a PNP Transistor

A PNP transistor circuit is shown in Figure 3.23 below. The emitter base junc-
tion is forward biased while the collector base junction is reverse biased. The 
forward-biased voltage veb is quite small, where as the reverse-biased voltage vcb 
is considerably high.

As the emitter base junction is forward biased, a large number of holes (ma-
jority carriers) in the emitter (P-type semiconductor) are pushed toward the base. 
This constitutes the emitter current i.e., when these electrons enter the N-type 
material (base), they tend to combine with electrons. Since the base is lightly 

FIGURE 3.23 
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doped and very thin, only a few holes (less than 5%) combine with electrons to 
constitute base current ib. The remaining holes (more than 95%) diffuse across 
the thin base region and reach the collector space charge layer. These holes then 
come under the infl uence of the negatively based P-region and are attracted or 
collected by the collector. This constitutes collector current ic.

Thus, it is seen that almost the entire emitter current fl ows into the collector 
circuit. However, to be more precise, the emitter current is the sum of the col-
lector current and base current i.e.,

 ie= ic+ib.

FIGURE: 3.24 Integrated chips

3.2.8  Integrated Circuits

Integrated circuits are miniaturized electronic devices in which a number of 
active and passive circuit elements are located on or within a continuous body 
of material to perform the function of a complete circuit. Integrated circuits 
have a distinctive physical circuit layout, which is fi rst produced in the form of 
a large-scale drawing and later reduced and reproduced in a solid medium by 
high-precision electrochemical processes. The term “integrated circuit” is often 
used interchangeably with such terms as microchip, silicon chip, semiconductor 
chip, and microelectronic device.

Overview

■ ICs, often called “chips,” come in several shapes and sizes. 
■ Most common are 8-, 14-, or 16-pin dual in-line (dil) chips.
■ ICs can be soldered directly into printed circuit boards, or may plug into 

sockets which have already been soldered into the board.
■ When soldering, ensure that the IC (or the socket) is the correct way round 

and that no pins have been bent underneath the body. 
■ When fi tting new ICs it is often necessary to bend the pins in slightly, in 

order to fi t it into the board (or socket). 
■ Some ICs are damaged by the static electricity that most people carry on 

their bodies. They should be stored in conductive foam or wrapped in tin 
foil. When handling them, discharge yourself periodically by touching some 
metalwork which is earthed, such as a radiator.
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Pin Numbering on a Typical IC

The value of the output voltage from simple power supplies is often not ac-
curate enough for some electronic circuits. 

The power supply voltage can also vary due to changes in the main supply, or 
variations in the current taken by the load. 

3.2.9 Some Lab Components

While working with electronic circuits we generally come across so many elec-
tronic components that one needs to know. Some of the components that are 
most common are described below:

IC 7805

The 7805 supplies 5 volts at 1 amp maximum with an input of 7–25 volts. 
The 7812 supplies 12 volts at 1 amp with an input of 14.5–30 volts. 
The 7815 supplies 15 volts at 1 amp with an input of 17.5–30 volts. 
The 7824 supplies 24 volts at 1 amp with an input of 27–38 volts. 

The 7905, 7912, 7915, and 7924 are similar but require a negative voltage in 
and give a negative voltage out. 

Note that the electrolytic 10 uF must be reversed for negative supplies. En-
sure that the working voltage of this component is suffi cient. Say 25 V for the 5-, 
12-, and 15-volt supplies and 63 V for the 24-volt supply. 

78 series

input output outputOV

79 series

FIGURE 3.25 Parts of a 16-pin chip.
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FIGURE 3.26 (a) 78 series. (b) 79 series voltage regulators.
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The other two capacitors can be 100 nF/100 volt working. 
The 78L series can supply 100 mA and the 78S can supply 2 amps.

Eight Darlington Arrays

High-voltage High-current Darlington Transistor Array

■ Eight Darlingtons with common emitters.
■ Output current to 500 mA. 
■ Output voltage to 50 V.
■ Integral suppression diodes.
■ Output can be programmed.

FIGURE 3.27 ULN 2803.

FIGURE 3.28 ULN 2803 (pin connection).
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■ Inputs pinned opposite outputs to simplify board layout.
■ Versions for all popular logic families.

Description

The ULN2801A–ULN2805A each contain eight Darlington transistors with common 
emitters and integral suppression diodes for inductive loads. Each Darlington features 
a peak load current rating of 600 mA (500 mA continuous) and can withstand at least 
50 V in the off state. Outputs may be paralleled for higher current capability.

The output of the ULN2803 is “inverted.” This means that a HIGH at the in-
put becomes a LOW at the corresponding output line. E.g., if the motor line con-
nected to pin 1 goes HIGH, pin 18 on the ULN2803 will go LOW (switch off).

The ULN2803 is described as an “8-line driver.” This means that it con-
tains the circuitry to  control eight individual output lines, each acting independ-
ently of the others. The IC can be thought of as an 8-line ‘black box.’

LM 324 IC

FIGURE 3.29 14-pin DIP .

LM324—Quad Operational Amplifi er

■ The LM 324 is a QUAD OP-AMP.
■ Minimum supply voltage 6 V
■ Maximum supply voltage 15 V
■ Max current per output 15 mA
■ Maximum speed of operation 5 MHz

FIGURE 3.30 Pin diagram of ULN 2803.
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3.3 STEPS TO DESIGN AND CREATE A PROJECT

A design procedure is a series of steps which guide you through any electronic 
design-and-make process. Sticking to the procedure will help deliver a fi rst-class 
product. 

Once you have defi ned the purpose of your project, there are two important 
documents you need to write. These are:

■ The design brief is a short statement of the problem to be solved. The brief 
should outline the design problem you are tackling, perhaps including one 
or two of the envisaged design features. 

■ The design specifi cation is a longer document, including full details of the 
functional and design features of the fi nished electronic product as well as 
information on weight and size, maintenance, cost, and safety. 

The specifi cation for an electronic product should include electronic factors 
such as component details, maximum working voltages, maximum currents, and 
temperature or frequency ranges. 

FIGURE 3.31 
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Ergonomics and Aesthetics 

The factors which make a product effi cient, safe, and comfortable to use are 
called ergonomics. Considerations of style—the things which make a product 
look and feel good—are called aesthetics. You need to consider both ergonomic 
and aesthetic factors when planning your designs. 

When designing circuits, for example, ensure that switches and other control 
components are placed so that they can be easily reached, and that output com-
ponents such as  LEDs can be easily seen.

A product’s style is a more subjective matter, as different people may have 
different ideas of what looks good. Think about contemporary style, about what 
is currently fashionable, when designing your product. You may not want to fol-
low the fashion, but you still need to know what it is!

3.4 SENSOR DESIGN 

Without sensors, a robot is just a machine.  Robots need sensors to deduce what 
is happening in their world and to be able to react to changing situations. This 
section introduces a variety of robotic sensors and explains their electrical use 
and practical application. The sensor applications presented here are not meant 
to be exhaustive, but merely to suggest some of the possibilities. 

Sensors as Transducers 

The basic function of an electronic sensor is to measure some feature of the 
world, such as light, sound, or pressure and convert that measurement into 
an electrical signal, usually a voltage or current. Typical sensors respond to 
stimuli by changing their resistance (photocells), changing their current fl ow 
(phototransistors), or changing their voltage output (the Sharp IR sensor). The 
electrical output of a given sensor can easily be converted into other electrical 
representations. 

Analog and Digital Sensors

There are two basic types of sensors: analog and digital. The two are quite 
different in function, in application, and in how they are used with the Robo-
Board. An analog sensor produces a continuously varying output value over 
its range of measurement. For example, a particular photocell might have a 
resistance of 1k ohm in bright light and a resistance of 300k ohm in complete 
darkness. Any value between these two is possible depending on the par-
ticular light level present. Digital sensors, on the other hand, have only two 
states, often called “on” and “off.” Perhaps the simplest example of a digital 
sensor is the touch switch. A typical touch switch is an open circuit (infi nite 
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resistance) when it is not pressed, and a short circuit (zero resistance) when 
it is depressed. 

Some sensors that produce a digital output are more complicated. These sen-
sors produce  pulse trains of transitions between the 0-volt state and the 5-volt 
state. With these types of sensors, the frequency characteristics or shape of this 
pulse train convey the sensor’s measurement. An example of this type of sensor is 
the Sharp modulated infrared light detector. With this sensor, the actual element-
measuring light is an analog device, but signal-processing circuitry is integral to the 
sensor producing a digital output. 

Sensor Inputs on the RoboBoard 

The RoboBoard contains input ports for both analog and digital sensors. While 
both types of ports are sensitive to voltage, each type interprets the input voltage 
differently and provides different data to the microprocessor. The analog ports 
measure the voltage and convert it to a number between 0 and 255, correspond-
ing to input voltage levels between 0 and 5 volts. The conversion scale is linear, 
so a voltage of 2.5 volts would generate an output value of 127 or 128. The digital 
ports, however, convert an input voltage to just two output values, zero and one. 
If the voltage on a digital port is less than 2.5 volts, the output will be 0, while if 
the input is greater than 2.5 volts, the output will be 1. Thus, the conversion is 
very nonlinear. 

Reading Sensor Inputs

The C library function analog (port-#) is used to return the value of a particular 
analog sensor port. For example, the IC statement 

val = analog(27);

sets the value of the variable val equal to the output of port #27. 
Many devices used as digital sensors are wired to be active low, meaning that 

they generate 0 volts when they are active (or true). The digital inputs on the Ro-
boBoard have a pull-up resistor that makes the voltage input equal to 5 volts when 
nothing is connected. A closed or depressed touch switch connected to a digital 
port would change that voltage to 0 volts by shorting the input to ground. The 
resulting outputs: open switch = 1, and closed switch = 0, are the logical opposite 
of what we usually want. That is, we would prefer the output of the digital port to 
have value 0 or False normally, and change to 1 or True only when the switch hit 
something (like a wall or another robot) and was depressed. The IC library func-
tion digital (port-#), used to read a True-or-False value associated with a particular 
sensor port, performs this logical inversion of the signal measured on a digital port. 
Hence, the depressed touch switch (measuring 0 volts on the hardware) causes the 
digital () function to return a 1 (logic True) or logical True value. 
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For example, the C statement

if (digital(2)) do_it();

returns a True value (the number 1) and calls the function do_it() if the value at 
port #2 was 0 volts (indicating a depressed switch). 

Connector Plug Standard 

The standard plug confi guration used to connect  sensors to the RoboBoard is 
shown in Figure 3.32. Notice that the plug is asymmetric (made by removing one 
pin from a four-pin section of the male header), and is therefore polarized. The 
plug can only be inserted in the RoboBoard port in one orientation, so once the 
plug is wired correctly, it cannot be inserted into a sensor port backward. This 
makes the plug much easier to use correctly, but, of course, if you wire it incor-
rectly, you must rewire it since you cannot turn the plug around. 

Generally, the sensor is connected to the plug with three wires. Two of the 
wires supply 5-volt power from the RoboBoard, labeled “+5v” and “Gnd.” The 
third wire, labeled “Signal” is the voltage output of the sensor. It is the job of 
the sensor to use the power and ground connections (if necessary) and return its 
“answer,” as a voltage, on the Signal wire. 

Sensor Wiring

Figure 3.33 shows a diagram of circuitry associated with each sensor. This cir-
cuitry, residing on the RoboBoard, is replicated for each sensor input channel. 
The key thing to notice is the pull-up resistor wired from the sensor input signal 
leads to the 5-volt power supply. 

There are two reasons why this resistor is used. First, it provides a default 
value for the sensor input—a value when no sensor is plugged in. Many ICs, such 
as those on the board that read and interpret the sensor voltage, do not perform 

FIGURE 3.32 Generic sensor wiring.
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well when their inputs are left unconnected. With this circuit, when nothing is 
plugged into the sensor port, the pull-up resistor provides a 5-volt bias voltage 
on the sensor input line. Thus, the default output value of an analog port is 255, 
while the default output value of a digital port is 0 or logic False. (Remember 
that the 5-volt default input value would lead to a  digital value of 1 except that 
this value is inverted by the digital () library function, as explained earlier.)

Second, the pull-up resistor is also used as part of the voltage divider circuit 
required for some of the  analog  sensors, as explained in the following section. 
The resistors on the RoboBoard eliminate the need for an additional resistor on 
each of the sensors. 

The Voltage Divider Circuit

Most of the sensors used in the RoboBoard kit make use of the voltage divider 
circuit shown in Figure 3.34. In the voltage divider, the voltage measured at the 
common point of the two resistors, Vout, is a function of the input voltage, Vin 
(5 volts in this case), and the values of the two resistors, R1 and R2. This voltage 
can be calculated using Ohm’s law, V=I ×R. The current, I, fl owing through the 
circuit shown in the diagram, is Vin / R1+R2 (calculated using the rule that series 
resistances add). Then Vout, the voltage drop across R2, is R2 × i, which yields the 
result: 

Vout = Vin (R2 / R1+R2).

In ELEC 201 applications, R1 has a fi xed or constant value (as shown in 
Figure 3.34), while R2 is the variable resistance produced by the sensor. Vin is 
the positive voltage supply, fi xed at 5 volts. Thus, the Vout signal can be directly 

FIGURE 3.33 Sensor input port circuitry.
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computed from R2, the resistive sensor. From looking at the equation, it is easy 
to see that if R2 is large with respect to R1, the output voltage will be large, and 
if R2 is small with respect to R1, the output voltage will be small. The minimum 
and maximum possible voltage values are 0 and 5 volts, matching the RoboBoard 
input circuitry range. 

Tactile Sensors 

The primary sensors in the ELEC 201 kit used to detect tactile contact are 
simple push-button or lever-actuated switches. Microswitch is the brand name 
of a variety of switches that are so widely used that the brand name has become 
the generic term for this type of switch, which is now manufactured by many 
companies. A microswitch is housed in a rectangular body and has a very small 
button (the “switch nub”) which is the external switching point. A lever arm on 
the switch reduces the force needed to actuate the switch (see Figure 3.35). 
Microswitches are an especially good type of switch to use for making touch 
sensors. 

FIGURE 3.34 Voltage divider schematic.

FIGURE 3.35 A typical microswitch.
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Often, the switch is simply mounted on a robot so that when the robot runs into 
something, the switch is depressed, and the microprocessor can detect that the robot 
has made contact with some object and take appropriate action. However, creative 
mechanical design of the bumper-switch mechanism is required so that contact with 
various objects (a wall, a robot, etc.) over a range of angles will be consistently de-
tected. A very sensitive touch bumper can be made by connecting a mechanism as 
an extension of the microswitch’s lever arm, as illustrated in Figure 3.36. 

Limit Switch 

Touch sensors can also serve as limit switches to determine when some movable 
part of the robot has reached the desired position. For example, if a robot arm is 
driven by a motor, perhaps using a gear rack, touch switches could detect when 
the arm reached the limit of travel on the rack in each direction. 

Switch Circuitry 

Figure 3.37 shows how a switch is wired to a sensor input port. When the switch 
is open (as it is shown in the diagram), the sensor input is connected to the 
5-volt supply by the pull-up resistor. When the switch is closed, the input is 
connected directly to ground, generating a 0-volt signal (and causing current to 
fl ow through the resistor and switch). 

Most push-button-style switches are “normally open,” meaning that the 
switch contacts are in the open-circuit position when the switch has not been 
pressed. Microswitches often have both normally open and normally closed con-
tacts along with a common contact. When wiring a microswitch, it is custom-
ary to use the normally open contacts. Also, this confi guration is the active-low 
mode expected by the standard library software used to read the output values 

FIGURE 3.36 Robotic platform employing a bumper coupled to a touch sensor.
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from digital sensor ports. However, you can wire the switch differently to per-
form some special function. In particular, several switches can be wired in series 
or parallel and connected to a single digital input port. For example, a touch 
bumper might have two switches, and the robot only needs to know if either of 
them (#1 OR #2) are closed. It takes less code and less time to check just one 
digital port and to use parallel switch wiring to implement the logic OR function 
in hardware. 

Mercury Tilt Switch 

As the name suggests, a mercury tilt switch contains a small amount of mer-
cury inside a glass bulb. The operation of the switch is based on the unique 
properties of mercury: it is both a conductor and a liquid. When the switch 
tilts mercury fl ows to the bottom of the bulb closing the circuit between two 
metal pins. 

The mercury tilt switch can be used in any application to sense inclination. 
For example, the tilt switch could be used to adjust the position of an arm or 
ramp. Most thermostats contain a mercury tilt switch mounted on a temperature 
sensitive spring. Changes in temperature tilt the switch, turning the furnace or 
air conditioner on or off. 

 Light Sensors 

Measurement of light provides very valuable information about the environ-
ment. Often, particular features of the game board (such as goals) are marked 
by a strong light  beacon. The board surface has contrasting lines that can be 
detected by the difference in the amount of light they refl ect. A variety of light 
 sensors are provided in the ELEC 201 kit: 

FIGURE 3.37 Touch switch circuit.
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Infrared Refl ectance Sensor

This device combines an infrared LED light source and a phototransistor light 
detector into a single package. The LED and the detector point out of the 
package, almost parallel to each other. The detector will measure the light 
scattered or refl ected by a surface a short distance away. The package also 
contains an optical fi lter (colored plastic) that transmits primarily only the in-
frared light from the LED; this reduces, but does not eliminate, the sensitivity 
to ambient light. 

Infrared Slotted  Optical Switch 

This device is similar to the IR refl ectance sensor, in that it contains both an in-
frared source and a fi ltered infrared phototransistor detector. However, the two 
are mounted exactly opposite each other with a small, open gap between them. 
The sensor is designed to detect the presence of an object in the gap that blocks 
the light. 

 Modulated Infrared Light  Detector

This device senses the presence of infrared light that has been modulated (e.g., 
blinks on and off) at a particular frequency. These devices are typically used to 
decode the signals of TV remote controls, but are used in the ELEC 201 applica-
tion to detect the infrared  beacon of the opponent robot.

Photocell

This device is a light-dependent resistor. It is most sensitive to visible light in 
the red. 

Photocells are made from a compound called cadmium sulfi de (CdS) that 
changes resistance when exposed to varying degrees of light. Cadmium sulfi de 
photocells are most sensitive to visible red light, with some sensitivity to other 
wavelengths. 

Photocells have a relatively slow response to changes in light. The charac-
teristic blinking of overhead fl uorescent lamps, which turn on and off at the 
60 Hertz line frequency, is not detected by photocells. This is in contrast to 
phototransistors, which have frequency responses easily reaching above 10,000 
Hertz and more. Therefore, if both sensors were used to measure the same fl uo-
rescent lamp, the photocell would show the light to be always on and the pho-
totransistor would show the light to be blinking on and off. 

Photocells are commonly used to detect the incandescent lamp that acts as 
a contest start indicator. They are also used to fi nd the light beacons marking 
certain parts of the board, such as the goals. While they can be used to measure 
the refl ectivity of the game board surface if coupled with a light source such as a 
red LED or an incandescent lamp, the IR refl ectance sensors are usually better 
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at this function. Photocells are sensitive to ambient lighting and usually need to 
be shielded. Certain parts of the game board might be marked with polarized 
light sources. An array of photocells with polarizing fi lters at different orienta-
tions could be used to detect the polarization angle of polarized light and locate 
those board features. 

The photocell acts as resistor R2 in the voltage divider confi guration. The 
resistance of a photocell decreases with an increase in illumination (an inverse 
relationship). Because of the wiring of the voltage divider (the photocell is on 
the lower side of the voltage divider), an increase in light will correspond to a 
decrease in sensor voltage and a lower analog value. 

Infrared Refl ectance Sensor 

The infrared refl ectance sensor is a small rectangular device that contains a 
phototransistor (sensitive to infrared light) and an infrared emitter. The amount 
of light refl ected from the emitter into the phototransistor yields a measure-
ment of a surface’s refl ectance, for example, to determine whether the surface 
is black or white. The phototransistor has peak sensitivity at the wavelength of 
the emitter (a near-visible infrared), but is also sensitive to visible light and in-
frared light emitted by visible light sources. For this reason, the device should 
be shielded from ambient lighting as much as possible in order to obtain reli-
able results. 

The amount of light refl ected from the emitter into the phototransistor 
yields a measurement of a surface’s refl ectance (when other factors, such as the 
distance from the sensor to the surface, are held constant). The refl ectance sen-
sor can also be used to measure distance, provided that the surface refl ectance is 
constant. A refl ectance sensor can be used to detect features drawn on a surface 

FIGURE 3.38  Phototransistor and infrared emitter circuit.
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or segments on a wheel used to encode rotations of a shaft. It is important to 
remember that the refl ectivity measurement indicates the surface’s refl ectivity at 
a particular wavelength of light (the near-visible  infrared). A surface’s properties 
with respect to visible light may or may not be indicators of infrared light refl ect-
ance. In general, though, surfaces that absorb visible light (making them appear 
dark to the eye) will absorb infrared light as well. 

The sensor part (the phototransistor) can be used alone as a light sensor, for 
example, to detect the starting light, and it is usually much more sensitive than 
the photocell. 

 Phototransistor 

The light falling on a phototransistor creates charge carriers in the base region 
of a transistor, effectively providing base current. The intensity of the light de-
termines the effective base drive and thus the conductivity of the transistor. 
Greater amounts of light cause greater currents to fl ow through the collector-
emitter leads. Because a transistor is an active element having current gain, the 
phototransistor is more sensitive than a simple photoresistor. However, the in-
creased sensitivity comes at the price of reduced dynamic range.  Dynamic range 
is the difference between the lowest and highest levels that can be measured. 
The RoboBoard analog sensor inputs have a range of 0–5 volts, and relatively 
small variations in light can cause the phototransistor output to change through 
this range. The exact range depends on the circuit used. 

As shown in Figure 3.38, the phototransistor is wired in a confi guration simi-
lar to the voltage divider. The variable current traveling through the resistor 
causes a voltage drop in the pull-up resistor. This voltage is measured as the 
output of the device. 

Infrared Emitter 

The Light Emitting Element (an LED) uses a resistor to limit the current 
that can fl ow through the device to the proper value of about 10 milliamps. 
Normally the emitter is always on, but it could be wired to one of the LED 
output ports if you wanted to control it separately. In this way you could use 
the same sensor to detect the starting light (using the phototransistor with 
the emitter off) and then to follow a line on the board (normal operation with 
the emitter on). 

 Infrared Slotted  Optical Switch 

The infrared slotted optical switch is similar to the infrared refl ectance sensor 
except that the emitter is pointed directly at the phototransistor across a small 
gap. As the name implies, the slotted optical switch is a digital sensor, designed 
to provide only two output states. The output of the switch changes if something 
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opaque enters the gap and blocks the light path. The slotted optical switch is 
commonly used to build shaft encoders, which count the revolutions of a shaft. 
A gear or other type of wheel with holes or slots is placed in the gap between the 
 emitter and detector. The light pulses created by the turning wheel can be de-
tected and counted with special software to yield rotation or distance data. This 
detector also might be used to detect when an arm or other part of the robot has 
reached a particular position by attaching a piece of cardboard to the arm so that 
it entered the gap at the desired arm position.

The slotted optical switch operates in the same fashion as the infrared re-
fl ectance sensor, with the exception that a different value of pull-up resistor must 
be added externally for the particular model of optical switch we use. 

 Modulated Infrared Light Detector 

The modulated infrared light detector is a device that combines an infrared pho-
totransistor with specialized signal-processing circuitry to detect only light that is 
pulsing at a particular rate. The ELEC 201 kit includes the Sharp GP1U52 sen-
sor, which detects the presence of infrared light modulated (pulsed) at 40,000 
Hz. Normal room light, which is not modulated, does not affect the sensor, a big 
advantage. This type of sensor is used for the remote control function on televi-
sions, VCRs, etc. In ELEC 201 this sensor is used to detect the specially modu-
lated infrared light emitted by the  beacon on the opponent robot. The software 
can distinguish different pulse patterns in order to distinguish between the bea-
cons on the two robots. (In a television remote, different pulse patterns would 
correspond to different functions, such as changing the channel up or down.)

The principles of operation and use are explained later, when we discuss the 
circuit used to create the modulated  infrared light for the beacon. 

Other  Sensors 

Magnetic Field SensoAvrs

The ELEC 201 kit contains both an analog sensor that provides informa-
tion about the strength of the magnetic fi eld and a digital sensor, a magnetic 
switch. 

A device called a hall-effect sensor can be used to detect the presence and 
strength of magnetic fi elds. The hall-effect sensors have an output voltage even 
when no magnetic fi eld is present, and the output changes when a magnetic 
fi eld is present, the direction of change depending on the polarity of the fi eld. 

The digital magnetic sensors are simple switches that are open or closed. 
Internally the switches have an arm made of magnetic material that is attracted 
to a magnet and moves to short out the switch contacts. These switches are 
commonly used as door and window position sensors in home security systems. 
The switch will close when it comes within 1˝ of its companion magnet. 
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Figure 3.39 below provides a visual representation of the hall-effect sensor’s 
range. 2.55 V or 130 on the RoboBoard is the zero reading or when no magnet-
icfi eld is detected. Fluctuations in voltage may cause a change in the RoboBoard 
reading by up to two units. For certain detection, look for a change of fi ve units.

For a change of 5 units on the RoboBoard reading, the hall-effect sensor has 
a range of less than 2.5 cm. This provides a precise tool for determining location 
designated by a magnet, but offers a limited margin for error.

Chart shows voltage drop across 
hall-effect sensor and correspond-
ing reading on the RoboBoard.

FIGURE 3.39 

TABLE 3.4 Hall-effect sensor test results

Distance (mm) Voltage (V) RoboBoard Reading

0 0.7 35

1 1.55 79

2 1.83 93

3 1.92 98

4 2.03 104

5 2.11 108

6 2.17 111

7 2.21 113

10 2.31 118

15 2.4 123

20 2.47 125

25 2.5 128

30 2.52 129

35 2.54 130

40 2.55 130
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Either sensor can be used to detect magnets or magnetic strips that may be 
present on the ELEC 201 game board table. With the magnets typically used 
on the game board, the hall-effect sensor output voltage changes only a small 
amount when a fi eld is present. The no-fi eld voltage varies between sensors, but 
it is very stable for a particular sensor, so the small changes can be detected reli-
ably to determine the presence of a magnet. Hall-effect sensors can be used to 
make magnetic shaft encoders by mounting a small piece of magnet on a wheel 
that rotates past the sensor element. Hall-effect sensors can also be used to build 
a proximity sensor or bounce-free switch, which detects a magnet mounted on a 
moving component when it is near the sensor element. 

Magnetic switches are used in much the same way as a touch switch, except 
the switch closes when it is near a magnet, instead of when it contacts something. 
The digital nature of the switch makes it easier to use than the hall-effect  sen-
sors, but it may be less sensitive. You should try both. 

They can also be used to make an inclination sensor by dangling a magnet 
above the sensor. 

The hall-effect sensor included in the ELEC 201 kit is a digital device that 
operates from a 5-volt power supply. It uses about 6 mA of current for stand-
ard operation. It can sink 250 mA of current into its output, creating logic low. 
The sensor cannot drive logic high and therefore requires a pull-up resistor for 
proper operation.

Motor Current Sensor 

The motor output drivers of the ELEC 201 RoboBoard contain circuitry that 
produces an output voltage related to the amount of current being used by a mo-
tor. Since the motor current corresponds to the load on the motor, this signal can 
be used to determine if the motor is stalled and the robot is stuck. The voltage 
signal depends on a number of factors, including battery voltage, and must be 
calibrated for each application. 

3.5 USING THE PARALLEL PORT OF THE COMPUTER

A port contains a set of signal lines that the CPU uses to send or receive  data with 
other components. Ports are usually used to communicate via modem, printer, 
keyboard, mouse, etc. In signaling, open signals are “1” and closed signals are 
“0.” A parallel port sends 8 bits and receives 5 bits at a time. The serial port RS-
232 sends only 1 bit at a time. However, it is multidirectional. So it can send 1 
bit and receive 1 bit at a time. Parallel ports are mainly meant for connecting the 
printer to the PC. But this port can be programmed for many more applications 
beyond that.
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Parallel ports are easy to program and faster compared to the serial ports. 
But the main disadvantage is that it needs more number of transmission lines. 
Because of this reason parallel ports are not used in long-distance communica-
tions. You should know the basic difference between working off a parallel port 
and serial port. In serial ports, there will be two data lines: one transmission and 
one receiving line. To send data in a  serial port, it has to be sent one bit after 
another with some extra bits like start bit, stop bit, and parity bit to detect errors. 
But in a parallel port, all the 8 bits of a byte will be sent to the port at a time and 
an indication will be sent in another line. There will be some data lines, some 
control, and some handshaking lines in a parallel port. 

The D-25 type of female connector is located at the backside of the CPU 
cabinet and has 25 pins. The pin structure of D-25 is explained in Table 3.5.  

TABLE 3.5 Pin Directions and Associated Registers

Pin No (D-Type 25) SPP Signal Direction In/out Register.bit

1*
2
3
4
5
6
7
8
9
10
11*
12
13
14*
15
16
17*
18–25

nStrobe
Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
nAck
Busy
Paper-Out / Paper-End
Select
nAuto-Linefeed
nError / nFault
nInitialize
nSelect-Printer/ nSelect-In
Ground

In/Out
In/Out
In/Out
In/Out
In/Out
In/Out
In/Out
In/Out
In/Out
In
In
In
In
In/Out
In
In/Out
In/Out
Gnd

Control.0
Data.0
Data.1
Data.2
Data.3
Data.4
Data.5
Data.6
Data.7
Status.7
Status.6
Status.5
Status.4
Control.1
Status.3
Control.2
Control.3

■ 8 output pins [D0 to D7] 
■ 5 status pins [S4 to S7 and S3] 
■ 4 control pins [C0 to C3] 
■ 8 ground pins [18 to 25] 

In Figure 3.40, let us see how communication between a PC and printer takes 
place. The computer places the data in the data pins, and then it makes the strobe 
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low. When the strobe goes low, the printer understands that there is valid data in 
the data pins. Other pins are used to send controls to the printer and get the status 
of the printer; you can understand them by the names assigned to the pins. 

To use the printer port for applications other than printing, we need to know 
how ports are organized. There are three registers associated with an LPT port: 
data register, control register, and status register. Data register will hold the data 
of the data pins of the port. That means, if we store a byte of data to the data reg-
ister, that data will be sent to the data pins of the port. Similarly with control and 
status registers. Table 3.6 explains how these registers are associated with ports.

TABLE 3.6 Addresses of Data, Control, and Status Registers

Register LPT1 LPT2

Data register (Base Address + 0) 0x378 0x278

Status register (Base Address + 1) 0x379 0x279

Control register (Base Address + 2) 0x37a 0x27a

Pins with an * symbol in this table are hardware inverted. That means, if a 
pin has a ‘low’ i.e., 0 V, the corresponding bit in the register will have value 1.

Signals with the prefi x ‘n’ are active low. That means that normally these pins 
will have low value. When it needs to send some indication, it will become high. 
For example, normally nStrobe will be high, when the data is placed in the port, 
the computer makes that pin low.

Normally, data, control, and status registers will have the following address-
es. We need these addresses in programming later. 

FIGURE 3.40 Pin confi guration of D-25.
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All the parallel ports do not have bidirectional capability. Earlier parallel 
ports had only output enabled in data pins since printers only input data. But 
later, to make the parallel port capable of communicating with other devices, 
bidirectional ports were introduced.

By default, a data port is an output port. To enable the bidirectional property 
of the port, we need to set the bit 5 of the control register.

To know the details of parallel ports available in your computer, follow this 
procedure:

■ Right click on My Computer, go to “Properties.” 
■ Select the tab Hardware, click Device Manager. 
■ You will get a tree structure of devices; in that expand “Ports (Com1 & 

LPT).”   
■ Double-click on the ECP Printer Port (LPT1) or any other LPT port if 

available. 
■ You will get details of the LPT port. Make sure that “Use this Port (enable)” 

is selected. 
■ Select tab resourses. In that you will get the address range of the port. 

To start programming, you will need a D-25-type male connector. 

Programming the Printer Port in DOS

To start programming the port, we will use DOS. In DOS we have commands to 
access the port directly. But, these programs will not work on the systems based 
on Windows XP, Windows NT, or higher versions. For security reasons, higher 
versions of Windows do not allow accessing the port directly. To program the 
 parallel port in these systems, we need to write to the kernel mode driver. In 
Section 3.5.2, we will discuss programming the parallel port in Windows XP. 

When we want to fi nd out whether a particular pin of the port is high or low, 
we need to input the value of the corresponding register as a byte. In that, we 
have to fi nd out whether the corresponding bit is high or low using bitwise op-
erators. We can’t access the pins individually. So, you need to know basic bitwise 
operations.

The main bitwise operators that we need are bitwise AND ‘&’ and bitwise 
OR ‘|.’ To make a particular bit in a byte high without affecting other bits, write 
a byte with corresponding bit 1 and all other bits 0; OR it with the original byte. 
Similarly, to make a particular bit low, write a byte with corresponding bit 0 and 
all other bits 1; AND it with the original byte.

In Turbo C, there are the following functions used for accessing the port:

■ outportb( PORTID,  data); 

NOTE
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■ data = inportb( PORTID); 
■ outport( PORTID, data); 
■  data = inport( PORTID). 

The outport() function sends a word to the port, inport() reads a word from 
the port. outportb() sends a byte to the port and inportb() reads a byte from 
the port. If you include the DOS.H header, these functions will be considered 
as macro, otherwise as functions. Function inport() will return a word having 
lower byte as the data at PORTID and higher byte as the data at PORTID+2. 
So, we can use this function to read status and control registers together. in-
portb() function returns byte at PORTID. outport() writes the lower byte to 
PORTID and higher byte to PORTID+1. So this can be used to write data and 

LISTING 3.1

/*     fi le:  ex1.c     
 Displays contents of status register of parallel port.     
 Tested with TurboC 3.0 and Borland C 3.1 for DOS.
*/
#include”stdio.h”
#include”conio.h”
#include”dos.h”

#defi ne PORT 0x378

void main()
{
 int  data;    
 clrscr();    
 while(!kbhit())    
 {        
  data=inportb(PORT+1);        
  gotoxy(3,10);        
  printf(“Data available in status register: %3d (decimal),
%3X (hex)\n”, data, data);        
  printf(“\n Pin 15: %d”,(data & 0x08)/0x08);        
  printf(“\n Pin 13: %d”,(data & 0x10)/0x10);        
  printf(“\n Pin 12: %d”,(data & 0x20)/0x20);        
  printf(“\n Pin 11: %d”,(data & 0x80)/0x80);        
  printf(“\n Pin 10: %d”,(data & 0x40)/0x40);       
  delay(10);    
 }
}
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 control together. outportb() function writes the data to PORTID. outport() 
and outportb() return nothing.

Let us start with inputting fi rst. Here is an example program, copy it and 
run it in Turbo C or Borland C without anything connected to the parallel port. 
Then you should see data available in the status register and pin numbers 10, 11, 
12, 13, and 15 of the parallel port. Pin 11 (active low) is 0 and all other pins are 
1 means it is OK. 

To understand bitwise operations: you can fi nd data in pin 15, the value of 
(data & 0x08) will be 0x08 if bit 3 of the register is high, otherwise:  

 

LISTING 3.2

bit no. 7654 3210      
 data : XXXX 1XXX    & 
 with : 0000 1000   (0x08 )           
 -> 0000 1000   (0x08 -> bit 3 is high )      

bit no. 7654 3210      
 data : XXXX 0XXX    & 
 with : 0000 1000   (0x08 )           
 -> 0000 0000   (0x00 -> bit 3 is low)

 

We will use the same logic throughout this section.
Now, take a D-25 male with cables connected to each pin. Short all the pins 

from 18 to 25, call it as ground. Now you can run the above program and see 
the change by shorting pins 10, 11, 12, 13, and 15 to ground. We prefer using 
switches between each input pin and ground. Be careful, do not try to ground 
the output pins.

 
To fi nd out the availability of ports in a computer programmatically, we will 

use the memory location where the address of the port is stored. 

TABLE 3.7

0x408 0x409 0x40a 0x40b 0x40c 0x40d

LPT1 lowbyte LPT1 highbyte LPT2 lowbyte LPT2 highbyte LPT3 lowbyte LPT3highbyte

If the following code is run in Turbo C or Borland C, the addresses of avail-
able ports can be seen. See Listing 3.3.

Next we will check output pins. To check the output, we will use  LEDs. 
We have driven LEDs directly from the port. But it is preferred to connect a 
buffer to prevent excessive draw of current from the port. Connect an LED in 
series with a resister of 1KW or 2.2KW between any of the  data pins (2 to 9) and 
ground. With that, if you run the program in Listing 3.4, you should see the LED 
blinking with app. 1 sec frequency.
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LISTING 3.4

#include”conio.h”
#include”dos.h”
#defi ne PORT 0x378
void main()
{    
 while(!kbhit())    
 {        
   outportb(PORT, ~inportb(PORT) );        
  delay(1000);    
 }
}

 

LISTING 3.3

/*PortAdd.c  
To fi nd availability and addresses of the lpt ports in the computer. 
*/
#include <stdio.h>
#include <dos.h>
void main()
{    
 unsigned int far *ptraddr; 
 /* Pointer to location of Port Addresses */    
 unsigned int address;        /* Address of Port */    
 int a;    
 ptraddr=(unsigned int far *)0x00000408;    
 clrscr();    
 
 for (a = 0; a < 3; a++)    
 {        
  address = *ptraddr;        
  if (address == 0)            
   printf(“No port found for LPT%d \n”,a+1);
   else            
   printf(“Address assigned to LPT%d is 0x%X 
   \n”,a+1,address);        
  ptraddr++;    
 }    
 getch();
}
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We have made an electrical circuit to show you how our circuit works. It is 
shown in Figure 3.41. And also we have different angled pictures of the com-
plete circuit in Figure 3.42. 

Ok then, let’s fi nd out what we have to supply: 

■ 1 or 2 meter parallel port cable (3 meter is acceptable but the voltage drops 
from 5 V to 4.7 V).

FIGURE 3.41 The circuit diagram.

FIGURE 3.42 Pictures of the complete circuit.
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■ 9 assembling cables (8 go to resistance and 1 go to ground). 
■ A breadboard (white one in the picture) or you can solder the cables but with 

a  breadboard you don’t have to solder the cables.
■ 8 LEDs (2.5 V). 
■ 8 resistances (470 ohm) (for not to make the  LEDs garbage because of +5 V).
■ A multimeter (not needed but if something wrong happens you can check 

the wiring with this).
■ Program to make your circuit live. 

Interfacing the LCD Module to a  Parallel Port 

You have seen LCD modules used in many electronic devices like coin phones, 
billing machines, and weighing machines. It is a powerful display option for 
stand-alone systems. Because of low power dissipation, high readability, and 
fl exibility for programmers; LCD modules are becoming popular. In this part, 
we will learn how to connect an LCD module to a PC parallel port and we will 
prepare some library routines for LCD interfacing.  

Before starting our study, let us see why you need to interface an LCD, or 
Liquid Crystal Display, module to the parallel port.

■ If you need to modify the code, you need not have to disconnect the circuit 
or reprogram the chip as you do in the case of a microcontroller.

■ You need to spend less: one LCD module, D-25 female connector, one po-
tentiometer (optional), and some wires—this is what you need along with a 
computer. 

■ When you are using a computer in full-screen mode like games, movies or TV; 
you need to exit the application to get small updating information from the 
computer, i.e., if you need to watch time in that time, you have to close the 
games. But instead of that you can use an LCD module to display real time 
from the PC and you can use it along with your application. Real-time imple-
mentation from the system clock example is explained in this article. If you are 
good at programming, you can even connect to the Internet to get news, stock 
exchange updates, and make them fl ash in the LCD module, only if you found 
it important, or you can go through it by exiting your application. 

LCD modules are available in a wide range like 8x1, 8x2, 16x1, 16x2, 20x2, 
20x4, and 40x4. Here we have used 16x2—that means 2 rows of 16 characters. 
It is a Hitachi HD44780 compatible module, having 16 pins including 2 pins 
for backlight.

Table 3.8 gives the pin structure of an LCD module. LCD modules without 
backlight will have only 14 pins. If you are using such LCDs, simply ignore the 
15th and 16th pins.
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TABLE 3.8 Pin Description of a HitachiHD44780 LCD

Pin No Symbol Details

1
2
3
4
5
6
7 to 14
15
16

GND
Vcc
Vo
RS
R/W
E
D0 to D7
VB1
VB0

Ground
Supply Voltage +5V
Contrast adjustment
0-> Control input, 1-> Data input
Read/Write
Enable
Data
Backlight +5V
Backlight ground

 
To program the LCD module, fi rst we have to initialize the LCD by send-

ing some control words. RS should be low and E should be high when we send 
control. R/W pin 0 means write  data or control to LCD and R/W pin 1 means 
read data from the LCD. To send data to an LCD, make RS high, R/W low, place 
the data in pins 7 to 14, and make pin E high and low once. You can understand 
the exact method after seeing the code, later in this Chapter. To make this let us 
fi rst build a circuit. 

Here, we are going to write on the LCD module and not read back. So, R/W is 
connected to the ground directly. We need not have to input any data through, so 
all output pins are used in our application. Data pins of the LCD are connected to 
data pins of the port. Strobe signal (pin 1 of D-25 connector) is given to E (pin 6 of 
the LCD). Select printer (pin 17 of D-25) is connected to RS (pin 4 of the LCD). 

In Figure 3.43, the LCD module is connected to the lpt port using a D-25 
male connector. Pin number 3 of the LCD is for adjusting the contrast, con-

FIGURE 3.43 Connection diagram.
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nected in such a way that it can be varied from 0 V to 5 V. Keep it to 0 initially. 
If everything is OK, you should get the LCD module as in Figure 3.44 when 

the power is switched on.
If you get this screen, then we can start programming (See Fig. 3.44). Oth-

erwise check your connections, try by varying the 10K potentiometer. If you get 
this display also, you can get maximum clearness by varying the pot. Here, pot 
was needed to be nearly 0 V. So, it is OK if you don’t use pot, just connect pin 3 
to the ground. 

Table 3.9 explains how to write control words. When RS=0 and R/W=0, data 
in the pins D0 to D7 will have the following meaning.

We have left other instructions related to the read and write LCD  RAM 
area; we will see them later. Using this information, we will write some routines 
for basic functions of LCDs. Now look at our fi rst program below. Here we have 
written functions for all our needs in LCD  interfacing. So, in our next program, 
we are going to change our “main” function only.  You can save these functions 
as a library and include them in your next programs if you want.

 

#include <dos.h>

#include <string.h>

#include <conio.h>

#include <time.h>

 

#define PORTADDRESS 0x378 /* Enter Your Port Address Here */

#define DATA PORTADDRESS+0

#define STATUS PORTADDRESS+1

#define  CONTROL PORTADDRESS+2

FIGURE 3.44 An LCD in the on position.
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void lcd_init(void);

void lcd_write(char char2write);

void lcd_putch(char char2write);

void lcd_puts(char * str2write);

void lcd_goto(int row, int column);

void lcd_clear(void);

void lcd_home(void);

void lcd_cursor(int cursor);

void lcd_entry_mode(int mode);

void main(void)

{

 lcd_init();

 lcd_goto(1,1);

 lcd_puts(“Welcome To”);

TABLE 3.9 

Instruction D7 D6 D5 D4 D3 D2 D1 D0 Description

Clear display 0 0 0 0 0 0 0 1 Clears display and returns cursor to 
home position.

Cursor home 0 0 0 0 0 0 1 X Returns cursor to home position. 
Also returns display being shifted to 
the original position.

Entry mode set 0 0 0 0 0 1 I/D S I/D = 0 —> cursor is in decrement 
position. I/D = 1 —> cursor is in 
increment position. 
S = 0 —> Shift is invisible. S = 1 —> 
Shift is visible.

Display ON-OFF 
control

0 0 0 0 1 D C B D- Display, C- cursor, B- Blinking 
cursor = 0 —> OFF =1 —> ON

Cursor/Display 
shift

0 0 0 1 S/C R/L X X S/C = 0 —> Move cursor.
S/C = 1 —> Shift display. 
R/L = 0 —> Shift left.
R/L = 1 —> Shift right

Function set 0 0 1 DL N F X X DL = 0 —> 4-bit interface. 
DL = 1 —> 8-bit interface. 
N = 0 —> 1/8 or 1/11 Duty (1 line). 
N = 1 —> 1/16 Duty (2 lines). 
F = 0 —> 5x7 dots. 
F = 1 —> 5x10 dots.



ROBOTICS114

 lcd_goto(1,0);

 lcd_puts(“Appin Knowledge Solutions”);

 while(!kbhit() ) //wait until a key is pressed...

 {}

}

void lcd_init()

{

  outportb( CONTROL, inportb(CONTROL) & 0xDF);  //config data pins as 

output

 

 outportb(CONTROL, inportb(CONTROL) | 0x08);

 //RS is made high: control (register select)

 

 lcd_write(0x0f);

 delay(20);

 lcd_write( 0x01);

 delay(20);

 lcd_write( 0x38);

 delay(20);

}

void lcd_write(char char2write)

{

 outportb( DATA, char2write);

 outportb(CONTROL,inportb(CONTROL) | 0x01); /* Set Strobe */

 delay(2);

 outportb(CONTROL,inportb(CONTROL) & 0xFE);/* Reset Strobe */

 delay(2);

}

void lcd_putch(char char2write)

{

 outportb(CONTROL, inportb(CONTROL) & 0xF7);

 //RS=low: data

 lcd_write(char2write);

}

void lcd_puts(char *str2write)

{

 outportb(CONTROL, inportb(CONTROL) & 0xF7);

 //RS=low: datawhile(*str2write)    

 lcd_write(*(str2write++));

}
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void lcd_goto(int row, int column)

{

 outportb(CONTROL, inportb(CONTROL) | 0x08);

 if(row==2) column+=0x40;/* 

 Add these if you are using LCD module with 4 columnsif(row==2)   

 column+=0x14;

 if(row==3) column+=0x54;

 */lcd_write(0x80 | column);

}

void lcd_clear()

{

 outportb(CONTROL, inportb(CONTROL) | 0x08);

 lcd_write(0x01);

}

void lcd_home()

{

 outportb(CONTROL, inportb(CONTROL) | 0x08);

 lcd_write(0x02);

}

void lcd_entry_mode(int mode)

{

 /*

 if you dont call this function, entry mode sets to 2 by 

 default.mode: 0 - cursor left shift, no text shift

 1 - no cursor shift, text right shift

 2 - cursor right shift, no text shift

 3 - no cursor shift, text left shift

 */

 outportb(CONTROL, inportb(CONTROL) | 0x08);

 lcd_write(0x04 + (mode%4));

}

void lcd_cursor(int cursor)

{

 /*

 set cursor:  0 - no cursor, no blink

 1 - only blink, no cursor

 2 - only cursor, no blink

 3 - both cursor and blink

 */

  outportb( CONTROL, inportb(CONTROL) | 0x08 );
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 lcd_write( 0x0c + (cursor%4));

}

We need not give details to all the functions above. You can understand them 
yourself. So, try using all the functions. In the next examples, we will generate 
a program that displays the system time in the LCD module. It may not have 
much use in DOS, but if you transfer the same to Windows, you will gain many 
benefi ts. Also, if your computer will be working in DOS most of the time, you 
can think of writing a TSR for the same.

In order to program to display date and time in an LCD module just replace 
the ‘main’ of the previous program with the following and run. 

void main(void)

{

 struct time t;

 struct date d;

 char strtime[17];

 textbackground(0);

 clrscr();

 textcolor(0);

 textbackground(10);

 gotoxy(8,5);

 cputs(“ “);

 gotoxy(8,4);

 cputs(“ “);

 lcd_init();

 lcd_cursor(0);

 while(!kbhit())

 {

  gettime(&t);

  getdate(&d);

  lcd_goto(0,4);

  sprintf(strtime,”%02d:%02d:%02d”, t.ti_hour%12, t.ti_min,

  t.ti_sec);

  lcd_puts(strtime);

  gotoxy(12,4);

  cputs(strtime);

  lcd_goto(1,3);

  sprintf(strtime,”%02d:%02d:%4d”, d.da_day, d.da_mon, 

  d.da_year);

  lcd_puts(strtime);

  gotoxy(11,5);

  cputs(strtime);
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  delay(200);

 }

 textbackground(0);

 textcolor(7);

}

3.6  SERIAL COMMUNICATION: RS-232

RS-232 is the most known serial port used in transmitting the  data in commu-
nication and interface. Even though a serial port is harder to program than the 
parallel port, this is the most effective method in which the data transmission 
requires fewer wires and less cost. The RS-232 is the communication line which 
enables data transmission by only using three wire links. The three links provide 
‘transmit,’ ‘receive,’ and common ground.

The ‘transmit’ and ‘receive’ line on this connecter send and receive data be-
tween the computers. As the name indicates, the data is transmitted serially. The 
two pins are TXD & RXD. There are other lines on this port such as RTS, CTS, 
DSR, DTR, and RTS, RI. The ‘1’ and ‘0’ are the data which defi nes a voltage 
level of 3 V to 25 V and -3 V to -25 V respectively.

The electrical characteristics of the serial port as per the EIA ( Electron-
ics Industry Association) RS-232C Standard specifi es a maximum baud rate 
of 20,000bps, which is slow compared to today’s standard speed. For this 
reason, we have chosen the new RS-232D Standard, which was recently re-
leased.

The RS-232D has existed in two types, i.e., D-Type 25-pin connector and 
D-Type 9-pin connector, which are male connectors on the back of the PC. You 
need a female connector on your communication from host to guest computer. 
The pin outs of both D-9 & D-25 are shown in Table 3.10. 

About DTE and DCE

Devices, which use serial cables for their communication, are split into two cat-
egories. These are DCE (Data Communications Equipment) and DTE (Data 
Terminal Equipment). Data Communication Equipments are devices such as 
your modem, TA adapter, plotter, etc., while Data Terminal Equipment is your 
computer or terminal. A typical Data Terminal Device is a computer and a typi-
cal Data Communications Device is a modem. Often people will talk about DTE 
to DCE or DCE to DCE speeds. DTE to DCE is the speed between your mo-
dem and computer, sometimes referred to as your terminal speed. This should 
run at faster speeds than the DCE to DCE speed. DCE to DCE is the link 
between modems, sometimes called the line speed. 
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Most people today will have 28.8K or 33.6K modems. Therefore, we should 
expect the DCE to DCE speed to be either 28.8K or 33.6K. Considering the 
high speed of the modem we should expect the DTE to DCE speed to be about 
115,200 BPS (maximum speed of the 16550a UART). The communications pro-
gram, which we use, has settings for DCE to DTE speeds. However, the speed 
is 9.6 KBPS, 144 KBPS, etc., and the modem speed. 

If we were transferring that text fi le at 28.8K (DCE to DCE), then when 
the modem compresses it you are actually transferring 115.2 KBPS between 
computers and thus have a DCE to DTE speed of 115.2 KBPS. Thus, this is why 
the DCE to DTE should be much higher than the modem’s connection speed. 
Therefore, if our DTE to DCE speed is several times faster than our DCE to 
DCE speed the PC can send data to your modem at 115,200 BPS. 

Null Modem

A null modem is used to connect two DTEs together. This is used to transfer fi les be-
tween the computers using protocols like zmodem protocol, xmodem protocol, etc.

Figure 3.45 shows the wiring of the null modem. The main feature indicated 
here is to make the computer chat with the modem rather than another compu-
ter. The guest and host computer are connected through the TD, RD, and SG 
pins. Any data that is transmitted through the TD line from the host to guest is 
received on the RD line. The guest computer must have the same setup as the 
host. The Signal Ground (SG) line of the both must be shorted so that grounds 
are common to each computer.

TABLE 3.10

D-type 9- 
pin no.

D-type 25- 
pin no.

Pin outs Function

3
2
7

8
6
5
1

4
9

2
3
4

5
6
7
8

20
22

RD
TD
RTS

CTS
DSR
SG

DCD

DTR
RI

Receive data (serial data input)
Transmit data (serial data output) 
Request to send (acknowledge to modem that UART 
is ready to exchange data)
Clear to send (i.e., modem is ready to exchange data)
Data ready state (UART establishes a link)
Signal ground
Data carrier detect (this line is active when modem 
detects a carrier)
Data terminal ready
Ring Indicator (becomes active when modem detects 
ringing signal from PSTN)
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The Data Terminal Ready (DTR) is looped back to Data Set Ready and Car-
rier Detect on both computers. When the Data Terminal Ready is asserted ac-
tive, then the Data Set Ready and Carrier Detect immediately become active. 
At this point, the computer thinks the virtual modem to which it is connected, is 
ready, and has detected the carrier of the other modem.

All that’s left to worry about now is the Request to Send and Clear to Send. 
As both computers communicate together at the same speed, fl ow control is not 
needed; thus these two lines are also linked together on each computer. When 
the computer wishes to send data, it asserts the Request to Send high and as it 
is hooked together with the Clear to Send, it immediately gets a reply that it is 
OK to send and does so.

The ring indicator line is only used to tell the computer that there is a ringing 
signal on the phone line. As we do not have a modem connected to the phone 
line this is left disconnected.

To know about the RS-232 ports available in your computer, right-click on 
“My Computer,” go to ‘Properties,’ select the tab ‘Device Manager,’ go to Ports 
(COM & LPT). In that you will fi nd ‘Communication Port(Com1),’ etc. If you 
right-click on that and go to properties, you will get device status. Make sure that 
you have enabled the port (use this port selected).

Programming the  Serial Port using C/C++

There are two popular methods of sending data to or from the serial port in Turbo C. 
One is using outportb(PORT_ID,  DATA)  or outport(PORT_ID,DATA) defi ned in 
“dos.h.” Another method is using the bioscom() function defi ned in “bios.h.”

FIGURE 3.45 Above shows the connections of the null modem 
using an RS 232D connector.
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Using outportb()

The function outportb() sends a data byte to the port ‘PORT_ID.’ The function 
outport() sends a data word. These functions can be used for any port including 
serial ports, and  parallel ports. Similarly, these are used to receive data.

■ inport reads a word from a hardware port 
■ inportb reads a byte from a hardware port 
■ outport outputs a word to a hardware port 
■ outportb outputs a byte to a hardware port

Declaration

■ int inport(int portid); 
■ unsigned char inportb(int portid); 
■ void outport(int portid, int value); 
■ void outportb(int portid, unsigned char value); 

Remarks

■ inport works just like the 80x86 instruction IN. It reads the low byte of a 
word from portid, the high byte from portid + 2. 

■ inportb is a macro that reads a byte. 
■ outport works just like the 80x86 instructions OUT. It writes the low byte of 

a value to portid, the high byte to portid + 1. 
■ outportb is a macro that writes the value argument.

portid

■ Inport — port that inport and inportb read from; 
■ Outport — port that outport and outportb write to 

value

■ Word that outport writes to portid; 
■ Byte that outportb writes to portid. 

If you call inportb or outportb when dos.h has been included, they are treat-
ed as macros that expand to inline code.

If you don’t include dos.h, or if you do include dos.h and #undef the macro(s), 
you get the function(s) of the same name.

Return Value

#    inport and inportb return the value read
#    outport and  outportb do not return
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Using Bioscom

The macro bioscom() and function _bios_serialcom() are used in this method in the 
serial communication using an RS-232 connecter. First we have to set the port with the 
settings depending on our need and availability. In this method, the same function is 
used to make the settings using a control word to send  data to the port and check the 
status of the port. These actions are distinguished using the fi rst parameter of the func-
tion. Along with that we are sending data and the port to be used to communicate. 

Here are the details of the Turbo C functions for communication ports.          

Declaration

■ bioscom(int cmd, char abyte, int  port)
■ _bios_serialcom(int cmd ,int port, char abyte)
■ bioscom() and _bios_serialcom() use the bios  interrupt 0x14 to perform 

various  serial communications over the I/O ports given in port.
■ cmd: The I/O operation to be performed.

portid

Port to which data is sent or from which data is read.
0:COM1
1:COM2
2:COM3 

a byte

When cmd = 2 or 3 (_COM_SEND or _COM_RECEIVE) parameter a byte is 
ignored.

When cmd = 0 (_COM_INIT), a byte is an OR combination of the follow-
ing bits (one from each group). For example, if a byte = 0x8B = (0x80 | 0x08 | 
0x00 | 0x03) = (_COM_1200 | _COM_ODDPARITY | _COM_STOP1 | _COM_
CHR8). The communications port is set to:

1200 baud (0x80 = _COM_1200)
Odd parity (0x08 = _COM_ODDPARITY)

TABLE 3.11

cmd (boiscom) cmd(_bios_serialcom) Action

0
1
2
3

_COM_INIT
_COM_SEND
_COM_RECEIVE
_COM_STATUS

Initialize the parameters to the port
Send the character to the port
Receive character from the port
Returns the current status of the 
communication port
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1 stop bit (0x00 = _COM_STOP1)
8 data bits (0x03 = _COM_CHR8)

To initialize the port with the above settings we have to write, bioscom(0, 0x8B, 
0). To send a data to COM1, the format of the function will be bioscom(1,  data, 
0). Similarly, bioscom(1, 0, 0) will read a data byte from the port.

The following example illustrates how to  serial port programs. When data is 
available in the port, it inputs the data and displays it onto the screen and if a key 
is pressed the ASCII value will be sent to the port.

#include <bios.h>

#include <conio.h>

#define COM1       0

#define DATA_READY 0x100

#define SETTINGS ( 0x80 | 0x02 | 0x00 | 0x00)

int main(void)

{   

 int in, out, status;   

 bioscom(0, SETTINGS, COM1); /*initialize the port*/   

 cprintf(“Data sent to you:  “);   

TABLE 3.12

value of abyte Meaning

Bioscom _bios_serialcom

0x02 _COM_CHR7 7 data bits

0x03 _COM_CHR8 8 data bits

0x00 _COM_STOP1 1 stop bit

0x04 _COM_STOP2 2 stop bits

0x00 _COM_NOPARITY No parity

0x08 _COM_ODDPARITY Odd parity

0X10 _COM_EVENPARITY Even parity

0x00 _COM_110 110 baud

0x20 _COM_150 150 baud

0x40 _COM_300 300 baud

0x60 _COM_600 600 baud

0x80 _COM_1200 1200 baud

0xA0 _COM_2400 2400 baud

0xC0 _COM_4800 4800 baud

0xE0 _COM_9600 9600 baud
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 while (1)

 {

  status = bioscom(3, 0, COM1); /*wait until get a data*/

  if (status & DATA_READY)

   if ((out = bioscom(2, 0, COM1) & 0x7F) != 0)  /*in-

put     a data*/

    putch(out);

   if (kbhit()) 

   {

    if ((in = getch()) == 27)   /* ASCII of Esc*

     break;

    bioscom(1, in, COM1); /*output a data*/ 

    }

 }

 return 0;

}

When you compile and run the above program in both computers, the char-
acters typed in one computer should appear on the other computer screen and 
vice versa. Initially, we set the port to the desired settings as defi ned in macro 
settings. Then we wait in an idle loop until a key is pressed or a  data is available 
on the port. If any key is pressed, then the kbhit() function returns a nonzero 
value. Then we send it to the com port. Similarly, if any data is available on the 
port, we receive it from the port and display it on the screen. 

To check the port, if you have a single computer, you can use a loop-back 
connection as follows. This is the most commonly used method for developing 
communication programs. Here,  data is transmitted to that port itself. 

If you run the above program with the connection as in Figure 3.46, the 
character entered in the keyboard should be displayed on the screen. This 

FIGURE 3.46 Loop-back plug connection.
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method is helpful in writing  serial port programs with a single computer. Also, 
you can make changes in the port id if your computer has 2 RS-232 ports. You 
can connect the com1 port to com2 of the same computer and change the 
port id in the program. The data sent to the com1 port should come to the 
com2 port. Then whatever you also type on the keyboard should appear on the 
screen. 

3.7 USING THE MICROCONTROLLER

Before one uses the microcontroller, he or she should be well aware of the 
connections of the microcontroller, like which pins are to be used as data pins 
and which pin is to be given the power supply. Every pin of the microcontrol-
ler has a specifi c function and a wrong connection can completely destroy the 
chip. The AT89C51 microcontrollers have, in total, 40 pins. Here we will be 
demonstrating the pin confi guration of the 8051 microcontroller. It has an on-
chip  RAM capacity of 128 bytes and  ROM size is 4k. But the total ROM size 
with which it can work is 64k. So when we have programs of size more than 4k, 
external memory is added to it as per our requirement. If the requirement is of 
8k, we can go for an external  ROM of size 4k such that it makes a total  ROM 
size of 8k (4k internal + 4k external). In this way we can go for 8k, 16k, 32k, 
and 64k ROM sizes.

We have different commands for using these memories. Accordingly some 
of the connections are to be changed. For example, if our program size is below 
4k then the 31st pin, which is for external access, is to be given a power supply of 
5 volts (an active low pin) but while using external memory we have to ground 
this pin. We can also use both internal as well as external memories simultane-
ously, in that case the pin is to be given a power supply of 5 volts because the 
microcontroller fi rstly reads internal  ROM then goes for external ones.

8051 microcontrollers do have an internal oscillator but to run it, it needs 
external clock pulses so an external oscillator is added between pins 18 (XTAL1) 
and 19 (XTAL2). It also requires two capacitors of 30 pF value. One side of each 
capacitor is grounded.

It must be noted that there are various speeds of the 8051 family. Speed re-
fers to the maximum oscillator frequency connected to the XTAL. For example, 
a 12 MHz chip must be connected to a crystal with a 12 MHz frequency or less. 
Likewise, a 20 MHz microcontroller requires a crystal frequency of no more 
than 20 MHz. When the 8051 is connected to a crystal oscillator and is powered 
up, we can observe the frequency on the XTAL2 pin using the oscilloscope.

Pin 40 of the microcontroller is given a power supply of +5 volts using a 
single stranded wire; this provides supply voltage to the chip. Pin 20 of the mi-
crocontroller is grounded.



BASIC ELECTRONICS 125

Figure 3.47, given, above shows the pin diagram of 8051.
There are four ports in 8051 and every port has 8 pins, so in total there are 

32 I/O pins. There are 16 address pins and 8  data pins in it. On port 0 data and 
address pins are multiplexed. ALE (pin 30) indicates if P0 has address or data. 
When ALE = 0, it provides data to D0–D7, but when ALE =1, it has addresses at 
A0–A7. Therefore, ALE is used for demultiplexing addresses and data with the 
help of a 74LS373 latch. The ninth pin is a reset pin and it is an input and active 
high (normally low). Upon applying a high pulse to this pin, the microcontroller 
will reset and terminate all activities. This is often referred to as a power-on re-
set. Activating a power-on reset will cause all values in the register to be lost.

Figure 3.48 shows a complete circuit diagram of 8051.
Now we can have a program to glow  LEDs. When this program is burned 

in the microcontroller, the LEDs start glowing as per the program written. So 

FIGURE 3.47 Pin diagram of 8051.
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as to burn the program it can fi rst be written on a simulator like Keil C and its 
accuracy can be checked by debugging it there. Now the program can be burned 
on the microcontroller with the help of a programmer.

After the  microcontroller is loaded with the program, it can be kept in the 
proper circuit with accurate connections and  LEDs start glowing.

3.8 ACTUATORS 

An actuator is the mechanism by which an agent acts upon an environment. 
The agent can be either an artifi cial intelligent agent or any other autonomous 
being.

The common forms of actuators are pneumatic, hydraulic, or electric sole-
noids or motors.

 Pneumatic actuators: A simplifi ed diagram of a pneumatic actuator is 
shown in Figure 3.49 below. It operates by a combination of force created by 
air and spring force. The actuator positions control the valve by transmitting its 
motion through the stem.

A rubber diaphragm separates the actuator housing into two air chambers. 
The upper chamber receives a supply of air through an opening in the top of the 
housing.

The bottom chamber contains a spring that forces the diaphragm against 
mechanical stops in the upper chamber. Finally, a local indicator is connected to 
the stem to indicate the position of the valve.

FIGURE 3.48 Complete connections of 8051.
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The position of the valve is controlled by varying the air supply pressure in the 
upper chamber. This results in a varying force on the top of the diaphragm. Initially, 
with no air supply, the spring forces the diaphragm upward against the mechanical 
stops and holds the valve fully open. As air supply pressure is increased from zero, its 
force on top of the diaphragm begins to overcome the opposing force of the spring. 
This causes the diaphragm to move downward and the control valve to close. 

With increasing air supply pressure, the diaphragm will continue to move 
downward and compress the spring until the control valve is fully closed. Con-
versely, if air supply pressure is decreased, the spring will begin to force the di-
aphragm upward and open the control valve. Additionally, if supply pressure is 
held constant at some value between zero and maximum, the valve will position 
at an intermediate position. Therefore, the valve can be positioned anywhere be-
tween fully open and fully closed in response to changes in air supply pressure.

A positioner is a device that regulates the air supply pressure to a pneu-
matic actuator. It does this by comparing the actuator’s demanded position with 
the control valve’s actual position. The demanded position is transmitted by a 
pneumatic or electrical control signal from a controller to the positioner. The 

FIGURE 3.49 Pneumatic actuator: air-to-close/spring-to-open.
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pneumatic actuator in Figure 3.49 is shown in Figure 3.50 with a controller and 
positioner added. 

The controller generates an output signal that represents the demanded 
position. This signal is sent to the positioner. Externally, the positioner consists 
of an input connection for the control signal, an air supply input connection, 
an air supply output connection, an air supply vent connection, and a feedback 
linkage. Internally, it contains an intricate network of electrical transducers, 
airlines, valves, linkages, and necessary adjustments. Other petitioners may 
also provide controls for local valve positioning and gauges to indicate air sup-
ply pressure and air control pressure (for pneumatic controllers). From an 
operator’s viewpoint, a description of the complex internal workings of a posi-
tioner is not needed. Therefore, this discussion will be limited to inputs to and 
outputs from the positioner.

In Figure 3.50, the controller responds to a deviation of a controlled variable 
from the setpoint and varies the control output signal accordingly to correct the 

FIGURE 3.50 Pneumatic actuator with controller and 
positioner.
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deviation. The control output signal is sent to the positioner, which responds by 
increasing or decreasing the air supply to the actuator. Positioning of the actua-
tor and control valve is fed back to the positioner through the feedback linkage. 
When the valve has reached the position demanded by the controller, the posi-
tioner stops the change in air supply pressure and holds the valve at the new posi-
tion. This, in turn, corrects the controlled variable’s deviation from the setpoint.

For example, as the control signal increases, a valve inside the positioner ad-
mits more air supply to the actuator. As a result, the control valve moves down-
ward. The linkage transmits the valve position information back to the position-
er. This forms a small internal feedback loop for the actuator. When the valve 
reaches the position that correlates to the control signal, the linkage stops air 
supply fl ow to the actuator. This causes the actuator to stop. On the other hand, 
if the control signal decreases, another valve inside the positioner opens and al-
lows the air supply pressure to decrease by venting the air supply. This causes the 
valve to move upward and open.

When the valve has opened to the proper position, the positioner stops vent-
ing air from the actuator and stops movement of the control valve. 

An important safety feature is provided by the spring in an actuator. It can be 
designed to position a control valve in a safe position if a loss of air supply occurs. 
On a loss of air supply, the actuator in Figure 3.50 will fail to open. This type of 
arrangement is referred to as “air-to-close, spring-to-open” or simply “fail-open.” 
Some valves fail in the closed position. This type of actuator is referred to as “air-
to-open, spring-to-close” or “fail-closed.” This “fail-safe” concept is an important 
consideration in nuclear facility design.

Hydraulic  actuators:  Pneumatic actuators are normally used to control 
processes requiring quick and accurate responses, as they do not require a large 
amount of motive force. However, when a large amount of force is required to 
operate a valve (for example, the main steam system valves), hydraulic actuators 
are normally used. Although hydraulic actuators come in many designs, piston 
types are the most common. 

A typical piston-type hydraulic actuator is shown in Figure 3.51. It consists 
of a cylinder, piston, spring, hydraulic supply and returns line, and stem. The 
piston slides vertically inside the cylinder and separates the cylinder into two 
chambers. The upper chamber contains the spring and the lower chamber con-
tains hydraulic oil. 

The hydraulic supply and return line is connected to the lower chamber and 
allows hydraulic fl uid to fl ow to and from the lower chamber of the actuator. The 
stem transmits the motion of the piston to a valve. 

Initially, with no hydraulic fl uid pressure, the spring force holds the valve in 
the closed position. As fl uid enters the lower chamber, pressure in the chamber 
increases. This pressure results in a force on the bottom of the piston opposite 
to the force caused by the spring. When the hydraulic force is greater than the 



ROBOTICS130

spring force, the piston begins to move upward, the spring compresses, and the 
valve begins to open. As the hydraulic pressure increases, the valve continues 
to open. Conversely, as hydraulic oil is drained from the cylinder, the hydraulic 
force becomes less than the spring force, the piston moves downward, and the 
valve closes. By regulating the amount of oil supplied or drained from the actua-
tor, the valve can be positioned between fully open and fully closed. 

The principles of operation of a hydraulic actuator are like those of the pneu-
matic actuator. Each uses some motive force to overcome spring force to move 
the valve. Also, hydraulic actuators can be designed to fail-open or fail-closed to 
provide a fail-safe feature. 

Electric solenoid  actuators: A typical electric solenoid actuator is shown 
in Figure 3.52. It consists of a coil, armature, spring, and stem. The coil is con-
nected to an external current supply. The spring rests on the armature to force it 
downward. The armature moves vertically inside the coil and transmits its motion 
through the stem to the valve. When current fl ows through the coil, a magnetic 
fi eld forms around the coil. The magnetic fi eld attracts the armature toward the 
center of the coil. As the armature moves upward, the spring collapses and the 
valve opens. When the circuit is opened and current stops fl owing to the coil, the 
magnetic fi eld collapses. This allows the spring to expand and shut the valve.

FIGURE 3.51 Hydraulic actuator.
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A major advantage of solenoid actuators is their quick operation. Also, they 
are much easier to install than pneumatic or  hydraulic  actuators. However, sole-
noid actuators have two disadvantages. First, they have only two positions: fully 
open and fully closed. Second, they don’t produce much force, so they usually 
only operate relatively small valves.

 Motors

This chapter introduces several types of motors commonly used in robotic and 
related applications. 

3.8.1 DC  Motors 

DC motors are widely used in robotics because of their small size and high en-
ergy output. They are excellent for powering the drive wheels of a mobile robot 
as well as powering other mechanical assemblies. 

Ratings and Specifi cations    

Several characteristics are important in selecting a DC motor. The fi rst two are 
its input ratings that specify the electrical characteristics of the motor. 

FIGURE 3.52 Electric solenoid actuator.
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Operating Voltage

If batteries are the source of power for the motor, low operating voltages are 
desirable because fewer cells are needed to obtain the specifi ed voltage. How-
ever, the electronics to drive motors are typically more effi cient at higher volt-
ages. Typical DC motors may operate on as few as 1.5 volts or up to 100 volts 
or more. Roboticists often use motors that operate on 6, 12, or 24 volts be-
cause most robots are battery powered, and batteries are typically available 
with these values. 

Operating Current

The ideal motor would produce a great deal of power while requiring a minimum 
of current. However, the current rating (in conjunction with the voltage rating) 
is usually a good indication of the power output capacity of a motor. The power 
input (current times voltage) is a good indicator of the mechanical power output. 
Also, a given motor draws more current as it delivers more output torque. Thus, 
current ratings are often given when the motor is stalled. At this point it is draw-
ing the maximum amount of current and applying maximum torque. A low-volt-
age (e.g., 12 volts or less) DC motor may draw from 100 mA to several amperes 
at stall, depending on its design. 

The next three ratings describe the motor’s output characteristics.

Speed

Usually, this is specifi ed as the speed in rotations per minute (RPM) of the motor 
when it is unloaded, or running freely, at its specifi ed operating voltage. Typical 
 DC motors run at speeds from one to twenty thousand RPM. Motor speed can 
be measured easily by mounting a disk or LEGO pulley wheel with one hole on 
the motor, and using a slotted optical switch and oscilloscope to measure the 
time between the switch openings. 

Torque

The torque of a motor is the rotary force produced on its output shaft. When 
a motor is stalled it is producing the maximum amount of torque that it can 
produce. Hence the torque rating is usually taken when the motor has stalled 
and is called the stall torque. The motor torque is measured in ounces-inches 
(in the English system) or Newton-meters (metric). The torque of small elec-
tric motors is often given in milli-Newton-meters (mN-m) or 1/1000 of a N-m. 
A rating of one ounce-inch means that the motor is exerting a tangential force 
of one ounce at a radius of one inch from the center of its shaft. Torque rat-
ings may vary from less than one ounce-inch to several dozen ounce-inches for 
large motors. 
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Power

The power of a motor is the product of its speed and torque. The power output 
is greatest at about halfway between the unloaded speed (maximum speed, no 
torque) and the stalled state (maximum torque, no speed). The output power in 
watts is about (torque) x (rpm) / 9.57.

3.8.2 Controlling a DC Motor

Speed, Torque, and Gear Reduction 

It was mentioned earlier that the power delivered by a motor is the product of its 
speed and the torque at which the speed is applied. If one measures this power 
over the full range of operating speeds—from unloaded full speed to stall—one 
gets a bell-shaped curve of motor power output. 

When unloaded, the motor is running at full speed, but at zero torque, thus 
producing zero power. Conversely, when stalled, the motor is producing its maxi-
mum torque output, but at zero speed—also producing zero power! Hence, the 
maximum power output must lie somewhere in between, at about one-half of 
the maximum speed and of the maximum torque. 

A typical DC motor operates at speeds that are far too high to be useful, and 
at torques that are far too low. Gear reduction is the standard method by which 
a motor is made useful. 

The motor shaft is fi tted with a gear of small radius that meshes with a gear 
of large radius. The motor’s gear must revolve several times in order to cause 
the large gear to revolve once (see Figure 3.53). The speed of rotation is thus 
decreased, but overall power is preserved (except for losses due to friction) and 
therefore the torque must increase. By ganging together several stages of this 
gear reduction, a strong torque can be produced at the fi nal stage. 

The challenge when designing a high-performance gear reduction for a 
competitive robot is to determine the amount of reduction that will allow the 
motor to operate at highest effi ciency. If the normal operating speed of a mo-
tor/gear-train  assembly is faster than the peak effi ciency point, the gear-train will 

FIGURE 3.53 
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be able to accelerate quickly, but will not be operating at peak effi ciency once it 
has reached the maximum velocity. Remember that the wheel is part of the drive 
train and gearing, and its size, the velocity desired, the motor characteristics, and 
other factors all affect the optimum gear ratio. While calculations can provide a 
guide, experimentation is necessary to determine the best gear-train.

H-bridge

You take a battery; hook the positive side to one side of your DC motor. Then 
you connect the negative side of the battery to the other motor lead. The motor 
spins forward. If you swap the battery leads the motor spins in reverse. 

Ok, that’s basic. Now lets say you want a Micro Controller Unit (MCU) to 
control the motor, how would you do it? Well, for starters you get a device that 
would act like a solid state switch, a transistor, and hook it up to the motor.

If you connect up these relay circuits, remember to put a diode across the 
coil of the relay. This will keep the spike voltage (back EMF), coming out of the 
coil of the relay, from getting into the MCU and damaging it. The anode, which 
is the arrow side of the diode, should connect to ground. The bar, which is the 
cathode side of the diode, should connect to the coil where the MCU connects 
to the relay.

If you connect this circuit to a small hobby motor you can control the motor 
with a processor (MCU, etc.). Applying a logical one, (+12 volts in our example) 
to point A causes the motor to turn forward. Applying a logical zero, (ground) 
causes the motor to stop turning (to coast and stop).

NOTE

FIGURE 3.54 
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Hook the motor up in this fashion and the circuit turns the motor in reverse 
when you apply a logical one (+12 volts) to point B. Apply a logical zero, which is 
usually a ground, and the motor stops spinning.

If you hook up these circuits you can only get the motor to stop or turn in 
one direction, forward for the fi rst circuit or reverse for the second circuit.



BASIC ELECTRONICS 135

Motor Speed

You can also pulse the motor control line, (A or B) on and off. This powers the 
motor in short bursts and gets varying degrees of torque, which usually translates 
into variable motor speed. 

But if you want to be able to control the motor in both forward and reverse 
with a processor, you will need more circuitry. You will need an H-bridge. Notice 
the “H”-looking confi guration in Figure 3.55. Relays confi gured in this fashion 
make an H-bridge. The “high side drivers” are the relays that control the positive 
voltage to the motor. This is called sourcing current.

The “low side drivers” are the relays that control the negative voltage to sink 
current to the motor. “Sinking current” is the term for connecting the circuit to 
the negative side of the power supply, which is usually ground.

So, you turn on the upper left and lower right circuits, and power fl ows 
through the motor forward, i.e., 1 to A, 0 to B, 0 to C, and 1 to D.

Then for reverse you turn on the upper right and lower left circuits and pow-
er fl ows through the motor in reverse, i.e., 0 to A, 1 to B, 1 to C, and 0 to D. 

Caution: You should be careful not to turn on both circuits on one side and 
the other, or you have a direct short which will destroy your circuit; for example: 
A and C or B and D both high (logical 1).

FIGURE 3.55 
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Semiconductor H-bridges

We can better control our motor by using transistors or  Field Effect Transistors 
(FETs). Most of what we have discussed about the H-bridge relays is true of 
these circuits. You don’t need diodes that were across the relay coils now. You 
should use diodes across your transistors though. See Figure 3.56 see how they 
are connected.

These solid state circuits provide power and ground connections to the motor, 
as did the relay circuits. The high side drivers need to be current “sources” which is 
what PNP transistors and P-channel FETs are good at. The low side drivers need to 
be current “sinks” which is what NPN transistors and N-channel FETs are good at.

If you turn on the two upper circuits, the motor resists turning, so you ef-
fectively have a breaking mechanism. The same is true if you turn on both of 
the lower circuits. This is because the motor is a generator and when it turns it 
generates a voltage. If the terminals of the motor are connected (shorted), then 
the voltage generated counteracts the motors freedom to turn. It is as if you are 
applying a similar but opposite voltage to the one generated by the motor being 
turned. Vis-á-vis, it acts like a brake.

To be nice to your transistors, you should add diodes to catch the back volt-
age that is generated by the motor’s coil when the power is switched on and off. 
This fl yback voltage can be many times higher than the supply voltage! If you 
don’t use diodes, you could burn out your transistors.

FIGURE 3.56 
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Transistors, being a semiconductor device, will have some resistance, which 
causes them to get hot when conducting much current. This is called not being 
able to sink or source very much power, i.e., not able to provide much current 
from ground or from plus voltage.

Mosfets are much more effi cient, they can provide much more current and 
not get as hot. They usually have the fl yback diodes built in so you don’t need the 
diodes anymore. This helps guard against fl yback voltage frying your MCU.

To use mosfets in an  H-bridge, you need P-channel mosfets on top because 
they can “source” power, and N-channel mosfets on the bottom because then 
can “sink” power. N-channel mosfets are much cheaper than P-channel mosfets, 
but N-channel mosfets used to source power require about 7 volts more than 
the supply voltage, to turn on. As a result, some people manage to use N-chan-
nel mosfets, on top of the H-bridge, by using cleaver circuits to overcome the 
breakdown voltage.

It is important that the four quadrants of the H-bridge circuits be turned 
on and off properly. When there is a path between the positive and ground side 
of the H-bridge, other than through the motor, a condition exists, called “shoot 
through.” This is basically a direct short of the power supply and can cause semi-
conductors to become ballistic in circuits with large currents fl owing. There are 
H-bridge chips available that are much easier, and safer, to use than designing 
your own H-bridge circuit.

FIGURE 3.57 
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H-bridge Devices

The L293 has 2 H-bridges, can provide about 1 amp to each and occasional peak 
loads to 2 amps.  Motors typically controlled with this controller are near the size 
of a 35 mm fi lm plastic canister.

FIGURE 3.59 
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The L298 has 2 H-bridges on board, can handle 1 amp, and peak current draws 
to about 3 amps. You often see motors between the size of a 35 mm fi lm plastic 
canister and a coke can, driven by this type of H-bridge. The LMD18200 has one 
H-bridge on board, can handle about 2 or 3 amps, and can handle a peak of about 
6 amps. This H-bridge chip can usually handle an average motor about the size of a 
coke. There are several more commercially designed H-bridge chips as well.

There! That’s the basics about motors and H-bridges! Hope it helps and be safe!

Darlington Connection 

This is two transistors connected together so that the current amplifi ed by the 
fi rst is amplifi ed further by the second transistor. The overall current gain is 
equal to the two individual gains multiplied together: 

Darlington pair current gain, hFE = hFE1 × hFE2 
 (hFE1 and hFE2 are the gains of the individual transistors).

This gives the Darlington pair a very high current gain, such as 10,000, so 
that only a tiny base current is required to make the pair switch on. 

A Darlington pair behaves like a single transistor with a very high 
current gain. It has three leads (B, C, and E) which are equivalent to the leads 
of a standard individual transistor. To turn on there must be 0.7 V across both the 
base-emitter junctions who are connected in series inside the Darlington pair, 
therefore it requires 1.4 V to turn on. 

FIGURE 3.60 
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Darlington pairs are available as complete packages but you can make up 
your own from two transistors; TR1 can be a low power type, but normally TR2 
will need to be high power. The maximum collector current Ic(max) for the pair 
is the same as Ic(max) for TR2.

A Darlington pair is suffi ciently sensitive to respond to the small current 
passed by your skin and it can be used to make a touch-switch as shown in 
Figure 3.61. For this circuit, which just lights an LED, the two transistors can 
be any general-purpose low-power transistors. The 100kΩ resistor protects the 
transistors if the contacts are linked with a piece of wire.

FIGURE 3.61 Touch switch circuit.
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3.8.3  Pulse Width Modulation

Pulse width modulation is a technique for reducing the amount of power deliv-
ered to a DC motor. Instead of reducing the voltage operating the motor (which 
would reduce its power), the motor’s power supply is rapidly switched on and off. 
The percentage of time that the power is on determines the percentage of full 
operating power that is accomplished. This type of motor speed control is easier 
to implement with digital circuitry. It is typically used in mechanical systems 
that will not need to be operated at full power all of the time. For an ELEC 201 
robot, this would often be a system other than the main drivetrain or when the 
main drivetrain is steered.
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Figure 3.62 illustrates this concept, showing  pulse width modulation signals 
to operate a motor at 75%, 50%, and 25% of the full power potential. 

A wide range of frequencies could be used for the  pulse width modulation 
signal. The ELEC 201 system software used to control the motors operates at 
1,000 Hertz. 

A PWM waveform consisting of eight bits, each of which may be on or off, 
is used to control the motor. Every 1/1000 of a second, a control bit determines 
whether the motor is enabled or disabled. Every 1/125 of a second the waveform 
is repeated. Therefore, the control bit make 8 checks per cycle, meaning the 
PWM waveform may be adjusted to eight power levels between off and full on. 
This provides the RoboBoard with eight motor speeds. 

3.8.4 Stepper  Motors 

The shaft of a stepper motor moves between discrete rotary positions typically 
separated by a few degrees. Because of this precise position controllability, step-
per motors are excellent for applications that require high positioning accuracy. 
Stepper motors are used in X-Y scanners, plotters, and machine tools, fl oppy and 
hard disk drive head positioning, computer printer head positioning, and numer-
ous other applications. 

Stepper motors have several electromagnetic coils that must be powered 
sequentially to make the motor turn, or step, from one position, to the next. By 

FIGURE 3.62 Example of several pluse width modulation waveforms.
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FIGURE 3.63 
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reversing the order that the coils are powered, a stepper motor can be made to 
reverse direction. The rate at which the coils are respectively energized deter-
mines the velocity of the motor up to a physical limit. Typical stepper motors 
have two or four coils. Anyway, here is a very simple stepper controller shown in 
Figure 3.63.

How Stepper  Motors Work

We’ve all experimented with small “hobby motors,” or free-spinning DC motors. 
Have you ever tried to position something accurately with one? It can be pretty 
diffi cult. Even if you get the timing just right for starting and stopping the motor, 
the armature does not stop immediately. DC motors have very gradual accelera-
tion and declaration curves; stabilization is slow. Adding gears to the motor will 
help to reduce this problem, but overshoot is still present and will throw off the 



BASIC ELECTRONICS 143

anticipated stop position. The only way to effectively use a DC motor for pre-
cise positioning is to use a servo. Servos usually implement a small DC motor, a 
feedback mechanism (usually a potentiometer attached to the shaft by gearing 
or other means), and a control circuit which compares the position of the motor 
with the desired position, and moves the motor accordingly. This can get fairly 
complex and expensive for most hobby applications.

Stepper motors, however, behave differently than standard DC motors. First 
of all, they cannot run freely by themselves. Stepper motors do as their name sug-
gests—they “step” a little bit at a time. Stepper motors also differ from DC motors in 
their torque-speed relationship. DC motors generally are not very good at producing 
high torque at low speeds, without the aid of a gearing mechanism. Stepper motors, 
on the other hand, work in the opposite manner. They produce the highest torque at 
low speeds. Stepper motors also have another characteristic, holding torque, which is 
not present in DC motors. Holding torque allows a stepper motor to hold its position 
fi rmly when not turning. This can be useful for applications where the motor may 
be starting and stopping, while the force acting against the motor remains present. 
This eliminates the need for a mechanical brake mechanism. Steppers don’t simply 
respond to a clock signal, they have several windings which need to be energized in 
the correct sequence before the motor’s shaft will rotate. Reversing the order of the 
sequence will cause the motor to rotate the other way. If the control signals are not 
sent in the correct order, the motor will not turn properly. It may simply buzz and 
not move, or it may actually turn, but in a rough or jerky manner. A circuit which is 
responsible for converting step and direction signals into winding energization pat-
terns is called a translator. Most stepper motor control systems include a driver in 
addition to the translator, to handle the current drawn by the motor’s windings.

Figure 3.64 shows a basic example of the “translator + driver” type of con-
fi guration. Notice the separate voltages for logic and for the stepper motor. Usu-
ally the motor will require a different voltage than the logic portion of the sys-
tem. Typically, logic voltage is +5 Vdc and the stepper motor voltage can range 

FIGURE 3.64 A typical translator/driver connection.
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from +5 Vdc up to about +48 Vdc. The driver is also an “open collector” driver, 
wherein it takes its outputs to GND to activate the motor’s windings. Most semi-
conductor circuits are more capable of sinking (providing a GND or negative 
voltage) than sourcing (outputting a positive voltage).

Common Characteristics of Stepper  Motors

 Stepper motors are not just rated by voltage. The following elements character-
ize a given stepper motor:

Voltage

Stepper motors usually have a voltage rating. This is either printed directly 
on the unit, or is specified in the motor’s datasheet. Exceeding the rated 
voltage is sometimes necessary to obtain the desired torque from a given 
motor, but doing so may produce excessive heat and/or shorten the life of 
the motor. 

Resistance

Resistance-per-winding is another characteristic of a stepper motor. This re-
sistance will determine current draw of the motor, as well as affect the motor’s 
torque curve and maximum operating speed.

Degrees per Step

This is often the most important factor in choosing a stepper motor for a given 
application. This factor specifi es the number of degrees the shaft will rotate for 
each full step. Half-step operation of the motor will double the number of steps/
revolutions, and cut the degrees-per-step in half. For unmarked motors, it is 
often possible to carefully count, by hand, the number of steps per revolution of 
the motor. The degrees per step can be calculated by dividing 360 by the number 
of steps in 1 complete revolution. Common degree/step numbers include: 0.72, 
1.8, 3.6, 7.5, 15, and even 90. Degrees per step are often referred to as the reso-
lution of the motor. As in the case of an unmarked motor, if a motor has only the 
number of steps/revolutions printed on it, dividing 360 by this number will yield 
the degree/step value.

Types of Stepper  Motors

Stepper motors fall into two basic categories: permanent magnet and variable 
reluctance. The type of motor determines the type of drivers, and the type of 
translator used. Of the permanent magnet stepper motors, there are several 
“subfl avors” available. These include the unipolar, bipolar, and multiphase va-
rieties.
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Permanent Magnet Stepper  Motors

Unipolar  Stepper  Motors

Unipolar motors are relatively easy to control. A simple 1-of-‘n’ counter cir-
cuit can generate the proper stepping sequence, and drivers as simple as 1 
transistor per winding are possible with unipolar motors. Unipolar stepper 
motors are characterized by their center-tapped windings. A common wiring 
scheme is to take all the taps of the center-tapped windings and feed them 
+MV (Motor Voltage). The driver circuit would then ground each winding to 
energize it.

Unipolar  stepper motors are recognized by their center-tapped windings. 
The number of phases is twice the number of coils, since each coil is divided 
in two. So the diagram above (Figure 3.65), which has two center-tapped coils, 
represents the connection of a 4-phase unipolar stepper motor.

In addition to the standard drive sequence, high-torque and half-step drive 
sequences are also possible. In the high-torque sequence, two windings are ac-
tive at a time for each motor step. This two-winding combination yields around 
1.5 times more torque than the standard sequence, but it draws twice the cur-
rent. Half-stepping is achieved by combining the two sequences. First, one of 
the windings is activated, then two, then one, etc. This effectively doubles the 
number of steps the motor will advance for each revolution of the shaft, and it 
cuts the number of degrees per step in half.

FIGURE 3.65 A typical unipolar stepper motor driver circuit. Note the 4 back EMF protection diodes.
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FIGURE 3.66 Unipolar stepper motor coil setup (left) and 1-phase drive pattern (right).

FIGURE 3.67 Two-phase stepping sequence (left) and half-step sequence (right).
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Bipolar Stepper  Motors

Unlike unipolar  stepper motors, bipolar units require more complex driver cir-
cuitry. Bipolar motors are known for their excellent size/torque ratio, and provide 
more torque for their size than unipolar motors. Bipolar motors are designed 
with separate coils that need to be driven in either direction (the polarity needs 
to be reversed during operation) for proper stepping to occur. This presents a 
driver challenge. Bipolar stepper motors use the same binary drive pattern as a 
unipolar motor, only the ‘0’ and ‘1’ signals correspond to the polarity of the volt-
age applied to the coils, not simply ‘on-off’ signals. Figure 3.68 shows a basic 
4-phase bipolar motor’s coil setup and drive sequence.

A circuit known as an “H-bridge” (Figure 3.69) is used to drive bipolar  step-
per motors. Each coil of the stepper motor needs its own H-bridge driver cir-
cuit. Typical bipolar steppers have 4 leads, connected to two isolated coils in 
the motor. ICs specifi cally designed to drive bipolar steppers (or DC motors) 
are available (popular are the L297/298 series from ST Microelectronics, and 
the LMD18T245 from National Semiconductor). Usually these IC modules only 
contain a single H-bridge circuit inside of them, so two of them are required for 
driving a single bipolar motor. One problem with the basic (transistor) H-bridge 
circuit is that with a certain combination of input values (both ‘1’s) the result is 
that the power supply feeding the motor becomes shorted by the transistors. 
This could cause a situation where the transistors and/or power supply may be 
destroyed. A small XOR logic circuit was added in Figure 3.69 to keep both in-
puts from being seen as ‘1’s by the transistors.

Another characteristic of H-bridge circuits is that they have electrical “brakes” 
that can be applied to slow or even stop the motor from spinning freely when not 

FIGURE 3.68 Bipolar stepper motor coil setup (left) and drive pattern (right).
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moving under control by the driver circuit. This is accomplished by essentially 
shorting the coil(s) of the motor together, causing any voltage produced in the 
coils during rotation to “fold back” on itself and make the shaft diffi cult to turn. 
The faster the shaft is made to turn, the more the electrical “brakes” tighten.

Variable Reluctance Stepper  Motors

Sometimes referred to as hybrid motors, variable reluctance stepper motors are 
the simplest to control over other types of stepper motors. Their drive sequence 

FIGURE 3.69 A typical H-bridge circuit. The 4 diodes clamp inductive kickback.

FIGURE 3.70 Variable reluctance stepper motor coil setup (left) and drive pattern (right).
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is simply to energize each of the windings in order, one after the other (see drive 
pattern table below). This type of stepper motor will often have only one lead, 
which is the common lead for all the other leads. This type of motor feels like a 
DC motor when the shaft is spun by hand; it turns freely and you cannot feel the 
steps. This type of stepper motor is not permanently magnetized like its unipolar 
and bipolar counterparts.

Example Translator Circuits

In this section, examples of basic stepper motor translation circuits are shown. 
Not all of these examples have been tested, so be sure to prototype the circuit 
before soldering anything.

Figure 3.71 illustrates the simplest solution to generating a one-phase drive 
sequence. For unipolar stepper motors, the circuit in Figure 3.71, or for bipolar 
 stepper motors, the circuit in Figure 3.72 can be connected to the 4 outputs of 
this circuit to provide a complete translator + driver solution. This circuit is lim-
ited in that it cannot reverse the direction of the motor. This circuit would be most 
useful in applications where the motor does not need to change directions.

FIGURE 3.71 A simple, single-direction, single-phase drive translator.
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Figure 3.72 is a translator for a two-phase operation (believed to have origi-
nated from The Robot Builders Bonanza) book, by Gordon McComb. We have 
used this circuit in the past and seem to recall that it had a problem. This may not 



ROBOTICS150

be the case when you reverse the direction and continue stepping, the motor will 
advance one more step in the previous direction it was going before responding. 
As always, prototype this circuit to be sure it will work for your application be-
fore you build anything with it.

There are several standard stepper motor translation circuits that use discrete 
logic ICs. Below you will fi nd yet another one of these. The circuit in Figure 3.73 
has not been tested, but theoretically should work without problems.

Words of Caution

When making connections to either a PC parallel port, or I/O pins of a microcon-
troller, be sure to isolate the motor well. High-voltage spikes of several hundred 
volts are possible as back EMF from the stepper motor coils. Always use clamp-
ing diodes to short these spikes back to the motor’s power bus. The use of optical 
isolation devices (optoisolators) will add yet another layer or protection between 
the delicate control logic and the high-voltage potentials which may be present 
in the power output stage. Whenever possible, use separate power supplies for 
the motor and the translator/microcontroller. This further reduces the chance 
of destructive voltages reaching the controller, and reduces or eliminates power 
supply noise that may be introduced by the motor.

FIGURE 3.72 A simple, bidirectional, two-phase drive stepper motor translator circuit.
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Complete Software Control

Under complete software control, there is no translator circuit external to the  par-
allel port or microcontroller. This scheme reduces parts count, component cost, 
and makes for simpler board design. On the other hand, it places the responsibility 
of generating all of the sequencing signals on the software. If the PC or microcon-
troller is not fast enough (due to code ineffi ciency or slow processor speed), or too 
many motors are driven simultaneously, things can begin to slow down. Interrupts 
and other system events can plague the control software more in this case. Despite 
the downfalls of addressing a stepper motor directly in this manner, it is defi nitely 
the easiest and most straightforward approach to controlling a stepper motor. This 

FIGURE 3.73 Another example of a two-phase drive translator circuit, this time using a 
multiplexer.
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method of controlling a motor can also be useful where the hardware is not criti-
cal at fi rst and a simple interface is needed to allow more time to be spent on the 
development of the software before the hardware is refi ned.

3.8.5 Servo Motor

A servo motor has three wires: power, ground, and control. The power and 
ground wires are simply connected to a power supply. Most servo motors oper-
ate from fi ve volts. 

The control signal consists of a series of pulses that indicate the desired 
position of the shaft. Each pulse represents one position command. The length 
of a pulse in time corresponds to the angular position. Typical pulse times 
range from 0.7 to 2.0 milliseconds for the full range of travel of a servo shaft. 
Most servo shafts have a 180-degree range of rotation. The control pulse must 
repeat every 20 milliseconds. There are no servo motors in the present ELEC 
201 kit. 

FIGURE 3.74
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Servo  Motors 

Servo motors incorporate several components into one device package: 

■ a small DC motor;
■ a gear reduction drive for torque increase;
■ an electronic shaft position sensing and control circuit.

The output shaft of a servo motor does not rotate freely, but rather is com-
manded to move to a particular angular position. The electronic sensing and 
control circuitry—the servo feedback control loop—drives the motor to move 
the shaft to the commanded position. If the position is outside the range of 
movement of the shaft, or if the resisting torque on the shaft is too great, the 
motor will continue trying to attain the commanded position. 

Servo motors are used in model radio-controlled airplanes and helicopters to 
control the position of wing fl aps and other fl ight control mechanisms. 

Servo Motor Control 

A servo motor has three wires: power, ground, and  control. The power and 
ground wires are simply connected to a power supply. Most servo motors oper-
ate from fi ve volts. 

The servo controller receives position commands through a serial connec-
tion, which can be provided by using one I/O pin of another microcontroller, or 
a PCs  serial port! The communication protocol, that is used for this controller, is 
the same with the protocol of all the famous servo controllers of Scott Edwards 
 Electronics Inc., this makes this new controller 100% compatible with all the 
programs that have been written for the “SSC” controllers! However, if you want 
to write your own software, it is as easy as sending positioning  data to the serial 
port as follows:

 Byte1 = Sync (255)
 Byte2 = Servo #(0–15)
 Byte3 = Position (0–254)

So sending a 255, 4,150 would move servo 4 to position 150, sending 
255,12,35 would move servo 12 to position 35.

The standards of the serial communication should be the following: 9600 
baud, 8  data bits, 1 stop bit, and no parity.

The control signal consists of a series of pulses that indicate the desired 
position of the shaft. Each pulse represents one position command. The 
length of a pulse in time corresponds to the angular position. Typical pulse 
times range from 0.7 to 2.0 milliseconds for the full range of travel of a servo 
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shaft. Most servo shafts have a 180-degree range of rotation. The control 
pulse must repeat every 20 milliseconds. This pulse signal will cause the shaft 
to locate itself at the midway position +/-90 degrees. The shaft rotation on 
a servo motor is limited to approximately 180 degrees (+/-90 degrees from 
center position). A 1 ms pulse will rotate the shaft all the way to the left, 
while a 2 ms pulse will turn the shaft all the way to the right. By varying the 
pulse width between 1 and 2 ms, the servo motor shaft can be rotated to any 
degree position within its range.
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C h a p t e r 4

4.1 INTRODUCTION

 Wheeled  Mobile Robots ( WMRs) have been an active area of research 
and development over the past three decades. This long-term interest 
has been mainly fueled by the myriad of practical applications that 

can be uniquely addressed by mobile robots due to their ability to work in large 
(potentially unstructured and hazardous) domains.

WMRs are increasingly present in industrial and service robotics, particular-
ly when fl exible motion capabilities are required on reasonably smooth grounds 
and surfaces. Several mobility confi gurations (wheel number and type, their lo-
cation and actuation, single- or multibody vehicle structure) can be found in the 
applications. 

WHEELED MOBILE 
ROBOTS

In This Chapter

• Introduction
• Classifi cation of Wheeled Mobile Robots (WMRs)
• Kinematics and Mathematical Modeling of WMRs
• Control of WMRs
• Simulation of WMRs Using Matlab
• The Identifi cation and Elimination of the Problem
•  Modifying the Model to Make the Variation in Delta 

Continuous
•  Developing the Software and Hardware Model of an All-

Purpose Research WMR
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Mobile robots have quite simple mathematical models to describe their in-
stantaneous motion capabilities; especially compared to serial, parallel, and hu-
manoid robots. However, this only holds for single mobile robots only, because 
the modeling does become complex as soon as one begins to add trailers to mobile 
robots. Airport luggage carts are good examples of such mobile robot trains. 

4.2 CLASSIFICATION OF  WHEELED  MOBILE ROBOTS (WMRS)

The wheeled mobile robots can have a large number of possible wheel con-
fi gurations and kinematic designs. Each type of confi guration has its merits and 
demerits with respect to the application. The following is the classifi cation of 
WMRs according to their wheel geometry.

4.2.1 Differentially Driven WMRs

Differential drive confi guration is the most common wheeled mobile robot con-
fi guration. It is used because of its simplicity and versatility. It is the easiest to 
implement and to  control. A differentially driven WMR consists of two driving 
wheels and one or two castor wheels. In a differentially driven WMR the rela-
tive motion of the two driving wheels with respect to each other achieves the 
required motion. The castor wheels are used just to support the structure. 

The motion of a differentially driven WMR is simple. The straight-line mo-
tion is attained in the robot when the two driving wheels rotate at the same 
speed. Motion in the reverse direction is achieved by the rotation of the wheels 
in the opposite direction. Turning is achieved by braking one wheel and rotating 
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FIGURE 4.1  Differentially driven robot.
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the other. The robot rotates about the fi xed wheel. Sharp turning can be attained 
by rotating both the wheels in opposite directions. Motion along an arc can be at-
tained by the differential motion of both the wheels with respect to each other.

Figure 4.1 represents a general arrangement of a differentially driven 
wheeled mobile robot. 

4.2.2 Car-type WMRs

Car-type confi gurations (see Figure 4.2) employing one (tricycle-drive) or two driven 
front wheels and two passive rear wheels (or vice versa) are fairly common in AGV 
applications because of their inherent simplicity. One problem associated with the 
tricycle-drive confi guration is that the vehicle’s center of gravity tends to move away 
from the front wheel when traversing up an incline, causing a loss of traction. As in 
the case of Ackerman-steered designs, some surface damage and induced heading 
errors are possible when actuating the steering while the platform is not moving. 

Ackerman steering provides a fairly accurate odometry solution while sup-
porting the traction and ground clearance needs of all-terrain operation. Acker-
man steering is thus the method of choice for outdoor autonomous vehicles. 
Associated drive implementations typically employ a gasoline or diesel engine 
coupled to a manual or automatic transmission, with power applied to four 
wheels through a transfer case, a differential, and a series of universal joints. 
From a military perspective, the use of existing-inventory equipment of this type 
simplifi es some of the logistics problems associated with vehicle maintenance. In 

FIGURE 4.2 Tricycle-driven confi gurations employing a steerable driven 
wheel and two passive trailing wheels can derive heading information 
directly from a steering angle encoder or indirectly from differential 
odometry.
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addition, reliability of the drive components is high due to the inherited stabil-
ity of a proven power train. (Signifi cant interface problems can be encountered, 
however, in retrofi tting off-the-shelf vehicles intended for human drivers to ac-
commodate remote or computer control.)

4.2.3 Omnidirectional WMRs

Omnidirectional movement of  WMRs is of great interest for complete maneu-
verability. This kind of wheel confi guration imposes no kinematic constraint on 
the robot chassis. Hence, the robot can freely change its direction at any instant. 
The odometry solution for this confi guration is done in a similar fashion to that 
for differential drive, with position and velocity  data derived from the motor (or 
wheel) shaft encoders. Figure 4.4 explains the wheel confi guration for two such 
wheel confi gurations. The fi xed standard wheel, steered standard wheel, or cas-
tor wheels cannot achieve omnidirectional motion. 

There are two different wheel confi gurations to achieve omnidirectional 
movement. 

1. Swedish wheel
2. Spherical wheel

Swedish wheels don’t have a vertical axis of rotation. However, they can achieve 
omnidirectional motion like a castor wheel. This is possible by adding a degree of 

FIGURE 4.3 In an Ackerman-steered vehicle, the extended axes for all wheels intersect 
in a common point.
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freedom to the fi xed standard wheel with rollers attached to the fi xed standard 
wheel perimeter with axes that are antiparallel to the main axis of the fi xed wheel 
component. The exact angle between the roller axis and the main axis can vary.

A spherical wheel does not put any constraint on the robot chassis’ kinemat-
ics. Such a mechanism has no principal axis of rotation, and therefore no appro-
priate rolling or sliding constraints exist. The omnidirectional spherical wheel 
can have any arbitrary direction of movement. This kind of wheel imparts com-
plete omnidirectional property to the robot chassis. However, this type of wheel 
is strictly applicable for indoor application only. 

The omnidirectional wheel confi guration shown in Figure 4.4(b) is based 
on three wheels, each actuated by one motor. The robot has three Swedish 90-
degree wheels, arranged radially symmetrically, with the rollers perpendicular to 
the each main wheel. 

4.2.4 Synchro Drive  WMRs

An innovative confi guration known as synchro drive features three or more 
wheels mechanically coupled in such a way that all rotate in the same direction 
at the same speed, and similarly pivot in unison about their respective steering 
axes when executing a turn. This drive and steering “synchronization” results in 
improved odometry accuracy through reduced slippage, since all wheels gener-
ate equal and parallel force vectors at all times. 

The required mechanical synchronization can be accomplished in a number 
of ways; the most common being a chain, belt, or gear drive. Carnegie Mellon 
University has implemented an electronically synchronized version on one of their 

FIGURE 4.4 a. Schematic of the wheel assembly used by the Veterans administration 
on an omnidirectional wheel chair. b. Top view of base showing relative orientation of 
components in the three-wheel confi guration.
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Rover-series robots, with dedicated drive motors for each of the three wheels. 
Chain- and belt-drive confi gurations experience some degradation in steering ac-
curacy and alignment due to uneven distribution of slack, which varies as a func-
tion of loading and direction of rotation. In addition, whenever chains (or timing 
belts) are tightened to reduce such slack, the individual wheels must be realigned. 
These problems are eliminated with a completely enclosed gear-drive approach. 
An enclosed gear train also signifi cantly reduces noise as well as particulate gen-
eration, the latter being very important in clean-room applications.

Referring to Figure 4.5, drive torque is transferred down through the three 
steering columns to polyurethane-fi lled rubber tires. The drive-motor output 
shaft is mechanically coupled to each of the steering-column power shafts by a 
heavy-duty timing belt to ensure synchronous operation. A second timing belt 
transfers the rotational output of the steering motor to the three steering col-
umns, allowing them to synchronously pivot throughout a full 360-degree range. 
The sentry’s upper head assembly is mechanically coupled to the steering mech-
anism in a manner similar to that illustrated in Figure 4.5, and thus always points 
in the direction of forward travel. The three-point confi guration ensures good 
stability and traction, while the actively driven large-diameter wheels provide 
more than adequate obstacle climbing capability for indoor scenarios. The disad-
vantages of this particular implementation include odometry errors introduced 
by compliance in the drive belts as well as by reactionary frictional forces exerted 
by the fl oor surface when turning in place. 

To overcome these problems, the Cybermotion K2A Navmaster robot em-
ploys an enclosed gear-drive confi guration with the wheels offset from the steer-
ing axis as shown in Figure 4.6. When a foot pivots during a turn, the attached 

FIGURE 4.5 A four-wheel syncro-drive confi guration: a. Bottom view, b. Top view.
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wheel rotates in the appropriate direction to minimize fl oor and tire wear, power 
consumption, and slippage. Note that for correct compensation, the miter gear 
on the wheel axis must be on the opposite side of the power shaft gear from the 
wheel as illustrated.

4.3  KINEMATICS AND MATHEMATICAL MODELING OF  WMRS

4.3.1 What is Mathematical Modeling?

Mathematics provides a set of ideas and tools that are effective in solving prob-
lems, which arise in other fi elds. When used in problem solving, mathematics 
may be applied to specifi c problems already posed in mathematical form, or it 
may be used to formulate such problems. When used in theory construction, 
mathematics provides abstract structures that aid in understanding situations 
arising in other fi elds. Problem formulation and theory construction involve a 

FIGURE 4.6 Slip compensation during a turn is 
accomplished through use of an offset foot assembly on the 
three-wheeled K2A Navmaster robot.
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process known as mathematical model building. Given a situation in a fi eld other 
than mathematics or in everyday life, mathematical model building is the activ-
ity that begins with the situation and formulates a precise mathematical problem 
whose solution, or analysis in the case of theory construction, enables us to bet-
ter understand the original situation. 

Mathematical modeling usually begins with a situation in the real world, 
sometimes in the relatively controlled conditions of a laboratory and sometimes 
in the much less completely understood environment of meadows and forests, 
offi ces and factories, and everyday life. For example, a psychologist observes 
certain types of behavior in rats running in a maze, a wildlife ecologist notes 
the number of eggs laid by endangered sea turtles, or an economist records the 
volume of international trade under a specifi c tariff policy. Each seeks to under-
stand the observations and to predict future behavior. This close study of the 
system, the accumulation and organization of information is really the fi rst step 
in model building. 

The next step is an attempt to make the problem as precise as possible. 
One important aspect of this step is to identify and select those concepts to be 
considered as basic in the study and to defi ne them carefully. This step typically 
involves making certain idealizations and approximations. This step of identifi ca-
tion, idealization, and approximation will be referred to as constructing a real 
model. 

The third step is usually much less well defi ned and frequently involves a 
high degree of creativity. The goal is the expression of the entire situation in sym-
bolic terms. As a consequence, the real model becomes a mathematical model 
in which the real quantities and processes are replaced by mathematical symbols 
and relations (sets, functions, equations, etc.) and mathematical operations. Usu-
ally, much of the value of the study hinges on this step because an inappropriate 
identifi cation between the real world and a mathematical structure is unlikely to 
lead to useful results. It should be emphasized that there may be several math-
ematical models for the same real situation. In such circumstances, it may be 
the case that one model accounts especially well for certain observation while 
another model accounts for others. 

After the problem has been transformed into symbolic terms, the re-
sulting mathematical system is studied using appropriate mathematical ideas 
and techniques. The results of the mathematical study are theorems, from 
a mathematical point of view, and predictions, from the empirical point of 
view. The important contribution of the study may well be the recognition of 
the relationship between known mathematical results and the situation being 
studied.

The fi nal step in the model-building process is the comparison of the re-
sults predicted on the basis of the mathematical work with the real world. The 
most desirable situation is that the phenomena actually observed are accounted 
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for in the conclusions of the mathematical study and that other predictions are 
subsequently verifi ed by experiment. A typical situation would be that the set of 
conclusions of the mathematical theory contains some which seem to agree and 
some, which seem to disagree with the outcomes of experiments. In such a case 
one has to examine every step of the process again. It usually happens that the 
model-building process precedes through several iterations, each a refi nement 
of the preceding, until fi nally an acceptable one is found. Pictorially, we can rep-
resent this process as in Figure 4.7.

The solid lines in the fi gure indicate the process of building, developing, and 
testing a mathematical model as we have outlined it above. The dashed line is used 
to indicate an abbreviated version of this process, which is often used in practice.

4.3.2 Kinematic Constraints

Figures 4.8 and 4.9 show how the instantaneous center of rotation is derived 
from the robot’s pose (in the case of a car-like mobile robot) or wheel veloci-
ties (in the case of a differentially driven robot). The magnitude of the instan-
taneous rotation is in both cases determined by the magnitudes of the wheel 
speeds; the distance between the instantaneous center of rotation and the 

FIGURE 4.7 
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wheel center points is called the steer radius, [18], or instantaneous rotation 
radius. Figures 4.8 and 4.9 and some simple trigonometry show that 
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with the wheelbase of the car-like robot, [18], (i.e., the distance between the 
points where both wheels contact the ground), the steer angle, the distance be-
tween the wheels of the differentially driven robot, and its wheel velocities. 

FIGURE 4.8 Instantaneous center of 
rotation (icr) for a car-like robot.

FIGURE 4.9 Instantaneous center of rotation 
for a differentially driven robot.
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Differentially driven robots have two instantaneous degrees of motion free-
dom, compared to one for car-like robots. A car-like mobile robot must drive 
forward or backward if it wants to turn but a differentially driven robot can turn 
on the spot by giving opposite speeds to both wheels. In practice, the instan-
taneous rotation center of differentially driven robots can be calculated more 
accurately than that of car-like robots, due to the absence of two steered wheels 
with deformable suspensions. 

4.3.3  Holonomic Constraints

Let us consider a robot A having an m-dimensional confi guration space C. Let us 
now suppose that at any time t, we impose an additional scalar constraint of the 
following form to the confi gurations of the robot:

 F(q,t) = F(q1,q2…,qm,t) = 0, (4.2)

where F is a smooth function with a nonzero derivative. This constraint selects a 
subset of confi gurations of C (those which satisfy the constraint) where the robot 
is allowed to be.

We can use the equation (1) to solve for one of the coordinates, say qm, by 
expressing it as a function g of the m-1 remaining coordinates and time, i.e., 
g(q1,.., qm -1,t). The function g is smooth so that the equation (1) defi nes an 
(m-1)-dimensional smooth submanifold of C. This submanifold is in fact the 
confi guration space of A and the m-1 remaining parameters are the coordinates 
of the confi guration q.

Defi nition: A scalar constraint of the form F(q,t)=0, where F is a smooth 
function with a nonzero derivative, is called a holonomic equality constraint.

More generally, there may be k holonomic equality constraints (k<=m). If they 
are independent (i.e., their Jacobian matrix has rank k) they determine an (m-k)-
dimensional submanifold of C, which is the actual confi guration space of A. 

Typical  holonomic constraints are those imposed by the prismatic and revo-
lute joints of a manipulator arm.

4.3.4 Nonholonomic Constraints

If a system has restrictions in its velocity, but those restrictions do not cause re-
strictions in its positioning, the system is said to be nonholonomically constrained. 
Viewed another way, the system’s local movement is restricted, but not its global 
movement. Mathematically, this means that the velocity constraints cannot be in-
tegrated to position constraints. The most familiar example of a nonholonomic sys-
tem is demonstrated by a parallel parking maneuver. When a driver arrives next to 
a parking space, he cannot simply slide his car sideways into the spot. The car is not 
capable of sliding sideways and this is the velocity restriction. However, by moving 
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the car forward and backward and turning the wheels, the car can be placed in the 
parking space. Ignoring the restrictions caused by external objects, the car can be 
located at any position with any orientation, despite lack of sideways movement.

Let us consider the robot A while it is moving. Its confi guration q is a differ-
entiable function of time t. We impose that A’s motion satisfy a scalar constrain 
of the following form:

 G(q,q’,t) = G(q1,…, qm, q1’,…, qm’,t) = 0,  (4.3)

where G is a smooth function and qi’ = dqi/dt for every i = 1,…, m. The velocity 
vector q’= (q1’,…, qm’) is a vector of Tq(C) the tangent space of C at q. In the 
absence of kinematic constraints of the form (2), the tangent space is the space 
of the velocities of A.

A kinematic constraint of the form (2) is holonomic if it is integrable, i.e., if all the 
velocity parameters q1’ through qm’ can be eliminated and the equation (2) rewritten 
in the form (1). Otherwise, the constraint is called a nonholonomic constraint.

Defi nition: A nonintegrable scalar constraint of the form:

 G(q1,… qm. q1’,…, qm’,t) = 0,

where G is a smooth function, is called a nonholonomic equality constraint.

Example

Consider a car-like robot (i.e., a four-wheel front-wheel-drive vehicle) on a fl at 
ground. We model this robot as a rectangle moving in W=R2, as illustrated in Fig-
ure 4.10. Its confi guration space is R2*S1. We represent a confi guration as a triple 

  (a) (b)
FIGURE 4.10
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(x,y,θ) where (x,y)ε R2 are the coordinates of the midpoint R between the two rear 
wheels and θε[0,2π] is the angle between the x-axis of the frame Fw attached to 
the workspace and the main axis of the car. We assume that the contact between 
each of the wheels and the ground is a pure rolling contact between two perfectly 
rigid bodies. When the robot moves the point R describes a curve γ that must be 
tangent to the main axis of the car. Hence, the robot’s motion is constrained by:

 –x’ sin (θ) + y’ cos (θ) = 0. (4.4)

4.3.5 Equivalent Robot Models

Real-world implementations of car-like or differentially driven mobile robots 
have three or four wheels, because the robot needs at least three noncollinear 
support points in order to not fall over. However, the  kinematics of the moving 
robots are most often described by simpler equivalent robot models: a “bicy-
cle” robot for the car-like mobile robot (i.e., the two driven wheels are replaced 
by one wheel at the midpoint of their axle, whose velocity is the mean vm of 
the velocities vl and vr of the two real wheels) and a “caster-less” robot for the 
differentially driven robot (the caster wheel has no kinematic function; its only 

FIGURE 4.11 Instantaneously equivalent parallel 
manipulator models for a car-like robot.
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FIGURE 4.12 Instantaneously equivalent parallel 
manipulator models for a differentially driven robot.

purpose is to keep the robot in balance). In addition, Figures 4.11 and 4.12 
show how an equivalent (planar) parallel robot can model car-like and differ-
entially driven mobile robots. The nonholonomic constraint is represented by 
a zero actuated  joint velocity vc in the leg on the wheel axles. A car-like robot 
has two such constraints; a differentially driven robot has one. Since the con-
straint is nonholonomic and hence not integrable, the equivalent parallel robot 
is only an instantaneous model, i.e., the base of the robots moves together with 
the robots. Hence, the model is only useful for the velocity kinematics of the 
mobile robots. The velocities in the two kinematic chains on the rear wheels of 
the car-like robot are not independent; in the rest of this Chapter they are re-
placed by one single similar chain connected to the midpoint of the rear axle. 

The equivalent car-like robot model is only an approximation, because nei-
ther of the two wheels has an orientation that corresponds exactly to the steering 
angle. In fact, in order to be perfectly outlined, a steering suspension should 
orient both wheels in such a way that their perpendiculars intersect the per-
pendicular of the rear axle at the same point. In practice, this is never perfectly 
achieved, so one hardly uses car-like mobile robots when accurate motion is 
desired. Moreover, the two wheels of a real car are driven through a differential 
gear transmission, in order to divide the torques over both wheels in such a way 

Vc
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FIGURE 4.13 Relevant variables for the unicycle (top view).

that neither of them slips. As a result, the mean velocity of both wheels is the 
velocity of the drive shaft. 

In the following sections we will construct the kinematic models of the above 
two types of  WMRs and develop appropriate control strategies for them.

4.3.6 Unicycle Kinematic Model 

A differentially driven wheeled mobile robot is kinematically equivalent to a uni-
cycle. The model discussed here is a unicycle-type model having two rear wheels 
driven independently and a front wheel on a castor. The following kinematic 
model is constructed with respect to the local coordinate frame attached to the 
robot chassis. The kinematic model for the nonholonomic constraint of pure 
rolling and nonslipping is given as follows: 

 qd = S(q)* v. (4.5) 

Where q(t), qd(t) are defi ned as,
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

c

c

y

x

θ
 (4.6)

q2

q1

e2

e3

e1

e3

P (q1,q2,q3)

ω



ROBOTICS170

 

q&    = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

c

c

y

x

θ&
&

&

 

(4.7)

xc(t) and yc(t) denote the position of the center of mass of the WMR along the 
X and Y Cartesian coordinate frames and θ(t) represents the orientation of the 
WMR, xcd(t) and ycd(t) denote the Cartesian components of the linear velocity, 
the matrix S(q) is defi ned as follows:
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And velocity vector v(t) is defi ned as
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The control objective of regulation problem is to force the actual Carte-
sian position and orientation to a constant reference position and orientation. 
To quantify the regulation control objective, we defi ne x(t), y(t), and θ(t) as the 
difference between the actual Cartesian position and orientation and the refer-
ence position as follows:

 x(t) = xc – xrc (4.10)

 y(t) = yc – yrc (4.11)

 θ(t) = θc – θrc. (4.12)

xrc, yrc, and θrc represent the constant position and orientation. 

 q1 = x cos θ + y sin θ (4.13)

 q2 = −x sin θ + y cos θ (4.14)

 q3 = θ (4.15) 

Where q1, q2, and q3 are the auxiliary error of the system. Taking the deriva-
tives of the above and using the kinematic model given in equation (4.7), it can 
be rewritten as follows:

 2211 evvq +=  (4.16)
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 222 evq −=  (4.17)

 23 vq = . (4.18)

v 1 = The longitudinal velocity applied to the vehicle.
v2 = The instantaneous angular velocity of the chassis of the vehicle.

The controls for this model are developed in Section 4.4.6.

4.3.7 Global Coordinate Kinematic Model of the Unicycle

In this section we will construct kinematic models for unicycle- and car-type WMRs 
with respect to the global reference frame. Given a global reference plane in which 
the instantaneous position and orientation of the model is given by (q(1), q(2), q(3)) 
with respect to the global reference system. The vehicle is to start at a position (x, 
y, θ) and has to reach a given point (xd, yd, θ d) with respect to the global reference 
plane. We will discuss how it does this in the control section of this chapter.

The longitudinal axis of the reference frame is attached to the vehicle and the 
lateral axis is perpendicular to the longitudinal axis. Since this reference frame’s 
position changes continuously with respect to the global reference system, the 
instantaneous position of the origin of the reference frame attached to the vehi-
cle is given by (q1, q2, q3). The position of the point to be traced in the reference 
frame attached to the vehicle, with respect to the global coordinate system, is 
given by (e1, e2, e3). Where,

e1 = The instantaneous longitudinal coordinate of the desired point to be 
traced with respect to the reference system of the vehicle.

e2 = The instantaneous lateral coordinate of the desired point to be traced 
with respect to the reference system of the vehicle. 

e3 = The instantaneous angular  coordinate of the desired point to be traced 
with respect to the reference system of the vehicle.

The conversions of the local values of 

 e1 = (xd – q1)* cos q3 + (yd – q2)* sin q3 (4.19)

 e2 = –(xd – q1)* sin q3 + (yd – q2)* sin q3 (4.20)
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The kinematic model for the so-called kinematic wheel under the nonholo-
nomic constraint of pure rolling and nonslipping is given as follows.

 311 cos* qvq =  (4.22) 
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FIGURE 4.14 Relevant variables for the car-type model.
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 312 sin* qvq =  (4.23)
 

23 vq =  (4.24)

v-1 = The longitudinal velocity applied to the vehicle.
v2 = The instantaneous angular velocity of the chassis of the vehicle.

So these two variables have to be controlled by a control strategy, so that 
the vehicle reaches the desired point smoothly. The controls for this model are 
developed in Section 4.4.6.

4.3.8 Global Coordinate Kinematic Model of a Car-type  WMR

In this section, we will discuss the kinematic model of a car-type WMR. The 
model is modeled with respect to the global reference frame. Given a global 
reference plane in which the instantaneous position and orientation of the model 
is given by (q(1), q(2), q(3)) with respect to the global reference system. The 
vehicle is to start at a position (x, y, θ) and has to reach a given point (xd, yd, θd) 
with respect to the global reference plane. We will discuss how it does this in the 
control section of this chapter.

The longitudinal axis of the reference frame is attached to the vehicle and 
the lateral axis is perpendicular to the longitudinal axis. The instantaneous posi-
tion of the origin of the reference frame attached to the vehicle is given by (q1, 
q2, q3). The position of the point to be traced in the reference frame attached to 
the vehicle, with respect to the global coordinate system, is given by (e1, e2, e3).
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Where,

1. e1 = The instantaneous longitudinal coordinate of the desired point to be 
traced with respect to the reference system of the vehicle.

2. e2 = The instantaneous lateral coordinate of the desired point to be traced 
with respect to the reference system of the vehicle. 

3. e3 = The instantaneous angular coordinate of the desired point to be traced 
with respect to the reference system of the vehicle.

The conversions of the local values of: 

 e1 = (xd – q1)* cos q3 + (yd – q2)* sin q3 (4.25)

 e2 = –(xd – q1)* sin q3 + (yd – q2)* cos q3 (4.26)
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The kinematic model for the so-called kinematic wheel under the nonholo-
nomic constraint of pure rolling and nonslipping is given as follows:

 31 cos* qvq =  (4.28)

 32 sin* qvq =  (4.29)

 δ.ρ tan*3 ⎟
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Here, 
δ

ρ
tan

l
= , which is the instantaneous radius of curvature of the 

trajectory of the vehicle, and,

v = the longitudinal velocity applied to the vehicle.
δ = The instantaneous angular orientation provided to the steering wheel of 

the vehicle.

So these two variables have to be controlled by a control strategy, so that 
the vehicle reaches the desired point smoothly. The controls for this model are 
developed in Section 4.4.6.

4.3.9 Path Coordinate Model

The global model is useful for performing simulations and its use is described 
in Section 4.4.6. However, on the hardware implementation, the sensors cannot 
detect the car’s location with respect to some global coordinates. The sensors can 
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only detect the car’s location with respect to the desired path. Therefore, a more use-
ful model is one that describes the car’s behavior in terms of the path  coordinates.

The path coordinates are shown in Figure 4.15. The perpendicular distance 
between the rear axle and the path is given by d. The angle between the car and 
the tangent to the path is θp = θ – θt. The distance traveled along the path starting 
at some arbitrary initial position is given by s, the arc length.

The kinematic model in terms of the kinematic model is given by,
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where c(s) is the path’s curvature and is defi ned as,
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We will not discuss the control law for this kinematic model in this text. 

FIGURE 4.15  Path coordinate model for a 
car-type confi guration.
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4.4 CONTROL OF  WMRS

4.4.1 What is Control?

In recent years there has been great deal of research done in control of  wheeled 
mobile robots. Most of these works have been concentrated on tracking and posture 
stabilization problems. The tracking problem is to design a control law, which makes 
the mobile robot follow a given trajectory. Stationary state feedback technique was 
used for this and many authors proposed stable controllers. The posture stabilization 
problem is to stabilize the vehicle to a given fi nal posture starting from any initial 
posture (posture means both the position and orientation of a mobile robot from the 
base). The posture stabilization problem is more diffi cult than the tracking problem 
in the sense that nonholonomic systems with more degrees of freedom than control 
inputs cannot be stabilized by any static state feedback control law. 

The basic motion tasks are redefi ned here for easy reference later.
Posture stabilization or point-to-point motion: The robot must reach a 

desired goal confi guration starting from a given initial confi guration.
 Trajectory tracking: A reference point on the robot must follow a trajec-

tory in the Cartesian space (i.e., a geometric path with an associated timing law) 
starting from a given initial confi guration.

Execution of these tasks can be achieved using either open loop control, i.e., 
nonholonomic path planning or closed loop control, i.e., state feedback control, 
or a combination of the two. Indeed, feedback solutions exhibit an intrinsic de-
gree of robustness. However, especially in the case of point-to-point motion, 
the design of closed loop control for nonholonomic systems has to face a serious 
structural obstruction. The design of open loop commands is instead strictly re-
lated to trajectory tracking, whose solution should take into account the specifi c 
nonholonomic nature of the WMR kinematics. 

Open Loop Control

In nonholonomic path planning or open loop control, authors assume inputs 
(such as the linear speed and the steering angle or the angular motion of the 

FIGURE 4.16 Basic motion tasks for a WMR: 
posture stabilization or point-to-point motion.
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 WMR) in a kinematic model as the function of time, and then modify the as-
sumed function to fi t their purpose. Steering using sinusoidal input algorithms 
and iterative methods come under this category. For a differentially driven ro-
bot, this type of method is very easy to implement and is very effi cient as well. 
But it is generally diffi cult to fi nd or modify the inputs (linear speed and the 
steering angle), which transfer a car-like mobile robot to a desired posture, and 
hence a  tracking control should be designed. 

State Feedback Control

In a state feedback control system, the author assumes inputs (such as the linear 
speed and the steering angle or the angular motion of the WMR) in a kinematic 
model as the function of an error of the desired posture. Error is the differ-
ence between the instantaneous posture and the desired posture. As the WMR 
progresses toward its goal, it continuously modifi es its course of motion until it 
fi nally reaches the desired posture. The most important merit of state feedback 
control in posture stabilization is that it can be directly used as a controller with-
out any path planning. This type of control is more suitable for a car-type WMR 
than other types. 

4.4.2 Trajectory Following

The objective of a  kinematics controller is to follow a trajectory described by its 
position or velocity profi les as a function of time. This is often done by dividing 
the trajectory (path) in motion segments of a clearly defi ned shape, for exam-
ple, straight line segments and segments of a circle. The control strategy is thus 
to precompute a smooth trajectory based on lines and circle segments, which 
drives the robot from the initial position to the fi nal position. This approach can 
be regarded as open loop motion  control, because the measured robot position is 
not feedback for velocity or position control. It has several disadvantages:

FIGURE 4.17 Basic motion tasks for a WMR: trajectory 
tracking.
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■ It is not at all easy to precompute a feasible  trajectory if all limitations and 
constraints of the robot’s velocities are to be considered.

■ The robot will not automatically adapt or correct the trajectory if dynamic 
changes in the environment occur.

■ Resulting trajectories are not usually smooth, because the transmission from 
one trajectory segment to another are, for most of the commonly used seg-
ments (e.g., lines and parts of circles), not smooth. This means there is a 
discontinuity in the robot’s acceleration. 

We will discuss the control of a car-type mobile robot using the trajectory 
following approach here.

This can be summarized as follows. The space in the vehicle frame of refer-
ence is divided into a number of different geometric regions. The behavior of 
the vehicle can be modeled in a particular way according to the presence of the 
point in a particular region of space until it reaches a very close vicinity of the de-
sired point when it fi nally stops. Thus, the behavior of the vehicle in this model 
is pretty predictable and hence various control strategies can be applied to the 
model easily. The model can be described as follows.

The Model

The model as shown in Figure 4.18 is very geometric. The space is divided into 
fi ve discrete regions with respect to the vehicle frame of reference. These re-
gions can be defi ned as follows. 

1. This portion can be defi ned in the vehicle Cartesian  coordinate reference 
plane as, 

 xl ≥ 0, and – ε ≤ yl ≤ ε.

 This is the thin rectangular strip of width 2 ε along the longitudinal axis in the 
vehicle frame of reference.

2. This portion can be defi ned in the vehicle Cartesian coordinate reference 
plane as,

 yl > ε, for xl ≥ 0

 yl ≥ 0, for xl ≤ 0

 and, x1
2 + (yl − rb)

2 > rb
2.

 This is the entire positive y plane, except for portion 1 and 3.
3. This portion can be defi ned in the vehicle Cartesian coordinate reference 

plane as,
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 x1
2 + (yl − rb)

2 ≤ rb
2.

 This is the portion inside a circle of radius rb in the positive y plane, as shown 
in the fi gure.

4. This portion can be defi ned in the vehicle Cartesian coordinate reference 
plane as,

 yl > ε, for xl ≥ 0

 yl ≤ 0, for xl ≤ 0

 and, x1
2 + (yl − rb)

2 > rb
2.

 This is the entire negative y plane, except for portion 1 and 3.
5. This portion can be defi ned in the vehicle Cartesian coordinate reference plane as,

 x1
2 + (yl − rb)

2 ≤ rb
2.

 This is the portion inside a circle of radius rb in the positive y plane, as shown 
in Figure 4.18.

FIGURE 4.18 The diagrammatic representation of the model and the 
different regions of space associated with it.
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4.4.3 The Control Strategy

The  control objective is to design a controller for the kinematic model given 
in Section 4.3.7 that forces the actual Cartesian position and orientation to a 
constant reference position and orientation. Based on this control objective, a 
simple time-varying controller was proposed as follows.

 if (e1
2 + e2

2 ≥ c2)2

 v = V0

else

 v = V0

end.
This means that the velocity is a constant and has a value v = V0, for all the 

points in the space except for the points inside a circle of radius c. This circle is 
the region in which we can choose the vehicle to fi nally stop. This can be chosen 
as small as required for the vehicle to stop at a very close vicinity of the desired 
point.

For the angular velocity control, the following conditional control strategy is 
adopted. The angular velocity fed to the system is region specifi c. A step angular 
displacement value is fed to the system as follows:

1. For region 1 the angular deviation is,

 δ = 0;

2. For regions 2 and 5 the value of the angular deviation is,

 δ = δ0;

3. For regions 3 and 4 the value of the angular deviation is,

 δ = −δ0;

This control strategy is simulated using  MATLAB. The simulation and test 
results are discussed in Section 4.5. 

4.4.4 Feedback Control

A more appropriate approach in motion control of a wheeled mobile robot 
is to use a real-state feedback controller. With such a controller, the robot’s 
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path-planning task is reduced to setting intermediate positions (subgoals) 
lying on the requested path. We will discuss the control of a differentially 
driven mobile robot and a car-type mobile robot using the feedback control 
approach here. 

Developing Control for a Unicycle-type  Mobile Robot

In this section we will discuss a control strategy developed for a unicycle (dif-
ferentially driven) kinematic model, and implement it on the kinematic model 
discussed in Section 4.3.6. The control objective is to design a controller for the 
transformed kinematic model given by equations 4.16, 4.17, and 4.18 that forces 
the actual Cartesian position and orientation to a constant reference position 
and orientation. Based on this control objective, a differentiable, time-varying 
controller was proposed as follows:

 v1 = −k1e1 (4.32)

 v2 = −k2e3 + e2
2 sin t (4.33)

where k1 and k2 are positive constant control gains. After substituting the equa-
tions the following closed-loop error system was obtained:

 
1
 = −k1q1 + (−k2q3 + q2

2 sin t) ⋅ q2 (4.34)

 
2
 = −(−k2q2 + q2

2 sin t) ⋅ q2 (4.35)

 
3
 = (−k2q3 + q2

2 sin t). (4.36)

The control strategy adopted here is quiet simple. The linear velocity is 
directly proportional to the longitudinal error or the projected distance of the 
vehicle from the destination point alone. The rate at which the wheels should 
be turned is proportional to the angular orientation of the desired point with 
respect to the reference frame attached to the vehicle or the angular error and 
an additional time-varying term. This term plays a key role when the vehicle 
gets stuck at a point. Such a situation occurs when the longitudinal error of the 
vehicle vanishes and it is oriented parallel to the desired direction, but the lateral 
error is not zero. In such a case, in the absence of the second term of the angu-
lar velocity control, the vehicle would get locked in that position and will fail to 
move any further even though the vehicle has not reached the destination point. 
So this additional term is added to the steering  control term. When the vehicle 
gets locked in the above-mentioned situation, this term makes the angular error 
nonzero again and makes the vehicle turn a bit. This gives rise to a longitudinal 
error and the velocity is again nonzero. The term is a sine function of time mul-
tiplied with the square of the lateral error. The sine term varies between –1 and 
1 making this term vary in an oscillatory fashion. The lateral error term makes 
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the quantity bigger when the lateral error is large. So, when the lateral error is 
large the disturbing steer is even larger. This quantity is smaller in comparison to 
the fi rst quantity, so that the cyclic nature of the sine function does not affect the 
result much. Here k1 and k2 are positive constant control gains. The above model 
will be simulated using Matlab in Section 4.5. 

Developing Control for a Car-type Mobile Robot

In this section we will discuss a control strategy developed for the kinematic 
model of a car-type mobile robot discussed in Section 4.3.8. The control objec-
tive is to design a controller for the above kinematic model that forces the actual 
Cartesian position and orientation to a constant reference position. It is impor-
tant to note that the control strategy discussed here is a basic control strategy 
and does not stabilize the vehicle to a desired orientation. It is therefore not very 
useful to implement in most real applications. Nevertheless, it is an easy control 
strategy to start learning. Based on this control objective a simple time-varying 
controller was proposed as follows. 

 v = vpar* e1 (4.37)

 v = vpar* e1 (4.38)

This simply means that, the longitudinal velocity is directly proportional to 
the longitudinal error in the reference system attached to the vehicle. The rate at 
which the wheels should be turned is proportional to the angular orientation of 
the desired position with respect to the reference frame attached to the vehicle. 
Here vpar and cpar are positive constant control gains. After substituting equa-
tions 4.37 and 4.38 into equations 4.28, 4.29, and 4.30, the following closed loop 
error system was developed. 

 
1
 = vpar* e1 * cos q3 (4.39) 

 
2
 = vpar* e1 * sin q3 (4.40)

 )*tan(*
*

3
1

3 ecpar
l

evpar
q ⎟

⎠
⎞⎜

⎝
⎛=  (4.41)

The above model will be simulated using MATLAB in Section 4.5. 

4.5 SIMULATION OF  WMRS USING MATLAB

The behavior of the model and the control strategy can be tested if we can obtain 
the trajectory of the path, when subjected to a given set of conditions. For that 
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we need to get all the values of the state variables (q1, q2, q3) at small intervals 
of time, which can later be plotted to obtain the trajectory of the path followed. 
Hence the above set of fi rst-order differential equations have to be integrated 
in a time interval; given the values of the initial conditions and parameters using 
ode23—a powerful tool of Matlab. Ode23 is a function for the numerical solu-
tion of ordinary differential equations. It can solve simple differential equations 
or simulate complex dynamical systems. It integrates a system of ordinary dif-
ferential equations using second- and third-order Runge-Kutta formulas. This 
particular third-order method reduces to Simpson’s 1/3 rule and uses the third-
order estimate for xout. The process of ode23 is as follows: A string variable with 
the name of the M-fi le that defi nes the differential equations to be integrated. 
The function needs to compute the state derivative vector, given the current 
time and state vector. It must take two input arguments; scalar t (time) and col-
umn vector q (state), and return output argument qdot, a column vector of state 
derivatives. The above set of fi rst-order differential equations was converted into 
the following M-fi le, to execute ode23.

4.5.1 Testing the Control Strategy for a Unicycle-type  Mobile Robot

The  control strategy developed in this section is modeled in  MATLAB and is 
tested for the vehicle to reach different destination points. In this example, we 
will discuss in detail how the simulation results can guide the researcher to pre-
dict a modifi cation in the control strategy so as to optimize the result. The follow-
ing plot is a typical result of  simulation, which shows the trajectories of the state 
variables q1 and q2. The plot presented here is not a visualization of the actual 
model. The trace is plotted with respect to the local reference frame attached 

FIGURE 4.19 (a) Vehicle starting from (5, 5, 0); k1 = 1, k2 = 1; (b) Vehicle starting from 
(−5, −5, 0).

5

4

3

2

1

0

-4

-4

-3

-3

-2

-2 -1 0 1

-1

0

-5

-5-1 0 1 2 3 4 5
  (a) (b)



WHEELED MOBILE ROBOTS 183

to the vehicle chassis. So the destination points in the plots are situated at zero 
and the starting points are the longitudinal and lateral errors. In the following 
plots in Figure 4.19, the vehicle starts with error values e1 and e2 as, (5, 5). The 
parameters are taken as, k1 = 1 and k2 = 1. 

The Optimal Values of the Parameters and k2

The above result shows the plots of the lateral against the longitudinal errors of 
the vehicle when the parameters are chosen to be k1 = 1 and k2 = 1. The values 
of k1 and k2 can be iterated to study their infl uence over the results and fi nd out 
their optimal values that give the best results. From the iteration, the best values 
of the parameters were found to be k1 = 2 and k2 = 0.1. A comparison between 
the two results is shown in Figure 4.20.

From the fi gures it is clear that the lateral error (e2) could not be completely 
eliminated even for the optimal values of the parameters k1 and k2. Still there 
remained a lateral error of about 0.5 units and it did not seem to improve much 
by the change of the values of the parameters. The amplitude of the longitudinal 
oscillations is, however, minimized; but the primary objective was to reduce the 
lateral error, which did not seem to be much affected by a variation in the pa-
rameters. The trajectory has, however, become reasonably smoother in the plot 
than the previous result. The vehicle now undergoes lesser wandering before 
reaching close to the goal position (see Figure 4.20). The reason for this lesser 
wandering of the vehicle accounts for the following: By choosing a smaller value 
of k2 with respect to k1, we are assigning lower weight to the angular error and 
giving more weight to the linear errors. This directly reduces the steering rate 
of the vehicle. Hence, the vehicle remains in more  control. To understand this, 
let us consider driving a real car. If the driver swings the steering wheel too fast 
in response to curves in the road or if the steering wheel is too free, the vehicle 

FIGURE 4.20 (a) The trajectory of the vehicle when, k1 = 1; k2 =1; (b) The trajectory of 
the vehicle with the optimal values of the parameters, k1 = 2; k2 =0.1.
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experiences a lot of swagger in its motion. The motion is in control or smooth if 
he swings the wheel slowly, keeping a fi rm  control over the steering wheel. This 
exactly happens here by choosing a lower value of the parameter k2.

Plotting the  trajectory for 100 seconds we fi nd that the longitudinal error 
swings about 0 positions and the amplitude decreases continuously while the 
lateral error approaches 0 at a very slow rate. This is clear from Figure 4.21.

The enlarged view of the fi nal oscillatory character of the trajectory suggests 
that the longitudinal error swings about 0, while the lateral error very slowly 
nears 0. The reason for this is explained as follows. The angular velocity is the 
sum of two components; – k2e3 and e2

2 sin t. The presence of the sine term ex-
plains the orderly oscillations at the end part of the motion. Since the longitudi-
nal and lateral errors become insignifi cant as the vehicle slowly proceeds toward 
the goal position, the sine term becomes the predominant factor in effecting 
the motion of the vehicle. This makes angular speed vary regularly with time. 
Since the longitudinal speed decreases as the longitudinal error decreases (the 
vehicle approaches close to the goal position), the vehicle travels through lesser 
distance in the same time in which the sine term changes sign; hence resulting 
in decrease of the amplitude of the oscillations as the vehicle approaches the 
destination point. 

A Simple Modifi cation in the Control Strategy

So fi nally we tried to fi nd out if any modifi cation in the model could affect the 
results. A lot of modifi cations were tested and fi nally an introduction of a third 

FIGURE 4.21 (a) The trajectory of the vehicle for 100 seconds: k1 = 1, k2 =1; (b) The magnifi ed 
view of the oscillatory nature of the motion.
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constant, k3, yielded desirable results. When a constant k3 was multiplied with 
the sine terms, the lateral error seemed to almost reduce to zero at a much faster 
rate. The result was smoother  trajectory and faster motion of the vehicle. Higher 
values of constant k3 yielded even better results. The fi nal oscillations seemed to 
almost come down to zero. 

 v1 = –k1e1 (4.42)

 v2 = –k2e3 + k3e2
2 sin t (4.43)

The Results of the Modifi cation

The modifi ed strategy was tested for various values of state variables and param-
eters. The value of the parameter k3 was iterated and it was observed that the 
fi nal result was greatly improved with the increase in the value of k3. For value 
of k3 = 10, the fi nal lateral error was reduced to a very small value and also at a 
much faster rate. This is shown in Figure 4.20(b) where, k1 = 2 and k2 = 0.1. The 
vehicle starts with error values (5, 5, 1) and is simulated for 10 seconds. Figure 
4.22( b) shows the result for k3 = 100 for the same values of k1 and k2. 

It is clearly seen that the result is greatly improved by the application of 
this strategy. The result is also attained at a very fast rate. With the increase in 
the value of k3, the result is also further improved. So in the following result the 
value of k3 is taken to be 100.

From Figure 4.23, we can clearly see the fi nal position of the trajectory. The 
lateral error is 0 and the longitudinal error is less than 0.005 × 10-3, which is small 
enough to neglect. So it is clearly seen how the model got modifi ed. The lateral 
error is 0 in less than 3 seconds. The speed of the vehicle at this point is also 
small enough to assume it to be 0.

FIGURE 4.22 The trajectory of the vehicle with the modifi ed strategy: (a) k3 = 10; and 
(b) k3 = 100.
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From the above discussion, it is clearly seen that the fi nal result has been 
greatly improved by the modifi cation in the strategy. By choosing a higher value 
of k3, we are actually increasing the weight of the second term in the angular 
velocity control term. That means the angle now changes faster than before, and 
hence the vehicle reaches to the point at a faster rate. When the desired distance 
becomes very small, the angular change also becomes small. But by choosing 
higher values of k3, it has become very fast and the amplitude has also increased, 
which makes the steps at which the vehicle nears the destination point bigger. 
But since the second term is a sine function of time it will simply fl uctuate about 
a mean value, with amplitude diminishing slowly. 

4.5.2 Testing the Control Strategy for a Car-type   Mobile Robot

The control strategy developed in this section is modeled in  MATLAB and is 
tested for the vehicle to reach different destination points. The above model and 
strategy was tested in  MATLAB for various values of state variables and param-
eters. The MATLAB program is in Appendix II (a). Two plots are shown below 
in which the vehicle starts from (0, 0, 0) and reaches a destination point. The 
parameters: cpar = 1 and vpar = 1. The model is simulated for 10 seconds. The 
plots show the  trajectory of the vehicle in a plane.

The Problems Encountered

The simulation and testing of the above model in  MATLAB highlighted the fol-
lowing problems.

FIGURE 4.23 The enlarged view.
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FIGURE 4.24 (a) Trajectory while tracing (5, 5); (b) Trajectory while tracing (-5, -5).

FIGURE 4.25 The above fi gure shows how the vehicle goes round the destination point.
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■ The vehicle fails to start at all when the destination point lies on the y-axis 
i.e., when xdes = 0. That is because the value of ddist is zero when xdes is 
equal to zero. So, the velocity v, which is directly proportional to ddist, is also 
zero. Hence the vehicle does not start. 

■ After reaching suffi ciently close to the destination point, the vehicle goes 
round about the point, instead of stopping. 

These points are discussed below and the attempts taken toward solving 
those problems. Here the problems are shown diagrammatically. 
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In Figure 4.25, the above-mentioned problem of circling about the destina-
tion point is illustrated. The reason for this circling round the destination point 
is the following: The vehicle follows such a path that the longitudinal and lat-
eral errors do not decrease proportionately. The longitudinal error decreases 
faster than the lateral error. So when the longitudinal error approaches zero, 
the lateral error becomes quiet large in comparison to it and simultaneously the 
angular error also becomes quiet large. The linear velocity of the vehicle varies 
proportionately with the longitudinal error, whereas the steering angular velocity 
is proportional to the linear velocity as well as the tangent of the angular error. 
Since the value of the tangent becomes quite large when the angle approaches 
π/2, the angular velocity of steering also increases indefi nitely even though the 
linear velocity is very small. That means, even though the velocity decreases 
considerably when the longitudinal error approaches zero, the angular veloc-
ity value increases and makes the vehicle circle about the desired point. So the 
problem can be solved if the linear velocity and the steering angular velocity can 
be controlled in such a way that the vehicle goes straight to the destination point. 
That means, both the longitudinal and lateral error reduce proportionately. The 
 control may be done in the following ways.

■ By choosing suitable functions for vpar and cpar and thereby controlling the 
linear velocity and angular velocity in the desired way. 

■ By making certain improvements in the control strategy to deal with the prob-
lem, if satisfactory results were not obtained by the above two strategies.

The above strategies are applied and tested in the above model. The objec-
tive is to smoothen the motion of the vehicle and to remove all the above-men-
tioned problems so that fi nally, the vehicle should be able to reach all the points 
in the plane smoothly.

Modifi cations in the Control Strategy

A suitable value for vpar and cpar was found out by a lot of iterations. It was 
found that a value of vpar = 2 and cpar = 1.2 gives good results. This made the 
 trajectory much smoother while reaching points suffi ciently close to the origin.

The following modifi cation is made here in the parent strategy to make the 
vehicle trace the points that lie along the lateral axis in the vehicle frame of ref-
erence. That is, by adding a small additional constant quantity to the previous 
equation of the linear velocity. So the linear velocity equation is modifi ed to: 

 v = vpar* e1 + v–0. (4.44)

The angular velocity remains the same as in the previous strategy. This en-
sures that the vehicle would start at all the conditions. But then the problem now 
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arisen due to this strategy is that the vehicle will never stop fi nally, even after 
reaching the point. It will continue to proceed in that direction with the same 
velocity v0. This problem can be solved by choosing a strategy for the vehicle to 
fi nally stop once it comes within a given closeness of the destination point. The 
strategy is as in the following: the velocity of the vehicle greater than a particular 
error value would be according to the previous strategy and velocity of the vehi-
cle for error less than that value is zero. The error value is the absolute distance 
of the instantaneous position value from the destination point. The strategy can 
be represented as follows:

 if ( abs(dist) >= near )    else 

 v = vpar* e1 + v–;   v- = 0

where, dist = the absolute distance of the destination point from the instantane-
ous position of the vehicle and near = the required closeness at which the vehicle 
should stop.

The Result of Modifi cations

The modifi ed strategy was developed in Matlab and tested for various values of 
state variables and parameters. Some plots are shown below in which the vehicle 
starts from (0, 0, 0) and reaches a point in the lateral axis in the vehicle frame of 
reference in both directions. That is, it is to reach (0, y) and (0, -y), where y is a 
variable. The parameters cpar and vpar are taken as cpar = 1 and vpar = 1. The 
parameter v0 is iterated to fi nd the most suitable value for it, so that the previous 
problem of getting stuck at certain points is solved satisfactorily. The strategy is 

FIGURE 4.26 (a) Point to be traced is (0, 50): cpar = 1, and vpar = 1; (b) Point to be traced 
is (0.5, 0.5): cpar = 1, and vpar = 1.
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simulated for 10 seconds. Some plots showing some typical results are also shown 
for clearer visualization of the solution. The following plots show the trajectory 
of the vehicle in a plane. The points to be traced are marked with circles. 

4.5.3  Testing the Control Strategy  Trajectory Following Problem in a Car-type 
 Mobile Robot

The  control strategy developed in this section is modeled in  MATLAB and is 
tested for the vehicle to reach different destination points. Two plots are shown 
in Figure 4.28 in which the vehicle starts from (0, 0, 0) and reaches a destination 
point. The parameters are: v0 = 10, err = 0.01, and c = 0.1. The model is simu-
lated for 10 seconds. The plot shows the trajectory of the vehicle in a plane. The 
desired point is marked with an*.

The Problems Encountered

The model seems to perform quiet nicely from the results except for only one 
problem. The vehicle failed to fi nally stop at the destination point when the er-
ror range (error range is the minimum nearness to the destination point that the 
vehicle is fi nally required to attain) was smaller than a particular value, and that 
value was found to be dependent upon the strip width ‘ε’ of region 1. In the strat-
egy the vehicle was required to go about a circle of radius ‘rb’ until the desired 
point comes into region 1 in the vehicle frame of reference. Given the strategy 
lies in any region initially, the vehicle reaches region 1 quiet nicely. But as soon as 
it reaches very close to the desired point, instead of stopping at the required er-
ror range, the vehicle keeps on tracing circles indefi nitely. The problem is shown 

FIGURE 4.27 (a) Trajectory while tracing (25, 25); (b) Trajectory while tracing (-25, 25).
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in the plots in Figure 4.28. In the plot for the strip width and the radius of the 
error-range, both are taken to be equal to 0.01. 

4.6 The Identifi cation and Elimination of the Problem

The problems were investigated for the possible reasons of failure. A number 
of predictions were made and the solutions were proposed. The fi rst task was to 
isolate the region that contained the problem. 

From a lot of iterative investigation of the above plots, it was observed that 
the region, which is the intersection of regions 1, 3, and 5, is the region where 
the problem occurs. To ensure this intuition the above-mentioned region was 
also included inside the error range, where the vehicle has to stop fi nally. Thus, 
from simple geometrical inspection, the modifi ed error range was found to be,

 c = ε×× br2 . (4.45)

This improvement in the strategy was implemented and simulated. The re-
sult clearly showed the problems removed. So the strategy changes a bit. Now in 
the modifi ed strategy, the error range is not a parameter, but is predefi ned.

So the results clearly indicate that the problem is centered to the above-
mentioned region only. After isolating the region where the problem was cen-
tered, the next task was to investigate the real reason why that problem occurs. 

FIGURE 4.28 (a) The problem occurred when c was chosen to be 0.01, which is equal 
to ε; (b) The problem occurred when c was chosen to be 0.01, which is equal to ε, while 
tracing the point (5, 5). The starting point and the desired point are marked.
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Finally, the problem was found to be the following: when the vehicle touches re-
gion 1, the angular velocity instantly becomes zero. So the desired point, instead 
of getting into region 1, lies at the boundary and slowly proceeds longitudinally. 
In the vehicle frame of reference, the desired point moves along the boundary 
toward the vehicle slowly. This happens because of the discontinuous nature of 
the angular velocity shift. So fi nally, when the desired point comes to the point 
where the border of the circular region intersects region 1, it behaves according 
to the conditions defi ned for being inside region 3. Hence, it attains an angular 
velocity of either +δ0 or −δ0 and instead of stopping there, it moves away from 
the destination point. This way it keeps on tracing circular trajectories indefi -
nitely instead of reaching the desired point and stopping there. The problem 
can be solved if the point lies within region 1 instead of lying at the boundary. 
This can be done by another approach: by making the change of angular velocity 
continuous instead of discrete. 

4.7 Modifying the Model to Make the Variation in Delta Continuous

In the previous strategy, the variation in angular changes was discrete, which is 
not possible practically. So the model needed a modifi cation so as to make the 
process continuous. That means the angular variation will not take place in steps, 
but it will take place continuously. For this a fourth state variable q4 is included 
in the model. This variable is the actual angular change that takes place when a 
step change in the desired angle change takes place. That means there is a time 
lag now between the required value of angular change and the actual change. 
This time-lag factor is taken care of by a parameter k. So now the angular change 
that takes place is, rather than. The modifi ed model is given below.

 
1
 = v*cos q3 (4.46)

 
2
 = v*sin q3 (4.47)
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δ
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l
= , which is the instantaneous radius of curvature of the 

 trajectory of the vehicle, and

 v = the longitudinal velocity applied to the vehicle.
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 δd = the desired value of instantaneous angular defl ection provided to the 
wheels of the vehicle.

This δd is a function of the region in which it lies. It is the same step function 
that was for δ. It is defi ned as follows.

1. For region 1 the angular deviation is,

 δ = 0.

2. For regions 2 and 5 the value of the angular deviation is,

 δd = δ0.

3. For regions 3 and 4 the value of the angular deviation is,

 δd = −δ0.

The Result of the Simulations

The result of the  simulations is shown in Figure 4.29. The vehicle starts from (0, 0), 
and reaches the point (45, 55). For values of err = 0.01 and c = 0.01. The same val-
ues showed problems previously. Now the problem seems to have been solved. 

FIGURE 4.29 A result showing the  trajectory of the vehicle, 
fi nally successful for the desired values of parameters.
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4.8  Developing the Software and Hardware Model of an All-purpose 
Research  WMR

In the following section, we will discuss the development of Turtle, a two-wheeled 
differentially driven wheeled mobile robot, which achieves various patterns of 
motion, by the differential combination of motion between both the wheels. 
The system is held in a statically stable posture with two driving wheels and two 
caster wheels. The hardware of the system consists of the following.

1. Two stepper motors.
2. Two gear reduction arrangements attached with both the wheels.
3. Two wheels attached with the gear reduction arrangements.
4. Two caster wheels.
5. A stepper motor controller circuit.

The objective of the project is to achieve the following.

1. Interfacing the above system with a parallel port.
2. Developing software to  control the system using a parallel port and generate 

the following patterns of motion.

■ Motion in a straight line.
■ Motion along a circle.
■ Motion along a curve of any given radius of curvature.

Interfacing the System with a Parallel Port

Interfacing the above system with a parallel port requires the anatomy of the 
system. So fi rst the system has to be analyzed properly. The existing system can 
be divided into the following three subsystems.

1. Mechanical 
2. Electronic
3. Software

Mechanical Subsystem

The mechanical subsystem comprises of a 4-wheeled vehicle consisting of two 
driving wheels powered by two stepper motors and two castor wheels to support 
the vehicle. It also includes the structure, which houses the motors, batteries, 
the driver circuit, and reduction gearing mechanism. 

The mechanical subsystem derives its input from the electronic subsystem, 
which is basically a stepper motor driving circuit. A schematic for this driving 
circuit is shown in Figure 4.30.
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The software subsystem comprises of the mathematical model of the  WMR, 
the various control strategies, the stepper motor driving algorithm, and the plot-
ting functions used to represent the vehicle motion on the computer display.

Figure 4.30 shows the interrelationship between the three subsystems.

Electronic Subsystem

The electronic subsystem consists of a driver circuit to drive two unipolar step-
per motors. A brief idea is given below. Each of the stepper motors requires four 
bits of  data to drive it. These data energize the various motor coils in a particular 
sequence of patterns. Each pattern causes the motor to move one step. Smooth 
motion results from presenting the patterns in the proper order. A circuit or pro-
gram, which is responsible for converting step and direction signals into winding 
energizing patterns, is called a translator. In our system the translator consists 
of the hardware of a computer and the C++ program to generate signals at the 
parallel port. Our stepper motor control system includes a driver in addition to 
the translator to handle the current drawn by the motor’s windings.

Figure 4.31 shows a schematic representation of the “translator + driver” 
confi guration. There are separate voltages for logic and for the stepper motor. 
The motor will require a different voltage than the logic portion of the system. 
Typically, logic voltage is +5 Vdc and the stepper motor voltage can range from 
+5 Vdc up to about +48 Vdc. The driver is also an “open collector” driver, where-
in it takes its outputs to GND to activate the motor’s windings. 

FIGURE 4.30 The relationship between various subsystems.
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 Interfacing with  Parallel Port Using ULN2003 IC

Figure 4.32 presents a detailed schematic representation of the interfacing of 
the stepper motor with the parallel port using ULN2003 IC. Please refer back to 
Chapter 3 to revise the details about parallel port connections and the internal 
working of a ULN2003 IC. 

The Driver Circuit 

Another approach to control the stepper motor is by using a driver circuit. The 
driver interface to control the motor from is just a transistor switch replicated 

FIGURE 4.31 A typical translator/driver connection.

FIGURE 4.32 The schematic representation of the connections.
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FIGURE 4.33 The unipolar stepper motor driver circuit used in our system.

four times. The transistor controls the current, which is much higher than the 
parallel port sink capacity. This is done to allow for the motor voltage to be 
independent of the PC power supply. Figure 4.32 shows the schematic repre-
sentation of the driver circuit that is used in our system. A positive voltage at the 
transistor base (writing a ‘1’ to the appropriate bit at #Data) causes the transistor 
to conduct. This has the effect of completing the circuit by hooking up ground 
to the motor coil (which has a positive voltage on the other side). So the chosen 
coil is turned on.

Switching is one of the primary uses of transistors. A power transistor is used 
in the driver circuit so that it can switch lots of current (up to fi ve amps for the 
TIP 120). A Darlington transistor is really a transistor pair in a single package 
with one transistor driving the other. A control signal on the base is amplifi ed and 
then drives the second transistor. The resulting circuit cannot only switch large 
currents, but it can do so with a very small controlling current. The resistors are to 
provide current limiting through the parallel port. The diodes are a feature typi-
cal of circuits that handle magnetic coils that are inductive circuits. In this con-
text, the motor windings are the inductive element. Inductors provide a means 
for storage of electrical current. The driving current causes a magnetic fi eld to 
be built up in the coil. As soon as the drive is removed, the magnetic fi eld col-
lapses and causes the inductor to release its stored current. Semiconductors are 
particularly sensitive to these currents (they briefl y become conductors and then 
become permanent nonconductors). The diodes provide a mechanism to safely 
shunt these currents away and, thus, protect the transistors and the computer. 
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The Sequencing of the Stepper  Motors

The stepper motor coils are required to be energized in a particular sequence. 
There are several kinds of sequences that can be used to drive stepper motors. 
The following table gives the sequence for energizing the coils that is used in 
the software of our system. The steps are repeated when reaching the end of the 
table. Following the steps in ascending order drives the motor in one direction; 
going in descending order drives the motor the other way.

The Software Subsystem

The software subsystem generates the signals required to drive the two stepper 
motors so that the vehicle is able to travel in the desired manner. This is attained 
in the following steps.

1. The user provides the desired destination points that the vehicle has to reach. 
The software designates an initial position to the vehicle and defi nes a fi nal po-
sition that the vehicle has to reach in a Cartesian coordinate reference frame. 
Based on these values the software calculates a desired steering angle that the 
vehicle has to rotate and the desired distance that the vehicle has to travel. 

2. Based on these values, the kinematic model of the system decides what 
wheel speeds have to be provided to the individual wheels. The kinematic 
model will be described in detail in the next section.

3. Finally, the stepper motor driving algorithm decides the stepping rate for the 
individual wheels. 

4. The software interface generates a plot of the vehicle while in motion.

FIGURE 4.34 Unipolar stepper motor coil setup (left) and 1-phase drive 
pattern (right).
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The Kinematic Model

The purpose of the kinematic model of the vehicle is to determine the rela-
tionship between the motions of the driving members of the system so that the 
motion is slip free. For a WMR, when the wheels do not skid, the motion is de-
termined by the constraints of the geometry of the system. This kind of dynamic 
system is called a nonholonomic system. The mathematical model of a WMR 
gives the values of the actual vehicle speeds at the various wheels (the two rear 
wheels), when the vehicle is following a certain pattern of motion. These values 
are then implemented in the WMR to control its motion. The turtle is originally 
designed to be a differentially driven vehicle, which is the conventional design 
used in maximum robotic applications. However, the  kinematics can be designed 
in an appropriate manner for the same hardware to behave like a car-type mobile 
robot also. A detailed description of both types of kinematic models will be given 
in the following sections. 

Differentially Driven Wheeled  Mobile Robot

The vehicle motion can be divided into three different modes: straight mode, 
steering mode, and combined motion mode. Any journey of the vehicle is actu-
ally composed of a number of straight and steering modes of travel. Considering 
a vehicle of length ‘l’ and width ‘2b,’ the following relations can be established 
among the control parameters.

In the straight mode the vehicle travels in a straight line without any steer-
ing. In this case both wheels assume the same velocity. 
 vr = vl

In steering mode the vehicle steers either toward the left or right direc-
tion. The two driving wheels have to be provided motion in the desired manner 
following the constraints of motion. In the simplest following case, they are 

FIGURE 4.35 The schematic representation of a 
differentially driven WMR.
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simply driven in opposite directions so that the vehicle revolves about its own 
center. 
 vr = −vl

 or,
 vl = −vr

In combined motion mode, the trajectory that the vehicle follows is an arc. 
In this mode, the vehicle progresses and simultaneously changes the direction of 
motion. The relative pattern of motion of both the wheels can be derived from 
the geometry and condition of nonslip. The relationship is as follows. 

The following are the parameters of the vehicle.

 rho  =  radius of curvature of the path of the center of gravity of the 
vehicle.

 L = length of the vehicle.
 2b  = width of the vehicle.
 v  = the longitudinal speed of the vehicle.
 omega =  angular velocity of the vehicle center, w.r.t. the instantaneous 

center of rotation.
   vl = v(1 – b/rho);
   vr = v(1 + b/rho);

The values generated by the above equations are the exact decimal values 
and usually fractional numbers, and many times generate recurring values, 
however, these values may not be achieved always, due to the following limita-
tion of the hardware. The actuation device used in the WMR i.e.,  stepper mo-
tors can take discrete steps only. Hence, it cannot attain all the discrete values 
of angles generated by the above equations. In such a case the required value 
would lie between two discrete values achievable by the motor, separated by 
the step angle of the motor. So one of the ways to solve this problem could be 
to choose one of the nearest values (usually the nearer) and use it in the vehi-
cle. Rounding off the actual value to the nearest achievable value with respect 
to the step size can do this. The round-off algorithm can do the rounding off 
operation, so that the number of steps to be turned by the motors becomes 
whole numbers.

Determining the Next Step

The system needs a state feedback response to implement closed loop control 
strategies. But the physical system does not have any state feedback response 
to determine its current global or local position. So these values have to be de-
termined from the geometry of motion. Since stepper motors are exact actua-
tion devices, the relative displacements of the wheels can be calculated quite 
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accurately from the kinematic relationships of the motion. This is of course un-
der the assumption that there is no slipping in the wheels and the stepper mo-
tor is strong enough not to miss any step due to insuffi cient torque. Suffi ciently 
strong stepper motors can be used to ensure that the motor provides enough 
torque to overcome missing of steps. Thus the stepper motor can also generate 
very accurate feedback, if modeled correctly. The above  WMR is modeled in 
the following manner to give feedback of its current location.

 q1 = q1 + (x × cos q3 − y × sin q3)

 q2 = q2 + (x × sin q3 + y × cos q3)

 t
l

qq a ××+= δ
υ

tan33

The above WMR is modeled in the following manner to give feedback. The 
velocity of the center of the vehicle or the origin of the local coordinate system 
attached to the vehicle is computed from the corrected velocity, (v_{Rl_{a}},v_
{Rr_{a}}) assumed by the wheels. Thus, the values of actual longitudinal velocity 
v_{a}, and actual steering angle delta_{a} assumed by the vehicle in the previous 
interval can be computed from the above relations.

Hence, the next position of the vehicle in the global reference frame can be 
found out as,

 ==
lp a
aa δ
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FIGURE 4.36 Determining the next step in 
a differentially driven WMR.
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These values of the position coordinates give the new position and orienta-
tion of the vehicle in the global reference frame. Then this point is treated as 
the instantaneous position of the vehicle, and the entire procedure is repeated 
until the vehicle reaches the destination point. The vehicle is assumed to follow 
the  trajectory calculated by the geometry of motion fl awlessly. The small error 
occurring due to slip at the wheels can, however, be neglected.

The Algorithms for the Control 

Software forms the core of the control system. It comprises the set of algorithms 
for performing the different functions involved as well as the implementation of 
these algorithms in the form of a computer program. The entire software system 
can be considered to consist of three components: stepper motor control software; 
 WMR-specifi c functions, which include the kinematic model; and graph plotting 
functions to display the status of motion in real time. The stepper motor control 
software contains the actual hardware-level functions, which generate the appro-
priate  parallel port signals that interact with the electronic hardware. The language 
used for programming is C++ compiled under TurboC++ compiler. In the sections 
that follow, the three software components enumerated above are discussed in 
detail. The source code for the control software is listed in Appendix I.

Stepper Motor Control Software

As discussed in the previous chapter, driving the stepper motors consist of 
switching the windings on and off in a particular sequence. The stepper motor 
control software thus centers on the generation of this sequence of signals. The 
sequence required at each state of the motor shaft depends on the previous 
state. The control software thus has a track of the current state of the motor, and 
it determines the next signal, which is a four-bit sequence, to be generated at 
the parallel port according to this state by a suitable algorithm. Since the system 
consists of three stepper motors, the algorithm also includes the selection of the 
motor to be stepped and the direction in which the step is to be taken.

The stepper motor control software consists essentially of a step function, 
which takes the motor ID and direction as arguments:

 step(motor ID, dir);
This step function is appropriately called by the WMR-specifi c functions. 

Figure 4.37 describes the basic stepping algorithm. With four bits for one 
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motor, the control of three motors requires twelve bits. The parallel port 
organizes data pins into two sets of 8 and 4 bits each, with port addresses 
0x378. Thus port 0x378 handles two motors (for the driving wheels). The 
step function itself doesn’t address the parallel port. After determining the 
next sequence set for the motor to be stepped, it calls a hardware-level func-
tion, which maps the two sequence sets into the bit values of the ports.

 outSignal();
The stepper motor control software contains certain additional functions for 

initializing the motors, for displaying the current position of the motors, and 

FIGURE 4.37 Flowchart describing the stepping 
algorithm.
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a logging function for logging all the steps and their directions taken by each 
motor. For initializing the motors, the motors are given the control signals cor-
responding to the last position in the stepping sequence. This makes sure that 
stepping takes place as we proceed with the fi rst position onward.

WMR-specifi c Functions

The kinematic model and the actual functions for controlling the motion of 
the WMR form the second aspect of the control software. This includes the 
incorporation of the WMR-specifi c  data such as the geometry, the values of the 
angle, and the distance traveled in one step of the stepper motor in the form of 

FIGURE 4.38 Flow of  control of motion.
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program variables (l, w, step-distance, step_angle). The kinematic variables—
velocity of the center, velocity of the left and the right rear wheels, steering 
angle, and the coordinates—are also specifi ed here (v, v_Rl, v_Rr, delta, q1, 
q2, q3). The main functions defi ned in this part of the control software are the 
setSteering() and the moveVehicle() functions. 

The moveVehicle() function is the function that is actually called by the main 
program after it calculates the values of v and delta, which are passed as argu-
ments to this function:

 moveVehicle (delta, v, t, distance);

The parameter t specifi es the time, in seconds, for which the WMR has to 
travel with the particular values of v and delta. The last argument distance is op-
tional and can be used to specify the distance for which the  WMR has to travel 
instead of specifying the time t. The choice between distance and t is based on the 
strategy used for the WMR. Figure 4.38 describes the algorithm for this function.

A peculiar problem encountered in the WMR motion function is that the 
only  control over time is by means of the C++ delay() function. The only thing 
this function is capable of is to suspend the execution of the program for the 
specifi ed duration. In order to step the rear motors independently, we need to 
step the motors at appropriate timings in the step-timing array for the individual 
motors. Since there is no way to execute the stepping sequence simultaneously 
for the two motors, the problem is overcome by combining the step-timing ar-
rays for the individual motors into a single step-timing array. The stepping se-
quence is fi nally executed by calling the step() function for the particular motor 
at each instant defi ned in the combined step-timing array.

The second function, setSteering() is called by the moveVehicle() function itself. 
The moveVehicle() function passes the value of delta as argument to this function:

 setSteering (delta);

This function fi rst determines the increment in the value of the steering an-
gle delta with respect to the current value. It then makes the steering motor take 
the desired number of steps to reach the new value of delta.

Plotting Functions

The plotting portion of the software produces a graphical display of the instanta-
neous positions of the WMR in a two-dimensional coordinate system. It contains 
relevant functions for drawing the coordinate system, displaying the position of 
the WMR at any instant, displaying auxiliary information on the screen such as 
the instantaneous coordinates (q1, q2, q3), and status of the WMR motion (i.e., 
steering or moving, etc.). The most important part of the plotting functions is the 
algorithm for  mapping the WMR coordinate system into the screen coordinate 
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system. As opposed to the WMR coordinate system, the screen coordinate sys-
tem, i.e., the pixel positions, start at the top-left corner of the screen and increase 
from left to right along the width and from top to bottom along the height. The 
basic transformations for  mapping the WMR coordinate system into the screen 
coordinate system are enumerated below.

 q1_p=q1*q1_SF+q1_offset;

 q2_p=screen_h-(q2*q2_SF+q2_offset);

q1_p is the horizontal pixel coordinate corresponding to the q1 axis and q2_
p is the vertical pixel coordinate corresponding to the q2 axis. Thus, the WMR 
coordinates (q1,q2) are mapped into the screen coordinates (q1_p,q2_p). q1_SF 
and q2_SF are the scaling factors along the q1 and q2 axis respectively. q1_ off-
set and q2_offset are the horizontal and vertical offsets of the origin of the WMR 
coordinates from the top-left corner of the screen. The instantaneous position of 
the WMR is displayed by drawing a point at the appropriate screen coordinates. 
This is done by means of a plot() function, which carries the transformation and 
draws a pixel on the screen by using low-level TurboC++ graphics functions: 

 plot(q1,q2,special_fl ag).

The special_fl ag argument can be used to specify the color or style of the plotted 
point. The plot () function is called at appropriate situations by the  WMR-specifi c 
functions when the stepping sequence of the driving rear motors is executed.

Program Organization

The control software is organized into a set of header fi les, which correspond to 
the three components as discussed in the beginning of this chapter. In addition 
to these three header fi les, we have the main program, which includes these 
header fi les and which contains the strategy for the determination of the values 
of v and delta. For a simple, predetermined path-following program, the main 
program serves to simply input the values of v, delta, and t. The control is then 
transferred to the header fi les. For automatic tracking, the main program con-
tains the algorithm for calculating the values of v, delta, and t in a loop, which 
terminates when the desired position has been reached. The general structure 
of the main program is shown in Figure 4.39.

The header fi les are included in the beginning of the program so that the 
main program can access the functions defi ned in these header fi les. The func-
tions for initializing the motors and the graphics display are called before the 
other routines. Then we have the main motion loop of the  WMR in which the v 
and delta are calculated according to the mode of motion i.e., trajectory tracking 
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or automatic control. Finally, after the motion loop is executed, the graphics are 
closed by calling the closeGFX () function.

Running  Turtle 

The C++ program for the above project is in Appendix II. The program can be 
run through Turbo C in DOS. Turtle can be run with the  parallel port of the 
computer using the following instructions. 

Step 1: Provide turtle with a 12 V regulated power supply. The red and black 
wires are the positive and negative terminals of the power supply to be fed to  Turtle. 

Step 2: Connect the parallel port male connector with the female connector 
in the CPU. 

Step 3: Run the executable fi les in the computer to generate the signals. 
Working with executable fi les is described in detail in the following section.

Working with Turtle through an executable fi le:
Turtle can be run through the executable fi le, turtle2.exe. The fi le is located 

on the CD-ROM in the folder.exe fi les.
Caution: The fi les egavga.bgi and egavga.obj should also be transferred along 

with the .exe fi les, in case the fi les are required to be transferred to another location.
Double-clicking on  Turtle2.exe displays the command prompt window shown in 

Figure 4.41. 
The four choices are described here.

L – Choosing this option generates the log.txt fi le in the source folder. This 
fi le contains the information about the motion for a detailed analysis later. On 
each execution a new one displaces the old log fi le.

O
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FIGURE 4.39

Include<stepper.h>
Include<wmr.h>
Include<plot.h>
main()
{
initializeMotors();
initializeGFX();
----main motion loop----
calculating u, delta;
moveVehivle(delta,v,t);
----------------------------------
closeGFX();
}
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FIGURE 4.41 Window asking for motion type.

Log staus  (L)  / Display onscreen (D) / Both  (B) / None (N) : 1
Do you want a motion along an arc (c) or to destination points (p)? _

D – Choosing this option shows the information of the log fi le on the screen, 
while the execution takes place. Log fi le is not generated.

B – Choosing this option shows the information of the log fi le on the screen. 
A log fi le is also generated.

FIGURE 4.40 Status window for a type of log fi le generation.

Log staus (L) Display onscreen (D) Both (B) None (N):
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FIGURE 4.42 Motion along an arc (specifi cations).

Log staus (L) / Display onscreen (D) / Both (B) / None  (N) : 1
Do you want a motion along an arc(c) or to destination points(p)? c

Enter the Details of the path :-
radius=100
velocity=15
angle=180_

N – Choosing this option neither shows the information on screen, nor is the 
log fi le generated.

Once one of these four choices is selected, the screen in Figure 4.41 ap-
pears. It asks the user for the type of motion that is desired, e.g., motion along a 
circular arc or motion to destination points.

Motion along a circular arc:

If the choice ‘c’ is entered, the motion takes place along a circular arc. It asks for 
the following information from the user about the parameters of the path.

Radius – It is the required radius of the curvature of the path that  Turtle is 
required to travel. The value is to be entered in ‘millimeters.’

Velocity – It is the required velocity of travel of the center of location of 
 Turtle. The value is to be entered in ‘millimeters/second.’

Angle – It is the total angle that  Turtle has to turn through. The value is to 
be entered in ‘degrees.’

The screen Figure 4.42 appears when these values are entered.
Once these values are entered, the execution begins and the real-time graphi-

cal simulation of the motion in Cartesian coordinates appears on the screen. The 
screen looks like the Figure 4.43 while the execution takes place.
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Motion to destination points:

If the choice ‘P’ is entered, the motion takes place to the destination points 
specifi ed by the user. It asks for the following information from the user about 
the parameters of the path.

x – The desired longitudinal Cartesian coordinate of the destination point.
y – The desired lateral Cartesian coordinate of the destination point.

The screen in Figure 4.44 appears when these values are entered.
The log fi le generated:
 —Interval 1 Step Log—
 delta_a=1.107149, delta_a_increment=3.23646, motor F-steps=204, 

with delay=10ms, in   dir=0
 v_a=19.98, v_Rl_a=19.98, v_Rr_a=19.98
Global coordinates of vehicle CoG: [17.74898335.801888,1.11055]
 motor Rl - 55 steps
 motor Rr - 55 steps
 ———————————
 —Interval 2 Step Log—
 delta_a=-0.004141, delta_a_increment=-0.015865, motor F-steps=1, 

with delay=10ms, in   dir=1
 v_a=19.98, v_Rl_a=19.98, v_Rr_a=19.98
Global coordinates of vehicle CoG: [35.49796771.603775,1.11055]

FIGURE 4.43 Graphical simulation of arc-type motion.
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 motor Rl - 55 steps
 motor Rr - 55 steps
 ———————————
 —Interval 3 Step Log—
 delta_a=-0.005293, delta_a_increment=-0.015865, motor F-steps=1, 

with delay=10ms, in   dir=1
 v_a=19.98, v_Rl_a=19.98, v_Rr_a=19.98
Global coordinates of vehicle CoG: [53.246952107.405663,1.11055]
 motor Rl - 55 steps
 motor Rr - 55 steps
 ———————————
 —Interval 4 Step Log—
 delta_a=-0.007332, delta_a_increment=-0.015865, motor F-steps=1, 

with delay=10ms, in   dir=1
 v_a=19.98, v_Rl_a=19.98, v_Rr_a=19.98
Global coordinates of vehicle CoG: [70.995934143.20755,1.11055]
 motor Rl - 55 steps
 motor Rr - 55 steps
 ———————————
 —Interval 5 Step Log—
 delta_a=-0.011927, delta_a_increment=-0.03173, motor F-steps=2, with 

delay=10ms, in   dir=1
 v_a=20.35, v_Rl_a=20.35, v_Rr_a=20.35

FIGURE 4.44 The screen having the coordinate values entered.

Log staus (L) / Display onscreen (D)  / Both  (B)  /  None  (N)  : 1
Do you want a motion along an arc (c) or to destination  points (p)? p

Enter destination co-ordinates:
x=100
y=200
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Global coordinates of vehicle CoG: [89.649818179.381058,1.094685]
 motor Rl - 55 steps
 motor Rr - 55 steps
 ———————————
 —Interval 6 Step Log—
 delta_a=0.010885, delta_a_increment=0, motor F-steps=0, with 

delay=10ms
 v_a=14.8, v_Rl_a=14.8, v_Rr_a=14.8
Global coordinates of vehicle CoG: [96.433052192.535065,1.094685]
 motor Rl - 20 steps
 motor Rr - 20 steps
 ———————————
 —Interval 7 Step Log—
 delta_a=0.030359, delta_a_increment=0, motor F-steps=0, with 

delay=10ms
 v_a=7.4, v_Rl_a=7.4, v_Rr_a=7.4
Global coordinates of vehicle CoG: [99.824669199.112061,1.094685]
 motor Rl - 10 steps
 motor Rr - 10 steps
 ———————————

FIGURE 4.45 Graphical simulation of point-to-point-type motion.
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C h a p t e r

5.1 INTRODUCTION TO ROBOTIC MANIPULATORS

Most robotic manipulators are strong rigid devices with powerful mo-
tors, strong gearing systems, and very accurate models of the dynamic 
response. For undemanding tasks it is possible to precompute and ap-

ply the forces needed to obtain a given velocity. This control is called computed 
torque control. Alternatively, a high-gain feedback on joint angle control leads 
to an adequate tracking performance. The important control problem is one 
of understanding and controlling the manipulator kinematics. Very few robots 
are regularly pushed to the limit where the dynamic model becomes important 
since this will lead to greatly reduce operational life and high maintenance costs. 
In this chapter we consider that part of the manipulator kinematics known as 
forward kinematics.

O

N THE CD

KINEMATICS OF ROBOTIC 
MANIPULATORS5

In This Chapter

• Introduction to Robotic Manipulators
• Position and Orientation of Objects in Space
• Forward Kinematics
• Inverse Kinematics
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5.2 POSITION AND ORIENTATION OF OBJECTS IN SPACE

5.2.1 Object Coordinate Frame: Position, Orientation, and Frames

The manipulator hand’s complete information can be specifi ed by position and 
orientation. The position of a point can be represented in Cartesian space by a 
set of three orthogonal right-handed axes X, Y, Z, called principal axes, as shown 
in Figure 5.1. The origin of the principal axes is at O along with three unit vec-
tors along these axes.

The position and orientation pair can be combined together and defi ned as 
an entity called frame, which is a set of four vectors, giving position and orienta-
tion information.

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

1

where,

000
1000 zzzz

yyyy

xxxx

pasn

pasn

pasn

Pasn
F

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
z

y

x

p

p

p

P

The above equation represents the general representation of a frame. In 
the above frame, n, s, and a are the unit vectors in the three mutually per-
pendicular directions, which represent the orientation, and P represents the 
position vector. 

FIGURE 5.1 Position of a point P in 
a Cartesian coordinate frame.
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5.2.2  Mapping between Translated Frames

Translation along the z-x axis
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P

O

X
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N
VN

VO

(VN
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Px = Distance between XY and NO coordinate frames. 
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5.2.3 Mapping between Rotated Frames

Rotation (around the z-axis).
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Y = Angle of rotation between the XY and NO coordinate axis.
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∆ can be considered with respect to the
XY coordinates or NO coordinates.
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(Substituting for VNO using the N 
and O components of the vector.)
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Now generalizing the results for three dimensions, the rotation between two 
frames about different axes are:
– Rotation about the x-axis with 
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Where,

 C θ= Cos
 S = Sin

a general rotation between any two frames can be represented as:
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5.2.4  Mapping between Rotated and Translated Frames
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(Note: Px, Py are relative to the original coordinate frame. Translation fol-
lowed by rotation is different than rotation followed by translation.)

In other words, knowing the coordinates of a point (VN, VO) in some coor-
dinate frame (NO) you can fi nd the position of that point relative to your original 
coordinate frame (XOYO).

5.2.5 Homogeneous Representation

Putting it all into a matrix.

What we found by 
doing a translation 
and a rotation.
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Simplifying into a 
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The  coordinate transformation from frame B to frame A can be represented 
as:
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5.3 FORWARD KINEMATICS

In this section, we will develop the forward or confi guration kinematic equations 
for rigid robots. The forward kinematics problem is concerned with the relation-
ship between the individual joints of the robot manipulator and the position and 
orientation of the tool or end-effector. Stated more formally, the forward kinemat-
ics problem is to determine the position and orientation of the end-effector, given 
the values for the joint variables of the robot. The joint variables are the angles 
between the links in the case of revolute or rotational joints, and the link extension 
in the case of prismatic or sliding joints. The forward kinematics problem is to be 
contrasted with the inverse kinematics problem, which will be studied in the next 
section, and which is concerned with determining values for the joint variables that 
achieve a desired position and orientation for the end-effector of the robot.

5.3.1 Notations and Description of Links and Joints

A robot manipulator is composed of a set of links connected together by various 
joints. The joints can either be very simple, such as a revolute joint or a prismatic 
joint, or they can be more complex, such as a ball and socket joint. A revolute joint 
is like a hinge and allows a relative rotation about a single axis, and a prismatic joint 
permits a linear motion along a single axis, namely an extension or retraction. The 
difference between the two situations is that, in the fi rst instance, the joint has only 
a single degree of freedom of motion: the angle of rotation in the case of a revolute 
joint, and the amount of linear displacement in the case of a prismatic joint. In 
contrast, a ball and socket joint has two degrees of freedom. With the assump-
tion that each joint has a single degree of freedom, the action of each joint can be 
described by a single real number: the angle of rotation in the case of a revolute 
joint or the displacement in the case of a prismatic joint. The objective of forward 
kinematic analysis is to determine the cumulative effect of the entire set of joint 
variables. In this section we will develop a set of conventions that provide a sys-
tematic procedure for performing this analysis. It is, of course, possible to carry out 
forward kinematics analysis even without respecting these conventions. However, 
the kinematic analysis of an n-link manipulator can be extremely complex and the 
conventions introduced below simplify the analysis considerably. Moreover, they 
give rise to a universal language with which robot engineers can communicate.

The following steps are followed to determine the forward kinematics of a 
robotic manipulator. 

1. Attach an inertial frame to the robot base. 
2. Attach frames to links, including the end-effector. 
3. Determine the homogenous transformation between each frame.
4. Apply the set of transforms sequentially to obtain a fi nal overall transform.
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However, there is a standard way to carryout these steps for robot manipula-
tors; it was introduced by Denavit and Hartenberg in1955 (J. Denavit and R.S. 
Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Ma-
trices,” Journal of Applied Mechanics, pp. 215–221, June 1955.) The key ele-
ment of their work was providing a standard means of describing the geometry 
of any manipulator, so that step 2 above becomes obvious. A robotic manipulator 
is a chain of rigid links attached via a series of joints. Given below is a list of pos-
sible joint confi gurations.

1.  Revolute joints: Are comprised of a single fi xed axis of rotation. 
2.  Prismatic joints: Are comprised of a single linear axis of movement.
3.  Cylindrical joints: Comprise two degrees of movement, revolute around an 

axis and linear along the same axis.
4.  Planar joints: Comprise two degrees of movement, both linear, lying in a 

fi xed plane (A gantry-type confi guration).
5.  Spherical joints: Comprise two degrees of movement, both revolute, around 

a fi xed point (A ball joint conûguration).
6.  Screw joints: Comprised of a single degree of movement combining rotation 

and linear displacement in a fi xed ratio.

However, the last 4 joint confi gurations can be modeled as a degenerate concat-
enation of the fi rst two basic joint types.

Revolute Prismatic

Cylindrical Planar

Screw Spherical

FIGURE 5.2 Some possible joint confi gurations.
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Axis i –1
Link i –1

ai –1

a
i –1

Axis i

FIGURE 5.3 Representation of link length.

5.3.2  Denavit-Hartenberg Notation

Denavit-Hartenberg notation looks at a robot manipulator as a set of serially at-
tached links connected by joints. Only joints with a single degree of freedom are 
considered. Joints of a higher order can be modeled as a combination of single 
dof joints. Only prismatic and revolute joints are considered. All other joints are 
modeled as combinations of these fundamental two joints. The links and joints 
are numbered starting from the immobile base of the robot, referred to as link 
0, continuing along the serial chain in a logical fashion. The fi rst joint, connect-
ing the immobile base to the fi rst moving link is labeled joint1, while the fi rst 
movable link is link1. Numbering continues in a logical fashion. The geometrical 
confi guration of the manipulator can be described as a 4-tuple, with 2 elements 
of the tuple describing the geometry of a link relative to the previous link. 

A: Link length 
α : Link twist 

And the other 2 elements describing the linear and revolute offset of the link:

d : Link offset 
θ : Joint angle

Let’s look at the details of these parameters for link i-1 and joint i of the chain.
Link length, ai-1: Consider the shortest distance between the axis of link i-1 

and link i in R3.This distance is realized along the vector mutually perpendicular 
to each axis and connecting the two axes. The length of this vector is the link 
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length ai-1. Note that link length need not be measured along a line contained in 
the physical structure of the link. Although only the scalar link length is needed 
in the mathematical formulation of joint transformations, the vector direction 
between joint axes is also important in understanding the geometry of a robotic 
manipulator. Thus, we use the terminology of link length both as a scalar denot-
ing the distance between links and as a vector ai-1direction that points from the 
axis of joint (i-1) to joint i and such that ai-1= |ai-1|. 

Axis i –1 Link i –1

ai –1

a
i –1

Axis i

FIGURE 5.4 Representation of link twist.
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FIGURE 5.5 Representation of link offset.
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Link Twist, αi-1: Consider the plane orthogonal to the link length ai-1.Both 
axis vectors of joint i-1 and I lie in this plane. Project the axes vectors of joints I 
and i-1 onto this plane. The link twist is the angle measured from joint axis i-1 
to joint axis i in the right-hand sense around the link length ai-1. Direction of ai-1 
taken as from axis i-1 to i. This is to say that αi-1 will be positive when the link 
twist (by the right-hand rule) is in the positive direction of ai-1. 

Link Offset, di: On the joint axis of joint I consider the two points at which 
the link lengths ai-1 and ai are attached. The distance between these points is the 
link offset, measured positive from the ai-1 to ai connection points. 

Joint Angle, θi: Consider a plane orthogonal to the joint axis i. By construc-
tion, both link length vectors ai-1 and ai lie in this plane. The joint angle is calcu-
lated as the clockwise angle that the link length ai-1 must be rotated to be colinear 
with link length ai. This corresponds to the right-hand rule of a rotation of link 
length ai-1 about the directed joint axis. 

5.3.3 First and Last Links in the Chain 

Certain parameters in the fi rst and last links in a chain are automatically speci-
fi ed, or can be arbitrarily specifi ed by convention: 

 a0 = 0 = an 
 α0 = 0 = θn 
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FIGURE 5.6 Representation of joint angle.
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If joint 1 (resp. joint n) is revolute: 

1. The zero position for d1 (resp. dn) can be chosen arbitrarily. 
2. The link offset is set to zero d1 = 0 (resp. dn = 0). 

If joint 1 (resp. joint n) is prismatic: 

1. The zero position for d1 (resp. dn) can be chosen arbitrarily. 
2. The joint angle is set to zero θ1 = 0 (resp. θn = 0). 

5.3.4 Summary: D.H. Parameters 

The four parameters are: 

ai Link length: Displacement of joint axis I from joint axis i-1.
αi Link twist: Twist of axis i with respect to axis i-1.
di Link offset: Linear displacement of the joint i along the axis of joint i. 
θi Joint angle: Rotational displacement of the joint i around the axis of joint i. 

■ For a revolute joint, link offset is fi xed and joint angle is a controlled variable.
■ For a prismatic joint, joint angle is fi xed and link offset is a controlled variable.

The fi rst two parameters, link length and link twist, are always fi xed parame-
ters. So, for any robot with n single-dof revolute or prismatic joints, there will be:

■ Three n fi xed parameters, termed the link parameters. The link parameters 
describe the fi xed kinematics of the mechanism. 

■ N controlled parameters (one for each joint), termed the joint variables.

For example, for a six-jointed robot with all revolute joints (anthropomor-
phic arm) the link parameters are (ai, αi, di) for i=1,..., 6, a set of 18 numbers.
Applying the conventions for the zero link and last link of a robotic manipulator

 (a0, α0) = (0, 0) = (an, αn).

(The world frame is taken as fi xed at the center of the fi rst joint.)

Since the fi rst link is revolute d1 = 0. 
Since the last link is revolute dn = 0. 

Thus, the geometry of an anthropomorphic robotic manipulator is speciûed 
by 14 numbers a1 and •1 along with (ai, αi, di) for I = 2,..., 5. The joint variables 
are (θ1,..., θ6). 

NOTE
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5.3.5 Kinematic Modeling Using D-H Notations

With the machinery of the  Denavit-Hartenberg notation available, the process 
of attaching frames to links for the purpose of determining the manipulator’s 
forward kinematics is relatively straight forward. 

A frame is attached to each link of the robot manipulator. The frame at-
tached to link I is denoted as {i}.

1. The origin of the frame for link I is placed at the intersection of the joint axis 
of link I with the vector direction ai (connecting link axis i with link axis i + 1). 

2. The direction Zi is chosen in the direction of the link axis. 
3. The direction Xi is chosen to lie along the vector ai connecting link axis i to 

axis i + 1. (Note that choosing the direction of Xi is equivalent to choosing the 
direction in which the twist €i is measured.) 

4. The direction Yi is fi xed by the choice of Xi and Zi and the right-hand rule, Yi 
= Zi × Xi. 

5.3.6 Special Cases

Base Link: The base frame (orlink0) is the effective inertial frame for the ma-
nipulator kinematics. Choose this inertial frame such that it is coincident with 
link frame 1 when the robot is its zeroed position. 
Thus,
 a0 = 0, α0 = 0 

Axis i – 1 Axis i

Link i – 1

ai – 1
αi

θi

d
i

ai – 1

Ŷi – 1 Ŷi 
Link i

XiXi – 1

Zi – 1

Zi

FIGURE 5.7 Schematic representation of a link.
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and
 d1 = 0 if joint 1 is revolute or θ1 = 0 if joint 1 is prismatic. 

Final Link: Again, choose the frame for link n coincident with the frame for 
link n-1 in the robot zeroed position. Thus, again

 an = 0, αn = 0 
and 
 dn = 0 if joint 1 is revolute or αn = 0 if joint 1 is prismatic. 

Link i: 

1. If the joint length ai = 0 is zero (i.e., intersecting joint axes), choose Xi to be 
orthogonal to the plane spanned by {Zi, Zi+1}. 

2. If {Zi, Zi+1} are collinear, then the only non trivial arrangements of joints is 
either prismatic/revolute or revolute/prismatic, i.e., a cylindrical joint.

3. The joint angle θi = 0 in the zeroed position of the robot.

Link Parameters in Terms of Attached Frames

ai : The distance from Zi to Zi+1 measured along Xi. 
ai : The vector distance aiXi. 
αi : The angle between Zi and Zi+1 measured about the axis Xi. 
di : The distance from Xi-1 to Xi measured along Zi. 
θi : The angle between Xi-1 and Xi measured about the axis Zi. 

Note that the conventions are usually chosen such that ai > 0 is a conse-
quence of the choices made. Since ai is a distance, it is generally written as a 
positive number even if Xi is chosen in the negative direction. 

Summary of Link Frame Attachment Procedure

1. Identify the joint axes and imagine (or draw) infi nite lines along them. For 
steps 2 through 5 below, consider two neighboring axes (i and i+1).

2. Identify the common perpendicular, or point of intersection, between the 
neighboring axes. At the point of intersection, or at the point where the com-
mon perpendicular meets the ith axis, assign the link frame origin.

3. Assign the Zi axis pointing along the ith joint axis.
4. Assign the Xi axis pointing along the common perpendicular, or if the axes 

intersect, assign Xi to be normal to the plane containing the two axes.
5. Assign the Yi axis to complete a right-hand coordinate system.
6. Assign the {0} frame to match the {1} frame when the fi rst joint variable is zero. 

For the {N} frame choose an origin location and XN direction freely, but gen-
erally, so as to cause as many linkage parameters as possible to become zero.
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Note that the frame attachment convention above does not result in a unique 
attachment of frames. For example, the Zi axis can be attached in either direc-
tion of the frame axis. This is not a problem—we end up with the same answer.

5.3.7 Forward Kinematics of a Manipulator 

We now have frames attached to each link of the manipulator, including an iner-
tial frame at the base of the robot.

We know we want to solve for  as per 
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However, we need the 4x4 homogeneous transformation matrices corre-
sponding to i

i-1T, i=1...N, and for a general robotic mechanism. These are dif-
fi cult to write down from inspection.

Recall that the rigid body transformation between any two links

 Ti
i
1− : {i} →     {i −1}

depends on the three link parameters ai-1 and zi-1 (and either θi or di depending on 
whether the joint is prismatic or revolute). The joint variable (either di or θi) is actu-
ated so that the transformation from frame {i} to frame {i-1} can be written down as
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FIGURE 5.8 Schematic representation of a link.
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We can write down the 4x4 homogeneous transformation matrix represent-
ing i

i-1T by inspection by introducing three other frames to each link. Denote 
these frames as {P},{R}, and {Q}.

Computing the Transformation from Link i to Link i-1 

For each link i-1 assign the three intermediate frames of reference {P}, {R}, and {Q} by:

1. Frame {R} is made coincident with frame {i-1} except for a rotation about the 
joint i-1 axis by αi-1.

2. Frame {Q} is given the same orientation as {R}, but is translated along Xi-1by 
ai-1 so that its origin lies on the axis of joint i. 

3. Frame {P} is made coincident with frame {Q} except for a rotation about the 
joint I axis by θi. It then goes without saying that frame {P} and frame {i} dif-
fer only by a translation di. 

We then may write )()()()( 1
11

1 i
P
ii

Q
Pi

R
Q
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R

i
i dTTaTTT

I
θα −
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= .
Note that each transformation depends on a single parameter, so we can eas-

ily write down each element on the RHS.
Expanding out gives the full expression for the link transformation: 
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Actuator Space, Joint Space, and Cartesian Space 

The position and orientation of the end-effector and its pose can be parameter-
ized in a number of different coordinates paces.

For an n-degree-of-freedom (dof) robot, we need generally require n pa-
rameters to describe the end-effectors pose.

1. Cartesian space is standard Euclidean position along with orientation infor-
mation. The pose of the end-effector in Cartesian space is given by the ho-
mogeneous transformation .

2. Joint space is the parameterization given by the set of joint variables. For 
example, for a SCAR A robot with a single degree of freedom in the wrist 
(θ1, θ2, d3, θ4). 

3. Actuator space is associated with the mechanism used to actuate a joint. 
Thus, in certain situations, a linear actuator (say, a hydraulic cylinder) is used 
to actuate a revolute joint. The actuator space has each of its coordinate axes 
defi ned by one of the actuator variables.
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We have seen that the  mapping from joint space into Cartesian space is ac-
complished via the homogeneous transformation )()....()( 1

2
1
21

0
1

0
N

N
NN TTTT θθθ −=  

and is known as the forward kinematics of the manipulator.
The reverse  mapping )........( 1

0
NNT θθ→  is known as the inverse kinematics. 

We will cover this in the next section. 

5.3.8 Examples of Forward Kinematics

The solution of the direct kinematics problem is now explained for an industrial 
robot with 6 joints, which is the  PUMA 562 robot. Figure 5.9 shows the robot 
with its joints and links. Figure 5.10 presents the robot with its different frame 
locations. 
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FIGURE 5.9  PUMA industrial robot with 6 revolute 
joints.
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FIGURE 5.10 DH-frame assignment for the  PUMA robot.
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The link frame assignment for the  PUMA 562 is presented according to 
DH-notation in Figure 5.10. 

The location of DH-frames and DH-parameters is shown in Figure 5.11, 
where the ‘zero’ position for the  PUMA joints is assumed. 

Transformations between all neighboring frames are given by the following 
DH-transformations: 
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FIGURE 5.11  PUMA frames in the joint ‘zero’ position.
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Multiplication of these matrices leads to the complete transformation from 
tool frame toward base frame, which solves the direct kinematics problems:
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5.4 INVERSE KINEMATICS

Inverse kinematics is the determination of all possible and feasible sets of joint 
variables, which would achieve the specifi ed positions and orientations of the 
manipulator’s end-effector with respect to the base frame. In practice, a robot 
manipulator control requires knowledge of the end-effector position and orien-
tation for the instantaneous location of each joint as well as knowledge of the 
joint displacements required to place the end-effector in a new location. Many 
industrial applications such as welding and certain types of assembly operations 
require that a specifi c path should be negotiated by the end-effector. To achieve 
this, it is necessary to fi nd the corresponding motion of each joint, which will 
produce the desired tip motion. This is a typical case of inverse kinematic ap-
plication.

5.4.1 Workspace

The workspace of a manipulator is defi ned as the volume of space in which the 
manipulator is able to locate its end-effector. The work space gets specifi ed by 
the existence or nonexistence of solutions to the inverse problem. The region 
that can be reached by the origin of the end-effector frame with at least one ori-
entation is called the reachable workspace (RWS). If a point in workspace can be 
reached only in one orientation, the manipulatoribility of the end-effector is very 
poor and it is not possible to do any practical work satisfactorily with just one 
fi xed orientation. It is, therefore, necessary to look for the points in workspace 
that can be reached in more than one orientation. The space where the end-ef-
fector can reach every point from all orientations is called dexterous workspace 
(DWS). It is obvious that the dexterous workspace is either smaller (subset) or 
the same as the reachable workspace.
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As an example, consider a two-link, nontrivial (2-DOF)-planar manipulator 
having link lengths L1 and L2. The RWS for this manipulator is plane annular 
space with radii r1 = L1+L2  and r2 = |L1-L2|. The DWS for this case is null. Inside 
the RSW there are two possible orientations of the end-effector for a given posi-
tion, while on the boundaries of the RWS the end-effector has only one orienta-
tion. For the special case of L1 = L2, the RWS is a circular area and DWS is a 
point at the center. It can be shown that for a 3-DOF redundant planar manipu-
lator having link-lengths L1, L2, and L3 with (L1 + L2)> L3, the RWS is a circle of 
radius (L1 + L2 + L3), while the DWS is a circle of radius (L1 + L2 - L3).

The reachable workspace of an n-DOF manipulator is the geometric locus 
of the points that can be achieved by the origin of the end-effector frame as de-
termined by the position vector of the direct kinematic model. To locate the tool 
point or end-effector at n arbitrary position with an arbitrary orientation in 3D 
space, a minimum of 6-DOF are required.

The dexterous workspace may almost approach the reachable workspace. 
The manipulator work space is characterized by the mechanical joint limits in 
addition to the confi guration and the number of degrees of freedom of the ma-
nipulator. In practice, the joint range of revolute motion is much less than 360 
degrees for the revolute joints and is severely limited for prismatic joints, due 
to mechanical constraints. This limitation greatly reduces the workspace of the 
manipulator and the shape of workspace may not be similar to the ideal case.

To understand the effect of mechanical joint limits on the workspace, con-
sider the 2-DOF planar manipulator with L1>L2 and joint limits on θ1 and θ2

 

-600 ≤ q1 ≤ 600

-1000  ≤ q2  ≤ 100 .0

For these joint limits, considering θ1 = θ2 = 0 as home position, the annular 
workspace gets severely limited. The work space, obtained geometrically, is not 
annular any more, rather it has a complex shape.

Thus, the factors that decide the workspace of a manipulator apart from the 
number of degrees of freedom are the manipulator’s confi guration, link lengths, 
and the allowed range of joint motions.

5.4.2 Solvability

Inverse kinematics is complex because solutions are found for nonlinier si-
multaneous equations, involving transcendental (harmonic sine and cosine) 
functions. The number of simultaneous equations is also generally more than 
the number of unknowns, making some of the equations mutually dependent. 
These conditions lead to the possibility of multiple solutions or nonexistence of 
any solution for the given end-effector position and orientation. The existence 
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FIGURE 5.12 A frame in Cartesian space.

x

y

z
P(px, py, pz)

n

s
a

of solutions, multiple solutions, and methods of solutions are discussed in the 
following sections.

There are two approaches to the solution of the inverse problem, closed-
form solutions and numerical solutions. In the closed-form solution, joint dis-
placements are determined as explicit functions of the position and orienta-
tion of the end-effector. In numerical methods, iterative algorithms such as the 
Newton-Raphson method are used. The numerical methods are computation-
ally intensive and by nature slower compared to closed-form methods. Iterative 
solutions do not guarantee convergence to the correct solution in singular and 
degenerate cases. 

The closed form in the present context means a solution method based on 
analytical algebraic or kinematic approach, giving expressions for solving un-
known joint displacements. The closed-form solutions may not be possible for 
all kinds of structures. A suffi cient but not necessary condition for a 6-DOF 
manipulator to possess closed-form solutions is that either its three consecutive 
joint axes intersect or its three consecutive joint axes are parallel. The kinematic 
equations under either of these conditions can be reduced to algebraic equations 
of a degree less than or equal to four, for which closed-form solutions exist. Al-
most every industrial manipulator today satisfi es one of these conditions so that 
closed-form solutions may be obtained. Manipulator arms with other kinematic 
structures may be solvable by analytical methods.

5.4.3 Closed form Solutions

Twelve equations, out of which only six are independent, are obtained by equat-
ing the elements of the manipulator transformation matrix with end-effector 
confi guration matrix T. At the same time, only six of the twelve elements of T 
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specifi ed by the end-effector position and orientation are independent. For a 
manipulator with more than six DOF, the number of independent equations 
may also be fewer than six. Several approaches such as, inverse transform, screw 
algebra, and kinematic approach, and so on, can be used for solving these equa-
tions but none of them in general so as to solve the equations for every manipu-
lator. A composite approach based on direct inspection, algebra, and inverse 
transform is presented here, which can be used to solve the inverse equations for 
a class of simple  manipulators.
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Another useful technique to reduce the complexity is dividing the problem 
into two smaller parts—the inverse kinematics of the arm and the inverse kin-
ematics of the wrist. The solutions of the arm and the wrist each with, say, 3-DOF 
are obtained separately. These solutions are combined by coinciding the arm end-
point frame with the wrist-based frame to get the total manipulator solution.

5.4.4 Algebraic vs. Geometric Solution

Inverse Kinematics of a Two-link  Manipulator

 

Given: l1, l2, x, y

Find: U1, U2

Redundancy: A unique solution to 
this problem does not exist. Notice, 
that using the “given” two solutions 
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is possible.
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The Geometric Solution
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(x, y)
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Using the law of cosines:
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We know what θ2 is from the previous slide. We need to solve for θ1. Now we 
have two equations and two unknowns (sin θ1 and sin θ1).
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5.4.5 Solution by a Systematic Approach

The above example is a simple two-link case, where the solution can be found 
out directly, since it contains only a few equations.

The elements of the left-hand-side matrix of the equation (section 5.4.3) are 
functions of n joints displacement variables. The elements of the right-hand-side 
matrix T are the desired position and orientation of the end-effector and are 
either constant or zero.

As the matrix equality implies element-by-element equality, 12 equations 
are obtained. To fi nd the solution for n joint displacement variables from these 
12 equations, the following guidelines are helpful.

(a) Look at the equations involving only one joint variable. Solve these equations 
fi rst to get the corresponding joint variable solutions.

(b) Next, look for pairs or a set of equations that could be reduced to one equa-
tion in one joint variable by application of algebraic and trigonometry identi-
ties.

(c) Use the arc tangent (Atnt2) function instead of the arc cosine or arc sine 
functions. The two-argument Atnt2 (y, x) function returns the accurate angle 
in the range of such that θ lies between -π to π. By examining the sign of both 
y and x and detecting whenever either x or y is 0.

Notice this is the law of cosines 
and can be replaced by x2 + y2.
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(d) Solutions in terms of the element of the position vector components of 0Tn 
are more effi cient than those in terms of elements of the rotation matrix, as 
that latter may involve solving more complex equations.

(e)  In the inverse kinematic model, the right-hand side of the equation (section 
5.4.3) is known, while the left-hand side has n unknowns (q1 , q2……qn). The 
left-hand side consists of products of n link transformation matrices, that is 

 
0 Tn   =

0T1
  1T2

 2 T3….
 n-1Tn = T.

Recall that each i-1Ti is a function of only one unknown qi . Premultiplying 
both sides by the inverse of 0T1 yields

 
1Tn=

1T2
2T3….

 n-1Tn   = [0T1]
-1 T.

The left-hand side of the equation now has (n-1) unknowns (q2, q3, ….. , 
qn) and the right-hand side matrix has only one unknown, the q1. The matrix 
elements of the right-hand side are zero, constant, or the function of the joint 
variable q1. A new set of 12 equations is obtained and it may now be possible 
to determine q1 from the results of equations using guideline (a) or (b) above. 
Similarly, by postmultiplying both sides of the equation by the inverse of n-1Tn, 
unknown equation qn can be determined. This process can be repeated by solv-
ing for one unknown at a time, sequentially from q1 to qn or qn to q1, until all like 
unknown are found. This is known as the inverse transform approach.

The above systematic approach can be applied to fi nd the inverse kinematic 
solution of manipulators having more than 2 DOF. The interested reader can 
refer to texts of robotic  manipulators for examples of inverse  kinematics involv-
ing more degrees of freedom.
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C h a p t e r

6.1 CLASSIFICATION OF SENSORS

There are a wide variety of sensors used in mobile robots (Figure 6.1). 
Some sensors are used to measure simple values like the internal temper-
ature of a robot’s electronics or the rotational speed of the motors. Other, 

more sophisticated sensors can be used to acquire information about the robot’s 
environment or even to directly measure a robot’s global position. We classify 
sensors using two important functional axes: 

■ proprioceptive/exteroceptive and
■ passive/active.

6
In This Chapter

• Classifi cation of Sensors
• Encoders and Dead Reckoning
• Infrared Sensors
• Ground-based RF Systems
• Active Beacons
• Ultrasonic Transponder Trilateration
• Accelerometers
• Gyroscopes 
• Laser Range Finder
• Vision-based Sensors
• Color-tracking Sensors
• Sensor Mounting Arrangement
• Design of the Circuitry
• Reading the Pulses in a Computer

CLASSIFICATION OF 
SENSORS
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Proprioceptive sensors measure values internal to the system (robot); for 
example, motor speed, wheel load, robot arm  joint angles, and battery voltage.

Exteroceptive sensors acquire information from the robot’s environment; 
for example, distance measurements, light intensity, and sound amplitude. 
Hence, exteroceptive sensor measurements are interpreted by the robot in or-
der to extract meaningful environmental features.

Passive sensors measure ambient environment energy entering the sen-
sor. Examples of passive sensors include temperature probes, microphones, and 
CCD or CMOS cameras.  

Active sensors emit energy into the environment, and then measure the envi-
ronmental reaction. Because active sensors can manage more controlled interac-
tions with the environment, they often achieve superior performance. However, 
active sensing includes several risks: the outbound energy may affect the very 
characteristics that the sensor is attempting to measure. Furthermore, an active 
sensor may suffer from interference between its signal and those beyond its con-
trol. For example, signals emitted by other nearby robots, or similar sensors on the 
same robot may infl uence the resulting measurements. Examples of active sensors 
include wheel quadrature encoders, ultrasonic sensors, and laser range fi nders.

The table below gives a classifi cation of the most useful sensors for mobile 
robot applications. 

FIGURE 6.1 Examples of robots with multisensor systems. (a) Helpmate from Transition Research 
Corporation; (b) BIBA Robot, BlueBotics SA.

  (a) (b)
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Where:
 A: Active
 P: Passive
 A/P: Active/Passive
 PC: Proprioceptive
 EC: Exteroceptive
The sensor classes in Table 6.1 are arranged in ascending order of complex-

ity and descending order of technological maturity. Tactile sensors and prospec-
tive sensors are critical to virtually all mobile robots, and are well understood 
and easily implemented. Commercial quadrature encoders, for example, may be 
purchased as part of a gear-motor assembly used in a mobile robot. At the other 
extreme, visual interpretation by means of one or more CCD/CMOS cameras 
provides a broad array of potential functionalities, from obstacle avoidance and 

TABLE 6.1 Classifi cation of Sensors Used in Mobile Robotics Applications

General Classifi cation (typical use) Sensor (Sensor System) PC or EC A or P

Tactile Sensors
(detection of physical contact or close-
ness; security switches) Wheel/motor sen-
sors (wheel/motor speed and position)

Heading sensors (orientation of the robot 
in relation to a fi xed reference frame)
Ground-based  beacons (localization
 in a fi xed reference  frame)

Active ranging (refl ectivity, time-of-
fl ight, and geometric triangulation)
Laser rangefi nder

Motion/speed sensors (speed 
relative to fi xed or moving objects)
Vision-based sensors (visual 
ranging, whole-image analysis, 
segmentation, object recognition)

Contact switches, Bumpers,
 Optical barriers,
Noncontact proximity sensors
Brush encoders
Potentiometers
Synchroes, Resolvers
Optical encoders
Magnetic encoders
Inductive encoders
Capacitive encoders
Compass
Gyroscope
Inclinometers
GPS
Active optical or  RF beacons
Active ultrasonic beacons
Refl ective beacons
Refl ective sensors
 Ultrasonic sensors
EC
Optical triangulation (1D)
Structured light (2D)
Doppler radar
CCD/CMOS camera(s)
Visual ranging packages
Object tracking packages

EC
EC
EC
PC
PC
PC
PC
PC
PC
 PC
EC
PC
EC
EC
EC
EC
EC
EC
EC
A

EC
EC
EC
EC
EC

P
A
A
P
P
A
A
A
A
A
P
P

A/P
A
A
A
A
A
A
A

AAAAA
A
A
A
A
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localization to human face recognition. However, commercially available sensor 
units that provide visual functionalities are only now beginning to emerge.

6.2 ENCODERS AND DEAD RECKONING

Dead reckoning (derived from “deduced reckoning” of sailing days) is a sim-
ple mathematical procedure for determining the present location of a vessel by 
advancing some previous position through known course and velocity informa-
tion over a given length of time. The vast majority of land-based mobile robotic 
systems in use today rely on dead reckoning to form the very backbone of their 
navigation strategy, and like their nautical counterparts, periodically null out ac-
cumulated errors with recurring “fi xes” from assorted navigation aids. 

The most simplistic implementation of dead reckoning is sometimes termed 
odometry; the term implies vehicle displacement along the path of travel is di-
rectly derived from some onboard “odometer.” A common means of odometry 
instrumentation involves optical encoders directly coupled to the motor arma-
tures or wheel axles. 

Since most mobile robots rely on some variation of wheeled locomotion, 
a basic understanding of sensors that accurately quantify angular position and 
velocity is an important prerequisite to further discussions of odometry. There 
are a number of different types of rotational displacement and velocity sensors 
in use today: 

■ Brush encoders. 
■ Potentiometers. 
■ Synchros.  
■ Resolvers. 
■  Optical encoders. 
■ Magnetic encoders.
■ Inductive encoders. 
■ Capacitive encoders. 

A multitude of issues must be considered in choosing the appropriate device 
for a particular application. For mobile robot applications, incremental and ab-
solute optical encoders are the most popular type. We will discuss those in the 
following sections. 

 Optical Encoders 

The fi rst optical encoders were developed in the mid-1940s by the Baldwin 
Piano Company for use as “tone wheels” that allowed electric organs to mimic 
other musical instruments. Today’s corresponding devices basically embody 
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a miniaturized version of the break-beam proximity sensor. A focused beam 
of light aimed at a matched photo detector is periodically interrupted by a 
coded opaque/transparent pattern on a rotating intermediate disk attached to 
the shaft of interest. The rotating disk may take the form of chrome on glass, 
etched metal, or photoplast such as mylar. Relative to the more complex alter-
nating-current resolvers, the straightforward encoding scheme and inherently 
digital output of the optical encoder result in a low-cost reliable package with 
good noise immunity. 

There are two basic types of optical encoders: incremental and absolute. The 
incremental version measures rotational velocity and can infer relative position, 
while absolute models directly measure angular position and infer velocity. If 
nonvolatile position information is not a consideration, incremental encoders 
generally are easier to interface and provide equivalent resolution at a much 
lower cost than absolute optical encoders. 

Incremental  Optical Encoders 

The simplest type of incremental encoder is a single-channel tachometer en-
coder, basically an instrumented mechanical light chopper that produces a cer-
tain number of sine- or square-wave pulses for each shaft revolution. Adding 
pulses increases the resolution (and subsequently the cost) of the unit. These 
relatively inexpensive devices are well suited as velocity feedback sensors in me-
dium- to high-speed control systems, but run into noise and stability problems at 
extremely slow velocities due to quantization errors. The tradeoff here is resolu-
tion versus update rate: improved transient response requires a faster update 
rate, which for a given line count reduces the number of possible encoder pulses 
per sampling interval. 

In addition to low-speed instabilities, single-channel tachometer encoders 
are also incapable of detecting the direction of rotation and thus cannot be used 
as position sensors. Phase-quadrature incremental encoders overcome these 
problems by adding a second channel, displaced from the fi rst, so the resulting 
pulse trains are 90 degrees out of phase as shown in Figure 6.2. This technique 
allows the decoding electronics to determine which channel is leading the other 
and hence ascertain the direction of rotation, with the added benefi t of increased 
resolution. 

The incremental nature of the phase-quadrature output signals dictates that 
any resolution of angular position can only be relative to some specifi c reference, 
as opposed to absolute. Establishing such a reference can be accomplished in 
a number of ways. For applications involving continuous 360-degree rotation, 
most encoders incorporate as a third channel a special index output that goes 
high once for each complete revolution of the shaft (see Figure 6.2). 

Intermediate shaft positions are then specifi ed by the number of encoder up 
counts or down counts from this known index position. One disadvantage of this 
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approach is that all relative position information is lost in the event of a power 
interruption. 

In the case of limited rotation, such as the back-and-forth motion of a pan 
or tilt axis, electrical limit switches and/or mechanical stops can be used to es-
tablish a home reference position. To improve repeatability this homing action 
is sometimes broken into two steps. The axis is rotated at reduced speed in the 
appropriate direction until the stop mechanism is encountered, whereupon rota-
tion is reversed for a short predefi ned interval. The shaft is then rotated slowly 
back into the stop at a specifi ed low velocity from this designated start point, thus 
eliminating any variations in inertial loading that could infl uence the fi nal hom-
ing position. This two-step approach can usually be observed in the power-on 
initialization of stepper-motor positioners for dot-matrix printer heads. 

Alternatively, the absolute indexing function can be based on some external 
referencing action that is decoupled from the immediate servo-control loop. A 
good illustration of this situation involves an incremental encoder used to keep 
track of platform steering angles. For example, when the K2A Navmaster [CY-
BERMOTION] robot is fi rst powered up, the absolute steering angle is un-
known, and must be initialized through a “referencing” action with the docking 
 beacon, a nearby wall, or some other identifi able set of landmarks of known ori-
entation. The up/down count output from the decoder electronics is then used 
to modify the vehicle heading register in a relative fashion. 

A growing number of very inexpensive off-the-shelf components have con-
tributed to making the phase-quadrature incremental encoder the rotational 
sensor of choice within the robotics research and development community. Sev-
eral manufacturers now offer small DC gear-motors with incremental encoders 
already attached to the armature shafts. Within the U.S. automated guided ve-
hicle (AGV) industry, however, resolves are still generally preferred over optical 
encoders for their perceived superiority under harsh operating conditions.

FIGURE 6.2 The observed phase relationship between Channel A and B pulse trains can be 
used to determine the direction of rotation with a phase-quadrature encoder, while unique 
output states S - S allow for up to a four-fold increase in resolution. The single slot in the outer 
track generates one index pulse per disk rotation.
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Interfacing an incremental encoder to a computer is not a trivial task. A 
simple state-based interface as implied in Figure 6.2 is inaccurate if the encoder 
changes direction at certain positions and false pulses can result from the inter-
pretation of the sequence of state changes. 

A more versatile encoder interface is the HCTL 1100 motion controller chip 
made by Hewlett Packard [HP]. The HCTL chip performs not only accurate 
quadrature decoding of the incremental wheel encoder output, but it provides 
many important additional functions, including among others: 

■ closed-loop position control, 
■ closed-loop velocity control in P or PI fashion, 
■ 24-bit position monitoring. 

The HCTL 1100 has been tested and used in many different mobile robot 
control interfaces. The chip has proven to work reliably and accurately, and it is 
used on commercially available mobile robots, such as the TRC LabMate and 
HelpMate. The HCTL 1100 costs only $40 and it comes highly recommended. 

Absolute  Optical Encoders 

Absolute encoders are typically used for slower rotational applications that require 
positional information when potential loss of reference from power interruption 
cannot be tolerated. Discrete detector elements in a photovoltaic array are indi-
vidually aligned in break-beam fashion with concentric encoder tracks as shown 
in Figure 6.3, creating, in effect, a noncontact implementation of a commutating 

FIGURE 6.3 A line source of light passing through a coded pattern of opaque and 
transparent segments on the rotating encoder disk results in a parallel output that uniquely 
specifi es the absolute angular position of the shaft (adapted from [Agent, 1991]).
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brush encoder. The assignment of a dedicated track for each bit of resolution 
results in larger-size disks (relative to incremental designs), with a corresponding 
decrease in shock and vibration tolerance. A general rule of thumb is that each 
additional encoder track doubles the resolution but quadruples the cost.

Instead of the serial bit streams of incremental designs, absolute optical en-
coders provide a parallel word output with a unique code pattern for each quan-
tized shaft position. The most common coding schemes are Gray code, natural 
binary and binary-coded decimal. The Gray code is characterized by the fact 
that only one bit changes at a time, a decided advantage in eliminating asynchro-
nous ambiguities caused by electronic and mechanical component tolerances 
(see Figure 6.4a). Binary code, on the other hand, routinely involves multiple 
bit changes when incrementing or decrementing the count by one. For example, 
when going from position 255 to position 0 in Figure 6.4b, eight bits toggle 
from 1s to 0s. Since there is no guarantee all threshold detectors monitoring 
the detector elements tracking each bit will toggle at the same precise instant, 
considerable ambiguity can exist during state transition with a coding scheme 
of this form. Some type of handshake line signaling valid data available would 
be required if more than one bit were allowed to change between consecutive 
encoder positions. 

Absolute encoders are best suited for slow and/or infrequent rotations such 
as steering angle encoding, as opposed to measuring high-speed continuous (i.e., 
drive wheel) rotations as would be required for calculating displacement along 
the path of travel. Although not quite as robust as resolvers for high-temperature, 
high-shock applications, absolute encoders can operate at temperatures over 125 
OC, and medium-resolution (1,000 counts per revolution) metal or mylar disk 

FIGURE 6.4 Rotating an 8-bit absolute Gray-code disk. a. 
Counterclockwise rotation by one position increment will cause 
only one bit to change. b. The same rotation of a binary-coded 
disk will cause all bits to change in this particular case (255 to 0) 
illustrated by the reference line at twelve o’clock.

a. b.
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designs can compete favorably with resolvers in terms of shock resistance. A 
potential disadvantage of absolute encoders is their parallel data output, which 
requires a more complex interface due to the large number of electrical leads. A 
13-bit absolute encoder using complimentary output signals for noise immunity 
would require a 28-conductor cable (13 signal pairs plus power and ground), 
versus only six for a resolver or incremental encoder.

6.3  INFRARED SENSORS

Theory of Operation 

A line sensor in its simplest form is a sensor capable of detecting a contrast 
between adjacent surfaces, such as difference in color, roughness, or magnetic 
properties. The simplest would be detecting a difference in color, for example, 
black and white surfaces. Using simple optoelectronics, such as infrared photo-
transistors, color contrast can easily be detected. Infrared emitter/detectors or 
phototransistors are inexpensive and are easy to interface to a microcontroller. 

The theory of operation is simple and for brevity, only the basics will be con-
sidered. For more information about the physics of these sensors, please refer to 
an optoelectronics and heat transfer text. For now we will consider the basic ef-
fects of light and what happens when it shines on a black or white surface. When 
light shines on a white surface, most of the incoming light is refl ected away from 
the surface. In contrast, most of the incoming light is absorbed if the surface is 
black. Therefore, by shining light on a surface and having a sensor to detect the 
amount of light that is refl ected, a contrast between black and white surfaces can 
be detected. Figure 6.5 shows an illustration of the basics just covered. 

FIGURE 6.5 Light refl ecting off a white and black surface. More light 
is refl ected from the white surface compared to the black surface.
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Using what we know about black and white surfaces, the objective of track-
ing a line is simple and can be achieved using the appropriate sensors. In this 
section, we will consider the use of two pairs of emitters and detectors. The drive 
confi guration for the robot is assumed to be differential, i.e., like the tracks of an 
army tank vehicle. Two pairs of sensors are used to keep the robot on the line as 
it moves. Each sensor output is monitored to determine the location of the tape 
relative to the robot. The main objective of the robot is to position itself such that 
the tape line falls between the two extreme sensors. If the tape line ever ventures 
past these two extreme sensors, then the robot corrects by turning in the appro-
priate direction to maintain tracking. Two different types of light sensors set up 
in the confi guration will be used for line tracking. 

6.4 GROUND-BASED  RF SYSTEMS 

Ground-based RF position location systems are typically of two types: 

■ Passive hyperbolic line-of-position phase-measurement systems that com-
pare the time-of-arrival phase differences of incoming signals simultaneous-
ly emitted from surveyed transmitter sites. 

■ Active radar-like trilateration systems that measure the round-trip propaga-
tion delays for a number of fi xed-reference transponders. Passive systems 
are generally preferable when a large number of vehicles must operate in the 
same local area, for obvious reasons. 

6.4.1  LORAN 

An early example of the fi rst category is seen in  LORAN (short for long range 
navigation). Developed at  MIT during World War II, such systems compare the 
time of arrival of two identical signals broadcast simultaneously from high-power 
transmitters located at surveyed sites with a known separation baseline. For each 
fi nite time difference (as measured by the receiver) there is an associated hyper-
bolic line of position as shown in Figure 6.6. Two or more pairs of master/slave 
stations are required to get intersecting hyperbolic lines resulting in a two-di-
mensional (latitude and longitude) fi x. 

The original implementation (LORAN A) was aimed at assisting convoys 
of liberty ships crossing the North Atlantic in stormy winter weather. Two 100 
kW slave transmitters were located about 200 miles on either side of the mas-
ter station. Non-line-of-sight ground-wave propagation at around 2 MHz was 
employed, with pulsed as opposed to continuous-wave transmissions to aid in 
sky-wave discrimination. The time-of-arrival difference was simply measured as 
the lateral separation of the two pulses on an oscilloscope display, with a typical 
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accuracy of around 1 µs. This numerical value was matched to the appropriate 
line of position on a special  LORAN chart of the region, and the procedure then 
repeated for another set of transmitters. For discrimination purposes, four dif-
ferent frequencies were used, 50 kHz apart, with 24 different pulse repetition 
rates in the neighborhood of 20 to 35 pulses per second. In situations where the 
hyperbolic lines intersected more or less at right angles, the resulting (best-case) 
accuracy was about 1.5 kilometers. 

LORAN A was phased out in the early ’80s in favor of LORAN C, which 
achieves much longer over-the-horizon ranges through use of 5 MW pulses ra-
diated from 400-meter (1,300 ft.) towers at a lower carrier frequency of 100 
kHz. For improved accuracy, the phase differences of the fi rst three cycles of 
the master and slave pulses are tracked by phase-lock-loops in the receiver and 
converted to a digital readout, which is again cross-referenced to a preprinted 
chart. Effective operational range is about 1,000 miles, with best-case accuracies 
in the neighborhood of 100 meters (330 ft.). Coverage is provided by about 50 
transmitter sites to all U.S. coastal waters and parts of the North Atlantic, North 
Pacifi c, and the Mediterranean. 

6.4.2  Kaman Sciences Radio Frequency Navigation Grid 

The Unmanned Vehicle Control Systems Group of  Kaman Sciences Corpo-
ration, Colorado Springs, CO, has developed a scaled-down version of a LO-
RAN-type hyperbolic position-location system known as the Radio Frequency 
Navigation Grid (RFNG). The original application in the late 1970s involved 

FIGURE 6.6 For each hyperbolic line-of-position, length ABC minus 
length AC equals some constant K.
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autonomous route control of unmanned mobile targets used in live-fi re test-
ing of the laser-guided Copperhead artillery round. The various remote vehicles 
sense their position by measuring the phase differences in received signals from 
a master transmitter and two slaves situated at surveyed sites within a 30 km2 

(18.75 mi2 ) area as shown in Figure 6.7. System resolution is 3 centimeters (1.5 
in.) at a 20 Hz update rate, resulting in a vehicle positioning repeatability of 1 
meter (3.3 ft.). 

Path trajectories are initially taught by driving a vehicle over the desired 
route and recording the actual phase differences observed. This fi le is then 
played back at run time and compared to measured phase difference values, 
with vehicle steering servoed in an appropriate manner to null any observed er-
ror signal. Velocity of advance is directly controlled by the speed of fi le playback. 
Vehicle speeds in excess of 50 km/h (30 mph) are supported over path lengths of 
up to 15 kilometers (9.4 mi.). Multiple canned paths can be stored and changed 
remotely, but vehicle travel must always begin from a known start point due to an 
inherent 6.3 meters (20 ft.) phase ambiguity interval associated with the grid. 

The Threat Array Control and Tracking Information Center (TACTIC) is 
offered by  Kaman Sciences to augment the RFNG by tracking and displaying 
the location and orientation of up to 24 remote vehicles. Real-time telemetry 
and recording of vehicle heading, position, velocity, status, and other designated 
parameters (i.e., fuel level, oil pressure, and battery voltage) are supported at a 1 
Hz update rate. The TACTIC operator has direct control over engine start, auto-
matic path playback, vehicle pause/resume, and emergency halt functions. Non-
line-of-sight operation is supported through use of a 23.825 MHz grid frequency 
in conjunction with a 72 MHz control and communications channel. 

6.4.3 Precision Location Tracking and Telemetry System 

Precision Technology, Inc., of Saline, MI, has recently introduced to the au-
tomotive racing world an interesting variation of the conventional phase-shift 

FIGURE 6.7  Kaman sciences 1500 W navigation grid is a scaled-down version of the  LORAN 
concept, covering an area 8 to 15 km on a side with a position location repeatability of 1 m.
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FIGURE 6.8 Motorola’s Mini-ranger  Falcon 484 R position-location system provides 
2 m (6.5 ft.) accuracy over ranges of 100 m to 75 km (328 ft. to 47 mi.).
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measurement approach (type 1  RF system). The company’s precision location 
tracking and telemetry system employs a number of receive-only antennae situ-
ated at fi xed locations around a racetrack to monitor a continuous sine wave 
transmission from a moving vehicle. By comparing the signals received by the 
various antennae to a common reference signal of identical frequency generated 
at the base station, relative changes in vehicle position with respect to each an-
tenna can be inferred from resulting shifts in the respective phase relationships. 
The 58 MHz VHF signal allows for non-line-of-sight operation, with a resulting 
precision of approximately 1 to 10 centimeters (0.4 to 4 in.). From a robotics per-
spective, problems with this approach arise when more than one vehicle must be 
tracked. The system costs $200,000 to $400,000, depending on the number of 
receivers used, but the system is not suitable for indoor operations. 

6.4.4 Motorola Mini-ranger  Falcon 

An example of the active transponder category of ground-based RF position-lo-
cation techniques is seen in the Mini-ranger  Falcon series of range positioning 
systems offered by the Government and Systems Technology Group of Motoro-
la. The  Falcon 484 confi guration depicted in Figure 6.8 is capable of measuring 
line-of-sight distances from 100 meters (328 ft.) out to 75 kilometers (47 miles). 
An initial calibration is performed at a known location to determine the turn-
around delay (TAD) for each transponder (i.e., the time required to transmit a 
response back to the interrogator after receipt of interrogation). The actual dist
ance between the interrogator and a given transponder is found by: 

 2

C)TT(
D dc −

= .
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Where,

   D = separation distance 
   Te = total elapsed time 
   Td = transponder turnaround delay 
   c = speed of light. 

The MC6809-based range processor performs a least-squares position solu-
tion at a 1 Hz update rate, using range inputs from two, three, four, or 16 pos-
sible reference transponders. The individual reference stations answer only to 
uniquely coded interrogations and operate in C-band (5410 to 5890 MHz) to 
avoid interference from popular X-band marine radars. Up to 20 mobile users 
can time share the  Falcon 484 system (50 ms per user maximum). System reso-
lution is in tenths of units (m., ft., or yd.) with a range accuracy of 2 meters (6.5 
ft.) probable. 

Power requirements for the fi xed-location reference stations are 22 to 32 
VDC at 13 W nominal, 8.5 W standby, while the mobile range processor and its 
associated transmitter-receiver and display unit draw 150 W at 22 to 32 VDC. 
The  Falcon system comes in different, customized confi gurations. Complete sys-
tem cost is $75,000 to $100,000. 

6.4.5 Harris Infogeometric System 

Harris Technologies, Inc., is developing a ground-based R-position location and 
communications strategy wherein moderately priced infogeometric (IG) devices 
cooperatively form self-organizing instrumentation and communication net-
works. Each IG device in the network has full awareness of the identity, location, 
and orientation of all other IG devices and can communicate with other such 
devices in both party-line and point-to-point communication modes. 

The IG devices employ digital code-division-multiple-access (CDMA) 
spread-spectrum R hardware that provides the following functional capabilities: 

■ Network-level mutual autocalibration. 
■ Associative location and orientation tracking. 
■ Party-line and point-to-point data communications (with video and audio 

options).
■ Distributed sensor data fusion. 

Precision position location on the move is based on high-speed range trilatera-
tion from fi xed reference devices, a method commonly employed in many instru-
mentation test ranges and other tracking system applications. In this approach, 
each  beacon has an extremely accurate internal clock that is carefully synchronized 
with all other  beacon clocks. A time-stamped (coded) R signal is periodically sent 
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by each transmitter. The receiver is also equipped with a precision clock, so that 
it can compare the timing information and time of arrival of the incoming signals 
to its internal clock. This way, the system is able to accurately measure the signals’ 
time of fl ight and thus the distance between the receiver and the three  beacons. 
This method, known as “differential location regression” is essentially the same as 
the locating method used in global positioning systems (GPS). 

To improve accuracy over current range-lateration schemes, the HTI system 
incorporates mutual data communications, permitting each mobile user access 
to the time-tagged range measurements made by fi xed reference devices and all 
other mobile users. This additional network-level range and timing information 
permits more accurate time synchronization among device clocks, and automatic 
detection and compensation for uncalibrated hardware delays. 

Each omnidirectional CDMA spread-spectrum “geometric” transmission 
uniquely identifi es the identity, location, and orientation of the transmitting 
source. Typically the available geometric measurement update rate is in excess 
of 1,000 kHz. Harris quotes a detection radius of 500 meters (1,640 ft.) with 
100 mW peak power transmitters. Larger ranges can be achieved with stronger 
transmitters. Harris also reports on “centimeter-class repeatability accuracy” ob-
tained with a modifi ed transmitter called an “interactive  beacon.” Tracking and 
communications at operating ranges of up to 20 kilometers (12.5 mi.) are also 
supported by higher transmission power levels of 1 to 3 W. Typical “raw data” 
measurement resolution and accuracies are cited in Table 6.2. 

Enhanced tracking accuracies for selected applications can be provided as cited 
in Table 6.3. This signifi cant improvement in performance is provided by sensor data 

TABLE 6.2 Raw Data Measurement Resolution and Accuracy

Parameter Resolution Biasing

Range 1
3.3

5 m
16.4 ft.

Bearing (Az, El) 2 20

Orientation (Az) 2 20

TABLE 6.3  Enhanced Tracking Resolution and Accuracies Obtained 
through Sensor Data Fusion

Parameter Resolution Biasing

Range 0.1–0.3
0.3–0.9

0.1–0.3 m
0.3–0.9 ft.

Bearing (Az, El) 0.5–1.0 0.5–1.0˝

Orientation (Az) 0.5–1.0 0.5–1.0˝
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fusion algorithms that exploit the high degree of relational redundancy that is char-
acteristic for infogeometric network measurements and communications.

Infogeometric enhancement algorithms also provide the following capabilities: 

■ Enhanced tracking in multipath and clutter—permits precision robotics 
tracking even when operating indoors. 

■ Enhanced near/far interference reduction—permits shared-spectrum op-
erations in potentially large user networks (i.e., hundreds to thousands). 

Operationally, mobile IG networks support precision tracking, communica-
tions, and command and control among a wide variety of potential user devices. 
A complete infogeometric positioning system is commercially available at a cost 
of $30,000 or more (depending on the number of transmitters required). The 
system also requires an almost clear “line of sight” between the transmitters and 
receivers. In indoor applications, the existence of walls or columns obstructing 
the path will dramatically reduce the detection range and may result in errone-
ous measurements, due to multipath refl ections. 

6.5 ACTIVE  BEACONS 

Active beacon navigation systems are the most common navigation aids on ships 
and airplanes. Active beacons can be detected reliably and provide very accurate 
positioning information with minimal processing. As a result, this approach al-
lows high sampling rates and yields high reliability, but it does also incur high 
cost in installation and maintenance. Accurate mounting of beacons is required 
for accurate positioning. For example, land surveyors’ instruments are frequent-
ly used to install beacons in a high-accuracy application. Kleeman notes that: 

“Although special beacons are at odds with notions of complete robot au-
tonomy in an unstructured environment, they offer advantages of accuracy, sim-
plicity, and speed—factors of interest in industrial and offi ce applications, where 
the environment can be partially structured.” 

One can distinguish between two different types of active beacon systems: 
trilateration and triangulation. 

6.5.1 Trilateration 

Trilateration is the determination of a vehicle’s position based on distance measure-
ments to known beacon sources. In trilateration navigation systems there are usu-
ally three or more transmitters mounted at known locations in the environment and 
one receiver on board the robot. Conversely, there may be one transmitter on board 
and the receivers are mounted on the walls. Using time-of-fl ight information, the 
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system computes the distance between the stationary transmitters and the onboard 
receiver.  Beacon systems based on ultrasonic sensors are another example. 

6.5.2 Triangulation 

In this confi guration there are three or more active transmitters (usually infrared) 
mounted at known locations in the environment, as shown in Figure 6.9. A rotat-
ing sensor on board the robot registers the angles λ1, λ2 , and λ3 at which it “sees” 
the transmitter beacons relative to the vehicle’s longitudinal axis. From these three 
measurements the unknown x- and y- coordinates and the unknown vehicle ori-
entation θ can be computed. Simple navigation systems of this kind can be built 
very inexpensively. One problem with this confi guration is that the active beacons 
need to be extremely powerful to insure omnidirectional transmission over large 
distances. Since such powerful beacons are not very practical it is necessary to fo-
cus the beacon within a cone-shaped propagation pattern. As a result, beacons are 
not visible in many areas, a problem that is particularly grave because at least three 
beacons must be visible for triangulation. A commercially available sensor system 
based on this confi guration was tested at the University of Michigan in 1990. The 
system provided an accuracy of approximately ±5 centimeters (±2 in.), but the 
aforementioned limits on the area of application made the system unsuitable for 
precise navigation in large open areas. 

Triangulation methods can further be distinguished by the specifi cs of their 
implementation: 

FIGURE 6.9 The basic triangulation problem: a rotating sensor head measures the three angles λ1, λ2, 
and λ3 between the vehicle’s longitudinal axes and the three sources s1,s2, and s3.
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a. Rotating Transmitter-receiver, Stationary Refl ectors: In this implementa-
tion there is one rotating laser beam on board the vehicle and three or more 
stationary retrorefl ectors are mounted at known locations in the environment. 

b. Rotating Transmitter, Stationary Receivers: Here the transmitter, usu-
ally a rotating laser beam, is used on board the vehicle. Three or more sta-
tionary receivers are mounted on the walls. The receivers register the inci-
dent beam, which may also carry the encoded azimuth of the transmitter. 

For either one of the above methods, we will refer to the stationary devices 
as “ beacons,” even though they may physically be receivers, retrorefl ectors, or 
transponders. 

6.5.3 Discussion on Triangulation Methods 

In general, it can be shown that triangulation is sensitive to small angular er-
rors when either the observed angles are small, or when the observation point 
is on or near a circle that contains the three beacons. Assuming reasonable an-
gular measurement tolerances, it was found that accurate navigation is possible 
throughout a large area, although error sensitivity is a function of the point of 
observation and the beacon arrangements.

Three-point Triangulation 

Cohen and Koss in 1992 performed a detailed analysis on three-point triangula-
tion algorithms and ran computer simulations to verify the performance of dif-
ferent algorithms. The results are summarized as follows: 

■ The geometric triangulation method works consistently only when the robot is 
within the triangle formed by the three beacons. There are areas outside the 
beacon triangle where the geometric approach works, but these areas are dif-
fi cult to determine and are highly dependent on how the angles are defi ned. 

■ The geometric circle intersection method has large errors when the three 
beacons and the robot all lie on, or close to, the same circle. 

■ The Newton-Raphson method fails when the initial guess of the robot’s posi-
tion and orientation is beyond a certain bound. 

■ The heading of at least two of the beacons was required to be greater than 90 
degrees. The angular separation between any pair of beacons was required 
to be greater than 45 degrees. 

In summary, it appears that none of the above methods alone is always suit-
able, but an intelligent combination of two or more methods helps overcome the 
individual weaknesses. 

Yet another variation of the triangulation method is the so-called running 
fi x. The underlying principle of the running fi x is that an angle or range obtained 
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from a  beacon at time t-1 can be utilized at time t, as long as the cumulative 
movement vector recorded since the reading was obtained is added to the posi-
tion vector of the beacon, thus creating a virtual beacon. 

6.5.4 Triangulation with More than Three Landmarks 

An algorithm, called the position estimator, is used to solve the general triangu-
lation problem. This problem is defi ned as follows: given the global position of 
n landmarks and corresponding angle measurements, estimate the position of 
the robot in the global coordinate system. The n landmarks are represented as 
complex numbers and the problem is formulated as a set of linear equations. By 
contrast, the traditional law-of-cosines approach yields a set of nonlinear equa-
tions. The algorithm only fails when all landmarks are on a circle or a straight 
line. The algorithm estimates the robot’s position in O(n) operations where n is 
the number of landmarks on a two-dimensional map. 

Compared to other triangulation methods, the position estimator algorithm 
has the following advantages: 

(1)  The problem of determining the robot position in a noisy environment is linearized, 
(2)  The algorithm runs in an amount of time that is a linear function of the num-

ber of landmarks, 
(3)  The algorithm provides a position estimate that is close to the actual robot 

position, and 
(4)  Large errors (“outliers”) can be found and corrected. 

FIGURE 6.10 Simulations result using the position estimator algorithm on an input of noisy angle 
measurements. The squired error in the position estimate p (in meters) is shown as a function of 
measurement errors (in percent of the actual angle).
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The results of a simulation for the following scenario are presented: the ro-
bot is at the origin of the map, and the landmarks are randomly distributed in a 
10x10 meter (32x32 ft.) area.

The robot is at the corner of this area. The distance between a landmark and 
the robot is at most 14.1 meters (46 ft.) and the angles are at most 45 degrees. 
The simulation results show that large errors due to misidentifi ed landmarks and 
erroneous angle measurements can be found and discarded. Subsequently, the 
algorithm can be repeated without the outliers, yielding improved results. One 
example is shown in Figure 6.11, which depicts simulation results using the algo-
rithm position estimator. The algorithm works on an input of 20 landmarks (not 
shown in Figure 6.11) that were randomly placed in a 10×10 meter (32×32 ft.) 
workspace. The simulated robot is located at (0,0). Eighteen of the landmarks 
were simulated to have a one-percent error in the angle measurement and two 
of the landmarks were simulated to have a large 10-percent angle measurement 
error. With the angle measurements from 20 landmarks the position estimator 
produces 19 position estimates p1–p19 (shown as small blobs in Figure 6.11). 
Averaging these 19 estimates yields the computed robot position. Because of the 
two landmarks with large angle measurement errors, two position estimates are 
bad: p5 at (79 cm, 72 cm) and p 18 at (12.5 cm, 18.3 cm).

Because of these poor position estimates, the resulting centroid (average) is 
at Pa = (17 cm, 24 cm). However, the position estimator can identify and exclude 
the two outliers. The centroid calculated without the outliers p5 and p18 is at Pb 

= (12.5 cm, 18.3 cm). The fi nal position estimate after the position estimator is 
applied again on the 18 “good” landmarks (i.e., without the two outliers) is at Pc 
= (6.5 cm, 6.5 cm). 

FIGURE 6.11 Simulation results showing the effect of outliers and the result of removing the outliers.
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6.6  ULTRASONIC  TRANSPONDER TRILATERATION 

 Ultrasonic trilateration schemes offer a medium- to high-accuracy, low-cost 
solution to the position location problem for mobile robots. Because of the 
relatively short range of ultrasound, these systems are suitable for operation in 
relatively small work areas and only if no signifi cant obstructions are present 
to interfere with wave propagation. The advantages of a system of this type fall 
off rapidly, however, in large multiroom facilities due to the signifi cant com-
plexity associated with installing multiple networked  beacons throughout the 
operating area. 

Two general implementations exist: 1) a single transducer transmitting from 
the robot, with multiple fi xed-location receivers, and 2) a single receiver listen-
ing on the robot, with multiple fi xed transmitters serving as  beacons. The fi rst 
of these categories is probably better suited to applications involving only one 
or at most a very small number of robots, whereas the latter case is basically 
unaffected by the number of passive receiver platforms involved (i.e., somewhat 
analogous to the Navstar GPS concept). 

6.6.1 IS Robotics 2D Location System 

IS Robotics, Inc., Somerville, MA, a spin-off company from  MIT’s renowned 
Mobile Robotics Lab, has introduced a beacon system based on an inexpensive 
ultrasonic trilateration system. This system allows their Genghis series robots to 

FIGURE 6.12 The ISR Genghis series of legged robots localize x-y position with a master/slave trilat-
eration scheme using two 40 KHz ultrasonic “pingers”.
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localize position to within 12.7 millimeters (0.5 in.) over a 9.1×9.1 meter (30×30 
ft.) operating area. The ISR system consists of a base station master hard-wired 
to two slave ultrasonic “pingers” positioned a known distance apart (typically 
2.28 m — 90 in.) along the edge of the operating area as shown in Figure 6.12. 
Each robot is equipped with a receiving ultrasonic transducer situated beneath 
a cone-shaped refl ector for omnidirectional coverage. Communication between 
the base station and individual robots is accomplished using a Proxim spread-
spectrum (902 to 928 MHz)  RF link. 

The base station alternately fi res the two 40-kHz ultrasonic pingers every half 
second, each time transmitting a two-byte radio packet in broadcast mode to advise 
all robots of pulse emission. Elapsed time between radio packet reception and de-
tection of the ultrasonic wave front is used to calculate distance between the robot’s 
current position and the known location of the active  beacon. Inter robot com-
munication is accomplished over the same spread-spectrum channel using a time-
division multiple-access scheme controlled by the base station. Principle sources 
of error include variations in the speed of sound, the fi nite size of the ultrasonic 
transducers, nonrepetitive propagation delays in the electronics, and ambiguities 
associated with time-of-arrival detection. The cost for this system is $10,000. 

6.6.2 Tulane University 3D Location System 

Researchers at Tulane University in New Orleans, LA, have come up with 
some interesting methods for signifi cantly improving the time-of-arrival mea-
surement accuracy for ultrasonic transmitter-receiver confi gurations, as well as 
compensating for the varying effects of temperature and humidity. In the hy-
brid scheme illustrated in Figure 6.13, envelope peak detection is employed to 
establish the approximate time of signal arrival, and to consequently eliminate 

FIGURE 6.13 A combination of threshold adjusting and phase detection is employed to provide higher 
accuracy in time-of-arrival measurements in the Tulane University ultrasonic position-locator system.
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ambiguity interval problems for a more precise phase-measurement technique 
that provides fi nal resolution. The desired 0.025 millimeter (0.001 in.) range 
accuracy required a time unit discrimination of 75 nanoseconds at the receiver, 
which can easily be achieved using fairly simplistic phase measurement cir-
cuitry, but only within the interval of a single wavelength. The actual distance 
from transmitter to receiver is the summation of some integer number of wave-
lengths (determined by the coarse time-of-arrival measurement) plus that frac-
tional portion of a wavelength represented by the phase measurement results. 

The set of equations describing time-of-fl ight measurements for an ultrasonic 
pulse propagating from a mobile transmitter located at point (u, v, w) to various re-
ceivers fi xed in the inertial reference  frame can be listed in matrix form as follows: 
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whereas:

 ti = measured time of fl ight for transmitted pulse to reach ith receiver
 td = system throughput delay constant
 ri2 = sum of squares of ith receiver coordinates
 (xi, yi, zi) = location coordinates of ith receiver 
 (u, v, w) = location coordinates of mobile transmitter 
 c = speed of sound 
 p2 = sum of squares of transmitter coordinates. 

The above equation can be solved for the vector on the right to yield an es-
timated solution for the speed of sound c, transmitter coordinates (u, v, w), and 
an independent term p2 that can be compared to the sum of the squares of the 
transmitter coordinates as a checksum indicator. An important feature of this 
representation is the use of an additional receiver (and associated equation) to 
enable treatment of the speed of sound itself as an unknown, thus ensuring con-
tinuous on-the-fl y recalibration to account for temperature and humidity effects. 
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(The system throughput delay constant td can also be determined automatically 
from a pair of equations for 1/c 2 using two known transmitter positions. This 
procedure yields two equations with td and c as unknowns, assuming c remains 
constant during the procedure.) A minimum of fi ve receivers is required for an 
unambiguous three-dimensional position solution, but more can be employed to 
achieve higher accuracy using a least-squares estimation approach. Care must be 
taken in the placement of receivers to avoid singularities.

Figueroa and Mahajan report a follow-up version intended for mobile robot 
positioning that achieves 0.25 millimeter (0.01 in.) accuracy with an update rate 
of 100 Hz. The prototype system tracks a TRC LabMate over a 2.7×3.7 meter 
(9×12 ft.) operating area with fi ve ceiling-mounted receivers and can be extend-
ed to larger fl oor plans with the addition of more receiver sets. An  RF link will 
be used to provide timing information to the receivers and to transmit the sub-
sequent x-y position solution back to the robot. Three problem areas are being 
further investigated to increase the effective coverage and improve resolution: 

■ Actual transmission range does not match the advertised operating range for 
the ultrasonic transducers, probably due to a resonant frequency mismatch 
between the transducers and electronic circuitry. 

■ The resolution of the clocks (6 MHz) used to measure time of fl ight is insuf-
fi cient for automatic compensation for variations in the speed of sound. 

■ The phase-detection range-measurement correction sometimes fails when there 
is more than one wavelength of uncertainty. This problem can likely be solved 
using the frequency division scheme described by Figueroa and Barbieri.

1490 Digital Compass Sensor

This sensor provides eight directions of heading information by measuring the 
earth’s magnetic fi eld using hall-effect technology. The 1490 sensor is internally 
designed to respond to directional change similar to a liquid-fi lled compass. It 
will return to the indicated direction from a 90-degree displacement in approxi-
mately 2.5 seconds with no overswing. The 1490 can operate tilted up to 12 
degrees with acceptable error. It is easily interfaced to digital circuitry and mi-
croprocessors using only pull-up resistors.

Specifi cations

Power 5–18 volts DC @ 30 ma

Outputs Open collector NPN, sink 25 ma per direction

Weight 2.25 grams

Size 12.7 mm diameter, 16 mm tall

Pins 3 pins on 4 sides on .050 centers

Temp -20 to +85 degrees C
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How to Add a Digital Compass to the PPRK

Overview (Palm Pilot Robot Kit)

A digital compass can be very useful for mobile robot navigation, especially for 
a small robot such as the PPRK, which lacks wheel encoders and hence built-in 
odometry and dead reckoning. Dinsmore Instrument Co. produces a very low-
cost ($14) digital compass, the 1490, which can be easily interfaced to the SV203 
board of the PPRK. The compass is shown in Figure 6.14:

FIGURE 6.14

Interfacing

The compass provides eight headings (N, NE, E, SE, S, SW, W, and NW), which 
are encoded in four signal wires (N, E, S, W). Each of the wires is standard TTL 
open-collector NPN output and can be interfaced to digital input lines via pull-
up resistors. 

However, the SV203 has no digital input lines—instead, it has fi ve analog 
voltage ports, three of which are already used by the IR sensors. It is still possible 
to interface the compass to the SV203 by converting the four digital signals into 
analog voltage and reading this voltage through a remaining analog port. The 
circuit below is based on a standard resistor-ladder digital-to-analog converter 
with four bits, with the addition of four pull-up resistors. Although these resis-
tors lead to deviations of the converted voltage from exact powers of two, this 
circuit only has to encode eight different values for the possible headings, and 
the choice of resistors in the circuit results in clear separation between the volt-
ages corresponding to different headings. 

The transistors shown in the circuit are inside the compass—only the resis-
tors have to be supplied. The compass has 12 pins:
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 1N, 1E, 1S, 1W—Vcc, connect to pin 9 of SV203’s port A (J3);
 2N, 2E, 2S, 2W—ground, connect to pin 10 of SV203’s port A (J3);
 3N, 3E, 3S, 3W—signal wires, connect as shown Figure 6.15.

The location of the pins is shown in the datasheet of the compass (PDF). 
The output of the resistor ladder, Vout, can be connected either to pin 4 or pin 
5 of SV203’s port A (J3). 

Determining Compass Heading

The encoded compass heading can be read by means of the AD4 or AD5 com-
mands of the SV203 board, depending on whether Vout was connected to pin 4 
or 5 of the analog input port A. The range of readings for each of the directions 
depends on the exact values of the resistors in the circuit, which vary due to 

FIGURE 6.15
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manufacturing imprecision, and possibly to noise. The ranges we obtained were 
(these values may need adjustments for each particular set of resistors):

Heading Low High

North 149 151

Northeast 37 42

East 97 100

Southeast 78 82

South 197 202

Southwest 163 164

West 181 184

Northwest 115 117

6.7  ACCELEROMETERS 

The suitability of accelerometers for mobile robot positioning was evaluated at 
the University of Michigan. In this informal study it was found that there is 
a very poor signal-to-noise ratio at lower accelerations (i.e., during low-speed 
turns). Accelerometers also suffer from extensive drift, and they are sensitive to 
uneven grounds, because any disturbance from a perfectly horizontal position 
will cause the sensor to detect the gravitational acceleration g. One low-cost 
inertial navigation system aimed at overcoming the latter problem included a 
tilt sensor. The tilt information provided by the tilt sensor was supplied to the 
accelerometer to cancel the gravity component projecting on each axis of the 
accelerometer. Nonetheless, the results obtained from the tilt-compensated sys-
tem indicate a position drift rate of 1 to 8 cm/s (0.4 to 3.1 in/s), depending on the 
frequency of acceleration changes. This is an unacceptable error rate for most 
mobile robot applications. 

6.8  GYROSCOPES 

The mechanical gyroscope, a well-known and reliable rotation sensor based on 
the inertial properties of a rapidly spinning rotor, has been around since the early 
1800s. The fi rst known gyroscope was built in 1810 by G.C. Bohnenberger of 
Germany. In 1852, the French physicist Leon Foucault showed that a gyroscope 
could detect the rotation of the earth. In the following sections we discuss the 
principle of operation of various  gyroscopes. 
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Anyone who has ever ridden a bicycle has experienced (perhaps unknow-
ingly) an interesting characteristic of the mechanical gyroscope known as gyro-
scopic precession. If the rider leans the bike over to the left around its own hori-
zontal axis, the front wheel responds by turning left around the vertical axis. The 
effect is much more noticeable if the wheel is removed from the bike, and held 
by both ends of its axle while rapidly spinning. If the person holding the wheel 
attempts to yaw it left or right about the vertical axis, a surprisingly violent reac-
tion will be felt as the axle instead twists about the horizontal roll axis. This is due 
to the angular momentum associated with a spinning fl ywheel, which displaces 
the applied force by 90 degrees in the direction of spin. The rate of precession is 
proportional to the applied torque T: 

 T = I Ω (6.1) 

where 

 T = applied input torque 
 I = rotational inertia of rotor 
 ω = rotor spin rate 
 Ω = rate of precession. 

Gyroscopic precession is a key factor involved in the concept of operation for 
the north-seeking gyrocompass, as will be discussed later. 

Friction in the support bearings, external infl uences, and small imbalances 
inherent in the construction of the rotor cause even the best mechanical gyros to 
drift with time. Typical systems employed in inertial navigation packages by the 
commercial airline industry may drift about 0.10 during a 6-hour fl ight. 

6.8.1 Space-stable  Gyroscopes 

The earth’s rotational velocity at any given point on the globe can be broken into two 
components: one that acts around an imaginary vertical axis normal to the surface, 
and another that acts around an imaginary horizontal axis tangent to the surface. 
These two components are known as the vertical earth rate and the horizontal earth 
rate, respectively. At the North Pole, for example, the component acting around the 
local vertical axis (vertical earth rate) would be precisely equal to the rotation rate of 
the earth, or 150/hr. The horizontal earth rate at the pole would be zero. 

As the point of interest moves down a meridian toward the equator, the ver-
tical earth rate at that particular location decreases proportionally to a value of 
zero at the equator. Meanwhile, the horizontal earth rate, (i.e., that component 
acting around a horizontal axis tangent to the earth’s surface) increases from zero 
at the pole to a maximum value of 150/hr at the equator. 
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There are two basic classes of rotational sensing gyros: 1) rate gyros, which 
provide a voltage or frequency output signal proportional to the turning rate, and 
2) rate-integrating gyros, which indicate the actual turn angle. Unlike the mag-
netic compass, however, rate-integrating gyros can only measure relative as op-
posed to absolute angular position, and must be initially referenced to a known 
orientation by some external means. 

A typical gyroscope confi guration is shown in Figure 6.16. The electrically 
driven rotor is suspended in a pair of precision low-friction bearings at either end 
of the rotor axle. The rotor bearings are in turn supported by a circular ring, known 
as the inner gimbal ring; this inner gimbal ring pivots on a second set of bearings 
that attach it to the outer gimbal ring. This pivoting action of the inner gimbal de-
fi nes the horizontal axis of the gyro, which is perpendicular to the spin axis of the 
rotor as shown in Figure 6.16. The outer gimbal ring is attached to the instrument 
 frame by a third set of bearings that defi ne the vertical axis of the gyro. The vertical 
axis is perpendicular to both the horizontal axis and the spin axis. 

Notice that if this confi guration is oriented such that the spin axis points 
east-west, the horizontal axis is aligned with the north-south meridian. Since the 
gyro is space-stable (i.e., fi xed in the inertial reference frame), the horizontal axis 
thus reads the horizontal earth rate component of the planet’s rotation, while the 
vertical axis reads the vertical earth rate component. If the spin axis is rotated 
90 degrees to a north-south alignment, the earth’s rotation does not affect the 
gyro’s horizontal axis, since that axis is now orthogonal to the horizontal earth 
rate component. 

FIGURE 6.16 Typical two-axis mechanical gyroscope confi guration 
(Everett, 1995).
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6.8.2 Gyrocompasses 

The gyrocompass is a special confi guration of the rate-integrating gyroscope, 
employing a gravity reference to implement a north-seeking function that can 
be used as a true-north navigation reference. This phenomenon, fi rst dem-
onstrated in the early 1800s by Leon Foucault, was patented in Germany by 
Herman Anschutz-Kaempfe in 1903, and in the U.S. by Elmer Sperry in 1908. 
The U.S. and German navies had both introduced gyrocompasses into their 
fl eets by 1911. 

The north-seeking capability of the gyrocompass is directly tied to the hori-
zontal earth rate component measured by the horizontal axis. As mentioned ear-
lier, when the gyro spin axis is oriented in a north-south direction, it is insensitive 
to the earth’s rotation, and no tilting occurs. From this it follows that if tilting is 
observed, the spin axis is no longer aligned with the meridian. The direction and 
magnitude of the measured tilt are directly related to the direction and magni-
tude of the misalignment between the spin axis and true north. 

6.8.3 Gyros 

Gyros have long been used in robots to augment the sometimes erroneous dead-
reckoning information of mobile robots. Mechanical gyros are either inhibitively 
expensive for mobile robot applications, or they have too much drift. Work by 
Barshan and Durrant-Whyte aimed at developing an INS based on solid-state 
gyros, and a fi ber-optic gyro was tested by Komoriya and Oyama. 

Barshan and Durrant-Whyte

Barshan and Durrant-Whyte developed a sophisticated INS using two solid-
state gyros, a solid-state triaxial accelerometer, and a two-axis tilt sensor. The cost 
of the complete system was £5,000 (roughly $8,000). Two different gyros were 
evaluated in this work. One was the ENV-O5S Gyrostar from [MURATA], and 
the other was the Solid State Angular Rate Transducer (START) gyroscope man-
ufactured by [GEC]. Barshan and Durrant-Whyte evaluated the performance of 
these two gyros and found that they suffered relatively large drift, on the order 
of 5 to 150/min. The Oxford researchers then developed a sophisticated error 
model for the gyros, which was subsequently used in an Extended Kalman Filter. 
Figure 6.17 shows the results of the experiment for the START gyro (left-hand 
side) and the Gyrostar (right-hand side). The thin plotted lines represent the 
raw output from the gyros, while the thick plotted lines show the output after 
conditioning the raw data in the EKF. 

The two upper plots in Figure 6.17 show the measurement noise of the two 
gyros while they were stationary (i.e., the rotational rate input was zero, and the 
gyros should ideally show ϕ = 00/s). Barshan and Durrant-Whyte determined 
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that the standard deviation, here used as a measure for the amount of noise, was 
0.160/s for the START gyro and 0.240/s for the Gyrostar. The drift in the rate out-
put, 10 minutes after switching on, is rated at 1.350/s for the Gyrostar (drift-rate 
data for the START was not given).

The more interesting result from the experiment in Figure 6.17 is the drift in 
the angular output, shown in the lower two plots. We recall that in most mobile 
robot applications one is interested in the heading of the robot, not the rate of 
change in the heading. The measured rate Æ must thus be integrated to obtain 
Æ. After integration, any small constant bias in the rate measurement turns into 
a constant-slope, unbounded error, as shown clearly in the lower two plots of 
Figure 6.17. At the end of the fi ve-minute experiment, the START had accumu-
lated a heading error of -70.8 degrees while that of the Gyrostar was -59 degrees 
(see thin lines in Figure 6.17). However, with the EKF, the accumulated errors 

FIGURE 6.17
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were much smaller: 12 degrees was the maximum heading error for the START 
gyro, while that of the Gyrostar was -3.8 degrees. 

Overall, the results from applying the EKF show a fi ve- to six-fold reduction 
in the angular measurement after a fi ve-minute test period. However, even with 
the EKF, a drift rate of 1 to 30 /min can still be expected. 

Komoriya and Oyama 

Komoriya and Oyama conducted a study of a system that uses an optical fi ber 
gyroscope, in conjunction with odometry information, to improve the overall 
accuracy of position estimation. This fusion of information from two different 
sensor systems is realized through a Kalman fi lter. 

Figure 6.18 shows a computer simulation of a path-following study with-
out (Figure 6.18a) and with (Figure 6.18b) the fusion of gyro information. 
The ellipses shows the reliability of position estimates (the probability that 
the robot stays within the ellipses at each estimated position is 90 percent in 
this simulation).

In order to test the effectiveness of their method, Komoriya and Oyama 
also conducted actual experiments with Melboy, the mobile robot shown in 
Figure 6.19. In one set of experiments, Melboy was instructed to follow the 
path shown in Figure 6.20a. Melboy’s maximum speed was 0.14 m/s (0.5 
ft./s) and that speed was further reduced at the corners of the path in Figure 
6.20a. The fi nal position errors without and with gyro information are com-
pared and shown in Figure 6.20b for 20 runs. Figure 6.20b shows that the 
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FIGURE 6.18 Computer simulation of a mobile robot run. a. Only odometry, without gyro 
information. b. Odometry and gyro information fused.
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deviation of the position estimation errors from the mean value is smaller in 
the case where the gyro data was used (note that a large average deviation 
from the mean value indicates larger nonsystematic errors). Komoriya and 
Oyama explain that the noticeable deviation of the mean values from the 
origin in both cases could be reduced by careful calibration of the systematic 
errors of the mobile robot. We should note that from the description of this 
experiment it is not immediately evident how the “position estimation error” 
(i.e., the circles) in Figure 6.20b were found. In our opinion, these points 
should have been measured by marking the return position of the robot on 
the fl oor (or by any equivalent method that records the absolute position of 

FIGURE 6.19 Melboy, the mobile robot used by Komoriya and Oyama for fusing odometry and gyro 
data. 
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the robot and compares it with the internally computed position estimation). 
The results of the plot in Figure 6.20b, however, appear to be too accurate 
for the absolute position error of the robot. In our experience an error on 
the order of several centimeters, not millimeters, should be expected after 
completing the path of Figure 6.20a. Therefore, we interpret the data in 
Figure 6.20b as showing a position error that was computed by the onboard 
computer, but not measured absolutely without gyro; white circles show the 
errors with the gyro. 

6.9 LASER RANGE FINDER

A laser range fi nder is a device which uses a laser beam in order to determine the 
distance to a refl ective object. The most common form of laser range fi nder op-
erates on the time-of-fl ight principle by sending a laser pulse in a narrow beam 
toward the object and measuring the time taken by the pulse to be refl ected off 
the target and returned to the sender. Due to the high speed of light, this tech-
nique is not appropriate for high-precision submillimeter measurements, where 
triangulation and other techniques are often used.

FIGURE 6.20 Experimental results from Melboy using odometry with and without a 
fi beroptic gyro. a. Actual trajectory of the robot for a triangular path. b. Position estimation 
errors of the robot after completing the path of a. Black circles show the errors.
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Operation

Pulse

The pulse may be coded in order to reduce the chance that the range fi nd-
er can be jammed. It is possible to use Doppler effect techniques to judge 
whether the object is moving toward or away from the range fi nder, and if 
so, how fast.

The accuracy of the instrument is determined by the brevity of the laser 
pulse and the speed of the receiver. One that uses very short, sharp laser pulses 
and has a very fast detector can range an object to within a few centimeters.

Range

Despite the beam being narrow, it eventually spreads over long distances due to 
the divergence of the laser beam, as well as to scintillation and beam wander ef-
fects, caused by the presence of air bubbles in the air acting as lenses ranging in 
size from microscopic to roughly half the height of the laser beam’s path above 
the earth.

These atmospheric distortions, coupled with the divergence of the laser it-
self and with transverse winds that serve to push the atmospheric heat bubbles 
laterally, may combine to make it diffi cult to get an accurate reading of the dis-
tance of an object, say, beneath some trees or behind bushes, or even over long 
distances of more than 1 km in open and unobscured desert terrain.

Some of the laser light might refl ect off leaves or branches that are closer 
than the object, giving an early return and a reading which is too low. Alterna-
tively, over distances longer than 1,200 ft. (365 m), the target, if in proximity to 
the earth, may simply vanish into a mirage, caused by temperature gradients in 
the air in proximity to the heated desert bending the laser light. All these effects 
have to be taken into account.

Discrimination

Some instruments are able to determine multiple returns, as above. These instru-
ments use waveform-resolving detectors, which means they detect the amount 
of light returned over a certain time, usually very short. The waveform from a 
laser pulse that hit a tree and then the ground would have two peaks. The fi rst 
peak would be the distance to the tree, and the second would be the distance to 
the ground.

The ability for aircraft-mounted instruments to see “through” dense cano-
pies and other semirefl ective surfaces, such as the ocean, provide many applica-
tions for airborne instruments such as:

■ Creating “bare earth” topographic maps—removing all trees 
■ Creating vegetation thickness maps 
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■ Measuring topography under the ocean 
■ Forest fi re hazard 
■ Overwash threat in barrier islands 

Applications

Military

In order to make laser range fi nders and laser-guided weapons less useful against 
military targets, various military arms may have developed laser-absorbing paint 
for their vehicles. Regardless, some objects don’t refl ect laser light very well and 
using a laser range fi nder on them is diffi cult.

3D Modelling

Laser range fi nders are used extensively in 3D object recognition, 3D ob-
ject modelling, and a wide variety of computer vision-related fi elds. This 
technology constitutes the heart of the so-called time-of-fl ight 3D scanners. 
In contrast to the military instruments described above, laser range fi nders 
offer high-precision scanning abilities, with either single-face or 360-degree 
scanning modes.

A number of algorithms have been developed to merge the range data re-
trieved from multiple angles of a single object in order to produce complete 3D 
models with as little error as possible. One of the advantages that laser range 
fi nders offer over other methods of computer vision is that the computer does 
not need to correlate features from two images to determine depth information 
as in stereoscopic methods.

The laser range fi nders used in computer vision applications often have 
depth resolutions of tenths of millimeters or less. This can be achieved by using 
triangulation or refraction measurement techniques as opposed to the time-of-
fl ight techniques used in LIDAR.

6.10 VISION-BASED SENSORS

Vision is our most powerful sense. It provides us with an enormous amount of 
information about the environment and enables rich, intelligent interaction in 
dynamic environments. It is therefore not surprising that a great deal of effort 
has been devoted to providing machines with sensors that mimic the capabili-
ties of the human vision system. The fi rst step in this process is the creation of 
the sensing devices that capture the same raw information light that the human 
vision system uses. The next section describes the two current technologies for 
creating vision sensors: CCD and CMOS. These sensors have specifi c limitations 
in performance when compared to the human eye, and it is important that the 
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reader understand these limitations. Afterward, the second and third sections 
describe vision-based sensors that are commercially available, along with their 
disadvantages and most popular applications.

CCD and CMOS sensors 

CCD Technology: The charged coupled device is the most popular basic ingre-
dient of robotic vision systems today. The CCD chip is an array of light-sensitive 
picture elements, or pixels, usually with between 20,000 and several million pix-
els total. Each pixel can be thought of as a light-sensitive, discharging capacitor 
that is 5 to 25 micrometers in size. First, the capacitors of all pixels are charged 
fully, and then the integration period begins. As the photons of light strike each 
pixel, they liberate electrons, which are captured by electric fi elds and retained 
at the pixel. Over time; each pixel accumulates a varying level of charged based 
on the total number of photons that have struck it. After the period of integra-
tion is complete, the relative charges of all pixels need to be frozen and read. In 
a CCD the reading portion is performed at one corner of the CCD chip. The 
bottom row of pixel charges is transported to the corner and read, then the rows 
above shift down and the process is repeated. This means that each charge must 
be transported across the chip, and it is critical that the value be preserved. This 
requires specialized control circuitry and custom fabrication techniques to en-
sure the stability of transported charges.

The photodiodes used in the CCD chips (and CMOS chips as well) are not 
equally sensitive to all frequencies of light. They are sensitive to light in between 
400 and 1000 nm wavelength. It is important to remember that photodiodes are 
less sensitive to the ultraviolet end of the spectrum (e.g., blue) and are overly 
sensitive to the infrared portion (e.g., heat).

You can see that the basic light-measuring process is colorless: it is just mea-
suring the total number of photons that strike each pixel in the integration peri-
od. There are two common approaches for creating color images. If the pixels on 
the CCD chip are grouped into 2x2 sets of four, then red, green, and blue dyes 
can be applied to a color fi lter so that each individual pixel receives only light 
of one color. Normally, two pixels measure green while one pixel each measures 
red and blue light intensity. Of course, this one-chip color CCD has a geometric 
resolution disadvantage. The number of pixels in the systems has been cut effec-
tively by a factor of four, and therefore the image resolution output by the CCD 
camera will be sacrifi ced.

The three-chip color camera avoids these problems by splitting the incom-
ing light into three complete (lower intensity) copies. Three separate CCD 
chips receive the light, with one red, green, or blue fi lter over each entire 
chip. Thus, in parallel, each chip measures light intensity for one color, and the 
camera must combine the CCD chip’s outputs to create a  joint color image. 
Resolution is preserved in the solution, although the three-chip color cameras 
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are, as one would expect, signifi cantly more expensive and therefore rarely 
used in mobile robotics.

Both three-chip and single-chip color CCD cameras suffer from the fact that 
photodiodes are much more sensitive to the near-infrared end of the spectrum. 
This means that the overall system detects blue light much more poorly than 
red and green. To compensate, the gain must be increased on the blue channel, 
and this introduces the greater absolute noise on blue than on red and green. 
It is not uncommon to assume at least one to two bits of additional noise on the 
blue channel. Although there is no satisfactory solution to this problem today, 
over time the processes for blue detection has been improved and we expect this 
positive trend to continue.

The CCD camera has several camera parameters that affect its behavior. In 
some cameras, these values are fi xed. In others, the values are constantly chang-
ing based on built-in feedback loops. In higher-end cameras, the user can modify 
the values of these parameters via software.The iris position and shutter speed 
regulate the amount of light being measured by the camera. The iris is simply 
a mechanical aperture that constricts incoming light, just as in standard 35 mm 
cameras. Shutter speed regulates the integration period of the chip. In higher 
end cameras, the effective shutter speed can be as brief at 1/30,000 seconds and 
as long as 2 seconds. Camera gain controls the overall amplifi cation of the analog 
signal, prior to A/D conversion. However, it is very important to understand that, 
even though the image may appear brighter after setting high gain, the shutter 
speed and iris may not have changed at all. Thus gain merely amplifi es the signal, 
and amplifi es along with the signal all of the associated noise and error. Although 
useful in applications where imaging is done for human consumption (e.g., pho-
tography, television), gain is of little value to a mobile roboticist.

In color cameras, an additional control exists for white balance. Depending 
on the source of illumination in a scene (e.g., fl uorescent lamps, incandescent 
lamps, sunlight, underwater fi ltered light, etc.), the relative measurements of 
red, green, and blue light that defi ne pure white light will change dramatically. 
The human eye compensates for all such effects in ways that are not fully un-
derstood, but the camera can demonstrate glaring inconsistencies in which the 
same table looks blue in one image taken during the night, and yellow in another 
image taken during the day. White balance controls enable the user to change 
the relative gains for red, green, and blue in order to maintain more consistent 
color defi nitions in varying contexts.

The key disadvantages of CCD cameras are primarily in the areas of inconstancy 
and dynamic range. As mentioned above, a number of parameters can change the 
brightness and colors with which a camera creates its image. Manipulating these 
parameters in a way to provide consistency over time and over environments, for 
example, ensuring that a green shirt always looks green, and something dark gray 
is always dark gray, remains an open problem in the vision community. 
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The second class of disadvantages relates to the behavior of a CCD chip 
in environments with extreme illumination. In cases of very low illumination, 
each pixel will receive only a small number of photons. The longest possible 
integration period (i.e., shutter speed) and camera optics (i.e., pixel size, chip 
size, lens focal length, and diameter) will determine the minimum level of light 
for which the signal is stronger than random error noise. In cases of very high 
illumination, a pixel fi lls its well with free electrons and, as the well reaches its 
limit, the probability of trapping additional electrons falls and therefore the 
linearity between incoming light and electrons in the well degrades. This is 
termed saturation and can indicate the existence of a further problem related 
to cross-sensitivity. When a well has reached its limit, then additional light 
within the remainder of the integration period may cause further charge to 
leak into neighboring pixels, causing them to report incorrect values or even 
reach secondary saturation. This effect, called blooming, means that individual 
pixel values are not truly independent.

The camera parameters may be adjusted for an environment with a particu-
lar light level, but the problem remains that the dynamic range of a camera is 
limited by the well capacity of the individual pixel. For example, a high-quality 
CCD may have pixels that can hold 40,000 electrons. The noise level for reading 
the well may by 11 electrons, and therefore the dynamic range will be 40,000:11, 
or 3600:1, which is 35 dB.

CMOS Technology: The complementary metal oxide semiconductor 
chip is a signifi cant departure from the CCD. It too has an array of pixels, but 
located alongside each pixel are several transistors specifi c to that pixel. Just 
as in CCD chips, all of the pixels accumulate charge during the integration 
period. During the data collection step, the CMOS takes a new approach: the 
pixel-specifi c circuitry next to every pixel measures and amplifi es the pixel’s 
signal, all in parallel for every pixel in the array. Using more traditional traces 
from general semiconductor chips, the resulting pixel values are all carried to 
their destinations.

CMOS has a number of advantages over CCD technology. First and fore-
most, there is no need for the specialized clock drivers and circuitry required in 
the CCD to transfer each pixel’s charge down all of the array columns and across 
all of its rows. This also means that specialized semiconductor manufacturing 
processes are not required to create CMOS chips. Therefore the same produc-
tion lines that create microchips can create inexpensive CMOS chips as well. 
The CMOS chip is so much simpler that it consumes signifi cantly less power; in-
credibly, it operates with a power consumption that is one-hundredth the power 
consumption of a CCD chip. In a mobile robot, power is a scarce resource and 
therefore this is an important advantage.

On the other hand, the CMOS chip also faces several disadvantages. Most 
importantly, the circuitry next to each pixel consumes valuable real estate on the 
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face of the light-detecting array. Many photons hit the transistors rather than the 
photodiode, making the CMOS chip signifi cantly less sensitive than an equiva-
lent CCD chip. Second, the CMOS technology is younger and, as a result, the 
best resolution that one can purchase in CMOS format continues to be far in-
ferior to the best CCD chip available. Time will doubtless bring the high-end 
CMOS imagers closer to CCD imaging performance.

Given this summary of the mechanism behind CCD and CMOS chips, one 
can appreciate the sensitivity of any vision-based robot sensor to its environ-
ment. As compared to the human eye, these chips all have far poorer adaptation, 
cross-sensitivity, and dynamics range. As a result, vision sensors today continue 
to be fragile. Only over time, as the underlying performance of imaging chips 
improves, will signifi cantly more robust vision-based sensors for mobile robots 
be available.

Camera output considerations: Although digital cameras have inher-
ently digital output, throughout the 1980s and early 1990s, most affordable vi-
sion modules provided analog output signals, such as NTSC (National Television 
Standards Committee) and PAL (Phase Alternating Line). These camera sys-
tems included a D/A converter which, ironically, which would be counteracted 
on the computer using a framegrabber, effectively an A/D converter board situ-
ated, for example, on a computer’s bus. The D/A and A/D steps are far from 
noisefree, and furthermore the color depth of the analog signal in such cameras 
was optimized for human vision, not computer vision.

More recently, both CCD and CMOS technology vision systems provide 
digital signals that can be directly utilized by the roboticist. At the most basic 
level, an imaging chip provides parallel digital I/O (input/output) pins that com-
municate discrete pixel level values. Some vision modules make use of these 
direct digital signals, which must be handled subject to hard-time constraints 
governed by the imaging chip. To relieve the real-time demands, researchers 
often place an image buffer chip between the imager’s digital output and the 
computer’s digital inputs. Such chips, commonly used in webcams, capture a 
complete image snapshot and enable non-real-time access to the pixels, usually 
in a single, ordered pass.

At the highest level, a roboticist may choose instead to utilize a higher-level 
digital transport protocol to communicate with an imager. Most common are the 
IEEE 1394 (fi rewire) standard and the USB (and USB 2.0) standards, although 
some order imaging modules also support serial (RS-232). To use any such high-
level protocol, one most locate or create drive code both for that communica-
tion layer and for the particular implementation detail of the imaging chip. Take 
note, however, of the distinction between lossless digital video and the standard 
digital video stream designed for human visual consumption. Most digital video 
cameras provide digital output, but often only in compressed from. For vision 
researchers, such compression must be avoided as it not only discards informa-
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tion but even introduces image detail that does not actually exist, such as MPEG 
(Moving Picture Experts Group) discretization boundaries. 

6.11 COLOR-TRACKING SENSORS

Although depth from stereo will doubtless prove to be a popular application of 
vision-based methods to mobile robotics, it mimics the functionality of existing 
sensors, including ultrasonic, laser, and optical range fi nders. An important as-
pect of vision-based sensing is that the vision chip can provide sensing modalities 
and cues that no other mobile robot sensor provides. One such novel sensing 
modality is detecting and tracking color in the environment.

Color represents an environmental characteristic that is orthogonal to 
range, and it represents both a natural cue and an artifi cial cue that can 
provide new information to a mobile robot. For example, the annual robot 
soccer events make extensive use of color both for environmental marking 
and for robot localization.

Color sensing has two important advantages. First, detection of color is a 
straightforward function of a single image; therefore no correspondence prob-
lem need be solved in such algorithms. Second, because color sensing provides 
a new, independent environmental cue, if it is combined (i.e., sensor fusion) 
with existing cues, such as data from stereo vision or  laser range fi nding, we can 
expect signifi cant information gains. 

Effi cient color-tracking sensors are now available commercially. Below, we 
briefl y describe two commercial, hardware-based color-tracking sensors, as well 
as a publicly available software-based solution.

Cognachrome Color-tracking System

The Cognachrome Vision system from Newton Research Labs is a color-track-
ing hardware-based sensor capable of extremely fast color tracking on a dedi-
cated processor. The system will detect color blobs based on three user-defi ned 
colors at a rate of 60 Hz. The cognachrome system can detect and report on a 
maximum of twenty-fi ve objects per frame, providing centroid, bounding box, 
area, aspect ratio, and principal axis orientation information for each object 
independently.

This sensor uses a technique called constant thresholding to identify each 
color. In RGB (red, green, and blue) space, the user defi nes for each of R, G, and 
B a minimum and maximum value. The 3D box defi ned by these six constraints 
forms a color bounding box and any pixel with RGB values that are all within this 
bounding box is identifi ed as a target. Target pixels are merged into large objects 
that are then reported to the user.
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The cognachrome achieves a position resolution of one pixel for the centroid of 
each object in a fi eld that is 200x250 pixels in size. The key advantage of this sensor, 
just as with  laser range fi nding and ultrasonic, is that there is no load on the mobile 
robot’s main sensor due to sensing modality, all processing is performed on sensor-
specifi c hardware (i.e., a Motorola 68332 processor and a mated frame grabber). 
The cognechrome system costs several thousands dollars, but is being superseded 
by higher-performance hardware vision processors at Newton Labs, Inc.

CMUcam Robotic Vision Sensor: Recent advances in chip manufactur-
ing, both in terms of CMOS imaging  sensors and high-speed, readily available 
microprocessors at the 50+ MHz range, have made it possible to manufacture 
low-overhead intelligent vision sensors with functionality similar to cognachrome 
for a fraction of the cost. The CMUcam sensor is a recent system that mates a 
low-cost microprocessor with a consumer CMOS imaging chip to yield an intel-
ligent, self-contained vision sensor for $100.

This sensor is designed to provide high-level information extracted from the 
camera image to an external processor that may, for example, control a mobile 
robot. An external processor confi gures the sensor’s streaming data mode, for 
instance, specifying tracking mode for a bounded RGB or YUV value set. Then 
the vision sensor processes the  data in real time and outputs a high level of infor-
mation to the external consumer. At less than 150 mA of current draw, the sensor 
provides image color statistics and color-tracking services at approximately 20 
frames per second at a resolution of 80X143.

CMVision Color-tracking Software Library

Because of the rapid speedup of processors in recent times, there has been a 
trend toward executing basic vision processing on a main processor within the 
mobile robot. Intel corporation’s computer vision library is an optimized library 
for just such processing. In this sprit, the CMVision color- tracking software rep-
resents a state-of-the-art software solution for color tracking in dynamic envi-
ronments. CMVision can track up to 32 colors at 30 Hz on a standard 200 MHz 
Pentium computer.

The basic algorithm this sensor uses is constant thresholding, as with Co-
gnachrome, with the chief difference that the YUV color space is used instead of 
the RGB color space when defi ning a six-constraint bounding box for each color. 
While R, G, and B values encode the intensity of each color, YUV separate the 
color (or chrominance) measure from the brightness (or luminosity) measure. 
Y represents the image luminosity while U and V together captures its chromi-
nance. Thus, a bounding box expressed in YUV space can achieve greater stabil-
ity with respect to changes in illumination than is possible in RGB space.

The CMVision color sensors achieve a resolution of 160x120 and returns, for 
each object detected, a bounding box and a centroid. The software for CMVision 
is available freely with a Gnu public license.
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FIGURE 6.21 Infrared emitter and detector sensors.

Key performance bottlenecks for both the CMVision software, the CMU-
cam hardware system, and the Cognachrome hardware system continue to be 
the quality of imaging chips and available computational speed. As signifi cant 
advances are made on these frontiers one can expect packaged  vision systems to 
witness tremendous performance improvements.

Making   Infrared  Sensors 

Constructing the line sensor is straightforward. We would recommend that a 
prototype be made to test the operation of the sensor before committing to any 
permanent construction. Suggestions are presented below relating to sensor 
separation and placement, but you should experiment with your own confi gura-
tion to see what works best. 

Theory 

The infrared emitter and detector sensors are shown below in Figure 6.21. You 
can buy these from a number of vendors, and depending on where they were 
purchased, the sensors shown in Figure 6.21 may differ in color and packaging 
from ones you’re using. The following picture shows the most commonly found 
detector and emitter pair. 

The circuit diagram is shown in Figure 6.22 and only one set of emitter/
detector sensors is depicted. Pay close attention to the anode (+ve) and cath-
ode (GND) of these sensors. Usually the longer leg is the anode (+ve) and the 
shorter leg is the cathode (GND) in most  LEDs, including the infrared emitter. 
However, in the case of the detector it is the opposite, that is the longer LED is 
the cathode (GND) and the shorter leg is the anode (+ve). 

EMITTER

DETECTOR
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The sensor for the line-following robot needs to be able to distinguish be-
tween the black tape and the white fl oor. IR sensors will be used instead of 
visible light sensors because visible light sensors are easily interfered with by 
ambient light and shadow. The longer wavelength of IR creates a stronger, more 
reliable signal while still being absorbed by the black tape. 

FIGURE 6.23 The IR circuit for 2 sensors.
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FIGURE 6.22 Circuit diagram for the infrared  emitter/detector line sensor for the 
AT89c52 microcontroller.
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A comparator will be used as a simple analog-to-digital converter to create 
a digital signal to send to the control stage of the robot. These sensors operate 
by either creating or removing a path to ground. When the IR transistor is not 
receiving a signal, the collector voltage is forced into the comparator. When the 
IR transistor receives a signal, a path to ground is created and a lower voltage is 
sent to the comparator. 

Steps for Making the  Infrared Sensor 

The Interfacing of the Encoder

The next stage in the work is to obtain a feedback from the vehicle about its 
absolute position. This was calculated in the  kinematics section by counting the 
speeds of the individual wheels and computing the position from that  data. One 
disadvantage of the above method is that it assumes that the motor never misses 
a step. However, in a practical environment there may be a number of condi-
tions when the robot misses a step. Hence, to measure the absolute and relative 
location of the  WMR accurately, we need to obtain some feedback about the 
motion. 

There are a number of ways for measuring the position of the WMR. One 
conventional way of determining their position in their environment is odom-
etry. Odometry is the use of motion sensors to determine the robot’s change in 
position relative to some known position. For example, if a robot is traveling in 
a straight line and if it knows the diameter of its wheels, then by counting the 
number of wheel revolutions it can determine how far it has traveled.  Robots 
often have shaft  encoders attached to their drive wheels, which emit a fi xed 
number of pulses per revolution.  By counting these pulses, the processor can 
estimate the distance traveled.

Odometry is the art of using this type of feedback to estimate where the 
robot is in its physical environment. It is strictly an estimate because of a num-
ber of physical limitations on the motors, gear boxes, interconnections, etc., 
that are involved, along with inertia, vary so greatly. Odometry is a very com-
mon position sensor for mobile robots, but it has its limitations.  Since it is a 
cumulative measurement, any sensing error will increase as time passes.  Ro-
bots may periodically need to use other sensors to precisely determine the 
robot’s position to prevent excessive error buildup.  Sources of odometry error 
are:

■ Inaccurate wheel diameter measurement 
■ Different wheel sizes for multiple-wheel drive systems 
■ Pulse-counting errors in systems that use drive shaft encoders 
■ Slow odometry processing (considering only cumulative counts, not the dy-

namic count differences) 
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Shaft encoders are a way to measure angular changes in output shafts. A 
given shaft encoder, attached to the direct output wheel of a robot, generates a 
train of pulses to the CPU that indicates that the given wheel moved a number 
of degrees of rotation. When the wheel is turned in a given direction, the shaft 
encoders, in returning the information to the CPU, give the robot a sense of how 
much distance it is covering. Figure 6.24 presents two confi gurations in which 
incremental shaft encoders can read pulses. This will be discussed in detail in 
the next section.

Figure 6.25 shows how the photo detector sees the light and dark lines (or 
holes) and what the resulting voltage is. 

FIGURE 6.25 Reading the pulses.

Light source
Light 
sourcePhoto detector
Photo 
detector

FIGURE 6.24 Types of  encoders.
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The light and dark horizontal strips represent the bars (or holes) on the ro-
tary encoder strip. Whenever a light strip is in front of the detector, the output 
voltage switches to high (5 V DC). Whenever a dark strip is in front, the voltage 
is low (0 V DC). 

The processor reads these pulses and counts them (by various methods to be 
described later). By knowing how many pulses are detected per wheel revolu-
tion, and the circumference of the wheel, it can be calculated how far the robot 
has moved usually. But, there is one defi ciency with this simple encoder.  The 
processor will receive pulses that look the same whether the wheel is turning for-
ward or reverse.  Hence, the processor doesn’t know whether to add or subtract 
the pulses from the distance traveled without some additional information. So 
this feature has to be added in the software, so that it may be able to tell which 
direction the wheel is turning (i.e., if the motor is being commanded forward, 
then the encoder pulses are contented forward), but using a more sophisticated 
encoder solves the problem directly.

The design and implementation of the shaft encoder will be done in the fol-
lowing steps:

1.  Sensor mounting arrangement
2.  Wheel discs design (for  sensors to read RPM) and the circuitry
3.  Software to read the pulses and implement in  Turtle.

6.12 SENSOR MOUNTING ARRANGEMENT

The mounting of the sensor can be done in one of the following two types of ar-
rangements (see Figure 6.26): 

(1) Arrangement 1 – Light beam passing through slots

(2) Arrangement 2 – Light beam is refl ected

In each case, a light beam is emitted and sensed by a photo detector.  In 
arrangement 1, the light beam passes through slots in the sensing wheel; in 
arrangement 2, the light beam refl ects from light and dark portions of the 
sensing wheel providing strong and weak refl ections. Circuitry will take the 
signal sensed by the photo detector and turn it into a nice 0 to 5 V DC signal 
suitable for  interfacing with a computer  parallel port. This will be discussed in 
the next section.

Arrangement 1 is used in our system,  Turtle. The shaft is attached to the 
disc. Each disc has alternating transparent and opaque segments. There is a 
light source on one side of the disc and a light detector on the other side. When 
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a transparent segment of the disc lies between the source and detector the cor-
responding output is 1, and when an opaque sector lies between the source and 
detector the corresponding output is 0. Thus, the output alternates between 1 
and 0 as the shaft is turned (see Figure 6.27).

6.13 DESIGN OF THE CIRCUITRY

Figure 6.28 represents the schematic representation of the circuit to be used to 
read pulses from the encoder. The pulse is read at the input pin no. 14. The pin 
attains the states 0 or 5 V when an opaque and transparent section crosses the 
receiver. By counting this change of states, the angular seed of the wheel can be 
computed. This is discussed in the next section.

FIGURE 6.26 The arrangement of  encoders.
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6.14 READING THE PULSES IN A COMPUTER 

After reading the pulse from the encoder, it is possible to count the pulses do-
ing the polling. The software continuously samples an input pin (pin 14) with 
the detector signal on it and increments a counter when that signal changes 
state. However, it is diffi cult to do anything else with the software while you 
are doing this polling because a pulse may be missed while the software is off 

FIGURE 6.27 Representation of the 
encoder wheel.

FIGURE 6.28 The circuit for the encoder.
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doing something like navigation or controlling the motors. But, there is a bet-
ter way. Many processors have interrupt capabilities. An interrupt is a hardware/
software device that causes a software function to occur when something hap-
pens in the hardware. Specifi cally, whenever the detector A pulse goes high, 
the processor can be interrupted such that it suspends its ongoing navigation or 
motor control task, runs a special software routine (called an interrupt handler), 
which can compute the new distance traveled. When the interrupt handler is 
done, the processor automatically returns to the task it was working on when the 
interrupt occurred. The working program to count the encoder pulses is listed 
in Appendix II (b)

A simple description of the pulse counting process is presented here.
When the leading edge of a pulse occurs:
IF (motor command is forward) THEN distance = distance +1
IF (motor command is reverse) THEN distance = distance -1

If the motor command is not forward or reverse, distance is not changed. 
This avoids the possible problem of the robot stopping where the detector is 
right on the edge of an opaque section and might be tripping on and off with no 
real motion.  

Another problem is that if the motor is rolling along and is commanded to 
zero, it might coast a little before stopping. One way to minimize this problem 
is to slowly decelerate to a stop so there is little or no coasting after the motor is 
set to zero.
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C h a p t e r

7.1 WHY STUDY  LEGGED ROBOTS?

One need only watch a few slow-motion instant replays on the sports chan-
nels to be amazed by the variety and complexity of ways a human can 
carry, swing, toss, glide, and otherwise propel his body through space. 

Orientation, balance, and control are maintained at all times without apparent 
effort, while the ball is dunked, the bar is jumped, or the base is stolen, and 
such spectacular performance is not confi ned to the sports arena only. Behavior 
observable at any local playground is equally impressive from a mechanical engi-
neering, sensory motor integration point of view. The fi nal wonder comes when 
we observe the one-year-old infant’s wobble with the knowledge that running 
and jumping will soon be learned and added to the repertoire.

LEGGED ROBOTS7
In This Chapter

• Why Study Legged Robots?
• Balance of Legged Robots
• Analysis of Gaits in Legged Animals
• Kinematics of Leg Design
• Dynamic Balance and Inverse Pendulum Model
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Two-legged walking, running, jumping, and skipping are some of the most 
sophisticated movements that occur in nature, because the feet are quiet small 
and the balance at all times has to be dynamic; even standing still requires so-
phisticated control. If one falls asleep on ones feet he falls over. The human 
stabilizes the movement by integrating signals from:

■  Vision, which includes ground position and estimates of the fi rmness of the 
ground and the coeffi cient of friction. 

■ Proprioception, that is, knowledge of the positions of all the interacting mus-
cles, the forces on them and the rate of movement of the  joints. 

■ The vesicular apparatus, the semicircular canals used for orientation and 
balance. 

A very large number of muscles are used in a coordinated way to swing 
legs and the muscle in an engine consisting of a power source in series with 
an elastic connection. Various walking machines have been developed to 
imitate human legs, but none is as effi cient as those of humans. Even the 
walking of four-legged animals is also highly complex and quite diffi cult to 
reproduce. The history of interest in walking machines is quite old. But until 
recently, they could not be developed extensively, because the high compu-
tational speed required by these systems was not available earlier. Moreover, 
the motors and power storage system required for these systems are highly 
expensive. Nevertheless, the high usefulness of these machines can discount 
on some of the cost factors and technical diffi culty associated with the mak-
ing of these systems. Walking machines allow locomotion in terrain inacces-
sible to other type of vehicles, since they do not need a continuous support 
surface, but the requirements for leg coordination and  control impose dif-
fi culties beyond those encountered in wheeled robots. Some instances are in 
hauling loads over soft or irregular ground often with obstacles, agricultural 
operations, for movements in situations designed for human legs, such as 
climbing  stairs or ladders. These aspects deserve great interest and, hence, 
various walking machines have been developed and several aspects of these 
machines are being studied theoretically.

In order to study them, different approaches may be adopted. One pos-
sibility is to design and build a walking robot and to develop study based 
on the prototype. An alternative perspective consists of the development of 
walking machine simulation models that serve as the basis for the research. 
This last approach has several advantages, namely lower development costs 
and a smaller time for implementing the modifi cations. Due to these rea-
sons, several different  simulation models were developed, and are used, for 
the study, design, optimization, and gait analysis and testing of control algo-
rithms for artifi cial locomotion systems. The gait analysis and selection re-
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quires an appreciable modeling effort for the improvement of mobility with 
legs in unstructured environments. Several articles addressed the structure 
and selection of locomotion modes but there are different optimization crite-
ria, such as energy effi ciency, stability, velocity, and mobility, and its relative 
importance has not yet been clearly defi ned. We will address some of these 
aspects in these issues in the later sections of this chapter.

7.2 BALANCE OF  LEGGED ROBOTS

The greatest challenge in building a legged robot is its balance. There are two 
ways to balance a robot body, namely static balance and dynamic balance. Both 
of these methods are discussed in this section.

7.2.1  Static Balance Methods 

Traditionally, stability in legged locomotion is taken to refer to static stability. 
The necessity for static stability in arthropods has been used as one of, if not 
the most important, reason why insects have at least six legs and use two sets of 
alternating tripods of support during locomotion. Numerous investigators have 
discussed the stepping patterns that insects require to maintain static stability 
during locomotion. Yet, few have attempted to quantify static stability as a func-
tion of gait or variation in body form. Research on legged walking machines 
provided an approach to quantify static stability. The minimum requirement to 
attain static stability is a tripod of support, as in a stool. If an animal’s center of 
mass falls outside the triangle of support formed by its three feet on the ground, 
it is statically unstable and will fall. In the quasi-static gait of a robot or animal, 
the center of mass moves with respect to the legs, and the likelihood of fall-
ing increases the closer the center of mass comes to the edge of the triangle of 
support. In Figure 7.1 static balance is compared between six-legged and four-
legged robotic platforms.

The problem of maintaining a stable platform is considerably more complex 
with four legs than it is with fi ve, six, or more, since to maintain a statically stable 
platform there must always be at least three legs on the ground at any given time. 
Hence, with only four legs a shift in the center of mass is required to take a step. 
A six-legged robot, on the other hand, can always have a stable triangle—one 
that strictly contains the center of mass. In Figure 7.1 two successive postures 
or steps are shown for a four- and six-legged robot. In Figure 7.1 (a) the triangle 
for the fi rst posture is stable because it contains the center of mass, but for the 
second posture the center of mass must be shifted in order for the triangle to be 
stable. In contrast, for the six-legged robot in Figure 7.1 (b) the center of mass 
can remain the same for successive postures.

O
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7.2.2 Dynamic Balance Methods 

Dynamic stability analysis is required for all but the slowest movements. It was 
discovered that the degree of static stability decreased as insects ran faster, 
until at the highest speeds they became statically unstable during certain parts 
of each stride, even when a support tripod was present. Six- and eight-legged 
animals are best modeled as dynamic, spring-load, inverted pendulums in the 
same way as two- and four-legged runners. At the highest speeds, ghost crabs, 
cockroaches and ants exhibit aerial phases. In the horizontal plane, insects and 
other legged runners are best modeled by a dynamic, lateral leg spring, bounc-

center of mass
must be shifted 
into the triangle

center of mass
can remain 
in one place

triangle of support

ii. step 2 ii. step 2

motion

i. step 1

a. quadruped b. hexapod

i. step 1

FIGURE 7.1  Static balance in quadrupedal and hexapodal walking.
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ing the animal from side to side. These models, and force and velocity mea-
surements on animals, suggest that running at a constant average speed, while 
clearly a dynamical process, is essentially periodic in time. We defi ne locomo-
tor stability as the ability of characteristic measurements (i.e., state variables 
such as velocities, angles, and positions) to return to a steady state, periodic 
gait after a perturbation. 

Quantifying dynamic stability—dynamical systems theory: The fi eld 
of dynamical systems provides an established methodology to quantify stability. 
The aim of this text is not to explain the details of dynamical systems theory, 
but to give suffi cient background so that those studying locomotion can see its 
potential in description and hypothesis formation. It is important to note that dy-
namical systems theory involves the formal analysis of how systems at any level of 
organization (neuron, networks, or behaviors) change over time. In this context, 
the term dynamical system is not restricted to a system generating forces (ki-
netics) and moving (kinematics), as is the common usage in biomechanics. The 
description of stability resulting from dynamical systems theory, which addresses 
mathematical models, differential equations, and iterated  mappings, does not 
necessarily provide us with a direct correspondence to a particular biomechani-
cal structure. Instead, the resulting stability analysis acts to guide our attention 
in productive directions to search for just such a link between coordination hy-
potheses from dynamical systems and  mechanisms based in biomechanics and 
motor  control.

Defi ne and measure variables that specify the state of the system: 
The fi rst task in the quantifi cation of stability is to decide on what is best to 
measure. The goal is to specify a set of variables such as positions and velocities 
that completely defi ne the state of the system. State variables are distinct from 
parameters such as mass, inertia, and leg length that are more or less fi xed for a 
given animal. State variables change over time as determined by the dynamics 
of the system. Ideally, their values at any instant in time should allow the deter-
mination of all future values. Put another way, if two different trials of a running 
animal converge to the same values, their locomotion patterns should be very 
similar from that time forward. 

Periodic trajectories called limit cycles characterize locomotion: During sta-
ble, steady-state locomotion, the value of state variables oscillates rhythmically 
over time (e.g., lateral velocity in Figure 7.2 A). In addition to representing the 
behavior of the state variables with respect to time, we can examine their behav-
ior relative to one another. Figure 7.2 B shows a plot of the state variables (e.g., 
lateral, rotational, and fore-aft velocity) in state space. Time is no longer an axis, 
but changes as one moves along the loop in this three-dimensional space. The 
closed loop trajectory tells us that the system is periodic in time. Such a trajec-
tory in state space is known as a limit cycle. If any other path converges to this 
cycle, it has stabilized to the same trajectory.
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Two types of stability exist—asymptotic and neutral. Characterizing stability 
requires perturbations to state variables (Figure 7.3). Most generally, stability 
can be defi ned as the ability of a system to return to a stable limit cycle or equi-
librium point after a perturbation. There are at least two types of stable systems. 

★
★

★★
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Asymptotically
Stable

Neutrally Stable Unstable
Equilibrium

Equilibrium

FIGURE 7.3 Types of stability; schematic representations of asymptotic stability with an equilibrium 
point (star), neutral stability with a continuum of equilibrium points, and an example of instability. 
The axes represent any two state variables.
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FIGURE 7.2 Periodic orbit or limit cycle. A. Variation in a single state variable, lateral velocity over 
one stride. A cycle is present within which lateral velocity repeats from t to t+1. B. Periodic orbit 
showing a limit cycle in state space. Lateral, rotation, and fore-aft velocity oscillate following a regular 
trajectory over a stride. Any point in the cycle can be considered an equilibrium point (star) of the 
associated return map.



LEGGED ROBOTS 297

In an asymptotically stable system, the return after the perturbation is to the 
original equilibrium or limit cycle. In a neutrally stable system, the return to 
stability after perturbation is to a new, nearby, equilibrium or limit cycle. In an 
unstable system perturbations tend to grow. 

7.3 ANALYSIS OF GAITS IN LEGGED ANIMALS

Gait analysis is the process of quantifi cation and interpretation of animal (in-
cluding human) locomotion. Animal gaits have been studied throughout history, 
at least as far back as Aristotle. This section discusses some background material 
about the slower gaits, like creep, walking, and trotting, as well as some informa-
tion about the faster gaits, such as running and galloping in four-legged animals. 
Trotting itself is not actually that slow, and some racehorses can trot almost as 
fast as others can gallop. However, trotting is similar enough to the walk that one 
might think a robot could be endowed with trotting ability as a natural extension 
of implementing the walk. We are not going to consider fast running as a viable 
means for robot mobility at this time. 

The Creep 

Creep, sometimes known as the crawl, is demonstrated by cats when stalking 
something—body low-slung to the ground, and slow meticulous movement of 

FIGURE 7.4 Cat displaying creep motion.
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only one leg at a time. We have also observed deer using this gait, when walking 
over broken ground. Compared to the cat, however, they keep their bodies fully 
erect, and lift each leg high during steps—to clear obstacles. 

Tripod Stability: Whereas the alternating diagonal walk has dynamic stabil-
ity, the creep has “static” stability. Only one leg is ever lifted from the ground at 
a time, while the other 3 maintain a stable tripod stance. The grounded legs are 
maintained in a geometry that keeps the center of mass of the body inside the 
triangle formed by the 3 points of the tripod at all times. As the suspended leg 
moves forward, the tripod legs shift the body forward in synchrony, so that a new 
stable tripod can be formed when the suspended leg comes down. 

There are at least 2 variations of the creep: 

1. The tripod can shift the body forward simultaneously with the suspended 
leg, giving a nice smooth forward movement. This method should provide 
good speed on level ground. 

2. The tripod can shift the body forward after the suspended leg has 
touched down, giving a more tentative and secure forward movement. 
This method should be useful when engaging obstacles or moving over 
broken ground. 

It seems there is little reason why a quadruped cannot be almost as stable as 
a hexapod, considering that a quad has 4 legs and it only takes 3 to build a stable 
tripod. Lift 1 leg for probing and stepping forward, and always keep 3 on the 
ground for stability. Just watch a clever cat negotiate the top of a fence.

Creep stability: The creep gait is “potentially” very stable, since 3 legs form 
a stable support tripod whenever any one leg is suspended. 

However, lifting only 1 leg at a time sounds nice, but in the real world, this 
doesn’t always work as predicted—for a quadruped, at least. It turns out, if the 
quad’s legs are too short with respect to its body length, or they don’t travel far 
enough (front-to-back) toward the midline of the body, or they are not coordi-
nated well, then the 3 down legs may not form a stable tripod when the fourth is 
in the air. The down leg on the same side as the lifted leg, especially, must have 
its foot positioned far enough back, else the COG may not be contained within 
the stability triangle formed by the 3 down legs. Overall, creep stability relates 
to: body length, body width, leg length, leg angles, foot positions, and general 
distribution of weight on the body. 

We have observed that deer do not have much problem with creep stabil-
ity. Their legs are “very” long with respect to their body lengths, so keeping the 
COG within the stability tripod is easy. 

Figure 7.5 illustrates how the static balance is maintained in creep gait. Giv-
en the position of the right front leg relative to the left rear, the associated edge 
of the stability triangle falls very close to the COG at this point. If those 2 legs are 
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not coordinated correctly, a point of instability may occur nearby in the stride. 
To improve stability here, the right front foot would have to touch down further 
back. 

Walk

The dog in Figure 7.6 walks with a 4-time gait, LF (left-front), RR (right-rear), 
 RF (right-front), LR (left-rear), then repeat. Presumably, most dogs prefer to 
start the walk with a front leg. 

Notice that balance and support are maintained by the LR+RF “diagonal” 
while the LF and RR legs are suspended (positions 1, 2), and by the opposite 
diagonal for the other 2 legs (positions 5, 6). At the start of each step (positions 
1, 5), the legs of the support diagonal are vertical, and the COG (center of grav-
ity) of the dog is in the middle of the diagonal. Then the COG shifts forward as 
the stepping leg is extended (positions 2, 3, 6, 7), giving forward momentum to 
the body. 

Regarding the suspended legs, the front leg precedes the rear leg (evident 
in positions 1–3 and 5–7) slightly, thus the 4-part cadence. Furthermore, during 
initiation of the succeeding steps (positions 4, 8), the front leg of the new step 
lifts slightly before the rear leg of the previous step touches down. This prevents 
the feet on the same side from banging into each other during the transition 
between diagonals, since for a normal stride; the rear pad comes down near the 
front pad mark. 

COG

FIGURE 7.5 COG during creep motion.
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The Trot

Faster gaits than the walk are the trot (positions 1–4) and the pace (posi-
tions 5, 6), which the German shepherd illustrates in Figure 7.7. The trot is 
basically a direct extension of the walk shown above, used for greater speed, 
while the pace is what a tired dog might use heading home after a long day 
on the range. 

The trot is a two-time gait, LR+RF alternating with RR+LF. Like the walk 
above, the trot gets its stability by using alternating “diagonal bracing” under the 
torso (positions 1, 3), but here the legs work more closely in unison, the strides 
are longer and the forward lean is greater. 

In practice, the phase of the front feet is slightly ahead of the rear, which 
keeps the feet on the same side from banging each other (positions 2, 4). Quite 

1 2 3

4 5 6

7 8 9

FIGURE 7.6 In the nine diagrams, the dog demonstrates the complete sequence of a full stride of 
the walk. The left front starts the action. Positions 1 and 2 show the right diagonal; 3, right diagonal 
and left front; 4, the left lateral; 5 and 6, the left diagonal; 7, the left diagonal and right front; 8, the 
right lateral; and 9 takes us back to the start.
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obviously, the length of the stride with respect to the length of the torso and legs, 
as well as the precise phase relationship between front and rear legs on the same 
side, distinguish a successful trot from a bang, stagger, and stumble. Dogs with 
longer legs, compared to torso length, do not trot well. 

The trot is an example of dynamic stability, where the animal could not hold 
its balance when stopped. However, because the trot always keeps the COG of 
the torso straddled by diagonal bracing, and the order of stepping is similar to 
that of the walk, one should think this gait would be easily implementable in a 
quadruped robot, once a successful walk has been achieved. 

The Pace: In the pace, the dog uses “lateral” support, where both legs on 
each side work together, and the sides alternate. In the trot, the COG of the 
torso is not directly over the legs, but is centered within the diagonals. With the 
pacing gait, the COG will be offset from the supporting side unless the animal 
signifi cantly leans its body sideways and angles its legs inward—an obvious sta-
bility problem. 

1 2

3

5 6

4

FIGURE 7.7 Trot and pace gait.
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Interestingly, humans also have something akin to a pacing gait. We have dis-
covered empirically that, at the end of a long tiring hike, when struggling up the 
fi nal hills, it turns out to be very comforting to twist and lean the body over onto 
the supporting leg with each step. This produces a kind of ducky waddling move-
ment, which is not a good means for covering level ground at speed, but clearly 
takes some of the stress off tired muscles by shifting the COG directly over the 
grounded leg, so that the bones rather than the muscles take the effort. In a nor-
mal walk, the COG is normally kept in between the feet, so the leg muscles must 
take more of the effort. Because of the instability inherent with the pacing gait, 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

FIGURE 7.8 Galloping gait.
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a pacing robot would probably fall over and go to sleep at the fi rst opportunity. 
The trot, however, looks eminently doable in the robot.

Running Gaits
Galloping: The basic gallop is illustrated by the dog in Figure 7.8. This is a 4-
step gait, shown here as LR, RR, LF, then  RF. The leg ordering is very different 
from the walk and trot. 

The RF leg is actually the “leading” leg here. The characteristic of this gait is 
that the leading leg bears the weight of the body over longer periods of time than 
any other leg, and is more prone to fatigue and injury. The single suspension 
phase (positions 13–15) is initiated by catapulting the entire body off the leading 
leg (positions 10–12). The force comes from the back legs pushing off onto the 
nonleading front leg, and then onto the leading leg (positions 3–8). Notice the 
length of time the back legs are suspended. 

There is a position where all 4 legs are under the body, and others where ei-
ther the 2 front or 2 rear legs are extended away from the body, but none where 
both fronts and both rears are extended simultaneously (as for the next gallop 
shown below). This gives a degree of rocking to the body, as the relative position 
of the COG moves forward and backward. 

Flying: Lastly, the full-tilt double-suspension gallop is illustrated by the 
greyhound in Figure 7.9. (Suspension is the phase where all feet are off the 
ground simultaneously.)

FIGURE 7.9 Flying gait.
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The 3rd and 6th pictures illustrate well how the mirror image design of the 
legs produces symmetrical limb movement during running, and helps keep the 
COG of the animal at the same relative location during all aspects of the stride. 
From a stability viewpoint, this is clearly vital in preventing the dog’s body from 
pitching nose over during the run. 

However, implementing these running  gaits in robots is very diffi cult. Stabil-
ity is the biggest concern. Second is the availability of motors, which can gener-
ate such speed and power. The third problem is providing proper suspension to 
the entire body.

Robots can prosper from the aspects of animal dynamics, just described, in 
several ways: 

■ Robot bodies can be designed to take advantage of potential kinetic energy 
transformations, and especially forward inertia. 

■ Robot legs can be designed to absorb, store, and then rerelease the energy 
of foot impact. 

■ Robot legs can be arranged, like in the roach, to take advantage of self-sta-
bilizing forces, which in turn can lessen the complexity of controllers and 
improve the overall stability of the devices in dynamic situations.

7.4 KINEMATICS OF LEG DESIGN

Kinematics of legged robots is similar to that of the robotic arm. The same kin-
ematic analysis can be employed to legged robots to generate trajectories. So the 
kinematics can be divided into forward and inverse kinematics as discussed in 
Chapter 5 in Sections 5.3 and 5.4. We will implement forward and inverse kin-
ematics to a problem of a general 3-DOF leg in the following sections. 

7.4.1 Forward Kinematics

Let µ1, µ2, and µ3 be angles for the rotator, shoulder joint, and knee joint, and let l1, 
l2, and l3 be the lengths of the shoulder, upper limb, and lower limb (Figure 7.10). 
Then the position (x, y, z) of the paw is represented by the following formulae: 
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The frame assignment and calculation of joint link parameters is left for the 
user’s practice. The users can revisit Section 5.3 (Forward Kinematics) for refer-
ence. 
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7.4.2 Inverse Kinematics

We need the inverse kinematics in order to allow a high-level description of the 
gait, in which we design the movement of each leg by its position of paw, instead 
of these angles. Since our robot has 3 degrees of freedom, we have the following 
closed-form inverse kinematics:
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Note that we have two solutions for any reachable position (x, y, z), depend-
ing on if the angle µ3 of the knee is either positive or negative. Moreover, if x = 
z = 0 then µ1 can be arbitrarily chosen.

The derivation of inverse kinematics is left for the user’s practice. The users 
can revisit Section 5.4 (Inverse Kinematics) for reference. 

FIGURE 7.10 Model and coordinate frame for leg 
kinematics presents the coordinate frame of a 3-
DOF leg of a general 4-legged robot.
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Leg Motion

The following parameters have to be specifi ed to produce wheel-like leg mo-
tion.

Landing position and leaving position: positions at which the leg reaches 
the ground and leaves from it. 

Lift height: lift heights of the leg. 
Stroke shape: We can choose either rectangle or Hermite curve interpola-

tion of three points, shown in Figure 7.11. A Hermite curve smoothly connects 
between specifi ed points. These parameters determine the spatial trajectory of 
the paw. Moreover, an additional two parameters determine the position (x, y, z) 
of the paw at each time step.

Power ratio: time ratio of the paw touches the fl oor.
Time period: total steps of one stroke.
While the paw touches the fl oor, it moves on the straight line at a fi xed 

speed.

7.5 DYNAMIC BALANCE AND INVERSE PENDULUM MODEL

There are several simplifi ed models to describe leg dynamics. The simplest treats 
the body as an inverted pendulum mass, which transforms energy back and forth 
from gravitational potential energy at the top of the stance phase to kinetic en-
ergy during the lift phase of the step. In this model, the leg and body essentially 
rotate around the downed foot as a pivot point, with the up and down motions 
of the body mass related to the energy transformations. Inverse pendulum is a 
system consisting of a pole attached at its bottom to a moving cart. Whereas a 
normal pendulum is stable when hanging downward, a vertical inverted pen-
dulum is inherently unstable, and must be actively balanced in order to remain 
upright, typically by moving the cart horizontally as part of a nonlinear  feedback 
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FrontZ
BackZ
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(a) rectangle (b) hermite curve

FIGURE 7.11 Stroke shapes.
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system. We are going to discuss the dynamics of an inverse pendulum and its ap-
plication to the balance of legged  robots in this section. A sketch of this system 
is shown in Figure 7.12. The goal is to maintain the desired vertically oriented 
position at all times.

We will discuss here how the inverse pendulum model is applied to a bi-
ped to fi nd out the dynamics of its motion. The biped locomotion is composed 
by two main phases: the single support phase and the double support phase. 
During the double support phase the robot is controllable, while it is not in 
the single support phase. This is due to the lack of an actuated foot. In the 
double support phase there is the transition of the support leg, from right to 
left or vice versa. Many authors have proposed a control strategy in which the 
double support phase is assumed to be instantaneous, and the actual biped 
locomotion is achieved by the single support phase. The main idea on which 
we rely for the control of the system is to reduce the dynamic of the system, 
in the single support phase, as that of a passive inverse pendulum. The single 
support phase starts when the robot is about to lift one of its two feet off the 
ground, more specifi cally the rear foot. This is the take-off confi guration CTO, 
which we have chosen to assign using three parameters: dStep, dSwitch, and 
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FIGURE 7.12 Inverted pendulum on cart.
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qMin. The meaning of these parameters is shown in Figure 7.13. In the CTO, 
we treat the whole robot as an inverse pendulum (Figure 7.14). This is done 
by calculating the center of gravity P and the inertia momentum I of the whole 
system. Length of the pendulum l is given by the distance of the COG from the 
front foot. The initial position of the pendulum, given by the angle β is easily 
calculated. 

The main principle of the control is to obtain a single support phase in which 
the inverse pendulum moves clockwise, in order to obtain the locomotion of the 
whole robot along the positive x-axis. To obtain such a goal, the initial velocity 
of the pendulum must be greater than a minimum value calculated using the 
conservation of the mechanical energy principle:

 Iml
mgl

+
−

= 2
0

0

)βcos1(2
β
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where β0 is the initial velocity of the pendulum, m and I are the mass and the 
inertia momentum of the pendulum, g is the gravity acceleration, and l is the 
length of the pendulum. 

Using the inverse kinematics, the velocity β0 is translated in a set of given 
joint velocities in the CTO; this confi guration is now completely defi ned. We can 
now illustrate the basic principle of the control strategy: we want to use the dou-
ble support phase to bring the robot from a given initial confi guration C0 to the 

FIGURE 7.13 Degrees of freedom. FIGURE 7.14 Dynamic parameters.
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CTO; in the CTO the robot will switch to the single support phase where we will 
use the inverse pendulum approximation to control the dynamic of the swing 
leg. The objective is to swing this leg forward in coordination with the main 
body movement. Now we can explain more deeply the meaning of the various 
parameters used to defi ne the CTO. In Figures 7.15 and 7.16 the parameter dStep 
must be assigned accordingly to the robot legs length. A dStep too long would 
provoke unfavorable situations for the actuators, plus the body oscillation would 
be too great. A dStep too short would result in a slower locomotion and in stabil-
ity problems. The parameter qMin is a security margin to avoid the singularity 
confi guration of the knee joint, a situation in which the thigh and the leg are 
aligned. This parameter is directly related to the maximum leg extension, which 
is reached by the rear leg in the CTO. The starting angle β0 is directly related to 
the dSwitch parameter. A higher value for dSwitch causes a longer path for the 
inverse pendulum, thus a higher initial velocity, resulting in a higher actuators 
power output needed.

 Dynamics of legged robots is an active fi eld, where a lot of research is cur-
rently going on. Readers are advised to study detailed texts on legged robots 
to obtain a more detailed knowledge of the subject. A more practical interest 
in legged  robots will start after the development of very low-weight and high-
torque motors or other actuators and low-weight power storage devices. 

qMin

P

1

O

dSwitch

dStep

β

FIGURE 7.15 Take-off parameters.  Figure 7.16 Inverse pendulum scheme.
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/*

(C)-2004,

Program for automatic  tracking of Turtle.

*/

#include<iostream.h>

#include<conio.h>

#include<dos.h>

#include<math.h>

#include<fstream.h>

#include<iomanip.h>

// —Global Variables—

intF[4],Rl[4],Rr[4];

// —> change to enum boolean

int motor=1;

    // F=1, Rl=2, Rr=3

int dir=0;   // 0=clockwise, 1=anticlockwise

int pos_F,pos_Rl,pos_Rr;

    // step position flags 

ofstream outfile(“Log.txt”);

    // Logfile

char stat_flag=’L’;

char motion;  // L/l=logging, D/d=display, B/b=both, N/n=none

unsigned int F_count=0,Rl_count=0,Rr_count=0;

    // step counts - initialized to 0

int F_pos[5000],Rl_pos[5000],Rr_pos[5000];

    // step log array

// ———

APPENDIX A
TURTLE.CPP
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// —Function Declarations—

void outSignal();

void initializeMotors();

void step(int motor, int dir);

void showMotorStatus();

void promptForStatus();

void showStepLog();

void write(int var);

void write(unsigned int var);

void write(float var);

void write(char* string);

void write(int var, int width);

void write(unsigned int var, int width);

void write(float var, int width);

// ———

void outSignal()

{

 int dec_378=0;

 for(int i=0;i<4;i++)

 {

  dec_378 += Rl[i]*pow(2,i);

 }

 for(i=4;i<8;i++)

 {

  dec_378 += Rr[i-4]*pow(2,i);

 }

 int dec_37A=0;

 for(i=0;i<4;i++)

 {

  dec_37A += F[i]*pow(2,i);

 }

 outportb(0x378,dec_378);

 outportb(0x37A,dec_37A);

 //write(“\ndec_378=”);write(dec_378);write

 (“, dec_37A=”);write(dec_37A);

}

void initializeMotors()

// To initialize the motors to its first position. add posflag

{

 F[0]=1;F[1]=0;F[2]=1;F[3]=1; pos_F=4;

 // Front
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 Rl[0]=0;Rl[1]=1;Rl[2]=1;Rl[3]=0; pos_Rl=4;

 // Rear Left

 Rr[0]=0;Rr[1]=1;Rr[2]=1;Rr[3]=0; pos_Rr=4;

 // Rear Right       

 outSignal();

}

void step(int motor, int dir)

{

 switch(motor)

 {

  case 1:

  {

   if(dir==0)

   {

    pos_F++;

    if(pos_F>4)

     pos_F=1;

   }

   else

   {

    pos_F—;

    if(pos_F<1)

     pos_F=4;

   }

   switch(pos_F)

   {

    case 1:

    {

     F[0]=1;F[1]=0;F[2]=0;F[3]=0;break;

    }

    case 2:

    {

     F[0]=0;F[1]=1;F[2]=0;F[3]=0;break;

    }

    case 3:

    {

     F[0]=0;F[1]=1;F[2]=1;F[3]=1;break;

    }

    case 4:

    {

     F[0]=1;F[1]=0;F[2]=1;F[3]=1;break;

    }

   }
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   //F_pos[F_count++]=dir;

   break;

  }

  case 2:

  {

   if(dir==0)

   {

    pos_Rl++;

    if(pos_Rl>4)

     pos_Rl=1;

   }

   else

   {

    pos_Rl—;

    if(pos_Rl<1)

    pos_Rl=4;

   }

   switch(pos_Rl)

   {

    case 1:

    {

     Rl[0]=0;Rl[1]=1;Rl[2]=0;Rl[3]=1;break;

    }

    case 2:

    {

     Rl[0]=1;Rl[1]=0;Rl[2]=0;Rl[3]=1;break;

    }

    case 3:

    {

     Rl[0]=1;Rl[1]=0;Rl[2]=1;Rl[3]=0;break;

    }

    case 4:

    {

     Rl[0]=0;Rl[1]=1;Rl[2]=1;Rl[3]=0;break;

    }

   }

   //Rl_pos[Rl_count++]=dir;

   break;

  }

  case 3:

  {

   if(dir==1)
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   {

    pos_Rr++;

    if(pos_Rr>4)

     pos_Rr=1;

   }

   else

   {

    pos_Rr—;

    if(pos_Rr<1)

     pos_Rr=4;

   }

   switch(pos_Rr)

   {

    case 1:

    {

     Rr[0]=0;Rr[1]=1;Rr[2]=0;Rr[3]=1;break;

    }

    case 2:

    {

     Rr[0]=1;Rr[1]=0;Rr[2]=0;Rr[3]=1;break;

    }

    case 3:

    {

     Rr[0]=1;Rr[1]=0;Rr[2]=1;Rr[3]=0;break;

    }

    case 4:

    {

     Rr[0]=0;Rr[1]=1;Rr[2]=1;Rr[3]=0;break;

    }

   }

   //Rr_pos[Rr_count++]=dir;

   break;

  }

 

 }

 outSignal();

}

void showMotorStatus()

  //overload << operator for single cout/outfile statement.

{

 write(“\n——————”);

 write(“\nF  - Pos:”);write(pos_F);write(“, Current seq:”);

 for(int i=0;i<4;i++)
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  write(F[i]);

 write(“\nRl - Pos:”);write(pos_Rl);write(“, Current seq:”);

 for(i=0;i<4;i++)

  write(Rl[i]);

 write(“\nRr - Pos:”);write(pos_Rr);write(“, Current seq:”);

 for(i=0;i<4;i++)

  write(Rr[i]);

 write(“\n——————”);

}

void promptForStatus()

{

 /* do

 {

  cout<<“\nCircle (C) / Coordinate Points (P):”;

  cin>>motion;

  flag=getche();

 }

 while(flag!=’C’&&flag!=’c’&&flag!=’P’&&flag!=’p’); */

 do

 {

  cout<<“\nLog staus (L) / Display onscreen (D) / Both (B) / 

  None (N):”;

  stat_flag=getche();

 }

 while(stat_flag!=’L’&&stat_flag!=’l’&&stat_flag!=’D’&&stat_flag!

 =’d’&&stat_flag!=’B’&&stat_flag!=’b’&&stat_flag!=’N’&&stat_flag!

 =’n’);

}

void showStepLog()

{

 int i,j,k;

 write(“\n—Step Log—”);

 write(“\nMotor F, steps=”);write(F_count);write(“:-\n”);

 for(i=0;i<F_count;i++)

 {

  write(F_pos[i]);write(“ “);

  if((i+1)%25==0)

   write(“\n”);

 }

 write(“\nMotor Rl, steps=”);write(Rl_count);write(“:-\n”);
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 for(j=0;j<Rl_count;j++)

 {

  write(Rl_pos[j]);write(“ “);

  if((j+1)%25==0)

   write(“\n”);

 }

 write(“\nMotor Rr, steps=”);write(Rr_count);write(“:-\n”);

 for(k=0;k<Rr_count;k++)

 {

  write(Rr_pos[k]);write(“ “);

  if((k+1)%25==0)

   write(“\n”);

 }

 write(“\n———”);

}

void write(int var)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’) 

  cout<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<var;

}

void write(unsigned int var)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<var;

}

void write(float var)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_
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 flag==’b’)

  outfile<<var;

}

void write(char* string)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<string;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<string;

}

void write(int var, int width) //width for setw manipulator

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<setw(width)<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<setw(width)<<var;

}

void write(unsigned int var, int width)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<setw(width)<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<setw(width)<<var;

}

void write(float var, int width)

{

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

  cout<<setw(width)<<var;

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

  outfile<<setw(width)<<var;

}
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#include<graphics.h>

#include<stdio.h>

// —Global Variables—

const int screen_w=640,screen_h=480;

//the resolution of the graphics mode. values 640x480 for VGAHI driver

float q1_SF=4,q2_SF=4;

//the default scaling factors in the q1 & q2 co-ordinate axis 

respectively. can change in the main prog

int q1_offset=320,q2_offset=240;

    //should be a portin of screen_w & screen_h

int box1_x=10,box1_y=395,box1_w=150,box1_h=75;

//defines the position of the display box 1

int box2_x=330,box2_y=450,box2_w=300,box2_h=20;

//defines the position of the display box 2

int position_update_int=4;

//specifies intervals after which intermediate co-ords are displayed on 

screen

// ———

// —Function Declarations—

void initializeGFX();

void initializeGFX(float _q1_SF, float _q2_SF);

//initialize the plot

void closeGFX();

void plot(float _q1, float _q2, int flag);

//flag specifies the type of entity to be plotted. 0=point, 1=small 

filled circle.

void displayPar(float _delta, float _v_a);

void displayPosition(float _q1, float _q2, float _q3);

void displayStatus(char* string);

int q1ToScreenx(float _q1);

int q2ToScreeny(float _q2);

float screenxToq1(int x);

float screenyToq2(int y);

// ———

void initializeGFX()

{

 //registerbgidriver(EGAVGA_driver);

 int driver=DETECT,mode=VGAHI;

 //q1_SF=_q1_SF;

 //q2_SF=_q2_SF;

 initgraph(&driver, &mode, “”);
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 //3rd parameter specifies dir of gfx drivers. update path.

 setcolor(EGA_WHITE);

 setlinestyle(SOLID_LINE,0,NORM_WIDTH);

 line(screen_w/2,0,screen_w/2,screen_h-1);

 line(0,screen_h/2,screen_w-1,screen_h/2);

 setfillstyle(SOLID_FILL,EGA_BLACK);

 bar3d(box1_x,box1_y,box1_x+box1_w,box1_y+box1_h,0,0);

 line(box1_x,box1_y+55,box1_x+box1_w,box1_y+55);

 bar3d(box2_x,box2_y,box2_x+box2_w,box2_y+box2_h,0,0);

 const int marker_w=screen_w/14;

 const int marker_h=screen_h/14;

 int x,y;

 char ch[10];

 settextjustify(CENTER_TEXT,TOP_TEXT);

 x=screen_w/2;

 y=screen_h/2;

 while(x<screen_w)

 {

  x+=marker_w;

  line(x,y-2,x,y+2);

  sprintf(ch,”%i”,int(screenxToq1(x)));

  outtextxy(x,y+5,ch);

 }

 x=screen_w/2;

 while(x>=0)

 {

  x-=marker_w;

  line(x,y-2,x,y+2);

  sprintf(ch,”%i”,int(screenxToq1(x)));

  outtextxy(x,y+5,ch);

 }

 settextjustify(RIGHT_TEXT,CENTER_TEXT);

 x=screen_w/2;

 while(y<screen_h)

 {

  y+=marker_h;

  line(x-2,y,x+2,y);

  sprintf(ch,”%i”,int(screenyToq2(y)));

  outtextxy(x-5,y,ch);

 }

 y=screen_h/2;

 while(y>=0)

 {

  y-=marker_h;



APPENDIX A: TURTLE.CPP 321

  line(x-2,y,x+2,y);

  sprintf(ch,”%i”,int(screenyToq2(y)));

  outtextxy(x-5,y,ch);

 }

}

void initializeGFX(float _q1_SF, float _q2_SF)

{

 q1_SF=_q1_SF;

 q2_SF=_q2_SF;

 initializeGFX();

}

void closeGFX()

{

 getch();

  //closes after keypress

 closegraph();

}

void plot(float _q1, float _q2, int flag)

//copies _q1 & _q2 of q1 & q2 used.

{

 int q1_p=_q1*q1_SF+q1_offset;

 //valid values of (q1_p,q2_p) range from 0,0 to 639,479 in VGAHI.

 int q2_p=screen_h-(_q2*q2_SF+q2_offset);

 switch(flag)

 {

  case 0:

  {

   putpixel(q1_p,q2_p,EGA_LIGHTGREEN);

   break;

  }

  case 1:

  {

   setfillstyle(SOLID_FILL,EGA_LIGHTRED);

   fillellipse(q1_p,q2_p,3,3);

   break;

  }

 }

}

void displayPar(float _delta_a, float _v_a)
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{

 char ch[50];

 settextjustify(LEFT_TEXT,TOP_TEXT);

 setfillstyle(SOLID_FILL,EGA_BLACK);

 bar(box1_x+1,box1_y+1,box1_x+box1_w-1,box1_y+54);

 sprintf(ch,”delta_a = %5.3f”,_delta_a);

 outtextxy(box1_x+5,box1_y+5,ch);

 sprintf(ch,”v_a = %6.2f”,_v_a);

 outtextxy(box1_x+5,box1_y+20,ch);

}

void displayPosition(float _q1, float _q2, float _q3)

{

 char ch[50];

 settextjustify(LEFT_TEXT,TOP_TEXT);

 setfillstyle(SOLID_FILL,EGA_BLACK);

 bar(box1_x+1,box1_y+56,box1_x+box1_w-1,box1_y+box1_h-1);

 sprintf(ch,”%5.1f,%5.1f,%5.1f”,_q1,_q2,_q3);

 outtextxy(box1_x+5,box1_y+60,ch);

}

void displayStatus(char* string)

{

 settextjustify(LEFT_TEXT,TOP_TEXT);

 setfillstyle(SOLID_FILL,EGA_BLACK);

 bar(box2_x+1,box2_y+1,box2_x+box2_w-1,box2_y+box2_h-1);

 outtextxy(box2_x+5,box2_y+5,string);

}

int q1ToScreenx(float _q1)

{

 return int(_q1*q1_SF+q1_offset);

}

int q2ToScreeny(float _q2)

{

 return int(screen_h-(_q2*q2_SF+q2_offset));

}

float screenxToq1(int x)

{

 return (x-q1_offset)/q1_SF;

}
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float screenyToq2(int y)

{

 return (screen_h-q2_offset-y)/q2_SF;

}

#include<process.h>

// —Global Variables—

const float step_angle=(0.015865),step_distance=0.74;

// units in radians and mm —>may be diff for motors

const float l=113.5,b=137.5,r=47;

// l=length, 2b=width, in mm

float v=0,delta=0;

// current centroidal speed(mm/s) and steering angle(radians)

float q1=0,q2=0,q3=0;

// instantaneous global co-ordinates of vehicle CoG q1,q2 in mm and q3

in radians

float v_Rl,v_Rr;

// theoretical velovity of rear left and right wheel

float v_Rl_a=0,v_Rr_a=0;

// actual achievable velocities

float v_a=0,delta_a=0,delta_p=0;

// actual achievable centroidal velocity and steering angle

const int steering_delay=10;

// delay for steering steps, front motor, in ms

int interval_count=0;  // interval counter

const float delta_a_min=0.01; 

// min value of delta_a for making a finite radius

float q1_int[800],q2_int[800],q3_int[800];

// instantaneous global co-ordinates in the time interval - for plotting 

purposes only

// ———

// —Function Declarations—

int round(float num);

void moveDist(float dist, float speed, int motor, int dir);

void moveAngle(float angle, float omega, int motor, int dir);

void setSteering(float _delta);

void moveVehicle(float _delta, float _v, float _t, float _distance);

void moveVehicle1(float _delta, float _v, float _t, float _distance);

// ———

int round(float num)
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{

 if((num-floor(num))<0.5)

  return floor(num);

 else

  return ceil(num);

}

void moveDist(float dist, float speed, int motor, int dir)

{

 int steps=int(dist/step_distance);

 // dist is integral multiple of step_distance

  int time_delay=int(1000/(speed/step_distance));

 // time delay is in ms

 write(“\nMotor ID=”);write(motor);write(“, 

 steps=”);write(steps);write(“, time_delay=”);write(time_delay);

 write(“, dir=”);write(dir);

 for(int i=0;i<steps;i++)

 {

  step(motor,dir);

  delay(time_delay);

 }

}

void moveAngle(float angle, float omega, int motor, int dir)

{

 int steps=int(angle/step_angle);

 // angle is integral multiple of step_angle

  int time_delay=int(1000/(omega/step_angle));

 // time delay in ms

 write(“\nMotor ID=”);write(motor);write(“, steps=”);

 write(steps);write(“, time_delay=”);write(time_delay);

 write(“, dir=”);write(dir);

 for(int i=0;i<steps;i++)

 {

  step(motor,dir);

  delay(time_delay);

 }

}

void moveVehicle1(float _delta, float _v, float _t, float _distance)

{

 int dir;

 float x,y;

 // x & y increments in LCS per interval
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 interval_count++;

 int p=0;

 write(“\n—Interval “);write(interval_count);write(“ Step Log—”);

 if(_v>=0)

  dir=0;

 else

  dir=1;

 if(_t==-1)

  _t=_distance/_v;

 //Calculating v_a, v_Rl_a & v_Rr_a

 delta_a=_delta;

 v_Rl=_v*(1-(b/l)*tan(delta_a));

 v_Rl_a=(round((v_Rl*_t)/step_distance)*step_distance)/_t;

 v_Rr_a=v_Rl_a*(1+(b/l)*tan(delta_a))/(1-(b/l)*tan(delta_a));

 v_a=v_Rl_a/(1-(b/l)*tan(delta_a));

 write(“\nv_a=”);write(v_a);write(“, 

 v_Rl_a=”);write(v_Rl_a);write(“, v_Rr_a=”);write(v_Rr_a);

 //———

 displayPar(delta_a,v_a);

 displayPosition(q1,q2,q3);

 

 //Calculating intermediate positions

 float t_int=_t/100;

 float x_int,y_int;

 q1_int[0]=q1;q2_int[0]=q2;q3_int[0]=q3;

 for(p=0;p<100;p++)

 {

  //if global array used for whole problem then we’ve to use 

  a global increment (ie p here).

  if(fabs(delta_a)>delta_a_min)

  {

   x_int=(l/tan(delta_a))*sin((v_a/l)*tan(delta_a)*t_int);

   y_int=(l/tan(delta_a))*(1-cos((v_a/

   l)*tan(delta_a)*t_int));

   q1_int[p+1]=q1_int[p]+(x_int*cos(q3_int[p])-

   y_int*sin(q3_int[p]));

   q2_int[p+1]=q2_int[p]+(x_int*sin(q3_int[p])+

   y_int*cos(q3_int[p]));

   q3_int[p+1]=q3_int[p]+((v_a/l)*tan(delta_a)*t_int);

   //not required
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  }

  else

  {

   x_int=v_a*t_int;

   y_int=0;

   q1_int[p+1]=q1_int[p]+(x_int*cos(q3_int[p])-

   y_int*sin(q3_int[p]));

   q2_int[p+1]=q2_int[p]+(x_int*sin(q3_int[p])+

   y_int*cos(q3_int[p]));

   q3_int[p+1]=q3_int[p]+0;

   //not required

  }

 }

 if(fabs(delta_a)>delta_a_min)

 {

  x=(l/tan(delta_a))*sin((v_a/l)*tan(delta_a)*_t);

  y=(l/tan(delta_a))*(1-cos((v_a/l)*tan(delta_a)*_t));

  q1+=x*cos(q3)-y*sin(q3);

  q2+=x*sin(q3)+y*cos(q3);

  q3+=((v_a/l)*tan(delta_a)*_t);

 }

 else

 {

  x=v_a*_t;

  y=0;

  q1+=x*cos(q3)-y*sin(q3);

  q2+=x*sin(q3)+y*cos(q3);

  q3+=0;

 }

 write(“\nGlobal co-ordinates of vehicle CoG:

 [“);write(q1,4);write(q2,4);write(“,”);write(q3,4);write(“]”);

 //———

 //Calculating step timing array

 if((((fabs(v_Rl_a)*_t)/step_distance)<1.002)||(((fabs(v_Rr_a)*_t)/

 step_distance)<1.002))

 {

  displayStatus(“Parameters out of range. Exiting...”);

  write(“\nParameters out of range. Exiting...”);

  closeGFX();

  exit(1);

  /*if(v_Rl_a<=v_Rr_a)
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  v_Rl_a=(round(1.02)*step_distance)/_t;*/

 }

 unsigned int delay_Rl=(_t/(((fabs(v_Rl_a)*_t)/step_distance)-

 1))*1000;

 //delay in ms —>exit on delay=0 —>check for single step

 unsigned int delay_Rr=(_t/(((fabs(v_Rr_a)*_t)/step_distance)-

 1))*1000;

 //int  data type limits max value of delay to 65,534ms

 unsigned int timer_Rl[1000],timer_Rr[1000],timer_main[2000][2];

 //step timing array for Rl, Rr, and union of the two.

 timer_Rl[0]=0;

 //the second index in timer_main denotes the motor id to be stepped.

 timer_Rr[0]=0;

 int i=0,j=0;

 while((delay_Rl*(i+1))<=(_t*1000))

 {

  i++;

  timer_Rl[i]=delay_Rl*i;

 }

 while((delay_Rr*(j+1))<=(_t*1000))

 {

  j++;

  timer_Rr[j]=delay_Rr*j;

 }

 int k=1,l=1,m=0,flag;

 timer_main[m][0]=0; timer_main[m][1]=5;

 for(k=1;k<=i;k++)

 {

  flag=1;

  while((l<=j)&&(flag==1))

  {

   if(timer_Rl[k]<timer_Rr[l])

   {

    timer_main[++m][0]=timer_Rl[k];

    timer_main[m][1]=2;

    flag=0;

   }

   else

   {

    if(timer_Rl[k]==timer_Rr[l])
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    {

     timer_main[++m][0]=timer_Rl[k];

     timer_main[m][1]=5;

     l++;

     flag=0;

    }

    else

    {

     timer_main[++m][0]=timer_Rr[l];

     timer_main[m][1]=3;

     l++;

    }

   }

  }

  /*if(l>j)    //still not tested

  {

   timer_main[++m][0]=timer_Rl[k];

   timer_main[m][1]=2;

  }*/

 }

 for(l;l<=j;l++)

 {

  if(timer_Rl[i]!=timer_Rr[l])

  {

   timer_main[++m][0]=timer_Rr[l];

   timer_main[m][1]=3;

  }

 }

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

 {

  cout<<“\nmotor Rl - “<<(i+1)<<“ steps”;

  cout<<“\nmotor Rr - “<<(j+1)<<“ steps”;

 }

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

 {

  outfile<<“\nmotor Rl - “<<(i+1)<<“ steps”;/*cout<<“ with

  step times:-\n”;

  for(p=0;p<=i;p++)

  {

   outfile<<setw(4)<<timer_Rl[p]<<“|”;
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   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

  outfile<<“\nmotor Rr - “<<(j+1)<<“ steps”;/*cout<<“ with 

  step times:-\n”;

  for(p=0;p<=j;p++)

  {

   outfile<<setw(4)<<timer_Rr[p]<<“|”;

   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

  /*outfile<<“\ncombined step timing array:-\n”;

  for(p=0;p<=m;p++)

  {

   outfile<<setw(4)<<timer_main[p][0]<<“(“<<timer_main

   [p][1]<<“)|”;

   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

 }

 write(“\n———————————”);

 //———

 //Executing step sequence

 displayStatus(“Moving Vehicle”);

 step(2,dir);

 step(3,dir);

 p=0;

 for(int n=1;n<=m;n++)

 {

  delay(timer_main[n][0]-timer_main[n-1][0]);

  if(timer_main[n][1]==5)

  {

   step(2,dir);

   step(3,dir);

  }

  else

  {

   step(timer_main[n][1],dir);

  }

  while(((t_int*1000*p)>=timer_main[n-1][0])

  &&((t_int*1000*p)<=timer_main[n][0]))
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  {

   plot(q1_int[p],q2_int[p],0);

   displayPosition(q1_int[p],q2_int[p],q3_int[p]);

   p++;

  }

 }

 //———

 plot(q1,q2,0);

}

void setSteering(float _delta)

{

 float delta_a_inc, delta_a_inc_cur=0;

 delta_a_inc=(round(_delta*(b/r)/step_angle))*step_angle;

 //delta_a =delta;

 delta_p=(round(_delta/step_angle))*step_angle;

 //round off in terms of step_angle

 write(“\ndelta_a=”);write(delta_a);

 write(“, delta_a_increment=”);write(delta_a_inc);

 write(“, motor F-steps=”);write(abs(round(delta_a_inc/

 step_angle)));write(“, with

 delay=”);write(steering_delay);write(“ms”);

 if(delta_a_inc>0)

  write(“, in dir=0”);

 if(delta_a_inc<0)

  write(“, in dir=1”);

 displayStatus(“Steering”);

 

 if(delta_a_inc>0)

 {

  while(delta_a_inc_cur<delta_a_inc)

  {

   step(2,0);step(3,1);

   delay(steering_delay);

   delta_a_inc_cur+=step_angle;

  } 

 }

 if(delta_a_inc<0)

 {

  while(delta_a_inc_cur>delta_a_inc)

  {

   step(2,1);step(3,0);
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   delay(steering_delay);

   delta_a_inc_cur-=step_angle;

  }

 }

}

void moveVehicle(float _delta, float _v, float _t, float _distance)

{

 int dir;

 float x,y;

 // x & y increments in LCS per interval

 interval_count++;

 int p=0;

 write(“\n—Interval “);write(interval_count);write(“ Step Log—”);

 if(_v>=0)

  dir=0;

 else

  dir=1;

 if(_t==-1)

  _t=_distance/_v;

 setSteering(_delta);

 q3+=delta_p;

 delta_a=0;

 //Calculating v_a, v_Rl_a & v_Rr_a

 v_Rl=_v*(1-(b/l)*tan(delta_a));

 v_Rl_a=(round((v_Rl*_t)/step_distance)*step_distance)/_t;

 v_Rr_a=v_Rl_a*(1+(b/l)*tan(delta_a))/(1-(b/l)*tan(delta_a));

 v_a=v_Rl_a/(1-(b/l)*tan(delta_a));

 write(“\nv_a=”);write(v_a);write(“,

 v_Rl_a=”);write(v_Rl_a);write(“, v_Rr_a=”);write(v_Rr_a);

 //———

 displayPar(delta_a,v_a);

 displayPosition(q1,q2,q3);

 

 //Calculating intermediate positions 

 float t_int=_t/100;

 float x_int,y_int;

 q1_int[0]=q1;q2_int[0]=q2;q3_int[0]=q3;

 for(p=0;p<100;p++)
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 {

  //if global array used for whole problem then we’ve to use

  a global increment (ie p here).

  if(fabs(delta_a)>delta_a_min)

  {

   x_int=(l/tan(delta_a))*sin((v_a/l)*tan(delta_a)*t_int);

   y_int=(l/tan(delta_a))*(1-cos((v_a/

   l)*tan(delta_a)*t_int));

   q1_int[p+1]=q1_int[p]+(x_int*cos(q3_int[p])-

   y_int*sin(q3_int[p]));

   q2_int[p+1]=q2_int[p]+(x_int*sin(q3_int[p])+

   y_int*cos(q3_int[p]));

   q3_int[p+1]=q3_int[p]+((v_a/l)*tan(delta_a)*t_int);

   //not required

  }

  else

  {

   x_int=v_a*t_int;

   y_int=0;

   q1_int[p+1]=q1_int[p]+(x_int*cos(q3_int[p])-

   y_int*sin(q3_int[p]));

   q2_int[p+1]=q2_int[p]+(x_int*sin(q3_int[p])+

   y_int*cos(q3_int[p]));

   q3_int[p+1]=q3_int[p]+0;

   //not required

  }

 }

 /*for(int r=0;r<p;r++)

 {

  write(“\nq1_int[“);write(r);write(“]=”);write

  (q1_int[r]);write(“ ,q2_int[“);write(r);

  write(“]=”);write(q2_int[r]);

 }*/

 //———

 //Calculating final values of q1,q2 & q3

 if(fabs(delta_a)>delta_a_min)

 {

  x=(l/tan(delta_a))*sin((v_a/l)*tan(delta_a)*_t);

  y=(l/tan(delta_a))*(1-cos((v_a/l)*tan(delta_a)*_t));

  q1+=x*cos(q3)-y*sin(q3);

  q2+=x*sin(q3)+y*cos(q3);

  q3+=((v_a/l)*tan(delta_a)*_t);

 }
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 else

 {

  x=v_a*_t;

  y=0;

  q1+=x*cos(q3)-y*sin(q3);

  q2+=x*sin(q3)+y*cos(q3);

  q3+=0;

 }

 write(“\nGlobal co-ordinates of vehicle CoG: [“);

 write(q1,4);write(q2,4);write(“,”);write(q3,4);write(“]”);

 //———

 //Calculating step timing array

 if((((fabs(v_Rl_a)*_t)/step_distance)<1.002)||(((fabs(v_Rr_a)*_t)/

 step_distance)<1.002))

 {

  displayStatus(“Parameters out of range. Exiting...”);

  write(“\nParameters out of range. Exiting...”);

  closeGFX();

  exit(1);

  /*if(v_Rl_a<=v_Rr_a)

   v_Rl_a=(round(1.02)*step_distance)/_t;*/

 }

 unsigned int delay_Rl=(_t/(((fabs(v_Rl_a)*_t)/step_distance)-

 1))*1000;

 //delay in ms —>exit on delay=0 —>check for single step

 unsigned int delay_Rr=(_t/(((fabs(v_Rr_a)*_t)/step_distance)-1))

 *1000;

 //int data type limits max value of delay to 65,534ms

 unsigned int timer_Rl[1000],timer_Rr[1000],timer_main[2000][2];

 //step timing array for Rl, Rr, and union of the two.

 timer_Rl[0]=0;

 //the second index in timer_main denotes the motor id to be stepped.

 timer_Rr[0]=0;

 int i=0,j=0;

 while((delay_Rl*(i+1))<=(_t*1000))

 {

  i++;

  timer_Rl[i]=delay_Rl*i;

 }

 while((delay_Rr*(j+1))<=(_t*1000))
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 {

  j++;

  timer_Rr[j]=delay_Rr*j;

 }

 int k=1,l=1,m=0,flag;

 timer_main[m][0]=0; timer_main[m][1]=5;

 for(k=1;k<=i;k++)

 {

  flag=1;

  while((l<=j)&&(flag==1))

  {

   if(timer_Rl[k]<timer_Rr[l])

   {

    timer_main[++m][0]=timer_Rl[k];

    timer_main[m][1]=2;

    flag=0;

   }

   else

   {

    if(timer_Rl[k]==timer_Rr[l])

    {

     timer_main[++m][0]=timer_Rl[k];

     timer_main[m][1]=5;

     l++;

     flag=0;

    }

    else

    {

     timer_main[++m][0]=timer_Rr[l];

     timer_main[m][1]=3;

     l++;

    }

   }

  }

  /*if(l>j)    //still not tested

  {

   timer_main[++m][0]=timer_Rl[k];

   timer_main[m][1]=2;

  }*/

 }

 for(l;l<=j;l++)

 {
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  if(timer_Rl[i]!=timer_Rr[l])

  {

   timer_main[++m][0]=timer_Rr[l];

   timer_main[m][1]=3;

  }

 }

 if(stat_flag==’D’||stat_flag==’d’||stat_flag==’B’||stat_

 flag==’b’)

 {

  cout<<“\nmotor Rl - “<<(i+1)<<“ steps”;

  cout<<“\nmotor Rr - “<<(j+1)<<“ steps”;

 }

 if(stat_flag==’L’||stat_flag==’l’||stat_flag==’B’||stat_

 flag==’b’)

 {

  outfile<<“\nmotor Rl - “<<(i+1)<<“ steps”;/*cout<<“ with

  step times:-\n”;

  for(p=0;p<=i;p++)

  {

   outfile<<setw(4)<<timer_Rl[p]<<“|”;

   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

  outfile<<“\nmotor Rr - “<<(j+1)<<“ steps”;/*cout<<“ with

  step times:-\n”;

  for(p=0;p<=j;p++)

  {

   outfile<<setw(4)<<timer_Rr[p]<<“|”;

   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

  /*outfile<<“\ncombined step timing array:-\n”;

  for(p=0;p<=m;p++)

  {

   outfile<<setw(4)<<timer_main[p][0]<<“(“<<timer_main

   [p][1]<<“)|”;

   if((p+1)%25==0)

    outfile<<“\n”;

  }*/

 }

 write(“\n———————————”);

 //———
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 //Executing step sequence

 displayStatus(“Moving Vehicle”);

 step(2,dir);

 step(3,dir);

 p=0;

 for(int n=1;n<=m;n++)

 {

  delay(timer_main[n][0]-timer_main[n-1][0]);

  if(timer_main[n][1]==5)

  {

   step(2,dir);

   step(3,dir);

  }

  else

  {

   step(timer_main[n][1],dir);

  }

  while(((t_int*1000*p)>=timer_main[n-1][0])&&((t_int*1000*p)

  <=timer_main[n][0]))

  {

   plot(q1_int[p],q2_int[p],0);

   displayPosition(q1_int[p],q2_int[p],q3_int[p]);

   p++;

  }

 }

 //———

 plot(q1,q2,0);

}

void main()

{

 const float pi=3.1416;

 float xd=-100, yd=100;

 // co-ordinates of destination point, values in mm

 float v0=20.0,v1=3.5,vpar=0.5,cpar=1; // parameters

 float t=2;     // time interval in s

 float e1,e2,e3;

 // local co-ordinates of destination point (mm,mm,radians)

 float x_err=0.5,y_err=0.5;

 // final closeness to destination point

 float rad,vel,angle,ang;
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 char motion;

 clrscr();

 promptForStatus();

 cout<<“\nDo you want a motion along an arc(c) or to destination

 points(p)? “;

 cin>> motion;

 if(motion==’p’)

 {

  cout<<“\n”;

  cout<<“\nEnter destination co-ordinates:-”;

  cout<<“\nx=”;

  cin>>xd;

  cout<<“y=”;

  cin>>yd;

  initializeGFX(.3,.3);

  plot(xd,yd,1);

  plot(q1,q2,0);

  displayStatus(“Execution Begins”);

  while((fabs(xd-q1)>x_err)||(fabs(yd-q2)>y_err))

  {

   e1= (xd-q1)*cos(q3)+(yd-q2)*sin(q3);

   e2= -(xd-q1)*sin(q3)+(yd-q2)*cos(q3);

   e3= atan((yd-q2)/(xd-q1))-q3;

   delta_a=e3;

   if((abs(e1)>30)&&(e1!=0))

   {

    v=v0*((e1)/abs(e1));

    delta=e3;

   }

   else

   if(e1==0)

   {

    v=v0;

    delta=e3;

   }

   else

   {

    v=v1*((e1)/abs(e1))+vpar*e1;

    delta=0;

    t=1;

   }

   moveVehicle(delta, v, t, -1);



ROBOTICS338

  }

  displayStatus(“Execution Complete”);

  closeGFX();

 }

 else if(motion==’c’)

 {

  cout<<“\n”;

  cout<<“\nEnter the Details of the path:-”;

  cout<<“\nradius=”;

  cin>>rad;

  cout<<“velocity=”;

  cin>>vel;

  cout<<“angle=”;

  cin>>angle;

  initializeGFX(.3,.3);

  plot(xd,yd,1);

  plot(q1,q2,0);

  displayStatus(“Execution Begins”);

  ang=(pi/180)*angle;

  delta= atan(l/rad);

  v=vel;

  t=(rad*ang)/v;

  moveVehicle1(delta, v, t, -1);

  displayStatus(“Execution Complete”);

  closeGFX();

 }

}
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Included on the CD-ROM are simulations, fi gures from the text, third party 
software, and other fi les related to topics in robotics.

See the “README” fi les on the CD-ROM for specifi c information/system 
requirements related to each fi le folder, but most fi les will run on Windows 2000 
or higher and Linux.

APPENDIX B
ABOUT THE CD-ROM
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