
Muhammad Usman Karim Khan
Muhammad Sha� que
Jörg Henkel

Energy E� cient
Embedded
Video Processing
Systems
A Hardware-Software Collaborative
Approach

Energy Efficient Embedded Video Processing
Systems

Muhammad Usman Karim Khan •
Muhammad Shafique • J€org Henkel

Energy Efficient Embedded
Video Processing Systems

A Hardware-Software Collaborative
Approach

Muhammad Usman Karim Khan
IBM Deutschland Research &
Development GmbH

B€oblingen, Germany

Muhammad Shafique
Institute of Computer Engineering
Vienna University of Technology
Vienna, Austria

J€org Henkel
Department of Computer Science
Karlsruhe Institute of Technology
Karlsruhe, Germany

ISBN 978-3-319-61454-0 ISBN 978-3-319-61455-7 (eBook)
DOI 10.1007/978-3-319-61455-7

Library of Congress Control Number: 2017944437

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Introduction . 1

1.1 Multimedia Systems . 2

1.1.1 Multimedia Processing Architectures 4

1.2 Fundamentals of Video Processing . 5

1.2.1 Video Compression . 6

1.3 Design Complexity of a Video System 8

1.3.1 The Dark Silicon Problem . 9

1.3.2 SRAM Aging . 10

1.4 Video System Design Challenges . 11

1.4.1 Software Layer Challenges . 14

1.4.2 Hardware Layer Challenges . 14

1.5 Limitations of State-of-the-Art . 14

1.6 Design and Optimization Methods Discussed in This Book 15

1.6.1 Software Layer Design . 17

1.6.2 Hardware Layer Design . 18

1.6.3 Open-Source Tools . 20

1.7 Book Outline . 21

References . 21

2 Background and Related Work . 25

2.1 Overview of Video Processing . 25

2.1.1 Intra- and Inter-frame Processing 28

2.2 Overview of Video Coding . 29

2.2.1 H.264/AVC and HEVC . 32

2.2.2 Parallelization . 36

2.2.3 DVC and HDVC . 38

2.3 Technological Challenges . 40

2.3.1 Dark Silicon or Power Wall . 41

2.3.2 NBTI-Induced SRAM Aging . 42

2.3.3 Other Challenges . 44

v

2.4 Related Work . 45

2.4.1 Video System Software . 45

2.4.2 Video Systems Hardware . 50

2.5 Summary of Related Work . 57

References . 57

3 Power-Efficient Video System Design . 67

3.1 System Overview . 67

3.1.1 Design Time Feature Support . 69

3.1.2 Runtime Features and System Dynamics 71

3.2 Application and Motivational Analysis 72

3.2.1 Video Application Parallelization 73

3.2.2 Workload Variations . 75

3.2.3 HEVC Complexity Analysis . 76

3.3 Hardware Platform Analysis . 79

3.3.1 Heterogeneity Among Computing Nodes 79

3.3.2 Memory Subsystem . 80

3.3.3 Analysis of Different Aging Balancing Circuits 83

3.4 Summary . 86

References . 87

4 Energy-Efficient Software Design for Video Systems 89

4.1 Power-Efficient Application Parallelization 89

4.1.1 Power-Efficient Workload Balancing 91

4.2 Compute Configuration . 94

4.2.1 Uniform Tiling . 94

4.2.2 Non-uniform Tiling . 96

4.2.3 Frequency Estimation (fk,m) . 99

4.2.4 Maximum Workload Estimation (αk,m) 100

4.2.5 Self-Regulated Frequency Model 100

4.2.6 Retiling . 104

4.3 Application Configuration . 104

4.3.1 HEVC Application Configurations 104

4.3.2 HEVC Configuration Tuning . 106

4.3.3 HEVC Parameter Mapping . 107

4.4 Workload Balancing on Heterogeneous Systems 112

4.4.1 System Model . 112

4.4.2 Load Balancing Algorithm . 113

4.5 Resource Budgeting for Mixed Multithreaded Workloads 116

4.5.1 Hierarchical Resource Budgeting 118

4.5.2 Intra-Cluster Power Budgeting pi,j 120

4.5.3 Inter-Cluster Power Budgeting pi 121

4.5.4 Selection of Cluster Size . 123

References . 124

vi Contents

5 Energy-Efficient Hardware Design for Video Systems 127

5.1 Custom Video Processing Architectures 127

5.1.1 Memory Analysis and Video Input 128

5.1.2 Video Preprocessing . 129

5.1.3 DDR Video Write Master . 129

5.1.4 Heterogeneous Computing Platform 131

5.2 Accelerator Allocation and Scheduling 132

5.2.1 Accelerator Sharing on Multi-/Many-Core 132

5.2.2 Multicast Video Processing Hardware 139

5.3 Efficient Hardware Accelerator Architectures 142

5.3.1 Low Latency H.264/AVC Encoding Loop 142

5.3.2 Distributed Hardware Accelerator Architecture 153

5.4 Hybrid Video Memory Architectures . 157

5.4.1 AMBER Memory Hierarchy . 158

5.4.2 NVM Reference Memory Architecture 159

5.4.3 Energy Management of NVM Reference Memories 161

5.4.4 System Computation Flow . 163

5.5 Energy-Efficient Anti-aging Circuits for SRAM 164

5.5.1 Memory Write Transducer (MWT) 166

5.5.2 Aging-Aware Address Generation Unit (AGU) 167

5.5.3 Aging Controller . 168

5.5.4 Generalization and Applicability 170

5.5.5 Sensitivity Analysis of SRAM Anti-aging Circuits 171

References . 173

6 Experimental Evaluations and Discussion 175

6.1 Parallelization and Workload Balancing 175

6.1.1 Software Architecture and Simulation Setup 176

6.1.2 Compute and Application Configuration

for Uniform Tiling . 177

6.1.3 Compute Configuration with Non-uniform Tiling 182

6.1.4 Workload Balancing on Heterogeneous Platforms 184

6.2 Resource Budgeting . 185

6.2.1 Experimental Setup . 186

6.2.2 Results and Discussion . 187

6.3 Memory Subsystem . 188

6.3.1 AMBER: Hybrid Memories . 189

6.3.2 SRAM Anti-aging Circuits . 191

References . 199

7 Conclusion and Future Outlook . 201

7.1 Software-Level Techniques . 201

7.2 Hardware-Level Techniques . 203

Contents vii

7.3 Further Improvements . 205

7.3.1 Approximate Computing . 205

7.3.2 GPU-Based Acceleration . 206

7.3.3 Reliability and Workload Management 206

7.3.4 Generalization . 207

References . 207

Appendices . 211

Index . 233

viii Contents

http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM
http://dx.doi.org/10.1007/978-3-319-61455-7#BM

Chapter 1

Introduction

High-density, nanoscale fabrication technologies have enabled the chip designers to

assemble billions of transistors on a single die. This has in turn provided the

capability to realize high-complexity systems like video systems, which have

universally penetrated into communication, security, education, entertainment,

navigation, and robotics domains. The advancement in the fabrication technology

has also driven the user expectations of the next-generation video processing

systems. A prime example is high-resolution video capture and playback. There-

fore, video applications like the latest video encoders [1] now target high-resolution

video content compression beyond full-HD (like 4K ultrahigh definition,

3840� 2160 pixels) at high frame rates (>120 frames per second). On the contrary,

emergence and evolution of next-generation video systems (with increasing

throughput and connectivity requirements and adaptability to application, battery

life, etc.) require high processing capabilities and efficient utilization of the

resources, which might be prohibitive on a resource- and power-constraint hard-

ware platform. Though high-end systems can meet the throughput requirements,

efficient and long-term deployment of such applications on small, battery-driven,

autonomous systems is challenging, due to the high computational and power

requirements while addressing the throughput constraints. Coupled with the high-

throughput demands, a video system must be capable of responding in real time to

changes in the workload of the application. Further, modern nano-era fabrication

technologies have their own associated challenges (like power wall [2] and reli-

ability [3]) which must be accounted for forging energy-efficient multimedia

systems. This suggests that new design methodologies for next-generation video

systems are needed, to address the abovementioned challenges on modern systems.

This book presents some of these methodologies, both at the software and hardware

layers of the system.

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_1

1

1.1 Multimedia Systems

Multimedia systems holistically store, process, and output/display several forms of

data (like audio, image/video, text, and others), for tasks like entertainment,

communication, security, computing, etc. These systems have penetrated as com-

puters, televisions, ATM machines, medical instruments, and most recently hand-

held mobile devices. A multimedia system is a union of computers, communication,

and signal processing domains. Typically, multimedia systems are required to

process the content within a deadline and satisfy real-time quality of service

(QoS) or service level agreement (SLA) constraints. This might become a signif-

icant challenge for small, mobile, battery-driven systems (like autonomous robots)

as they encounter QoS requirements under resource and power constraints. Thus,

multimedia system designers try to optimize different attributes of the system,

which lead to optimization of a quality metric, like power efficiency. Concisely,

maximizing power efficiency corresponds to maximizing performance per unit of

power that goes into the system (generally referred to as maximizing throughput-

per-watt). Further, the time complexity reduction (i.e., performance optimizations)

of such system will also indirectly lead to power efficiency. This is because a lower

clock frequency of the processing hardware can meet the QoS requirement, and

thus, lesser power is required to meet the computational demands. Additionally,

since 98% of all the computing devices are embedded devices [4], complexity and

power efficiency gain prime importance in deploying these systems.

Since the most compute intensive part of multimedia systems is usually image

and video processing (taking more than 70% of the total complexity [5]), therefore,

optimizing the image or video processing pipelines is commonly targeted for

optimizing the design of multimedia systems. As shown in Fig. 1.1a, the “time

spent in front of the screen” for different viewing devices is generally consumed by

battery-driven devices (e.g., smartphones); hence, power efficiency is one of the

main goals for implementing video systems.

Further, from Fig. 1.1b, more than 50% of the data on the Internet and over the

wireless channels is compressed video, suggesting that the majority of data

processed on wireless-capable devices is video. It is also predicted that by 2019,

about 80% of the data communication via WebRTC will be video. Moreover, many

real-world critical applications embed video processing as their core algorithm.

Examples are localization and navigation [6, 7], passive tracking, radar imaging,

and medical imaging. Developers are even introducing real-time communication

protocols within web browsers (see WebRTC [8]). Furthermore, new video

processing algorithms were introduced in the near past, which not only require

high computational efforts by demanding a higher QoS to maximize user satisfac-

tion, but additionally incur high power/energy penalty. Video processing

also influences other parts of the multimedia system; e.g., an improved video

compression will result in lesser bits being transmitted and, hence, lesser

2 1 Introduction

transmission energy. Hence, it becomes essential to devise efficient video algo-

rithms and system architectures, to maximize the performance/throughput-per-watt

metric when processing video on constraint devices.

The commonly used QoS/SLA metric in video processing is to meet the spec-

ified throughput, expressed as frames processed per second (FPS) or frame rate. A

video system must be able to meet the throughput demands while providing

considerable output video quality (more on this in Chapter 2). This deposits

pressure on the underlying hardware to perform with high efficiency, and therefore,

multiple architectural novelties and software enhancements are used for deploy-

ment, to maximize the throughput-per-watt for divergent set of video applications.

0

100

200

300

400

500

600
TV Laptop+PC
Smartphone Tablet

M
in

ut
es

 p
er

 D
ay

 in
 fr

on
t o

f S
cr

ee
n

0

20000

40000

60000

80000

100000

120000

2014 2015 2016 2017 2018 2019

Video Web data

File Sharing Online Gaming

Co
ns

um
er

 T
ra

ffi
c

[P
et

ab
yt

es
]

(a)

(b)

Fig. 1.1 (a) Amount of minutes spent in front of display mediums [9], (b) Global Internet traffic

forecast (from Cisco Visual Network Index, VNI)

1.1 Multimedia Systems 3

1.1.1 Multimedia Processing Architectures

Multimedia systems are implanted in almost every compute domain, ranging from

high-end computational servers to small devices like smartphones. Processing

devices have evolved over the past few decades and offer more speed, with reduced

area footprint and power consumption. The evolution of Intel processor [10] is

shown in Fig. 1.2. In 1978, Intel released the 8086 processor consisting of 29 K

transistors, capable of running at a 5 MHz. However, the Core-i7 processors with

four cores are capable of running at 3.8 GHz in the turbo boost mode. The seventh-

generation Intel processors can run at 4.2 GHz. This high operating frequency of

processing cores provides an opportunity to sustain high-throughput requirements

of multimedia applications.

Similarly, the number of cores on a chip is constantly increasing with every new

processor release. For example, Intel has released Polaris (80 cores) and Single-

Chip Cloud Computer (SCC, 48 cores) [11] research chips for high-end computing

servers. AMD’s Opteron chips have up to 24 cores. Tilera Tile-Gx architecture has

100 cores, and Oracle’s Sparc T3 houses 16 cores and can process 128 threads for

Web services and database applications. IBM has introduced Power and System z

architectures with multiple cores for high-speed data processing. Specifically, for

video applications, different architectures like Larrabee and Xeon Phi were also

launched. Furthermore, it is now common for the new smartphones to have four

compute cores. These cores are heavily utilized by video applications. For example,

Chrome Web browser (commonly used for viewing multimedia streams) tries to

utilize all available cores on an Android-based smartphone. The YouTube Android

application uses four cores on average on an eight-core processor. Moreover,

Android games normally produce tens of threads and utilize most of the cores

available on the system [12]. In summary, the compute power of processors is

0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010

4004

386

Pen�um

Pen�um 3

Core 2
2nd Genera�on

Atom

8080

Cl
oc

k
Fr

eq
ue

nc
y

[M
H

z]

Year

Fig. 1.2 Evolution of Intel processors over the past few decades

4 1 Introduction

increasing with every new generation, to sustain high-throughput expectations of

newer video processing algorithms.

Usually, the compute power provided by general-purpose, software-program-

mable cores is not enough to meet the QoS or to meet the throughput-per-watt

metric requirement. Moreover, their power consumption is high and, thus, makes

them unsuitable for implementation in small, constrained systems like video

enabled wireless sensor nodes or devices used in Internet of Things (IoT). There-

fore, video systems are also implemented using custom hardware. Prominent

examples are graphical processing units (GPUs) [13, 14], field-programmable

gate arrays (FPGAs) [15, 16], and application-specific integrated circuits (ASICs)

[17, 18]. Such systems increase the performance of the video application by many

folds and reduce power considerably, thus increasing the throughput-per-watt ratio.

Unfortunately, current computer-aided design (CAD) tools for custom video system

hardware design and implementations do not offer low time to market. In addition,

such designs are inflexible and require major debugging efforts, compared to their

software counterparts. To exploit the advantages offered by both software- and

hardware-based designs, custom hardware accelerators are designed to replace

high-complexity software subroutines [19, 20]. These accelerators can be

implemented on FPGAs, and they process data in conjunction with software-

programmable cores. This increases the throughput of the video application while

still maintaining the flexibility offered by the software solutions. Current industrial

trends point towards a joint future of software and hardware implementation to

offer both flexibility and performance, like Intel’s acquisition of Altera and the

release of a chip (Intel Atom E600C) containing Intel’s x86 core with Altera’s
FPGA. An additional step in the same direction is to use reconfigurable fabric for

using different types of hardware accelerators of the applications, in a time-

multiplexed manner [21, 22]. However, the complexity of the design increases

accordingly.

1.2 Fundamentals of Video Processing

A video is a concatenated set of temporally captured images or frames of the scene

under consideration. A video frame of width w and height h consists of w� h pixels
or addresses, and each pixels stores a video frame sample (the data used for

displaying). For display, a video frame sample can be represented by 8-bits or up

to 24-bits. Video algorithms perform either pixel-wise or block-based processing on

samples of the video frames. Pixel-wise processing only process a single pixel at a

time and may process this pixel using information from the neighboring pixels

(exploiting spatial correlation) or using the same pixel in the previous frames

(exploiting temporal correlation). The pixel(s) at the same location in the previous

frame(s) is termed as the collocated pixel of the current pixel under consideration.

Block-based processing considers a group of pixels at a single time instance and

employs the same principles of spatial and temporal correlation.

1.2 Fundamentals of Video Processing 5

Broadly, video processing can be classified as:

1. Online (or real-time) video processing, by capturing video samples directly from

video cameras, or after decrypting and decoding the video packets received via

wired or wireless links. Such video applications are also termed as streaming

applications. In this situation, both the video processing algorithm and the

system’s architecture should be capable of handling the throughput requirement

(i.e., FPS) in real time. Hence, such systems may require high compute power.

Such applications might use TCP/UDP ports and shared memory, to interact

with other applications.

2. Offline (batch processing) video processing, by reading a video file from the

disk. Here, the throughput requirement may or may not be imposed. However, a

highly efficient system both in computation and power domains is still desirable

as it will increase the user satisfaction and lower the costs. For example,

YouTube receives 300 h of videos per minute (statistics from October 2016),

and a faster upload and process time at YouTube servers is desirable. However,

about four billion videos are viewed per day on YouTube [23], and YouTube

must ensure that the video content is provided to the end-users with high enough

throughput to increase their viewing experience.

In both cases, the video frames are usually first stored in the external memory

(DRAM) by the OS or the application, and parts of the frame are brought to the

on-chip memory (generally implemented as caches or scratchpads using SRAM

technology) for processing. External memory is larger (in GBs) but slower, while

on-chip memories are usually smaller (few MBs or even KBs) but faster. However,

note that the external and on-chip memories do not need to be DRAM/SRAM, as

they can also be replaced with nonvolatile memories (NVM) [24, 25]. Addition-

ally, the data transfer from the external to the on-chip memory depends upon the

bandwidth supported by the external memory device. The on-chip computing

device (e.g., a multi/many-core system, ASIC or FPGA) reads the data from the

on-chip memory, processes it, and transmits it back to the external memory.

1.2.1 Video Compression

One of the chief video applications is video compression (encoding or just coding)

and decompression (decoding). As noticed from Fig. 1.1b, more than 50% of the

data over the Internet is compressed video. This suggests that a video encoder

(at the transmission side) and video decoder (at the receiver side) are involved in

video communication. For real-time, mobile, battery-driven implementation of

video encoder/decoder (jointly called CODEC) systems, different dimensions of

the underlying system and algorithms must be considered. For example, the

throughput requirements should be reasonable, the compute power required to

sustain the throughput must be available, and the algorithms and architecture of

the video compression system must not drain the battery at a high rate.

6 1 Introduction

Historically, when the processing power of compute nodes was low (see

Fig. 1.2), the throughput demands were comparatively lower, and hence, the

complexity of video encoders was small. This is because usually, more effort is

required for better/finer compression of the video compared to a coarser compres-

sion. In Fig. 1.3, the developmental history of some video encoders is shown. The

most popular video encoding standards were released by the ISO-Moving Picture

Expert Group (ISO-MPEG) and International Telecommunication Union (ITU) and

their joint effort via the Joint Collaborative Team on Video Coding (JCT-VC)

[26]. As seen from the figure, numerous video encoding standards were developed,

considering the throughput demands (i.e., frame resolution and FPS) of that era.

However, as the resolution of display devices improved and the power consumed by

these devices reduced, the video resolution and FPS requirements have been

steadily increasing. That is, historically, from QCIF video frames (176 � 144

pixels) at 30 FPS, now we are witnessing demands of 4K video frames

(3840 � 2160) at more than 60 FPS. This increased demand is also motivated by

the increased processing capabilities offered by the new fabrication technologies.

Therefore, every new generation of video CODECs incorporates new tools and new

video processing modules, to enable better compression. In other words, newer

encoders try to consume approximately the same channel bandwidth (or bitrate) for

increased user demands of QoS. This has steadily led to increase in the computa-

tional complexity and power consumption of these video CODECs.

In the past decade, the current industry standard H.264/AVC [27] and next-

generation CODEC tipped to overtake H.264/AVC, high efficiency video coding

(HEVC, also sometimes called H.265) [1], have emerged as the most prominent

video CODECs. These CODECs outperform other parallel video coding efforts

(like Google’s VP8 and VP9, Daala) [28]. Although, both software and hardware

device vendors almost universally support H.264/AVC, HEVC is steadily finding

its market. Both these CODECs use block-based frame processing and exploit

sample redundancies at both spatial and temporal granularity (details in Sect. 2.2)

for compression purpose. These video CODECs employ predictive video coding

(PVC) algorithms at the encoder side, and the decoder is a slave of encoder, i.e., the

ITU-T

ISO-MPEG

JCT-VC

H.261

H.262/MPEG-2

MPEG-1

H.263

MPEG-4

H.264/AVC HEVC

1990 1993 1995 1996 1999 2003 2013

VP8

2008

VP9

2016

AV1Others VC-1

2006

Cinepak

1991

Fig. 1.3 Video CODEC design history of some noteable CODECs

1.2 Fundamentals of Video Processing 7

decoder follows every command of the encoder. For minimal utilization of band-

width, the encoder searches for the best possible way to compress the video streams.

This means the encoder is a high-complexity device while decoder has a relatively

low complexity. This makes sense because the number of videos downloaded/

played is more than videos uploaded, and small decoders (like tablets and

smartphones) can take advantage of a lower complexity decoder. A new paradigm

for video coding has also emerged which utilizes the principles of distributed source

coding and is termed as distributed video coding (DVC) [29]. In these scenarios, the

decoder exploits the correlation between decoded samples to reproduce missing

(unprocessed and not transmitted) samples. Such systems are helpful in case of

constraint video encoder, where the encoding pressure can be relaxed to save power

at the encoder. To combine the advantage of PVC and DVC, hybrid DVC (HDVC)

is also proposed [30].

1.3 Design Complexity of a Video System

Advancements in fabrication technologies are steadily increasing the number of

transistors per chip. With reducing area of the cores as shown in Fig. 1.4 [31], tens/

hundreds of cores and multitude of computational resources on chip are now

available for the application designer to implement high-complexity systems.

Each new fabrication technology is expected to reduce the minimum feature size

by ~0.7�, which roughly translates to a transistor density increase of ~2� [32]. Fur-

ther, multimedia systems have also advanced due to camera and ADC

developments.

As discussed, next-generation video encoders are enhanced to meet the increas-

ing throughput requirements while providing roughly the same video quality.

Further, the increasing trend of 3D video acquisition and display has also increased

the complexity of video processing systems, because more than one camera is used

to capture a scene. The increased resolution and FPS supportable by video cameras

and displays put huge pressure on the real-time video encoding system and intro-

duce design complexity challenges. Examples are super-slow motion videos,

Di
e

Ar
ea

 [m
m

2]

0
100
200
300
400
500
600
700

45nm 32nm 22nm 14nm 10nmFab.

Fig. 1.4 Area of a die for

different fabrication

technologies [31]

8 1 Introduction

captured at high resolution. Some of these challenges posed by the next-generation

multimedia systems are given in Fig. 1.7. Similarly, new video processing algo-

rithms have a higher complexity than their predecessors. For example, HEVC is

~2.65� more complex than H.264/AVC in order to provide ~35% more compres-

sion compared to H.264/AVC [33]. Similarly, for HEVC, memory accesses are

more than 2� compared to H.264/AVC [34]. The power demands of these appli-

cations have also increased owing to fast processing requirements and increased

memory accesses. Additionally, the fabrication technology scaling introduces

numerous additional challenges for the system designer, some of which are detailed

in the next sections.

1.3.1 The Dark Silicon Problem

For new fabrication technologies, the dissipated power is not shrinking at the same

rate as area (as seen in Fig. 1.4) due to the failure of Dennard’s scaling

[35]. Dennard’s scaling suggested that the power density would approximately

remain constant if the size of the transistors is reduced, i.e., power and area will

reduce at the same rate to keep the ratio of power to area almost constant. However,

circuit designers are facing challenges to keep up with the voltage scaling to have

constant electric field for constant power density and reliability [32]. Moreover,

Dennard’s scaling assumes increased channel doping to enable shorter channels (for

appropriate threshold voltages). On the contrary, this causes an increase in the

leakage current. Since Dennard’s predictions are no longer valid, therefore, the

power density (i.e., power per unit area) is increasing with every fabrication

technology, as shown in Fig. 1.5 [31]. Hence, the temperature of the chip might

be elevated to a level, which may not be supportable by the silicon and the designed

cooling solution. Thus, advanced cooling mechanisms may be required to bring the

temperature within safe limits, or the transistors of the chip must be adaptively

turned on and off. In other words, not all of the chip’s transistors should be kept on
at maximum capacity, for 100% of the time [2]. This underutilization of the chip’s
real estate is generally referred to as dark silicon, which refers to the inefficient

consumption of on-chip resources. Therefore, high-throughput applications, like

Po
w

er
 D

en
sit

y
[W

a�
/m

m
2]

0

2

4

6

8

10

12

45nm 32nm 22nm 14nm 10nm

Ideal

Fab.

Fig. 1.5 Power

density (in Watts per mm2)

for different fabrication

technologies [31]

1.3 Design Complexity of a Video System 9

video processing, may not sustain their real-time throughput constraints if impli-

cations of dark silicon are not considered. Even a solution designed for a particular

system may not be readily applicable to other systems (or for the same system) if

there are parallel running workloads. Same arguments also apply for applications

exhibiting high workload variations over time.

Moreover, every chip has a thermal design power (TDP) [36], which is the

maximum power that can be pumped into the chip. TDP is limited by the physics of

the device and the cooling mechanism. More TDP suggests that the cores can run

faster and process their assigned workloads quicker. In addition, every core is also

assigned a TDP. This tells that video applications cannot arbitrarily run faster and

must consider the parallel running applications, as the TDP budget is divided

among all parallel applications.

1.3.2 SRAM Aging

Some multimedia systems are in use for long durations, e.g., video processing

servers like YouTube using Google File System (GFS) [37], video system aboard

space missions, and security/traffic cameras to provide live streams. Such systems

have a service lifetime after which they no longer function reliably. One of the

reliability concerns for modern systems is the SRAM aging, whereby the sensitivity

of the SRAM cells to the noise increases, resulting in increased rate of spurious bit-

flips. This is also a direct implication of elevated temperatures of the chip, where, in

addition to the dark silicon dilemma, the elevated temperature also reduces the

reliability of the system. Phenomenon such as bias temperature instability (BTI)

becomes more prominent in the new fabrication technologies. As will be discussed

later in the book, video processing algorithms are generally memory intensive and

require large on-chip buffers for high performance; hence, such memory phenom-

enon becomes important for video processing systems.

Negative-bias temperature instability (NBTI) is one of the foremost reliability

concerns for SRAMs [38]. NBTI-induced stress on the constituent SRAM transis-

tors results in a higher aging rate, which manifests into an increased delay and

increased read errors. It reduces the static noise margin (SNM) of SRAM cells, and

thus, the impact of noise increases, which means that the maximum supportable

frequency of the system decreases. This trend is shown in Fig. 1.6 where we notice

that the circuit delay increases with time and has little impact of operating temper-

ature. However, over the longer run, temperature plays its role and the delay

depends mainly upon the temperature. For video processing systems, mechanisms

must be devised to either reduce the impact of NBTI or eliminate conditions that

increase NBTI. More information about NBTI and its characteristics will be

detailed in Sect. 2.3.2.

10 1 Introduction

1.4 Video System Design Challenges

The video system design challenges addressed in this book are outlined in Fig. 1.7.

These challenges arise due to the throughput requirements fusing with the problems

originated by new fabrication technologies. The major design challenge is to

maximize the throughput-per-watt metric. For this purpose, both hardware

D
el

ay
 In

cr
ea

se
 F

ac
to

r
1

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7 8 9 10

25 C 75 C

100 C 140 C

Year #

Fig. 1.6 Circuit delay

increase factor plotted

against time in years [39]

Fig. 1.7 Video system design challenges discussed in this book. In this figure: Acc accelerator,

Algos algorithms, Arch architecture, Hetero heterogeneous, Homo homogeneous, Pow power, Req
requirement, Thrpt throughput, Wrkld workload

1.4 Video System Design Challenges 11

(architectural) and software (algorithmic) layers of a video system need to be

designed while considering the abovementioned paradigms, like dark silicon and

NBTI-induced aging. In short, the design of architectural and algorithmic layers of

video systems must result in a video system consuming low energy/power, have

high throughput, and can reliably operate. These challenges can be classified under

the power-efficiency umbrella that can be summarized as:

• Either the power consumption of the system is minimized while sustaining

throughput constraints.

• The throughput of the system is maximized under a fixed power budget.

One of the major challenges to address for video processing systems is to reduce

their complexity such that real-time, online operations of these video systems can

be carried out. This necessitates addressing the throughput requirements by design-

ing efficient processing algorithms with minimal output-quality penalty. To max-

imally achieve the complexity reduction potential, these algorithms need to

leverage the application knowledge. Further, one can achieve additional complexity

reduction potential if the video content properties are analyzed (either online or

offline). The challenge remains how to determine these properties and accordingly

tune the system parameters to increase system’s performance. Some of these design

challenges are discussed below.

Power Budgeting and Parallelization Almost every complex video processing

algorithm allows for parallel processing, to exploit the increasing number of cores

on the chip. The challenge is to maximize throughput-per-watt metric by designing

appropriate parallelization techniques, to utilize the available number of cores and

their characteristics (e.g., maximum frequency). For systems with many cores, it is

possible that the workload of the cores differ and (abruptly) vary at runtime. The

cores themselves can be heterogeneous. Thus, an additional challenge is to balance

the workload among the cores while encountering this variation, to maximally

utilize the available hardware and, thus, increase the throughput. Further, the

processing tasks must be appropriately packed and scheduled on the cores. For

multiple, multithreaded video applications (like multicasting scenarios), the

on-chip resources (i.e., the number of cores and the TDP budget) must be distrib-

uted among the competing applications with the objective to increase the through-

put-per-watt. Otherwise, some applications might lose performance and miss their

deadlines.

Power and Computational Efficiency The goal of a video system is to be power

and computationally efficient. Thus, for a many-core system, the voltage-frequency

settings of the cores cannot be free variables; rather, they must be dependent upon

the throughput. One way to achieve power efficiency is to utilize the dark/gray

physical areas of the chip by implementing customized hardware logic blocks (like

high-throughput accelerators) to off-load workload from the cores. Such a design

needs careful regulation. The accelerator must be scheduled among competing

cores or applications depending upon the processing requirements of the cores

and the throughput requirements of the threads/applications running on these

12 1 Introduction

cores. A failure to do so may result in unfair accelerator distribution and deadline

misses. In addition, parts of the systems can be power gated to save power when the

hardware accelerators are being utilized. However, the power gating must not hurt

the performance of the system because components of the system require a wake-up

(or warm-up) time before they can be used again after gating.

Memory Subsystem Design An intelligent memory subsystem uses the external

and on-chip memory synergistically such that the accesses to the external memory

are reduced and high power efficiency is achieved. In order to reduce the power

consumption, the memory subsystem can also employ hybrid memories (uniting

volatile memories like SRAM with NVMs) and exploit advantages of different

memory technologies. Further, the on-chip SRAM systems will age and reduce the

SNM, and the challenge is to design the SRAM subsystem in a manner to lessen the

aging rate.

The challenges mentioned above can be broadly classified within different video

system layers, as shown in Fig. 1.8. Software layer corresponds to the code

maintained by the system designer, OS/kernel, and it handles the complexity of

the video system software, parallelization, and its data structures. The user/data

layer is responsible for handling the input to the video system. The kernel layer

provides hardware interface for the user layer applications. The hardware layer

corresponds to the system architecture like memory, network on chips (NoCs),

accelerators, and processors. Amalgamation of software and hardware layer relates

to hardware accelerators, GPUs, etc., whereby the software and hardware share

information without involving the kernel layer and thus may require a codesign.

The challenges mentioned above can be mapped to the software and hardware

layers of the multimedia systems as given below and discussed in this book.

Kernel Space

Device
Drivers Firmware

Hardware

Memory

Multi-/Many-Core

Accelerators

User
Applications Libraries Daemons

User/Data Space

So
�w

ar
e

La
ye

r
Ha

rd
w

ar
e

La
ye

r

Fig. 1.8 Video system layers. The functionality of a component depends upon the components

below it

1.4 Video System Design Challenges 13

1.4.1 Software Layer Challenges

The system designer must address the following challenges at the software layer:

• Selecting the appropriate number of parallel computing cores to use on possibly

heterogeneous systems, for best output video quality and maximum throughput-

per-watt

• Video processing algorithmic improvements by exploiting application- and

content-specific properties, to reduce the computational complexity of the

systems

• Distributing the TDP among multiple, multithreaded video applications (power

budgeting) for fulfilling their QoS goals

• Runtime workload distribution and balancing of parallelized video applications,

for maximum utilization of available resources

1.4.2 Hardware Layer Challenges

Following challenges need to be addressed at the hardware layer:

• Selecting appropriate voltage-frequency settings of the cores to maximize the

throughput-per-watt metric, while maintaining insignificant output video quality

degradation

• Power-efficient application thread scheduling, on the competing cores and the

shared hardware accelerators

• Designing hardware accelerators and their efficient integration with the multi- or

many-core system

• Power-efficient designs of accelerators and the memory subsystem

• SRAM design with aging rate reduction, for long-term video system deployment

1.5 Limitations of State-of-the-Art

The state-of-the-art techniques for increasing the computational/power efficiency

of general and video processing applications will be discussed in detail in Chap. 2.

Here, a brief synopsis of their limitations is presented to the reader for quick

reference.

Most of the state-of-the-art video system design techniques do not exploit the

co-optimization and codesign space of software and hardware layers of the system.

Usually, both layers are developed orthogonal to each other and are optimized

irrespective of the other’s state. These techniques do have an advantage of high

applicability and portability, because the system designer is only concerned with

optimization of a single layer. Such techniques can reduce the power-efficiency

14 1 Introduction

potential of the system, and fully exploiting this codesign space might lead to much

better power efficiency.

At the software layer, mostly, complexity reduction techniques are proposed,

which do not consider the underlying hardware attributes. At the hardware layer,

different architectural solutions are given. Special purpose hardware like VLIW

processors, digital signal processors (DSPs), and graphics processing units (GPUs)

are proposed, which can be programmed by the designer. Usually, these compo-

nents of the system are power hungry. Customized hardware (like ASICs and

FPGAs) do present an opportunity for high performance under low power con-

sumption. Typically, these designs ignore throughput adaptation mechanisms or

software level control and do not consider the application and/or content knowl-

edge. Similarly, the joint scheduling of cores and hardware accelerators ignores the

throughput demands of the applications under consideration. Further, an important

aspect of a video system’s power efficiency is runtime workload balancing among

possibly heterogeneous compute nodes, usually not considered by state-of-the-art.

Additionally, state-of-the-art video systems generally do not consider the effects

of dark silicon. Little consideration is given to application-specific optimizations,

which may reduce the power saving potential of the video applications. The power-

efficiency potential is further reduced by ignoring the unforeseen workload varia-

tions of the application(s) or threads of the application(s). Generally, only TDP

budgeting or assignment of cores is presented, and workload balancing does not

consider the hardware platform properties and power awareness of the system.

Moreover, the aging characteristics of video systems (specifically its memory

subsystem) are usually not considered. General SRAM aging reduction techniques

provided in the literature involve high power overhead, multiple redundant memory

read/writes, inefficient aging reduction techniques, and custom SRAM designs. In

addition, these techniques are generally not applicable to on-chip scratchpad

memories (memories in control of the programmer).

Summarizing, the complete video system codesign is usually not entertained.

The state-of-the-art techniques usually limit themselves to either one of these layers

and do not address the challenges imposed by new fabrication technologies. If the

software and hardware layers are tuned synergistically, a larger potential of power

efficiency is possible, because the designer can employ the application-specific

optimization.

1.6 Design and Optimization Methods Discussed

in This Book

This book contributes to the design of a video system, by jointly accessing the

codesign space of software and hardware layers. The major design and optimization

methods are outlined in Table 1.1. The key challenge addressed in this work is to

synergistically optimize both the software and hardware layers to maximize the

1.6 Design and Optimization Methods Discussed in This Book 15

throughput-per-watt metric of the video system. This way, the software considers

the maximum throughput supported by the hardware layer, and the hardware layer

sends feedback information to help tune the software layer. Both layers consider the

implications of dark silicon and SRAM aging. Effectively, the power and complex-

ity management is performed at a higher abstraction level (i.e., at software layer),

and power configuration knobs are provided by the hardware layer. The software

layer tunes these knobs selectively and objectively, both at design time and at

runtime.

For video system deployment, many-core systems with hardware accelerators

and application-specific custom platforms are considered in this book. Different

software and hardware layer optimization techniques are presented, by designing

algorithms and application-specific hardware accelerators, and their interdepen-

dencies are established. For power efficiency, the determination of appropriate

number of parallel computing threads (i.e., parallelization) and workload balancing

of a video application are presented, which considers the hardware platform

properties and throughput demands of the application. This technique is extended

to allot the resources on the many-core system (i.e., the compute cores and the

hardware accelerators) to the parallel threads. Also, extending this technique, the

TDP budget among the competing, multiple multithreaded video applications is

distributed. In these scenarios, the voltage-frequency levels of the cores are

Table 1.1 A brief summary of the design/optimization methods in this book

Software

layer

Runtime video application parallelization (Sect. 4.1)

Workload balancing via Dynamic Voltage and Frequency Scaling (DVFS)

(Sect. 4.1.1)

Uniform and non-uniform workload distribution (Sects. 4.2.1, 4.2.2 and

4.2.2.1)

Self-regulated frequency modeling (Sect. 4.2.5)

Power-efficient application configuration selection (Sect. 4.3)

Configuration tuning and mapping for HEVC (Sects. 4.3.1, 4.3.2 and 4.3.3)

Number of cores and frequency allocation for heterogeneous nodes (Sect. 4.4)

Resource budgeting for mixed multithreaded video applications (Sect. 4.5)

Hardware

layer

Video system I/O and communication (Sect. 5.1)

Video input pipeline (VIP) (Sect. 5.1.2)

Custom communication interface (Sect. 5.1.4)

Accelerator allocation and scheduling (Sect. 5.2)

Sharing hardware accelerator among multiple applications/threads (Sect.

5.2.1)

Hardware accelerator sharing for multicasting (Sect. 5.2.2)

Accelerator architectures for H.264/AVC and HEVC (Sect. 5.3)

Distributed hardware accelerator architecture (Sect. 5.3.2)

Hybrid memory architecture (DRAM þ SRAM þ MRAM) (Sect. 5.4)

SRAM anti-aging circuits (Sect. 5.5)

16 1 Introduction

adjusted. Additionally, the workload of parallel running applications/threads on a

many-core system is adaptively off-loaded to a shared hardware accelerator. The

off-loading amount and scheduling is used for both power and throughput optimi-

zation. Since video processing can be performed at both software cores and

hardware accelerators, we collectively refer to them as compute nodes.

At the hardware layer, this book discusses efficient hardware architectures for

video data I/O and communication among compute nodes. The architecture

of numerous hardware accelerators is detailed, especially for video coding appli-

cations (HEVC and H.264/AVC), whereby the design goal is to target high

throughput at little power consumption. Moreover, a hybrid architecture for video

scratchpad memories is presented, which uses NVM in conjunction with the

SRAM, to reduce memory subsystem power with little throughput penalty. A

power-efficient technique is also presented to reduce the aging rate of SRAMs for

long-term system deployment.

In the following, we discuss the above techniques in more detail with reference

to Table 1.1.

1.6.1 Software Layer Design

1.6.1.1 Power-Efficient Resource Budgeting/Parallelization

Power-Efficient Parallelization Here, the objective is to minimize the power

consumption of a video application while meeting the throughput constraints

imposed due to the resolution of the video frame and FPS requirements [40]. The

power minimization is achieved by minimizing the number of cores used and

reducing their frequencies as much as possible. Application’s workload and hard-

ware characteristics are used for parallelization and selecting the frequency of the

cores. In addition, the video frame is adaptively divided into tiles (disjoint video

frame regions), and a thread is used to process each tile. More on tiles will follow in

the coming text. The technique presented here tries to balance the workload of the

tiles among all the running cores. At runtime, the application-specific workload is

fine-tuned using a closed loop for further frequency (and hence power) reduction.

This technique not only accounts for the hardware characteristics but also for the

system-load variations (due to parallel running applications) and content-dependent

complexity. This mechanism enhances the portability of the technique, as it adjusts

the number of cores and frequency of the cores at runtime. More information about

this method can be found in Sect. 4.2. Similarly, load balancing technique on

heterogeneous computing nodes is also discussed [41].

Resource Efficiency To reduce the number of processing cores (or, more gener-

ally, processing nodes) and balance the workload, video processing jobs are packed

into subtasks, structured in a manner that multiple subtasks can be packed and

dispatched to a single compute node, which can process these subtasks in a time-

1.6 Design and Optimization Methods Discussed in This Book 17

multiplexed manner [42]. This distribution process accounts for the compute

capabilities of the underlying nodes. A job queue is populated with subtask threads

and the available cores fetch the subtasks from this queue. Additional information

can be looked up in Sect. 4.2.2. Moreover, the same method is extended to

distribute processing jobs and balance the workload among heterogeneous comput-

ing nodes. For details, refer to Sect. 4.4.

Resource and Power Budgeting This book also discussed the resource and power

budgeting of multiple, multithreaded video applications concurrently executed on a

many-core platform [43]. Depending upon the throughput requirement, and con-

sidering the resource and power utilization history, a hierarchical technique dis-

tributes the resources and power among the applications. At runtime, the resources

and power allocated to each application are tuned to provide fairness among the

applications. For more information, reader is directed to Sect. 4.5.

1.6.1.2 Power-Efficient Software Design

The software layer is also used for software-guided power management. Deadline

conscious and high-complexity application (like HEVC and H.264/AVC [44, 33])

are considered for application-specific algorithm design on resource-constrained

devices. In these techiques, the number of modes (or searches/trials) performed for

generating the best output video quality is adapted, such that the complexity is

considerably reduced with minimal video quality degradation. If the complexity of

the algorithm is reduced, one can reduce the frequency of the hardware, and thus

power reduction will follow. Thus, application-specific properties are leveraged to

tune both complexity and power knobs, according to the design’s or deployment

needs. The complexity reduction techniques presented here are also utilized with

workload tuning (see Sect. 1.6.2.1). More information about complexity manage-

ment can be seen in Sect. 4.3.

1.6.2 Hardware Layer Design

1.6.2.1 Power-Efficient Accelerator Design

Video I/O and Communication Among Heterogeneous Nodes This book pre-

sents a communication infrastructure and hardware architecture of a low-latency

video I/O. Similarly, a custom interface (communication architecture among the

compute nodes) is presented which can be used for processing multiple tasks of the

same video-based workload on custom and multi- or many-core hardware platform.

The architecture is designed to support the workload distribution and balancing

decisions on the multi�/many-core platform. A master core assigns the workload of

all the tiles to the secondary cores, using the custom interface. The architecture is

18 1 Introduction

functionally verified on a real FPGA, with multiple, embedded soft cores (i.e.,

programmable, compute cores on FPGA). More information is given in Sect. 5.1.

Accelerator Design Multiple hardware accelerators are discussed in this book,

especially for video coding applications [45, 46]. A distributed, hardware acceler-

ator design methodology is presented which can be used in conjunction with clock-

gating (or power-gating) circuits to increase the power efficiency. These accelera-

tors target the most computationally intensive part of HEVC and H.264/AVC, i.e.,

the evaluation of different modes to determine the right compression technique. For

further information, refer to Sect. 5.3 in this book.

1.6.2.2 Shared Hardware Accelerator Scheduling

Power-Efficient Hardware Accelerator Sharing The target of the techniques

presented in this domain is power efficiency of a system with multiple cores sharing

a hardware accelerator [47]. As will be discussed, the hardware layer provides

support to the off-loaded subtasks from the cores to the custom hardware acceler-

ator, thereby reducing computational complexity and power consumption of the

complete system. In addition, this method provides opportunities to exploit the dark

silicon. Moreover, to fulfill the throughput constraints and minimize the power

consumption of the system, off-load-scheduling mechanisms determine the sub-

tasks assigned to the cores and the accelerator. To maximize the throughput, the

slack of each parallel running thread/application is minimized. The technique

basically formulates an optimization problem and proposes a heuristic to find the

optimal percentage of workload off-loaded to the accelerator. The goal is to

maximally utilize the accelerator while sustaining the throughput demands of

parallel running threads/applications. The same method can be extended to process

multiple videos processing workloads. More information is presented in Sect. 5.2.1.

Multicast H.264/AVC Encoder Design In addition, the design of a

multicasting and fully customized H.264/AVC video encoder architecture using

area- and power-efficient building modules is presented [15, 45]. Hardware is

shared among different video encoders (using a hardware scheduler and a

rescheduler) such that little or no penalty is incurred. The complete system inte-

gration (along with camera input, memory access, and Ethernet output) is presented

in Sect. 5.2.2 and Appendix C.

1.6.2.3 Memory Subsystem Design

Hybrid Memory Architecture In this book, a hybrid memory subsystem for

video processing is presented, which uses a NVM (specifically, magnetoresistive

random-access memory, MRAM) in conjunction with an SRAM [34]. This

subsystem exploits the characteristics of both NVM and SRAM such that maximum

power efficiency is achieved at minimal or no latency penalty. Large MRAM

1.6 Design and Optimization Methods Discussed in This Book 19

buffers are used for storing video frames. The MRAM frame buffer memory is

sectored, and these sectors are normally off. These sectors are powered on only in

the case their data is required by the application. An unsupervised learner (self-

organizing map, SOM) is used for predicting the next sector that needs to be

powered on. Thus, this saves leakage power and accesses to the external memory.

SRAM FIFOs are used for input/output from MRAM buffers, in order to reduce the

latency penalty. For further information, a reader is referred to Sect. 5.4.

SRAM Anti-Aging Architecture This book also presents a design to reduce the

aging of SRAM cells, deteriorated by NBTI-induced stress cycles, by adapting the

data written to and read from the SRAM [48, 49]. Memory read transducers (MRTs)

and memory write transducers (MWTs) are discussed, which adapt the video data

bits on the fly, read from and written to the SRAM. MRT and MWT incur minimal

latency and avoid extra read/write of the SRAM. More information about SRAM

anti-aging is given in Sect. 5.5.

1.6.3 Open-Source Tools

We also discuss some open-source video processing tools, which will be helpful to

the research and technical community and give them a head start in designing

power-efficient video systems. The intention is that these tools can be used for

testing and extending the techniques discussed in this book or for testing new design

paradigms.

Parallel HEVC Encoder For testing the parallelization, workload balancing, and

resource allocation methods, a C++ � based, multithreaded, open-source, HEVC

video encoder called ces265 [40] is presented. This encoder is lightweight and

highly flexible, e.g., the designer can introduce different parallelization and tile

structure settings. In addition, a thread of ces265 is about ~13� faster than the

reference encoding software (HM-9.2). Further, the NIOS-II multi-core Altera

FPGA implementation for this encoder is also provided. More information about

this tool is available in Appendix B.

SRAM Aging Analysis GUI For video memory aging analysis and visualization,

a GUI-based tool is presented. Written in C#, the tool can display videos and one

can implement and evaluate multiple anti-aging circuits. This tool detects memory

regions under high stress and automatically plots the stress regions, histograms, and

other statistics. More information and download instructions for this tool can be

found at: http://ces.itec.kit.edu/EnAAM.php

20 1 Introduction

1.7 Book Outline

This book is structured in the following manner (more information can be found in

Table 1.1).

• Chapter 2 provides detailed background and state-of-the-art on the design and

optimization challenges. Essential background knowledge of video applications

is also given to get the reader accustomed with the jargon and the methodologies

discussed in this book. The dark silicon paradigm is presented in conjunction

with video systems, when implemented on many-core and customized hardware

platforms.

• Chapter 3 provides a comprehensive video system design by integrating differ-

ent components of the system, which can result in high throughput-per-watt. The

communication flow between the software and hardware layers is discussed, and

the architectural design and its assumptions are outlined. Several motivational

analyses are performed for parallelization, workload variation, and memory

subsystem’s power and aging.

• Chapter 4 discusses the video system software layer of Chap. 3 in detail. For

mixed, multithread video workloads, power-efficient parallelization and

resource budgeting are presented. Various complexity reduction methods are

discussed.

• Chapter 5 relates to the video system hardware layer of Chap. 3. It discusses the

shared hardware scheduling among competing cores and for multicasting sce-

nario. The hybrid memory architecture design is also given, along with power-

efficient, SRAM anti-aging circuits.

• Chapter 6 presents experimental evaluations of the techniques discussed in

Chap. 4 and 5, while Chap. 7 concludes the book with an outlook of the future

extensions.

• The algorithms used in the design and deployment methodologies presented in

this book are given in Appendix A. The inner workings of the ces265 video

encoder are presented in Appendix B, while Appendix C discusses the HDL of

proposed multicasting H.264/AVC video encoder.

References

1. Sullivan, G. J., Ohm, J., Han, W., & Wiegand, T. (2012). Overview of high efficiency video

coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.
2. Esmaeilzadeh, H., Blem, E., Amant, R., Sankaralingam, K., & Burger, D. (2011). Dark silicon

and the end of multicore scaling. In International Symposium on Computer Architecture
(ISCA).

3. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., & Wehn,

N. (2013). Reliable on-chip systems in the nano-era: Lessons learnt and future trends. In

Design Automation Conference (DAC).

References 21

4. ARTEMIS, [Online]. Available: http://www.artemis-ju.eu/embedded_systems. Accessed

20 Oct 2015.

5. Shafique, M. (2011). Architectures for adaptive low-power embedded multimedia systems.

Karlsruhe Institute of Technology (KIT).

6. Nister, D. (2004). Automatic passive recovery of 3D from images and video. In International
Symposium on 3D Data Processing, Visualization and Transmission.

7. Cutrona, L., Leith, E., Porcello, L., & Vivian, W. (1966). On the application of coherent optical

processing techniques to synthetic-aperture radar. Proceedings of the IEEE, 54(8), 1026–1032.
8. WebRTC. [Online]. Available: http://www.webrtc.org/. Accessed 26 Aug 2015.

9. AdReaction. Marketing in a multiscreen world [Online]. Available: https://www.

millwardbrown.com/adreaction/2014/report/Millward-Brown_AdReaction-2014_Global.pdf.

Accessed 12 July 2017.

10. Intel chips through the years. (2015, September 12). [Online]. Available: http://

interestingengineering.com/intel-chips-timeline/. Accessed 5 Oct 2015.

11. Held, J. (2010). Introducing the single-chip cloud computer: exploring the future of many-core

processors. In Intel White Paper.
12. Pathania, A., Pagani, S., Shafique, M., & Henkel, J. (2015). Power management for mobile

games on asymmetric multi-cores. In Low Power Electronics and Design (ISLPED).
13. Momcilovic, S., Ilic, A., Roma, N., & Sousa, L. (2014). Dynamic load balancing for real-time

video encoding on heterogeneous CPUþGPU systems. IEEE Transactions on Multimedia, 16
(1), 108–121.

14. Xiao, W., Li, B., Xu, J., Shi, G., & Wu, F. (2015). HEVC encoding optimization using multi-

core CPUs and GPUs. IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), 9(99), 1–14.

15. Khan, M., Shafique, M., Bauer, L., & Henkel, J. (2015). Multicast FullHD H.264 intra video

encoder architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1–5.

16. Benkrid, K., Crookes, D., Smith, J., & Benkrid, A. (2000). High level programming for real

time FPGA based video processing. In Acoustics, Speech, and Signal Processing (ICASSP).
17. Iwata, K., Mochizuki, S., Kimura, M., Shibayama, T., Izuhara, F., Ueda, H., Hosogi, K.,

Nakata, H., Ehama, M., Kengaku, T., Nakazawa, T., & Watanabe, H. (2009). A 256 mW

40 Mbps Full-HD H.264 high-profile codec featuring a dual-macroblock pipeline architecture

in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 44(4), 1184–1191.
18. Zhou, J., Zhou, D., Fei, W., & Goto, S. (2013). A high-performance CABAC encoder

architecture for HEVC and H.264/AVC. In International Conference on Image Processing
(ICIP).

19. Henkel, J., & Yanbing, L. (1998). Energy-conscious HW/SW-partitioning of embedded

systems: a case study on an MPEG-2 encoder. In International Workshop on Hardware/
Software Codesign.

20. Zuluaga, M., & Topham, N. (2009). Design-space exploration of resource-sharing solutions

for custom instruction set extensions. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 28(12), 1788–1801.

21. Grudnitsky, A., Bauer, L., & Henkel, J. (2014). COREFAB: Concurrent reconfigurable fabric

utilization in heterogeneous multi-core systems. In International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES).

22. Majer, M., Teich, J., Ahmadinia, A., & Bobda, C. (2007). The erlangen slot machine: A

dynamically reconfigurable FPGA-based computer. VLSI Signal Processing Systems for Sig-
nal, Image, and Video Technology, 47(1), 15–31.

23. Smith, C. 120 Amazing YouTube statistics. [Online]. .Available: http://expandedramblings.

com/index.php/youtube-statistics/. Accessed 5 Oct 2015.

24. Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In

Design Automation Conference (DAC).

22 1 Introduction

25. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., & Xie, Y. (2009). Hybrid cache

architecture with disparate memory technologies. In International Symposium on Computer
Architecture (ISCA).

26. Joint Collaborative Team on Video Coding (JCT-VC), ITU, [Online]. Available: http://www.

itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx. Accessed 7 Oct 2015.

27. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T.,

& Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity.

IEEE Circuits and Systems Magazine, 4(1), 7–28.
28. Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., & Hadar, O. (2013). Performance comparison

of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. In Picture Coding Sympo-
sium (PCS).

29. Girod, B., Aaron, A. M., Rane, S., & Rebollo-Monedero, D. (2005). Distributed Video Coding.

Proceedings of the IEEE, 93(1), 71–83.
30. Dufaux, F., & Ebrahimi, T. (2010). Encoder and decoder side global and local motion

estimation for Distributed Video Coding. In International Workshop on Multimedia Signal
Pro-cessing.

31. Huang, W., Rajamani, K., Stan, M., & Skadron, K. (2011). Scaling with design constraints:

Predicting the future of big chips. IEEE Micro, 31(4), 16–29.
32. Bohr, M. (2007). A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-State

Circuits Society Newsletter, 12(1), 11–13.
33. Khan, M., Shafique, M., & Henkel, J. (2013). An adaptive complexity reduction scheme with

fast prediction unit decision for HEVC intra encoding. In International Conference on Image
Processing (ICIP).

34. Khan, M., Shafique, M., & Henkel, J. (2013). AMBER: Adaptive energy management for

on-chip hybrid video memories. In International Conference on Computer-Aided Design
(ICCAD).

35. Dennard, R., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-implanted

MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5),
256–268.

36. Huck, S. (2011). Measuring processor power, TDP vs. ACP. Intel.

37. Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. In ACM Sympo-
sium on Operating Systems Principles.

38. Kumar, S., Kim, C., & Sapatnekar, S. (2006). Impact of NBTI on SRAM read stability and

design for reliability. In International Symposium on Quality Electronic Design (ISQED).
39. Gnad, D., Shafique, M., Kriebel, F., Rehman, S., Sun, D., & Henkel, J. (2015). Hayat:

Harnessing dark silicon and variability for aging deceleration and balancing. In 52nd ACM/
EDAC/IEEE Design Automation Conference (DAC).

40. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

41. Khan, M. U. K., Shafique, M., Gupta, A., Schumann, T., & Henkel J. (2016). Power-efficient

load-balancing on heterogeneous computing platforms. In IEEE/ACM 19th Design, Automa-
tion and Test in Europe Conference (DATE).

42. Shafique, M., Khan, M. U. K., & Henkel, J. (2014). Power efficient and workload balanced

tiling for parallelized high efficiency video coding. In International Conference on Image
Processing.

43. Khan, M. U. K., Shafique, M., & Henkel, J. (2015). Hierarchical power budgeting for dark

silicon chips. In International Symposium on Low Power Electronics and Design.
44. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Fast hierarchical intra angular mode

selection for high efficiency video coding. In International Conference on Image Processing.
45. Khan, M. U. K., Borrmann, J. M., Bauer, L., Shafique, M., & Henkel, J. (2013). An H.264

Quad-FullHD low-latency intra video encoder. In Design, Automation & Test in Europe
Conference & Exhibition (DATE).

References 23

46. Khan, M. U. K., Shafique, M., & Henkel, J. (2013). Hardware-software collaborative com-

plexity reduction scheme for the emerging HEVC intra encoder. In Design, Automation and
Test in Europe (DATE).

47. Khan, M. U. K., Shafique, M., & Henkel, J. (2015). Power-efficient accelerator allocation in

adaptive dark silicon many-core systems. In Design, Automation & Test in Europe Conference
& Exhibition (DATE).

48. Shafique, M., Khan, M. U. K., Tüfek, O., & Henkel, J. (2015). EnAAM: Energy-efficient anti-

aging for on-chip video memories. In Design Automation Conference (DAC).
49. Shafique, M., Khan, M. U. K., & Henkel, J. (2016). Content-aware low-power configurable

aging mitigation for SRAM memories. IEEE Transactions on Computers (TC), 65(12), 3617–
3630.

24 1 Introduction

Chapter 2

Background and Related Work

This chapter discusses the basics of video processing in general, while specifically

targeting the video coding applications. General video system design and its

memory access patterns and resource utilization are deliberated. Fundamentals of

HEVC and H.264/AVC video encoding are followed by their associated challenges

when designing computationally efficient video processing systems. Modern tech-

nological challenges that arise in deploying video systems are also presented in this

chapter. Afterwards, the state-of-the-art techniques to meet these design challenges

are discussed, with details targeting video processing system’s software and hard-

ware layers.

2.1 Overview of Video Processing

The working of a video processing system largely depends upon its complexity. The

complexity of a video system can be roughly correlated to two characteristics,

processing algorithm and throughput constraint. As discussed in Sect. 1.2, the

computational complexity of video processing depends upon the type of the

algorithm, along with the video frame dimensions and the FPS requirements

(given by fp). From FPS requirements, the maximum time that can be spent on

processing a single video frame is given by tfrm¼1/fp. A general metric to present

the throughput requirements is given by w�h�fp, which denotes the number of

pixels that must be processed in one second, for a frame of size w�h pixels.

However, most video algorithms process a block of pixels in a time unit, i.e., all

the pixels within the block correspond to a particular computational mode. An

example of dividing a video frame into blocks of size bw�bh is shown in Fig. 2.1.

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_2

25

Generally, the video is processed online or offline. Further, the frames themselves

are stored in the external memory due to the size of the video frame. A block (or a

group of blocks) is transferred from the external memory to the on-chip memory for

processing, because accessing the on-chip memory is faster. Once processed, the

output of the processed block is concatenated to the output of other blocks.

Figure 2.1 presents an example of video processing system, with pre- and post-

processing modules. For video system design discussion, naı̈ve online gaming

scenario can be considered. The video application reads the data (possibly com-

pressed video) from the gaming server, decodes it, and then applies different image

enhancement techniques before finally forwarding it to the main processing engine.

The processing engine may also use data on the local disk and video content

captured using the camera(s) at the user’s end for processing. Afterwards, this

data is displayed on the display device, using post-processing filters like light

blooming, denoising, and interpolation. Further, the data/video formed at the

user’s end is also encoded and encrypted and finally sent back to the gaming server.

Note that pre- and post-processing modules themselves can be separate video

processing systems, employing the same principles as given in this figure. Further,

these modules can be deployed on independent hardware resources, e.g., video

preprocessing on CPUs and post-processing on GPU.

For block-based video processing, the throughput requirement can be written as:

nsec ¼ nfrm � f p ¼
w� h

bw � bh
� f p ð2:1Þ

Here, nsec presents the number of blocks that must be processed per second, and

nfrm is the number of blocks within a frame. A larger nsec corresponds to more

computational and power requirements and vice versa.

A video sample can be stored in multiple formats. Usually, a sample is stored as a

union of three colors, red (R), green (G), and blue (B). This color space format is

termed as RGB format. If intensity of each color of video samples is presented by

8-bits, then a sample is stored as a 24-bit value. Usually, R, G, and B “planes” of the

External Memory On-Chip Memory
Video

Preprocessing

Decode

Color-Space
Conversion

Enhancing
Filters

 Block storage in
on-chip memory

LUT ROMs, FIFOs,
Block RAMs

Video Processing System

Algorithms Custom Hardware
Components

Complexity and
Power Control

Monitoring
Units

Video
Postprocessing

Interpola�on

Denoising

Light Bloom

Output:
Bit-stream/

Raw samples

Video Frame Video Block

Internet

Video Camera

Disk Storage

S�ll Camera

Wired

Wire-
less

Fig. 2.1 Fundamentals of a video processing system. The video frame is divided into blocks and

logically stored in the external memory as shown in the figure. A block of size bw�bh is read at a

time from external memory and brought to the on-chip memory for processing

26 2 Background and Related Work

frame are stored separately. Therefore, the number of addresses (or pixels) is three

timesmore. Therefore, the size of the frame can be presented in number of bits bfrm by:

bfrm ¼ w� h� 3� bits per sample ð2:2Þ

The RGB color format carries a lot of redundancy and therefore burdens the

storage/communication. By focusing predominately on the features which are

visually more distinguishable to the human user, this redundancy can be removed.

One prime method is to transform RGB to a different space. For example, a large

number of video algorithms work with the YCbCr format (also sometimes called

YUV format), where Y presents the luminance component of the sample, and Cb

and Cr collectively determine the chrominance of the sample. YCbCr 4:4:4 format

means that for every luminance pixel, there are two chrominance pixels, whereas

YCbCr 4:2:0 format means that the two chrominance pixels are associated with four

luminance pixels. Hence, both the chrominance planes are downsampled by two, in

horizontal and vertical directions. This still results in high visual quality because the

human eye is more susceptible to the luminance component than the chrominance

components. For YCbCr 4:2:0 case, the size of the frame (in bits) is denoted by:

bfrm ¼ w� h� 1þ 0:25þ 0:25ð Þ � bits per sample ð2:3Þ

In Fig. 2.2, an example baseline architecture of a real-time camera-based image/

video processing system is illustrated. The camera captures videos in real time at a

certain frame acquisition rate in terms of frames per second (typical values are

30, 60, etc.). The raw data (i.e., video samples) is preprocessed via a video input

pipeline (VIP). The output of VIP is the streaming data, containing YCbCr 4:2:0

samples, which is converted into words of size � 8 bits using a combination of a

FIFO and a shift register. Each frame is stored in a separate location within the main

memory. The memory is composed of multiple frame memory partitions in order to

simultaneously store multiple video frames and support double or triple buffering.

Write address generation unit (AGU) is used to write video frames to the memory

partitions, and frames are read via Read AGU. The application requests a new

Frame drop

Memory

Frame
Memory 0

Frame
Memory 1

Frame
Memory 2

FSM
Write
AGU

Read
AGU

Video
Applica�on

New frame Write address

Streaming YCbCr 4:2:0

Valid data

Start address of frame
New frame

request

Current frame address

New frame request

Read address
Data

AGU: Address
Genera�ng
Unit

FSM: Finite State
Machine

VIP: Video Input
Pipeline

FIFO +
Shi� Reg.

Data word
(M-bit)

VIP

Fig. 2.2 Video capture, store and access management of a video processing system

2.1 Overview of Video Processing 27

frame once it has processed the previous frame. Frame drop mechanism (i.e.,

previously stored frames are overwritten, although they are not processed) is also

supported, in case the video processing application has high complexity and it

cannot cope with the high frame capture rate of the camera. Other factors that might

induce frame-dropping are e.g., constrained underlying hardware with lower clock

frequency, lesser CPUs, smaller caches, low bandwidth of wired/wireless connec-

tions etc. Frame drops can also occur if the output of the video system is stalled

(e.g., scenarios like high congestion and packet loss in wired/wireless output

scenarios, the output disk is full).

Generally, small parts of the video processing code (called kernels) take a hefty

portion of computational complexity and power. In order to reduce the complexity,

these kernels are optimized by developing past-predicts-future paradigms and by

tuning the complexity knobs. For example, the number of modes computed to

search for the best mode can be reduced, which increases the throughput-per-watt

metric, but may reduce the output video quality. These kernels can also be

implemented as custom hardware accelerators.

In addition to video applications, other applications are also sometimes referred

to as “frame-based” applications. The term “frame-based” application broadly

denotes an application that needs to process a set of data periodically, within a

specific interval of time.

2.1.1 Intra- and Inter-frame Processing

Broadly, there are two distinct types of video processing algorithms employed by

video systems:

1. Intra-frame processing, where the spatial neighborhood of the pixel (or block)

under consideration is used for computations. That is, the same frame is used for

processing the current pixel/block.

2. Inter-frame processing, where the temporal neighborhood of the pixel (or block)

under process is used for computations. That is, the frame(s) processed in the

past or future is used in algorithms involving the current pixels/block processing.

The frames used for interframe processing are also called reference frames.

The neighborhood concept is illustrated in Fig. 2.3, where a block under

consideration has spatial neighbors within the frame and temporal neighbors across

the frames. The same concept is applicable to pixel-based processing; however, our

main focus in this book will be block-based processing. The spatial and temporal

neighbors are exploited for multiple purposes, e.g., noise filtering and motion

tracking. The correlation of the current pixel/block with its neighbors plays an

important role in determining the video quality, as will be discussed in the coming

text. High correlation in the neighborhood usually translates to higher video quality

(e.g., better noise removal if neighbors correlate highly with the current block).

Mostly, the spatial neighbors are not as highly correlated with the current block;

therefore, the video output quality is not high for intra-frame processing, compared

28 2 Background and Related Work

to inter-frame processing. However, the computational requirement of inter-frame

processing is higher due to a large amount of data being transferred between

external and on-chip memory. This increases the data processing pressure and the

power overhead. On the other hand, a larger complexity corresponds to searching

for the best mode of computations and hence increases the output video quality. The

output video quality can be compared against an ideal output using peak signal-to-

noise ratio (PSNR) and Bjøntegaard delta peak signal-to-noise ratio (BD-PSNR) or

bitrate (BD-Rate) [1]. This will become clear when we discuss video coding

overview in Sect. 2.2.

Usually, the on-chip memory shown in Fig. 2.1 is large enough to hold additional

data, and therefore, in addition to the video frame block, its spatial or temporal

neighbors can also be stored on-chip. This further reduces the stress on the memory

subsystem.

2.2 Overview of Video Coding

Here, we discuss video coding algorithms with reference to the principles men-

tioned in Sect. 2.1. This section introduces the working principles of H.264/AVC

[2] and HEVC [3] video encoders. The working principles of a video encoder are

diagrammatically shown in Fig. 2.4. A video frame block (of size bw�bh, with
samples s) is brought from the external memory to the on-chip memory and is

compressed by searching for the best compression mode/configuration, by itera-

tively testing the intra- and inter-compression modes (also referred to as intra- and

inter-predictions). Afterwards, the best compression mode is forwarded to the

additional video compression modules. The purpose of both intra- and inter-

prediction modes at the encoder is to generate a resembling representation of the

current block under test, called prediction (with samples s0). Therefore, the module

in Fig. 2.4 is referred to as prediction generator. This prediction is generated using

the neighbors of the block. The idea is that since the neighbors will already be

present at the decoder, the decoder can recreate the current block using only the

information of the current block sent by the encoder. Usually, number of bits for

representing the current block is smaller than the number of information bits send

Current blockSpa�al Neighborhood

Temporal
Neighborhood

Frame i-1 Frame i Frame i-1 Frame i

Fig. 2.3 Spatial and temporal neighborhood of current block under consideration

2.2 Overview of Video Coding 29

In
tr

a

In
te

r

Mode
Decision

Tr
an

sf
or

m
Q

ua
n�

za
�o

n

En
tr

op
y

Co
di

ng

In
ve

rs
e

Tr
an

sf
or

m
In

ve
rs

e
Q

ua
n�

za
�o

n
Fi

lte
rs

+–
Pr

ed
ic

�o
n

G
en

er
at

or

O
rig

in
al

 B
lo

ck

Pr
ed

ic
te

d
Bl

oc
kRe

si
du

al
 B

lo
ck

Tr
an

sf
or

m
ed

 +

Q
ua

n�
ze

d
Re

si
du

al
 B

lo
ck

Re
co

ns
tr

uc
te

d
Bl

oc
k

Lo
ca

lly
 D

ec
od

ed

Re
si

du
al

 B
lo

ck
Bi

t-
st

re
am

(O
ut

pu
t)

In
pu

t V
id

eo

Re
co

ns
tr

uc
te

d
Vi

de
o

Re
co

ns
tr

uc
te

d
VVVii

dddeeeeeeeeeeeeeeeeeeeeeeeeeee
oo

F
ig
.
2
.4

B
as
ic

m
o
d
u
le
s
o
f
a
v
id
eo

en
co
d
er
.
T
h
e
bl
ue

b
o
x
es

ar
e
u
se
d
fo
r
en
co
d
in
g
p
u
rp
o
se
s,
an
d
th
e
or
an

ge
b
o
x
es

d
en
o
te

th
e
lo
ca
l
d
ec
o
d
er

m
o
d
u
le
s
u
se
d

in
si
d
e
th
e
en
co
d
er

30 2 Background and Related Work

by the encoder (and hence, compression is achieved). However, this technique only

works with lossless video encoders, which do not provide higher compression rates

compared to lossy compression. Therefore, in case of lossy compression, the

encoder compresses the current block by using the neighborhood of the block in

the reconstructed video frame samples. A reconstructed video frame is a video

frame generated by decoding the information sent by the encoder. The encoder can

also locally decode and use the locally decoded video frame for generating the

predictons, i.e., the video frame samples which will be generated at the decoder, to

make sure that there is no error accumulation at the decoder. Thus, the encoder also

implements a local decoder (shown by the lower modules in Fig. 2.4). The gener-

ation of prediction either uses the spatially neighboring pixels (intra-frame

processing) or temporally neighboring pixels (inter-frame processing). Thus, if

the quality of prediction (its resemblance with the original block) is high, the

residual block, i.e., the difference between the original and the prediction, has

low pixel energy (samples with low values). The quality of a prediction is usually

tested using the sum of absolute differences (SAD) metric:

SAD ¼
Xbh�1

y¼0

Xbw�1

x¼0

s x; yð Þ � s0
�
x; y

��� �� ð2:4Þ

Here, (x, y) is the pixel location within the original and predicted blocks. Every

intra- and inter-mode has its associated prediction and, therefore, a SAD value. It is

evident that, if the number of predictions that are tested is high (i.e., a more complex

encoder), probability of finding a prediction with a low SAD/pixel energy is high,

which results in higher compression.

Afterwards, transformation of residue and its quantization take place. The

purpose of transformation is to separate low- and high-frequency components of

the residual bock and transmit a part of these components (hence, lossy compres-

sion). If high compression is required, the higher frequency components are not sent

to the decoder and vice versa. This is because the human eye is more susceptible to

the low-frequency image components than high-frequency components. Quantiza-

tion further reduces the scale of the transformed values before finally the bitstream

generation (i.e., the entropy coding module) forms a bitstream which is sent to the

video decoder. The size of the bitstream is proportional to the pixel energy in the

residual block, and more energy in the residual block will increase the size of the

bitstream.

This bitstream consists of the transformed and quantized residue of the current

block, along with the prediction mode selected for compressing the block. The

decoder can reverse the process, by generating the transformed and quantized

residual block (approximately) from the bitstream. The steps to generate the

block at decoder are (a) decoding the bitstream to get quantized blocks and

prediction mode, (b) inverse quantizing the received block, (c) inverse transforming

the block, (d) generating the prediction using the prediction mode, and, finally,

(e) adding the prediction to generate a representation of the original block.

In addition to video encoding/decoding algorithms (which attract high attention

from research community), algorithmic and architectural designs of video input and

2.2 Overview of Video Coding 31

output pipelines are also a critical design step, since if a module within these

pipelines becomes the bottleneck, it will hurt the performance of the complete

system. Video input pipeline involves color space conversion, deinterlacing,

downsampling, etc. More on this is covered in Sect. 5.1.2. Video output pipeline

usually incorporates noise reduction algorithms, color space conversion, and con-

tent enhancement (like increasing the sharpness, correcting brightness, etc.).

2.2.1 H.264/AVC and HEVC

H.264 or MPEG-4 Part 10 or Advanced Video Coding (MPEG-4 AVC) is the

current video compression industry standard developed by JCT-VC [2, 4]. In this

book, this standard will be referred to as H.264/AVC. Here, a video frame is divided

into blocks of 16�16 pixels called macroblocks (MBs), and each MB is treated as a

separate entity for compression. A block is tested with intra-prediction modes using

angular directions and inter-prediction via block matching (also called motion

estimation (ME)) [5, 6]. However, due to increasing video resolutions and frame

rates (e.g., 8K Ultra-HD, 7680�4320 pixels, at 120 fps), JCT-VC has also recently

developed the next-generation High Efficiency Video Coding (HEVC) standard.

HEVC aims at increasing the compression by 50% compared to the H.264/AVC.

From Fig. 2.5, we notice that the bitrate of the video encoded via HEVC is lower

than H.264/AVC, for the same video quality (PSNR). These curves are also called

rate-distortion (RD) curves. For these curves, higher is better.

On the other hand, HEVC time consumption is substantially higher and our

experiments show that HEVC is ~2.2�more complex than H.264/AVC. Compared

to H.264/AVC, HEVC brings two major innovations [3, 7]. Firstly, unlike the

concept of MB of its predecessor coding standard H.264/AVC, the HEVC intro-

duces the concept of the coding tree unit (CTU) as a coding structure. A CTU is a

square block of size 16�16, 32�32, or 64�64. The CTU is recursively subdivided

into multiple coding units (CUs) and prediction units (PUs). Each PU serves as an

independent, basic entity for compression carrying individual header data. Sec-

ondly, a prediction for a PU can be generated using one out of many standard-

defined prediction modes.

32

36

40

44

0 5 10 15 20 25

HEVC

H.264/AVC

PS
N

R
[d

B]

Bit-Rate [MBps]

Fig. 2.5 Video quality

comparison for H.264/AVC

and HEVC

32 2 Background and Related Work

2.2.1.1 Intra-prediction Modes

As discussed, H.264/AVC and HEVC intra-compression modes generate the pre-

diction block for the current block using the spatial neighboring reconstructed video

samples. This is because spatially, the texture flow of the video samples is expected

to continue from the surrounding blocks into the current block under consideration.

However, the proper direction of texture flow must be estimated for best represen-

tation of the original block, which will result in a residual block with low pixel

energy. As shown in Fig. 2.6 (a, b), both H.264/AVC and HEVC employ different

spatial directional (or angular) modes to determine the best texture flow direction.

The encoders employ a brute-force (also called full-search) algorithm to get the best

prediction mode, whereby all the predictors are tested to get the best predictor. The

best prediction mode is usually chosen as the one which corresponds to the lowest

SAD (Eq. 2.4). SAD value is computed between the current block and the predic-

tion block.

Table 2.1 tabulates a comparison of intra-prediction modes for both HEVC and

H.264/AVC. It is notable that the total number of prediction modes for the HEVC is

significantly higher compared to H.264/AVC. Furthermore, the selection of

Table 2.1 Comparing HEVC intra-prediction modes for 64�64 CTU with the H.264/AVC intra-

modes for a 64�64 image region

Prediction size

Total intra-angular modes nang
HEVC/ H.265 (64�64) H.264/AVC (16�16)

64�64 4 NA

32�32 35 NA

16�16 35 4

8�8 35 9

4�4 19 9

Total modes ψ ¼ 7808 16�(16�9+4�9+4) ¼ 2944

Vertical Angular Predictors

H
or

iz
on

ta
l A

ng
ul

ar
 P

re
di

ct
or

s

0: Planar
1: DC

37054

6

1

8
2: DC mode

(a) (b)

Fig. 2.6 (a) H.264/AVC and (b) HEVC intra-angular modes

2.2 Overview of Video Coding 33

RD-wise best PU size and prediction mode is determined by a RD optimization

(RDO) process. Therefore, due to the recursive nature of best PU size selection and

RDO process, the total number of mode decisions in HEVC (computed using

Eq. (2.5) for a CTU of size bw�bh¼64�64) is ~2.65� more than that in H.264/

AVC. nang denotes the number of angular modes for a particular PU size (column

2 of Table 2.1).

ψ ¼
Xlog2bw�2

i¼0
22i � nang
� � ð2:5Þ

2.2.1.2 HEVC Inter-prediction Modes

Similarly, for generating the inter-predictions, both H.264/AVC and HEVC

encoders search for a similar block in temporal neighborhood (i.e., the previously

encoded frames called reference frames) using ME. In HEVC, ME is repeated for

every PU as shown in Fig. 2.7. This search is pixel-wise and uses the SAD metric.

The ME process is shown in Fig. 2.8 along with the hardware architecture of

computing the SAD. In the inter-encoding case, a predictor is a block of pixels of

the previous frame. Usually, only parts of reference frames, called the search

64×64

32×32

32×32

16×16

16×16

Fig. 2.7 HEVC inter-

prediction modes

Predictor # 0
Predictor # 1

Best Predictor
(lowest SAD)

Mot ion
Vector (MV)

Frame i-1
(Reference Frame)

Frame i
(Current Frame)

- - --
+

ABS ABS ABS ABS

SAD

s0,0 s'0,0(a) (b)
…

…

Current Block

+

++
+

…

Fig. 2.8 Motion estimation (ME) and SAD computation architecture

34 2 Background and Related Work

window, are tested for the best predictor. The search window is brought from the

external memory to the on-chip memory, and the predictors are drawn from this

search window for computing SAD. Search window is a rectangular region of size

sw�sh. For fast prediction selection, ideally the search window should be loaded

into the on-chip memory. Furthermore, note that blocks are processed in a raster

scan order, and two neighboring blocks will have most of their search windows

overlapped [5]. This concept is outlined in Fig. 2.9. Thus, search window

“prefetching” of new reference samples can be done in parallel to the ME process.

Further, a larger search window increases the probability of finding a predictor with

low SAD value (and thus increases the video quality). However, this also increases

the on-chip memory required to store the search window, which increases the power

consumption of the system. Additionally, the external memory accesses also

increase, resulting in higher power consumption [8, 9] and access latencies.

From the discussion above related to the search window, it is simple to infer that

a single reference pixel is written multiple times to the search window, depending

upon the height of the window. This is because the search window overlaps for the

blocks in adjacent rows. A larger search window height (sh) denotes that a single

pixel will be written more times into the search window storage than having a

smaller search window height. A read factor rf is defined which denotes the total

number of times a pixel in the reference frame is read and then stored in the search

window. Typical value of this factor is between 3 and 12. For the technique given in

Fig. 2.8, where the search window is shifted by bh for every new row of blocks with

size bw�bh:

rf ¼ sh=bh ð2:6Þ

There are multiple ways to determine the best predictor within the search

window. One method is to search every predictor in the search window. This

scheme employs a brute-force or full-search algorithm and results in the best

predictor with the lowest SAD value. However, this scheme is excessively complex

and almost never employed in practice. Usually, fast prediction search algorithms

(like EPZS, TZ [10]) are used, which result in considerably lower power consump-

tion and complexity with little video quality loss, compared to the brute-force

search. In these fast algorithms, not every possible predictor of the search window

is tested (i.e., not all pixels of the search window are utilized). An additional step

iteratively determines the next most probable predictors which will result in the

lowest SAD value. However, this does not suggest that the number of pixels

“prefetched” will reduce. The number of pixels fetched from external memory

Block #
m

Search Window
m

Search Window
m+1

Prefetch m+1

Block #
m+1

Fig. 2.9 Search window

structure and window

prefetching

2.2 Overview of Video Coding 35

will remain the same, because the pixels that will be utilized by the iterative step for

ME are unknown. Moreover, if a part of the search window is not fully utilized for

the current block, it might be utilized for the next adjacent block.

In HEVC, each CU is split into 13 PUs (see Fig. 2.7), and ME is carried out for

these PUs. Mathematically, the total number of block-matching iterations for a

square CTU of width bw is given by:

ψ ¼ 13�
Xlog2bw�3

i¼0
22i ð2:7Þ

Simulations show that block matching in HEVC takes around 80% of the total

encoding time, and it is ~2.2� more complex than compared to H.264/AVC. In

addition, normally the block matching takes about 60% of the total energy in video

encoders [11]. Moreover, there can be multiple reference frames (e.g., bi-prediction

in HEVC and multiview video coding (MVC)), and the best predictor is searched in

a search window for each of these frames.

Many algorithms used in both H.264/AVC and HEVC can be applied in other

video processing algorithms, as they exercise the same principles of computations

and memory access. Many mainstream video encoders use similar principles of

intra- and inter-video encoding (e.g., Google’s VP8 and VP9, Microsoft’s SMPTE,

Cisco’s Thor, MJPEG). Moreover, ME algorithm is also used in super-resolution

techniques (increasing the resolution of a video frame by concatenating multiple,

temporally neighboring frames), temporal frame interpolations (for reducing flicker

and algorithmically increasing FPS), motion tracking, corner detection, etc.

Further, almost all video processing algorithms have configuration knobs, which

can be tweaked to leverage the computational complexity against video quality. For

example, the search window for motion estimation in video coding, denoising,

frame interpolation, and super-resolution algorithms can be enlarged or contracted.

The number of intra-angular modes tested for HEVC can be increased or reduced.

This suggests video processing applications provide prospects for runtime adapta-

tion of workload. However, such adaptation for increasing the throughput might

result in lower output quality, e.g., loss in PSNR or precision of tracking.

2.2.2 Parallelization

Like all compute-intensive video applications, H.264/AVC and HEVC standards

allow for parallel operation. A system designer can utilize a multi- or many-core

system and exploit the parallelism in order to gain computational advantages. To

process a video sequence, a hierarchical approach for video partitioning is

employed. Video frames are divided into sets of frames, called groups of pictures

(GOPs). Each GOP can be processed independently of other GOPs, supporting

GOP-level parallelization [12]. Within a GOP, video frames can also be processed

in parallel on independent processing cores [13]. A frame is divided into slices or

36 2 Background and Related Work

tiles (see Fig. 2.10a), and each slice/tile can be processed in parallel [14–16]. As

discussed before, usually the image and video processing algorithms are block-

based algorithms, where a set of pixels in a rectangular region is considered as a

basic processing entity. Each slice/tile is divided into blocks, and a single block is

processed one at one time (the blocks within the slice/tile are processed sequen-

tially). However, intra-angular predictions and inter-predictions can be tested in

parallel. An example video partition hierarchy is given in Fig. 2.10b, where each

frame in the GOP is divided into ktot tiles. This figure also shows collocated tiles,

which are the video tiles at the same location but in adjacent frames.

Video Workload Balancing Via parallelization, the workload of the whole appli-

cation is divided into chunks, and thus the workload corresponds to the computa-

tional complexity and energy consumption of a processing core. That is, the larger

the workload, the more computational complexity and energy consumption of the

underlying hardware (processing resources like cores, FPGAs, GPUs, etc.) are

expected. Generally, the workload of the complete application should be distributed

to the physical resources in a manner that the hardware utilization is maximized.

Therefore, every resource should ideally consume the same amount of time

processing their assigned jobs or subtasks. Collectively, this process can be termed

as workload or load balancing. Workload balancing will increase the throughput of

the system along with increase of the throughput-per-watt metric.

Workload balancing can be achieved via centralized or distributed techniques

[17, 18], which gather statistics and objectively distribute the subtasks among the

resources. However, for fully distributed strategies, optimal scheduling decision is

difficult to make due to rapidly changing environment, randomness, and

unpredictability. The communication delays in fully distributed strategies can

also invalidate a correct decision at a previous time, as the state of the system

might change rapidly after the distributed load balancing decision. Further, distrib-

uted algorithms reduce the range of subtask migration from one core to another,

because physically far apart resources, with highest and lightest workloads, cannot

be balanced in a single iteration of load balancing. Also, the overhead of the

technique increases with the system size due to increased message passing, control

logic, scheduling algorithms, etc. Further, the response of distributed strategies

saturates after tens of compute nodes. For the centralized strategy of load balancing,

the overhead of the assignment algorithm is large and has a large communication

Slice 0
Slice 1

Slice 2
Slice 3

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

Frame division into
slices and �les

(a) (b)

v,f0 v,f1 v,fktot-1

GOP0

fr0 frm-1

�0 �1 �ktot-1

Core0 Core1 Corektot-1

Many-Core
System

GOP0

Collocated
Tiles

fr0

�0CTU Pipeline

Fig. 2.10 (a) Frame division into slices and tiles for parallel processing, (b) video partitioning

hierarchy. Here, fr frame, ti tile

2.2 Overview of Video Coding 37

and storage overhead. This is due to the chip-wide information gathering and

storage of statistics. Further, centralized load balancing algorithms are vulnerable

to faults, and a complete system failure will occur if the central node (running the

subtask assignment algorithm) fails. Thus, both centralized and distributed strate-

gies for load balancing do not always produce optimal performance. This discus-

sion not only is applicable for video processing systems but also applies to any

many-core system running parallel workloads.

Multicasting Multicasting refers to information transfer to a set of predefined

destination nodes. With reference to video communication, a multicasting or

multichannel video encoder should be capable of encoding concurrent [19, 20]

video streams in parallel and generating appropriate compressed bitstreams for each

of these videos, as shown in Fig. 2.11. Use cases of multicast video encoding

include security, entertainment, video logging, etc. Each video can have its own

resolution, texture/motion content-dependent workload, and throughput require-

ment like FPS. This system can be implemented using a many-core platform or

by designing custom hardware. In case of a many-core system, it is a design

challenge to efficiently distribute the processing cores and power among multiple,

concurrently executing encoders, while fulfilling their throughput requirements.

Moreover, the load balancing techniques must be applicable to such paradigms. For

a custom hardware solution, some of the challenges for the multicast encoder are

being area efficient (due to multiple encoders working in parallel) and being able to

efficiently access video data.

2.2.3 DVC and HDVC

As discussed, the high compression efficiency of H.264/AVC and HEVC has

enabled a wide range of applications under low-bandwidth constraints. They follow

the predictive video coding (PVC) model, where the predictions of the block under

consideration for compression are generated at the encoder side (using intra-angular

Video
Sequence

C0 C1 C2 Cki-1...

Tile
Formation

Cores

Many-core chip

Raw Video Input

Maximum
Power Budget

fpsi = 1/ti,max (a) (b)

Fig. 2.11 (a) Multi-video capture and encoding on a many-core chip, (b) frame division into

multiple tiles

38 2 Background and Related Work

modes or ME). PVC is typically well suited for circumstances where encoding

devices have large-enough computational power, while decoders are resource-/

power-constrained devices, like mobile devices engaged in video streaming, battery

driven hand-held phones etc. Similarly, if the video is encoded once and transmitted

to numerous decoders multiple times, then PVC approach is most suitable.

2.2.3.1 Distributed Video Coding

It is possible that the computational complexity of a video application is too high to

be feasible for a particular system. For example, the significantly increased com-

putations at the HEVC encoder prohibits its use in constrained encoded scenarios.

Distributed video coding (DVC) has been emerged as an attractive solution for

scenarios where the encoding devices are resource constrained and must use

low-complexity encoding (like infield wireless video sensor nodes, small autono-

mous flying robots, mobile devices with low processing capabilities, etc.), while the

decoding devices have high computational power (like high-end servers) and can

execute high-complexity decoding tasks. DVC paradigm provides means to shift/

offload the computational workload from the video encoder to decoder [21–27].

A DVC encoder typically consumes only 7% of the total power consumed by a

PVC H.264 encoder [28–30]. In DVC paradigm, the decoder performs the ME for

frame interpolation, extrapolation, and upsampling. Only a subset of a GOP is

transmitted by the encoder, and the decoder generates the complete GOP by

exploiting the inter-frame correlation. At the DVC decoder side, Slepian-Wolf

decoder and ME with interpolation contribute 90% towards the total decoding

complexity. To improve the estimation quality, the DVC decoder requests auxiliary

information from the encoder (i.e., parity bits generated by turbo coding), which

results in a higher transmission power compared to the PVC case (see Fig. 2.12). A

DVC encoder may require ~4� higher transmission energy compared to an H.264

PVC encoder for a video sensor node [28]. Increase in parity bits positively

influences the video quality at the decoder side, but results in higher transmission

energy at the encoder side.

0

10

20

30

H.264 H.264 Zero Mo�on DVC

Transmission Energy
Computa�on Energy

Po
w

er
 [m

W
]

Fig. 2.12 Comparing the

computational and

transmission power for an

ASIC-based video sensor

[82]

2.2 Overview of Video Coding 39

2.2.3.2 Hybrid Distributed Video Coding

DVC completely offloads the ME from the encoder to the decoder. The major

drawback of DVC is lower video quality compared to that provided by PVC. On the

other hand, PVC results in best video quality at the expense of high computational

complexity at the encoder side. PVC and DVC become power-/energy-wise inef-

ficient in scenarios where both encoder- and decoder-side devices are resource

constrained and/or subjected to runtime varying conditions of available energy

levels and computational resources. In these cases, only one or neither of the

encoder-/decoder-side devices has adequate computational and/or transmission

power to deliver the required throughput and/or video quality. Examples of such

scenarios are (1) collaborative distributed video sensor networks for smart energy-

aware surveillance; (2) mobile devices on Internet of Things (IoT) – with varying

battery levels – communicating with each other or other power-constrained devices;

(3) heterogeneous devices from different vendors with distinct energy consumption

properties, etc. Besides, DVC may not facilitate complete offloading in scenarios

where multiple encoding devices concurrently offload their computational work-

load to a single, shared decoding device [31].

To cope with the energy-related issues for video coding in such dynamic

scenarios, Hybrid Distributed Video Coding (HDVC) has emerged as an attractive

solution which combines the positive aspects of both PVC and DVC, i.e., providing

high video quality close to PVC and low computational power close to DVC. In

HDVC, the decoder-side ME complexity is relaxed at the cost of partial ME at the

encoder side. This means that the encoder also fully processes some of the video

frame blocks and leave the rest to the decoder. The partial ME at the encoder side

results in better reconstruction of frames at the decoder side that corresponds to a

high video quality and low energy consumption at the decoder side.

Concisely, general workload offloading improves the performance if [32]:

• The throughput requirement of the (video) application is high and is not sus-

tainable by the video processing device.

• The (DVC/HDVC) decoder/receiver is fast and results in computational/power

benefit if the jobs are offloaded to the decoder.

• A small amount of auxiliary bits is transmitted.

• The bandwidth of the channel between the encoder and decoder is not a

bottleneck.

2.3 Technological Challenges

In the previous chapter, we briefly discussed some of the technological challenges

that might arise while implementing a system with high throughput-per-watt

metric. Here, details about these challenges are given.

40 2 Background and Related Work

2.3.1 Dark Silicon or Power Wall

Reduced transistor sizes in the modern fabrication technologies have led to new

unforeseen challenges for system designers. Though the chip designers are living

up to the Moore’s law challenge, it is expected that most of the transistors etched on

the chip will not be completely utilized due to the power wall problem. Specifically,

the failure of Dennard scaling has resulted in the emergence of the Dark Silicon

Age, where the chip’s real estate cannot be utilized continuously, at full capacity. In
fact, current estimates (as shown in Fig. 2.13) suggest that only 30–50% of the

chip’s usable resources will be bright (fully utilized) for 8 nm technology, while the

rest will be kept dark (unutilized) or dim/gray (partially utilized or underutilized).

This forced underutilization arises from the fact that power per unit of area is

increasing monotonously with increasing transistor density. Therefore, the temper-

ature of the chip may reach levels which will not be contained by the available

state-of-the-art coolants and result in permanent damage of the chip. Thus, power-

efficient designs are of prime importance for modern systems.

A digital circuit consumes two types of powers, dynamic (pdyn) and static (psta)
power. The dynamic power is due to switching the transistors on and off, whereas
the leakage power is a result of subthreshold current through the transistor’s
channel and the leakage through the transistor’s gate, when the transistor is off.
The static power can be reduced by lowering the supply voltage vdd. On the other

hand, for a CMOS circuit, the dynamic power consumption can be written as:

pdyn ¼ α � cp � v2dd � f ð2:8Þ

Here, α is the switching activity level, cp is the capacitance of the circuit, vdd is
the supply voltage, and f is the clock frequency at which the circuit is operated. This
shows that dynamic power can be reduced by reducing the supply voltage. How-

ever, reducing vdd will increase the time delay (td), and, therefore, the frequency

must be reduced. In fact, td and vdd are related by the following equation:

td / vdd
vdd � vth

ð2:9Þ

Here, vth is the threshold voltage. Therefore, we can rewrite Eq. (2.8) as:

0

50

100

16 nm 11 nm 8 nm

Esmaeil'11 Henkel'15

 P
er

ce
nt

ag
e

Da
rk

 S
ili

co
nFig. 2.13 Prediction/trends

of dark silicon. See [8] for

Esmaeil’11 and [164] for

Henkel’15

2.3 Technological Challenges 41

pdyn / v3dd / f 3 ð2:10Þ

Using this relationship, dynamic voltage frequency scaling (DVFS) can reduce

the power of the circuit. However, note that reducing the frequency of the circuit

also reduces the throughput and may result in deadline misses. Moreover, as

discussed above, the voltage and frequency of a processor scale together. However,

this relationship does not hold for the complete frequency range, since there is a

certain threshold below which the voltage reduction results in unstable processor

behavior [33]. Thus, only dynamic frequency scaling (DFS) can be employed in

these scenarios.

For video applications, a strict throughput constraint usually exists that must be

met. Current trends for user-demanded frame resolution and FPS suggest that this

throughput demand is increasing (Equation (2.1) and hence puts pressure on the

hardware to perform. However, new fabrication technologies � with about half of

the cores turned OFF due to dark silicon constraints – require careful consideration

of available TDP and its distribution among possibly multiple, multithreaded video

applications competing for system resources. Moreover, memory may consume in

excess of 40% of the total chip’s power [8]. This power includes access to external

memory, read/write energy consumption, and leakage/standby power. The memory

power consumption is especially of concern for video applications that are memory

intensive, and their memory requirements continue to grow with the growing

throughput demands. Therefore, it might not be possible to achieve higher power

efficiency without considering the memory power.

The discussion above suggests that the software and hardware must be power

efficient to exercise the minimum amount of power, while fulfilling the throughput

requirements. This will not only address the dark silicon issue but will provide

supplementary power to other parallel running applications. Further, the

parallelization potential of a video application can be exploited to meet the

throughput requirements and ideally distribute the compute power along the com-

plete chip. Also, hardware accelerators, running at a lower frequency/power but

generating a higher throughput than its software counterpart, can be strategically

placed on the die to reduce the chip’s temperature. Additionally, the advantages of

the new memory technologies (like MRAM) can be exploited to replace the on-chip

SRAM, in order to reduce the leakage power of the memory subsystem and limit the

access to the external memory due to their higher density/sizes.

2.3.2 NBTI-Induced SRAM Aging

To provide fast read/write accesses, application-specific architectures normally

employ dedicated SRAM-based on-chip memories (like scratchpads instead of

caches) for storing data, thus saving the extra power overhead of tags and other

supportive circuitries. These on-chip memories are managed using specialized

42 2 Background and Related Work

address generation units and/or explicitly programmed to exploit applications’
attributes (more on this later). However, due to continuous technology scaling

resulting in small feature sizes, high-power densities (dark silicon paradigm), and

resulting temperatures, SRAM-based on-chip memories are exposed to various

reliability issues like transient errors (soft errors) and permanent errors (device

aging). Memory-intensive video applications have flourished into various mission-

critical domains like surveillance and security, automotive, satellite imaging and

video transmissions, sensor-based image/video processing over long durations, etc.

For these applications, reliable operation over their lifetime or an extended lifetime

is an imperative system requirement.

This book considers SRAM aging due to NBTI, which has emerged as one of the

most critical reliability threats for the new fabrication technology. NBTI occurs in

PMOS transistors due to negative voltage at the gate (i.e., vgs ¼ �vdd). This voltage
results in interface traps because of the breakdown of the Si-H bond at the Si-SiO2

interface. This manifests as a surge in threshold voltage and reduction in noise

margin (i.e., short-term aging) that may lead to timing errors/delay faults and/or

runtime performance degradation. To encounter this threshold voltage increase

(more than 50 mV [34]), the clock frequency of the device must be reduced by

more than 20% over its lifetime. However, due to rising NBTI issues and cost/

power/performance constraints, the degradation of the cell stability can no longer

be addressed by simply providing a design time delay margin [35]. This aging-

based phenomenon is partially reversed in the so-called recovery mode (Si-H bond

is reformed in a few cases) once the stress is removed from the PMOS gate, i.e., at

vgs¼0. An abstract view of this process is shown in Fig. 2.14a for a PMOS

transistor. Such a situation occurs when a “zero” overwrites the “one” stored in

the SRAM cell and vice versa. However, 100% recovery is not possible and NBTI

results in continuous degradation over years (i.e., long-term aging). The total aging

throughout the lifetime depends upon the stress and recovery cycles; see

Fig. 2.14b. For ease of discussion, this book defines the duty cycle (Δ) as the

percentage of a cell’s lifetime when the stored value is “one.”

This book considers a memory composed of numerous 6T SRAM cells. Each

cell is composed of two inverters to store a bit value (see Fig. 2.14c), and these

inverters store complementary values at all times. The word line (WL) is enabled to

write a value, while the bit line (BL) is used to deliver data to be stored in the cell.

Time

V t
h

Sh
i�

 [V
ol

t]

...

-1

0

V g
[V

ol
t] ...

Long-Term Aging

Stress
Phase

Recovery
Phase

Varying
Dura�onShort-

Term
Aging

P2

N2

P1

N1 VAVB

N3

N4

Vdd

WL

BL

PMOS transistors
affected by NBTI Aging

BL

DrainSource

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

(a) (b) (c)

Fig. 2.14 (a) PMOS transistor demonstrating NBTI aging with breaking Si-H bond at the Si-SiO2

interface, (b) example of stress and recovery phases for a PMOS transistor, and (c) a standard 6T

SRAM cell

2.3 Technological Challenges 43

The data is retained in the cell by turning off access transistors. To read data, WL is

set high and the BL value is retrieved. Both these transistors are in complementary

states at all times. In case a “zero” or “one” value is stored in an SRAM cell, one of

its PMOS transistors will be under stress and the other in the recovery phase. Since

the aging of an SRAM cell is determined by the worst-case aging of one of the two

PMOS transistors, the overall lowest aging is achieved when both PMOS transistors

are stressed by the same amount of time during the whole lifetime. That is, an

SRAM cell contains “one” value for 50% of its lifetime. This corresponds to a duty

cycle (Δ) of 50%. In short, SRAM aging depends upon the duty cycle of the

transistors in an SRAM cell. If the duty cycle is balanced (which denotes

Δ¼50%), the aging rate of SRAM cell will minimize.

Note that NBTI is not the only deteriorating mechanism active in SRAM cells.

Hot carrier injection (HCI, which mainly degrades the NMOS transistor) is another

aging mechanism which injects high-energy (hot) carriers inside the gate oxide.

This causes interface traps and thus introduces threshold voltage shift [36], which is

presented by the following equation:

Δvth ¼ ψHCIsafe
vdd�vth
doxψ1 t0:5 ð2:11Þ

In this equation, ψHCI and ψ1 are aging rate-dependent constants, sa is the

switching activity, and dox is the oxide thickness. This equation shows that a higher
switching activity will increase the HCI-induced aging rate and vice versa. On the

contrary, higher switching activity will reduce NBTI. Studies like [37, 38], how-

ever, emphasize that NBTI has a greater impact and is the dominating factor in

limiting the life of a circuit.

2.3.3 Other Challenges

Some other challenges, which arise due to recent fabrication technology advance-

ments, are enabling high instruction-level parallelism (ILP) and having a high

memory bandwidth. Sometimes, they are referred to as ILP wall and memory

wall. ILP wall makes it difficult to parallelize the instruction streams in order to

keep the resources busy, and, thus, it prohibits the increase in throughput. Further,

the reduced bandwidth between the caches/external memory and the computing

resources (e.g., CPUs) is a performance-limiting factor contributed by the so-called

memory wall. However, this book will only focus on power wall and SRAM aging.

44 2 Background and Related Work

2.4 Related Work

2.4.1 Video System Software

This section presents state-of-the-art techniques for addressing different challenges

of a video system at the software layer. These issues include parallelization,

complexity reduction, and power/resource budgeting.

2.4.1.1 Parallelization and Workload Balancing

As previously discussed, parallelization is a fundamental requisite of high-

complexity video applications, which must be exploited on many-core systems,

possibly having hardware accelerators and custom logic/interfaces. The general

classification of parallelization and workload mapping practices on many-core

systems is presented in the literature [39]. However, one of the objectives of this

book is to present and analyze the application-specific properties for workload

mapping on a many-core system and improving power efficiency of the video

system. Numerous works are reported to enable parallel processing of video

applications. These works include parallel video coding/decoding [40, 41], tracking

[42], image/face recognition [43, 44], nonnegative matrix factorization [45], and

others. However, these works generally do not consider resource management,

hardware characteristics, and workload balancing.

Workload Balancing General load balancing of compute jobs among compute

entities is presented in [46, 17, 18, 47]. For power efficiency (i.e., increased

throughput-per-watt ratio), either the load of an application can be dispersed on a

given platform (load balancing [48, 49]) or a platform can be synthesized for the

given load/application (load-driven synthesis [50, 51]) under throughput and/or

power constraints. Most of the load balancing techniques consider homogeneous

many-core systems, jobs with almost equal complexity and do not consider load

variation at runtime [46, 52]. For example, [47] considers load balancing for

distributed stream processing applications in wide-area environment, under

dynamic resource consumption. In [53], load balancing between mirror multimedia

servers is discussed for both centralized and distribution load balancing techniques.

Ref. [46] deals with assigning each resource (core) with equal number of subtasks

and reaches an equilibrium state if no more jobs can be migrated from one core to

its physical, homogeneous neighbors. However, the present architectural and phys-

ical challenges for homogeneous many-core system design are not considered.

Smaller feature sizes result in physical variability of underlying transistors (also

called process variation), which transforms into variable leakage power and max-

imum frequency achievable for the homogeneous cores on the same die [54]. Thus,

compute cores can have different characteristics, even though they form a homo-

geneous many-core system. Research has also focused on combining the

2.4 Related Work 45

distribution and balancing of load and DVFS and dynamic power management

(DPM) of the underlying hardware resources [55]. Ref. [56] defines a single clock

frequency for the entire chip for maximum efficiency, whereas [16, 57] indepen-

dently determine the frequency of each core while distributing application load.

Authors in [16] target minimizing the power consumption for a fixed deadline,

while [57] tries to maximize the throughput of parallel running, multithreaded

applications for a given power budget.

Workload Balancing on Heterogeneous Nodes Further, to increase the through-

put-per-watt under modern system design challenges, heterogeneous multi-/many-

core systems are becoming progressively popular [33, 58]. Using architectural

heterogeneity, it is now possible for the designer to schedule a processing job on

a compute node (e.g., a core, a hardware accelerator) that will increase the

throughput-per-watt metric [59]. This way, maximum power efficiency is achieved.

For example, ARM big.LITTLE architecture [60] integrates high-performance

Cortex-A57 big cores with low-power Cortex-A53 little cores, in order to achieve

maximum throughput-per-watt by capitalizing on adaptive application mapping

techniques. Thus, general load balancing methods are not applicable in heteroge-

neous paradigms having cores/compute nodes with unequal compute capabilities.

Parallelization and load balancing of H.264/AVC is carried out in [61], using

heterogeneous CPU+GPU systems [62, 63], without considering the impact of

power which is substantial when GPUs are used. In [33], authors target energy-

efficient workload allocation and voltage-frequency tuning of the underlying

single-ISA computing nodes. The goal is to minimize energy/power of the system.

However, their approach does not consider fulfilling the required throughput of the

application(s). In [64], authors propose to identify the program and cores’ charac-
teristics and then appropriately match them for scheduling. Reference [65] studies

parallelized database on heterogeneous, single-ISA architectures. These proposed

workload balancing approaches do not consider modern fabrication technological

challenges like power budgeting, dark silicon, etc. Moreover, generally the com-

plexity of each subtask is not equal. For example, ME can have considerable

different complexity for different video frame blocks, depending upon the content

properties and texture within the block [66, 11]. Further, the cache behavior of the

application and the physical locality of the compute node (e.g., its distance from the

external memory controller) also determine the complexity of a subtask. All these

challenges must be addressed if an efficient workload mapping and balancing

policy needs to be implemented. This is especially true for video systems under

throughput constraints.

Parallelization of Video Systems Multiple parallelization methods for video

systems are available in the literature. For example, a many-core based SIMD

implementation of H.264/AVC is given in [67], but it does not consider workload

mapping and balancing. Using partial frame-level parallelism, a 12-core system for

parallel HEVC encoding is given in [40]. Ref. [41] discusses a technique to

parallelize H.264/AVC on Cell multiprocessor. In [68], a hierarchical

parallelization of H.264/AVC is presented for low-cost cluster of cores, by

46 2 Background and Related Work

combining multilevel parallelism. In [69], a parallel implementation of particle

filter on shared memory architectures is given. In [70], a hardware/software

partitioning is targeted for a heterogeneous processor, for MPEG-2 encoder. Ref.

[71] proposes a parallel implementation of the nonlocal means filter (NLMF) on a

GPU for denoising 3D data. Parallel video super-resolution methods are proposed

in [72, 73]. In general, not all these parallelization techniques consider workload

balancing on the many-core system, power reduction, and meeting the throughput

requirements. In addition, these techniques might require access to multiple video

frames (in the external memory) at the same time, increasing the latency of the

application. Thus, they either increase the power consumption of the system by

needlessly increasing the core frequency beyond requirement or reduce the

throughput and increase latency by burdening each compute resource with diver-

gent workloads.

H.264/AVC parallelization and workload balancing are also discussed in the

literature. Authors in [14] present a history-based technique to allocate the number

of slices per frame dynamically, for balancing workload among the multiple cores.

In their technique, each slice is mapped to a single compute core. A similar history-

based technique can be found in [15] where the skipped video frame blocks

determine the slice boundaries for parallel encoding. A two-pass slice partitioning

technique for workload balancing of H.264/AVC is given in [74], where each frame

is preprocessed, prior to being assigned into slices. However, no adaptation of

workload and frequency of the cores (and thus, of power consumption) is proposed

for these techniques.

2.4.1.2 Power-Efficient Video Processing Algorithms

A multitude of works in reducing the complexity of computationally heavy image/

video applications also exist in the literature. In a nutshell, by sacrificing a small

amount of output quality (e.g., a reduced PSNR or accuracy of tracking, increased

bitrate), the workload of the application is curtailed to meet the throughput.

Numerous complexity reduction techniques exist in the literature for HEVC

encoding [75–78]. The work in [75] (basically inspired from [79, 80]) presents a

gradient-based fast intra-mode decision for a given PU size and results in about

20% time savings. In [76], authors have also presented a fast PU size selection

algorithm for inter frames (exploiting temporal correlations for frame compression,

similar to open loop for H.264/AVC presented in [81]). A divide-and-conquer

strategy for choosing the best intra-angular prediction is given in [77]. First, eight

equally spaced modes (at a distance of 4 in both directions; see Fig. 2.6b) are tested.

Afterwards, six best modes with a distance of 2 are tested. In the end, two best

modes are left which are tested with a distance of 1 to select the best mode.

However, the number of modes selected for RD-cost determination is static and

fairly large. Similarly in [78], to reduce the total number of intra-prediction modes

tested for selecting the best predictor, an open-loop technique is utilized. Using the

current pixels instead of reconstructed pixels, the total number of predictors is

2.4 Related Work 47

reduced from 35 to 9. These nine modes are used for computing the rate-distortion

(RD) cost. In [82], the video frame block (CTU) is downsampled and then texture-

complexity (via variance) is computed, to determine the appropriate PU sizes for

best encoding. Reference [83] exploits the correlation of intra-prediction modes of

the current block with the final predictors of the neighboring blocks for determining

a highly probable intra-prediction mode for the current block. An edge-based intra-

prediction candidate selection technique is given in [84] to reduce the total number

of modes tested by 73% and a time reduction from ~8% to ~32%. The 4�4 pixels in

each PU are treated for determining the principal direction, and a set of nine intra-

predictors is used for testing. However, the selection and truncation of intra-

prediction modes is not adaptive. Similarly, numerous works exist to reduce the

complexity and energy consumption of the inter-prediction engine (i.e., ME

engine). Techniques to reduce the total number of operations in ME are also widely

studied and employed [85, 10, 11]. For example, in [86], authors have proposed a

technique to reduce the off-chip memory accesses for ME, which results in 56%

memory access reduction. However, their technique is tested for a very small search

window size of 16, which is not recommended to be used for large resolution

sequences.

Other power-efficient techniques for H.264/AVC (e.g., [87, 88]) may not be

directly or efficiently applicable to new video encoders like HEVC, due to the novel

CTU structure of HEVC and nature of its angular prediction modes. Moreover,

these techniques usually do not jointly consider power efficiency and workload

balancing and do not exploit the speedup achieved via parallel encoding on a many-

core platform. Further, these techniques do not consider the underlying platform

properties (i.e., do not exploit the opportunities provided by the hardware) and the

new challenges introduced by the reduced feature sizes, while managing their

workload.

In addition to video coding, there is a plethora of other video processing

algorithms, where complexity knobs are tuned at the cost of output quality. For

example, see [89, 90]. Libraries like “open-source computer vision” (OpenCV

[91]), and standards like OpenVX [92], provide plentiful implementations of

these video algorithms.

2.4.1.3 Mitigating Dark Silicon at Software Level

The purpose of these techniques is to limit the maximum temperature or maximum

power (TDP) consumed by the system at the software level. The abovementioned

software-level techniques (i.e., parallelization, complexity reduction, budgeting,

and offloading) implicitly address the dark silicon challenges. For realizing these

techniques, mainly two distinct approaches are employed:

• Dynamic thermal management (DTM), which involves adjusting the voltage-

frequency or power of the cores (DVFS [93]) and even severing the power to the

48 2 Background and Related Work

compute resources (via power gating, also called dynamic power management

(DPM))

• Tasks/thread/workload migration, which involves migrating the subtask from

one compute resource to another, in case the former’s temperature becomes

critical [94]

The frame-based energy management technique for real-time systems [95]

exploits workload variations and the interplay between DVFS and DPM, for a

real-time embedded application. It determines the optimal voltage-frequency set-

ting and power levels of the devices to minimize the system’s energy. In [96], a

trial-and-error-based centralized algorithm determines the appropriate DVFS set-

tings for the many-core system, to maximize application speedup under chip’s
power constraint. A thread mapping methodology under the constraints of thermal

safe power (TSP) is presented in [97]. The authors argue that TDP is very conser-

vative, and power more than TDP can be pumped into the chip to speed up

execution if intelligent task-mapping decisions are made. The work in [93] pro-

poses PID controller-based mechanisms at runtime for efficient utilization of the

TDP budget, in order to maximize performance of architecturally heterogeneous

cores synthesized with different power and performance targets. However, [93]

does not target power budgeting among multithreaded applications with thread-

level workload variations. In [98], a two-level closed-loop power control technique

is given. Using voltage/frequency islands on a chip, the power distribution is

divided among the compute resources. However, fine-grained power distribution

and configuration selection using this technique are not possible, which are impor-

tant for multithreaded applications with varying workloads. Furthermore, the

closed-loop control usually responds slowly, causing performance issues for appli-

cations with abrupt workload changes. Single thread-based power budgeting is

discussed in [99], which is not applicable to modern multithreaded applications.

PEPON [100] also presents a two-level power budgeting technique to maximize

performance within an allocated power cap. The technique in [57] targets control-

based chip-level and application-level power budgeting, while accounting for the

critical threads of the application.

Most of these techniques do not consider assigning compute resources to the

applications, and the varying workload of the applications at runtime, which might

require readjustment of the resource allocation. Moreover, these techniques do not

target power allocation to dependent applications or subtasks of a single applica-

tion, where the critical application or subtask will reduce the throughput of the

complete system. These works also ignore the tuning characteristics of the appli-

cations and the opportunity they might provide for increased throughput-per-watt.

Further, applications with throughput constraints must meet their deadlines (e.g.,

multimedia applications having soft deadlines and mission-critical applications

with hard deadlines), which is usually not addressed by these works; rather,

speedup is the optimization target. This poses additional challenges if the system

load (e.g., due to parallel running applications, delay in delivering Ethernet packets)

may change at runtime.

2.4 Related Work 49

In summary, most of these techniques do not exploit the opportunities provided

by the following:

• Selecting appropriate operating modes (configuration of different variables) of

the applications and dark silicon

• Determining the right compute resources at nominal frequency/voltage settings

even for unadaptable applications

Collectively, the operating modes of the application and the dark silicon provide

opportunities of having multiple power modes [101], for instance:

• Powering on more cores at lower frequency to facilitate more applications or

applications with high thread-level parallelism

• Powering on less cores at higher frequency to facilitate high instruction-/data-

level parallelism

• Choosing appropriate operating modes of the applications to enable higher

throughput at the same power budget

Mostly, DTM only gathers system statistics and manages the system stack

excluding the application layer. Since these techniques do not take the

application-specific characteristics into consideration, therefore, they lack power

efficiency in cases of abrupt workload variations and/or when multiple threads of

different applications (especially with mixed workload characteristics) are compet-

ing for the power budget. Hence, fine-grained power distribution and configuration

selection is not possible.

This book will only focus on DTM-based techniques for power management of

video applications, and runtime workload migration techniques will not be

considered.

2.4.2 Video Systems Hardware

This section introduces the state-of-the-art approaches that target design and imple-

mentation of video system hardware architecture to address multiple challenges.

2.4.2.1 Efficient Hardware Design and Architectures

Numerous state-of-the-art techniques exist for designing compute- and power-

efficient video systems. For encoding HD videos, new methods and tools to

administer the necessary data processing tasks and dependencies of video encoders

are required. For example, [102] discuss an H.264/AVC intra-encoder chip operat-

ing at 54 MHz clock. However, it is only capable of handling a small throughput

requirement (720 � 480 4:2:0 video at 30 fps). Additionally, the authors use a

parallel structure for generating the predictors that increases silicon area footprint.

In [103], a fast prediction selection preprocessor, based on spatial domain filtering,

50 2 Background and Related Work

is proposed. A four-stage pipeline for edge extraction increases the latency of the

design, and processing one video block requires 416 cycles at a maximum possible

clock rate of 66 MHz. The design in [104] presents a 1920 � 1080 (1080p) intra-

encoder, providing 25 fps at 100 MHz. It takes about 440 cycles to compute the

intra-predictions. In [105], a 4K UHD (3840 � 2160) resolution at 60 fps intra-

prediction architecture is presented, which replicates hardware for high throughput

and needs to run at 310 MHz to achieve 4K UHD while still using suboptimal

prediction selection methods. In [79], authors propose a fast method of selecting the

best prediction, based on the texture flow. Authors in [106] present a low-latency

1080p, 61 fps intra-encoder architecture operating at 150 MHz. However, the

proposed design tests the predictions in parallel and takes about 300 cycles to

encode one block. Reference [81] presents a so-called open-loop (OL) method to

determine the most likely predictor based upon the original image pixels rather than

the reconstructed pixels. Similarly, a multitude of novel architectural designs for

HEVC are also available. In [107], the authors proposed an HEVC intra-prediction

HW for only 4�4 blocks. In addition to video coding, several other multimedia

processing systems are realized using efficient architectures, for example,

deblocking filters, AES, and CRC [108, 109].

Motion Estimation Many approaches to reduce the energy consumption of the

video processing systems target the ME engine for optimization, because ME (also

called block matching) is the most time- and energy-consuming process of a video

encoder. In [110], ME energy is reduced by dropping the supply voltage and then

employing error resiliency features. This results in energy savings of up to 60% on

130 nm CMOS technology. However, this technique results in extra control and

noise-tolerance circuitry and worsens the output video quality as well. Reference

[111] lessens the search space for ME and thus avoids redundant memory accesses.

However, an unnecessary brute-force full-search algorithm results in high compu-

tation effort. In addition to the technique’s failure to account for sudden motion,

their results are for CIF/QCIF videos which already require a small search space for

ME. In [112], the on-chip memory is replaced with a cache. Further, they do not

explore the opportunities by reducing the leakage energy (which is dominant for

submicron technology [113]). The work in [114] reduces the external memory

accesses by frame buffer compression, but requires additional computations. In

[115, 116], different data reuse schemes for reducing the external memory accesses

by video processing algorithms are categorized from levels A to D, with highest

latency (smallest on-chip memory) to the lowest latency (largest on-chip memory).

There are other extensions of the originally proposed levels, like level C+

[5]. Reducing the total number of predictions (ME operations [85, 10]) also

decreases the latency of execution but has little improvement for memory energy

consumption and external memory access (see details in Sect. 2.2.1.2).

2.4 Related Work 51

2.4.2.2 Memory Subsystem

The leakage energy of the memory is of more importance in the submicron era, as it

surpasses the dynamic power of the memory [113]. Therefore, new memory

technologies are evolving that address the issues of density and leakage power. A

synopsis of some of the memory technologies and their hierarchy is given in

Fig. 2.15. Next-generation NVMs like MRAM [117–119] and Phase-change

RAMs (PRAM) [120, 121] have shown promising results towards leakage power

reduction compared to SRAM or DRAM. Application designers are considering to

exploit these memories by analyzing their advantages and disadvantages. Table 2.2

summarizes the main differences between the NVM and VM technologies. NVMs

provide high capacity and low leakage power but their write latency and energy is

substantially larger compared to that of SRAMs. However, the nonvolatility of the

NVMs can be sacrificed, and NVMs like STT-RAM can be used as VMs.

In [122] and [123], a hybrid memory architecture comprising of PRAM and

DRAM is proposed. A hybrid of scratchpad and NVMs for on-chip memories is

High performance
High cost
High power

Gaining
popularity

Usually employed

Fig. 2.15 Different memory technologies and their design hierarchy

Table 2.2 Abstract comparison between NVM and VM memory technologies

Technology

Access Speed Power Consumption

Density NVM
Read Write

Dynamic
Leakage

Read Write

SRAM HH HH L L HH LL No

DRAM H H H H H H No

MRAM H L L HH L H Yes

PRAM L LL H HH L HH Yes

H denotes high, L denotes low, blue color denotes advantage, red color denotes disadvantage

52 2 Background and Related Work

given in [124]. A technique which utilizes hybrid memory for video decoding is

given in [125], where frame-level decisions for storing H.264 frames on hybrid-

memories are used. However, H.264/AVC encoder presents a harder challenge as it

is ~10� to 20� more complex than the decoder [2]. Reference [9] targets the

HEVC application and limits the external memory access by storing the video

samples (which are expected to be used later) in a hybrid combination of SRAM

and STT-RAM. Other approaches utilizing MRAMs as replacements and augmen-

tation of the traditional fast SRAMs are reported in [126, 127].

Most state-of-the-art memory subsystem designs do not jointly reduce the power

consumption of the system in conjunction with meeting the throughput demands.

Additionally, overall system characteristics (e.g., data transfer from external to

on-chip memory) are not considered.

2.4.2.3 Accelerator Allocation/Scheduling

In order to combine the advantages of both programmable and application-specific

custom architectures (e.g., ASICs), accelerator-based many-core systems are

becoming increasingly popular in the industry [128, 129]. Accelerators are

implemented as custom hardware for high-complexity parts of programs (called

subtasks), and a programmable core can offload its assigned tasks to these acceler-

ators. For examples of accelerators, refer to Sect. 2.4.2.1. Accelerators naturally

lend themselves to occupy the underutilized chip’s area, i.e., occupy dim/gray

silicon. In addition to increasing the bright silicon, accelerators are designed to

quickly process the assigned tasks. Therefore, accelerators are fundamental to high-

complexity, deadline-conscious applications. Examples include video encoding

and decoding [130] (also see Intel’s Quick Sync technology), software-defined

radios [131], etc.

For ease of discussion, we broadly classify accelerators into three categories,

based upon their flexibility and access mechanisms. These categories are also

shown in Fig. 2.16:

• First are the in-core accelerators, which are embedded as a part of the program-

mable core’s computation pipeline (e.g., Nios II custom instructions [132, 133],

vector instructions [134], application-specific instruction-set processors (ASIPs)

[135, 136]). However, note that the corresponding core can only access these

accelerators, and they are a part of the execution stage in the computational

pipeline. Therefore, these accelerators exhibit the least flexibility, as their cores

can only access these accelerators.

• The second category is clustered accelerators, where an accelerator can be

accessed by only a specific set of cores and they reside in vicinity of these

cores (e.g., within a computation tile). Such accelerators are also called tightly

coupled accelerators [137, 138]. Techniques like [139, 140] allocate the accel-

erator to the corresponding cores by offloading the soft-core subtasks, using

past-predicts-future paradigms and dynamic programming. However, these

2.4 Related Work 53

techniques do not consider the complete power consumption of the system, and

neither do they account for the deadlines of the running applications.

• The third and the most flexible category of accelerators can be accessed by all

the cores (e.g., via a network-on-chip (NoC) and PCIe) and are called decoupled

accelerators or loosely coupled accelerators. It is obvious that the clustered and

decoupled accelerators are the most versatile and offer maximum advantages.

However, state-of-the-art accelerator allocation techniques presented in the

literature [141–145] for decoupled accelerators usually try to reduce the

resources used, maximize the processing speed, or reuse the accelerators’ mem-

ory as cache or reconfigurable logic. No reference to the power consumption,

frequency tuning of the cores, and deadlines of the applications is made.

Since the shared accelerator can only be allotted to a single compute resource at

a given time, therefore some of the applications running on these cores might miss

their deadlines, or these applications might change their workload at runtime.

Further, it is likely that the accelerator is not continuously utilized, which defeats

their purpose of providing power and complexity efficiency. In addition, it is also

possible that to meet the deadlines, higher than required power is pumped to the

cores. This will increase the power consumption of the system and, therefore,

elevate the temperature of the chip.

2.4.2.4 SRAM Aging Rate Reduction Methods

In general, state-of-the-art techniques for aging mitigation mainly target aging

optimization (i.e., aging rate reduction) for SRAM-based register files. However,

Pi
pe

lin
e

Re
gi

st
er

Pi
pe

lin
e

Re
gi

st
er

A
L
U

Power
Ga�ng

Register File

Accelerators

Memory
Access

Memory
Hierarchy

Pi
pe

lin
e

Re
gi

st
er

Data
Mem.
Access

Mem.
Arbiter

Branch
Decision

Instruc�on
Memory

PC
Decision

Jump Target
New Value

Program
Counter

IF ID EXE MEM WB

Pi
pe

lin
e

Re
gi

st
er

SRAM

IF
ID
EXE
MEM
WB

Instruc�on Fetch
Instruc�on Decode
Execute
Memory
Write Back

C C

Interconnect
(e.g. NoC)

C

C

C

C

C

H

H

H

C

C

C

C

…

…

…

…

…

…

… … … …

(a)
(b)

(c)

C C

H

Fig. 2.16 Accelerator locality and access-based classification, (a) In-core, (b) tightly coupled, (c)
loosely or decoupled accelerators

54 2 Background and Related Work

these techniques do not target large memories which have distinct access behavior

and require different architectural support. The first category of techniques is based

on the principle of bit rotations (i.e., moving LSB by one position with every write

to the memory location) to improve duty cycle of registers [146, 147]. These

techniques perform ineffectively for registers with successive zeros and are bene-

ficial only when the bits inside registers are frequently modified, which is typically

not the case for large-sized memories. Moreover, applying bit rotations requires

barrel shifters at the read and write ports of the memory. We know that the total

number of multiplexers required to implement an n-bit barrel shifters is nlog2n, and
this is in addition to the control logic which is used to configure the barrel shifters.

Therefore, the area overhead of such techniques might be high.

In [35], a redundancy-based SRAM mircoarchitecture extends the life of an

SRAM cell. Similar to [148–150], this also requires architectural modification of

the 6T SRAM cell. The register value inversion techniques result in additional

reads/writes and power. The recovery boosting technique [148] adds dedicated

inverters in the SRAM cells to improve the recovery process. However, this incurs

significant power overhead, which may be infeasible for large-sized video memo-

ries, for instance, targeting image buffers for ME at high-definition (HD,

1920 � 1280 bytes) and 4K UHD (3840 � 2160 bytes) resolutions. Additionally,

it requires an alteration to the SRAM 6T cell circuitry. Another category of work is

based on bit flipping each bit at every write to the memory [147, 151, 148]. In [152],

an algorithm is introduced for balancing the duty cycle of SRAM data caches by

exploiting cache characteristics (i.e., tag bits). A similar technique is presented in

[153, 154]. These architectures and techniques depend upon the inherent properties

of caches (like flushing, cache hits, etc.) and are not directly pertinent to general

on-chip SRAM memories. Moreover, some of the mentioned balancing policies are

designed for capturing and exploiting the occurrence of a certain bit pattern and

thus perform inefficiently for other content properties and varying stress patterns.

Further, many of the reported works for aging balancing require multiple read/write

of the same data in the memory, rendering themselves to be power hungry and

increasing the latency of the application by halting their access to the memory.

Summarizing, state-of-the-art aging balancing techniques incur significant

power and area overhead by employing bit flipping or rotation at every bit level,

and reading and writing to the memories multiple times. These techniques do not

explore the tradeoff between power consumption and aging balancing. Moreover,

most of these techniques only provide elementary circuitry without exploring

benefits of different aging balancing architectures and lack full architectural solu-

tion with power-aware aging control and adaptations.

2.4.2.5 Encountering the Power Wall at Hardware Level

Brief details about handling the power wall or dark silicon at the hardware layer of

the video system is given in this section. However, the abovementioned state-of-

the-art techniques (for designing efficient hardware accelerators, scheduling the

2.4 Related Work 55

shared accelerator, power-efficient memories, etc.) implicitly address these chal-

lenges at the hardware layer.

At the hardware layer, different control knobs (e.g., for DVFS and DPM) are

provided to throttle the chip’s temperature within safe limits. Other techniques

employ architectural heterogeneity to trade off performance and power. Via het-

erogeneity, the system supports runtime management of tasks by providing several

degrees of freedom to the system designer. One can classify the different forms of

heterogeneity as [155]:

• Functional heterogeneity, where compute nodes exist with varying functional

behaviors and architectural details. Examples are application-specific hardware

accelerators, superscalar cores and RISC processors, GPUs in conjunction with

CPUs, reconfigurable architectures, etc. Thus, using task migrations and using

scheduling, design challenges for modern fabrication technologies can be

encountered.

• Accelerator heterogeneity, same as discussed in Sect. 2.4.2.3, i.e., in-core,

clustered, and decoupled accelerators, providing different levels of performance

and flexibility of usage. Further, approximate accelerators [156, 157] with

controllable amount of approximations can also be used to increase the

throughput-per-watt metric. This will not only increase the amount of bright

silicon but also enable higher performance.

• Microarchitectural heterogeneity, whereby different cores on the same die have

varying power and performance properties, but employ the same instruction set

architecture (ISA). An example is ARM big.LITTLE architecture [60]. For

example, [158] presents a methodology to design multi-core systems while

considering the dark silicon paradigm. The purpose of their technique is to

maximize the utilization of the silicon. In [50], depending upon the characteris-

tics of parallel running applications, dark silicon-aware multiprocessors are

synthesized using a library of available core types. In [159], special-purpose

conservation cores (c-cores) are discussed, the goal of which is to reduce the

energy consumption of the system rather than boasting performance. Device-

level heterogeneous multi-cores and resource management are exploited in [160]

to speed up the performance, as well as save energy.

• On-chip interconnect heterogeneity, whereby the network routers that connect

the multiple cores of the chip are designed with heterogeneous architectures

[161]. This provides diverse power and performance design points, available for

the system designer.

• Process heterogeneity, where the nonideal fabrication process results in core-to-
core and chip-to-chip variations in the maximum achievable frequency and

leakage power. This variation can be exploited to adaptively grow the speedup

of applications [162, 163] while meeting the TDP budgets of the chip.

56 2 Background and Related Work

2.5 Summary of Related Work

A plethora of techniques to tackle challenges imposed by video system software,

hardware, and new fabrication technologies are presented in the state-of-the-art.

Summarizing, the state-of-the-art does not exploit the complete design space

concerning both hardware-software co-design and co-optimization. This is specif-

ically important for multimedia systems, under dark silicon and reliability threats.

For best throughput-per-watt ratio, the designer needs to consider the full-system

stack, which involves the design of software layer, to the knowledge and exploita-

tion of the hardware layer. This knowledge can be used to fully exploit complexity,

power, and resource savings and reliability improvement potential for long-term

system deployment.

Usually, the dark silicon mitigation techniques proposed in the state of the art do

not consider the throughput constraints, and they do not exploit application-specific

properties. As discussed, multimedia systems have deadline constraints, which

require intelligent power budget distribution (i.e., frequency allocation) among

the resources. Mostly, the state of the art does not consider the impact of deadlines

and resource and power budgeting for shared accelerator-based systems. This

results in suboptimal performance of the system and reduction in power efficiency.

Similarly, for SRAM aging-rate reduction, state-of-the-art techniques employ

fixed aging balancing algorithms and architectures, with significant energy over-

head. Therefore, these techniques are unable to explore the tradeoff between aging

balancing and energy consumption. Moreover, due to the added power consump-

tion, the state-of-the-art techniques might result in a higher temperature, which will

increase the aging rate in a positive feedback cycle. Further, exploring the

application-specific properties might result in high power efficiency and high

reliability, which is mostly ignored by the state of the art.

References

1. Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-curves.

VCEG Contribution VCEG-M33.

2. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer,

T., & Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity.

IEEE Circuits and Systems Magazine, 4(1), 7–28.
3. Sullivan, G. J., Ohm, J., Han, W., & Wiegand, T. (2012). Overview of high efficiency video

coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12),
1649–1668.

4. Wiegand, T., Sullivan, G., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/

AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 13(7), 560–576.

5. Chen, C., Huang, C., Chen, Y., & Chen, L. (2006). Level C+ data reuse scheme for motion

estimation with corresponding coding orders. IEEE Transactions on Circuits and Systems for
Video Technology, 16(4), 553–558.

References 57

6. Zhu, S., & Ma, K.-K. (2000). A new diamond search algorithm for fast block-matching

motion estimation. IEEE Transactions on Image Processing, 9(2), 287–290.
7. Bossen, F., Bross, B., Suhring, K., & Flynn, D. (2012). HEVC complexity and implementa-

tion analysis. IEEE Transactions on Circuits and Systems for Video Technology, 22(12),
1685–1696.

8. Sze, V., Finchelstein, D. F., Sinangil, M. E., & Chandraksan, A. P. (2009). A 0.7-V 1.8-mW

H.264/AVC 720p video decoder. IEEE Journal of Solid-Sate Circuits, 44(11), 2943–2956.
9. Sampaio, F., Shafique, M., Zatt, B., Bampi, S., & Henkel, J. (2014). Energy-efficient

architecture for advanced video memory. In International Conference on Computer-Aided
Design.

10. Purnachand, N., Alves, L. N., & Navarro, A. (2012). Improvements to TZ search motion

estimation algorithm for multiview video cod-ing. In IEEE International Confernce on
Systems, Signals and Image Processing (IWSSIP), pp. 388–391.

11. Shafique, M., Bauer, L., & Henkel, J. (2010). enBudget: A run-time adaptive predictive

energy-budgeting scheme for energy-aware motion estimation in H.264/MPEG-4 AVC video

encoder. In Design, Automation and Test in Europe.
12. Gurhanli, A., Chen, C.-P., & Hung, S.-H. (2010). GOP-level parallelization of the H.264

decoder without a start-code scanner. In International Conference on Signal Processing
Systems (ICSPS).

13. VideoLAN - x264. [Online]. Available: http://www.videolan.org/developers/x264.html.

Accessed 5 Oct 2015.

14. Zhao, L., Xu, J., Zhou, Y., & Ai, M. (2012). A dynamic slice control scheme for slice-parallel

video encoding. In International Conference on Image Processing.
15. Ba, K., Jin, X., & Goto, S. (2010). A dynamic slice-resize algorithm for fast H.264/AVC

parallel encoder. In International Symposium on Intelligent Signal Processing and Commu-
nication Systems.

16. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

17. Ahmad, I., & Ghafoor, A. (1991). Semi-distributed load balancing for massively parallel

multicomputer systems. IEEE Transactions on Software Engineering, 17(10), 987–1004.
18. Williams, R. (1991). Performance of dynamic load balancing algorithms for unstructured

mesh calculations. Concurrency: Practice and experience, 3(5), 457–481.
19. Juice Encoder– 4 in 1 MPEG-4 AVC/H.264 HD encoder. Antik Technology, [Online].

Available: http://www.antiktech.com/iptv-products/juice-encoder-EN-5004-5008/

20. Marvell 88DE3100 High-Definition Secure Media Processor System-on-Chip (SoC).

[Online]. Available: http://www.marvell.com/digital-entertainment/armada-1500/assets/Mar

vell-ARMADA-1500-Product-Brief.pdf/

21. Distributed Coding for Video Services (DISCOVER). Application scenarios and functional-

ities for DVC.

22. Wyner, A., & Ziv, J. (1976). The rate-distortion function for source coding with side

information at the decoder. IEEE Transaction on Information Theory, 22, 1–10.
23. Girod, B., Aaron, A. M., Rane, S., & Rebollo-Monedero, D. (2005). Distributed Video

Coding. Proceedings of the IEEE, 93(1), 71–83.
24. Puri, R., & Ramchandran, K. (2003). PRISM: An uplink-friendly multimedia coding para-

digm. In International Conference on Acoustics, Speech, and Signal Processing.
25. Chen, J., Khisti, A., Malioutov, D., & Yedidia, J. (2004). Distributed source coding using

serially-concatenated-accumulate codes. In Information Theory Workshop.
26. Tseng, H.-Y., Shen, Y.-C., & Wu, J.-L. (2011). Distributed video coding with compressive

measurements. In International conference on Multimedia.
27. Sejdinovic, D., Piechocki, R. J., & Doufexi, A. (2009). Rateless distributed source code

design. In Mobile Multimedia Communica-tions Conference.

58 2 Background and Related Work

http://www.videolan.org/developers/x264.html
http://www.antiktech.com/iptv-products/juice-encoder-EN-5004-5008/
http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf/
http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf/

28. Chien, S.-Y., Cheng, T.-Y., Chiu, C.-C., Tsung, P.-K., Lee, C.-H., Somayazulu, V., & Chen,

Y.-K. (2012). Power optimization of wireless video sensor nodes in M2M networks. In Asia
and South Pacific Design Automation Conference.

29. Huang, Y.-W., Chen, T.-C., Tsai, C.-H., Chen, C.-Y., Chen, T.-W., Chen, C.-S., Shen, C.-F.,

Ma, S.-Y., Wang, T.-C., Hsieh, B.-Y., Fang, H.-C., & Chen, L.-G. (2005). A 1.3TOPS H.264/

AVC single-chip en-coder for HDTV applications. In International Solid-State Circuits
Conference.

30. Chiu, C.-C., Chien, S.-Y., Lee, C.-H., Somayazulu, V., & Chen, Y.-K.. (2011). Distributed

video coding: A promising solution for distributed wireless video sensors or not?. In Visual
Communications and Image Processing.

31. Shafique, M., Khan, M. U. K., & Henkel, J. (2013). Content-driven adaptive computation

offloading for energy-aware hybrid distributed video coding. In International Symposium on
Low Power Electronics and Design (ISLPED).

32. Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2012). A survey of computation offloading for

mobile systems. Mobile Networks and Applications, 18(1), 129–140.
33. Colin, A., Kandhalu, A., & Rajkumar, R. (2015). Energy-efficient allocation of real-time

applications onto single-ISA heterogeneous multi-core processors. Journal of Signal
Processing Systems, pp. 1–20.

34. Schroder, D. K., & Babcock, J. A. (2003). Negative bias temperature instability: Road to

cross in deep submicron silicon semiconductor manufacturing. Journal of Applied Physics,
94(1), 1–18.

35. Shin, J., Zyuban, V., Bose, P., & Pinkston, T. (2008). A proactive wearout recovery approach

for exploiting microarchi-tectural redundancy to extend cache SRAM lifetime. In Interna-
tional Symposium on Computer Architecture (ISCA).

36. Tiwari, A., & Torrellas, J. (2008). Facelift: Hiding and slowing down aging in multicores. In

International Symposium on Microarchitecture (MICRO).
37. Vattikonda, R., Wang, W., & Cao, Y. (2006). Modeling and minimization of PMOS NBTI

effect for robust nanometer design. In Design Automation Conference (DAC).
38. Velamala, J. B., Sutaria, K., Sato, T., & Cao, Y. (2012). Physics matters: Statistical aging

prediction under trapping/detrapping. In Design Automation Conference (DAC).
39. Singh, A., Shafique, M., Kumar, A., & Henkel, J. (2013). Mapping on multi/many-core

systems: Survey of current and emerging trends. In Design Automation Conference (DAC).
40. Chi, C. C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., & Schierl,

T. (2012). Parallel scalability and efficiency of HEVC parallelization approaches. IEEE
Transactions on Circuits and Systems on Video Technology, 22(12), 1827–1838.

41. Alvanos, M., Tzenakis, G., Nikolopoulos, D. S., & Bilas, A. (2011). Task-based parallel

H. 264 video encoding for explicit communication architectures. In International Conference
on Embedded Computer Systems.

42. Brun, O., Teuliere, V., & Garcia, J. M. (2002). Parallel particle filtering. Journal of Parallel
and Distributed Computing, 62(7), 1186–1202.

43. Rujirakul, K., So-In, C., & Arnonkijpanich, B. (2014). PEM-PCA: A parallel expectation-

maximization PCA face recognition architecture. The Scientific World Journal.
44. Jing, X.-Y., Li, S., Zhang, D., Yang, J., & Yang, J.-Y. (2012). Supervised and unsupervised

parallel subspace learning for large-scale image recognition. IEEE Transactions on Circuits
and Systems for Video Technology, 22(10), 1497–1511.

45. Dong, C., Zhao, H., & Wang, W. (2010). Parallel nonnegative matrix factorization algorithm

on the distributed memory platform. International Journal of Parallel Programming, 38(2),
117–137.

46. Shah, S., & Kothari, R. (2013). Convergence of the dynamic load balancing problem to Nash

equilibrium using distributed local interactions. Information Sciences, 221, 297–305.
47. Drougas, Y., Repantis, T., & Kalogeraki, V. (2006). Load balancing techniques for distrib-

uted stream processing applications in overlay environments. In IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Distributed Computing.

References 59

48. Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. Computer, 36(5), 63–68.
49. Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., & Raicu, I. (2014). Optimizing load

balancing and data-locality with data-aware scheduling. In International Conference on Big
Data.

50. Turakhia, Y., Raghunathan, B., Garg, S., & Marculescu, D. (2013). HaDeS: Architectural

synthesis for heterogeneous dark silicon chip multi-processors. In Design Automation Con-
ference (DAC).

51. Buss, M., Givargis, T., & Dutt, N. (2003). Exploring efficient operating points for voltage

scaled embedded processor cores. In Real-Time Systems Symposium (RTSS).
52. Rosas, C. Morajko, A. Jorba, J., & Cesar, E. (2011). Workload balancing methodology for

data-intensive applications with divisible load. In Symposium on Computer Architecture and
High Performance Computing.

53. Matthur, A., & Mundur, P. (2003). Dynamic load balancing across mirrored multimedia

servers. In International Conference on Multimedia and Expo.
54. Bowman, K., Duvall, S., & Meindl, J. (2002). Impact of die-to-die and within-die parameter

fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE
Journal of Solid-State Circuits, 37(2), 183–190.

55. Kim, J., Yoo, S., & Kyung, C.-M. (2011). Program phase-aware dynamic voltage scaling

under variable computational workload and memory stall environment. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 30(1), 110–123.

56. Devadas, V., & Aydin, H. (2010). DFR-EDF: A unified energy management framework for

real-time systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS).

57. Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core

architectures running multi-threaded applications. In Internation Symposium on Computer
Architecture.

58. Dehyadegari, M., Marongiu, A., Kakoee, M., Mohammadi, S., Yazdani, N., & Benini,

L. (2015). Architecture support for tightly-coupled multi-core clusters with shared-memory

HW accelerators. IEEE Transactions on Computer, 64(8), 2132–2144.
59. Sarma, S., Muck, T., Bathen, L., Dutt, N., & Nicolau, A. (2015). SmartBalance: A sensing-

driven linux load balancer for energy efficiency of heterogeneous MPSoCs. In Design
Automation Conference (DAC).

60. ARM big.LITTLE Architecture. ARM, [Online]. Available: http://www.arm.com/products/

processors/technologies/biglittleprocessing.php. Accessed 07 Aug 2015.

61. Momcilovic, S., Ilic, A., Roma, N., & Sousa, L. (2014). Dynamic load balancing for real-time

video encoding on heterogeneous CPU+GPU systems. IEEE Transactions on Multimedia, 16
(1), 108–121.

62. Xiao, W., Li, B., Xu, J., Shi, G., & Wu, F. (2015). HEVC encoding optimization using multi-

core CPUs and GPUs. IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), 9(99), 1–14.

63. Momcilovic, S., Roma, N., & Sousa, L. (2013). Exploiting task and data parallelism for

advanced video coding on hybrid CPU + GPU platforms. Journal of Real-Time Image
Processing, pp. 1–17.

64. Jian, C., & John, L. (2009). Efficient program scheduling for heterogeneous multi-core

processors. In Design Automation Conference (DAC).
65. Mühlbauer, T., R€odiger, W., Seilbeck, R., Kemper, A., & Neumann, T. (2014).

Heterogeneity-conscious parallel query execution: Getting a better mileage while driving

faster!. In International Workshop on Data Management on New Hardware.
66. Shafique, M., Molkenthin, B., & Henkel, J. (2010). An HVS-based adaptive computational

complexity reduction scheme for H.264/AVC video encoder using prognostic early mode

exclusion. In Design, Automation and Test in Europe Conference (DATE).
67. Bariani, M., Lambruschini, P., & Raggio, M. (2012). An efficient multi-core SIMD imple-

mentation for H.264/AVC encoder. In VLSI Design.

60 2 Background and Related Work

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

68. Rodrı́guez, A., González, A., & Malumbres, M. P. (2006). Hierarchical parallelization of an

H.264/AVC video encoder. In International Symposium on Parallel Computing in Electrical
Engineering.

69. Gong, P., Basciftci, Y., & Ozguner, F. (2012). A parallel resampling algorithm for particle

filtering on shared-memory architectures. In Parallel and Distributed Processing Symposium
Workshops.

70. Henkel, J., & Yanbing, L. (1998). Energy-conscious HW/SW-partitioning of embedded

systems: a case study on an MPEG-2 encoder. In International Workshop on Hardware/
Software Codesign.

71. Cuomo, S., Michele, P. D., & Piccialli, F. (2014). 3D data denoising via nonlocal means filter

by using parallel GPU strategies. In Computational and Mathematical Methods in Medicine.
72. Moustafa, M., Ebied, H. M., Helmy, A., Nazamy, T. M., & Tolba, M. F. (2014). Satellite

super resolution image reconstruction based on parallel support vector regression. In

Advanced Machine Learning Technologies and Applications, Springer, pp. 223–235.
73. Garcia Freitas, P., Farias, M. and De Araujo, A. (2014). A parallel framework for video super-

resolution. In Graphics, Patterns and Images (SIBGRAPI).
74. Jung, B., & Jeon, B. (2008). Adaptive slice-level parallelism for H.264/AVC encoding using

pre macroblock mode selection. Journal of Visual Communication Image Representation, 19
(8), 558–572.

75. Jiang, W., Mal, H., & Chen, Y. (2012). Gradient based fast mode decision algorithm for intra

prediction in HEVC. In International Conference on Consumer Electronics, Communications
and Networks.

76. Cassa, M. B., Naccari, M., & Pereira, F. (2012). Fast rate distortion optimization for the

emerging HEVC standard. In Picture Coding Symposium.
77. Zhang, H., & Ma, Z. (2012). Fast intra prediction for high efficiency video coding. In

Advances in Multimedia Information Processing.
78. Sun, H., Zhou, D., & Goto, S. (2012). A low-complexity HEVC Intra prediction algorithm

based on level and mode filtering,. In International Conference on Multimedia and Expo
(ICME).

79. Pan, F., Lin, X., Rahardja, S., Lim, K. P., Li, Z. G., Wu, D., & Wu, S. (2005). Fast mode

decision algorithm for intraprediction in H.264/AVC video coding. IEEE Transactions on
Circuits and Systems for Video Technology, 15(7), 813–822.

80. Tsai, A. C., Paul, A., Wang, J. C., & Wang, J. F. (2008). Intensity gradient technique for

efficient intra-prediction in H.264/AVC. IEEE Transactions on Circuits and Systems on
Video Technology, 18(5), 694–698.

81. Fonseca, T. A., Liu, Y., & Queiroz, R. L. D. (2007). Open-loop prediction in H.264 / AVC for

high definition sequences. In SBrT.
82. Tian, G., & Goto, S. (2012). Content adaptive prediction unit size decision algorithm for

HEVC intra coding. In Picture Coding Symposium.
83. Zhao, L., Zhang, L., Ma, S., & Zhao, D. (2011). Fast mode decision algorithm for Intra

prediction in HEVC. In Visual Communications and Image Processing (VCIP).
84. Silva, T. D., Agostini, L. V., & Cruz, L. A. D. S. C. (2012). Fast HEVC intra prediction mode

decision based on EDGE direction information. In European Signal Processing Conference
(Eusipco).

85. Haan, G. D., & Biezen, P. (1998). An efficient true-motion estimator using candidate vectors

from a parametric motion model. IEEE Transactions on Circuits and Systems for Video
Technology, 8(9), 86–91.

86. Shim, H., & Kyung, C.-M. (2009). Selective search area reuse algorithm for low external

memory access motion estimation. IEEE Transactions on Circuits and Systems for Video
Technology, 19(7), 1044–1050.

87. Kun, Z., Chun, Y., Qiang, L., & Yuzhuo, Z. (2007). A fast block type decision method for

H.264/AVC intra prediction. In International Conference on Advanced Communication
Technology.

References 61

88. Lin, Y.-K., & Chang, T. (2005). Fast block type decision algorithm for intra prediction in

H.264/FRex. In Internatianal conference on Image Processing (ICIP).
89. Kivanc Mihcak, M., Kozintsev, I., Ramchandran, K., & Moulin, P. (1999). Low-complexity

image denoising based on statistical modeling of wavelet coefficients. IEEE Signal
Processing Letters, 6(12), 300–303.

90. Khan, M. U. K., Bais, A., Khawaja, M., Hassan, G. M., & Arshad, R. (2009). A swift and

memory efficient hough transform for systems with limited fast memory. In International
Conference on Image Analysis and Recognition (ICIAR).

91. OpenCV. [Online]. Available: http://opencv.org/. Accessed 08 Aug 2015.

92. OpenVX. [Online]. Available: https://www.khronos.org/openvx/. Accessed 08 Aug 2015.

93. Muthukaruppan, T. S., Pricopi, M., Venkataramani, V., Mitra, T., & Vishin, S. (2013).

Hierarchical power management for asymmetric multi-core in dark silicon era. In Design
Automation Conference (DAC).

94. Khdr, H., Ebi, T., Shafique, M., Amrouch, H., & Henkel, J. (2014). mDTM: Multi-objective

dynamic thermal management for on-chip systems. In Design, Automation and Test in
Europe Conference and Exhibition (DATE).

95. Devadas, V., & Aydin, H. (2012). On the interplay of voltage/frequency scaling and device

power management for frame-based real-time embedded applications. IEEE Transactions on
Computers, 61(1), 31–44.

96. Isci, C., Buyuktosunoglu, A., Cher, C., Bose, P., & Martonosi, M. (2006). An analysis of

efficient multi-core global power management policies: Maximizing performance for a given

power budget. In Microarchitecture.
97. Pagani, S., Khdr, H., Munawar, W., Chen, J.-J., Shafique, M., Li, M., & Henkel, J. (2014).

TSP: Thermal safe power: Efficient power budgeting for many-core systems in dark silicon.

In International Conference on Hardware/Software Codesign and System Synthesis.
98. Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2010). CPM in CMPs: Coordinated

power management in chip-multiprocessors. In International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis.

99. Winter, J. A., Albonesi, D. H., & Shoemaker, C. A. (2010). Scalable thread scheduling and

global power management for heterogeneous many-core architectures. In Parallel Architec-
tures and Compilation.

100. Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON:

Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel
Architectures and Compilation Techniques.

101. Shafique, M., Garg, S., Henkel, J., & Marculescu, D. (2014). The EDA challenges in the dark

silicon era. In Design Automation Conference.
102. Huang, Y.-W., Hsieh, B.-Y., Chen, T.-C., & Chen, L.-G. (2005). Analysis, fast algorithm, and

VLSI architec-ture design for H.264/AVC intra frame coder. IEEE Transactions on Circuits
and Systems for Video Technology, 15(3), 378–401.

103. Wang, J.-C., Wang, J.-F., Yang, J.-F., & Chen, J.-T. (2007). A fast mode decision algorithm

and its VLSI design for H.264/AVC intra-prediction. IEEE Transactions on Circuits and
Systems for Video Technology, 17(10), 1414–1422.

104. Roszkowski, M., & Pastuszak, G. (2010). Intra prediction hardware module for high-profile

H.264/AVC encoder. In Signal Processing Algorithms, Architectures, Arrangements and
Applications Conference.

105. He, G., Zhou, D., Zhou, J., & Goto, S. (2010). Intra prediction architecture for H.264/AVC

QFHD encoder. In Picture Coding Symposium.
106. Diniz, C., Zatt, B., Thiele, C., Susin, A., Bampi, S., Sampaio, F., Palomino, D., & Agostini,

L. (2011). A high throughput H.264/AVC intra-frame encod-ing loop architecture for

HD1080p. In International Symposium on Circuits and Systems.
107. Li, F., Shi, G., &Wu, F. (2011). An efficient VLSI architecture for 4�4 intra prediction in the

High Efficiency Video Coding (HEVC) standard. In International Conference on Image
Processing.

62 2 Background and Related Work

http://opencv.org/
https://www.khronos.org/openvx/

108. Cervero, T., Otero, A., López, S., de la Torre, E., Callicó, G., Riesgo, T., & Sarmiento,

R. (2013). A scalable H.264/AVC deblocking filter architecture. Journal of Real-Time Image
Processing, pp. 1–25.

109. Mangard, S., Aigner, M., & Dominikus, S. (2003). A highly regular and scalable AES

hardware architecture. IEEE Transactions on Computers, 52(4), 483–491.
110. Varatkar, G. V., & Shanbhag, N. R. (2008). Error-resilient motion estimation architecture.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(10), 1399–1412.
111. Saponara, S., & Fanucci, L. (2004). Data-adaptive motion estimation algorithm and VLSI

architecture design for low-power video systems. IEE Proceedings-Computers and Digital
Techniques, 151(1), 51–59.

112. Tsai, C.-Y., Chung, C., Chen, Y.-H., Chen, T.-C., & Chen, L.-G. (2007). Low power cache

algorithm and architecture design for fast motion estimation in H. 264/AVC encoder system.

In In-ternational Conference on Acoustics, Speech and Signal Processing.
113. Kim, N. S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J. S., Irwin, M. J., Kandemir,

M., & Narayanan, V. (2003). Leakage current: Moore’s law meets static pow-e. Computers,
36(12), 68–75.

114. Ma, Z., & Segall, A. (2011). Frame buffer compression for low-power video coding. In

International Conference on Image Processing.
115. Hsu, M.-Y. (2000). Scalable module-based architecture for MPEG-4 BMA motion

estimation.

116. Tuan, J.-C., Chang, T.-S., & Jen, C.-W. (2002). On the data reuse and memory bandwidth

analysis for full-search block-matching VLSI architecture. IEEE Transactions on Circuits
and Systems for Video Technology, 12(1), 61–72.

117. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., & Xie, Y. (2009). Hybrid cache

architecture with disparate memory technologies. In International Symposium on Computer
Architecture (ISCA).

118. Diao, Z., Li, Z., Wang, S., Ding, Y., Panchula, A., Chen, E., Wang, L.-C., & Huai, Y. (2007).

Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random

access memory. Journal of Physics: Condensed Matter, 19(16), 1–13.
119. Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In

Design Automation Conference (DAC).
120. Qureshi, M. K., Srinivasan, V., & Rivers, J. A. (2009). Scalable high perfor-mance main

memory system using phase-change memory technology. In International Symposium on
Computer Architec-ture (ISCA).

121. Hanzawa, S., Kitai, N., Osada, K., Kotabe, A., Matsui, Y., Matsuzaki, N., Takaura, N.,

Moniwa, M., & Kawahara, T. (2007). A 512KB Embed-ded phase change memory with

416kB/s write throughput at 100uA cell write current. In International Solid-State Circuits
Conference (ISSCC).

122. Yang, S., & Ryu, Y. (2012). A memory management scheme for hybrid memory architecture

in mission critical computers. In International Conference on Software Technology.
123. Dhiman, G., Ayoub, R., & Rosing, T. (2009). PDRAM: A hybrid PRAM and DRAM main

memory system. In Design Automation Conference.
124. Bathen, L., & Dutt, N. (2012). HaVOC: A hybrid memory-aware virtualization layer for

on-chip distributed scratchpad and non-volatile memories. In Design Automation
Conference.

125. Stancu, L. C., Bathen, L. A. D., Dutt, N., & Nicolau, A. (2012). AVid : Annotation driven

video decoding for hybrid memories. In Embedded Systems for Real-Time Multimedia.
126. Desikan, R., Lefurgy, C., Keckler, S., & Burger, D. (2002). On-chip MRAM as a high-

bandwidth, low-latency replacement for DRAM physical memories. University of Texas at

Austin.

References 63

127. Nomura, K., Abe, K., Yoda, H., & Fujita, S. (2012). Ultra low power processor using

perpendicular-STT-MRAM/SRAM based hy-brid cache toward next generation normally-

off computers. Journal of Applied Physics, 111(7).
128. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake,

A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., & Hanrahan, P. (2008).

Larrabee: A Many-Core x86 Architecture for Visual Computing. ACM Transactions on
Graphics, 27(3).

129. Mattina, M. (2014). Architecture and Performance of the Tile-GX Processor Family, White

Paper.

130. Shafique, M., Bauer, L., & Henkel, J. (2010). Optimizing the H.264/AVC video encoder

application structure for reconfigurable and application-specific platforms. Journal of Signal
Processing Systems (JSPS), 60(2), 183–210.

131. Liu, C., Granados, O., Duarte, R., & Andrian, J. (2012). Energy efficient architecture using

hardware acceleration for software defined radio components. Journal of Information
Processing Systems, 8(1), 133–144.

132. Nios II Custom Instruction User Guide. Altera, (2011).

133. Khan, M. U. K., Shafique, M., & Henkel, J. (2013). Hardware-software collaborative

complexity reduction scheme for the emerging HEVC intra encoder. In Design, Automation
and Test in Europe (DATE).

134. Shojania, H., & Baochun, L. (2007). Parallelized progressive network coding with hardware

acceleration. In International Workshop on Quality of Service.
135. Doan, H. C., Javaid, H., & Parameswaran, S. (2014). Flexible and scalable implementation of

H.264/AVC encoder for multiple resolutions using ASIPs. In Design, Automation and Test in
Europe Conference and Exhibition (DATE).

136. Kim, S. D., Lee, J. H., Hyun, C. J., & Sunwoo, M. H. (2006). ASIP approach for implemen-

tation of H.264/AVC. In Asia and South Pacific Conference on Design Automation
(ASP-DAC).

137. Swanson, S., & Taylor, M. B. (2011). GreenDroid: Exploring the next evolution in

smartphone application processors. IEEE Communications Magazine, 49(4), 112–119.
138. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schr€oder-Preikschat, W., &

Snelting, G. (2010). Invasive computing: An overview. In Multiprocessor System-on-Chip,
Springer, pp. 241–268.

139. Sheldon, D., & Forin, A. (2010). An online scheduler for hardware accelerators on general

purpose operating systems. Microsoft Research.

140. Huang, C., Sheldon, D., & Vahid, F. (2008). Dynamic tuning of configurable architectures:

The AWW online algorithm. In International Conference on Hardware/Software Codesign
and System Synthesis.

141. Majumder, T., Pande, P. P., & Kalyanaraman, A. (2013). High-throughput, energy-efficient

network-on-chip-based hardware accelerators. Journal of Sustainable Computing: Informat-
ics and Systems, 3(1), 36–46.

142. Cong, J., Ghodrat, M. A., Gill, M., Grigorian, B., & Reinman, G. (2012). Architecture support

for accelerator-rich CMPs. In Design Automation Conference.
143. Cota, E., Mantovani, P., Petracca, M., Casu, M., & Carloni, L. (2012). Accelerator memory

reuse in the dark silicon era. Computer Architecture Letters, pp. 1–4.
144. Clemente, J. A., Beretta, I. V., Rana, V., Atienza, D., & Sciuto, D. (2014). A mapping-

scheduling algorithm for hardware acceleration on reconfigurable platform. Transactions on
Reconfigurable Technology and Systems, 7(2).

145. Paul, S., Karam, R., Bhunia, S., & Puri, R. (2014). Energy-efficient hardware acceleration

through computing in the memory. In Design, Automation and Test in Europe (DATE).
146. Kothawade, S., Chakraborty, K., & Roy, S. (2011). Analysis and mitigation of NBTI aging in

register file: An end-to-end approach. In International Symposium on Quality Electronic
Design (ISQED).

64 2 Background and Related Work

147. Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI Effects in

register files. In Dependable Systems and Networks (DSN).
148. Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI

recovery in SRAM arrays. In Annual Symposium on VLSI.
149. Sil, A., Ghosh, S., Gogineni, N., & Bayoumi, M. (2008). A novel high write speed, low

power, read-SNM-Free 6T SRAM cell. In Midwest Symposium on Circuits and Systems.
150. Abella, J., Vera, X., Unsal, O., & Gonzalez, A. (2008). NBTI-resilient memory cells with

NAND gates. US Patent US20080084732 A1.

151. Wang, S., Jin, T., Zheng, C., & Duan, G. (2012). Low power aging-aware register file design

by duty cycle balancing. In Design, Automation and Test in Europe (DATE).
152. Wang, S., Duan, G., Zheng, C., & Jin, T. (2013). Combating NBTI-induced aging in data

caches. In Great lakes symposium on VLSI.
153. Gunadi, E., Sinkar, A. A., Kim, N. S., & Lipasti, M. H. (2010). Combating aging with the colt

duty cycle equalizer. In International Symposium on Microarchitecture.
154. Calimera, A., Loghi, M., Macii, E., & Poncino, M. (2011). Partitioned cache architectures for

reduced NBTI-induced aging. In Design, Automation and Test in Europe (DATE).
155. Henkel, J., Bukhari, H., Garg, S., Khan, M. U. K., Khdr, H., Kriebel, F., Ogras, U.,

Parameswaran, S., & Shafique, M. (2015). Dark silicon – From computation to communica-

tion. In International Symposium on Networks-on-Chip (NOCs).
156. Esmaeilzadeh, H., Sampson, A., Ceze, L., & Burger, D. (2012). Neural acceleration for

general-purpose approximate programs. In International Symposium on Microarchitecture.
157. Mahajan, D., Yazdanbakhsh, A., Park, J., Thwaites, B., & Esmaeilzadeh, H. (2015).

Prediction-based quality control for approximate accelerators. In Workshop on Approximate
Computing Across the System Stack.

158. Allred, J., Roy, S., & Chakraborty, K. (2012). Designing for dark silicon: A methodological

perspective on energy efficient systems. In International Symposium on Low Power Elec-
tronics and Design (ISLPED).

159. Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V., Lugo-Martinez, J.,

Swanson, S., & Taylor, M. B. (2010). Conservation cores: Reducing the energy of mature

computations. In Architectural Support for Programming Languages and Operating Systems.
160. Swaminathan, K., Kultursay, E., Saripalli, V., Narayanan, V., Kandemir, M., & Datta,

S. (2013). Steep-slope devices: From dark to dim silicon. IEEE Micro, 33(5), 50–59.
161. Bokhari, H., Javaid, H., Shafique, M., Henkel, J., & Parameswaran, S. (2014). darkNoC:

Designing energy-efficient network-on-chip with multi-Vt cells for dark silicon. In Design
Automation Conference (DAC).

162. Raghunathan, B., Turakhia, Y., Garg, S., & Marculescu, D. (2013). Cherry-picking:

Exploiting process variations in dark-silicon homogeneous chip multi-processors. In Design,
Automation & Test in Europe Conference & Exhibition (DATE).

163. Shafique, M., Gnad, D., Garg, S., & Henkel, J. (2015). Variability-aware dark silicon

management in on-chip many-core systems. In Design, Automation and Test in Europe
Conference and Exhibition.

164. Huang, W., Rajamani, K., Stan, M., & Skadron, K. (2011). Scaling with design constraints:

Predicting the future of big chips. IEEE Micro, 31(4), 16–29.

References 65

Chapter 3

Power-Efficient Video System Design

This chapter provides an overview of designing a video system to meet the

challenges outlined in Chap. 2. Details are given about the architectural aspects

and the complexity and power control knobs of the system. By examining these

knobs, motivational analysis is carried out which forms the foundation of the

algorithmic- and architectural-design decisions presented in this book.

In this book, we would refer to a hardware compute entity performing some

calculations as a compute node. Thus, compute nodes present programmable cores,

hardware accelerators, GPUs, etc., whereas a compute resource refers to any

hardware entity, like memory, interconnect, resource, etc.

3.1 System Overview

The diagram of the video processing system that will be discussed in this book is

shown in Fig. 3.1. This diagram categorizes the key components of the system into

software and hardware layers. The software layer executes the algorithms and the

hardware layer provides support to run these algorithms. Here, we consider that

different multithreaded video applications are concurrently executed on the system,

and the system generates the output and runtime statistics.

The hardware layer contains a multi-/many-core system, with in-core accelera-

tors and coupled shared hardware accelerators. A gated clock feeds the shared

accelerators. The hardware layer provides the video I/O and communication infra-

structure among the cores and the accelerators. The hardware layer also contains

custom-designed NVM (here MRAM is used) and SRAM. NVM’s power is

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_3

67

controlled by power gating the memory, and SRAM aging rate is controlled by

adjusting the duty cycle of each SRAM cell.

The software layer is responsible for algorithms pertaining to runtime resource

and power budgeting, parallelization, and workload balancing. It also controls the

power of the system by:

• Determining the most suitable voltage frequency of the underlying hardware

• Offloading subtasks from the cores to the loosely coupled hardware accelerators

and to other devices

• Gating the clock of loosely coupled accelerators

• Selectively turning on sectors of the NVM for allowing access to the application

• Reducing the complexity (and hence the power consumption) of the application

The software layer also intakes the user requirements to run the system. For

example, this information can contain the total duration for which the system must

run and the number of applications (and the number of threads of each application)

that needs to be processed in parallel. The software layer also considers the

underlying hardware properties for workload balancing and power management.

C H
Rv-f

C H
Rv-f

C H
Rv-f

C H
Rv-f

C H
Rv-f

C H
Rv-f

H0

H2

H1

H3

SRAM

SRAM

MRAM

MRAM

Distributed
HW Acc.

Aging
Control

Power
Ga�ng

In
te

rc
on

ne
ct

 F
ab

ric

(A
cc

el
er

at
or

 In
te

rf
ac

e) Programmable
Clock Register

Ac
ce

le
ra

to
r

Sc
he

du
le

r

AGU Control
V-f Regulators

Hardware Monitors and
Sta�s�cs (to So�ware)

M
em

or
y

Many-Core System

Run�me Paralleliza�on

Complexity
Management

V-f Selec�on and
Model Tuning

Workload BalancingDetermining Num. of
Threads and Cores

Threads to Cores
Mapping + Packing

Intra-Cluster Power
Budge�ng

Resource Budge�ng

Run�me Budge�ng

Cluster-Level
Power Budge�ng

Hardware Accelerator
Scheduling

SRAM Aging
Rate Decision

MRAM Power Ga�ng
and Access Control

Memory Power Control
Extract App and Content

Specific Proper�es

Complexity Reduc�on

System Info:
- Available Cores
- Supported Freq.
- Ba�ery Status

Apps Info:
- Deadline
- QoS Req.

So�ware Stat, Analysis
and Training

Mul�-threaded Video
Applica�ons

External
Memory

Ba�ery

Hardware Accelerator

User Info:
- Dura�on
- Aging Rate

External Memory
BusO

ffl
in

e

Online

Vi
de

o
I/

O
 &

Re

ad
/W

rit
e

M
as

te
rs

CAM

Fig. 3.1 Software and hardware layers of the video processing system

68 3 Power-Efficient Video System Design

In addition, it exploits the applications’ and contents’ properties to maximize the

throughput-per-watt metric.

Details about design and runtime features provided by this system will now be

provided.

3.1.1 Design Time Feature Support

As discussed above, the architectural design features of the video system include a

many-core system, associated hardware accelerators, and a hybrid memory

subsystem.

The many-core system provides parallelization support and allows multiple,

multithreaded applications to execute on the cores. In this book, a core refers to

an entity that can run a program written in a high- or low-level language. These

cores can be homogeneous or heterogeneous. A per-core DVFS to appropriately

scale the voltage-frequency levels is available. Also considered in [1, 2, 3, 4, 5], the

per-core DVFS is now commercially available (e.g., 12-core Opteron), and it is

indispensable for fine-grain power management. Further, Linux software libraries

like “libdvfs” [6] expose the control of cores’ frequencies (or “governors” of Linux)
to the programmer, such that the application-level commands can directly commu-

nicate with the hardware.

Moreover, each core in the video system has an in-core, application-specific,

hardware accelerator (see Fig. 2.16a). These in-core hardware accelerators are now

available in commercial devices (e.g., custom instruction in Nios II processor [7],

vector-processing units in Intel CPUs like SSE-SSE4 and AVX, AMD’s 3DNow!,
IBM’s CPACF for cryptography functions). A programmer can write “special” or

“custom” instructions (also sometimes called SI or CI for short) within their

program to use the in-core hardware accelerator. Moreover, each core is connected

to a global communication network using an interconnect fabric.

We abstract the workload of an application as a stream of tasks and a task runs on

a core. A task can be further subdivided into subtasks. The subtasks from the

programmable cores can be offloaded to the loosely coupled hardware accelerators,

in order to increase the throughput-per-watt metric. It is assumed that the software

version of the hardware accelerator is also available as a program, and the core

decides whether to offload its tasks to the hardware accelerator or do the same task

via software. The loosely coupled hardware accelerators communicate with the

many-core system using an interconnect fabric.

In this system, the hardware accelerator acts as a slave to many masters, i.e., it

cannot deny a compute command from the cores. Therefore, a scheduler is required

to assist the accelerator. The accelerator scheduler receives offloading request from

the programmable cores and assigns the accelerator to process subtasks of a core,

one at a time, in a round-robin fashion. Further, the accelerators have distributed

hardware components, and these components are fed with gated clocks, i.e., when a

particular accelerator (or part of the accelerator) is not used, its clock can be gated

3.1 System Overview 69

to save dynamic power consumption. Clock gating is available in industrial prod-

ucts like Open Multimedia Applications Platform (OMAP3) processor from Texas

Instruments [8], Altera FPGAs, etc. The principle of power gating can also be

employed to save leakage power in addition.

The hybrid memory unit includes a high-density NVM in conjunction with a

SRAM. A programmer can use both NVM and SRAM as a scratchpad memory.

Here, MRAM is chosen as a reference NVM; however, other NVM technologies

can be also employed. The MRAM is sectored memory and the sectors are normally

off, i.e., under normal operation, the MRAM sectors do not consume leakage or

dynamic power. A particular sector of the MRAM is powered on only when it is

required to read/write the data to that address. Hence, only at that instant, a little

leakage power and some dynamic power are consumed by the particular MRAM

sector tuned on by demand. The SRAM aging rate is controlled using aging

reduction circuits and by intelligent address generation units (AGUs). The power

consumed by these circuits is content dependent and can also be controlled by the

programmer.

Furthermore, the software/application layer must be able to exploit the different

aspects of hardware layer (e.g., the maximum frequency of the cores). The software

layer (application or OS or any other middleware) should be able to adjust the

voltage-frequency levels of the cores on demand of the application (see above the

discussion about “libdvfs”). Furthermore, the workload of the applications should

be structured in a manner to provide an ample number of independent subtasks such

that the proposed parallelization techniques can pack these subtasks for a core with

enough freedom and thereby determine the number of cores to utilize at runtime.

These applications can also be malleable applications [9, 10]. In addition, note that

the APIs for implementing parallelism, like OpenMP [11], support this behavior.

However, the condition of being malleable is not necessary for these techniques to

work, because an application can have a significantly large number of threads,

which can be packed and dispatched to individual cores. Examples of such appli-

cations are mobile games, which use tens to hundreds of threads. Ideally, the

applications also need to have a set of operating points, whereby the complexity

of the application can be traded for a drop in the output quality (see discussion about

reducing number of predictions in Sect. 2.2.1). Moreover, the applications need to

know about the characteristics of the shared hardware accelerator (e.g., the number

of cycles the accelerator will consume for every subtask).

The above discussion demonstrates that to increase power efficiency, different

techniques can be utilized. By setting some configuration knobs, a tolerable output

quality degradation can be allowed for gains in power savings. In summary, the

following power configuration knobs are available for the video system:

• Per-core voltage-frequency knob (or per-core DVFS), to adjust the voltage-

frequency and thus the power consumption and the time spent in processing a

particular subtask

• Individual clock gating of accelerator modules, to cut off the clock (and hence

eliminate the dynamic power consumption) to the modules which are not

utilized

70 3 Power-Efficient Video System Design

• Shared hardware accelerator scheduling, by which cores can offload their

assigned subtasks to the accelerator and can be turned off (or cores can run at

a lower frequency to process their subtasks in parallel) and, hence, save power

• Tunable application parameters or selection of application operating points,

which can result in a lower complexity and contribute to power savings

3.1.2 Runtime Features and System Dynamics

During runtime, the video processing system needs to do different kinds of appli-

cation- and content-dependent resource budgeting, which includes distributing

cores and TDP among multiple, multithreaded tasks/applications. The loosely

coupled accelerators are allocated to the processing cores and the clocks of the

cores are appropriately gated. Moreover, the voltage-frequency levels of the cores

should be correctly tuned, depending upon the throughput constraints and the

features of the shared accelerators. Furthermore, the hybrid memory subsystem

needs to be properly accessed and the aging rate of SRAM is controlled. We will

now discuss these aspects in a little more detail.

The resource budgeting technique determines the number of compute cores that

are allocated to a particular application. This resource budgeting depends upon the

workload and the throughput requirements of an application. However, the resource

budgeting must be fair to all applications and should not assign too much resources

to a certain application, which will starve the other parallel running applications and

reduce the overall performance. Moreover, resource budgeting needs to be adaptive

and should increase/reduce the number of cores allocated to an application (called a

cluster) at runtime, taking into account all the parallel running applications and the

workload variations of all other parallel running applications. Ideally, the number

of threads per application should equal the number of cores an application is

allocated, in order to avoid overheads like resource locking and context switches

associated with increasing number of threads. If certain conditions do not fulfill

(e.g., no DVFS is available), then multiple threads of a single application can be

mapped to a single processing core, which can process the workloads of these

threads in a time-multiplexed manner, thereby reducing the number of cores

required to meet the throughput requirements. Further, the resource budgeting

technique should also allot the loosely coupled hardware accelerator to process a

part of the workload of these applications.

The power budgeting technique distributes TDP at runtime among the applica-

tions (inter-cluster power distribution). The TDP distribution considers multiple

factors like the size of the cluster, the power consumption, and the throughput

generation history of the current application and other applications. Specifically, an

application which used more power in the past will require more power with high

probability. Further, once the TDP budget is distributed among the applications, the

applications also need to distribute this budget among their parallel computing

cores (intra-cluster power distribution). To balance the workload of each thread

3.1 System Overview 71

(and hence maximally utilize the hardware for maximizing the throughput), appli-

cation’s power is transferred among the threads of the same application as well.

This power actually translates to a certain voltage-frequency level, and a higher

power allocated to a particular core means that the frequency of that core can be set

to a higher value (i.e., the core will take less amount of time to process the

workload).

The power distribution (or frequency allocation) is workload dependent, which

might vary at runtime and may be different even for threads of the same application.

Therefore, it is a prerequisite to develop a relationship between power and fre-

quency required to process the workload corresponding to the application param-

eters (which control the complexity and output quality). Specifically, this

relationship can be derived offline using system identification techniques like

regression analysis. However, such a relationship might not be precise and cannot

handle the workload variations. Further, this relationship will only be applicable to

a particular core on a particular system, i.e., the portability of the application will be

an issue. Parallel system workloads (like OS, parallel running applications on the

same core) might also render this relationship inaccurate. Therefore, the video

system tunes this relationship at runtime by getting software and hardware statis-

tics. This also assists in balancing the workload, as a more accurate relationship can

result in higher accuracy of power and resource distribution among the competing

applications.

Runtime power control is also triggered by using the hardware accelerator’s
power gating signals, which are controlled by a register written by the program.

These signals depend upon the architectural as well as the code currently executed

on the architecture, thus requiring application and architectural awareness. Further,

the sectors of MRAM are turned on that are used for read or write access, while the
others are kept off. This on/off decision is also program flow dependent, and the

control reduces the memory wake-up latency, by tuning its predictions to determine

which memory sector will be turned on next. Moreover, the SRAM aging controller

also considers the content properties that are written to the SRAM and adjusts the

aging rate of the SRAM cells.

Regarding the discussion above, the following information passes between the

layers. From software to hardware, the number of parallel threads, hardware

accelerator assignment, voltage-frequency levels of the cores, and clock enable/

disable signals are passed. On the other hand, hardware passes the time/cycles

consumed in processing a subtask, hardware accelerator information, and many-

core system’s attribute (e.g., number of cores, minimum/maximum voltage-

frequency settings) information to the software layer.

3.2 Application and Motivational Analysis

In this section, we analyze the video applications and impact of software and

hardware layers on the execution of these applications is carried out. This analysis

will be leveraged by the techniques discussed in this book.

72 3 Power-Efficient Video System Design

3.2.1 Video Application Parallelization

Video processing applications usually consume many system resources and power,

in order to meet their throughput constraints. An example is shown in Fig. 3.2,

which shows the time and energy consumption per frame (with different resolu-

tions) for encoding a video with HEVC. These experiments are performed for an

x86 core running at 2.16 GHz. For example, encoding one HD frame (1920� 1080)

consumes ~8.2 s and 119.02 J. Note that increasing the core frequency to support

high frame rates under real-time constraints is not scalable and viable due to power

density issues (power-wall or dark silicon).

The total time consumed at various clock frequencies (f) and the size of the

frame in blocks (nfrm) are shown in the color-coded plot of Fig. 3.3a. As expected,

increasing f reduces the time consumption and increasing nfrm increases time

0

2

4

6

8

10

0
20
40
60
80

100
120
140

En
er

gy
 [J

ou
le

s]

Ti
m

e
[s

ec
]Energy

Time

Resolu�on

Fig. 3.2 Energy and time

consumption for HEVC

Intra-encoding on a single

x86 core using different

resolutions

34

36

38

40

75 125 175 225 275

Tiles=1x1 Tiles=2x1
Tiles=2x2 Tiles=3x3

f [MHz]
nfrm

Time [msec]

f [MHz]
nfrm

Power [Wa�](b)

0

200

400

600

800

1000

0 5 10 15 20
Number of cores = ktot

Ti
m

e
[m

se
c]

Foreman
352×288

Flamenco
640×480

(c) Keiba
832×480

(a)

PS
N

R
[d

B]

Bitrate [Mbps]

(d)

Power dependent
on frequency

Complexity dependent
on frame size and frequency

Higher is be�er

Fig. 3.3 (a) Average time at different clock frequencies; (b) power consumption for different

frequencies and frame sizes; (c) at f ¼ 2.16 GHz, average time per frame with varying number of

cores; and (d) PSNR vs. bitrate plot by using “Foreman” video sequence (352 � 288) for HEVC

encoding

3.2 Application and Motivational Analysis 73

consumption of the core. Hence, for processing nfrm, a particular frequency of the

core can be determined which will not consume more than a predefined (constant)

amount of processing cycles. That is, given nfrm, the timing constraints can be

satisfied by appropriately selecting the frequency. The color-coded plot in Fig. 3.3b

shows the dynamic power consumption of a single core in terms of nfrm and f for
HEVC encoding. Increasing f results in high dynamic power consumption and vice

versa. Power is independent of nfrm as the power formula only considers the voltage

and working frequency of the core. Therefore, it is possible to select an appropriate

clock frequency of the core that will limit the total power consumption below a

certain limit. In other words, the power constraint of the core requires an appropri-

ate selection of the core’s frequency. Therefore, using the allocated power to a core,
its frequency could be determined.

To enable real-time video processing, video applications provide inherent sup-

port for parallelization. For example, in HEVC standard, parallelization support

occurs in the form of slices, tiles, and Wavefront Parallel Processing (WPP)

[12]. To efficiently utilize the hardware resources and to reduce power consumption

in a many-core processor, there is a need to (1) ascertain the parallel processing

workload and (2) reduce the number of active cores while fulfilling the throughput

constraints. Figure 3.3c denotes the total time consumed for encoding a single

frame using HEVC for changing the number of processing cores (ktot) at

f ¼ 2.16 GHz. We notice that increasing ktot reduces the time consumption by an

approximately second-degree relation. Thus, appropriate ktot can be selected that

can encode the video frame within the given amount of time, i.e., for satisfying the

time/fps constraint. Using tile-based parallelism in HEVC, the output video quality

for different configurations of tiles (and also different parallelism) is shown in

Fig. 3.3d. Here, a tile is processed on a single core. However, to enable parallelism

by dividing the video frame into parts such that each part can be processed

independently of other parts by breaking the sequential dependencies across the

boundaries, a potential video quality loss may occur [12]. Since tiles break coding

dependencies, therefore, increasing number of tiles also results in video quality

loss, and a single tile per frame results in the best video quality. Since

parallelization is indispensable, therefore, with u2 tiles per frame, a u � u tile

structure (u columns and u rows) should be used for the best video quality.

Therefore, the total number of tiles per frame must be minimized such that it just

fulfills the workload of HEVC encoding. This will not only increase the video

quality but also reduce the power consumption of the system. If a perfect u � u tile
structure is not possible, then effort must be made to make the total tile columns and

row as similar as possible.

Additionally, in video applications, the collocated tiles (same tiles of consecu-

tive video frames, see Fig. 2.10b) exhibit high correlation in computational and

output characteristics. For HEVC, correlation of complexity and the output com-

pressed bytes between collocated tiles is given in Fig. 3.4. This correlation is plotted

as a histogram of percentage difference in time (Fig. 3.4a) and total bytes per tile

(Fig. 3.4b). Larger crowding around zero shows a high correlation. Therefore, time

74 3 Power-Efficient Video System Design

complexity and output quality (bit-rate) of the current tile can be estimated from

previous collocated tile(s), and this can be used to estimate the workload of the

current tile.

3.2.2 Workload Variations

The workload of a thread varies at runtime, whether it is the only thread of the

application or one of the many threads of a multithreaded application. Figure 3.5

plots the time consumed by each tile for NLMF application of the sequence

“Foreman” (352 � 288). A tile structure of uw � uh ¼ 2 � 2 (two tile columns

and two tile rows per frame) is specified for this experiment. As seen, in addition to

the complexity of a tile different from the rest, the complexity of the tile also varies

at runtime. This complexity is a direct measure of the workload. Additionally, if

timing constraints are imposed, the power consumption of the cores will also vary.

Therefore, it becomes imperative to regulate the workload of each compute core

individually. This adaptation should depend upon the throughput requirement, as

well as the hardware resources of the underlying many-core system.

This workload variation can be due to multiple factors. Some of these factors are

described below:

0

20

40

60

-50 -25 0 25 50
0

20

40

60

-20 -10 0 10 20

(a) (b)

Time Difference [%] Bytes Difference [%]

Fig. 3.4 Percentage difference histogram of (a) time and (b) bytes for collocated tile 0 of

“Foreman” sequence (352 � 288) for 300 frames

150
200
250
300
350
400

0 10 20 30 40 50 60 70 80 90

Tile-0 Tile-1
Tile-2 Tile-3

Ti
m

e
[m

se
c]

Frame #

Unequal workload
of all �les

Fig. 3.5 Time consumption of tiles (2 � 2 ¼ 4 tiles per frame) of nonlocal means filter for

“Foreman” sequence (352 � 288)

3.2 Application and Motivational Analysis 75

• Some threads are assigned more data to process. There are multiple reasons for

the non-uniform data allocation. Like, it may not be possible to get equal-sized

tiles by having odd number of blocks within a row (or column) of a video frame,

e.g., 11 blocks per row of the video frame that must be divided into four tiles.

• In many video applications (particularly video coding), the number of processor

cycles required for processing a block is also content dependent. For example,

ME will spend more time for a tile with high motion blocks compared to a tile

containing low motion blocks.

• Some video tiles may require a higher quality than other tiles. This is possible

because region of interest (ROI)-based processing requires a better video quality

at the expense of more calculations while processing the ROI within a video

frame. Therefore, a thread that processes the ROI may have more complexity

than the rest. An example could be detection of eyes within a video, whereby the

face can be the ROI. Here, face is detected first within the video frame, and then

eye localization algorithm is performed on that region only. Similar examples

exist for video coding, where the ROI includes faces, moving objects like cars,

etc. In such cases, compression is kept comparatively lower for a better visual

effect for ROI regions, whereas the background regions (non-ROI) are aggres-

sively compressed.

• Parallel system workloads (due to OS, kernel, or parallel running applications)

may render a thread of an application to run slower than the others.

• Heterogeneity among the compute cores can exist which can in turn run the core

slower/faster. For example, some cores might have bigger caches than the rest,

and some cores are designed to run at a higher frequency (or some cores can run

at higher frequencies due to process variations [13]).

The fundamental takeaway from the discussion above is that workload variations

cause unequal complexity of threads of a video system, which reduces the through-

put of the application due to load imbalance. This is intuitive because minimum

time for processing a video frame will occur if all the threads finish processing their

tasks/tiles at the same time. Hence, to achieve maximum benefit from the underly-

ing hardware, it is necessary to balance the workload of parallel computing jobs at

runtime.

Note that there can be other parallel running threads of the application, used for

management jobs unlike the number-crunching threads (e.g., which process a video

tile). In this book, we will ignore these management threads and assume their

impact is negligible.

3.2.3 HEVC Complexity Analysis

As previously discussed, HEVC is an important next-generation application

pertaining to video coding. By dividing the CTU iteratively into respective CUs,

PUs, and TUs, HEVC tries to maximally exploit the redundancies within an image.

76 3 Power-Efficient Video System Design

This iterative and recursive behavior incurs substantial complexity overhead, even

for intra-only encoders, because the RDO decision has to recursively check each

possible PU and intra-mode combination (see Fig. 2.6). This enormous decision

space significantly enlarges the computational complexity compared to H.264. Our

experiments in Fig. 3.6 show that compared to intra-only H.264/AVC encoder, the

computational complexity of intra-only HEVC has increased by a factor of ~1.4�
for a compression efficiency increase of around 35%. A similar analysis is reported

in [14]. This demonstrates a significant challenge towards designing fast HEVC

encoders. Therefore, it is essential to develop fast algorithms to decrease the

computational complexity of HEVC encoders and to realize real-world

applications.

3.2.3.1 Texture and PU Size Interdependence

In Fig. 3.7, the borders of PUs (generated via RDO decision) are plotted on top of

the frame of the “Sheilds” video sequence. The PU sizes and their corresponding

locations illustrate that PU size decision is based upon the texture (or variance) of

the video frame content. Note that the RDO iterative decision process of selecting

the best PU sizes selects smaller blocks for image regions with high variance and

texture details. For example, in region A of Fig. 3.7, a video frame region with low

texture is encoded using larger PU sizes, whereas in region B, a smaller PU size and

dense PU partitioning are usually selected for highly detailed texture. An interesting

case is presented in region C where it is noticed that some areas are encoded using

small-sized PUs and the uniform areas of the block are encoded using larger PUs.

This analysis illustrates that a complexity reduction technique can estimate the

sizes of PU using video content, instead of performing high-complexity RDO

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

(a)

Basketball Kimono PeopleOnStreet

(b)

Bi
tr

at
e

Ex
ec

u�
on

Ti
m

e

Basketball Kimono PeopleOnStreet

Fig. 3.6 Normalized (a) bit

rate and (b) execution time

of HEVC with reference to

H.264 for different video

sequences

3.2 Application and Motivational Analysis 77

decisions employing a full search to determine the right PU sizes. The PU size

generation (involving early PU size estimation, i.e., before the RDO) needs to

account for the video texture (i.e., variance) of frame regions in order to curtail

the RDO search space for fast mode evaluations. If such a “map” of the PU sizes

and locations is available, users can bypass the RDO process for improbable PU

sizes and, hence, reduce the complexity.

3.2.3.2 Edge Gradients and Intra Angular Modes

The final intra angular mode selected by the RDO process by testing all the possible

angular modes can be a time-consuming process. However, one can infer the coarse

intra angular mode by determining the direction of the gradient as shown in Fig. 3.8.

Usually the texture flow angle (perpendicular to the gradient) is selected as the

intra-prediction [15, 16] of the PU. With high probability, the intra-prediction mode

lies in that vicinity of the angular direction perpendicular to the direction of the

gradient. We can exploit this knowledge to reduce the number of intra angular

Fig. 3.7 PU borders on the third frame of “Sheilds” sequence

Best Texture Flow
Matching Mode

(b)

φ
Gradient

φ
gx

gy

Pixel

Edge

g

PU under test

(a)

211

27

35

19

Fig. 3.8 Estimating intra angular mode selection

78 3 Power-Efficient Video System Design

modes tested for HEVC and achieving complexity savings. Depending upon the

gradient of the video frame block, only a reduced set of highly probable intra-

prediction modes can be tested, excluding the unlikely modes. A similar case can be

employed for inter-encoding, whereby the complexity of ME can be reduced by

observing the video properties.

3.3 Hardware Platform Analysis

This section provides analysis about the architectural aspects of a video processing

system.

3.3.1 Heterogeneity Among Computing Nodes

For presenting the impact of heterogeneity on different characteristics of the

system, we provide different compute nodes (here, programmable cores) and

benchmarks, as given in Table 3.1. These numbers are obtained via Sniper simu-

lator [17] and McPAT [18] for 45 nm x86 cores, with 32 KB L1 data and instruction

caches. The average cycles per operation are obtained by running the benchmarks

for the set of frequencies given in Fig. 3.9. The variance of the cycles per

Table 3.1 Characteristics of cores and benchmarks

Core Attributes Area [mm2]

Average cycles per operation

DCT Quant HEVC

Tiny L2 ¼ 64 86.76 4594 3416 100 � 106

Dispatch ¼ 1

Medium L2 ¼ 256 89.99 2378 1658 59.0 � 106

Dispatch ¼ 2

Large L2 ¼ 512 95.26 1687 971 45.3 � 106

Dispatch ¼ 4

0

10

20

30

40

1000 1600 2200 2800 3400

Tiny Medium Large

0

10

20

30

40

1000 1600 2200 2800 3400

Tiny Medium Large
(a) (b)

Frequency [MHz] Frequency [MHz]

Po
w

er
 [W

]

Po
w

er
 [W

]

Fig. 3.9 Power and frequency profiles for (a) DCT and (b) quant

3.3 Hardware Platform Analysis 79

benchmark is negligible for varying frequency, and, therefore, the average numbers

are reported.

Figure 3.9 also provides the power profiles of the cores. For the “quant”

benchmark (H.264/AVC quantization), although the number of cycles consumed

by the “large” core is ~3.5� lesser than the “tiny” core, the power consumed by the

“large” core at the lowest frequency (i.e., 1000 MHz) is greater than the power

consumed by the “tiny” core at maximum frequency (3400 MHz). This discussion

conveys that heterogeneous nodes result in varying complexity (in number of

cycles consumed) and power consumption for the same workload. Therefore, the

workload balancing techniques must consider the complexity and power character-

istics of the underlying compute nodes. Further, notice that the power consumption

is approximately independent of the type of application used in this benchmark.

3.3.2 Memory Subsystem

Recent studies have shown that memory is one of the main energy-consuming

system modules [19], especially in video processing/compression systems

[20, 21]. Characteristically, in video applications, large frame dimensions and

high processing rates put huge pressure on the off-chip and on-chip memories

[22]. The primary reason is that the storage and repetitive accesses to large-sized

video frame buffers [23, 24] result in high energy consumption. For instance, video

coding of 4K UHD at 30 fps results in a memory access rate of >356 megapixels

per second, i.e., 2.78 Gbps. In addition, each frame will require ~12 MBytes of

on-chip memory.

Video frames are usually stored in the high-capacity off-chip memory. To avoid

frequent accesses to the off-chip video memory or to lighten the external memory

transfers, state-of-the-art video applications deploy on-chip video memories to

store parts or full video frames [25, 26]. Therefore, data must be brought from

the off-chip memory to the on-chip memory (typically SRAM) in order to lessen the

access latency and external memory bus contention [27]. Moreover, several repet-

itive accesses are made to the same pixel locations in advanced video coding

standards due to multilevel filtering and excessive ME operations. Therefore, larger

on-chip memories are indispensable to improve the performance and energy effi-

ciency of video coding applications. On the other hand, large on-chip memories

also contribute in high power/energy consumption due to:

• High leakage power, as a result of larger on-chip memories to store video frames

(e.g., reference and current video frames in video coding application). Tradi-

tional SRAM-based on-chip memories have high silicon footprint and leakage

power that may even surpass their dynamic power. A reduction in the leakage

power may be obtained by exploiting emerging on-chip memory types like

NVMs.

80 3 Power-Efficient Video System Design

• High dynamic power, as a result of bigger resolutions, high frame rates, and

complex processing flow of advanced video applications (like HEVC, which

employs multiple filters and a complex multimode ME process).

Therefore, to significantly cut the overall energy consumption of on-chip video

memory subsystem, application-specific memory subsystem architectural optimi-

zations and energy management are required.

3.3.2.1 Analysis of Motion Estimation

Figure 3.10a shows the memory access requirements for ME algorithm using a

single reference frame. Three different search window sizes (sw � sh) are selected
for ME, for both HEVC and H.264/AVC. HEVC memory access requirements are

~3.86� more than H.264/AVC. This shows that HEVC puts high pressure on the

memory system by generating a large amount of memory read accesses. H.264/

AVC-based external memory access reduction techniques thus may not scale

properly if applied to HEVC. Furthermore, the search window method requires a

32x32 64x64 128x128

H.264 HEVC
1.0

0.5

0.0

N
or

m
al

iz
ed

M

em
or

y
A

cc
es

s

Search
Window Size

0 30 60 90

0

20

40

60

80

100

0 30 60 90

Keiba

RaceHorses

M
em

or
y

U
se

d
[%

]

Median

75 %

25 %

Maximum

Minimum

Ke
ib

a

Ra
ce

H
or

se
s

Ba
se

ke
tb

al
lD

ril
l

Kr
is

te
nA

nd
Sa

ra

Memory Used [%]

(a)

(b)

Fig. 3.10 (a) Using different search window sizes, ME memory access comparison between

H.264/AVC and HEVC, (b) ME memory access statistics when using TZ search technique for ME

in HEVC

3.3 Hardware Platform Analysis 81

reference frame to be read at least rf ¼ sh/bh � 3 times from the external memory

into the search window (see discussion in Sect. 2.2.1.2). Using a single search

window of size 256 � 256, a 4K UHD 30 fps video with bh ¼ 64 will therefore

require 11.12 Gbps fetched from the external memory only for the reference frame.

With nr reference frames and additional read and write to the external memory for

the current frame, a total of (11.12nr þ 2.78) Gbps are read, and around 2.78 Gbps

are written as reconstructed frame. Note that the external bus power dissipation is

directly proportional to the total number of bit toggles per transition [28]. This

massive amount of data results in high latency and energy consumption (around

40% of the total system energy is consumed by the external I/O [29, 30]). There-

fore, saving external memory accesses becomes vital for reducing the energy

consumption of a video encoding system. Thus, using large on-chip frame buffers

will reduce the dynamic energy consumption and the external memory bus conten-

tion. However, their contribution to the leakage energy becomes a design challenge.

Using the state-of-the-art ME algorithm, TZ search [31], Fig. 3.10b shows the

histogram of percentage memory accessed within the search window in HEVC for

different video sequences. A search window of size 64 � 64 (or 36 KB) is taken.

These graphs are averaged per frame. The box plots for these statistics are also

given, and we notice that less than 20% of the search window is utilized (see

discussion in Sect. 2.2.1.2), i.e., most of the times, only a part of the search window

is utilized. The unused search window consumes leakage power. Therefore,

adapting the search window according to the needs of the block-matching algorithm

can result in high energy gains.

3.3.2.2 Hybrid Memories

For general memory subsystems, in order to reduce the leakage energy consump-

tion and to reduce the latencies and dynamic energy associated with the write

operation, research has focused on combining the best of NVMs and VMs and

coined the term “hybrid memory” [32, 33]. An equivalent principle can be applied

for on-chip video memory required by video applications like ME. However, from

Table 2.2, it is evident that straightforward replacement of the SRAM- or DRAM-

based memories with NVMs is impractical. Special thought to the memory char-

acteristics must be involved in the system design. We can reduce the leakage energy

of a system by introducing NVMs in place of traditional VMs (like SRAMs or

DRAMs), but at the same time, NVMs can play a major role in worsening system

response time and dynamic energy consumption. Therefore, the advantages and

disadvantages of NVMs must be carefully weighed.

The on-chip video frame buffers can be either SRAM- or MRAM-based mem-

ories. A system designer needs to consider the application behavior, usage con-

straints, and system dynamics before employing the memory subsystem, which

would result in the best benefit-to-cost ratio. For example, using Table 2.2, we can

generate a benefit-to-cost technology precedence by adding the blues for each

technology and subtracting the reds from it. For example, if the application requires

82 3 Power-Efficient Video System Design

processing large data sets with high data reuse (high number of reads and low writes

in a memory), MRAM is a better option than SRAM, DRAM etc.

Attributes of different memory subsystems are tabulated in Table 3.2. From this

table and Table 2.2, notice that the SRAM and MRAM read latencies and energies

are similar. On the contrary, the leakage energy of SRAM is ~21� of MRAM of the

same capacity. In addition, MRAM capacity is about four times that of SRAM for

the same area. Therefore, MRAM is a superior candidate for on-chip video frame

buffer. However, the write energy and latency of MRAM are ~20� and 2.6� of

SRAM, respectively. Thus, feeding the MRAM from external memory is not ideal,

as the external memory read latency added with the write latency of MRAM could

severely degrade system power efficiency.

3.3.3 Analysis of Different Aging Balancing Circuits

In this section, we provide a detailed aging analysis, in terms of duty cycle

imbalance, for different test video sequences [35, 36] and highlight issues related

to image regions with features that result in different SNM degradation of the

memory. This analysis is leveraged for developing the aging-resilient video mem-

ory discussed in this book.

As discussed in the previous chapter, the aging rate is minimized if both the

PMOS transistors in the 6T SRAM cell are stressed equally (i.e., duty cycle,

Δ ¼ 0.5). One way of equally stressing the transistors is to overwrite the SRAM

cell with complementary bit in every cycle. Figure 3.11 shows the total percentage

of bits (in form of a histogram) for a frame memory that is overwritten by a

complementary bit of the new frame at the same position. Usually, for video

sequences with low activity (low motion, no camera panning, etc.), this histogram

is crowded towards smaller percentages, which tells us the writing new frame into

SRAM will only release stress on some 6T cells (as the duty cycle will be highly

biased towards 0.0 or 1.0). Additionally, the histogram for these sequences is not

dispersed, demonstrating that there is significant correlation in terms of texture and

motion between temporally neighboring frames. Moreover, the properties of the

subsequent frames can be estimated from the history, such that it can be leveraged

for efficient aging balancing. In a nutshell, we can predict the aging impact of the

Table 3.2 Memory attributes for 65 nm technology [34]

Memory type

Latency (nsec) Energy and power

Area (mm2)Read Write

Dynamic (nJ)

Leak. (W)Read Write

SRAM – 4 MB 4.659 4.659 0.103 0.103 5.20 44

DRAM – 16 MB 5.845 5.845 0.381 0.381 0.52 49

MRAM – 16 MB 4.693 12.272 0.102 2.126 0.97 38

3.3 Hardware Platform Analysis 83

current and future video frame on the SRAM, by analyzing the aging effects of the

previous video frames.

In Fig. 3.12, duty cycle of some selected bits of the luminance component of

“Station” video sequence is plotted on the spatial scale, in the form of “stressmaps.”

A stressmap represents the value of duty cycle per pixel, for a given bit position. A

balanced duty cycle (Δ¼ 50% or 0.5) is represented with a light greenish color (see

the color-coded scale below the pictures). For duty cycles heavily biased towards

“0” and “1,” we obtain a blue- and a red-colored distribution in the stressmaps,

respectively. Notice that lower-order bits (LSB bits) have a balanced duty cycle;

thus, the 6T SRAM cells storing these bits have consistent relaxations and, there-

fore, an extended lifetime. However, the higher-order bits (MSB bits) have a highly

biased duty cycle, which causes an imbalance in the 6T SRAM cells storing MSBs,

i.e., one out of the two PMOS transistors of the SRAM cell is under increased stress.

0

50

100

1 11 21 31 41 71 81 91

0

20

40

60

80

1 11 21 31 41

0

30

60

90

120

1 11 21 31
0

50

100

1 11 21 31 41
0

20

40

60

80

1 11 21 31 41 51 61

(e) ChinaSpeed

(b) FlowerVase (c) BQTerrace (d) Keiba

0

50

100

150

200

1 11 21 31
0

50

100

150

200

1 11 21 31 41
0

50

100

150

1 11 21 31 41 51 61

(a) Basketball

(f) FourPeople (g) Johnny (h) People

150150

Fig. 3.11 Histogram of percentage SRAM memory overwritten with complementary bits by

video sequences. X-axis presents the percentage of bits changed in the subsequent frames, and

y-axis presents the number of times a certain percentage occurs for 300 continuous frames

Fig. 3.12 (Top) Frames of the video sequence “Station” (1920 � 1080) with frame numbers

written and (bottom) Δ stressmaps for specific bits of the video sequence, by plotting duty cycle

(Δ) of specific bit on spatial scale

84 3 Power-Efficient Video System Design

In summary, duty cycles of SRAM cells are not balanced and some cells age faster

than others. In such cases, it becomes crucial to balance duty cycle of each bit

individually and to leverage the knowledge of bit location before applying an aging

resiliency technique.

The less frequently varying video samples will introduce the most amount of

stress on the 6T SRAM cells, for instance, low complexity texture and large, static

backgrounds. Different mission critical video applications like security surveillance

and space exploration experience long duration static scenes, which will adversely

influence the SNM. Therefore, the knowledge of less and more frequently changing

data locations can be exploited to distribute video samples in the on-chip memory,

such that each transistor of the SRAM memory experiences some relaxation.

In order to balance the duty cycle, we extend the memory architecture of Fig. 2.2

with additional aging resiliency tools in form of Memory Read Transducer (MRT)

and Memory Write Transducer (MWT). These transducers are connected to the

memory read/write ports (see Fig. 3.13a). The transducers can be implemented

using many architectural flavors. Three commonly employed designs for the trans-

ducer circuits are shown in Fig. 3.13b–d. We investigate inversion (similar to [37]),

nibble swapping (similar to [38]), and bit rotation (similar to [39]), which corre-

spond to the state-of-the-art techniques to tackle SRAM aging. For inversion and

nibble swapping, the bits of every second frame are inverted and swapped, respec-

tively. For the bit-rotation transducer, the video sample bits are incrementally

rotated by one bit position with every frame, before writing to the frame memory

location.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

FSM
FIFO

Write address

YCbCr 4:2:0 data
Read Port

Request address

MWT

Data Shaping Circuit

Write
AGU

MRT

Read
AGU

Video
Applica�on

Write Port
Write data

Read address

Read data

New frame request

Bit-Invert

. .

Nibble-Swap Bit-rotate

Barrel
Shi�er

(a) (b) (c) (d)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Upper
Whisker
75%
Quar�le
Average

Median

25%
Quar�le
Lower
Whisker

Bit #

Δ

Desired
response

. .

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7Bit #
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7Bit #

Δ Δ Δ

Bit #

Base Invert Swap Rotate

(e) (f) (g) (h)

(i) (j) Base (k) Invert (l) Swap (m) Rotate

Fig. 3.13 (a) Inserting aging resiliency components (MWT and MRT) in video memory man-

agement of Fig. 2.2. (b) Bit-inversion MWT, (c) nibble-swapping MWT, and (d) bit-rotation

MWT. (e–h) Stressmaps for bit-7 (foreground) and bit-0 (background) for the above MWT. (i)

Box plot legend; (j–m) Box plots for the above MWTs

3.3 Hardware Platform Analysis 85

In Fig. 3.13e–h, the stressmaps of bits 0 and 7 with no balancing (the base case)

and the balancing circuits presented in Fig. 3.13b–d are given. As noticed, the duty

cycle for the inverter case is greatly balanced compared to the other circuits. For

convenience, the duty cycles for all bits are presented in the form of box plots, as

shown in Fig. 3.13i–m. In the box plot, the distribution of duty cycle of each bit is

mapped to quartiles. In an ideal case, in the box plot, the spread of whiskers should

be minimal and the median of the box plot should be at “0.5.” The spread biased

towards “0” indicates a larger number of “zeros” at the bit location and vice versa.

For the base case (i.e., without using MWT/MRT) and lower-order bits (bits “0”

and “1”), the spread of duty cycle is limited and the median is closer to “0.5.”

However, for higher-order bits (bits 3–7), the spread of duty cycle is large, and the

median is not strictly “0.5.” This suggests that the higher-order bits in the video

sequence need more consideration, and resiliency features embedded into the

system must account for these bits. Furthermore, the lower-order bits experience

auto-balancing and the aging resiliency features for these bits are not essential.

By using balancing circuits of Fig. 3.13b–d, the box plots change significantly.

For inverters, we notice that the duty cycle is nicely balanced for each bit and the

spread of the duty cycle is limited. The nibble-swapping technique introduces some

improvement in balancing the duty cycle, but it is not comparable to that of the

inverter. Moreover, the nibble swapping also harshly impacts the duty cycle of bits

“0” and “1.” Bit rotation fits in the middle of the inversion and nibble-swapping

cases. Moreover, by keeping the inverter on for all bits, at all the time, is not energy

efficient. Therefore, the challenge is to design an adaptive, configurable controller

to select the frame inversion rate and bits to invert at runtime.

3.4 Summary

In this chapter, we performed a detailed motivational analysis of video processing

systems, regarding their software and hardware layers. At the software layer, our

focus is to develop efficient parallelization techniques, which can be used to

increase the throughput-per-watt ratio of the system. Further, workload distribution

and balancing are discussed. The main focus at the hardware layer is to tackle

heterogeneity and efficiently utilize the memory subsystem to increase the perfor-

mance of the complete video processing application. In the coming chapters, we

will leverage the knowledge gained by the analysis performed in this chapter and

design techniques to exploit this information.

86 3 Power-Efficient Video System Design

References

1. Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core

architectures running multi-threaded applications. In Internation Symposium on Computer
Architecture.

2. Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON:

Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel
Architectures and Compilation Techniques.

3. Jevtic, R., Le, H.-P., Blagojevic, M., Bailey, S., Asanovic, K., Alon, E., & Nikolic, B. (2015).

Per-core DVFS with switched-capacitor converters for energy efficiency in manycore pro-

cessors. IEEE Transactions on Very Large Sclae Integration Systems (TVLSI), 23(4), 723–730.
4. Kim, W., Gupta, M., Wei, G.-Y., & Brooks, D. (2008). System level analysis of fast, per-core

DVFS using on-chip switching regulators. In International Symposium on High Performance
Computer Architecture (HPCA).

5. Lee, W., Wang, Y., & Pedram, M. (2014). VRCon: Dynamic reconfiguration of voltage

regulators in a multicore platform. In Design, Automation & Test in Europe and Exhibition
(DATE).

6. libdvfs. [Online]. Available: https://github.com/LittleWhite-tb/libdvfs. Accessed 12 Aug

2015.

7. Nios II Custom Instruction User Guide. Altera, (2011).

8. OMAP 3 Processor. Texas instruments, [Online]. Available: http://www.ti.com/product/

omap3530. Accessed 13 Aug 2015.

9. Feitelson, D. G., & Rudolph, L. (1996). Towards convergence in job schedulers for parallel

supercomputers. In Workshop on Job Scheduling Strategies for Parallel Processing.
10. Desell, T., Maghraoui, K. E., & Varela, C. A. (2007). Malleable applications for scalable high

performance computing. Cluster Computing, 10(3), 323–337.
11. OpenMP. [Online]. Available: http://openmp.org/wp/. Accessed 12 Aug 2015.

12. Chi, C. C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., & Schierl,

T. (2012). Parallel scalability and efficiency of HEVC parallelization approaches. IEEE
Transactions on Circuits and Systems on Video Technology, 22(12), 1827–1838.

13. Kuhn, K., Kenyon, C., Kornfeld, A., Liu, M., Maheshwari, A., Shih, W.-k., Sivakumar, S.,

Taylor, G., VanDerVoorn, P., & Zawadzki, K. (2008). Managing process variation in intel’s
45nm CMOS technology. Intel Technology Journal, 12(2), 93–109.

14. Nguyen, T., & Marpe, D. (2012). Performance analysis of HEVC-based intra coding for still

image compression. In Picture Coding Symposium (PCS).
15. Shafique, M., Molkenthin, B., & Henkel, J. (2010). An HVS-based adaptive computational

complexity reduction scheme for H.264/AVC video encoder using prognostic early mode

exclusion. In Design, Automation and Test in Europe Conference (DATE).
16. Jiang, W., Mal, H., & Chen, Y. (2012). Gradient based fast mode decision algorithm for intra

prediction in HEVC. In International Conference on Consumer Electronics, Communications
and Networks.

17. Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In High Performance Computing, Net-
working, Storage and Analysis.

18. Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore archi-

tectures. In Microarchitecture.
19. Barroso, L., & Holzle, U. (2007). The case for energy-proportional computing. Computer, 40

(12), 33–37.

20. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T.,

& Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity.

IEEE Circuits and Systems Magazine, 4(1), 7–28.

References 87

https://github.com/LittleWhite-tb/libdvfs
http://www.ti.com/product/omap3530
http://www.ti.com/product/omap3530
http://openmp.org/wp/

21. Sullivan, G. J., Ohm, J., Han, W., &Wiegand, T. (2012). Overview of the high efficiency video

coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.
22. Shafique, M., Zatt, B., Walter, F. L., Bampi, S., & Henkel, J. (2012). Adaptive power

management of on-chip video memory for mul-tiview video coding. In Design Automation
Conference.

23. Stancu, L. C., Bathen, L. A. D., Dutt, N., & Nicolau, A. (2012). AVid : Annotation driven

video decoding for hybrid memories. In Embedded Systems for Real-Time Multimedia.
24. Bathen, L., & Dutt, N. (2012). HaVOC: A hybrid memory-aware virtualization layer for

on-chip distributed scratchpad and non-volatile memories. In Design Automation Conference.
25. Chen, C., Huang, C., Chen, Y., & Chen, L. (2006). Level Cþ data reuse scheme for motion

estimation with corresponding coding orders. IEEE Transactions on Circuits and Systems for
Video Technology, 16(4), 553–558.

26. Gangadharan, D., Phan, L., Chakraborty, S., Zimmer-mann, R., & Insup, L. (2011). Video

quality driven buffer sizing via frame drops. In Embedded and Real-Time Computing Systems
and Applications (RTCSA).

27. Tsung, P.-K., Chen, W.-Y., Ding, L.-F., Chien, S.-Y., & Chen, L.-G. (2009). Cache-based

integer motion / disparity estimation for Quad-HD H.264/AVC and HD multiview video

coding. In International Conference on Acoustics, Speech and Signal Processing (ICASSP).
28. Ning, K., & Kaeli, D. (2005). Power aware external bus arbitration for system-on-a-chip

embedded systems.High Performance Embedded Architectures and Compilers, 3793, 87–101.
29. Sze, V., Finchelstein, D. F., Sinangil, M. E., & Chandraksan, A. P. (2009). A 0.7-V 1.8-mW

H.264/AVC 720p video decoder. IEEE Journal of Solid-Sate Circuits, 44(11), 2943–2956.
30. Ma, Z., & Segall, A. (2011). Frame buffer compression for low-power video coding. In

International Conference on Image Processing.
31. Purnachand, N., Alves, L. N., & Navarro, A. (2012). Improvements to TZ search motion

estimation algorithm for multiview video cod-ing. In IEEE International Confernce on
Systems, Signals and Image Processing (IWSSIP), pp. 388–391.

32. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., & Xie, Y. (2009). Hybrid cache

architecture with disparate memory technologies. In International Symposium on Computer
Architecture (ISCA).

33. Loh, G. H. (2009). Extending the effectiveness of 3D-stacked DRAM caches with an adaptive

multi-queue policy. In International Symposium on Microarchitecture (MICRO).
34. Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In

Design Automation Conference (DAC).
35. Bossen, F. (2012). Common test conditions. Joint Collaborative Team on Video Coding

(JCT-VC) Doc. I1100.

36. Common YUV 4:2:0 test sequences. [Online]. Available: https://media.xiph.org/video/derf.

Accessed 16 Aug 2015.

37. Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI

recovery in SRAM arrays. In Annual Symposium on VLSI.
38. Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI Effects in

register files. In Dependable Systems and Networks (DSN).
39. Kothawade, S., Chakraborty, K., & Roy, S. (2011). Analysis and mitigation of NBTI aging in

register file: An end-to-end approach. In International Symposium on Quality Electronic
Design (ISQED).

88 3 Power-Efficient Video System Design

https://media.xiph.org/video/derf

Chapter 4

Energy-Efficient Software Design

for Video Systems

This chapter provides details about the runtime supervision of the video processing

system at the software layer. The main responsibilities addressed in this layer are to

allocate compute nodes, realize power efficiency and budget power to the video

system. In order to parallelize the execution of a video application, resources are

allocated to the application at runtime, by considering the user demands, and appli-

cation and hardware attributes of the system. Further, the workload is distributed

among the compute nodes in a way that throughput-per-watt is increased. Video

application properties are also exploited at runtime, and these properties are used to

adjust the configuration knobs, which leverage power/complexity with the output

video quality. Moreover, resource and power allocation to multiple applications

running concurrently on multi/many-core homogeneous and heterogeneous sys-

tems are also discussed.

4.1 Power-Efficient Application Parallelization

As discussed in previous chapters, a video application usually processes a block of

pixels at one time. Consider that a block of pixels processed by the application is

treated as a job (e.g., a MB in H.264/AVC and CTU in HEVC). A set of jobs is

given by a subtask, η. And a set of subtasks collectively constitute a task η. To
imagine the hierarchy, one can consider a task η being analogous to processing the

complete video frame, a subtask η as processing a video slice/tile, and job as

processing the video frame block within the slice/tile. Mathematically, a task

i can be composed of ni total subtask and given by:

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_4

89

ηi ¼ ηi, 0; ηi, 1; � � �; ηi,ni�1

� � ð4:1Þ

An application can be designed with independent threads for each job, subtask,

or a task. In case each job has its associated thread, there can be a large number of

threads (a lot more than the number of compute nodes) in the system which will

result in more context switches and communication/synchronization among the

threads, leading to a large overhead. For a thread per subtask or task, the number of

threads is reasonable and so is their associated overhead. In case of video applica-

tions, per slice/tile (i.e., subtask) thread results in higher video quality compared to

a per block thread, because the dependencies among the video blocks are exploited

which can result in higher compression. A per block thread may not let a block to

maximally exploit dependencies among neighboring blocks.

Let us assume an application a is required to process all its subtasks (a complete

task) within a deadline ta,max, given rtot number of compute nodes. A compute node

can process one or more subtasks. Suppose a core j, associated with a task i, takes ti,j
amount of time to process its allocated subtask(s). Mathematically, the workload of

a task (defined in time units) is given by:

ti ¼ max
8j2 0;���;ka, totf g

ti, j
� � ð4:2Þ

Here, ka,tot is the number of nodes (e.g., cores) used for processing the subtasks. In

order to maximally utilize the hardware resources and to increase the throughput-per-

watt ratio, the time taken by each node to process its allocated subtask(s) should

ideally be equal, i.e., all nodes start and end their allocated subtask(s) at the same time.

This means that the workload distribution among the cores processing these threads

must be balanced. Generally, reducing the number of subtasks (for an equivalent

amount of jobs) worsens the output of workload balancing strategies due to lesser

degree of freedom, but it decreases the management overhead. On the other hand, a

large number of subtasks will result in better workload balancing [1] at the expense of

(a) increasedmanagement, (b) communication overhead, and (c) reduced output video

quality. Moreover, voltage-frequency levels of the associated compute nodes can

also be scaled (DVFS) to achieve workload balancing among the cores.

An additional challenge to address is that the time taken by a subtask (and thus

the time taken by a task) can vary at runtime, according to the scenarios discussed in

the previous chapter. Moreover, the system must determine the correct number of

resources allocated to an application a (ka,tot � rtot) which will result in high power

efficiency while still meeting the application’s deadline. That is, the following

optimization problem needs to be solved:

argmin
ka, tot�rtot

max
8j2 0;���;ka, totf g

ti, j
� � � ta,max

()
ð4:3Þ

In this optimization goal, the number of nodes utilized for processing a task is

reduced as much as possible. A large number of nodes will unnecessarily reduce the

90 4 Energy-Efficient Software Design for Video Systems

time consumed (considerably below ta,max) in processing a task. However, it will

also increase the resource and power consumption. This optimization problem

suggests the number of nodes should be reduced such that they just meet the

throughput requirement.

Video applications need to process data under tight constraints. For example,

HEVC necessitates high compression with a throughput constraint [2], which

generates numerous design and runtime challenges. As an example, Table 4.1

shows the result of utilizing different number of x86 cores in order to encode one

frame of the “Exit” sequence under a 125 m sec. Ideally, all the values in Table 4.1

should be as low as possible. Encoder-1 with the least power consumption does not

meet the throughput, whereas Encoder-3 needlessly increases the number of cores

and hence the power. Encoder-2 might be able to sustain the workload if its

frequency (and thus its power) is increased. Encoder-4 is a special case, where

the application configuration parameters are intelligently tuned (i.e., selection of an

operating point) to reduce the complexity. This results in power reduction, at the

cost of reduced compression and quality (compare with Encoder-2). Thus, it is

possible to determine a compute configuration (the number of nodes and their

frequencies) and application configuration (operating point which allows tolerable

quality degradation) that fulfills the throughput requirement while lowering the

power consumption.

For ease of reading, we would mention a compute node as a programmable core

in the following text, unless explicitly stated.

4.1.1 Power-Efficient Workload Balancing

For achieving balanced application execution on a multi-/many-core system, a

technique to adaptively determine the system configuration is discussed, such that

throughput constraints are met at low video quality degradation, while minimizing

the system power consumption. By accounting for the resources of the system, the

number of cores and their frequencies that must be used to manage the application’s
workload is determined. To estimate the frequency, the frequency estimation model

is derived and adjusted at runtime, in order to (a) encounter the load variations of

Table 4.1 HEVC encoding characteristics for “Exit” (640 � 480) video sequence using [3, 4]

Encoder Enc-1 Enc-2 Enc-3 Enc-4

Cores/threads 1 4 9 4

Power [W] 4.865 18.03 40.54 18.02

Time [msec] 659 178 78 125

Bytes 6806 7247 7262 7328

ΔPSNR [dB] 0 0.058 0.061 0.015

All cores have a constant frequency of 2 GHz during the execution. PSNR, peak signal to noise

ratio. “Time” and “Bytes” denote time and bytes to encode one frame

4.1 Power-Efficient Application Parallelization 91

the core and (b) make the technique portable. Afterwards, the application knobs can

be optionally applied which results in further power savings. In summary, the

discussed technique provides:

• Selecting an appropriate compute configuration that selects (a) the number of

cores and (b) their frequencies (power), and (c) the number of subtasks (d) along

with their maximum workload (output quality), depending upon the required

throughput and the hardware characteristics.

• Subtask-to-core mapping techniques to fulfill the throughput requirement,

pertaining to the structure in which task is divided in subtasks. This technique

determines the optimal number of cores for supporting the application’s work-
load. A bin-packing heuristic to assign subtasks to the available cores is

employed, and hence, it is made sure that the utilization of a core is maximized,

while minimizing the number of active cores.

• Adaptive frequency estimation model, which self-regulates by adjusting model

coefficients or constants using runtime statistics, to determine the frequency of

the cores and make the technique portable to other multi-/many-core systems.

• Optional application configuration, which tunes (curtails or enlarges) the work-

load of each subtask by tuning their configurations at runtime. It utilizes a

feedback mechanism to maintain the output quality within tolerable limits.

The frequencies of the cores are also adapted with reference to these subtasks.

This results in reduced power consumption.

The outline of this technique is shown in Fig. 4.1. The compute configuration is

an independent module, which gathers the throughput requirement and status

signals from the application and directly controls the frequency of the cores. This

module can be implemented as a separate library, interfaced with the kernel via

system calls. This requires little effort from the application designer. Application

configuration must tune application parameters, requiring the designer to modify

the source. However, since the application designer best knows the application,

therefore, application configuration can be implemented via moderate effort.

The pseudo-code of selecting the proposed compute and application configura-

tion techniques is given in Algorithm 1, and the sketch of the video system

Applica�on
Applica�on Config.

Compute config.
Cores &
Subtasks
Selec�on

Frequency Model
Regula�on

Monitor

Applica�on
Param. Tuning

Monitor C0
f0 C1

f1

C2
f2 C3

f3

Cr-2
fr-2 Cr-1

fr-1

Input
User Constraints
(e.g., throughput)

… …

Output quality metric

M
an

y-
co

re
Sy

st
em

Time per subtask

Fig. 4.1 Overview of the power-efficient workload balancing technique presented in this book on

a multi- or many-core system

92 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

employing these techniques is presented in Fig. 4.2. In the current text, the

parallelization for a single application is under consideration; therefore, the sub-

script “a” for application is omitted for readability. Moreover, the above discussion

is generally valid for all frame-based processing applications. However, for better

understanding, the task is replaced by a video frame and the subtasks by tiles. The

index k is used for representing a specific core.

In summary:

• At start, appropriate compute configuration is determined (line 6 of Algorithm 1)

whereby the number of tiles/cores/threads is calculated (ka,tot) to meet the

deadline ta,max. The maximum required frequency to support the workload of

each tile is also determined (fm, a vector having maximum frequencies fk,m of all

cores). Further, if the number of cores is insufficient, the workload of application

is self-curtailed (by determining application configuration αm). Throughout the

execution of the program on core k, the frequency of (fk) and workload (αk)

cannot exceed fk,m and αk,m, respectively.

• The optional local workload tuner per tile determines the tile’s application

configuration αk for the GOP or epoch (a set of video frames, line 9). If reducing

workload has a tolerable impact on the output, the workload is reduced further

and vice versa.

• Based upon αk, the frequency of a core k is predetermined for a complete epoch

(lines 10–11). Afterwards, the tile processing starts (line 12).

• Statistics are fed back to the frequency estimation model for adjusting the

frequency of the next epoch (line 14). A Recursive Least Square (RLS) filter is

used to adapt (or derive) the frequency estimation model constants.

The basic steps of the technique described above have the purpose of:

(a) meeting the throughput demands by choosing the degree of parallelism (number

C
R

C
R

C
R

C
R

C
R

C
R

C
R

C
R

C
R

C
R

C
R

C
R

Many-Core Chip

αk

Tiles ni and Cores ktot

Sy
st

em
 M

on
ito

r

Frame to Tiles
Convertor

Threshold Genera�on and Tes�ng

New Workload Config. αk Selec�on

Config. Parameter Mapping

Fr
eq

ue
nc

y
f k

System Informa�on
- Available Cores rtot
- Available Frequency Set fset

Actual # Cycles
per Block

Recursive Least
Square (RLS) Filter

Epoch Frequency
fk,l & fk,h

Max Req. Frequency fk,m

Max Workload Config. αk,m

Fr
eq

ue
nc

y
f k

Fr
eq

ue
nc

y
f k

Config.
App Parameters

α0 α1 α2 …

0 35 4 18 …
1 28 4 20 …
2 24 3 22 …
… … … … …

Applica�on Configura�on
Matrix A

Compute Configura�on

Applica�on
Applica�on Configura�on

Frame dim. (w×h)
Frame Rate (fp)

Ti
le

s (
n i

),
co

re
s (

k t
ot

)
&

 m
ax

 co
nfi

g.
 (α

k,
m

)

Workload Tuner per task

Fr
eq

ue
nc

y
Se

le
ct

or
 p

er
 C

or
e

Ti
le

 F
or

m
a�

on

Vi
de

o
In

Vi
de

o
O

ut

Re
�l

in
g

De
ci

si
on

Time per
�le tk

ck,α

fk

Fig. 4.2 Power-efficient workload balancing technique on a many-core system

4.1 Power-Efficient Application Parallelization 93

https://doi.org/10.1007/978-3-319-61455-7_BM1

of tiles), (b) properly balancing the workload, and (c) reducing the power consump-

tion by selecting suitable frequencies of the cores through exploiting tolerance to

the output quality. In the coming text, the important modules given in Fig. 4.2 are

discussed in more detail.

4.2 Compute Configuration

For parallel video processing, a multi-/many-core system with per-core DVFS is

considered here. A video frame needs to be converted into tiles for parallel

processing. The tile formation block is responsible for appropriate division of the

video frame into tiles (with ni total tiles) and also selecting the number of cores (ktot)
to process the tiles. Selecting number of tiles and cores depends upon the allowable

frequency of a core (available in a discrete set of frequencies fset, from fmin to fmax),

the total (or allowable) number of available cores (rtot), and the required frame rate

(fp, i.e., user constraint). The tile formation technique determines three attributes of

the system. First, the number of cores (ktot) is calculated which will sustain

application’s workload according to Eq. (4.3). Second, the maximum frequencies

of these cores (fk,m) are determined for the allocated workload (discussed later).

And third, the maximum allowable workload configuration (αk,m) is determined

(for best output quality) which can be sustained by the hardware platform to satisfy

fp. These three objectives can be quantified as a goal programming problem

mathematically presented as:

fminfktotg, minff k,mg, maxfαk,mgg
s:t: ktot � rtot, tk � 1=f p

fmin� f k,m � fmax, f k,m 2 fset
8k ¼ 0, � � �, ktot � 1

ð4:4Þ

Here, the highest priority goal is to reduce the total number of computing cores.

However, the priority can be reformed to minimize the frequency or maximize

output quality.

4.2.1 Uniform Tiling

Here, each tile (subtask η) is associated with a single thread, and an individual core
processes a single thread, i.e., number of tiles, threads, and cores are all equal. This

load distribution and balancing technique is termed as uniform tiling because it tries

to keep the number of tiles equal to the cores (ni ¼ ktot) and tries to equally

distribute nfrm jobs to every core. That is, the tile-based workload balancing

attempts to equalize the number of blocks within every tile.

94 4 Energy-Efficient Software Design for Video Systems

The program given in Eq. (4.4) is solved by the algorithm given in Algorithm 2.

This algorithm is diagrammatically shown in Fig. 4.3. Primarily, this algorithm

determines if a single tile/core/thread would potentially support the video

processing workload (line 1 in Algorithm 2). This test is carried out using the

maximum output quality (or maximum possible workload, denoted by αmax ¼ max

(A), line 6) at a minimum possible core frequency, fk,m (lines 7–8) while processing

all blocks in a frame, nfrm. Such an arrangement will result in using least amount of

compute resources, best video quality, and minimal power consumption. If this

configuration is not conceivable due to fk,m greater than the maximum supportable

frequency (fmax), the workload (and, hence, the output quality) is reduced (line 14)

and the frequency is brought within fmax (lines 12–13). If there are other cores

available, they are adaptively introduced (line 21). The algorithm repeats selection

of the minimal frequency and maximum supportable workload for each individual

core. The algorithm continues until either all the utilized cores can sustain the

maximum workload (line 19) or there are no more cores available (line 15). Once

the tile structure, frequencies, and maximum workloads of each core are deter-

mined, application execution begins.

Tile Structure Selection (uw � uh) For enhanced video quality, the number of

tiles (and cores) and their structure in terms of tiles in frame width � tiles in frame

height (uw � uh) are adjusted by reading a lookup table (line 3 in Algorithm 2), as

shown in Table 4.2. The input number of tiles/cores (k0tot) is used to give the actual

number of tiles/cores (ktot) by reading this lookup table. For example, if k0tot ¼ 13, a

higher video quality is achieved by having 5 � 3 ¼ 12 tiles instead of 1 � 13 ¼ 13

tiles. Thus, in this case, ni ¼ ktot ¼ 15.

k’tot = 1

Create
Tiles

Max. Workload
Config. for all cores

Frequency
Bounded?

Sys. Info:
- Cores
- Freqs.

Start

End

Reduce Workload
Conf igurat ion

All Config.
Tested?

k'tot = ktot + 1 ktot < rtot?

All Cores
Frequencies

Confined
at Max

Workload?

Workload Conf ig.
Matrix A

(User Input)

ktot

�
�

�

�

�

�

�

�

Ti
le

/C
or

e
0

Est imate
Req. Freq.

Th
ro

ug
hp

ut

Co
ns

tr
ai

nt
s

(f
ps

)

Fig. 4.3 Number of cores, frequency, and workload selection for uniform tiling

4.2 Compute Configuration 95

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

However, this kind of table is used as an example, and different video applica-

tions might benefit from a drastically different tile structure table. An application

designer with the best knowledge about the application should be able to create

such a table with ease.

4.2.2 Non-uniform Tiling

In addition to the uniform tiling, a non-uniform tiling technique can be used to

reduce the number of cores to process the video application’s workload. This

situation is advantageous when systems with no DVFS capabilities are used to

balance the workload of the cores. As the name shows, the video tiles in this

technique are not uniformly structured. Basically, the number of tiles/sub-

tasks ni � ktot and the nfrm jobs are not equally distributed among subtasks (i.e., it

might occur that size(ηi) 6¼ size(ηj) with i 6¼ j). Figure 4.4a shows the conceptual

Table 4.2 Tile structure generation table, which can be changed for other applications

k0tot ktot uw � uh k0tot ktot uw � uh k0 tot ktot uw � uh

0 1 1 � 1 6 6 3 � 2 12 12 4 � 3

1 1 1 � 1 7 8 4 � 2 13 15 5 � 3

2 2 2 � 1 8 8 4 � 2 14 15 5 � 3

3 3 3 � 1 9 9 3 � 3 15 15 5 � 3

4 4 2 � 2 10 12 4 � 3 16 16 4 � 4

5 6 3 � 2 11 12 4 � 3 17 18 6 � 3

Here, “k0tot” is the input; ktot and uw � uh are the outputs

Core0 Core1

Vi
de

o
In

pu
t

di
vi

de
d

in
Ti

le
s

CoreN-1 Secondary
Tiles

Video Stat ist ics
and Throughput

Constraints

Tile Format ion and
Core-Assignment

...

M
an

y-
Co

re
Pr

oc
es

so
r

Master TileSystem
Info

M

1 2 3

MS0S1

S3

S4

S2 MS0S1

S3

S4

S2

S10S9S8

S7S6S5

(a)

(b)

Fig. 4.4 (a) Non-uniform

tiling and assignment to the

cores, (b) master and

secondary tile formation

method

96 4 Energy-Efficient Software Design for Video Systems

overview of the technique. Generating the tile structure for non-uniform tiling is a

two-step process. In the first step the master tile is identified and the second step is

determining the secondary tiles. Further, subject to the sustainable workload of a

core, each tile might have different dimensions than the rest. An added benefit is

that a table like Table 4.2 is not required.

For generating the video tile structure, following steps are taken (also outlined in

Fig. 4.4b):

• Identifying of the master tile (size and location) depending upon the video-

content properties. The selection of the master tile location and dimensions

requires computing the variance of video blocks.

• Forming the secondary tiles (size and location), depending upon the size and

location of the master tile. The secondary tile structure is generated by extrap-

olating the master tile throughout the video frame.

• Determining number of cores required for video processing and assigning the

master and secondary tiles to the cores. A bin-packing heuristic is used to

minimize the number of cores.

To identify the master tile, a system model that equates the sustainable through-

put of a core in terms of the number of blocks and frame rate requirement is derived.

Specifically, an equation can be derived via offline regression (or using online RLS

filtering given in Sect. 4.2.5) that relates the time consumed in processing a certain

number of blocks (n), frequency of the core (f), frame rate requirement (fp), and
other application parameters (some of which are discussed in Sect. 4.3):

t ¼ g1 n; f ; f p;α
� � ð4:5Þ

Here, α represents application configurations, discussed in more detail in Sect.

4.3. However, if a timing constraint (tmax) is given, then one can determine n at

f ¼ fmax using the relationship:

n ¼ g2 tmax; f ; f p;α
� � ð4:6Þ

Hence, the number of blocks in the master tile (n) is determined using this

equation. To find the dimensions of the master tile (wm � hm), following formulas

are used:

wm < wð Þ ¼ bw � ffiffiffiffiffiffiffiffiffi
n=ar

pj k
hm < hð Þ ¼ bw � n� bw=wmb c

ð4:7Þ

In these equations, w� h is the resolution of the video frame, and the aspect ratio

of the video frame is given by ar ¼ w/h. This construction ensures that the master

tile dimensions cannot exceed the dimensions of the frame. Notice that hm is

generated from wm and thus, hm � wm if ar < 1. However, it is possible to generate

4.2 Compute Configuration 97

wm from hm. In this technique, the order depends upon the resolution of the frame.

That is, if w � h, hm is generated from wm and vice versa.

The size and dimensions of the master tile are now available using the above

formulation. The subsequent step is to find the location of the master tile. For this

purpose, the four corners of the video frame are searched for blocks with highest

variance. The corner with the highest accumulative variance is selected as the

anchor point for the master tile (as given in the lower right corner of the frame in

step 1 of Fig. 4.4b). Afterwards, the determination of secondary tiles is straightfor-

ward as seen by steps 2 and 3 of Fig. 4.4b.

Now, these tiles must be packed and dispatched to the individual processing

cores. For this purpose, we can use a bin-packing heuristic given in Fig. 4.5. At first,

the tiles are sorted in descending order according to the number of blocks n in the

tiles. A tile is taken from the sorted list of the tiles, and iteratively, every core is

tested whether the core can sustain the additional workload of this tile, along with

the other tiles the core is already assigned. If yes, then the core will process the

current tile in a time-multiplexed manner. Otherwise, a new core is introduced in to

the computations. Once all the tiles are allotted to their respective cores, the

frequencies of the cores are adjusted (f� fmax) to (a) reduce the power consumption

and (b) just fulfil the workload of the tiles. The frequency adjustment formulas will

be discussed in the coming text.

4.2.2.1 Evaluation of Non-uniform Tiling

A demonstration of tile formation for a video frame of size 832 � 480 pixels using

the uniform and non-uniform tiling, using different FPS, is shown in Fig. 4.6. For

the non-uniform tiling technique, a master tile is randomly selected and marked for

easy reference. Using the same techniques, Table 4.3 tabulates the number of cores

and tiles used for HEVC processing, BD-Rate, and BD-PSNR [5] at different frame

Start Sort �les

Get new �le All �les
finished? k = 0

Tile sustained
on kth core?

Allocate t ile
to core k

k = k+1

ktot = 1

k = ktot?

ktot = ktot+1

End

�

�

�

�

�

�

Fig. 4.5 Heuristic for tile-to-core assignment for non-uniform tiling

98 4 Energy-Efficient Software Design for Video Systems

rate requirements of the sequence “RaceHorses.” Note that uniform tiling achieves

better video quality. However, the cores required to sustain the throughput con-

straint (frame rate) are lesser for the non-uniform tiling technique.

4.2.3 Frequency Estimation (fk,m)

To estimate the frequency of a core (fk,m line 7 in Algorithm 2), the number of

cycles consumed in processing a block (ĉk,α) is required (lines 4, 11). Determining

ĉk,α can be achieved via offline or online exploration. Mathematically, the number

of cycles required per second on the core k, to encode tiles/subtasks having a total of
nk blocks, at a frame rate demand of fp frames per second is given by:

f k,m ¼ nk � bcktot,αm
� f p ð4:8Þ

This equation precisely represents the required number of cycles per second

(Hertz) of the core to encode the assigned tiles. Hence, one can estimate the

Table 4.3 Resource and quality analysis of uniform and non-uniform tiling for HEVC

FPS Cores Tiles BD-Rate BD-PSNR

Uniform 5 9 9 1.4126 �0.0897

10 20 20 �0.1197 0.0089

15 35 35 1.1671 �0.0667

25 45 45 1.8266 �0.1048

Non-uniform 5 9 9 1.5246 �0.0963

10 17 20 0.0102 0.0014

15 30 32 2.0505 �0.1182

25 39 48 2.8470 �0.1645

Uniform Tiling
FPS = 5 FPS = 10 FPS = 15 FPS = 25

Non-Uniform Tiling
FPS = 5 FPS = 10 FPS = 15 FPS = 25

Fig. 4.6 Demonstration of video tile formation in HEVC, using uniform and non-uniform tiling

techniques presented in this book

4.2 Compute Configuration 99

https://doi.org/10.1007/978-3-319-61455-7_BM1

frequency of a core (i.e., fk,m) if the size of the tiles in blocks and the required frame

rate are provided.

4.2.4 Maximum Workload Estimation (αk,m)

As seen in line 13 of Algorithm 2, the maximum workload a core k can sustain is

denoted by configuration tuple (αk,m). This denotes that once the tiling structure is

defined and the processing starts, the application’s workload must never exceed the

workload defined by αk,m. The application configuration is selected from a matrix

A where:

A ¼ � � �;αmin; � � �;αmax; � � �½ �T ð4:9Þ

The tuple αmax has configurations for best output quality and hence maximum

workload. The tuple αmin is for lowest quality and workload. Both αmin and αmax are

selected by the user. For the matrix A, the tuple α ¼ (α0, α1,. . ., αψ)
T denotes the

application parameters that can be configured and adapted at runtime. Figure 4.7

shows an example configuration matrix A.

4.2.5 Self-Regulated Frequency Model

For the video system presented here, the video processing can start after determin-

ing compute and application configurations (ktot, fm and αm). We will refer to

Fig. 4.8 in this section to explain the process in detail. The video system uses

tile-based parallelism and each tile is processed in epochs. For each epoch of size z,
an appropriate frequency (fk � fk,m) is selected and adapted at runtime. The details

of selecting these attributes are given below.

Config.
#

Applicat ion Parameters
0 α1 α2 …

0 35 4 18 …
1 28 4 20 …
2 24 3 22 …
… … … … …

Best Configura�on

Subop�mal Configura�ons:
- Reduced complexity
- Reduced power
- Reduced output quality

α

Fig. 4.7 Example workload configuration matrix A showing three workload configuration tuples

100 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

4.2.5.1 Frequency Estimation

The goal of the per-core frequency estimator is to adjust the clock frequency of the

core, fk, according to the workload assigned to the core, αk, and the number of video

frame blocks assigned to the core, nk.
The frequency of a core is determined using Eq. (4.8) given above. However,

one needs to estimate the total number of cycles for a given workload configuration,

ĉk,α. The total number of cycles consumed for processing a video block or for a job

can be estimated using system identification techniques. For example, one can use a

model:

bck,α ¼ g x;ωð Þ ¼ xTωk ð4:10Þ

Here,ωk is the vector which holds the model constants and the vector x holds the
configuration parameters. As an example, one can use the following configuration

parameters:

x ¼ α0; � � �; αψ ; 1
� �T ð4:11Þ

Note that x uses the configuration parameters from the tuple α in matrix A. The
value 1 at the end is used to encounter the error in the estimation model. The

constant, which multiplies with 1, is also sometimes referred to as bias of the model.

Equation (4.10) is both application and platform dependent. In derivation of this

model, note that:

• High-complexity applications with timing constraints (like HEVC) are custom-

ized for specific platforms (e.g., tablets, smart phones). Since the application

designer has the best knowledge of both application and platform, it is

f0,l f0,h Tile 0
(k=0)

Epoch # 0 Epoch # 1
New α0 New α1 Clock

Frequency

Tile 1
(k=1)

Tile ktot-1
(k=ktot-1)

Fr
am

e
0

Fr
am

e
1

Fr
am

e
2

f1,h f1,l

fktot-1,l fktot-1,h

Tile 0
a�ributes

fk reselected
for new Epoch

f0,l f0,lf0,h

f1,l f1,h

fktot-1,l fktot-1,h fktot-1,l

f1,l

Fig. 4.8 Example frequency and workload allocation to collocated tiles using the presented

technique

4.2 Compute Configuration 101

straightforward for the designer to derive this model via regression analysis.

However, this technique is least flexible compared to the next two techniques

presented below.

• Dummy runs of the application in the setup phase can be used to derive this

model.

• For maximum flexibility, the model can also be derived online, at runtime.

Basically, runtime adaptation of this model is achieved by using the technique

presented below.

4.2.5.2 Runtime Frequency Estimation Model Adjustment

The purpose of this technique is to either (a) accurately determine the model

constant ωk or (b) fine-tune the model constants at runtime. The reason being ωk

derived for one platform might not accurately estimate the frequency for other

many-core systems if the system parameters (like processor type, cache size,

external memory and output bandwidth, etc.) are different. Further, scheduling

other applications on the same cores used for the video application will also

fluctuate the total number of cycles consumed for processing. Moreover, some

cores are physically located near the external memory controller and consume

lesser cycles. It is also possible that no such model exists for estimating the number

of consumed cycles, or it is too much of effort. In all such cases mentioned above, it

becomes advantageous to adjust (or derive) the model constants at runtime for an

accurate estimation of the frequency of the core used to process a tile. Therefore,

scenarios where the system parameters are unknown or when the system load

changes, adaptive model derivation or adjustment are of prime importance.

In this book, a technique based upon recursive least square (RLS) filter is used to

adjust/derive ωk for each core at runtime, as shown in Fig. 4.9. After the end of an

epoch, the RLS filter is used to regulate ωk. Every core has an associated RLS filter.

With each frame, in a feedback loop, the frequency adaptation technique receives

C C

ωk

ĉk,α=g(x,ω)
Video Tile
Processing

Recursive Least
Squares (RLS)

xk ck,α

Δc

fk

Epoch
Ended?

ĉk,α
+–

C C
Applica�on

configura�on knobs

Es�ma�on
error

Es�mated
frequency

Fig. 4.9 Frequency estimation model for a core employing a RLS filter

102 4 Energy-Efficient Software Design for Video Systems

the time consumed for processing the allocated tile(s). Let tk present the average

time for processing on the core k. Since the frequency of the core (fk) used for

processing the tiles is known, actual number of cycles consumed per block can be

calculated (ck,α ¼ fk � tk/nk). RLS filter adjusts the model constants ωk at iteration

m by using the formulas:

bck,α ¼ xT
mωk,m�1

H ¼ Em�1xm 1þ xT
mEm�1xm

� ��1

Em ¼ Em�1 � Em�1xmx
T
mEm�1 1þ xT

mEm�1xm
� ��1

ωk,m ¼ ωk,m�1 þ H ck,α � bck,αð Þ
ð4:12Þ

In the above equations, H and E are matrices, and c is a scalar. With every

iteration of RLS, the model constantsωk and the estimation-error covariance matrix

E are updated. Note that in Eq. (4.12), the expression (1 + xi
TEi�1xi) is a scalar;

hence, no matrix inversion is involved while computing (1 + xi
TEi�1xi)

�1. The

takeaway from this discussion is that RLS algorithm can determine and regulate the

frequency model constants ω and reduce the error in frequency estimation at

runtime.

4.2.5.3 Core Frequency Allocation per Epoch

Note that the estimated fk might not be supported by the hardware platform due to

quantized frequency levels. Usually, fk lies in an interval bounded by fk,l and fk,h
(with fk,l � fk � fk,h), where fk,l and fk,h are supported by the hardware platform.

Therefore, we implement a frequency allocation heuristic (see Algorithm 3, dia-

grammatically shown in Fig. 4.8). For every core k, we solve the following integer

linear program:

max ψf g
s:t: f k,m �P ψ f k, l þ z� ψð Þf k,h

z

	

� f k

f k, l � f k,h, ψ 2 Nþ
ð4:13Þ

For consecutive z frames to be processed, the collocated tile k of every frame is

encoded either at fk,l or fk,h. In each epoch, we try to increase the number of

collocated tiles associated with a lower frequency (fk,l in this case, by maximizing

ψ). The high frequency collocated tiles (associated with fk,h) are reduced as much as

possible, while keeping the average processing time under the timing constraint

(determined by FPS).

4.2 Compute Configuration 103

https://doi.org/10.1007/978-3-319-61455-7_BM1

4.2.6 Retiling

If the frequency of all the cores is stuck to fmin or fmax after a specific number of

video frames (λ) are processed, then retiling is performed (see Fig. 4.2).

Mathematically:

NTð Þ ¼ true if f k 2 fmin; fmaxf g,8k ¼ 0; � � �; ktot � 1f g
false otherwise

�
ð4:14Þ

This is given in line 3 of Algorithm 1. It suggests that the estimation model of

ĉk,α (see Eq. (4.10)) used to initially govern the compute configuration (ktot, fm and

αm) no longer applies. This can occur because the estimation model for ĉk,α is no

longer applicable due to the above mentioned workload fluctuations. Hence, the tile

structure is regenerated with the latest model of ĉk,α adjusted by the runtime

statistics of the video application (see Sect. 4.2.5.2). One can take λ ¼ 5z, where
z is the number of frames in an epoch. Basically, 5z number of frames insure that a

considerable number of times the estimation model of ĉk,α is adjusted (according to
Eq. (4.12)).

4.3 Application Configuration

If required, the designer can exploit the user’s tolerance to output video quality for

gaining further power efficiency. In such situations, any workload reduction tech-

nique can be added, and the frequency of the cores can be reduced because, now, the

throughput requirements can be met even at a lower frequency under lower

complexity. In short, the workload fluctuation and user’s tolerance collectively

translate to a workload-driven frequency/power adaptation while satisfying the

throughput requirement. The per subtask/tile workload tuner shown in Fig. 4.2 is

accountable for adjusting the workload. Workload tuning is achieved by picking a

configuration tuple from A (see Fig. 4.7). The application configuration is updated

after every epoch. In addition, since the collocated tiles are highly correlated, the

adjusted configuration is applied to the tiles in the next epoch. Additionally, since

application configuration is application specific, we will use HEVC as a case study,

and the concept can be generalized to other applications.

4.3.1 HEVC Application Configurations

A tuple αk contains HEVC encoder settings for the tile k. As an example, the

following parameters can be used for adapting the HEVC workload at runtime:

104 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

α ¼ α0; α1; α2; α3½ �T ¼ θ; d;QP; nfrm=ktot½ �T ð4:15Þ

Using these settings, we can rewrite x in Eq. (4.11) as:

x ¼ θ; d;QP; nfrm=ktot; 1½ �T ð4:16Þ

Here, θ E {1,. . .,35} presents the total number of HEVC intra-predictions that are

performed per PU (see [6, 7] for details). However, the important aspect is that

increasing θ will increase the probability of generating a prediction that results in

the best compression efficiency. Obviously, this comes at the cost of additional

workload and energy consumption. This situation is depicted in Fig. 4.10a, c, e, g.

The HEVC parameter d E {1,2,3,4} presents the allowable depth of PU subdi-

vision (see details in Chap. 2). Fig. 4.10b, d, f, h plots the impact of d on the

timesavings and bitrate. Notice that by reducing d, the bitrate increases, and the

energy and workload decreases, resulting in reduced compression efficiency. Com-

pared to reduction in θ, although the reduction of d causes a higher energy saving, it
also incurs a higher quality loss (compare Fig. 4.10c–f). Therefore, it is rational to

have θ as the first choice of parameter tuning. Using the above mentioned defini-

tions of θ and d (and keeping the visual quality constant, by keeping quantization

parameter QP constant), one way of writing the configuration matrix A is:

A ¼ 1 2 � � � 35 1 � � � 35

1 1 � � � 1 2 � � � 4

�
T
ð4:17Þ

Further, simulations point that the model to estimate the frequency is highly

dependent upon the parameter nfrm/ktot and this term is also included in computation

of the RLS update Eq. (4.12). The reason to include ktot as the denominator is that

the time required to process a video frame reduces in an inverse relation with the

number of tiles (see Chap. 2). Hence, ωk and x are 5 � 1 vectors, and E is a 5 � 5

matrix due to the five workload tuning parameters (including θ and d) chosen here.
A similar technique can be used for other video applications.

0
100
200
300
400
500

5 10 15 20 25 30 35

1x1
2x1
2x2

θ

Time [msec]

0

100

200

300

400

1 2 3 4

1x1
2x1
2x2

-0.2

-0.15

-0.1

-0.05

0
5 10 15 20 25 30

1x1
2x1
2x2

-0.5
-0.4
-0.3
-0.2
-0.1

0
1 2 3

1x1
2x1
2x2

0

1

2

3

4

5 10 15 20 25 30

1x1
2x1
2x2

0
2
4
6
8

10

1 2 3

1x1
2x1
2x2

(a)

(b)

0
2
4
6
8

10

5 10 15 20 25 30 35

1x1
2x1
2x2

0
2
4
6
8

10

1 2 3 4

1x1
2x1
2x2

(c) (e) (g)

(d) (f) (h)

d

BD-PSNR [dB] BD-Rate [%] Energy [Joules]

θ θ θ

d d d

Increasing
Quality

Increasing complexity

Fig. 4.10 For “Keiba” sequence (832 � 480), impact of θ and d along with trend lines with

different tile settings on (a, b) time per frame, (c, d) BD-PSNR, (e, f) BD-Rate [5], and (g, h)

energy. The anchor/reference encoding is done with one tile, maximum θ and d

4.3 Application Configuration 105

4.3.2 HEVC Configuration Tuning

As discussed earlier, the application configuration parameters (θ, d) are calcu-

lated at the start of an epoch, and they remain fixed for all the collocated tiles in

the epoch as shown in Fig. 4.8. If these parameters decrease the workload, the

frequency fk can be reduced, which will result in lower power consumption of the

system.

However, there must be a feedback mechanism to determine the configuration

parameters for the next epoch. The feedback control monitors the output of the

system and then tunes the knobs of the system to reach the desired output. Inspired

by this, one way of workload tuning at runtime is to monitor the output of the

encoder and then take informed decisions. One variable to monitor can be the

number of compressed bytes (bk) generated after encoding video tiles associated

with the core k. For example, if bk increases, this means that the output quality

degrades and vice versa. Increasing bk points to a worsening encoding efficiency. If
bk increases beyond a certain threshold (τb,k), the workload αk should increase to

balance the degrading encoding quality (see Fig. 4.10). One way to define this

threshold adaptively is:

τb,k ¼ μk bkð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2k bkð Þ

q
ð4:18Þ

Here, μk(bk) is the average and σk
2(bk) is the variance of bk, for all collocated tiles

in epoch. Note that using Knuth’s formula [8], one can update the mean and

variance iteratively with every frame.

For each block within a tile, if threshold in Eq. (4.18) is satisfied, θ is adjusted as:

θk ¼ μk θð Þ þ γk bk � τb,kð Þb cθk,m
γ hð Þ ¼ þψ=2 if h > 0

�ψ if h � 0

� ð4:19Þ

In the equation above, ψ is a user-defined parameter. The concept behind this

technique is that the workload is reduced continuously (i.e., we reduce the number

of predictions tested θ) until there is a surge in the output bitrate owing to a bad

prediction. A larger ψ means that θ is more sensitive to variation in bk and vice

versa. Further, the reduction in number of intra angular predictions tested (i.e., θ) is
stricter compared to increasing θ to sustain a higher video quality. Note that while

employing Eq. (4.19), θk,m (derived in Algorithm 2, αk,m) also saturates θk as it is the
maximum number of predictions tested for the tiles associated with core k. Further,
it is possible that impact of reducing θk to increase the output bytes is not high and

Eq. (4.18) is always satisfied. If θk reaches a minimum possible value (θmin ¼ 5, see

Fig. 4.10), the workload is reduced further by shifting d to the next lower level. If

the output bytes increase and θk ¼ θk,m, the next higher dk (dk � dk,m) is selected.
Note that this technique is equivalent to picking the next workload configuration

tuple from the matrix A.

106 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

If a certain number of frames have been processed or bk exceeds another

threshold (denoted by τb,k,m), we may reset (θk,dk) ¼ (θk,m,dk,m) for the current

epoch. One way of mathematically describing this condition is:

bk > 1þ εð Þτb,k,m ð4:20Þ

In this equation, τb,k,m equals bk of the most recent tile with (θk,dk) ¼ (θk,m,dk,m).
The reason for resetting the configuration parameters to their maximum quality

configuration is that scene changes or sudden appearance of high texture scenes

might worsen the prediction quality. For example, a sudden scene change will cause

the ME quality to drop. Similarly, highly irregular texture scenes might make fast

intra predictions ineffective in capturing the texture flow. In such cases, there will

be sudden increase in bk, and the above condition will be met. Hence, the best

possible compression configuration should be applied to achieve highest video

quality for the given throughput constraints.

Referring again to the above equation, ε is a user-defined tolerance metric for bk
increase. Higher tolerance will result in overall reduced workload and vice versa.

For example, if bk of current tile is greater than τk,m by 5% (ε¼ 0.05), the respective

tile in the new epoch is encoded with maximum workload configuration and

frequency (and maximum power).

4.3.3 HEVC Parameter Mapping

In the previous section, it is shown that the decrease in workload is achieved by

curtailing α (i.e., reducing θk and dk). However, one must sensibly include the best

possible selection candidate for both θk and dk while curtailing the workload by

exploiting HEVC-specific properties. In this way, the degradation of output quality

will be smaller (or none), and the workload of the application can be further

curtailed to increase throughput-per-watt.

4.3.3.1 Intra Mode Estimation

The individual pixels in a PU can provide a hint to the possible texture flow

direction if their gradients (generated via Sobel edge filtering kernel) are accumu-

lated. This texture flow direction can be used to estimate the vicinity of the best

intra angular prediction. It is noteworthy that computing gradients is a time-

consuming operation, and not all pixels correctly suggest the actual direction of

intra prediction mode that is finally selected after a brute-force search. Only the

pixels that lie on the boundary of an edge may rightly hint the final prediction

selected by the intra encoder (see discussion in Chap. 3). Thus, to increase the speed

of computations, it is advisable to avoid performing gradient extractions on pixels

4.3 Application Configuration 107

that will not contribute positively towards estimating the final intra angular predic-

tion with high precision.

To estimate the final intra angular prediction with high accuracy and to reduce

the time complexity, a technique is shown in Fig. 4.11a. As seen, a complete CTU is

preprocessed before being provided to the HEVC intra encoder. Firstly, seed pixels

and seed intra angular modes are extracted from the CTU (shown in Fig. 4.11b) and

stored in a memory. Subsequently, only the contents of this memory are used to

estimate the most probable intra angular prediction that will be selected by the

brute-force search process. Moreover, two complexity knobs (sr and θ) are also

available for the user using which a user can leverage the computational complexity

with the quality of the estimate.

To avoid complexity overhead due to the Sobel operation, only two pixels with

largest running difference on the boundary of the block sr � sr are used for

generating gradient magnitudes and direction. Afterwards, a histogram of gradient

angles is created using gradient magnitudes as weights. This histogram is sorted and

the first θ angles within the sorted list are used for intra angular estimation. The

value θ can be selected as given in Eq. (4.19).

Evaluation of Fast Prediction Estimation Technique The evaluation of the early

prediction mode estimation techniques for HEVC intra encoding is carried out

using our in-house ces265 video encoder [10] (for more information, see Appendix

B). These evaluations are conducted on a computer, with 2.7 GHz Dual-Core Intel

CPU and 8 GB RAM. To avoid any outliers and other influencers, only a single

thread of ces265 is used for evaluations.

The resulting video quality comparison in terms of BD-Rate and BD-PSNR and

timesaving are given in Fig. 4.12. In Fig. 4.12a, θ is fixed for both the presented and
state-of-the-art [11] techniques, whereas in Fig. 4.12b, adaptivity of both tech-

niques is enabled. Note that the technique presented in this book with sr ¼ 4

provides the best timesaving but also results in the largest video quality loss.

Using sr ¼ 2 delivers a good balance between the timesaving of the presented

Step # 1 (Single-pass only for complete CTU)

Step # 2

Edge Filtering:
Low Complexity,
1-D, Decimated

Edge Filtering:
High Complexity,

2-D, Sobel
Seed Mag.
and Angle

Histogram
Genera�on
Histogram

Sor�ng

Step # 3
Test θ Intra

Angular Modes

Step # 4

Use Bias for
Next PU

CTU

PU Under
Test

arg max(…)

arg max(…)

Running Difference Rows (RDRs)

Maximum locat ion
to In tra Angular
Mode selec t ion

−
−
−
−

sr

(a)

(b)

− − − −

Fig. 4.11 (a) Fast intra

angular mode estimation,

(b) seed pixel extraction

process for sr ¼ 4 using [7]

108 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

technique compared to [11]. With a fixed θ ¼ 5, the additional timesaving of this

technique compared to [11] including the overhead of the technique is 18% and

32% for sr ¼ 2 and sr ¼ 4, respectively. For adaptive θ, the additional timesaving

compared to [11] is 27% and 44%, respectively. The formula to calculate the

timesaving is:

timesaving %½ � ¼ tbaseline � tð Þ=tbaseline � 100 ð4:21Þ

In this equation, tbaseline is the time spent by the encoder without any complexity

reduction technique. Similarly, to compute BD-Rate and BD-PSNR, the PSNR of

the video sequence is required. In this case, PSNR for a particular QP is computed

via:

PSNRQP ¼ 4� PSNRY þ PSNRCb þ PSNRCr

6
ð4:22Þ

4.3.3.2 PU Depth and Size Selection

From the discussions in the previous chapters, we notice that HEVC tests every PU

size in order to determine the PU structure, which results in the best compression.

The application configuration discussed above, however, limits that a PU should

only be tested for a selected number of depths (denoted by d). Unfortunately, using
PU sizes, which are far off from the actual PU size selected by brute-force

processing, dents the compression performance of the encoder. For example, if

allowable d ¼ 1, then the encoder has only a single pass to determine the PU

structure of the complete CTU. For example, in this case, the encoder may only use

a single PU of the same size as the CTU. For CTUs encompassing high variance

0
2
4
6
8

10

-0.5

-0.3

-0.1

0
25
50
75

A B C D E F G H I J Avg.

0
2
4
6
8

10

-0.5

-0.3

-0.1

0
25
50
75

A B C D E F G H I J Avg.

BD
-R

at
e

[%
]

BD
-P

SN
R

[d
B]

�
m

e s
av

in
g

[%
]

Sequence ID A B C D E F G H I J

Name Foreman Ballroom Vassar BasketballDrill BQMall Keiba RaceHorses FourPeople KristenSara BQTerrace

Resolu�on 352x288 640x480 640x480 832x480 832x480 832x480 832x480 1280x720 1280x720 1920x1080

FPS 30 30 30 50 60 30 30 60 60 60

SOA sr=2 sr=4 SOA sr=2 sr=4
(a) =5 (fixed, no hierarchy) (b) qq =adap�ve

Fig. 4.12 Comparison of video quality (BD-Rate and BD-PSNR [5]) and timesaving for the

presented mode estimation technique with state-of-the-art (SOA) [11] technique, using (a) fixed

and (b) adaptive number of angular modes

4.3 Application Configuration 109

regions, this can result in compression loss. Another example could be to select

regular PU sizes (say 8� 8) for the complete CTU. Once again, overhead due to PU

headers and other auxiliary information will reduce the compression efficiency. In

short, none of the simpler techniques will result in high compression efficiency.

Therefore, an adaptive technique is required to predetermine the PU structure of the

CTU while accounting for the video content (texture).

The PU structure selection technique presented here works according the flow-

chart given in Fig. 4.13 and Algorithm 4. In the first stage, the complete CTU is

divided into subblocks of size 4 � 4, and variance of each subblock is calculated,

which is a scalar. Afterwards, the PU structure is generated iteratively, by jointly

considering the variance of the neighboring blocks. That is, the neighboring four

subblocks are combined/joined into a larger block if they fulfill all of the following

conditions:

• All four subblocks have identical size.

• Their corners join at a single point.

• All four subblocks have a variance less than a threshold (discussed below).

• The variance of the combined subblock is also less than the threshold.

Once the above technique is used for subblocks of size 4 � 4 for the complete

CTU, the algorithm repeats with subblock sizes of 8 � 8, until finally it cannot

combine any four neighboring blocks. This PU structure is called as PU map

(PUM).

If the required depth (d) for processing is set to 1, then PUM is used for

encoding, and all other possible PU structures are discarded. If the depth is set to

2, then the adjacent/neighboring four subblocks of equal sizes are directly com-

bined without checking the variance thresholds to form a PUM Above (PUMA),

and only PUM and PUMA are used for picking the best PU size while encoding the

CTU. If it is not possible to combine any subblock from PUM to form PUMA, then

the PUMA consists of all 4 � 4 PUs.

CTU variance
computa�on for 4×4

Recursive 4
neighbors merge

PU Map (PUM)

PU Map Above
(PUMA)

HEVC CTU
Compression

Fig. 4.13 PU structure

determination technique by

using the variance of the

subblocks

110 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

An important feature of the above algorithm is to find the variance (v) of the
combined subblock. This will incur additional overhead if we revisit the value of

every sample in the combine block. However, this overhead can be reduced by

using Chan’s formula [12]:

μ; vð Þ ¼ μ1 þ μ2
2

;
2 n� 2ð Þ v1 þ v2ð Þ þ μ1 � μ2ð Þ2n

4 n� 1ð Þ

 !
ð4:23Þ

This equation relates the resultant mean and variance (μ, v) of a combined block

of n entries, from two blocks, with mean and variances as (μ1, v1) and (μ1, v1),
respectively, having n/2 entries. The computational burden can be further reduced

by simplifying Chan’s formula:

μ; vð Þ � μ1 þ μ2
2

;
2 v1 þ v2ð Þ þ μ1 � μ2ð Þ2

4

 !
ð4:24Þ

This formula is derived by approximating (n�1) and (n�2) as n (for n E {32,

64, 128. . .}).

Evaluation The results reported in Fig. 4.14 show the impact of the complexity

reduction technique presented in this section for HEVC intra encoder. Figure 4.14a,

b provides the BD-Rate and BD-PSNR comparison of this technique against the

0

2

4

BD
-R

at
e

[%
]

-0.1

-0.06

-0.02

0

20

40

60

BD
-P

SN
R

[d
B]

tS
av

in
gs

 [%
]

(a)

(b)

(c)

Fig. 4.14 (a) BD-Rate, (b) BD-PSNR, and (c) timesaving for the presented PU structure estima-

tion technique

4.3 Application Configuration 111

RDO (or full search) for different sequences. On average, the technique presented

here incurs a BD-PSNR loss of �0.048 dB, which is insignificant compared the

state-of-the-art technique (�0.1184 dB) [13], which also uses two levels of PU size

selection.

The percentage timesaving of this technique for different video sequences is

presented in Fig. 4.14c. The time complexity is compared with the reference

implementation. Note that up to 57% timesaving is achieved, for sequences with

diverse texture and motion properties.

4.4 Workload Balancing on Heterogeneous Systems

In previous sections, the focus was mainly on distributing the processing to the

compute nodes. However, it is not stated how the nodes can be prioritized for

distribution of subtasks. Logically, a compute node with high power efficiency must

be allocated a larger quota of subtasks compared to a node with lower efficiency.

For example, a hardware accelerator might be much more efficient than a soft-core;

therefore, the hardware accelerator should be utilized maximally to increase the

throughput-per-watt.

Continuing with our previous discussion, this section will focus on workload

distribution and balancing on heterogeneous nodes. These nodes will be working

together in synergy to handle the application’s throughput demands. Here, we will

revert to use the term compute node instead of the core. Once again, the reader can

draw an analogy among tasks (video frames), subtasks (tiles), and jobs (image

blocks). The reason to use these terms is that the technique presented here is not

limited to video applications.

4.4.1 System Model

Consider an application, which should compute its multiple allocated tasks (also

termed as the application’s load), that is scheduled to run on a heterogeneous

system with multiple nodes. The application consists of multiple independent

tasks. A task i can be subdivided into ni subtasks, and the subtasks can be executed

in parallel. A node must process its assigned subtasks within a deadline (ti,max).

The heterogeneous system consists of rtot total nodes. The technique which we

will present here selects only ktot nodes (ktot � rtot) for sustaining the throughput of

the application. It will also determine their voltage and frequencies (fk for node k),
which determines the power consumed by these nodes (pk). Note that the frequency
of the node is a function of the number of subtasks allocated to the node (ni,k), the
throughput requirement, and the cycles consumed to process a job on node k (ci,k), as
will be discussed later.

112 4 Energy-Efficient Software Design for Video Systems

The compute nodes can either be soft-cores, accelerators, GPUs, etc. No

assumption is made about the sustainable throughput and power consumed by

these nodes. That is, each of these nodes can sustain a different throughput

compared to others and can consume different power for equivalent throughput.

Furthermore, a node has either a program written in software layer to process the

assigned jobs or has a custom hardware unit implemented in the hardware layer to

process the given job.

The target of the technique presented here is to minimize the total power

consumed by the heterogeneous system (ptot) while meeting a certain throughput

constraint. Mathematically, the optimization goal is:

min ptot ¼
Xrtot�1

k¼0

pk f kð Þ
 !

s:t:
f k 2 0ð Þ [ψ j fmin � ψ � fmaxð Þf g 8k 2 0; � � �; rtotf g

ti,k � ti,max 8k 2 0; � � �; ktotf gXktot�1

k¼0

ni,k ¼ ni

ð4:25Þ

This optimization problem advises that a node can either be power gated (with

fk ¼ 0) or its frequency range can be between permissible limits. However, each

parallel computing node must finish the tasks within the deadline ti,max, while the

cumulative number of subtasks processed by individual nodes should equal the total

number of subtasks.

To solve the load distribution and balancing problem given above, it is essential

to address some issues. First, determining ktot (the actual number of nodes used for

processing) is unknown beforehand, and it is used as a constant in the optimization

problem. Secondly, the frequency of a node is permissible to have values within

two distinct ranges (i.e., either it can be 0 or between fmin and fmax), which will

create problems for the optimization algorithm. Moreover, the variables used in

Eq. (4.25) must be derived in terms of tunable system parameters for optimization,

which might be cumbersome. Owing to these issues, a heuristic can be efficiently

utilized, as explained below.

4.4.2 Load Balancing Algorithm

The resource allocation and load balancing technique is shown in Fig. 4.15 and

Algorithm 5. In summary, the load balancing technique on heterogeneous systems

is a two-step process:

• Collecting the compute and power profiles of all nodes and computing an

“efficiency index” of each node.

4.4 Workload Balancing on Heterogeneous Systems 113

https://doi.org/10.1007/978-3-319-61455-7_BM1

• Actual load distribution technique, which allocates the subtasks among the

nodes, depending upon the metrics computed in the first step. Further, the

compute and power profiles can be additionally used for selecting the appropri-

ate clock frequency of the nodes.

For the first step, the power profiles (a function to map frequency of the node to

the power consumed by the ndoe, p(f)) of all the nodes are collected. This can be

done using online power measurement (e.g., using Intel Power Gadget and reading

MSR registers) or by exploring the datasheets of the nodes. Afterwards, the average

power over the available frequency range or operation modes (pk,μ) is computed.

Moreover, the maximum average power for all nodes (pμ,max) is determined as:

pμ,max ¼ max
8rtot nodes

pk, μ
� � ð4:26Þ

In this equation, for simplicity, it is presumed that the power profile of the nodes

is independent of the type of the task. To encounter this, task-based average power

calculation can be employed. Further, the time taken by a task is defined as the

maximum time taken by any node to process its assigned subtasks. In addition, this

algorithm collects the cycles consumed to process a subtask associated with task

i on a node k (given by ci,k) for all the nodes. For this, an expression can be derived
using either offline regression analysis or online dummy runs of the application

during setup as discussed in the previous section. Similarly, the maximum cycles

consumed by a node to process a subtask of task i (ci,max) are also determined. Using

ktot

Sorted
List of
Nodes

ktot = 1

Start with
min Freq.fk = fk,min

Start with
min Freq.
Num. of
Subtasks

Time ti,k
Es�mate

ti,k > ti,max ?

Start

End

Increment
fk by a step

For any
node

ti,k > ti,max ?

ktot = ktot + 1

ktot <
rtot?

N
od

e
0

fi < fmax ?

Load Distribution

ktot

InitializeNodes Info
Database

…
……

…

Fig. 4.15 Workload distribution and balancing technique on heterogeneous nodes using effi-

ciency index of the nodes

114 4 Energy-Efficient Software Design for Video Systems

these metrics, the efficiency index for a node k (ϕk) can be computed using various

system metrics. In the following, some example formulations of ϕk are given:

Formulation 1 ϕk,1 The efficiency index of a node k is the ratio of the maximum

number of cycles and power consumed to process a task i, for all the nodes, to the

cycles and power consumed by the node k.

ϕk, 1 ¼
ci,maxpμ,max

ci,kpk,μ
ð4:27Þ

Formulation 2 ϕk,2 The efficiency index of a node k is the ratio of the maximum

cycles spent in processing a task i for all the nodes to the cycles consumed by the

node k.

ϕk, 2 ¼
ci,max

ci,k
ð4:28Þ

Formulation 3 ϕk,3 The efficiency index of a node k is the ratio of the maximum

average power for all the nodes to the average power of the node k.

ϕk, 3 ¼
pμ,max

pk,μ
ð4:29Þ

Formulation 1 indicates that the node, which consumes the least cycles and

power to process a job, has higher computation efficiency (throughput-per-watt).

Therefore, it must be preferred for use if a higher throughput-per-watt metric is

essential. Similar argumentation can be made for formulation 2 and 3. Other

formulations of the efficiency index can account for other metrics, e.g., network

hops among the nodes, external memory access latency of the node, the amount of

on-chip memory that a node possesses etc.

After compute statistics for all the nodes are gathered, the actual load distribu-

tion algorithm commences as shown in Fig. 4.15 and Algorithm 5. Nodes are

adaptively introduced to share the load of the application, and their frequencies

are tuned such that the system consumes minimum amount of power.

At start of the algorithm, the nodes are ordered in a list (gϕ) with descending

efficiency indices (Algorithm 5, line 1). Every time a new node needs to be

introduced for distribution of the subtasks, the next node from this list is considered

(line 19). The processing starts with only one node (having the highest efficiency

index max(ϕ) 8 ktot) with its minimum frequency (fk ¼ fk,min, line 5). That is, the

complete load is allocated to this node (ni,k ¼ ntot). Afterwards, the time spent by a

node to process the workload is given by the formula:

4.4 Workload Balancing on Heterogeneous Systems 115

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

ti,k ¼ ci,kni,k
f i,k

ð4:30Þ

In case the timing constraints are not satisfied (ti,k > ti,max), the frequency of this

node is increased by a single frequency step until fi,k ¼ fk,max. If fi,k ¼ fk,max and the

timing constraints are still not met, the frequency cannot be increased further, and

another node is introduced (ktot ¼ ktot + 1). The next node is fetched from the

efficiency index array gϕ. The algorithm starts again with minimum power config-

uration (fi,k ¼ fk,min) for all ktot nodes. The load is distributed to a node k using the

following relation:

ni,k ¼ niϕkPktot�1

j¼0

ϕj

ð4:31Þ

The basic idea of load distribution is that the node with the highest efficiency

index gets the most load. Once again, the time that will be consumed by a node

while processing ni,k subtasks can be estimated using Eq. (4.30). In case a node is

incapable to process the allocated number of subtasks within ti,max, its frequency is

increased. If any node is at its maximum power capacity and the system still cannot

meet the throughput requirement, another computation node is introduced and the

process is repeated. If all the nodes meet their deadlines, the algorithm stops and the

compute configuration, which can sustain the application’s load, is determined.

4.5 Resource Budgeting for Mixed Multithreaded

Workloads

One can exchange the goals and the constraints in Eq. (4.4), and the goal of the

optimization changes to maximize the throughput of the system or an application,

under a given power constraint (e.g., TDP, power wall). This optimization construct

is particularly valuable for batch processing, high processing computing and offline

video processing. If power constraints of the system are not specified, the tech-

niques mentioned in Sects. 4.2 and 4.4 can be extended by running each core at

maximum frequency.

In such cases, we must determine the appropriate compute configuration for the

given power budget (ptot). We can easily extend the compute configuration selec-

tion goal programming problem to account for power consumption. However, this

resource distribution becomes challenging if multiple tasks with associated sub-

tasks and jobs are running in parallel. This is a more realistic and challenging

scenario, which is considered in this section.

Every independent task can represented as a separate application, and therefore,

the application index a and task index i can be used interchangeably in the coming

116 4 Energy-Efficient Software Design for Video Systems

text, i.e., a ¼ i. Note that in this section, the resources of a task i are given by the

number of cores ki and power pi associated with the task. For video applications,

this resource budgeting scenario is applicable to multicasting scenarios (see Sect.

2.2.2), whereby every encoder is an isolated application trying to encode its video

frames (i.e., tasks) and each video frame can be divided into tiles (i.e., subtasks).

Each tile is made of multiple image blocks (jobs).

This section presents a multi-granularity resource budgeting technique for

multithreaded workloads at different levels (i.e., among tasks and within tasks).

The complexity of the resource distribution problem is reduced by a hierarchical

budgeting method, which also provides performance isolation and fairness among

applications running these tasks. The resource distribution tries to meet the through-

put requirement of all tasks. Summarizing, the problem addressed by the technique

presented here is: “how to budget resources and TDP among different tasks/

applications, such that the throughput of concurrently executing, multithreaded

applications is maximized?” Since each multithreaded application will require

multiple cores for executing its workload, we denote the set of cores allocated to

a multithreaded application as a “cluster.” The technique discussed in this section

(outlined in Figs. 4.16 and 4.17) executes the following key operations:

• Selecting Number of Cores (i.e., Cluster Size): For a given task, the number

of required cores is estimated that fulfills its throughput constraints based upon

the task’s characteristics, performance constraint, and underlying resources.

• Cluster-Level Power Budgeting: For a given power budget of the whole chip and
considering the unpredictability in power demand of different tasks, a global

cluster-level power allocator distributes the power to the clusters at a coarse

granularity. The budget allocation depends upon cluster’s characteristics and the
feedback error in power budgeting.

• Intra-cluster Power Budgeting: An intra-cluster, local power allocator distrib-

utes the cluster’s power budget to the individual cores of the cluster at a finer

granularity. This power distribution depends upon the workload of the specific

core. The operating frequencies of the cores are adjusted to satisfy the upper

limit on the power consumption of the cluster.

App0
App0

Resource
Budge�ng

Inter Cluster (App)
Power Budge�ng

C0 f0,0

η0,0 App0

C2 C3 f0,3

C1 f0,1

Intra Cluster 0 Power
Budge�ng (DVFS)

η0,1

η0,3η0,2

f0,2

η0,0 η0,1

η0,2 η0,3

η0

Monitoring
Unit

Cluster 0 (App0)

Counter –
η0 per second

Many-core chip
with per-core DVFS

Throughput
Adjustment

0 1

2
Throughput

Requirements
Applica�on

Configura�on

η0,4 η0,5

Fig. 4.16 Resource budgeting for mixed multithreaded workloads

4.5 Resource Budgeting for Mixed Multithreaded Workloads 117

Summarizing, this technique is a two-step process. First, it determines the cluster

size and power of all the applications. Afterwards, the power is divided among the

constituent cores of the cluster. For illustration of this technique, a homogenous

many-core chip with per-core DVFS and uniform tiling is considered. The global

intercluster resource and power budgeting take into account (a) the performance

history of the application, (b) the throughput requirement of the application, and

(c) the operating mode of the application. Further, this distribution is tuned at

runtime after every epoch (e.g., a set of tasks like GOP or after a specific time)

based upon the tasks’ requirements and the assigned budgets. Once the inter-cluster

resources and powers have been budgeted, the intra-cluster budgeting commences

and decides the best frequency (fi,j) of each core under cluster power budget cap.

Each cluster is accountable for processing a task i (ηi) within the time ti,max. Each

tasks consists of multiple subtasks (ηi,j). Each core in the cluster is responsible for

processing a subtask. A task is deemed finished if all cores within the cluster finish

processing their respective subtasks. The technical challenge is to define the right

number of cores and their frequencies within a cluster, in order to fairly maximize

the throughput requirements of all the tasks (ηi processing time < ti,max) under the

power budget (ptot) of the complete chip.

4.5.1 Hierarchical Resource Budgeting

The detailed operational flow of the hierarchical resource budgeting technique is

illustrated in Fig. 4.18. This technique distributes power among atot concurrently
executing multithreaded tasks/applications, competing for rtot total cores and ptot
total power budget. In this discussion, multiple tasks form a single epoch. After

each epoch, the inter-cluster resource and power budgeting are triggered to adjust

resource distribution to every cluster. The intra-cluster power budgeting is executed

to adjust the power of each core after every completed task (ηi).

… … …… …

Intra-cluster (pi,j) power budget ing
Frequency adjustment frames

Cluster size adjustment frames
Inter-cluster (pi) power budget ing
Throughput adjustment

ptot

p0
p1

patot-1

p0,0
p0,1

p0,ki-1

……

Power distribu�on

Epoch

Fig. 4.17 Resource

budgeting timeline

118 4 Energy-Efficient Software Design for Video Systems

A task i is accompanied with a user- or pre-defined ti,max seconds for processing

ηi with ni total jobs. This corresponds to each core in the cluster i trying not to take

more than ti,max seconds to process its allocated subtask (ηi,j). The number of jobs

within a subtask j of task i is denoted by ni,j. The optimization problem solved in

this technique is thus:

maxfmin8i 2 tasksf1=ðtiÞgg
s:t:
ti ¼ maxfti, jg � ti,max 8ηi, j 2 ηi,8 tasksP

8 tasks ki � rtot,
P

8 tasks pi � ptot
f i, j 2 ffmin, � � �, fmaxg 8 cores

ð4:32Þ

The basic processing steps for allocation of compute resources and power budget

(given in Algorithm 6) with reference to the above optimization problem are as

follows:

1. Determining the size of a cluster i (the number of cores, ki) that is allocated to a

particular multithreaded application, in order to satisfy the quality of service

constraint (line 2). The cluster size is constrained by the available cores.

2. Performing cluster-level power budgeting such that the total power of the system

does not exceed the TDP budget (line 3). Therefore, it is possible that not all

enabled cores run at maximum frequency-voltage setting.

3. Fine-grained (intra-cluster) power budgeting among the cores within a cluster

(lines 4–5), by only considering discrete set of frequencies of the cores.

4. Adjusting the power/frequency of individual cores within the cluster, depending

upon the input data and power consumption (lines 10–12). The voltage of the

cores is also scaled accordingly.

Note that OS or a specialized core within a cluster can perform the overall

management (selecting cluster sizes, power distribution, etc.) after a control period.

In the following, each key factor of this technique will be explained with reference

Cluster Size (ki)
Selec�on

Throughput (ti,max)
Adjustment

Regression
Analysis

Monitoring Unit:
Offset per Cluster (xo,i no,i), Power per Cluster (pi)

Inter-Cluster (pi)
Power Budge�ng

Power History
per Cluster (μi)

App Sta�s�cs
and Frame (ηi)

size informa�on

Frequency
Selec�on

Subtask
Processing

Power Es�ma�on

−

+Accumulator no,i

Run�me Subtask
Power Adjustment

for new Task

Intra-Cluster Power
Distribu�on for

New Epoch

Cluster i, Cores kiNew Epoch signal

Allowed Freqs (fset) Subtask ηi,j

pi,j

Offset no,i,j

ti,j

Deadline of task i, ti,max

pi

Max
Offset

+
k‘i

1

Min
Offset

xo,i sort
+

ψ

1
ti,max

Offset of task i

Fig. 4.18 Details of the multi-granularity power budgeting technique. For simplicity, only one

application is shown

4.5 Resource Budgeting for Mixed Multithreaded Workloads 119

to Fig. 4.18 and Algorithm 6. For ease of explanation, discussion will start from

intra-cluster power distribution and adjustment (steps 3–4) and end with the selec-

tion of appropriate cluster size (step 1).

4.5.2 Intra-Cluster Power Budgeting pi,j

Assume that the number of cores within the cluster i (ki) and the power (pi)
provided to the cluster (which process the task ηi) are known. pi is distributed

among the constituent cores of the cluster. Each core handles a single subtask j (ηi,j),
i.e., ηi is divided into ki subtasks. However, it is possible that the workload of each

subtask differs from the rest. For example, in video applications, one of the video

tile might have high motion content that will result in larger workload compared to

the rest (see Fig. 3.5). This subtask can then become a critical path and will hurt the

throughput of the application. Therefore, the intra-cluster power budgeting tech-

nique presented here is based upon workload of the subtasks, by budgeting more

power to critical subtasks.

For the first iteration of intra-cluster power budget distribution (Algorithm

6, lines 4–5), the jth core of the cluster i is allocated power pi,j using the equations:

pi, j,Alloc ¼ pi þ pi,d
� �� ni, j=ni

pi, j ¼
pi, j,Alloc if pi, j,Alloc < pmax

pmax otherwise

(
pi,d ¼ pi, j,Alloc � pi, j

ð4:33Þ

These equations point out that each core is allocated power depending upon the

number of jobs within its respective subtask. Given the power of a core, frequency

of the core (fi,j) can be determined using techniques similar to [14, 15]. The

relationship between power and frequency of a core can be approximated with a

linear equation (Δp ¼ ψΔf, where ψ is a design time parameter). However, since

the frequency set (fset) is quantized and a core cannot run at a power larger than

pmax, therefore, frequency out of only a specific frequency set can be selected for

the core. At this particular frequency, the core jwill consume power, pi,j. Therefore,
the difference (pi,d) between the allocated (pi,j,Alloc) and consumed (pi,j) powers is
added while allocating power to the next core in the cluster. Note that it is possible

that pi,j < pi,j,Alloc because the power consumed by a core j might be lesser than the

actual power allocated to the core.

Once the power of each core and a particular frequency connected with it is

determined, the application can start (Algorithm 6, lines 9–11). Due to varying

workload of each ηi,j, it is conceivable that the time consumed by a subtask (ti,j)
differs from the rest and also varies at runtime. For every subtask, a variable no,i,j is
used to determine the offset (or misprediction) of the power/frequency of each core:

120 4 Energy-Efficient Software Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

no, i, j ¼ ti, j � ti,max ð4:34Þ

A large positive value of no,i,j denotes more power should have been allocated to

the core and vice versa. This is because for the subtask j running on a core, a large

amount of time ti,j is taken compared to the deadline ti,max, and therefore, the core

running the subtask j should be allocated more power. Further explanation about no,
i,j can be found in Fig. 4.19.

Frequency Adaptation In this step, power is taken from a core with a smaller

workload and given to the core with a larger workload. Power exchange among the

cores of the cluster occurs, if the new allocated power of the cores does not violate

the cluster power budget.

If at runtime, the workload characteristics of subtasks are changing or the system

load varies due to parallel running applications, it becomes essential to exchange

power among cores within a cluster. After a task is processed, no,i,j for all threads of
the application i is collected. The cores with larger no,i,j should have their frequen-

cies elevated. However, since a power quota is allocated to the application, a

priority-based algorithm increases or reduces the power of the cores. This process

is outlined in Algorithm 7. At first, the subtasks are sorted by their no,i,j magnitude

(Algorithm 7, line 1). The algorithm iteratively checks if there are some subtasks

with no,i,j > 0. This subtask is termed as Thigh and this is the critical subtask of the

application, as it consumes the most time. In case such subtasks exist, the remaining

subtasks are searched having no,i,j lesser than the critical subtask and are called

Tlow. The algorithm tries to take power from Tlow and give that power to Thigh. This

causes an increase in the frequency of Thigh while reducing the frequency of Tlow by

a single frequency step. If after this exchange, the power consumption of the cluster

is lower than the allocated power to the cluster, the change in frequencies is

accepted, and the algorithm searches for next subtask pairs to adapt. Note that

this algorithm will only continue if no,i,j of at least one of the remaining subtasks is

greater than 0 and greater than no,i,j of at least one other subtask.

4.5.3 Inter-Cluster Power Budgeting pi

If the cluster size (ki) is known, the TDP system (ptot) can be distributed among the

atot concurrently executing tasks with every epoch (Algorithm 6, line 3). Note that

no,i,0
no,i,1

no,i,2
no,i,3

+ + + +

+

no,i no,i no,i no,i

xo,i

no,i,0
no,i,1

no,i,2
no,i,3

no,i,0
no,i,1

no,i,2
no,i,3

no,i,0
no,i,1

no,i,2
no,i,3

Fig. 4.19 Concept of offset

per subtask, task, and epoch.

An example four-core

cluster is shown, where each

core processes a single

subtask and generates

subtasks offset no, i, j

4.5 Resource Budgeting for Mixed Multithreaded Workloads 121

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

TDP is less than the sum of maximum power consumption of all the cores, thus

defining the amount of dark silicon. The intercluster power budgeting is a two-step

process. In the first step, the power budgeted to a cluster i (pi) after an epoch is

given by the following relation.

pi ¼ ptot �
ki þ μ pið Þð ÞPatot�1

j¼0 kj þ
Patot�1

j¼0 μ pj
� �� � ð4:35Þ

In the above equation, ki-dependent terms try to budget more power to the cluster

with larger number of cores. However, it is possible that the power of the cluster

diverges under workload demands. Thus, another factor μ(pi) is used to account for
the task i’s power consumption history in the previous epochs (e.g., previous five

epochs). In this equation, μ(pi) denotes the expected (average) power of the i
th task

for the previous epochs and acts as a feedback variable to the inter-cluster power

budgeter. Therefore, a task with high power consumption history is allotted more

power. For the first epoch, average power of all tasks is zero, and hence every core

of the system gets an equal amount of power. Further, note that the summation of

powers of all clusters will result in power � ptot at any time instance. Note that this

inter-cluster power budgeting is different than a control-based power adjustment

technique discussed in [14], which requires a feedback loop and a tuning parameter.

Power Adjustment For the next epoch, the technique presented here tries to

budget more power to a cluster processing a high-complexity application. This is

the second step of power budgeting process, where the actual power allocated to a

cluster (pi) is based upon the offset information from all the tasks (no,i, see

Fig. 4.19). For each task i, no,i is computed by:

no, i ¼
Xki�1

j¼0
no, i, j ð4:36Þ

For a complete epoch, no,i of each task is accumulated in xo,i (see Fig. 4.19 for

reference). If there is a task amax with nonnegative, maximum xo,i among all tasks, a

part of the power from the task amin with minimum xo,i, is taken and given to this

task. Mathematically, this process is defined as:

Δp ¼ pamin=ψ1, pamax ¼ pamax þ Δp, pamin ¼ pamin � Δp ð4:37Þ

In this equation, ψ1 is a user-defined parameter or a design constant and

regulates the amount of power shifted from the low-complexity task to the high-

complexity task.

Throughput Adjustment If the maximum xo,i among all tasks is negative, it

means that all tasks are meeting their processing deadlines. Since TDP budget

can be fully utilized, more power can be pumped into the system to gain higher

throughput. Therefore, the algorithm tries to escalate the throughput requirements

122 4 Energy-Efficient Software Design for Video Systems

of the applications internally, such that they demand more resources. In this

technique, ti,max for the next epoch is decreased using:

ti,max ¼ ti,max

ψ2ti,max þ 1
ð4:38Þ

The user-defined factor or a design constant ψ2 denotes the amount of change in

ti,max. A higher value of ψ2 will reduce ti,max quicker. If the goal is only to meet the

deadline, then one can ignore this procedure.

4.5.4 Selection of Cluster Size

Note that unlike [14, 16, 15], which only target to increase the average instructions

executed per second of all single-threaded applications, the technique presented

here introduces a timing constraint (deadline, ti,max). The resource distribution

technique tries to meet this deadline for every task. This deadline can be specified

for the complete run of the application or for processing individual tasks of the

application. The task-based deadline is a more realistic concept for streaming and

image, video, and audio processing applications.

For selecting ki, the technique presented here uses the maximum allowable time

(ti,max) of the task i for processing a single task ηi (Algorithm 6, line 2). To keep the

processing time below ti,max, the available cores (rtot) that can be distributed among

different tasks are considered. All cores run at some frequency f at startup. Using
this frequency, it is possible to estimate the total number of cores required for

processing a subtask within ti,max:

k
0
i � g ti,max; ηi; fð Þ ð4:39Þ

This equation relates ti,max, the characteristics of ηi, and the minimum number of

expected cores (k0i) that can sustain the workload of the application i. This equation
can be generated using offline statistics or regression analysis [17, 18]. This equa-

tion can also be derived using the technique outlined in Eq. (4.10). For example,

using a core i7 at 3.4 GHz frequency (fixed), the time consumed for encoding a

video frame/task via HEVC, with nfrmCTUs/jobs and ki tiles/subtasks, is given by:

ti, 3:4G ¼ �1:844þ 0:01827nfrm þ 0:5441nfrm=ki ð4:40Þ

However, note that this equation can be scaled and used to approximate the time

consumed for any other frequency f via:

4.5 Resource Budgeting for Mixed Multithreaded Workloads 123

https://doi.org/10.1007/978-3-319-61455-7_BM1

ti, f ¼ 3:4� 109

f

	

ti, 3:4G ð4:41Þ

Typically, for performance-constrained applications, the number of cores

required for the given deadline can be estimated at the setup stage (offline).

Afterwards, this number can be updated at runtime depending upon the task

properties (see Sect. 4.2.5). Since this technique adapts ti,max (see Eq. (4.38)),

therefore, k0i also changes at runtime.

As established earlier, the workload characteristics of the tasks might change at

runtime. Therefore, the technique presented here also adapts the size of the cluster

after every epoch. As a concrete example of cluster size adaptation, k0i is

incremented by one for a task i with xo,i > 0. Hence, this technique tries to allocate

more resources to the task requiring more computations.

The number of cores that is actually budgeted to the task i is derived using the

following formula:

ki ¼ bk0
i � rtot=

Xatot�1

j¼0
k
0
jc ð4:42Þ

Afterwards:

ki ¼ k0i , ki > k0i
ki , otherwise

�
ð4:43Þ

Due to the increment operation, even if summation of k0i is greater than rtot,
summation of ki will still be in bounds (� rtot) due to Eq. (4.42). This also suggests
that if the joint requirements of all the concurrently running tasks exceed the global

power budget and resources, the system will continue to run at a degraded quality

(with time per task > ti,max) under TDP budget. Further, Eq. (4.43) shows that not

all of the rtot bright cores might be utilized at a single time.

References

1. Cesar, E., Moreno, A., Sorribes, J., & Luque, E. (2006). Modeling Master/Worker applications

for automatic performance tuning. Parallel Computing, 32(7), 568–589.
2. Lian, C. J., Chien, S. Y., Lin, C. P., Tseng, P. C., & Chen, L. G. (2007). Power-aware

multimedia: concepts and design perspectives. IEEE Circuits and Systems Magazine, 26–34.
3. Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In High Performance Computing, Net-
working, Storage and Analysis.

4. Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore archi-

tectures. In Microarchitecture.
5. Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-curves. VCEG

Contribution VCEG-M33.

124 4 Energy-Efficient Software Design for Video Systems

6. Sullivan, G. J., Ohm, J., Han, W., & Wiegand, T. (2012). Overview of high efficiency video

coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.
7. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Fast hierarchical intra angular mode

selection for high efficiency video coding. In International Conference on Image Processing.
8. Knuth, D. E. (1998). The art of computer programming, Addison-Wesley, p. 232.

9. Huck, S. (2011). Measuring processor power, TDP vs. ACP. Intel.

10. ces265: Open-source C++ based multithreaded HEVC software. Chair for Embedded Systems.

[Online]. Available: http://ces.itec.kit.edu/ces265/. Accessed 06 Aug 2014.

11. Jiang, W., Mal, H., & Chen, Y. (2012). Gradient based fast mode decision algorithm for intra

prediction in HEVC. In International Conference on Consumer Electronics, Communications
and Networks.

12. Chan, T. F., Golub, G. H., & LeVequ, R. J. (1979). Updating formulae and a pairwise
algorithm for computing sample variances. Stanford: Stanford University.

13. Sun, H., Zhou, D., & Goto, S. (2012). A low-complexity HEVC Intra prediction algorithm

based on level and mode filtering,. In International Conference on Multimedia and Expo
(ICME).

14. Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core

architectures running multi-threaded applications. In Internation Symposium on Computer
Architecture.

15. Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON:

Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel
Architectures and Compilation Techniques.

16. Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2010). CPM in CMPs: Coordinated

power management in chip-multiprocessors. In International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis.

17. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

18. Shafique, M., Zatt, B., Walter, F. L., Bampi, S., & Henkel, J. (2012). Adaptive power

management of on-chip video memory for multiview video coding. In Design Automation
Conference.

References 125

http://ces.itec.kit.edu/ces265/

Chapter 5

Energy-Efficient Hardware Design

for Video Systems

The techniques based in the software layer for computation- and power-efficient

video processing system given in Chap. 4 do not necessitate any custom hardware.

However, custom hardware architectures for video processing systems are in wide

use because they produce higher throughput and have higher complexity and power

reduction potential compared to the software-only solutions. This chapter outlines

some of the hardware architectural enhancements and custom accelerators for

highly efficient video processing systems. Efficient I/O and internode communica-

tions for video processing system are discussed. Hardware architectures of the

complete system and accelerators are also given, specifically pertaining to H.264/

AVC and HEVC encoders. Furthermore, the hardware accelerator allocation or

workload administration (whereby the accelerator provides its services to multiple

nodes) is also discussed, which can be useful in shared hardware accelerator

paradigms. Targeting the memory subsystem, power-efficient hybrid memory

architectures and SRAM aging mitigation are also presented.

5.1 Custom Video Processing Architectures

The techniques outlined in Chap. 4 can be employed on a given multi-/many-core

system with little or no alterations. However, if a custom platform is designed, with

embedded "soft-cores" (cores that run software for control/orchestration), and

hardware coprocessors or accelerators used for number-crunching, an architectural

support is required to achieve efficient communication mechanisms among the

computing nodes. A communication technique must be adequate to fulfill the

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_5

127

computation requirements, and at the same time it must not reduce the performance

of the system.

In case of heterogeneous many-core systems, with in-core, tightly or loosely

coupled hardware accelerators, soft-cores with external memory, and I/O ports, the

data input and output of the system can become challenging. Specifically, for video

encoders, the data from the camera can be analog, not in standard-compliant format

(e.g., instead of YCbCr 4:2:0 required by the HEVC encoder, the camera provides

RGB), and may require clipping, chroma resampling, reordering etc. To address

these issues, this section will present a study of video memory, and an architecture

to support reading/writing video samples to and from the video processing system is

discussed. Afterwards, the discussion about data communication is generalized and

extended to multi-/many-core heterogeneous systems.

5.1.1 Memory Analysis and Video Input

As seen from our discussion in Chap. 2, blocks of video need to be fetched from the

external memory or camera and fed to the video processing system. This commu-

nication must consider the bandwidth between the video generating source and the

video processing system.

For better understanding, we present an example data communication scenario

and discuss the requirements of the communication subsystem. For example, a

16-bit DDR3 on Altera’s DK DEV 2AGX260N FPGA development kit, running at

300 MHz, can theoretically support a maximum bandwidth of 16�300M�2 ¼ 8.9

Gbps of data transmission between the DDR3 memory and the FPGA. However,

this bandwidth reduces to 6.23 Gbps by taking a conservative memory efficiency of

70% for a typical DRAM [1]. From the discussion around Eq. (2.3), a system

processing full-HD frames (1920�1080 pixels) would require ~0.58 Gbps to read

the video frame at frame rate of fp¼ 25. For video encoders, this frame also needs to

be written back to the external memory, and therefore, the total bandwidth require-

ment becomes ~1.16 Gbps. However, if inter-encoding is used, additional reference

frame(s) must also be read from the external memory, and from our discussion

about Eq. (2.6), a reference frame must be read at least rf times (usually, rf� 3) for a

single frame. With only one reference frame (nr ¼ 1) and rf ¼ 3, the bandwidth

requirement surges to ~1.74 Gbps. To generalize, the bandwidth requirement for

8-bit per sample, YCbCr 4:2:0 video encoder, with nr number of reference frames,

can be written as:

w� h� 8� f p � ð3þ rf nrÞ ð5:1Þ

However, it is conceivable that more than one video is processed concurrently by

the video processing system. Such a paradigm is usually encountered in

multicasting [2, 3] or multiview, 3D video processing [4, 5]. Consider that nvfull-
HD views/videos are processed in parallel by the video application. For the system

128 5 Energy-Efficient Hardware Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_2#Equ3
https://doi.org/10.1007/978-3-319-61455-7_2#Equ6

mentioned above, the total external memory bandwidth required for intra-encoding

is ~4.6 Gbps with nv ¼ 4, which can be supportable by the FPGA development kit.

Additionally, note that external memory data transfer results in high-energy con-

sumption. As given in [6, 7] , ~40% of the total system power is consumed by the

external I/O, and the total bus power dissipation is directly proportional to the bus

voltage toggles [8] . Therefore, increasing nv not only increases the external

memory bus contention but also results in a larger energy consumption.

5.1.2 Video Preprocessing

Video samples provided by the cameras may require preprocessing (e.g., filtering)

before placing these samples in the external memory. Usually, a video input

pipeline (VIP) is used to preprocess the samples, making them compliant to

encoder’s specification. Note that for multicasting scenario with nv views, nv
individual VIPs and nv frame memories in the external memory (to store the

video frames) are required.

For real-time camera processing systems, the streaming video data from a video

camera is fed to a VIP. An example VIP consists of a clocked video input sampler, a

video frame clipper, a color plane sequencer, and an optional deinterlacer, as shown

in Fig. 5.1. The video input sampler is used to synchronize the byte-serial data

stream from the camera by handling clock-domain crossings. Clipper adjusts the

resolution of the input video according to the specifications of the encoder. Plane

sequencer is used to convert a serial video stream (with one luminance and two

chrominance components) into a parallel stream for parallel processing of lumi-

nance and chrominance components. The deinterlacer is used if the input is from an

analog video source. If the chrominance sampling does not match the encoder’s
specifications, an additional chroma resampler (e.g., 4:2:2 to 4:2:0) can be

employed.

5.1.3 DDR Video Write Master

This module gathers the streaming video data from the camera and write it to the

external memory (DDR in this case). An implementation of this module is shown in

Fig. 5.2. Streaming YCbCr 4:2:0 pixels from VIP are routed to a 4:2:0 pixel FIFO.

Video Sampler Clipper Color Plane Sequencer

Deinterlacer4:2:2 to 4:2:0 Chroma Resampler

Fig. 5.1 Video Input Pipeline (VIP) module for a streamed video source

5.1 Custom Video Processing Architectures 129

A packet detection circuit detects the arrival of video samples and generates write

enable signals to the video sample FIFO. These pixels are forwarded to shift

registers, and every luminance and chrominance component has a separate shift

register. In this example implementation, the luminance shift register is a 128-bit

wide, and chrominance shift register is 64-bit wide (owing to the 4:2:0 format and

writing 16 8-bit luminance samples and 8 8-bit chroma samples at once to the

external memory). The write master controller determines when to push the data

from the shift-registers to the external memory. Depending upon the size of the

video, the address generation unit (AGU) determines the write address. The write

master controller also directs the AGU by selecting appropriate address in lumi-

nance or chrominance frame memories in the DDR3. The buffer controller provides

the information whether a Cb or Cr address space needs to be written with the data

from the chrominance shift register. It is possible that the software configures parts

of this module. For example, it can configure the AGU to assign starting address of

the frame.

For video applications, the frame data in the external memory is stored in a

triple-buffering order (called the ring buffer). This ordering facilitates dropping the

frames in case the video system gets slower or stalls (due to DDR bandwidth or

Ethernet constraints). In such a scenario, only the current frame under process is

retained, and the last written current frame in the ring buffer is updated, hence

the name.

Moreover, to optionally write back the reconstructed block in case of video

encoding application, an external memory write master is used. For H.264/AVC

and HEVC intra-encoding, this write back to the external memory is not required,

because the intra-encoding requires a single row of pixels above the current block

(see Chap. 2 and Chap. 4). This row can be stored in an on-chip memory if large

enough. However, for inter-encoding, write back of the reconstructed block is

required since the on-chip memory capacity is usually not sufficient to hold a full

reconstructed frame. The write master controller can also be configured via soft-

ware, by writing appropriate values to the internal registers of the controller.

FI
FO

YC
bC

r4
:2

:0 Packet Detec�on AGU

Write Master
ControllerBuffer Controller

Chrominance Shi� Register

Streaming Data (4:2:0)

Address

Burst
Count

Data

Data

To
 E

xt
er

na
l M

em
or

y
(e

.g
.,

DD
R3

)

Luminance Shi� Register

Fig. 5.2 Video writer hardware module

130 5 Energy-Efficient Hardware Design for Video Systems

5.1.4 Heterogeneous Computing Platform

As discussed earlier, a communication mechanism must be employed whereby the

master node can communicate with secondary nodes in a heterogeneous system.

This mechanism must be efficient and should result in minimal resource and

communication overhead. For load balancing techniques employed on customized

systems, one requires a synchronization and load distribution mechanism. One must

consider the possibility of these mechanisms being employed on an accelerator-

based multi-/many-core heterogeneous system, where multiple heterogeneous

cores process the input data together with hardware accelerators. The architectural

diagram of such a system is shown in Fig. 5.3. The cores can be architecturally

different, and these cores can also have in-core hardware accelerators (in addition to

the loosely coupled hardware accelerators). The in-core accelerators can be

accessed via Special or Custom Instructions (SIs or CIs), e.g., as in Nios-II

processor [9]. Thus, these cores take different amount of cycles and power to

process the same job.

In addition to processing compute jobs, a master node is used to distribute the

jobs among other cores and accelerators. This node is also responsible for setting

the frequency of all the other nodes in the heterogeneous system (see Algorithm 5).

Processing jobs can be assigned to the loosely coupled hardware accelerator

modules, in which multiple accelerators pertaining to different functionalities can

reside. All the nodes (including the soft-cores and the custom hardware accelera-

tors) are connected to the external memory via an external memory controller.

For this architecture, the data is processed as frames, which resides in the

external memory. Each frame (can also be called as a task for generalization) is

Interface
Module

Ac
ce

le
ra

to
r

Po
ol

Arbiter

Secondary Node 1

Compute
Element

Master Node 0

JTAG UART

Interval
Timer

Custom
Logic (CI)

Master
Node’s

Compute
Element

Master
Port

Slave
Port

Slave
Port

Master
Port

Timer

JT
AG

 U
AR

T

CI

Master
Port

Read and
Write Logic

Acc. H0

FSM

External
Memory

Controller
External
Memory

N
od

e
1

N
od

e
2

N
od

e
3

N
od

e
r to

t-1

…

rtot-2

…

…

Fig. 5.3 Heterogeneous system with custom hardware modules and communication interface

5.1 Custom Video Processing Architectures 131

https://doi.org/10.1007/978-3-319-61455-7_BM1

divided into constituent tiles (or subtasks), and the tiles can be processed in parallel

by the nodes. The subtasks consist of multiple jobs, and each job contains a data

block to process. Thus, the master node has information about the number of jobs

within a task and determines the number of jobs within a subtask for each secondary

node. Moreover, the master node has information about tasks’ deadlines and the

compute and power profiles of the secondary nodes.

The custom interface for communication among the nodes consists of a register

file, which is filled by the nodes exchanging information. The master node writes to

a specific address within the register file, associated with a specific secondary node.

For example, the master node writes the start and end addresses of the frame

memory for a specific secondary node, corresponding to jobs associated with the

data blocks processed by the secondary node. A secondary node sends read request

for its associated registers to a bridge controller (not shown in the figure) respon-

sible for aligning the read requests from all the secondary nodes. If the master node

has allocated a valid address and number of jobs to process, the node starts fetching

this data from the external memory and starts processing. Once all the jobs assigned

to a secondary node are processed by the secondary node, the secondary node writes

to the appropriate status registers in the custom interface. When the master node

receives this “jobs done” signal from all nodes, it signals end of frame and may

gather statistics. Afterwards, the new frame processing starts whereby the master

node sends new memory addresses to the secondary nodes via the custom interface.

5.2 Accelerator Allocation and Scheduling

In the previous section, architectural details about a heterogeneous system with

custom communication interfaces are provided. This section provides algorithmic

details about sharing a hardware architecture among different compute nodes in a

heterogeneous system. Additionally, we will discuss how to extend the concept to

use the same hardware architecture for concurrently processing multiple video

streams.

5.2.1 Accelerator Sharing on Multi-/Many-Core

One of the major technological challenges discussed in Chap. 2 is the power-wall or

Dark Silicon. A technique to solve this issue is to introduce highly efficient, custom

hardware accelerators, which while running at lower frequencies (and hence

resulting in lower spatial temperatures) can meet the throughput requirements.

The hardware accelerators can be coupled to the compute nodes as shown in

Fig. 5.3. However, allocation of the shared, loosely coupled hardware accelerator

to multiple threads (or applications) requires properly weighing the computational

capabilities of the nodes and their power profiles.

132 5 Energy-Efficient Hardware Design for Video Systems

In this section, the following problem is addressed: how to allocate the shared

hardware accelerator among the cores, such that the hardware is fully utilized, all

application deadlines are met, and the power consumption of the complete system is

minimized under a specific set of clock frequencies? For this purpose, an adaptive

accelerator allocation (or scheduling) algorithm is discussed, to share a hardware

accelerator by multiple, concurrently running independent application threads. This

allocation not only accounts for meeting the deadlines of the tasks/applications

running on the system, but it also helps to reduce the dynamic power by determin-

ing the voltages and frequencies of the soft-cores. Once a soft-core offloads its

assigned jobs to the accelerator, the core can go into sleep state which reduces the

power/temperature of the core. Summarizing, the following points form the basis of

the allocation algorithm:

• Scheduling the shared hardware accelerator, by allocating the shared hardware

accelerator among the soft-cores such that the hardware accelerator is maximally

utilized when the soft-cores offload their tasks to the accelerator

• Tuning the voltage-frequency of the cores, such that the given throughput

deadlines are met by all running tasks or applications

• Objectively meeting the deadlines, by distributing the workload on the program-

mable soft-cores and the hardware accelerator, such that the power consumed by

the multi-/many-core system is minimized

For the following discussion, assume that several independent tasks are concur-

rently running on each compute core. In the coming text, we will only use tasks as

independent entities for demonstrating this technique. However, this technique is

equally applicable to concurrently running applications or threads of an applica-

tion. Each task must be finished within a given deadline. Each task has an associated

set of subtasks. These subtasks can either run on software or hardware. The objective

is to offload the appropriate number of subtasks to the accelerator, such that the total

power is minimized and system meets the deadline(s).

The outline of the heterogeneous computing architecture employing this algo-

rithm is shown in Fig. 5.4. As seen, the “Monitoring and Control” generates the

C0 C1 Crtot-1

Accelerator Pool

Arbiter

Accelerator

Read/
Write

Masters
Acc.

Mem.

Network – Interconnect Fabric

Voltage-Frequency Generator (PLL)

External
Memory

External
Memory

Controller

lortnoC
dna

gnirotino
M

f0 f1 frtot-1

fh

…
Many-core

Fig. 5.4 Accelerator allocation architecture

5.2 Accelerator Allocation and Scheduling 133

appropriate signals to determine the frequencies of the cores and the accelerator

allocation by deriving and solving an optimization problem based upon the system

parameters (discussed later). Cores, accelerator, and the external memory commu-

nicate via interconnect fabric. The accelerator consists of an arbiter to regulate the

core accessing the accelerator, read write control circuitries to access on-chip or

off-chip memories, and internal SRAM scratchpad memory. It is assumed that the

subtasks which can be offloaded to the accelerator can also be done locally by the

core (via software). Further, it is also assumed that the frequencies of the cores can

be independently adjusted and the clock frequency of the accelerator is constant and

considerably low (i.e., the accelerator is always bright). Note that in this architec-

ture, the accelerator populates its scratchpad by fetching the data directly from the

external memory. Further, even if the size of data processed by a core and the

accelerator is equal, the accelerator will still generate higher throughput, due to its

custom logic implementation.

We will begin the details with modeling the system and then presenting a

scheduling technique to determine the best accelerator allocation.

5.2.1.1 System Modeling and Objectives

Consider that a many-core system has rtot nodes, and all these nodes can offload

their subtasks to the shared hardware accelerator. The task i would consume ts,i
seconds and th,i seconds when run in software and hardware, respectively. For better
understanding, an example accelerator allocation is diagrammatically shown as in

Fig. 5.5. This figure shows the time consumption of each application on the

programmable core and the hardware accelerator. Note that for an epoch of ti,max
seconds, the total time for which the accelerator is engaged by all the cores is given

ts ,02

ts ,11

ts ,21

ts ,31

th,0

th,1

th,2

th,3

th,0 th,1 th,2 th,3

tt

th,t

ts ,12

ts ,22

ts ,32ts ,i= ts ,i1+ ts ,i2

Fig. 5.5 Example

breakdown of execution

time on a 4-core system

and a shared accelerator

134 5 Energy-Efficient Hardware Design for Video Systems

by th,t � ti,max. Furthermore, since a task is always run on a single core, therefore,

the index i (for tasks) and k (for cores) can be used interchangeably (i.e., i ¼ k).
As discussed above, the objective of the accelerator allocation technique is to

minimize the power consumption of the complete system. If the power of a core

k (pk) is a function of its frequency fk, then, mathematically, the objective is:

min
Xrtot�1

j¼0
pj f j

� �� �
ð5:2Þ

At the same time, it is logical to maximize the hardware utilization which will

basically increase the sleep period of the cores and thus save power and reduce the

temperature. Mathematically, to maximize the accelerator utilization, the differ-

ence between the epoch time and the time for which hardware is engaged (ti,max-th,t
2 ℝ+, positive real) should be as small as possible. To do so, we proceed by writing

the total cycles processed on the accelerator by all the cores in one second equal to:

ch, 0n sec ,h, 0 þ ch, 1n sec ,h, 1 þ . . .þ ch,ktot�1n sec ,h,ktot�1 ¼
Xktot�1

k¼0
ch,kn sec ,h,k ð5:3Þ

In this equation, ch,i is the number of cycles per subtask, and nsec,h,i is the number

of subtasks per second for task i on the shared hardware accelerator. Therefore, if

the difference ti,max-th,t needs to be minimized, the total number of cycles processed

by all the cores on the accelerator per second must be matched to its clock

frequency of the accelerator fh. Note that the hardware is running at a fixed

frequency. Mathematically, this constraint can be written as:

Xktot�1

k¼0
ch,kn sec ,h,k ¼ f h ð5:4Þ

Moreover, since the deadlines should be met, therefore, the added constraint is:

n sec , s,k þ n sec ,h,k � n sec ,k 8k2 0; � � �; ktot � 1f g ð5:5Þ

This equation shows that the number of subtasks that can be processed per

second on the hardware (nsec,h,i) and software (nsec,s,i) should at least equal the

number of total subtasks of the task i ¼ k per second (nsec,k).
Moreover, the clock frequencies of the cores should be bound. Thus, an addi-

tional constraint is:

f k,min � f k � f k,max ð5:6Þ

5.2.1.2 Optimization Algorithm

To optimize the function given in Eq. (5.2), we must derive pk(fk) in terms of the

system parameters, which can be tuned. If the cycles per subtask (ch,k) and the

5.2 Accelerator Allocation and Scheduling 135

number of subtasks per second (nsec,h,k) on accelerator by task i ¼ k are known, one
can determine the time spent by task i on accelerator in the epoch tt by using the

formula:

th,k ¼ ch,kn sec ,h,k

f h
tt ð5:7Þ

Here, all quantities on the right-hand side are known. Thus, the time consumed

on core k (ts,k) can be determined by using the following relation:

ts,k ¼ tt � th,k ¼ tt 1� ch, in sec ,h, i

f h

� �
ð5:8Þ

Using this equation, the frequency of the core can be determined by:

f k ¼
cs,k n sec ,k � n sec ,h,kð Þ

ts,k
ð5:9Þ

In this equation, cs,k is the number of cycles per subtask of task k on the

associated soft-core. Here, we have used the identity given in Eq. (5.5).

Now, by inserting Eq. (5.9) in Eq. (5.2), the power consumed by a core can be

written as:

pk f kð Þ ¼ pk
cs,k n sec ,k � n sec ,h,kð Þ
tt 1� ch,kn sec ,h,k=f hð Þð Þ

� �
¼ pk

ψ1 � ψ2n sec ,h,k

1� ψ3n sec ,h,k

� �
ð5:10Þ

For readability, this equation uses ψ1, ψ2, and ψ3 as constants given by:

ψ1 ¼ cs,kn sec ,k=tt ψ2 ¼ cs,k=tt ψ3 ¼ ch,k=f h ð5:11Þ

Therefore, the objective function with constraints can be collectively written as:

min
Pktot�1

k¼0 pk
ψ1 � ψ2nsec ,h,k
1� ψ3nsec ,h,k

� �� �

subject to :Pktot�1
k¼0 ch,knsec ,h,k ¼ f h

f k,min�
ψ1 � ψ2nsec ,h,k
1� ψ3nsec ,h,k

� f 8k2f0, � � �, ktot � 1g

ð5:12Þ

Note that the optimization objective given in Eq. (5.12) is to find an appropriate

number of subtasks which are offloaded to the accelerator (nsec,h,k), for all cores.
However, the optimization problem presented in the above equation is nonlinear,

even if power and frequency approximately form a linear relationship for the given

set of frequencies. In the case discussed here, the optimization (finding the value of

nsec,h,k for all tasks) is achieved using Nelder-Mead technique [10]. Nelder-Mead is

136 5 Energy-Efficient Hardware Design for Video Systems

a greedy heuristic that iteratively determines the value (v) of the given objective

function for the given inputs and moves towards an optimum. The advantage of

using Nelder-Mead technique is that unlike traditional mathematical methods, it

does not require the derivatives of the objective function to be calculated. A brief

discussion of the Nelder-Mead algorithm to traverse the optimum path is given

below.

Nelder-Mead algorithm is an iterative method to find the inputs for which one

gets maxima/minima of an objective function. At start, the inputs of the objective

function are chosen which satisfy the given constraints. In every iteration of the

Nelder-Mead algorithm, the objective function is evaluated for the set of intelli-

gently derived set of new inputs (in this case, nsec,h,k for all the cores) to determine

the “cost” of the objective function under these inputs. That is, for the given nsec,h,k,
the value v¼∑pk(fk) is computed. Since in this case, constraints bound the search

trajectory to find the optimum, therefore, the original constrained optimization

problem is modified and converted into an unconstrained problem. Specifically,

penalty function method is used [11]. The final form of the objective function is

given in Algorithm 8. Here, the cost of the function increases if the difference

between tt and th,t increases (maximum accelerator utilization, line 6). Since we try

to maximize the accelerator utilization, therefore, a penalty is introduced depending

upon the difference between the number of hardware operations and the total

operations (lines 8-9). That is, in case the magnitude of violating the constraints

increases for a given set of inputs, the penalty also increases, which in turn increases

v. Therefore, the Nelder-Mead algorithm will deviate from this trajectory. Further,

if the core frequencies that will support nsec,s,k are lesser than the minimum

frequency (fk,min), or larger than the maximum frequency (fk,max), it will also result
in increasing the cost of the function (bounded frequencies, line 10–12, Eq. (5.6)).

Once the cost of the function v is determined, it is compared with the previous costs

and algorithm moves in the direction of the lowest cost.

5.2.1.3 Evaluation of Accelerator Allocation

For illustrative purposes, application which computes the mean and variance of an

image block is considered. This application will fetch a block of 4�4 pixels from

the image storage and generate the mean and variance of the region. This type of

block-based variance computation is important for texture classification and effi-

cient image/video compression (e.g., see Sect. 4.3.3.2, where the CTU is divided

into 4 � 4 blocks, and the mean and variance of each 4 � 4 is calculated).

Computing the mean and variance of a block is considered as a single subtask.

For this evaluation, the Sniper x86 simulator is used along with the McPAT

power simulator [12, 13] . For this subtask, our simulations show that the number of

cycles per job on the soft-core cs,k¼ 492 and ch,k¼ 70 8 k cores. The frame is stored

in the external memory. The cores process parts of the same video frame of

different sizes, and the hardware accelerator partially shares the workload of each

core, by allocating its resources according to the proposed algorithm. For

5.2 Accelerator Allocation and Scheduling 137

https://doi.org/10.1007/978-3-319-61455-7_BM1

computational purposes, a part of video frame is brought to the internal SRAM

scratchpad of the accelerator. Further, if the size of the task (i.e., number of subtask)

a core needs to process or FPS requirement increases, the number of subtasks per

second (nsec,k) also increases. Therefore, more power and/or accelerator schedule

should be allocated to that task.

Figure 5.6 shows the relationship of the power consumed by the system, by

changing the FPS and the total number of soft-cores within the system with a single

hardware accelerator. For this evaluation, a full-HD video of size 1920 � 1080

pixels is considered, and regions of this image (i.e., tasks) are distributed among the

cores. The number of subtasks per second (nsec,k) of each task is different, and thus,
the accelerator demand varies for all these tasks. Further, we consider an epoch of

size tt¼2 sec and fh¼100 MHz for this experiment.

Figure 5.7a shows an example allocation of the hardware accelerator to the tasks.

Note that some of the cores (e.g., 2–4) mostly run their jobs on the soft-cores.

Figure 5.7b shows the corresponding frequencies of the cores. As noticed, the tasks

with considerable accelerator allocation are usually running at a much lower

Po
w

er
 [W

]

0

10

20

30

40

30 60 90 120 150 180

4 6 8

Frames processed per second (FPS)

ktot (number of tasks/cores)

Fig. 5.6 Power consumption of the soft-cores for the given FPS requirement and the number of

cores

Ti
m

e
[s

ec
]

Task number

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Hardware So�ware

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

Fr
eq

ue
nc

y
[M

hZ
]

Core

(a) (b) Low frequency,
high accelerator

offloading

Fig. 5.7 (a) Time consumed per task by hardware accelerator and soft-core and (b) the

corresponding frequency of the soft-cores for ntot ¼ 8, fps ¼ 120

138 5 Energy-Efficient Hardware Design for Video Systems

frequency on the soft-cores. Furthermore, the frequency of a core also depends

upon nsec,k, and a larger nsec,k either requires more offloading or a higher core

frequency, determined by the optimization program given in Eq. (5.12). Further,

summation of the time consumed by the hardware accelerator will be almost equal

to tt, which shows that the accelerator is ~100% utilized.

5.2.2 Multicast Video Processing Hardware

In Sect. 5.2.1, the details about sharing a hardware accelerator among different soft-

cores are given. The hardware accelerator processes the subtasks of the soft-cores in

a round-robin fashion. However, for certain types of workloads (e.g., video

encoding), processing a job or a block of video depends upon the output of the

previously processed job(s) of the same task. Therefore, the hardware accelerator

would need to have task-specific storage to adapt for every application (context

switching), as would be the case in the multicasting scenario. Similarly, the data

associated with different jobs can be coming from different sources, and therefore, a

mechanism is required to efficiently provide this data to the hardware accelerator.

In the same direction, an efficient hardware architecture to realize concurrent

processing of multiple videos on the same device is presented in this section. The

goal of the architecture is to realize multicast scheduling of the H.264/AVC

encoding loop using hardware replication and reutilization on a single device like

an FPGA and to process multiple video sources in real-time, area-efficient manner.

Using a single device results in lesser cost and easier management of the system.

Note that the same architectural principles can be extended for HEVC and other

encoders.

A high-level overview of multicast H.264/AVC intra-encoder is given in

Fig. 5.8. Only a single H.264/AVC encoder is used for processing nv video inputs.

Before encoding the individual videos, the input video is preprocessed and written

to the frame memories in the off-chip DDR3 memory. The encoder reads video

frames from the DDR3 memory and compresses them. Encoding is achieved using

custom hardware which will be further discussed in Sect. 5.3. As seen, a single soft-

core is used to initialize the control registers of the VIPs and the I/O ports. It also

commences the encoding, whereby the hardware coprocessors start fetching video

samples from the external memory.

Mul�cast H.264 Intra Encoder

ADC

ADC

ADC

Video Input Pipeline (VIP) # 0

Color Convert Clip Deinterlace

Video Input Pipeline (VIP) # 1

Color Convert Clip Deinterlace

Video Input Pipeline (VIP) # nv-1

Color Convert Clip Deinterlace

Frame Writer

So�-Core

Shi� Register

Frame Drop

Address
Genera�ng
Unit (AGU)

External off-chip
Memory (DDR3)

Block (Re-)
Scheduler

CAVLC

Folded & Merged Transform

Edge Detec�on

Wired /
Wireless
Interface

Debug and
Reconstruct

Display

Write Master

Ring BufferReconst. Buffer

… … …Vi
de

o
in

BitstreamIntra Predic�on

AGU

Op�onal Op�onal

Fig. 5.8 Overview of a streaming multicast H.264/AVC Intra-only encoder

5.2 Accelerator Allocation and Scheduling 139

Once the current frame buffer is filled with a video frame, encoder fetches the

data from the external memory, using the external memory read master. The

encoder collects burst of data from the external memory and rearranges them in a

“MB-FIFO.” Each entry in the FIFO is one MB-row width wide (16 16-bit samples,

256-bits). Note that there is a separate FIFO for each of the nv views. Every “MB-

FIFO” is actually a set of three separate FIFOs, one for luminance and two for

chrominance components (Cb and Cr). The luminance FIFO is of size 16�16¼256

samples of 16-bits, and each chrominance component is 16 � 16/4 samples. Note

that these MB-FIFOs are also used for clock-domain crossing as the DDR3 and the

encoder may run on separate clocks. When the data in MB-FIFO is available, it is

pulled by the H.264/AVC intra-encoder.

Now, the mechanisms by which video data of distinct video sources is forwarded

to and collected from the video encoder are discussed.

5.2.2.1 Video Block Scheduler and Rescheduler

As mentioned earlier, processing jobs might depend upon the output of the previ-

ously processed jobs and hinder pipelined operations. Same is true for intra-

encoding a block of video frame, which cannot be pipelined, and a block must

wait for the previous block in the encoding loop to finish (see Sect. 2.2.1.1). Further,

blocks must be processed in raster scan. Thus, the building modules of the encoding

loop are idling if not in use, and only one module of the encoder is active at one

time, giving rise to the so-called bubbles (< 100% hardware utilization). If we

consider the impact of these bubbles on the video encoder, then large latency, area,

and energy overhead are incurred, as the modules are idle most of the time.

Thus, it is proposed that instead of using nv encoders in parallel to process nv-
independent frames, encoder’s modules should be reutilized in a time-multiplexed

manner. This is accomplished by a block-level scheduler, which is used to push

blocks of each view into the encoding loop in round-robin fashion. The scheduler is

illustrated in Fig. 5.9a, and an example schedule for nv ¼ 4 is shown in

Fig. 5.9b. This will help in increasing the hardware utilization and reducing silicon

area footprint. Additionally, the total energy consumption of the encoder decreases.

However, to generate the bit-streams, a separate entropy coder (EC) unit for each

video is required. In this architecture, context adaptive variable length coder

(CAVLC) [14] is used as an entropy coder; however, other entropy coders (like

context-adaptive binary arithmetic coding, CABAC) can also be used. The CAVLC

units are fed via a rescheduler. Using a single EC unit for the multicast encoder is

difficult to realize due to two factors.

• Firstly, a separate EC unit per video stream is essential because the EC units like

CAVLC requires at least 16 � 16 þ 2 � 8 � 8 ¼ 384 cycles to process one full

luminance and two chrominance blocks. This is because each quantized coeffi-

cient must be coded using the output of the previous quantized coefficient and

hence the name context adaptivity. Additionally, the bits generated by these

140 5 Energy-Efficient Hardware Design for Video Systems

coefficients must be pushed into a bit-buffer in serial fashion. If we consider

encoding 4 full-HD videos (4K Ultra-HD of size 3840 � 2160 pixels, i.e., four

1920 � 1080 frames) at 25 FPS, then we can maximally consume 183 cycles/

block cycles if the encoder runs at a clock frequency of 150MHz. The 384 cycles

per block requirement is larger than the 183 cycles/block cycle budget.

• Secondly, the context adaptivity required in EC can only be realized by using

independent data buffers for each view, which is very hard to maintain by a

single EC unit and will incur large latency.

Additionally, note that the output of the scheduler is registered because of a

MUX in front of the MB loop. Contrarily, rescheduler’s output is directly connected
with all CAVLC units. Only a “valid” signal is required which determines the

CAVLC unit to which data is directed.

Instead of the block-based CAVLC units, it is possible to insert block-based

CABAC units [15] seamlessly in the proposed multicast encoder. The proposed

multicast video encoding technique is independent of the type of entropy coder

used. Note that CABAC provides better compression efficiency compared to

CAVLC (up to 15%). However, note that 15% bitrate savings by using CABAC

instead of CAVLC will only occur in ideal scenarios. Further, the latency incurred

by CABAC will be higher compared to CAVLC, as CAVLC is the low complexity

entropy encoding alternative in H.264/AVC standard.

Moreover, the multicasting scenario is explained with the help of H.264/AVC,

and it is also applicable to HEVC and other state-of-the-art video encoders. The

concept of module sharing among multiple videos can be applied to other video

applications as well (e.g., 3D video processing).

Video
Block

Scheduler

… …

H.264/AVC
Encoding

Loop

Memory

Video Block
Re-Scheduler

…

Video
0

Video
1

Video
nv-1

…

EC
0

EC
1

EC
nv-1

Vid 0
EC 0

Vid 1
EC 1

Vid 2
EC 2

Vid 3
EC 3

Vid 0
EC 0

(a)

(b)

Pipelined
Encoding Loop

Fig. 5.9 Multicast video encoder with (a) block processing scheduler and (b) example schedule

with nv ¼ 4

5.2 Accelerator Allocation and Scheduling 141

5.3 Efficient Hardware Accelerator Architectures

In Sect. 5.2, different techniques for allocating the shared hardware accelerator to

multiple threads or applications are presented. This section deals with efficient

design of some hardware accelerators, specifically for video encoding applications

(H.264/AVC and HEVC).

5.3.1 Low Latency H.264/AVC Encoding Loop

A multicast solution for H.264/AVC is given in Fig. 5.8. The architectural details

about the H.264/AVC video encoder modules used in that design are discussed

here. The reader is advised to refer to intra-encoding discussion in Chap. 2 for better

understanding. The goal of the architecture is to provide high throughput, low

latency, and area efficiency and be capable of encoding full-HD views in real

time. A high-level architecture of an H.264/AVC intra-encoder with its main

functional blocks for a single video input is shown in Fig. 5.10. As hinted previ-

ously, the H.264/AVC intra-encoding loop has inherent sequential dependencies,

which limit the throughput of the encoder. Blocks or MBs of an input frame are

processed in raster scan order through the encoding loop (marked as dashed red

arrow). The prediction of each MB is generated using the pixel values of the left,

upper, and upper-left reconstructed MBs (intra-prediction generator in Fig. 5.10).

The residue X(r) (i.e., the pixel-wise difference of the predicted MB X0 and the

Transform

AC
Path

RO

Entropy
Coding

Residue
Compute

Video frame
Input

DC
Path

DCT HT

Q Q

IQ IHT

IDCT IQReconstruct

Intra Prediction
Generator

Mode Selection

X(r)

X

X´

X´

r´u, c ĺ, p´ul

Pred. Generation

2

1

Legend:

(I)DCT: (Inverse)
Discrete Cosine
Transformation

(I)HT: (inverse)
Hadamard
Transformation

(I)Q: (Inverse)
Quantization

RO: Reorder

3

4

Fig. 5.10 H.264/AVC intra-encoding loop. The current MB is labeled as X, and the predicted and
residue MBs are labeled X0 and X(r), respectively; sequential data dependencies are shown by

dashed arrows (① and ②)

142 5 Energy-Efficient Hardware Design for Video Systems

actual MB X) is sent to the transform module. There, the residue is processed by the

discrete cosine transformation (DCT), Hadamard transformation (HT), and quanti-

zation (Q) and forwarded to the entropy coding (EC) module. Additionally, the

video is locally decoded, i.e., processed by inverse quantization (IQ), inverse DCT

(IDCT), inverse HT (IHT), and reconstruct module. The reconstructed MBs are

required as a base for the next predictions. There are various data dependencies

inside this loop, and those with the highest significance for encoding performance

are explained here:

• Dependency 1: The main dependency comes from the fact that MB processing

cannot be pipelined. Before entering the encoding loop, the current MB must

wait for the previous MBs in the loop to be fully encoded and then locally

decoded to be used for prediction generation. The dashed arrow labeled ① in

Fig. 5.10 portrays this dependency.

• Dependency 2: The transform module consists of two paths, one processing the

AC part of the spatial frequencies and the other processing the DC part. The

outputs from the DCT are fed both to HT in the DC path and Q in the AC path.

However, note that algorithmically, HT cannot start execution until the complete

MB is processed by DCT, but the Q and IQ modules in the AC path can start

processing after a part of MB is processed. This dependency is shown as arrow

labeled ② in Fig. 5.10. Additionally, to compute IDCT, data from both DC and

AC paths is required. Therefore, IDCT module should stall and wait for data

from the DC path.

• Dependency 3: The entropy coding (CAVLC or CABAC) processes the DC

output coefficients before the AC coefficients, but the DC coefficients are

generated later from the HT module. Label ③ denotes this dependency. More-

over, the entropy coding technique also requires reordering the data before

processing it. This adds to the latency in output generation.

• Dependency 4: Video frame samples in the form of MBs are brought from

camera or off-chip memory to the encoding modules (shown by Label ④).

This transmission incurs high latency in output generation if the encoding

loop’s workload and efficient reshaping of video samples into MBs are not

considered.

In a nutshell, low latency and high throughput for H.264/AVC encoder are

obtained by addressing the dependencies presented above. The resultant architec-

ture with hardware coprocessors is shown in Fig. 5.11. This figure depicts the

design of H.264/AVC hardware accelerators and their interconnections with the

video I/O (Sect. 5.1) and multicast enabling modules (Sect. 5.2.2.1). Area and

computational efficiency is obtained by designing fast, area-efficient circuits.

Instead of a single module of the encoding loop, the focus of this section is on

the complete H.264/AVC intra-encoding system. In short, the following main

techniques are employed which will be discussed in the coming text:

• Adaptive H.264 intra-prediction technique by utilizing a small and speedy edge

extraction hardware for scheduling the generation of different intra-prediction.

5.3 Efficient Hardware Accelerator Architectures 143

This allows the user to configure the number of predictions to test per MB,

thereby configuring the throughput of the encoding loop.

• Area-efficient transform module design where AC and DC path of the encoding

loop are decoupled to reduce latency. Moreover, folding DCT/IDCT, utilizing

the same hardware resources, and interlacing of Q/IQ blocks reduce the total

silicon footprint of the platform.

5.3.1.1 4�4 Reordering and HT Lookahead

To reduce the latency of the transform stage (Dependency 2 in Sect. 5.3.1), a

technique is presented to decouple the AC path from the DC path in the transform

module. The inner modules of the transform unit work at a 4�4 granularity. Thus,

the residue 16�16 block is subdivided into 16 4 � 4 sub-blocks using the 4 �
4 reorder (RO) stage as illustrated in Fig. 5.11. The residue generator stage provides

one line of residue X(r) (16 pixels in 1 cycle, ith line of the MB given by X(r)
i).

Whenever four X(r)
i are stored in the input registers of the 4 � 4 RO stage, RO

generates four 4�4 blocks and pushes them to the input FIFO of the 2D-DCT stage.

As mentioned in Sect. 5.3.1, HT cannot begin until all 16 4�4 blocks are handled

by the DCT. However, by simplifying the DCT formula, we observe that the nth

output DC value (which is the nth input value HTnin) obtained from the DCT by

processing the nth 4�4 residue block (X(r)n) can be calculated by:

Altera SDRAM
Controller

Altera NIOS II
Embedded CPU

Encoder Control
DDR3

Memory
Video

Frames

On-Chip
BRAM
Data +
Code

Entropy
Coding

ALTERA FPGA

GigE

Prediction-,
SAD-, and
Residue-
Compute

16x16

Reconstruct
16x16

Mode
Prediction
& Control

Encoding Loop

Xi
(r)Xi

Xi

DDR3 Read
Master

To DVI
Frame Buffer

D
D

R
3

W
rit

e
M

as
te

r

Video Inputs

Avalon MM,
600 MByte/s

MB
Scheduler

Multicast and
External
Memory

Configuration

Snoop

4x4 RO

HT Look
Ahead

Folded
HT/DCT

Buff

+ >>

x

4x4

4x
4

B
uf

f
IH

T/
ID

C
T

IH
T

B
uf

f

Transform UnitV
id

eo
 In

pu
t

P
ip

el
in

e
(V

IP
)

600 Mbyte/s

Control

Fig. 5.11 Hardware accelerator architecture for multicast H.264/AVC Intra video encoder. This

design also shows the connections of the multicast encoder with the I/O ports of the system

(camera inputs and Ethernet output)

144 5 Energy-Efficient Hardware Design for Video Systems

HT n
in ¼

X4
i¼1

X4
j¼1

X
rð Þn
i, j , n ¼ 1, . . . , 16 ð5:13Þ

This shows that HTnin can be generated by adding all the residue samples in the

4�4 block. Thus, the DC outputs are alternatively generated at RO stage instead of

the DCT stage, effectively decoupling DCT from HT. This computation is archi-

tectural depicted in Fig. 5.12. A residue line can be added to the current accumu-

lators (R) of the lookahead HT memory, or it can trigger a new DC coefficient

generation, controlled by the counter administering the MUXes M. Using the above

technique by generating HT-transformed coefficients ahead of DCT-transformed

coefficients results in reduce latency, as the entropy coding can start earlier. Since

IDCT module requires IHT transformed data (Sect. 5.3.1), therefore, the output of

AC inverse quantization (i.e., 16-bits per pixel, 256-bits per 4�4) must be stored for

the complete MB in an intermediate buffer (256�16 ¼ 4096 bits). However, this

technique eliminates the need of the intermediate buffer because DC path is

executed first, and the IDCT can process a 4�4 IQ, without needing an additional

storage.

The entropy coding module needs the 4 � 4 blocks in a frequency scan or

Z-fashion [14]. The RO unit presented here generates the 4 � 4 blocks for the

2D-DCT in Z-fashion on the fly, eradicating the need for an extra RO unit in front of

entropy coding. This lessens the latency of the complete encoder (addressing

Dependency 3 from Sect. 5.3.1).

M

R

M

R

M

R

M

R

Counter Address
Counter

CLK

MB Residue lineXi
(r) 1x16

HT
look-

ahead
buffer

Intermediate
registers

HTn
in

Fig. 5.12 HT-Lookahead buffer architecture, responsible for pre-computations of HT input

5.3 Efficient Hardware Accelerator Architectures 145

5.3.1.2 Transform and Quantization Module

To save area, we can employ DCT and HT in the same hardware block, in a time-

multiplexed manner. Since the DCT and HT equations are similar, these transforms

can be implemented using butterflies [16, 17]. Both HT and DCT butterflies are

composed of two stages, one for horizontal and the other for vertical transform. A

butterfly is designed such that it can process four inputs simultaneously. Therefore,

eight butterflies are required to process a 4 � 4 block. To save circuit area, the

architectures can be folded, and the butterflies are reused for both horizontal and

vertical transform in HT/DCT and IHT/IDCT. This architecture is illustrated in

Fig. 5.13, in which a MUX in front of the butterflies determines whether to push

new samples or previously computed values (i.e., second pass) to the butterflies. In

this architecture, the horizontal and vertical transformation is implemented via

rewiring the output. Therefore, the output of the complete transform is produced

with a single cycle delay and the module is not fully pipelined, though it is utilized

all the time. As shown in Fig. 5.13b, the IHT/IDCT module is also inter-ready (as it

can discard inputs from the IHT buffer using an additional MUX).

The data flow graph of the output from HT/DCT butterflies till the input of

CAVLC is presented in Fig. 5.14. From Point A to Point B, the flow graph denotes

the rewiring of Fig. 5.13, i.e., in the first iteration of the folded HT/DCT. In the next

iteration, the rewire function again transforms the data from Point B till Point

C. The quantizer does not rearrange data, and therefore its impact is not illustrated

in this figure. Since the data is jumbled, therefore, before feeding this to the

CAVLC FIFO, it is rewired from Point C to Point D. This is because the CAVLC

requires the output data organized in the Z-fashion [14]. Thus, an additional latency

is saved by avoiding the rewiring of the 4 � 4 quantized coefficients.

Like reusing hardware in HT/DCT and IHT/IDCT, the presented architecture

combines the quantizer (Q) and inverse quantizer (IQ) in DC and AC paths. The

HT/DCT
Bu�erflies

New/Previous Selector HT/DCT Selector

Input OutputRewire

CLK

IHT/IDCT
Bu�erflies

New/Previous
Selector

IHT/IDCT Selector

Input
OutputRewire

CLKDC from
IHT buffer

Is_Intra

(a)

(b)

Fig. 5.13 Folded architecture of (a) DCT and (b) IDCT for H.264/AVC

146 5 Energy-Efficient Hardware Design for Video Systems

resulting architecture is shown in Fig. 5.15a. The quantization and inverse quanti-

zation relationships, both for DC and AC paths, are shown in Eq. (5.14).

QDC, i ¼ DCij j � qi þ 2qi, const
� � � qi, bits þ 1

� �
QAC, i ¼ ACij j � qi þ qi, const

� � � qi, bits
IQDC, i ¼ QDC, i � dqi

� � � qi, per
� �þ 2
� � � 2

IQAC, i ¼ QDC, i � dqi
� � � qi, per

ð5:14Þ

Depending upon the QP value, quantization coefficients (qi), inverse quantiza-

tion coefficients (dqi), and other values (qi,const, qi,bits, qi,per) are selected. Since the
goal is to reuse hardware for maximum area efficiency, the multipliers and barrel

shifters are shared by interlacing the Q and IQ modules. This architecture is shown

in Fig. 5.15a.

Note that the one cycle latency in the DCT’s output is exploited in combined

Q/IQ unit as shown by the schedule in Fig. 5.15b. This schedule represents how we

can reuse the multipliers and barrel shifters for Q and IQ units by purposely delaying

the DCT output by one cycle due to folding. Note that multipliers are costly in terms

of area (usually implemented via DSP modules in an FPGA and there is a limited

number of DSP modules available). Further, the shift operation requires barrel

shifters, and for a 16-bit input, each shifter requires 64 multiplexers. However, in

this architecture, an extra output buffer (delay buffer) is required for assistance in

scheduling. Moreover, the folded architecture of IDCT is also provided with valid

inputs in alternate cycles by the IQ stage. A single-bit shift-register circuit that

mimics the valid data propagation through the registers generates the output valid

signal for the complete HT/DCT, Q/IQ, and IHT/IDCT stages.

In summary, using the HT/DCT (IHT/IDCT) architecture given in Fig. 5.13, we

can effectively reduce the area almost by half compared to the standard H.264/AVC

transform stage implementations (see Fig. 5.10). First, only four butterflies are used

A B

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C DDCT Butterfly Pass 1 DCTButterfly Pass 2 To CAVLC

Fig. 5.14 Data flow graph from the output of HT/DCT butterflies to the input of the entropy coder

(CAVLC)

5.3 Efficient Hardware Accelerator Architectures 147

instead of eight per transform due to the folded architecture. Secondly, since the

4�4 output of DCT is delayed by a single cycle, we allow Q and IQ to share the

multipliers and the barrel shifters. Therefore, only 16 multipliers and 16 barrel

shifters are used, instead of 32 multipliers and 32 barrel shifters. Further, folding of

transform modules and interlacing of Q and IQ modules result only in a penalty of

two computational cycles. This is shown in Fig. 5.15c. In the nominal case, the

DCT and AC quantization is carried out for the complete MB (i.e., 16 DC coeffi-

cients are generated). Afterwards, the DC path can commence, which is followed

Input
Buffer

ABS Mul�pliers Adders Barrel
Shi�ers

Delay Buffer
(separates Q from IQ)

1 Shi� Amount Q

Shi� Amount
IQ

0 1 2 0 1 2
Quant (Q)
Coefficient

IQ
Coefficient

DC/AC
Path

Selector

Q/IQ
Selector

QP Dependent
Variable

0

<< 1

I M A S D

DCT Out Valid

I M A S D

I M A S D

I M A S D

I M A S D

I M A S

I M A S

I M A S

I M A S

I M A S

Legend
I: Input Buffer
M: Multiplier
A: Adder
S: Barrel Shi�er
D: Delay Buffer

Q
ua

nt
In

ve
rs

e
Q

ua
nt Pipelined

Operation

DCT 16 4×4
Q 16 4×4

IQ 16 4×4
IDCT 16 4×4

DCT 16 4×4
Q 16 4×4

IQ 16 4×4
IDCT 16 4×4

HT, Q, IHT, IQ

HT, Q, IHT, IQ

Nominal

Proposed

Buffer required to store
this output of this stage

Pipelined operation ,
no buffer required

(a)

(b)

(c)

Fig. 5.15 Modules of the H.264/AVC encoding loop. (a) Interlaced H.264/AVC quantizer and

inverse quantizer, (b) scheduling the quantizer/inverse quantizer on the same hardware, and (c)

schedule of (inverse) transform and (inverse) quantization using nominal and the architectures

presented in this book

148 5 Energy-Efficient Hardware Design for Video Systems

by pipelined AC inverse quantization and IDCT. However, in the technique

presented here, DC path is executed first due to the HT lookahead technique (see

Fig. 5.12). Afterwards, the DCT, quantization, inverse quantization, and IDCT can

process the data in a pipelined manner.

5.3.1.3 Prediction Generation and Mode Decision Module

The mode decision module must select one prediction out of the four predictions for

H.264/AVC (which are usually termed as V, H, DC, and P for 16 � 16 MB). In this

section, the term “mode” refers to only one of the four modes mentioned above, and

each mode has an associated prediction which is used for computing the SAD. The

best mode/prediction is the one which generates the lowest SAD. Usually, one can

use the term mode and prediction interchangeably.

The encoder can use a full-search approach to select the best prediction (i.e., the

best X0) using either SATD or just SAD between X and X0. The selection of the best
prediction is slow if the generation of X0 and the SAD calculation for every

prediction is computed sequentially using only one hardware unit. On the other

extreme, the parallel generation of all four predictions and their SAD computation

would demand a significant amount of hardware. Therefore, to reduce the area

overhead, only 16 adders/subtractors are used in this architecture, and thus, SAD of

a luminance MB can be generated in 16 cycles. Additionally, note that generating

the P prediction is computationally involved compared to the other modes.

Figure 5.16 shows the mode decision module. A fully reconstructed 16�16 MB

is available from the reconstruction block (generating one reconstructed MB line)

after 20 cycles. FIFOXi contains the current MB X, and this data is then written to a

shared on-chip memory, which stores the MB in a line-by-line fashion. The

Residue

Prediction
Generation Logic

X
X(1), X(2), X(3), X(4)

SAD
Mode

Decision
+ Control

X (row-by-row)

FIFO
Xi

(r) to 4x4 RO

Reconstruct
MB

Xi
(r)

Xi
Edge Extractor

Dominant
Edge

Addr.

Xi

Xi

X í

Fig. 5.16 Mode decision module for Intra 16 � 16

5.3 Efficient Hardware Accelerator Architectures 149

pipelined edge detector (discussed later in Sect. 5.3.1.4) unit predicts the order of

the predictions to test by finding the most dominant edge for X. Using this order,

predictions X0 are generated by the prediction generator and stored in the same

on-chip buffer as X at distinct address space. The quality of the prediction is

evaluated by calculating the SAD of the prediction. The residue calculator gener-

ates X(r)
i and passes it to both the SAD unit and the residue memory block. After

residues for all the predictors are stored, the residue resulting in the lowest SAD

value is written to the 4 � 4 RO stage. Note that if the amount of cycle budget for

encoding does not comply with the resolution and frame rate requirements, the

SAD unit can be configured to use the downsampled version of the current MB for

residual calculation. A downsampling factor, denoted by ds, means that every ds
line of X is used for the SAD computation. Therefore, when ds > 1, the number of

cycles for SAD computation decreases. For example, for one luminance MBwith ds
¼ 2, it takes 8 cycles for the SAD computation instead of 16 with ds ¼ 1. However,

note that if ds is larger than 1, X
(r) is also downsampled, and thus it must be updated

with the full residue after final mode selection.

5.3.1.4 Edge-Based Prediction Prioritization

If the encoding cycles do not comply with the allotted budget, it becomes necessary

to sacrifice some encoding efficiency to fulfill the performance constraints. Since

the transform loop is essential to the encoding process, then cycles from the mode

decision module are scrapped to meet throughput deadlines. Unlikely predictions

are not entertained as prediction candidates for residue generation by using a

preprocessing stage. This procedure is not required for parallel SAD

implementations, but it is useful for a sequential prediction mode decision circuit.

Various algorithms and architectures are proposed in literature for estimating the

best predictor and elimination of unlikely predictors [18, 19], where texture-based

edge extraction information is used to determine the probable prediction candi-

dates. Once the reconstructed data is available, the most suitable predictors are

tested first, and testing the other predictors is either delayed or even skipped. One

can use a Sobel-based edge extraction technique. However, an edge extraction

procedure for a 16�16 block will thus require 256 iterations (requiring a tan-1

function and a divider) plus additional cycles to determine the dominant texture

direction. Therefore, it cannot be embedded as a processing stage in the encoding

loop or parallel to the encoding loop for large resolution sequences like 4K-UHD

(encoding loop must finish within 183 cycles for a clock frequency of 150 MHz at

25 FPS). However, it can be realized as a separate pipeline stage outside the

encoding loop. This introduces latency. In addition, the area overhead might

become prohibitive if parallel edge extractors are utilized. Moreover, these algo-

rithms work using thresholds, and usually, the edge threshold is decided at design

time but it is not applicable to every video scene. In contrast to this, the technique

presented here uses a lightweight and efficient prediction mode estimation process

150 5 Energy-Efficient Hardware Design for Video Systems

with a modified version of edge extraction procedure. It extracts the dominant edge

information from the input MB and does not require an edge threshold.

For the current MB Xn, the dominant or most probable mode estimation is

carried out in parallel with the residue calculator and transform stage. Further,

this architecture can generate the likely prediction modes before the reconstructed

previous MB Xn-1 is available at the prediction generation stage. The crux of the

method involves the estimation of edge pixels at the borders of the MBs by

computing a sequential running difference rd. Since we consider a 16 sample MB

line Xi being processed within a cycle, therefore, only one subtractor and one ABS

(absolute) unit are used for both the top and bottom borders. Also, one subtractor

and one absolute unit each for the left and right borders are used to detect the

dominant edge direction. For example, at the vertical border b or c of the MB in

Fig. 5.17, rdi is computed as:

rdi ¼ Xi, j � Xiþ1, j

�� ��,8i ¼ 1, . . . , 15, j2 1; 16f g ð5:15Þ

The pixel location i where rdi is maximum is acknowledged as the point where

the edge passed. Let eb¼i be the location of the edge passing through b at i,
generating the maximum rdi given by rdb. Similarly, edge location e and running

difference rd at each border are computed, and the two borders with maximum rd
are declared to have an edge passing through them. Thus, there are six distinct

possibilities for the edges as illustrated in Fig. 5.17, and only one edge out of the six

can occur.

By using this edge extraction technique, the conditional probabilities of the final

mode selected by the full-search procedure for every line using various HD

sequences are computed. Based upon these conditional probabilities, Algorithm

9 is devised for selecting the precedence orderm of prediction generation. When the

difference between all rdi is less than some threshold (currently, we kept it constant

at 5 as there were no observable dependencies on the input data), it is concluded that

there is no edge in the block, and hence the algorithm detects Line0 or no line.

Additionally, the planar prediction (P) is never selected as the first mode to test in

Algorithm 9 (implemented as a decision-tree), and therefore, intermediate values

for P [14] can be generated in parallel to the other modes preceding it. Thus, P mode

prediction/residue computations take the same amount of cycles as the other modes,

although it is more complex.

A parameter θ is defined as the number of allowable modes/predictions to test.

To meet the cycle budget of the encoding loop, θ can be altered to compute SADs

V H

DC
DC

1

4

2

3

a

b c5s 6

d

Fig. 5.17 Edge extraction

technique employing

running difference

5.3 Efficient Hardware Accelerator Architectures 151

for only a subset of the prediction candidates. With θ ¼ 1, there is no need of SAD

computations, and the most probable mode is used to generate prediction, and its

residue is forwarded directly to the transform stage. For 1 < θ � 4, the algorithm

starts with the most probable mode in m and computes the SADs sequentially.

5.3.1.5 Evaluating the H.264/AVC Architecture

In this section, some evaluations of the H.264/AVC encoding loop are presented.

For comprehensive details, refer to Appendix C.

Encoding Loop In the encoding loop presented above, the transform stages are

merged to save area and power while incurring small cycle penalties. In Ref. [20],

authors have also designed a multi-transform engine, which merges all transforms

(HT, IHT, DCT, IDCT) in the transform loop. Contrarily, the architecture presented

in this book only merges HT/DCT and IHT/IDCT. However, the total area con-

sumed by the two separate transform units presented here is lesser, because [20]

implements large multiplexers. See Table 5.1. Further, the increased area in the

merged Q/IQ unit of this book is due to the delay buffer used by our approach for

interlacing Q and IQ (see Fig. 5.15). The complete transform unit proposed in Ref.

[20] uses 110.29 K gates, while the architecture explained above uses 106.45K

gates. For a throughput of 16 pixels per cycle, [20] corresponds to 6.89K gates per

pixel and 63.5 mW per pixel. Compared to this, 6.65K gates per pixel and

61.77 mW per pixel are used by the architecture presented above. Note that the

encoding loop presented here is merged within the multicast H.264/AVC video

encoder for nv parallel videos as given in Sect. 5.2.2. Therefore, the area and power
consumption of [20] should be multiplied with nv, as [20] does not provide

hardware sharing for multicasting solutions. On the other hand, we use the same

hardware for all the encoders. Thus, with nv ¼ 4, the architecture proposed here can

theoratically reduce the area of the transform unit by ~4.14�.

Edge-Based Mode Prediction For the edge-based mode estimation, Fig. 5.18

reports the average hit rate of the likely mode precedence per frame. H correlates

the prediction mode selected after full-search to the likelihood of the ordered mode

candidates m generated by the Algorithm 9. In a nutshell, this plot denotes the

accuracy of Algorithm 9. Here, H ¼ 4 is the worst misprediction, which means that

the intra-prediction mode finally selected after comparing the SADs of all four

modes is the least probable mode according to prediction algorithm. H¼1 denotes

that the final mode selection after full search and the highest priority mode selected

Table 5.1 Area footprint

of the transform unit for

TSMC 65 nm technology

[21] , power consumption

via Altera [22]

Baseline This encoder [20]

Transform 21.68 15.04 K 21.39 K

Q/IQ 67.32 K 60.52 K 51.62 K

Total 129 K 106.45 K 110.29 K

Power (mW) 1039.23 988.38 1015.93

152 5 Energy-Efficient Hardware Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_BM1

by the edge extractor are the same. Notice that H ¼ 1 has a higher value compared

to other cases.

For evaluating the quality of the proposed edge-based most probable mode

selection, plots of PSNR against the bitrate (RD curves) at θ ¼ 1 are given in

Fig. 5.19. These curves suggest that the RD curve for likely mode estimation at

θ ¼ 1 matches the full-search intra-mode (also called closed loop (CL)) selection

closely. As a comparison to the likely mode selection procedure presented in this

book, the RD curve for open loop (OL) algorithm [23] with θ ¼ 1 is also plotted.

Notice that the algorithm presented here outperforms the OL algorithm.

Further, the edge detection approach presented in [18] uses 8.4K gates, while

edge detection architecture presented here only uses 4.4K gates for TSMC 65nm

technology. Moreover, [18] requires testing at least two intra-modes (θ � 2),

whereas the presented algorithm also allows for testing a single mode (θ � 1).

5.3.2 Distributed Hardware Accelerator Architecture

Although the power efficiency (i.e., the amount of work per unit of power) of

hardware accelerator is high compared to software-based solutions, it is possible to

0 10 20 30 40 50

People
2560x1600

Traffic
2560x1600

Tennis
1920x1080

Kimonol
1920x1080
Basketball
1920x1080
Riverbed

1920x1080
BQTerrace
1920x1080

FourPeople
1280x720

KristenSara
1280x720

Shields
1280x720

ChinaSpeed
1024x768

Keiba
832x480

H=1
H=2
H=3
H=4

Fig. 5.18 Percentage hit rates (avg. over QPs 18. . .32, step size ¼ 2) for different sequences; H:
priority of full search within mode schedule m

5.3 Efficient Hardware Accelerator Architectures 153

3638404244

30
50

70
90

11
0

13
0

15
0

17
0

19
0

21
0

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1
3638404244

30
40

50
60

70
80

90
10

0
11

0

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1

3638404244

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

PSNR [dB]
B

itr
at

e
[M

bp
s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1
3638404244

60
80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1

Tr
af

fic
Pe

op
le

R
iv

er
be

d
B

as
ke

tb
al

l

3638404244

10
13

16
20

23
26

29
32

36

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1
3739414345

15
20

25
30

35
40

45
50

55
60

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1

Fo
ur

Pe
op

le
K

ris
te

n&
Sa

ra

343638404244

65
10

1
13

7
17

3
20

9
24

5
28

1

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1

B
Q

Te
rr

ac
e

3638404244

4
6

7
9

10
12

14
15

17

PSNR [dB]

B
itr

at
e

[M
bp

s]

C
lo

se
d

Lo
op

O
pe

n
Lo

op
, D

=1

P
ro

po
se

d,
 D

=1

K
ei

ba

F
ig
.
5
.1
9

R
D
cu
rv
es

(P
S
N
R
v
s.
B
it
ra
te
p
lo
ts
)
fo
r
p
re
se
n
te
d
an
d
o
p
en

lo
o
p
te
ch
n
iq
u
es

w
it
h
θ
¼
1
;
ea
ch

p
lo
t
re
p
re
se
n
ts
th
e
av
er
ag
e
re
su
lt
s
fo
r
Q
P
sw

ee
p
s
fr
o
m

1
8
to

3
2
(s
te
p
si
ze

¼
2
)

154 5 Energy-Efficient Hardware Design for Video Systems

additionally decrease the power consumption of the hardware accelerator. As

discussed in Chap. 2 of this book, HEVC uses blocks of sizes ranging from

64�64 down to 4�4. Using accelerator architectures for all these block sizes is

inefficient. For example, generating intra-prediction in hardware would thus require

implementing intra-prediction circuitry for each of the PU sizes. However, this will

incur large area overhead and a power penalty. This book presents a technique to

distribute the hardware of the largest intra-prediction generating unit in HEVC into

smaller components and clock- or power-gate individual components of the large

hardware accelerator. This way, only a selected few constituent components of the

hardware accelerator will be consuming power, while the rest would be normally

turned off. The concept of distributed and power-gated hardware accelerator design

can be extended to other applications.

The distributed hardware accelerator architecture is outlined in Fig. 5.20. This

architecture uses a hardware-software collaborative complexity and power reduc-

tion technique for HEVC intra-encoding. Following the standard hardware-

software partitioning trends, high complexity number-crunching jobs with minimal

conditional executions are processed via hardware accelerators, whereas low com-

plexity jobs mainly consisting of control decisions occur at the software layer. A

block of pixels (e.g., a CTU) is fetched from the external memory for processing.

To reduce the complexity, edge histogram is generated at the hardware layer,

whereas the software layer uses this information to determine the most probable

intra-prediction mode (Sect. 4.3.3.1). Similarly, the variance of all 4� 4 sub-blocks

within the CTU is computed in hardware, whereas the PU maps (PUM and PUMA,

Sect. 4.3.3.2) used for reducing HEVC complexity are generated in the software.

Intra-prediction Generator The prediction generation is carried out using a

distributed hardware accelerator. The prediction generation hardware can generate

a prediction of the largest possible PU (i.e., 64 � 64) in a single cycle. However,

note that a single large PU prediction generator is not employed in this architecture.

Instead, PU prediction generation for large PU sizes is achieved by concatenating

the output of eight, individual 8-sample prediction generators. The value of 8 sam-

ples per prediction generator is chosen because our analysis in Table 5.2 of various

External
Mem. Access

Offline
Analysis Read

Master
On-chip
Mem.

Sub-block
Variance

Pred.
Detector/
Histogram

PU Size
Estimator

Mode
Selector

Status
Registers

HW1

HW2

HW2N/8

Mode
Estimation

Reference
Register

HEVC
Transform

Variance
Map

Edge
Map

PU
 M

ap
M

od
e

M
ap

Control
Registers

Clock
Enable

Monitor
So�ware

Custom
Hardware Output

Bitstream

Memory

…

Fig. 5.20 Hardware-software collaborative control for complexity and power reduction of HEVC

intra-encoding

5.3 Efficient Hardware Accelerator Architectures 155

video sequences reveals that 8 � 8 PU is the highest occurring PU size, even with

varying motion and texture properties. Moreover, note that it is impossible to have a

PU not at the 8 � 8 boundary because the minimum CU size in HEVC is 8 � 8.

Clock-Gating Logic As discussed above, eight pixels of a full CTU row are

associated with a single component of the intra-prediction generation hardware.

Thus, when a smaller PU is processed, output from some of the intra-prediction

generators is not required. Therefore, these modules can be clock-gated to save

energy. The clock-gating circuit is controlled by the control register, whose indi-

vidual bits are the set by the software, depending upon the PU size and location of

the PU within the CTU.

5.3.2.1 Energy and Resource Evaluation

For the architecture outlined in Fig. 5.20, the area and frequency of individual

modules are tabulated in Table 5.3. The Altera FPGA (EP2AGX260FF3513) used

for evaluations is a midrange FPGA. Hence, by using a complete custom design, it

is expected that an ASIC can further improve the throughput and area savings.

In Fig. 5.21, the energy consumption comparison between (a) no clock gating,

single prediction hardware and (b) presented architecture for one frame is

performed (with energy saving percentage written on top of the bars). The stimuli

data generated by the HEVC reference software and ModelSim [24] is provided to

the Altera’s Powerplay Power Analyzer tool for determining signals’ static

Table 5.3 Hardware footprint for a 64�64 CTU (1 PLL, ~205K ALUTs, ~205K Registers,

736 DSP modules)

HW module

Freq

(MHz)

ALUTs and

registers

Memory

(bits)

DSP

modules

Logic Util.

[%]

Variance 167.14 253,386 0 7 (<1%) <1%

Sobel

histogram

243.72 77, 86 0 1 (<1%) <1%

Intra pred.

block

243.61 203, 377 0 8 (1%) <1%

Total CI 162.79 13409, 6934 43008 72 (10%) 10%

Table 5.2 Percentage occurrences of PU sizes in HEVC

PU Size

RaceHorsesC BQSquare FourPeople

QP ¼ 22 QP ¼ 37 QP ¼ 22 QP¼37 QP¼22 QP¼37

4 30.064 10.131 61.623 39.344 22.75 7.793

8 54.463 64.085 35.967 50.87 56.727 58.71

16 13.168 22.523 2.386 8.802 17.295 26.749

32 2.257 3.217 0.023 0.985 3.126 6.155

64 0.049 0.043 0 0 0.102 0.539

156 5 Energy-Efficient Hardware Design for Video Systems

probabilities and transition densities, and the energy numbers are reported here.

Using the architecture mentioned above, up to 42% energy savings can be achieved.

5.4 Hybrid Video Memory Architectures

An integral architectural focus of any hardware accelerator-based design is power-

and compute-efficient implementation of the memory subsystem. As discussed in

Chaps. 2 and 3 of this book, the high access rates of external memories and high

leakage power of on-chip video memories (e.g., by block-matching algorithm) can

increase the energy consumption of the video processing system considerably.

Therefore, one can employ a hybrid memory architecture to exploit the advantages

offered by both volatile and nonvolatile memories and reduce the energy consump-

tion. Basic idea is to push the video data which will be read more often (i.e., will

remain valid in memory for a long duration) into NVM and thus save leakage

power. The opposite is true for VM, whereby the data structures overwritten

considerably frequently should be placed in the memory with low write-energy

(i.e., SRAM). Similarly, fast block-matching algorithms usually follow a fixed

pattern (e.g., TZ search implemented in the HEVC reference software). This pattern

of memory access can be used to determine the highly likely area of the memory

where the next predictor under test should lie. Thus, turning off un-accessed

memory regions also saves leakage energy.

To realize the above, an adaptive energy management for on-chip hybrid video

memories (AMBER) is presented here. It is a hybrid memory architecture with

integrated energy management for video applications. The architecture comprises

of hardware accelerators for fetching video data from the external memory using

SRAM and storing it in the on-chip high-capacity NVM memory. The inbuilt

adaptive energy management technique power gates specific NVMmemory sectors

to save energy. The basic idea of AMBER is to leverage the characteristics of

different memory types (read/write latencies, leakage energy, etc.) and the appli-

cation specific knowledge to reduce the total energy consumption and processing

latency of a video system. Moreover, AMBER can be seamlessly combined with

0.00

50.00

100.00

150.00

BQSquare RaceHorsesC FourPeople Kimono PeopleOnStreetBQSquare RaceHorsesC FourPeople Kimono People

38.94%
30.13%

42.52%

29.15%

32.15%
En

er
gy

 [m
J]

No Gating Clock Gating

Energy savings

Fig. 5.21 Average energy consumption of a single frame, with and without clock gating

5.4 Hybrid Video Memory Architectures 157

other orthogonal power reduction techniques for video processing systems. In a

nutshell, AMBER targets:

• Design of on-chip, hierarchical video memory subsystem, using hybrid memo-

ries while exploiting the advantages offered by each memory type, especially for

video applications.

• Runtime adaptive power gating of selective memory sectors to reduce leakage

energy consumption of the system, by using an adaptive energy manager that

exploits the video application- and video content-specific properties.

As a proof of concept, AMBER methodology is used for energy management of

the memory subsystem of an HEVC encoder. In the following, the details about the

memory subsystem architecture will be followed by the details of controlling the

power consumption of the video processing system.

The memory energy management architecture for HEVC hybrid memories is

shown in Fig. 5.22. The off-chip or external memory holds only the current video

frame data. Using the external memory controller and memory managing hardware

accelerators, this raw video data is brought to the on-chip SRAM CTU buffer. This

buffer is used by the ME engine where the block-matching algorithm takes place.

The block-matching process is controlled by the HEVC controller. After block

matching, best inter-predictor is forwarded to the HEVC encoder, which generates

the reconstructed CTU, used as a reference for the next frames. The reconstructed

CTU is pushed into the SRAM CTU FIFO. This FIFO is read by the MRAM

reference frame memories. These memories are power gated by the power-gate

control module. In the following, we discuss the basic components of AMBER

system in detail.

5.4.1 AMBER Memory Hierarchy

As illustrated in Fig. 5.22, in the AMBER framework, external memory holds only

the current video frame. Since high-density and low read/write latency is essential

for the external memory, DRAM is a suitable candidate for the external memory. It

Reference Memories (NVM)

Block
Matching
(ME) Engine

Frame Read
Master

CTU
Memory
(SRAM)

+ + + +
+

+
+

Reference Row Buffer

CTU FIFO
(SRAM)

Transform
Loop

(DCT etc.)

Reference Frame
Read Master RF0 RF1 RFnr-1

HEVC Encoder
(Initialization, video read/write,

SAD addresses, commence)

Power Gating Control

Simplified Self-
Organizing
Map (SOM)

Clock Gating Control

External
Memory

Controller

Memory

OffIine
Training

Reference Write Master

HEVC Encoder

…

Fig. 5.22 AMBER memory subsystem architecture employed in HEVC video encoder

158 5 Energy-Efficient Hardware Design for Video Systems

can be replaced by a PRAM, but writing this memory by the raw video stream from

the camera is both energy- and latency-wise expensive.

The read master accelerator reads the current raw video data from the off-chip

memory, one CTU at a time, and places it in the on-chip CTU memory of size

bw�bh samples, with bw, bh є {16, 32, 64} and each sample of size 8 bits. Due to a

small amount of data (maximum 64�64 pixels) being written to this memory from

the external DRAM, the CTU is stored in an SRAM. Thus, motion estimation can

start as soon as data is available. The output of motion estimation is processed and

fed to the reference frame buffers via a SRAM FIFO, also of size bw � bh. Since
SRAMs have the fastest read/write characteristics, the SRAM memories employed

in AMBER hide the latencies from the external bus system and the HEVC

processing engine.

The reference write master pulls the data from the SRAM FIFO and feeds it to

the on-chip NVM reference frame memories. These memories hold either nr
reference frames (in case of multi-frame prediction) or a single large frame (e.g.,

8K UHD, 7680 � 4352) in nr separate video frame memories. The reference read

master reads the predictors from these memories and forwards it to the motion

estimation engine.

5.4.2 NVM Reference Memory Architecture

The NVM reference frame memories consist of memory banks and sectors. Each

bank is reserved for one reference frame of size w � h. Each bank is divided into

multiple sectors where individual sectors are NVMs of size bw � h and can be

independently power gated using the power-gate control. These NVMs are “nor-

mally off” and only awakened for reading or writing. As discussed, the reference

data generated by the HEVC encoder is fed to the SRAM FIFO. A reference write

master module, with an internal AGU, writes this data to the appropriate bank and

sector. The write master also collaborates with the power-gate control logic.

Furthermore, all the sectors use only one address and data port that can be used

for reading and writing. Moreover, the data ports of individual banks can be

accessed in parallel, thus, reducing the read/write latency.

During encoding, the motion estimation engine requests a predictor from the

reference frame. Its request is handled by the reference read master module. For this

purpose, the motion estimation engine provides row and column addresses within

the reference frame from which to read the predictor. Read master properly trans-

lates these addresses to banks and sectors and cross-checks if the sector is turned on.
If not, then a turn on request to the power-gate control unit is generated. Obviously,
this results in latency. Afterwards, a row of the prediction is written to the row

buffer which forwards this data to the motion estimation engine. Note that the

concept of search window is now replaced by the full video frame memory, and

there is no need to fill a memory structure repeatedly with raw video samples (see

5.4 Hybrid Video Memory Architectures 159

Fig. 2.9). Thus, in the following, a search window in the context of AMBER will

mean a region in the on-chip frame buffer.

In the following, we will discuss some constraints and characteristics of using

AMBER architecture within HEVC. For AMBER, the write latency of an NVM

sector should be lesser than or equal to the average motion estimation computa-

tional time. Thus, for w�h dimensions of frames and fp frames per second, the write

latency of a CTU to the NVM, tw,m,CTU, must hold the following condition:

tw,m,CTU � bw � bhð Þ= w� h� f p
� � ð5:16Þ

Further, the dynamic power in the AMBER architecture is the power

consumed by:

• Two times writing into CTU SRAM

• Two times reading from CTU SRAM

• Writing to NVM frame memory

• Reading from NVM frame memory

Therefore, we can write the total dynamic power pdyn as:

pdyn ¼ w� h� f p � edyn,w,m þ 2edyn,w, s
� � ð5:17Þ

Here, edyn,w,m and edyn,w,s are the dynamic write energies of NVM and SRAM,

respectively. The total leakage power pleak is then:

pleak ¼ pleak,m � bw � hþ sw � hð Þ þ 2pleak, s � bw � bh ð5:18Þ

Here, pleak,m and pleak,s are the leakage powers of NVM and SRAM, respectively.

While the reason for SRAM leakage power term is obvious, for the NVM, it is more

involved. During write phase, only one sector is turned on and during read phase, a

set of sectors is turned on, denoted by sw, the width of the search window for block

matching.

Now, we compare the advantages of on-chip NVM reference memory with the

usual search window-based external memory with prefetching technique. With low

leakage and high capacity, NVM on-chip video memories are feasible. For external

memory-based architectures with nrreference frames and search window read

factor rf, the total accesses (reads and writes) directly to the external memory

results in the total pixels accessed equal to:

w� h� 8� f p � rf � nr þ 2� w� h� 8� f p ð5:19Þ

Here, the second term denotes the reading of the luminance frame from the

external memory and then writing back the reconstructed frame. On the contrary, if

NVM on-chip reference frame memories are employed, total number of external

memory accesses is reduced by the factor 2 þ rfnr, which is over three times

external memory access savings. Moreover, on-chip memory latency is much

160 5 Energy-Efficient Hardware Design for Video Systems

lower compared to the off-chip latency. Furthermore, the contention on the off-chip

external memory bus is reduced using NVM frame memories.

Again, consider that nr reference frames are stored in the external memory. The

total leakage power can be therefore written as:

pleak ¼ pleak,d � w� h� nr ð5:20Þ

Here, pleak,d is the leakage power of external memory (e.g., DRAM). On the

other hand, the NVM memories can be switched off to dissipate no leakage (see the
leakage of NVM reference memories in Eq. (5.18)). In fact, AMBER will only turn

on set of sectors at a time, depending upon the predictor location. Thus, the total

leakage power is reduced.

Power gating is only advantageous for NVM reference memories and not for

VM or on-chip SRAM. External VMs like DRAM, and on-chip VMs like SRAM,

will lose their contents as soon as the power is cut off. Moreover, once the design of

ME engine is fixed (chip is fabricated), the size of the search window cannot be

altered. A scenario for which even smaller search windows are acceptable (e.g., low

resolution, low motion video coding) employing DRAMs or SRAMs reference

memories will still consume the same leakage power. However, this is not the

case with the NVM-based memory subsystem. Due to the non-volatility of the

NVM, reference frames will still be available, once the NVM is turned back on.
Thus, AMBER adapts the leakage power consumption at runtime to save energy.

5.4.3 Energy Management of NVM Reference Memories

In the “sliding” search window-based video block-matching architecture, note that

whether or not the current video block accesses all the samples in the search

window, the next block may use these samples. Therefore, search window samples

cannot be discarded. Moreover, from Fig. 3.10b, we notice that most of the search

window is wasted because some of the video samples are never accessed. Consid-

ering this, block-matching algorithm accesses only a small percentage of sectors in

the hybrid memory architecture presented here. However, since on-chip full-frame

buffers are employed, a search window can actually be considered as the full frame.

Therefore, multiple writes to this search memory are not required compared to the

search window-based technique, saving dynamic write energy. On the other hand,

since the search window in AMBER case is very large, it has a high leakage power.

It is presented in the previous section that the leakage energy of AMBER can be

reduced by appropriately power gating the unused memory sectors. For a particular

bank, the power-gating control unit turns on set of sectors between β1 and β2
(collectively represented as (β1, β2)) and power gates the rest. The values (β1, β2)
are predicted and adapted by analyzing the memory access pattern of the block-

matching algorithm. Power-gate control unit actually controls the sleep transistor

associated with a memory sector.

5.4 Hybrid Video Memory Architectures 161

5.4.3.1 Memory Access-Based Self-Organizing Map

The estimation of (β1, β2) is computed by a self-organizing map (SOM) [25], which

keeps a record of the memory access pattern and updates its map whenever there is

a change in the pattern search procedure.

Fast block-matching algorithms for a block usually follow a pattern. Therefore,

some simplifications can be made for designing the SOM. A table with neurons as

the keys can represent the SOM. This is shown in Fig. 5.23. Further, training the

SOM is fast, as we do not need to test each input against every neuron, rather, the

neurons can be updated in a sequence. Each neuron of the SOM holds the minimum

and maximum sector turned on for the current block in the form of a tuple (βmin,
βmax). This tuple is called the weight of the neuron. Based upon the weight of the

neuron, the power-gating control bits are set or reset.

For ease of readability, we will consider motion estimation for HEVC in this

section. Each CU within the CTU will undergo the motion estimation process.

Obviously, the discussion is valid for video encoders. The power-gate unit powers

on the sectors between:

β1 ¼ CUx � βmin; β2 ¼ CUx þ βmax ð5:21Þ

Here, CUx is the horizontal location of the top-left pixel of CU (or PU) under

test. That is, only the sectors between β1 and β2 are turned on. Additionally, note
that there is a neuron in the SOM table for every CU of the CTU. From Eq. (2.7), we

notice that a total of 85 neurons are required for a CTU of 64 � 64. The weight of

the neuron is set during the training phase of the SOM. However, it is also updated

at runtime if there is a change in the memory access pattern. Suppose that the block-

matching algorithm requests a memory sector βref to be turned on. Then the weight
update formulas are given by:

βmin ¼ βmin þ γ βref � βminð Þb c
βmax ¼ βmax þ γ βref þ bw � βmaxð Þd e ð5:22Þ

βref − βmin

γ

1

0.5

Neuron Weight

1 (β11 , β12)

2 (β21, β22)

3 (β31, β32)… …

Slower decrease in
the search window
size to account for

variations Quicker adjustment
in the size of the
search window

incase of
misprediction

Fig. 5.23 Illustration of neuron weight-update feedback and SOM table

162 5 Energy-Efficient Hardware Design for Video Systems

https://doi.org/10.1007/978-3-319-61455-7_2#Equ8

The learning coefficient (γ) takes the value of 1 or 0.5 for simplicity in this

implementation, as shown in Fig. 5.23. If the search window size is increasing,

faster expansion of the search window is allowed, by keeping γ ¼ 1.For reducing

the search window size (i.e., turning off some sectors), AMBER takes γ ¼ 0.5. In the

formula above, bw is the width of the CU under test.

Typically, the memory access pattern by the block-matching algorithm does not

change during the HEVC encoding. Therefore, the offline-trained SOM does not

change during the runtime for a given motion estimator. However, changing the

memory access pattern will require the neurons to adjust first and latency will be

encountered. Moreover, a threshold-based ME early termination technique is usu-

ally employed for production systems, in which case block matching for the current

CU terminates if SAD is less than a particular threshold. Even with this technique,

AMBER still outperforms the search window architecture because search window

will always require prefetching new CTU column from the external memory on

every CTU iteration. Moreover, for slow-varying motion sequences with adaptive

motion estimation, the number of NVM sectors turned on will reduce over time,

hence further reduction in the leakage power. It will be reverse for high-varying

motion sequences.

5.4.4 System Computation Flow

Algorithm 10 shows the high-level algorithm of AMBER for HEVC. For the

current CTU under test, we wait before it is fully written to the CTU SRAM and

the banks are ready for reading (line 2). Afterwards, the motion estimation (ME) for

the current CTU commences (line 4). Before the ME launches, we forecast the bits

of power-gate control lines (lines 7 and 8) given by Power Gate Control Register

PG. PG bits are set to turn on the specific NVM memory sectors. Excess memories

turned on due to previous CU computations are also turned off (line 9). Once the

block matching for the CU starts, it is tested whether correct NVM sectors are

turned on (lines 14 and 15). In case a misprediction in the forecasting the right

sectors occurs, we need to turn on the NVM sectors which are erroneously kept off
(line 16). In parallel, we update the estimator (line 17 and Eq. (5.22)). Afterwards,

ME can start (line 19) and we repeat the process to the next location in the block-

matching pattern for the current CU. Once the current CU is processed, it is

subdivided into four equal CUs (lines 21 and 22) and the process is repeated.

We now examine the impact of the wrong decision latency on the performance

of HEVC. For a frame with total nfrmCTUs, the total number of CUs searched is (see

Eq. (2.7)):

ξ ¼ nfrm � 13�
Xlog2bw�3

i¼0
22i ð5:23Þ

5.4 Hybrid Video Memory Architectures 163

https://doi.org/10.1007/978-3-319-61455-7_2#Equ8

Therefore, for a 30 FPS video, total number of CUs searched in 1 s is equal to

30ξ. Now consider that we turn off memory forecasting and the wake-up time for a

NVM is supposedly ψ cycles, a total of 30ξψ cycles per second are wasted. As an

example, for a CTU of size 64 � 64 of a full-HD frame (1920�1088), it will incur

an additional latency of about 16.9ψ megacycles per second. Therefore, guessing

the correct location of the predictor is important in managing the energy consump-

tion of the prediction process.

5.5 Energy-Efficient Anti-aging Circuits for SRAM

In the previous section, NVM-based memories are considered to store the raw video

data. However, SRAMs are the most common type of on-chip memories, which are

universally available on embedded systems. By only using SRAMs to store video

data, system design can achieve low latency and eliminate the extra circuitry/

maintenance required by the NVM-based hybrid memories. However, using

SRAM comes with additional challenges, and one of the challenges is time-based

degradation (called aging) of SRAM cells.

This book targets aging analysis and configurable aging optimization of SRAM-

based on-chip memories deployed in application-specific architectures (like

camera-based video processing systems). In this section, details about the aging-

resilient architecture for a memory composed of 6T-SRAM-based cells are

presented. In order to reduce the aging rate of the SRAM video memories (see Sects.

2.3.2 and 3.3.3), microarchitectural enhancements are employed at the memory

subsystem, which modulates or transduces the video data written to and read from

the SRAM memory. Some of these circuits are also discussed in Chap. 3. The

SRAM memory is assumed to have capacity sufficient to store a large chunk of

data, e.g., multiple images/video frames. Figure 5.24 illustrates the overall archi-

tecture of the aging-resilient SRAM memory. The operational workflow of writing

and reading video data is as follows:

• Raw video samples from the streaming video source are written to a FIFO,

controlled by the FIFO controller, which also provides appropriate data-valid

signals to the memory subsystem. This FIFO and its associated control circuitry

are similar to the ones previously discussed in this book.

• The aging controller snoops the data from the data FIFO and generates proper

control signals for the best aging resilience and power trade-off (see details in

Sect. 5.5.3).

• The signals generated by the aging control configure the Memory Write Trans-

ducer (MWT) to adapt input video samples before they are written to the

memory (see details in Sect. 5.5.1). Specific bits of the samples are selected

for inversion by setting the appropriate enable signals of the configurable

Inverter Switches. In addition, the write address of the data is changed at runtime

using the Write AGU (see details in Sect. 5.5.2), to fully utilize the memory

164 5 Energy-Efficient Hardware Design for Video Systems

St
re

am
in

g
D

at
a

FI
FO

R 0
R 1

R 2
R 3

b 0
b 1

M
0

M
1

O
A

Sh
ift

 R
eg

is
te

rf
or

 V
id

eo
 D

at
a

+

-

R
R

R

M
SB

H

+
R

E
Se

t B
it

Co
un

t E
na

bl
e

In
ve

rt

Sw
itc

h
En

ab
le

D

ec
is

io
n

O
A

G
en

er
at

io
n

b

Co
nf

ig
ur

at
io

n
Ta

bl
e

FI
FO

 C
on

tr
ol

lin
g

Lo
gi

c

N
ew

 F
ra

m
e

7
6

5
4

3
2

1
0

753

M
em

or
y

W
rit

e
Tr

an
sd

uc
er

W
rit

e
AG

U

Re
ad

AG
U

Memory Read
Transducer(MRT)

Ag
in

g
Ra

te
Co

nt
ro

lle
r

Ap
pl

ic
a�

on
s

Bi
t C

ou
nt

er

In
ve

rt
er

Sw

itc
h

R
R

CL
K

+
O

A

+
R T+

N
ew

D
at

a
Se

t

A R

R
R

R

M
SB

-
H

-A
R

X

R F -
A R

Ze
ro

Co
m

p.

N
ew

D

at
a

Se
t

In
pu

t
Av

ai
la

bl
eE

E

R E

R E

0 W
R

W
R

Ad
dr

es
s

W
rit

e
Re

q.

A
R:

 A

dd
re

ss
 re

so
lu

tio
n

CL
K:

 C
lo

ck
E:

En
ab

le
H

 :

H
ei

gh
t o

f t
he

 in
pu

t
M

:
 M

ul
tip

le
xe

r
O

A:

St
ar

t
ad

dr
es

s
of

fs
et

R:

 R
eg

is
te

r
R E

:
 R

es
et

W
R:

 W
rit

e
re

qu
es

t

Ad
dr

es
s

St
ar

t A
dd

re
ss

R

SR
AM

-B
as

ed

M
em

or
y

Vi
de

o
fr

am
e

Si
ze

: w
 x

h

E

CL
K

Vi
de

o:

-C
om

pr
es

si
on

-S
ec

ur
ity

Au
di

o:
-R

ec
og

ni
tio

n
-E

nt
er

ta
in

m
en

t

Se
rv

er
:

-N
et

w
or

ki
ng

-C
om

m
un

ic
at

io
ns

Ro
bo

tic
s:

-A
ut

om
at

io
n

-N
av

ig
at

io
n

F
ig
.
5
.2
4

S
R
A
M

m
em

o
ry

su
b
sy
st
em

an
ti
-a
g
in
g
ar
ch
it
ec
tu
re
.
T
h
e
M
em

o
ry

W
ri
te

T
ra
n
sd
u
ce
r,
W
ri
te

A
G
U
,
R
ea
d
A
G
U
,
an
d
M
em

o
ry

R
ea
d
T
ra
n
sd
u
ce
r
ar
e

co
n
n
ec
te
d
to

th
e
S
R
A
M
.
T
h
e
ag
in
g
co
n
tr
o
ll
er

co
n
fi
g
u
re
s
th
es
e
m
o
d
u
le
s
b
y
g
en
er
at
in
g
co
n
tr
o
l
si
g
n
al
s
to

ad
ap
t
in
p
u
t
d
at
a
at
re
ad

an
d
w
ri
te
p
o
rt
s
o
f
th
e
m
em

o
ry

5.5 Energy-Efficient Anti-aging Circuits for SRAM 165

address space and introduce stress relaxation at the SRAM cells holding less

frequently changing data samples (i.e., pixels of static background regions in an

image).

• Before the video samples are read by the application, the Read AGU appropri-

ately converts the logical address to the physical address, and the Memory Read

Transducer (MRT, an exact replica of MWT) readapts them.

As pointed out, the configurable design presented here explores the trade-off

between aging resilience and the associated power overhead. Further, the

configurable aging resiliency techniques presented here are scalable, because they

are orthogonal to the number of memory ports and memory size. In the following,

the memory write modules are discussed in detail. However, note that the working

principles of the memory read modules can be easily deduced as they perform the

exact opposite operation of the writing modules.

5.5.1 Memory Write Transducer (MWT)

The MWT is used to invert specific bits of the raw video samples in order to toggle

less frequently changing samples and release stress on the 6T-SRAM cells storing

these bits. The data bits are grouped in pairs, and each bit-pair can be adapted

separately to target the specific SRAM cells for releasing stress. For this purpose,

the higher-order data bit-pairs (bits 2-7) are passed through controlled Inverter

Switches. Figure 5.24 shows that the first two bits (0 and 1) are not adapted. This is

due to the fact that the SRAM cells storing the first two LSB bits always have the

lowest degree of stress, due to high degree of variation and hence a balanced duty

cycle (as shown in the case study of Fig. 3.13j). Therefore, the anti-aging architec-

ture presented here only uses three Inverter Switches to control six MSB bits of a

data sample. The input control lines (E) act as a clock-gating signal to the registers

R2 and R3 and as a “select” signal to the multiplexers M0 and M1. All the registers

store the original unmodified bits (b0 and b1). The registers R0 and R1 are directly

connected to the multiplexers, whereas R2 and R3 are inverted and connected to the

multiplexers. As seen, for every bit-pair, five 1-bit registers, two inverters, and two

1-bit multiplexers are required. For example, for 8-bit data samples, a total of

15 1-bit registers, 6 inverters, and 6 1-bit multiplexers are required.

If the control signal E of an invert switch is set (high), registers R2 and R3 latch

the bits b0 and b1, and thus, the inputs and outputs of the inverters are updated. In

this case, both input bits are inverted and the inverted bits are generated at the

output. If the “enable” signal is reset (low), bits b0 and b1 are forwarded to the shift
register unaltered. Therefore, no dynamic energy is consumed by R2 and R3 and the

inverters. The signal E is controlled by the aging controller.

166 5 Energy-Efficient Hardware Design for Video Systems

5.5.2 Aging-Aware Address Generation Unit (AGU)

The Write AGU is responsible for selecting the appropriate frame memory (e.g., for

writing an incoming video frame from a camera device) and generating addresses

for writing the data words to the SRAM memory from the shift register. Selecting

the appropriate frame memory for writing a complete video frame follows a round-

robin technique (see the ring buffer discussed in Sect. 5.1.3). In addition, before

overwriting a frame memory, it is required that frame memory is no more required

by the executing application(s). An application signals this by requesting the

address of a new data set (see Sect. 3.3.3 for details). A signal (“New data set

request” in Fig. 5.24) prompts to deliver a new starting address to the Write AGU.

As discussed before, less frequently changing data will incur the most NBTI-

induced stress on the 6T-SRAM cells. If the most frequently changed data words

are identified, they can be distributed in memory in a spatial round-robin fashion.

However, this may require information from the application and additional analysis

at runtime, which is power- and area-wise inefficient. Therefore, a simple technique

is introduced for aging resiliency. For every new video frame written to the memory

partition, the video frame is circularly shifted. This corresponds to changing the

starting address of the data set. With each new video frame, an offset in the starting

address (oA) is generated (by the aging controller) to the Write AGU as the starting

address of the video frame. With every frame, oA is accumulated and the starting

address is shifted by oA. This guarantees that the frame memory containing less

frequently changing data is interchanged with the more frequently changing data at

regular intervals, thus relieving stress from the SRAM cells holding bits of the less

frequently changing data. Figure 5.25 illustrates the example of video frame writing

in the memory with oA ¼ 119.

0
119

358
238

Fig. 5.25 Write AGU frame writing technique with oA¼ 119. The moving region (sliding people)

is overwriting the static background with every frame

5.5 Energy-Efficient Anti-aging Circuits for SRAM 167

5.5.3 Aging Controller

As illustrated in Fig. 5.24, the aging controller constructs the control signals of the

MWT and supplies the start addresses of the video frame in the Write AGU.

Figure 5.26 shows the comprehensive flow of the aging controller for enabling

Inverter Switches. For every Inverter Switch, such a controller exists; therefore,

three such controllers are used in the SRAM anti-aging system. To generate the

control signals for MWT, two decisions must be made: (1) at what time instant the

Inverter Switch circuit should be activated and (2) on which SRAM cells aging

balancing should be applied.

Decision – 1: Triggering Aging Balancing Circuit at a Particular Time

Instant For this, the Inverter Switches are actuated for a complete video frame

after specific time period, i.e., a certain number of video frames are written without

adaptation and are processed by the application. For example, consider that a

specific bit-plane of a frame 2i is stored without inversion (E ¼ 0) and for the

frame 2iþ1, it is stored with its bits inverted (E ¼ 1). This corresponds to the data

adaptation rate (fR) of 1. That is, the respective bit-planes in every second video

frame are inverted. Formally, fR denotes the number of video frames stored in the

SRAM memory without inversion of the video frame. In the definition above, a

bit-plane is defined as the collection of the bits at the same bit location, in all the

samples of a video frame. In case two neighboring video frames have high corre-

lation, it is expected that the inversion of frame 2iþ 1 will overwrite most of the bit

locations of frame 2i with inverted bits. This will therefore relieve stress on the

SRAM cells and reduce the NBTI introduced aging. Note that there is a separate fR
for each Inverter Switch, and each Inverter Switch is independently activated.

Additionally, fR also plays an important role in deciding about the power

Start Initial fR,b
f = 0

Get sinit,b for
all regions

f = f + 1
Write frame

f = 0
i = 0
d = 0Is Low

Correlation
?

d = d + 1

i = i + 1

d ≥ τ1?d ≥ τ2?d ≥ τ3 ?
Configuration Ei

Generation

Ei=1 if
f MOD fR,b = 0

fR

Ei

Increase fR,b
by 50%

Decrease fR,b
by 25%

Increase fR,b
by 25%

Decrease fR,b
by 50%

f<F?

Frame Memoryi<ni?

+ R

b0 b1 b2 b3...b7
b0 b1 b2 b3...b7

b0 b1 b2 b3...b7

si,b

Reset

Pixel 0
Pixel 1... ...

b=3
si,b

Computation

Fig. 5.26 Inverter Switch enabling decision logic. For the anti-aging memory architecture

discussed here, there are three such circuits, one for each Invert Switch

168 5 Energy-Efficient Hardware Design for Video Systems

consumption and aging rate of the SRAM memory. A high fR will reduce the power
consumption but will be less resilient to aging. On the contrary, a low fR will reduce
the aging rate, but will also increase the power penalty.

Decision – 2: Picking SRAM Cells for Aging Balancing At runtime, the MWT

enable signals (E, which is generated based upon fR) can be turned on or off
depending upon the expected aging and the power constraint of the system. When

all the enable signals are inactive (N ¼ 0), power penalty of this technique is the

lowest because no inversion takes place. This relates to no toggling activity occurs

at the inputs of the inverters of MWT because the registers associated with the

inverters are unchanged. However, the rate of SRAM aging is the highest because

next fR number of video frames are written without adaptation and thus, increase the

amount of stress a single transistor of a 6T cell will endure. Similarly, when all the

enable signals are active (N ¼ 3), SRAM aging rate is the lowest at the cost of the

highest power penalty. Basically, when only one enable signal must be active

(N ¼ 1), the SRAM anti-aging architecture inverts the two MSB bits (bit 6 and 7)

as the SRAM cells storing these bit encounter the most stress. If the power

configuration allows for two enable signals to be active (i.e., N ¼ 2), the four

MSB bits (bits 4 till 7) are inverted.

A method can determine the value of N depending upon fR of all Inverter

Switches. If fR of all Inverter Switches is selected such that adaptation is active

for all Inverter Switches for the same video frame, then N ¼ 3. Otherwise, if two

Inverter Switches are active for the same frame, then N ¼ 2. Selection of appro-

priate fR is a control problem, which must be computed at runtime by analyzing the

characteristics of the input data (i.e., computation of duty cycle for different bits). In

the technique presented here, a simple and efficient microarchitecture to estimate

duty cycle online is given, as outlined in Fig. 5.26. This circuit is used to determine

fR for a single bit-plane. A bit-plane is divided into ni parts, and the corresponding

bits are accumulated for each part. This accumulation also denotes the duty cycle of

the bit-plane in the specific frame part. For every part, if the number of 1s differs

significantly than its previous stored value (depending upon the lower sL,i,b and

upper sH,i,bthreshold), the part has a different texture, and a difference counter d is

incremented. Afterwards, d is tested and fR of the bit-plane is increased or

decreased. The thresholds τ1, τ2, and τ3 (τ1 � τ2 � τ3) determine the change in fR
and can be set at design time.

However, calculation of duty cycle online incurs a power penalty. In the

technique presented here, a counter-based logic is used to activate the duty cycle

generation circuit. The set bit counter’s register and the input bit to the adder are

only updated if the enable signal is high. Thus, this will save dynamic power

consumption. If online duty cycle computations are more frequent (finer control

with smaller F), the power consumption of this technique will be high and vice

versa.

5.5 Energy-Efficient Anti-aging Circuits for SRAM 169

5.5.4 Generalization and Applicability

In general, the aging-mitigation design methodology and architecture presented

here are orthogonal to the type of application and the low-level aging models. In

fact, a video frame can be replaced by any data set in the previous discussion.

However, this may require several design optimizations to get the best power-

efficient aging-mitigation design, for example:

• In addition to inverter, some rotation or swapping modules can also be combined

in the Memory Read and Write Transducers.

• The values of controller variables to adapt the aging balancing might need to be

reevaluated.

This will thus require an application- and content-aware analysis, similar to the

one performed for the camera-based application in this book. To illustrate the

varying duty cycle behavior of a non-video-based application, an audio sample

storage is evaluated, as discussed below.

Figure 5.27 shows a 16 KHz, 16-bit linear pulse code modulated (LPCM) audio

signal and the duty-cycle box plot of the memory used for storing this signal.

Without using any aging balancing circuit, the duty cycle of all the bits is already

balanced, which is visible from the concentrated spread of the box plot. This is due

to the fact that audio signal swings around 0, and the number of negatives (with

MSB bits storing 1s) and the number of positives (with MSB bits storing 0s) are

similar, unlike the video data. Moreover, the temporal correlation of audio data is

low, suggesting that it is highly likely that the new audio sample, which overwrites

the previous one, will have different characteristics (i.e., different sign). However,

this is the not the case with video data, which will have high temporal correlation

(e.g., the background region, which will be static in many consecutive video

frames), leading to biased duty cycles and, therefore, higher stress on the 6T

SRAM cells.

Moreover, the analysis carried out in this book only considered integer values.

An interested reader can perform similar analysis for floating-point storage. Large

floating-point storages are becoming increasingly popular due to large matrix

operations in graph theory, quantum mechanics, machine learning etc.

-10000

-5000

0

5000

10000

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

Sa
m

pl
e

M
ag

ni
tu

de

Du
ty

 C
yc

le

Time

Bits #

(a) (b)
Magnitude swings

around zero
Balanced duty cycle for all bits

Fig. 5.27 (a) Magnitude swings of a 16-bit per sample, 16 KHz audio signal, and (b) aging profile

as box plot

170 5 Energy-Efficient Hardware Design for Video Systems

5.5.5 Sensitivity Analysis of SRAM Anti-aging Circuits

The information on the duty cycles can be transformed to respective SNM over time

using any available data mapping of duty cycle (Δ) to SNM degradation. However,

the technique presented in this book is independent of such a mapping. In fact, any

table that relates the Δ to SNM degradation can be used, because a balanced Δ will

always result in smaller SNM degradation (lower aging rate). For evaluation

purposes, another variable called aging map (δ) is defined, which connects the Δ
ranges to respective δs as shown in Table 5.4. As seen, if the duty cycle is balanced,
(0.4� Δ� 0.6), the value of δ is low. This should be the goal of an aging balancing
approach – to reduce δ as much as possible. Moreover, all the 6T SRAM cells with

Δmore than 0.95 or less than 0.05 result in high SNM degradation and therefore are

represented by a higher δ value. To concisely present the duty cycle of the whole

frame memory, δ for the complete frame memory can be represented in form of a δ
histogram. Afterwards, the information contained in this histogram can be

presented in form of a scalar metric π given as:

π ¼
P

8bins vbin � vbin,minð Þ � nbin½ 	
vbin,max � vbin,minð Þ � nsamples

ð5:24Þ

In this equation, vbin is the value of a bin of the histogram, on x-axis of histogram

(δ). nbin is the number of values in the bin, on y-axis of histogram (total number of

6T SRAM cells which are stressed under the particular δ). vbin,min and vbin,max are

the minimum and maximum values of all the bins, respectively. nsamples corre-

sponds to the total samples in the histogram. Thus, for SRAM storing an 8-bit per

pixel video frame, nsamples equals w � h � 8, i.e., the size of the frame memory. If

the number of values in the bins is closer to vbin,min (δ ¼ 0 in this case), we would

expect π closer to 0. Otherwise, π will have a larger value. Therefore, an aging

resiliency technique should strive to reduce π as much as possible. Further, calcu-

lation of π considers the distance between the local degradation and the least

possible degradation (i.e., vbin – vbin,min).
The aging analysis of SRAM cells for different video sequences is tabulated in

Table 5.5. The column “Base” denotes the amount of aging without using any

MWT, i.e., without applying any aging balancing techniques. Since different video

sequences lead to different amount of stress as a result of varying distribution of

Table 5.4 Duty cycle (Δ)
to aging map

Duty Cycle (Δ) Aging map (δ ¼ |0.5�Δ|)
Δ � 0.05 or Δ � 0.95 0.45

Δ � 0.1 or Δ � 0.9 0.4

Δ � 0.2 or Δ � 0.8 0.3

Δ � 0.3 or Δ � 0.7 0.2

Δ � 0.4 or Δ � 0.6 0.1

Δ ¼ 0.5 0

5.5 Energy-Efficient Anti-aging Circuits for SRAM 171

“zeros” and “ones,” the aging imbalance results in undesirable varying degradation

of different SRAM cells. Sequences with large static structures in video frames

(e.g., “Johnny”) bring the most amount of stress on the SRAM cells because of

static sample values. Sequences of this type are common for video security and

communication applications, which are employed for a long duration. Camera

panning and zooming sequences (like “BQTerrace,” “FlowerVase,” and “Keiba”)

usually have a low aging impact on SRAM cells. Largely static video sequences

exhibit high aging due to less frequently changing data values (e.g., “Basketball,”

“ChinaSpeed,” “FourPeople,” and “Johnny”).

This table also presents the aging parameters for the MWTs given in Fig. 3.13.

For a comparison with these MWTs, results for using N ¼ 0 (no Inverter Switch

active) and only using the Write AGU to circularly write the frames in the frame

memory are also given. Write AGU is activated by having oA 6¼0. Using three

different values for oA, we notice considerable aging balancing achieved by only

adapting the start addresses of the video frames in the SRAMmemory. Specifically,

largely static sequences get the most benefit. However, an interesting observation

for the “Johnny” sequence can be made where we notice low aging improvement

using Write AGU as compared to a sequence with similar aging profile (i.e.,

“FourPeople”). This is due to the fact that the static regions in the “Johnny”

video frames are similar throughout the height of the frame, and the video samples

of the new frame that overwrite the video samples of the previous frame have

similar characteristics, thus only marginally contributing to stress relaxation.

Hence, inversion is a better option in such a case. However, one can extend the

Write AGU to start writing the next frame somewhere in middle of the row storing

the previous frame samples. Further, oA adaptation results in better aging resiliency
as compared to nibble swapping, with negligible power penalty. Note that oA is

chosen as a prime number to make the cycle of start address of the video frame to be

as large as possible.

The impact of parameter fR and N on aging for different video sequences is

tabulated in Table 5.6. Note that increasing fR causes more frames to be inserted

Table 5.5 Duty cycle presented as aging parameter (π in 10�2) for different video sequences, with

no inversion (fR¼1), no controller

Seq. Base

fR¼1 N ¼ 0, fR ¼ 1
Invert Swap Rotate oA¼17 oA ¼ 41 oA ¼ 61

Basketball 37.9 3.9 32 3.7 14.5 14.4 14.4

BQTerrace 14.1 0.0 9.3 0.6 0.6 0.6 0.6

ChinaSpeed 38.9 0.0 30.1 22.1 21.3 21.3 21.3

FlowerVase 14.5 0.0 11.8 6.4 10.4 10.4 10.4

FourPeople 49.8 0.0 32.9 7.4 9.2 9.2 9.2

Johnny 52.6 0.0 34.8 5.6 25.5 25.5 25.5

Keiba 8.4 0.0 6.1 0.1 7.0 6.5 6.5

People 27.6 0.1 18.9 2.7 7.4 7.2 7.1

Traffic 42.6 0.1 29.4 8.0 8.8 8.9 8.5

172 5 Energy-Efficient Hardware Design for Video Systems

between two adapted frames at the same memory location. However, for static

sequences like “Johnny,” aging is accelerated due to increase in duty cycle bias.

Sequences with camera panning, zooming, and frequent scene changes exhibit

lesser sensitivity to changing fR, mainly because of the video frame memory is

overwritten continuously with dissimilar video samples. For example, the sequence

“Keiba” and “BQTerrace” exhibit lower sensitivity to increasing fR. Similarly,

introducing more inverters by enabling the control signals of the Inverter Switches

in the MWT will largely balance the aging of video memory. For slow moving,

static sequences like “Traffic” and “Johnny,” N ¼ 3 results in a significantly better

aging compared to N¼ 2 or 1. Highly dynamic sequences can still achieve the same

aging with N ¼ 2 or N ¼ 1.

Further, experiments also reveal that using multiple frame memories result in

almost the same aging balancing in all the frame memories. This is because frames

are highly correlated, and instead of always overwriting a particular frame memory

with the next frame, writing the second or third frame results in nearly the same

aging statistics.

References

1. Altera. External memory interface handbook. June 2011. [Online]. Available: http://www.

altera.com/literature/hb/external-memory/emi.pdf. Accessed 29 Sept 2015.

2. Juice Encoder– 4 in 1 MPEG-4 AVC/H.264 HD encoder. Antik Technology, [Online].

Available: http://www.antiktech.com/iptv-products/juice-encoder-EN-5004-5008/

3. Marvell 88DE3100 High-Definition Secure Media Processor System-on-Chip (SoC). [Online].

Available: http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-

ARMADA-1500-Product-Brief.pdf/

4. Cuomo, S., Michele, P. D., & Piccialli, F. (2014). 3D data denoising via nonlocal means filter

by using parallel GPU strategies. In Computational and Mathematical Methods in Medicine.
5. Shafique, M., Zatt, B., Walter, F. L., Bampi, S., & Henkel, J. (2012). Adaptive power

management of on-chip video memory for multiview video coding. In Design Automation
Conference.

6. Sze, V., Finchelstein, D. F., Sinangil, M. E., & Chandraksan, A. P. (2009). A 0.7-V 1.8-mW

H.264/AVC 720p video decoder. IEEE Journal of Solid-Sate Circuits, 44(11), 2943–2956.
7. Ma, Z., & Segall, A. (2011). Frame buffer compression for low-power video coding. In

International Conference on Image Processing.

Table 5.6 Duty cycle presented as aging parameter (π in 10�2) for different video sequences, with

oA ¼ 0, no controller

Seq. Base

fR¼1 fR¼3 fR¼7

N ¼1 N ¼2 N ¼3 N ¼1 N ¼2 N ¼3 N ¼1 N ¼2 N¼3

Johnny 52.6 29.9 11.8 1.1 39.9 29.6 23.2 45.1 39.2 35.7

Keiba 8.4 1.1 0.0 0.0 3.9 2.9 2.9 5.9 5.2 5.2

BQTerrace 14.1 4.3 0.4 0.0 8.0 5.2 4.9 11.0 9.5 9.3

Traffic 42.6 23.9 8.8 0.9 32.0 23.3 18.5 36.6 31.8 29.4

References 173

http://www.altera.com/literature/hb/external-memory/emi.pdf
http://www.altera.com/literature/hb/external-memory/emi.pdf
http://www.antiktech.com/iptv-products/juice-encoder-EN-5004-5008/
http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf/
http://www.marvell.com/digital-entertainment/armada-1500/assets/Marvell-ARMADA-1500-Product-Brief.pdf/

8. Ning, K., & Kaeli, D. (2005). Power aware external bus arbitration for system-on-a-chip

embedded systems.High Performance Embedded Architectures and Compilers, 3793, 87–101.
9. Nios II Custom Instruction User Guide. Altera, (2011).

10. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, 7(4).

11. Snyman, J., Stander, N., & Roux, W. (1994). A dynamic penalty function method for the

solution of structural optimization problems. Applied Mathematical Modelling, 18(8),
453–460.

12. Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In High Performance Computing, Net-
working, Storage and Analysis.

13. Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore archi-

tectures. In Microarchitecture.
14. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T.,

& Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity.

IEEE Circuits and Systems Magazine, 4(1), 7–28.
15. Tsai, C. H., Tang, C. S., & Chen, L. G. (2012). A flexible, fully hardwired CABAC encoder for

UHDTV H.264/AVC high profile video. IEEE Transactions on Consumer Electronics, 58(4),
1329–1337.

16. Shafique, M., Bauer, L., & Henkel, J. (2010). Optimizing the H.264/AVC video encoder

application structure for reconfigurable and application-specific platforms. Journal of Signal
Processing Systems (JSPS), 60(2), 183–210.

17. Malvar, H., Hallapuro, A., Karczewicz, M., & Kerofsky, L. (2003). Low-complexity transform

and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for Video
Technology, 13(7), 598–603.

18. Wang, J.-C., Wang, J.-F., Yang, J.-F., & Chen, J.-T. (2007). A fast mode decision algorithm

and its VLSI design for H.264/AVC intra-prediction. IEEE Transactions on Circuits and
Systems for Video Technology, 17(10), 1414–1422.

19. Pan, F., Lin, X., Rahardja, S., Lim, K. P., Li, Z. G., Wu, D., & Wu, S. (2005). Fast mode

decision algorithm for intraprediction in H.264/AVC video coding. IEEE Transactions on
Circuits and Systems for Video Technology, 15(7), 813–822.

20. Kuo, H. C., Wu, L. C., Huang, H. T., Hsu, S. T., & Lin, Y. L. (2011). A low-power high-

performance H.264/AVC intra-frame encoder for 1080pHD video. IEEE Transactions on Very
Large Scale Integrated Systems (TVLSI), 19(6), 925–938.

21. Taiwan Semiconductor Manufacturing Company Limited. TSMC, [Online]. Available: http://

www.tsmc.com/. Accessed 7 Oct 2015.

22. Altera. Nios II Process Reference Handbook. [Online]. Available: https://www.altera.com/

literature/hb/nios2/n2cpu_nii5v1.pdf. Accessed 08 June 2015.

23. Fonseca, T. A., Liu, Y., & Queiroz, R. L. D. (2007). Open-loop prediction in H.264 / AVC for

high definition sequences. In SBrT.
24. ModelSim – Leading Simulation and Debugging. Mentor Graphics, [Online]. Available: http://

www.mentor.com/products/fpga/model/. Accessed 7 Oct 2015.

25. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.

174 5 Energy-Efficient Hardware Design for Video Systems

http://www.tsmc.com/
http://www.tsmc.com/
https://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.mentor.com/products/fpga/model/
http://www.mentor.com/products/fpga/model/

Chapter 6

Experimental Evaluations and Discussion

The experimental evaluation of the techniques presented in Chaps. 4 and 5 are

discussed in this chapter. In the previous chapters, we have already included the

sensitivity analysis of the individual parts within the algorithmic and architectural

details, whenever deemed useful. Here, the main results and comparison with other

state-of-the-art techniques are presented, to provide an overview to the reader about

gains and drawbacks of these techniques. Major emphasis of the results is video

encoding, specifically H.264/AVC and HEVC video encoders. It must also be noted

that these encoders have much more modules and higher complexity than many

benchmark applications available in Parsec [1], MediaBench [2], Cosmic [3], and

MiBench [4] benchmark suites.

The outline of this chapter is as follows. First, the parallelization of video

application is discussed by evaluating the performance of compute and application

configurations given in Chap. 4. Afterwards, the discussion regarding the resource

budgeting (i.e., compute configuration) for multiple, multithreaded applications is

carried out. In the end, architectural enhancements presented in Chap. 5 pertaining

to implementation of highly efficient memory subsystem of the video system

including AMBER and SRAM anti-aging circuits are evaluated.

6.1 Parallelization and Workload Balancing

This section discusses the evaluation of parallelization and workload balancing

techniques for multithreaded, video processing benchmarks.

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_6

175

6.1.1 Software Architecture and Simulation Setup

The architecture of the video system with design methodology employing multiple

hierarchies of application parallelization is shown in Fig. 6.1. A library written in

any high�/mid-level language (e.g., C++) for generating the compute configuration

produces the compute configuration (Sect. 4.2) and sets the application configura-

tion (Sect. 4.3) given the initial configuration matrix A (Fig. 4.7). This ensures that

there is little or moderate effort from the application designer to incorporate the

architectural enhancements in the video application. This library also handles the

frequency generation and frequency model adaptation (Sect. 4.2.5.2) at runtime.

Similarly, another library handles parallelization routines of the application. This

library implements a workload queue, which is filled with the callback function

(i.e., the tile processing function) and the associated arguments to that function.

Although this library can utilize OpenMP at the back end, more control and options

are available if pthread [5]-based solutions are employed. However, the interface of

this library should just accept the callback function and a parameter structure for

portability and scalability. Afterwards, a start signal initiates the parallel processing

where all the callback functions are executed.

The applications can embed these libraries with minimal effort. Note that for the

application configuration case study of HEVC, the reference encoding software

(named HM encoder [6]) does not provide parallelization and has a large memory

footprint. To employ parallelization and other functionalities missing in the refer-

ence software, we developed our Cþþ -based open-sourced multithreaded HEVC

intra-encoder, ces265 (for Windows/Linux), in Chair for Embedded Systems

C++
compiler

Applica�on Top or Main

Frequency Manager

GOP Processor

Tile ProcessorFrame Processor Workload
Queue

(pthreads)

Tile Forma�on
and Workload

Curtailer

Video
Read
Write

Block Processor

Workload Manager

Video App.
Sta�s�cs

Video
Applica�on Tile Sta�s�cs

fk

*.cpp sources

- System configura�on files
- Video a�ributes
- FPS requirement
- Cores to use

Linux (Ubuntu)
AMD, 24 cores, 4 sockets,

64 kB $L1, 512 kB $L2,
5 MB $L3, 16GB DDR3

Output (traces)

Fig. 6.1 Reference multithreaded video application architecture, employing multiple thread

hierarchies

176 6 Experimental Evaluations and Discussion

(CES), Karlsruhe Institute of Technology (KIT), Germany. A single thread of

ces265 is ~13� faster than HM software (more information in Appendix B).

Other open-source HEVC encoders (e.g., x265 [7]) are also available; however,

they do not include the required adaptations, and neither do they lend themselves

easily for the architectural enhancements discussed in this book. Further, due to a

small memory footprint, no platform-specific intrinsic and SIMD instructions,

ces265, can be employed and tested in small embedded systems.

For evaluations, a 4� Six-Core AMD Opteron processor [8] (also called “Istan-

bul” processor) is used. During the experiments, the frequency scaling of all cores is

disabled, and using a fixed frequency, the number of cycles per block (ck,α, see
Eq. (4.12)) can be calculated given the computation time. Note that multiple pro-

grams are running in parallel on this computer; therefore, it is expected that the load

on the computer fluctuates, and therefore, it mimics the scenario targeted in this

book. Thus, it corresponds to the changing workload of the system running the

application. The set of supported frequencies (fset) used for these evaluations is:

fset ¼ 1:0; 1:2; . . . ; 3:0f gGHz ð6:1Þ

The frequencies of the cores are used to estimate the power consumed by the

application, by running the application on the Sniper many-core simulator [9] and

McPAT [10]. Afterwards, a similar technique [11, 12] is used to estimate the final

power consumption of the system. For the techniques presented here, it is assumed

that no prior knowledge about the frequency estimation model constants ωk and

matrix E is delivered (see Eq. (4.12)). Hence, at the start of video processing, all

elements of ωk are randomly chosen, and E is initialized with 999I, where I is an
identity matrix.

6.1.2 Compute and Application Configuration for Uniform
Tiling

Table 6.1 evaluates the compute configuration technique for the ces265 HEVC

encoder as benchmark, using different test video sequences with varying dimen-

sions. This table relates the number of given cores (rtot), actual used cores (ktot) after
frequency-estimation-model stabilization, and average time per frame (tfrm) used
for encoding. As noticed, ktot � rtot, denoting that the RLS-based model tuning

technique will derive the correct number of cores to sustain the workload,

irrespective of initial settings.

Power Savings Figure 6.2 shows the power and video quality comparison when

the optional runtime adaptation of the workload (application configuration in Sect.

4.3) is activated. These results are generated using fp ¼ 5 and ε ¼ 0.05 or 5%

tolerance to the number of compressed output bytes. As seen in Fig. 6.2a, significant

power saving (up to 42.48%, average 39.21%) is obtained if the workload tuning

6.1 Parallelization and Workload Balancing 177

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_4#Equ12
https://doi.org/10.1007/978-3-319-61455-7_4#Equ12

techniques presented in this book are used, which shows that the application

configuration by leveraging the application knowledge results in high power sav-

ings. For this graph, the power savings are computed by using the following

relation:

PowSave %½ � ¼ 1� PowAppConfig=PowNoAppConfig

� �� 100% ð6:2Þ

Table 6.1 For given (rtot), the used (ktot) number of cores and average time per frame (tavg, in
msec) for different video sequences, using fp ¼ 5

Sequence

number Sequence

Resolution

w � h
Given cores

(rtot)
Used cores

(ktot)
tfrm
[msec]

A Ballroom 640 � 480 4 2 180

B BQMall 832 � 480 8 3 197

C BQTerrace 1920 � 1080 24 16 206

D ChinaSpeed 1024 � 768 8 3 191

E FourPeople 1280 � 720 12 6 193

F Johnny 1280 � 720 12 6 193

G Keiba 832 � 480 4 2 183

H RaceHorses 832 � 480 16 2 177

Average 190

41.56 39.92

42.48

27.49
40.22 39.21

33.92 37.32
39.21

0

100

200

A B C D E F G H Avg.

Without App. Config.
With App. Config.

-0.30

-0.20

-0.10

0.000

2

4

6

A B C D E F G H Avg.

BD-Rate
BD-PSNR

-0.024
-0.016
-0.008
0.000
0.008
0.016
0.024

-0.60

-0.30

0.00

0.30

0.60

A B C D E F G H Avg.

BD-Rate
BD-PSNR

Po
w

er
 [W

]
BD

-R
at

e

BD
-P

SN
R

BD
-R

at
e

(1
0- 3

)

BD
-P

SN
R

(1
0-3

)

(a)

(b)

(c)

Power saving [%]

Fig. 6.2 For the video sequences given in Table 6.1 and using fp ¼ 5, ε ¼ 0.05 or 5%, (a) power,

(b) unavoidable video quality loss in terms of BD-Rate and BD-PSNR without any application

configuration, and (c) with application configuration

178 6 Experimental Evaluations and Discussion

Video Quality Comparison For the sequences given in Table 6.1, Fig. 6.2b, c

present the BD-Rate and BD-PSNR [13], with and without application configura-

tion. BD-Rate denotes the percentage increase in the average bitrate of an encoder

under test compared to an anchor/reference encoder, and BD-PSNR denotes the

reduction in PSNR (in dB) against the same anchor encoder. The formula to

compute BD-Rate and BD-PSNR requires to compute PSNR at a specific QP

value. Usually, the following formula is used to compute PSNR which is also

employed in generating these results:

PSNRQP ¼ 4� PSNRY þ PSNRCb þ PSNRCr

6
ð6:3Þ

For the case of Fig. 6.2b, the anchor encoder is the baseline encoder, using only a

single tile per frame. However, this single-tile encoder is unrealistic as it is not

possible to support large HEVC workload by using a single core. The encoder under

test uses the compute configuration technique (multiple tiles per frame) without any

application configuration. Therefore, the BD-Rate and BD-PSNR for the encoder

under test in Fig. 6.2b only show the unavoidable overhead that must be paid while

satisfying the throughput constraints (frame rate). In short, this figure shows quality

degradation due to mandatory tiling. On average, BD-Rate increases by 2.22% and

BD-PSNR degrades by 0.11 dB. For Fig. 6.2c, the anchor encoder is the multi-tile

encoder used as the encoder under test in Fig. 6.2b. In this evaluation, the encoder

under test employs both compute and application configuration. The degradation in

bitrate and PSNR shown here accounts for the degradation produced due to

workload tuning (Sect. 4.3.1). However, note that the encoder under test in

Fig. 6.2c has both the BD-Rate and BD-PSNR expressed in 10�3, which means

that there is negligible video quality degradation produced by the workload tuning

techniques discussed in Chap. 4. On average, the BD-Rate is negligibly reduced by

0.13 � 10�3% and BD-PSNR reduces by 1.4 � 10�6 dB.

Comparison with State-of-the-Art Techniques Figure 6.3 compares the power

efficiency of the compute and application configuration technique with those

presented in [14]. In [14], authors try to maximize the throughput of a divisible

workload and adapt the number of cores to process this workload, whereas compute

and application configuration techniques in this book try to meet the application’s

FP
S-

pe
r-

w
a�

0

0.1

0.2

0.3

0.4

A B C D E F G H Avg.

This book [14]20.28

5.14

41.40
18.99 12.74 8.30

13.60 33.19
19.20

FPS-per-wa�
improvement [%]

Fig. 6.3 Comparing the power efficiency (in terms of FPS-per-watt) of the workload balancing

technique employing compute and application configuration compared to [14]. The percentage

improvement of the technique presented in this book is written on top of the bars

6.1 Parallelization and Workload Balancing 179

deadline while minimizing the power consumed by the system. Therefore, Fig. 6.3

compares the FPS supported per unit of power (FPS-per-watt) for both techniques.

One can imagine FPS-per-watt being a representative for throughput-per-watt. For

sequences given in Table 6.1, techniques outlined in this book result in significant

improvements. Note that for this analysis, the power consumption and FPS (recip-

rocal of average time to process a frame) are taken after the first retiling event. On

average, the techniques presented here increase the FPS-per-watt metric by 19.20%

compared to [14].

Runtime System Dynamics Figure 6.4 shows the power, time to process a video

frame (tk), and frequencies (fk) of all cores for the HEVC encoding process. For

these experiments, 1/fp ¼ 1/5 ¼ 200 msec, ε ¼ 0.05, and z ¼ 8 (see Sects. 4.2 and

4.3 for more information). Since in the first few epochs, the frequency estimation

model is untrained (see Sect. 4.2.5.2), therefore, the number of tiles/cores (ktot) and
the initial estimated frequency are considerably off the required values in these

epochs. In addition, tk is unnecessarily small resulting in high power consumption

(Fig. 6.4a–d). Of course, the initial untrained estimation model might result in

extremely large tk. After a few epochs, the frequency model stabilizes, and tk
becomes closer to the required 200 msec range. Therefore, there is some power

inefficiency at start. However, the advantages of determining the constants online

outweigh the disadvantage of small power wastage that occur only in the initial

processing stage. If the video system runs for a long duration, this initial overhead

might be negligible.

Po
w

er
 [W

]

0

10

20

30

40

50

60

70

0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250
0

25

50

75

100

125

150

175

200

0 50 100 150 200 250
0

10

20

30

40

50

60

70

0 50 100 150 200 250

ktot=8 ktot=2 ktot=3ktot=4 ktot=2 ktot=12 ktot=6

(a) (b) (c) (d)High power
consump�on phase due

to untrained ω model
Re�ling triggered

Li�le or no ω
adaptation in steady

state power phase
Number of �les

(threads and cores)

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250

Tile 0 Tile 1 Tile 2
Tile 3 Tile 4 Tile 5
Tile 6 Tile 7

0

50

100

150

200

250

300

0 50 100 150 200 250

Tile 0 Tile 1
Tile 2 Tile 3

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250

Tile 0 Tile 1 Tile 2 Tile 3
Tile 4 Tile 5 Tile 6 Tile 7
Tile 8 Tile 9 Tile 10 Tile 11

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

Tile 0 Tile 1
Tile 2 Tile 3

Ti
m

e
[m

se
c]

(e) (f) (h)(g)
Large

workload
fluctua�on

Stable tk a�er re�ling

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

Tile 0 Tile 1 Tile 2 Tile 3
Tile 4 Tile 5 Tile 6 Tile 7

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

Tile 0 Tile 1
Tile 2 Tile 3

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

 0 Tile 1 Tile 2 Tile 3
Tile 4 Tile 5 Tile 6 Tile 7
Tile 8 Tile 9 Tile 10 Tile 11

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

Tile 0 Tile 1
Tile 2 Tile 3

Fr
eq

 [M
H

z]

(i) (j) (k) (l)

Maximum frequency
selected for all cores

Low workload
varia�on

Ballroom (640×480) ChinaSpeed (1024 ×768) FourPeople (1280 ×720) Keiba (832×480)

Minimum frequency
selected for all cores

Fig. 6.4 Using fp ¼ 5 and ε ¼ 0.05 or 5%, runtime adaptation of (a–d) power, (e–h) time per tile,

and (i–l) frequency per core for different video sequences

180 6 Experimental Evaluations and Discussion

Simulations with Sniper many-core simulator [9] and McPAT [10] show that

only about 2.8 μsec and 133 μJ energy is spent in calling the RLS filter once after an

epoch, which is negligible overhead when compared to processing a single frame

(e.g., the “Ballroom” sequence on a single core takes around 858 msec with 16.81 J

of energy). Moreover, the power wastage in theωk training phase can be avoided by

determining the constants offline and then tuning them online (via RLS). In

addition, the overhead of retiling itself is negligible, because it is invoked only

once after 80 frames are encoded via HEVC. We note that fk gradually moves

towards a stable value, due to the adjustment of frequency estimation model

constants (ωk, Eq. (4.12)). After retiling, the number of cores used for encoding

(ktot) and their frequencies are adjusted, and thus, tk becomes considerably closer to

1/fp as shown in Fig. 6.4e–h. This results in a steady power consumption after the

adjustment phase.

Note that retiling is done when frequency of all the cores is stuck at maximum or

minimum value (Fig. 6.4j, k, see Sect. 4.2.6). An interesting case is demonstrated

by the “ChinaSpeed” sequence, where retiling is done twice during the encoding

process. Further, the workload of “Keiba” sequence is highly fluctuating, and it

results in large variations in frequency and power. For the “FourPeople” sequence,

the average power before retiling is 99.08 W, and after retiling it reduces to

48.32 W (an improvement of ~2.05� after frequency model adjustment).

In Fig. 6.5, fk, θk, dk, and bk update of different tiles for distinct sequences using
HEVC are shown. The optional tuning of workload (θk and dk) due to the allowable
increase in bitrate (ε ¼ 0.05) causes a change in the allocated frequencies of the

cores. Note that the large jump in bk is due to retiling, because retiling results in a

larger tile. Hence, now we have more bk per tile but smaller number of total bytes.

Note that the workload adaptation techniques presented in this book can handle

these situations. Further, in Fig. 6.5 (c), bkis progressively increasing, thereby

resulting in the increase of the workload (θk and dk) and increasing amount of fk,h
in the epoch (see Fig. 4.8). Figure 6.5d is the opposite case, and the workload is

steadily declining, with increasing number of fk,l in the epoch.

To display the effect of throughput requirements, Fig. 6.6 demonstrates the

impact of FPS (fp) for the frame interpolation application, with four available

cores (rtot ¼ 4) and retiling test after every 80 frames. Note that these experiments

only utilize the compute configuration, i.e., selecting the required number of cores

and maximum workload per core. At start, the frequency estimation model has not

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250

Bytes
Freq
Theta
d

0

5

10

15

20

25

30

35

40

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

Bytes
Freq
Theta
d

0

5

10

15

20

25

30

35

40

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250

Bytes
Freq
Theta
d

θ,
 d

(a)

0

5

10

15

20

25

30

35

40

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250

Bytes
Freq
Theta
d

(b) (c) (d)]zH
M[

qerF,setyB

Retiling Increasing bk Decreasing bk

Fig. 6.5 Using the same settings as Fig. 6.4, HEVC frequency and workload tuning for (a) Tile

1 of “ChinaSpeed,” (b) Tile 1 of “Keiba,” (c) Tile 0, and (d) Tile 7 of “BQTerrace”

6.1 Parallelization and Workload Balancing 181

https://doi.org/10.1007/978-3-319-61455-7_4#Equ12

tuned to the current application scenario, and thus, the number of threads and the

frequencies of the cores are higher while supporting a lower maximum workload

(αk,m) denoted by a higher tuple number within configuration matrix A. As seen, the
frequency estimation function is gradually stabilizing, and the execution time of the

frame is steadily reaching the required throughput demands. In addition, the

maximum supportable workload is also increasing (denoted by a lower tuple

number). Different FPS requirements however do play a role, whereby we notice

that Fig. 6.6d with highest FPS ¼ 20 does not get its workload increased due to the

limitation of resources.

6.1.3 Compute Configuration with Non-uniform Tiling

Simulating the ces265 video encoder via Sniper and McPAT, the power and

resource utilization of both uniform and non-uniform tiling (Sect. 4.2.2) is tabulated

in Table 6.2. This table presents video quality in terms of BD-Rate, BD-PSNR, and

the total power savings in percentage for non-uniform tiling against the uniform

tiling technique. For these experiments, a many-core system with no DVFS capa-

bilities and with the following model (derived via offline regression analysis) is

used:

t ¼ 29:65� 1:28QPþ 0:05nfrm þ 3:38n ð6:4Þ

In this equation, t is the time (in msec) for HEVC intra-encoding n CTUs of a

video frame with nfrm total CTUs, at 2.6 GHz. Using this equation and those given

in (4.5)-(4.7), one can determine the tile structure. For the uniform tiling technique,

the number of cores and tiles is equal. Non-uniform tiling uses the bin-packing

heuristic shown in Fig. 4.5 to determine the number of cores actually required to

sustain the required throughput.

As seen, various sequences with varying frame rates are tested, which can mimic

different throughput requirement scenarios. Note that non-uniform tiling, on aver-

age, saves three cores as compared to the uniform tiling. Further, the average video

0

50

100

150

200

250

300

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
20
40
60
80

100
120
140

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0

20

40

60

80

100

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
10
20
30
40
50
60
70
80

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
500

1000
1500
2000
2500
3000
3500

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
500

1000
1500
2000
2500
3000
3500

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
500

1000
1500
2000
2500
3000
3500

1 101 201

Tile 0 Tile 1
Tile 2 Tile 3

0
500

1000
1500
2000
2500
3000
3500

1 101 201

T e 0 Tile 1
Tile 2 Tile 3

4 0

Max Workload Configuration

4 0

Steady frequency/power

Retiling Triggered

4 2 000 4 3 0 4

4

Ti
m

e
[m

se
c]

Fr
eq

[M
Hz

]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
0 100 200

0 100 200 0 100 200 0 100 200 0 100 200

0 100 200 0 100 200 0 100 200

4

Fig. 6.6 Time, frequency, and maximum configuration of all the cores for frame interpolation

application with allowed number of cores (rtot) ¼ 4: (a, b) FPS ¼ 5, (c, d) FPS ¼ 10, (e, f)

FPS ¼ 15, (g, h) FPS ¼ 20

182 6 Experimental Evaluations and Discussion

T
a
b
le

6
.2

N
u
m
b
er

o
f
co
re
s,

ti
le
s,

an
d
v
id
eo

q
u
al
it
y
in

te
rm

s
o
f
B
D
-R
at
e
an
d
B
D
-P
S
N
R
,
al
o
n
g
w
it
h
th
e
sy
st
em

p
o
w
er

sa
v
in
g
s
fo
r
n
o
n
-u
n
if
o
rm

ti
li
n
g

te
ch
n
iq
u
e
(Δ

P
),
u
si
n
g
an

x
8
6
m
an
y
-c
o
re

sy
st
em

ru
n
n
in
g
at

2
.6

G
H
z
fo
r
4
5
n
m

te
ch
n
o
lo
g
y

V
id
eo

S
eq
u
en
ce

F
P
S

U
n
if
o
rm

ti
li
n
g

N
o
n
-u
n
if
o
rm

ti
li
n
g

Δ
P

C
o
re
s

T
il
es

B
D
-R
at
e

B
D
-P
S
N
R

C
o
re
s

T
il
es

B
D
-R
at
e

B
D
-P
S
N
R

B
al
lr
o
o
m

(6
4
0
�

4
8
0
)

2
0

3
5

3
5

8
.9
6
1

�0
.4
4
9

3
0

3
2

8
.7
4
7

�0
.4
3
8
1

þ1
0
.5

F
la
m
en
co

(6
4
0
�

4
8
0
)

2
0

3
5

3
5

1
2
.7
5
6

�0
.7
1
9

3
0

3
2

1
2
.0
7
8

�0
.6
8
2

þ1
0
.3

V
as
sa
r
(6
4
0
�

4
8
0
)

1
5

2
0

2
0

6
.9
0
4

�0
.2
3
7

2
0

2
0

6
.8
9
5

�0
.2
3
8

�0
.3
0

V
as
sa
r
(6
4
0
�

4
8
0
)

2
0

3
5

3
5

1
1
.3
7
5

�0
.3
8
7

3
0

3
2

9
.8
6
2

�0
.3
3
6

þ1
0
.3

K
ei
b
a
(8
3
2
�

4
8
0
)

1
5

3
5

3
5

9
.0
6
9

�0
.4
6
4

3
0

3
2

7
.4
5
2

�0
.3
8
2

þ1
4
.0

R
ac
eH

o
rs
es

(8
3
2
�

4
8
0
)

1
5

3
5

3
5

1
.1
6
7

�0
.0
6
7

3
0

3
2

2
.0
5
0

�0
.1
1
8

þ1
4
.4

B
as
k
et
b
al
lD
ri
ll
(8
3
2
�

4
8
0
)

1
0

2
0

2
0

5
.8
9
6

�0
.2
7
6

1
7

2
0

6
.1
2
0

�0
.2
8
6

þ4
.0

B
as
k
et
b
al
lD
ri
ll
(8
3
2
�

4
8
0
)

1
8

3
5

3
5

8
.5
8
0

�0
.4
0
0

3
3

4
0

1
0
.5
2
4

�0
.4
8
7

�0
.7
0

A
v
er
a
g
e

1
7

3
1
.2
5

3
1
.2
5

8
.0
8
8

�0
.3
7
5

2
7
.5
0

3
0

7
.9
6
6

�0
.3
7
1

þ7
.8
1

6.1 Parallelization and Workload Balancing 183

output quality is better, the number of tiles is reduced, and usually power savings

are obtained when non-uniform tiling is used. Additionally, note that growing

frame rates or increasing resolution of video sequences generally results in higher

power savings by the non-uniform technique. This is mainly because a better

workload balancing is achieved in case of non-uniform tiling technique compared

to the uniform technique. Further, an added advantage of non-uniform tiling

technique is that it can be employed for workload balancing on a system

without DVFS.

6.1.4 Workload Balancing on Heterogeneous Platforms

Using the same heterogeneous cores and benchmarks given in Table 3.1 and

Fig. 3.9, a heterogeneous system with multiple compute nodes is used to evaluate

the workload balancing technique given in Sect. 4.4. Specifically, a four-core multi-

core heterogeneous system (rtot ¼ 4 with two “tiny,” one “medium,” and one

“large” core given in Table 3.1) is tested. A throughput constraint of ti,max¼ 30msec

is set by the user for all the benchmarks. The quality metric is throughput-per-watt

and is given by the relation 1/(t
frm
� ptot), where tfrm is the time to process a task and

ptot is the power consumed by the heterogeneous multi-core system.

The average throughput-per-watt with different benchmark applications (i.e.,

H.264/AVC DCT and quantization and HEVC intra-encoding) is reported in

Fig. 6.7. As noticed, for these benchmarks, the efficiency indices ϕk,1 and ϕk,2

outperform the load balancing technique given in [15] that uses a bin-packing

heuristic to distribute the load among cores. Although the efficiency index ϕk,3

does not perform as well as the other indices and even beaten by [15]. Hence, this

shows that only power-aware load distribution will not result in higher performance

for metrics like throughput-per-watt. It marginally performs better for the HEVC

benchmark, since number of subtasks ni for HEVC are considerably lesser (each

subtask is a tile to processes, so ni is from 1 to 10) compared to the DCT and

quantization benchmark (see Fig. 6.8). When ni increases, the freedom to map these

subtasks also increases, and the performance of the load balancing improves [16].

0.00
0.50
1.00
1.50
2.00
2.50
3.00

DCT Quan�za�on HEVC Intra

1 2 3

13.2 13.2 5.07

35.7 40.6
-5.9

63.0 64.6

-2.9

Th
ro

ug
hp

ut
-p

er
-w

a�

1/
(t
fr
m
p t

ot
)

Φ1 Φ2 Φ3 [15]

Fig. 6.7 Average throughput-per-watt 1/(tfrm � ptot) for different efficiency indices presented in

this book and [15]. The performance improvement (in percentage) against [15] is written on top of

the bars

184 6 Experimental Evaluations and Discussion

https://doi.org/10.1007/978-3-319-61455-7_3#Table1
https://doi.org/10.1007/978-3-319-61455-7_3#Table1

Figure 6.8a breakdowns the throughput-per-watt performance for the DCT

benchmark, for all efficiency indices and the technique proposed in [15]. To

evaluate the performance of these techniques for a wide range of throughput

requirements, the throughput-per-watt metric is plotted for the increasing number

of subtasks (i.e., ni). For clarity, the image resolution pertaining to a specific

number of DCTs is written on the graph as well. As seen, the performance of

efficiency index ϕk,1 and ϕk,2 is considerably better than ϕk,3 and [15].

A deeper breakdown for the quantization benchmark is shown in Fig. 6.8b–d.

This figure plots the power, time (i.e., throughput), and number of cores actually

used for processing (ktot). As seen, for efficiency index ϕk,1 and specially for ϕk,2,

the load distribution is not only based upon the power of the node but also the

amount of time the node takes to process a subtask. Index ϕk,1 uses the combination

of power and cycles consumed in processing the load, while ϕk,2 uses only the

number of cycles. Therefore, these two indices and [15] always result in throughput

being satisfied (ti,k� ti,max ¼ 30 msec) as shown in Fig. 6.8c. However, ϕk,3 starts to

miss the deadline once the load on the system increases considerably. This is

expected because ϕk,3 does not consider the complexity of a subtask (in terms of

cycles or time). Moreover, as shown in Fig. 6.8d, the number of cores used for

processing by ϕk,1 and ϕk,2 is also lesser than ϕk,3 and [15].

6.2 Resource Budgeting

This section provides experimental evaluation of resource (cores and power)

budgeting for mixed multithreaded applications, while maximizing the throughput

of all parallel running applications. For these experiments, the focus is on software

level multicasting (see Sect. 2.2.2) of parallelizable HEVC encoders. However, it

should be noted that the resource budgeting techniques presented in Chap. 4 and

evaluated here are also applicable to other parallelizable/malleable applications.

0

20

40

60

80

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

1 2 3

0
1
2
3
4
5
6
7

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

1 2 3

0
10
20
30
40
50

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

1 2 3

0
1
2
3
4
5

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145

1 2 3

Φ1

Number of subtasks (ni)×103

Th
ro

ug
hp

ut
-p

er
-

w
a�

 1
/(
t fr

m
p t

ot
) Φ2 Φ3 [15]

Full-HD (1920×1080)

4K Ultra-HD (3840×2160)

8K Ultra-HD (7680×4320)

Po
w

er
 (p

to
t)

[W
] [15]

Full-HD (1920×1080)

4K Ultra-HD (3840×2160)
8K Ultra-HD (7680×4320)

(b) Φ1 Φ2 Φ3

[15]

Ti
m

e
pe

r F
ra

m
e

(t
fr
m

)
[m

se
c]

(c) Φ1 Φ2 Φ3 [15]

Co
re

s u
se

d
(k

to
t) (d)

Number of subtasks (ni)×103

(a)

Φ1 Φ2 Φ3

Fig. 6.8 (a) Comparison of the techniques presented here and [15] for the “DCT” benchmark. The

number of DCTs (or subtasks) for different image resolutions are portrayed on top of the graph. For

the “quantization” benchmark, (b) shows power consumption and (c) time per frame and (d) denotes

the number of cores used for different ni, using the efficiency indices and the technique in [15]

6.2 Resource Budgeting 185

6.2.1 Experimental Setup

In these simulations, epoch size is chosen as one second, i.e., a total of FPS number

of frames. Therefore, the inter-cluster resource and power adaptation takes place

after every FPS frames have been processed. Following the methodology given in

[17], the 22 nm results are scaled to 11 nm using ITRS-provided technology scaling

factor [18] to have representative scenarios involving power wall. These experi-

ments consider a many-core chip with number of cores ktot ¼ 24. In this evaluation:

fset,GHz ¼ 1:0; 1:2; . . . ; 3:0f g ð6:5Þ

Experiments show that the power of a core at 3.0 GHz is 4.94 W. Hence, the

chip’s maximum power with 24 cores is 118.56 W. Note that the power exchange in

Eq. (4.37) uses ψ1 ¼ 8 and ψ2 ¼ 2 in Eq. (4.38). These parameters are obtained

using empirical analysis of HEVC video encoding. For other applications, similar

application-specific constants can be derived.

In order to evaluate the technique presented in this book, a trace-based simula-

tion method is used. By disabling the frequency scaling on a real system (core i7,

3.4 GHz, 16 GB RAM, Ubuntu Linux), HEVC encoding is run, and the actual time

consumed for encoding each subtask (i.e., a video tile) is written to a text file. While

simulating, this file is read to extract the time associated to process a video tile. For

scenarios involving multichannel HEVC encoding, video sequences with diverse

texture and motion characteristics are utilized in these experiments, as tabulated in

Table 6.3. Here, the term “set” refers to the set of video sequences, which are

encoded concurrently on the same chip. One can imagine that at one time, all the

videos in a row of this table are processed on the chip. An encoder processes a

single video in the set. These experiments use ces265 HEVC video encoder [19] for

all the encoders.

For these analyses, the technique proposed in [11] is also chosen for assessment.

Note that [11] does not consider application-level resource allocation and assumes

cluster sizes are available. Further, there is no adaptation of cluster size at runtime.

In addition, the two-level, temporal power budgeting (among applications after

Table 6.3 Test video sequences sets used for resource budgeting experiments. The display format

is: “Name (fpsmin) (w � h)”

Set Enc-0 Enc-1 Enc-2 Enc-3

Set-0 Ballroom
(20) (640 � 480)

Basketball
(10) (832 � 480)

Exit
(20) (640 � 480)

Vassar
(10) (640 � 480)

Set-1 Ballroom
(10) (640 � 480)

Football
(10) (352 � 288)

Foreman
(20) (352 � 288)

FourPeople
(5) (1280 � 720)

Set-2 Bubbles
(10) (416 � 240)

Coastguard
(20) (352 � 288)

Keiba
(10) (832 � 480)

RaceHorses
(5) (832 � 480)

Set-3 BQMall
(5) (832 � 480)

ChinaSpeed
(10) (1024 � 768)

Flamenco
(10) (640 � 480)

Vassar
(5) (640 � 480)

186 6 Experimental Evaluations and Discussion

https://doi.org/10.1007/978-3-319-61455-7_4#Equ37

epochs and among threads after processing a data frame) contained within the

techniques presented here is not incorporated by [11]. Moreover, note that [11]

allocates more power budget to the cluster with high relative performance-to-power

ratio. For the video encoding scenario discussed above, this would mean that the

video encoder, which generates the highest FPS, is allocated more power by [11].

This can result in the following outcome. If all the cores of the cluster are already

running at the minimum frequency, and a lower power is allocated to the cluster in

the next epoch, it will not be possible to reduce the frequencies of the cores further.

Therefore, the power budget of the complete chip (ptot) will be exceeded because

the cluster having cores running at minimum frequency is still consuming the same

power instead of the new (lower) one. However, this is problem is circumvented by

the resource budgeting technique presented in Chap. 5.

6.2.2 Results and Discussion

Figure 6.9 shows the total achieved FPS by the technique presented here and in [11]

for different power configurations. As discussed before, the total theoretical power

the chip can consume is 118.56 W. However, to make representative power-wall or

dark silicon (DS) scenarios, only a part of this power is pumped into the system,

which is marked as the TDP of the system. Every bar shows the stacked FPS for

each set of Table 6.3. When a larger TDP is available (e.g., at ptot ¼ 100 W or 15%

DS), the frequencies of the cores have a higher degree of freedom, and therefore,

the technique outlined in this book achieves 30.86% higher FPS than [11]. However,

reducing TDP (e.g., when ptot ¼ 42 W or 65% DS) also reduces the degree of

freedom, and therefore, the FPS improvement also declines (still 15.6% higher than

[11]). Note that for these experiments, Eq. (4.40) is used for determining the initial

cluster size.

Figures 6.10 and 6.11 breakdown cluster size (i.e., number of cores ki) and inter-
cluster power pi for all video encoders at TDP of 100 W (~15% DS). As seen,

0
10
20
30
40
50
60
70
80

This book This book This book[11]

Ac
hi

ev
ed

 F
PS

100W ~ 15% DS 70W ~ 40% DS 42W ~ 65% DS

Set-0 Set-1 Set-2 Set-318.76

12.97

16.45

11.77 11.77
9.93

[11] [11]

Average FPS per set

Fig. 6.9 Stacked bar chart for achieved FPS using the resource budgeting technique presented in

this book and [11] for different amount power pumped into the complete chip. The average FPS

achieved per set is written on top of the bars

6.2 Resource Budgeting 187

encoders that process larger resolutions and higher fpsmin requirement video

sequences require more cores ki and power pi allocation to their associated cluster.

For example, Enc-3 of Set-1 is allocated higher ki and pi compared to the other

encoders. Note that the resource budgeting algorithms presented here will adapt the

size of the cluster by including or excluding cores from a cluster. This is shown in

the runtime adaptation of both ki and pi in these figures, where the clusters can

exchange cores and power among themselves. Furthermore, note that ktot and ptot of
the system never exceed the thresholds (ktot� 24 and ptot� 100) and ptot is instantly
utilized completely unlike the control-based scheme of [11].

The intra-cluster power profiles of the encoders associated with videos of Set-3 at

100W (~15%DS) are shown in Fig. 6.12. The increase in number of cores/threads by

adjusting the FPS requirement at runtime is shown in Fig. 6.12a. Figures 6.11a and

6.12b jointly show the inter-cluster power exchange between encoders, whereby

Encoder-1 transfers its power to Encoder-0. Figure 6.12c shows the variation in

allocated power to Encoder-2 at runtime. Furthermore, the allocated power to the

individual cores is also adapted. The ripple in Fig. 6.12 (clearly visible in Fig. 6.12d)

is due to intra-cluster power exchange (i.e., power exchange among cores and their

frequency adaptation) given in Algorithm 7.

6.3 Memory Subsystem

This section demonstrates the experimental evaluation of the memory subsystem

architecture described in this book. Firstly, this section presents the impact of

hybrid memories on the system performance, and afterwards, power-efficient

SRAM aging balancing techniques are evaluated when used in video processing

systems.

0

2

4

6

8

1 5 9

Enc-0 Enc-1
Enc-2 Enc-3

0
2
4
6
8

10

1 5 9

Enc-0 Enc-1
Enc-2 Enc-3

0

2

4

6

8

1 5 9

Enc-0 Enc-1
Enc-2 Enc-3

0

5

10

15

1 5 9 13

Enc-0 Enc-1
Enc-2 Enc-3

seroC
deta co llA

(a) (b) (c) (d)

Increasing FPS

Fig. 6.10 Core allocation at runtime for encoders, at TDP ptot ¼ 100 Watts (i.e., ~15% dark

silicon, DS), of (a) Set-0, (b) Set-1, (c) Set-2, and (d) Set-3. The total number of cores used by all

the encoders is always less than or equal to the total available cores

0
20
40
60
80

100
120

1 5 9

Enc-0 Enc-1 Enc-2 Enc-3

0
20
40
60
80

100
120

1 5 9

Enc-0 Enc-1 Enc-2 Enc-3

0
20
40
60
80

100
120

1 5 9

Enc-0 Enc-1 Enc-2 Enc-3

0
20
40
60
80

100
120

1 5 9 13

Enc-0 Enc-1 Enc-2 Enc-3

Al
lo

ca
te

d
Po

w
er

 [W
] (a) (b) (c) (d)

Fig. 6.11 Stacked area plot for cluster level allocated power at runtime for encoders, with TDP

ptot ¼ 100 Watts (~15% DS), of (a) Set-0, (b) Set-1, (c) Set-2, and (d) Set-3. Total power

consumed by the chip is always less than or equal to the TDP

188 6 Experimental Evaluations and Discussion

https://doi.org/10.1007/978-3-319-61455-7_BM1

6.3.1 AMBER: Hybrid Memories

This section discusses the evaluation of conjugating NVMs with SRAM-based

memories. For these results, a MRAM-based NVM is considered, which stores

the video frames on the on-chip frame memories. In order to test the AMBER

architecture of using hybrid memory structures, the motion estimation engine

within HEVC reference software (HM-9.2 encoder [6]) is augmented to include

the latency, energy, and power profiles of the memories. The AMBER architecture

is implemented via SRAMs and MRAMs for which the numbers are taken from

Table 3.2 using a 65 nm technology [20]. Since the MRAM and SRAM read energy

and latency numbers are similar and dependent upon the motion estimation algo-

rithm, therefore, they are not included in the results.

Figure 6.13 illustrates the setup used to evaluate AMBER. The inputs to the

AMBER memory simulator are:

• Memory traces for inter-encoding (i.e., motion estimation) generated using the

HEVC reference software

0
5

10
15
20
25

0 25 50 75 100 125 150 175 200
0

20

40

60

0 50 100 150 200 250

0
5

10
15
20
25

0 50 100 150 200 250
0

5

10

15

20

0 25 50 75 100 125 150 175

St
ac

ke
d

Co
re

 p
ow

er Increasing cores/threads

Inter-Cluster Power Exchange Intra-Cluster
Power Exchange

Power transferred to Enc -0(a)

(c)

(b)

(d)

St
ac

ke
d

Co
re

 p
ow

er

Fig. 6.12 Intra-cluster power profile of (a) Enc-0, (b) Enc-1, (c) Enc-2, and (d) Enc-3 of Set-3 for

each frame, shown as a stacked power plot per core of the cluster. Example power exchanges are

also highlighted

AMBER
Memory
Simulator

HEVC
Inter-Enc.

Memory Access
Traces by ME

Memory
Organiza�on

Characteris�cs Table
(e.g., energy, latency)

Output
Files

Video Input

Fig. 6.13 Simulation setup for testing hybrid memory subsystem

6.3 Memory Subsystem 189

https://doi.org/10.1007/978-3-319-61455-7_3#Table2

• Memory architecture (i.e., hierarchy) and organization

• Memory characteristic table that contains energy, latency, and area of different

memory types

In Fig. 6.14, the power consumption of the usual search window-based technique

with prefetching (outlined in Chap. 2) and AMBER is presented for three different

search window sizes, used in ME for encoding HEVC inter-frames. For evaluation,

various video sequences recommended by the JCT-VC [21] are used, and details

about the video sequences can be inferred from Tables 6.1 to 6.2. The small search

window size is 129 � 129 pixels, medium search window size is 193 � 193 pixels,

and for large search window, 257 � 257 pixel size is chosen. Note that these sizes

produce best results according to the video frame dimensions. That is, a larger

frame requires a bigger search window, and a larger search window might not be

efficient for video sequence with smaller resolutions.

For only a single reference frame (Fig. 6.14a), the energy consumed by the

search window technique is better. This is because only a single reference frame is

used, and the total dynamic read-and-write energy consumed by the search window

is small. However, increasing the size of the search window introduces more

leakage and dynamic power consumption, and the power of search window-based

technique increases and surpasses that of AMBER. Similarly, larger frame dimen-

sions cause more leakage power consumption in AMBER because the sector height

increases and, therefore, the total power consumption of AMBER system increases.

0

0.2

0.4

0.6

0.8
Search Window
AMBER

Po
w

er
 [W

]

(a) 1 Reference Frame

129×129 193×193 257×257

Keiba China
Speed

Four
People

Basketball
Drive

People

0

0.5

1

1.5

2
Search Window
AMBER

Po
w

er
 [W

]

Keiba China
Speed

Four
People

Basketball
Drive

People

(b) 4 Reference Frames

Fig. 6.14 Power consumption for the search window technique and AMBER, using (a) one

reference and (b) four reference frames for motion estimation of HEVC inter-encoding using

the reference software

190 6 Experimental Evaluations and Discussion

On the other hand, AMBER produces better results for multiple reference frames

(Fig. 6.14b). The reason is that multiple reference frames are being read and written

to multiple search windows, and the total power consumption of search window

technique therefore also increases. On average, employing AMBER results in 43%

energy savings compared to the search window-based technique.

6.3.2 SRAM Anti-aging Circuits

This section presents the detailed results of analyzing the aging of SRAM-based

memories, using different state-of-the-art architectures and the SRAM anti-aging

architecture presented in Chap. 5. The sensitivity analysis of these architectures is

already discussed in Sect. 5.5.5. Here, we will focus on experimental setup and

evaluation of the complete system.

6.3.2.1 Experimental Setup

Hardware Synthesis and Aging Estimation The details of the experimental setup

are presented in Fig. 6.15. The aging resilient architecture is implemented in

VHDL. These circuits include the different aging balancing circuits (inverter, bit

swap, and bit rotate) and other architectural components like MWT, MRT, AGU,

etc. The architecture is synthesized using a 65 nm TSMC technology [22] (0.99

Volt, 25 �C junction temperature, FF corner) using Synopsys Design Compiler

[23]. The gate-level simulations and functional verifications of the proposed archi-

tecture are performed using ModelSim [24], which is also used to generate the

Video Read Module

Memory Simulator
(C++Based)

Duty-Cycles (Δ)
Computations

Analysis Box-Plots Histograms

12.5

4.4
3.0 3.0

1.8

8.1

Memory Aging Analysis Module

Signal Activity File
Creation(.vcd)

ModelSim
Simulator

Logic Synthesis

Synopsys DesignCompiler

Power Estimation
(.vcd to .saif)

Area,
Delay
Estim.

Tech.
Library

Aging Model

Time (years)

SNM

Inputs:
Video Size (W×H),

EnAAM Config.
(F,(X,Y,Z),fR,max)

Clock:
Period,

Latency,
Uncertainty,
Transition

Source
(.cpp)

YCbCr Planar
Video, Video
Information

Device Level
NBTI Aging

(Duty-cycle to
NBTI mapping)

VHDL Files
(Entities and
Testbench)

Energy Plots

Test Vectors
.vcd

Δ

Fig. 6.15 Experimental setup for analyzing the impact of different components on aging of

SRAM circuits

6.3 Memory Subsystem 191

switching activity waveforms for power analysis. The memory simulator generates

the duty cycle of all the 6 T SRAM cells for the current video input. Using this duty

cycle information, one can estimate the aging rate by mapping the duty cycle to

SNM degradation.

Plotting Aging Results For fast analysis and visualization of memory aging, we

have developed a GUI-based tool (written in C#) which is made open-source

[25]. This tool accepts user configurations like memory size, location of test data

sets, total number of years the memory will be used, etc. Using this tool, memory

analysis and aging impacts can be visualized with ease. Additionally, it can also

perform basic image and video processing applications (like filtering, color con-

version, etc.). This tool automatically generates stressmaps, box plots, and duty

cycle histograms for different input videos (examples are shown in Sect. 3.3.3).

Test Video Sequences For these experiments, different test video sequences

recommended by the Joint Collaborative Team on Video Coding (JCT-VC) [26]

are used, which are available for download and testing [21, 27]. Some representa-

tive video sequences used in these experiments are described briefly in Table 6.4

along with their key attributes. These videos have diverse characteristics, and they

can comprehensively represent various video capture scenarios.

6.3.2.2 Results and Comparison

In Fig. 6.16, the percentage duty cycle histograms are plotted for different MWTs

with a single frame memory for different test video sequences. The explanation

about these MWTs is given in Table 6.5. Except for the “base” and “controller”

case, these histograms are generated with fR ¼ 1, i.e., every second frame is

adapted. For the base case, there is no adaptation and the controller cases use the

controlled invert switches.

The "Base" case (Fig. 6.16a) has a high distribution of SRAM cells with a biased

duty cycle (i.e., δ 6¼ 0; see Table 5.4), and we see bars that are not crowded near

zero. Majority of these cells are responsible for storing the higher-order,

low-activity bits and thus bear the largest amount of stress among the SRAM

cells. For the invert MWT (Fig. 6.16g), almost all SRAM cells have the best

possible duty cycle. Comparing with [29, 30, 31], the usage of bit invert MWT in

the controlled invert switch architecture will also have the same aging impact.

However, the aging balancing in [29, 30, 31] is achieved by employing additional

hardware and architectural changes to SRAM cells. This limits the designer to only

use customized SRAM memories with additional enhancements. Further, the leak-

age energy consumed and the area overhead by these SRAMs are much higher than

the controller-based inversion technique presented in Chap. 5 because, in this case,

each SRAM cell will have additional transistors associated with it.

The nibble swap MWT (Fig. 3.13c) does not perform as well as compared to the

inverter and the rotator. Without the adaptive controller and Write AGU, and with

only selected bits inverted (N ¼ 1 and N ¼ 3 in Fig. 6.16d, e), we notice that N ¼ 3

192 6 Experimental Evaluations and Discussion

https://doi.org/10.1007/978-3-319-61455-7_5#Table4

T
a
b
le

6
.4

V
id
eo

se
q
u
en
ce
s
an
d
th
ei
r
at
tr
ib
u
te
s

N
am

e
B
as
k
et
b
al
l

F
lo
w
er
v
as
e

K
ei
b
a

F
o
u
rP
eo
p
le

Jo
h
n
n
y

C
h
in
aS
p
ee
d

B
Q
T
er
ra
ce

T
ra
ffi
c

P
eo
p
le

A
tt
ri
b
u
te
s

8
3
2
�

4
8
0

8
3
2
�

4
8
0

8
3
2
�

4
8
0

1
2
8
0
�

7
2
0

1
2
8
0
�

7
2
0

1
0
2
4
�

7
6
8

1
9
2
0
�

1
0
8
0

2
5
6
0
�

1
6
0
0

2
5
6
0
�

1
6
0
0

R
es
o
lu
ti
on

,
m
ot
io
n
,

ca
m
er
a

zo
om

in
g/

p
an

ni
ng

,
fr
am

es

M
ed
iu
m

m
o
ti
o
n
,
n
o

ca
m
er
a

p
an
n
in
g
,
a

b
as
k
et
b
al
l

d
ri
ll

L
u
m
in
an
ce

ch
an
g
es
,

ca
m
er
a

zo
o
m
in
g
in
,

n
o
m
o
ti
o
n

L
ar
g
e

m
o
ti
o
n
,

ca
m
er
a
p
an
-

n
in
g
,
ca
m
er
a

fo
ll
o
w
in
g

ra
ce

h
o
rs
es

V
er
y
lo
w

m
o
ti
o
n
,
n
o

ca
m
er
a
p
an
-

n
in
g
,
fo
u
r

p
eo
p
le
ar
o
u
n
d

a
ta
b
le

V
er
y
lo
w

m
o
ti
o
n
,
n
o

ca
m
er
a
p
an
-

n
in
g
,
a
p
er
so
n

ta
lk
in
g
to

th
e

ca
m
er
a

L
ar
g
e

m
o
ti
o
n
,
n
o

ca
m
er
a
p
an
-

n
in
g
,

ca
r-
ra
ci
n
g

v
id
eo

g
am

e

L
ar
g
e
st
at
ic

re
g
io
n
,
ca
m
-

er
a
p
an
n
in
g

L
ar
g
e
st
at
ic

re
g
io
n
,
n
o

ca
m
er
a

p
an
n
in
g

M
ed
iu
m

m
o
ti
o
n
,
n
o

ca
m
er
a

p
an
n
in
g

6.3 Memory Subsystem 193

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

0123

0
0.1
0.2
0.3
0.4

0.45

Basketball

(a
) B

as
e

(b
) S

w
ap

(c
) R

ot
at

e
(d

) N
=1

(e
) N

=3
(f)

 C
on

tr
ol

le
r

(g
) I

nv
er

t

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

FourPeople

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468

0
0.1
0.2
0.3
0.4

0.45

02468
0

0.1
0.2
0.3
0.4

0.45
02468

0
0.1
0.2
0.3
0.4

0.45

Johnny

08162432

0
0.1
0.2
0.3
0.4

0.45

08162432

0
0.1
0.2
0.3
0.4

0.45

08162432
0

0.1
0.2
0.3
0.4

0.45
08162432

0
0.1
0.2
0.3
0.4

0.45

08162432

0
0.1
0.2
0.3
0.4

0.45

08162432

0
0.1
0.2
0.3
0.4

0.45

08162432

0
0.1
0.2
0.3
0.4

0.45

Traffic

F
ig
.
6
.1
6

H
is
to
g
ra
m
o
f
d
u
ty
cy
cl
e
p
er
b
it
,f
o
r
a
si
n
g
le
fr
am

e
m
em

o
ry
.T

h
es
e
ex
p
er
im

en
ts
ar
e
co
n
d
u
ct
ed

w
it
h
d
if
fe
re
n
t
co
m
p
ar
is
o
n
p
ar
tn
er
s
g
iv
en

in
T
ab
le
6
.5
.

T
h
e
x-
ax
is
d
en
o
te
s
th
e
v
al
u
e
δ.
T
h
e
y-
ax
is
d
en
o
te
s
th
e
to
ta
l
n
u
m
b
er
o
f
b
it
s
(i
n
m
il
li
o
n
s)
in
th
e
fr
am

e
m
em

o
ry
.F

ro
m
th
es
e
ex
p
er
im

en
ts
,t
h
e
b
es
t
ag
in
g
b
al
an
ci
n
g

is
ac
h
ie
v
ed

w
h
en

th
e
h
is
to
g
ra
m

is
cr
o
w
d
ed

to
w
ar
d
0
.
F
o
r
al
l
ag
in
g
ra
te
re
d
u
ct
io
n
te
ch
n
iq
u
es
,
(e
x
cl
u
d
in
g
th
e
b
as
e
an
d
ad
ap
ti
v
e
co
n
tr
o
ll
er

ca
se
),
ev
er
y
se
co
n
d

fr
am

e
is
ad
ap
te
d
(
f R

¼
1
)

194 6 Experimental Evaluations and Discussion

has almost the same impact on aging as the inverter case (i.e., inverting all the bits

from 0 to 7). This is because bits 0 and 1 are self-balancing themselves while bits

2–7 are adapted with N ¼ 3. For reference, see the box plot in Fig. 3.13j for bits

0 and 1. However, N ¼ 1 only inverts bits 6 and 7, whereas from Fig. 3.13 g, h, we

notice that bits 4 and 5 may also have highly biased duty cycles. If these bits are

ignored, they can contribute to worsening SNM degradation. Still, N ¼ 1 consid-

erably balances the duty cycle, as compared to the swap case.

For experiments involving the adaptive controller (Fig. 6.16f), the parameters

(τ1, τ2, τ3)¼ (0.75ni, 0.50ni, 0.25ni) are chosen, where ni ¼ 5 is the number of parts

in which a bit plane is divided (see Fig. 5.26). The runtime variation of fR by the

adaptive controller is shown in Fig. 6.17. For majorly static sequences like

0

2

4

6

8

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

2,3
4,5
6,7

0
2
4
6
8

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

2,3
4,5
6,7

(c) ChinaSpeed (d) FourPeople

f R f R

Frame # Frame #

High
Inversion

0
2
4
6
8

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

2,3
4,5
6,7

(a) Basketball

Frame #

f R

0
2
4
6
8

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

2,3
4,5
6,7

(b) BQTerrace

f R

Frame #

Low
Inversion

Fig. 6.17 Runtime adaptation of fR by the adaptive aging controller. For these experiments,

ni ¼ 5, (τ1, τ2, τ3) ¼ (0.75ni, 0.50ni, 0.25ni), F ¼ 20. Minimum fR ¼ 1, maximum fR ¼ 8.

sL ¼ (1-ε) � sinit and sH ¼ (1 þ ε) � sinit and ε for bits (3,5,7) ¼ (1/64, 1/32, 1/8)

Table 6.5 Comparison partners for these experiments

MWT/MRT Functional description

Base No MWT or MRT or an AGU is used

Swap Swap lower and upper nibbles of the complete frame [28]

Rotate Rotate bits of every sample by 1 with every new frame

N ¼ 1 Only inverter switch with bits 6–7 always on

N ¼ 3 Inverter switches with bits 2–7 always on

Controller Inverter switches controlled by the aging controller

Invert Invert all bits of the complete frame [29, 30, 31]

6.3 Memory Subsystem 195

https://doi.org/10.1007/978-3-319-61455-7_3#Fig15

“FourPeople,” more adaptation is required. Therefore, the adaptive controller tunes

fR of each inverter switch to the minimum possible fR, in order to adaptively

encounter the aging that such a sequence will induce. For high-activity sequences

or sequences with camera panning (like “BQTerrace”), the controller can relax the

adaptation rate. Therefore, fR of each bit is increased, because it is not required to

aggressively invert the frames. In addition, it is also noted that the aging impact of

the adaptive controller with multiple frame memories is almost identical.

Figure 6.18 shows the energy consumption per frame and area of different

MWTs, for different clock frequencies and FPS. This data is created by annotating

the input to MWTs using ModelSim simulation. The annotated signals are then

queried by the Synopsys Design Compiler to approximation average signal activity

on each pin of the circuit. Afterwards, it generates the leakage and dynamic power

based upon the signal activity. As noticed, the memory subsystem architecture

presented here with no inverter switch active (N¼ 0) consumes the smallest amount

of energy, whereas the bit-rotate MWT consumes the largest amount of energy and

0

0.5

1

1.5 f=166MHz, fps=60
f=222MHz, fps=120

(a) Johnny (b) BQTerrace

En
er

gy
 [N

or
m

al
ize

d]
En

er
gy

 [N
or

m
al

ize
d]

0

0.5

1

1.5 f=166MHz, fps=60
f=222MHz, fps=120

(c) Traffic

0

0.5

1

1.5 f=166MHz, fps=30
f=222MHz, fps=30 MWT/MRT Area (in Cells)

Controller 516.23

Bit-Invert 520.91

Bit-Rotate 685.4

(d) Controller

Fig. 6.18 (a–c) Normalized energy consumption per frame of MWTs and MRTs at various

frequency and FPS configurations, for different video sequences. In these figures, Inv. ¼ 0

shows that the invert MWT/MRT is inactive while Inv. ¼ 1 denotes active invert MWT/MRT.

Rot. presents rotate MWT/MRT. (d) Total area (in cells) for different MWTs/MRTs

196 6 Experimental Evaluations and Discussion

area. From Fig. 6.16, we also notice that aging balancing achieved by the bit

inverter and adaptive bit inversion can easily surpass the performance by

bit-rotate MWT. Therefore, it is rational to use inverters in MWTs for aging

resiliency instead of bit-swapping and bit-rotation logic. Further, when the tech-

nique described in [28] is applied to SRAM memories, additional overhead is

encountered. For example, this technique requires testing for leading zeros and

read/write of infrequently accessed memory addresses and additional information

storage. On the contrary, AGU presented in this book does not require such tests

because it adaptively generates addresses to cover the whole memory space in a

circular fashion. This introduces activity in the otherwise low-activity cells. Com-

pared to [32], the adaptive controller-based technique does not require additional

reads and writes to the SRAM memory, which itself consumes high dynamic

energy.

Moreover, depending upon the application scenario and the allowable energy

budget, adaptive controller-based technique enables the application designer to

select the best fR and N configuration, suitable for their application. For example,

using Fig. 6.18, a designer may achieve up to ~15% energy savings by turning off

all the inverter switches at the cost of SRAM aging. Therefore, a trade-off between

energy and SRAM aging can be established to select the best configuration of the

application.

6.3.2.3 HCI-Induced Aging

In this section, the evaluation of the duty cycle (relevant for NBTI) and switching

activity (relevant to HCI) are presented. Using different MWTs, Fig. 6.19 plots the

duty cycle and toggling rate for two video sequences. As noticed, the baseline and

swap MWTs incur the highest NBTI-induced aging but with small HCI-induced

aging. The rotate MWT balances the duty cycle, but with enlarged maximum value

as shown in the box plot: it also lifts the toggling rate of the most significant bits

(as shown by the concentration around 0.5–0.6 and a high maximum value), and

hence, the corresponding cells have a higher HCI-induced aging. The invert MWT

encountering NBTI-induced aging considerably balances the duty cycle. However,

it also increases the toggling rate due to aggressive switching of every bit, which

results in a higher HCI-induced aging.

In contrast to the techniques mentioned above, the adaptive aging controller

adjusts the spatial and temporal granularity of applying the aging balancing

methods. Therefore, it provides improved distribution profiles for both duty cycles

and switching activity across different bits.

6.3 Memory Subsystem 197

Ba
se

Sw
ap

Ro
ta

te
In

ve
rt

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Co
nt

ro
lle

r

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Duty Factor Switching Ac�vity
(b) FourPeople

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Best case

High HCI

Ba
se

Sw
ap

Ro
ta

te
In

ve
rt

Co
nt

ro
lle

r

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Duty Factor Switching Ac�vity
(a) Basketball

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Best case

Low HCI

Fig. 6.19 Using different

MWTs, duty cycle and

toggling statistics for (a)

“Basketball” and (b) “Four

People” video sequence.

The x-axis on all the graphs

presents the bit planes of the

memory. The y-axis on the

duty factor plots shows the

average duty cycle per bit

cell. The y-axis for the

toggle graphs shows the box

plot of average toggling rate

for each SRAM cell, i.e., the

average number of times a

write to a cell results in a bit

flip. The duty cycle box

plots should be crowded

around 0.5, while the toggle

box plots should be

crowded toward zero for the

best aging rate reduction.

198 6 Experimental Evaluations and Discussion

References

1. Bienia, C. (2011). Benchmarking modern multiprocessors. Princeton University.

2. Fritts, J. MediaBench II. [Online]. Available: http://euler.slu.edu/~fritts/mediabench/.

Accessed 6 Oct 2015.

3. Wang, Z., Liu, W., Xu, J., Li, B., Iyer, R., Illikkal, R., Wu, X., Mow, W. H., & Ye, W. (2014).

A case study on the communication and computation behaviors of real applications in

noc-based MPSoCs. In Annual Symposium on VLSI.
4. Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., & Brown, R. B. (2001).

MiBench: A free, commercially representative embedded benchmark suite. In International
Workshop on Workload Characterization (WWC).

5. POSIX Threads for Windows – REFERENCE - Pthreads-w32. sourceware.org, [Online].

Available: https://sourceware.org/pthreads-win32/manual/. Accessed 6 Oct 2015.

6. HEVC reference software. Fraunhofer Institute, [Online]. Available: https://hevc.hhi.fraunho

fer.de/svn/svn_HEVCSoftware/. Accessed 29 Aug 2013.

7. HEVC x265 encoder. Google Code, [Online]. Available: https://code.google.com/p/x265.

Accessed 29 Aug 2013.

8. 4�Six-Core AMD Opteron processor. [Online]. Available: http://www.amd.com/en-us/prod

ucts/server/benchmarks/sap-sd-two-tier-four-socket. Accessed 08 Sept 2014.

9. Carlson, T., Heirman, W., & Eeckhout, L. (2011). Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In SC.
10. Li, S., Ahn, J. H., Strong, R., Brockman, J., Tullsen, D., & Jouppi, N. (2009). McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore archi-

tectures. In Microarchitecture.
11. Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core

architectures running multi-threaded applications. In Internation Symposium on Computer
Architecture.

12. Sharifi, A., Mishra, A., Srikantaiah, S., Kandemir, M., & Das, C. R. (2012). PEPON:

Performance-aware hierarchical power budgeting for NoC based multicores. In Parallel
Architectures and Compilation Techniques.

13. Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-curves. VCEG

Contribution VCEG-M33.

14. Rosas, C. Morajko, A. Jorba, J., & Cesar, E. (2011). Workload balancing methodology for

data-intensive applications with divisible load. In Symposium on Computer Architecture and
High Performance Computing.

15. Colin, A., Kandhalu, A., & Rajkumar, R. (2015). Energy-efficient allocation of real-time

applications onto single-ISA heterogeneous multi-core processors. Journal of Signal
Processing Systems, pp. 1–20.

16. Cesar, E., Moreno, A., Sorribes, J., & Luque, E. (2006). Modeling Master/Worker applications

for automatic performance tuning. Parallel Computing, 32(7), 568–589.
17. Esmaeilzadeh, H., Blem, E., Amant, R., Sankaralingam, K., & Burger, D. (2011). Dark silicon

and the end of multicore scaling. In International Symposium on Computer Architecture.
18. ITRS. (2011). International technology roadmap for semiconductors, 2010 update.

19. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

20. Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., & Chen, Y. (2008). Circuit and microarchitecture

evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In

Design Automation Conference (DAC).
21. Bossen, F. (2012). Common test conditions. Joint Collaborative Team on Video Coding

(JCT-VC) Doc. I1100.

22. Taiwan Semiconductor Manufacturing Company Limited. TSMC, [Online]. Available: http://

www.tsmc.com/. Accessed 7 Oct 2015.

References 199

http://euler.slu.edu/~fritts/mediabench/
https://sourceware.org/pthreads-win32/manual/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
https://code.google.com/p/x265
http://www.amd.com/en-us/products/server/benchmarks/sap-sd-two-tier-four-socket
http://www.amd.com/en-us/products/server/benchmarks/sap-sd-two-tier-four-socket
http://www.tsmc.com/
http://www.tsmc.com/

23. Design Compiler. Synopsys, [Online]. Available: http://www.synopsys.com/Tools/Implemen

tation/RTLSynthesis/DesignCompiler/. Accessed 7 Oct 2015.

24. ModelSim – Leading Simulation and Debugging. Mentor Graphics, [Online]. Available: http://

www.mentor.com/products/fpga/model/. Accessed 7 Oct 2015.

25. Khan, M. U. K., Shafique, M., & Henkel, J. CES Free Software – EnAAM, Chair for

Embedded Systems (CES), KIT, [Online]. Available: ces.itec.kit.edu/EnAAM/. Accessed

5 Oct 2015.

26. Joint Collaborative Team on Video Coding (JCT-VC), ITU, [Online]. Available: http://www.

itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx. Accessed 7 Oct 2015.

27. Video Library and Tools – NSL. Network Systems Lab, [Online]. Available: https://cs-nsl-

wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools. Accessed 7 Oct 2015.

28. Amrouch, H., Ebi, T., & Henkel, J. (2013). Stress balancing to mitigate NBTI Effects in

register files. In Dependable Systems and Networks (DSN).
29. Shin, J., Zyuban, V., Bose, P., & Pinkston, T. (2008). A proactive wearout recovery approach

for exploiting microarchi-tectural redundancy to extend cache SRAM lifetime. In Interna-
tional Symposium on Computer Architecture (ISCA).

30. Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI

recovery in SRAM arrays. In Annual Symposium on VLSI.
31. Sil, A., Ghosh, S., Gogineni, N., & Bayoumi, M. (2008). A novel high write speed, low power,

read-SNM-Free 6T SRAM cell. In Midwest Symposium on Circuits and Systems.
32. Wang, S., Jin, T., Zheng, C., & Duan, G. (2012). Low power aging-aware register file design

by duty cycle balancing. In Design, Automation and Test in Europe (DATE).

200 6 Experimental Evaluations and Discussion

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
http://www.mentor.com/products/fpga/model/
http://www.mentor.com/products/fpga/model/
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools
https://cs-nsl-wiki.cs.surrey.sfu.ca/wiki/Video_Library_and_Tools

Chapter 7

Conclusion and Future Outlook

Targeting multimedia systems under high throughput, resource and power con-

straints, this book discusses efficient software-/application-level techniques and

hardware-/architectural-level designs for the multimedia (specifically video) sys-

tems. Mainly, the aim of the techniques discussed in this book is to maximize the

throughput-per-watt metric of the system while considering some modern design

challenges and methodologies. The challenges addressed in this book include

parallelization of multimedia applications on possibly heterogeneous systems,

load balancing on many-core and customized nodes, resource (number of cores

and power) budgeting, and efficient design of the multimedia system’s memory

architecture. In a broader perspective, these problems can collectively represent the

power wall or dark silicon challenge for the next-generation video processing

systems.

In this chapter, a summary of the content discussed here is given. At the end, we

will carry out a brief prognosis of future extensions related to the complexity and

power efficiency in relation to multimedia applications.

7.1 Software-Level Techniques

The techniques for parallelization of video systems presented in this book address

the throughput demands of the video processing system and attributes of the

underlying hardware while being power efficient and providing high output video

quality. These techniques determine a proper compute configuration. Video frames

are divided into tiles, and these tiles are packed and processed on the underlying

compute nodes, depending upon the workload characteristics and properties of the

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7_7

201

nodes. For this purpose, uniform and non-uniform tiling techniques are presented

[1, 2]. Uniform tiling assigns a video tile to a core for processing (i.e., there is a one-

to-one correspondence between nodes and tiles), while non-uniform tiling may

assign multiple tiles to a single compute node. Both these techniques balance the

workload on the nodes. Further, depending upon the workload of the associated

tiles, the voltage-frequency levels of the nodes are set to sustain the throughput

demands (FPS) at reduced power consumption while still providing high output

video quality. The voltage-frequency levels are determined using a frequency

estimation model. In case the frequency estimation model is inaccurate (or not

derived), runtime adjustment/derivation of frequency model constants is carried out

using a recursive least squares (RLS) filter.

Furthermore, these techniques also derive application configuration that will

select the application’s workload configuration (by tuning application parameters)

while meeting a quality constraint set by the user. As a proof of concept, this book

presents HEVC application configuration by selecting HEVC parameters and

bargain computational complexity with the output video quality. Moreover, tech-

niques to appropriately map these parameters reduce the degradation of output

video quality. For example, the reduction in number of intra-angular predictions

used for HEVC encoding presented here results in 18 to 44% on average timesaving

against a comparison partner [3]. Further, the depth of HEVC block subdivision for

RDO is reduced, and hence up to ~57% time savings are obtained, with negligible

video quality loss (-0.048dB reduction in PSNR compared to �0.118dB by [4]). In

short, employing the HEVC intra-angular and depth adaptation for application

configuration on uniform tiling-based compute configuration results in ~42%

power savings and ~19.2% power savings compared to [5]. Additionally, the

non-uniform tiling results in ~7.8% more power reduction compared to the uniform

tiling.

To exploit the advantages of heterogeneity, techniques for workload distribution
and balancing on heterogeneous systems are also discussed in this book. The

compute configuration that selects the compute nodes and their frequencies aims

to increase the throughput-per-watt of the system. For this, the workload distribu-

tion technique considers the power and computational efficiency of the underlying

compute nodes (soft-cores and hardware accelerators). Here, we also discuss three

different efficiency indices for workload distribution, and an optimization problem

is derived, which can be solved using Nelder-Mead heuristic. Compared to [6],

which also derives an optimization problem and then proposes a heuristic, the

technique discussed in this book can result in up to ~64% increase in the

throughput-per-watt of the heterogeneous system. Note that the technique in [6]

allocates subtasks/video tiles to the cores in bin-packing fashion, and the core that

results in minimum power is allocated the next tile.

Further, considering multiple mixed multithreaded tasks/applications running on

the same hardware platform (e.g., as is the case with video multicasting), the

resource budgeting problem becomes more challenging. The resource budgeting

techniques presented here allocate compute configurations (i.e., cores and fre-

quency/power) in a hierarchical manner, from individual clusters down to the

202 7 Conclusion and Future Outlook

individual cores. Each task gets a budget of the computing cores and total system

power (TDP). This budgeting considers the compute characteristics of the tasks, the

available frequency levels of the cores, and the complexity of the tasks along with

their resource history. Once the number of cores and power allocated to a cluster is

determined, the power is divided among the cores of the cluster and regulated at

runtime. The number of cores and power budgeted to the clusters is also adapted.

When the resource budgeting technique presented here is tested for HEVC multi-

tasking, it results in up to ~18% additional throughput against a [7], for the same

power utilization of the system.

7.2 Hardware-Level Techniques

The software-level techniques discussed in this book are applicable to multi-/many-

core systems, possibly heterogeneous and with hardware accelerators. To increase

the throughput and power efficiency of the video systems, the architectural

enhancements discussed in this book target hardware accelerator design, workload

offloading mechanisms to these hardware accelerators, and the memory subsystem

of the system.

In this regard, efficient architectures to support video I/O and communication
among computing nodes and the hardware accelerators are discussed. The efficient

I/O encompasses video input pipeline (VIP), video frame read from and write to the

external memory, and architectural enhancement to provide block-based video data

to the video processing system, which can be a soft-core, coprocessor, or a

hardware accelerator. The complete design is implemented and functionally veri-

fied on a FPGA (see Appendix C for details). For communication among nodes, a

communication logic is proposed, which employs a register file-based custom

interface. This interface exchanges metadata (e.g., memory pointers) and status

signals (“start,” “done,” etc.) among the nodes. This interface is implemented on a

multi-core Nios II-based FPGA system, which can encode the video frames in

HEVC format (see Sect. B.4 for more details).

To utilize the high power efficiency of the hardware accelerators, an optimiza-

tion problem is derived, and a Nelder-Mead-based heuristic is presented to allocate

the shared hardware accelerator for processing subtasks of concurrently running

threads/applications in a round-robin manner. This heuristic determines the fre-

quencies of the compute cores, and the fraction of the subtasks of each application

that must be offloaded to the hardware accelerator to fulfill its throughput require-

ment, while reducing the power consumption of the complete system. Additionally,

the technique presented here let the soft-cores to be powered off once they offload

their subtasks to the accelerator. This helps in reducing the temperature and hence

addresses the issues related to dark silicon. Moreover, the implementation details of

a functionally verified multicasting system based on H.264/AVC are also given.

The hardware accelerator is shared among different video encoders in a round-robin

fashion. For sharing purposes, custom hardware scheduler and reschedulers are

7.2 Hardware-Level Techniques 203

https://doi.org/10.1007/978-3-319-61455-7_BM1
https://doi.org/10.1007/978-3-319-61455-7_BM1

used. The functional verification of this design is carried out using an FPGA (see

details in Appendix C).

Moreover, this book also discusses architectures for efficient hardware accel-
erators, specifically for video encoders (H.264/AVC and HEVC). For H.264/AVC,

a low-latency intra-encoding loop is designed, which addresses some dependencies

to allow for high throughput of the encoding loop. Firstly, an area-efficient design

of the transform module of H.264/AVC including (I)DCT and (I)Q is presented for

both AC and DC paths. This design integrates a HT lookahead buffer that calculates

the HT input coefficients at the 4�4 reorder stage, instead of generating these

coefficients by the DCT module in the AC path. Thus, this module effectively

decouples the AC and DC paths. Both (I)HT and (I)DCT architectures are merged

and folded to reduce area. The one-cycle latency due to folding the (I)HT/(I)DCT is

exploited in fusing the Q/IQ stages together, thereby reducing the number of

multipliers and barrel shifters. A hardware architecture of the H.264/AVC mode

decision circuit is also given, along with an efficient technique to determine intra-

mode that will be selected by the mode decision module with high probability. This

technique uses a hardware-based edge extractor, which determines the precedence

order of the prediction modes. On the other hand, other methods like open-loop

(OL) algorithm [8] use the original pixels for estimating the mode. This way, in case

the cycle budget of the encoding loop is reduced (due to increased resolution or I/O

stalls), the number of modes tested can be reduced while scanning the precedence

order in a sequence. The encoding-loop architecture presented in [9] utilizes 6.89

kilo gates per pixel and 63.5 mW per pixel, whereas the architecture explained in

this book uses 6.65 kilo gates per pixel and 61.77 mW per pixel. Further, a hardware

and software collaborative architecture is presented, which can use the software for

control and hardware for computations. The hardware unit is composed of multiple

sub-accelerators, and, therefore, it is termed as a distributed hardware module. Each

sub-accelerator can be turned off independently and thus save power. This results in
up to ~42% energy savings for HEVC intra-encoding.

As discussed, the hardware accelerators usually use on-chip scratchpad memo-

ries for fast computations. This book discusses the alternative solutions of using

hybrid scratchpad memories for increased power efficiency. Specifically, MRAM-

based NVMs in conjunction with SRAM-based VMs are presented here. Large

MRAM buffers can be used for storing the video frames, while small SRAM buffer

is used to (a) store the immediately fetched data from the external memory and

(b) act as input and output buffers of the accelerators. The technique presented here

reduces the power consumption related to external memory access and leakage by

adaptively turning on the normally off MRAM memory sectors. An unsupervised

learner (SOM) learns the turning on/off pattern. Compared to the widely utilized

search window updating technique [10], the hybrid scratchpad-based methodology

results in up to ~43% power savings.

Moreover, to have reliable operation of video processing system over long

deployment durations, this book analyzes the aging profiles of SRAM-based

video buffers. Based upon this analysis, power-efficient SRAM anti-aging circuits
are discussed. Unlike other methodologies [11, 12, 13] for mitigating SRAM aging,

204 7 Conclusion and Future Outlook

https://doi.org/10.1007/978-3-319-61455-7_BM1

the techniques presented here modify video data on the fly using a write transducer,

while the data is being written to the SRAM memory. Other techniques for aging

rate reduction usually are (a) employing reading data from SRAM buffers, modi-

fying that data and writing it back to the SRAM, or (b) designing custom SRAM

cells, which results in high leakage power. Furthermore, when the application reads

this modified data, the data is again transformed to its original state using read

transducers. The microarchitecture of write and read transducers is designed such

that the energy consumption is reduced. Specifically, certain bits of the video

samples are adapted, while others are left unchanged. The aging controller takes

this decision in spatial and temporal locality. Moreover, the starting address for

writing every new video frame is changed, and therefore, the data of the 6T SRAM

cells is self-adapted, even if no transducer is used.

7.3 Further Improvements

The technical evaluations of the techniques put forth by this book at software and

hardware abstraction levels demonstrate that for high power efficiency of a video

system, one must jointly consider the codesign space of the application and the

hardware. Comparing with other state-of-the-art techniques, considerable amount

of complexity and power and area improvements are achieved. However, there are

some research frontiers, which are not explored by this book. These directions can

also be considered as effective means for resource and power efficiency. Some of

these directions can be orthogonally added to algorithm/architectures presented

here, with minimal effort. In the following, a few of these possible future enhance-

ments are outlined.

7.3.1 Approximate Computing

Approximate computing [14, 15, 16, 17, 18] exploits inherent resiliency of appli-

cations like audio/image/video processing to gain power savings. Since for these

applications, multiple outcomes are acceptable, therefore, the mechanism that

results in acceptable output quality with the best power efficiency is selected for

processing the workload. These mechanisms can be incorporated at the software

level or at hardware level. At the software level, techniques like “iteration skip-

ping” (similar to the one presented in Sect. 4.3) can be used. However, the

hardware-level functional approximation of basic circuits (e.g., adders) has gath-

ered considerable interest over the last decade. The main idea is that by tolerating

errors at the microarchitectural level, one can employ circuits with reduced accu-

racy (i.e., output is approximated) and thus save energy. Mainly, the focus of recent

research about approximate computing has been to optimize small kernels with

approximation and to implement them as hardware accelerators. Approximation

7.3 Further Improvements 205

mechanisms are employed in basic arithmetic units like adders, multipliers, etc. For

example, [19, 20] explored transistor-level addition approximations. The authors of

[21] proposed a runtime accuracy-configurable adder (ACA), while [22] imple-

ments efficient but approximate multipliers.

These approximate circuits can be used to design power-efficient hardware

architectures for the video systems. For example, the SAD unit (see Fig. 2.8) can

be designed using approximate adders, the image/video processing filters can use

approximate multipliers. Moreover, the hardware accelerator sharing technique

presented in this book (Sect. 5.2) can additionally implant a relationship to account

for the output quality (or approximation level), and the hardware accelerator itself

can consist of multiple approximation units. Additionally, distributed hardware

accelerators can employ approximated building modules and activate these modules

at runtime, depending upon the application quality requirement. Similarly, the

workload balancing and distribution techniques for heterogeneous systems can also

utilize the approximation levels of these accelerators. This way, the power efficiency

increases because approximate accelerators can process the workload even faster.

7.3.2 GPU-Based Acceleration

A GPU is a heterogeneous chip multiprocessor that can incorporate hundreds of

parallel executing threads and requires a specialized code. GPUs are universally

employed for image rendering. GPUs are also well suited for video output pipe-

lines, like the ones used in videogames. They are also used in applications benefit-

ing from large degree of parallelism, where a small compute kernel is employed for

pixel-level computations [23, 24, 25, 26]. Another concept popular nowadays is

general-purpose graphics processing unit (GPGPU) that can also perform

non-specialized, mostly controlled execution, typically conducted by a CPU.

In many cases, a GPU can be considered as a completely separate compute node,

and the workload balancing and distribution techniques (especially for heteroge-

neous nodes) of this book can be used. Specifically, the scientific challenge to

address will be division of a task into subtasks, such that the subtasks are allocated

to the GPU (or GPGPU) in a manner that increases the power efficiency of the

system. Another central goal of workload distribution should be the power man-

agement of GPU, because GPU is one of the major power consumers. In addition,

implementing the workload balancing on a heterogeneous system, employing

multiple GPUs, FPGAs, and soft-cores, via OpenCL [27], is both a scientific and

engineering challenge.

7.3.3 Reliability and Workload Management

The software and hardware layers of the multimedia system must be adapted in case

they are used under soft- and/or hard-errors scenarios. Further, the power-efficient

206 7 Conclusion and Future Outlook

techniques presented in this book must also adapt. For example, to process a given

task, multiple compute nodes are used with dual or triple modular redundancy

(DMR or TMR). This will increase the power consumption of the system [28], and,

therefore, the resource budgeting techniques presented here must adapt. That is, the

number of cores allocated to process a task and the power allocated to the task must

consider the impact of reliability-aware processing. Likewise, the modules of the

image/video processing application, which need reliability and protection, must be

identified. This is because usually, image/video applications are inherently resilient

to errors in some parts of the computation pipeline, while some other parts (e.g.,

entropy coder) are extremely sensitive to errors.

7.3.4 Generalization

In addition, applications other than multimedia (databases, radar, signal processing

for wireless communications, biotechnology, etc.) can be tested and evaluated by

the parallelization, workload balancing, compute and application configurations,

and resource budgeting techniques presented here. Similarly, one can design and

integrate hardware units for these types of applications using the methodologies

presented in this book (proposed in Sects. 5.1.4 and 5.3.2). Note that the techniques

outlined in this book can be easily extended to multidimensional video processing

paradigms. For example, 3D-HEVC [29] and MVC [30] used for encoding 3D

video streams, scalable video coding (SVC) [31], and multiple description coding

(MDC) [32] involve multiple layers of video content. Therefore, parallelization and

workload balancing techniques can be extended to incorporate the additional layers

or dimensions of video (i.e., the view or the layer), because the additional dimen-

sion can be added as a separate dimension to the optimization problems.

Mostly, this book targets the application and hardware layers for resource

budgeting and optimizations. However, kernel-level optimizations and efficient

utilization of available resources may result in high system efficiency. Moreover,

it will be challenging to extend these techniques for reliable, hard real-time systems

involving strict guarantees of fulfilling the timing constraints.

References

1. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

2. Shafique, M., Khan, M. U. K., & Henkel, J. (2014). Power efficient and workload balanced

tiling for parallelized high efficiency video coding. In International Conference on Image
Processing.

References 207

3. Jiang, W., Mal, H., & Chen, Y. (2012). Gradient based fast mode decision algorithm for intra

prediction in HEVC. In International Conference on Consumer Electronics, Communications
and Networks.

4. Sun, H., Zhou, D., & Goto, S. (2012). A low-complexity HEVC Intra prediction algorithm

based on level and mode filtering,. In International Conference on Multimedia and Expo
(ICME).

5. Rosas, C. Morajko, A. Jorba, J., & Cesar, E. (2011). Workload balancing methodology for

data-intensive applications with divisible load. In Symposium on Computer Architecture and
High Performance Computing.

6. Colin, A., Kandhalu, A., & Rajkumar, R. (2015). Energy-efficient allocation of real-time

applications onto single-ISA heterogeneous multi-core processors. Journal of Signal
Processing Systems, pp. 1–20.

7. Ma, K., Li, X., Chen, M., & Wang, X. (2011). Scalable power control for many-core

architectures running multi-threaded applications. In Internation Symposium on Computer
Architecture.

8. Fonseca, T. A., Liu, Y., & Queiroz, R. L. D. (2007). Open-loop prediction in H.264 / AVC for

high definition sequences. In SBrT.
9. Kuo, H. C., Wu, L. C., Huang, H. T., Hsu, S. T., & Lin, Y. L. (2011). A low-power high-

performance H.264/AVC intra-frame encoder for 1080pHD video. IEEE Transactions on Very
Large Scale Integrated Systems (TVLSI), 19(6), 925–938.

10. Chen, C., Huang, C., Chen, Y., & Chen, L. (2006). Level Cþ data reuse scheme for motion

estimation with corresponding coding orders. IEEE Transactions on Circuits and Systems for
Video Technology, 16(4), 553–558.

11. Shin, J., Zyuban, V., Bose, P., & Pinkston, T. (2008). A proactive wearout recovery approach

for exploiting microarchi-tectural redundancy to extend cache SRAM lifetime. In Interna-
tional Symposium on Computer Architecture (ISCA).

12. Siddiqua, T., & Gurumurthi, S. (2010). Recovery boosting: A technique to enhance NBTI

recovery in SRAM arrays. In Annual Symposium on VLSI.
13. Sil, A., Ghosh, S., Gogineni, N., & Bayoumi, M. (2008). A novel high write speed, low power,

read-SNM-Free 6T SRAM cell. In Midwest Symposium on Circuits and Systems.
14. Shin, D., & Gupta, S. (2010). Approximate logic synthesis for error tolerant applications. In

Design, Automation & Test in Europe Conference & Exhibition (DATE).
15. Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., & Raghunathan, A. (2012). Salsa:

Systematic logic synthesis of approximate circuits. In Design Automation Conference (DAC).
16. Venkataramani, S., Roy, K., & Raghunathan, A. (2013). Substitute-and-simplify: A unified

design paradigm for approximate and quality configurable circuits. In Design, Automation &
Test in Europe Conference & Exhibition (DATE).

17. Ranjan, A., Raha, A., Venkataramani, S., Roy, K., & Raghunathan, A. (2014). ASLAN:

Synthesis of approximate sequential circuits. In Design, Automation and Test in Europe
Conference and Exhibition (DATE).

18. Chakrapani, L. N., Muntimadugu, K. K., Lingamneni, A., George, J., & Palem, K. V. (2008).

Highly energy and performance efficient embedded computing through approximately correct

arithmetic: A mathematical foundation and preliminary experimental validation. In interna-
tional conference on Compilers, architectures and synthesis for embedded systems.

19. Gupta, V., Mohapatra, D., Park, S. P., Raghunathan, A., & Roy, K. (2011). IMPrecise adders

for low-power approximate computing. In International Symposium on Low Power Electron-
ics and Design (ISLPED).

20. Gupta, V., Mohapatra, D., Raghunathan, A., & Roy, K. (2012). Low-power digital signal

processing using approximate adders. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 23(1), 124–127.

21. Khang, A. B., & Kang, S. (2012). Accuracy-configurable adder for approximate arithmetic

designs. In Design Automation Conference (DAC).

208 7 Conclusion and Future Outlook

22. Kulkarni, P., Gupta, P., & Ercegovac, M. (2011). Trading accuracy for power with an under-

designed multiplier architecture. In International Conference on VLSI design.
23. Momcilovic, S., Ilic, A., Roma, N., & Sousa, L. (2014). Dynamic load balancing for real-time

video encoding on heterogeneous CPUþGPU systems. IEEE Transactions on Multimedia, 16
(1), 108–121.

24. Momcilovic, S., Roma, N., & Sousa, L. (2013). Exploiting task and data parallelism for

advanced video coding on hybrid CPU þ GPU platforms. Journal of Real-Time Image
Processing, pp. 1–17.

25. Cuomo, S., Michele, P. D., & Piccialli, F. (2014). 3D data denoising via nonlocal means filter

by using parallel GPU strategies. In Computational and Mathematical Methods in Medicine.
26. Mittal, S., & Vetter, J. S. (2015). A Survey of CPU-GPU Heterogeneous Computing Tech-

niques. ACM Computing Surveys, 47(4), 1–35.
27. OpenCL – The open standard for parallel programming of heterogeneous systems. Khronos,

[Online]. Available: https://www.khronos.org/opencl/. Accessed 12 Oct 2015.

28. Salehi, M., Tavana, M. K., Rehman, S., Florian Kriebel, M. S., Ejlali, A., & Henkel, J. (2015).

DRVS: Power-efficient reliability management through dynamic redundancy and voltage

scaling under variations. In International Symposium on Low Power Electronics and Design
(ISLPED).

29. Muller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H.,

Merkle, P., Rhee, F., Tech, G., Winken, M., & Wiegand, T. (2013). 3D high-efficiency video

coding for multi-view video and depth data. EEE Transactions on Image Processing, 22(9),
3366–3378.

30. Vetro, A., Wiegand, T., & Sullivan, G. (2011). Overview of the stereo and multiview video

coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 99(4),
626–642.

31. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding

extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video
Technology, 17(9), 1103–1120.

32. Goyal, V. (2001). Multiple description coding: compression meets the network. IEEE Signal
Processing Magazine, 18(5), 74–93.

References 209

https://www.khronos.org/opencl/

Appendices

Appendix A: Pseudo-codes

A.1 Compute and Application Configuration

The authors would like to point out that this work was carried out when all the authors were in

Department of Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

ParallelVideoProcessing ():
Input:
Available number of cores rtot; Allowable frequency set of the core fset; Video frame
dimensions w×h; Frame rate (in frames per second) fp;
Output:
Processed video;
1. NewTiling true;¬

2. while(AreFramesRemaining){

3. if (frames processed And NT()){l

4. NewTiling true;}¬ //New compute configurationselection

5. if (NewTiling){

6. tot(k , ,) GenerateTiles(); NewTiling false;}¬ ¬m mf a

7. totk {1 to k tiles}{" Î //For all parallel tiles
8. if (EpochFinished){

9. AppConf (k,)g ;i¬k ma a

10. kf AllocEpoch (k,Fr q) }e ;¬ ka

11. ChangeCoreFreq(k);

12. k Tilt P e(r oce k,ss);¬ kα //Video Tile processing
13. if (NewEpochStart){

14. kFreqModelTunin (k,f ,g);}kα

15. }

Algorithm 1 Parallel processing and workload management of a video application

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7

211

A.2 Compute Configuration

GenerateVideoTiles ():
Input:
Available number of cores rtot; Available frequency set fset; Minimum frequency of a core
fmin; Maximum frequency of a core fmax; Image dimensions w×h; Quantization Parameter
QP; Frame rate (in frames per second) fp; Workload matrix A;
Output:
Total tiles/threads/cores ktot; Maximum frequency of each core fk,m; Initial αk,m per tile;
1. totAreCoreAvail true;k ' 1;¬ ¬ //Initial configuration
2. while(AreCoreAvail){

3. tot totk TileMap[k];¬ //Actual number of tiles
4. k, max totĉ g(,k ,W H);¬ ´α α //Estimate number of cycles per block
5. totk,k {0, ,k }{" Î � //For each tile/thread/core
6. k max(A);¬α //Start with maximum workloadfor the tile

7. tot ktot, pˆ ˆf n c f ;¬ ´ ´α //Estimate frequencyof the core

8. k,m setˆf Quantize(f ,);¬ f //Supported frequency
9. k,m maxif (f f){³ //If the required frequency is too high
10. kwhile(min(A)){³α //Test all workload configurations
11. k, k totĉ g(,k ,W H);¬ ´α α

12. k,m k k, p setˆf Quantize(n c f ,);¬ ´ ´α f

13. k,m max k,m kif (f f){ ;break;}£ ¬α α

14. k kNextLowerWorkload(,A);}}}¬α α

15. tot totif (k r){= //All available cores are used
16. totk,k {0, ,k }{" Î �

17. k,mif (min(A)){WarnExit();}}<α //Workload still not supportable
18. AreCoreAvail false;}¬

19. k,m totelseif (max(A) k,k {0, ,k }){= " Îα �

20. return;} //Maximum workload supportable
21. tot totk ' k 1;}¬ + //Increase cores and repeat

Algorithm 2 Total subtasks/tiles/threads/cores, frequency, and workload initialization for video

processing

212 Appendices

A.3 PU Map (PUM) Generation for HEVC

PUMGenerator ():
Input:
Video frame block lcu; CTU size bw, Block merge variance threshold vth;
Output:
PU map PUM;
1. of Î ´"i 4 4 CTU {
2. i i[sb .x,sb .y] GetLocationWithinCTU(4 4);´¬

3. isb .PUsize 4;¬ //Initially, all PUs are set to a size of 4×4

4. i 4 4 i 4 4sb .m GetMean(CTU);sb .v GetVariance(CTU);´ ´¬ ¬

5. i i iPUM(sb .x,sb .y) sb .PUsize;= }
6. sizeblk 4;¬

7. size wblk b<while() {
8. size sizeh {sb of blk blk }Î ´" { //For all sub-blocks of the current size

9. size sizei {4 Neighbors of blk blk }Î ´" { //Four sub-blocks of the same size in the neighborhood
10. IsMerge true;¬

11. i i i i iV ,m V ,m ,sbCombineVariance();¬

12. i th i thV v sb .v v IsMerge false;break;> > ¬ or if() }
13. Merge trueIs =if() {
14. h i h isb .m m ;sb .v V ;¬ ¬

15. h sizesb .PUsize blk 2;¬ ´ //Merge the four sub-blocks to form a bigger block

16. h h hPUM(sb .x,sb .y) sb .PUsize;= }}
17. size sizeblk blk 2;¬ ´ } //Start with the next sub-block size
18. PUMreturn ();

Algorithm 4 PU map (PUM) generation algorithm for HEVC

AllocFrequencyOfCore ():
Input:
Recommended core frequency fk; Allowable frequency set fset; Frame rate (in frames per
second) fp; Epoch size in number of frames z;
Output:
Frequency for all cores in one epoch f;
1. k,h k setf GetNeighborHighFreq(f ,f);¬
2. k,l k setf GetNeighborLowFreq(f ,f);¬
3. for(i in 0 to z-1){

4. p k,l k,h(f i) f i f ;x¬ - ´ + ´

5. kif (z f){br k;}eax ³ ´

6. }
7. j {0 to i} k,lf (j) f ;Î" ¬ //Allocate lower frequency

8. j {i 1 to z-1} k,hf (j) f ;Î +" ¬ //Allocate higher frequency

Algorithm 3 Epoch frequency allocation algorithm

Appendices 213

A.4 Workload Balancing on Heterogeneous Nodes

LoadBalancingOnHeterogeneousNodes ():
Input:
Task deadline ti,max, Total number of subtasks per task ni; Number of available nodes rtot;
Power vs. frequency profile of all nodes p(f); Efficiency indices of all nodes ϕ; Cycles for
a subtask for all the nodes c;
Output:
Total number of required nodes ktot; Frequency of all the nodes f;
1. SortNodesDesc();f ¬ fg //Sort nodes according totheir efficiencyϕ
2. totk 1;k 0;¬ ¬

3. tot totwhile(k r){£

4. totk {0 to k -1 nodes}{Î"

5. k k,minf f ;¬ //Test with minimum. frequency
6. i,k in DistLoad(n ,);}¬ ff //Load distribution formula
7. ThrptMet true;¬ //Assume throughput is met
8. totk {0 to k -1 nodes}{Î"

9. i,k i,k i,k i,kt Pr ocessTimeOnNode(c ,n ,f);¬ //Time spent on processing the load
10. NodeThrptMet true;¬ //Assume node’s throughput requirementmet
11. i,k i,maxif (t t){> //Throughput not met
12. NodeThrptMet false;¬

13. i, j k,min k,maxf {f to f of node k}{Î" //Test increasing frequency

14. i, j i, j i, j i, jt TimeOnNode(c ,n ,f);¬ //Time spent on processingthe load
15. i, j i,maxif (t t){NodeThrptMet true;break;}}> ¬

16. if (NodeThrptMet false){ThrptMet false;}}= ¬

17. } //All ktot nodes tested with every possible frequency
18. if (ThrptMet false){= //Throughput not satisfied
19. totk IncrementNode();f¬ g //Introduce an additional node
20. else{break;} //Configuration found, exit
21. }

Algorithm 5 Workload distribution and balancing algorithm on heterogeneous nodes

214 Appendices

A.5 Resource Budgeting for Concurrent Applications

AdaptiveResourceAndPowerAllocation ():
Input:
Available number of cores ktot; Number of applications/tasks/clusters atot; Available
power (TDP) budget ptot; Deadline per task ti,max;
Output:
Resource and Power budgeting to all the applications.
1. do{

2. i {0, ,atot 1} i i,max k EstimateReqCores(t);Î -" ¬� //Estimate cores for every cluster

3. i {0, ,atot 1} i p AllocatePower();Î -" ¬� //Distribute power to all clusters

4. i {0, ,atot 1}if (IsConfigChanged){ {Î -" �

5. ij {0, ,k 1} i,j p CorePowerAlloc();}}Î -" ¬� //Allocate power to every core

6. while(1){

7. i {0, ,atot 1}{Î -" � //For every cluster, adapt resources

8. GetNewTask();

9. ij {0, ,k 1} ProcessSubtask();Î -" � //Process the subtask

10. o,in TaskOffset();¬ //Determine the offset from the deadline

11. o,i o,ix UpdateAppOffset(n);¬

12. FrequencyAdjust(); //Adjust frequencies of the cores

13. if (IsEpochExpired) goto Line-16; //Start new epoch
14. } //Task finished
15. } //All tasks within the core finished
16. }while(AreTasksRemaining);

Algorithm 6 Resource distribution (cores and power) among concurrently running applications

Appendices 215

A.6 Cost Function for Hardware Offloading

NelderMeadCostFunction ():
Input:
Time per epoch tt; Attributes nsec,h,k, nsec,k, cs,k, ch,k, for all tasks; Frequency of the
accelerator fh; Minimum soft-core frequency fk,min; Maximum soft-core frequency fk,max;
Output:
Cost of the objective function for the given set of inputs v;
1. v 0;¬

2. totk {0 to k -1 soft-cores}{Î"

3. h,k t sec,h,k h,k ht TimeSpentOnAcc(t ,n ,c ,f);¬

4. s,k t h,kt t t ;¬ -

5. k sec,k sec,h,k s,k s,kf SoftCoreFreq(n ,n ,c , t);}¬

6. t h,kv v exp(t t);¬ + -å

7. totk {0 to k -1 soft-cores}{Î"

8. sec,k sec,h,kv v n n ;¬ + -
//Increase cost if offset increases

9. sec,h,k sec,h,kif (n 0){v v n ;}< ¬ +
//Penalize if out of bounds

10. k kif (f 0){v v f ;}> ¬ +

11. k k,min s,k k,min kif (f f AND t 0){v v (f f);}< > ¬ + -

12. k k,max k k,maxif (f f){v v (f f);}> ¬ + - //Penalize if out of bounds
13. }

Algorithm 8 Cost function used for Nelder-Mead heuristic for solving shared hardware alloca-

tion problem

FrequencyAdjust ():
Input:
Total number of cores in the cluster/application ki; Per core offset no,i,j; Core frequency
set fset={f | f ϵ allowable core frequencies}; Total allocated power for the application pi;
Output:
Frequency of all the cores fi,j

1. o,i,list o,i, jn SortThreads _ n ();¬ //Sort threads in descending order

2. max min iz 0;z k 1;¬ ¬ - //Indices of the sorted list

3. if (IsFrequencyAdjustmentAllowed){

4. o,i,list max o,i,list max o,i,list minwhile(n (z) 0 AND n (z) n (z)){> >

5. high o,i,list maxT GetThreadID(n ,z);¬

6. low o,i,list minT GetThreadID(n ,z);¬

7. low high iif (PowerExchange([T .f 1], [T .f 1]) p){- + £set setf f

8. low lowT .f [T .f 1];¬ -setf //Decrease frequencyof less critical core

9. high highT .f (T .f 1);}¬ +setf //Increase frequencyof the critical core

10. max max min minz z 1;z z 1;¬ + ¬ -

11. }

Algorithm 7 Frequency adaptation among cores of a cluster after processing a task

216 Appendices

A.7 Edge Detection for 16�16 MB

ExtractDominantIntraMode ():
Input:
16×16 MB X; MB edge size (16 pixels) s;
Output:
Dominant prediction mode for H.264/AVCm;
1. rdw, Ew ← BorderRunningDifference (X), w = a, b, c, d
2. Lineout ← GetDominantLine(rd,w, Ew)
3. switch Lineout do //Implicit ‘break’ after each case
4. case Line0

5. m ← (DC, P, H, V) //No edges found on any border
6. case Line1
7. If Ea-Eb > s/2 � m ← (DC, H, P, V)
8. otherwise, if Ea > Eb � m ← (DC, P, H, V)
9. otherwise, if Eb-Ea < s/2 � m ← (DC, P, V, H)
10. otherwise m ← (DC, V, P, H)
11. case Line2
12. If Ea-Ec > s/2 � m ← (H, DC, P, V)
13. otherwise, if Ea > Ec � m ← (DC, H, P, V)
14. otherwise, if Ec-Ea < s/2 � m ← (DC, P, H, V)
15. otherwise m ← (DC, P, V, H)
16. case Line3

17. If Eb-Ed > s/2 � m ← (DC, V, P, H)
18. otherwise, if Eb > Ed � m ← (V, DC, P, H)
19. otherwise, if Ed-Eb < s/4 � m ← (DC, V, P, H)
20. otherwise m ← (DC, P, H, V)
21. case Line4
22. If Ec-Ed > 3s/4 � m ← (DC, V, P, H)
23. otherwise, if Ec >Ed � m ← (DC, P, V, H)
24. otherwise, if Ed-Ec < 3s/4 � m ← (DC, P, V, H)
25. otherwise m ← (DC, H, P, V)
26. case Line5
27. m ← (V, DC, P, H) //Dominant Vertical mode
28. case Line6

29. m ← (H, DC, P, V) //Dominant Horizontal mode
30.

Algorithm 9 Estimating most probable intra-prediction mode for H.264/AVC 16�16 MB

Appendices 217

A.8 Motion Estimation with Hybrid Memory

HybridMemoryME():
Input:
Current video frame F; Reference frame search window sw; ME Engine memory access
pattern MEpatt;
Output:
NVM’s power gate control register PGSW;
1. CTU in F}" Î i | i { {
2. ()IsReadBankReadywait ; //Motion estimation is ready for CTU
3. iCU CTU¬ ;

4. CUPerformME();

5. }
6. Function CUPerformME() {
7. ()1 2 patt] ME CUb b ¬[EstimateNVMAddr , ;

8. ()1 2PG ,¬ b bTurnONMemSectors ; //Preemptively turn ON memory sectors

9. ()pattME CU PGTurnOFFExcessMemSectors , , ;

10. PU in CU}" Î j | j { {
11. PattSearch number in ME }" Î n |n { {
12. ()w h jb , b] PU¬[GetDimensions ;

13.)WaitForME(; //ME not ready yet, current PU must wait
14. ()ref ref pattx y n ME¬[,] GetReferenceAddr , ;

15. ()1 ref 2 ref wx or < x +bb > bif {
16. ()ref ref wPG x ,x +b¬ TurnONMemSectors ; //Latency penalty

17. ()refx CUUpdateEstimator , ; }
18. ()patt ref refn, ME , x , y , PUDoMotionEstimation ; }
19. }
20. ()CU SmallestCU return;=if //At 8×8 CU level, cannot divide further

21. 0 1 2 3}" Î k |k { , , , { //Split the CU in 4 equal sub-CUs

22. k W W k H H kCU C CU C 2 CU C CU C 2 CU CU¬ ¬ ¬. . / ; . . / ; ;

23. kCUPerformME(); } //Recursively call ME again
24. }

Algorithm 10 Motion estimation process in HEVC video encoder using AMBER

218 Appendices

Appendix B: ces265 HEVC Video Encoder

In context of high workload of video compression due to high resolution and FPS

requirement, video encoding standards now allow for multithreaded (parallel)

encoding possibilities, which can be exploited on multi- and many-core

systems. In this book, we have envisioned a multithreaded video application and

applied the concepts of compute and application configuration to this application.

To demonstrate these concepts, one such application is the ces265 video encoder,

an open-source HEVC software architecture for parallel video encoding. By simul-

taneously encoding video tiles on independent cores, time complexity and power

savings are obtained, especially for large workload (like video encoding with high

frame resolutions). The architecture of ces265 is flexible and allows for easy

integration, runtime adaptation, and extensions.

B.1 Introduction and Motivation

New video standards, like high efficiency video coding (HEVC) [1] and VP9 [2],

permit parallel encoding of video by breaking coding dependencies and create

virtual boundaries around independent coding regions. Although current industry

standards like H.264/AVC [3] and VP8 also allow for parallel encoding, their

compression efficiency is not high compared to their successors (i.e., HEVC and

VP9). On the other hand, the enhanced compression efficiency offered by HEVC

and VP9 is accompanied by high complexity and application’s workload. As a

concrete example, HEVC takes about 40–70% more time as compared to H.264 [4]

for processing the same video. Therefore, it is vital to parallelize the latest and next-

generation video encoders if they must replace the current industry-standard video

encoders.

In addition, recent trend of designing programmable processing chips is to have

multiple low-frequency, low-power cores instead of a single, fast, and power-

hungry core. This is because as already discussed, the dynamic power (pdyn) of a
core is related to its frequency (f) with the following relation:

pdyn / cv2dd f ðA:1Þ

In this equation, c is the capacitance and vdd is the device voltage. Moreover,

increasing the frequency of a core requires a linear increase in vdd; therefore, the
dynamic power is roughly proportional to the cube of the frequency. Further, for

every chip, there is a power cap, which must not be violated, otherwise, we risk

damaging the chip. Hence, a core’s frequency cannot be arbitrarily increased or

even, in some cases, independently assigned. This constraint is due to the power

wall that prohibits increasing the frequency of the cores beyond a certain limit to

sustain quality of service demand (i.e., frame rate). Hence, chip designers have

Appendices 219

steadily moved towards having multiple compute cores, which has resulted in

software designers to develop parallelization mechanisms, to exploit the potential

of multiple cores.

In HEVC, tiles can be independently encoded (in parallel). However, as already

pointed out, to satisfy the encoding frame rate demand, the software needs to

distribute tiling workload by considering (a) the number of available cores and

(b) the frequency of the cores. It is also possible that HEVC video encoding takes

place on a heterogeneous multi- or many-core system. In such cases, some cores

have lower resources or processing capacity (e.g., lower frequency, smaller caches,

etc.) than the rest. Additionally, workload of video tiles may not be similar due to

non-uniform tile structure or due to change in the video content at runtime. Thus,

tiles may consume different amount of processing cycles, and the workload of cores

is unbalanced, which may result in computational hotspots and decrease core

utilization. The software architecture of HEVC under consideration, ces265 [5],

addresses these challenges by providing adaptability and flexibility to HEVC video

encoding, and provides integration and extension possibilities.

B.2 Technical Description of ces265

The software architecture of ces265 video encoder is outlined in Fig. B.1. There are

numerous classes used in ces265. The Encoder’s Top class is used to access YCbCr
4:2:0 planar raw video samples, construct tile structure for encoding video frames,

and write encoder statistics. The main compression class is the Group of Pictures

(GOP) Compressor class. A group of video frames is pushed to this class, and it

outputs compressed bitstreams for each video frame to the Encoder’s Top class. The
GOP Compressor calls the methods of Slice Compressor class to compress video

App.
Args

Encoder Top/Main
Tile Struct

Construc�on
YCbCr 4:2:0
Func�ons

Encoder Sta�s�cs and File
Read/Write Func�ons

HEVC Headers: VPS, SPS, PPS

HEVC GOP Compressor
Per Slice/

Frame Stats
Compressed

Bytes per Slice

HEVC Slice Compressor
Thread

Format ion
Tile Jobs and Core

Assignment H
ea

de
r &

St
a�

st
 ic

sPower
Budget ing

Thread Handler

Start
Wait

Run
Stop

HEVC Tile Compressor
Frequency

Tuning

Stat ist ics

Complexity
Management

Freq. Model

HEVC CTU Compressor

Compression
CTU Stat ist ics

Intra/Inter
Predict ions

Encoding

Update

Job Queue

Fig. B.1 Software

architecture of ces265 video

encoder. The Top object can

have multiple “GOP

Compressor” objects. Each

“GOP Compressor” object

can instantiate multiple

“Slice Compressor” objects.

With each “Slice

Compressor” object, a “Job

Queue” object is attached,

which can be accessed by

multiple “Thread Handler”

objects. Currently, ces265

only supports single GOP

and Slice Compressor

objects

220 Appendices

frames. The Slice Compressor class calls methods of the Tile Compressor class, and

each Tile Compressor class has an associated Coding Tree Unit (CTU) Compressor

class. The CTU Compressor class is the class where the intra- and inter-encoding

functions of HEVC are written and bitstream is generated.

With reference to the challenges mentioned above, some scientific and technical

aspects of ces265 will now be briefly discussed.

Tile Formation in ces265 A user can assign a tile structure by three different

methods:

• If the multi- or many-core system is homogeneous (i.e., all the computing cores

have the same resources, e.g., frequency, cache size), the user can select a

uniform tile structure. The user needs to provide ces265 with width and height

on the frame in tiles.

• For the second option, the user can state the exact width and height of each tile in

CTUs. This method is suitable for workload balancing on heterogeneous sys-

tems with dissimilar set of compute nodes or when it is required to reduce the

number of compute cores [6].

• For the third option, the software determines the number and location of uniform

tiles, depending upon the number of available/allotted cores and frequency of the

cores [5]. These parameters (number of cores and frequency) must be provided

to ces265 to utilize this option.

Multithreading in ces265 Multithreading is achieved by three entities: a

processing thread, a job queue (or FIFO), and a manager to fill the job queue with

encoding tasks. Manager fills the job queue from one side and the threads pull the

jobs from the other side. To encode multiple tiles simultaneously in ces265, the

Slice Compressor class generates a pool of parallel threads. In addition, it also

creates a Job Queue object and attaches these threads to this queue. These threads

(defined in Thread Handler class) scan the job queue wait for the arrival of jobs. The

Slice Compressor class acts as a manager and creates tile compression jobs. A

processing thread currently idle and waiting for a processing job pops a tile

compression jobs from the queue. A video frame is deemed encoded when all the

processing threads are idle and there are no more jobs left in the Job Queue.

Consider the case of uniform tiles encoded with a homogeneous many-core

system. In this case, all threads will approximately take the same amount of time,

and the number of threads created by ces265 will be equal to the number of tiles. In

case of non-uniform tiling (with some tiles smaller than the others), the number of

parallel threads created by ces265 can be lesser than the number of tiles. This is

because a single thread can process multiple smaller tiles in the same time as a

thread processing a larger tile. However, for both uniform and non-uniform tile

processing, note that the software does not require any changes. Larger and smaller

tile jobs enter the same workload queue and are treated by the threads all the same.

An idle thread will start processing the tile as soon as there is a job available to

process in the queue.

Appendices 221

Note that the Job Queue and the Thread Handler classes are independent of

ces265 encoding. These classes can be reused in ces265 for GOP or slice-based

threading, or by other applications not limited to video, as they only need to know

which function to call when processing and a structure containing input arguments

to this function.

Power Management in ces265 As discussed in Sect. A.2.1, power consumption

of a system is a major concern and will remain in the near future. The ces265 video

encoder is designed with the pretext of application- or kernel-level power manage-

ment techniques. If the platform allows the application to change the working

frequency of the compute core, then the functionality of frequency tuning can be

embedded into the software. By changing the frequency, an application can lessen

the power consumption of the system by reducing the clock frequency or satisfy the

quality of service demand (frame rate) by not running the core too slow. The ces265

allocates such frequency control functions in the Tile Compressor class, whereby

just after the core starts processing the tile, the frequency of the core is modified to

compress the corresponding tile.

B.3 Implementation and Uses of ces265

ces265 is written in C++, without using any architecture specific Intrinsics [7] or

SIMD [8] instructions. The pthread APIs are used for multithreading. Using the

same source, ces265’s binary can be compiled on both Windows- and Unix-/Linux-

based operating systems. The premises upon which foundation of ces265 is built

are:

• Easily understandable and readable, for getting started with video encoding

concepts and, specifically, HEVC

• Portable to multiple platforms, by using only standard Cþþ libraries and

functions, and universally available development packages (e.g., pthreads)

• Easily extendible to include additional functionalities, such as parallelizing GOP

and Slice compression

• By having a small memory footprint, portable to small systems with limited fast

memories

• Introducing runtime tuning, by presenting the user multiple encoding options

and configuration knobs

• Extensive analysis of encoder’s workload and parameters, by dumping encoder’s
statistics at multiple levels of hierarchy (CTU, tile, slice, and GOP-level

statistics)

The ces265 is open-source software and is available for download at http://ces.

itec.kit.edu/ces265/ under GNU General Public license (http://www.gnu.org/

licenses/). To test multithreading and power management (by frequency scaling)

of ces265 on a many-core system, Sniper x86 many-core simulator [9] is used, as

222 Appendices

http://ces.itec.kit.edu/ces265
http://ces.itec.kit.edu/ces265
http://www.gnu.org/licenses
http://www.gnu.org/licenses

shown in Fig. B.2. Sniper simulator allows for application-level frequency control,

which is exploited by ces265 while simulation.

B.4 Implementation of Multi-core ces265 on FPGA

To test video encoding and its associated challenges on embedded platforms,

ces265 video encoder is also ported to an Altera’s FPGA-based soft-core system

as shown in Fig. B.3, which shows the multi-core hardware architecture. For this

architecture, the soft-cores called Nios-II (provided by Altera) are used to process

HEVC encoding. Each core processes a single tile. The so-called Master core also

prepares the metadata (e.g., memory addresses) for other cores, called secondary

cores.

Sniper x86 Simulator

McPAT Simulator
Power, Energy,
Area Sta�s�cs

Stat ist ics
Timing, IPC, Cache,

Branch Predictor

Conf igurat ion Files ces265
Executable

Fig. B.2 Sniper x86 many-

core simulator setup to run

ces265

JTAG
UART

Interval
Timer

NIOS II
Embedded

Master
Core

Custom
Instruc�on

(SAD)

− − − −
+

Custom
Interface

Av
al

on
 S

la
ve

 In
te

rf
ac

e

Av
al

on
 S

la
ve

 In
te

rf
ac

e

Data
128MB
SDRAM

Interface
128MB On-board

SDRAM

NIOS II
Embedded
Secondary

Core

JTAG
UART

Interval
Timer

Custom
Instruc�ons

Address
Control

Instruc�on Bus

Data Bus

Register
File

To
 JT

AG

To
 JT

AG

Secondary
Embedded Cores

Host PC
(.yuv file)

Fig. B.3 Multi-core architecture of ces265 on an Altera’s FPGA

Appendices 223

The multi-core ces265 implementation on FPGA includes efficient arbitration

and sharing of peripherals. In this system, all the cores share:

• SDRAM controller for storing their software and processed data

• A custom peripheral for efficient communication among the cores

• System ID for successful debugging of the software in multi-core environment

Sharing the peripherals is another design and performance challenge for this

multi-core system. There is no guarantee that a core will be assigned a peripheral in

a specific order. Similarly, sharing external memory via the SDRAM controller is

also a challenge of a multi-core system. Since the memory contains the program

and data for each core, it is important to use separate area for code execution of each

core. It should be noted that cores sharing the same program memory space would

result in erroneous execution as one core might overwrite other cores’ memory.

Therefore, each core has its own unique .text, .rodata, .rwdata, .heap, and .stack

sections. Usually these five default linker sections are defined as:

• .text covers the executable code.

• .rodata contains the read-only data used for execution of the software.

• .rwdata is used for storage of read and write variables, along with pointers that

have been used in the software.

• .heap is used for storing dynamic memory (using “malloc” in C or “new” in

Cþþ).

• .stack stores function call parameters and other temporary data.

Another addition to the multi-core systems is the implementation of Custom

Instructions (CI) or in-core hardware accelerators. These accelerators can be called

by user-defined macros that are designed and implemented in hardware. With the

help of in-core accelerators, functions that might take a large number of clock

cycles to execute can be replaced with CIs, which usually take lesser number of

cycles. This will further decrease the total computation time of the ces265 encoder.

In this implementation of ces265, the SAD function is implemented as a CI.

Further, note that this architecture is not limited to ces265. Any parallelizable

application can be implemented on custom hardware like FPGAs, using the above

methodology.

Working The Master core governs the processing flow. It has information about

the addresses of the data frames in the external memory, the tile structure for

secondary cores to properly work, and the details of the custom interface used for

communication.

Depending upon the number of secondary cores, the master core constructs the

exact dimension of the video tiles as well as the start and end pixel locations of these

tiles. We can employ uniform or non-uniform tiling techniques for tiling. The master

core also allocates memory for bitstream handlers and other associated data structures

(which will be used by the secondary cores). Afterwards, it starts writing the tile

addresses and memory pointers to the custom interface (a set of registers for each

secondary core). Afterwards, the master core sets a “go” signal, which starts the tile

224 Appendices

processing. In this architecture, the master core also processes tiles. Once it finishes

processing its tile, it starts collecting status signals of all other secondary cores. The

secondary cores fill the appropriate registers within the custom interface to notify the

master core about their status. If all cores finish their workload, the master core

initiates the processing of the next frame.

B.5. Future Directions

ces265 can be extended by including vector processing instructions (or SIMD

instructions). Parallelizing the GOP and slice compression engines is a logical

step towards hierarchical resource and power management of ces265. As pointed

out earlier, this can be achieved with minimal effort, because the Job Queue and

Thread Handlers can be seamlessly replicated and inserted before GOP Compres-

sion and Slice Compression classes. In addition, ces265 can be used for real-time

3D-HEVC (for efficient compression of 3D videos). Moreover, the frequency

control functions (currently embedded into tile compressors) can be used in the

CTU Compressor class for fine-grained frequency tuning of the processing core.

Appendix C: FPGA-Based H.264/AVC Prototype

To functionally verify the hardware accelerators for H.264/AVC and its

multicasting solution, the H.264/AVC encoder is prototyped on an Intel® FPGA

(formally known as Altera FPGA). This prototype includes:

• Parallel processing of up to four parallel full-HD (1920�1080) video frames at

25 fps.

• Capturing raw video samples from real-world analog camera inputs and

converting them into YCbCr 4:2:0 planar format

• Writing and reading video frame samples to/from the external DDR3 memory of

the FPGA development board

• Processing the video samples on the FPGA and compressing them to H.264/

AVC standard-compliant bitstream

• Displaying the reconstructed video via DVI for quick debugging

Some of the design challenges for implementing the prototype consist of:

• Debugging the hardware board

• Incorporation of cameras on the daughter board with the FPGA board

• Converting analog camera video streams into digital YCbCr 4:2:0 planar format

• Appropriately tuning the timing parameters for interfacing the DDR3 memory

with the FPGA

• Setting the clock frequencies of the DDR3 and the FPGA (video encoder)

• Integrating Gigabit Ethernet with the video encoder

Appendices 225

• Setting up the DVI output for reconstructed video

The following provides brief details about the working principles of this

prototype.

C.1. Simulation and Design Workflow

The simulation and design workflow of the H.264/AVC video encoder is shown in

Fig. C.1. The H.264/AVC intra-encoder is developed using an in-house C-based

H.264/AVC intra-encoder, ModelSim, and MATLAB co-simulation framework.

Quartus logic device design software together with Synopsys Design Compiler is

used for design implementation and analysis. H.264/AVC and other encoding

configurations are fed to the C-based H.264/AVC encoder, which generates com-

pressed video bitstreams and test vectors for use in VHDL simulation with

ModelSim. These test vectors are also used to visualize the impact of different

configuration settings on the hardware accelerator via MATLAB’s tools. The

VHDL files (for H.264/AVC entities and associated test benches), test vectors,

and the Executable and Linkable (elf) file of the embedded Nios-II CPU [10] are

used for RTL-level simulations and debugging via ModelSim. These VHDL files

are also used in the Quartus software to generate the bitstream of the architecture to

be burned on the FPGA. The Synopsys Design Compiler generates area and power

logs for the H.264/AVC VHDL entities using a 65nm TSMC library.

H.264
Source (C)

H
.2

64
 C

on
f ig

ur
a�

on

MATLAB
Analysis and

Test ing
Bitstream

Test Vectors

Test Benches (VHDL)

Eclipse IDE & gcc

.elfModelSim Simulator

Quartus

VIP, PLL, DVI
Config. (VHDL)

Clock-& Pin-Constraints,
Fi�er, Fmax Se� ings

Intel
Arria II

GX FPGA

NIOS II
Source (C)

Eclipse IDE & NIOS
Programming Tools

NIOS II
Download Tool

.sof

.exe

Camera

DVI

Power
Analyzer .vcdAnalysis &

Synthesis Fi�er

Synopsys
Design

Compiler
65nm TSMC

library

Clock
Constraints H.264 Arch. (VHDL)

Logs

YCbCr
420p

Display

Fig. C.1 Design methodology and simulation setup of the H.264/AVC video encoder

226 Appendices

C.2. FPGA Prototype

For functional verification, the H.264/AVC encoder and the multicast video gather

and display are separately prototyped on a real-world FPGA. These architectures

are implemented on Altera’s DK DEV 2AGX260N FPGA Development Kit, with a

cost-effective Arria II GX EP2AGX260 FPGA. The architecture for the H.264/

AVC intra-encoder is shown in Fig. C.2. The development kit has a 64-bit-wide

DDR2 dual inline memory and a 16-bit-wide single chip DDR3. For functional

verification, the video data is streamed from a SD camera to the encoder, and the

output bitstream (generated by CAVLC [11]) is passed as AVB packets [12] via

Gigabit Ethernet interface. The whole encoder uses a single clock domain of

150 MHz whereas the DDR3 is clocked at 300 MHz. NIOS II embedded soft-

core is used for frame-by-frame control and for future extensions of the prototype.

Nios-II also configures video input, Ethernet, and DVI modules at startup. Note that

the video output path is not required in the actual implementation, however, it is

used to view the reconstructed video frames. Similarly, there is an optional mixer

component only used to stack the frames together and generate background.

As a service to the research community, the VHDL of the proposed H.264/AVC

encoder is open-sourced [13]. The reason being writing and testing custom hard-

ware for a large and complex project (like H.264/AVC) is a highly time-consuming

process. Therefore, with this release, the research community will have a head start

in developing video compression architectures, and it will help to implement and

test novel architectures in an efficient manner.

C.3. H.264/AVC Prototype Evaluation

On the FPGA prototype, the total cycles taken by the transform module is 56. The

prediction (X´) generation takes 17 cycles for every perdiction, including the P

prediction mode. Compared to other architectures, the different attributes of this

architecture are tabulated in Table C.1. Other architectures shown here do not

consider multicasting. Therefore, we have written the resolution supported by a

single encoder presented here. In contrast to the other techniques, this encoder can

be adjusted to balance the workload and encoding methods. Moreover, the area

footprint is reduced by: (a) realizing only one DCT folded butterfly [18], (b) reusing

the same hardware for quantization and inverse quantization, and (a) reusing the

same structure for SAD computations of all the four modes. Further, compared to

[19], this architecture only uses one prediction generation unit (instead of two

parallel units) at 150 MHz instead of 310 MHz. However, this architecture can

also be extended in a similar fashion and is more flexible because the parameters ds
and θ are configurable, as discussed in Chap. 5. An algorithm implemented in

Nios-II can regulate these variables, even at runtime. Area usage and maximum

frequency of important modules of the encoding loop implementation are given in

Table C.2. Note that M9K embedded SRAM block memories are used as FIFOs to

Appendices 227

Ex
te

rn
al

M

em
or

y
(D

DR
3)

Vi
de

o
Sa

m
pl

er
C

lip
pe

r
C

ol
or

 P
la

ne

Se
qu

en
ce

r
D

ei
nt

er
la

ce
r

Vi
de

o
Sa

m
pl

er
C

lip
pe

r
C

ol
or

 P
la

ne

Se
qu

en
ce

r

O
pt

io
na

l
M

ix
er

4:
2:

2
to

 4
:2

:0
 C

hr
om

a
R

es
am

pl
er

Fr
am

e
B

uf
fe

r
C

on
tr

ol
le

r

H
.2

64
 In

tr
a-

O
nl

y
En

co
de

r
(E

nc
od

in
g

Lo
op

, C
AV

LC
, e

tc
.)

Ex
te

rn
al

M

em
or

y
(D

DR
3)

C
on

tr
ol

le
r

Fr
am

e
R

ea
d

C
on

tr
ol

le
r

4:
2:

0
to

 4
:2

:2
 C

hr
om

a
R

es
am

pl
er

D
VI

 C
lip

pe
r

YC
bC

r 4
:2

:2
to

R

G
B

 C
on

ve
rto

r
D

VI
 F

ra
m

e
B

uf
fe

r
Et

he
rn

et

C
on

tr
ol

le
r

G
ig

aB
it

Et
he

rn
et

N
IO

S
II

So
ft-

C
or

e

JT
AG

U

AR
T

In
te

rv
al

Ti

m
er

I2 C

In
te

rf
ac

e

Ex
te

rn
al

M

em
or

y
(D

DR
2)

C

on
tr

ol
le

r
O

ut
pu

t R
eg

is
te

r
fo

r D
D

R

Te
xa

s
In

st
ru

m
en

ts

TV
P5

15
4a

Vi

de
o

In
pu

t

C
hr

on
te

l
C

H7
01

0
D

VI

Tr
an

sm
itt

er

D
ei

nt
er

la
ce

r

Ex
te

rn
al

M

em
or

y
(D

DR
2)

O
n-

ch
ip

B

RA
M

Vi
de

o
In

pu
t P

at
h

Vi
de

o
En

co
de

r

M
em

or
y

an
d

Et
he

rn
et

Co

nt
ro

lle
r

Ex
te

rn
al

 D
ev

ic
es

Vi
de

o
O

ut
pu

t P
at

h
NI

O
S

Pa
th

Vi
de

o
In

pu
t

DV
I O

ut
pu

t

In
te

l®
 F

PG
A

F
ig
.
C
.2

A
rc
h
it
ec
tu
re

o
n
A
rr
ia

II
G
X

F
P
G
A

w
it
h
th
e
H
.2
6
4
/A
V
C

en
co
d
er
,
v
id
eo

in
p
u
t
an
d
o
u
tp
u
t
p
at
h
s,

an
d
ex
te
rn
al

d
ev
ic
es
.
F
o
r
co
m
p
le
te

sy
st
em

im
p
le
m
en
ta
ti
o
n
an
d
v
er
ifi
ca
ti
o
n
o
f
H
.2
6
4
In
tr
a-
o
n
ly

en
co
d
er
,
o
n
ly

o
n
e
v
id
eo
-i
n
p
u
t
is
u
ti
li
ze
d

228 Appendices

T
a
b
le

C
.1

C
o
m
p
ar
is
o
n
o
f
H
.2
6
4
/A
V
C
en
co
d
er

p
er
es
en
te
d
h
er
e
w
it
h
o
th
er

ar
ch
it
ec
tu
re
s

[1
4
]

[1
5
]

[1
6
]

[1
7
]

P
re
se
n
te
d

M
H
z

1
1
4

5
4

1
5
0

1
4
0

1
5
0

S
iz
e

1
9
2
0
�1

0
8
0
4
:2
:0

7
2
0
�4

8
0
4
:2
:0

1
9
2
0
�1

0
8
0
4
:2
:0

1
9
2
0
�1

0
8
0
4
:2
:0

4
0
6
8
�2

2
8
8
4
:2
:0

F
P
S

3
0

3
1

6
1

3
0

2
5

M
o
d
e

I4
M
B
,
I1
6
M
B
P
ar
al
le
l

I4
M
B
,
I1
6
M
B
P
ar
al
le
l

I4
M
B
,
I1
6
M
B
P
ar
al
le
l

I4
M
B
,
I1
6
M
B
S
er
ia
l

I1
6
M
B
S
er
ia
l

D
es
ig
n

1
3
0
n
m

T
S
M
C

2
5
0
n
m

T
S
M
C

1
8
0
n
m

T
S
M
C

1
3
0
n
m

T
S
M
C

4
0
n
m

A
lt
er
a
F
P
G
A

A
re
a

2
6
5
.3
K

G
at
es

8
9
K

G
at
es

2
0
1
.8
K
G
at
es

9
4
.7
K

G
at
es

1
1
K

A
L
U
S
,
8
K
R
eg
s,

5
6
2
K
b
it
B
R
A
M

E
n
tr
o
p
y
C
o
d
in
g

C
A
B
A
C

C
A
V
L
C

N
I

C
A
V
L
C

C
A
V
L
C

M
u
lt
ic
as
t
S
u
p
p
o
rt

N
o

N
o

N
o

N
o

Y
es

C
am

.
in
p
u
t

N
o

N
o

N
o

N
o

Y
es

T
f
F
o
ld
in
g

N
o

N
o

N
o

N
o

Y
es

T
f
M
er
g
in
g

Y
es

Y
es

Y
es

Y
es

Y
es

Q
M
er
g
in
g

Y
es

N
o

N
o

N
o

Y
es

Appendices 229

connect the encoding stages, and the total area of the encoding loop for this

architecture also includes these FIFOs.

Tf transform, NI not implemented

Table C.3 shows the results for synthesizing the VHDL of the proposed encoder

on a TSMC 65 nm technology [20], using a target frequency of 310 MHz. Synthesis

is carried out using Synopsys Design Compiler [21], with medium effort mapping

and automatic hold time violation correction. The total number of gates actually

presents the two-input NAND gate equivalent of the 65 nm TSMC technology.

One can determine the total number of MBs nfrm of a video frame that can be

processed by the encoder, for a given cycle budget per MB c in the loop clocked at fk
MHz with a target FPS of fp. For this purpose, nfrm can be calculated as shown in

Eq. (A.2). Using nfrm, the maximum image dimensions for given aspect ratio can be

determined. In Table C.4, we show the maximum sustainable frame dimensions at

16:9 for different encoder configurations. Here, fk¼ 150MHz at 25 FPS. As seen, the

encoder presented in this book can process the maximum dimensions of 4068�2288

while supporting all 16�16 modes at 25 FPS with no row down-sampling.

nfrm ¼ f k
f p � c

ðA:2Þ

Table C.2 Synthesis results for the encoding loop presented in this book. The total area (last row)

exceeds the sum of the components, because of the further glue logic among components (e.g.,

FIFOs)

Module MHz ALUTs Regs Memory [Kbit]

4�4 ROþHT 321.34 438 1604 0

Merged Tf 167.87 7901 3958 5.34

Edge Detector 385.8 283 525 0

Mode Pred. 171.14 1426 747 256

Reconstruct 475.74 460 969 0

Total ─ 10,583 8088 562

Table C.3 Synthesis with TSMC 65 nm at 310 MHz, Synopsys DC. Total gates denote the logic

equivalent of a two-input NAND gate

Module

4�4

ROþHT

Luma

Tf

Choma

Tf

Edge

Detector Reconstruct

Scheduler

(nv¼4)

Gates 5.83K 106 217.2 4.38 1.14 1.56

SRAM 0 5.34K 10.69K 0 0 0

Table C.4 Resolution supported in 16:9 aspect ratio by the H.264/AVC encoder presented here

for 25 FPS, operating at 150MHz

θ ¼ 1 θ ¼ 2 θ ¼ 3 θ ¼ 4

ds¼ 1 4894�2752 4564�2568 4294�2416 4068�2288

ds¼ 2 4894�2752 4564�2568 4416�2484 4280�2408

230 Appendices

References

1. Sullivan, G. J., Ohm, J., Han, W., &Wiegand, T. (2012). Overview of the high efficiency video

coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649–1668.
2. The WebM Project | VP9 Video Codec Summary. WebM, [Online]. Available: http://www.

webmproject.org/vp9/. Accessed 03 Oct 2015.

3. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T.,

& Wedi, T. (2004). Video coding with H.264/AVC: Tools, performance, and complexity.

IEEE Circuits and Systems Magazine, 4(1), 7–28.
4. Pourazad, B. M. T., Doutre, C., Azimi, M., & Nasiopoulos, P., (2012). HEVC: The new gold

standard for video compression: How does HEVC compare with H.264/AVC?. IEEE
Cosnumer Electornics Magazine, pp. 36–46.

5. Khan, M. U. K., Shafique, M., & Henkel, J. (2014). Software architecture of high efficiency

video coding for many-core systems with power-efficient workload balancing. In Design,
Automation and Test in Europe.

6. Shafique, M., Khan, M. U. K., & Henkel, J. (2014). Power efficient and workload balanced

tiling for parallelized high efficiency video coding. In International Conference on Image
Processing.

7. Compiler Intrinsics. Microsoft. [Online]. Available: http://msdn.microsoft.com/en-us/library/

26td21ds.aspx. Accessed 03 Oct 2015.

8. Siewart, S. (2009). Using Intel® streaming SIMD extension and Intel® integrated performance

primitives to accelerate algorithms. White paper, Intel.

9. Kim, W., Gupta, M., Wei, G.-Y., & Brooks, D. (2008). System level analysis of fast, per-core

DVFS using on-chip switching regulators. In International Symposium on High Performance
Computer Architecture (HPCA).

10. Altera. Nios II Process Reference Handbook. [Online]. Available: https://www.altera.com/

literature/hb/nios2/n2cpu_nii5v1.pdf. Accessed 08 June 2015.

11. Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 and ISO/IEC

14496–10:2005 (E) (MPEG-4 AVC), (2005).

12. IEEE 802.1 AV Bridging Task Group. IEEE, 20 March 2013. [Online]. Available: http://www.

ieee802.org/1/pages/avbridges.html. Accessed 04 Oct 2015.

13. Khan, M. U. K. H.264 VHDL, Chair for Embedded Systems (CES), KIT, June 2015. [Online].

Available: http://ces.itec.kit.edu/h264hdl/. Accessed 04 Oct 2015.

14. Kuo, H. C., Wu, L. C., Huang, H. T., Hsu, S. T., & Lin, Y. L. (2011). A low-power high-

performance H.264/AVC intra-frame encoder for 1080pHD video. IEEE Transactions on Very
Large Scale Integrated Systems (TVLSI), 19(6), 925–938.

15. Huang, Y.-W., Hsieh, B.-Y., Chen, T.-C., & Chen, L.-G. (2005). Analysis, fast algorithm, and

VLSI architec-ture design for H.264/AVC intra frame coder. IEEE Transactions on Circuits
and Systems for Video Technology, 15(3), 378–401.

16. Diniz, C., Zatt, B., Thiele, C., Susin, A., Bampi, S., Sampaio, F., Palomino, D., & Agostini,

L. (2011). A high throughput H.264/AVC intra-frame encod-ing loop architecture for

HD1080p. In International Symposium on Circuits and Systems.
17. Lin, Y.-K., Ku, C.-W., Li, D.-W., & Chang, T.-S. (2009). A 140-MHz 94 K Gates HD1080p

30-Frames/s intra-only profile H.264 encoder. IEEE Transactions on Circuits and Systems for
Video Technology, 19(3), 432–436.

18. Malvar, H., Hallapuro, A., Karczewicz, M., & Kerofsky, L. (2003). Low-complexity transform

and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for Video
Technology, 13(7), 598–603.

19. He, G., Zhou, D., Zhou, J., & Goto, S. (2010). Intra prediction architecture for H.264/AVC

QFHD encoder. In Picture Coding Symposium.
20. Taiwan Semiconductor Manufacturing Company Limited. TSMC, [Online]. Available: http://

www.tsmc.com/. Accessed 7 Oct 2015.

21. Design Compiler. Synopsys, [Online]. Available: http://www.synopsys.com/Tools/Implemen

tation/RTLSynthesis/DesignCompiler/. Accessed 7 Oct 2015.

Appendices 231

http://www.webmproject.org/vp9/
http://www.webmproject.org/vp9/
http://msdn.microsoft.com/en-us/library/26td21ds.aspx
http://msdn.microsoft.com/en-us/library/26td21ds.aspx
https://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.ieee802.org/1/pages/avbridges.html
http://www.ieee802.org/1/pages/avbridges.html
http://ces.itec.kit.edu/h264hdl/
http://www.tsmc.com/
http://www.tsmc.com/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/

Index

A
Accelerator, 5, 12, 14, 16, 18, 19, 42, 45, 53,

54, 56, 67, 70, 71, 112, 131, 132,

135, 138, 153, 157, 159, 203, 204

allocation, 132–141

arbiter, 134

clustered accelerator, 53

custom instruction (CI), 69, 131

decoupled accelerator, 54

distributed, 153–157

in-core accelerator, 53, 69

loosely coupled accelerator, 54, 68, 131

off-load, 12, 17, 19, 40, 133, 134, 136

tightly coupled accelerator, 53

Address generation units (AUGs), 27, 43, 70,

130, 159, 164, 167, 172, 191

Write AGU, 167, 172, 192

AMD, 4

Opteron, 4, 69, 177

Android, 4

Application configuration, 91, 92, 97, 104–112,

177–182, 202, 207

configuration matrix, 100, 105, 176, 182

Application-specific instruction-set processor

(ASIP), 53

Application-specific integrated circuits

(ASIC), 5, 6, 15, 53

Approximate computing, 205–206

Aspect ratio, 97

ATM machines, 2

Audio, 2, 170

Automotive, 43

B
Barrel shifter, 55, 147, 148, 204

Batch processing, 6

Battery, 6, 40

Bitrate, 7, 106, 154, 179, 181

Bitstream, 31, 38

Box plot, 86, 192

C
C#, 20, 192

C++, 20, 176

Camera, 6, 8, 19, 26, 129, 143, 159, 167,

172, 196

Capacitance, 41

Ces265, 20, 108, 176, 186

Cisco Visual Network Index, 3

Color space, 26

chrominance, 27, 129, 130, 140

luminance, 27, 84, 129, 130, 140, 149, 150

RGB, 27, 128

YCbCr, 27, 128, 129

Communication, 1, 2, 18, 37, 69, 90, 127, 128,

131, 132, 172

bandwidth, 7, 38, 40, 102, 128, 130

bridge controller, 132

encoding loop, 152

ethernet, 130, 144

FIFO, 27, 129, 140, 146, 158, 164

I/O, 17, 18, 67, 82, 127, 129, 139, 143,

144, 203

internet, 2

© Springer International Publishing AG 2018

M.U.K. Khan et al., Energy Efficient Embedded Video Processing Systems,
DOI 10.1007/978-3-319-61455-7

233

Communication (cont.)
multicast, 12, 19, 21, 38, 117, 128,

139–141, 144, 185, 203

packet detection, 130

parity, 39

TCP/UDP, 6

transmission energy, 2

turbo coding, 39

wireless, 6, 28

Compression, 2, 6–8

CODEC, 6

Daala, 7

distributed video coding (DVC), 8, 38–40

encoding loop, 139, 142–153, 204

hybrid DVC (HDVC), 8, 38–40

lossy compression, 31

predictive video coding, 7

Slepian-Wolf decoder, 39

Compute configuration, 91, 94–104, 116,

176, 201

Computer-aided design (CAD), 5

Computing, 2

Context switches, 71, 90, 139

Control, 49, 188

Cosmic, 175

D
3D, 8, 128, 207

Deinterlacer, 129

Denoising, 26, 47

Digital signal processor (DSP), 15

Discrete cosine transformation (DCT), 79, 143,

144, 146, 185, 204

AC coefficient, 143

butterfly, 146

DC coefficient, 143, 144, 148

Doping, 9

Downsample, 150

E
Education, 1

Electric field, 9

Encryption, 26

Entertainment, 1, 2, 38

gaming, 26

screen, 2

televisions, 2

YouTube, 4, 6, 10

Entropy, 31, 140

context-adaptive binary arithmetic coding

(CABAC), 141, 143

context adaptive variable length coder

(CAVLC), 140, 141, 146

entropy coder (EC), 140, 147

entropy coding (EC), 143, 145

Epoch, 102, 103, 106, 107, 118, 121, 122, 124,

134, 136, 180, 186. See also Group

of pictures (GOP)

Ethernet, 19

F
Feedback, 16, 102, 106, 117

Field-programmable gate arrays (FPGA), 5, 15,

19, 70, 128, 147, 156, 203

Nios-II, 20, 53, 69, 131, 203

Floating-point, 170

Frame drop, 28

Frequency, 4, 12, 18, 31, 42, 47, 50, 68, 70, 74,

79, 91, 93, 97, 99, 100, 102, 104,

113, 116, 118, 120, 121, 123, 133,

135–137, 156

clock-domain crossing, 129, 140

cycle, 72, 79, 99, 102, 114, 115

self-regulate, 92, 100–103

G
Google

google file system, 10

VP8, 7, 36

VP9, 7, 36

Gradient, 47, 78, 79, 107

edge extraction, 151

Sobel edge filter, 107

Graphics processing unit (GPU), 5, 15, 26, 37,

46, 56, 67, 113, 206

Group of pictures (GOP), 36, 39, 93

GUI, 20, 192

H
H.264/AVC, 7, 9, 18, 25, 29, 32–36, 38, 46, 48,

50, 89, 139, 184, 203

macroblock (MB), 32, 89, 140–142,

144, 149

reorder (RO), 144, 204

Hadamard transform (HT), 143–146,

149, 204

HT lookahead, 144, 145, 149, 204

Hardware replication, 139

Heterogeneous, 14, 15, 18, 46, 49, 69, 76, 89,

112–116, 128, 131, 132, 184, 185,

202, 206

234 Index

efficiency index, 113, 115, 184 (see also
Homogeneous)

master node, 131

secondary node, 131

thermal design power (TDP), 10

Heuristic, 19, 103, 203

bin-packing heuristic, 97, 182, 184

High efficiency video coding (HEVC), 7, 9, 18,

25, 29, 32–36, 38, 46, 47, 73, 89,

156, 181, 202

coding tree unit (CTU), 32, 36, 48, 76, 89,

108, 123, 137, 155, 156, 158, 159,

162, 163, 182

coding unit (CU), 32, 76, 156, 162, 163

H.265, 7

prediction unit (PU), 32, 76, 105,

109–112, 155

PU map (PUM), 110, 155

PU map above (PUMA), 110, 155

rate-distortion (RD), 77, 153, 202

transform unit (TU), 76

wavefront parallel processing (WPP), 74

x265, 177

Histogram, 74, 82, 83, 108, 155, 171, 192, 194

Homogeneous, 45, 89. See also Heterogeneous

I
IBM, 4

Instruction-level parallelism (ILP), 44

Instruction set architecture (ISA), 56

Intel, 4, 108

Core-i7, 4

Intel Atom E600C, 5

Larrabee, 4

Polaris, 4

single-chip cloud computer, 4

Xeon Phi, 4

Interlace, 144, 148, 152

International Telecommunication Union

(ITU), 7

Internet of things (IoT), 40

Interpolation, 26, 36, 181

Inter-prediction, 29, 34–36, 48. See also
Intra-prediction

Intra-prediction, 33, 34, 105, 107, 155. See also
Inter-prediction

closed loop, 153

open-loop, 153, 204

seed intra angular mode, 108

seed pixel, 108

ISO-Moving Picture Expert Group

(ISO-MPEG), 7

J
Job queue, 18

Joint Collaborative Team on Video Coding

(JCT-VC), 7, 32, 190

L
Latency, 18, 20, 47, 51, 52, 72, 82, 83,

140–153, 157, 158, 160, 163,

164, 204

Leakage, 9

Linear pulse code modulated (LPCM), 170

Linux, 69

Lookup table, 95

M
Many-core system, 6, 38, 67, 69, 72, 74, 92, 94,

118, 127, 133, 134, 203

soft-cores, 128, 131, 133, 138, 139, 203

Mapping, 16, 45, 92, 184

McPAT, 79, 137, 177

MediaBench, 175

Memory, 26, 42, 67, 188–197

adaptive energy management for on-chip

hybrid video memories (AMBER),

157, 158, 160, 163, 175, 189–191

bit line, 43

cache, 28, 42, 51, 55, 102

controller, 72, 102, 130

DDR3, 128, 130, 139

DRAM, 6, 52, 82, 159

external memory, 6, 26, 29, 35, 42, 46, 53,

80, 83, 128–130, 137, 139, 157, 160

frame memory, 27

hybrid memory, 52, 53, 69, 82, 83,

157–164, 189–191, 204

magnetoresistive random-access memory

(MRAM), 19, 52, 67, 72, 82,

189, 204

nonvolatile memory (NVM), 6, 13, 19, 52,

67, 70, 80, 82, 157, 189

on-chip memory, 6, 26, 29, 51, 80, 82

phase-change RAM (PRAM), 52

read master, 140, 159

register, 55, 72

ring buffer, 130, 167

scratchpad, 6, 15, 17, 134, 138

search window, 35, 36, 48, 81, 82, 159–161,

163, 190, 191, 204

sector, 159, 161, 162, 204

SRAM, 6, 10, 13, 43, 67, 71, 80, 82, 83, 85,

134, 138, 157, 159, 160, 163–173,

189, 191–198, 204

Index 235

Memory (cont.)
triple-buffering, 130

word line, 43

write master, 130, 159

Memory read transducers (MRT), 20, 85,

166, 191

Memory wall, 44

Memory write transducer (MWT), 20, 85, 164,

166, 169, 173, 191, 205

inverter switch, 166, 168, 169, 173

MiBench, 175

Mobile, 6, 39. See also Communication

ModelSim, 156, 191

Moore’s law, 41
Motion estimation (ME), 32, 51, 52, 79, 81, 82,

107, 158

EPZS, 35

level C+, 51

prefetching, 35, 190

read factor, 35, 128, 160

reference frame, 81, 128, 158–160

search window, 35, 48, 82, 159, 161, 163,

190, 204

super-resolution, 36, 47

TZ, 35, 81, 157

Multimedia, 4, 45, 201

Multiplexer (MUX), 141, 145–147, 166

Multiplier, 147, 148, 204

Multithreaded, 12, 14, 18, 20, 42, 49, 116–124,

175, 185, 202

OpenCL, 206

OpenMP, 70, 176

pthread, 176

Multiview video coding (MVC), 36, 207

N
Nanoscale, 1

Navigation, 1

Network on chips (NoC), 13

NMOS, 44

Nonlocal means filter (NLMF), 47, 75

O
Open-source, 48, 176, 192. See also Ces265

Operating system (OS), 70, 76, 119

Linux, 176, 186

Windows, 176

Optimization problem, 91, 113, 119, 136, 203

cost, 137

goal programming problem, 94, 116

Nelder-Mead technique, 136, 202

nonlinear, 136

penalty function, 137

Oracle, 4

P
Parallelization, 12, 13, 16, 17, 21, 36–38,

45–47, 70, 74, 89–94, 175–185,

201, 207

Parsec, 175

Peak signal-to-noise ratio (PSNR), 29, 36,

154, 202

Bjøntegaard delta bitrate (BD-Rate), 29, 98,

108, 111, 179, 182

Bjøntegaard delta peak signal-to-noise ratio

(BD-PSNR), 29, 98, 108, 111,

179, 182

PMOS, 43, 83

Portability, 14, 17, 72, 176

Power, 71, 114–116, 118, 120, 121

dynamic frequency scaling (DFS), 42

dynamic power, 41, 52, 70, 74, 81, 133,

160, 166, 169, 190

dynamic power management (DPM), 46,

49, 56

dynamic voltage frequency scaling

(DVFS), 42, 48, 69, 70, 94, 118, 182

leakage power, 157, 158, 160, 161,

163, 190

static power, 41

thermal design power (TDP), 42, 71, 116,

119, 122, 124, 187, 203

Power budgeting, 12, 14, 18, 46, 49, 57, 89,

116, 118–123, 187

Power wall, 1, 9, 10, 41, 73, 116, 132, 186

clock gating, 155, 156, 166

coolant, 41

dark silicon, 10, 15, 16, 21, 41, 48–50, 122,

132, 187, 201 (see also Reliability)

Dennard’s scaling, 9
dynamic thermal management

(DTM), 48, 50

power density, 9

power gating, 68, 155, 157, 161, 163

TDP, 14

task migration, 56

temperature, 10, 41, 48, 56, 133, 203 (see
also Reliability)

thermal design power (TDP), 12, 15, 16, 42

236 Index

Q
Quality of service (QoS), 2, 5, 7. See also

Service level agreement

Quantization, 31, 80, 103, 120, 143, 147, 185

quantization parameter (QP), 105, 147, 154,

156, 179

R
Rate-distortion (RD), 32, 47, 77

Real-time, 6, 9, 27, 139

Reconstructed frame, 31, 82, 143

Region of interest (ROI), 76

Reliability, 1

aging, 10, 12, 14, 17, 20, 21, 42–44, 54, 55,

83–86, 164–173, 191–197, 204

controller, 164, 168, 195

map, 171

bias temperature instability (BTI), 10

bit-flips, 10

bit rotation, 85, 172, 196

data adaptation rate, 168, 169, 172, 195

delay margin, 43

duty cycle, 43, 55, 68, 83, 166, 170, 171,

173, 192, 194, 198

field-programmable gate arrays (FPGA), 6

hot carrier injection (HCI), 44, 197

negative-bias temperature instability

(NBTI), 10, 12, 20, 42–44, 167, 197

nibble swap, 85, 172, 192

static noise margin (SNM), 10, 83, 171, 192

stressmap, 84, 192

triple modular redundancy (TMR), 207

Resample, 128, 129

Rescheduler, 140, 141, 203. See also Scheduler
Residue, 31, 38, 143, 144, 150, 151

Resolution, 7

4K UHD, 55, 80, 141

8K UHD, 32

1080p, 51

CIF, 51

clip, clipper, 128, 129

full-HD, 1, 128, 138, 142, 164

QCIF, 7, 51

Resource budgeting, 45, 71, 117–120,

185–188, 202. See also Power

budgeting

cluster, 117–122, 124, 186

misprediction, 120

offset, 120, 122

Robotics, 1

navigation, 2

robots, 2, 39

Running difference, 108, 151

S
Scalable video coding (SCV), 207

Scheduler, 140, 141, 203. See also Rescheduler
Scheduling, 37, 53, 54, 132–141, 147, 148

raster scan, 140, 142

round-robin, 69, 139, 140, 167, 203

Security, 1, 2, 38

Self-organizing map (SOM), 20, 162, 204

Service level agreement (SLA), 2, 3

Shift register, 27, 130, 166

Slice, 36, 47. See also Tile

Sniper simulator, 79, 137, 177

Spatial correlation, 5

Spatial neighborhood, 28, 33. See also Spatial

correlation

Streaming application, 6, 39, 123

Sum of absolute differences (SAD), 31, 35,

149, 150, 152, 206

Switching activity, 41, 197

Synchronization, 90, 131

Synopsys Design Compiler, 191

System identification, 72, 101

estimation model error, 101

model coefficients, 92, 101, 103, 177, 181

recursive least squares (RLS), 93, 97, 102,

105, 177, 181, 202

regression, 72, 102, 114, 123, 182

T
Temporal correlation, 5, 170

Temporal neighborhood, 28, 34. See also
Temporal correlation

Texture, 77, 83, 107, 112, 137, 150, 156

Threshold, 106, 110, 150, 151, 163, 169, 188

Throughput-per-watt, 3, 5, 11, 14, 15, 21, 28,

40, 46, 56, 69, 89, 107, 115, 184,

185, 201

FPS-per-watt, 179, 180

Tile, 37, 74, 94, 132, 179, 202. See also Slice

collocated tile, 37, 75

master tile, 97

non-uniform tiling, 96–99, 182–184, 202

retiling, 104, 181

secondary tile, 97

uniform tiling, 94–96, 118, 177–182, 202

Index 237

Tilera, 4

Time delay, 41

Time to market, 5

Toggling, 129, 169, 197

Transform, 31

V
Variance, 79, 98, 106, 109, 110, 137, 155, 156

Chan’s formula, 111

Knuth’s formula, 106 (see also Texture)

VHDL, 191

Video input pipeline (VIP), 27, 129, 139, 203

Video quality, 28, 32, 40, 51, 74, 89, 90, 95,

104, 106, 108, 179

VLIW, 15

Voltage, 41

W
Web browser, 4

Chrome, 4

WebRTC, 2

Workload balancing, 15, 16, 20, 37, 38, 45, 46,

68, 90–94, 112–116, 131, 175–185,

201

configuration, 94, 100, 106

distribution, 90, 112–114, 116, 131, 202,

206

variation, 45, 71, 75, 76, 91, 102, 104, 177

238 Index

	Contents
	Chapter 1: Introduction
	1.1 Multimedia Systems
	1.1.1 Multimedia Processing Architectures

	1.2 Fundamentals of Video Processing
	1.2.1 Video Compression

	1.3 Design Complexity of a Video System
	1.3.1 The Dark Silicon Problem
	1.3.2 SRAM Aging

	1.4 Video System Design Challenges
	1.4.1 Software Layer Challenges
	1.4.2 Hardware Layer Challenges

	1.5 Limitations of State-of-the-Art
	1.6 Design and Optimization Methods Discussed in This Book
	1.6.1 Software Layer Design
	1.6.1.1 Power-Efficient Resource Budgeting/Parallelization
	1.6.1.2 Power-Efficient Software Design

	1.6.2 Hardware Layer Design
	1.6.2.1 Power-Efficient Accelerator Design
	1.6.2.2 Shared Hardware Accelerator Scheduling
	1.6.2.3 Memory Subsystem Design

	1.6.3 Open-Source Tools

	1.7 Book Outline
	References

	Chapter 2: Background and Related Work
	2.1 Overview of Video Processing
	2.1.1 Intra- and Inter-frame Processing

	2.2 Overview of Video Coding
	2.2.1 H.264/AVC and HEVC
	2.2.1.1 Intra-prediction Modes
	2.2.1.2 HEVC Inter-prediction Modes

	2.2.2 Parallelization
	2.2.3 DVC and HDVC
	2.2.3.1 Distributed Video Coding
	2.2.3.2 Hybrid Distributed Video Coding

	2.3 Technological Challenges
	2.3.1 Dark Silicon or Power Wall
	2.3.2 NBTI-Induced SRAM Aging
	2.3.3 Other Challenges

	2.4 Related Work
	2.4.1 Video System Software
	2.4.1.1 Parallelization and Workload Balancing
	2.4.1.2 Power-Efficient Video Processing Algorithms
	2.4.1.3 Mitigating Dark Silicon at Software Level

	2.4.2 Video Systems Hardware
	2.4.2.1 Efficient Hardware Design and Architectures
	2.4.2.2 Memory Subsystem
	2.4.2.3 Accelerator Allocation/Scheduling
	2.4.2.4 SRAM Aging Rate Reduction Methods
	2.4.2.5 Encountering the Power Wall at Hardware Level

	2.5 Summary of Related Work
	References

	Chapter 3: Power-Efficient Video System Design
	3.1 System Overview
	3.1.1 Design Time Feature Support
	3.1.2 Runtime Features and System Dynamics

	3.2 Application and Motivational Analysis
	3.2.1 Video Application Parallelization
	3.2.2 Workload Variations
	3.2.3 HEVC Complexity Analysis
	3.2.3.1 Texture and PU Size Interdependence
	3.2.3.2 Edge Gradients and Intra Angular Modes

	3.3 Hardware Platform Analysis
	3.3.1 Heterogeneity Among Computing Nodes
	3.3.2 Memory Subsystem
	3.3.2.1 Analysis of Motion Estimation
	3.3.2.2 Hybrid Memories

	3.3.3 Analysis of Different Aging Balancing Circuits

	3.4 Summary
	References

	Chapter 4: Energy-Efficient Software Design for Video Systems
	4.1 Power-Efficient Application Parallelization
	4.1.1 Power-Efficient Workload Balancing

	4.2 Compute Configuration
	4.2.1 Uniform Tiling
	4.2.2 Non-uniform Tiling
	4.2.2.1 Evaluation of Non-uniform Tiling

	4.2.3 Frequency Estimation (fk,m)
	4.2.4 Maximum Workload Estimation (αk,m)
	4.2.5 Self-Regulated Frequency Model
	4.2.5.1 Frequency Estimation
	4.2.5.2 Runtime Frequency Estimation Model Adjustment
	4.2.5.3 Core Frequency Allocation per Epoch

	4.2.6 Retiling

	4.3 Application Configuration
	4.3.1 HEVC Application Configurations
	4.3.2 HEVC Configuration Tuning
	4.3.3 HEVC Parameter Mapping
	4.3.3.1 Intra Mode Estimation
	4.3.3.2 PU Depth and Size Selection

	4.4 Workload Balancing on Heterogeneous Systems
	4.4.1 System Model
	4.4.2 Load Balancing Algorithm

	4.5 Resource Budgeting for Mixed Multithreaded Workloads
	4.5.1 Hierarchical Resource Budgeting
	4.5.2 Intra-Cluster Power Budgeting pi,j
	4.5.3 Inter-Cluster Power Budgeting pi
	4.5.4 Selection of Cluster Size

	References

	Chapter 5: Energy-Efficient Hardware Design for Video Systems
	5.1 Custom Video Processing Architectures
	5.1.1 Memory Analysis and Video Input
	5.1.2 Video Preprocessing
	5.1.3 DDR Video Write Master
	5.1.4 Heterogeneous Computing Platform

	5.2 Accelerator Allocation and Scheduling
	5.2.1 Accelerator Sharing on Multi-/Many-Core
	5.2.1.1 System Modeling and Objectives
	5.2.1.2 Optimization Algorithm
	5.2.1.3 Evaluation of Accelerator Allocation

	5.2.2 Multicast Video Processing Hardware
	5.2.2.1 Video Block Scheduler and Rescheduler

	5.3 Efficient Hardware Accelerator Architectures
	5.3.1 Low Latency H.264/AVC Encoding Loop
	5.3.1.1 4x4 Reordering and HT Lookahead
	5.3.1.2 Transform and Quantization Module
	5.3.1.3 Prediction Generation and Mode Decision Module
	5.3.1.4 Edge-Based Prediction Prioritization
	5.3.1.5 Evaluating the H.264/AVC Architecture

	5.3.2 Distributed Hardware Accelerator Architecture
	5.3.2.1 Energy and Resource Evaluation

	5.4 Hybrid Video Memory Architectures
	5.4.1 AMBER Memory Hierarchy
	5.4.2 NVM Reference Memory Architecture
	5.4.3 Energy Management of NVM Reference Memories
	5.4.3.1 Memory Access-Based Self-Organizing Map

	5.4.4 System Computation Flow

	5.5 Energy-Efficient Anti-aging Circuits for SRAM
	5.5.1 Memory Write Transducer (MWT)
	5.5.2 Aging-Aware Address Generation Unit (AGU)
	5.5.3 Aging Controller
	5.5.4 Generalization and Applicability
	5.5.5 Sensitivity Analysis of SRAM Anti-aging Circuits

	References

	Chapter 6: Experimental Evaluations and Discussion
	6.1 Parallelization and Workload Balancing
	6.1.1 Software Architecture and Simulation Setup
	6.1.2 Compute and Application Configuration for Uniform Tiling
	6.1.3 Compute Configuration with Non-uniform Tiling
	6.1.4 Workload Balancing on Heterogeneous Platforms

	6.2 Resource Budgeting
	6.2.1 Experimental Setup
	6.2.2 Results and Discussion

	6.3 Memory Subsystem
	6.3.1 AMBER: Hybrid Memories
	6.3.2 SRAM Anti-aging Circuits
	6.3.2.1 Experimental Setup
	6.3.2.2 Results and Comparison
	6.3.2.3 HCI-Induced Aging

	References

	Chapter 7: Conclusion and Future Outlook
	7.1 Software-Level Techniques
	7.2 Hardware-Level Techniques
	7.3 Further Improvements
	7.3.1 Approximate Computing
	7.3.2 GPU-Based Acceleration
	7.3.3 Reliability and Workload Management
	7.3.4 Generalization

	References

	Appendices
	Appendix A: Pseudo-codes
	A.1 Compute and Application Configuration
	A.2 Compute Configuration
	A.3 PU Map (PUM) Generation for HEVC
	A.4 Workload Balancing on Heterogeneous Nodes
	A.5 Resource Budgeting for Concurrent Applications
	A.6 Cost Function for Hardware Offloading
	A.7 Edge Detection for 16x16 MB
	A.8 Motion Estimation with Hybrid Memory

	Appendix B: ces265 HEVC Video Encoder
	B.1 Introduction and Motivation
	B.2 Technical Description of ces265
	B.3 Implementation and Uses of ces265
	B.4 Implementation of Multi-core ces265 on FPGA
	B.5. Future Directions

	Appendix C: FPGA-Based H.264/AVC Prototype
	C.1. Simulation and Design Workflow
	C.2. FPGA Prototype
	C.3. H.264/AVC Prototype Evaluation

	References

	Index

