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Preface

Flood risk management is a process of decision making under uncertainty.
Traditional approaches to analysing floods assumed a guise of determinism
though concepts such as “design floods”, and dealt with uncertainties
implicitly and opaquely through freeboard allowances and other factors of
safety. A risk-based approach recognises that unpredictability is fundamen-
tal to decisions about how to deal with flooding. Uncertainties have to be
exposed, scrutinised and incorporated in decision making through rational
processes.

Such is the ideal of flood risk management. Yet when we review research
and practice in the various fields that relate to flood risk (hydrology,
hydraulics, geomorphology, structural reliability, human and economic
vulnerability and so on) we observe patchy, inconsistent and sometimes non-
existent analysis and reporting of uncertainty. Uncertainty analysis takes
time and requires expertise. Whilst some principles and methods are well
established, and well supported with computer-based tools, other aspects
of uncertainty and decision analysis are subject to rather fundamental and
sometimes bitter debate.

These are circumstances that can be disconcerting or exciting, depend-
ing on your perspective. The relative immaturity of methodology for dealing
with uncertainty in many areas of flood risk management is an obstacle to
the proper incorporation of uncertainties into decision making. Yet that
scarcity of methodology and data for analysis of uncertainty represents an
opportunity, for researchers in particular, but also for practitioners who are
motivated by the need to improve flood risk management decision making.

This book seeks to respond to the challenges and opportunities
presented by uncertainty analysis in flood risk management. We have sought
to be as comprehensive as possible, dealing with uncertainties in both
the probabilities and consequences of flooding, and addressing a range

v
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of flood risk management decisions, including planning, design and flood
forecasting. Chapters deal with fluvial, urban and tidal flooding.

Whilst in editing the book we have sought to promote a coherent
approach to the treatment of uncertainty, it is inevitable in a volume with a
total of 45 contributing authors that there will be a diversity of perspectives,
particularly in a field as contested as uncertainty analysis. We regard this
diversity of perspectives as a strength of the book. This is not a manual.
The reader will have to apply their judgment in assessing the applicability
to the situations that they encounter of the methods and approaches that
are described.

This book is an outcome of the UK Flood Risk Management Research
Consortium (FRMRC), a wide ranging program of research that started
in 2004 and ran, in two phases, to 2012. FRMRC involved more than
20 universities and research institutions and was jointly funded by the
Engineering and Physical Research Council (EPSRC) in collaboration
with the Environment Agency (EA), the Northern Ireland Rivers Agency
(DARDNI), United Kingdom Water Industry Research (UKWIR), the
Scottish Government (via SNIFFER), the Welsh Assembly Government
(WAG) and the Office of Public Works (OPW) in the Republic of Ireland.
We thank all of these organisations for the support they have provided
to flood risk management research. Further details of the program and its
outcomes can be found at http://www.floodrisk.org.uk/. The two editors
of the book were both involved in Research Package 3 of the first phase
of FRMRC, which was concerned with introducing risk and uncertainty
into the flood risk management process. In phase 2, the methodologies
developed were used in a variety of applications. That research is reflected
in the chapters in this book, but we have also tried to reflect a wider range of
international work in this area, by asking authors from different institutions
to review progress in their areas of expertise. We are grateful for the time
and effort of all the authors who have contributed to this extensive summary
of progress in the field. Finally, we would like to thank Lynn Patterson at
Newcastle University, Maya Kusajima at Kyoto University and Sue King
at the University of Oxford, who did important work in assembling and
formatting the manuscript.

Floods remain the most damaging natural hazard in terms of both
fatalities and economic impacts. Floods will continue to occur in the future.
Residual risk of flooding cannot be eliminated and the resources available
for flood risk management will always be finite. So it is important that
flood risk management decisions are based upon an appraisal of risks that
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is as far as possible accurate but is also accompanied by a well-informed
appraisal of the associated uncertainties and their potential impact upon
decision making. We hope that this book is a useful contribution towards
that end.

Keith Beven
Jim W. Hall
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CHAPTER 1

Flood Risk Management: Decision Making

Under Uncertainty

Jim W. Hall
Environmental Change Institute, University of Oxford, UK

1.1. Flood Risk Management

Flood risk management is a process of decision making under uncertainty.
It involves the purposeful choice of flood risk management plans, strategies
and measures that are intended to reduce flood risk. Hall et al. (2003b)
define flood risk management as “the process of data and information
gathering, risk assessment, appraisal of options, and making, implementing
and reviewing decisions to reduce, control, accept or redistribute risks of
flooding”. Schanze (2006) defines it as “the holistic and continuous societal
analysis, assessment and reduction of flood risk”. These definitions touch
upon several salient aspects of flood risk management:

• A reliance upon rational analysis of risks;
• A process that leads to acts intended to reduce flood risk;
• An acceptance that there is a variety of ways in which flood risk might

be reduced;
• A recognition that the decisions in flood risk management include societal

choices about the acceptability of risk and the desirability of different
options;

• A sense that the process is continuous, with decisions being periodically
reviewed and modified in order to achieve an acceptable level of risk in
light of changing circumstances and preferences.

Whilst neither of the definitions cited above explicitly mention uncer-
tainty, it is clear that the choices involved in flood risk management involve

3
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comparing different, and often rather complex options, in the context of
environmental, technical and human processes that are at best partially
understood, and according to mutable societal values and preferences.
Therefore, not only is flood risk management a problem of decision making
under uncertainty — it is a hard problem of decision making under
uncertainty! Indeed Hall et al. (2003b) argued that the complexity of the
process of modern flood risk management is one of the main motives for
replacing traditional informal approaches to dealing with uncertainty with
more rigorous, quantified methods. Of course this does not remove the need
for judgement, especially when decisions are value-laden and contested, but
it does help to eliminate the most egregious inconsistencies in the ways in
which uncertainty is handled.

1.2. The Transition to Flood Risk Management

Before proceeding to examine the problem of decision making under
uncertainty in more detail, it is worth providing some recent historic context
in an attempt to explain why and how flood risk management has come to
be the dominant paradigm in public policy and engineering practice dealing
with floods.

It has long been recognised that “risk” is a central consideration in
providing appropriate flood protection. In the UK, the Waverley Report
(Waverley Committee, 1954) following the devastating East Coast floods
of 1953 recommended that flood defence standards should reflect the land
use of the protected area, noting that urban areas could expect higher
levels of protection than sparsely populated rural areas. The notion of risk-
based optimisation of the costs and benefits of flood defence was laid out
in van Dantzig’s (1956) seminal analysis, which also followed soon after the
devastating 1953 floods, but on the other side of the North Sea. However,
the practical process of flood defence design, whilst containing probabilistic
content, was not fundamentally risk based, proceeding roughly as follows:

(1) Establishing the appropriate standard for the defence (e.g. the “100-
year return period” water level), based on land use of the area
protected, consistency and tradition.

(2) Estimating the design load, such as the water level with the specified
return period.

(3) Designing (i.e. determining the primary physical characteristics such as
crest level) to withstand that load.



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch01

Flood Risk Management: Decision Making Under Uncertainty 5

(4) Incorporating safety factors, such as a freeboard allowance, based on
individual circumstances.

Meanwhile, as flood warning systems were progressively introduced and
refined in the decades since the 1950s, the decision-making process was also
essentially deterministic, based on comparing water level forecasts (without
uncertainty) with levels that would trigger the dissemination of a warning.

Over the last two decades the limitations of such an approach in
delivering efficient and sustainable flood risk management have become
clear. Because informal methods for decision making and handling of
uncertainty have evolved in different ways in the various domains of flood
risk management (flood warning, flood defence design, land use planning,
urban drainage, etc.), they inhibit the integrated systems-based approach
that is now promoted (Sayers et al., 2002).

The systems approach is motivated by the recognition that there is
no single universally effective response to flood risk. Instead, portfolios
of flood risk management measures, be they “hard” structural measures
such as construction of dikes, or “soft” instruments such as land use
planning and flood warning systems, are assembled in order to reduce risk
in an efficient and sustainable way. The makeup of flood risk management
portfolios is matched to the functioning and needs of particular localities
and will be adapted as more knowledge is acquired and as systems change.
Implementing this approach involves the collective action of a range of
different government authorities and stakeholders from outside government.
This places an increasing emphasis upon effective communication and
mechanisms to reach consensus. In this portfolio-based approach, risk
estimates provide a common currency for comparing and choosing between
alternatives that might contribute to flood risk reduction (Dawson et al.,
2008). The criteria for assessment of flood risk management options are
seldom solely economic, but involve considerations of public safety, equity
and the environment.

The principles of flood risk calculation have become well established
(CUR/TAW, 1990; Goldman, 1997; USACE, 1996; Vrijling, 1993) and
are not repeated here. However, it is worth reviewing how the risk-based
approach addresses some of the main challenges of analysing flooding in
systems (Sayers et al., 2002):

(1) Loading is naturally variable: The loads such as rainfall and marine
waves and surges on flood defence systems are not forecastable beyond a
few days into the future. For design purposes, loads have to be described
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in statistical terms. Extreme loads that may never have been observed
in practice form the basis for design and risk assessment. Extrapolating
loads to these extremes is uncertain, particularly when based on limited
historical data and in a climate that may be changing.

(2) Load and response combinations are important: The severity
of flooding is usually a consequence of a combination of conditions.
So, for example, overtopping or breach of a sea defence is usually a
consequence of a combination of high waves and surge water levels,
rather than either of these two effects in isolation. In complex river
network systems, the timing of rainfall and runoff at different locations
in the catchment determines the severity of the flood peak. The severity
of any resultant flooding will typically be governed by the number of
defences breached or overtopped, as well as the vulnerability of the
assets and preparedness of the people within the floodplain. Therefore,
analysis of loads and system response is based on an understanding
of the probability of combinations of random loading conditions and
the system responses. Improved understanding of system behaviour
has illustrated the importance of increasingly large combinations of
variables.

(3) Spatial interactions are important: River and coastal systems
show a great deal of spatial inter-activity. It is well recognised that
construction of flood defences upstream may increase the water levels
downstream in a severe flood event. Similarly, construction of coastal
structures to trap sediment and improve the resistance of coasts
to erosion and breaching in one area may deplete beaches down-
drift (Dickson et al., 2007). These interactions can be represented in
system models, but engineering understanding of the relevant processes,
particularly sedimentary processes over long timescales, is limited. Even
where we have a detailed understanding of the physical processes, there
may be fundamental limits to our ability to predict behaviour due to
the chaotic nature of some of the relevant processes and loading.

(4) Complex and uncertain responses must be accommodated:
Models of catchment processes are known to be highly uncertain
due to the complexity of the processes involved and the scarcity of
measurements at appropriate scales (Beven, 2006). The response of
river, coast and man-made defences to loading is highly uncertain.
The direct and indirect impacts of flooding depend upon unpredictable
human behaviours for which relevant measurements are scarce (Egorova
et al., 2008).
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(5) Flooding systems are dynamic over a range of timescales:
Potential for long-term change in flooding systems, due to climate
and socio-economic changes, adds further uncertainty as one looks
to the future. Change may impact upon the loads on the system,
the response to loads or the potential impacts of flooding. It may
be due to natural environmental processes, for example, long-term
geomorphological processes, dynamics of ecosystems, or intentional and
unintentional human interventions in the flooding system. Social and
economic change will have a profound influence on the potential impacts
of flooding and the way they are valued.

Today, the term “flood risk” is used in a number of ways. A range
of meanings derived from either common language or the technical ter-
minology of risk analysis are in use (Sayers et al., 2002). These different
meanings often reflect the needs of particular decision-makers — there is
no unique specific definition for flood risk and any attempt to develop one
would inevitably satisfy only a proportion of risk managers. Indeed, this
very adaptability of the concept of risk is one of its strengths.

In all of these instances, however, risk is thought of as a combination
of the chance of a particular event, with the impact that the event would
cause if it occurred. Risk, therefore, has two components — the chance
(or probability) of an event occurring and the impact (or consequence)
associated with that event. Intuitively it may be assumed that risks
with the same numerical value have equal “significance” but this is often
not the case. In some cases the significance of a risk can be assessed
by multiplying the probability by the consequences. In other cases it is
important to understand the nature of the risk, distinguishing between
rare, catastrophic events and more frequent, less severe events. For example,
risk methods adopted to support the targeting and management of flood
warning represent risk in terms of probability and consequence, but low
probability/high consequence events are treated very differently to high
probability/low consequence events. Other factors include how society or
individuals perceive a risk (a perception that is influenced by many factors
including, for example, the availability and affordability of insurance), and
uncertainty in the assessment.

The benefit of a risk-based approach, and perhaps what above all
distinguishes it from other approaches to design or decision making, is
that it deals with outcomes. Thus in the context of flooding it enables
intervention options to be compared on the basis of the impact that they
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are expected to have on the frequency and severity of flooding in a specified
area. A risk-based approach therefore enables informed choices to be made
based on comparison of the expected outcomes and costs of alternative
courses of action. This is distinct from, for example, a standards-based
approach that focuses on the severity of the load that a particular flood
defence is expected to withstand.

Whilst the theory of risk-based flood management decision making
has been well established for many years, the transition in practice to an
explicitly risk-based approach to flood management has been stimulated by
severe floods, for example on the Oder (1997), Yangtze (1998), Elbe (2002),
in New Orleans (2005), on the Danube (2006) and in England (2007).
The severity of these events has underlined the relentless upward trend
in vulnerability to flooding worldwide (Munich Re Group, 2007), as well as
the recognition of potential impacts of climate change on flood frequency.
In the aftermath of the severe Rhine River flooding of 1993 and 1995, the
Dutch government adopted a flood control policy of “more room for rivers”
with an emphasis on establishing new storage and conveyance space. In the
UK the Foresight Future Flooding project (Evans et al., 2004) stimulated
the Government’s “Making Space for Water” policy (Defra, 2005). The
European Directive on the assessment and management of flood risk entered
into force on 26 November 2007 and is leading to the development of flood
risk maps and risk management plans across the whole of the European
Union. In the USA there has been corresponding progressive evolution of
floodplain management in the USA (Galloway, 2005; Interagency Flood-
plain Management Review Committee, 1994; Kahan, 2006). In summary,
integrated flood risk management is characterised by:

(1) A broad definition to the flooding system and scope of flooding impacts.
Arbitrary sub-division of the flooding system, for example due to geo-
graphical boundaries or administrative divisions, is avoided. Temporal
and spatial interactions in system performance are accounted for.

(2) Continuous management of flood system performance. Consideration
of one or a few “design events” is replaced by consideration of a
whole range of system behaviours and development of appropriate
management responses. There is a commitment to ongoing monitoring
and control of the system at time intervals appropriate to the system
dynamics.

(3) Tiered analysis and iterative decision making. Flood risk management
cascades from high-level policy decisions, based on outline analysis, to
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detailed designs and projects, which require more detailed analysis.
High-level policy and plans provide the framework and common
understanding within which more detailed actions are implemented.

(4) Consideration of the widest possible set of management actions that
may have some impact on flood risk. This includes measures to reduce
the probability of flooding and measures to reduce flood impact
(vulnerability).

(5) Development of integrated strategies that combine a range of flood
risk management actions and implement them in a programmed way.
Management strategies are developed following consideration of both
effectiveness, in terms of risk reduction, and cost. They will involve
co-ordinating the activities of more than one organisation and multiple
stakeholders.

(6) Evolving within current policy framework. Integrated flood risk man-
agement will remain an abstract concept unless it is placed within the
current policy and administrative context. This involves making best
use of existing policy instruments and actively identifying opportunities
to influence policy change. It may involve reacting opportunistically
to policy, administrative or regulatory reviews and changes that are
initiated for non-flood-related reasons.

Compelling as modern integrated flood risk management certainly
is, it brings with it considerable complexity. The risk-based approach
involves analysing the likely impacts of flooding under a very wide range
of conditions. As the systems under consideration expand in scope and
timescale, so too does the number of potentially uncertain variables.
There are many potential components to a portfolio of hard and soft
flood risk management measures and they can be implemented in many
different sequences through time, so the decision space is potentially huge.
Communicating risks and building the consensus necessary to engage
effectively with stakeholders in flood risk management requires special
aptitude for communication, facilitation and mediation.

1.3. Flood Risk Management Decisions

Analysis of uncertainty should start by identifying the decisions that an
uncertainty analysis is supposed to inform. Table 1.1 summarises the range
of flood risk management actions which flood risk analysis might seek
to inform. It summarises attributes of the information that is required
to inform choice. So, for example, national policy analysis requires only
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Table 1.1. Scope of flood risk management decisions (Hall et al., 2003b).

Decision

Precision of
information

required

Requirement
for dependable

information
Spatial scope
of decision

Tolerable
lead-time to

obtain
information

Timescale
over which

decision will
apply

Technical
aptitude of

decision makers

National
policy

Approximate Must reflect
year-on-year
changes in
performance

National Months From annual
budgets to policies
intended to apply
over decades

Politicians
advised by
civil servants

Catchment
and
shoreline
manage-
ment
planning

Approximate Must be able to
distinguish broad
strategic options

Regional,
catchment

Months to years Sets regional policies
intended to apply
over decades.
Roughly 5-yearly
review.

Technical
officers, but a
range of
non-technical
stakeholders

Development
control

Detailed Consistency is
expected

Local and
regional
development
plans

Months Decades. Decisions
very difficult to
reverse

Planners

Project
appraisal
and design

Very detailed Costly decisions that
are difficult to
reverse

Local, though
impacts may
be wider

Months to years Decades Engineering
designers

(Continued)
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Table 1.1. (Continued)

Decision

Precision of
information

required

Requirement
for dependable

information
Spatial scope
of decision

Tolerable
lead-time to

obtain
information

Timescale
over which

decision will
apply

Technical
aptitude of

decision makers

Maintenance Detailed Need to set
maintenance
priorities

Local. Regional
prioritisation.

Weeks Months to years Maintenance
engineers and
operatives

Operation Very detailed Can have a major
impact of flood
severity

Local Hours Hours Flood defence
engineers and
operatives

Flood warning Very detailed Missed warnings can
be disastrous.
False alarms
undesirable

Regional Hours Hours Flood warning
specialists

Risk commu-
nication

Detailed Inaccurate
information will
undermine trust

Local to
national

Hours
(evacuation)
to years
(property
purchase)

Days to years General public
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approximate analysis of risks, though at sufficient resolution to rank
alternative policies. One of the principles of risk-based decision making
is that the amount of data collection and analysis should be proportionate
to the importance of the decision (DETR et al., 2000). For flood warning
decisions, timeliness is of paramount importance. In selecting appropriate
analysis methods, the aptitude of decisions makers to make appropriate
use of the information provided is also a key consideration. The outputs
of analysis need to be customised to the needs and aptitudes of decision
makers.

In Table 1.1 there is an approximate ordering of decisions on the
basis of the spatial scale at which they operate. National policy decisions
and prioritisation of expenditure require broad-scale analysis of flood risks
and costs. This leads to a requirement for national-scale risk assessment
methodologies, that need to be based upon datasets that can realistically
be assembled on a national scale (Hall et al., 2003a). Topographical, land
use and occupancy data are typically available at quite high resolutions on
a national basis.

The logical scale for strategic planning is at the scale of river basins and
self-contained (from a sedimentary point of view) stretches of coast. At this
scale, there is need and opportunity to examine flood risk management
options in a location-specific way and to explore spatial combinations
and sequences of intervention. Decisions to be informed include land use
planning, flood defence strategy planning, prioritisation of maintenance and
planning of flood warning. The datasets available at river basin scale are
more manageable than at a national scale and permit the possibility of
more sophisticated treatment of the statistics of boundary conditions, the
process of runoff and flow and the behaviour of flood defence systems.

At a local scale, the primary decisions to be informed are associated
with scheme appraisal and optimisation. This therefore requires a capacity
to resolve in appropriate detail the components that are to be addressed in
design and optimisation.

Implicit in this hierarchy of risk analysis methods is recognition
that different levels of analysis will carry different degrees of associated
uncertainty. Similarly, different decisions have varying degrees of tolerance
of uncertainty. Policy analysis requires evidence to provide a ranking of
policy options, whilst engineering optimisation yields design variables that
are to be constructed to within a given tolerance. We now address more
explicitly how uncertainty is accommodated in flood risk management
decisions.
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1.4. Uncertainty in Flood Risk Management Decisions

Uncertainty has always been inherent in flood defence engineering. Tradi-
tionally it was treated implicitly through conservative design equations or
through rules of thumb, for example through the introduction of freeboard
allowances. The introduction of risk-based approaches (CUR/TAW, 1990;
Meadowcroft et al., 1997; USACE, 1996) enabled more rational treatment
of natural variability in loads and responses. It also paved the way for more
explicit treatment of uncertainty in the evidence that is used to support
risk-based decision making. Explicit uncertainty analysis provides a means
of analysing the robustness of flood risk management decisions as well as
the basis for targeting investment in data collection and analysis activities
that make the greatest possible contribution to reducing uncertainty.

Increasingly governments are requiring a careful consideration of uncer-
tainty in major planning and investment decisions. For example, USWRC
(1983) (quoted in Al-Futaisi and Stedinger, 1999) state that:

“Planners shall identify areas of risk and uncertainty in their analysis
and describe them clearly, so that decisions can be made with knowledge
of the degree of reliability of the estimated benefits and costs and of the
effectiveness of alternative plans.”

The UK Department of the Environment, Food and Rural Affairs (Defra)
guidance on flood and coastal defence repeatedly calls for proper consider-
ation of uncertainty in appraisal decisions. Guidance document FCDPAG1
(Defra, 2001) on good decision-making states: “Good decisions are most
likely to result from considering all economic, environmental and technical
issues for a full range of options, together with a proper consideration of risk
and uncertainty.” As Pate Cornell (1996) states, in the context of quantified
risk analysis: “Decision makers may need and/or ask for a full display of
the magnitudes and the sources of uncertainties before making an informed
judgment.”

However, the practice of uncertainty analysis and use of the results of
such analysis in decision making is not widespread, for several reasons (Pap-
penberger and Beven, 2006). Uncertainty analysis takes time, so adds to the
cost of risk analysis, options appraisal and design studies. The additional
requirements for analysis and computation are rapidly being (more than)
compensated for by the availability of enhanced computer processing power.
However, computer processing power is only part of the solution, which also
requires a step change in the approach to managing data and integrating
the software for uncertainty calculations (Harvey et al., 2008). The data
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necessary for quantified uncertainty analysis are not always available, so
new data collection campaigns (perhaps including time-consuming expert
elicitation exercises) may need to be commissioned. Project funders need
to be convinced of the merits of uncertainty analysis before they invest in
the time and data collection it requires.

It is not always clear how uncertainty analysis will contribute to
improved decision making. Much of the academic literature on hydrological
uncertainties (Liu and Gupta, 2007) has tended to focus upon forecasting
problems. Providing uncertainty bounds on a flood forecast may be
intriguing, but to be meaningful this needs to be set within the context
of a well defined decision problem (Frieser et al., 2005; Todini, 2008). In
the following section we review the principles of decision making under
uncertainty, in order to provide the context for the range of methods that
are subsequently addressed in this volume.

1.5. The Principles of Decision Making Under Uncertainty

In order to situate uncertainty analysis within the decision-making process,
we briefly review conventional decision theory. Conventionally there is a
set of decision options or “acts” {d1, . . . , dn}, and a set of future states of
nature {θ1, . . . , θm}, defined on some space Ω, that may materialise after
the choice. Depending on which state of nature in fact materialises, act di

will yield one of m possible outcomes yi,1, . . . , yi,m (e.g. “no flood” or a
flood of a given severity). The problem of valuing outcomes yi,1, . . . , yi,m is
a fundamental one, to which we will return, but for the time being suppose
that the net value (including both costs and benefits) associated with a
given decision outcome yi,j can be written as a scalar function v(yi,j), in
which case, the following scenarios were first identified by Knight (1921):

(i) Decision making under certainty : The state of nature after the decision
is known, i.e. m = 1. The decision maker chooses the option with the
highest value v(yi,1).

(ii) Decision making under risk : Only the probabilities p(θj) : j = 1, . . . ,m:∑m
j=1 p(θj) = 1 of occurrence of set of states of nature {θ1, . . . , θm}

are known. Provided the decision maker accepts a set of consistency
and continuity axioms (Savage, 1954) and is neutral in their attitude
to risk then he or she should choose the option that maximises:

m∑
j=1

v(yij)p(θj). (1.1)
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(iii) Decision making under uncertainty : There is no information about the
probabilities of states of nature θ1, . . . , θm. Under these circumstances
there are various decision strategies that are in some sense rational; for
example, maximin utility, minimax regret, Hurwicz α, and that based
on Laplace’s principle of insufficient reason (French, 1988).

The decision maker’s attitude to risk may be incorporated via a
utility function u(yi,j). This addresses the situation (ii) above, where
known payoffs are replaced by gambles, in which case it is well known
that some individuals are risk averse, whilst others are risk seeking.
When an individual is risk neutral then their utility function u(yi,j) is
precisely equal to their value function v(yi,1). Risk neutrality is often
advocated for government decisions (Ball and Floyd, 1998; USWRC, 1983),
though public safety decisions illustrate aversion to low probability/high
consequence events (Pasman and Vrijling, 2003). The extension from risk
neutrality to other utility functions is in principle straightforward (French,
1988), though in practice it requires elicitation of the decision maker’s
utilities.

Knight’s formalisation of the decision problem implicitly distinguishes
between two types of uncertainty. Case (ii), which Knight referred to
as “decision making under risk”, requires a probability distribution over
the future states of nature θ1, . . . , θm whilst Case (iii), “decision making
under uncertainty”, acknowledges that this probability distribution may
not be known. Empirical evidence, from Ellsberg and subsequent studies,
indicates an aversion to situations in which probabilities are not well known
(“ambiguity aversion”). The theory of imprecise probabilities (Walley, 1991)
provides a coherent treatment of the situation in which probabilities are not
precisely known.

In the context of flood risk management the acts d1, . . . , dn are flood
risk management options. They may be portfolios of options, i.e. different
combinations of some set of basic elements, and they may differ from one
another in the sequence, though time, in which they are implemented. The
decision problem may involve a continuous design variable, such as the
crest level of a dike, so the decision problem may be continuous rather than
discrete.

The future states θ1, . . . , θm are conventionally thought of as dealing at
least with the unpredictable loads in nature to which flooding systems are
subject, e.g. fluvial flows, water levels and wave heights. These will seldom
be discrete but will typically extend over a continuous multi-dimensional
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space and the state of the flooding system will be described by a vector of
k continuous variables x := (x1, . . . , xk):x ∈ (R+)k. In the case of decision-
making under risk the discrete probability distribution p(θj) : j = 1, . . . ,m:∑m

j=1 p(θj)=1 is replaced by a continuous distribution f(x) :
∫∞
0
f(x)dx= 1

and the summation in Equation (1.1) is replaced by an integral:
∫ ∞

0

v(yi(x))f(x)dx (1.2)

where we now have to explicitly acknowledge that yi is a function of x.
It is not uncommon to require a combination of discrete and continuous
variables in order to describe the state of a flooding system comprising
multiple components (see for example Dawson and Hall, 2006). Here, for
clarity, we will now deal with continuous variables only.

Thus far we have not been specific about the nature of the value
function v(yi,1). Valuation of flood risks, as well as the costs associated
with flood risk management options, naturally starts with consideration
of the economic losses due to flooding and the economic costs of imple-
menting flood risk management options. However, it is also clear that
flood risk management decision making is a multi-attribute problem,
which incorporates considerations of safety, equity and the environment
as well as the economic dimension (Egorova et al., 2008; Finkel, 1990).
Uncertainties associated with valuation enter the decision problem either
if an economic valuation approach is adopted for dealing with these non-
market risks and costs, or if an explicit multi-criteria approach is adopted.
In the former, these originate in the prices assigned to non-market goods
and services, whilst in the latter the uncertainties are associated with
the value functions used to transform (uncertain) predicted outcomes to
aggregate utilities. For the sake of clarity, we do not extend here the
presentation of the decision problem to the multi-attribute context, though
the approach for so-doing is well established (Keeney and Raiffa, 1993).
It should, however, be clear though that economics provides only one
perspective on flood risk management decisions, which inevitably raise a
host of valuation problems. One such problem is the valuation of time,
as typically the quantities in yi(x) will extend through time, so it is
necessary to establish a method of aggregating a stream of annual payments
or losses, yi,t(x): j = 0, . . . , T where t denotes the year in which the
cost or risk is incurred and T is the time horizon. Customarily this
is done by discounting to a “present value”, though it is well known
that discounting implies rather strong normative assumptions that do
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not necessarily apply in general (Adams, 1995; Cothern, 1996; Stern and
Fineberg, 1996).

With the caveats in place, let us proceed with a simplified version of
the flood risk management decision problem. Without loss of generality the
expression in Equation (1.2) may be separated into terms that represent
Present Value costs and Present Value risks. In any given year, t, the risk
ri,t is given by

ri,t =
∫ ∞

0

D(xt)f(xt)dxt (1.3)

where D(xt) is a damage function and we have introduced the subscript t
to signify that in general we expect x to change with time. The simplicity of
Equation (1.3) belies the potential complexity of the underlying calculations
in practice, which have been extensively explored elsewhere (Beard, 1997;
Dawson and Hall, 2006; Stedinger, 1997). In order to estimate flood risks
it is necessary to be able to:

(1) Estimate probability distributions, f(xt), for the sources of flooding,
i.e. loading variables including extreme rainfall, water levels, marine
surge tides and waves.

(2) Relate given values of loading variables to probabilities of flooding
at locations where flooding may cause damage. This may involve
hydrological and hydraulic modelling as well as analysis of the reliability
of flood defence structures and pumping stations, and the operation of
reservoirs. In urban areas flood risk analysis will involve analysis of the
effects on the sewer network and pumped systems as a potentially major
modifier of flooding behaviour, as well as analysing overland flows.

(3) Calculate the damage that is caused by floods of a given severity.

Steps (2) and (3) are together contained in D(xt). These three steps
typically involve sequences of models and analysis processes. For systems
with significant time-dependency at the sub-annual scale (for example
hydrological response of catchments), accurate simulation of flooding will
involve additional explicit treatment of the temporal dimension.

The Present Value risk PV(ri) is:

PV(ri) =
T∑

t=0

ri,t
(1 + q)t

(1.4)
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where q is the discount rate. The Present Value cost PV(ci) is defined
similarly.

In the case of purely economic decision making, commonplace decision
criteria are Net Present Value (NPV) and Benefit Cost Ratio (BCR), in
which case it is necessary to introduce the notion of a “base case” that
involves no investment. The Present Value risk corresponding to the base
case is r0 and expected to be unacceptably high, which is why investment
in risk reduction is being contemplated. The NVP is NPVi = PV(r0) −
PV (ri) − PV (ci) whilst the BCR is BCRi = (PV(r0) − PV (ri))/PV(ci).
If the preference ordering between risk reduction options is established on
the basis of NPV then if NPVi > NPVj > NPVl, the preference ordering
is denoted i � j � 1, and similarly for BCR.

The familiar theoretical framework reviewed above depends upon a
number of assumptions. Typically there are uncertainties in:

(1) the system characterisation in terms of k variables in xt;
(2) the specification of the joint probability density function f(xt), which

describes the variation in xt;
(3) the function D(xt) which embodies all of the modelling to relate given

values of variables xt to flood damage, as well as the problem of damage
valuation (including non-market goods and services);

(4) the cost ci; and
(5) the choice of discount rate q.

There may also be uncertainties due to numerical approximations in the
integration in Equation (1.4).

If the estimates of r0, ri, or ci are uncertain then the preference ordering
between options could be switched. Uncertainty is of relevance to decision
makers because of its potential influence on preference orderings. In the case
of continuously variable options (e.g. the crest height of a flood defence)
any variation in the risk or cost estimates will alter the choice of design
variable.

The joint probability density function f(xt) in Equations (1.2) and (1.3)
already represents random variability. In calculating risks we acknowledge
that quantities of relevance to decision making vary. In flood risk analysis
f(xt) is, as a minimum, used to represent random variation in loading
variables such as water levels and wave heights that vary naturally through
time. It is usually extended to include natural variability in space of
variables such as soil properties (National Research Council, 2000). Natural
variability (which is sometimes also referred to as “inherent uncertainty”
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or “aleatory uncertainty”) is thought of as a feature of nature and cannot
be reduced (Vrijling and van Gelder, 2006).

Epistemic uncertainties (knowledge uncertainties) require more careful
consideration. Epistemic uncertainties include model uncertainties and
statistical uncertainties due to observation error and small samples of
random phenomena. Model uncertainties mean that the function D(xt) is
uncertain. Statistical uncertainties mean that the function f(xt) may not be
an accurate description of the variation in xt (National Research Council,
1999). This may be due to limitations in the number of statistical samples,
ambiguity in the choice of potential statistical models, or inappropriate
statistical assumptions, such as statistical stationarity through time. We
have acknowledged that many of the quantities of interest in a flood risk
calculation will change in a systematic way over extended timescales, and
this extends to the statistical properties of f(xt), for example due to non-
stationary climate. The nature of that change will also be uncertain due to
epistemic uncertainties.

The contributions in this book present a range of ways of dealing
with these uncertainties. In understanding them however, it is important
to recognise the relationship between uncertainty analysis and decision-
making, in the sense that has been presented above. In order to promote
more comprehensive incorporation of uncertainty in flood risk manage-
ment decision-making processes, Hall and Solomatine (2008) presented a
framework for the process of incorporating uncertainty analysis in decision-
making. Whilst the methods, for example for estimation or propagation of
probabilities may differ, the logical structure is intended to be generically
applicable, though it may need to be adapted to the characteristics of
a specific situation. The approach is as far as possible quantified, by
using probability distributions where these can be credibly generated
and using intervals or sets of probability distributions where probability
distributions cannot be justified. Uncertainties are propagated through to
key decision outputs (e.g. metrics of net benefit in terms of risk reduction)
and results are presented as distributions and maps. As well as estimating
the amount of uncertainty associated with key decision variables, the
framework supports the decision-making process by identifying the most
influential sources of uncertainty, and the implications of uncertainty for
the preference ordering between options. Sensitivity analysis is used to
understand the contribution that different factors make to total uncer-
tainty. The effect of uncertainty on choices is analysed using robustness
analysis.
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Figure 1.1. Uncertainty analysis framework (Hall and Solomatine, 2008).

1.6. Prospects for Uncertainty Analysis in Flood Risk
Management Decisions

The methods of uncertainty analysis are becoming progressively embedded
in flood risk management decision making, but the process of doing so
is only partially complete. Some of the reasons for incomplete take-up of
uncertainty analysis are discussed above and in Pappenberger and Beven
(2006). The aim of this book is to promote further the uptake of uncertainty
analysis methods. If this is successful, what might be the characteristics
of improved flood risk management decision-making processes in future?
Sluijs et al. (2003) suggest that decision making should be structured so
that it facilitates awareness, identification, and incorporation of uncertainty.
That said, Sluijs and colleagues acknowledge that uncertainty analysis
does not necessarily reduce uncertainties. They argue that it provides the
means to assess the potential consequences of uncertainty and avoid pitfalls
associated with ignoring or ignorance of uncertainties. Moreover, they go on
to argue that uncertainty analysis should facilitate the design of effective
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strategies for communicating uncertainty. In support of these aims they
provide definitions, guidelines and tools for uncertainty analysis. The need
for a similar set of guidelines and procedures in the context of flood risk
management was argued for by Faulkner et al. (2007).

In order to achieve these goals there will need to be a more widespread
recognition of the importance of uncertainty analysis in flood risk man-
agement. Analysts should be expected to provide a full representation
of uncertainty associated with the evidence upon which decisions will be
based. To enable this, the data necessary to analyse uncertainties will need
to be made more widely available, in a format that can be conveniently
assimilated into uncertainty analysis. Bayesian analysis provides a rational
approach to valuing information, which could and should be used more
widely to inform data acquisition strategies. The software systems that
are used to support flood risk analysis, for example in hydrodynamic
simulations, need to be restructured so that uncertainty analysis can be
applied more routinely and transparently (Harvey et al., 2008). The results
of these analyses will be propagated directly through to decisions, so that
the implications of uncertainty for decision making are explicit.

The attributes of good practice in uncertainty analysis are now
recognisable in an increasing number of flood risk management decisions.
There is much work that needs to be done in terms of promoting good
practice. The aim of the remaining chapters of this book is to contribute
to that effort.
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CHAPTER 2

Use of Models in Flood Risk Management

Keith Beven
Lancaster Environment Centre, Lancaster University, UK

2.1. A Brief History of Models in Flood Risk Management

The history of models for flood risk assessment and management is long. It
begins with conceptual models of flood runoff generation and routing in the
pre-computer age, moving onto current computer power, which allows for
the implementation of detailed distributed models of both hydrological and
hydraulic processes built on concepts from “physical-based” equations with
coupling to sediment transport and to pollutant transport among other
processes (Beven, 2012). In the UK, one of the very earliest books on
hydrological analysis was Flood Estimation and Control by B.D. Richards
(1944) which included a method for developing predictions of the flood
hydrograph from a catchment area, based on a time–area histogram concept
for a catchment scale transfer function. In the US, this approach had
already been used by Ross (1921), Zoch (1934) and Clark (1945), while
dynamic flood routing had been instigated as a result of work on the
Muskingum catchment in Ohio by McCarthy (1938; see Cunge, 1969).
Further impetus was given to this method of predicting catchment responses
by the Horton (1933) concepts of runoff generation and the generalisation of
the time–area histogram to the unitgraph or unit hydrograph by Sherman
(1932). In fact, these developments had been anticipated in France by
Imbeaux who presented a form of the catchment transfer function and
reservoir routing equations on the Durance in 1892.a

aThanks to Charles Obled for rediscovering this.
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In this pre-computer era, the possibility of making local predictions
of flood runoff generation and inundation was limited by the number
of calculations that could be performed by people (the computers of
Lewis Fry Richardson’s first experiments in weather forecasting in 1910
(Lynch, 2006)). Almost as soon as digital computers were more widely
available, however, more detailed hydrological and hydraulic models
were developed. Stoker (1957) produced the first computer solution of the
Saint Venant equations and by the 1970s there were already books available
discussing how best to implement the approximate numerical algorithms
required (e.g. Abbott, 1979). In hydrology, a lumped catchment model
(the Stanford Watershed model) was programmed by Norman Crawford
under the supervision of Ray Linsley (Linsley and Crawford, 1960), while
Freeze and Harlan (1969) set out the set of coupled equations needed to
define the first distributed hydrological model. This was later implemented
using finite difference methods by Freeze (1972) and finite element methods
by Beven (1977).

There are now many distributed flood routing models available in one
and two dimensions; even 3D computational fluid dynamics codes have been
used for some specific local problems. There are also many distributed
hydrological models based on the Freeze and Harlan (1969) blueprint,
but implemented in different ways or with different simplifications. There
are a number of attractions to moving towards such higher dimensional
models. They are based on equations that have (more or less) physical
justification; they allow a more detailed spatial representation of the
processes, parameters and predicted variables; they allow the coupling
of different types of predictions through the prediction of velocity fields;
they allow the use of local measurements of parameters, calibration and
validation variables; and they have a spatial element so that they can link
more easily to GIS databases and remote sensing data.

However, there are also disadvantages. Higher dimensional models take
more computer time (this is important if we are interested in estimating
the uncertainty associated with the models); they require the definition of
initial and boundary conditions in space and time at a level of detail for
which information is not available even in research studies; they require the
definition of a very large number of parameter values (usually multiple
parameters for every spatial element in the spatial discretisation); and
they may still be subject to numerical problems, both numerical diffusion
and, in some cases, numerical stability problems. Finally, there is no
guarantee that the “physically-based” equations on which many of these
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models are based are an adequate representation of the complex flow
processes we find in reality. This is particularly true of subsurface runoff
generation but there are also limitations in the representation of surface
flow and transport processes (see, for example, Beven, 1989, 2001, 2002,
2006).

All of these disadvantages can be interpreted as sources of uncertainty
in the modelling process. These may be summarised as uncertainties due to:

• conceptual model error and numerical algorithm error (which combined
make up a model structural error),

• parameter estimation error,
• commensurability errors (when the values of parameters and variables

in a model refer to different quantities than observable variables of the
same name),

• initial condition errors, and
• boundary condition errors of all types.

A final source of uncertainty is that associated with the measurements
of any observations that are used to calibrate the model, or verify the
predictions. We should allow for such errors in calibration and validation
rather than blithely assuming that all the observations available are perfect
measurements — they are not. Such observations can also be subject to
commensurability and interpolation errors due to scale differences between
the model variables and what is actually observable.

Successful application of a model is, in great part, a process of suc-
cessfully controlling these sources of uncertainty through careful selection
of model structures and parameter values and careful treatment of the
data that can be used to estimate initial and boundary conditions. It is
unlikely, however, in any real applications that these uncertainties can
be eliminated completely. Indeed, when a distributed model might require
the specification of many more parameter values and boundary condition
values than there are actually observations available for calibration and
validation, it is often the case that additional assumptions are required to
avoid a poorly posed calibration problem (e.g. by assuming that channel
and floodplain roughness does not vary in space, or hydraulic conductivities
are constant for a given soil type). These assumptions introduce constraints
that mean that, even if the model structure is a perfect representation of
the processes, the model predictions might not match observed responses
locally.
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2.2. How to Use Flood Risk Management Models

The issues of uncertainty in the use of models in flood risk management
have been extensively discussed in the literature and recur throughout
this volume. There are, however, a number of generic points that can
be abstracted from this discussion pertinent to the use of models in this
context.

(1) Since models are known to be approximate representations of the sys-
tem, which are calibrated using uncertain observations, and are driven
using uncertain input data, uncertainty is generic in the modelling
process (e.g. Pappenberger and Beven, 2006). Model studies in flood
risk management should therefore be associated with an analysis of
uncertainty that is proportionate to the importance of the decision
being made.

(2) The assessment of uncertainties is a topic of continued debate (e.g.
Beven, 2009; Hall, 2003). This is, in part, because not all uncertainties
in flood risk management can be treated statistically. There are
important sources of uncertainty arising from a lack of knowledge (also
called epistemic uncertainties) as well a random statistical variability
(also called aleatory uncertainties).

(3) It is difficult to characterise epistemic uncertainties, precisely because
they arise from a lack of knowledge (about process representations,
effective parameter values, input data or calibration data such as flood
discharge estimates). Thus, it is difficult to be entirely objective about
the assessment of uncertainties; some subjective decisions will always
be required.

(4) Sources of uncertainty will interact in both model calibration using
observations from past events and prediction of future events (e.g.
Figure 2.1). Such interactions may be very difficult to specify a priori
without making some strong assumptions.

(5) However, in making predictions, some assumptions about the nature of
the uncertainties affecting the predictions need to be made. This might
range from an assessment based on past experience, to a full Monte
Carlo sampling exercise; this is dependent on the application.

(6) There are risk-based decision making frameworks available (as out-
lined, for example, in Chapter 1) that can make use of uncertain
model predictions. There is, however, a communication problem for
users understanding the nature of uncertain model predictions and
the assumptions on which they are based (there is a need for a
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Figure 2.1. Interactions amongst sources of uncertain in flood risk mapping.

translationary discourse about estimated uncertainties expressed in
Faulkner et al., 2007).

Table 2.1 illustrates some of these issues in terms of the potential
sources of aleatory and epistemic uncertainties in the problem of flood risk
mapping. This is an example where a lack of knowledge can be important in
making predictions and some uncertainty in mapping the flood risk might be
important in planning and other decisions. This will not always be the case;
some sources of uncertainty may not affect model simulations significantly
and, where the floodplain is bounded, may not have a significant effect on
the extent of inundation (though it might still have an effect on the depths
of inundation and consequent damages). An example of the prediction of
uncertain flood risk maps, conditioning on historical data, is provided by
Leedal et al. (2010) using the GLUE methodology (see Chapter 6 in this
volume for the case of Carlisle in England, where data on inundation were
available from surveys after a major flood in January 2005).

The Carlisle event provides an example of the interaction between
different sources of uncertainty. The initial estimate of the peak discharge
of the January 2005 event was of the order of 900m3s−1. The simplified
2D hydraulic model used to predict the flood inundation (LISFLOOD)
was calibrated using this value as the input discharge and produced a
reasonable fit to the maximum inundation data surveyed after the event
from wrack and water level marks (see, Horritt et al., 2010 and Neal et al.,
2009 for calibration of the 2D SFV model to the same data set). The
peak estimate was a significant extrapolation of the available rating curve,
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Table 2.1. Sources of uncertainty with random (aleatory) and knowledge (epistemic)
errors in the case of flood risk mapping (after Beven and Alcock, 2011).

Source of
uncertainty Aleatory errors Epistemic nature

Design flood
magnitude

What is the range of
sampling variability
around underlying
distribution of flood
magnitudes?

Are floods generated by different
types of events?

What frequency distribution
should be used for each
type of event?

Are frequencies stationary?
Will frequencies be

stationary in the future?

Conveyance
estimates

What is the random
sampling variability
around estimates of
conveyance at different
flood levels?

Is channel geometry stationary
over time?

Do conveyance estimates
properly represent changes
in momentum losses and
scour at high discharges?

Are there seasonal changes
in vegetation in the
channel and on the
floodplain?

Is floodplain infrastructure
(walls, hedges, culverts
etc.) taken into account?

Rating curve
interpolation and
extrapolation

What is the standard error
of estimating the
magnitude of discharge
from measured levels?

Is channel geometry stationary
over time?

What is the estimation error
in extrapolating the rating
curve beyond the range of
measured discharges?

Does extrapolation properly
represent changes in
momentum losses and
scour at high discharges?

Floodplain
topography

What is the standard error
of survey errors for
floodplain topography?

Are there epistemic uncertainties
in correction algorithms in
preparing a digital terrain
map?

Model structure How far do results depend on
choice of model structure,
dimensions, discretisation, and
numerical approximations?

(Continued)
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Table 2.1. (Continued)

Source of
uncertainty Aleatory errors Epistemic nature

Floodplain
infrastructure

What is the random error
in specifying positions of
elements, including
elevations of flood
defences?

How should storage
characteristics of buildings, tall
vegetation, walls and hedges be
treated in geometry?

Are there missing features in the
terrain map (e.g. walls,
culverts, etc.)?

Observations used
in model
calibration/
conditioning

What is the standard error
of estimating a flood
level given post-event
survey of wrack marks,
or gauging station
observations?

Is there some potential for the
misinterpretation of wrack
marks surveyed after past
events?

Are there any systematic survey
errors?

Future catchment
change

— What process representations for
effects of land management
should be used?

What future scenarios of future
change should be used?

Are some scenarios more likely
than others?

Future climate
change

What is the variability in
outcomes due to random
weather generator
realisations?

What process representations in
weather generators should be
used?

What potential scenarios of
future change should be used?

Are some scenarios more likely?

Fragility of
defences

What are the probabilities
of failure under different
boundary conditions?

What are the expectations about
failure modes and parameters?

Consequences/
vulnerability

What is the standard error
of estimation for losses in
different loss classes?

What knowledge about
uncertainty in loss classes and
vulnerability is available?

however, so the Environment Agency also commissioned a review of the
rating and discharge estimates. This included some hydraulic modelling of
the gauging site. The peak estimate was revised to more than 1500m3s−1.
Refitting the LISFLOOD model also gave a good fit to the survey data,
albeit with somewhat different effective roughness coefficients. It has been
shown before how calibration of hydraulic models in this way can lead to
effective parameter values that might be dependent on the magnitude of the
event simulated (e.g. Romanowicz and Beven, 2003). While this might be
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in part a result of changing friction losses at different depths of inundation,
it might also be the result of the interaction of many other sources of
uncertainty in applying models of this type.

2.3. Guidelines for Good Practice in Using Models

The many sources identified in Table 2.1 are an indication of the complexity
of the problem of communicating the assumptions made in an analysis
(and, hence, what the significance of the resulting uncertain outputs to a
given user is). This problem is intrinsic to the use of models in flood risk
management and, as part of the UK Flood Risk Management Research
Consortium, a number of initiatives have been taken to facilitate this
type of communication, including workshops and conference sessions, the
development of software systems (e.g. Reframe, see Harvey et al., 2008)
and the development of guidelines for good practice in the area of flood
risk mapping (Beven et al., 2011).

Such guidelines for good practice can serve as a repository for
experience in dealing with different types of uncertainty in different types
of application. There are many existing guidelines or standards used for
assessing flood risk and resulting planning decisions in different countries.
The EU Floods Directive is itself a framework for setting standards in
assessing flood risk. Few such standards to date have, however, taken any
account of the different sources of uncertainty in assessing the predictions
of models for different flood risk management purposes.

One way of trying to achieve this is to define the guidelines for good
practice as a set of decisions to be agreed between the modeller and the user.
The decisions will cover uncertainties in data and modelling, together with
choices for the presentation and visualisation of the results. The response
to those decisions can be agreed and recorded as part of the audit trail for
a particular application. Such a decision structure provides a framework
for communication and allows for the evolution of practice over time, while
also making the assumptions of any analysis subject to explicit definition
prior to the analysis, and therefore open to later evaluation and review.
Figure 2.2 provides a summary of the decision trees involved in an analysis
of uncertainty in flood risk maps. It follows the source–pathway–receptor
structure commonly employed in this type of application. Feed back arrows
in the figure indicate where decisions might be revisited when new data
become available.
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Figure 2.2. High-level decision tree for assumptions in an analysis of uncertainty in
assessing risk of flood inundation (after Beven et al., 2011).

2.4. Conclusions

The use of models in flood risk management involves multiple sources of
uncertainty that involve knowledge as well as statistical errors. Different
sources of uncertainty will also interact in complex ways, both in model
calibration and prediction. Thus, characterising the impact of different
sources of uncertainty is difficult and will inevitably involve some subjective
judgments. It is therefore important to convey the assumptions made about
uncertainty in any analysis to users of the outputs of model predictions.
One way of doing so is to provide guidelines for good practice in different
areas of flood risk management that provide a framework for decisions
about different sources of uncertainty within a source–pathway–receptor
structure. Ideally, users and practitioners would have the opportunity to
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agree the decisions at an early stage in a study, even if the decision is
to neglect all sources of uncertainty, perhaps because to do more would
not be proportionate to the nature of the problem under study. In many
cases, an analysis of uncertainty will be justified, particularly in the case
of decisions about valuable infrastructure on the floodplain. The recording
of the decisions made provides an audit trail for the application, with the
possibility for later evaluation and review of the assumptions made.
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CHAPTER 3

A Framework for Uncertainty Analysis

Keith Beven
Lancaster Environment Centre, Lancaster University, UK

3.1. Uncertainty about Uncertainty Estimation in Flood
Risk Management

There are two primary reasons for using models in flood risk management.
The first is to show that we understand how the processes affecting flood
generation and impacts work. Uncertainty is an issue in this usage of
models, which can be considered as hypotheses of how the system works,
since if it is ignored we might accept poor models/hypotheses falsely
(Type I error) or reject good models/hypotheses falsely (Type II error).
We would like to avoid both types of error (see Beven, 2010, 2012). The
second usage is to help in practical decision making for real applications in
flood risk management. Uncertainty in this case is important, in that if it
is ignored then a poor decision might be taken, but the decision context
may determine how much effort needs to be put into the assessment of
uncertainties. This volume primarily concentrates on the second question,
but clearly this is not independent of the first in that we would like
to think that the models we use to make predictions to inform decision
making are actually good representations of the system that is being
predicted.

There is, however, a basic problem in estimating the uncertainty
associated with the predictions of models for real-world problems: there
is no general agreement on what methods should be used to estimate that
uncertainty. This is because there are too many sources of uncertainty in
the modelling process that cannot easily be disaggregated when we can only

39
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evaluate model predictions against a limited number of observations. Thus,
it is necessary to make assumptions about how to represent uncertainty, and
there are sufficient degrees of freedom in doing so that different methods
based on different types of assumptions (including purely qualitative
evaluations) cannot easily be verified or rejected. They will, however,
produce different results. It is therefore necessary, in applying any method
of uncertainty analysis, to be explicit about the assumptions that are being
made so that they will be clear to any user of the results.

Some statisticians have argued that the only way to represent uncer-
tainty is in terms of formal probability theory (e.g. O’Hagan and Oakley,
2004). Some practitioners in hydrology and hydraulics have argued that
formal statistical methods are advantageous in presenting results to users
(Hall et al., 2007; Todini and Mantovan, 2007). As we will see below,
however, in real applications it can be difficult to justify or verify the
strong assumptions necessary to implement formal probabilistic methods
(Andréassian et al., 2007; Beven, 2006). A particular issue arises in that
probabilistic estimates of uncertainty are usually made on the basis of an
assumption that the model is correct and that all errors considered can be
considered to be probabilistic (aleatory) in nature. Uncertainty estimates
are then conditional on this assumption. In flood risk management this is a
difficult assumption to justify in that model structural error often makes it
difficult to make an unequivocal choice of one model over another. Model
structural error is a form of non-probabilistic (epistemic) error that is not
easily represented in terms of probability distributions. Knight (1921) made
this distinction between probabilistic uncertainty and what he called “true”
(epistemic) uncertainty in terms of risks that insurers would be prepared
to offer insurance for, and those that they would not. It is much more
difficult to make assumptions about epistemic uncertainties, particularly in
the types of nonlinear models that arise in flood risk management. While
this has not stopped the insurance industry making judgements about
the risks they face in setting premiums against flood damages based on
probabilistic models, the current generation of models are undoubtedly
subject to non-probabilistic errors that might require the use of alternative
methods. This has resulted in alternative sets of assumptions leading to
alternative uncertainty estimation methodologies that have been developed
and used, including the Generalised Likelihood Uncertainty Estimation
(GLUE) methodology; fuzzy set (possibilistic) methods; info-gap methods;
and the more qualitative NUSAP method. Over the course of this volume,
all of these methods will be used for different types of applications.



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch03

A Framework for Uncertainty Analysis 41

There is also, however, a certain commonality to all of these approaches
that allows us to talk of a simple framework for uncertainty analysis.
Different methods may be described in terms of a number of common
decisions as follows:

(1) Decide on what model (or models) will be considered in the analysis.
(2) Decide on what prior knowledge is available about uncertainty in

parameters and input variables and run a forward uncertain analysis
based on this prior information.

(3) Decide on how the model results will be compared with observables
(taking proper account of uncertainty in the observations) and form an
updated posterior estimate of uncertainty in models, parameter values
and other variables.

Each decision implies making specific assumptions. This is what leads to
the different methodologies. All the wide range of applications and methods
used in this volume fit within this simple framework, even though they
might make quite different assumptions in these decisions. It is therefore
very important that the assumptions are made explicit at each stage so that
they will be transparent to the decision maker and can be openly debated
and changed as necessary.

Step (3) cannot, of course, be used if there are no observables (though
it might still be possible to carry out some model evaluation process, for
example by invoking the opinions of experts about whether a model is
making adequate predictions or not). This is often the case in flood risk
management. Data from past events is often very limited if only because
floods, by definition, rarely occur. Data on particular features of floods,
such as embankment failures, damming and failure of bridges, effects of
debris flows and land slips etc. are also limited, and such factors are
often ignored (even in an uncertainty analysis) in applications of models
to specific locations. We might expect, however, that over time more data
will become available and it will be possible to use the third step in this
framework as part of a learning process about how different places might
be represented within a flood risk management strategy (see the discussion
of “models of everywhere” in Beven, 2007).

Within this framework we can distinguish three different types of
applications. There are those for which no observables are available so
that only a forward uncertainty analysis based on prior assumptions about
sources of uncertainty is possible. Secondly, there are applications for
which only historical data are available, allowing some conditioning of
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the predictions and their associated uncertainties (simulation). Finally,
there are applications for which observations that can be used for con-
ditioning are available in real time (forecasting/data assimilation). These
different techniques allow different types of uncertainty methodologies to
be used.

3.2. Sources of Uncertainty

Flood risk management problems involve both aleatory and epistemic
uncertainties (and, in many real applications, epistemic uncertainties that
are treated as aleatory uncertainties for the sake of convenience). How
these different sources of uncertainty should be taken into account in
flood risk assessment depends on the choices and assumptions made in the
three stages of the simplified framework for uncertainty presented above.
However, it is important in any problem to have an appreciation of the
potential sources of uncertainty.

Decisions 1 (the choice of model or models) controls what other sources
of uncertainty need to be considered but this choice itself raises the issue of
model structural uncertainty. This will not be random; the very nature
of the model calculations will introduce non-stationary bias and structure
into the residuals. This can easily be demonstrated in hypothetical cases
where the inputs are known perfectly by using one feasible model structure
to reproduce the results of a different but similarly feasible model structure.
There is also the possibility in all real applications, however, that all the
available model structures will suffer from epistemic uncertainties in their
representation of the system. As a result of the lack of full understanding
of how the system works, there is the possibility of making what have been
called Type III errors. Type III errors are those where there is neglect of the
processes important in controlling the response (e.g. neglect of floodplain
infrastructure in predicting flood depths because of a lack of available
information). Even models that have an accepted theoretical basis can
be subject to this type of epistemic uncertainty (for example, the use of
the simple 1D advection–dispersion equation to represent solute transport
in rivers that has a good theoretical basis but usually produces the wrong
type of response, see Beven, 2002).

In Decisions 2 (prior knowledge about parameters and variables
required to make a forward uncertainty analysis) this issue of model
structural uncertainty is compounded by commensurability errors. These
occur when effective values of variables or parameters in a model have a
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different meaning to variables or parameters with the same name that can
be measured as a result of time or space scales, or measurement technique
limitations. There are many examples in flood risk modelling. We should
expect, for example, that the effective roughness required by a hydraulic
model applied at a reach scale (1D) or element scale (2D or 3D) will vary
with scale. We should expect that the effective hydraulic conductivity of a
runoff generation model would also vary with scale.

Commensurability issues also arise in the definition of the boundary
and initial conditions required to set up a model run. Simple measurement
and interpolation errors will also affect estimates of boundary conditions.
Discharge is often required as a boundary condition for hydraulic models.
This is often estimated by interpolation from measurements of stage by
use of a rating curve which may vary over time and be uncertain in form,
especially when extrapolated to flood stages beyond the range of actual
measurements of discharge (which may themselves be subject to error).
Rainfall inputs to flood models might also be subject to measurement,
interpolation and commensurability errors, whether they are derived from
point rain gauge or radar measurements.

In Decisions 3 (comparison of predictions with observables) we can
again distinguish measurement and commensurability errors that will affect
any assessment of model predictive accuracy. These are often neglected.
Observed values are taken as true; predicted values are taken as directly
comparable; and an assessment is based on the resulting residuals.

It is instructive to take a more complete view of the sources of error
and uncertainty (e.g. Beven, 2000, 2005). At any point in space or time
(x, t) we expect that

O(x, t) + εO(x, t) + εC(∆x,∆t, x, t)

= M(θ, εθ, I, εI , x, t) + εM (θ, εθ, I, εI , x, t) + εr, (3.1)

where O is a vector of observations, M is a vector of modelled values,
θ is a vector of model parameter values, I is a vector of inputs and
boundary conditions, εO is an observation error, εC(∆x,∆t, x, t) is a
commensurability error dependent on the time and space scales (∆x,∆t)
of the observed variables relative to the model variables, εθ is a matrix of
parameter errors, εI is a matrix of input and boundary condition errors,
εM (θ, εθ, I, εI , x, t) is a model error and εr is a random error.
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What can actually be calculated, on the other hand, is the residual:

ε(x, t) = O(x, t) −M(θ, εθ, I, εI , x, t). (3.2)

Comparing (3.1) with (3.2) shows that the residual ε(x, t) can be
expressed as

ε(x, t) = εM(θ, εθ, I, εI , x, t) − εC(∆x,∆t, x, t) − εO(x, t) + εr. (3.3)

The first three terms on the right-hand side of (3.3) are unlikely to
be aleatory in nature but will involve various epistemic errors. Therein
lies the fundamental problem of uncertainty estimation. It is evident that
the various terms on the right-hand side cannot be disaggregated from the
single observable residual ε(x, t) unless some very strong assumptions are
made. The usual assumption in statistical inference is that all the terms on
the right-hand side can be treated as a lumped “measurement error” and
represented by an appropriate statistical model (e.g. additive, zero mean,
Gaussian, autocorrelated random errors).

A probabilistic treatment of the residuals ε(x, t) might often be a useful
approximation, but it should be remembered that it is an approximation
to a fuller treatment of the different sources of error and uncertainty.
While writing the model error εM (θ, εθ, I, εI , x, t) as an additive
term in (3.1) is formally correct at any (x, t), that does not mean that
the function it represents is in any way simple. The model estimate
M() depends on parameter errors, and input and boundary condition
errors, in complex and nonlinear ways. This would be the case even if,
for some hypothetical case, the model could be assumed to be formally
correct. In real applications, however, this is not the case. Then the model
deficiencies will interact nonlinearly with errors in parameters and input
and boundary conditions to induce nonstationarity and heteroscedasticity
in this term.

It is the difficulty of separating the effects of these different sources
of error that allows scope for different representations of uncertainty in
different methodologies. It is a problem that is analogous to the choice of
a particular model structure in making predictions: since no model can be
shown to be formally correct in real applications, there is scope for different
model structures to provide predictions. Similarly, since no uncertainty
methodology can be shown to be formally correct in real applications, there
is scope for different methods to provide estimates of predictive uncertainty.
The user of such estimates then has to be careful to be clear about the
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assumptions that have been made and what information the estimates
convey.

3.3. Statistical Representations of Uncertainty

In this section we will briefly introduce some of the available statistical
uncertainty estimation methodologies and their assumptions. More detail
can be found in Beven (2009).

3.3.1. Frequentist statistics

Frequentist statistical approaches to uncertainty treat all uncertainties as
aleatory. They aim to estimate the probability of a potential outcome on
the basis of available observations of that outcome. Frequentist theory
is based on estimating what the asymptotic probability distribution of
outcomes would be given a limited sample of observations by maximising a
likelihood function. The larger the number of observations, the more secure
the estimates of the probabilities will be (at least where the process can
be assumed stationary) and the smaller the uncertainties in the estimates
will be.

A typical use of frequentist statistics is the estimation of flood
frequencies given a series of peak discharges. A likelihood function can
be specified based on assumptions about the deviations of the observed
values from a theoretical distribution function (the model), under the
assumption that the model being fitted is correct. Maximising the likelihood
allows the values of the parameters of the chosen model distribution to
be estimated. The shape of the likelihood surface around the maximum
likelihood parameter set allows the uncertainties in the parameter values
to be estimated. Increasing the number of flood peaks will improve the
estimates of the parameters and reduce the uncertainties in the predicted
frequencies. Since we are often interested in predicting flood frequencies
for return periods longer than the length of the data series, however, the
uncertainties in the predictions may remain significant and should be passed
on to decision makers.

This is also an interesting simple example of model structural and
observational uncertainty issues. There is a decision to be made about
whether the analysis will be based on only annual maximum peaks or
peaks over a discharge threshold. For both cases there is a choice of
theoretical distribution to be made (for the annual maximum case, possible
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distributions that have been used in the past include the log normal, log
Pearson Type II, Wakeby, Generalised Extreme Value, and Generalised
Logistic Distributions). Different distributions will all produce different
predicted frequencies, especially for higher return period floods, but it may
be difficult to decide whether one distribution is a better predictor than
another (sample moment plots are sometimes used to make this decision,
but often without consideration of uncertainty in the sample moment
estimates, which can be significant for small samples and higher moments).
There is also the issue of observational error in the peak discharges used in
the analysis. As noted earlier, rating curves might be rather uncertain at
flood stages, though this is often treated implicitly in frequency analysis,
i.e. it is assumed to be included in the total residual errors. Similar
issues arise when frequentist statistics are used in regression analyses in
flood risk management (including, for example, in the fitting of rating
curves).

The critical assumptions in this form of analysis are, therefore, the
choice of model to be fitted, and the assumptions about the model
residuals that define the likelihood function (especially that the residuals
are stationary and that all other sources of observation error can be included
implicitly in the total residual, as in (3.2)). The analysis can be objective
in the sense that, if the assumptions about the residuals are correct, then
the probabilities of the predicted outcomes will be correctly estimated.
Common assumptions about the residuals are that they are unbiased
(have zero mean), have a Gaussian distribution with constant variance,
and are independent.

Where the only uncertainties considered are lumped into the total
residual, these assumptions can easily be checked for a given choice of
model. More complex assumptions about the structure of the residuals
can be incorporated into the analysis where such an analysis indicates
that this is appropriate (e.g. changing variance or heteroscedasticity,
and correlation between residuals). However, it can be dangerous to
assume that the theoretical objectivity will actually produce the correct
results in real applications. Draper (1995) provides a sobering example
of a regression analysis of the available observations on O-ring seal
failures on the Challenger Space Shuttle. Different assumptions about
the form of the regression model resulted in multiple representations of
the data, all of which had been fitted objectively. When extrapolated to
the conditions of the Challenger launch, however, they produced quite
different predictions with non-overlapping uncertainty estimates. Reliance
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on a single objective prediction in this case resulted in a catastrophic
failure.

Further information on classical approaches for statistical inference in
model calibration is provided by Chandler in Chapter 4 of this volume.

3.3.2. Bayesian statistics

The origins of Bayesian statistics lie in a paper found amongst the papers
of the Rev. Thomas Bayes (c.1701–1761) after his death. Presented at the
Royal Society of London by his friend Richard Price in 1763, the “Essay
Towards Solving a Problem in the Doctrine of Chances” contained the first
expression of what is now called Bayes theorem. A more general discrete
form was developed, apparently independently, by Pierre-Simon Laplace
(1749–1827) and published in France in 1774.

We can define Bayes theorem in a form that given a set of feasible
models, M , and observations O, then the probability of M given O is
given by

Lp(M |O) = Lo(M)L(O|M )/C, (3.4)

where Lo(M) is some prior probability defined for the range of feasible
models (here model is used to indicate a combination of model structure and
parameter set), L(O|M) is the likelihood of simulating the evidence given
the hypotheses, and C is a scaling constant to ensure that the cumulative
of the posterior probability density Lp(M |O) is unity.

Bayes theorem represents a form of statistical learning process. When
applied to models it provides a rigorous basis for the expression of degrees
of confirmation of different model predictions, expressed as probabilities, as
long as the different components of (3.4) can be defined adequately.

This learning process starts with the definition of prior distributions
for the factors that will be considered uncertain. There is a common per-
ception of Bayes statistics that the choice of prior distributions introduces
subjectivity into the analysis. However, both Bayes and Laplace originally
applied their methods using priors that were non-informative, giving equal
chances to all possible outcomes until some evidence became available.
Berger (2006), points out that Bayes equation underpinned the practice
of statistics for some 200 years, without it being considered necessary to be
too specific about the prior distributions and suggests that the development
of frequentist statistical theory in the 20th century from R. A. Fisher
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onwards was, in part, a response to dissatisfaction with the constant prior
assumption.

The choice of subjective prior distributions is a relatively recent
innovation, but is now strongly argued for by many Bayesian statisticians
(see Goldstein, 2006, and the additional comments on the Berger and
Goldstein papers by Draper, 2006, and O’Hagan, 2006). In principle such
priors can be defined by the modeller on the basis of expert elicitation,
past experience or subjective judgment. The prior should, however, only
be really important if there is only a very limited amount of observational
data available. This is because as more evidence about the likelihood of a
model is gained by repeated application of (3.4), then the prior will come
to be dominated by the likelihood L(O|M).

Thus, the predicted uncertainties will depend on the assumptions made
about both the prior likelihood Lo(M) and the likelihood function L(O|M).
The latter, as in the case of frequentist statistics, will be dependent on
assumptions about the nature of the model residuals. Again, however, such
assumptions can (and should be) checked and changed as necessary. If the
assumptions can be shown to be valid, then the Bayesian approach provides
objective estimates of uncertainties, albeit conditional on the choice of
model structure and error structure. Model structural error might still be an
issue but O’Hagan and Oakley (2004) suggest that this form of probabilistic
analysis is the only way of properly estimating uncertainties. However, this
depends on the aleatory model of the residual errors being able to account
for the epistemic uncertainties discussed earlier in the chapter. That this
may not always be the case means that other methods might also be useful.

Further details on formal Bayesian methods for model calibration are
provided by Rougier in Chapter 5 of this volume.

3.3.3. Imprecise probabilities

Probabilities can, of course, themselves be uncertain. As noted above, where
we are trying to estimate the distribution of a variable, both the correct
function form of that distribution, and the parameter values of the function,
might be uncertain. This is a form of uncertainty about uncertainties within
a purely statistical framework. The concept can be generalised in the theory
(or rather competing theories) of imprecise probabilities (e.g. Walley, 1991;
see also Hall, 2003, 2006). An extreme form of imprecise probability function
is when occurrences of a variable are assumed to be known only within some
range or interval of values.
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3.4. Other Interpretations and Representations
of Uncertainty

3.4.1. Fuzzy, interval and set-based approaches

A different way of representing variability, that need not be limited to the
aleatory uncertainties of probabilities, is in terms of fuzzy sets of values.
Instead of a definitive answer as to whether a value belongs to a certain
set of values that would result from defining that set of values as a crisp
set, the value is given a membership value (with a range from 0 to 1) to
reflect the degree of membership of the set in a given context. It is easy to
think of many environmental examples where a fuzzy definition might be
useful (see Beven, 2009; Hall, 2003). Membership function values are not
equivalent to probabilities. To make this distinction clear, the outcomes
from a fuzzy analysis are often called relative possibilities.

Fuzzy variables were introduced by Zadeh (1965). They can be used
to define uncertainties in inputs, in parameter values and in evaluating
model outputs against observations. They can be combined in more flexible
ways than probabilities, including fuzzy union and intersection operators.
There have been a number of attempts to provide a general theory of
uncertainty that spans probabilistic, possibilistic and other representations
of uncertainty (see, for example, Klir, 2006; Zadeh, 2005).

3.4.2. Equifinality and the GLUE methodology

One of the issues that arises in uncertainty analysis in environmental
modelling is that, given the uncertainty in model inputs and observa-
tional data, it may be difficult to distinguish between different model
representations of the system of interest. This is often interpreted as a
difficulty in finding the best model of a system and is referred to as
non-uniqueness, ambiguity or non-identifiability. Thinking about models as
hypotheses of how the system is working, however, suggests that there need
not be a best model. There may rather be many models that give equally
acceptable predictions; it is just that we cannot easily differentiate between
them. This is the equifinality thesis (Beven, 1993, 2006; Beven and Freer,
2001; von Bertalanffy, 1968) that underlies the GLUE methodology, first
outlined by Beven and Binley (1992) as an extension of the Generalised
Sensivity Analysis of Hornberger and Spear (1981). GLUE is based on
making a large number of Monte Carlo realisations of model structures
and parameter values; evaluating the predictions of those models against
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some observed data in terms of a formal or informal likelihood measure;
rejecting those models that do not give acceptable predictions (i.e. they are
given a likelihood of zero); and using the remaining behavioural models to
form cumulative likelihood weighted distribution functions as an expression
of uncertainty in the predicted variables. GLUE is generalised in that it
can include statistical identification methods as special cases, but in this
case the error structure assumed is treated as an additional non-process
component of the model structure (Romanowicz et al., 1994, 1996). It can
also use fuzzy and other non-statistical performance measures in weighting
the predictions of the set of behavioural models (e.g Beven, 2006; Beven
and Freer, 2001). Multiple model structures are easily incorporated into
the methodology, as long as they can be evaluated in the same ways.
Multiple evaluation measures are also easily incorporated by combining the
likelihoods for each evaluation into a final likelihood weight. Bayes equation
can be used for these combinations, but also other operators such as fuzzy
union or intersections and averages of different types.

More details of the GLUE methodology are given in Chapter 6. GLUE
has been criticised for the number of subjective assumptions that are
required in using it and it is true that the resulting uncertainty estimates
on predicted variables are conditional estimates: conditional on the choice
of models, choice of prior parameter distributions, choice of likelihood
measures, choice of the limits of acceptability for those models retained as
behavioural, and choice of how to combine different likelihood measures.
It is also apparent, however, that if we make over-strong assumptions
within a formal statistical framework, the results can be incorrect even
for near ideal hypothetical cases (e.g. Beven et al., 2007, 2009). GLUE was
always intended for the non-ideal conditions of real applications, where
the flexibility it allows might be advantageous. However, it is always
recommended that the assumptions made in a particular application are
stated quite explicitly so that any users can assess them critically.

There have now been many GLUE applications in the area of flood
risk management, including the prediction of flood runoff, flood frequency
analysis using continuous simulation, and flood inundation predictions using
hydraulic analysis. These applications have thrown up some interesting
issues. One is that there can be many different model/parameter set
combinations, spread widely through the model space, that give equally
good predictions. This reinforces the suggestion above that strong statis-
tical assumptions might lead to over-conditioning of effective parameter
distributions. It also suggests that finding efficient guided sampling methods
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might be difficult in real applications where the likelihood response surfaces
may be very complex (see also Duan et al., 1992). Another issue is that
it is often necessary to use quite relaxed rejection criteria to have any
behavioural models at all. As noted earlier, this might not be just a matter
of using models that do not properly represent the way the system works,
but could also be a result of input errors. In some cases, however, it is clear
that using different parameter sets in a model is necessary to get good
predictions either for different hydrological conditions or different places
in a flood inundation prediction (e.g. Choi and Beven, 2007; Pappenberger
et al., 2006b), suggesting that some improvements to model structure might
be sought.

A major limitation on the use of GLUE is the computational require-
ments in that, particularly for models with more than just a few parameters,
a very large number of simulations might be required (e.g. the 2,000,000,000
simulations of Iorgulescu et al., 2005, of which 216 were retained as
behavioural). This is becoming less of a problem with the use of parallel
computers based on cheap PC processors. It does seem that computing
power may well increase faster than we can reduce other sources of
uncertainty, so that the methodology should become applicable to a wider
range of model applications.

Further details of the GLUE methodology for model calibration with
uncertainty are provided in Chapter 6 of this volume.

3.4.3. Info-gap theory

Info-gap theory (Ben-Haim, 2006) is another non-statistical approach to
uncertainty estimation. It was explicitly conceived as an attempt to deal
with the potential impact on decisions of epistemic uncertainties (Knight’s
true uncertainties) that cannot easily be handled using aleatory statistical
concepts. It does this by focussing on the predicted outcomes of models,
relative to some nominal prediction, regardless of the parameter values,
inputs and boundary conditions that control those outcomes.

This process can be defined generally in the following way:

U(α, M̃(Θ)) = {M(Θ) : |M(Θ) − M̃(Θ)| ≤ G(α)} α ≥ 0. (3.5)

U(α, M̃(Θ)) is the set of all possible model predictions of a variable
of interest whose deviation from the nominal prediction, M(Θ), is nowhere
greater than some function, G(α), of a scaling variable α. The sources of
uncertainty might in this approach come from different model structures,
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different parameter sets or different input conditions, but unlike Bayesian
theory or the GLUE methodology, it is not necessary to try to put any
form of likelihood weight on the predictions. Here, we wish to assess only
the relative deviation of the outcome away from some nominal case for any
value of α.

Given that deviation, however, two functions may be specified,
representing robustness and opportuneness (using the nomenclature of
Ben-Haim, 2006). The robustness function expresses the greatest level
of uncertainty (in terms of the values of α) for which the performance
requirements of a decision maker must be satisfied. The definition of
what constitutes satisfactory performance, of course, will depend on the
particular characteristics of a project. The opportuneness function on the
other hand, is the least level of uncertainty at which success is assured.
For any decision we would ideally like to maximise the value of α for
which the decision is robust, while minimising the value of α at which
success is assured. These requirements are often in opposition to each other.
For example, an “optimal” solution that would maximise performance
(which effectively has α = 0) should not be expected to be robust in the face
of significant uncertainties. Ben-Haim shows that appropriate robustness
and opportuneness functions can provide, in cases of real uncertainty,
a rational and consistent framework for assessing the relative merits of
different decisions. Hall and Hine (2010) provide an extensive example of
application of info-gap theory to uncertainty analysis in regional frequency
analysis and flood management decisions.

3.4.4. NUSAP

There has been another approach to epistemic uncertainty developed that
is more qualitative in nature. This is the NUSAP methodology that has
been implemented as a way of presenting uncertainty in environmental
predictions to decision makers in RIVM in the Netherlands (see, for
example, Janssen et al., 2005; van der Sluijs et al., 2005).

NUSAP is an acronym of five different ways of assessing uncertainty
(Numeral, Unit, Spread, Assessment and Pedigree). It is framed so as to
complement quantification of uncertainty assessments (Numeral, Unit and
Spread) with expert judgments of reliability (Assessment) and the multi-
criteria evaluation of the historical background to the methods and data
used (Pedigree). In the Netherlands, the Assessment and Pedigree stages
have been formalised into a guidance manual for Uncertainty Assessment



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch03

A Framework for Uncertainty Analysis 53

and Communication using an index methodology. The guidance is intended
for use in framing the uncertainty context of a new project, in structuring
methods of uncertainty estimation and choosing quantification methods
during a project, and in reviewing and communicating results after a
project.

3.4.5. Uncertain scenarios

A final method of assessing uncertainties that cannot easily be treated by
probabilistic means is the use of model scenarios. The most high profile
example of this is the use of different scenarios of future emissions in
predicting possible climate change within the Intergovernmental Panel
for Climate Change (IPCC) assessments. In this case, the number of
possible runs that can be made is strongly limited by computer run times
of the current generation of fully coupled ocean–atmosphere circulation
models. Thus, the assessment of uncertainties has, to date, been based
on deterministic runs of different emission scenarios with different General
Circulation Model (GCM) implementations (IPCC, 2007). There are plans
to run ensembles of simulations using one or more coarser grid-scale GCMs
in future, but computer run times will still mean that the number of runs
that can be made will be in the hundreds, a number that is small relative
to the number of degrees of freedom in the specification of the model
parameterizations and emission scenarios.

Essentially, scenario modelling is a form of forward uncertainty analysis,
but without the possibility of assigning a probability to each model
run. We can, of course, as in any form of forward uncertainty analysis
suggest that some scenarios are more probable than others, but this
would necessarily be speculative until some data became available to allow
evaluation of the relative likelihood of the scenarios. It has been argued from
a Bayesian point of view that it should be possible to make assessments
of the probability of different scenarios on the basis of expert opinion
(e.g. Rougier, 2007, in the context of climate change scenarios). This
would then allow uncertainty evaluation to remain within a probabilistic
framework. In many cases of scenario modelling, however, there are very real
epistemic uncertainties that must make such expert derived probabilities
questionable.

This then means that, in using uncertain scenario predictions in
decision making, interpretation is going to be an important issue. In this
respect, there is an interesting overlap with the info-gap methodology here,
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in that the evaluation of outcomes within info-gap can also be viewed as
a form of evaluation of feasible scenarios. Through the robustness and
opportuneness functions, info-gap theory does then provide a framework
for structuring decision making in the face of complex uncertainties.

3.5. Sources of Information to Reduce Uncertainty

3.5.1. Prior information

It is evident that the better the prior information about model structures,
parameter values and boundary conditions that can be specified for an
application, the smaller will be uncertainty in the predictions. Forward
uncertainty analysis of course depends totally on prior information. Pre-
diction uncertainties are then purely a consequence of the uncertainties
assumed about the inputs needed, including the choice of which model or
models to use. The better the definition of prior distribution of uncertain
quantities, the narrower the prediction uncertainties will usually be. The
difficulty here is that it may then make it difficult to be secure about the
definition of uncertain boundary conditions and model parameters. The
effective values required to give good predictions may vary from application
to application and from model structure to model structure which may then
make it difficult to give good prior estimates on the basis of past experience
at other sites or textbook values.

Expert opinion is then important in defining prior uncertainties and
there is an extensive literature on eliciting expert opinions in the context of
the Bayesian approaches to model uncertainty estimation (see for example
Kurowicka and Cooke, 2006; O’Hagan et al., 2006). Within the Bayesian
approach (or any other learning strategy), however, the prior estimates
should become less and less important as more site specific data are added,
for both model drivers and for model output evaluation (Beven, 2007).

3.5.2. Data and its deficiencies

It is important to remember that the estimation of uncertainty, for any of
the applications presented in this book, should not be considered the final
goal of any study. It is, instead, a starting point in two ways. The first is
as an input to a decision-making process. The second is as a baseline for
the reduction of uncertainty. Learning how to constrain uncertainties is a
critical issue for future improvements in flood risk management. It is an
issue that involves both data and improvements to model structures. It will
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be difficult to draw strong conclusions about the adequacy of any model
structures as hypotheses about how well the system is working cannot be
made without first assessing the potential for more and better data to
constrain prediction uncertainties.

Observational data for a particular application site plays two roles in
inducing or constraining prediction uncertainties. The first is in terms of
defining the initial and boundary conditions for a given model run; the
second is in the evaluation of model outputs as part of the learning process
to find appropriate models for that site. In both cases, the limitations of
observational techniques become an important consideration. The first role
applies equally to forward uncertainty analysis where there are no data
available to evaluate the model outputs. It is common to assess the effects
of parameter uncertainty in such a forward analysis, less common to also
look at boundary condition uncertainty. Yet, it might be that the latter are
more important in some cases (for example, in predicting flood inundation,
both the estimate of upstream discharge and the representation of the flood
plain topography might dominate the effects of variations in roughness in
accurately predicting inundation (see Pappenberger et al., 2006a)).

The data available for use in both setting boundary conditions and
model evaluation inevitably have errors associated with them. These errors
are commonly neglected, but might be important. It is a modelling truism
that even if we had the “perfect” model structure (if such a thing existed),
it would not provide good predictions if the boundary conditions used to
drive it are subject to significant error. The difficulty then is assigning
a source to the modelling errors, even for the simplest case where we
would like to separate out model structure error from boundary condition
errors. It turns out that even this is not simple without making strong
assumptions about the nature of the errors, assumptions that are not easily
checked.

3.5.3. Data assimilation in forecasting

The constraint of uncertainty takes on a particular importance in data
assimilation for forecasting for real-time flood warnings and flood mitigation
control. When data (precipitation, water levels at gauging sites, status
of control gates etc.) can be made available online, then forecasts can
be compared with what is actually happening. Over-predictions or under-
predictions can be detected. There are a number of different schemes for
real-time data assimilation to correct the forecasts, including the Kalman
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filter, ensemble Kalman filter and variational methods (see Section IV in
this book).

One very important consideration in forecasting is the need for an
adequate lead time for decision makers. There are many papers in the
literature that present results for data assimilation for one-step ahead
forecasts. Whether this is useful or not will depend on the scale of the
system. If the forecasting time step is one hour, then for a community that
could be subject to flash flooding in a small catchment even a one hour
ahead warning could help save lives and damages. But on larger catchments,
where at least 24 hours warning might be needed in deciding whether to
deploy demountable flood defences, then a one hour ahead forecast would
not be very useful, however accurate it is. So, in forecasting, we are often
in the situation of using data that are available now to constrain the
uncertainty in forecasts with an appropriate lead time (6, 12, 24 hours
or longer). The feasible lead time will depend on the natural response time
scale of the system. If forecasts at longer lead times are needed for decision
making, then it will normally only be possible to achieve this by also having
a forecast of the inputs to the system.

3.6. The Analysis Sequence

The three sets of decisions outlined above in the framework for uncertainty
analysis can also be viewed as an analysis sequence. We wish to test
whether we have the right modelling tools for the job (Decisions 1);
evaluate the prior uncertainties in model predictions using those tools
(Decisions 2); and constrain the uncertainty using whatever relevant data
are available (Decisions 3). In the past, these stages have not been
thought of so much as decisions, since a decision implies that there are
alternatives, and methodologies tend to be presented without alternatives.
In the Flood Studies Report (NERC, 1975), for example, the methodology
for flood frequency estimation at ungauged sites in regions of the UK
was based on the index flood method and generalised extreme value
distributions. This methodology was reviewed 20 years later and in the
Flood Estimation Handbook (Institute of Hydrology, 1999), it was decided
that the generalised logistic distribution should be the basis for the analysis
and that the estimates should be based on pooling groups of catchments
rather than regions. In both cases, the methodologies were based on
decisions by the researchers, resulting in a methodology for widespread
use (see Chapter 8).
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Each set of decisions of this type involves assumptions. What will
become apparent in this book is that it is difficult to provide methodologies
for which the assumptions are always valid. That suggests an onus on
researchers to make the assumptions explicit in a way that allows them
to be checked and compared with alternatives if necessary. The lesson is to
use uncertainty estimation methodologies with care, at least as yet, until
we learn more about the value of different approaches and different data
types for different applications. This is, however, no excuse for not doing
any uncertainty analysis at all (see Juston et al., 2012; Pappenberger and
Beven, 2006). Being realistic about uncertainties for model predictions that
will be used for decision making might indeed change the decision made.
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CHAPTER 4

Classical Approaches for Statistical

Inference in Model Calibration
with Uncertainty

R.E. Chandler
Department of Statistical Science, University College London, UK

4.1. Introduction

Many of the methods and tools described in this book rely at some stage
upon the use of data to select and calibrate a model. “Statistical inference”
is the collective name given to the area of statistical investigation concerned
with the processes of model selection and parameter estimation, and with
quantifying the uncertainty in parameter estimates.

4.2. The Method of Maximum Likelihood

In modern statistical practice, the method of maximum likelihood is
something of a gold standard for inference. It can be used whenever the
available data, denoted by, say, a vector y, can be considered as drawn from
some joint probability distribution and a model can be used to specify the
form of this distribution. In this case, y can be regarded as the realised
value of a vector Y of random variables with joint density f(•; θ) say,
where θ is an unknown parameter vector; the function f(•; •) may itself
depend on observed values of other variables (note that we refer to f(•; •)
as a joint density for convenience even though, strictly speaking, this is not
always correct: for example, if Y consists of discrete random variables, then
“probability mass function” should be substituted for “density”).

In this setting, the function L(θ;y) = f(y; θ) is called the likelihood
function for θ and �(θ;y) = logL(θ;y) = log f(y; θ) is the log-likelihood.

60
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Notice the distinction between L and f : L(θ;y) is a function of the
parameter θ with the data y held fixed, whereas f(y; θ) is a function of
y with θ held fixed. Informally, comparing the values of L(θ;y) at different
values of θ provides a means of assessing the relative compatibility of those
values with the observations. In some sense, the most plausible value of θ is
that yielding the highest value of the likelihood, or equivalently (since �(θ;y)
and L(θ;y) are in one-to-one correspondence) of the log-likelihood. This
value of θ (denoted by θ̂, say) is called the maximum likelihood estimator
(MLE). In well-behaved problems, θ̂ satisfies the equation

U(θ;y) = 0,

where U(θ;y) = ∂�/∂θ is the gradient vector of the log-likelihood, also
known as the score function.

In general, if the observations can be regarded as independent at some
level then their joint density can be written as a product of contributions
from each observation: f(y; θ) =

∏
i fi(yi; θ) say. In this case the log-

likelihood is a sum of terms: �(θ;y) =
∑

i log fi(yi; θ).
For a wide class of models where the log-likelihood can be written

in this form, the MLE and an estimate of the Fisher information (see
below) can be computed efficiently using standard software. In fact,
many commonly used estimation techniques can be regarded as maximum
likelihood procedures for particular classes of model — for example, least
squares provides the maximum likelihood estimates of regression coefficients
in linear models when the errors are independent and normally distributed
with constant variance. Where efficient model-specific algorithms are not
available, general-purpose numerical methods must be used.

Many of the arguments justifying the use of maximum likelihood
estimation are based on its behaviour for large samples, when the data are
generated from the distribution with density f(y; θ0) so that it is meaningful
to refer to θ0 as the true value of θ. In this case, the aim of any estimation
procedure is usually to deliver a value as close to θ0 as possible. In a wide
class of problems it can be shown that for large samples the distribution of
the MLE is approximately multivariate normal:

θ̂ ∼ MVN (θ0,Σ)

say, where Σ−1 = −E�∂2�/∂θ∂θT |θ=θ0� is the expected second derivative
matrix of the negative log-likelihood, called the Fisher information. In large
samples the MLE is therefore an unbiased estimator (i.e. its expectation



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch04

62 R.E. Chandler

is equal to the target value θ0). Moreover, the matrix Σ is equal to
the Cramér–Rao lower bound for the covariance matrix of an unbiased
estimator (Scholz, 2006): this means that the variance of any linear
combination of parameter estimates is the smallest possible (Lloyd, 1984,
pp. 111–112). Put simply: in large samples the use of maximum likelihood
estimation often yields the smallest possible parameter uncertainty given
the data available.

The asymptotic distribution of the MLE can be used to construct
approximate confidence intervals and hypothesis tests for components of θ.
For example, a 95% interval for the ith component θi is θ̂i ± 1.96σii, where
σii is the square root of the ith diagonal element of Σ. Tests and confidence
regions for subsets of parameters can also be constructed (see Cox, 2006,
Chapter 6). Notice, however, that confidence intervals obtained in this way
will always be symmetric about the MLE. If the likelihood function is
markedly asymmetric then such intervals may be inaccurate. In this case it
may be preferable to construct tests and confidence regions using the log-
likelihood function itself. Specifically, suppose that the parameter vector
is partitioned as θ = (ψ′ λ′)′, with target value θ0 = (ψ′

0λ
′
0)

′. Write
�(θ;y) = �(ψ,λ;y) for the log-likelihood, and consider maximising this
with respect to λ alone for some fixed value of ψ. In general, the resulting
value of λ will depend on ψ: call it λ̂(ψ). The value of the corresponding
maximised log-likelihood, �(ψ, λ̂(ψ);y), is also a function of ψ; this is called
the profile log-likelihood for ψ. Let ψ̂ be the overall MLE for ψ; then
the overall MLE for λ is λ̂(ψ̂). By definition, �(ψ̂, λ̂(ψ̂);y) cannot be less
than the maximised log-likelihood at any other value of ψ. Therefore the
quantity

Λ(ψ) = 2��(ψ̂, λ̂(ψ̂);y) − �(ψ, λ̂(ψ);y)�

is always positive-valued, although we would expect Λ(ψ0) to be “small”
in general, if ψ̂ is close to ψ0. This suggests that when ψ is unknown,
a confidence region could be determined as the set of values for which
Λ(ψ) is less than some threshold — or equivalently, as the set of values for
which the profile likelihood exceeds a corresponding threshold. The quantity
Λ(ψ) is sometimes referred to as a likelihood ratio statistic. It can be shown
(see Cox, 2006, Section 6.4) that in large samples, Λ(ψ0) has approximately
a chi-squared distribution with q degrees of freedom, where q is the dimen-
sion of ψ. Therefore, a confidence region for ψ0 can be determined as the set
{ψ : Λ(ψ)<c}, where c is the appropriate percentile of the χ2

q distribution.
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Equivalently, the null hypothesis H0 : ψ= ψ0 can be accepted if Λ(ψ)<c
and rejected otherwise: this procedure is called a likelihood ratio test.

A common use of likelihood ratio tests is to compare nested models:
two models are said to be nested when one can be regarded as a simplified
version of the other. For example, testing for the presence of a linear trend
in a time series is equivalent to testing whether the slope of any trend is
zero: this could be done by finding the MLEs for models with and without
a trend and comparing the resulting log-likelihoods. Likelihood ratio tests
cannot be used, however, to compare non-nested models. Fortunately,
a variety of likelihood-related “information criteria” are available to
assist with model selection in this case. Most of these criteria take the
form

IC = −2�(θ̂;y) +Kp,

where p is the dimension of θ and K is a “penalty” designed to discourage
the use of overly complex models. At some level, criteria of this form are
motivated by the desire to choose the simplest model that fits the data
well. If the information criteria for two models are IC1 and IC2 respectively,
then the first model will be preferred if IC1 < IC2 and vice versa. Putting
K = 2 yields Akaike’s information criterion, usually denoted by “AIC”: the
motivation behind this is to select the model that is expected to yield the
best out-of-sample predictions in some sense, taking into account parameter
uncertainty (see Davison, 2003, Section 4.7). Another common choice of
Kis log(n), where n is the sample size: this leads to the Bayes information
criterion (BIC), which can be justified — at least when the observations y
are independent — using asymptotic arguments since, if the data are really
generated from one of the candidate models under consideration, then this
model will yield the lowest BIC with probability tending to 1 as the sample
size increases.

Although maximum likelihood estimation has desirable optimality
properties as outlined above, it is not a universal panacea. Some potential
difficulties are as follows:

• It requires the specification of a plausible model for the joint density
of the data: with complex data structures, this may not be possible.
Moreover, not all models are explicitly probabilistic in nature: maximum
likelihood cannot help, for example, with the calibration of non-statistical
models.
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• The optimality arguments are asymptotic and may not be applicable in
situations where sample sizes are small. This is especially true when
models contain large numbers of “nuisance parameters” — these are
parameters that are necessary to complete the model specification but
that are not of direct interest. In the context of testing hypotheses
about ψ in the discussion above, the vector λ represents the nuisance
parameters. Indeed, there are situations in which the number of nuisance
parameters is proportional to the sample size, and in this case the method
can fail completely (in the sense that the estimate θ̂ does not approach
θ0 as the sample size increases).

• Likelihood-based procedures can be sensitive to outliers and data errors
(although the problem here is arguably not with the use of maximum
likelihood per se, but rather with the use of a model that, by failing
to represent errors explicitly, does not represent the data structure
correctly).

• No account is taken of information other than the available data. In
some situations, the investigator may have prior knowledge or beliefs
about the values of components of θ, and may wish to incorporate this
supplemental information into the analysis. This type of situation is most
easily handled in a Bayesian framework (see Chapter 5).

For further discussion of the problems that can occur with maximum
likelihood estimation, and some ways of overcoming them, see Cox (2006,
Chapter 7).

4.3. Estimating Functions

As noted above, the specification of a likelihood function is not always
feasible, either because the model structure is too complex to derive the
joint density or because the model is not specified in probabilistic terms.
There is, nonetheless, a general theory of estimation that is applicable
whenever a model is calibrated by solving an equation of the form

g(θ;y) = 0

for some vector-valued function g(•; •). Such an equation is called an
estimating equation, and the function g(•; •) is an estimating function. To
study the statistical properties of estimating equations it is necessary, as
before, to consider the data y as realised values of random variables Y, even
if the model being fitted is not explicitly probabilistic. This should not be
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conceptually difficult: few models provide a perfect fit to observations, and
any discrepancy between model and data (whether due to structural error
in the model, measurement error in the data or some other source) can be
described probabilistically if one is prepared to accept, for example, that
two sets of observations, gathered under conditions that are identical in
terms of the model inputs, will in general be different. In this case it is
meaningful to speak of the distribution of Y, even if we have no way of
specifying the form of this distribution. In some sense then, if the model
at hand provides some information about y then we can think of it as
partially specifying the distribution for Y, regardless of how the model was
constructed.

As in the likelihood case, if the model being fitted is correct in
the sense that when θ = θ0 it partially or fully describes the process
generating the data, then θ0 can be thought of as the “true” value of
the parameter vector. Any estimating equation such that E[g(θ0;Y)] = 0
in this situation is called an unbiased estimating equation; the expectation
here is with respect to the distribution of Y. It can be shown that an
unbiased estimating equation yields an asymptotically unbiased estimator:
if θ̂ now denotes the root of the equation, then the expected value of
θ̂ is approximately θ0 in large samples (in fact, the same holds if the
estimating equation is asymptotically unbiased after appropriate normal-
isation). A key requirement of any estimating equation is that it yields
consistent estimators, in the sense that the value θ̂ can be made arbitrarily
close to θ0 with probability close to 1, simply by gathering enough data
that are not too strongly interdependent. Asymptotic unbiasedness is a
necessary (but not sufficient) requirement for consistency: in general, the
additional conditions required are technical but fairly unrestrictive. It
can be shown that under mild conditions (relating to, for example, the
differentiability of the estimating function with respect to θ) the estimator
has approximately a multivariate normal distribution, for large samples
and in regular problems. The mean vector of this distribution is θ0 and
its covariance matrix is V = H−1JH−1, where H = ∂g/∂θ|θ=θ0 and J
is the covariance matrix of g(θ0;Y) (Davison, 2003, Section 7.2). The
matrix V−1 is sometimes called the Godambe information. For use in
applications, H can be estimated as Ĥ = ∂g/∂θ|

θ=θ̂
. Furthermore, the

estimating function g(•; •) can often be written as a sum of a large number
of uncorrelated contributions: g(θ;y) =

∑
i gi(θ;yi) say, where the {yi}

represent different subsets of the data; and in such cases, J can be estimated
as
∑

igi(θ̂;yi)[gi(θ̂;yi)]′.
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The framework regarded here is extremely general, and it is worth
considering how estimating equations might be derived in some specific
situations. Note first that in the context of likelihood-based inference, the
score equation U(θ;y) = 0 is itself an estimating equation; it can be
shown that this is unbiased and that in this particular case the matrices
H and J are equal, so that the general results given above reduce to
those in the previous section, and the Godambe and Fisher information
matrices coincide. More generally, one could consider estimating parameters
using maximum likelihood for a model that is known to be incorrect but
nonetheless useful. An example arises in the analysis of non-Gaussian
time series data from multiple spatial locations: few tractable models are
available for the joint distribution of such data, so maximum likelihood
fitting can be unfeasible. An alternative is to use a likelihood function
computed as though sites are independent even though, in fact, this is
unlikely to be the case. Such an approach allows standard software to be
used to fit models. However, if this is done then the calculated standard
errors (which will be based on the Fisher information for a wrong model)
require adjustment to obtain a correct assessment of parameter uncertainty.
More details can be found in Chandler et al. (2007, Section 5.4).

An alternative way to derive an estimating equation, which makes
no explicit reference at all to any joint distribution, is by minimising an
objective function that represents some measure of discrepancy between
data and model. This measure might represent the cumulative discrepancy
between individual observations and the corresponding values output by the
model, or the discrepancy between overall properties of the data and model
outputs. Some widely-used examples of the former type of measure are
reviewed by Smith et al. (2008), who refer to them as “informal likelihoods”;
the latter is essentially the generalised method of moments introduced
by Hansen (1982). If the discrepancy measure is denoted by Q(θ;y) then
the corresponding estimating equation is g(θ;y) = ∂Q/∂θ = 0. Study of
this estimating equation can help to understand the properties of a given
estimation procedure. For example, Smith et al. (2008) discuss a measure
known as the “index of agreement” and conclude on heuristic grounds that
it has some undesirable properties; in fact, the theory outlined above can
be used to show that minimising this quantity leads to a biased estimating
equation in general, and hence that the procedure delivers inconsistent
estimators. The theory can also be used to compare the asymptotic
covariance matrices obtained using different discrepancy measures, and
hence to choose the measure leading to the smallest parameter uncertainty.
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If an estimating equation is derived by minimising an objective
function Q(θ;y) then, as with maximum likelihood, an alternative way
to assess parameter uncertainty is via the objective function itself, taking
as “plausible” any value of θ for which Q(θ;y) is below some threshold
(see, for example, Wheater et al. 2005). This can be regarded as a
means of defining a set of equifinal parameter values in the context of
the Generalised Likelihood Uncertainty Estimation (GLUE) framework
discussed in Chapter 6. Furthermore, the identifiability of each parameter
can be investigated by plotting a profile objective function, obtained by
holding the parameter fixed at each of a range of values, and optimising
over the remaining parameters.

The discussion of estimating functions above has necessarily been brief;
for a more comprehensive survey, including applications to the calibration
of stochastic rainfall models in hydrology, see Jesus and Chandler (2011).
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CHAPTER 5

Formal Bayes Methods for Model

Calibration with Uncertainty

Jonathan Rougier
Department of Mathematics, University of Bristol, UK

5.1. Introduction

This chapter describes the Bayesian approach to assessing uncertainty,
and how it can be implemented to calibrate model parameters using
observations, taking account of the imperfections of the model, and
measurement errors. Section 5.2 outlines the justification for the Bayesian
approach, Section 5.3 outlines the Bayesian approach to model calibration,
and Sections 5.4 and 5.5 discuss simple and more advanced strategies
for performing the inferential calculations. There is a brief summary in
Section 5.6.

5.2. Bayesian Methods

Bayesian methods provide a formal way of accounting for uncertainty,
through the use of probability, and the probability calculus. Uncertainty,
treated generally, is a property of the mind; it pertains to an individual,
and to the knowledge that individual possesses. Many people baulk at
the uncompromisingly subjective or “personalistic” nature of uncertainty.
A superficial understanding of science would suggest that this subjectivity is
out of place, but in fact it lies at the very heart of what makes a scientist an
expert in his or her field: the capacity to make informed judgements in the
presence of uncertainty (Ziman, 2000, provides a naturalistic assessment of
“real” science, where the only equation in the entire book is Bayes theorem).
Different hydrologists will produce different models of the same catchment,
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which is to say that the process of designing and constructing a model is
subjective. The Bayesian approach extends this subjectivity to descriptions
of uncertainty, e.g. uncertainty about the relationship between the model
output and the behaviour of the actual catchment. But while model-
building is something hydrologists do a lot of, thinking about uncertainty
is less familiar, and seems less structured. And yet it is a vital part of
any model-based analysis — we cannot make inferences about a catchment
without accounting for the limitations of the model. The probabilistic
approach is therefore a way of making explicit what must be happening
implicitly. In requiring us to quantify our uncertainties as probability
distributions, it puts these judgements into a form where they may be
debated, and amended (Goldstein, 2006). Some authors have stressed that
the Bayesian approach is a way to make scientific inference more objective
(see, for example, Good, 1983).

The fact that these judgements are subjective, and the case for making
them transparent in scientific inference, are unassailable. What we have yet
to establish here is why we should do this within a probabilistic framework.
The pragmatic answer is that the probabilistic approach has proved to
be extremely powerful and, in conjunction with modern computational
methods (particularly Monte Carlo methods), is unsurpassed in complex
inferences such as data assimilation, spatial–temporal modelling, and
scientific model calibration and model-based prediction (see also the many
scientific applications in Liu, 2001). As these fields have developed, a
consensus has emerged, and the result is that the overt subjectivity has
been somewhat reduced, in the same way that a consensus on how to
treat a certain aspect of a hydrologic model reduces the differences across
models.

The pragmatic answer focuses on the efficacy of the probability
calculus. Perhaps that is the only justification that is required. Before the
advent of modern computational methods, though, the first answer would
have been that there is foundational support for the probability calculus as
a model for the way we reason. The probability calculus is based on three
simple axioms. We suppose the existence of a set Ω, and a measure Pr(·)
defined on subsets of Ω. The axioms assert that Pr(·) satisfies the following
properties:

(1) Pr(A) ≥ 0;
(2) Pr(Ω) = 1;
(3) Pr(A ∪B) = Pr(A) + Pr(B) if A ∩B = ∅;
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where A,B ⊆ Ω (see, e.g. Dawid, 1994). Why these axioms and not
others? There are a number of interpretations, i.e. suggested relations
between these axioms and the real world (see, e.g. Gillies, 1994). In the
Bayesian interpretation, Pr(A) is an operationally-defined assessment of
an individual’s uncertainty about A, a view that was formalised by Bruno
de Finetti in the 1930s (de Finetti, 1937, 1972). Book-length studies of
this approach can be found in Savage (1972), Lad (1996), and Jeffrey
(2004); de Finetti (1974) and Goldstein and Wooff (2007) adopt a more
general approach in which expectation rather than probability is taken as
primitive.

Imagine that we are interested in Y , the amount of rain in mm on
the Met Office roof on Christmas Day 1966 (conventionally, capitals are
used for uncertain quantities, and small letters for possible values). We
might set Ω = {Y = 0, Y = 1, . . . , Y = 100}. Any subset of Ω is termed a
proposition, and interpreted as the union of its components. Thus if A =
{Y = 0, Y = 1, Y =2} then Pr(A) = Pr(Y = 0 or Y = 1 or Y = 2). But how
does one assess Pr(A)? One operationalisation of the Bayesian approach is
to think of Pr(A) as the value of v that minimises, for me (or whoever’s
probability is being assessed), the loss function (v − IA)2, where IA is the
indicator function of the proposition A, i.e. IA = 1 if A is true, and 0
otherwise. If I was sitting at my desk with the meteorological records for
the Met Office roof in front of me, I would know whether or not A was true.
In this case v = 1 would minimise my loss if it was, and v = 0 if it was
not. In general, however, I would likely settle on a value for v somewhere
between 0 and 1: where exactly would be a quantification of how probable
I thought that A was. This operationalisation in terms of a loss function is
less familiar than the one in terms of betting, but perhaps more palatable
to people who don’t bet, or who are suspicious of betting; the betting
approach is described in Jeffrey (2004), and the relationship between the
two approaches is explained in Goldstein and Wooff (2007, Section 2.2).

The operational definition of probability is combined with a simple
rationality principle: I would never choose a probability (or, more generally,
collection of probabilities) which resulted in a loss that could be unam-
biguously reduced no matter what the outcome. Probabilities obeying this
principle are termed coherent. It is easy to show that coherence implies the
three axioms given above. For example, if I chose a value for Pr(A) that
was strictly less than zero, then a value Pr(A) = 0 would result in a loss
that was smaller, no matter whether A turned out to be true or false; hence
Pr(A) ≥ 0 is implied by coherence.
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In order for these axioms to lead to a useful calculus, we need rules
for describing how knowing the truth of one proposition would change our
probabilities for others. In other interpretations of the probability axioms
this is defined to be the conditional probability Pr(A |B) = Pr(A ∩ B)/
Pr(B), provided that Pr(B) > 0. In the Bayesian approach, however, the
conditional probability Pr(A |B) is operationally defined as the value of v
which minimises, for me, the loss function

IB(v − IA)2, (5.1)

a definition which subsumes Pr(A), which is equal to Pr(A |Ω) since IΩ = 1
with certainty. This definition of conditional probability captures the notion
of describing the probability of A “supposing B to be true”, in the sense
that if B were not true, then IB = 0 and there would be no penalty. It can
then be proved that the relation

Pr(A ∩B) = Pr(A |B)Pr(B) (5.2)

follows as a consequence of the coherence of the collection of probabilities
for A ∩B, A |B, and B (see, e.g. de Finetti, 1972, Chapter 2). The result,

Pr(A |B) =
Pr(B |A)Pr(A)

Pr(B)
providing that Pr(B) > 0, (5.3)

which is an immediate consequence of Equation (5.2), is referred to as
Bayes theorem precisely because it is a theorem: it is a consequence of the
operational definition of Pr(A |B) and the principle of coherence.

The Bayesian approach does not assert that this is how people actually
assess probabilities: it is a model for reasoning, and has the same advantages
and disadvantages as models used elsewhere in science. This viewpoint is
expounded in detail by Howson and Urbach (2006). For simple propositions
we can usually assess Pr(A) directly, without recourse to thinking about loss
functions or betting: most people seem to understand probability without
having to operationalise it. For more complicated propositions, however,
the probability calculus helps us to break probability assessments down
into more manageable parts.

Most of us make our everyday probabilistic assessments directly. For
example, when we assess Pr(rain today) we take account, informally, of
the event “rain yesterday”: we do not do the conditional probability
calculation. In scientific applications, though, the conditional calculation
has two advantages. The first is transparency. The second is slightly more
convoluted.
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In many applications it is possible to construct a “forward model” of the
system, often deterministic, that can be used to propose candidate values
for Y , the collection of quantities we want to assess. For example, suppose
that Y represents the behaviour of a catchment. We could try to specify
judgements about Y directly, but getting the spatial–temporal structure
even approximately right is a huge challenge, and we would be unlikely to
attach much confidence to the outcome. If we have a model which converts
precipitation forcing into catchment behaviour then we can use the model
to constrain our judgements about Y to those that are much more plausible
than we could achieve on our own. Here we treat the forcing as known, for
simplicity; likewise the initial conditions in the catchment.

From now on I will refer to forward models as “simulators”, to avoid
the heavy overloading that the word “model” has.

The catch with simulators is that they are imperfect. One manifestation
of this is that they are only specified up to a vector of parameters
which cannot be operationally defined in terms of the underlying system.
Learning about these parameters is conventionally called calibration if
formal methods are used, and tuning if more informal methods are used.
Any representative value of the parameters is denoted θ, and the “best”
value, the one that is most appropriate for the system, is denoted θ∗

(a capital θ would adhere to the convention mentioned above, but it is
visually intrusive). A simulator evaluation is then written f(θ), where f(θ∗)
is the most informative evaluation.

Therefore before the simulator can be used to make inferences about Y ,
it must be calibrated, and this is where conditioning comes in. Observations
of the system (which are related to Y ), are used to update our judgements
about the best input θ∗, which is represented in terms of the conditional
distribution Pr(θ∗ = θ |Z = zobs), where Z is the representation of the
measurement process, and zobs is the result (this is a function of θ alone,
zobs being specified). Probabilistic calibration uses conditional probability
and Bayes theorem to “reverse” the simulator, and push the information in
zobs back to θ∗. The posterior distribution of θ∗ is

Pr(θ∗ = θ|Z = zobs) =
Pr(Z = zobs | θ∗ = θ)Pr(θ∗ = θ)

Pr(Z = zobs)
. (5.4)

In the numerator, the probability Pr (Z = zobs | θ∗ = θ) is based largely
on the simulator. Of course the simulator does not get us all the way from
θ∗ to Z, because we still have to account for the effect of its inaccuracies,
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and of measurement errors. But it is reasonable to expect the simulator,
if it is carefully constructed, to get us most of the way there. Therefore,
while there is nothing to stop us trying to assess θ∗ directly, taking account
informally that Z = zobs, most people would judge that the method based
on conditioning θ∗ on the observations zobs using Bayes theorem would be
more accurate. If a single value of the “best” parameters was required (e.g.
to be plugged in to a set of simulations under different forcing conditions),
then the mean would be the usual choice. For a defensible treatment
of predictive uncertainty, though, the uncertainty about θ∗ ought to be
included, and the rest of this chapter is concerned with estimating more
general properties of the posterior, such as its mean vector and its variance
matrix.

The next section describes a statistical framework for linking together
the simulator parameters, simulator evaluations, the actual system values,
and the observations, all of which is hidden inside Pr(Z = z | θ∗ = θ).

5.3. Simulator Calibration in a Simple
Statistical Framework

As above, let θ∗ denote the (unknown) “best” values for the simulator
parameters, f(θ) the simulator evaluation at parameter value θ, Y the
system values, e.g. river height at various locations and various times; Z
the measurements; and zobs the actual measured values. While calibration
is learning about θ∗ using Z = zobs, calibrated prediction is learning about
θ∗ and Y using Z = zobs. This chapter focuses on calibration.

The main purpose of calibration is to assess a point value and a measure
of uncertainty for the “best” values for the simulator parameters. Craig
et al. (1997, 2001) and Goldstein and Rougier (2006) discuss the statistical
approach to calibration and calibrated prediction, particularly for large
problems; Kennedy and O’Hagan (2001) provide a more conventional but
less scalable approach. Note that the assertion that there exists a “best”
value for the simulator parameters is not clear-cut; this is discussed within
the context of a more general statistical framework in Goldstein and Rougier
(2004, 2009).

One feature of much of the statistical literature on computer experi-
ments is the replacement in the inference of the simulator with an emulator,
which is a statistical representation of the simulator built from an ensemble
of runs at a collection of different values for θ. Emulators are useful in
situations where the simulator is slow to run, but here we will assume that
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the simulator is quick to run, and can be evaluated every time we need
to evaluate the function Pr(Z = zobs | θ∗ = θ). O’Hagan (2006) provides
an introduction to emulators, and recent work on multivariate emulation is
discussed in Rougier (2008) and Rougier et al. (2009).

Referring back to Equation (5.4), we need to specify the prior distri-
bution Pr(θ∗ = θ) for each θ, and the statistical model Pr(Z = z | θ∗ = θ),
for each combination of θ and z. The prior distribution quantifies our
judgements about the simulator parameters before observing Z (or, more
realistically, neglecting the information that Z = zobs). It must respect
the physical limitations of the simulator parameters, but it should also
reflect information collected from previous observations on the catchment,
or similar catchments, where such information exists. Sometimes a fairly
vague specifications for Pr(θ∗ = θ) will suffice, in situations where there
is lots of information about θ∗ in Z. The “classical” situation where this
occurs is where the components of Z are independent conditional on θ∗.
However, this is emphatically not the case with simulators, for reasons to
be explained below. Therefore the choice of Pr(θ∗ = θ) is likely to have some
impact on the posterior distribution, and it is worth investing some effort
in this choice or, if that is not possible or if it proves too hard, performing
a sensitivity analysis by re-doing the inference for a range of choices.

We also have to specify the statistical model Pr(Z = z | θ∗ = θ). This
is a function of both z and θ, but for inferential purposes it is only ever
evaluated at z = zobs. The function

L(θ) := Pr(Z = zobs | θ∗ = θ) (5.5)

is known as the likelihood function, where “:=” denotes “defined as”. The
likelihood function is a function of just θ, and it appears as though Pr(Z =
z | θ∗ = θ) is not required, except where z = zobs. But the validity of
Bayes theorem depends on the likelihood function being one particular value
from a well-defined conditional distribution, and so we have to specify the
whole distribution Pr(Z = z | θ∗ = θ), even if we only have to compute
Pr(Z = zobs | θ∗ = θ).

Other methods for uncertainty assessment, such as the GLUE approach
(see Chapter 6), specify a “likelihood-like” function: a function of θ for
which smaller values indicate a poorer fit to the data. The principle is
explained in Smith et al. (2008). Inferences based on these “informal
likelihood” measures cannot be formally interpreted as probabilities. They
might, however, be informally interpreted as probabilities: within the
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subjective framework there is nothing to stop an individual from adopting
whatever method he or she sees fit to assess his or her probabilities.
The issue, though, is whether the resulting assessments are transparent
enough to be authoritative. There is, perhaps, a lack of authority in a
probabilistic assessment that cannot be demonstrated to be consistent with
the probability calculus (however, further discussion on this is contained in
the final paragraph of this section).

We could specify Pr(Z = z | θ∗ = θ) directly, but in practice it is
easier to induce this distribution by specifying two other quantities. We will
assume, for simplicity, that the components of f(θ), Y , and Z correspond
one-to-one, for every θ. The difference Y − f(θ) denotes the difference
between the system values and the simulator output when evaluated at θ.
This is uncertain because Y is uncertain. The difference

ε := Y − f(θ∗) (5.6)

denotes the simulator discrepancy. This is the difference between the system
value and the simulator output when evaluated at the best choice of
parameter values, θ∗. This is uncertain because both θ∗ and Y are uncertain.
Next, we need a statistical model for the measurement error, to take us from
Y to Z:

e := Z − Y. (5.7)

Putting these together, we have a statistical model for the distribution of
Z conditional on θ∗, since

Z ≡ Y + e ≡ f(θ∗) + ε+ e, (5.8)

where “≡” denotes “equivalent by definition”.
In the simplest case where θ∗, ε and e are treated as probabilistically

independent, a treatment that is almost always used in practice, our choices
for the marginal distributions of ε and e induce the conditional distribution
Pr(Z = z | θ∗ = θ). For example, suppose that we decide that both ε and
e are multivariate Gaussian (this might require a transformation of f(θ),
Y , and Z), each with mean zero, and with variance matrices Σε and Σe.
Exploiting the fact that the sum of two independent Gaussian distributions
is Gaussian, we find that

L(θ) = ϕ(zobs; f(θ),Σε + Σε), (5.9)
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where φ(·) is the Gaussian Probability Density Function (PDF) with
specified mean and variance.

We will adopt these choices from now on, so that our task simplifies to:
(i) choosing a prior distribution for θ∗ and choosing the variance matrices
Σε, and Σe; and (ii) calculating Pr(θ∗ = θ |Z = zobs) on the basis of these
choices. Strategies for doing the calculation are discussed in Sections 5.3
and 5.4.

Now we can clarify why simulators do not give rise to observations that
are conditionally independent given θ∗. When simulators are inaccurate,
their errors are almost always systematic across the output components.
For example, if the simulator predicts a value that is too high at time t,
then we would usually judge that this error will persist into time t + 1, if
the unit of time is not too large. This persistence of errors is represented by
dependence among the components of the discrepancy ε. This dependence
means that the observations are not conditionally independent given θ∗.
The only situation in which we can ignore the discrepancy (in the sense
that it has little effect on the inference) is when it is dominated by the
measurement error, so that Σε + Σe ≈ Σe. It is fairly standard to treat
the measurement errors as independent, and in this case the observations
would be conditionally independent given θ∗. But if the observation errors
are large, then the data are not very informative about θ∗, and so the choice
of prior Pr(θ∗ = θ) will be important.

Specifying the discrepancy variance Σε is the hardest task in calibrating
a simulator. Often it is ignored, i.e. implicitly set to zero. In this case
each observation is treated as more informative than it actually is, and
the result can be incompatible posterior distributions based on different
subsets of the observations. Another example of a poor implicit choice
is to minimise the sum of squared differences between zobs and f(θ).
This is equivalent to finding the mode of the posterior distribution in the
special case where both Σε and Σe are proportional to the identity matrix,
which treats each component’s “discrepancy plus measurement error” as
independent and identically distributed. The problem with this choice is
that it ignores the persistence of simulator errors, and so over-weights
collections of observations for which these are correlated, e.g. those that are
close in space or time. A crude way around this is to thin the observations,
arranging it so that they are sufficiently well-separated enough that the
persistence is negligible. This is an effective strategy if the observations
are plentiful, and it reduces the specification of Σε to a diagonal matrix:
perhaps even simply σ2

εI for some scalar σε and identity matrix I, if all
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the observations are the same type. In general, however, the diagonal
components of Σε will have to be set according to how good the simulator is
judged to be, and the off-diagonal components according to how persistent
the simulator errors are judged to be.

One particular difficulty when specifying the discrepancy variance for
hydrologic simulators is the time-series nature of the outputs. The simulator
transforms an irregular forcing into a time-series that reflects catchment
properties. One aspect of the simulator’s limitations is getting the delays
slightly wrong. A minor error in the delay can result in a large additive
discrepancy if the forcing changes rapidly, even though the eye would
consider the fit between simulator output and observations to be good.
This can be encoded into Σε in the form of a contribution with a large
localised correlation, but this is something of a fudge. A better strategy is
to transform the simulator output and observations, effectively retaining
information that is insensitive to minor errors in the delay. A recent
development in statistics may be useful here, known as Approximate
Bayesian Computation (ABC). This concerns stochastic simulators, and
the idea is to construct likelihoods based on distances between summary
statistics. This has much in common with the Informal Likelihood approach
of Smith et al. (2008) mentioned above. Toni et al. (2009) is a useful
reference, although the field is developing rapidly.

5.4. Simple Sampling Strategies

The posterior distribution in Equation (5.4) is very unlikely to have a closed-
form solution (which would only happen if the simulator was linear and the
prior Pr(θ∗ = θ) was Gaussian). Therefore either we estimate the constant
of integration, Pr(Z = zobs), or we use a random sampling scheme that
does not require this value to be computed explicitly. For simplicity, we
will assume from now on that θ∗ is absolutely continuous with prior PDF
πθ∗(θ) and posterior PDF πθ∗ |Z(θ), for which Bayes theorem states

πθ∗ |Z(θ) = c−1L(θ)πθ∗(θ) where c :=
∫

Ω

L(θ)πθ∗(θ)dθ, (5.10)

where Ω ⊆ Rp is the parameter space, and c is the normalising constant
(also known as the marginal likelihood), which we previously denoted as
Pr(Z = zobs).

If p (the dimension of Ω) is low, say less than five, the former approach
may be the best option. In this case, a deterministic numerical scheme can
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be used to approximate c (see, e.g. Davis and Rabinowitz, 1984; Kythe
and Schäferkotter, 2004). Once this value has been computed, the posterior
distribution can be summarised in terms of means, standard deviations and
correlations, using further integrations. If a single point-estimate of θ∗ is
required, the posterior mean is usually a good choice.

If p is much larger than about five, though, this approach becomes
unwieldy, because so many points are required in the integration grid. The
alternative strategy is to randomly sample from the posterior directly, which
can then be summarised in terms of the properties of the sample. These
properties include quantiles, since the empirical distribution function of
any parameter can be computed directly from the sample, and this can
then be inverted. Sampling does not of itself fix the problem of a high-
dimensional parameter space. In particular, n function evaluations in a
random sampling scheme are likely to do a worse job than n points in an
integration scheme, since in the latter these points will be chosen to span Ω.
But the overriding advantage of sampling is its flexibility: we can keep going
until the summaries of the posterior are accurate enough for our purposes,
and we can adapt our approach as we go along. Numerical integration
requires us to operate on pre-specified grids, and if we find out that an
n-point grid does not deliver the required accuracy, then it is hard to reuse
these points in a more accurate calculation on a new, denser grid (although
Romberg integration is one possibility; see Kythe and Schäferkotter, 2004,
Section 2.7).

The subject of Monte Carlo sampling is huge and still developing;
Robert and Casella (2004) is a standard reference. Some of the most recent
progress will undoubtedly be highly relevant to simulator calibration, such
as particle Markov chain Monte Carlo methods (Andrieu et al., 2010). But
here we outline one of the simplest approaches, importance sampling, since
it is intuitive and corresponds quite closely to much current practice. The
mantra for the most basic form of importance sampling is sample from
the prior, weight by the likelihood. The following steps are repeated for
i = 1, . . . , n:

(1) Sample θ(i) from πθ∗(θ);
(2) Evaluate the simulator to compute f(θ(i));
(3) Now compute the weight wi := L(θ(i)), e.g. using Equation (5.9).

The weights describe the quality of the fit between each f(θ(i)) and zobs,
taking account both of the simulator discrepancy and the observation error.
Upweighting candidates for θ∗ that give a good fit to the observations is very
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intuitive, but this general principle gives no guidance regarding the form of
the weighting function. The Bayesian formalism indicates that in this simple
approach (a more sophisticated approach is described in Section 5.4) the
correct choice for the weighting function is the likelihood function.

After n samples, the mean of the weights is an estimate of c:

c ≡ E(L(θ)) ≈ n−1(w1 + · · · + wn), (5.11)

where the expectation is with respect to πθ∗(θ). To estimate the posterior
expectation of some specified function h(θ) we compute

E(h(θ)) = c−1

∫
Ω

h(θ)L(θ)πθ∗(θ)dθ

= c−1E(h(θ)L(θ))

≈ w1h(θ(1) + · · · + wnh(θ(n)))
w1 + · · · + wn

, (5.12)

where n−1 cancels top and bottom. Thus to estimate the mean vector µ
we choose h(θ) = θ, and to estimate the variance of θ∗i or the covariance
between θ∗i and θ∗j we choose h(θ) = (θi−µi)(θj−µj), where for the variance
j = i.

We can also estimate quantiles, by inverting the distribution function.
The cumulative probability Pr (θ∗ ≤ θ′ |Z = zobs) can be estimated for
any θ′ by setting h(θ) = Iθ≤θ′ , remembering that Iθ≤θ′ is the indicator
function. For simplicity, suppose that θ∗ is a scalar (i.e. p = 1). Then the
estimated posterior distribution function of θ∗ has steps of

w(1) + · · · + w(i)

w1 + · · · + wn
(5.13)

at each o(i), where o(1), . . . , o(n) are the ordered values of θ(1), . . . , θ(n), and
w(1), . . . , w(n) are the correspondingly-ordered weights. This distribution
function can be inverted to give marginal posterior quantiles; i.e. we identify
that value o(i) for which Pr (X ≤ o(i) |Z = zobs) is approximately equal to
our target probability. An intuitive measure of uncertainty about θ∗ is the
95% symmetric credible interval, which is defined by the 2.5th and 97.5th
percentiles. It is a mistake often made in practice, but this should not be
referred to as a 95% confidence interval, which is quite a different thing
(see, e.g. a standard statistics textbook such as DeGroot and Schervish,
2002, Section 7.5).
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5.5. Comparison with Current Practice

Current practice for calibration is diverse, but one strategy that is used
frequently is to sample θ(i) from the PDF πθ∗(θ) and then select only those
samples that match the observations sufficiently well. This practice requires
us to provide a metric for what we mean by “sufficiently well”, and to specify
a threshold at which samples are de-selected. For the metric, any number
of different choices are possible, although the Nash–Sutcliffe measure seems
to be the most popular in hydrology. For the threshold, it would be wise
to make a choice that depends on the metric and the observations, in the
sense that the samples that are selected ought to “look right” to an expert.
The prescription that one ought to set this type of threshold in advance
(rather than in conjunction with the observations) is part of the Neyman–
Pearson orthodoxy for statistical testing, but can lead to difficulties if used
uncritically; as Good (1956) notes, it may be “good advice to those whose
judgement you do not trust”. These issues are resolved in the Importance
Sampling approach, which tells us that the metric is the likelihood, and
that we should re-weight rather than select.

Selection cannot be consistent with importance sampling unless the
likelihood function is zero for some set of parameter values, and constant
on the complement of this set in Ω. It is hard to imagine such a likelihood
function emerging from any reasonable choice for the conditional probability
of Z given θ∗; hence, this approach cannot be said to generate a sample
from the posterior PDF πθ∗ |Z(θ). Selection does arise in rejection sampling,
but only if performed on a stochastic basis. Rejection sampling can be used
with a likelihood function such as (5.9), which can easily be majorised (see,
e.g. Rougier, 2005), but importance sampling is more efficient for estimating
means and variances.

5.6. More Advanced Strategies

Sampling from the prior distribution and weighting by the likelihood is very
intuitive. It works well in situations where the observational data are not
highly informative, so that the posterior PDF πθ∗ |Z(θ) is not that different
from the prior, πθ∗(θ). This is because the sampled values {θ(1), . . . , θ(n)}
do a good job of spanning the θ-values that predominate in the posterior.
Typically the observational data will not be highly informative when the
measurement errors are large; when the discrepancy is large (i.e. the
simulator is judged to be poor); or when the simulator output is fairly
constant in θ.
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What about the other situation, though, when the observations are
expected to be highly informative? In this case, simple importance sampling
“wastes” simulator evaluations by putting many of the θ(i) into regions
of the parameter space that have near-zero likelihood, and thus near-zero
posterior probability. In this case, it would be more efficient to find a way to
sample the θ(i) so that they were likely to occur in regions of high posterior
probability. Importance sampling allows us to do this, and to correct for
the fact that we are not sampling from πθ∗(θ).

Suppose we think that some specified PDF π′
θ∗(θ) is likely to be a

better approximation to the posterior PDF than is πθ∗(θ), and that π′
θ∗(θ)

is easy to sample from and to compute; π′θ∗(θ) is known as the proposal
distribution. The PDFs πθ∗(θ) and π′

θ∗(θ) must satisfy certain technical
conditions: π′θ∗(θ) > 0 wherever πθ∗(θ) > 0, and the ratio L(θ)πθ∗(θ)/π′θ∗(θ)
must be strictly bounded above (these are discussed further below). Where
these conditions hold, the sampling strategy is:

(1) Sample θ(i) from π′
θ∗(θ);

(2) Evaluate the simulator to compute f(θ(i));
(3) Now compute wi := L(θ(i))πθ∗(θ(i))/π′

θ∗(θ(i)).

Then we proceed as before. Note that this generalises the strategy of the
previous section, where the proposal distribution was taken to be πθ∗(θ). We
only have to compute the likelihood and the two PDFs up to multiplicative
constants, since the product of these will cancel out when we take the ratio
of the weights.

How do we choose a good proposal distribution? One simple approach
is to approximate the posterior distribution using numerical methods.
Asymptotic theory suggests that as the amount of information in zobs

becomes large, so the prior becomes less and less important in determining
the posterior, and the likelihood function tends to a Gaussian PDF
(Schervish, 1995, Section 7.4.2). Now this is unlikely to be true in the
case of calibrating a hydrologic simulator: there is unlikely to be sufficient
information in zobs, particularly if we are realistic about the size of the
simulator discrepancy. But the attraction of importance sampling is that
the proposal distribution only needs to be approximately like the posterior.
In fact, pragmatically, the proposal only needs to be a better approximation
to the posterior than the prior is.

One simple approach is to take the proposal distribution to be a
multivariate Gaussian distribution. The mean vector is the maximum
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likelihood value,

θ̂ = sup
θ∈Ω

lnL(θ), (5.14)

where “ln” denotes the natural logarithm, and the variance matrix is the
negative of the inverse of the Hessian matrix of ln L(θ) evaluated at θ = θ̂:

Σ̂ := −
[

∂2

∂θi∂θj
lnL(θ) |

θ=bθ

]−1

. (5.15)

Both θ̂ and Σ̂ can be assessed in a single numerical maximisation of the log-
likelihood function: this maximisation does not have to be overly precise.
It is interesting to make the link back to more deterministic methods
of simulator calibration, in which finding θ̂, the best-fitting simulator
parameter, is seen as the goal. In this respect the Bayesian approach is
clearly a generalisation: one that allows us also to assess the uncertainty in
our choice of simulator parameters.

The Gaussian proposal is very tractable, and seems a safe choice
because π′

θ∗(θ) > 0 for all x ∈ Rp, so that the condition π′θ∗(θ) > 0 wherever
πθ∗(θ) > 0 is automatically met. But there is a risk that the posterior
distribution might have thicker tails than the proposal distribution, so that
the condition that L(θ)πθ∗(θ)/π′θ∗ (θ) is strictly bounded above might not
be met, which would result in one or two weights dominating. A simple and
fairly robust expedient is to thicken the tails of the proposal distribution
by switching from a multivariate Gaussian to a multivariate Student-t
distribution with a small number of degrees of freedom (Geweke, 1989).

Why stop at just one choice of proposal distribution? This procedure
can be iterated, if we have a measure of how well our proposal distribution is
matching the posterior distribution; this is known as Adaptive Importance
Sampling (AIS) (Oh and Berger, 1992). One simple measure is the Effective
Sample Size (ESS),

ESS :=

{
n∑

i=1

(w̃i)2
}−1

, (5.16)

where w̃i is the normalised weight, w̃i ∝ wi,
∑

i w̃i = 1. The ESS ranges
from 1, when a single wi dominates the weights, to n, when all weights are
equal. It can be shown that the efficiency of the proposal distribution is
roughly proportional to the ESS (Liu, 2001, Section 2.5.3). Once we have
a reasonably-sized sample from our initial proposal distribution, we can
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re-estimate the posterior mean and variance of θ∗, and we can use these
estimates to select a more appropriate proposal distribution, typically by
updating the mean vector and scale matrix of the multivariate Student-t
distribution.

We can think of this approach as a pilot sample followed by the main
sample, or we can iterate a few times, until the ESS has increased and
stabilised at — one hopes — a value fairly close to n. We can use only
the final sample to estimate properties of the posterior distribution or, if
this is not sufficiently large, we can pool estimates from all the samples,
weighting by the estimated standard error. We might also use the ESS to
tune our choice of the degrees of freedom. Adaptive methods can sometimes
be unstable, and so, if resources allow, a duplicate analysis would increase
confidence in the result.

If after several iterations the ESS remains small, this suggests that our
proposal distribution is a poor match to the posterior; i.e. the posterior
is not unimodal and roughly bell-shaped. In this case a large n will be
required, in order to raise the ESS to a reasonable value, or alternatively a
more sophisticated proposal can be used, such as a mixture of multivariate
Student-t distributions (Oh and Berger, 1993). Another possibility is to
transform one or more of the components of θ∗. For example, if a component
is strictly positive, then using a Gaussian marginal distribution for the
logarithm might be better than, say, a gamma distribution for the original
value. Likewise, if a component is a proportion, then a Gaussian distribution
for the logit might be better than a beta distribution for the original
value. Transforming θ in this way, so that Ω = Rp and πθ∗(θ) is relatively
symmetric, is a good principle in general. Another one is to arrange, as
far as possible, that the transformed values will be roughly uncorrelated in
the posterior. Usually, this requires more information about the simulator
than we possess, but we might be able to infer such a transformation from
previous studies, if they have taken care to present multivariate uncertainty
estimates for the simulator parameters.

The more advanced methods in this section are really concerned with
making the most efficient use of a fixed budget of simulator evaluations. The
more efficient methods are a little more complicated to implement, and —
taking a defensive view of the possibility of implementation errors — are
only justified if the budget is a real constraint. However, such methods can
make a huge difference to the accuracy of the resulting approximations. The
most robust and useful recommendation is to proceed in stages: spend some
of the budget on a pilot sample from the prior distribution, and evaluate a
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diagnostic like the ESS. If this is a reasonable fraction of n, then it is quicker
and safer to spend the rest of the budget on more points sampled from the
prior; otherwise, extra efficiency can be purchased with extra coding.

5.7. Summary

The Bayesian approach provides a framework within which we may assess
our uncertainties. It is important to appreciate that there is no unambiguous
“Bayesian answer” to a problem, and that the answer that we derive will be
one that is imbued throughout by our judgements. This is obviously the case
for the process of building the simulator. But it is also the case both for the
formal process of describing and quantifying our beliefs about our simulator,
the underlying system, and the observations; and for the calculations we
implement to approximate features of our inferences regarding the simulator
parameters.

To emphasise a point made at the start, once we have decided to assess
our uncertainty probabilistically, we choose to adopt an approach such as
estimating the posterior distribution πθ∗ |Z(θ) because we think that it
helps us to make better judgements about the “best” value of the simulator
parameters, and it also helps us to convince other people to adopt these
judgements, since our reasoning is transparent. In other words, calculating
πθ∗ |Z(θ) does not automatically lead us to the “right” answer regarding θ∗,
but, rather, to a better and more convincing answer than we might have
got through other methods.

From this point of view it is not necessary to be able to represent,
definitively, our uncertainty about the relationship between the simulator,
the system, and the observations in the form of a probability distribution.
This is far too demanding! Many of the uncertainties are effectively
ontological: there is no operational definition for the “best” value of the
parameters of a simulator. In this situation some authors have proposed a
more general calculus — imprecise probabilities, for example — but it is
simpler (especially for large problems) to perform a sensitivity analysis
within a probabilistic approach. This is perfectly acceptable, if it is
remembered that probability is a model for reasoning, and not reasoning
itself.
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CHAPTER 6

The GLUE Methodology for Model

Calibration with Uncertainty

Keith Beven
Lancaster Environment Centre, Lancaster University, UK

6.1. The Origins of GLUE

The Generalised Likelihood Uncertainty Estimation (GLUE) methodology
was first introduced by Beven and Binley (1992) as a way of trying to
assess the uncertainty in model predictions when it is difficult to formulate
an appropriate statistical error model. It was effectively an extension of the
Generalised Sensitivity Analysis (GSA) approach of Hornberger and Spear
(1981) which uses many model runs with Monte Carlo realisations of sets of
parameters and criteria to differentiate between models that are considered
acceptable (behavioural models) and those that are not (non-behavioural
models). Where the posterior parameter distributions of the behavioural
and non-behavioural sets are strongly differentiated, it suggests that the
results are sensitive to a particular parameter. Where they are not, it
suggests insensitivity. The results, of course, depend on choices of the prior
ranges of the parameters and the criteria used to separate the two sets of
models.

If a model is considered behavioural then we expect that the predic-
tions of that model will have some utility in practice. But the multiple
behavioural models, even after conditioning on some calibration data in
this way, might well give widely different predictions. Beven (1993, 2006a,
2009) later called this the equifinality problem, chosen to indicate that
there may be many ways of reproducing the calibration data acceptably
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in some sense. That does not imply that all the models give equally good
results, nor does it imply that they should be expected to give such similar
results in prediction. The extension incorporated into GLUE therefore was
to associate each behavioural model with a likelihood weight determined
during calibration and use that weight in forming distributions of predicted
variables. Then, as more data become available for model evaluation, the
likelihood weights can be updated (for example using Bayes equation, see
Chapter 5).

GLUE has been criticised for its use of informal likelihood measures
rather than the formal measures of statistical estimation (e.g. Mantovan and
Todini, 2006; Montanari, 2005; Stedinger et al., 2008). Some statisticians
believe that formal probability is the only way of estimating uncertainties
(e.g. O’Hagan and Oakley, 2004). Two points are worth making here.
The first is that there is no reason why a formal statistical error model
cannot be used within the GLUE approach. It is treated simply as an
additional model component with its own parameters. Two examples of
this are Romanowicz et al. (1994, 1996) in applications to rainfall-runoff
modelling and flood inundation modelling. The second issue is whether
the simple error assumptions that are normally made in defining formal
likelihood measures can be justified given the complexity and apparent
non-stationarity of real modelling errors in real applications. The use of
(incorrect) formal likelihood measures will then tend to lead to over-
conditioning and bias in identified parameter values. Beven et al., (2007,
2008) have argued that in these circumstances the choice of a formal
measure might then be incoherent in real applications since we know that
it might lead to incorrect inferences (see also Beven, 2006a).

Of course, this is not the first time that the strong formal requirements
of statistical inference have been criticised. The use of fuzzy set methods,
Dempster–Shafer inference, and Laplacian rather than Gaussian error
formalisms have been proposed elsewhere (see for example, Klir, 2006;
Tarantola, 2005, 2006). Such methods are finding increasing use in areas
relevant to flood risk management. GLUE is generalised in that it can
make use of these alternative methodologies in both forming and combining
likelihood measures (e.g Beven and Freer, 2001; Beven, 2009).

6.2. Model Calibration as Hypothesis Testing in GLUE

There are two fundamental functions for models in hydrology and other
areas of environmental science: one is as hypotheses in formalising
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understanding of how a system works; another is to make predictions that
will be of use in decision making (Beven, 2002; 2006b). The two functions
are linked in that the testing of predictions against data can confirm (at
least conditionally) the formalisation of understanding and suggest whether
the predictions will be useful in practical applications. The process of testing
is therefore an important part of the modelling process. It has not, to date,
however, been formalised in a rigorous way. Instead, models tend to be
calibrated (often optimised) to fit a set of available data; sometimes tested
against another set of available data (“validation”) and the results evaluated
qualitatively in terms of being fit for purpose. There has been little testing of
multiple models as different hypotheses about how the system works; there
has been little rejection of models as inadequate (or at least such results
are rarely reported). There are good reasons for this. Ideally we want to
find model structures that are consistent with the available observations for
the right reasons (Beven, 2001, 2006c, 2012; Kirchner, 2006). However, we
know that there is the possibility of making Type I (accepting a false model)
and Type II (rejecting a good model) errors because of the uncertainties
associated with model inputs and the observations with which the model
will be compared. We also know that there is the possibility of making
Type III errors (of finding models that appear to work well in calibration,
but that do not have the correct process representation or are missing
critical processes when new conditions outside the range of calibration
instigate a new type of response).

Beven (2006a) proposes a rejectionist strategy to hypothesis testing
that extends the GLUE approach of differentiating between models that
are accepted as behavioural and those that are rejected as non-behavioural.
It is suggested that prior to making any model runs, limits of acceptability
are defined for each observation to be used in model evaluation. The
foundation for the limits of acceptability are the observation error itself, but
Beven notes that other sources of error, especially input error, might affect
acceptability and that some “effective observation error” might be required
to set limits that avoid making Type II errors. If limits of acceptability can
be defined in this way, then a non-statistical hypothesis testing framework
follows quite naturally in a way that is consistent with the equifinality thesis
that underlies GLUE. Essentially, a large number of feasible models are run
and the models that satisfy the limits of acceptability are retained for use
in prediction; those that do not are rejected. This can be applied to any
model structures (and multiple parameter sets within a model structure)
that can be evaluated in the same way.
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6.3. Setting Prior Limits of Acceptability

Model evaluation as hypothesis testing is dependent on setting the right sort
of limits of acceptability. This is not an issue in statistical identification,
where a formal likelihood function follows directly from the assumptions
about the structure of the errors. In most applications this means that
no models are actually rejected, they are just given very low likelihoods
relative to those that maximise the likelihood function. In this case, model
runs that might have rather similar error variance can be given orders of
magnitude different likelihoods. This is the over-conditioning that gives rise
to problems in the formal approach when those error assumptions are not
correct.

The extended GLUE methodology is based on a model evaluation based
on limits of acceptability defined prior to the model being run (Beven,
2006a). The limits of acceptability should take account of observational
error, incommensurability errors due to transformation or heterogeneity
effects for the original measured variable, and the effects of input error.
This is because the decision over whether a model is considered acceptable
or not will depend on the effects of input error as processed by the
model. Work has already been carried out on allowing for measurement
errors (e.g. Blazkova and Beven, 2009; Freer et al., 2004; Liu et al., 2009)
but input error is a greater problem. Within GLUE, all models that
provide predictions consistently within that range of acceptability can be
retained for use in prediction; those that do not are rejected. Evaluation
on multiple criteria is easily handled in this framework, as is allowance for
non-stationarities and temporal or spatial correlations in prediction errors.
Different types of model diagnostics, including soft information and tracer
data, can also be used in such evaluations. These evaluations may result
in all the models being rejected (if no explicit compensating additive error
component is included), but examination of where and how the models
fail may lead to suggestions for improvements to either the model itself or
to a reconsideration of the input and/or observational data and effective
observation errors being used. We expect such diagnostics might also
have a role in revealing the potential for compensatory error components
and model improvements to developers and users (see Figure 6.1 in an
application of dynamic Topmodel to the Brue catchment). This appears
to be a useful framework within which to develop novel model diagnostic
techniques.
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Figure 6.1. Plots of standardised scores relative to limits of acceptability (range −1
to 1) for 2 different parameterisations of dynamic TOPMODEL.

Ideally, we would hope acceptable models would be satisfactory for
all of the specified limits, but this might not be possible. In an analogous
way to the tails of distributions in statistics, there might be some outlier
observations that might be difficult for any model to satisfy, even after
allowing for input errors. Experience suggests, however, that the deviations
of model predictions outside the limits of acceptability will normally be
structured and, in particularly, have non-stationary bias (e.g. a tendency
to over-predict on rising limbs of hydrographs and under-predict on
falling limbs or vice versa). This has led to work on error diagnostics
that attempts to analyse these deviations and go beyond the manifesto
ideas to take more explicit account of the non-stationarities in bias and
range of modelling errors in prediction. An algorithm for doing this has
already been developed within the extended GLUE approach and is the
subject of two papers (Blazkova and Beven, 2009; Liu et al., 2009). The
results will feed back into the dialogue on potential model structures with
experimentalists.
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6.4. The Issue of Input Error

We have already noted that the testing of models as hypotheses depends
crucially on input error. It is a modelling aphorism that even the “true”
model (if it existed) would not necessarily give acceptable predictions if
driven with inadequate inputs. Thus defining the limits of acceptability
for hypothesis testing, must take some account of input error so as to
avoid Type II errors. Unfortunately, in hydrological models, input errors
are not purely random or aleatory but involve non-stationary bias effects
from event to event and within events. It is consequently difficult to propose
a suitable model structure to represent input errors. Interactions with the
model structure are then implicitly included in the range of outputs.

There is one obvious approach to take to the input error problem, which
is to run multiple possible input realisations though every model realisation.
For all but the very simplest models, however, the number of degrees
of freedom that this strategy involves would make the computational
cost prohibitive. An alternative, computationally feasible, strategy can be
formulated as follows:

1. Define one or more representative models.
2. Run different plausible input scenario realisations through those models

to evaluate the range and distribution of errors to be expected, purely
on the basis of input error (a similar strategy has been used before by
Pappenberger et al., 2005, in the European Flood Forecasting System
project).

3. Combine these errors with the observation and commensurability errors
for the variables used in model evaluation, weighted by their distribution
to define limits of acceptability.

This assessment of the effects of input error can then be done prior
to running and evaluating the performance of multiple model realisations
using a full set of Monte Carlo realisations. There remains the question
of how to define plausible input errors, for rainfalls, antecedent conditions,
channel geometry, representation of floodplain geometry and infrastructure,
etc., in flood risk assessment.

6.5. Prediction Uncertainty Using Likelihood Weights

Within the extended GLUE methodology, the limits of acceptability provide
a means of defining the set of behavioural models. There is then the
possibility of assigning different weights to the predictions of each of those
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models in forming a distribution function of the model outputs (note
that this can include a statistical model of the errors if the user wishes
and is happy that the assumptions are satisfied). An obvious form of
likelihood measure is the type of triangular or trapezoidal fuzzy measures
suggested in Beven (2006a) in which a weight is defined for each observation
dependent on the departure of the prediction for a particular model from
that observation. The weights from each observation can then be combined
in different ways (multiplicative, weighted addition, fuzzy union or fuzzy
intersection, etc.) with any prior weight associated with that model to give a
posterior weight after evaluation, over all the available observations. Similar
weights can be defined for evaluations using the types of soft information
described above.

Given the posterior likelihood values, the predictions from each reali-
sation can then be weighted by the associated likelihood value to calculate
prediction quantiles as:

P (Ẑt < zt) =
i=NB∑
i=1

{L[M(Θi, I)] | Ẑt < zt}, (6.1)

where Ẑt is the value of variable Z at time t simulated by model i.
Within this framework, accuracy in estimating such prediction quantiles
will depend on having an adequate sample of models to represent the
behavioural part of the model space. This, however, is a purely computa-
tional problem that will depend on the complexity of the response surface
within the parameter space, the dimensionality of the parameter space, and
the number of model structures to be considered. Iorgulescu et al. (2005,
2007), using a similar procedure, identified 216 behavioural models from two
billion simulations in a 17 parameter space. These were not all in the same
area of the space, and showed rather different predictions of the behaviour
of the system when considered in terms of effective mixing volumes.

6.6. Dealing with Multiple Models

The GLUE concepts of equifinality and likelihood weighting can easily
be extended to consider multiple model structures in a way (somewhat)
analogous to Bayesian model averaging, providing that each of the model
structures can be evaluated in the same way (i.e. that a consistent likelihood
measure can be defined for all models). In GLUE however, unlike Bayesian
model averaging, there is no attempt to try to optimise a combination
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of different models in fitting the data since it is expected that such a
combination might be over-conditioned in calibration and prove to give
non-optimal predictions. Instead, each realisation of parameter sets within
each model structure is run and evaluated. It will prove to be either
behavioural (within the defined limits of acceptability) or will be rejected
as non-behavioural. Likelihood weighted Cumulative Density Functions
(CDFs) of the predicted variables can be formulated in the same way as
before, but may now include results from multiple model structures as well
as different parameter sets. This may give some indication about whether
one model structure (as a hypothesis of system response) performs better
than another; it may suggest that there is little to choose between different
model structures. Note that the model structures need not have the same
parameters — the models are sampled in their own parameter spaces; it is
only the predicted variables that need to be the same.

6.7. The Meaning of GLUE Uncertainty Limits

There are thus a wide variety of ways in which to approach the evaluation
and conditioning of models within the GLUE framework. The choice of a
measure will be generally a subjective choice, but argued and reasonable for
the model purpose. The resulting prediction quantiles will therefore also be
dependent on this choice. Thus any prediction bounds produced using the
GLUE methodology are conditional on the choices made about the range
and distribution of parameter values considered, the model structure or
structures considered, the likelihood measure or measures used in defining
belief in the behavioural models, and the way of combining the different
measures. These are all subjective choices but must be made explicit (and
can be debated or justified if necessary).

The prediction bounds are then taken from the quantiles of the cumu-
lative likelihood weight distribution of predictions over all the behavioural
models as in (6.1). They may be considered as empirical probabilities
(or possibilities) of the set of behavioural model predictions. They have
the disadvantage that unless a formal error model is used (where the
assumptions are justified) they will not provide formal estimates of the
probability of estimating any particular observation conditional on the set
of models; they have the advantage that the equifinality of models as
hypotheses, non-stationarities in the residual errors, and model failures
are more clearly revealed. They reflect what the model can say about the
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response of the system, after conditioning on past data. It is then up to the
user to decide whether the representation is adequate or not.

Experience suggests that for ideal cases where we can be sure that the
model is a good representation of the system (unfortunately, in the case
of environmental systems, this is normally only the case in hypothetical
computer experiments) the GLUE methodology with its implicit treatment
of residuals, can provide good bracketing of observations. The effects of
strong input error and model structural error, however, may mean that it is
simply not possible for the range of responses in the model space to span the
observations consistently. This is, nevertheless, valuable information. Since
the residual errors in such cases are not necessarily random or stationary,
it may not be appropriate to represent them as a random error model.

6.8. Conclusions

This final point about the possible epistemic (rather than aleatory) nature
of the errors is the reason why the more general approach to uncertainty
estimation that is provided by the GLUE methodology might be valuable in
real applications. The classical and Bayesian statistical approaches to model
calibration make the assumption that the errors can be treated as aleatory
(perhaps after some transformation or allowance for model discrepancy)
and that, therefore, every residual will be informative in model calibration.
As noted earlier, some hydrologists have taken a hard line that this is the
only way to approach model calibration in an objective way (Mantovan
and Todini, 2006; Stedinger et al., 2008). But their arguments are based
on hypothetical examples, when every residual is informative by prior
assumption. It does not follow that this is also the case in real examples
when there are many explanations for why particular residuals might be
disinformative (Beven, 2006a; Beven et al., 2009). Thus the question of the
real information content of a set of residuals in the face of epistemic input,
commensurability and model structural errors remains open. The GLUE
methodology as currently used does not provide more than an interim
methodology to allow for the effects of such errors. Improved methods
for evaluating information content and uncertainty estimation for real
applications with complex errors are required in the future.
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7.1. Introduction

At some level, precipitation is the primary driver of almost all flood events,
with the exception of coastal floods. Flooding is usually a direct response to
rainfall experienced over a period ranging from minutes (in the case of urban
runoff) to months (for some groundwater flooding), although the role of pre-
cipitation may also be indirect as in the case of floods caused by snowmelt.

One approach to flood risk assessment is to consider the statistics of
observed flows, typically peak discharge. However, this assumes implicitly
that neither the climate nor the underlying catchment characteristics will
change over the period of interest; this may be unrealistic. In addition, more
complete information for a particular location is often required, for example,
to estimate flood inundation volumes, or for the design of flood storage and
attenuation systems. Thus for many applications, not least for the study of
the effects of land use and climate change, flood risk management requires
the ability to characterise the rainfall inputs to a system and to understand
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the system response to these inputs. This chapter deals with the first of
these issues; aspects of the second are dealt with elsewhere in this volume.

Our focus is on the assessment and management of flood risk, and the
associated design of engineering solutions. The intended lifetime of such
solutions is typically on the order of decades, where their design requires
consideration of long-term future scenarios of precipitation and system
response. The frequency of events of interest will vary, from relatively
frequent (perhaps 1 in 10 years) for agricultural land, to perhaps 1 in
100 years for the protection of towns from fluvial flooding, and 1 in
10,000 years or more for dams where lives are potentially at risk from a
breach. The methods described in this chapter are not intended for use
in applications such as real-time flood forecasting, where the timescales of
interest typically range from hours to days. Rainfall inputs for such short-
term applications are usually derived from observed precipitation, based on
rain gauge networks and/or rainfall radar, in conjunction with numerical
weather prediction or radar rainfall propagation. Similarly, snowmelt is not
considered here.

A common perception is that floods are a direct result of intense
rainfall over a short period of time, as in the Boscastle flood in the UK
in August 2004 (Met Office, 2005). However, as noted above, the relevant
duration of rainfall can vary from minutes to months. For example, the
widespread groundwater flooding in the UK in winter 2000–2001 was
associated with exceptional rainfall totals for the period September 2000
to May 2001, with two-month totals exceeding a return period of 200 years
(Finch et al., 2004). Rainfall properties must thus be considered in the
context of the response of the underlying hydrological system, which
depends on catchment properties (e.g. soils, land use, geology) and spatial
scale. Precipitation is also important in establishing catchment states, i.e.
the antecedent conditions prior to a specific storm event. Heavy rainfall
on a dry catchment may generate only limited runoff compared with less
intense rainfall on a wet catchment. For example, the extreme severity of
the UK floods of summer 2007 (Pitt, 2008) arose due to intense rainfall
on catchments that were already saturated from the wettest summer in
England and Wales since records began.

A key feature of the rainfall process is its variability in space and
time. This variability depends on storm type, and ranges from highly
localised intense rainfall from convective thunderstorms, to a more uniform
spatial and temporal distribution in widespread frontal systems. The
importance of rainfall variability for flood risk depends on the underlying
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catchment response in a complex manner (Segond et al., 2007). In general,
as catchment response time increases, the hydrological response increasingly
dampens the effects of rainfall spatial and temporal variability. Hence small,
fast responding urban catchments are the most sensitive, requiring temporal
resolution on a timescale of minutes, and large rural catchments are the least
sensitive, particularly where the underlying geology is permeable. However,
as catchment scale increases, there is increasing likelihood that the spatial
extent of a precipitation event is less than the catchment scale, in which case
location effects become important. Segond et al. conclude that in general
for rural catchments in the UK, hourly to daily resolution of rainfall is
required, and suggest guidelines for spatial monitoring density of 16 rain
gauges for 1000km2 and 4–7 for 80–280km2. However, these criteria would
not be adequate for convective thunderstorm events. For urban systems,
sub-hourly data are needed, with a spatial resolution of a few kilometres.

Historically, most approaches to quantifying flood risk have involved
assessing the response of hydrological systems to “design storms” repre-
senting, in idealised form, the structure of rainfall events that are judged
to be extreme in some sense — for example, such that the resulting
storm total is expected to be exceeded once every 100 years on average.
A design storm is typically characterised by a duration, an associated
depth, and a temporal profile (NERC, 1975) This approach dates back
at least as far as the 1940s (Chow, 1964) and subsequently became the
cornerstone of national practice in the UK and elsewhere (e.g. Institute
of Hydrology, 1999, NERC, 1975). However, the approach has several
important limitations. Firstly, flood response generally depends on the
temporal distribution of precipitation, and the use of a fixed temporal
profile may fail to capture important aspects of system performance; this
led Onof et al. (1996) to propose the use of stochastic generation of storm
rainfall time series for flood design. Secondly, many factors other than
rainfall contribute to determining whether or not a particular storm will
give rise to flooding. These include antecedent catchment state in particular,
as discussed above. The relationship between flood probability and rainfall
probability is therefore complex, and in practice is typically represented
in event-based analyses by simple empirical relationships between the
frequency of storm depth (for a specified duration) and flood peak. However,
these relationships may be inappropriate for other flood characteristics
(such as flood inundation volumes and temporal properties), and would
certainly be expected to change in an altered climate. To understand flood
risk fully, it is therefore necessary to consider the temporal sequence of
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rainfall inputs rather than considering individual events in isolation. With
the advent of modern computing power, it is now feasible to address this
by running long time series of rainfall and other weather data through
hydrological models; this is referred to as “continuous simulation”, and
can be regarded as accounting for uncertainty in antecedent conditions
by representing them explicitly. Further discussion of event-based and
continuous simulation modelling can be found in Chapter 9.

As noted above, future precipitation scenarios are required to inform
the long-term management of flood risk. At some level, the dominant source
of uncertainty in such scenarios is the natural variability in the rainfall
process itself, which is much higher than for most other weather variables.
For example, in a 50-year time series of daily rainfall from Heathrow
in the UK, an analysis of variance reveals that just 0.3% of the overall
variation can be attributed to seasonality as represented by the month
of the year, rising to 5% when the data are aggregated to a monthly
timescale. This is typical in our experience, and not only for temperate
climates. For comparison, we have obtained corresponding figures of around
3–6% and 20–30% respectively when analysing wind speed time series at
individual locations in northern Europe; and figures of around 70% and
90% for temperatures. Although seasonality is only one of the factors
that might be expected to affect rainfall, these figures illustrate that the
systematic structure in rainfall sequences is very weak compared with other
variables. To account for this, it is necessary to think in terms of probability
distributions when describing rainfall time series.

For the purpose of flood risk management, another source of uncertainty
relates to future changes in the climate system (this is discussed in more
detail in Chapter 14). From the previous paragraph, it is tempting to
conclude that this is largely irrelevant since the natural variability of rainfall
will dominate any systematic climate change signal. This reasoning is
incorrect, however, since even small shifts in the mean of a distribution can
have surprisingly large effects on aspects relevant to flood risk assessment,
such as the probability of exceeding some high threshold. Furthermore, it
is possible that rainfall variability will also alter in the future, and this
also affects risk. For an illustration of how risk can be sensitive to changes
in rainfall regime that are relatively small compared with the associated
uncertainty, see Cameron et al. (2000a).

Elsewhere in this volume, substantial attention is paid to the treatment
of model parameter uncertainty. As far as rainfall is concerned, this is
tied to the availability and quality of data: for example, long time series
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of daily data are often available (although care needs to be taken to
ensure their homogeneity and quality — see Yang et al. 2006, for example)
so that daily rainfall model parameters can be estimated reasonably
precisely. Sub-daily records tend to be less extensive however, and some
classes of sub-daily models are difficult to calibrate; hence parameter
uncertainty is more of an issue here. At very fine space and timescales,
rainfall measurement becomes difficult using standard techniques: our
experience is that in the UK, the useful temporal resolution of data from
a 0.2mm tipping-bucket rain gauge is around 15 minutes (this is based on
analyses of times between bucket tips and the resulting discretisation of
the rainfall time series at finer timescales). If data are required at finer
resolution then it becomes necessary to rely on indirect methods, such as
drop-counting rain gauges or radar, in which rainfall is estimated based
on measurements of other quantities; this estimation introduces further
uncertainty. Moreover, some measurement techniques are unsuitable for use
in the kinds of applications considered in this chapter because continuing
technological developments make it impossible to assemble data sets that
can be regarded as homogeneous over time. In such situations, one could
try to calibrate the rainfall estimates against some kind of “ground truth”,
but this introduces further problems because the statistical properties
of the recorded sequences can be sensitive to the calibration procedure.
An example of this, in relation to radar–rain gauge calibration, can be
found in Chandler et al. (2007).

When calibrating hydrological models of a system, missing rainfall data
can be an additional source of uncertainty. The most obvious example is
when a few observations, or a block of observations, are missing from an
otherwise complete record. Other common situations can also be regarded
as “missing data” problems, for example, when time series from several
locations have different lengths (in this case, the shorter series can be
regarded as long series with a lot of missing data) or, in extreme cases,
where models require rainfall inputs at specified locations (e.g. the nodes of
a regular spatial grid) but no observations are available at these locations.
If the absence of data values is problematic, they are commonly “filled in”.
Where gridded data are required, for example, it is common to interpolate
observations from a network of rain gauges onto the grid. Interpolation
should, however, be used with care in the kinds of applications considered
here: it is a form of smoothing, and reduces variability. Additionally, it
introduces inhomogeneities since the reduction of variability depends on
the distance from a grid node to the nearest gauge. In Section 7.2.3 below,



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch07

106 R.E. Chandler et al.

we present an alternative that can be used to deal with any of the missing
data scenarios described here.

The remainder of the chapter discusses event-based modelling and
continuous rainfall simulation in more detail. Sections 7.2.2 to 7.2.4 focus
primarily on the use of probabilistic models to represent rainfall variability,
possibly incorporating projections of future climate change; parameter
uncertainty is discussed where it is an issue. Section 7.2.5 gives a brief
discussion of how uncertainty in rainfall inputs is propagated through into
flow estimates; and Section 7.2.6 highlights some current unresolved issues.

7.2. Event-based Modelling

To motivate the discussion in this section, consider an idealised problem
relating to the construction of flood defences that will fail under condi-
tions that arise on average every T years. Assuming that failures occur
independently from year to year (so that the probability of failure in any
one year is 1/T ), the probability that the defences fail within L years
of their construction is 1 — (1 − 1/T )L = p, say. Rearranging this, we
find that to achieve a failure probability of p within a design lifetime of L
years, it is necessary to design for conditions that arise on average every
T = [1−(1−p)1/L]−1 years. For small p, this is approximately equal to L/p.
If, for example, we require a failure probability of at most 0.1 within a design
lifetime of 20 years, then we must design for events that occur roughly every
200 years on average. Although this example is idealised, it shows that in
design problems there may be a real need to consider event magnitudes
that have not been observed during the relatively short period for which
relevant data are available. It is therefore necessary to extrapolate well
beyond the range of the available data into the far tails of the distribution
of possible values, and to quantify the often substantial uncertainty in this
extrapolation. In this section we describe the most commonly used modern
techniques for achieving this.

7.2.1. Extreme value theory

Suppose that we are interested in rainfall at a particular timescale, perhaps
hourly, six-hourly or daily totals. The general aim is to make inferences
about future large rainfall totals, based on historical data. One approach,
reviewed in Section 7.2.3, achieves this by extrapolating from a model fitted
to all available data. Unless the particular model used can be justified by
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some physical theory, however, extrapolation from central properties to
unobserved tail properties can be questionable. An alternative approach
uses only data judged to be extreme, for example the largest values in each
calendar year. Indeed, in some applications only extreme data are available.
Extreme value theory provides an asymptotic justification for particular
families of models for extreme data, analogous to the way that the central
limit theorem suggests the normal distribution as an approximate model
for averages of large numbers of random variables. Coles (2001) gives an
accessible introduction to modern statistical methods for extremes.

To explain the theoretical basis for extreme value models we consider
the simplest situation: a sequence Y1, Y2, . . . of Independent, Identically
Distributed (iid) continuous random variables representing, say, daily
rainfall totals (the iid assumption will be relaxed later). Define Mn =
max(Y1, . . . , Yn), the largest daily total over a block of n days. On studying
the possible behaviour of Mn as n tends to infinity (Fisher and Tippett,
1928) it emerges that, if a non-degenerate limiting distribution for Mn

exists, then it must be a member of the Generalised Extreme Value (GEV)
family, with distribution function

G(x) = P (Mn ≤ x) =




exp

{
−
[
1 + ξ

(
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σ

)]−1/ξ
}

when ξ �= 0

exp
{
− exp

[
−
(
x− µ

σ

)]}
if ξ = 0,

where 1 + ξ(x − µ)/σ > 0 and σ > 0. This suggests the GEV(µ, σ, ξ)
distribution as an approximate model for maxima of long sequences of
iid random variables. For example, we could set n=365 to model annual
maxima. The parameter ξ determines the shape of the distribution, while
µ and σ are location and scale parameters respectively. In terms of
extrapolation, the value of ξ is crucial: if ξ < 0 the distribution of Mn is
bounded above at µ− σ/ξ, while increasing positive values of ξ correspond
to an increasingly heavy upper tail.

Using block maxima is potentially wasteful of information about
large rainfall values. One possible improvement is to use the r(>1)
largest observations within a block. Alternatively, if the entire sequence
Y1, Y2, . . . , Ym is available it will often be more informative to model
the number and magnitude of exceedances of some large threshold u.
Suppose that the limiting distribution of Mn is GEV(µ, σ, ξ). Then, for
sufficiently large u, given that there is an exceedance Y > u, the magnitude
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of the exceedance Z = Y − u has approximately a generalised Pareto,
GP(σu, ξ) distribution, where the scale parameter σu = σ + ξ(u − µ)
(Pickands, 1975). Under the assumed independence of Y1, Y2, . . . , the
number of exceedances has a binomial distribution with parameters m
and P(Y > u). Graphical methods can be used to inform the choice of u
(Davison and Smith, 1990). The extreme value models outlined above can
be viewed as special cases of a point process model for observations over the
threshold u (see Smith, 1989). The natural parameterisation of the latter
model, via the GEV parameters µ, σ and ξ, is invariant to changes in u, a
property which is advantageous if a time-varying threshold is necessary.

7.2.2. Accounting for dependence

In practice Y1, Y2, . . . are often unlikely to be independent. Suppose instead
that they form a stationary sequence of dependent random variables.
Provided that a weak condition limiting long-range dependence at extreme
levels is satisfied, the GEV family can still be used to model block
maxima {Mn}. Local dependence means that threshold exceedances occur
in clusters: the degree of such dependence can be measured using the
extremal index θ, which is defined such that the approximate mean cluster
size is 1/θ. Peaks-over-threshold modelling identifies clusters (e.g. Ferro
and Segers, 2003) and models the peak excesses for each cluster using a GP
distribution. Alternatively, a common GP distribution can be fitted to all
exceedances, assuming independence, and measures of uncertainty inflated
post-analysis (Fawcett and Walshaw, 2007). Note that nθ can be viewed as
the effective number of independent observations. Another approach (Smith
et al., 1997) is to model within-cluster extremal dependence using a Markov
chain. This illustrates a general point: if extreme rainfall observations are
dependent, due to their spatial and/or temporal proximity, then this must
be taken into account when quantifying uncertainty in inferences. This
may be achieved by ignoring the dependence initially and then making
an adjustment using asymptotic theory (Chandler and Bate, 2007; Smith,
1990) or simulation-based methods such as the bootstrap (Eastoe and
Tawn, 2008); or by modelling the dependence explicitly (Casson and Coles,
1999).

7.2.3. Quantities of interest

In the stationary case it is common to make inferences about the level
xp exceeded with a given small probability p in any one year, which is
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approximately the level exceeded on average once every 1/p years. This is
often called the 1/p return level and is a function of the unknown parameters
of the extreme value model. Perhaps surprisingly, in general it is more
likely than not that xp will be exceeded in a given period of 1/p years. To
see this in the case when different years are independent, note first that
by definition, G(xp) = 1 − p, where G(•) is the distribution function of
annual maxima. The probability that xp is exceeded at some point during
any n-year period is therefore 1 − [G(xp)]n = 1 − (1 − p)n. For n = 1/p
this is always greater than 0.5: for example, the probability of exceeding
the hundred-year return level x0.01 during a given hundred-year period is
1 − 0.99100 = 0.63.

Typically samples of extreme data are relatively small, so uncertainty
about the model parameters may be large. Uncertainty about the value
of ξ in particular is often a substantial component of the uncertainty in
estimated return levels. It is not uncommon in hydrological practice to
fit Gumbel distributions (i.e. GEV distributions with ξ = 0), either in
the first instance or after determining that a confidence interval for ξ

includes zero so that the Gumbel is consistent with the available data.
However, this can lead to serious underestimation of the uncertainty in
return levels, as illustrated in Figure 7.1. In the left panel, GEV and Gumbel
distributions have been fitted to annual maxima of hourly rainfall totals
recorded by a rain gauge at Heathrow airport in southern England, for
the period 1961–1990; both have been used to calculate estimated return

Figure 7.1. Return level plots for annual rainfall maxima at Heathrow airport, 1961–
1990. Solid lines show return level estimates and profile likelihood-based 95% confidence
intervals obtained from GEV distributions fitted to the data; dashed lines show the
results obtained using Gumbel distributions.
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level curves with approximate 95% confidence intervals. The maximum
likelihood estimate of ξ is 0.15 with a 95% confidence interval (−0.02,
0.41), which includes zero. However, the Gumbel fit vastly underestimates
the uncertainty at large return levels. The right-hand panel repeats this
comparison for daily rainfall totals. Now, the maximum likelihood estimate
of ξ is −0.11 with a 95% confidence interval (−0.39, 0.28). Since the estimate
of ξ is negative, the Gumbel fit yields higher point estimates at large return
levels than does the more flexible GEV. However, since the data are also
consistent with large positive values of ξ, the upper 95% confidence limits
for large return levels are much greater under the GEV than under the
Gumbel. In the absence of any subject-matter knowledge suggesting that
ξ should be zero, the wider GEV limits yield a more realistic uncertainty
assessment.

7.2.4. Non-stationarity

It is often inappropriate to assume that Y1, Y2, . . . are identically dis-
tributed. It may, however, be reasonable to assume that they form a non-
stationary process, indexed by covariates. In applications where changes in
climate are of concern, time may be a key covariate along with climato-
logical variables anticipated to be associated with the extremes of interest.
Spatial location also often affects extremal properties. Unfortunately, there
is no general extreme value theory for non-stationary processes. Therefore,
the standard approach is to use regression modelling (Davison and Smith,
1990), in which the parameters of the extreme value model depend on the
values of the covariates (note that when forecasting extremes in this way,
uncertainty in the forecast values of the covariates should be incorporated).
It is common to assume that ξ is constant. This is partly a pragmatic
choice stemming from having insufficient data to estimate covariate effects
on shape reliably, but it may also be that ξ is thought to reflect an intrinsic
property of the variable of interest. For example, Koutsoyiannis (2004)
analysed data from a large number of rainfall stations and suggested that
the value ξ = 0.15 is consistent with daily rainfall records worldwide.

7.2.5. Statistical inference

Many methods have been used to make inferences using extreme value
models. Maximum likelihood estimation (see Chapter 4) has several
advantages. Provided that ξ > −1/2, standard theory demonstrates its
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asymptotic optimality (Smith, 1985), although, since extreme data are
rare, small sample performance may also be important (see Coles and
Dixon, 1999; Hosking et al., 1985). Importantly, maximum likelihood can
easily be used to make inferences about regression models for extremes,
without the need for new theory. Likelihood ratio tests provide an objective
means to choose between nested models. Once a model has been chosen
and checked for systematic and isolated departures using residual plots,
uncertainty in quantities of interest can be quantified using confidence
intervals. Intervals can be based either on the asymptotic normality of
the Maximum Likelihood Estimator (MLE), or the asymptotic chi-squared
distribution of the profile log-likelihood function for a particular parameter.
It is important to use the latter method to produce a confidence interval
for the estimate of a return level xp. For small p the sampling distribution
of the MLE of xp is typically highly skewed, but the former method is not
able to reflect this because it is constrained to produce an interval that is
symmetric about the estimate.

7.2.6. Interpretation in a changing climate

In the non-stationary case, return levels depend on covariate values. Care is
required, therefore, to define quantities that are relevant to future extremes.
Suppose that a GEV regression model fitted to annual maxima up to the
present day suggests an upward time trend in, say, the location parameter µ.
What are the implications of this trend for future extreme values? Consider
the largest value Mh = max(X1, . . . , Xh) to occur in a planning horizon
of h years, where the {Xj} are independent GEV random variables with
common scale σ and shape ξ and Xj has location µj = µ0 +βj with β > 0.
One approach is to use simulation to study the distribution of Mh, ideally
incorporating parameter uncertainty using the normal approximation to
the distribution of the MLE. If the trend is large then the largest value will
occur close to the end of the planning horizon with high probability. If the
trend is small then Cox et al. (2002) show that, in the Gumbel (ξ = 0) case,
prediction of Mh based on the projected parameter values at the midpoint,
h/2, of the planning horizon only slightly underestimates the risk of large
rainfalls.

7.2.7. Modern developments

Current UK national procedures for extreme value analysis were developed
in NERC (1975), and updated in the Flood Estimation Handbook (Institute
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of Hydrology, 1999). Annual maximum rainfall data are used and, to reduce
the uncertainty in estimated return levels at any given location, data are
pooled from networks of rain gauges at sites within circular regions centred
on the site of interest. At each site, annual maxima are standardised by
dividing by an estimate of the Median Annual Maximum Rainfall (RMED)
at the site. A separate modelling procedure maps RMED across the UK to
enable frequency estimation at ungauged sites. A graphical fitting method
is used, based on a graph like those in Figure 7.1. The method incorporates
various other refinements which are not given here due to a lack of space.
A difficulty is that uncertainty in estimated return levels is difficult to
quantify, partly as a result of the fitting method (although this can be
overcome in principle using bootstrap techniques) but mainly because
of inter-site correlations in the pooled sample of data used for fitting.
Such difficulties can be overcome using modern developments in extreme
value modelling that make better use of limited data and provide realistic
measures of uncertainty. Cooley et al. (2007), Casson and Coles (1999)
and Smith (1999b) consider parametric regression modelling of trends in
extremes in space and/or time. Ramesh and Davison (2002) use local
likelihood techniques to carry out semi-parametric regression smoothing
of sample extremes, which is particularly useful for exploratory analyses.
Eastoe and Tawn (2008) propose a two-stage approach: a data-based
transformation removes trends in the location and scale of the entire dataset
and then threshold exceedances of the transformed data are modelled. The
general idea is that apparent non-stationarity in extremes can be wholly or
partly attributable to non-stationarity in the main body of the distribution.
Coles and Tawn (1996b) make inferences about rainfall aggregated over
spatial regions based on pointwise rainfall data. Bayesian methodology
(see Chapter 5) can be used to incorporate prior information, either from
experts (Coles and Tawn, 1996a), or from other data sources (Coles and
Powell, 1996). Many recent extreme value analyses use “non-informative”
priors, chosen with the intention of allowing the observed data to dominate
the resulting inferences. Examples include the hierarchical random effects
models of Fawcett and Walshaw (2006) and Cooley et al. (2007) and the
mixture model of Walshaw (2006). The Bayesian framework also provides
a natural way to handle prediction of future extreme events: in principle it
is straightforward to calculate the predictive distribution of, for example,
the largest value to be observed in the next 100 years, given the observed
data. Subject to the choice of prior, this allows for uncertainty in the
model parameters; see Smith (1999a) for a comparison of frequentist and
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Bayesian approaches to prediction of extremes. In some applications it
is important to makes inferences about the simultaneous occurrence of
extreme values in two or more processes, for example, rainfall extremes
at two different locations or aggregated over a catchment. Recent work in
this area (multivariate extremes) includes Heffernan and Tawn (2004) and
Eastoe (2008).

7.2.8. Other considerations for flood risk management

The preceding discussion has focussed on the statistical properties of
single site rainfall, such as that observed by an individual rain gauge.
The variable of interest is typically the depth of rainfall for a specified
duration, where a duration or plausible set of durations is selected for a
given design application according to the catchment response time. Extreme
value analysis is typically undertaken using national or regional data for
a range of durations, and the results generalised as a set of intensity-
duration-frequency relationships that can be used in design (e.g. Institute
of Hydrology, 1999, NERC, 1975).

However, in practice, single site rainfall is almost never the variable
of interest — it is the rainfall that falls over the area of concern that
is important. The estimation of areal rainfall is a problem for design.
Typically an areal average rainfall is used, and this is selected based
on empirical analysis of regional or national data in which a frequency
analysis of areally-averaged rainfall (for a given spatial scale) is compared
with a frequency analysis of single-site rainfall. For a given frequency it
is then possible to compare the areal average with the value of single
site rainfall. The ratio is commonly known as the Areal Reduction Factor
(ARF). In the UK and elsewhere, ARF values are available for national
application (e.g. Chow, 1964, NERC, 1975) and can be used to scale single
site design rainfall to generate an areal average. However, a simple areal
average clearly masks any spatial variability in the rainfall. Hence current
design practice recommends the use of areal averages for small catchments
(<1000km2). There is no clear guidance, however, for application to larger
areas.

7.3. Continuous Simulation of Daily Rainfall

The event-based methodologies of the previous section have the advantage
that the distributions fitted to the extreme events have a firm theoretical
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justification, which provides some protection against the consequences
of extrapolation based on an incorrectly specified model. However, as
described in the introduction to this chapter, the response of any hydro-
logical system to a particular rainfall event will depend on antecedent
conditions. This motivates the development of continuous simulation
methodologies. We start with methods for modelling and simulating daily
rainfall sequences; sub-daily rainfall is dealt with later.

The fundamental idea of continuous simulation is to generate long
time series of rainfall and other relevant input variables (for example,
evapotranspiration), and to run these series through hydrological models
to build up a picture of system response. However, the variability of daily
rainfall is such that any two series, and the associated responses, could be
very different. It is therefore helpful to simulate large numbers of rainfall
time series for the same time period and, for each of these series, to calculate
the values of any quantities of interest. The end result is a distribution
of simulated values of each quantity, which represents uncertainty due to
rainfall variability. Examples are provided below.

For flood risk management, a potential disadvantage of continuous
simulation is that the properties of models fitted to a complete rainfall
time series may be dominated by the “average” behaviour of the series
and, hence, may fail to adequately represent the rare events that are
primarily of interest. Indeed, historically, this was probably one of the main
obstacles to the use of continuous simulation in this kind of application
(e.g. NERC, 1975, Section 2.9), and some authors continue to raise concerns
over the potential for stochastic models to generate unrealistically high
rainfall intensities due to the use of distributions that, in principle, allow
arbitrarily large values to be simulated (e.g. Cameron et al., 1999; Blazkova
and Beven, 2004). However, advances in modelling techniques mean that it
is now possible to contemplate the generation of rainfall time series with
convincing extremal properties. In the present context, the ultimate test of
any continuous simulation procedure is in terms of the duration-frequency
properties of flow scenarios derived from simulated rainfall sequences
(see Section 7.2.5 below). However, any shortcomings here could be due to
deficiencies in representing either the rainfall or the hydrological response of
the system. It is therefore useful to check the two components individually.
We usually assess the ability of simulation models to reproduce a wide
range of properties of rainfall aggregated to different timescales (e.g. daily,
seasonal and annual), as well as comparing simulation-based return level
estimates with those obtained from conventional extreme value analyses of
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the data. Again, examples are given below; Yang et al. (2005) contains more
details.

7.3.1. Review of daily rainfall modelling techniques

Daily rainfall models should have the capability to reproduce the most
obvious features of daily rainfall sequences. These are the presence of
zeroes corresponding to dry days; the highly skewed distribution of non-zero
rainfall amounts; the presence of temporal dependence and the potential
presence of seasonality (although, as illustrated earlier, seasonality can be
relatively weak by comparison with day-to-day variability). Multi-site data
also typically exhibit spatial dependence and systematic regional variability
due, for example, to topographic controls.

Probably the most widespread family of daily rainfall models in use
today can be traced back to the work of Gabriel and Neumann (1962).
The fundamental idea is to use a Markov chain to represent the sequence
of wet and dry days at a site, and to regard non-zero amounts as drawn
independently from a skewed probability distribution such as the gamma or
lognormal. Temporal dependence is therefore accounted for by (but limited
to) the Markov structure of the rainfall occurrence sequence; seasonality
is usually dealt with by estimating separate sets of model parameters
for each month of the year, although other techniques have also been
suggested, for example by Woolhiser and Pegram (1979). The performance
of these simple models is now well understood: they have a tendency
to underestimate the frequency of long wet and dry spells (which could
have implications for the representation of antecedent conditions when
assessing flood risk), and also to underestimate the variability of rainfall
aggregated over long timescales — this high variability is sometimes referred
to as “overdispersion” (Katz and Parlange, 1998). Various attempts have
been made to overcome these deficiencies — for example, Wilks (1998)
uses a mixture of two exponential distributions to model wet-day rainfall
amounts, which alleviates the problem of overdispersion. For more details
and references, see Wilks and Wilby (1999).

A more radical solution to the deficiencies of the simple Markov-based
models is to embed them within a wider, more flexible class. This was
first attempted by Coe and Stern (1982) and subsequently by Grunwald
and Jones (2000), who showed that the models could be regarded as
special cases of Generalised Linear Models (GLMs). In their approach,
the probability of rainfall at a site on any given day is related to the
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values of various covariates using logistic regression, and wet-day rainfall
amounts are modelled using distributions with means that are also allowed
to be covariate-dependent. Specifically, the rainfall occurrence probability
is modelled as

log
pi

1 − pi
= xT

i β,

where pi is the probability of rain on day i, xi is a corresponding vector
of covariates (which might include functions of previous days’ rainfall to
account for temporal dependence, as well as sine and cosine functions
representing the seasonal cycle) and β is a coefficient vector. If the rainfall
amount on day i is non-zero, it is modelled using a gamma distribution
with mean µi, where

log µi = zT
i ξ.

Here, zi is another vector of covariates and ξ another coefficient vector.
The gamma distributions are all assumed to have a common dispersion
(or shape) parameter. This has been found to be a reasonable approxima-
tion in many cases, although there is scope for relaxing this assumption
using the methods described in Smyth (1989), for example.

The papers cited above focussed on models for rainfall at a single
site; subsequently, Chandler and Wheater (2002) showed how to use
GLMs to accommodate spatial–temporal structure, and Yang et al. (2005)
demonstrated their use to simulate multi-site daily rainfall sequences.
A particular feature of their work was the use of interaction terms to deal
with situations in which some covariates modulate the effects of others:
for example, Chandler and Wheater (2002) used interactions to represent
the seasonally varying effect of the North Atlantic Oscillation (NAO) on
rainfall in the west of Ireland. The results here and in several other studies
suggest that GLMs are able to overcome most of the problems associated
with simpler approaches to daily rainfall generation and, in addition, offer
good reproduction of extremes which is important in applications relating
to flood risk management.

A potential drawback with GLMs is that the right-hand sides of
the defining equations above are restricted to be linear functions of the
covariates. This assumption may be relaxed: in the class of Generalised
Additive Models (GAMs), the right-hand sides are written as sums of
smooth functions of the covariates without imposing any specific parametric
form on these functions. Bowman and Azzalini (1997) give an accessible
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introduction to the ideas involved. The additional flexibility offered by
GAMs can be regarded either as a means of representing the covariate
effects more realistically, or as a means of checking the adequacy of
the linear forms adopted in GLMs. GAMs have been applied in the
context of daily rainfall modelling by Hyndman and Grundwald (2000),
Beckmann and Buishand (2002) and Underwood (2008). The (admittedly
limited) experience of GAMs in the rainfall literature to date suggests that
the main opportunities for improvement over GLMs are in representing
the effects of secular trends and previous days’ rainfalls. A potential
disadvantage, however, is that very large quantities of data are required
to estimate complex interaction structures accurately in a non-parametric
framework.

Another non-parametric approach to daily rainfall modelling involves
resampling the observed record (e.g. Buishand and Brandsma, 2001). Here,
for each day of simulation the values of a set of covariates are compared
with those from a historical record to determine which days can be regarded
as similar to that being simulated; one of these similar days is then chosen
at random, and the observed rainfalls at all sites of interest are taken as
the simulated values. The approach makes minimal assumptions regarding
both the nature of the covariate effects and the most appropriate form
of distribution, and is perhaps the most straightforward way to generate
multi-site data where reasonably complete records are available. However,
it has some drawbacks. For flood risk assessment, the most obvious one is
that it will never generate daily rainfalls higher than those observed so that,
unless very long records are available for resampling, the performance could
be poor with respect to properties such as extremes. A further problem is
that as more covariates are considered it becomes increasingly difficult to
find similar days in the historical record (this is often called the “curse
of dimensionality”), so that the approach may be unsuitable when the
covariate-rainfall relationships are complex.

Apart from resampling, rainfall occurrence and amounts are modelled
separately in all of the modelling approaches described above. This often
makes sense physically because the mechanisms governing occurrence and
amounts — and in particular the effects of covariates upon the two
components — are different. For example, rainfall occurrence in temperate
climates tends to be higher in the winter than the summer, whereas the
reverse is true for non-zero amounts (this is due to the predominance of
convective rainfall events in the summer compared with large-scale synoptic
systems in the winter). However, the two-stage approach has been seen as
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unsatisfactory by some authors, and some progress has been made in the
development of models that treat occurrence and amounts simultaneously.
The most common class of such models (see, for example, Bárdossy and
Plate, 1992) treats the rainfall at time t, Yt say, as a function of some
underlying random variable Xt which is normally distributed, for example
via a relationship of the form

Yt =

{
Xβ

t if Xt > 0

0 otherwise

for some transformation parameter β. Covariate effects can be incorporated
into such models. However, the introduction of Gaussian random variables
(Xt) is arguably a rather artificial device. More recent work has sought to
avoid this by using innovative distributions such as those in the Tweedie
family (Dunn, 2004), which model the rainfall Yt directly without the need
for transformation or truncation.

Models for multi-site data are generally less well developed than those
for rainfall at a single site. Alternatives to the multi-site GLMs of Chandler
and Wheater (2002) and Yang et al. (2005), and the resampling approach
of Buishand and Brandsma (2001), include the models of Hughes et al.
(1999), Stehĺık and Bárdossy (2002) and Wilks (1998). Hughes et al. define
a Hidden Markov Model (HMM) which postulates the existence of a small
number of unobserved weather states, each of which has a characteristic
spatial pattern of precipitation that is described probabilistically; the daily
sequence of weather states itself follows a Markov process with transition
probabilities that can be related to the values of covariates. Stehĺık and
Bárdossy work with a transformed Gaussian random field: the correlation
structure of this field ensures that inter-site dependence is preserved in the
simulated rainfall sequences. Wilks’ scheme is similar to this, although here
the transformation to Gaussianity is determined by the assumption that
the non-zero rainfall amounts follow mixed exponential distributions.

As discussed in Section 7.2.1, missing data can often cause problems
in applications and simple solutions such as interpolation in time or
space can be unsatisfactory. For purposes such as the calibration of hydro-
logical models, it may be of interest to determine the sensitivity of model
parameters to uncertainty in rainfall inputs. Where multi-site data are
available, a method for achieving this is as follows. First, determine the
distribution of the missing values conditional upon the observed values
at all sites, then simulate from this conditional distribution many times
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to obtain multiple reconstructions of the complete rainfall series, and then
carry out analyses on each of the reconstructions to quantify the uncertainty
due to missing data. This process is called multiple imputation. The idea
can also be used to generate multiple realisations of rainfall over a regular
grid, which are consistent with observed data at an irregular network of
sites. The main impediment to its widespread use is the lack of multi-site
models for which the required conditional distributions can be calculated
easily. Some progress can be made with models based on transformed and
truncated Gaussian distributions (e.g. Sansó and Guenni, 2000) but, to
our knowledge, the only models that have been specifically designed to
facilitate imputation where necessary are the multi-site GLMs of Yang et al.
(2005) and the multi-site model of Wilks (2009).

To illustrate uncertainty due to natural variability and missing data,
Figure 7.2 shows some specimen simulation and imputation results for one
of the sites in the case study considered by Yang et al. (2005). These
results are based on GLMs fitted to data from a network of 34 gauges in a
50×40km2 region of southern England, and subsequently used to simulate
100 time series of daily rainfall data at ten locations corresponding to a
subset of these gauges, over the period 1961–1999. The simulations were
conditioned on values of the NAO for this period and upon the available rain
gauge observations for December 1960. In addition, ten sets of imputations
were carried out on the 1961–1999 observations themselves, replacing any
missing values by simulated values conditional on the available data as
described above. Simulations and imputations were both generated using
the GLIMCLIM software package (Chandler, 2002). For each set of imputed
and simulated data, various summary statistics were calculated, separately
for each month of the year (see the caption to Figure 7.2 for details). The
solid lines in the figure show the ranges of values from the imputations,
indicating the uncertainty due to missing data. Most of the time this
uncertainty is fairly small, but there are some interesting features such as
the wide range of the imputation envelope for the maximum daily rainfall
in October. The width of this envelope suggests that the October maxima
correspond to imputed values, and hence that data from this site are
missing during a period when other sites recorded particularly high rainfall.
Furthermore, a comparison with the imputed maxima for all other months
of the year suggests that at this site, the highest daily rainfall during the
period may have occurred during October and not been recorded. Failure to
account for this in the flood risk assessment exercise could have potentially
serious consequences.
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Figure 7.2. Distributions of monthly rainfall summary statistics for a site in southern England for the period 1961–1999, obtained using
the GLM of Yang et al. (2005). Row-wise from top left: mean, standard deviation, proportion of wet days, conditional mean (i.e. mean on
wet days only), conditional standard deviation, maximum, and autocorrelation at lags 1 and 2. Thick lines show the envelope obtained

from ten sets of imputations of missing data; shading shows the ranges obtained from 100 simulations of the same period along with
5th, 25th, 50th, 75th, and 95th percentiles.
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The grey bands in Figure 7.2 show percentiles of the distributions
obtained by simulation: these represent uncertainty in the underlying clima-
tology of the site due to natural variability. This uncertainty is substantial.
For example, the 5th and 95th percentiles of the simulated distribution
of mean January rainfall are around 2.4mm and 3.1mm respectively: this
suggests that without any large-scale changes in climate, the mean January
rainfall at this site over a 39-year period could conceivably deviate from its
historical value of around 2.6 mm per day by as much as 20%. Of course,
such conclusions rely on the adequacy of the simulation models upon
which they are based, but the diagnostics reported in Yang et al. (2005)
suggest that in this particular instance the models’ reproduction of rainfall
variability is fairly realistic.

7.3.2. Parameter uncertainty

With the exception of resampling, all of the simulation methodologies
reviewed above are based on models that involve unknown parameters
(and, in the case of GAMs, unknown functions). As noted previously,
long daily rainfall records and relatively parsimonious models ensure
that parameter uncertainty is often small compared with the uncertainty
due to natural variability, and this perhaps explains why little if any
work has been done to quantify its effect. However, modern methods of
model fitting provide uncertainty estimates as a by-product of the fitting
process so that the effect of parameter uncertainty could be investigated
if required. This is perhaps most straightforward when models are fitted
using Bayesian methods (see Chapter 5): in this case, parameter uncertainty
can be incorporated into multiple rainfall simulations by using a different
parameter set, sampled from the posterior distribution, for each simulation.
Of the models described above, HMMs and their variants are usually fitted
using Bayesian methods, which are also particularly convenient for the
analysis of complex models based on transformed Gaussian distributions.

In modern statistical practice, the main alternative to Bayesian model
fitting is the method of maximum likelihood which, providing the model
being fitted is not too complex, has desirable optimality properties.
As discussed in Chapter 4, the distribution of the MLE is approximately
multivariate normal in large samples. Moreover, if the sample size is
extremely large (as is often the case when analysing daily rainfall records)
then there is a close connection between this distribution and the posterior
distribution obtained using a Bayesian analysis, provided that the prior
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distribution in the latter case is not too informative (e.g. Davison, 2003,
p. 579): the posterior is approximately multivariate normal, centred on the
MLE and with covariance matrix equal to that of the MLE (see Chapter 4
for the definition of this covariance matrix). If models are fitted using
maximum likelihood there is some justification for incorporating parameter
uncertainty into multiple rainfall simulations by using a different parameter
set, sampled from this multivariate normal distribution, for each simulation.
Such a procedure can also be regarded as a computationally efficient
approximation to a parametric bootstrap (for an introduction to bootstrap
techniques, see Davison and Hinkley, 1997).

As described in Chapter 5, Bayesian methods also require the specifi-
cation of a likelihood function. For most of the models described above,
likelihoods can be constructed. However, this is extremely difficult for
some classes of model such as multi-site GLMs, because of a lack of
plausible models for joint distributions with highly non-Gaussian marginal
(i.e. single-site) structure. In this case, a feasible alternative to maximum
likelihood is to ignore the joint distributional structure and fit models
to multi-site data as though sites are independent. This amounts to
maximising the likelihood of an incorrectly specified probability model
for the data (because it ignores inter-site correlations). Unfortunately, in
this case the usual expression for the covariance matrix of the parameter
estimates is no longer valid and an adjustment must be made. Details can
be found in Chapter 4.

7.3.3. Incorporating climate change projections

Amid general consensus that the Earth’s climate is changing, any prudent
approach to flood risk management must take account of the impacts of
future changes in climate and land use. Most projections of change are based
on deterministic models of the physical and chemical processes involved,
conditioned on future scenarios of socio-economic development and asso-
ciated greenhouse gas emissions. Atmosphere-ocean General Circulation
Models (GCMs) provide climate simulations on a coarse grid (with typical
resolution currently around 250×250km2 at UK latitudes), while Regional
Climate Models (RCMs) operate on a finer grid resolution (typically around
50 × 50 km2) over smaller areas, for example, Europe. RCM simulations
are usually used to add detail to a GCM simulation over an area of
interest. However, despite continuing improvements in both GCMs and
RCMs, questions remain regarding their ability to represent precipitation
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adequately at the fine space and time scales required (e.g., Beniston et al.,
2007; Blenkinsop and Fowler, 2007; Maurer, 2007). Moreover, to quantify
the uncertainty due to natural variability of rainfall, it is useful to be able
to generate a large number of possible rainfall sequences, and this cannot
be easily achieved using climate models due to computational costs.

Against this background, for the purposes of flood risk management
it is desirable to avoid direct use of climate model precipitation outputs
where possible. In current practice, probably the most widespread approach
to deriving future precipitation is to scale historical series using “change
factors” obtained from climate model outputs (Prudhomme et al., 2002).
If, for example, a climate model suggests that mean winter rainfall in some
future period will be 20% higher than in the past, then a future scenario
is obtained simply by scaling the historical observations by a factor of 1.2.
Although conceptually simple, this technique is difficult to justify and is
completely unsuitable for applications that are sensitive to the temporal
structure of rainfall inputs at sub-seasonal timescales (for example, it does
not allow for changes in the durations of wet and dry spells, which could
affect soil properties and hence, ultimately, flood risk). We therefore do not
consider it further.

A more satisfactory way of using climate model output is to identify
atmospheric variables that are reasonably represented in climate models
and to use these as covariates in statistical models, of the type described in
the previous subsection, for precipitation at the fine space–timescales that
are appropriate for flood estimation. Future precipitation sequences can
then be generated using statistical model simulations conditioned on the
appropriate covariate information from climate models. To compensate for
possible climate model bias, it is conventional to standardise all covariates
with respect to the mean and standard deviation over some historical period
in any such exercise. The approach is referred to as “statistical downscaling”
and there is a substantial literature on it: see Fowler et al. (2007) and
Maraun et al. (2010) for excellent application-focussed reviews.

Statistical downscaling relies on three fundamental assumptions
(e.g. Charles et al., 2004; Wilby et al., 1998; Wilby and Wigley, 2000):
first, that there is a genuine relationship between the chosen indices of
large-scale atmospheric structure and local-scale precipitation; second that
the relevant aspects of large-scale structure, and its change in response to
greenhouse gas forcing, are realistically represented by the climate models
at the scales used for analysis; and finally that the observed relationship
between local precipitation and large-scale structure remains valid under
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altered climatic conditions. Unfortunately, the second assumption cannot
be verified in advance since, even if a climate model is assessed as performing
credibly when simulating the present climate, its future performance is not
guaranteed (IPCC, 2001, p. 473). A pragmatic response is to determine,
on the basis of our understanding of the models, the variables and scales
at which they might reflect reality (Smith, 2002) and to focus on these
variables and scales while acknowledging the underlying difficulty.

The third assumption above implies that statistical downscaling should
be used with caution if climate model simulations contain large-scale atmo-
spheric conditions that have not been observed previously, because it would
involve extrapolating beyond the range of empirical experience (although
it can be argued that the climate models themselves should be used
with care in such situations, because they use parameterisations based
on historical climate). In general, confidence in this assumption will be
increased if the relationship between local scale precipitation and large-
scale atmospheric structure can be justified physically. For the purposes of
generating realistic precipitation sequences, this usually requires the use of
variables representing some measure of atmospheric moisture in addition
to indices of atmospheric circulation such as pressure and temperature
fields. For example, Charles et al. (1999) compared the performance of
statistical downscaling models with and without atmospheric moisture
variables and found that, although the models fitted equally well during
the period used for model calibration, their downscaled projections for a
subsequent period were rather different: the projections from the model
without moisture information were not realistic.

In many situations, the choice of model itself represents a significant
source of uncertainty (see Chapter 17). In the context of statistical
downscaling however, evidence is emerging that similar results can often
be obtained from several different methods, providing they are applied
intelligently and compared on the basis of aspects that they are designed to
reproduce. For example, Timbal et al. (2008) compared the performance of
a HMM with a method based on meteorological analogues. They initially
found that for their study area in south-west Western Australia, the
methods gave different results. However, further examination revealed that
this was due to the use of different atmospheric covariates: both methods
produced similar results when the same covariates were used. Other
comparison studies include Haylock et al. (2006) and Schmidli et al. (2007),
although these focused mainly on techniques that are relatively simple
compared with the leading methodologies that are currently available.
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To illustrate the use of statistical downscaling in a simple setting, we
consider the use of GLMs to generate simulated precipitation sequences
for a single location: Heathrow airport in southern England. Other authors
have also used GLMs for downscaling, notably Fealy and Sweeney (2007)
and Furrer and Katz (2007). The latter authors also show how GLMs
may be used to generate simultaneous daily sequences of precipitation
and temperature conditioned on the climate model outputs. Historical
data for our example include hourly rainfall (these were also used in the
extremes example above) and monthly daily time series of atmospheric
variables from the NCEP reanalysis dataset (Kalnay et al., 1996). The
rainfall record starts in 1949, although data are missing for January to
August of 1988 and February 1989. The recording resolution of the gauge
was 0.1mm until 1987 and 0.2mm afterwards. The NCEP data were
taken from the archive supplied with the “Statistical Downscaling Model”
(SDSM) software package (Wilby and Dawson, 2004). The atmospheric
covariates considered were monthly values of temperature, sea level pressure
and relative humidity, averaged over a spatial area roughly the size of a
GCM grid square centred on the gauge location. The choice of monthly,
rather than daily, covariate values was made primarily for convenience
because GCM years typically do not have the same number of days as
calendar years. This choice is justified because GLM-based downscaling
results for the UK have been found to be relatively insensitive to the
use of monthly, rather than daily, atmospheric covariates (Frost et al.,
2006): covariate values at finer temporal resolution yield slightly larger
simulated precipitation extremes, but the differences are small in practical
terms (e.g. at most 5–6mm for a simulated daily 100-year return level).
The covariates were standardised, separately for each month of the year,
so as to have zero mean and unit variance over the period 1961–1990.
The rainfall data were aggregated to a daily timescale and, as described
above, separate GLMs for rainfall occurrence and amounts were fitted
to data from the 1961–1990 period. The choice of covariates in the
models was based on the likelihood ratio statistic (see Chapter 4) and on
residual analyses (see Chandler and Wheater 2002, for example); Leith
(2008) gives full details. As well as covariates representing seasonality and
temporal persistence, the final occurrence model included temperature,
sea-level pressure and relative humidity as covariates, along with some
interactions (for example, temperature anomalies are positively associated
with rainfall occurrence in winter and negatively associated in summer)
and a “post-1987” indicator, included to account for a spurious decrease
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in recorded occurrence after 1987 that is associated with the change to a
coarser recording resolution (Yang et al. 2006 give a general discussion
of this issue). Relative humidity was not included in the final model
for rainfall amounts but temperature and sea-level pressure were; there
were also interactions between sea level pressure and seasonal covariates.
The interactions between the atmospheric covariates and the seasonal
components imply that seasonality will alter in a changed climate.

A variety of checks were carried out to ensure that the fitted GLMs were
able to generate realistic rainfall sequences. These included an out-of-sample
validation exercise in which simulations of the 1991–2000 period (not used in
model calibration) were compared with observed rainfall over this period.
The results, given in Leith (2008) suggest that the performance is good
overall, except for a slight tendency to overestimate rainfall occurrence
in summer and underestimate in winter. Having verified this, the fitted
models were used to simulate 100 sequences of daily rainfall for the period
1961–1990, taking the atmospheric covariate values from the NCEP dataset.
In the first panel of Figure 7.3, winter (DJF) rainfall totals have been
computed for each year of each simulation, excluding the incomplete winter
of 1961 (data for December 1960 were not simulated); this panel shows the
evolution of the simulated distribution of winter rainfall, along with the
observed time series of winter rainfall totals for comparison. The overall
median (P50) of the simulated winter rainfalls is also marked, along with
their 10th (P10) and 90th (P90) percentiles. The observations span the full
range of the simulated distributions, showing that the simulations are able
to produce a realistic range of variability in the seasonal totals. The year-
to-year variability in the simulated distributions is also noteworthy: this
reflects changes in the atmospheric drivers and shows that although they
account for a very small proportion of the variability in daily rainfall
(see the introduction to this chapter), their effects can be substantial when
aggregated to larger timescales. Further simulations of the 1961–1990 period
(not shown) have been carried out using covariate values taken from the
GCMs. The overall properties of these simulations were almost identical to
those shown here.

The second panel of Figure 7.3 shows the distributions of winter
rainfall obtained from simulations of the 2071–2099 period conditioned on
atmospheric covariates derived from the HadCM3 climate model under the
SRES A2 emissions scenario (IPCC, 2001). The distributions are shifted up
slightly relative to those for the historical period: the increase in the P10
and P90 is around 20mm and that in P50 is around 30mm (see Table 7.1).
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Figure 7.3. Distributions of winter (DJF) rainfall totals at Heathrow airport, each
derived from daily rainfall time series simulated using a GLM and conditioned on large-
scale atmospheric predictors. See text for details, and Figure 7.1 for legend. Horizontal

lines represent the overall median, 10th and 90th percentiles of the distributions in each
panel.

Table 7.1. Percentiles of simulated winter rainfall distributions at Heathrow
airport for different time periods and using different sources of atmospheric
covariate data.

Source of atmospheric covariates P10 (mm) P50 (mm) P90 (mm)

NCEP, 1961–90 77.6 140.2 231.0
HadCM3, 2070–99 101.0 168.0 251.2
Four GCMs, 2070–99; overall distribution 101.9 178.0 270.7

obtained by pooling results
Hierarchical model accounting 87.5 160.0 262.7

for GCM uncertainty, 2070–99

In percentage terms, these represent increases of around 30%, 20% and 9%
for P10, P50 and P90 respectively. The indication of wetter winters agrees
with other projections for the south east of England (e.g. Hulme et al., 2002)
and, qualitatively, with the changes in precipitation simulated directly by
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the GCM (not shown). These results suggest an overall increase in the
risk of winter flooding associated with extended periods of high rainfall.
However, it is important to understand that not every winter will be wetter
in the future than in the past: this is clear from the substantial overlap
between the two sets of simulated distributions.

The second panel of Figure 7.3 once again shows substantial variability
from year to year, although the precise timings of peaks and troughs
should not be interpreted literally since the GCM data are a single
realisation of possible climate over this period: another run of the same
GCM, with slightly different initial conditions, would yield different results
although the overall properties would be similar. Thus, even within a single
GCM, the use of a single realisation will underestimate the variability
in rainfall sequences in any given year. Moreover, if different climate
models are used, the differences are accentuated. This is shown in the
third panel of Figure 7.3, obtained by pooling simulations from four
different GCMs (HadCM3, along with model CGCM2 from the Canadian
Centre for Climate Modelling and Analysis, model CSIROMK2 from the
Commonwealth Scientific and Industrial Research Organisation and model
ECHAM4 from the Max Planck Institute). Although the overall value of
P10 for this pooled distribution is similar to that obtained using HadCM3
alone, the values of P50 and P90 are substantially greater (Table 7.1).
This shows that the choice of GCM may itself be a significant source of
uncertainty when deriving projections of future precipitation for flood risk
assessment. The need to account for GCM uncertainty in such situations
is increasingly being recognised and is discussed in more detail elsewhere
in this volume (see Chapter 17). To address the problem, it is common
to weight the GCMs according to some measure of their performance
(e.g. Giorgi and Mearns, 2002; Wilby and Harris, 2006). Although this
provides a simple and easily interpretable means of incorporating climate
model uncertainty, in general it will underestimate the true uncertainty
because the results are constrained to lie between the limits set by the
available data: the number of climate models used for any particular study
is often small, raising the possibility that another model will yield more
extreme projections. Moreover, the choice of weights is often heuristic
and difficult to justify formally. To some extent, this can be overcome
via the use of a hierarchical model which makes explicit the statistical
assumptions underlying the chosen weights (e.g. Tebaldi et al. 2005; Tebaldi
and Sansó, 2008). More generally, hierarchical models provide a means of
conceptualising explicitly the way in which climate models work and of
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representing GCM uncertainty within a coherent, logically consistent and
interpretable framework. Leith and Chandler (2010) illustrated this using
the atmospheric covariate data from the Heathrow example considered here:
they used Bayesian methods to fit a hierarchical model characterising a
notional population from which the four available GCMs were considered
to have been sampled, and used this model to generate multiple realisations
of the atmospheric covariates corresponding to unobserved GCMs in this
notional population. The final panel in Figure 7.3 shows the 2071–2099
winter rainfall distributions obtained from GLM simulations conditioned
on the output of this hierarchical model. The most obvious differences
between this and the previous panel are that the distributions are more
similar from year to year (which is clearly a more realistic reflection of
uncertainty in projections at this time horizon), that the largest simulated
values are higher than previously and that there is an increasing trend in
the upper percentiles of the distribution throughout the simulation period.
This increasing trend does not appear in the lower percentiles, or in the
simulations driven by HadCM3 alone (indeed, the HadCM3 simulations
in the second panel of Figure 7.3 appear to show a decreasing trend in
the upper percentiles). The 90th percentile of the overall winter rainfall
distribution is somewhat higher again than for the pooled simulations
(see Table 7.1), although the values of P10 and P50 are similar. The increase
in P90 suggests that according to the hierarchical model, the four GCMs
used in the current analysis may not bound the range of uncertainty fully
at the upper end of the distribution: clearly this could be important from
the perspective of risk assessment.

The results shown in Table 7.1 give some indication of the potential
complexity of thinking about uncertainty in flood risk — and, indeed, in any
other study of climate change impacts. Simple summaries such as changes in
mean rainfall clearly are not sufficient to characterise the projected changes
and associated uncertainties. One consequence of this is that it is difficult
to communicate information about uncertainty to stakeholders in simple
terms. Visual representations of changing distributions, such as those in
Figure 7.3, can be particularly helpful in this respect.

7.4. Continuous simulation of sub-daily rainfall

The daily rainfall models reviewed above are essentially descriptive in
nature, in the sense that they describe the structure of the rainfall process
and its dependence on other variables without explicit reference to the
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underlying mechanisms. At the sub-daily timescale, the structure of rainfall
time series is more complex and a purely descriptive approach is less
feasible; this has led to the development of models that attempt to represent
the underlying mechanisms in a more or less simplified form. These are
reviewed in this section, concentrating mainly on the single-site case because
extensions to multi-site and spatial–temporal data are currently less well
developed.

7.4.1. Review of sub-daily rainfall modelling techniques

In the literature, there are essentially two broad approaches to modelling
rainfall stochastically at sub-daily scales. The first involves reproducing
the intermittency and intensity properties at coarse scales through the
clustering of structures at finer scales (Rodriguez-Iturbe et al., 1987).
The other proposes a scale-independent representation of the rainfall
process which can be simulated by a cascade process, analogous to that used
to represent the distribution of energy in Kolmogorov’s theory of turbulence
(Lovejoy and Schertzer, 1995).

The essence of the clustering approach is to regard a rainfall time series
as consisting of a succession of storms, each made up of a collection of
“rain cells”. Each cell lasts for a random duration during which it deposits
rainfall at a constant random intensity; the total rainfall during any time
interval is thus a sum of contributions from all cells active during that
interval. The times of storm origins are usually modelled as a Poisson
process. Within each storm, cell arrival times can then be determined either
via a second Poisson process (Bartlett–Lewis model) or as independent
and identically distributed displacements from the storm origin (Neyman–
Scott model). In the most common variant of the Bartlett–Lewis model,
the lifetime of each storm (i.e. the period during which it can generate
cells) is taken to be an exponentially distributed random variable. Likewise,
the most common form of the Neyman–Scott model has an exponential
cell displacement distribution. It has been shown that in these forms, the
two model types have equivalent second-order properties (Cowpertwait,
1998), and empirical studies have generally not found significant differences
between them (Onof et al., 2000). For both types of model, cell duration
and intensity are usually assumed to be independent and typically modelled
with exponential distributions, although heavier-tailed distributions such as
the Pareto, may be used for the latter (Onof et al., 2000). Extensions have
also been proposed to represent rainfall at several sites — see for example
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Cox and Isham (1994); Cowpertwait (1995). Note finally that the clustering
can also be generated by using doubly-stochastic Poisson processes. This
idea has been applied directly to the modelling of the tip times from a
tipping-bucket rain gauge by Onof et al. (2002).

Several variants on the basic Bartlett–Lewis or Neyman–Scott models
have been developed and tested in the literature. Amongst the most
important are: the use of different cell types (Cowpertwait, 1994) to
represent the variety of rainfall that can be found even within a specific
month; the introduction of dependence between cell duration and intensity
(Evin and Favre, 2008; Kakou, 1998) for greater realism; the randomisation
of the temporal structure of the storm (Islam et al. 1990; Onof and
Hege 2009; Onof and Wheater 1993; Rodriguez-Iturbe et al. 1988) which
considerably improves the reproduction of the proportion of dry intervals;
the separation between “normal” and “extreme” rainfall, whereby the latter
is dealt with using a different intensity distribution (Cameron et al., 2000b);
the introduction of a jitter to render the rectangular pulse shape more
realistic (Onof and Wheater, 1994; Rodriguez-Iturbe et al., 1987); and the
replacement of the rectangular pulse by a series of instantaneous pulses
occurring at points generated by a Poisson process (Cowpertwait et al.,
2007) so as to reproduce sub-hourly rainfall properties. For application
to flood risk assessment, the choice of model variant will be influenced
by the need for convincing extremal performance. Our experience is that,
although variants such as the Random Parameter Bartlett–Lewis Model
(RPBLM) of Rodriguez-Iturbe et al. (1988) generally perform reasonably
with respect to properties such as 100-year events, in very long simulations
they can occasionally generate unrealistically large rainfalls associated with
the use of what are effectively heavy-tailed cell duration distributions.
Elsewhere, Cameron et al. (1999) imposed large upper bounds on the
distributions of cell intensities to prevent the generation of unrealistically
large amounts. Conversely, Cameron et al. (2001) found that the RPBLM
tended to underestimate extremes at fine timescales. To fully resolve these
issues, further model development and testing are needed.

Likelihood-based calibration for this class of models is difficult, because
in general it is not possible to obtain a useful expression for the likelihood
function (Onof et al., 2000; Rodriguez-Iturbe et al., 1987). For simple
models, some progress was made by Northrop (2006) who developed a
marginal likelihood for a subset of the parameters; and an approximate
likelihood was formulated in the Fourier domain by Chandler (1997).
However, current practice in fitting these models is largely dictated by
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the availability of analytical expressions, in terms of the model parameters,
for the first and second-order properties of the rainfall intensity, as well
as the proportion of dry periods at any scale of interest. Therefore, the
models are almost always fitted using a Generalised Method of Moments
(GMM) in which parameters are chosen to achieve as close as possible
a match, according to a weighted least-squares criterion, between the
observed and fitted values of selected properties (Wheater et al., 2005).
Specifically, let θ = (θ1, . . . , θp)′ denote the parameter vector for the model,
let T = (T1, . . . ,Tk)′ be a vector of summary statistics computed from
data, and denote by T(θ) = (τ1(θ), . . . , τk(θ))′ the expected value of T
under the model. Then θ is estimated by minimising an objective function
of the form

S(θ;T) =
k∑

i=1

wi(Ti − τi(θ))2

for some collection of weights {w1, . . . , wk}. Usually the minimisation must
be done numerically, and care can be required to avoid local optima.
However, if this can be done then the theory of estimating functions
(see Chapter 4) can be used to obtain standard errors and confidence
regions for the resulting parameter estimates. For some of the more complex
models, such techniques reveal that model parameters can be poorly
identified using the range of properties for which analytical expressions
are available: indeed, confidence intervals for some parameters can be
effectively unbounded (see Figure 3 of Wheater et al. 2005, for example).
One solution to this is to add a second, simulation-based phase to the
calibration process that seeks to identify, among parameter sets that
perform equivalently in terms of the objective function S(θ;T), those that
are best able to reproduce observed rainfall extremes (Wheater et al.,
2005). A less computationally intensive alternative, which achieves a similar
result, is to include the skewness of the rainfall intensities as one of the
components of T(θ) (Cowpertwait, 1998); however, tractable analytical
expressions for the skewness are currently available only for relatively
few models. A final possibility, which to our knowledge has not yet been
attempted, is to combine the objective function with prior knowledge of the
likely ranges of the various parameters in the spirit of a Bayesian analysis
(see Chapter 5); the techniques proposed by Smith et al. (2008) could be
helpful in this respect. It would be straightforward in principle to specify
plausible prior distributions for many of the parameters of a Poisson cluster
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model, because these parameters typically represent physically meaningful
quantities (such as storm arrival rate and mean number of cells per storm)
for which “typical” values are known (Onof et al., 2000).

A potential disadvantage of the GMM is that the results can depend
on the properties selected for inclusion in the objective function, as well
as on the associated weights {w1, . . . , wk}. Various authors have sought to
address this empirically by comparing the results obtained from different
objective functions (e.g. Burton et al. 2008, Wheater et al. 2005). More
constructively, however, it is possible to use the theory of estimating
functions to identify an optimal choice of weights. Using an extension
of the arguments given in Section 3.6 of Hall (2005) for example, it can
be shown that the optimal objective function based on fitting properties
T is the quadratic form (T − T(θ))′V−1(T − T(θ)), where V is the
covariance matrix of T. This is optimal in the sense that the large-
sample variance of any linear combination of parameter estimates is smaller
than that obtained by minimising any other objective function of the
form (T − t(θ))′W(T − t(θ)): the function S(θ;T) is of this form with
W diagonal. This has been investigated by Jesus and Chandler (2011),
who found that some care was required in the implementation of the
theory but that problems of parameter non-identifiability were effectively
eliminated.

At sub-daily timescales, the main alternative to Poisson cluster models
is the representation of rainfall time series as a multi-scaling process. Here,
a series is characterised in terms of the way in which its properties vary
with the temporal scale of observation. An example is given below. One
parameter may be sufficient to describe how these properties vary with the
scale of description. Some authors claim that for fine timescales, the data
point to such a monofractal representation of precipitation (Paulson, 2004).
More generally, however, a function of timescale is required to describe the
variation in rainfall properties. This can, for instance, be the specification
of the fractal co-dimensions of the occurrence of rainfall depths exceeding
a range of thresholds (i.e. singularities — see Bernadara et al., 2007).
Such multifractal representations have generally been used in preference
to monofractals where larger ranges of scales are involved (Tessier et al.,
1993). The results in our example below suggest that temporal scaling
relationships can be extremely stable through time, although as far as we are
aware this important question has not been studied elsewhere in detail.

The standard method for generating a time series with multifractal
properties is to use a random cascade process. The stages in the cascade
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correspond to progressively finer temporal resolutions: to disaggregate a
rainfall time series (Y (h)

t ) at a resolution of h time units to a resolution
of h/b time units, each value is multiplied by b independent identically
distributed random variables so that an initial value Y (h)

t generates b new
values Y (h)

t X
(h)
1t , . . . , Y

(h)
t X

(h)
bt say. Generally, b = 2. The distribution of

the (X(h)
jt ) (which is the same for all t and h and has mean 1) defines the

cascade generator. This process is iterated so that rainfall depths can be
downscaled indefinitely from a given timescale by specifying the distribution
of the generator. To use this for rainfall simulation, all that is needed is to
initiate the cascade process with a total amount of rainfall for the simulation
period. Note, however, that this coarse-scale total will not be preserved
through disaggregation due to the stochastic nature of the algorithm; the
requirement E(X(h)

jt ) = 1 merely ensures that the coarse-scale totals are
preserved “on average”.

Distributions whose type is preserved through multiplication are
often used for cascade generation, in particular the continuous lognormal
distribution (Gupta and Waymire, 1993) and the discrete log-Poisson
distribution (Deidda et al., 1999). It has been argued that the best choice
is a log-Lévy distribution (Schertzer and Lovejoy, 1993) on the grounds
that the generalised central limit theorem (Gnedenko and Kolmogorov,
1968) shows that convolutions of distributions (even of infinite variance)
converge to a Lévy-stable distribution as the number of variables grows.
This result is applicable when the number of cascade steps between two
given scales is increased indefinitely so that the discrete cascade now
becomes a continuous one (Schertzer and Lovejoy, 1997). The generation of
these continuous multifractal cascades is achieved using transformations in
Fourier space.

Aside from the above canonical multifractal cascade models, two
important variants have been developed and tested. The first involves
altering this cascade framework by relaxing the assumption that the random
variables used to generate the cascade are identically distributed. By using
variables whose distribution changes with the scale, in such a way that
the variance becomes smaller at finer scales, it is possible to improve the
reproduction of certain features of the rainfall signal (e.g. intermittency)
which appear to be scale-dependent. These are bounded random cascade
models (Menabde et al., 1997). The second primarily involves relaxing the
assumption that the cascade generating random variables are independent.
The purpose is to develop a cascade tool that is able to disaggregate a
rainfall total to finer scale amounts that sum to the given total (Olsson,
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1998). This is useful for applications which take this disaggregated rainfall
as input: it ensures that the total rainfall input does not depend upon
the scale. For some such microcanonical cascades, the generating random
variables are also not identically distributed, although choosing a beta or
uniform distributions will ensure they are. Spatial–temporal models based
upon multifractals have also been developed, either by combining spatial
cascades with some representation of advection (e.g. Seed, 2003), or by
using a multi-scaling representation of rainfall both in time and space (e.g.
Over and Gupta, 1996; Marsan et al., 1996).

Fitting random cascade models is fraught with difficulties, for a variety
of reasons. Firstly, the moment scaling function requires the evaluation of
higher order moments of the rainfall process and, in the case of heavy-
tailed distributions, care is required since higher-order moments can be
infinite (Bernadara et al., 2007). Secondly, the fractal co-dimensions of
large singularities are difficult to estimate because they correspond to
extreme values of the process. As a result, estimation is often carried
out using the moment scaling function, which is obtained by plotting the
moments of the rainfall, E�(Y (h)

t )q� as a function of scale h on a log–
log plot and considering the slopes of the resulting lines as a function
of the moment order q. Random cascade models are often calibrated by
minimising the difference between the observed and theoretical moment
scaling functions, but this leads to a biased estimator with high sampling
variability whose properties are otherwise not well known (Gaume et al.,
2007). A final difficulty is that the construction of a random cascade model
involves an infinite range of scales, whereas in practice a cascade can be
observed only over a finite range; this increases the errors in the parameter
estimates (Bernadara, 2007).

Despite these calibration issues, multifractal cascades are parsimonious
models with a proven track record in hydrological applications, in particular
as disaggregators of observed data to finer timescales (Onof et al., 2005).
While Poisson-cluster models have been shown to reproduce the scaling
properties of rainfall (Olsson and Burlando, 2002; Onof et al, 1996), they
require more parameters than the scaling models. On the other hand,
these parameters provide a more intuitive understanding of the structure of
the rainfall process in terms of cells and storms. This makes them suitable
for examining the impact of climate change upon local rainfall properties
(Leith, 2006), although our experience is that the extremal performance can
be sensitive to model choice. It seems that both approaches therefore have
their strengths, and it may be that there are ranges of scales over which
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the one type ought to be preferred to the other as Marani (2003) shows by
looking at how the variance changes with the scale of observation.

7.4.2. Incorporation of climate change projections

The incorporation of climate change projections is less well developed for
sub-daily than for daily rainfall simulations. A simple approach is to start
by generating daily series using any of the methods reviewed above, and
then to disaggregate it to the required timescale. In principle, multifractal
methods are ideally suited to this (Onof and Arnbjerg-Nielsen, 2009), at
least if the issues surrounding parameter estimation and uncertainty can
be addressed satisfactorily. Poisson cluster models have also been used for
this purpose; see, for example, Koutsoyiannis and Onof (2001). Any such
approach implies, either directly or indirectly, some kind of relationship
between daily and sub-daily rainfall structure; an implicit assumption is
that this relationship will not change in the future.

As far as we are aware, most current work on direct sub-daily rainfall
generation under climate change scenarios is based on perturbing the
parameters of Poisson cluster models. The first work in this direction seems
to be that of Kilsby et al. (1998), who used generalised linear models
to predict both the mean daily rainfall and probability of a dry day for
any site in England and Wales for each month of the year, based on
measures of atmospheric circulation. They suggested that by extracting
the corresponding atmospheric predictors from climate model simulations,
estimates of future daily rainfall statistics could be derived; Poisson cluster
models could then be fitted to historical rainfall data and, for future
simulations, the storm arrival rates and mean cell intensities could be
perturbed to match the projected daily statistics (with the remaining
parameters held at their historical values).

An alternative approach, which can be used if a sufficiently realistic
daily rainfall generator is available, is to calculate the statistical properties
of simulated daily series and then to exploit relationships between rainfall
statistics at different timescales to infer the corresponding sub-daily
properties. For example, Marani and Zanetti (2007) derived relationships
between rainfall variances at different timescales, based on assumed forms
of autocorrelation function (e.g. exponential or power law decay) of the
underlying continuous-time process. Figure 7.4 illustrates another possibil-
ity. It shows the variation of two summary statistics (standard deviation and
proportion of wet intervals) for time series of rainfall amounts aggregated to
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Figure 7.4. Variation of rainfall summary statistics with timescale for the months of
January (left) and July (right), at two contrasting sites in the UK. All axis scales are
logarithmic. Black lines are for data from Heathrow airport, 1949–2001; grey lines are

for data from Malham Tarn, 1985–2006. Heathrow airport is at an altitude of 25 m in
southern England and experiences an annual rainfall of just over 600mm; Malham Tarn
is at an altitude of 391 m in northern England and experiences an annual rainfall of
around 1400 mm. Statistics are plotted separately for each year, for 1-, 2-, 4-, 6-, 12- and
24-hourly rainfall accumulations.

different temporal resolutions from 1 to 24 hours, at two contrasting sites in
the UK. With logarithmic scales on both axes, all of the individual curves
here — which are derived from different months and years — are roughly
linear. The truly remarkable feature, however, is that the slopes of the lines
for each property are almost identical; we have found similar results at a
variety of other sites in the UK. From such a plot, knowledge of the 24-hour
value of any statistic will clearly enable the corresponding sub-daily values
to be calculated with high precision. Although the physical reason for this
is unclear, the similarity of the slopes for different sites, seasons and years
suggests that they are insensitive to changes in atmospheric conditions and
hence that they will remain valid in a moderately altered climate.

Unfortunately, a deeper investigation (Leith, 2006) of the relationships
apparent from Figure 7.4 reveals that the scaling relationships for the
standard deviation cannot be parallel lines. For example, if the slopes were
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all identical then the lag 1 autocorrelation at any timescale would be the
same for all months, sites and years: in the UK however, autocorrelation
is weaker in the summer than in the winter, due to the predominance
of convective and frontal/synoptic systems respectively. Similarly, if the
relationships were exactly linear then the lag 1 autocorrelation would be
the same at all timescales. Some small adjustments are therefore required;
these do not compromise the overall message of highly stable scaling
relationships, but they do enable the autocorrelation structure of sub-
daily rainfall sequences to be reconstructed realistically. One possibility
is to allow for a quadratic dependence on timescale and to allow the log
properties to depend on atmospheric covariates in addition to timescale.
This was done by Leith (2006), who then used the fitted relationships in
conjunction with GLM simulations, such as those illustrated in Figure 7.3,
to derive expected values of future daily and sub-daily summary statistics
at different UK locations under the SRES A2 emissions scenario. These
summary statistics were used to calibrate a Poisson cluster model, which
was used to simulate future sub-daily rainfall sequences. A comparison with
the model parameters obtained from historical simulations revealed some
interesting changes: for example, estimates of future storm arrival rates were
lower in the summer and higher in the winter, whereas estimates of mean
cell intensity were increased year-round (but particularly in the summer).
Systematic changes were also observed in all other model parameters: this
suggests that the procedure proposed by Kilsby et al. (1998), in which only
two parameters are allowed to change in a future climate, may be over-
simplified. Changes in the other parameters were, however, site-specific. For
example, at Manchester airport the results suggested that future summer
storms will have fewer, longer-lasting cells on average than in the past.
By contrast, at Heathrow airport there was little change in the number of
cells per storm, but some indication of reduced mean cell durations in the
autumn.

It is worth considering the uncertainty in parameter estimates obtained
via the method just outlined. Notice first that, conditional on the param-
eters of the daily rainfall generator and the climate model used to drive
the simulations, the properties of daily rainfall sequences can be estimated
arbitrarily precisely, simply by running a large enough number of daily
rainfall simulations. Uncertainty in the corresponding sub-daily properties
is small, due to the strength of the scaling relationships illustrated in
Figure 7.4. It follows that uncertainty in the Poisson cluster model parame-
ters is also small. The conclusion is that the dominant sources of uncertainty
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here are the daily rainfall generator and the choice of climate model. As
noted previously, daily rainfall model parameters can usually be identified
fairly precisely and there is little difference in performance between the
best available models. Ultimately therefore, the main source of uncertainty
in the sub-daily model parameters is likely to be the choice of climate
model used to drive the daily simulations. Having said this, in qualitative
terms at least the projected changes in model parameters obtained by Leith
(2006) were remarkably similar for four different climate models. Moreover,
experience of this type of approach is currently limited and it is not clear
whether the uncertainty in parameter estimates contributes significantly
to the overall uncertainty in aspects of sub-daily rainfall simulations
that are relevant for flood risk assessment — it is conceivable that
the variability in sub-daily rainfall simulations dominates any parameter
uncertainty.

The techniques just described are mainly for single-site rainfall. Few
methods are currently available for the simulation of multi-site sub-daily
rainfall incorporating scenarios of climate change. Fowler et al. (2005)
describe one possibility in which parameters of a space–time Neyman–Scott
model are obtained separately for different weather states; sequences of
these weather states are extracted from future climate model simulations,
and the appropriate Neyman–Scott model parameters are then used to
generate rainfall simulations (this is equally applicable to single-site prob-
lems, of course). The climate change signal in this approach is reflected in
changes in the individual weather state frequencies. An alternative approach
was proposed by Segond et al. (2006), who suggested disaggregating a multi-
site daily rainfall simulator by using a single-site method to disaggregate
the daily totals at one site (the “master gauge”) and then, for each day,
scaling the totals at the other sites by the corresponding temporal profile.
Although the assumption of a uniform sub-daily temporal profile at all
sites may appear unrealistic except at very local scales, the approach
has been tested at catchment scales up to 2000km2 with reasonable
results.

7.5. Propagation of Rainfall Uncertainties into Flow
Estimates

While it is perhaps self-evident that uncertainties in rainfall inputs will lead
to uncertainties in the simulation of river flows, a general understanding of
the relationships between rainfall uncertainties and flow response is not yet
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available. One complication is that most studies of the effects of rainfall
uncertainty have been based on rainfall-runoff modelling, in which it is dif-
ficult to separate effects of rainfall-runoff model error. In fact, most research
into uncertainty in rainfall-runoff modelling has effectively aggregated all
sources of uncertainty into that associated with the rainfall-runoff model
parameters (Wagener et al., 2004). Notable exceptions include the work of
Cameron et al. (1999, 2000a,c) and Blazkova and Beven (2002), who used
the GLUE methodology to identify near-optimal parameter combinations
for a rainfall generator and rainfall-runoff model and to characterise the
uncertainty in the combined system. However, their primary goal was to
quantify, rather than explain, the uncertainty: in addition to this, it is of
interest to determine what features of rainfall inputs are most important
when it comes to characterising (and potentially reducing) the uncertainty
in system response.

Issues of temporal resolution are relatively well understood at a basic
level. In the use of simple rainfall-runoff models, it is recognised that the
required temporal resolution of the rainfall depends on the response time of
the catchment (e.g. NERC, 1975). There has also been a recognition that
realistic sequences of precipitation are needed for a wide range of flood
design applications, which provides some of the reasoning behind a move
in design practice from design storms to the use of stochastic simulations
of rainfall time series (e.g. Onof et al., 1996). It is not always appreciated
that physics-based hydrological models also have requirements for temporal
resolution. For example if “physically-based” models are run on a daily
time step, rainfall intensities will be lower, often dramatically so, than
instantaneous rainfall intensities, and soil hydraulic parameters will need
to be adjusted accordingly in order to generate the correct physical process
response. This is a particular problem for arid areas, where convective
rainfall can generate infiltration-excess overland flow (e.g. Al-Qurashi et al.,
2008).

Moving beyond those basic principles, however, a major complication
for any consideration of the temporal distribution of rainfall is that for
most hydrological applications, some level of spatial aggregation of rainfall
is required. This could be a catchment-scale average, as in the input
to a spatially-lumped rainfall-runoff model, a sub-catchment average for
a semi-distributed hydrological model, or a pixel average for a fully-
distributed model. Clearly the temporal properties of single-site rainfall will
be different from a spatial average and hence a more general problem of the
characterisation of spatial–temporal rainfall fields must be confronted.
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As briefly discussed above, the significance of spatial variability of
rainfall for flow estimation is a complex issue. A recent summary of the
literature and associated issues is presented by Segond et al. (2007). Effects
of rainfall spatial variability will depend on rainfall properties, catchment
type and spatial scale and are also likely to be influenced by antecedent
conditions. Intuitively, the significance of spatial variability of precipitation
for streamflow might be expected to increase with increasing catchment
scale, but as catchment scale increases, the damping effects of catchment
response become greater. Thus the effects on streamflow depend on the
extent to which rainfall variability is damped by the catchment, which in
turn is dependent on catchment characteristics and the associated runoff
processes.

Problems are at their most severe where convective rainfall predom-
inates. This is a characteristic of many arid areas, for which intense
rainfall is likely to be associated with rapid runoff from overland flow. The
history of rainfall gauging at the Walnut Gulch experimental catchment
in Arizona (Goodrich et al., 2008) is instructive. In a 149km2 catchment,
rain gauge numbers were progressively increased to a maximum of 95, in
an attempt to characterise the structure of the predominant convective
rainfall. Michaud and Sorooshian (1994) investigated flood runoff from
convective thunderstorm rainfall at Walnut Gulch, which showed that
high spatial resolution of rainfall data (2 km) is essential to simulate
flood peaks (coarser 4 km resolution data led to underestimation of flood
peaks by 50–60%). Elsewhere, Al-Qureshi et al. (2008) have shown for
an arid catchment in Oman, that uncertainty in spatial rainfall is the
dominant influence on flow simulation. More generally, Wheater (2008)
argues that progress in rainfall-runoff modelling for arid areas is dependent
on developments in rainfall simulation; available data from conventional
sources are generally inadequate to characterise spatial rainfall adequately
to support a reasonable accuracy of model calibration and validation. In
more humid climates, convective rainfall remains problematic, for similar
reasons of lack of observability. Although radar networks are now reaching
the resolution where they can be used to observe convective rainfall at
an appropriate resolution, appropriate analysis of fine scale structure has
not been undertaken to support design procedures which recognise spatial
rainfall structure.

In humid areas, the effects of rainfall variability are expected to be most
marked for urban areas, where runoff is rapid, and the attenuation of rainfall
variability due to runoff processes is minimal. Numerous studies of urban
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catchment response show sensitivity to rainfall variability in space and time,
including storm movement (see e.g., Ngirane-Katashaya and Wheater, 1985;
Singh, 1997). In contrast, Naden (1992) found for the 10,000km2 Thames
basin that the effect of rainfall spatial variation on channel network response
could be marked, but that the slow response of chalk catchments damped
out effects of rainfall variability.

Segond et al. (2007) investigated the effects of rainfall spatial variability
and rainfall uncertainty for the 1400km2 River Lee catchment, UK, using
a network of 17 rain gauges and 2 km resolution radar data. The sub-
catchments have a mixed geology, including (responsive) clay and (damped
response) chalk catchments, and urban areas. Results for rural catchments
showed that runoff was sensitive to the type of rainfall event, rainfall
representation, catchment scale and catchment type, and least sensitive
to rainfall spatial variability at the whole catchment scale. Urbanised sub-
catchments showed greater sensitivity to spatial rainfall, but this effect
was not seen at whole catchment scale. Overall the results confirmed
the importance of appropriate representation of rainfall spatial structure,
although this was strongly dependent on rainfall type. Effects were most
marked for smaller catchments and urbanised response.

We can conclude that as semi-distributed modelling of catchments
is increasingly undertaken to support flood management, and continuous
simulation is needed to represent effects of antecedent conditions, appro-
priate modelling to represent the spatial distribution of rainfall will be
required. The greater importance of this for small catchments is noteworthy,
since such catchments have generally been considered in design practice as
those where spatial averaging of rainfall can most appropriately be used.
The strong sensitivity of urban areas to rainfall spatial structure points
to the need for research into the fine-scale spatial–temporal properties of
rainfall, which have largely been neglected.

7.5.1. Current issues

The review in this chapter has focused on the representation of natural
variability in rainfall sequences, as this often dominates other sources of
uncertainty here. We have also seen that the choice of climate model can
represent a significant source of uncertainty in future rainfall projections;
this is discussed more fully in Chapter 22. Since there are often substantial
disagreements between different climate models, particularly at the local
and regional scales that are usually of interest for flood risk assessment, an
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important question is to determine how much useful information is actually
present in climate model simulations for any given situation. One way to
achieve this is via a Bayesian approach, in which the posterior and prior
distributions of quantities of interest can be compared to determine the
information content of the climate model data (see Section 6 of Leith and
Chandler 2010, for example).

There is an emerging consensus that, for daily rainfall at least, a
variety of different modelling approaches are currently available that have
comparable and impressive performance with respect to many of the key
features of rainfall sequences, including extremes. Therefore the uncertainty
due to the choice of rainfall model is often relatively minor (subject, of
course, to the use of a model that is able to capture the key properties of
interest). Nonetheless, in all cases there is scope for further development
to improve performance with respect to specific features that may be of
interest in particular applications; and the extremal performance of sub-
daily rainfall models needs to be studied more thoroughly than has hitherto
been attempted. There are also features, such as the spatial dependence
of extremes and the persistence of abnormally high rainfall, which may
be relevant in flood risk assessment but are not routinely examined when
assessing the quality of rainfall simulations. One feature that is often poorly
represented at present is extreme summer rainfall in temperate climates.
For example, Yang et al. (2005) found that their GLM simulations of
daily rainfall in south-east England tended to underestimate extremes
during the summer and to overestimate during the winter, although
the simulated annual maxima agreed closely with those obtained from
a conventional extreme value analysis. This underestimation of summer
extremes, which in the UK are associated with intense convective rainfall
events, is a feature of many other simulation techniques as well; as
far as GLMs are concerned, the problem appears to be related to the
assumption of a common shape parameter, which can be relaxed as
indicated above.

As far as we are aware, little work has been done to assess the impact of
parameter uncertainty in stochastic rainfall simulations. As argued above,
one may reasonably expect that this will be relatively minor where long
sequences of data are available; however, it would be interesting to carry out
a study to confirm this. This is particularly true in situations where several
models are used in tandem to produce a rainfall simulation (for example,
the use of GLMs in conjunction with scaling relationships and Poisson
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cluster models to generate sub-daily simulations under scenarios of climate
change).

Finally, rainfall data themselves represent an important source of
uncertainty in rainfall inputs. For example, we have argued above that the
common practice of interpolating rain gauge observations onto a regular
grid is problematic and that, as with other missing data problems, a
multiple imputation approach is preferable. However, there are few models
currently available that have been designed specifically to facilitate this;
indeed, the only ones that we are aware of are those of Yang et al. (2005)
and Wilks (2009). More generally, where rain gauge data are not available
or are not suitable, it is generally necessary to use indirect measurements
such as those obtained from radar. Our experience is that the uncertainty
in such indirect measurements is often extremely large and therefore that
it must be accounted for in any analysis. It is imperative, therefore, that
providers of indirectly measured rainfall data supply credible, quantitative
assessments of uncertainty with their products.
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8.1. Uncertainty Identification and Estimation

River flood frequency estimation is the process of determining the rela-
tionship between the size of a flood and its probability of occurrence.
In engineering practice, “flood frequency” is often used to refer to the
relationship between probability and river flow rate. Usually this expresses
the probability that the flow in the river at a specified location exceeds a
given threshold flow, or, conversely, the flow that is exceeded with a given
probability. It is often convenient to interpret the probability scale in terms
of a return period in years.

The flood frequency relationship is always an estimate, based on limited
information. Hence there is always uncertainty about the value of flow or
return period calculated. The root causes of this uncertainty are the limited
record lengths for gauged flows (which give rise to sampling errors) and the
inaccuracies in measured data. In addition, many estimates rely on the
assumption of some type of model, for example a parametric distribution
function for the flow rate or a more physically-based, conceptual model of
river flow. If the model does not capture completely the real behaviour of
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the river catchment then this “model error” is also a source of uncertainty.
Most modellers would acknowledge this to be the case most of the time.

This chapter deals with how we can characterise and analyse these
uncertainties for different types of river flood frequency estimation methods.
However, before discussing methods for the analysis of uncertainty, it is
worth considering the relevance of such analysis from a practical point
of view.

8.1.1. What is the practical use of uncertainty

of design floods?

Flood frequency analysis is needed to estimate design flows or levels (for
engineering works) or to provide a basis for planning and risk assessment,
often at a broad spatial scale. These requirements lead to questions like
“What is the 100-year peak water level?” or “What is the extent of a
100-year flood?”. However, although these appear to be simple questions,
answering them often involves difficult and complex problems, including
analysis of flood frequency, river hydraulics and flood defence systems, with
many uncertainties and interactions between the different component parts.

Until quite recently the treatment of uncertainty in flood estimation has
been little more than descriptive. In the UK Flood Estimation Handbook
(Institute of Hydrology, 1999) uncertainty was discussed in a chapter called
“Looking ahead”, where the authors urged researchers developing better
methods for assessing uncertainty to ensure that these refinements, when
they arrive, should be well used. Whilst uncertainty was seen as useful in
helping to choose between alternative analysis methods, there was a concern
to avoid uncertainty estimates being used to justify over-design by being
interpreted as an additional “freeboard” allowance. This concern may have
been well founded, for in the USA, freeboard had been interpreted in some
US Army Corps of Engineers (USACE) documentation as an allowance for
“the uncertainty inherent in the computation of a water surface profile”
(Huffman and Eiker, 1991; National Research Council, 2000).

The call to ensure that refined uncertainty estimation methods should
be “well-used” reflects a situation in the mid-1990s where uncertainty was
widely acknowledged, but not deeply embedded in the techniques of flood
analysis used in practice. An interpretation of uncertainty in terms of
freeboard allowance stems from a flood management approach based on
concepts of fixed standards of protection, e.g. seeking to defend communities
against flooding up to a given level. Here, a typical design condition for a
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flood defence scheme might be the 100-year water level. Within this culture,
uncertainty in the flood frequency estimate, although acknowledged, is
a nuisance. Uncertainty has been recognised in the design or decision-
making process by sensitivity analysis, although this would often involve
calculating design levels for a T-year flow with a range of different values of
hydraulic parameters, particularly roughness, but without quantifying the
uncertainty in the underlying flow estimate.

At around the same time, a paradigm shift in flood management
was beginning to taking place with a move away from fixed standards
of protection towards the use of risk analysis techniques. In 1992, the
USACE issued a draft Engineering Circular (EC) Risk-Based Analysis
for Evaluation of Hydrology/Hydraulics and Economics in Flood Damage
Reduction Studies (EC 1105-2-205), which was updated in 1994. A risk
analysis approach uses probabilistic descriptions of the uncertainty in
estimates of important variables, including flood frequency (and also
stage–discharge, and depth–damage relationships) to compute probability
distributions of potential flood damages. These computed estimates can
be used to determine a design that provides a specified probability of
containing a given flood, or of limiting risk exposure to a certain level. In the
UK, similar concepts followed as the Department for Environment, Food
and Rural Affairs (Defra) and Environment Agency developed their risk-
based approaches for flood management, initially concentrating on strategic
planning (Hall et al., 2003).

With risk-based concepts for flood management, the analysis generally
involves a simulation procedure in which the variables describing the source
of risk are sampled from a suitable distribution and the generated values
fed into models that calculate the resulting flood depth, damage or other
required quantity. This provides a distribution for the resulting output
variable. For example, a large number of flood flow values may be generated
from a flood frequency distribution at a floodplain site, fed into a hydraulic
modelling system which can calculate the number of properties flooded
(which may also include some modelling of the performance of the flood
defence system) and the outputs arranged in rank order to estimate the
distribution of economic damage to property on that floodplain. Within
this type of framework, uncertainty in the flood frequency estimation can
be readily incorporated into the simulation (and need not even be presented
explicitly to the decision maker).

How a risk-based analysis can best be used to support decision making
is a separate question. Pappenberger and Beven (2006, “Decisions Are
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Binary”) note that although many decisions ultimately require specific
thresholds, there is a rich literature on decision support systems that
provides methods for decision making under uncertainty. In addition to
building uncertainty into the calculation of risk, there are also methods
that attempt to give a more sophisticated description of the probabilistic
behaviour of risk. For example, Hashimoto et al. (1982a) considered oper-
ational estimators for measuring reliability (probability of system failure),
resilience (probability of recovery once a failure has occurred) and vul-
nerability (likely magnitude of a failure). Also, Hashimoto et al. (1982b)
introduced a measure of system robustness in the analysis of a water
resources system, based on the probability that the actual economic costs
of a system will not exceed some fraction of the minimum possible cost.
A similar idea has been adopted more recently such as the information-
gap approach (Ben-Haim, 2006) that seeks to examine how robust different
decision options are as variables within the decision-making process deviate
from assumed or “best estimate” values.

We have argued that the move towards a risk-based approach to flood
management requires methods that can naturally accommodate uncertainty
in flood estimation, but are there any benefits gained from the point of view
of the analyst working on hydrology and flood estimation in practice? To
some degree, the answer to this question rests with the agencies that drive
the need for flood estimation. As flood management agencies adopt risk-
based approaches, and if these approaches incorporate uncertainty, then of
course it becomes relevant for those working in practice. It is also compelling
to argue that transparency and honesty about uncertainties in a flood
estimate are good things in principle!

One important practical reason to favour realistic communication of
uncertainty to decision-makers is that “best estimates” of a flood frequency
relationship can easily change as a result of changes in data, changes in
accepted methodology or simply because of natural events. Two examples
illustrate these issues. The first is the 1997 flood on the American River
at Sacramento, California. This was the second major flood in 11 years
out of a 93 year of hydrological record and had significant implications
for the flood risk management decision process. The 1997 flood prompted
two revisions of the previously accepted flood frequency relationship, which
has been discussed in detail in National Research Council (1999). In this
particular case, the revisions of the flood frequency analysis could have large
planning and economic consequences for Sacramento, with the decisions
resting on very thin margins. However, the uncertainty in the flood flow
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estimates was also large enough to suggest that a precautionary approach
should be strongly considered. The second example is a recent update
of recommended flood estimation methods for the UK Flood Estimation
Handbook (Institute of Hydrology, 1999). Here, further scientific analysis
since the original publication of the methods in 1999 has led to changes that
could alter some 100-year flood flow estimates at ungauged catchments by
as much as a factor of 2.25.

In cases like these, it may be seen as controversial when “best” flood
flow estimates suddenly appear to change after some years, through a
combination of additional data and improved methodology. It can be argued
that analysis showing realistic uncertainty helps to insulate against the
shock of such revisions, partly because it may be possible to demonstrate
that additional data has in fact reduced uncertainty and partly because the
original estimate may be less rigidly interpreted as a fixed value. Similarly,
if we are to acknowledge the impact of future climate or catchment change
on food frequency estimates, then it may be helpful in the long run to build
uncertainty into the analysis.

8.1.2. Sources of uncertainty in flood frequency estimation

While Singh and Strupczewski (2002) expressed concerns that skills in
statistics have become more important than hydrological knowledge in flood
frequency estimation, the added focus on uncertainty will further emphasis
the need of hydrologists for appreciation and understanding of statistical
methods. However, for the purpose of discussing the more applied aspects
of flood frequency estimation and the associated uncertainty analysis, it is
probably worth considering the following statement by the distinguished
statistician Sir Maurice Kendall (as quoted by David and Fuller, 2007)
“. . .work which achieves a slight gain in generality at the expense of being
incomprehensible is defeating its own purpose”. While the definition of
what is statistically incomprehensible may vary between hydrologists, this
chapter will attempt to discuss uncertainty from a practical angle rather
than presenting a comprehensive generic framework.

Any assessment of uncertainty in hydrological modelling will depend
on what aspects of the model, its parameters and the forcing climatic
time series are considered known and what aspects are considered random
variables and in need of estimation based on available observations. A useful
classification of error components might be achieved by considering the
total error to consist of three distinct contributions from: (i) model errors;
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(ii) sample errors; and (iii) error in the observed data. Further sub-division
of the errors might be possible (see for example Ewen et al., 2006; Gupta
et al., 2005) but for the purpose of this presentation the errors are
considered aggregated into the three components listed above.

Start by considering a conceptual hydrological model, represented by
the model operatorM , which can simulate runoff from a catchment through
a number of model parameters, represented by the parameter vector θ. Some
of the model parameters are fixed while others are considered to be random
variables which need to be estimated, θ̂, often by minimising the squared
difference between simulated output and the observed data.

In the hypothetical case where the observed hydrological data were
considered free of any errors and the true model parameters were known,
it would still not be possible to exactly reproduce the observed runoff as
the hydrological model is only a simple representation of all the complex
processes and interactions taking place in the real catchment. Thus, by
introducing the model error ηt component the relationship between the
model M , the optimal model parameters, θ, and the observed (and error
free) runoff Qt can be represented as

Qt = Mt(θ) + ηt. (8.1)

The optimal model parameters here refer to a set of values that
would have been obtained if an infinitely long series of calibration data
were available. Of course, in applied hydrology the model parameters are
calibrated using data series of limited length and, thus, the estimated
model parameters are only estimates of the true model parameters and
the resulting simulated runoff,

Q̂t = Mt(θ̂), (8.2)

is only a best estimate of the true runoff. By subtracting Equation (8.2)
from Equation (8.1), the residual error is expressed as a sum of the two
error components, model error and sampling (or calibration) error as

Qt − Q̂t = Mt(θ) −Mt(θ̂) + ηt = εt + ηt. (8.3)

Of course, any observation of flow will be associated with a measure-
ment error, ωt, so that the final relationship is

Qt − Q̂t = εt + ηt + ωt. (8.4)
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All error components have, by definition, a mean value of zero, are
independent of each other and the uncertainty is specified through a
covariance matrix. In some cases it might be useful to log-transform the
flow variables to obtain normally distributed errors. In practice, only the
difference between observed and modelled flow is known and, therefore,
the exact values and covariance structures of the individual error compo-
nents are not readily available. As discussed in Chapter 3, it is generally not
possible to disaggregate the total error into the different error components
when using more complex hydrological models. However, acknowledging
the existence of the different error sources as well as understanding the
error mechanism, the modeller can be more explicit about the assumptions
behind any modelling results and the associated uncertainty estimates.

While the model and sample errors are specific to any particular
modelling system under consideration, the errors in the observed flow values
are identical for any modelling approach. Most standard textbooks on
hydrology will cover the topics of how to, in principle, measure streamflow
and any other hydrological quantity like, for example, precipitation,
evaporation and soil moisture. However, they may not include, for example,
explicit quantification of the range of uncertainties involved in deriving
these quantities. As this chapter is mainly concerned with the estimation
of extreme flow values, we shall limit the discussion here to uncertainty
of observed flow. Issues related to uncertainty in observed rainfall and the
process of converting point rainfall into areal rainfall will be addressed when
discussing flood frequency analysis through rainfall-runoff modelling.

A comprehensive review of streamflow measurement techniques can be
found in Herschy (1995) who also discussed the uncertainty involved in
gauging flow and in the prediction of flow based on observed river stage,
i.e. the rating curve. When considering flood flow, and in particular extreme
flow of a magnitude rarely found in the observed systematic records, the
uncertainty associated with extrapolation from the rating curve becomes
an important error component to consider.

8.1.3. Methods for flood frequency analysis

This chapter will focus on two main approaches to flood frequency
estimation: (i) direct statistical analysis of observed annual maximum
series of instantaneous river flow; and (ii) rainfall-runoff model-based
method where the probability of exceeding a specific flow value can be
estimated by simulating the catchment response, to either a single design
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rainfall event or a continuous rainfall time series. The former rainfall-
runoff model-based method is known as the event-based method or a
derived distribution whereas the latter method is continuous simulation
modelling. The two methods will be treated separately in the following
sections.

While it might be possible to define other classifications of methods for
flood frequency analysis, the division into three methods outlined above will
form the basis of the subsequent discussion. The merits, applicability and
caveats of each of the three methods mentioned above have been discussed
extensively elsewhere (Lamb, 2005; Reed, 1999) and will not be repeated
here. In the following sections the issues of uncertainty will be discussed in
relation to flood frequency analysis through direct statistical analysis and
rainfall-runoff modelling as well as providing actual examples of uncertainty
estimation.

8.2. Statistical Analysis

Flood frequency analysis through direct statistical modelling of extreme
peak flow data is the most widely used method for deriving design flood
estimates. Most commonly the data series consist of the annual maximum
peak flow, but also Peak-Over-Threshold (POT) data are sometimes used.
Many very good texts providing a comprehensive introduction to the topic
of frequency analysis of extreme events in hydrology are available and the
reader is referred to these for a general introduction while this presentation
will focus on the aspects of uncertainty.

Consider a series of annual maximum peak flow observations x1, . . . , xn

which are considered to be realisations of a random variableX characterised
by its Cumulative Distribution Function (cdf) F (x). The design flood event
with a return period T is denoted xT and is obtained by inverting the
cdf as

F (xT ) = 1 − 1
T
, xT = F−1

(
1 − 1

T

)
. (8.5)

The uncertainty of the design value xT is often expressed as the variance of
xT , which for the simple case of a distribution fitted to a single data series
is appropriate but for more complex regional procedures the issue of bias
can be important.

Contribution to the total uncertainty of xT can be attributed to the
three general error types discussed in Section 8.1.2, i.e. model uncertainty,



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch08

Uncertainty in Flood Frequency Analysis 161

sampling uncertainty and uncertainty in the observations themselves. When
considering regional methods for predicting the T-year event at both
gauged and ungauged catchments, additional error components need to
be considered, as will be discussed later.

8.2.1. Model error

The contribution to the total error arising from the particular choice of
model, or cdf, is not often considered. By generating a large number
of random samples from a specified distribution and comparing fits of
various cdfs to these samples with the known cdf, it would be possible
to quantify the error introduced by misspecifying the cdf. However, as the
true underlying distribution is always unknown in practice it is not possible
to directly estimate the effect of the choice of cdf on the error. It can be
argued that a careful examination of the data with regards to goodness-
of-fit of particular cdf will ensure this error contribution is minimised. The
error contribution arising from model error, i.e. misspecification of cdf, will
not be considered further here.

8.2.2. Sampling error

Traditionally, the uncertainties of flood quantiles derived from Equa-
tion (6.4) have been done so under the assumption that the chosen
distribution is in fact the true distribution, i.e. no model error. By also
ignoring the uncertainty of the individual data points, i.e. no measurement
error, the confidence intervals of the T-year event is assumed to be only due
to sampling error, i.e. limited data availability, and can be estimated using
techniques available from the statistical literature. While these methods
are generally well known, the complexity varies according to the number
of parameters of a particular distribution and the chosen technique for
estimating the model parameters, such as the method of moments, method
of L-moments and the maximum likelihood method.

A more comprehensive review of methods for fitting statistical dis-
tributions to series of observed maximum data is provided in standard
hydrological reference texts such as Kite (1977), Stedinger et al. (1993) and
Rao and Hamed (2000), which contain examples of estimators of sampling
uncertainty for many different distributions commonly used in flood
frequency analysis as well as different methods of parameter estimation. As
a foundation to the discussion of uncertainty in the more complex regional
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frequency methods, a short summary of uncertainty estimation is provided
in the example below.

8.2.3. Example

This simple example illustrates the estimation of uncertainty of design flood
derived by fitting a Gumbel distribution to a series of annual maximum
instantaneous peak flow observations from a gauging station located on the
River Lugg in Wales. The annual maximum series (xt, t = 1, . . . , n) has a
record length of n = 35 years. The example considers three methods for
estimating the sampling uncertainty: Taylor approximations (also referred
to as the delta method); bootstrapping; and Monte Carlo simulations.
Common for all three methods is that they assume the chosen distribution
is the “true” distribution and ignore measurement error. In the following
it is assumed that the two-parameter Gumbel distribution is the true
distribution. The T-year event is estimated from a Gumbel distribution
(Chow et al., 1988) as

xT = ξ + α yT yT = − ln
[
− ln

(
1 − 1

T

)]
, (8.6)

where yT is the Gumbel reduced variate and the Gumbel model parameters,
ξ and α, can be estimated using a number of different methods including the
Method of Moments (MOM), Maximum-Likelihood (ML) and the Method
of L-moments (MOLM). In this example we consider only the simple MOM
method. The first two product moments (mean and variance) of the Gumbel
distribution are defined as

µ = ξ + αγe, σ2 =
π2

6
α2, (8.7)

where γe = 0.5772 . . . is Euler’s constant. By replacing the population
moments in Equation (8.7) with the corresponding sample moments (sam-
ple mean and sample variance),

x̄ =
n∑

i=1

xi, s2 =
1

n− 1

n∑
i=1

(xi − µ̂)2, (8.8)

the MOM parameter estimators are obtained as

α̂ =
√

6s
π

, ξ̂ = x̄− γeα. (8.9)
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By combining Equations (8.9) and (8.7), the T-year event can be
written as

x̂T = x̄+KT s = x̄[1 +KTCv], KT = −
√

6
π

(γe − yT ), (8.10)

where KT is a frequency factor that depends only on return period T.
Uncertainty in the estimate can be assessed by assuming that the T-year
event is normally distributed (unlike the annual maximum peak flow values
themselves which are distributed according to the Gumbel distribution).
The normality assumption is asymptotically true (increasingly so with
increasing sample size) for most quantile estimators (Stedinger et al., 1993).
The uncertainty of the T-year event can then be expressed as the confidence
interval

(
x̂T − z1−p/2

√
var{x̂T }; x̂T + z1−p/2

√
var{x̂T }

)
, (8.11)

where zp is p-th quantile of the standard normal distribution and var{x̂T }
is the variance of the T-year event x̂T . The variance of the T-year event will
typically depend on the sample size and the degree of extrapolation (return
period T) and can be estimated using a variety of methods. In the following
sections, three techniques for estimation of the variance of the T-year event
var{x̂T } will be illustrated using: (i) analytical solution using the Taylor
approximation; (ii) bootstrapping; and (iii) Monte Carlo simulations.

8.2.3.1. Taylor approximations

The Taylor method has often been used in hydrology to quantify the
sampling variance of quantiles derived from statistical distributions fitted
to annual maximum series of peak flow. The T-year event estimator is
often a non-linear function of the model parameters which makes direct
use of the variance operator impractical. By approximating the non-linear
function with a linear function in the immediately vicinity of a known set
of parameter values (e.g. the true parameter values), an approximation of
the variance of the T-year estimator can be made. The performance of
the approximation depends on the degree of non-linearity of the T-year
estimator and how close the estimated model parameters are to the true
model parameters. For an introduction to the theory behind the use of
the Taylor approximation we refer to Kite (1977). Here we note that the
Gumbel distribution is sufficiently simple so that using a variance operator
directly on the expression of xT in Equation (5.10) leads to the same results



December 9, 2013 10:31 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch08

164 T.R. Kjeldsen, R. Lamb and S.D. Blazkova

as using a Taylor approximation,

var{x̂T } = var{x̄} +K2
T var{s} + 2KT cov{x̄, s}

=
σ2

n
(1 + 1.396KT + 1.100K2

T ),
(8.12)

where n is the record length, and the variance of the mean value and
standard deviation, and the covariance between the two, are given by
Kendall and Stuart (1977) but not reported here. Expressions similar
to Equation (8.12) are available in the literature for a large number of
distributions and estimation techniques.

8.2.3.2. Bootstrapping

The use of bootstrapping, and the related jackknife method have been
found useful in frequency analysis of hydrological extremes (Zucchini
and Adamson, 1989). The bootstrapping method is particularly useful in
situations where exact or approximate analytical solutions (as discussed
above) are difficult. For an in-depth introduction to both the bootstrap
and jackknife methods, please refer to the comprehensive texts by Efron
and Tibshirani (1993), Shao and Tu (1995) or Davidson and Hinkley (1997).

Estimation of the variance of a T-year event using bootstrapping
involve the creation of a number of resampled data series of similar length
to the original sample, but created from the original observed sample
by random selection with replacement. Consider an observed series of
annual maximum peak flow events x = (x1, . . . xn) from which an estimate
of the T-year event xT is obtained using, in this example, the Gumbel
distribution as in Equation (8.10). The new resampled series are denoted
xb(b = 1, . . . , B), and can consist of any combination of elements from
the original sample. For each of the resamples, the estimate of the T-year
event can be estimated using Equation (8.10) and will be denoted xT,b,
b = 1, . . . B.

In applied hydrology, the use of balanced resampling has become
popular (Faulkner and Jones, 1999; Burn, 2003) where each element of
the original sample is selected the same number of times. Burn (2003)
suggested a practical balanced resampling procedure where B copies of
the original sample are created and concatenated to create a new sample
of length n × B, where B is the number of resamples and n is the
length of the original sample. The elements of the concatenated sample
are randomly permutated and, subsequently, divided into B new samples.
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Having obtained an estimate of the T-year event for each of the B samples,
the variance of x̂T is estimated as

var{x̂T} =
1

B − 1

B∑
b=1

(x̂T,b − x̄T )2, x̄T =
1
B

B∑
b=1

x̂T,b, (8.13)

where x̂T,b is the b-th estimate of xT and x̄T is the mean value across all
resampled data sets. Note that both Faulkner and Jones (1999) and Burn
(2003) were not interested in the variance of the T-year event as used here,
but estimated a bootstrap confidence interval directly from the resampled
values.

With regards to the required number of bootstrap samples, Faulkner
and Jones (1999) used B = 999 and argued that using a limited number
of resamples will introduce unnecessary random variation into the results.
They recommended that a relatively large number of resamples should be
used and that the sensitivity of the estimates should be checked by repeating
the resampling procedure a few times using different values of B.

8.2.3.3. Monte Carlo simulation

As with bootstrapping, Monte Carlo simulations can be useful when
direct analytical solutions are intractable. By assuming that the estimated
parameters of the Gumbel distribution obtained using the MOM are the
true parameter values, then M random samples can be generated each with
a number of elements equal to the number of observations in the observed
sample. Each element, xp, in the stochastically generated sample is derived
by first generating a realisation, up, from a uniform distribution defined on
the interval [0; 1], and then using the inverse of the cdf of the distribution as

F (xp) = up, xp = F−1(up), (8.14)

which for the Gumbel distribution gives,

xp = ξ − α ln[− ln(up)]. (8.15)

The record length of each of the M samples must be equal to the
record length of the observed sample. For a discussion of how to generate
random samples from particular statistical distributions commonly used
in hydrology see for example Cheng et al. (2007). For each of the M

random samples, the Gumbel parameters and the associated T-year event
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are estimated using Equation (8.8) to Equation (8.10). Having obtained an
estimate of the T-year event for each of the M samples, the variance of x̂T

is estimated as

var{x̂T} =
1

M − 1

M∑
m=1

(x̂T,m − x̄T )2, x̄T =
1
M

M∑
m=1

x̂T,i, (8.16)

where x̂T,b is the m-th estimate of xT and x̄T is the mean value of the M
samples.

It can be argued that the procedure above will underestimate the
variance because of the assumption that the estimated Gumbel parameters
equal the true model parameters. An alternative two-stage Monte Carlo
procedure can be used where the model parameters estimated for each
of the M samples are themselves used for generating random samples.
Alternatively, if the joint distribution of the model parameters could be
specified, then M random parameter sets could be generated from where
M random samples could be generated. However, this idea is not pursued
further here.

8.2.3.4. Results

The mean and standard deviation of the 30-year long annual maximum
series of peak flow at gauging station 55014 are 33.8m3/s and 16.0m3/s,
respectively. Estimating the parameters of the Gumbel distribution using
MOM through Equations (8.8) and (8.9) gives

α̂ = 12.51,

ξ̂ = 26.63.

Using these parameter values, the T-year flood can be estimated using
Equation (8.10). Next, the standard deviation of this estimate is estimated
using each of the three methods discussed above and the results shown for
return periods of 10, 25, 50 and 100 years in Table 8.1.

In this particular case, the variance estimates from all three methods
are of similar magnitude. However, this is not always the case. Based on
application of a GEV distribution to observed series in Canada, Italy, and
the UK, Burn (2003) observed that, in general, the bootstrap method
gave estimates of uncertainty that were between 2%–47% lower than those
obtained from an analytical solution. In a study investigating the perfor-
mance of bootstrapping, Hall et al. (2004) concluded that the bootstrap
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Table 8.1. Standard error (m3/s) of T-year events for a range of
return periods for each of the three different methods.

Method T = 10 T = 25 T = 50 T = 100

x̂T using Equation (6.10) 54.8 66.6 75.4 84.2p
var{x̂T } : Analytical 5.7 7.6 9.1 10.6

p
var{x̂T } : Bootstrap 5.4 7.1 8.5 9.8

p
var{x̂T } : Monte Carlo 6.7 8.6 10.0 11.5

method for some distributions and methods of parameter estimation often
required record-lengths of about 100 years to provide reliable estimates.
Therefore, choosing between the three methods based on these results is
not a trivial task, and the fact is that the using the bootstrap method
results in a smaller variance is not necessarily a valid reason for selecting
this particular method, as this might be under estimating the real level of
uncertainty. This simple example illustrates that even for the simple case
of a single-site analysis, estimation of the uncertainty of predictions is not
easy, and is only set to become more difficult as the complexity of the
analysis and modelling system increases.

End of example

8.2.4. Measurement error

So far in this chapter the design flood estimates have been derived by
fitting a statistical model directly to the sample of observed peak flow data.
However, river flow is rarely observed but rather inferred from observations
of stage (water level) through a stage–discharge relationship, i.e. a rating
curve. A comprehensive review of streamflow measurement techniques can
be found in Hersey (1995) who also discusses the uncertainty involved in
flow gauging and the prediction of flow using rating curves. However, the
effect of measurement error on the estimation of T-year floods is a topic
that has attracted rather less attention.

We start this discussion by noting that a commonly used method for
obtaining a rating curve is to fit a functional relationship directly to a set of
N coherent observations of stage, h, and discharge, Q, (hi, Qi) i = 1 . . . , N
at a specific location on a river. The stage–discharge relationship is often
defined by an equation in the form,

Q(hi) = γ(hi + α)β i = 1 . . .N, (8.17)
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where γ, α and β are model parameters which can be fitted using regression
techniques based on least square or maximum-likelihood principles (Clarke,
1999). If a change in river geometry at a stage hm leads to a change
in the stage–discharge relationship not captured by Equation (8.17),
for example, when a river changes from being confined to the river
channel to start flowing out-of-bank and into the surrounding floodplain,
it might be necessary to have additional stage–discharge observations to
develop this next leg of the rating curve. In practice, it is difficult to
generalise rating curves as they are dependent on the local river geometry,
measuring equipment and the number of available stage–discharge gaugings.
Therefore, the following discussion of the effect of measurement uncertainty
on flood frequency analysis is confined to the simple example of only one
rating curve. It is assumed that there is sufficient hydraulic justification for
this form of the rating curve, thus considering only a random error, η, of
the observations scattered around the line

ln[Qi] = ln[γ] + β ln[hi + α] + ηi i = 1 . . .N. (8.18)

For the case where a series of annual maximum flow is derived from
a series of annual maximum levels through the use of a rating curve, two
types of uncertainty has to be considered: (i) predicting discharge from
Equation (8.18) based on observations of stage will introduce prediction
uncertainty; and (ii) the correlation between annual maximum flow events
introduced through the use of a common rating curve.

Considering first the prediction uncertainty of individual events, Clarke
(1999) provided an example where the three parameters in Equation (6.18)
are estimated using maximum-likelihood. In that case the prediction
variance of the log-transformed flow, ln[Qm] corresponding to the water
level hm is approximately given as

var{ln[qm] − ln[Qm]} ≈ s2η + var{ln[γ̂]} + (ln[hm + α])2var{β̂}

+
(

β

hm + α

)2

var{α̂} + 2 ln[hm + α]cov{ln[γ̂], β̂}

+ 2
(

β

hm + α

)
cov{ln[γ̂], α̂}

+ 2 ln[hm + α]
(

β

hm + α

)
cov

{
β̂, α̂

}
, (8.19)

where qm is the true (but unknown) value and the variance-covariance of
the model parameters are obtained from the second-order derivatives of the
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log-likelihood function. The model error variance, s2η, is the sum of squared
residual divided by N − 3.

To illustrate the effect of this type of measurement error on the actual
flood frequency curve, consider the simple error model suggested by Potter
and Walker (1981) and Rosso (1985) where, again, the true and measured
discharge is denoted q and Q, respectively. By adopting a linear error model
where a random measurement error is defined as

√
var{Q|q} = cq (8.20)

it was shown by Potter and Walker (1981) and Rosso (1985) that the
coefficient of variation, C(Q)

v , of the measured series was larger than the
C

(q)
v of the corresponding true discharge values and given as

C(Q)
v =

[
c2 + (1 + c2)(C(q)

v )2
] 1

2 ≥ C(q)
v . (8.21)

Considering again the Gumbel distribution, it is clear from Equa-
tions (8.21) and (8.10) that a higher value of Cv will automatically lead
to higher values of T-year events. Thus, the existence of random error in
the measurements result in more conservative estimates of the design flood
events than would have been obtained if the true discharge values were
observed.

The second, and perhaps less obvious, type of uncertainty is the intro-
duction of correlation between estimates of annual maximum discharge,
in a series when all values have been derived from water levels using the
same rating curve (Clarke, 1999). The effect of correlation in a sample is
generally to increase the variance of the estimated moments. Thus, the
correlation will not affect the parameter values of the Gumbel distribution
when estimated using the method of moments, but is likely to have an
effect on the uncertainty of the T-year quantiles, though this effect remains
unknown at this stage.

8.3. Regional Frequency Analysis

The relatively large uncertainties of T-year events estimated by extrapola-
tion from statistical distributions fitted to limited at-site records prompted
the development of models for regional frequency analysis. The regional
models have an additional advantage allowing estimation at ungauged
sites, though this issue is not pursued further here. The rationale for
using a regional model is that more reliable estimates of T-year events
can be obtained by augmenting the at-site record with data observed
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at neighbouring or hydrologically similar catchments. Often the regional
approach is referred to as substituting space for time to distinguish it
from other approaches of using information on historical flood events
that occurred before systematic data collection was initiated at the site
of interest or methods of record extensions, where the at-site record is
extended by utilising the correlation between observed data at the site of
interest, and a neighbouring observed series which extends further back (or
forward) in time.

As regionalisation is an extension of the at-site analysis discussed above,
many of the issues with regards to uncertainty estimation remain. While
the inclusion of more data will decrease the sampling uncertainty, this
gain should be offset against additional uncertainty due to departure from
assumptions of homogeneity and the existence of cross-correlation between
data at neighbouring sites.

Several regional frequency methods have been suggested in the liter-
ature, each relying on a different set of assumptions with regards to the
degree of homogeneity and inter-site correlation present in the data from the
considered region. In a study developing analytical estimators of sampling
uncertainty for five different regional methods, Rosbjerg and Madsen (1995)
argue that the choice of method should reflect the conditions observed in
the data as closely as possible. They also found that the methods with
the strictest assumptions tended to give estimates with lower uncertainties
than estimates obtained from less restrictive models. Hosking and Wallis
(1997) argued that, since the degree to which the underlying assumptions
of a particular statistical model are justified are never truly known, they
considered uncertainty estimates based on analytical approximations to be
of little practical use — instead they advocated the use of Monte Carlo
simulations. Of course, the utility of a Monte Carlo simulation procedure
relies on a correct specification of the underlying, and still unknown, true
structure of the underlying region, including correct specification of the
type of distribution at each site, as well as the correlation between data
observed at different sites. It seems that that the Monte Carlo simulation
method would suffer from many of the same ills that Hosking and Wallis
(1997) attribute to the more analytical methods. One clear advantage of
Monte Carlo simulation method is that it allows for an assessment of the
effect of any model ignoring structures in the data such as misspecification
of distributions and the existence of heterogeneity. As an alternative to
both the analytical approaches and the Monte Carlo simulations, some
researchers, notably Faulkner and Jones (1999) and Burn (2003), have used
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a regional bootstrapping method for estimating the uncertainties of design
events.

In the following each of the three methods discussed above will be
illustrated for use with the index flood method for regional flood frequency
analysis.

8.3.1. The index flood method

The index flood method has found widespread use in flood hydrology.
The underlying key-assumption of the index flood method is that the
distributions of flood data within a homogeneous region are identical except
for a site-specific scale parameter, the index flood. Consider a region
consisting of N different sites where the number of observations of annual
maximum peak flow at each site is denoted ni and the individual observation
xi,t, t = 1, . . . , ni. At each site within the region the regional T-year event
is given as

x
(R)
T,i = F−1

(
1 − 1

T

)
= µi z

(R)
T , (8.22)

where µi is the site-specific index flood and z(R)
T is the regional dimension-

less growth factor. The superscript R indicates a quantity based on regional
analysis. The index flood is often defined as the mean or the median annual
maximum flood. The growth factor zT is the quantile function of a common
distribution of xi,t/µi, which is assumed identical for all sites in the region.
At each site in the region, the growth factor, zT,i, is described by a number
of model parameters θp, p = 1, . . . , P and each of these parameters can be
combined across sites to form a regional average parameter as

θ̂
(R)

p =
1
Λ

N∑
i=1

ωiθ̂p,i, Λ =
N∑

i=1

ωi, (8.23)

where, again, the superscript R indicates a regional parameter. The weight
ωi can be specified as, for example, the record length so that ωi = ni.

By considering the sampling variance of the regional parameter θ(R)

defined in Equation (8.23) for the simple case where there is only one such
parameter, it is immediately clear that if all assumptions of the index-flood
method are fulfilled, then the benefit of a regional approach over an at-site
approach is a reduction in the variance of the estimated parameters of the
distribution. For example, consider a hypothetical region consisting of data
from five sites (N = 5) and that the variance of the parameter estimator θ̂
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is known at each site in a region to be equal to one, i.e. var{θ̂} = 1. At each
site it is assumed that ni = 10. By using a variance operator directly on
Equation (6.23) above the variance of the regional parameter is generally
given as:

var{θ̂(R)} =
1
Λ2


 N∑

i=1

n2
i var{θ̂i} + 2

N−1∑
i=1

N∑
j=i+1

ninj var{θ̂i} 1
2 var{θ̂j} 1

2 ρθ,ij


.

(8.24)

Assuming the data from the different sites are independent, the correlation-
term ρ becomes zero. This will result in a variance of the regional parameter
equal to 5 × (102 × 1)/(5 × 10)2 = 0.2, i.e. a significant reduction when
compared to the variance of 1 at each individual site.

As a result of the model not fully complying with the underlying
assumptions, the apparent gain in efficiency will not be fully realised.
Firstly, it is well known that observations of annual maximum floods
recorded at neighbouring sites tend to have some degree of positive
correlation (e.g. Kjeldsen and Jones, 2006; Tasker and Stedinger, 1989),
i.e. the covariance terms in Equation (8.24) are positive and larger than
zero, resulting in a larger sampling error. Secondly, a model error might be
introduced as a single distribution is specified for the entire region, which
might not be fully justified. Finally, any departure from the assumption of
complete homogeneity will introduce a degree of error into the analysis. The
last two errors are classified as model errors, as they have been introduced
by forcing a relatively simple model to represent a complex system. The
model errors cannot easily be assessed directly from analysis of an observed
data set, but their impact can be minimised by carefully analysing the data
and ensuring compliance between data and model.

8.3.2. Example

Estimating the sampling variance of the T-year event was relatively simple
for a single-site analysis based on the Gumbel distribution with parameters
estimated using the MOM. However, the analysis becomes more complex
when considering the regional T-year event estimator. The index flood
method for the Gumbel distribution defines the regional T-year event
estimator for the i-th site as

x
(R)
T,i = x̄i +KTsi = x̄i(1 +KTC

(R)
v ), (8.25)
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where Cv is the coefficient of variation s/x̄ which is assumed to be a
regional constant, whereas the index flood, x̄i is site specific, and defined
as the average annual maximum flood. Consider a region consisting of N
catchments for which the underlying values of Cv are identical, then the
record weighted mean regional mean value of Cv is

Ĉ(R)
v =

1
Λ

N∑
i=1

niĈv,i, Λ =
n∑

i=1

ni. (8.26)

A very important part of regional frequency analysis is the identification
of a region in which catchments can be considered to be homogeneous. For
a more in-depth discussion of how to how to create homogeneous regions,
please refer to Hosking and Wallis (1997).

Considering the same gauging station used in the single-site example
(gauging station 55014), a regional estimate of the T-year flood was derived
based on a region of 11 annual maximum series of peak flow from similar
catchments located in the south-west of the UK have been defined. The
catchments were chosen based on available record length and similarity
with the subject site with regards to geographical location, catchment
area, average annual rainfall and soil type. The locations of the eleven
gauging stations are shown in Figure 8.1 and additional details shown in
Table 8.2

As for the single-site analysis, we consider three methods for estimation
of the variance of the regional T-year: (i) an analytical solution; (ii) boot-
strapping; and (iii) Monte Carlo simulations.

8.3.3. Analytical solutions

Development of an analytical expression of the variance of the regional
T-year event estimator requires a first-order Taylor approximation of
Equation (5.25) centred at the true values of the population parameters
of the mean, µ, variance, σ2, and the coefficient of variation, Cv, i.e.

var
{
x̂

(R)
T,i

}
= (1 +KTC

(R)
r )2var{x̄i} + (µiKT )2

var
{
Ĉ(R)

v

}
+ 2µiKT cov

{
x̄i, Ĉ

(R)
v

}
, (8.27)

where it is assumed that cov{x̄i, Ĉ
(R)
v } = 0 and

var{x̄i} = σ2/ni. (8.28)
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Figure 8.1. Map showing location of subject site (55014) and the additional 11 gauged
catchments included in the regional frequency analysis.

The variance of the regional coefficient of variation is obtained by using the
variance operator directly on Equation (8.26),

var{C(R)
v }

=
1

Λ2


 N∑

i=1

n2
i var{Ĉv,i} + 2

N−1∑
i=1

N∑
j=i+1

ninj var{Ĉv,i} 1
2 var{Ĉv,j} 1

2 ρCv,ij


,

(8.29)

where Cv,i and Cv,j are the coefficient of variation at site i and j, and ρCy,ij

is the correlation coefficient between Cv,i and Cv,j . Kjeldsen and Rosbjerg
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Table 8.2. Details of gauging stations included in regional analysis.

No. River Area [km2] n [no. years] Mean [m3/s] Stdev [m3/s] CV

55014 Lugg 202.5 35 33.9 16.1 0.47
45003 Culm 228.9 41 78.8 40.8 0.52
67008 Alyn 225.8 38 23.3 8.82 0.38
52005 Tone 203.7 42 44.3 15.1 0.34
52006 Yeo 216.2 41 59.5 31.0 0.52

53007 Frome 263.7 42 61.2 19.2 0.31
45012 Creedy 263.6 39 80.9 39.3 0.49
55025 Llynfi 131.5 32 59.5 36.8 0.62
45005 Otter 202.8 41 79.4 49.7 0.63
55029 Monnow 355.1 30 153.5 37.3 0.24
55013 Arrow 125.9 35 29.0 10.8 0.37
66001 Clwyd 404.7 30 48.1 14.7 0.31

(2002) assumed that ρCy,ij = ρ2
ij where ρij is the correlation coefficient

between the AMS at site i and j which can be estimated for pairs of sites
with records overlapping in time. The variance of the Ĉv,i at each of the
N sites is given by Rosbjerg and Madsen (1995) as

var{Ĉv,i} =
C2

v,i

ni
(1.1 − 1.14Cv,i + C2

v), (8.30)

which should be substituted into Equation (8.29) to get the variance of the
regional C(R)

v estimator, which again is used in Equation (8.27) to get the
variance of the regional T-year event estimator.

8.3.4. Bootstrapping

The bootstrapping procedure used here is based on the procedure presented
by Faulkner and Jones (1999) and adopted for regional flood frequency
analysis by Burn (2003). Note that both of these studies were not interested
in the variance of the T-year events but derived confidence intervals
directly from the ranked bootstrapping results. However, for consistency,
this presentation will focus on the estimation of the variance. When using
bootstrapping to estimate the uncertainty of a T-year event obtained
from a pooled frequency analysis Burn (2003) advocated the use of a
vector bootstrapping approach to preserve the existing correlation between
overlapping samples of data across sites in the pooling group. In vector
bootstrapping, the procedure involves randomly selecting years (rather
than observations) with replacement and then forming a vector containing
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Figure 8.2. Bootstrap selection of all observations at all sites at a particular year.

data from each catchment in the pooling group for that particular year.
Figure 8.2 illustrates the concept of selecting data across a region for a
particular year for a simple bivariate case.

Similarly to the single-site procedure, the balanced resampling
approach is adopted for the regional procedure, but ensuring that all years
for which data are available are selected an equal number of times for
the resampled data set (Burn, 2003). In practice, balanced resampling for
regional analysis is implemented as described for the single-site case, but
where the vector B in the single-site case contains individual data points,
in the regional analysis it contains all the years where data are available
at any site. For each of the B regional resamples, the regional estimate of
the T-year event at the site of interest is obtained using the index-flood
method and the variance of the T-year estimate calculated as

var
{
x̂

(R)
T,i

}
=

1
B − 1

B∑
b=1

(
x̂

(R)
T,b − x̄T

)2
, x̄T =

1
B

B∑
b=1

x̂
(R)
T,b , (8.31)

where x̂(R)
T,b is the b-th estimate of xT and x̄T is the mean value across all

resampled data sets.

8.3.5. Monte Carlo simulations

A simple and practical algorithm for the use of Monte Carlo simulations
for estimation of the variance was presented by Hosking and Wallis (1997).
In the following, the number of Monte Carlo replications is denoted M .
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(i) Consider again a region consisting of N gauged catchments where the
records consist of {ni, i = 1, . . . , N} year of observations.

(ii) For each catchment specify the marginal distribution Fi(x)i = 1, . . . , N
and its parameters. The parameters can be sample values obtained
from the observed records, or they can reflect a synthetic region
specified by the analyst.

(iii) For each of the realisations generated by the Monte Carlo procedure,
a set of sample data are generated for each catchment with a record-
length equal to the observed record-length. From each replica, the
T-year event is derived using the index-flood algorithm.

(iv) Having obtained M estimates of the T-year event, the variance can be
estimated as

var
{
x̂

(R)
T

}
=

1
M − 1

M∑
m=1

(
x̂

(R)
T,m − x̄T

)2
, x̄T =

1
M

M∑
m=1

x̂
(R)
T,m, (8.32)

where x̂(R)
T,m is the m-th estimate of xT and x̄T is the mean value of the

M samples.
The actual procedure for generating replica depends on whether inter-

site dependence between the annual maximum flood series at different
catchments is taken into consideration or not. If inter-site correlation is
neglected, then the regional procedure is equivalent of generating samples
from N individual catchments as discussed in the single-site case. If inter-
site correlation is present, then the structure of the correlation should be
specified in a N ×N dimensional correlation matrix C, where the diagonal
elements are one and the off-diagonal elements correspond to the correlation
ρij between the annual maximum peak flow at catchment i and j.

C =




1 ρ12 ρ13 · · · ρ1N

1 ρ23 · · · ρ2N

1 · · · ρ3N

. . .
...

1



. (8.33)

To generate a realisation, a total of max{ni, i = 1, . . . , N} vectors zik,
i = 1, . . . , N, k = 1, . . . , ni containing realisations from a multivariate nor-
mal distribution with zero mean and a covariance-matrix C are generated.
Please refer to standard texts for further details on how to generate
multivariate normal vectors (Devroye, 1986). In practice it is often not
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possible to use the sample estimates of the cross-correlation in C as this
can lead to a matrix which cannot be inverted (not symmetric positive
semi-definite). Alternatively, Hosking and Wallis (1997) suggested using an
average correlation for the entire region and Tasker and Stedinger (1989)
related the correlation to the geographical distance between catchments.

Finally, each of the realisations zik, i = 1, . . . , N , k = 1, . . . , ni is
transformed to the required marginal distribution (here Gumbel) as

xi,k = F−1
i (Φ(zi,k)) = ξi − αi ln�− ln(Φ�zi,k�)�, (8.34)

where Φ is the cumulative distribution function of the standard normal
distribution. It is common in Monte Carlo studies to generate M = 10000
or more samples.

8.3.6. Results

To estimate the T-year event for the annual maximum peak flow series at
gauging station 55014 using the index-flood method, it is first necessary to
estimate the regional coefficient of variation. Using Equation (8.26) with
the data in Table 8.3, Ĉ(R)

v = 0.25. With a mean annual flood at the site of
interest of x̄ = 32.2m3/s the T-year event can be estimated for any return
period using Equation (8.25). The T-year events derived for T = 10, 25, 50,
and 100-years as well as the associated uncertainties estimated using each
of the three methods are shown in Table 8.3.

The results in Table 8.3 can be compared to the corresponding results
obtained for the single-site analysis in Table 8.1. While the magnitude of the
T-year events themselves only changes slightly when comparing the results
of the regional analysis to the single-site analysis, the associated reduction

Table 8.3. T-year flood and the associated standard error (m3/s)
estimated from the three regional procedures.

Method T = 10 T = 25 T = 50 T = 100

x̂
(R)
T from Equation (6.25) 53.2 64.1 72.2 80.3

q
var

˘
x̂
(R)
T

¯
: Analytical 4.4 5.4 6.2 7.0

q
var

˘
x̂
(R)
T

¯
: Bootstrap 4.6 5.7 6.6 7.5

q
var

˘
x̂
(R)
T

¯
: Monte Carlo 4.4 5.4 6.2 6.9
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in uncertainty is more dramatic. A general reduction of between 20%–40%
in standard deviation of the T-year event clearly illustrates the benefits of
including additional regional information into flood frequency analysis.

It is worth noticing that the while the bootstrap method gave the lowest
estimate of variance for the single-site case, it provides the highest estimate
in the case of the regional analysis. However, there is no reason why this
should always be the case. Also, note the close agreement between the
estimates obtained for the analytical and the Monte Carlo methods.

8.4. Continuous Simulation Modelling

Continuous simulation methods for flood estimation have developed from
process-based ideas, in which the runoff that produces flood flows is
modelled, at least in principle, as part of a wider range of catchment
responses. In this approach, a rainfall-runoff model that can simulate a
long, unbroken flow record is used to generate synthetic flow data that can
then be analysed using conventional statistical distribution-fitting methods
or simple empirical estimates of probability. Alternatively, this long series of
runoff can be used as input into another system for which the probabilistic
behaviour is required, e.g. floodplain mapping. The simulation approach
uses models that have some internal water balance accounting to track
the state of the catchment over time and so allow the runoff response
to vary with antecedent soil moisture. This integrates the variation in
precipitation inputs over different timescales and hence avoids one of the
most difficult problems with event-based models, which is the need to
specify the joint distribution of “design inputs” (antecedent soil moisture
and rainfall intensity; duration; and profile or snowmelt volume). A price
to pay for avoiding this difficult joint distribution is that a complete
precipitation series is needed to drive the runoff model. The aim is generally
to have a synthetic flow record that is long enough to make the uncertainty
arising from random sampling of the flow data very small. There may be
situations where long gauged precipitation records exist and the required
design flow is at a relatively short return period, in which case the gauged
data could be used directly to drive the runoff modelling. But often it will be
necessary to use a model to generate long precipitation sequences, which
of course introduces uncertainty through the same combination of data,
sample and model-specification errors that occur for flow models.

One of the motivations for continuous simulation, as noted by Bras et al.
(1985), is that rain-gauge networks are often more extensive and longer
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established than flow gauges. Hence more information may be available to
represent the rainfall inputs than exists for the river flows. Data are also
required to support snow accumulation and melt models in some regions
and for the calculation of potential evaporation. Long-term variations in
evaporation may affect the flood regime in some catchments by controlling
soil moisture deficits prior to rain storms. However, it is most likely that
rainfall or snowmelt inputs control the probability distribution of flood
flows, at least for large events and in humid temperate environments.

Where rainfall-runoff models are used for flood estimation, estimation
of uncertainty is complicated by a number of factors. Firstly, rainfall-
runoff models applied in continuous simulation tend to be highly non-
linear and including thresholds in their responses, which makes estimation
of the parameter values difficult. Secondly, the probability distributions
of the model parameters are unlikely to be independent because most
rainfall-runoff models are designed from the principle of trying to reflect
process understanding of catchment hydrology, rather than to provide a
“best” explanation for the variation in measured data in a statistical sense.
The models may therefore have multiple pathways that can give rise to
equivalent outputs; for example there may be several different attenuation
functions representing surface, soil and groundwater storage. One exception
is the class of models based on transfer functions that are inferred directly
from data and subsequently interpreted conceptually. Finally, multiple
output variables from the rainfall-runoff model (e.g. flood peaks, low flows
and soil moisture) can be defined against which observational data may be
compared and different measures of performance evaluated.

Due to these complications, measures of uncertainty have tended to be
based on importance sampling using Monte Carlo methods, or concepts of
Pareto optimality (Gupta et al., 2002). For example, Cameron et al. (1999,
2000b) and Blazkova and Beven (2002, 2004) used the GLUE (Generalised
Likelihood Uncertainty Estimation) method of Binley and Beven (1992),
a generalised Monte Carlo approach (which can include both formal and
informal Bayes approaches and fuzzy set approach, see 2.1.4.2), to compute
uncertainty bounds for flood frequency curves.

Although it is an elegant approach in principle, there are two important
problems that have to be solved to make practical use of the continuous
simulation method. Firstly, it will often be necessary to extend simulations
in time so as to generate a sufficiently long synthetic flow series to reduce
sampling uncertainty. Secondly, it will often be necessary to simulate
ungauged locations. Both situations can be seen as extrapolations of the
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method (in time and space, respectively). In both cases, the extrapolation
effectively introduces additional models and uncertainty. Temporal exten-
sion requires models for precipitation (and other climatic forcing variables).
Spatial extrapolation requires models for parameterisation of the runoff
and precipitation simulators. The combination of two or three model
components means the uncertainty analysis can become rather complex.

The following sections introduce uncertainty analysis methods that
have been developed separately for the temporal and spatial extrapola-
tion of continuous simulation flood frequency estimates. Estimation of
uncertainty for combined precipitation and runoff modelling is illustrated
with examples using the GLUE method (for introduction in GLUE, see
Chapter 6). Spatial extrapolation is then discussed with reference to a
national study in the UK where a theoretical analysis of uncertainty in
runoff modelling has been developed to include transfer of information
about parameter estimates to ungauged locations.

8.4.1. Simulation uncertainty

For continuous simulation of long series, two models are in fact used: a
precipitation and temperature simulator and a precipitation-runoff model.
Equation (3.1) could be used for each of them separately or the parameter
set θ could contain parameters of both. If there are rainfall and snow data
available in sufficient quantity, it could be possible to try to estimate the
input and commensurability errors, and in case of the availability of rating
data, the observation error could be estimated using the acceptability
approach of GLUE (Beven, 2006). The usual situation, however, is that
those data are not available. In such cases, the only uncertainty we are
dealing with explicitly is the parameter uncertainty, the estimate of which
we are getting by sampling parameters independently from physically
reasonable ranges. The parameters then compensate for all the other errors
of Equation (3.1). In the following text we will present some examples of
precipitation simulators and of likelihood measures used in connection with
producing long series of annual peaks for catchments in Wales and in the
Czech Republic.

8.4.2. Precipitation simulators

Eagleson (1972) developed derived flood flow distributions based on a
statistical rainfall model combined with a kinematic wave hillslope flow
model. This early work integrated the rainfall and flow models analytically.
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With the subsequent development of computer codes to run water balance
accounting models, the derived distribution idea could be generalised to use
rainfall and runoff models that would have been too complex to integrate
analytically. Some of the early developments in this field were reported
by Beven (1986a,b, 1987) who adopted and then extended the Eagleson
rainfall model. The parameters of the simulator were the parameters of
independent exponential distributions for average rainfall intensity, and the
average duration of storm events. For continuous simulation, a parameter
controlling an exponential distribution of storm arrival time was added.

A number of studies found that it was necessary to model separate
low and high intensity event types, each of which had three independent
parameters. Cameron et al. (1999, 2000a) found dependence between
average duration and intensity on some UK catchments and as a result
modelled events in seven duration classes and extrapolated the upper tail
of each distribution by fitting a generalised Pareto distribution. They were
able to evaluate uncertainty separately for the rainfall simulator and for the
catchment rainfall-runoff model “TOPMODEL” and then created coupled
simulations by random sampling catchment model parameters, driven by
realisations of sequences of rainstorms.

It seems to be intuitively physically more reasonable to simulate rain
cells directly. The pulse-based models often reproduce many of the proper-
ties of data series adequately (Cowpertwait et al., 1996; Onof and Wheater,
1993) but there is a large uncertainty due to limited representativeness of
the observed rainfall data sample for short durations of the order of one hour
and problems about defining the upper limits of the statistical distributions
of rainfall intensities assumed (see Cameron et al., 2001a and the citations
therein).

A precipitation simulator or weather generator (if temperatures are also
modelled) could be used for the estimation of the climate change impact
on floods and the hydrological regime in general (Fowler et al., 2005). It is
important to realise, however, that the parameter sets which are identified
as being behavioural (i.e. in reasonable agreement with the observed data)
under current climate conditions are also assumed to be behavioural under
climate change (Cameron, 2006).

8.5. Likelihood Measures

There are many possible likelihood measures suggested for use within
the GLUE methodology, including formal Bayes likelihood functions
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Figure 8.3. Cumulative frequency curve for 1000 years return period at Dolni Kralovice;
horizontal lines indicate 5 and 95% prediction bounds. (Blazkova and Beven, 2004,
reproduced with permission of J. Hydrol.)

(based on statistical models for the error structures), simpler coefficients
of determination for hydrograph simulation (such as the Nash–Sutcliffe
criterion), sums of absolute errors between modelled and observed ordinates
or flood frequency quantiles or fuzzy measures. The computed likelihoods
are first used for rejection of non-behavioural (i.e. totally implausible)
model structures and/or parameter sets, and then they are used as weights
for the construction of the cumulative likelihood weighted distributions
from the behavioural simulations (Figure 8.3), which gives an expression of
uncertainty in a flood quantile (see the example below).

The construction of the likelihood measure depends on what data is
available. If there are observed series of precipitation and flow covering the
same period, then it is possible to find parameter sets of the rainfall-runoff
model producing simulations which agree with the observed flow record
(behavioural simulations) and to reject those simulations (parameter sets)
which do not. This was done by Cameron et al. (1999) on the data-rich Wye
catchment. The more usual situation is an existing record of annual maxima
and daily flow, in which case it is possible to constrain the simulation on the
flood frequency curve estimated from the observed data and on the observed
flow duration curve. For flood studies it is preferable in most cases to use
data with a sub-daily resolution to capture the real peaks rather than the
daily average flow values.

Depending on the data availability, the likelihoods measures used in
the uncertainty evaluation can be combined in various ways. For example,
Cameron et al. (1999) defined one measure for a rainfall model, another for
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the rainfall-runoff model, and from these measures constructed a Combined
Measure, CM, which assumed equal weighting for each measure and is
expressed analytically as

CM = exp

{
l(ρ) +

1
nd

nd∑
i=1

[ls(Θi)]

}
, (8.35)

where nd is the number of rainfall duration classes, and ls(Θ) is the rescaled
version of each likelihood function, l(Θ), for a range of rainfall duration
defined as

l(Θ)du =
np∑
i=1

{− logσ + (−1/κ− 1) × log[1 + κ(xi − u)/σ]}, (8.36)

where du is the duration class, xi is a particular event in the corresponding
upper tail, np is the number of events in that tail, and κ, u and σ are
shape, location (or threshold) and scale parameters. The rainfall likelihood
functions are rescaled such that they share a common scale with the
likelihood function defined for the peak flow series as

l (ρ) =
19∑

i=1

{
− logαs + (−1/ks − 1) log[1 + ks(yi − us)/αs]

− [1 + ks(yi − us)/αs]−1/ks

}
, (8.37)

where αs, ks and us are the scale, shape and location parameters of a GEV
distribution, fitted to the annual maximum peak flows of the simulated
series, and yi is the corresponding value of the peak flow estimated from
a GEV distribution fitted to the observed series of annual maximum peak
flows. Note that in the study by Cameron et al. (1999) the summation goes
from 1 to 19, because 19 of the 21 observed peaks had a non-exceedance
probability of less than or equal to 0.9 (ten-year return period).

Another possibility is to incorporate the parameters of the precipi-
tation model into the uncertainty analysis together with the runoff model
parameters, hence providing an estimate of the uncertainty of the combined
simulation as has been done in the example below.

In the applications of the GLUE methodology reported by Blazkova
and Beven (2002, 2004), fuzzy set theory has been used for the formulation
of likelihood measures (see Section 3.4.1). In evaluating the modelled flood
frequency curves against frequency curves estimated from observations,
three fuzzy sets (defined by three membership functions) have been created,
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linguistically described as “wrong”, “reasonable” and “good” based on a
measure defined as 1/SUMF where SUMF is sum of absolute errors between
the modelled and “observed” flood frequency curves, rescaled to the range
between 0 and 1 (on the x-axes in the plots in columns a and d in Figure 8.4).
A modelled frequency curve can belong to two of the sets at the same time
to various degrees. The vertical line in column a shows that the simulation
with 1/SUMF =0.307 belongs to a large degree to the set “reasonable” but
to some degree also to the set “wrong”.

This can be further used as an input into a fuzzy system combining
the flood frequency goodness of fit with other goodness-of-fit criteria, here
by considering flow duration curve. There are two membership functions
for flow duration in Figure 8.4, “wrong” and “good” in columns b and e.
The criterion here is 1/SUMD (where SUMD is sum of the absolute errors
between simulated flow duration curve and the curve from observations).
The combining is done in this case by constructing six linguistic rules, which
can be expressed, for example, as (see row 4 in columns a, b and c).

If “floods” is “reasonable” and “duration” is “good” then “likelihood”
is “medium”.

The outputs of the rules are also fuzzy-membership functions (in the
Mamdani system, see column c). The outputs of all the rules are then
aggregated using e.g. summation (see dark shaded area in the last plot
in column c) and then defuzzified using e.g. centroid (pointed out by the
short vertical line in this plot). The result is a crisp number representing
a likelihood weight for the simulation (that is not a particularly good one,
0.313). The Sugeno system does not have membership functions as output
as the Mamdani system, but crisp numbers (column f in Figure 8.4). The
defuzzification is then achieved by weighted average. In the Sugeno plots we
have chosen a relatively good simulation (see the vertical lines in columns d
and e). The combined likelihood is 0.617. Matlab Fuzzy Toolbox offers more
opportunities for combining functions, and of defuzzification, and is easy
to use.

If neither precipitation runoff nor flood frequency data are available
on the catchment in question it is possible to use a regional estimate of
flood frequency curve and flow duration curve for selecting the behavioural
parameter sets as was done in a study of Blazkova and Beven (2002) where
a gauged basin was treated as ungauged.

Flood frequency can also be computed within the limits of acceptability
GLUE framework where limits (based e.g. on rating curves data) are set
before running the simulations (Blazkova and Beven, 2009b). This study
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Figure 8.4. An example of the Mamdani and Sugeno fuzzy systems for the same case of computing fuzzy likelihood from two criteria:
flood frequency with three membership functions (described linguistically) and flow duration with two. The system has six fuzzy rules
(one is given as an example in the text). The long vertical lines over the columns a, b, d and e give the value of the two criteria for a
simulation in question 1/SUMF and 1/SUMD for the flood frequency and flow duration, respectively. Shaded areas visualise to which
extent each membership function is in use; in the output functions of the Mamdani system (column c) the shaded areas of the individual
rows (rules) are aggregated giving the shape in the last row where then the centroid is found. In the Sugeno system the resulting
likelihood is found as weighted average (column f) (Software Fuzzy Toolbox of Matlab).
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also shows procedures of relaxing the limits if the number of acceptable
simulations is small in order to be able to construct prediction limits.

8.5.1. Example

The Zelivka catchment (1188.6 km2) drains part of the Czech-Moravian
highlands, located between Bohemia and Moravia in the Czech Republic.
The Švihov reservoir located at the outlet of the catchment is the most
important source of drinking water for Prague. Most of the catchment lies
on relatively impermeable crystalline bedrock. Deeper flow pathways occur
in bedrock fractures. Land use in the catchment is dominated by agriculture
and forestry. The maximum altitude of the catchment is 765m above sea
level, and the altitude at the Švihov dam is 400m above sea level. The
catchment average annual precipitation is 670mm. In the past floods in the
catchment have been caused by both summer rainfall and snowmelt.

For modelling purposes the catchment has been sub-divided into seven
sub-catchments. Gauged flow information was available for four of these
(Figure 8.5). The stochastic precipitation model distinguishes two types
of rainfall — with low and high intensity, with parameters that vary for
four characteristic seasons of different lengths. The model allows for a
probability that storms arrive from different directions and for correlation
in sub-catchment averaged rainfall volumes on different sub-catchments at
different time steps. The temperature model has Fourier and autoregressive
stochastic components for both seasonal and daily temperature variations.
A simple degree-day routine is employed for snowmelt. A detailed descrip-
tion can be found in Blazkova and Beven (2004).

This study adopted the TOPMODEL (Beven, 1986a,b, 1987, 2001;
Blazkova and Beven, 2002, 2004) as the rainfall-runoff model. The TOP-
MODEL has a number of parameters, some of which were considered
fixed and others considered to be random variables. Using the GLUE
methodology the following TOPMODEL parameters were sampled from
uniform distributions with physically reasonable ranges: depletion and
rootzone parameters, soil transmissivity, routing velocities and a parameter
for recharge to the saturated zone. For the weather generator, the winter
season storm parameters, degree day factor for snowmelt and reductions of
point rainfall with the areas of the subcatchments, have been considered to
be uncertain.

For each of the four sub-catchments with observed data, a fuzzy model
has been set up combining three criteria: goodness of fit (1/sum of the
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Figure 8.5. Computation of likelihoods from short (100 years) simulations. Flood
frequency — the exceedance curves of annual flow maxima, ev1 is Gumbel distribution,
ev1 =4.6 is for 100-years flood, snow water equivalent — exceedance curve of annual
maxima of snow water equivalent, conditioning — points on which the likelihood has
been computed; (Blazkova and Beven, 2009a, reproduced with permission of Structure
and Infrastructure Engineering).

absolute errors) of the flood frequency curve, of the flow duration curve
and of the maximum annual snow water equivalent (schematically shown
in Figure 8.5).

The result is the fuzzy-likelihood of the simulation on each sub-
catchment in question. A combined measure expressing the likelihood
of each simulation on the whole catchment was computed with another
fuzzy system, which has been used for the evaluation of short (100-year)
simulations. With the behavioural parameter sets 10,000-year time series
have been simulated to get better estimates of the longer-term frequency
statistics. A final evaluation, again in a fuzzy form, has been used — the
relation of the simulated rainfall to the Probable Maximum Precipitation
(PMP). PMP has been derived by the Institute of Atmospheric Physics,
Rezacova et al., 2005. Prediction quantiles of peak flow are then obtained
by weighting the predictions from all the behavioural models with their
associated final fuzzy likelihood measure and constructing a cumulative fre-
quency curve (see Figure 8.3). On Figure 8.6 the prediction bounds of flood
frequency at Dolni Kralovice together with the observed data are shown.
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Figure 8.6. Computation of likelihoods from long (10,000 years) simulations,
behavioural parameter sets — parameter sets found acceptable in 100 years simulations,
PMP — probable maximum precipitation (Blazkova and Beven, 2009a, reproduced with
permission of Structure and Infrastructure Engineering).

8.6. Generalised Model Uncertainty

It is common in practice to compute design flood flows for ungauged
sites where there is no local data to help with calibration or estimation
of uncertainty. In this situation, models used for continuous simulation
have to be parameterised based on transfer of information from gauged
locations (as is the case for other flood frequency estimation methods
applied at an ungauged catchment). This transfer of information involves
estimating the parameters of the runoff model either by taking an average
of neighbouring estimates at gauged sites or by modelling the parameters
themselves, typically using regression against catchment properties such as
area, mean elevation or mean slope. The runoff model parameter estimation
therefore introduces its own uncertainty.

The first analysis of the uncertainty of ungauged site continuous
simulation was by Lamb and Kay (2004), using Monte Carlo simulation
to generate confidence intervals for flood frequency curves at ungauged
catchments. They fitted regression relationships between hydrological
model parameters and catchment properties based on calibrated estimates
for 40 gauged sites in the UK. Random samples were then generated from
the distribution of the residuals surrounding each regression equation and
supplied to the hydrological model to produce simulated flow series. Flood
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Figure 8.7. Schematic of the method used to calculate approximate confidence intervals
using Monte Carlo Simulations (MCS) for catchments treated as ungauged (Reproduced
from Lamb and Kay, 2004).

quantiles for specified return periods were calculated for every simulation
and used to construct an empirical distribution for the design flows, and
hence to calculate confidence intervals; the procedure is illustrated in
Figure 8.7.

The confidence intervals calculated for the “ungauged” continuous
simulation were compared with intervals derived for a Generalised Pareto
Distribution (GPD) fitted directly by maximum likelihood to gauged
data that had been withheld from the continuous simulation. The degree
of uncertainty in the spatially generalised continuous simulation varied
between sites but was often no greater than for the site-specific frequency
curve fitted directly to the gauged flows. In particular the study showed
that the estimation of parameters from catchment properties did not lead
to the rapid inflation of uncertainty at higher design flows that was seen
for the GPD, presumably as a result of sampling error.

The Lamb and Kay analysis considered uncertainty in estimates of
runoff model parameter values that would be obtained for a catchment
given a limited calibration record, rather than estimates of a hypothetical
“true” parameter. A more complete analysis of uncertainty for a spatially
generalised flood simulation model has been developed by Calver et al.
(2005) and Jones and Kay (2006) where a framework was proposed to assess
the likely error in estimating a notional “true” parameterisation at the
ungauged site rather than a parameterisation that would be obtained given
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a limited sample of calibration data. Here, the calibration error

ε = Y − T (8.38)

was defined as the difference between the calibrated estimate Y of a
parameter at a gauged site and a hypothetical underlying “true” value, T ,
which represents the value to which a calibration procedure would converge
for a very long hydrological record. The generalisation error

η = T − µ (8.39)

represents the difference between the notional true value T for the
catchment, and the estimated value µ obtained from a generalisation rule
(e.g. a regression model linking model parameters to catchment properties).
The proposed uncertainty analysis distinguished between a notional “true
generalisation” µ that would be based on an arbitrarily large sample of
catchments, and the “sample generalisation” estimate T ∗ = µ∗ derived from
the generalisation procedure applied to a real, limited set of catchments.

Uncertainty arising from the parameter generalisation is captured in
the above model by the variance of the generalisation error σ2

η whilst the
calibration uncertainty is associated with the variance of the calibration
error σ2

ε . The calibration error variance was estimated using a jackknife
procedure in which a re-calibration was carried out multiple times for each
gauged catchment, leaving out a year of record on each pass. The calibration
error variance was estimated separately for each gauged catchment i as
σ2

ε,i. The generalisation error variance was then computed for the whole
set of catchments using an iterative procedure that simultaneously found
the best generalised parameter estimates Y ∗

i consistent with the calibration
uncertainty at each catchment. If the generalisation model is a least squares
regression between model parameters and catchment properties, then the
above process effectively estimates the generalisation uncertainty as a
weighted sum of squares of the residuals of the regression model.

Total uncertainty in the generalised estimate of a model parameter for
an ungauged site (denoted by a subscript u) can then be expressed in terms
of the variance of the total estimation error

var(Tu − T̂u) = σ2
η +

n∑
j=1

w2
u,j(σ

2
η + σ2

j,ε), (8.40)

where wu,j is a weight applied to the calibrated parameter estimate from
gauged catchment j when constructing the estimated parameter value at
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ungauged catchment u. The terms on the right-hand side represent the
generalisation uncertainty, plus the transferred effects of both generalisation
uncertainty, and calibration uncertainty, from n gauged catchments to the
target ungauged site.

The above analysis is presented for a single model parameter, but
as we have noted, rainfall-runoff models used for continuous simulation
typically have several parameters with some dependence between them.
The study by Calver et al. (2005) extended the analysis of uncertainty to
include the covariance between the calibration and generalisation errors
as well as the variances discussed above. By using the derived covariance
matrix, random sets of parameters were generated and supplied to the
runoff model to produce uncertainty bounds. Examples of the results are
shown in Figure 8.8.

Uncertainty bounds were computed for 112 catchments across the
UK and the results summarised in terms of the mean width of the 90%,

Figure 8.8. Example of uncertainty bound (blue; 50% - dot/dash, 90% - long dashed,
95% - short dashed, 99% - dotted) on generalised flood frequency curves (black solid),
for two catchments (Reproduced from Calver et al., 2005).
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95% and 99% bounds for estimates of the 10-year and 50-year flood flow,
where this width was standardised by the median simulation, to permit
comparison across all of the catchments. In part, the uncertainty analysis
was used examine the performance of the continuous simulation method
as a “national” methods for flood flow estimation when using either of
two different runoff models and two alternative procedures for estimation
in ungauged catchments. One model produced uncertainty bounds for the
design flows where the upper bounds were generally higher relative to the
“best estimate”, whereas the other model produced lower bounds that were
generally wider. The study did not conclude firmly that one particular
runoff model and parameter generalisation procedure was a clear winner.
But a combination of the PDM rainfall-runoff model with a weighted
average of calibration parameters based on catchment similarity seemed
to be favoured, based on comparison of the generalised model uncertainty
bounds with gauged data.

8.7. Conclusions

As illustrated in this chapter, there are many methods available for the
analysis of uncertainty in flood estimation. It is not always obvious what
method should be preferred, and the exact nature of the underlying
assumption might not be apparent (or even palatable) to an individual
hydrologist. It is important to remember that the estimated uncertainty
will, to a large degree, depend on the assumptions made in the course of
a modelling exercise. The more the hydrologist is prepared to constrain
the analysis by accepting the assumptions made in a particular model, the
less uncertain the outcome will appear. For example, by assuming that
a simple lumped rainfall-runoff model is an accurate representation of a
catchment, the model error might be left out of the analysis. As a result,
the uncertainty of predictions made using the model will be reduced when
compared to a situation where this model error was included because the
analyst considered the assumptions made in formulating the model to be
sufficiently inaccurate to be questionable. As is often argued, an estimate
(say, the 100-year peak flow) should be accompanied by a statement of the
uncertainty of that estimate. Similarly, we advocate here that an estimate
of uncertainty should be accompanied by a statement of the assumptions
underlying this analysis specifying what parts of the modelling system
are considered certain and what parts are assumed to contribute to the
uncertainty. These assumptions should as far as possible be supported by
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evidence derived from the observed data. Once the hydrological model has
been constructed and the assumptions listed, it should be clear that the
only way to reduce uncertainty is to: (i) develop a better model (reduce
model uncertainty); or (ii) include more information (data) in the modelling
exercise, which will reduce the sampling uncertainty. Of course, these two
activities are not mutually exclusive, and often the availability of more data
will allow the analyst to make inference about how to improve a model.

What method is used for estimating the uncertainty depends on the
complexity of the modelling system. For simple models, analytical methods
can be used but for more complex and coupled modelling systems, such
methods are not feasible. However, for all methods it is clear that a thorough
understanding of the modelling system is required by the analyst to ensure
that whatever assumptions are made, they are based on solid foundations.
The added complexity of uncertainty assessments adds to the well-known
mantra that modelling should only be attempted by properly trained and
well-informed hydrologists.
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CHAPTER 9

Minimising Uncertainty in Statistical

Analysis of Extreme Values

C. Keef
JBA Consulting, UK

9.1. Introduction

There are two main sources of uncertainty due to statistical analysis of
a flood frequency curve or extreme sea levels. The first is the statistical
uncertainty due to the fact that we observe only a finite number of years of
data, and so we have only a sample of all possible observations. The second
source of uncertainty is due to the choice of statistical distribution fitted to
the data.

Statistical methods to estimate the uncertainty due to sampling (only
having observations from a fixed time span) are well developed and
all standard statistical inference procedures have methods for producing
confidence, or credibility intervals. For example, confidence intervals for
parameters estimated by maximum likelihood or L-moments can be
obtained using the fact that, as the sample size increases, the distribution
of the estimator tends to a normal distribution. In addition to this, the
bootstrap method can be used to obtain confidence intervals which do
not rely on assumption of normality. Credibility intervals for parameter
estimates obtained from a Bayesian analysis can be obtained directly from
the estimated posterior distribution for that parameter.

A problem that is less well covered than sample uncertainty is
the selection of an appropriate distribution for the data. All statistical
distributions are mathematical constructs that describe the probability of
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observing data values and many are derived as limiting distributions and,
as such, rely on a convergence law.

A simple example of a convergence law is the Poisson approximation
to the binomial distribution. The binomial distribution describes the
probability of observing a certain number of successes from a fixed number
of trials where the probability of success is the same in each trial. It can
be proved mathematically that if the number of trials is large and the
probability of success small, then the distribution of the number of successes
can be closely approximated by a Poisson distribution.

An example of the application of this approximation is the use of the
Poisson distribution to model the number of days in a year where the
total rainfall is above a high threshold (e.g. the 0.99 probability threshold).
Underlying this choice of distribution is the implication that the probability
of exceeding a certain threshold is the same on each day of the year, or at
least the number of days where this is possible is constant from year to
year, and that observations from one day to the next are independent. This
assumption of independence is likely to be safe for rainfall data. If we did
not believe that the probability of exceeding a threshold is constant then we
should look for an alternative distribution that does not rely on us making
the assumption.

The assumptions on which we base our choice of statistical distribution
for flood flows, extreme sea levels or rainfall are usually more important
than in most other applications of statistics. The reason for this is that by
definition floods are extreme, rare events and typically the events of most
particular interest are those larger than any observed events. This means
that it is usually not possible to check our assumptions against real data
in the region in which we are most interested. This is particularly difficult
because rainfall and river flows typically have a heavy tailed distribution;
in other words, very high values can be observed.

Figure 9.1 shows an example of two distributions commonly fitted
annual maxima flow data, the Generalised Extreme Value (GEV) and
Generalised Logistic (GL), fitted to the observed annual maxima data
(48 years) from gauging station Nith at Friars Carse in south-west Scotland.

We can see that in the range of the observed data there is very little to
choose between the two model fits. However, when each fitted distribution
is extrapolated beyond the range of the data, the fits are very different. For
instance, the difference in estimated flow for the 1000-year return period is
over 100m3s−1. As we have no data in this region it is difficult to tell which
distribution we should choose.
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Figure 9.1. Left plot Q–Q plot of fitted annual maxima distribution for the River Nith,
dots GEV, crosses GL. Right plot extrapolated dashed line GEV distribution solid line
GL distribution; dots show empirical distribution of observed data.

This difficulty in choosing an appropriate fit to flow data has been
known for a number of years; Cunnane (1987) stated that:

“Choosing between such candidates is by no means trouble free as the
sampling variations inherent in small samples from skewed, heavily tailed
populations tend to mask true between-distribution differences.”

The same source also states that goodness-of-fit indices all tend to be
inconclusive. However, from a practical point of view choices do have to
be made and so a number of studies into the best choice of statistical
distribution for flood flows have been published (e.g. Benson, 1968 and
NERC, 1975).

A more recent example of a practical approach to the problem of
choosing an appropriate distribution is given by Robson and Reed (1999)
in the Flood Estimation Handbook (FEH). In developing guidance for a
suitable default distribution for annual maxima of river flows in the UK they
fitted the GEV distribution, GL distribution, the log-normal distribution
and the Pearson Type III distribution to annual maxima from 698 rural
sites. When the fits of each of these were compared to the data they found
that overall the best fitting distribution was the GL followed by the GEV.
In this chapter we present statistical theory that provides evidence as to
why this might be the case.

Although this analysis in the FEH gives useful empirical evidence that
the GL may provide a good estimate of flood flows, the FEH does not
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provide a mathematical explanation of why the GL distribution may be
used for extrapolation. Distributions which do have a mathematical basis
for extrapolation are the domain of Extreme Value statistics. Extreme Value
statistics is a collection of mathematical theory and statistical models to
describe the statistical distribution of very large (or small) values. It is a
relatively new area of statistics, with the PhD thesis of de Haan (1970)
generally being accepted as the first modern work on extreme values,
although the basic results pre-date this. As such, theoretical development
is rapid which suggests that a review of current statistical extreme value
theory is likely to result in useful advances for flood risk estimation.

An additional point to note in any review of recent statistical develop-
ments is that, as with many areas in flood risk, availability of computational
resources have made massive changes to the field of statistics, including
extremes. Consequently, methods that would have been out of reach for
most practitioners not long ago are now commonplace, for example, boot-
strapping, simulation studies and Markov Chain Monte Carlo (MCMC)
methods.

Most studies in flood risk management look to estimate the level that
will be exceeded once every X-years. If a distribution is fitted to the
Annual Maxima (AMAX) of a data record then this X-year level can
be obtained by simply inverting the fitted distribution. As a result, it
has been argued that it is simpler to estimate this value using annual
maxima data, and certainly such methods are more widespread. It is
also true that in some situations it is easier to obtain AMAX data than
continuous observations because the continuous observations have not been
digitised. Other reasons given for using AMAX data are: there is less data to
handle, which given modern computing capabilities is no longer a problem;
and the fact that independent events must be identified, a problem that
can be overcome by using the automated procedures described in this
chapter.

This use of AMAX data is in contrast to the majority of recent
applications by extreme value statisticians. There are a number of reasons
why Peaks-Over-Threshold (POT) methods can be considered to have an
advantage. The main reason a POT analysis is preferable to an AMAX
approach is that it makes a much more efficient use of data. The number of
observations available for a POT analysis is much larger than for an AMAX
analysis, and we can also be sure that all the observations are “extreme”.
Due to annual variability, it is not uncommon for some years to have no
“extreme” observations and for other years to have many. This means that
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the number of threshold exceedances (events) per year varies from year to
year. For a POT series with an average number of events per year of two,
where the number of events per year followed a Poisson distribution, then
the expected number of years in a 50-year series without an event would
be 6.7.

The other differences between an AMAX approach and a POT
approach are that in modelling peaks above a threshold we must first choose
the threshold, and to obtain estimates of the flows that will be exceeded
once every X-number of years we must also explicitly choose a distribution
for the number of events per year. These choices give an additional level of
complexity to the modelling process. However, as we will demonstrate in
this chapter, threshold selection is a problem for which solutions are well
developed. Additionally, by explicitly choosing a distribution for event rate,
we also add an additional level of flexibility to the modelling process.

The final area of extreme value statistics that we cover in this chapter
are methods available for pooling data from different locations. Currently
most hydrological studies (e.g. Guse et al., 2009, Li et al., 2010 and Robson
and Reed, 1999) for pooling data from a set of sites use methods based on
the index flood method of Dalrymple (1960). In this method it is assumed
that apart from a scaling parameter (the index flood) which varies between
sites, the flood frequency distribution is identical for all sites within the
set. This can be thought of as letting one distributional parameter vary
between sites. Relatively recent developments (the earliest references are
Davison and Smith, 1990, and Smith, 1990a) show how it is possible to
pool data from a number of sites, thus allowing more than one parameter
to vary between the sites. The main benefit of these methods over the earlier
methods is that they provide a more flexible fit to multiple sites. By allowing
a more flexible fit the resulting estimates will be more robust to inhomoge-
neous pooling groups, and also potentially allow a better fit to each site.

In this chapter we briefly describe the development and main elements
of classical extreme value statistics, with an emphasis upon the treatment
of uncertainty in these methods. We then discuss methods of modelling
spatial and temporal dependence in extreme values. The next section
gives examples of pooling data from different locations. We then describe
some problems specifically related to river flows and show how these
can be overcome. The final section gives an example of a method to
estimate the return flow using POT methods. We explore the uncertainties
associated with these estimates using profile likelihood and block bootstrap
methods.
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In this chapter we have focused our attention mainly on flow data.
Generally, river flows exhibit a greater level of temporal dependence and
seasonality and so, at a single site, flow data presents more modelling
problems than either rainfall or sea surge data. However, the methods
presented in this chapter are applicable to both rainfall and surge data.

9.2. Univariate Extreme Value Statistics

9.2.1. Block maxima

The very first statistical result for extreme values was derived by Fisher and
Tippet (1928) and Gredenko (1943) and described the possible limits laws
for the distribution of the sample maximum of Independent and Identically
Distributed (i.i.d.) data. This is the famous Extremal Types Theorem and
states that:

“If for a variable X with distribution F (x) we denote the maximum of a
sample from X of size n then there exist sequences of constants an > 0
and bn such that, as n tends to infinity

Pr

„
Mn − bn

an
≤ x

«
= [F (anx + bn)]n → G(x), (9.1)

for some non-degenerate distribution G, then G is of the same type
as the Gumbel (EVI), Fréchet (EVII) or Negative Weibull (EVIII)
distribution”.

An extension to this result was the derivation of the Generalised
Extreme Value (GEV) distribution, which simply combines the three types
of extreme value distribution. The GEV was derived by von Mises (1954)
and Jenkinson (1955) and is defined as follows:

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

+

}
, (9.2)

where x+ = max (x, 0) and σ > 0. This collapses to

G(x) = exp
{
− exp

[
1 −

(
x− µ

σ

)]}
, (9.3)

when ξ = 0.
The three types of extreme value distribution fall out of the GEV,

depending on the value of ξ. When ξ < 0 the GEV is the same as the
Negative Weibull distribution, when ξ > 0 the GEV is the same as
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the Fréchet distribution and when ξ = 0 the GEV is the same as the
Gumbel distribution.

The implication of the Extremal Types Theorem and subsequent
derivation of the GEV is that if a data set is split into equally sized blocks
(or samples) then if a limit distribution exists the GEV will be a good
approximation to the distribution of the maxima of these blocks, provided
that we can make the assumption that the data are i.i.d. and that the size
of the blocks are sufficiently large.

9.2.2. Threshold exceedances

The limit distribution for threshold exceedances is often derived from the
GEV and was first derived in Pickands (1975). This is significantly more
recent than the equivalent distribution for block maxima although it should
be noted that threshold methods were in use before this date. If the
Extremal Types Theorem holds for a variable X , then we have that for
a sufficiently high threshold u the exceedances Z = X − u of this threshold
have the Generalised Pareto (σu, ξ) (GP) distribution function

Pr(Z ≤ z|X > u) =




1 −
[
1 + ξ

(
z

σu

)]− 1
ξ

+

for ξ �= 0

1 − exp
(
− z

σu

)
for ξ = 0,

(9.4)

where σu = σ + ξ(u− µ).

9.3. Inference Methods

In fitting extreme value distributions, there are two statistical infer-
ence methods which are most commonly used: maximum likelihood and
L-moments; both of which can be used to provide confidence intervals for
parameter estimates and return levels (Bierlant et al., 2004). In general,
maximum likelihood is more commonly used in the statistical community
and L-moments in the hydrological community. In addition, the newer
technique of MCMC method is also used in extreme value modelling.

9.3.1. L-moments

The method of L-moments is based on estimating linear combinations of
order statistics, L-moments, in the observed data, and setting the values of
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the parameters of the distribution to be equal to those which give rise to the
observed L-moments. L-moments are an extension of probability weighted
moments, first derived by Greenwood et al. (1979). An extensive derivation
of L-moments, is given by Hosking (1990). The theory behind L-moments
is based on the fact that for any distribution with finite mean, theoretical
L-moments can be derived. Uncertainty around the L-moment estimators
is estimated based on asymptotic results for order statistics which give that
for large sample sizes, estimated L-moments follow a normal distribution,
with the exact details given by Hosking (1990).

9.3.2. Likelihood methods

The method of maximum likelihood is based on the principle of estimating
which values of the parameters give the observed data the highest proba-
bility of occurring, so which parameter values maximise the likelihood, or
probability, or occurrence. In maximum likelihood estimation, the likelihood
of observing a certain data set, x , given a set of parameters, θ, is given by

L(x|θ) =
n∏

i=1

f(xi|θ), (9.5)

where f(xi|θ) is the density for of the ith observation of x conditional on
the parameter set θ (the probability of observation), and n is the number
of observations in the sample. The maximum likelihood estimate is the
value of θ where L(x |θ) is the maximum. For computational reasons this
maximisation is usually carried out on the log of L(x |θ). By making certain
assumptions about the form of the distribution function it is possible to
obtain confidence intervals for the parameter estimates using the Fisher
information matrix, I(θ̂). Under these assumptions, for large samples,
the distribution of the maximum likelihood estimate of θ, θ̂ is normally
distributed with mean θ, and variance I(θ̂)−1 (Cox and Hinckley, 1974).
Although the GEV distribution does not meet the criteria usually needed
for the asymptotic normality of the maximum likelihood estimate, Smith
(1985) showed that as long as the shape parameter is greater than −0.5,
the standard result can still be used. For many distributions it is possible to
obtain the maximum likelihood estimate using analytical methods; however,
for some distributions, including extreme value distributions, it is necessary
to use numerical methods.

Likelihood methods can also be used to derive the profile likelihood.
This is a commonly used method of obtaining confidence intervals around
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parameters estimates that is particularly useful when the parameter
distribution is skewed, i.e. the parameter is more likely to be under or
overestimated so symmetric confidence intervals would not be appropriate.
Profile methods can also be used to obtain maximum likelihood parameter
estimates. Profile likelihood plots are obtained by fixing one parameter of
the distribution and maximising the likelihood over all other parameters;
for full details see Coles (2001). The resulting log likelihood values are
then plotted against the value of the parameter we have fixed. Confidence
intervals using the profile likelihood method can be obtained using distri-
butional properties of the likelihood. For a generic parameter θ, if l(θ̂) is
the maximum log likelihood, and l(θ) is the likelihood at a different value
of θ, then D(θ) = 2{l(θ̂) − l(θ)} follows a chi-squared distribution with
degrees of freedom 1 if θ̂ is the true value of θ. A 95% confidence interval
is obtained as being all θ such that D(θ) is less than or equal to the 0.95
quantile of the chi-squared(1) distribution (3.841).

9.3.3. Bootstrap procedures

For situations where it is not possible to make the assumptions on which
uncertainty estimates for L-moments or likelihood methods are based a
bootstrapping procedure is often used, which is described fully in Davison
and Hinkley (1997). The basic non-parametric bootstrap is a technique to
resample the data to obtain information about the variation in the data.
Let X be a univariate sample of i.i.d. data of size n. If we are estimating
the value of a parameter θ of the distribution from which the sample X is
taken and we wish to estimate the uncertainty in the estimate θ̂ of θ then
the basic bootstrap method is as follows.

(1) Re-sample X with replacement to obtain a bootstrapped sample X∗ of
size n.

(2) Calculate θ̂ for X∗.

Steps 1 and 2 are repeated B, B large, times to obtain a sample θ̂B,
of estimates θ̂ of of size B. The variation in this sample can then be assessed
and used as the estimate of uncertainty in the parameter estimation.
In particular, if we wish to obtain a 95% confidence interval then we can take
the end points of this interval to be the 0.025 and 0.975 quantiles of θ̂B.

One application in which a bootstrap procedure is often used is
when temporal dependence must be taken into account. In the block
bootstrap the original time seriesXt is divided into blocks. These blocks are
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then resampled with replacement to create the bootstrapped sample X∗
t .

The blocks are chosen to be large enough to preserve the temporal
dependence in the time series but small enough to allow a large number
of possible combinations in each resample. When modelling flow data, due
to the seasonality of the data it is sensible to choose blocks that correspond
to a whole year. In making this choice we make the assumption that floods
in one year are independent of floods in the previous year. If we chose blocks
that corresponded to calendar years, then this assumption would be invalid.
This is because the start date of the calendar year falls in the middle of the
flood season and what happens in the second half of a flood season is not
independent of what happens in the first half. The start day of the block
year should be chosen so that it is in the middle of the lower seasonal flow
periods.

9.3.4. Discussion of L-moments and likelihood methods

The main argument for using L-moments as a preference over maximum
likelihood in fitting extreme value distributions is that for small samples
maximum likelihood estimates have been shown to have more bias. In using
L-moments to fit the GEV to data we force the shape parameter to be
less than one (ξ < 1). This forcing is necessary because moments only
exist if the mean is finite, which is only the case if ξ < 1. A method of
making maximum likelihood estimates replicate this forcing was developed
by Coles and Dixon (1999). By penalising the likelihood function, they
found that it was possible to obtain parameter estimates using maximum
likelihood techniques that had similar bias to those obtained by L-moments,
and smaller mean squared errors. The penalty function introduced was

P (ξ) = exp
[
−
(

1
1 − ξ

− 1
)]

(9.6)

for 0 < ξ < 1, and P(ξ) = 1 for ξ ≤ 0 and P(ξ) = 0 for ξ ≥ 1. The
corresponding penalised likelihood function then becomes Lpen(x;µ, σ, ξ) =
L(x;µ, σ, ξ)P (ξ).

Therefore, because it is possible to reduce the bias when using
maximum likelihood to fit the GEV distribution, the main difference in
usefulness between maximum likelihood and L-moments is in the ability to
extend the method to include covariates in the distributional parameters.
However, L-moments do still have the additional feature that they are more
robust to “outliers”, although in the study of extremes this is both a good
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and bad feature. Often it is these very large (or small, when studying
minima) observations that provide most information about the extremes
of the process being modelled.

9.3.5. Markov Chain Monte Carlo (MCMC)

An alternative approach to fitting models to data is the Bayesian technique
of MCMC; for full details see Gamerman and Lopes (2006). This is a
collection of Bayesian methods that rely on stochastic simulation. Bayesian
inference is based on the assumption that an improved estimate can be
obtained by including prior information about the parameters. In Bayesian
inference uncertainty estimates are thought about in a very different way
when compared with frequentist inference. In frequentist inference the
distribution from which the parameter estimates are sampled is estimated,
and uncertainty estimates are based on this distribution. In Bayesian
inference the fact that the parameters themselves have distributions is
stated up front; this full distribution (posterior density) is estimated and
so estimates of uncertainty are given by this distribution.

In Bayesian analysis prior information is included using Bayes Theorem
which gives that for a parameter θ the posterior density of θ conditional on
data observations x is given by

f(θ|x) ∝ f(θ)L(x|θ), (9.7)

where f(θ) is the prior distribution of parameter θ and L(x |θ) is the
likelihood of observing the data given the parameter θ. If the prior
distribution given is non-informative, i.e. the same for all values of θ, we
can see that this reduces simply to the likelihood. In conducting Bayesian
inference it is important that the prior distribution should be chosen
independently of observing the data, otherwise the information provided
by the data is effectively double-counted and so the resulting estimates of
uncertainty will be too small.

MCMC techniques rely on the fact that as long as it is possible to
write down the prior distribution f(θ) and likelihood function L(x |θ) it is
possible to simulate a Markov chain that has a stationary distribution equal
to the posterior distribution f(θ|x ). In MCMC, stationary distribution of
the Markov chain is approximated by the empirical distribution of a large
number of simulated observations from this chain.

A Markov chain is a random process θ1, θ2, . . . in which given a single
(present) observation θi, future observations θi+1, θi+2, . . . are independent
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of past observations θi−1, θi−2, . . . In MCMC the method of getting from
one observation to the next is as follows:

1. Simulate a proposal value θ∗ from proposal density q(θ∗|θi).
2. Obtain acceptance probability α where

α = min
{

1,
L(x|θ∗)f(θ∗)q(θi|θ∗)
L(x|θi)f(θi)q(θ∗|θi)

}
.

3. Set

θi+1 =
{

θ∗ with probability α
θi with probability 1 − α

.

Theoretically the proposal density can be arbitrarily chosen. However, in
practical terms the choice can have a large effect on how well the values
in the chain cover the full posterior distribution. In the basic Metropolis–
Hastings algorithm the proposal density is symmetric, so q(θi|θ∗)= q(θ∗|θi).
In Gibbs sampling the proposal density is formed in such a way that all
proposal values are accepted.

As well as being used in a true Bayesian context, MCMC is also often
used with non-informative priors. This is because it can be used to fit models
that would otherwise be intractable using frequentist maximum likelihood
techniques.

9.4. Spatial and Temporal Dependence

9.4.1. Overview

There are two reasons to model spatial and temporal dependence in flow
data. The first is to account for it in estimation of extreme return levels
and the second is to assess the joint behaviour of extremes at multiple sites.

In terms of statistical extreme value theory, limited temporal depen-
dence can be handled by the theorem of Leadbetter (1983). Informally,
this states that if a time series is locally dependent, but that observations
separated by a sufficient period of time are effectively independent, then
the GEV distribution is still the limiting form for the block maxima of the
time series; for a fuller description see Chapter 10 of Beirlant et al. (2004).
The relationship between the distribution if the data were independent and
the dependent data is governed by the extremal index. If above a certain
(high) threshold the mean cluster (or event) length is constant we can term
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this the limiting cluster length. The extremal index is the inverse of this
limiting cluster length.

An example of a flow record that would satisfy this condition is one
in which the flow on one day is useful in predicting the flow the next day,
but that the flow in September had no value in predicting the likely flow
in November. Although for some regions where the rivers respond very
quickly to rainfall this assumption is likely to be valid, for larger or slower
responding rivers it is difficult to justify this assumption. For some baseflow
dominated rivers, the flows respond so slowly to rainfall that they exhibit
dependence over timescales of months.

Another statistical result derived by Leadbetter (1991) describes the
asymptotic relationship between the distribution of cluster maxima and
cluster exceedances. It is usually taken to mean that the cluster maxima
have an identical distribution to that of marginal exceedances, although as
we will see later this theorem does not necessarily hold for the threshold at
which POT analysis is typically carried out.

When assessing the joint behaviour of extremes at multiple sites the
difference between block maxima and POT methods is more profound
than in a single-site analysis. The question of which approach should be
taken is no longer as simple as choosing which will give the best point
estimates; instead we must think more carefully about the question of
interest. Typically the questions of interest take the form of, “How much
flooding will we have to cope with at once?”. To answer these questions
we need an approach that can examine the extremes of simultaneous flows
at multiple locations. If we were to examine block maxima there is no
guarantee that within each block the days on which the maximum is
observed would be the same for each station. Therefore it is sensible to
look to a method that is equivalent to a POT approach which limits our
choice.

Currently much statistical research is dedicated to max stable processes
(de Haan, 1984; Padoan et al. 2010; Smith, 1990b). Max stable processes
have similar asymptotic motivation to the GEV and as such have the
advantage that they are underpinned by mathematical theory, but they
are only suitable for block maxima. Additionally, they rely on strong
assumptions about the form of extremal dependence, specifically the only
forms possible are asymptotic dependence and complete independence.
The results of Keef et al. (2009a) suggest that neither of these assumptions
is appropriate for the dependence between UK flow or rainfall extremes at
different locations.
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The dependence between the extremes of two (or more) variables can
take two forms, asymptotic dependence or asymptotic independence. Two
variables are asymptotically dependent if the largest observations in both
variables occur together with a positive probability. If two variables are
asymptotically independent then the probability of the largest observations
of each variable occurring together is zero (Ledford and Tawn, 1996).
There are three sub-classes of asymptotic independence, positive extremal
association, near independence, and negative extremal association. These
three classes correspond respectively to joint extremes of two variables
occurring more often than, approximately as often as, or less often than joint
extremes, if all components of the variable were independent. Variables that
have a bivariate normal dependence structure with correlation, ρ, greater
than zero are examples of asymptotic independence with positive extremal
association.

Similarly to extreme value modelling of single site data, correct
specification of the statistical model used for model dependence between
sites is vital to ensure correct estimation of the probability of multiple
floods. Examples of the consequences of incorrect specification are given in
Keef et al. (2010a) and Lamb et al. (2010).

9.4.2. Temporal event identification

If POT methods are to be used to estimate the X-year flow we need a model
for the number of events per year. This means we must first de-cluster the
flow time series into independent clusters. One of the independence criteria
used in the FEH was to say that two peaks are independent if “the minimum
discharge in the trough between two peaks must be less than two-thirds of
the discharge of the first of the two peaks”; the other was a specification
on time between peaks.

Currently there are three main de-clustering methods of separating out
exceedance of a fixed threshold, u, into independent clusters that are in
use in the statistical community. The first is the runs estimator of Smith
and Weissman (1994). This estimator simply states that two exceedances
of threshold u are independent if they are separated by a fixed number, m,
of non-exceedances.

An extension to the runs estimator (Laurini and Tawn, 2003) introduces
a second threshold, it defines two exceedances of u as independent if they
are separated by m non-exceedances or if any of the intervening values
is below a second, lower threshold u2. The third method is the intervals
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method of Ferro and Segers (2003). This method can be used to split the
exceedances into clusters according to the inter-exceedance times.

Out of these methods, the one most similar to that used in hydrology is
the two thresholds extension to the runs estimator, so we would expect it to
perform “best” at identifying clusters. In a statistical analysis, a common
reason for de-clustering a time series is to estimate the mean cluster size and
so the extremal index. Keef (2007) compared the three methods for eight
daily mean flow gauging stations. Varying thresholds u were examined, and
the second threshold u2 in the two thresholds estimator was set to the 0.65
quantile. Keef found very little difference in the estimates of mean cluster
size obtained using the runs estimator and the two threshold estimator for
values of m in the range 5–20 days, with the second threshold only affecting
the estimator for longer run lengths. The intervals method did not perform
as well, particularly for slowly responding rivers. The reason for this is likely
to be that it relies on a stronger assumption of stationarity than the other
two methods, and so the seasonality of river flows is likely to have a larger
effect on the resulting estimates.

9.4.3. Dependence modelling

In this section we discuss three models for extremal dependence of
asymptotically independent data that have been used for flood risk
variables.

In order to apply any of these methods we must use the theory of
copulas (Sklar, 1959). This states that for a d-dimensional multivariate
random vector with joint distribution F (x ) = F (x1, . . . , xd) and marginal
distributions Fi, i = 1, . . . , d, then it is possible to write F (x ) as

F (x) = C{F1(x1), . . . , Fd(xd)}.

The function C is called the copula, it has domain [0, 1]d and contains
all the information about the dependence structure of F (x ).

In simple terms all this theory says is that it is possible to estimate the
joint distribution function of a set of variables into the separate marginal
distribution functions of each of the variables and the dependence structure.
This is useful because it allows us to analyse the marginal distributions
and dependence structure separately. It also allows us to estimate the
dependence between a set of variables on any marginal distribution
we choose. For temporal modelling the variables X1, . . . , Xd are simply
the time series at lags 0, . . . , d− 1.
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The models we discuss are those of Ledford and Tawn (1996, 2003),
Heffernan and Tawn (2004) and Bortot et al. (2000). Both the Ledford and
Tawn and Heffernan and Tawn dependence models were initially defined
for variables with a specified marginal distribution, the Ledford and Tawn
model uses Fréchet margins and the Heffernan and Tawn uses Gumbel
margins. The transformation to these margins can be achieved using the
probability integral transform. In simple terms, the probability integral
transform uses the result that for a sample xi, i = 1, . . . , n of a random
variable X , Fi(xi) has a uniform distribution where F is the distribution
function of X . For more details see Grimmett and Stirzaker (1992).

The Ledford and Tawn model can be described as follows. For a pair
of Fréchet distributed variables (S, T ) the joint survivor function F̄ (s, s) =
Pr(S > s, T > s) can be modelled as F̄ (s, s) = L(s)s−

1
η where η ∈ (0, 1] is

called the coefficient of tail dependence and L() is a function that becomes
approximately constant as s gets large (a slowly varying function). It is
then possible to model the conditional probability Pr(T > s|S > s) by as s
tends to infinity Pr(T > s|S > s) ≈ L(s)s1−1/η .

This result is used for a time series Xt, by simply substituting S and
T for Xt and Xt+τ .

In contrast with the Ledford and Tawn model, the Heffernan and
Tawn model is capable of modelling truly multivariate data sets. However,
because it is described semi-parametrically, some inference procedures, such
as extensions to include covariates, are hard. For a single variable S and a
set of variables T = {T1, . . . , Td}, all with Gumbel marginal distributions,
the Heffernan and Tawn method is based on the relatively weak assumption
that there exist normalising vectors a = {a1, . . . , ad} and b = {b1, . . . , bd}
such that

Pr
(
T − as

sb
< z

∣∣∣∣S = s

)
→ H(z) as s→ ∞

where all marginal distributions of H(z ) are non-degenerate, i.e. not a
constant value.

The model is based on the approximation that the above limiting
relationship holds exactly for all values of S >vp for a suitable high
threshold vp, which has probability p of being exceeded. A consequence
of this assumption is that when S = s, with s > vp the random variable Z ,
defined by

Z =
T − as

sb
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is independent of S and has distribution function H . It is this assumption
that allows us to extrapolate beyond the range of the data. For a time series
Xt we simply substitute the variable X at time t (Xt) for S and the lagged
variables Xt+τ , τ = 1, . . . , τmax for T . Keef et al. (2009a) showed how this
model can be extended to model both temporal and spatial dependence,
and to handle missing data.

A large-scale application of spatial and temporal dependence modelling
was undertaken by Keef et al. (2009b) who mapped the level of spatial
dependence of extreme river flows and rainfall over the UK using the
Heffernan and Tawn model. The Heffernan and Tawn model has also been
used to assess flood risk over large regions or multiple locations by Lamb
et al. (2010), Keef et al. (2010b) and Speight et al. (2010).

The model used in Bortot et al. (2000) is to assume that the joint
tail of multivariate variables can be accurately modelled by a Gaussian
distribution. In terms of assumptions made about the dependence between
variables, the use of the Gaussian copula necessitates much stronger
assumptions than either the Ledford and Tawn or Heffernan and Tawn
models. The assumptions made are that the level of dependence between
a pair of variables does not change as the variables become more extreme.
It also makes the assumption that the variables are always asymptotically
independent. In contrast, the other models discussed here allow the
dependence to vary with extremeness and also do not need any assumptions
about the form of dependence to be made.

9.5. Pooling Data

In pooling data from different sites to obtain better estimates of return
levels there are two issues to address: the first is the spatial dependence
between sites; and the second is accounting for covariate effects such as
catchment area, soil type, etc. Examples of applications of extreme value
methods including covariate effects are numerous and diverse. A selection
of areas of application includes sports records (Adam, 2007), lichenometry
(Cooley et al., 2006), radioactive matter dispersal (Davison and Smith,
1990), wind speed (Fawcett and Walshaw, 2006), minimum temperature
(Chavez-Demoulin and Davison, 2005) and precipitation (Cooley et al.,
2007).

Maximum likelihood methods to account for dependence in the data
have been known since Smith (1990a), with more recent references being
Chandler and Bate (2007) and Fawcett and Walshaw (2007). Generally
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these methods involve first estimating the parameter uncertainty, and
subsequently adjusting for dependence.

Similarly, methods to include covariate effects in extreme value
distribution parameters are not new (Davison and Smith, 1990 and
Smith, 1990a). The earliest and simplest approaches were to simply model
the location, scale and shape parameters as functions (f, g, h) of linear
combinations of a set of covariates v = {v1, v2, . . . , vm}, so for a GEV
distribution set µ = f(vβ), σ = g(vγ), ξ = h(vδ) where β, γ, δ are the
multipliers of the covariates in the linear combinations. The use of a function
can ensure that an estimated parameter is within the possible range, for
example, greater than zero for the scale parameter (c.f. generalised linear
modelling, Dobson, 2001). Because the shape parameter is difficult to
estimate it is common not to include covariates in this.

Examples of extreme value models that include covariates vary in
complexity and procedure used to fit the model. A relatively simple example
of extreme value modelling with covariates is that of Fawcett and Walshaw
(2006), who modelled extremes of hourly maximum wind speed using a
GP distribution taking into account site and seasonal effects using MCMC
techniques; the extension to the original methods in this case is by grouping
the observations by site.

Examples of peaks-over-threshold models taking a spatial covariate
into account are those of minimum winter temperature using maximum
penalised likelihood estimation of Chavez-Demoulin and Davison (2005)
and maximum daily precipitation using MCMC of Cooley et al. (2007).
However, neither of these explicitly accounted for any remaining spatial
dependence in the observations. In other words, they assume that given the
overall spatial effect, observations were independent.

An application where spatial dependence is taken into account in
modelling is that of Northrop and Jonathan (2010), who modelled extreme
hurricane induced wave heights using quantile regression methods with a
GP distribution and maximum likelihood.

9.6. Problems and Solutions Specific to Fluvial Estimation

The Extremal Types Theorem gives the Generalised Extreme Value (GEV)
distribution as the limiting distribution of the maxima of samples where
each observation, within each sample and for different samples, is i.i.d. For
river flow data from a single site hourly, daily, or even monthly observations
are neither independent nor identically distributed. River flow observations
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are time series which exhibit both temporal dependence, seasonality, and
sometimes step changes. These facts led the authors of the Flood Studies
Report to conclude that classical extreme value theory was of little use in
flood frequency analysis. However, recent developments in extreme value
theory mean that this conclusion ought to be re-visited.

Longer-term trends and step changes can be handled by the inclusion
of covariates by the methods described in the previous section.

The fact that seasonality means that flow data is not identically
distributed is often ignored in fitting a distribution. A possible method
to account for this non-stationarity would be to derive a model for the
underlying seasonality in the series, for instance by modelling the expected
flows on each day of the year, and then to carry out an extreme value
analysis on the deviations from this model. However, it can be debated
whether or not this type of approach would work for river flow data. The
first problem is that of characterisation of the seasonal process, which is
unlikely to be a simple sinusoidal variation. The second problem is that it
is not unlikely that summer deviations would have different characteristics
to winter deviations; the flow processes from rainfall on dry ground with
a high level of vegetation are different to those when rain falls on wet
ground when many plants are dormant. This means that fitting a suitable
distribution to these deviations is likely to be no less complicated than
fitting a distribution to the raw flow observations. It also means that peak
observations in summer (which are unlikely to result in flooding) may
provide little information about the distribution of peak observations in
winter. An approach for this type of modelling was developed by Eastoe
and Tawn (2009) and demonstrated using extremes of air pollution data.

An alternative to the strong assumption of seasonality is to assume that
once the ground conditions are such that flooding is possible, each flood
event is independent and has an identical distribution. This assumption
is implicit in using POT methods. As we have seen in the introduction,
if in addition the number of days in which ground conditions were such
that flooding is possible were the same in each year, then the block size
for each year would be identical and so the GEV distribution would still
be observed as the correct limit distribution for annual maxima. In reality
there is between year variation in ground conditions and so the number of
days for which flooding is possible varies greatly from year to year.

There is much empirical evidence (Lang, 1999; Robson and Reed, 1999)
that a negative binomial distribution provides a better fit to the number
of flood events per year than the Poisson distribution. Compared to the
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Poisson distribution, the negative binomial is over dispersed i.e. the variance
is greater than the mean. The negative binomial is an attractive distribution
to use in modelling the number of events per year for a number of reasons.
First a special case of the negative binomial when combined with the GP
distribution for the size of flood events leads to the GL distribution for
AMAX data. The second main reason is that it can be formulated as a
combination of the gamma and Poisson distributions, in that the number of
events in any particular year follows a Poisson distribution with parameter
λ where λ follows a gamma distribution. An important point to note here
is that although the gamma distribution is sufficiently flexible that it is
likely to provide a suitable fit to most data sets, there is no theoretical
justification for its use.

To overcome some of the limitations of classical extreme value theory
we present two alternative models developed by Eastoe and Tawn (2010,
2012). The first new statistical model we present is that of Eastoe and Tawn
(2010). They use the Leadbetter (1983) theorem and assume that event
maxima follow a GP(σ, ξ) distribution, but that the number of events per
year follow a specific formulation of the negative binomial (1/α, 1/(1+λα))
distribution. With these assumptions, the annual maxima of flows (x) when
x is above the GP threshold u have the following distribution:

G(x) =




pr

{
1 − (1 − p)

(
1 −

[
1 + ξ

(
x− u

σ

)]− 1
ξ

+

)}−r

for ξ �= 0

pr

{
1 − (1 − p)

[
1 − exp

(
−x− u

σ

)]}−r

for ξ = 0

where p = 1/(1 + λα) and r = 1/α. The standard GL distribution
is the special case when α = 1. Eastoe and Tawn successfully fitted
this distribution to annual maxima from the Thames at Kingston, which
has a record length of 123 years, using Bayesian MCMC techniques, and
introducing covariates for the between year differences.

The second model (Eastoe and Tawn, 2012) is for the cluster maxima of
exceedances of sub-asymptotic thresholds. The model is motivated by the
observation that a GP distribution fitted to cluster maxima is often different
to a GP distribution fitted to all exceedances of a threshold, which suggests
that the asymptotic argument supported by the Leadbetter (1991) theorem
is invalid. This is consistent with the findings of Fawcett and Walshaw
(2007) who found evidence of bias in estimates of σu and ξ when these
estimates were obtained using cluster maxima only. Eastoe and Tawn’s
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solution is to introduce a modifier to the GP distribution that describes
how the degree of clustering varies with the level of extremness. If the
distribution of peaks over a threshold is GP(σu, ξ) the resulting model for
the exceedance probability of x takes the form

Pr(X > x|X ≥ u) = 1 − θ(x,m)
θ(u,m)

[
1 + ξ

(x− u)
σu

]−1/ξ

+

, (9.1)

where θ(x,m) is given by

θ(x,m) = Pr[max(X2, . . . , Xm) < x|X1 > x],

with m being the run length used to identify independent clusters. The
implication of this model is that the GP is only an appropriate distribution
for cluster maxima if θ(x,m) = θ(u,m) for all x > u. In other words, if
the length of time a river can be expected to be above a threshold u in a
single cluster is the same as the length of time a river can be expected to
be above a threshold x at one time. In the range of the data, θ(x,m) can
be estimated empirically using the runs estimator (Smith and Weissman,
1994). However, for the range of data for which there are no observations
the temporal dependence must be explicitly modelled. Eastoe and Tawn
examine two dependence models, those of Ledford and Tawn (1996) and
Heffernan and Tawn (2004), and found that both resulted in models that
fitted cluster maxima from the River Lune at Caton, but that the Heffernan
and Tawn model has the advantage of a much lighter computational burden.

9.7. New Approach

In this section we show how it is possible to use the recent statistical
developments to accurately estimate the return period of river flows. We use
the distribution of cluster maxima given by model (Equation 9.1) with the
ideas of modelling the numbers of events per year to produce estimates of
high return period flows. The main assumption made in using this approach
is that the GP distribution is a suitable limit distribution for flows above
a certain threshold.

In this process there are a number of modelling decisions to be made.
The first is what distribution to use for the number of events per year.
From empirical evidence it appears that the form of negative binomial used
in Eastoe and Tawn (2010) does not provide a uniformly good fit for all
stations. Instead we simply use the observed number of events per year. To
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increase sample size we pool stations with similar mean numbers of events
per year together.

The second modelling decision is which dependence model to use for
temporal dependence, and also which run length to use in estimating θ.
The dependence model we choose is the Heffernan and Tawn model, when
compared with the Ledford and Tawn model it is simpler to use and the
results of Eastoe and Tawn (2012). The run length we choose is 14 days, i.e.
we assume that exceedances separated by at least two weeks of consecutive
non-exceedances are independent. This choice is in accordance with results
from Keef et al. (2010b) who found that extremal dependence drops to
approximately zero within this time frame for most sites in the UK.

To obtain the distribution function for annual maxima data from
the distributions of cluster maxima and numbers of events per year we
use a simulation procedure. To minimise simulation noise we simulate
10,000 years of cluster maxima 100 times. For each of these 100 simulations
of 10,000 years we calculate the empirical distribution function. For simu-
lated years when the number of clusters is equal to zero, we use the empirical
distribution function of the observed annual maxima series conditional
on the annual maxima being below the GP conditioning threshold. Our
estimated annual maxima distribution function is the median of these 100
simulations.

One of the implications of using this method of estimating the return
period of river floods is that we must use a bootstrap procedure to produce
confidence intervals.

9.8. Data Analysis

9.8.1. Data

The data set we use comprises 31 sites with complete records from 1st
January 1960 to 31st December 2008, the positions of which are shown in
Figure 9.2. We only directly present results from a small number of these
stations.

9.8.2. Fitting GP distribution

We illustrate the method of fitting a GP distribution using data from the
Nith at Friar’s Carse. The first step in this process is to choose a suitable
threshold u, this should be high enough for the asymptotic properties
to hold, and low enough that there is still sufficient data to obtain an
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Figure 9.2. Locations of gauges used in study.

acceptable amount of variance in the estimators. There are three main
diagnostic plots to help threshold selection. The first is the mean excess
plot; the mean threshold exceedance (X − u) should be constant if with
respect to the threshold u if u is high enough for the asymptotic properties
to hold.

The second and third checks relate to the threshold stability of the
estimators. If the asymptotic limits hold for threshold u, then the modified
scale parameter σ∗v = σv − ξ(v− u) for all thresholds v where v > u should
be the same. Similarly, the estimated shape parameter for all thresholds
greater than the lowest for which the asymptotic properties hold should also
be constant. Figure 9.3 shows examples of all three plots. The wild variation
for increasing thresholds is usual. It is a feature of the threshold being so
high that there is not enough data above it to accurately estimate the
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Figure 9.3. Diagnostic plots for threshold selection for Nith at Friars Carse, vertical
line shows chosen threshold. Top mean excess plot, middle modified scale parameter,
bottom, shape parameter. In all plots, the solid line shows best estimate, dashed lines
show 95% block bootstrapped confidence intervals.

parameters. From Figure 9.3 we can see that a suitable threshold is likely
to be about 160m3s−1, which is equal to the 0.99 probability threshold.

To fit the GP distribution we use penalised maximum likelihood, the
penalty imposed is that suggested by Coles and Dixon (1999) for the GEV
distribution. This is likely to be a sensible choice because of the links
between the GEV and GP distributions, although we have not checked
this assumption.

Because we have used all exceedances and have not first declustered
the time series there is dependence within the data. Although this does not
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Figure 9.4. Profile likelihood plots for GP parameter estimates, horizontal line shows
approximately 95% confidence intervals.

affect the parameter estimates it does affect the variance of the estimation.
This means that many of the standard techniques for estimating uncertainty
will under estimate the true level. To take this into account we use a yearly
block bootstrap, described in Section 7.3.3. In Keef (2007) it was found
that a suitable date to choose as the start date of a year for the purposes
of block bootstrapping river flows was 1st August as most UK rivers are in
the middle of seasonal low flows on this date.

For illustrative purposes we show confidence intervals obtained using
the technique of profile likelihood. Figure 9.4 shows profile likelihood
plots for the shape and scale parameters using a threshold of 160m3s−1.
The confidence intervals we show here are approximate for two reasons;
firstly, we do not take temporal dependence into account, and secondly,
the introduction of the penalty function will make the estimates imprecise
(Coles and Dixon, 1999).

For the scale parameter σu the 95% confidence interval using profile
likelihood methods is equal to (43.2, 57.8) and for the shape parameter ξ
(−0.12, 0.18).

In carrying out the block bootstrap procedure we re-estimated the
threshold u for each bootstrapped sample to be the 0.99 probability
quantile and carried out 100 replications. The re-estimation of the
threshold will give us a better description of the uncertainty, however,
because of the dependence between the threshold and scale parameters
it does mean we are not able to produce confidence intervals for the
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scale parameter. The 95% confidence interval for the shape parameter is
(−0.11, 0.12).

The discrepancy between the shape parameter confidence intervals
using the two different methods is not uncommon. The intervals obtained
using profile likelihood use a strict distributional assumption, whereas
those using the bootstrap method simply reflect the variation observed
in the data. Which is the most sensible is more difficult to decide, the
profile likelihood estimates rely on a strict assumption of i.i.d. data, whereas
the bootstrapped estimates rely on our sample of data being a very good
representation of the uncertainty in the full population of data, for a long
data record such as ours, this second assumption is likely to be valid,
however, for shorter records it may be more difficult to defend. In practical
terms nonetheless both are similar enough that this difference will not make
a large impact on any subsequent modelling.

Figure 9.5 shows plots of the fitted distribution. The QQ-plot shows
that the distribution fits well within the range of the data. The wide
confidence intervals for the fitted distribution reflect the large amount
of uncertainty in the extrapolation. In this case, a contributing factor is
likely to be the fact that the confidence interval for the shape parameter
spans both negative and positive values. The bootstrapped instances when
the fitted shape parameter is negative will have short tails, and so low
exceedance probability flows will not be very much larger than high
exceedance probability flows.

Figure 9.5. Diagnostic plots for GP distribution fit. Left plot QQ-plot, right plot fitted
distribution with 95% confidence intervals.
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9.8.3. Fit to annual maxima data

Before we proceed there are a number of modelling choices to discuss.
Firstly, the choice of threshold above which to fit the GP distribution,
when diagnostic plots such as those in Figure 9.3 were examined, we found
that in general the 0.99 probability threshold was suitable for nearly all
sites. The second choice was how many groups to use for obtaining sensible
estimates of the number of events per year; we chose five groups, each with
an (approximately) equal number of sites in each. The final decision was to
use 100 bootstrap replications.

To compare our new method of estimating the distribution of annual
maxima we also fit the GEV and GL distributions. To ensure that we make
a fair comparison of the relative benefits of our method, we use the same

Figure 9.6. Diagnostic plots for Dee at Woodend. Clockwise from top left; Q-Q plot

for GP fit; Q-Q plot for AMAX fits, dots show GEV, diagonal crosses show GL, vertical
crosses show new method; flow-return period plots, dashed line shows GEV, dotted line
shows GL, solid line new method with 95% confidence intervals shaded, GP threshold
shown in grey, observations are crosses; times series plot of the data, black dotted
line shows GP threshold.
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block bootstrapping procedure with the same bootstrap samples to obtain
confidence intervals for all methods.

We show results of the model fit for two sites which represent both
ends of the goodness of fit spectrum. These sites are the Dee at Woodend
in North East Scotland, and the Itchen at Highbridge and Allbrook in
Hampshire. For the whole data set only five sites had a fit noticeably worse
than distributions fitted directly to the annual maxima data and only two
had a poor fit. These two sites are baseflow dominated and so have a very
high level of temporal dependence in the series.

The first check in the modelling process is the fit of the GP distribution
to the data. For most sites the GP appears to fit well, for instance the Dee at
Woodend (Figure 9.6), however, for the Itchen at Highbridge and Allbrook
this is not the case (Figure 9.7). This site has a particularly high level of

Figure 9.7. Diagnostic plots for Itchen at Highbridge and Allbrook. Clockwise from top

left; Q-Q plot for GP fit; Q-Q plot for AMAX fits, dots show GEV, diagonal crosses show
GL, vertical crosses show new method; flow-return period plots, dashed line shows GEV,
dotted line shows GL, solid line new method with 95% confidence intervals shaded, GP
threshold shown in grey, observations are crosses; times series plot of the data, black
dotted line shows GP threshold.
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temporal dependence, and when it experiences high flows the river tends to
stay high for a long period of time. This means that the number of clusters
is very small, and a large number of years have no exceedances. In this
situation we can also see that the highest observations, above 17m3s−1, are
all from the same event. This is not an uncommon feature of flow data from
slowly responding rivers.

There are two possible reasons for the poor fit of the GP distribution,
first it is not a suitable limiting distribution for very slowly responding
catchments, second the threshold above which we fitted the distribution is
too low, i.e. the asymptotic limit is not reached. Without a much longer
data record it is difficult to verify which of these reasons applies here.

Figures 9.6 and 9.7 also show diagnostic plots for the annual maxima
distributions. For the Dee at Woodend we can see that all three distributions
fit the data well within the range of the data, however, when the fits are
extrapolated the GL gives flows for high return periods that are much
higher than those estimated using the other two methods. For the Itchen at
Highbridge and Allbrook, unsurprisingly, because our new method is based
on the fitted GP distribution, the fit within the range of the data is poorer
for our new method than for the other two. All three fitted distributions,
however, have very similar properties beyond the range of the fitted data.

Figure 9.8. Confidence interval widths scaled by estimate. Solid line median for new
method, dashed lines median for GEV, dotted line median for GL.
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Our final plot shows the benefit in terms of reduced uncertainty of using
all the information for extremes available in the data. Figure 9.8 shows the
95% confidence intervals widths of the estimated return flow, scaled by the
estimate of return flow. We can see that for high return periods our new
estimate gives narrower confidence intervals overall. We can also see that
the GL distribution gives much wider confidence intervals.

9.9. Conclusion

In this chapter we have presented old and new statistical approaches to
estimating the extreme values of data. We have shown that many of the
features of river flow data that complicate statistical inference can be
handled by modern statistical models.

The aim of the data analysis in this chapter has been to emphasise two
things: first that estimates of uncertainty vary depending on how they are
obtained; second that the uncertainty associated with different methods of
estimation also differs.

The methods of uncertainty estimation we compared were profile
likelihood, which is based on the assumption of asymptotic normality of
maximum likelihood estimates, and non-parametric block bootstrapping.
If the assumptions on which the parametric modelling is based are sound
then generally the parametric methods of estimation are more efficient,
however, where these assumptions are invalid better estimates can be
obtained using non-parametric methods.

The methods of obtaining return level estimates we compared are
simply fitting the GL and GEV distributions to annual maxima data and a
new approach based on separate models for the event maxima and the
number of events per year. The new method in this chapter could be
extended in many ways, for example, the fixed probability threshold could
be allowed to vary or a more sophisticated model could be used for the
number of events per year. However, in its current form it does demonstrate
the benefits in terms of reduced uncertainty for high return periods gained
by using a larger proportion of the data.

When the overall fits of the GL and GEV distributions are compared
the biggest difference is in the level of uncertainty. The confidence intervals
for return levels estimated by fitting a GL distribution to AMAX data
were much wider than those estimated by fitting a GEV distribution to
AMAX data. This is probably due to the increased level of flexibility
offered by the GL distribution which allows the number of events per year
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to be over-dispersed compared to the GEV distribution. This means that
the chances of obtaining very high return level estimates are likely to be
higher. This feature is also likely to be the reason why in Robson and
Reed (1999) the GL was found to be a slightly better distribution for flow
data than the GEV. However, as we have shown in this paper, an even
better approach, with a safer basis for extrapolation, would be obtained by
explicitly modelling the distribution of event maxima and the numbers of
events per year.

Although we have not provided an example of pooling flow records to
directly estimate extreme value distribution parameters, such a wealth of
applications to other data sets exist that this must surely be possible. The
benefits of joint estimation in this way are that uncertainty bounds for all
parts of the process can be estimated using standard statistical inference
techniques.

Another problem highlighted in this chapter is the difficulty in defining
suitable distributions for very slowly responding catchments. Simply fitting
an extreme value distribution to this data is unlikely to provide safe
extrapolation beyond the range of the data. This is because the only
available distributions that have underlying mathematical theory to safely
extrapolate beyond the range of the data rely on asymptotic assumptions
that are not valid for flow data from these catchments. Although the
distributional parameters can be coerced to fit, the resulting distribution
will not have a mathematical basis for extrapolation. For sites such as
these a pooled analysis, or estimation based on continuous simulation
rainfall-runoff modelling or a more sophisticated statistical modelling of
the underlying process may be the best answer.
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10.1. Introduction: Floodplain Flow Processes, Inundation
Models and Effective Parameters

Flood inundation models are central components in any flood risk analysis
system as they transform the bulk discharge outputs from flood-frequency
analyses or rainfall-runoff models into distributed predictions of flood
hazard in terms of water depth, inundation extent and flow velocity.
Predictions may be dynamic in time and can be derived from a range
of codes which vary in complexity from non-model approaches, such as
fitting a planar surface to digital elevation data (see Matgen et al., 2007;
Puesch and Raclot, 2002), through to numerical solutions of fluid dynamics
equations derived from considerations of mass and momentum conservation.
Whilst such models are parsimonious in terms of their data requirements
and number of unconstrained parameters relative to other environmental
simulation software, their underlying equations may be highly non-linear.

232
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Moreover, the data sets that they do require may be subject to complex,
but poorly known errors that may vary markedly in time and space.
As a consequence, considerable research has, in recent years, sought to
understand and better estimate these uncertainties in order to improve
flood risk analyses.

The physics of floodplain inundation is still the subject of considerable
debate, yet in recent years a combination of laboratory experimentation
(e.g. Knight and Shiono, 1996; Sellin and Willetts, 1996), field (e.g.
Babaeyan-Koopaei et al., 2002; Nicholas and Mitchell, 2003) and remote
sensing observations (e.g. Alsdorf et al., 2000, 2007; Bates et al., 2006;
Schumann et al., 2007, 2008a,c; Smith and Pavelsky, 2008) has resulted in
significant advances in understanding. These studies have yielded detailed
observations of turbulent flow structures during overbank flood flows and
the first observations of the dynamics of shallow plain flooding over complex
topography. Whilst there is still much to learn, a conceptual model of
floodplain inundation is evolving that suggests that whilst in-channel
routing may be treated as a one-dimensional flow in the streamwise
direction, floodplain flow is clearly at least a two-dimensional processes as
the flow paths cannot be predicted a priori. Moreover, in localised zones,
such as at the interface between the main channel and floodplain, strongly
three-dimensional and turbulent flow is likely to exist.

A “brute force” approach to this problem would be to model both
channel and floodplain flows as fully three-dimensional and turbulent
through the solution of the full Navier–Stokes equations. However, for
typical flood wave flows (i.e. unsteady, non-uniform flows of high Reynolds
number in a complex geometry) the direct numerical simulation of the
Navier–Stokes equations is computationally prohibitive. Modellers have
therefore sought to isolate, from the complex assemblage of hydraulic
processes known to occur during floods, those that are central to the
problem of flood routing and inundation prediction. An obvious first
step is to assume that it is unnecessary to compute the details of the
instantaneous turbulence field and that one can approximate this using the
three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and
some appropriate turbulence closure model. Such models have been used
to simulate steady state flows in reach scale compound channels (see for
example Stoesser et al., 2003), but simulations of dynamic inundation are
currently rare due to computational cost. Three-dimensional modelling
through the whole domain may also be inappropriate for floodplain
inundation where the majority of the flow can be adequately described
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using the two-dimensional shallow water equations. These equations are
derived from the three-dimensional RANS equations by integrating over
the flow depth, and apply where: (i) the horizontal length scale is much
greater than the vertical length scale; and (ii) the vertical pressure gradient
is hydrostatic. This is often sufficient for the majority of compound channel
flows, and by invoking the shallow water approximation we assume that
the effect of three-dimensional and turbulent processes is either small,
or can be parameterised in terms of their contribution to energy losses
or through an effective eddy viscosity coefficient (see for example Bates
et al., 1998).

If we consider in-channel flow over reach scales appropriate to flood
routing problems (i.e. >1 km) then it is clear that flow varies much more
in the downstream direction than in the cross-stream or vertical directions.
In this situation it is common (Knight and Shiono, 1996) to treat flow
using some form of the one-dimensional Saint Venant equations (see for
example, Fread, 1993). Whilst strictly only applicable to in-channel flow,
many authors have applied one-dimensional models to compound channel
flood flow problems. For example, Horritt and Bates (2002) demonstrate
for a 60 km reach of the UK’s River Severn that one-dimensional, simplified
two-dimensional and full two-dimensional models perform equally well in
simulating flow routing and inundation extent. This suggests that although
gross assumptions are made regarding the flow physics incorporated in a
one-dimensional model applied to out-of-bank flows, the additional energy
losses can be compensated for using a calibrated effective friction coefficient.
Here one assumes that the additional approximations involved in continuing
to treat out-of-bank flow as if it were one-dimensional are small compared
to other uncertainties (for a discussion, see Ali and Goodwin, 2002).
Many one-dimensional codes now also include a representation of floodplain
storage using a series of user-defined polygonal compartments into which
overbank flow can spill. Floodplain conveyance between compartments can
be represented using weir equations as first described by Cunge et al.
(1980). However, the definition of both the geometry and connections
between storage areas requires considerable operator intervention and an
a priori knowledge of floodplain flow paths. In using such models there is,
subsequently, a strong danger that the resulting simulations merely reflect
operator biases and that one simply gets the result that one was expecting.

A final class of models that is frequently applied to floodplain inun-
dation simulation is coupled one-dimensional/two-dimensional codes which
seek to combine the best features of each model class. Such models typically
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treat in-channel flow with some form of the one-dimensional Saint Venant
equations, but treat floodplain flows as two-dimensional using either the full
shallow water equations or storage cells linked using uniform flow formulae
applied over a structured grid. Such a treatment alleviates the need to use a
very fine spatial resolution grid in order to represent channel geometry and
hence can result in a considerable reduction in computational cost. Using
a structured grid to form the storage cells also avoids the need for operator
intervention to define floodplain compartments and the linkages between
them, and hence eliminates the potential for bias.

In developing a model for a particular site, choices also need to be
made about the discretisation of space and time. These will clearly depend
on the resolution of available terrain data, the length scales of terrain
features in the domain and the length and timescales of relevant flow
processes. With the development over the last decade of high resolution
mapping technologies, such as airborne scanning laser altimetry, terrain
data are usually available at scales much finer than it is computationally
possible to model over wide areas. However, deciding which terrain and flow
length scales need to be incorporated in a model is a much more subjective
choice. Clearly, as spatial resolution is increased, particular terrain and flow
features will no longer be adequately represented, and the impact of these
sub-grid scale effects on the model predictions will need to be parameterised.

As a result, for any given situation there are a variety of modelling tools
that could be used to compute floodplain inundation and a variety of space
and time resolutions at which these codes could be applied. All codes make
simplifying assumptions and only consider a reduced set of the processes
known to occur during a flood event. Hence, all models are subject to a
degree of structural error that is typically compensated for by calibration
of the friction parameters. Calibrated parameter values are not, therefore,
physically realistic, as in estimating them we also make allowance for a
number of distinctly non-physical effects, such as model structural error
and any energy losses or flow processes which occur at sub-grid scales.
Calibrated model parameters are therefore area-effective, scale-dependent
values which are not drawn from the same underlying statistical distribution
as the equivalent at-a-point parameter of the same name. Thus, whilst we
may denote the resistance coefficient in a wide variety of hydraulic models
as “Manning’s n”, in reality the precise meaning of this resistance term
changes as we change the model physical basis, grid resolution and time
step. For example, a one-dimensional code will not include frictional losses
due to channel meandering in the same way as a two-dimensional code.
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In the one-dimensional code these frictional losses need to be incorporated
into the hydraulic resistance term. Similarly, a high-resolution discretisation
will explicitly represent a greater proportion of the form drag component
than a low-resolution discretisation using the same model. Little guidance
exists on the magnitude of such effects and some of the differences generated
in this way may be subtle. However, complex questions of scaling and
dimensionality do arise which may be difficult to disentangle. In general,
as the dimensionality increases and grid scale is reduced we require the
resistance term to compensate for fewer unrepresented processes and: (i) the
model sensitivity to parameter variation reduces; and (ii) the calibrated
value of the resistance term should converge towards the appropriate skin
friction value.

The major sources of uncertainty in flood inundation modelling are
therefore: (i) errors in the model input data (principally hydrometric
or rainfall-runoff model data to set boundary and initial conditions,
topography data, friction parameters and details of any hydraulic structures
present along the reach); (ii) errors in the independent observed data used to
estimate model parameters or simulation likelihoods; (iii) model structural
errors; and (iv) conceptual model uncertainty as different classes of model
may fit sparse validation data equally well, yet give substantially different
results in prediction. In this chapter we review the sources of uncertainty
in model input data in Section 10.2, before considering errors in the
observations available to help estimate and constrain predictive uncertainty
in such codes in Section 10.3. In all such studies there is an inevitable trade-
off between computational costs, the physical realism of the inundation
model (i.e. the structural errors and conceptual model uncertainty) and
the number of simulations that can be used to sample the space of possible
model behaviours. Such trade-offs are discussed in Section 10.4 before a
discussion of possible error models and uncertainty analysis techniques for
use in flood inundation prediction in Section 10.5.

10.2. Uncertainty in Flood Inundation Modelling
Input Data

The input data required by any hydraulic model are principally: (i) hydro-
metric or rainfall-runoff model data to set boundary and initial conditions;
(ii) topography data; (iii) information on the geometry and operation
rules of any hydraulic structures present along the reach; and (iv) friction
coefficients to represent all the energy loss mechanisms not explicitly
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included in the model physics. In this section we review our current
understanding of the uncertainties associated with each of these input data
sources.

10.2.1. Boundary and initial condition data

All numerical models require boundary and initial condition information as
starting points for their computational procedures. Hydraulic models then
interpolate these data in space and time using the model physical equations
to constrain this process. The result is a temporally dynamic and spatially
distributed prediction of the model deterministic variables.

Boundary condition data consists of values of each model dependent
variable at each boundary node, and for unsteady simulations the modeller
needs to provide these values for each time step. From these the model is
then able to compute the fluxes of mass (and perhaps turbulent energy)
entering and leaving the model through each open boundary to give a
well-posed problem that can be solved by the numerical scheme. As model
dimensionality changes so does the number of dependent variables, and
hence the required boundary condition data may vary depending on the
physics being solved. Moreover, required boundary conditions may also
change with reach hydraulics as we shall see below. For most one- and
two-dimensional inundation models well posed boundary conditions consist
of the fluxes into the model through each inflow boundary and the water
surface elevation at each outflow boundary to allow backwater effects to
be taken into account. These requirements reduce to merely the inflow flux
rates for super-critical or kinematic flow problems, as when the Froude
number Fr > 1 or when a kinematic version of the momentum equation is
used, information cannot propagate in an upstream direction. In addition,
three-dimensional codes require the specification of the velocity distribution
at the inlet boundary and values for the turbulent kinetic energy. In most
cases, hydrological fluxes outside the channel network, e.g. surface and
subsurface flows from hillslopes adjacent to the floodplain and infiltration
of flood waters into alluvial sediments, are ignored (for a more detailed
discussion see Stewart et al., 1999).

Initial conditions for a hydraulic model consist of values for each model
dependent variable at each computational node at time t = 0. In practice,
these will be incompletely known, if at all, and some additional assumptions
will therefore be necessary. For steady-state (i.e. non-transient) simulations
any reasonable guess at the initial conditions is usually sufficient, as the
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simulation can be run until the solution is in equilibrium with the boundary
conditions and the initial conditions have ceased to have an influence.
However, for dynamic simulations this will not be the case and whilst
care can be taken to make the initial conditions as realistic as possible,
a “spin up” period during which model performance is impaired will
always exist. For example, initial conditions for a flood simulation in a
compound channel are often taken as the water depths and flow velocities
predicted by a steady-state simulation with inflow and outflow boundary
conditions at the same value as those used to commence the dynamic run.
Whilst most natural systems are rarely in steady state, careful selection of
simulation periods to coincide their start with near steady-state conditions
can minimise the impact of this assumption.

Data to assign these values can come either from hydrometric net-
works (or from additional relationships such as flood frequency analyses
derived from hydrometric data) or from rainfall-runoff modelling of the
upstream catchment. Either source of boundary and initial condition data
is subject to considerable uncertainty and these will be discussed in turn.
First, hydrometric data are affected by measurement error, particularly
for discharge, and uncertainties deriving from uncharacterised fluxes as a
result of low density or short duration records. Hydrometric measurement
errors are relatively well understood in general terms, but may not be
well characterised at any given gauging site. Typically, water level is the
measured quantity, and this can usually be determined to very high (∼1 cm)
accuracy. Once water level has been determined the discharge flux is usually
determined via a rating curve. These are constructed by undertaking a
number of gauging (area× velocity) measurements over time and producing
a least squares relationship relating discharge to water level that can
then be extrapolated for large flows not recorded during the measurement
campaign. Where flow is contained within the river, channel discharge can
likely be measured to within ±5% by a skilled operator. However, measuring
velocity across wide vegetated floodplains when flow is in an out-of-bank
condition is much more difficult and in this situation errors of ±10–15%
are probably more typical (see Figure 10.1). Errors in extrapolating rating
curves to flows higher than those measured can also add to this, particularly
if the gauge location is bypassed when flow reaches a particular water level,
and can result in very substantial errors (up to 50% at some sites the authors
are aware of). One should also note that rating relationships change over
time as a result of local morphological change and do not account for flow
hysteresis which may be a significant factor at particular sites.
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Figure 10.1. 5% and 95% percentile of a hydrograph for the Manning equation and the
power law (used as upstream boundary condition of a flood inundation model). The figure
illustrates the range of inflow created through the uncertainty of the rating curve (taken
from Pappenberger et al. 2006a).

Depending on the installation, gauging station data may be available at
anything from 15 minute to daily time intervals, and in developed countries
in Europe and North America gauges are typically spaced 10–60km apart
for flood warning and forecasting purposes. In other parts of the world
gauge networks are much less dense and in many areas are in severe
decline as a result of falling investment levels (see Vörösmarty, 2002 for
an extended discussion) such that many records are of short duration.
Moreover, certain fluxes cannot be measured operationally using current
technology, for example fluxes from hillslope sections to the channel. As a
consequence, for many flood modelling applications sufficient gauge data
may not exist to characterise all significant fluxes into and out of the
domain. For example, Stewart et al. (1999) show for a 60 km reach of
the River Severn in the UK that as the catchment wets up over a winter
flood season the ungauged flow contributions increase from 7% to over
30% of total downstream discharge. In such situations the modeller needs
to estimate the ungauged flows in some reasonable manner either using a
hydrological model calibrated on nearby gauged catchments with similar
properties (e.g. Stewart et al., 1999) or by scaling the fluxes according to
the ungauged catchment area and some average rate of runoff production.
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For ungauged catchments or for forecasting studies, gauged data are
unavailable and therefore boundary condition data for hydraulic modelling
must come from rainfall-runoff models of the upstream catchment, which
themselves may use ensemble numerical weather prediction models as their
input (see for example Pappenberger et al., 2005b). Here the hydraulic
model input data are subject to all the uncertainties present in the
upstream chain of simulation models and these can be considerable (see
Chandler et al. (Chapter 7 of this volume) for a discussion of uncertainties in
rainfall data). Formal estimation of how uncertainty cascades through such
systems may therefore require large numbers of model runs and efficient
sampling schemes to reduce the dimensionality of the model space to be
searched.

Lastly, for many flood risk analyses we need to consider low probability
events (annual probability of 0.01 or less) that have not been observed in
the hydrometric record. Few gauging stations have record durations longer
than 40 years and therefore are unlikely to have recorded examples of the
high magnitude, low frequency events typically considered in design and
planning studies. Even if large events have been recorded it is still necessary
to conduct analyses to correctly estimate their probability in order to set
design levels. Such analyses use extreme value statistical theory (see Coles,
2001 and Walshaw, this volume for an extended discussion) to estimate
magnitude–frequency relationships for observed flows which can then be
extrapolated to low frequency events. As with other forms of extrapolation
this gives the potential for considerable error at high recurrence intervals.
Moreover, whilst extending the data record through regionalisation and
the procedures used in the UK Flood Estimation Handbook (Institute
of Hydrology, 1999) or continuous simulation (Blazkova and Beven, 1997;
Cameron et al., 1999) have both been proposed as a solution here, neither
is without its problems and estimation of design flood magnitude will
undoubtedly continue to be a major source of uncertainty in flood risk
analyses.

10.2.2. Digital elevation models and channel bathymetry

High resolution, high accuracy topographic data are essential to shallow
water flooding simulations over low slope floodplains with complex micro-
topography, and such data sets are increasingly available from a variety of
remotely mounted sensors (see for example Sanders, 2007 for an extended
discussion). Traditionally, hydraulic models have been parameterised using
ground surveys of cross-sections perpendicular to the channel at spacings of
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between 100 and 1000 m. Such data are accurate to within a few millimetres
in both the horizontal and vertical, and integrate well with one-dimensional
hydraulic models. However, ground survey data are expensive and time
consuming to collect and of relatively low spatial resolution. Hence, they
require significant interpolation to enable their use in typical two- and
three-dimensional models, whilst in one-dimensional models the topography
between cross-sections is effectively ignored and results are sensitive to
cross-section spacing (e.g. Samuels, 1990). Moreover, topographic data
available on national survey maps tends to be of low accuracy with poor
spatial resolution in floodplain areas. For example in the UK, nationally
available contour data are only recorded at 5 m spacing to a height accuracy
of ±1.25m and for a hydraulic modelling study of typical river reach, Marks
and Bates (2000) report found only three contours and 40 unmaintained
spot heights within a ∼6 km2 floodplain area. When converted into a Digital
Elevation Model (DEM) such data led to relatively low levels of inundation
prediction accuracy in hydraulic models (see Wilson and Atkinson, 2005).

Considerable potential therefore exists for more automated, broad-
area mapping of topography from satellite and, more importantly, airborne
platforms. Three techniques which have shown potential for flood modelling
are aerial stereo-photogrammetry (Baltsavias, 1999; Lane, 2000; Westaway
et al., 2003), airborne laser altimetry or LiDAR (Gomes Pereira and
Wicherson, 1999; Krabill et al., 1984) and airborne Synthetic Aperture
Radar (SAR) interferometry (Hodgson et al., 2003). Radar interferometry
from sensors mounted on space-borne platforms, and in particular the
Shuttle Radar Topography Mission (SRTM) data (Rabus et al., 2003), can
also provide a viable topographic data source for hydraulic modelling in
large, remote river basins where the flood amplitude is large compared
to the topographic data error (see for example Wilson et al., 2007). At
the other end of the scale range, ground-based scanning lasers are also
beginning to be used to define three-dimensional topography at very high
resolution and accuracy, particularly in urban areas where such systems can
be vehicle-mounted in order to allow wide area acquisition.

Remotely sensed terrain data typically comes in the form of a Digital
Surface Model (DSM) which includes surface artefacts (buildings, vege-
tation, etc). A key step in using these data in flood inundation models
is therefore to remove these artefacts to leave a “bare earth” Digital
Elevation Model (DEM). How this is done most effectively depends on
the nature of the sensor and how the signal interacts with the target. Thus
processing algorithms for scanning laser or interferometric radar systems
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differ considerably and an extended discussion of these is beyond the
scope of this chapter. Uncertainty in terrain data is therefore a function
of sensor technology, sensor flight altitude, data ground resolution and the
quality of any post-processing. Considerable potential exists for reductions
in terrain data uncertainties as a result of continued improvements in sensor
technology and fusion of data sources to aid removal of surface features, par-
ticularly for complex urban environments. For example, Mason et al. (2007)
show that using surface characteristic information contained in digital map
data can improve substantially our ability to discriminate between surface
features and bare earth in urban LiDAR scenes or to distinguish between
vegetation and buildings. This latter development raises the possibility
of using the surface feature information in remotely sensed terrain data
in the model building process to, for example, parameterise vegetation
resistance (e.g. Cobby et al., 2003; Mason et al., 2003) or define building
shapes and locations (e.g. Hunter et al., 2008; Schubert et al., 2008).
How this information is then treated by the model is dependent on the
scheme’s dimensionality and how it discretises space. Moreover, whether it
is appropriate to include buildings as topographic barriers or to use a bare
earth DEM with the blockage and storage effect of buildings parameterised
through an increased friction coefficient or through a porosity parameter is
strongly scale-dependent and again uncertainty can arise here.

10.2.3. Hydraulic structures

Flow in many rivers is often strictly controlled by hydraulic structures such
as weirs, gates, bridges and locks. The representation of these structures can
significantly influence flood inundation predictions. For example, different
representations of bridge structures can lead to significantly different water
level predictions (see Figure 10.2, Pappenberger et al., 2006b).

Moreover, flood defence structures such as embankments, walls, diver-
sions and temporary storage areas provide mechanisms for managing flood
risk, but will have a small yet poorly known probability of failure. Fortu-
nately, modern terrain data capture systems such as LiDAR are increasingly
able to determine important parameters such as defence crest elevations
over large areas. However, representing hydraulic structures can still be
problematic in certain classes of hydraulic model. For example, representing
the operation of gates in a full two-dimensional model may pose serious chal-
lenges and in all cases hydraulic structure operating rules may not be known
by the modeller or, even if they are, may not be implemented correctly
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Figure 10.2. Range of predictions of difference in water levels to first cross-section over
all behavioural models at the time of an ERS-2 SAR image. The difference between
the water levels predicted at each cross-section (numbered on abscise from upstream to

downstream) and the first cross-section is computed for each model realisation. The 5%
and 95% envelope curves of all these computations are plotted on this figure.

during an event. Failure probabilities can be represented statistically using
a fragility curve methodology (see, for example, Hall et al., 2003), which
gives the likelihood that a structure will fail for a given external load,
but exploration of the full parameter space implied by such a treatment
may require a large number of model simulations. For example, Dawson
et al. (2005) demonstrated that a probabilistic analysis to determine flood
risk due to possible failures of a system of defences around the town of
Burton-on-Trent in the UK required upwards of 5000 simulations, even if
all other model variables (inflow rate, friction factors, terrain) were treated
deterministically.

10.2.4. Roughness parameterisation

As noted above, friction is usually an important unconstrained parameter in
a hydraulic model. Two- and three-dimensional codes which use a zero equa-
tion turbulence closure may additionally require specification of an “eddy
viscosity” parameter which describes the transport of momentum within
the flow by turbulent dispersion. However, this prerequisite disappears
for most higher-order turbulence models of practical interest. Hydraulic
resistance is a lumped term that represents the sum of a number of effects:
skin friction, form drag and the impact of acceleration and deceleration of
the flow. These combine to give an overall drag force Cd, that in hydraulics
is usually expressed in terms of resistance coefficients such as Manning’s n

and Chezy’s C, which are derived from uniform flow theory. This approach
then assumes that the rate of energy dissipation for non-uniform flows
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is the same as it would be for uniform flow at the same water surface
(friction) slope. As noted in Section 10.1, the precise effects represented
by the friction coefficient for a particular model depend on the model’s
dimensionality, as the parameterisation compensates for energy losses due
to unrepresented processes, and the grid resolution. We currently do not
possess a comprehensive theory of “effective roughness” that accounts for
variations in model structure and scale, and as a consequence friction
parameters in hydraulic models are typically calibrated. Recent work
(Hunter et al., 2005, 2007) has shown that the data against which a
model is calibrated, and the specific objective function which the modeller
seeks to optimise, can make a significant difference to values of “best fit”
parameters determined by calibration. Moreover, different models show
different degrees of sensitivity to friction parameters, which may be more or
less non-linear (see for example Horritt and Bates, 2001 and Pappenberger
and Ratto, this volume) depending on the underlying controlling equations
solved by the code.

Certain components of the hydraulic resistance, such as bed material
grain size (e.g. Hey, 1979) and form drag due to vegetation (e.g. Kouwen,
2000) can be constrained from field data, and increasingly remote sensing is
being used to undertake this. For example, photogrammetric techniques to
extract grain size information from ground-based or airborne photography
(Butler et al., 2001) and methods to determine specific plant biophysical
parameters from LiDAR data are currently under development (e.g. Cobby
et al., 2001). Using such techniques, Mason et al. (2003) and Straatsma
and Baptist (2008) have presented methods to calculate time and space
distributed friction coefficients for flood inundation models directly from
airborne altimetry data. Furthermore, the development of an ability to
determine realistic spatial distributions of friction across a floodplain has
also led Werner et al. (2005) to examine the identifiability of roughness
classes in typically available model validation data. This showed that
very few (1 or 2) floodplain roughness classes are required to match
current data sources to within error and this suggests that application of
complex formulae to establish roughness values for changed floodplain land
use would seem inappropriate until model validation data are improved
significantly. Much further work is required in this area; nonetheless such
studies are beginning to provide methods to explicitly calculate important
elements of frictional resistance for particular flow routing problems. This
leads to the prospect of a much reduced need for calibration of hydraulic
models and therefore a reduction in predictive uncertainty.
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10.3. Data for Uncertainty Estimation in Flood
Inundation Models

In all but the simplest cases (for example, the planar free-surface “lid”
approach of Puesch and Raclot, 2002), some form of calibration is required
to successfully apply a floodplain flow model to a particular reach for a
given flood event. Calibration is undertaken in order to identify appropriate
values for parameters such that the model is able to reproduce observed
data and, as previously mentioned, typically considers roughness coefficients
assigned to the main channel and floodplain and values for turbulent eddy
viscosity if a zero-equation turbulence closure is used. Though it has been
claimed that these values can be estimated in the field with a high degree
of precision (Cunge, 2003), it has proven very difficult to demonstrate that
such “physically-based” parameterisations are capable of providing accurate
predictions from single realisations for reasons discussed in the critiques of
Beven (1989, 2002, 2006) and Grayson et al. (1992). As such, values of
parameters calculated by the calibration of models should be recognised
as effective values that may not have a physical interpretation outside
of the model structure within which they were calibrated. In addition,
the process of estimating effective parameter values through calibration is
further convoluted by the uncertainties inherent in the inundation modelling
process discussed in Section 10.2 which cast some doubt on the certainty
of calibrated parameters (Aronica et al., 1998; Bates et al., 2004; Horritt,
2000). Principally, these errors relate to the inadequacies of data used to
represent heterogeneous river reaches (i.e. geometric integrity of floodplain
topography and flow fluxes along the domain boundaries), but also extends
to the observations with which the model is compared during calibration
and the numerical approximations associated with the discrete solution
of the controlling flow equations. The model will therefore require the
estimation of effective parameter values that will, in part, compensate for
these sources of error (Romanowicz and Beven, 2003).

Given that the number of degrees of freedom in even the simplest of
numerical models is relatively large, it is no surprise that many different
spatially distributed combinations of effective parameter values may fit
sparse validation data equally well. Such equifinality in floodplain flow
modelling has been well documented (see, for example, Aronica et al.,
1998, 2002; Bates et al., 2004; Hankin et al., 2001; Romanowicz et al.,
1996; Romanowicz and Beven, 2003) and uncertainty analysis techniques
have been developed and applied in response. For example, the Generalised
Likelihood Uncertainty Estimation (GLUE) of Beven and Binley (1992) has
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been used by a number of authors to make an assessment of the likelihood
of a set of effective parameter values being an acceptable simulator of a
system when model predictions are compared to observed field data.

Typical data available to compare to model predictions include:
(i) point-scale measurements of water stage, discharge or velocity made
at established gauging stations, taken during field campaigns (e.g. Lane
et al., 1999), determined from satellite altimetry (e.g. Wilson et al., 2007)
or estimated by intersecting flood extent maps with high resolution DEMs
(Mason et al., 2007; Schumann et al., 2008b); (ii) vector data on flood
inundation extent determined by ground surveys either during or after an
event or from remotely sensed images of flooding (e.g. Bates et al., 2006;
Horritt, 1999; Pappenberger et al., 2005a; Romanowicz and Beven, 2003);
(iii) interferometric measurements of water surface height change deter-
mined from repeat-pass satellite radar images (e.g. Alsdorf et al., 2007); and
(iv) anecdotal evidence collected from eyewitness to flood events. As with
all other types of hydraulic modelling data, errors in validation data may be
very poorly characterised, and individual data sources may only test very
limited aspects of a given model’s performance (e.g. Hunter et al., 2006). For
example, stage data from gauging stations are typically available at sites
10–60km apart and only test the bulk routing performance of hydraulic
models and not their ability to produce spatial predictions. Neither can
such bulk flow data be used to identify spatially variable parameter fields.
In a similar vein, Hunter et al. (2006) show that using maps of flood
extent to calibrate separate values of channel and floodplain friction leads
to the conclusion that both high channel friction/low floodplain friction and
high channel friction/low floodplain friction combinations produce equally
plausible inundation extent simulations, despite the fact that in reality
channels will be considerably smoother than rough vegetated floodplains. In
effect, inundation extent data are not able to discriminate between different
spatial patterns of friction, despite the fact that our physical understanding
shows that some parameter fields are very unlikely to occur in practice.
Hunter et al. (2006) showed that this equifinal behaviour was due to trade-
off effects between the two parameters and that implausibly high channel
friction values could be compensated for by implausibly low floodplain
friction values such that the model still performed well in terms of flood
extent prediction. Hunter et al. (2006) went on to show that it was only
by including flood wave travel time data as an additional constraint to
the parameter identification process that one was able to eliminate this
pathological behaviour. In this case, flood wave travel time could only
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be replicated by the model if the channel friction was (correctly) lower
than that on the floodplain, and hence the only calibrations that could
replicate both extent and travel time data simultaneously were those that
had an intuitively correct arrangement of roughness elements. Importantly,
using wave travel time data alone led to a wider spread of acceptable
parameter values than if both data sets were used to constrain the model.
Such compensating effects are probably very common and can only really
be eliminated by using multiple model validation data sources. However,
as one builds more data into the calibration process the more likely it
becomes that a single model or parameterisation cannot optimally match
all of the data all of the time as a result of model structural errors.
The choice of the objective function that is to be optimised will also strongly
affect conclusions regarding the sensitivity and uncertainty behaviour of a
particular model.

In general, water surface elevation measurements obtained from gaug-
ing stations are accurate to approximately ±1 cm, and often absolute
elevations are also known as such permanent installations can be levelled
very precisely. Stages derived from bespoke field campaigns can have similar
accuracy, although absolute elevations may be more difficult to establish at
remote field sites. Elevations derived from post-event wrack mark surveys
will have higher errors as it is more difficult to be certain that the elevation
recorded actually was generated by the flood peak and not by some minor
peak during the flood recession. As well as being difficult to interpret
because of such biases, wrack marks composed of trash lines or water
stains also are typically spread over an elevation range and are thus at
best accurate to ±10–15cm. Elevations from satellite radar altimetry are
typically obtained using instruments designed from oceanic studies, which
have a footprint of ∼2 km and vertical accuracy of decimetres to metres.
Over the continental land surface such instruments therefore only record
elevations over the very largest rivers, however, sophisticated re-tracking
algorithms have recently been developed (e.g. Berry et al., 2005) which
allow separation of water and other signals in mixed pixels. In this way the
elevation of smaller water bodies (∼100 s of metres across) can be obtained
and used for model validation (e.g. Wilson et al., 2007).

Errors in discharge measurement and rating curve construction are
already discussed in Section 10.2.1 so are not considered further here,
but it is appropriate to look briefly at the accuracy of velocity data.
Such information is usually obtained from handheld current meters or
acoustic doppler current profilers mounted on boats and linked to a GPS
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for position determination. Such data have typical errors of ±5–10%
for the primary downstream velocity field, although lower velocity cross-
stream and vertical flows may be more difficult to measure accurately
and precisely. In addition, research is ongoing into techniques to remotely
sense velocities either from the ground or from airborne platforms. Ground-
based methods include using a large-scale variant of the particle image
velocimetry technique increasingly used in laboratory studies (e.g. Kim
et al., 2008) or microwave doppler radar systems (e.g. Costa et al., 2000),
whilst from airborne platforms velocities can be determined using along-
track interferometry (e.g. Romeiser et al., 2007). In the future such systems
may revolutionise how we constrain inundation models; however, all such
remote sensing methods should currently be regarded as experimental.
For example, Mason et al. (2003) demonstrate a situation where wide
area velocity data would have been able to discriminate between two
competing model parameterisations, although data were not available at
the time of this study, each parameterisation had to be considered equally
likely.

Vector data on flood extent can be obtained from either ground survey
during or after flood events, or from visible band imagers or radars flown
onboard aircraft or satellites. Ground survey during floods can potentially
yield excellent data, but a wide area synoptic view may be very difficult
to obtain, and there can also be problems of access or safety. After flood
events it is often possible to identify wrack marks although such data will
suffer from the errors noted above in relation to point scale data, and in
addition may only provide a fragmented view. Synoptic images are therefore
advantageous in this latter respect and a variety of data sources can be
used. Aerial photographs during floods are a common source of such data
(e.g. Biggin and Blyth, 1996), provided weather conditions and emergency
operations do not restrict flying. Aerial data have the advantage of being
collected (relatively) close to the target so effective pixel sizes can be of
the order metres. However, determining shorelines from aerial photographs
is a manual process that is rather labour intensive, and (especially with
oblique photographs) one which may actually be subject to a degree of
subjectivity (e.g. Romanowicz and Beven, 2003). Visible band satellite
imagery (e.g. 30m resolution Landsat or coarser 250m resolution MODIS
data) can detect floods (e.g. Bates et al., 1997), although cloud cover
and restriction to daytime only operation can limit the utility of these
data. For these reasons SAR data are often preferred for flood remote
sensing.
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SARs are active systems which emit microwave pulses at an oblique
angle towards the target. Open water acts as a specular reflector and the
microwave energy is reflected away from the sensor so such areas appear
as smooth areas of low backscatter in the resulting imagery. Terrestrial
land surfaces, by contrast, reflect the energy in many directions, including
back towards the sensor, and therefore appear as noisy high backscatter
zones. These differences allow flood extent to be mapped using a variety of
techniques to an accuracy of ∼1 pixel. Pixel sizes range from ∼1m in air-
borne imagery (e.g. Bates et al., 2006) to between 3 and 75m in spaceborne
imagery (e.g. Baldassarre et al. 2009; Horritt, 2000), and can potentially be
excellent for flood extent determination. Misclassification errors do occur
however, with flattened and wet vegetation behaving, in certain situations,
in the same way as open water, and emergent vegetation disrupting the
specular reflections in shallow open water to appear more like dry land.
Moreover, very few airborne SAR systems exist, and none are routinely
used for flood mapping. Satellite SAR systems avoid these problems, but
here orbit repeat times are low (7–10 days for RADARSAT, 35 days for
ERS-1 and ERS-2) such that there is only a low probability of an overpass
occurring simultaneous with a flood and the sensors are designed to be
all-purpose instruments and may not be optimal for flood mapping. As a
consequence, perhaps only 15–20 consistent inundation extent data sets are
currently available worldwide, and even in these errors can be relatively
high. The few studies to have obtained simultaneous aerial photo and
satellite SAR data have shown that the accuracy of satellite radars in
classifying flood extent to only be of the order 80–85% (Biggin and Blyth,
1996; Imhoff et al., 1987). Schumann et al. (2008b, see Figure 10.3) have
demonstrated how the uncertainty in this classification can be used to
improve flood inundation models and design an optimal field campaign
to improve future predictions and calibration exercises. Despite the small
number of consistent inundation data sets available, such information is
critical for validating flood models, and it is only by using flood extent
data that one is able to truly validate the two-dimensional performance of
flood models. Without such data it is very easy for modellers to continue
to use one-dimensional codes for flood inundation modelling, despite the
fact that we know that these are physically inappropriate as flooding is
predominately a two-dimensional process.

A new data type which may, in the future, be used to validate
inundation models are the fine spatial resolution maps of water surface
elevation change presented by Alsdorf et al. (2007). These data are derived
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Figure 10.3. Minimum and maximum water stage derived from a SAR image along the
Alzette River (taken from Schumann et al. 2008b).

from repeat pass satellite radar interferometry, and in the proof-of-concept
study by Alsdorf et al. are derived from the C band radar onboard the
JERS-1 satellite. The technique exploits the fact that at C band flooded
vegetation scatters some specularly reflected radar energy back to the
antenna and therefore the method can only currently be employed in areas
of flooded vegetation. Accordingly, Alsdorf et al. demonstrated its utility
for an area of the central Amazon mainstem in Brazil where they were
able to measure water surface elevation changes to centimetric accuracy
and with a spatial resolution of ∼200m across a ∼50 km wide floodplain.
In the case of JERS-1 the repeat time is 44 days which can be considered
as adequate for the Amazon due to the annual timescale of the flood pulse
through this reach. Future planned missions, such as the NASA Surface
Water Ocean Topography instrument (SWOT, http://swot.jpl.nasa.gov/),
will overcome these limitations by using a Ka band radar to remove the need
for vegetation to be present to perform the interferometric calculations and
decrease the orbit revisit time to ∼10 days at the equator (as a worst case),
and much less at higher latitudes (∼2–3 days). As well as providing unique
measurements of water surface elevation that will revolutionise our ability
to test inundation models, SWOT will also provide fine spatial resolution
images of flood extent with pixel sizes ranging from ∼5×60m near nadir to
∼70 × 60m at the cross-track range limit. Given the low orbit revisit time
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this will lead to a significant (∼O(1–2)) increase in the number of sites for
which flood extent data are available and potentially make two-dimensional
schemes a routine choice for inundation studies.

Finally, whilst flood modellers most often deal with quantitative data,
for very many events much so called “soft” data may be available that
may also be used in the validation process. Such data include eyewitness
accounts, ground and air photos, newspaper reports or any other anecdotal
evidence. Whilst it is difficult to be precise about the nature of any errors in
these data, they may nevertheless be invaluable in situations where normal
methods of data collection have failed. For example, in very extreme events
gauges may be bypassed or fail, and resources may rightly be directed to
emergency operations rather than meeting the future data needs of flood
modellers. An example of the use of such data is provided by Werner (2004)
who showed that anecdotal observations of areas that did and did not
get inundated during a flood event could be very effective in reducing the
uncertainty of an ensemble of simulations.

10.4. Trading-off Speed and Accuracy in Flood
Inundation Modelling

In all flood modelling studies there is an inevitable trade-off between
computational cost, the physical realism of the inundation model (i.e. the
structural errors and conceptual model uncertainty) and the number of
simulations that can be used to sample the space of possible model
behaviours. Definition of the optimum point within this spectrum is a
subjective decision that likely reflects the biases of the particular modeller
and his or her experience of the relative strengths of the different types
of validation data available for the application at hand. As modelling
applications are most often limited by the volume of observed validation
data and because these data may have complex, yet poorly known errors,
it may be possible for many different classes of model to work equally
well (albeit with perhaps very different effective roughness parameters). As
accuracy is so difficult to define in a robust way given the limitations of
the available data, the modeller may have considerable scope for trading off
computational cost and model complexity. Indeed, if we are limited to the
use of bulk flow data (stage, discharge) from widely spaced gauging stations,
it may be impossible to justify on the basis of objective evidence the use of
anything but the simplest wave routing model. Whilst recourse can be made
to the argument that physically more realistic models must intrinsically
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be “better” than simpler ones, in practice this is often very difficult to
prove. Moreover, scientific logic based on the principle of Occam’s razor,
where the simplest explanation that fits the available data is the best one,
provides a powerful counter-argument here. For example, Horrit and Bates
(2002) show for a reach of the River Severn in the UK that one-dimensional,
coupled one-dimensional-two-dimensional and full two-dimensional models
were all capable of predicting the inundation extent recorded in satellite
SAR images equally well, but with order of magnitude differences in
computational cost.

When considering speed and accuracy trade-offs, modellers should also
take into account the “whole-life” cost of the modelling process and not
just the simulation time. For example, despite being very cheap to run,
one-dimensional models applied to complex floodplains require substantial
set-up time and skilled operator decision making over the number and shape
of floodplain storage areas in order to provide reasonable results. While
a structured grid two-dimensional model may require the same channel
information as a one-dimensional model, the set-up complexity for the
floodplain may be significantly reduced because floodplain storage areas are
defined simply by the model grid scale. Moreover, the reliance on operator
decision making in the development of one-dimensional models in order
to define floodplain flow paths a priori may lead to a degree of circular
reasoning whereby results reflect, to too great an extent, the modeller’s
preconceived ideas of how the system works.

10.5. Error Models for Flood Inundation Data
and Uncertainty Estimation

As described in Section 10.1, the uncertainties related to floodplain
inundation modelling have their source in input data errors (including the
data used for the model calibration), model structural errors and conceptual
model uncertainty. In order to include these errors in the estimation of
model predictive uncertainty, some assumptions have to be made regarding
the error structure. In this section we focus on input and output errors.
Structural errors and errors resulting from conceptual model uncertainty
can be dealt with only through output error analysis in the case of flood
inundation problems.

It is important to note that in typical modelling practice both the
availability of calibration/validation data and the goal of the modelling play
important roles in the model formulation and the choice of the error model
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structure. The available data dictate the model choice, whilst the goal of
the modelling dictates the choice of the model output and the methods of
data assimilation.

The conditioning of model predictions is performed through the
assessment of model errors, i.e. comparison of simulated output with the
observations, under the assumption that errors are additive, independent,
both in time and space, and stationary. When these assumptions are
met, computationally efficient, statistical tools for data assimilation may
be used. Unfortunately, those assumptions are often violated in flood
inundation modelling. The errors related to hydrological variables are
usually heteroscedastic, i.e. their variance depends on the magnitude of
the predicted variable (Sorooshian and Dracup, 1980) and correlated in
time and space (Neal et al., 2007; Sorooshian et al., 1983). One of the
methods of dealing with these problems is to introduce the appropriate
transformation of error to stabilise the variance and take into account
the error correlation/covariance structure (Aronica et al., 1998). These
methods require introducing additional parameters to describe the error
model structure, which might be unidentifiable when data are scarce.
The other option is using less statistically efficient but computationally
simpler methods of uncertainty estimation, including fuzzy set approaches
and other less formal methods of data assimilation (Beven, 2006).

The assessment of uncertainty in predictions is done based on weights
describing the measure of model performance. In a Bayesian set-up the
weights are obtained from the posterior distribution of parameters obtained
as a result of the application of Bayes theorem (Box and Tiao, 1992). When
a fuzzy set approach is used, the weights are obtained from the fuzzy
performance measures. The prediction error includes parameter related
uncertainty and the uncertainty related to the model and observational
errors. In a statistical set-up, the form of the posterior distribution of
parameters depends on the assumed distribution of the prediction errors
and their correlation structure. When Gaussian, or generalised Gaussian
distributions of prediction errors can be assumed (possibly after some
required transformation), the logarithm of the likelihood function used
to evaluate the parameter posterior distribution has the form of a sum
of error measures (square, absolute or minimax) over time and/or space
(Romanowicz et al. 1996). In that case there is a correspondence between
the goodness of fit criteria used in an inverse problem of model calibration
and the likelihood function. However, as we note above, it may be difficult
to find any form of transformation that would allow a formal statistical
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approach to be applied and we are left with less efficient but simpler
non-formal approaches. In that case the choice of criteria for uncertainty
assessment should follow from the goal of the modelling.

The main goals of flood inundation modelling are flood risk estima-
tion (Pappenberger et al., 2007a), flood hazard forecasting and warning
(Neal et al., 2007; Pappenberger et al. 2005b) and maintaining ecologi-
cally required inundation extent on floodplains during specified periods
(Romanowicz et al. 2008) by means of controlled reservoir discharges.
A modeller might aim to build a model for general use and in that case, all
the available data may be included in the calibration stage. However, the
model should be fit for purpose and the choice of an application range that
is too wide might jeopardise the quality of predictions aimed at a specific
model use.

In the case of flood hazard estimation, which is the most common goal
of flood inundation modelling, the model should give reliable predictions of
velocity fields and water level heights over the entire inundation extent
as well as the inundation outlines. The length of time when the water
levels are over a specified threshold may also be valuable to determine the
potential losses to property. However, these requirements are difficult to
fulfil for a large inundation area due to computer time limitations, limited
observations available to calibrate the model over large regions and errors in
the inundation models themselves. Moreover, velocity fields are notoriously
difficult to observe in situ and therefore often cannot be validated.

When distributed data from satellite images or aerial photographs are
available, the spatial pattern of simulations can be assessed. This is usually
done by the comparison of binary maps of inundation extent. The error
has a discrete, binary form and its assessment is based on the flooded/non-
flooded cell count. This approach was applied by Aronica et al. (2002), and
Bates et al. (2006) among others. The application of a discrete approach
reduces the amount of information available for model conditioning or
data assimilation, but also simplifies the calibration process as shown by
Pappenberger et al. (2006).

For the purpose of flood forecasting and warning, the predictions of
time-to-peak and maximum wave height at specific locations are required,
as well as an online data assimilation technique, which can be done by state
updating (Neal et al., 2007), error updating (Madsen and Skotner, 2005;
Refsgaard, 1997) or prediction weight updating (Romanowicz and Beven,
1997). When an updating procedure is used, the error model may include
an estimate of the unknown error model parameters, both for output as
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well as input variables. In practice though, such parameters may be difficult
to estimate.

Inundation predictions for the purpose of water management require
estimates of inundation area and time of inundation over the entire region of
ecological concern. From the point of view of possible error structures, these
requirements are not so different from those for flood hazard estimation,
though there is no necessity to predict velocity fields. However, combined
reservoir management and flow routing may impose stronger constraints on
computation times as the optimisation methods used to derive estimates
of control variables require multiple calls of the flow routing model at each
step of the optimisation routine.

The map of minimum inundation outlines required by the ecosystem
along the river reach between Suraż and Izbiszcze, Poland, (49th–57th cross-
section) covers the area of the National Narew Park and it is shown in
Figures 10.4 and 10.5 with the dashed line (Romanowicz et al., 2008). The
low and high water results indicate that large areas of the wetlands are
never flooded, even during high water conditions. Further study is required
to define the best management scenario that would allow for inundation
probability to be extended over the whole wetland area — in particular
during high water conditions.

10.5.1. Input error modelling

The input errors in flood inundation modelling focus mainly on the
hydrometric data or model errors, related to upstream and downstream
boundary conditions, topography and friction models as discussed in
Section 10.2. Assimilation of uncertain boundary conditions observations
can be done when online updating of the model predictions is applied
using, for example, Ensemble Kalman Filter (EnKF) techniques (Neal
et al., 2007). In this latter application Neal et al. (2007) found that
the state space formulation of the flood inundation prediction problem
enabled a model of the error in the downstream boundary condition to
be included. This error model had the form of a first-order autoregressive
model AR(1). The harmonic behaviour of the error forecast model caused by
the errors in downstream conditions was modelled by Madsen and Skotner
(2005). The other method of introducing upstream boundary uncertainty
into a flood inundation model consists of propagating the uncertainties
through the system (Pappenberger et al., 2005b) using ensemble input
forecasts or uncertainty in the rating curve (Pappenberger et al., 2006a).
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Figure 10.4. Low water level probability map at the National Narew Park area between
Suraż and Izbiszcze.

These approaches require assumptions regarding the possible structure of
input errors, which in turn follows from the model used for the input
predictions. The errors related to model topography are assumed to be
additive Gaussian or uniform and are introduced into the model evaluation
using multiple model simulations (Pappenberger et al., 2006a).

10.5.2. Output error models

The output error is defined as the difference between the simulated and
observed output variable. Therefore its form depends on the type of
output variable considered and the specific objective function used for
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Figure 10.5. High water level probability map at the National Narew Park area between
Suraż and Izbiszcze.

the comparison. Typical data consist of hydrographs at a point scale
(for example, at the observed cross-sections or at the points where water
level sensors are placed), inundation outlines at a vector scale, or spatial
inundation patterns on a pixel by pixel basis, or globally (see Section 10.3).

The case of a hydrograph comparison is equivalent to time series
analysis from the point of view of the error structure. The errors are
usually correlated both in time and space, non-Gaussian, and non-additive;
therefore, the assumed error model is unlikely to describe correctly the
true error structure. Among the approaches applied in flood inundation
modelling are the statistical treatment of the error and fuzzy modelling.
When a statistical approach is applied, the error is assumed additive
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Gaussian, but it could be also generalised Gaussian, or shaped according to
the specific characteristics of the available data (Romanowicz et al., 1996).
A multiplicative error can be easily transformed into the additive form
through the logarithmic transformation. One method to achieve this is the
Generalised Likelihood Uncertainty Estimation (GLUE) approach which
allows for a non-additive error structure (Romanowicz and Beven, 2006),
but at the expense of statistical efficiency of the estimators. An additive,
correlated error structure was introduced in flood inundation modelling
by Romanowicz et al. (1996), allowing also for the unknown mean and
variance of the error of model predictions. A one-dimensional model was
applied to the problem of estimating maps of probability of inundation
conditioned on the simulations of a two-dimensional flood inundation model
treated as observed data. The predictions of water levels at several cross-
sections along the river reach during the flood event were used as the model
output and the errors had the form of a difference between simulated
and observed water levels. Aronica et al. (1998) applied two different
approaches to estimate the uncertainty of predictions in a flood inundation
model with scarce data. The first, statistical approach was based on a
heteroscedastic, normal, independent error model and the second applied
fuzzy rules to define the modelling errors. In the fuzzy set approach the
errors were specified according to classes defined by fuzzy rules. Both
approaches gave similar results, but the fuzzy rule approach seemed to be
better adjusted to the combination of uncertain information from different
sources.

Fuzzy-like model errors were applied by Romanowicz and Beven (2003),
where flood inundation maps were estimated conditioned on the historical
maps of maximum inundation outlines. In this case, maximum water
levels obtained from the simulation of a one-dimensional flood inundation
model were compared with water levels at the model cross-sections derived
from the historical maximum inundation outlines for the same events.
The errors were weighted by a function that took into account the
accuracy of the inundation outlines. Pappenberger et al. (2007b) also used
a fuzzy type measure to calibrate flood inundation models (more details
see Section 10.5.3).

Procedures for non-Gaussian error transformation, used in hydrological
modelling have not been applied in flood inundation models; however,
a procedure similar to the one described in Romanowicz and Beven
(2006), accounting for non-additive errors, was applied by Werner (2004)
to absolute differences of simulated and observed maximum water levels
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at a given location. It should be noted that the procedures of error
transformation are closely related to the methods of error assessment and
the choice of the likelihood function, as described in Section 10.5.3.

Schumann et al. (2007) presented the estimation of flood inundation
predictions using satellite radar data, flood marks and aerial photography-
derived flood extent to condition distributed roughness parameters. Local
estimates of flood inundation extent were compared using absolute error
between water levels derived from different information sources at model
cross-sections. The reach-scale estimates were derived applying clustering
of cdfs representing similar model error characteristics. That clustering
leads to spatially distributed roughness parameterisations giving acceptable
model performance both locally and at the reach scale.

Neal et al. (2007) in their EnKF application to the online updating of
a one-dimensional hydraulic flow model assumed uncorrelated observation
errors and state estimates. As that assumption is not fulfilled in practice
it limited the performance of the model. This formulation would also allow
one to build in the error model for the input variables and introduce a
coloured noise model, but these were not applied in that paper.

The next most explored method of comparing inundation model
predictions with observations applies discrete binary maps. In the case of
this binary approach, the error model has the form of binary data and is
assessed using methods of binary pattern comparison. This method can
be used when inundation extent maps are available from SAR images, or
inundation outlines. In this case spatial predictions of a flood inundation
model are transformed into a pattern of wet and dry cells and are compared
with analogous observed binary transformed maps (Aronica et al., 2002;
Pappenberger et al., 2006b, 2007a,b; Werner et al., 2005). The comparison
can be made on global, sub-domain or local scales, as described by
Pappenberger et al. (2006b) and in the next section (a representation of
the effects of an increase in spatial scale in model evaluation on modelling
results has been shown by Schumann et al., 2008b). Fuzzy set approaches
with binary maps were also applied by Pappenberger et al. (2007a,b) to
evaluate uncertainties of predictions of a two-dimensional flood inundation
model. The predictions were conditioned on remotely sensed satellite SAR
data of inundation extent. The whole observed SAR inundation map
was classified according to four inundation categories, i.e. each cell was
represented by a four-dimensional vector specifying the degree of belonging.
Additionally, the model predictions were fuzzyfied in a similar manner,
but taking into account differences in spatial resolution of observed and
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modelled inundation area. Comparison of two fuzzy category cells was
performed using the standard similarity function of Hagen (2003). The
authors compared the obtained fuzzy performance measure with traditional
discrete binary performance measures that did not take into account the
observation errors.

Numerical algorithms used for the solution of distributed flood inun-
dation models involve errors coming from numerical approximations and
computer techniques. For example, Pappenberger et al. (2005a) has shown
that a parameter which controls the accuracy of the numerical scheme
can be responsible for larger uncertainties than the so-called physical
parameters. Some errors can be estimated approximately and taken into
account in the presentation of the results. There might be additional
errors following from the inappropriate use of programming techniques,
as well as presentation errors and errors connected with inappropriate
use of the model by the user (e.g. by using the model for cases beyond
its specified application range). Such errors are not usually treated as
uncertainties of the modelling and can be reduced by testing and compar-
ison with results obtained using other techniques as well as user support
procedures.

10.5.3. Estimating uncertainties and sensitivities in flood

inundation models

Methods of model error assessment can be classified into local measures and
those that are cumulated over the whole simulated floodplain. The example
of locally assessed errors was given in Romanowicz and Beven (2003),
globally assessed errors were presented by Aronica et al. (2002), and
comparisons of cumulated and local model performance were given by
Pappenberger et al. (2006c) and Schumann et al. (2007). It is often
very difficult to find a model that provides simulation results that are
globally and locally consistent with the observations. There are then five
possible responses: investigate those regions of the flow domain where
there are consistent anomalies between model predictions and the range of
observations; avoid using data that we don’t believe or that are doubtful;
introduce local parameters if there are particular local anomalies; make
error bounds wider in some way where data are doubtful; and if none
of the above can be done (because, for example, there is no reason
to doubt anomalous data) then resort to local evaluations in assessing
local uncertainties; or introduce targeted model evaluation (Pappenberger
et al., 2007a). The latter consists, for example, of weighting the model
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Figure 10.6. Comparison of flood hazard derived from a global performance measure
to maps compared to one weighted by road km (left, a) and buildings (right, b). There
is no change in flood risk in all white areas. It can be shown that weighting the model

calibration process with different types of vulnerability can lead to significantly different
flood risk maps (taken from Pappenberger et al., 2007a).

performance with respect to additional information such as vulnerability
(see Figure 10.6).

A deterministic model simulation calibrated with a remotely sensed
flood inundation image will lead to a deterministic flood inundation map,
which can be directly used for planning, model evaluation or other purposes.
However, if uncertainty is included into this process and one deals with
multiple simulations then an uncertain output map has to be derived.
Aronica et al. (2002) proposed a method to derive a “probability” map
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using a discrete binary model output on a pixel by pixel basis by:

RCM j =
∑

i Liwij∑
i Li

, (10.1)

in which Li is the weight for each simulation i (and which can be any
relevant skill score such as the F measure used by Aronica et al. (2002))
and the simulation results for the jth model element (e.g. computational cell
or node) is wij =1 for wet and wij = 0 for dry. The weight can be based on
the normalised performance measures quoted above which are derived from
maps conditioned on remotely sensed flood extent information. RCM j is the
relative confidence measure for each cell j, which expresses the belief that an
uncertain prediction is a consistent representation of the system behaviour
(for a discussion see Hunter et al., 2008). Probability maps of inundation
may also be derived from local water level predictions by interpolation of
the quantiles of predicted water levels obtained at cross-sections along the
river reach and overlaying them on the digital terrain model of river reach
(Romanowicz et al. 1996, 2003).

Uncertainties in hydrodynamic model calibration and boundary con-
ditions can have a significant influence on flood inundation predictions.
Uncertainty analysis involves quantification of these uncertainties and
their propagation through to inundation predictions. The inverse of this
is sensitivity analysis, which tries to diagnose the influence that model
parameters have on the uncertainty (Cloke et al., 2008; Pappenberger
et al., 2006b; Pappenberger and Ratto, this volume). Hall et al. (2005)
and Pappenberger et al. (2008) used a variance-based global sensitivity
analysis, the so called “Sobol” method, to quantify the significant influence
of variance in the Manning channel roughness coefficient in raster-based and
one-dimensional flood inundation model predictions of flood outline and
flood depth. Pappenberger et al. (2008) extended such a study to multiple
other factors such as bridge representations and boundary conditions.
The methodology allowed the sub-reaches of channel that have the most
influence to be identified, demonstrating how far boundary effects propagate
into the model and indicating where further data acquisition and nested
higher-resolution model studies should be targeted.

10.6. Conclusions

Whilst flood inundation models are relatively parsimonious in terms of
their input data requirements and number of unknown parameters, these
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values may often be subject to complex and poorly understood errors.
Moreover, observed flow information available to constrain uncertainty
in flood inundation predictions may be extremely limited in terms of
either spatial or temporal coverage, as well as itself being subject to
significant measurement uncertainty. Whilst the development of better
remotely sensed data capture techniques continues to allow progress to
be made in providing a more data-rich environment for flood inundation
modelling, key uncertainties, particularly in terms of our ability to obtain
distributed flow measurements during floods, will undoubtedly remain.
The question of whether the main source of uncertainty is either the
model parameterisation or errors related to the data cannot be resolved
easily as these sources are inter-related. Therefore, the assumption that
the researcher can neglect model uncertainty, and take into account only
data uncertainty, is not justified. The other problem that arises is when the
choice between statistical formal and informal approaches has to be made.
As discussed in this chapter, the scarcity of observations and complexity
of flood inundation modelling makes the use of formal approaches that
would take into account both spatial and temporal correlation of errors
computationally prohibitive. Despite these intrinsic limitations, sufficient
progress in data capture has been made to allow uncertainty analysis
techniques for flood inundation modelling to mature rapidly over the last
decade. As this chapter has demonstrated, we now have a number of
promising methods and data sets at our disposal which will allow us over the
medium term to better understand how these complex non-linear models
respond when confronted with non-error-free data, and how this can be used
to develop better spatially distributed measures of flood risk that include
our degree of belief in these predictions.
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CHAPTER 11

Flood Defence Reliability Analysis

Pieter van Gelder and Han Vrijling
Delft University of Technology, Netherlands

11.1. Introduction

In this chapter the probabilistic approach of the design and the risk analysis
in flood defence engineering is outlined. The application of the probabilistic
design methods offers the designer a way to unify the design of engineering
structures, processes and management systems. For this reason there is a
growing interest in the use of these methods. This chapter is structured as
follows. First, an introduction is given to probabilistic design, uncertainties
are discussed, and a reflection on the deterministic approach versus the
probabilistic approach is presented. The chapter continues by addressing
the tools for a probabilistic systems analysis and its calculation methods.
Failure probability calculation for an element is reviewed and evaluation
methods of a calculated risk level are addressed. The chapter ends with a
case study on the reliability analysis and optimal design of a caisson flood
defence.

The basis of the deterministic approach is the so-called design values
for the loads and the strength parameters. Loads could be, for instance,
the design water level and the design significant wave height. Using design
rules according to codes and standards it is possible to determine the shape
and the height of the cross-section of the flood defence. These design rules
are based on limit states of the flood defence system’s elements, such as
overtopping, erosion, instability, piping and settlement. It is assumed that
the structure is safe when the margin between the design value of the load
and the characteristic value of the strength is large enough for all limit
states of all elements.

270
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Figure 11.1. Different safety levels for the same design.

The safety level of the protected area is not explicitly known when the
flood defence is designed according to the deterministic approach. The most
important shortcomings of the deterministic approach are:

• The fact that the failure probability of the system is unknown.
• The complete system is not considered as an integrated entity. An exam-

ple is the design of the flood defences of the protected area of Figure 11.1.
With the deterministic approach, the design of the sea dike is, in both
cases, exactly the same. In reality, the left area is threatened by flood
from two independent causes: the sea and by the river. Therefore, the
safety level of the left area is less than the safety level of the right one.

• Another shortcoming of the deterministic approach is that the length of
flood defence does not affect the design. In the deterministic approach
the design rules are the same for all the sections independently of the
number of sections. It is, however, intuitively clear that the probability
of flooding increases with the length of the flood defence.

• With the deterministic design methods it is impossible to compare the
strength of different types of cross-sections such as dikes, dunes and
structures like sluices and pumping stations.

• And last, but not least, the deterministic design approach is incompatible
with other policy fields like, for instance, the safety of industrial processes
and the safety of transport of dangerous substances.

A fundamental difference with the deterministic approach is that the prob-
abilistic design methods are based on an acceptable frequency or probability
of flooding of the protected area.

The probabilistic approach results in a probability of failure of the
whole flood defence system taking account of each individual cross-section
and each structure. As a result, the probabilistic approach is an integral
design method for the whole system.
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11.2. Uncertainties

Uncertainties in decision and risk analysis can primarily be divided into two
categories: uncertainties that stem from variability in known (or observable)
populations and, therefore, represent randomness in samples (inherent or
aleatory uncertainty); and uncertainties that come from a basic lack of
knowledge of fundamental phenomena (epistemic uncertainty).

Data can be gathered by taking measurements or by keeping record of
a process in time. Research can, for instance, be undertaken with respect
to the physical model of a phenomenon or into the better use of existing
data. By using expert opinions, it is possible to acquire the probability
distributions of variables that are too expensive or practically impossible
to measure.

The goal of all this research obviously is to reduce the uncertainty in
the model. Nevertheless, it is also thinkable that uncertainty will increase.
Research might show that an originally flawless model actually contains a
lot of uncertainties, or, after taking some measurements, that the variations
of the dike height can be a lot larger. It is also possible that the average
value of the variable will change because of the research that has been done.

The consequence is that the calculated probability of failure will be
influenced by future research. In order to guarantee a stable and convincing
flood defence policy after the transition, it is important to understand the
extent of this effect.

11.3. Probabilistic Approach of the Design

The accepted probability of flooding is not the same for every polder or
floodplain. This depends on the nature of the protected area, the expected
loss in case of failure and the safety standards of the country. For instance,
for a protected area with a dense population or an important industrial
development, a smaller probability of flooding is allowed than for an area
of lesser importance.

For this reason accepted risk is a better measure than an accepted
failure probability, because risk is a function of the probability and the
consequences of flooding.

The most general definition of risk is the product of the probability and
a power of consequences:

risk = (probability) · (consequence)n.

In many cases, such as economical analyses, the power n is equal to one.
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Figure 11.2. Probabilistic approach of the design.

Figure 11.2 shows the elements of the probabilistic approach. First of all
the flood defence system has to be described as a configuration of elements
such as dike sections, sluices and other structures. Then an inventory of
all the possible hazards and failure modes must be made. This step is one
of the most important of the analysis because missing a failure mode can
seriously influence the safety of the design.

The next step can be the quantifying of the consequences of failure.
Hereby it is necessary to analyse the consequence of the failure for all
possible ways of failure. Sometimes the consequences of failure of an element
of the system are different for each element.

The failure probability and the probability of the consequences form the
probability part of the risk. When the risk is calculated the design can be
evaluated. For this to happen, criteria must be available, such as a maximum
acceptable probability of a number of casualties or the demand of minimising
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the total costs including the risk. For determining the acceptable risk,we need
a frame of reference. This frame of reference can be the national safety level
aggregating all the activities in the country. After the evaluation of the risk,
one can decide to adjust the design or to accept it with the remaining risk.

11.4. System Analysis

Every risk analysis, which is the core of the probabilistic design, starts with
a system analysis. There are several techniques to analyse a system but in
this case we will restrict ourselves to the fault tree analysis, which arranges
all the events in such a way that their occurrence leads to failure of the
system. In Figure 11.3 there is an example given of a fault tree. A fault
tree consists of basic events (E1 . . . E9), combined events (E10 . . . E12), a
top event (failure) and gates (and, or). A gate is the relation of the events
underneath the gate that lead to the event above the gate.

11.4.1. Simple systems

The simplest systems are the parallel system and the series system
(Figure 11.4). A parallel system that consists of two elements functions
as long as one of the elements functions. When a system fails in the event
of only one element failing it is called a “series system”.

When the elements and their failure modes are analysed it is possible
to make a fault tree. The fault tree gives the logical sequence of all the
possible events that lead to failure of the system.

Failure

or

E10

or

E1 E2 E3

E11

or

E4 E5 E6

E12

or

E7 E8 E9

and

Figure 11.3. Fault tree.
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Figure 11.4. Parallel and series system.

system fails

and

element
1

fails

element
2

fails

Figure 11.5. Fault tree of a parallel system.

system fails

A
element

1
fails

B
element

2
fails

or

Figure 11.6. Fault tree of a series system.

Take, for instance, the fault tree of a simple parallel system. The basic
events in this system are the failure events of the single elements. The
failure of the system is called the top event. The system fails only when all
single elements fail; the gate between the basic events and the top event is
a so-called AND gate (see Figure 11.5).

A series system of two elements fails if only one of the elements fails as
depicted by the so-called “or” gate between the basic events and the top
event (see Figure 11.6).
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system fails

and

element 1
fails

element 2
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or

failure
mode 1

failure
mode 2

failure
mode 1

failure
mode 2

or

Figure 11.7. Elements of a parallel system as series systems of failure modes.
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Figure 11.8. Flood defence system and its elements presented in a fault tree.

When there are more failure modes possible for the failure of an element
then the failure modes are the basic events and the failure of an element is
a so-called composite event.

In Figure 11.7 an example is given of a parallel system of elements in
which the system elements are on their turn series systems of the possible
failure modes.

For all the elements of the flood defence, all the possible failure modes
can be the cause of failure (Figure 11.8). A failure mode is a mechanism
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failure of
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wl
Hsh,B ∆D wl

Hs

or

Figure 11.9. A dike section as a series system of failure modes.

that leads to failure. A review of failure modes is provided by Vrijling (1986)
and Allsop et al. (2007).

The place of the failure modes in the system is demonstrated by a fault
tree analysis in Figures 11.9 and 11.10.

An advantage of the probabilistic approach over the deterministic
approach is illustrated in Figure 11.10, where human failure to close the
sluice is included in the analysis.

The conclusion of this analysis is that any failure mechanism of any
element of any subsystem of the flood defence system can lead to inundation
of the polder. The system is therefore a series system.

11.5. Failure Probability of a System

This section gives an introduction of the determination of the failure
probability of a system for which the failure probabilities of the elements
are known.

In Figure 11.11 there are two fault trees given, one for a parallel system
and one for a series system, both consisting of two elements.

Event A is the event that element 1 fails and event B is the event
that element 2 fails. The parallel system fails if both the elements fail. The
failure probability is the probability of A and B. The series system fails if
at least one of the elements fail, so the failure probability is the probability
of A or B.

The probability of A and B is equal to the product of the probability of
A and the probability of B given A. The probability of A or B is equal to the
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Figure 11.10. The sluice as a series system of failure modes.
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Figure 11.11. Fault trees for parallel and series system.
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• Parallel system • Series system

P(A∩B)=P(A)P(B|A) P(A∪B)=P(A)+P(B)−P(A∩B)

Figure 11.12. Combined events.

sum of the probability of A and the probability of B minus the probability
of A and B.

In practice the evaluation of the probability of B given A is rather
difficult because the relation between A and B is not always clear. If A
and B are independent of each other, then the probability of B given A is
equal to the probability of B without A. In this case the probability of A and
B is equal to the product of the probability of A and the probability of B:

P(B|A) = P(B) ⇒ P(A ∩B) = P(A)P(B). (11.1)

If event A excludes B then the probability B and A is zero:

P(B|A) = 0 ⇒ P(A ∩B) = 0. (11.2)

If A includes B then the probability of B given A is 1 and so the probability
of A and B is equal to the probability of A:

P(B|A) = 1 ⇒ P(A ∩B) = P(A). (11.3)

In the same way it is possible to determine the probability of A or B. If
A and B are independent of each other the probability of A or B is:

P(A ∪B) = P(A) + P(B) − P(A)P(B). (11.4)

If event A excludes B then the probability B and A is zero so the probability
of A or B is:

P(A ∪B) = P(A) + P(B). (11.5)

If A includes B then the probability of B given A is 1 and so the probability
of A and B is equal to the probability of A and the probability of A or B is:

P(A ∪B) = P(A) + P(B) − P(A). (11.6)
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In many cases the events A and B are each described by a stochastic variable
respectively Z1 and Z2. Event A will occur when Z1 < 0 and event B will
occur when Z2 < 0. In Section 11.6 this will be further explained. In many
cases, for instance when there is a linear relation between Z1 and Z2, the
dependency of the events A and B can be described by the correlation
coefficient. This is defined by:

ρ =
Cov(Z1Z2)
σZ2σZ2

, (11.7)

in which σZ1 is the standard deviation of Z1; σZ2 is the standard deviation
of Z2; Cov(Z1Z2) is the covariance of Z1 and Z2; = E((Z1 − µZ1)(Z2 −
µZ2))= expected value of (Z1 − µZ1)(Z2 − µZ2); fZ1(ξ1) is the probability
density function of Z1.

In the graph of Figure 11.13, the probability of A or B is plotted against
the correlation coefficient. The probability of B is the lower limit of the
failure probability and the sum of the probability of A and the probability
of B is the upper limit of the failure probability. It can be seen that as long
as the correlation coefficient is smaller than 90%, the failure probability is
close to the upper limit.

In the case of a series system with a large number of elements, the lower
and upper bounds are:

• the maximum probability of the failure of a single element;
• and, the sum of the failure probabilities of all the elements.

max(P(i)) ≤ Pf ≤
n∑

i=1

P(i). (11.8)

Figure 11.13. Probability of A or B given ρ.
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failure
mode 1
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mode 2

failure
mode 1

failure
mode 2

P<P1+P2
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Figure 11.14. Probability of failure of a series system.

Ditlevsen (1979) has narrowed these boundaries to get a better estimation
of the failure probability.

P(1) +
n∑

i=2

max


P(i) −

i−1∑
j=1

P(i ∩ j)

 ≤ Pf

Pf ≤
n∑

i=1

P(i) −
n∑

i=2

max
j<i

(P(i ∩ j)).
(11.9)

Let us now look at a series system that consists of two elements each
having two failure modes (Figure 11.14). If the probabilities of the potential
failure modes are known, it is possible to determine the upper limit of the
failure probabilities of the element as the sum of the probabilities of the
two different failure modes. The upper limit of the probability of failure of
the system can be determined as the sum of the upper limits of the failure
probability of the two elements. So the upper limit of the failure probability
is the sum of the probability of all the failure modes.

11.6. Estimation of the Probability of a Failure Mode
of an Element

After analysing the failure probability of the system as a function of
the probabilities of the failure modes we need to know the probabilities
of failure modes to estimate the failure probability. These probabilities
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Figure 11.15. Reliability function.

can be determined by analysing historical failure data or by probabilistic
calculation of the limit states.

For most cases there is not enough specific failure data available
so we have to determine the failure probabilities by computation. The
probabilistic computation uses the reliability function and the probability
density function of the variables as the basis for the determination of the
failure probability. A reliability function is a function of the strength and
the load for a particular failure mode. In general, the formulation of the
reliability function is: Z = R-S, in which R is the strength and S is the load.
The failure mode will not occur as long as the reliability function is positive.
The graph of Figure 11.15 shows the reliability function. The line Z = 0
is a limit state. This line represents all the combinations of values of the
strength and the loading for which the failure mode will just not occur. So
it is a boundary between functioning and failure. In the reliability function
the strength and load variables are assumed to be stochastic variables.

If the distribution and the density of all the strength and load variables
are known it is possible to estimate the probability that the load has a value
x and that the strength has a value less than x:

P(S = x) = fS(x)dx
P(R ≤ x) = FR(x)

}
⇒ P(S = x ∩R ≤ x) = fS(x)FR(x)dx. (11.10)

The failure probability is the probability that S = x and R < x for every
value of x. So we have to compute the sum of the probabilities for all
possible values of x:

Pf =
∫ ∞

−∞
fS(x)FR(x)dx. (11.11)

This method can be applied when the strength and the load are independent
of each other.
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Figure 11.16. Joint probability density function.

Figure 11.16 gives the joint probability density of the strength and the
load for a certain failure mode in which the strength and the load are not
independent. The strength is plotted on the horizontal axis and the load
is plotted on the vertical axis. The contours give the combinations of the
strength and the load with the same probability density. In the area (Z < 0)
the value of the reliability function is less than zero and the element will
fail.

In a real case the strength and the load in the reliability function are
nearly always functions of multiple variables. For instance, the load can
consist of the water level and the significant wave height. In this case the
failure probability is less simple to evaluate. Nevertheless, with numerical
methods like numerical integration and Monte Carlo simulation it is possible
to solve the integral

Pf =
∫∫∫

Z<0

fr1,r2,...,rn,s1,s2,...,sm(r1, r2, . . . , rn, s1, s2, . . . , sm)

×dr1dr2 . . . rnds1ds2 . . . dsm. (11.12)

These methods which take into account the real distribution of the
variables are called level III probabilistic methods (EN, 1991). In the Monte
Carlo simulation method, a large sample of values of the basic variables is
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generated and the number of failures is counted. The number of failures
equals:

Nf =
N∑

j=1

1(g(xj)), (11.13)

in which N is the total number of simulations. The probability of failure
can be estimated by:

Pf ≈ Nf

N
. (11.14)

The coefficient of variation of the failure probability can be estimated by:

VPf
≈ 1√

PfN
, (11.15)

in which Pf denotes the estimated failure probability.
The accuracy of the method depends on the number of simulations.

The relative error made in the simulation can be written as:

ε =
Nf

N
− Pf

Pf
. (11.16)

The expected value of the error is zero. The standard deviation is given as:

σε =

√
1 − Pf

NPf
. (11.17)

For a large number of simulations, the error is normal distributed.
Therefore, the probability that the relative error is smaller than a certain
value E can be written as:

P (ε < E) = Φ
(
E

σε

)
, (11.18)

N >
k2

E2

(
1
Pf

− 1
)
. (11.19)

The probability of the relative error E being smaller than kσε now equals
Φ(k). Requiring a relative error of E = 0.1 lying within the 95% confidence
interval (k = 1.96) results in:

N > 400
(

1
Pf

− 1
)
. (11.20)

The equation shows that the required number of simulations and thus
the calculation time depend on the probability of failure to be calculated.
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Most structures in coastal and river engineering possess a relatively high
probability of failure (i.e. a relatively low reliability) compared to structural
elements/systems, resulting in reasonable calculation times for Monte Carlo
simulation. The calculation time is independent of the number of basic
variables and, therefore, the Monte Carlo simulation should be favoured
over the Riemann method in case of a large number of basic variables
(typically more than five). Furthermore, the Monte Carlo method is very
robust, meaning that it is able to handle discontinuous failure spaces and
reliability calculations in which more than one design point is involved.

The problem of long calculation times can be partly overcome by
applying importance sampling. This is not elaborated upon here. Reference
is made to Bucher, 1987.

If the reliability function (Z) is a sum of a number of normal distributed
variables, then Z is also a normal distributed variable. The mean value and
the standard deviation can easily be computed with these equations:

Z =
n∑

i=1

aixi, µZ =
n∑

i=1

aiµxi , σZ =

√√√√ n∑
i=1

(aiσxi)2. (11.21)

This is the base of the level II probabilistic calculation. The level II methods
approximate the distributions of the variables with normal distributions
and they estimate the reliability function with a linear first-order Taylor
polynomial, so that the Z-function is normal distributed.

If the distribution of the Z-function is normal, and the mean value and
the standard deviation are known, it is rather easy to determine the failure
probability:

Pf = P(Z < 0) = Φ(−β)

with : β =
µZ

σZ
. (11.22)

11.6.1. Non-linear Z-function

In case of a non-linear Z-function, it will usually be approximated by a
Taylor polynomial. The function will then depend on the point around
which it is linearised. The mean value and the standard deviation of the
linear Z-function can be calculated analytically using the low-order terms of
the Taylor expansion. If the reliability function is estimated by a linearised
Z-function at the point where all of the variables have their mean value
(x∗i = µxi), then we speak of a mean value approach. The so-called design
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Figure 11.17. Adapted normal distribution.

point approach estimates the reliability function by a linear function at the
point on Z = 0 where the value β has its minimum. Finding the design
point is a minimisation problem.

11.6.2. Non-normally distributed basic variables

If the basic variables of the Z-function are not normally distributed the
Z-function will be unknown and probably non-normally distributed. To
cope with this problem the non-normally distributed basic variables in the
Z-function can be replaced by a normally distributed variable. In the design
point the adapted normal distribution must have the same value as the real
distribution. As the normal distribution has two parameters (µ and σ) one
condition is not enough to find the right normal distribution. Therefore, the
value of the adapted normal probability density function must also have the
same value as the real probability density function (see Figure 11.17).

The two conditions give a set of two equations with two unknown which
can be solved:

FN(x∗) = Fx(x∗)
fN(x∗) = fx(x∗)

}
⇒ µN , σN . (11.22)

This method is known as the Approximate Full Distribution Approach
(AFDA).

11.7. Choice of Safety Level

To construct a flood defence that always performs its function and is
perfectly safe from collapse is at the very least an uneconomical pursuit,
and most likely an impossible task too. Although expertly designed and
well constructed, there will always be a small possibility that the structure
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fails under severe circumstances (ultimate limit state). The acceptable
probability of failure is a question of socio-economic reasoning.

In a design procedure one has to determine the preferred level of safety
(i.e. the acceptable failure probability). For most civil engineering structures
the acceptable failure probability will be based on considerations of the
probability of loss of life due to failure of the structure. In general, two
points of view for the acceptable safety level can be defined (Vrijling et al.,
1995):

The individual accepted risk. The probability accepted by an individual
person to die in case of failure of the structure; in western countries this
probability is of the order 10−4 per year or smaller.

The societal accepted risk. Two approaches are presented, depending
on the relative importance of the total number of lives lost in case of failure
on the one hand and the total economic damage on the other. If the number
of potential casualties is large, the likelihood of failure should be limited
accordingly. The accepted probability of occurrence of a certain number of
casualties in case of failure of a structure is then restricted proportional
to the inverse of the square of this number (Vrijling et al., 1995). If the
economic damage is large, an economic optimisation equating the marginal
investment in the structure with the marginal reduction in risk should be
carried out to find the optimal dimensions of the structure.

The two boundary conditions based on the loss of human lives form the
upper limits for the acceptable probability of failure of any structure. In case
of a flood defence without amenities the probability of loss of life in case of
failure is very small. In that case the acceptable probability of failure can be
determined by economical optimisation, weighing the expected value of the
capitalised damage in the life of the structure (risk) against the investment
in the flood defence. The next section provides more background on this
concept.

If, for a specific flood defence structure, failure would include a number
of casualties, the economic optimisation should be performed under the
constraint of the maximum allowable probability of failure as defined by
the two criteria related to loss of life.

The explicit assessment of the acceptable probability of failure as
sketched above is only warranted in case of large projects with sufficient
means. For smaller projects a second approach is generally advised. This
second approach to the acceptable safety level is based on the evaluation
of the safety of existing structures supplemented by considerations of the
extent of the losses involved in case of failure. Consequently, the assumption
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is made that the new structure should meet the safety requirements that
seem to be reasonable in practice. This approach is found in many codes
where a classification of the losses in case of failure leads to an acceptable
probability of failure. Most structural codes provide safety classes for
structures (Eurocode 1, EN, 1991). The structure to be designed might fit
into one of these safety classes providing an acceptable probability of failure.
It should be noted, however, that for most structural systems loss of life is
involved. The following classification and table with acceptable probabilities
of failure was developed in the EU PROVERBS project, especially for
vertical breakwaters (Oumeraci, 2001):

• Very low safety class, where failure implies no risk to human injury and
very small environmental and economic consequences.

• Low safety class, where failure implies no risk to human injury and some
environmental and economic consequences.

• Normal safety class, where failure implies risk to human injury and signif-
icant environmental pollution or high economic or political consequences.

• High safety class, where failure implies risk to human injury and extensive
environmental pollution or very high economic or political consequences.

Limit state design requires the structure to satisfy two principal criteria:
the Ultimate Limit State (ULS) and the Serviceability Limit State (SLS).
To satisfy the ULS, the structure must not collapse when subjected to the
peak design load for which it was designed. To satisfy the SLS criteria, a
structure must remain functional for its intended use subject to routine
(everyday) loading, and as such the structure must not cause occupant
discomfort under routine conditions.

11.8. Reliability-Based Design Procedures

11.8.1. General formulation of reliability-based

optimal design

Generally, in a design process one pursues the cheapest design that fulfils
the demands defined for the structure. The demands can be expressed in
two fundamentally different ways:

• The total expected lifetime costs of the structure consisting of the
investment and the expected value of the damage costs are minimised
as a function of the design variables;
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• if a partial safety factor system is available, one can optimise the design
by minimising the construction costs as a function of the design variables
under the constraint that the design equations related to the limit state
equations for all the failure modes are positive.

The minimisation of the lifetime costs can be formalised as follows:

min
z
CT (z) = CI (z) + CF ;ULSPF ;ULS (z) + CF ;SLSPF ;SLS (z)

s.t zL
i ≤ zi ≤ zU

i i = 1, . . . ,m

PF ;ULS (z) ≤ PU
F ;ULS

PF ;SLS (z) ≤ PU
F ;SLS ,

(11.23)

in which: z = (z1, z2, . . . , zm) is the vector of design variables; CT (z)
is the total lifetime costs of the structure; CI (z) is the investment in
the structure as a function of the design variables z; CF ;ULS is the
damage in monetary terms in case of ULS failure; CF ;SLS is the damage
in monetary terms in case of SLS failure; PF ;ULS (z) is the probability
of ULS failure as a function of the design variables; PF ;SLS (z) is the
probability of SLS failure as a function of the design variables; zL

i , z
U
i is

the lower and upper bound of design variable i; PU
F ;ULS , P

U
F ;SLS is the

upper bound of the failure probability for ULS failure and SLS failure
respectively.

Generally the design variables will be subjected to constraints. For
instance, all geometrical quantities should be greater than zero. Fur-
thermore, the failure probabilities can be subject to constraints, espe-
cially for structures where human lives are involved. In that case, the
maximum failure probabilities are enforced by regulations. In cases that
loss of human lives is not involved in case of failure of the structure,
formally the constraint on the failure probabilities can be set to 1
and the acceptable failure probability as well as the optimal design are
completely decided by the lifetime costs only. If relevant, maintenance
costs and inspection costs can be added to the total expected lifetime
costs.

Obtaining accurate assessments of the damage in case of failure is not
always practically possible. In that case, the optimal design can be found
by minimising a cost function which only comprises of the investment
and imposing a constraint on the failure probability which expresses a
qualitative idea of the economic optimal failure probability.
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If the design is performed using a code based on a partial safety factor
system, the following optimisation problem is applicable:

min
z
CT (z) = CI(z)

s.t zL
i ≤ zi ≤ zU

i ,

Gi(z,xC, γ) > 0 (11.24)

in which: CI (z) is the investment in the structure as a function of the design
variables z; GI (Z,XC, γ) is the limit state function for failure mode i as a
function of the design variables z, the characteristic values of the random
variables as defined in the partial safety factor system xc and the vector of
partial safety factors γ.

Generally, partial safety factors are available for several target proba-
bilities of failure or safety classes (see Table 11.1). Since the choice of the
safety factors involves implicitly the choice of a target probability of failure
and expected costs of failure, the same optimal design should be obtained
from (11.23) and (11.24).

Table 11.1. Overview of safety classes.

Safety class

Limit state type Low Normal High Very high

SLS 0.4 0.2 0.1 0.05
ULS 0.2 0.1 0.05 0.01

11.8.2. Cost optimisation

If loss of life in case of failure of the structure is not an issue for the structure
under consideration, no constraint is set on the failure probability and the
acceptable probability of failure equals the economic optimal probability of
failure. A procedure for probabilistic optimisation of vertical flood defences
has been developed in the PROVERBS project (Oumeraci, 2001).

The optimisation can be written as:

min
z
C(z) = CI;0 + CI(z)

+
N∑

n=1

(
365CF ;SLSPF ;SLS (z) + CF ;ULSPF ;ULS (z)

(1 + r′ − g)n
+

Cmaint

(1 + r′)n

)

s.t 0 ≤ zi, (11.25)
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in which: z is the vector of design variables; CI;: is initial costs, not
depending on the design variables; CI(z) is construction costs as a function
of the design variables; CF ;SLS is costs-per-day in case of serviceability
failure; PF ;SLS (z) is the probability of serviceability failure per day; CF ;ULS

is costs-per-event in case of ultimate limit state failure; PF ;ULS (z) is the
probability of ultimate limit state failure per year; Cmaint is maintenance
costs for the flood defence per year; r′ is the net interest rate per year; g: is
the yearly rate of economical growth, expressing growth and development
of the harbour; N : is the lifetime of the structure in years.

An inspection of Equation (11.25) shows that the total lifetime costs
consist of investment costs and the expected value of the damage costs. In
principle, for every year of the structure’s lifetime, the expected damage
has to be taken into account, and not all the costs are made at the same
time. Therefore, the influence of interest, inflation and economical growth
has to be taken into account in order to make a fair comparison of the
different costs.

The expected value of the damage costs is a function of the failure
probability. The failure probability is a function of the design variables.
Therefore, minimisation of Equation (11.25) results in the optimal geometry
and at the same time the optimal failure probability. Ready-at-hand
minimisation algorithms can be applied to find the optimal set of design
variables.

When implementing the cost function in any programming language,
the failure probability as a function of the design variables has to be
included. Due to the specific character of the optimisation process, the
choice of the probabilistic procedure is not an arbitrary one. One should be
aware of the following points:

• The minimisation process comprises a large number of evaluations of
the cost function, each evaluation involving a probability calculation.
Therefore, time-consuming methods should be avoided;

• The values of the cost function for any given point should be stable. The
Monte Carlo procedure in particular provides probability estimates that
contain an error, which is inherent to the procedure. This (small) error
generally presents no problem, but in this case it causes variations of the
cost function that disturb the optimisation process (see Figure 11.18).

The points of attention mentioned above leads to the conclusion that
level II methods are suitable for application in an optimisation process.
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Figure 11.18. Result of 20 calculations of failure probability by Monte Carlo.

Figure 11.19. Overview of conceptual breakwater design for economic optimisation.

Level III methods will generally lead to too much computational effort or
will disturb the optimisation process.

The procedure described above has been applied to a fictitious design
case of a vertical breakwater in a water depth of 25m. Three design variables
are considered: the height and width of the caisson and the height of the
rubble berm (see Figure 11.19).

As a first step, a deterministic optimisation for chosen wave heights
was performed. This step is meant to show the connection between the
deterministic optimisation for a given safety level and the full probabilistic
approach. As a result of this, the choice of the input values comparable
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Figure 11.20. Construction costs of the breakwater as a function of the crest height
(berm height 6m).

to the characteristic values in Equation (11.25) does not correspond to the
choice made for the partial safety factor system. Furthermore, all safety
factors have been set to 1 and the berm height is fixed at a value of 6 m. For
this situation it is possible to find a minimum caisson width as a function
of the crest height for every single failure mode. Once the crest height and
the caisson width are known, the construction costs of the caisson structure
can be calculated (see Figure 11.20).

Generally speaking, bearing capacity failure of the subsoil controls
the largest minimum caisson width. Furthermore, the results show that
in general a lower crest height leads to a narrower caisson and, thus,
to lower construction costs. However, the minimum crest height required
is determined by wave transmission. In the deterministic approach the
minimum crest height related to wave transmission imposes a constraint
on the crest height. Thus, the optimal geometry is decided by wave
transmission and by the bearing capacity failure of the subsoil.

While at first sight it seems reasonable to have an equal probability
of failure for all the failure modes in the system, probabilistic optimisation
shows that, as with the deterministic approach, bearing capacity failure of
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Figure 11.21. Overview of ULS failures probabilities for several berm heights.

Figure 11.22. Contour plot of total lifetime costs in 108 US $ (random wave height only)
and optimal geometries for different levels of modelling. From Voortman et al. (1999).
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the subsoil largely determines the probability of ultimate limit state failure
(see Figure 11.21).

Inspection of the lifetime costs as a function of crest height and caisson
width indicates that also in the probabilistic approach the crest height is
limited by wave transmission (see Figure 11.22).

The optimal probability of system failure is quite low in comparison to
existing structures (8 ·10−4). This could be caused by the choice of the cost
figures or by a limited spreading of the random variables.

11.9. Concluding Remarks

This chapter has presented the probabilistic approach of the design and
the risk analysis of flood defences, in which uncertainties in load, resistance
variables and models can be taken into account. A systems point of view has
been adopted. The application of the probabilistic design methods offers the
designer a way to unify the design of engineering structures, processes and
management systems. A case study on the reliability analysis and optimal
design of a caisson breakwater has illustrated the presented methods.
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Centre for Water Systems, University of Exeter, UK

12.1. Challenges of Uncertainty Analysis in Urban
Flood Models

In order to predict consequences of pluvial flooding, urban flood models
need to simulate flow in two different systems — the buried pipe network
and the urban surface, including complex interactions between these two
flow domains. Thus, coupled sub-surface/surface urban flood models are
sometimes referred to as dual drainage models and the two sub-systems are
often called the minor system (constructed pipes and open channels) and
the major system (natural channels and surface flow pathways). The latter
can be modelled either as a network of 1D (one-dimensional) open channels
and ponds or as a 2D computational flow domain. Hence, we talk about
1D/1D or 1D/2D urban flood models (Mark et al., 2004).

Moreover, when combined pluvial/fluvial or pluvial/fluvial/coastal
flooding is the problem at hand, urban flood models need to take river

297
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flow or the sea water level variations into account either as a downstream
boundary condition or as a third sub-system that should be simulated simul-
taneously with the two dual drainage sub-systems. Whilst the modelling of
flows in storm sewer networks and in rivers has been well developed over
the past few decades and, consequently, the modelling tools have almost
become standardised, advancements are still being made in modelling of
flow on urban surfaces and, in particular, how the flows below and above
ground are coupled and how they interact with each other. Uncertainties
related to these interactions have not yet been studied in detail.

On the other hand, the availability of exceptionally detailed and
accurate terrain and land use data in urban surfaces has risen dramatically
in the past few years, with horizontal resolution and vertical accuracy
becoming very high indeed and related costs going down. In addition,
the quality of rainfall data has also increased significantly following more
widespread application of weather radars, online rain gauges and advances
in rainfall forecasting. These developments have influenced not only the
approaches to hydraulic modelling of urban floods, but, going one step
back, they have opened new possibilities for more reliable prediction of
surface run-off hydrographs in urban areas. Ultimately, the split between
the hydrological and hydraulic phases of urban flood modelling — whereby
the former only produces input to the latter — will be lost and fully
integrated rainfall-runoff-urban drainage-river channel-flooding models will
become operational.

With this background in mind, the potential for applying uncertainty
analysis in urban flood modelling depends on the level of complexity of the
simulation engine used and on the size and data resolution of an urban area.
These dictate how computationally demanding the simulation may become
and consequently if a particular type of uncertainty analysis is feasible at
the current level of technology or not.

In that sense, one approach is to conduct uncertainty analysis based
on a large number of runs using a series of storms, with or without varying
catchment and drainage system parameters. This can be efficient with
state-of-the-art coupled models only by assuming a rather coarse spatial
resolution, i.e. with a simplified pipe network and/or very low resolution of
the surface flow domain or with approximate urban flood models in which
the computational treatment of flow either in the minor or in the major
system is significantly simplified or not even considered.

The alternative approach is to run simulations for only a limited
number of rainfall events using high resolution, higher dimensionality
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full-dynamic coupled models. This implies limitations in terms of what
kind of analysis can be done because formal probability theory is out of the
question here and the application of formal statistical methods is rather
limited. However, with this approach even some simple forms of sensitivity
analysis may enable issues specific for urban flood risk assessment to be
highlighted.

In effect, the biggest challenge in uncertainty analysis in urban flood
models is the application of any formal method of analysis given how
computationally demanding the coupled full-dynamic models are. It might
be expected that the computational expense will gradually become less
of an obstacle with the ever increasing computer speed, particularly with
progress in the domain of parallel computing.

This chapter focuses on uncertainties and flood risk assessment and
management methods specific for urban flood modelling from the perspec-
tive of an urban drainage engineer. The emphasis is intentionally placed
on uncertainty analysis related to the minor system and its interactions
with the major system, which are either not present or not as relevant
in other types of flood models whose uncertainty issues are extensively
analysed elsewhere in this book. For the same reasons, attention is paid to
uncertainties linked to 1D modelling, whilst some 2D modelling issues are
considered. Detailed analysis of problems of 2D approaches in urban areas
is beyond the scope of this chapter.

Following this introduction, Section 12.2 describes sources of uncer-
tainty in urban flood models by identifying them in data, mathematical
models, numerical methods and calibration procedures. Section 12.3 looks
at flood risk analysis through different mapping methods. A method
for calculating urban flood risk and attributing risk between different
organisations responsible for urban flood risk management is illustrated in
Section 12.4. Selected results and key lessons from case studies the authors
have been involved in are given in Section 12.5, which points to references
where readers may find more substantial descriptions of the studies.

12.2. Sources of Uncertainty of Urban Flood Models

General issues related to sources of uncertainty in flood models have been
reviewed in Chapter 3. Sources of uncertainty of urban flood models can be
classified as follows:

1. Different issues related to various domains of data.
2. Equations for conservation laws and other relationships describing water

flow in dual drainage systems.
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3. Numerical solutions and specifics of their implementation.
4. Calibration procedures.

12.2.1. Terrain, land use and sewer system data

Urban terrain data is nowadays routinely available in 1 m resolution by
Light Detection and Ranging (LiDAR) and increasingly so in higher
resolution, even up to 0.25m. More recently mobile mapping technologies
are enabling an even higher resolution and offering the potential to measure
road camber and kerb heights. The first step in processing raw LiDAR data
is distinguishing between buildings and trees, hence filtering out of trees and
other surface features (e.g. cars) that do not represent urban terrain is the
first potential source of uncertainty. Whilst a very high resolution of LiDAR
data is good news when it comes to reduction of related uncertainties, it
adds further computational overheads.

In 1D/1D urban flood modelling — as well as in urban drainage
modelling without consideration of flooding — using of Digital Elevation
Model (DEM) data for automatic sub-catchment delineation is essential
because it reduces uncertainties caused by manual or distance-based
delineation that do not take terrain slopes and surface features into account.
Furthermore, remotely sensed data, including photogrammetry, can be used
to automatically parameterise key model variables such as roofed and other
impervious areas, their connection type, population equivalent, surface
roughness, etc. Runoff can be estimated by merging information from
imaging and DEM information. The uncertainty associated with land use
classification is a function of the quality of the imaging data, the accuracy
of the algorithms used to interpret this data and the coarseness of the
classification. This can lead to a range of classifications resolutions:

1. A limited classification of a handful of land use types, where “urban”
may encompass a range of building densities and surface types.

2. Distinguishing key features such as streets, car parks, housing, green
areas, etc. as surface types and assigning assumed imperviousness and
roughness accordingly.

3. A high level of detail in which all surface features including individual
buildings are described by corresponding imperviousness.

Even the highest level of detail in land use description may be a source
of uncertainty if connections between impervious areas and the drainage
system are not known. There will be differences in flood volumes depending
on if the runoff from roofs is spilled to a pervious area — in which case part
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of it would be infiltrated — or not. In addition, there are differences in urban
flood dynamics depending on if the runoff from roofs is introduced to sewer
pipes directly or if it is spilled onto an impervious area (e.g. pavement)
before reaching the sewer system.

Another potential source of uncertainty related to land use data is
urban creep. Whilst external urban growth is usually noticeable and —
at least in principle — easy to record, paving of small gardens is difficult
to monitor but it can cumulatively have huge impact on surface run-off.
Therefore urban flood models are in a constant need of re-calibration in
order to keep land use data up to date.

The uncertainty about pipe diameters and elevations is always present,
either due to incomplete or inaccurate database or because the effective
pipe diameters are reduced due to sedimentation. This uncertainty can be
kept low if CCTV inspections are conducted regularly and any siltation is
taken into account.

The structural condition of sewer pipes gradually deteriorates in
time. However, it is subject to improvement following interventions that
affect pipe roughness and, consequently, the capacity of the drainage
system. Related uncertainty may be reduced if calibrated models are
updated regularly based on maintenance records and using built-in pipe
deterioration models that gradually slide pipe roughness values in time.

Flap-valves at the outfalls may influence the flood dynamics. Although
the structure of flap-valve data is very simple — existent or non-existent —
if this data is unknown it may be an additional source of uncertainty.

Where pumping stations are part of flood management strategy,
operational rules and the effectiveness of their application can introduce
uncertainties. Like pipes, they degrade with time and may lose some of
their capacity. This can be reduced by updating pump curves based on the
data from literature.

Specific to 1D/1D modelling are the uncertainties that arise from the
creation of surface network of open channels and ponds. Manual creation
of the 1D surface network (usually based on street profiles) is subjective.
Uncertainties related to automatic creation of the surface flow network
(Maksimović et al., 2009) are present in every step of this process:

1. Definition of flood pathways in the plan view by the bouncing ball
technique is sensitive to the choice of snap distance.

2. Automatic identification of bridges as passable features (Evans, 2008) —
as opposed to obstructions in the LiDAR DEM data — is possible;
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however, the uncertainty in the connectivity of surface flow paths may
be introduced by routes not easily detectable from DEM data such as
covered pathways between buildings.

3. Computation of paths’ cross-sections by intersecting DEM with vertical
planes locally perpendicular to a path involves uncertainty related to
chosen density of cross-sections and the length of path over which cross-
section geometry is averaged.

4. The threshold defining minimum size of a pond — which can be set
either as minimum area or minimum volume — is a matter of choice,
subject to a desired resolution of the surface network.

In part due to differences in measurement methods and because a
Digital Terrain Model (DTM) elevation is an average representative value
for a grid cell, the elevations of manhole covers and local terrain may
differ (Figure 12.1). The former is used to identify the elevation at which
floodwater surcharges from the urban drainage system whilst the latter is
used in surface flow modelling. The manner in which these datasets are
integrated into the model may bring in uncertainty in the simulation of
sub-surface/surface interactions.

Two-dimensional flood models that work on a regular grid take DTM
data directly from LiDAR. This data may be a source of uncertainty,
especially when a large area needs to be modelled, in which case the
original set of data cannot be used without the reduction of resolution and
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Figure 12.1. Distribution of manhole cover levels compared with DTM (after Adams
and Allitt, 2006).



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch12

Uncertainties in Flood Modelling in Urban Areas 303

subsequent averaging (generalising), because not only the computational
speed but also computer memory may become a constraint. The uncertainty
in 2D urban flood modelling with low grid resolution can be reduced in
different ways, e.g. by introducing a “multi-layered” flow simulation based
on information about buildings’ coverage, location and direction within each
low resolution grid cell (Chen et al., 2012).

Two-dimensional flood models that work on an unstructured mesh are
advantageous in that they are generally more computationally efficient and,
in principle, they have a greater potential to capture all surface features more
precisely and at a lower cost. The way in which an irregular surface compu-
tational mesh is generated may be a source of uncertainty if it is not done
carefully. As outlined by Ettrich (2007), an urban surface is best triangulated
using irregularly distributed data points and contours of constant heights in
conjunction with data about polygons representing surface features such as
curbs, house borders, etc. Ettrich used 150,000 triangles of varying size to
cover a total area of 1.5 km2, whilst a much larger number of cells would be
required in order to provide a similar level of detail on this area with a regular
grid, though this problem may be reduced if an adaptive grid is implemented.

Data about sub-surface/surface links (inlets, gullies and manholes, s-s/s
links thereafter) are potentially a great source of uncertainty because this
data is commonly not readily available. Even though not every single gully
is to be modelled individually, detailed data is required in order to generate
parameters of equivalent elements that represent groups of s-s/s links in the
model (Leandro et al., 2007). Uncertainty in manhole data is associated
with the information about manhole size and shape (which both influence
local energy losses), but also with the data about manhole covers — if it is
sealed, loosely attached or resting. These three states indicate if the cover
removal is possible (partially or completely) or not, and consequently if,
during surcharging, the s-s/s link cross-section area can increase (gradually
or suddenly) or not.

12.2.2. Flow equations in dual drainage models

and their parameters

Flow in drainage pipes and in the 1D surface channels is described by the
mass and momentum conservation equations (Saint Venant equations):

∂h

∂t
+

1
B

∂Q

∂x
= 0, (12.1)
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where h=water depth, t= time, B=water surface width, Q= discharge,
x= space coordinate, A=cross-sectional area, g=gravitational constant,
Sf =friction slope and S0 = bed slope. When written in this (complete)
form, these equations are also referred to as full dynamic wave model.
In addition to already mentioned uncertainties in pipe/channel roughness
and geometry, Saint Venant equations may be the source of modelling
uncertainty if the momentum equation is reduced by dropping one or more
terms. In practice this is done either to speed up the simulation or to enable
stable simulation of transcritical flows. Whilst dropping the first two terms
would still only introduce minor uncertainty in a number of situations
(unless a rapidly varying unsteady flow is modelled), neglecting also the
third term and hence reducing the Saint Venant equations to the kinematic-
wave form is unacceptable. This is because sub-surface and surface systems
make a multiple — horizontally and vertically — looped dual drainage
network in which backwater effects must be taken into account, particularly
in surcharging pipe networks. The ramifications of using simplifications of
the 2D flow equations are elaborated in Chapter 10.

Flow through s-s/s links can be described by a free or submerged weir
formula, orifice equation or using an experimentally determined relationship
between flow rate and hydraulic head of flows below and above ground.
Coefficients in these relationships are in principle different for the two
flow directions — from surface to sub-surface and vice versa. In addition,
the transitions between different regimes and levels of submergence are
dependant on a number of factors. Finally, whilst empirical values of the
capacity of some types of inlet structures are available, experimental and
Computational Fluid Dynamics (CFD) investigations of outflows thorough
s-s/s links are still limited. Therefore, parameters of these links may
introduce great uncertainty into urban flood modelling, especially in pluvial
and combined pluvial/fluvial flood events.

12.2.3. Numerical solutions and their implementation

Numerical methods commonly implemented in 1D pipe/channel models
have been well described in the literature (e.g. Abbott and Minns, 1998).
Finite difference schemes — Abbott–Ionescu method, Preissmann four-
point method and Delft method being the most popular ones — may all
suffer from inaccuracies resulting from numerical diffusion and numerical
instabilities. The experience gained in numerous applications over the past
few decades enables a choice of computational parameters that can help
keep the resulting uncertainties at minimum.
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Sources of uncertainties hidden in numerical solutions in coupled 1D/1D
and 1D/2D urban flood models worth attention here are primarily related to
simulation of pressurised flow in pipe networks. The vast majority of sewer
models deal with this using the well-known Preissmann open-slot concept, in
which pressurised pipe flow is simulated by solving free-surface flow equations
following imaginary “opening” of the pipe by adding a vertical narrow open
slot on the top of it. Although this is very practical and one of the most
elegant ideas in computational hydraulics, it involves several problems.

Firstly, theoretical widths of open slots are so small that they would
tend to introduce numerical instabilities, particularly during the transition
from pressurised flow to free-surface flow and vice versa, when the wave
celerity swiftly changes over two orders of magnitude. Therefore, slot widths
used in practice are always a trade-off between accuracy and robustness.
Moreover, there is an uncertainty surrounding the theoretical wave celerity
corresponding to pressurised flow because its effective value is reduced by
lateral connections (Watanabe and Kurihara, 1993).

Secondly, pipe area fictitiously extended by the slot is incorrect. This
problem can be minimised by different tricks, some of which are discussed,
e.g. by Ukon et al. (2008).

Thirdly, models based on the open-slot approach cannot simulate
movement of trapped air.

Finally, the classical Preissmann slot cannot handle negative pressure
in a pressurised pipe because it assumes one-to-one relationship between
the pressure in the surcharged pipe and the corresponding water level in
the slot. The solution to this problem has been suggested by Vasconcelos
et al. (2006) who developed so called two-component pressure approach. By
the time of the writing of this book this method has not been implemented
in any of the mainstream sewer models.

Trade-off between accuracy, on the one hand, and model robustness and
efficiency, on the other hand, is also present in the simulation of supercritical
and transcritical flows in 1D models. The most common approach is to
implement two approximations (Havnø et al., 1985):

1. Gradual reduction of the inertia term in the momentum Equation (10.2)
as the flow approaches the supercritical regime.

2. The use of an algorithmic structure for the boundary conditions inherent
to subcritical flow to all regimes.

The former may result in an unrealistically diffused hydraulic jump
(when applied at a relatively small Froude number), or it may lead to
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non-amplifying but persistent water level oscillations downstream from the
hydraulic jump (Djordjević et al., 2004). The latter approximation enables
the application of the efficient general solution algorithm for finite difference
problems (Friazinov, 1970) and its variations, but an inadequate represen-
tation of internal boundary conditions introduces some uncertainties.

12.2.4. Calibration procedures in urban flood modelling

Since urban drainage systems are designed to handle two types of flows for
combined systems (waste water and storm water) and one type of flow for
separate systems, the models used to replicate their functioning must also
contain either two (dry and wet weather) or one type of flow. Clearly, storm
water quantities are more relevant for predictions of flood extent, depths
and velocities, but waste water quantities are equally (if not more) relevant
for assessing health impacts of urban floods. The process of adjusting model
parameters to replicate Dry Weather Flows (DWF) and/or Wet Weather
Flows (WWF) can be defined as a DWF or WWF calibration-verification
process.

Calibration of both dry weather and wet weather flows requires the
catchment to be divided into monitored sub-catchments (i.e. the sub-
catchments upstream of each individual flow monitor). Typically in this
process, the parameters of each monitored sub-catchment are adapted to
produce the best fit between observed and predicted data. At all times it is
important to ensure that the parameters remain within sensible limits and
do not vary dramatically within a small area without justification.

The degree of accuracy of the monitoring equipment and differences
between the system geometry in the model and in reality are the factors that
influence the success of model calibration efforts with respect to different
criteria. Therefore, two key issues for urban drainage model calibration are
monitoring and model instantiation activities.

In general it is normal that monitoring devices are used to measure
the depth and velocity of flow in urban drainage networks at critical points
of interest along with the rain gauges and/or weather radar. In order to
better understand model calibration process and its limits, it is necessary
to understand more thoroughly the monitoring (or measurement) process.
This process involves a number of steps and at each step there is a possibility
to incur errors, which eventually have an impact on the overall results and
their uncertainty. These errors are a fundamental limit of the accuracy to
which the subsequent numerical models can be calibrated.
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Measurement uncertainty is usually expressed as a parameter, which
is associated with the result of a measurement that defines the range of
the values that could reasonably be attributed to the measured quantity,
e.g. depth or velocity of flow. It is caused by the process of measurement
not replicating the true value the model is attempting to fit. Similar to
the urban drainage models, measurement devices also require significant
calibration efforts. Therefore, the measurement uncertainty is the sum of
the following uncertainties:

1. Sampling errors: an example of this is sampling at a location in the
network that does not give relevant values of flow.

2. Gauge errors: gauge measurements are often biased; they give measured
values consistently below or above the true value.

3. Measurement errors of model input: gauge rainfall not being measured
accurately or the gauge is far from the centroid of the local catchment
where flow rates are measured.

4. Measurement density: the number of monitoring points.

In terms of the model instantiation process, there are several steps
involved in that, and at each step there is a possibility to introduce
uncertainties. For example, precise knowledge about sub-catchment charac-
teristics and their boundaries is hard to define. The physical characteristics
of pipe network or open channel systems (effective diameters, cross-
sections, slopes, ancillaries, connectivity, structural condition, etc.) are
only partially known. Furthermore, instantiation of urban drainage models
often require simplification of system details in order to allow numerical
computations to be undertaken within practical timeframes. Any form of
model simplification will cause unaccounted head losses due to omitted
structures, and missing storage capacity attributed to omitted pipes will
create an impediment to achieve more reliable model calibration. Errors
generated in this process provide a fundamental limit to how well the model
can explain the variability in the measured data.

To adequately calibrate a model for both wet and dry conditions
introduces further challenges. In addition to the errors associated with the
input to the model, there are many other forms that modelling uncertainty
can take. Some of them are: the model physics is too simple to describe the
phenomena; suboptimal values of model parameters; the calibration data
does not cover the full range of response values the model needs to predict
and, therefore, model fit is poor in the range of values not represented in
the calibration, etc.
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All mathematical models, including those of complex urban catch-
ments, are inevitably abstractions of reality. Consequently, some parameters
of urban drainage models can be experimentally determined, while some
others have little or no physical meaning and their values must be
estimated through the comparison with field measurements. This problem,
referred to as model calibration, can also be viewed from an optimisation
perspective as: finding the set of parameter values that maximise/minimise
some criteria — calibration criteria here — that express the degree of
agreement between simulated model outputs and measured data sets (di
Pierro et al., 2005). Calibration in this sense is considered predominantly
as the process by which the parametric model uncertainty is reduced.

The first step in model calibration is to perform sensitivity analysis
and identify those parameters whose variation does not impact significantly
on the model behaviour. Those parameters can be excluded from the
calibration process. Formal approaches to sensitivity analysis and model
identifiability analysis are described by Freni et al. (2009).

The next step is to identify what criteria are to be taken into account
in the model calibration process. Several aspects of model behaviour must
be considered when comparing measured data to the model output and
they could be approached in a certain order, namely: first minimise volume
error, then bias (i.e. a constant displacement), and finally, timing error.
The question arises as to which features of the computed and measured
outputs should be emphasised in determining the efficacy of the model. This
problem is unfortunately even more difficult when the model calibration is
done on series of rainfall events as the dimensionality of the calibration
problem increases. A parameter to which the simulation is not sensitive for
extreme events may become very influential at lower flow regimes, and vice
versa. In doing such work, there is no single calibration criterion that is
of universal relevance. Indeed, the criteria should be selected according to
the purpose for which the model is to be applied. For example, a flood
model should emphasise more extreme rainfall events, but a Combined
Sewer Overflow (CSO) model should be orientated towards more frequent
events. Hence, the preferred solution would be to develop a series of criteria
that focus upon the more important aspects of model behaviour rather than
to rely on a single index.

The process of adjusting model parameters has to be selected as it may
range from a simple trial-and-error procedure to the most sophisticated
mathematical optimisation approaches under conditions of uncertainty.
Since the manual calibration process is essentially a trial-and-error process
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of minimising the differences between the computed and measured values,
a multi-criteria calibration procedure based upon a global optimisation
algorithm by which different objective functions are satisfied simultaneously
may be preferred (Khu et al., 2006). Furthermore, additional information
needed for the proper use of the calibrated model may be provided by
optimisation approaches that obtain not only the best parameters set, but
also a probability distribution of parameters — e.g. Kanso et al. (2003)
used the Metropolis algorithm to calibrate an urban storm water pollution
model. Using measured data, they generated posterior distribution of
accumulation rate Daccu for a 42 ha urban catchment and for a 186m2

street surface, both for the two different initial mass conditions. However,
any automatic procedure still requires specialist input and the results (i.e.,
“optimal parameter values”) must not be blindly accepted. Sometimes, the
entire calibration might be deemed meaningless if the geometrical features
of the domain were not represented accurately. Therefore, a modeller should
first remove the uncertainty associated with input data as much as possible
before proceeding with model calibration.

If the model calibration has been accomplished, the model validation
exercise should be carried out on a set of measurements different from the
calibration data set. In this context, the validation would refer to analysing
and explaining the difference between model results and measurements,
and if necessary, further adjustment of model parameters. Since extreme
urban flood events are relatively rare, the amount of high quality field data
for model calibration/validation is usually modest. Even when dynamic
measurements of water levels and velocities in the sewer system and
rainfall intensities are available with satisfactory spatial and temporal
resolutions, surface observations are usually sparse, limited to flood extents
and maximum depths and rarely linked to timing.

The uncertainty associated with the predictions from urban drainage
models should be included in the decision analysis, or, if it is not done, then
making decisions on the basis of a single model output should be treated
with great caution.

12.2.5. The modeller

A big source of uncertainty is the modeller. Given the same set of system
data, the same simulation model, the same data for model calibration and
the same project objective, two people will come up with different solutions.
Not only will an inexperienced modeller usually make a number of errors
along the way without being aware of most of them, but also any two
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well-versed users would typically produce somewhat different results. This
source of uncertainty may be reduced if guidelines such as codes of practice
for hydraulic modelling are followed (e.g. WaPUG, 2002), but it cannot be
fully eliminated.

12.3. Urban Flood Risk Mapping

12.3.1. Geographic information systems

Mapping of flood risk in urban areas has evolved a lot, following the
advances in modelling and supporting technologies. As the early methods
for flood risk mapping were based on the results of simulation of flow in
sewer system alone, i.e. without considering the surface flow, the extent
of surcharging was often mapped by changing colours of pressurised pipes.
The frequency of surcharging over a series of events has also been used as a
measure of flood risk (Verworn, 2002). A slightly more advanced mapping
method — though also almost redundant today — was to show “blobs”
around overloaded sewer network nodes on the map, the size of which would
be proportional to the maximum volume of water that surcharged from a
manhole. The corresponding presentation in a longitudinal sewer profile
was the water level in “virtual reservoirs.”

The dual drainage approach (Mark et al., 2004) has been a step forward
that, supported by Geographic Information Systems (GIS) ultimately
enabled more realistic and more comprehensive analysis of flood risk, from
the presentation of simulated flood extents, depths and velocities (and their
combinations), counting of flooded properties, flooded roads, calculation
of flood damage and, ultimately, presenting a range of measures of flood
hazards in a highly visual form.

GIS and Remote Sensing (RS) play an important role in the flood
management context. GIS tools have been developed to geo-reference time
varying results from hydrodynamic models to a spatial framework or to
a grid which includes a model of the terrain. For any computational time
step, depth, velocity and hazard can be determined for each grid element
in the 2D spatial framework. Such maps, which represent the extent of
flood hazards, can provide a basis for defining suitable flood management
measures including emergency response actions. The flood visualisation
component of GIS enables engineers and emergency response planners to
become familiar with the potential behaviour of flooding, its rates of rise,
evolving flood extents, and areas of high flood hazard with lead times prior
to the area concerned being flooded. With the use of GIS technology, model
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results can be linked to the cadastre and property databases and as such
used efficiently in the overall urban planning process. Future developments
will aim at more efficient use of virtual reality environments for flood
animation in 3D.

GIS mapping techniques are needed in order to adequately show the
numerical model results in space and time. In this respect, 2D models
are much easier to handle since they have their own spatial framework,
whereas mapping of the 1D model results is less straightforward because
development of the appropriate framework is necessary.

12.3.2. Mapping of 1D modelling results

One way of producing the flood-extent maps for the 1D model is to project
the longitudinal profile of maximum water levels onto a 2D map. Assuming
that the water level is constant within each cross-section, the cross-sections
need to be widened to fit the topography and their points geo-referenced
and assigned by extrapolation with the corresponding water level values,
as shown in Figure 12.2 (this process is necessary because it is difficult to
create series of cross-sections with sufficiently accurate topography). These
points are then interpolated using a Triangulated Irregular Network (TIN)
method to form the continuous water surface. Thus, the obtained water
surface finally needs to be intersected with the DTM and only positive
values should be presented on a GIS map. Figure 12.3 illustrates how 1D
model results (depths and velocities) can be superimposed with cadastre

Figure 12.2. Widening of 1D model cross-sections.
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Figure 12.3. A GIS representation of 1D model results — left: water depths; right:
velocities (after Vojinovic and van Teeffelen, 2007).

Figure 12.4. Left: flood hazard categories based on calculated velocities and depths
(after Price and Vojinovic, 2008); right: a GIS mapping of 1D model results (hazards).

images within a GIS framework. Figure 12.4 shows how these computed
depths and velocities can be combined to reflect different hazard categories
defined as low, medium, high, very high and extreme in accordance with
the diagram shown on the same figure. Similar diagrams are part of flood
risk management regulations in some countries.

12.3.3. Remote sensing technologies

Remote sensing technologies, such as Airborne Laser Scanning (ALS) and
LiDAR, are used to provide a comprehensive topographic coverage of entire
floodplain areas in an accurate and economic manner. The sufficiently fine
resolution of ALS data can provide a good spatial framework to compensate
for a coarse resolution of the hydrodynamic model. Such a framework makes
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it possible to map water level and velocity results onto a terrain model and
to visualise the quantification of flood hazards across the floodplain.

In addition to the use of numerical models for developing flood hazard
maps, RS images can also be used to produce similar information. In
this respect, the use of Advanced Synthetic Aperture Radar (ASAR)
satellite images plays an important role. The ASAR technology utilises
radar instruments which can work in the night time and which can have
much higher resolution than other sources of satellite observations. Similar
to the processing of numerical model results, a framework for processing
ASAR data is also needed.

Typically, the backscatter coefficient of the targets on the ground
needs to be differentiated in terms of the wet (flooded) and dry (non-
flooded) areas. Once this is done, it is then necessary to derive the flood
depths along the floodplain. Normally, a DTM of the study area is used
in combination with ASAR data to complete this work. Furthermore, an
interpolation algorithm is then needed to produce the water surface with
elevation information in each cell. Although there are several interpolation
methods which are embedded in commercial GIS tools, the studies to date
have demonstrated that they are not necessarily very efficient and, hence,
better interpolation methods are needed (e.g., Pengxiao, 2008). Once the
flood depths are derived, the analysis of flood frequencies for each cell needs
to be carried out. Finally, by combining flood depth and flood frequency
information, a form of a hazard map can be produced, as illustrated in
Figure 12.5.

12.4. The Risk Attribution Problem and Potential
Solutions

12.4.1. Integrated urban flood risk management

Whilst fluvial and coastal flood risk analysis is routine (e.g. Dawson and
Hall, 2006) quantitative flood risk assessment in the urban area represents a
genuine challenge due to the complex interaction of natural and engineered
processes, some of which operate at very local scales.

Integrated Urban Flood Risk Management (IUFRM) explicitly recog-
nises the interrelationships between all sources of flooding and the effective-
ness and cost of flood risk management measures, within changing social,
economic and environmental contexts. The main sources of flooding include
intense pluvial runoff that leads to sewers surcharging and surface flows,
coastal storm surges, fluvial flooding caused by high river flows, and perhaps
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Figure 12.5. Example of a flood hazard map derived form remote sensing images (after
Pengxiao, 2008).

also groundwater floods. A given flood event could be caused by a single
source, or several sources acting in combination.

Severe flooding in urban areas in the UK in summer 2007 acted as
a stimulus to the development of more integrated approaches to urban
flood risk management. Currently in the UK, as in many other countries,
urban flood risk management is fragmented. Ownership and responsibility
for urban infrastructure and flood management is in the hands of a variety
of public and private actors. Defra, the government department with lead
responsibility for flooding, is promoting a more integrated approach to
urban flood risk management (Defra et al., 2005) in which the various
organisations with a role in urban flooding work together to understand the
processes of flooding and develop integrated solutions that tackle flooding
in an efficient way.
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Integrated solutions may involve a number of measures, for example,
infrastructure investments and spatial planning regulations, which are
designed together to achieve the desired level of risk reduction. Although
the organisational context differs in many countries, the challenge of
addressing integrated urban flood risk analysis has been identified in
the USA (Rangarajan, 2005) and elsewhere (Andjelkovic, 2001). There is
potential to support these institutional initiatives with a new generation
of flood modelling tools that can simulate the effects of sewer and surface
flows (Mark and Djordjević, 2006). Flood simulations can act as a vehicle
for collective learning about system performance by various stakeholders in
FRM. However, for this to be achieved a transformation of the standard
approach to urban drainage modelling is necessary.

In the past modelling systems were designed and used with the prime
objective of designing urban drainage systems to a certain standard with
little consideration of situations that exceeded that standard. A risk-based
approach, by contrast, involves consideration of a wide range of loading
conditions, including conditions that exceed the design standard and lead
to extensive surface flooding (Hall et al., 2003). A precondition for this
transformation is the development of core concepts for a framework for
unified systems-based flood risk analysis. In this framework risk can be
used as a “common currency” to compare risks from different sources on
a common basis and in a situation where there are several organisations
responsible for risk management. We wish to be able to disaggregate the
total risk and attribute it to different components in the system and/or
agents with responsibility for risk reduction.

12.4.2. Risk attribution

Risk attribution has been introduced (Dawson et al., 2008) as a process for
calculating the relative contribution towards risk from different flooding
sources and components of flooding pathways, including infrastructure
components. Risk attribution provides essential information for a number
of urban flood risk management purposes:

1. Risk ownership. There are frequently several organisations with a role
in flood risk management. We wish to know, in broad terms, what
proportion of the risk each is responsible for.

2. Estimation of capacity to reduce risk. Ideally, risk should be owned by
organisations with the greatest capacity to manage it. Capacity to reduce
flood risk is related to the potential to change the characteristics of the
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flooding system, e.g. by replacing the infrastructure or modifying surface
flow paths. We wish to identify those organisations with the capacity to
reduce risk.

3. Asset management. Given limited resources, an organisation with respon-
sibility for management of flood defence or drainage infrastructure should
rationally invest those resources so that they maximise benefits in terms
of risk reduction. Within a specified set of system components we
therefore wish to identify those components that contribute most to
risk, and to compare the measures to reduce risk with the cost of imple-
menting those measures in order to develop an optimum intervention
strategy.

4. Data acquisition strategies. Monitoring strategies should be targeted so
that resources are invested in data acquisition that makes the greatest
contribution to reducing uncertainty.

12.4.3. The risk calculation

Consider a system that is described in terms of X basic variables, where
X comprises a vector of loading variables S, which may be spatially and
temporally variable, and a vector of variables that describe the flood
management infrastructure system R that might include the height or
other dimensions of dykes, the dimensions of surface water courses or the
dimensions of the sewer system. Their variation might be continuous (e.g.
a height variable) or discrete (e.g. a “blocked” or “not blocked” descriptor
of a pipe). Capital notation (e.g. X) denotes a random variable and lower
case (e.g. x) denotes a fixed value of that variable.

The variability in the loading and resistance is described by a joint
probability distribution ρ(x): x≥ 0. There is a damage function d(x), where
the units of d are £ (British pounds) or some suitable currency, which gives
the flood damage in the systems for a given vector x that completely
describes the system state. For many states of the system d(x)= 0. Indeed
we only expect d(x) > 0 when S is large or when there are some inadequacies
in system design or some failure, for example due to deterioration or
blockage. The risk r associated with the system is:

r =
∫ ∞

0

ρ(x)d(x)dx. (12.3)

The temporal dimension of this risk estimate is implicit in ρ(x), so when,
for example, ρ(x) measures annual probability then r is an Expected
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Annual Damage (EAD). However, d(X) is seldom in an explicit form,
but is evaluated by a combination of numerical models of flooding and
economic damage functions. Moreover, the joint distribution ρ(x) may not
be convenient either and may be available in the form of an observed or
synthetic time series of joint loading variables. Under these circumstances
risk may be approximated by a finite sum, considering discrete samples
of vectors of loading variables and simulating the corresponding damage
using an appropriate model. The expected annual damage is estimated
from:

r ≈ N

n

n∑
i=1

d(Xi), (12.4)

where n is the total number of events Xi simulated and N is the number
of events per year.

12.4.4. Methods of risk attribution

There are a number of possible methods for attributing risk between flood
management infrastructure and owners.

Source attribution. Urban flood risk managers may be interested in the
sources of water that led to a particular flood event. For example, if flooding
was caused by a combination of sewer surcharging and overtopping of river
flood defences, then flood risk managers will wish to know the proportions
of water, at a particular site, that originated from these two sources.
Source attribution uses hydrodynamic particle tracking methods (Fischer
et al., 1979) that enable the water that ends in a particular location to be
tracked back to its source. Balmforth et al. (2006) used this type of approach
to calculate the total flood volumes conveyed in the sewers, overland and
in the urban water courses. However, this analysis was conducted for only
one event, whereas, in keeping with the principles outlined earlier in this
section, this calculation should be repeated over a range of loading events,
to identify the expected value.

Design standards attribution. Standards-based attribution quantifies the
performance of different engineering components in the system at their
“design standard”. For example, an organisation with responsibility for
urban drainage (UDO), provides a specified level of service to discharge
rainfall events up to return period Ts. If the system floods in any
rainfall event with return period T ′

s ≤ Ts, then the flood damage is the
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responsibility of the UDO as they have not fulfilled the standard to which
they are committed. If the system floods only in events for which Tψ > ψTs

then the damage is not the responsibility of the UDO. However, if the
system has capacity T ′

s ≤ Ts, and an event with return period Tψ > ψTs

occurs, then a proportion of the damages are the responsibility of the UDO.
A flood model can be used to estimate the damage d(lT ) given rainfall lT
with return period T . By definition d(lT ) = 0 when Tψ < ψT ′

s. Therefore
the expected damage attributable to the UDO, rUDO , given a probability
density ρ(lT ) of rainfall is:

rUDO =
∫ lTs

0

ρ(l)d(l)dl + d(lTs)
∫ ∞

lTs

ρ(l)dl. (12.5)

This may be extended further to consider situations where there is blockage
or some other sewer failure (Dawson et al., 2008).

Sensitivity-based risk attribution. This approach apportions risk between
the system variables that influence the total flood risk on the basis of
estimates of actual or potential variation. In particular it helps identify
variables in the system that might be most influential in risk reduction. It
can also help to identify uncertain variables that should be the target for
data acquisition to improve the accuracy of the flood risk estimate.

If each of the loading variables, S (e.g. fluvial flows, rainfall and surge
tides) were the unequivocal responsibility of a particular agent, then risk
ownership could be disaggregated on the basis of sensitivity to the relevant
loading variable. However, rainfall, for example, is dealt with in sewer and
highway drainage systems as well as urban water courses. In that case it is
necessary to also consider the variables R that define system performance.
There are many variables that may, for practical reasons, be known precisely
(to within some tolerance), e.g. pipe diameter. Nonetheless, we may wish
to understand the potential for risk reduction by changing the value of such
a variable. Under these circumstances we can specify a range of potential
variation and corresponding probability distribution.

There are a wide range of potential sensitivity measures, summarised
in Table 12.1 and explored in more detail by Hall et al. (2009). Here
we demonstrate Variance-Based Sensitivity Analysis (VBSA) (Saltelli
et al., 2000) which measures the amount by which the variance in r is
reduced if one or more of Xi were fixed at some value. The variance V can
be decomposed into contributions from each of the input factors acting on
their own or in increasingly high order interactions (Saltelli et al., 1999;
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Table 12.1. Summary of risk attribution methods.

Attribution
method Risk ownership

Estimation of
capacity to
reduce risk

Asset
management

Standards-based
attribution

Provide risk
ownership is well
defined according to

specified standards.

Limited. With further expert
diagnosis of
reasons why

system is not
performing to
standard.

Source
attribution

Provide risk
ownership only
where unequivocally
related to the
source of flooding.

Good where capacity
to reduce risk is
strongly related to
controlling water
volume.

With further expert
diagnosis to
understand flood
flow paths through
assets.

Linear regression For (approximately)
linear systems.
Easiest where
responsibility is
allocated according
to loading variables.

Good for
(approximately)
linear systems.

Good for
(approximately)
linear systems.

Partial
derivatives

Difficult to interpret
globally for
non-linear systems.
Easiest where
responsibility is
allocated according
to loading variables.

Difficult to interpret
globally for
non-linear
systems.

Difficult to interpret
globally for
non-linear
systems.

Discrete systems
analysis

Not applicable. Good for discrete
systems.

Good for discrete
systems.

Variance-based
sensitivity
analysis
(VBSA)

Good. Easiest where
responsibility is
allocated according
to loading variables.

Based on current
values of variables,
so requires further
analysis to deal
with future
change.

Provides a rational
basis for
evaluation of
inspection and
mainte-
nance/repair
strategies.

Partial expected
value of perfect
information

Good for more general
decisions problems
than VBSA. Easiest
where responsibility
is allocated
according to loading
variables.

Based on current
values of variables,
so requires further
analysis to deal
with future
change.

Provides a rational
basis for
evaluation of
inspection and
mainte-
nance/repair
strategies.
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Sobol, 1993):

V =
∑

i

Vi +
∑
i,j
i<j

Vij +
∑
i,j,l

i<j<l

Vijl + · · · + V12...k, (12.6)

where

Vi = V [E(r|Xi = x∗i )], (12.7)

Vij = V [E(r|Xi = x∗i , Xj = x∗j )] − Vi − Vj , (12.8)

and so on. V [E(r|Xi = x∗i )] is referred to as the Variance of the
Conditional Expectation (VCE) and is the variance over all values of x∗i
in the expectation of r given that Xi has a fixed value x∗i . VCE measures
the amount by which E(r|Xi = x∗i ) varies with the value of x∗i , while all
the effects of the Xj, jψ �= i, are averaged. The ratio Si = Vi/V , therefore
a measure of the sensitivity of r with respect to Xi.

Total sensitivity indices, STi, represent the average variance that would
remain as long asXi stays unknown and provide an indicator of interactions
within the model. Factors with small first-order indices but high total
sensitivity indices affect the risk, r, mainly through interactions. These
are calculated using (Homma and Saltelli, 1996):

STi = 1 − V [E(r|X∼i = x∗∼i)]
V (r)

, (12.9)

where X∼i denotes all of the factors other than Xi.
The computational expense of the methodology described here can be

considerable, even for a rather small system. In practice, urban flooding
systems involve tens of thousands of variables. The only feasible approach
to tackling this problem is therefore by hierarchical simplification of the
system, with the attribution analysis being applied at several levels, with
initial screening to identify the most important variables. Sensitivity-based
risk attribution is demonstrated in Sections 12.5.4 and 12.5.5.

12.5. Case Studies in Urban Flooding Uncertainty Analysis

12.5.1. Uncertainties related to urban drainage models

and their calibration

As stated in Section 12.2.4, validation of a calibrated model should be done
using data sets not used in the calibration, because it is possible to derive
many different model parameter sets for the same study area that will
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satisfy given calibration criteria. However, when it comes to the simulation
of pipe flow models with such parameters, when carried out on a data set
which is different from the calibration data set, they may produce very
different results in terms of flooding or overflow emissions.

An informative example of uncertainty analysis in sewer pipe network
performance analysis is described by Hansen et al. (2005). They applied
Monte Carlo methodology by sampling from the probability distribution
of the urban drainage model inputs/parameters, simulating the pipe flow
and water levels in the manholes with the MOUSE model (DHI Software,
2004), which enabled determination of probability distribution of the
maximum water level in the manholes. Among other conclusions, they used
uncertainty analysis to illustrate how calibration can improve the quality
of the model output.

Figure 12.6 shows the range of maximum water levels in a manhole
with non-calibrated and calibrated model (pipe top and ground levels are
also shown for reference). The benefit of the calibration in terms of reducing
the range of levels varied among manholes and often led to lower maximum
water levels, i.e. prediction of flooding was less uncertain with the calibrated
model. Not that this conclusion was surprising, but this analysis enabled
quantification of the benefits of calibration.

Thorndahl et al. (2008) conducted an uncertainty analysis of an
application of the urban drainage model, also using MOUSE and applying
the GLUE methodology (Beven, 2006). They performed 10,000 simulations
of several observed events on a small urban drainage system, for three

Figure 12.6. Range of maximum water level in a manhole in two situations: non-
calibrated system and calibrated system (after Hansen et al., 2005).
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Figure 12.7. Combined likelihoods over all calibration events as a function of parameter
values. Accepted simulations with empirical likelihood L > 0.3 (6091 of 10,000 runs) are
shown in black (after Thorndahl et al., 2008).

different model setups. This was deemed to be a sufficient number because
the Kolmogorov–Smirnov d between overflow volume cdfs with 10,000 and
20,000 runs was smaller than 0.01. Based on the analysis the methodology
has been shown to be very applicable — it was possible to provide useful
prediction bounds and identify limitations of the model, and some results
are shown here.

Figure 12.7 shows “dotty plots” that illustrate the likelihood of every
single simulation (represented by one dot) as a function of values of four
(out of six) model parameters. The most conspicuous is the narrow peak
of hydrological reduction factor (part of the impervious area contributing
to the runoff) that corresponds to the mean of the event specific optimum
reduction factors. Interestingly, maximum likelihood of the reduction factor
was higher for the model setup with area weighted rainfall input from two
rain gauges than for the model setup with one single rain gauge. Also,
applying the same likelihood threshold, the greater number of simulations
was accepted in the model setup with spatially variable rainfall input (44%)
than in the single rain gauge case (38%). This is an obvious result of the



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch12

Uncertainties in Flood Modelling in Urban Areas 323

use of reduction factor to compensate in uncertainties in the rainfall input.
Furthermore, 61% of simulations were accepted in the model setup with
two rain gauges and the more complex surface runoff model (kinematic-
wave surface runoff model), which is the case shown in Figure 12.7.

The other four MOUSE model parameters (initial loss, dry weather flow,
pipe roughness and local energy loss coefficient) showed a clear indication of
equifinality, i.e. that it is possible to have the same maximum likelihood
regardless of the parameter value. This result either indicates prediction
insensitivity to these parameters or that some parameters interact closely in
producing behaviouralmodels. Sensitivity analysis confirmed that the impact
of these four parameters appeared to be minimal, whilst the interaction
between their values in producing behavioural parameter sets is negligible.

In urban drainage modelling, the most relevant results are the combined
sewer overflow volumes and water levels in surcharging manholes (that lead
to flooding). Figure 12.8 shows cdf-plot of the maximum water level in the
manhole that surcharged most frequently in the study by Thorndahl et al.
(2008). Compared to cdf-plots of overflow volume (not shown here) the
prediction interval is quite narrow — varying only 10 cm between 95% and
5% prediction interval — which indicates a rather small uncertainty on the
estimation of maximum water level in that manhole.

12.5.2. Sensitivity of results to the capacity of sub-surface/

surface links

Figure 12.9 shows flow rate in one sub-surface/surface (s-s/s) link and the
sum of flow rates through all s-s/s links during the flood event following

Figure 12.8. Cdf of water level in a critical manhole (after Thorndahl et al., 2008).
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Figure 12.9. Flow rates in one s-s/s link and in all s-s/s links combined (negative flow
means surcharging from the manhole to the surface).

a 30-minute block rainfall of high intensity on a small urban catchment
described by Djordjević et al. (2005). Positive values in this diagram
represent water from the surface entering the minor drainage system (i.e.
s-s/s links working as inlets), whereas negative values correspond to the
outflow from the surcharging sewer system to the surface system (i.e., s-s/s
links working as storm sewer overflows). Surface runoff hydrographs were
introduced to the 1D surface network nodes in this example. Figure 12.10
illustrates how the uncertainty in capacity of s-s/s links may affect
urban flood dynamics simulated by the 1D/1D Simulation of Interaction
between Pipe flow and Surface Overland flow in Networks (SIPSON) model
(Djordjević et al., 2004):

1. Figure 12.9 shows flow rates in: one of the outfall sewer pipes (dashed
line), main surface open channel outfall (dotted line) and the sum of
flow rates through all s-s/s links (solid line), simulated with an assumed
capacity of s-s/s links.

2. Figure 12.10 shows corresponding results simulated with the s-s/s link
capacities (i.e. weir crest length) equal to 50% of the value assumed
in the first case. Consequently, the sewer system is filled more slowly,
surcharging and the outflow from the sewer system to the surface are
delayed and less extensive, and, overall, surface flood flow rates are much
higher.
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Figure 12.10. Sensitivity of flows to s-s/s links parameters; case shown on the right-
hand side is calculated with link capacity 50% of the capacity assumed in the simulation
on the left-hand side.

Another example of the sensitivity of results to the capacity of sub-
surface/surface links is described in Leandro et al. (2009). They calibrated
1D/1D urban flood model of a small urban catchment via results of 1D/2D
model, with the parameters of s-s/s links as calibration parameters and
the absolute difference in cumulative volumes of flow through s-s/s links in
the two models as the objective function. Figure 12.11 shows flow rates in
selected manholes before and after calibration. Contrary to the diagrams
shown in Figure 12.9, positive values shown in Figure 12.11 represent the
outflow from the surcharging sewer system to the surface, and surface runoff
hydrographs were introduced to the sewer network nodes in this example.
The latter assumption is incorrect for those manholes that surcharge while
runoff hydrographs still have significant values; however, it is purposely
kept in order to enable a consistent comparison between results of the two
modelling approaches (i.e. 1D/1D and 1D/2D model).

12.5.3. Sensitivity of results with respect to DTM resolution

This case study, details of which are given in Mwalwaka (2008), investigated
effects of DTM resolution on urban flood risk. Four DTM sets, 5 m, 10m,
15m and 20m grid size were produced. Figure 12.12 displays terrain
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Figure 12.11. Discharges at three selected s-s/s links, before calibration (top row) and
after calibration (bottom row); positive flow means surcharging from the sewers to the
surface (after Leandro et al., 2009).

Figure 12.12. DTM in four resolutions: 5m, 10m, 15m and 20m (from left to right).

characteristics with four different resolutions that were used as a basis for
MIKE FLOOD model (DHI Software, 2008).

The model was run with four terrain resolutions for the rainfall event
of 100 mm in 1 hour, which corresponds to 100-year Average Recurrence
Interval (ARI) for that area. Three points of interest (A, B, C) where the
computed variables were compared among different model results are all
located along the floodplain, i.e. in low-lying areas which are known to
be the most affected areas. The difference in model results, as shown in
Figure 12.13, could be mainly attributed to the averaging or upscaling
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Figure 12.13. Maximum flood depths (left) and flow velocities (right) at three selected
points, simulated using four different DTM resolutions (after Mwalwaka, 2008).

effect of the high resolution to the low resolution DTM. Such effects are
represented by the loss of small-scale topographic information which is
present in higher DTM resolutions. As a result, 2D models with lower DTM
resolution are likely to generate floods over more wide spread areas and
with smaller depths than high DTM resolution 2D models. Furthermore,
the difference in results can be also explained by fact that the level and
scale of physics calculated within 2D models with higher resolution are
more complex as the morphology of the domain is more irregular when
compared to a 2D model with low resolution.

In addition to this, head losses due to flow over or around such struc-
tures are also represented differently with different models. With higher
resolution models, small geometric “discontinuities” such as road or pave-
ment curbs can play a significant role in diverting the shallow flows that are
generated along roads and around buildings, and in several instances they
were found contrary to the flows calculated by the low resolution models.

From this case study it can be concluded that the DTM resolution
has a significant effect on simulation results and therefore it carries a
degree of uncertainty. It can be observed from the obtained results that
the flood simulation characteristics affected by different DTM resolution
are: inundation extent, flow depth, flow velocity and flow patterns across
the model domain. Whilst not allowing for the deduction of universal
rules from the limited number of modelling experiments, nor for defining a
sufficiently high DTM resolution in order to keep its influence acceptably
small, these results indicate the importance of evaluating the uncertainty
related to DTM resolution in urban flood risk assessment. Consequently,
model parameters calibrated on a DTM of certain resolution are not directly
transferable to a lower resolution model.
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12.5.4. Integration of fluvial and urban flood risk analysis

Flood risk attribution methodology described in Section 12.4.4 is here
demonstrated on a synthetic case study. More detail is provided by Dawson
et al. (2008) with the salient points repeated here.

Consistent meteorological boundary conditions using methods
described by Burton et al. (2004) drive a hydrological model (Todini, 1996)
of an upstream catchment and provide direct rainfall inputs to the urban
catchment. The upstream hydrology model provides boundary conditions
of river flow next to the urban area in which the flooding is simulated by the
1D/1D coupled surface and sewer flow model SIPSON (Djordjević et al.,
2005).

Maximum flood depths during an event are subsequently extracted
from the model and integrated with depth-damage curves (Penning–Rowsell
et al., 2003) assuming one property at every 20 m of surface flood flowpaths.
That way damages for a given flood event are estimated, and subsequently
risks (Figure 12.14). Multiple samples of the model variables are generated
and used to attribute risk to infrastructure and other system components.
It is important to note that the risk attribution methodology is not tied to
the specific model components used in this study and will be suited to any
system of models and methodologies that calculates flood damage according
to any metric(s) of interest. The risk for the system was calculated to be
an expected annual damage of £576 k.

Consistent rainfall
conditions at catchment

and urban scale 

Hydrological
model 

Hydrodynamic surface
and sewer flow model

of urban area  

Flood depths 
Depth-damage

curves  

Flood damages

River flows

Urban 
rainfall 

Catchment 
rainfall 

Figure 12.14. Overview of urban flood risk analysis modelling process.
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Figure 12.15. Relationship between damage (z-axis), peak rainfall, peak flow rate in
the river for different event durations.

Figure 12.15 demonstrates the importance of analysing risk over a wide
range of loading conditions by plotting the relationship between damage,
peak rainfall and river flow for different rainfall event durations. This shows
that damage is dominated by rainfall under short intense rainfall events,
but river flow becomes increasingly important as the duration of the rainfall
event increases.

The sensitivity analysis for the model are shown in Table 12.2. They
indicate that the highest proportion of the risk is from the event duration,
peak rainfall and pipe diameter. The total indices illustrate that the same
variables that dominate the first-order indices (event duration, peak rainfall
and pipe diameter) are, in this case, also most actively involved in interaction.

Figure 12.16 illustrates the influence of pipe diameter, river capacity
and permeability of urban surface upon the resultant flood damages.
Varying pipe diameter over the range of values analysed here leads to
the largest changes to flood damage. Damage increases linearly with the
proportion of impervious surfaces in the urban area, but the difference
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Table 12.2. Sensitivity indices for key variables.

Sensitivity indices

Variable First order Total

Duration 0.19 0.65
Peak flow rate 0.02 0.10
Peak rainfall 0.15 0.48
Pipe diameter 0.04 0.30
River width 0.00 0.00
Impermeable area 0.01 0.03
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Figure 12.16. Influence of pipe diameter, river capacity and permeability of urban
surface upon flood damage. Independent variable normalised by range (after Dawson
et al., 2008).

between 30% and 90% impervious surface alters the damage by only
∼£400k. Whilst river capacity shows a non-linear interaction with damage,
the maximum change in damage is ∼£600k compared to £4m for the pipe
diameter.

12.5.5. Pipe blockage

The catchment and the system used in the previous section (described in
detail by Dawson et al., 2008) is used here to illustrate the methodology for
identification of the most critical pipes in the sewer network with regard
to flood risk resulting from pipe blockage. However, even for this small
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Figure 12.17. Pipes that, when blocked, have the greatest influence on flood damages
(after Dawson et al., 2008).

system, it is impractical to simulate 2n pipe blockage combinations (n is
the number pipes, in this case n = 18, giving over 250k combinations).
A tiered approach was developed that:

1. Analysed the damage from single blockages in each pipe.
2. Identified the pipes that, when blocked, lead to the greatest increase in

flood damages for the design standard (1 in 10-year event) of the sewer
system.

3. Calculated the sensitivity indices for these pipes (Figure 12.17).

As might be expected intuitively, important components in the urban
drainage system are the lowest pipes (167–165 and 165–163), which also
exhibit the strongest interactions with other pipe blockages. Of the three
outfalls, the middle one (172–171) is the least critical because its blockage
can be handled with the other two, whereas the most critical outfall is
the most downstream one (165–163). This implies that the most successful
flood risk reduction strategy would, in this case, be to increase the capacity
of these critical pipes, whilst monitoring activities should be targeted
to ensuring these pipes do not block. The obvious advantage of this
methodology is in its ability to identify most critical pipes in complex
systems where that is less obvious than in this simple example.
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Khu, S.–T., di-Pierro, F., Savić, D. et al. (2006). Incorporating spatial and
temporal information for urban drainage model calibration: an approach
using preference ordering genetic algorithm, Adv. Water Resour., 29,
1168–1181.
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Price, R.K. and Vojinovic, Z. (2008). Urban flood disaster management, Urban
Water J., 5, 259–276.

Rangaragan, S. (2005). Challenges and solutions in urban drainage planning and
management, Geophys. Res. Abstr., 7, 1288.

Saltelli, A., Chan, K. and Scott, M. (2000). Sensitivity Analysis, Wiley, New York.
Saltelli, A., Tarantola, S. and Chan, K. (1999). A quantitative model-independent

method for global sensitivity analysis, Technometrics, 41, 39–56.
Sobol, I, (1993). Sensitivity analysis for non-linear mathematical models, Math.

Mode. Comput. Exp., 1, 407–414.
Thorndahl, S., Beven, K.J., Jensen, J.B. et al. (2008). Event based uncertainty

assessment in urban drainage modeling, applying the GLUE methodology,
J. Hydrol., 357, 421–437.

Todini, E. (1996). The ARNO rainfall-runoff model, J. Hydrol., 175, 339–382.
Ukon, T., Shigeta, N., Watanabe, M. et al. (2008). Correction methods for

dropping of simulated water level utilizing Preissmann and MOUSE slot
models, 11th International Conference on Urban Drainage, Edinburgh,
CD-ROM.

Vasconcelos, J.G., Wright, S.J. and Roe, P.L. (2006). Improved simulation of flow
regime transition in sewers: two-component pressure approach, J. Hydraul.
Eng., 132, 553–562.

Verworn, H.-R. (2002). Advances in urban-drainage management and flood
protection, Philos. Transact. A. Math. Phys. Eng. Sci., 360, 1451–1460.

Vojinovic, Z. and van Teeffelen, J. (2007). An integrated stormwater management
approach for small islands in tropical climates, Urban Water J., 4, 211–231.

WaPUG (2002). Code of Practice for the Hydraulic Modelling of Sewer Systems,
Wastewater Planning Users Group. Available at http://www.wapug.org.uk.

Watanabe, K. and Kurihara, T. (1993). “Practical Simulation Method of Sur-
charged Flow Using Pressure-Relaxation Effect in Manhole” in: Marsalek,
J. and Torno, H.C. (eds), 6th International Conference on Urban Storm
Drainage, I, Niagara Falls, pp. 128–133.



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch13

CHAPTER 13

The Many Uncertainties in Flood

Loss Assessments

John Chatterton, Edmund Penning-Rowsell and Sally Priest
Flood Hazard Research Centre,

Middlesex University, UK

It is often assumed in the assessment of flood risk — gauged as probability
times consequences — that all the main uncertainties lie in the hydrological
and hydraulic fields, and that the human domain is inherently more
predictable. This assumption arises more from ignorance than from a careful
analysis of the evidence. The reality is that the human dimension in floods
and flood risk assessment is also full of uncertainty, and this is the issue
addressed in this chapter.

13.1. Flood Damage Assessments

13.1.1. Methods of flood damage assessment

The publication of “Making Space for Water” in 2004 by UK’s Department
of the Environment Food and Rural Affairs (Defra, 2004; 2005a,b), heralded
a new policy approach in England, characterised by a move away from
flood defence and towards Flood and Coastal Erosion Risk Management
(FCERM). As a result, the Environment Agency, which manages both
strategic initiatives and day-to-day activities with respect to FCERM,
adopted the S-P-R-C (Source, Pathway, Receptor and Consequence) model
to represent the continuum or throughput from storm to damages caused
by that storm to people’s property and the environment. In future, risk

335
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would be managed by seeking to influence all four elements, rather than
simply managing flood pathways and hence flood probability.

This policy move therefore shifts attention to the whole S-P-R-C con-
tinuum. The uncertainties with regard to source and pathway parameters —
affecting the frequency and depth of flooding — are widely discussed,
including in this volume. However, data and models to represent the
receptor and consequence parameters have generally been unquestioned,
and regarded in some way as “absolute”, and somehow based on robust
and easily understood science. This characterisation is examined in this
chapter with the view to setting out a more balanced situation. In this
respect, receptor variables are represented by land use or built property,
infrastructure, utilities, etc., and consequences relate to the resultant flood
damage, traditionally categorised as direct or indirect, and tangible or
intangible (Table 13.1), including potential loss of life in floods.

The approach to evaluating flood damages and the benefits of flood
alleviation in UK and throughout the world has been largely led by
Middlesex University’s Flood Hazard Research Centre’s investigations since
1970 and published in its series of monographs known as the “Blue”, “Red”,
“Yellow” and “Multi-Coloured” Manuals (MCM) (e.g. Penning–Rowsell
et al., 2005). In 1977, the “Blue Manual” first provided guidance on
appraising flood hazards in the UK, involving both damage to urban
properties and the benefits of protecting agricultural land. This was
followed by the “Red Manual” in 1987, which investigated in greater
detail the indirect or secondary effects of floods, as well as updating
material on industrial, commercial and retail flood damages. In 1992 the
“Yellow Manual” focused on coastal erosion and flooding problems, and
systematised the assessment of the “intangible” impacts of coastal erosion
on beach recreation and other use values at the coast previously left
as unquantifiable. Finally, in 2005 the “Multi-Coloured Manual” brought

Table 13.1. Direct, indirect, tangible and intangible flood impacts, with examples
(from Penning-Rowsell et al., 2005, Table 3.1).

Measurement 

Tangible Intangible 

Form of loss 

Direct 
Damage to building  

and contents 

Loss of life; loss of an 

archaeological site 

Indirect 
Loss of industrial 

production 

Inconvenience of post-

flood recovery 
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Figure 13.1. The classic four-part risk assessment diagram (Penning-Rowsell et al.,
2005).

together and updated in a single volume the range of techniques presented
previously, based on Defra-funded research between 2002 and 2005.

Figure 13.1 illustrates the classic four-part diagram summarising the
calculation of annual average flood losses. This approach has been adopted
as the basis for Estimating Expected (or Average) Annual Damages (EAD
or AAD) to inform national policy (NaFRA, 2006), strategic initiatives
at catchment or coastal cell level (e.g. Catchment Flood Management
Planning or Shoreline Management Planning). It is also used at a project
level to evaluate alternative Flood and Coastal Erosion Risk Management
(FCERM) options. The EAD parameter summarises the hazard at a
place, in a region or nationally, by summing the impacts of floods of all
probabilities of occurrence, rather than focusing on a single flood (say the
“100-year” or 1% probability flood).

When calculating EAD, we need to know about potential flood
damages. To this end, depth/damage curves for a suite of residential and
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Figure 13.2. Depth/damage curves for a high street retail shop, showing high, low and
indicative (i.e. typical) susceptibility (from Penning-Rowsell et al., 2005).

Table 13.2. Results from the 2006 NaFRA national flood risk
assessment (£ millions).

Country EAD residential EAD Non-residential EAD total

England 747.4 401.3 1,148.7
Wales 173.8 88.5 262.3

Total 921.2 489.8 1,411.0

non-residential properties have been systematically developed by the Flood
Hazard Research Centre (FHRC) since 1973 and these are applied in this
process to the appropriate property at risk from flooding at a site or on
the nation’s floodplains. Using this type of data (e.g. as in Figure 13.2),
linked to the RASP (Risk Assessment for Strategic Planning) model (Sayers
et al., 2003) to evaluate the probability of overtopping or breaching of flood
defences, has provided a year-on-year evaluation of national flood exposure
in England and Wales, expressed as national EAD. These results have been
used to inform the government’s expenditure plans for FCERM within its
comprehensive spending reviews.

The 2006 EAD was estimated at £1.4 billion, affecting 2.3 million
properties (at a mean EAD of £608 each) and up to 4 million people
(National Flood Risk Assessment: NaFRA, 2006) (Table 13.2). However,
EAD figures such as these are far from stable through time. Table 13.3 shows
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Table 13.3. A comparison of annual flood risk assessments (NaFRA, 2006).

Flood risk assessment outcomes

NAAR NAAR RASP NaFRA NaFRA
Assessment 2000 2001 2002 2004 2005

Damages (£bn/yr) 3.0 0.801 1.060 N/A 2.332
Properties affected (000s) 1,830 1,909 1,741 N/A 2,218

Notes: 1. NAAR = National Assessment of Assets at Risk
2. NaFRA = National Flood Risk Assessment
3. The NAAR result for 2000 is the “Do nothing” AAD. The NAAR 2001
result assumes the maintenance of the current level of protection. The NAAR
2001 “Do nothing” value is £3.5bn.

the significant fluctuation in national EAD calculated in this way over a five-
year period, largely reflecting inconsistencies in data inputs and modelling
techniques; the inputs are too uncertain to track with any confidence the
real annual movement in the risk that Defra and the Environment Agency
are seeking to manage. Data on sources and pathways of flooding, and
modelling these processes, of course contributes to this uncertainty, but
headline values of EAD are also very much influenced by the quality of
receptor and consequence data.

As a result, the way in which we count properties at risk, measure
their floor areas, estimate their thresholds of flooding, select depth/damage
data appropriate to the land use present will all affect the headline
EAD. Taking the last item first — the depth/damage data — each such
dataset (Figures 13.2 and 13.3) has an “indicative”, “high” and “low”
susceptibility “curve”, reflecting the range of damages surveyed in the
sample of properties the dataset represents. Where the range is wide, as
with industrial premises (Figure 13.3), which could vary from chemical
production to a scrap-metal yard, the uncertainty is substantial when
applying the curve to all properties at risk coded as “factory” in land use
inventories. In NaFRA this sensitivity was regarded as “very high” when
applying the range of susceptibility data to the national property database.

13.1.2. Indirect flood losses

The types of flood damage or disruptions that are included will also
influence the level of EAD. Thus, in England and Wales, the calculation
of damages has concentrated largely on impacts on residential and non-
residential receptors (NaFRA, 2006). Although evaluation techniques for
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Figure 13.3. Depth/damage curves for industrial premises (from Penning-Rowsell et al.,
2005). Systematic and measurement errors need to be eliminated and data collection
methods stabilised year-on-year to give confidence in the data and therefore confidence
in the assessment of changing risk. The NaFRA project has set perturbation limits
based on expert judgment (rather than statistical methods) for the expected variations
in measurements. As an example, simply by taking the low and high susceptibility
depth/damage extremes as against the indicative depth/damage curve decreases or
increases EAD by 42% and 27% respectively.

all direct and indirect impacts are relatively well understood (Penning-
Rowsell et al., 2005), analysts have tended to shy away from quantification
(applying money as a numeraire) to indirect flood losses (Table 13.1). This
is partly because of time and resource constraints but largely because of
the uncertainty as to the scale of the impacts and hence damages to the
many facilities concerned; for example, to an electricity sub-station, a water
treatment plant or to a flood disrupted road. None of these impacts is
included in current national flood risk assessments.

However, the floods in England and Wales in summer 2007 (affecting
around 65,000 properties through direct flooding) have highlighted the fact
that it may be these hitherto ignored impacts (consequences) that need to
be recorded to reflect the real cost of flooding (Pitt, 2008). Thus the Mythe
Water Treatment Works in Tewkesbury was inundated and cut off the water
supply to some 180,000 people for several weeks. Electricity sub-stations,
also serving communities in Gloucestershire and beyond, with a hinterland
population of over 500,000 people, narrowly escaped flooding. The social
impacts of flooding (at worst, often ignored, or radically underestimated
at best) could in these circumstances be as significant as the financial or
economic impacts of flooding.



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch13

The Many Uncertainties in Flood Loss Assessments 341

Table 13.4. Risk matrix.
IM

P
A

C
T

 

Significant Medium Risk High Risk Very High Risk

Moderate Low Risk Medium Risk High Risk 

Low Negligible Risk Low Risk Medium Risk 

PROBABILITY OF FLOODING 

Low Moderate Significant

A filter approach is being developed to determine the scale of impact
of these wider consequences. The Environment Agency’s flood zone map-
ping (www.environment-agency.gov.uk/homeandleisure/floods/) divides the
nation’s floodplains into having “significant”, “moderate” and “low” prob-
ability of flooding, based on 100 m grids. Developing metrics to define
the consequences or impacts of this flooding to individual receptors as
“significant”, “moderate” or “low” and combining with flood likelihood
will enable high risk receptors to be distinguished from low risk receptors
(Table 13.4). Concentrating on the economic and social consequences to
receptors in the “high” and “very high” risk boxes of this matrix will help
to develop a consistent approach to gaining an understanding of the overall
scale of potential damage and disruption, either nationally or at a local
level.

The necessary metrics (for utilities/infrastructure) will need to describe:

• The susceptibility of a utility/infrastructure and supporting networks,
etc. to physical damage through contact with flood water;

• The dependency of properties served by utility plants and networks both
within the flood zone and beyond;

• The ease of transferability of production or supply from a non-flooded
site (the degree of redundancy built into the system);

• The size of the utility/infrastructure (e.g. population served; out-
put/throughput; daily road users; etc.).

Efficient development of this system of metrics will lead to a better
understanding of national and regional EAD which currently lacks this key
indirect loss dimension.
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13.1.3. Uncertainties in data and classification for property

at risk

The underestimation of EAD as a result of a poor understanding of the
impacts of floods on particular receptors is only one aspect of uncertainty
in flood loss assessments. Quality of data attributes (size, flood threshold,
etc.) and the classification of property to match appropriate depth/damage
characteristics are key to appropriate damage estimates.

A comparison of NaFRA 2006 economic damages for an area of Carlisle
also covered by a detailed Project Appraisal Report (PAR) showed the
contrasts evident in Table 13.5. The major differences are that 277 more
residential properties were represented in the PAR than in NaFRA, because
of different methods of data assembly and spatial aggregation. As a result,
direct economic damages per residential property in the PAR were nearly
four-times those in the NaFRA and the direct economic damages per
commercial property in the PAR were over six-times those in NaFRA. The
split of potential damages between residential and non-residential (commer-
cial) sectors is broadly similar between the PAR (44%:56%) and NaFRA
(39%:61%), but the PAR shows substantially greater potential damages.

There are several main reasons for this: differences in assigning property
types; determining average floor areas, particularly non-residential proper-
ties; the treatment of basements and application of basement depth/damage
data; the assessment of flood depths from modelling (water surface and
terrain); the assessment of property thresholds; property valuations; and
the assessment of the number of properties at risk.

There are therefore significant uncertainties that surround the estima-
tion of economic damages from both NaFRA and the PAR. These reside
both in the data used and methods applied. When some ground truthing of
the NaFRA outputs at this site was undertaken, for comparison to the PAR,
this showed that the national assessment provides an underestimate of total

Table 13.5. Project appraisal and NAFRA data for Carlisle, UK.

Residential PAR 2007 NaFRA
Number of properties 1,688 1,411
EAD Economic damages: do minimum £966,148 £204,480
Damage per property (EAD) £572 £145

Commercial (capped) PAR 2007 NaFRA
Number of properties 390 434
EAD Economic damages: do minimum £1,483,986 £260,031

Damage per property (EAD) £3,805 £599
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risk, although a decision as to which is the most accurate assessment cannot
be taken without further detailed study. It is equally as likely that there are
gross discrepancies and systematic measurement errors in the PAR process
as in NaFRA.

13.1.4. A method to improve data quality: the data quality

score system

A method described by Penning-Rowsell et al. (2005) in the MCM has been
developed to improve data quality in flood risk assessments. This method
is applied to the depth-damage dataa used, the property ground floor
area (since damage, especially to non-residential properties is presented
as pound-per square metre), and the property type code.

The method recognises that the Environment Agency has developed a
National Property Databasea (NPD), combining Ordnance Survey address
point data (locating property spatially) with Government Valuation Office
Agency (VOA) property type lists which are in turn linked to MCM depth/
damage codes and, amongst other attributes, floor space. As with any large
hybrid database, gaps in records lead to algorithms being created to plug
the missing data gaps, leading to potential error and inconsistency. Data on
basement and upper storey property records can also be suspect. To combat
potential error a data quality score system has been developed to identify
and flag where the input data need review and improvement (Table 13.6).

The data quality scores are applied as in Table 13.7. If a score total
across fields “A” to “C” exceeds a pre-set threshold (e.g. a score of 7) then

Table 13.6. Data Quality Scores (DQS).

Score Description Explanation of data

1 “Best of Breed” No better available: unlikely to be improved in the near
future

2 Data with known
deficiencies

To be replaced as soon as the third parties responsible
for the data reissue it with an update, etc.

3 Gross assumptions Not invented but deduced by the project team from
experience or related literature/data sources

4 Heroic assumptions No data sources available or yet found: data based on
no more than educated guesses

aThe NPD (National Property Dataset) was superseded in 2010 by NRD (National
Receptor Database).
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Table 13.7. Application of the data quality score system (Penning-Rowsell et al., 2005).

A Depth/damage (D/D) data applied

Score and its associated data attributes:

1. D/D data from MCM is available for the MCM land use in question and cannot
be improved without further research

2. D/D data from MCM is available for the MCM land use in question but sample
size is known to be small and improvements are definitely possible with further
research

3. D/D data is not available and an equivalent D/D set is suggested or an
aggregate weighted mean suggested e.g. Bulk classes, all shops or stores (21), or
the non residential property weighted mean

4. No reasonable data is available (e.g. golf courses, football stadia, cemeteries,
playing fields etc.) or “miscellaneous” land uses are recorded

B Ground floor area

Score and its associated data attributes:

1. If flagged as 1 in NPD and validated in Ordnance Survey’s MasterMap (OSM)

2. Unchanged from NPD having been through the 2006 property area screening
method

3. If screening shows discrepancy between RV (Rateable Value) and floor area
take MCM Mean floor area for MCM code in question

4. No area in NPD, take MCM mean

C Land Use Type (MCM code)

Score and its associated data attributes:

1. MCM code validated from other sources e.g. GOAD town centre surveys or
ground truthing

2. VOA matches address point

3. None

4. Random match between VOA and address point to unmatched property

the EAD for each property calculated is deemed unfit for the purpose of
assessing risk until the data record attributes are improved. In NaFRA
this test is largely applied by impact zones (100 m grids) for all properties
contributing more than 1% of total EAD for that catchment. The process
tends to eliminate overestimated EAD, but it may equally apply to show
where EAD in impact zones is likely to have been underestimated.

13.1.5. Ground truthing

To identify types of errors and related issues, some of the strategic
properties that were inundated by the flooding events of July 2007 have
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been examined to inform the fitness for purpose debate (see Figures 13.4
and 13.5). The results indicate the following:

• There are properties on the ground that are not represented at all in the
NPD;

• There are properties on the ground that are given incorrect floor areas
in the NPD;

• There are cases where the sum of floor areas in a multi-address property
(e.g. a block of flats) is less than the size of the property as a whole.

Thus Figure 13.4 shows that the Trebor Bassett confectionery factory
adjacent to the River Don in Sheffield, which suffered many millions
of pounds of flood damages in June 2007, is not represented in NPD
at all. Figure 13.5 shows the floor area for the Mythe water treatment
works in Tewkesbury is actually four times that recorded in NPD. Finally,
Figure 13.6 shows the high risk impact zone for Worcester, where the EAD
of £662,673 is radically overestimated because most of the 47 residential
properties are raised above ground level and therefore would not suffer
physical damages in a flood, although they would be subject to disruption.

The widespread nature of these property omissions and the associated
impact on underestimation of the EAD make it important that a solution
is developed in the future to correct for these property omissions and
underestimates so that an estimate of the true EAD can be made. The
NRD is responding to these needs but its algorithms are still some way
from determining wholly accurate land use and property characteristics,
essential for damage estimations.

13.1.6. Combining better ground truthing with

the DQS system

To obtain a better understanding of the uncertainty of flood damage assess-
ments with changes in data inputs has led to the development of iterative
procedures where by we add refinement to the input data in response to
excessivedataquality scores, oftenvia substantial groundtruthingof thedata.

To this end, Figure 13.7 summarises the PresentValue ofDamages (PVd)
baseline “do nothing” option (against which plausible FCERM options are
gauged) for several thousand properties exposed to flood risk in the fluvial
Lower Thames, west of London. The first cut assessment of potential flood
damages, with initial data and modelling, was in excess of £1 billion but
was stabilised at around £200 million by targeting improvement of key data
input attributes for properties contributing individually more than 0.1% of
the total calculated floodplain PVd.
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Figure 13.4. The Trebor Bassett site, Sheffield (properties missing in the NPD are
shown by the heavy black outline).
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Figure 13.5. The Mythe Water Treatment Works, Tewkesbury: buildings missing in the
NPD shown by the heavy black outline.
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Figure 13.6. Impact zone in Worcester.
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Do Nothing: Stablising PVd
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Figure 13.7. Stabilising PVd for the Lower Thames project (the different results
represent progressive refinements to the input data sets, based on the data quality score
system, designed to remove uncertainty and increase accuracy).

That ground truthing specifically focused on obtaining better data on
the thresholds of flooding, property ground floor areas, property type, and
the depth/damage data applied. At each stage of the data improvement
process the risk assessment was redone until the results were stable. A
very substantial error in the final risk assessment was avoided in this way,
through targeting areas of maximum data uncertainty.

We need to see this kind of improved risk assessment in its policy
context. Although around £600 was allocated in England and Wales for
flood defence projects in financial year 2007/8, the Government programme
of departmental cuts from 2010 has significantly reduced this allocation
from the projected spend of about £1 billion per year. Without careful
audit of the accuracy or otherwise of the S-P-R-C parameters that influence
EAD calculations, and hence an understanding of the uncertainty of this
risk assessment process, this reduced expenditure cannot be effectively
prioritised.

13.2. Loss of Life in Floods: Uncertainties and Data Issues

13.2.1. The research context

Research carried out by Priest et al. (2008) focused on developing a
methodology to estimate loss of life in flood events. The context and
rationale for this work is that in order to reduce the risk to life in floods
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it is necessary to understand the causes of that loss of life. To do that it
is necessary to pinpoint where, when and how loss of life is more likely to
occur in floods, and what type of interventions and flood risk management
measures may be effective in eliminating or reducing these serious injuries
and fatalities.

The objectives of this research were therefore to develop further a
model, or models, to provide insight into, and estimates of, the potential
loss of life in floods, based on research already undertaken in the UK and
new data collected on flood events in continental Europe. We also aimed to
build partly on existing parallel work (e.g. Jonkman and Penning-Rowsell,
2008), through the use of GIS, to develop systems to map the outputs of
the Risk to Life models that were developed, thus providing some case
example estimates of the potential loss of life in floods. The research took
as a starting point the Risk to People model developed in the UK (HR
Wallingford, 2003; 2005) and assessed the applicability of this model for
flood events in continental Europe, where these events tend to be more
severe and life threatening than in the UK. Data on flood events were
gathered from 25 locations across six European countries as well as data
from an additional case study in the UK.

A number of problems were identified with the current Risk to People
model when applied to the flood data collected from continental Europe. In
particular the model was not designed for the major rivers and mountainous
catchments that are common there compared with the UK and it therefore
resulted in dramatic over-predictions of injuries and fatalities. Moreover,
the model was found to contain several structural weaknesses, such that
predicted fatalities could exceed the population at risk.

Research conducted into the factors surrounding European flood
fatalities also highlighted the importance of institutional arrangements and
mitigating factors such as evacuation and rescue operations in affecting —
i.e. reducing loss of life “on the ground” vis-à-vis model predictions. Finally,
the UK model was found to be hugely (and over) sensitive to variables
measuring “people vulnerability”, which in much of the flooding in the
wider European context is arguably of less importance in than it is in the
UK. This is because the European floods for which information about flood
fatalities were available had water depths and velocities of such a magnitude
that would threaten the safety of most people, not only the elderly and
infirm highlighted by the UK model. A more detailed critique of this model
is provided by Priest et al. (2008).
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13.2.2. A new “threshold” model

As a result of our research a new semi-qualitative “threshold” model which
combines hazard and exposure thresholds and mitigating factors has been
developed (Table 13.8) to assess risk to life from flooding in the wider
European context (herein termed the Risk to Life model). The model has
been designed to be flexible enough to be used and applied at a range
of scales, from a broad assessment at a regional or national scale, to a
more detailed local scale. This flexibility is essential as not all European
countries have detailed flood extent, flood velocity or flood depth data —
or similar information — that is readily available. However, it is envisaged
that the model could be used to allow flood managers to make general and
comparative assessments of risk to life in their localities, and to consider
using the results to assist in targeting resources before, during and after
flooding so that loss of life is minimised.

Regarding uncertainty in the resulting predictions of loss of life in
European floods (i.e. using Table 13.8 in practice), we consider the following
seven factors to be of particular significance:

1. Calibration issues. There are many data issues here, but good quality
data on the numbers of deaths in floods are surprisingly limited and
therefore it is necessary to work with what we currently have and try to
improve these data-sets and our understanding of the factors involved
(Priest et al., 2008, Section 4.3, p. 32).

2. The core variables. The reliance of the Risk to Life model on the need
to be able to produce depth/velocity product model (as in the Risk
to People model also) means that if this cannot be done, the results
will be invalid, not just uncertain. Therefore the inherent uncertainties
in that kind of flood inundation modelling mean that risk to life and
injury cannot always be predicted. Indeed, the locations where this is
now possible are in the minority in England and Wales, and also in
continental Europe.

3. Zoning of the risk. Within the original Risk to People method, an area at
risk needed to be designated and data provided for that area. It thereby
is assumed in modelling risk to life and injury for an area that all of
the data are homogenous across the same zone. To achieve consistency
with this assumption leads to considerable problems in defining these
risk zones, notable amongst which is the different descriptor variables
that should be used to do this: depth, velocity, etc. (Priest et al.,
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Table 13.8. The Risk to Life model (for full model see Priest et al., 2008).
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2008, Section 4.4. p. 35). Within the new Risk to Life model (Priest et al.,
2008, p. 111) this procedure is not strictly necessary as the methodology
permits areas of different sizes to be overlapped in a layering approach,
as illustrated in the French example for the town of Ales (Priest et al.,
2008, Section 10.3, p. 118).

4. The data used in the model. The data that are used in the Risk to Life
model causes some degree of uncertainty. This is firstly due to the proxies
that are used (e.g. old/young age as a surrogate for vulnerability, as age
does not take into consideration of the degree of help that people receive
in the flood event). Secondly, uncertainty is generated when deciding
how to estimate the number of people who are at risk (e.g. what data is
best to use — census data; local counts, etc.) as it will never be possible
accurately to estimate the numbers of people who are truly exposed
(for instance, how many people will be on the street versus how many
people will be able to shelter), time of day of the flood, season, etc.
Priest et al. (2008, Chapter 6) show that the process of applying the
Risk to People model to the Boscastle case study highlights many of the
problems/uncertainties with the approach.

5. Banding. The banding of the physical characteristics (e.g. the depth-
velocity product) within the new approach (Table 13.8) does allow for
some uncertainty with these figures but of course this will be particularly
susceptible at the boundaries of the different categories (Priest et al.,
2008, Section 9.8, p. 114).

6. The approach of the Risk to Life model. The fact that the new model
provides bands and scales (Table 13.8) means that it is perhaps less
precise — and arguably therefore more uncertain — than the Risk
to People approach (with its deterministic estimation of deaths and
injuries) but it does mean that the bands can take many of the
uncertainties and complexities into account and provides a guide rather
than an absolute answer that may be orders of magnitude wrong in
its predictions of fatalities (and as was highlighted by some of the
continental European cases). The new model also allows the tailoring
of the approach, and therefore possibly a reduction in the uncertainty,
by local flood risk managers through the application of more site-specific
data (Priest et al., 2008, Section 9.8, p. 114).

7. Human behaviour and “chance” factors. Accounting for variations in
human behaviour and chance factors cannot be accommodated in either
the Risk to People or the Risk to Life models, yet the treatment
of these factors will always lead to uncertainties in the numbers of
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people who are predicted as killed or injured in floods. Many authors
in this area of research cite this as a problem, and it is mentioned in
many places where we have looked at case studies. We have tried to
include this in the model where it assesses the bands where healthy
adults should be safe unless they do something “foolish” but this is an
imperfect solution to a difficult problem (Priest et al., 2008, Chapter 5,
Section 5.3.1, p. 43).

13.2.3. Future directions

A number of problems remain in further refining the Loss of Life model.
Firstly, the results generated from the application of the new approach are,
as with other models of this type, hugely sensitive to the data input into
the model and the different values attributed to the model components.

Secondly, this factor, along with general limitations in the availability
of data, have highlighted the need to establish reliable, systematic and
consistent methods for collecting data on injury and loss of life following
flood events across Europe, as well as for the need to make available the
data that is collected. A key constraint relates to who is responsible for
collecting such data; which at present varies from agencies at local, regional
and national levels. Therefore we have suggested (Priest et al., 2008) that
protocols are needed to address this issue.

Thirdly, several questions can also be raised at this point about the
purpose of modelling risk to life. For instance, is it aimed at modelling a
worse case scenario? It is unlikely that it will ever be possible to estimate
accurately the number of deaths from a flood event. Therefore, should the
modelling simply be used as a guide to the identification of those areas
which are most likely to suffer fatalities from flooding? It is also possible to
question the feasibility of trying to apply one model to assess the risk to life
for floods across the whole of Europe, due to the large differences in types
of flood hazard, the areas affected, people’s vulnerability, and the varying
institutional arrangements (particularly regarding emergency response and
evacuation).

13.3. Conclusions

The human dimensions of flood risk have received far greater attention in
the last decade than previously (e.g. Jonkman, 2007; Tapsell et al. 2002).
However, the uncertainties in predicting human aspects of floods have often
been neglected in the enthusiasm of agencies and institutions for appraising
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investment in FCERM with techniques such as benefit–cost analysis which
suggest that precision in the economic and human aspects of that calculus
is far greater than it really is.

This chapter has illustrated this lack of precision in the area of risk
assessment with regard to property at risk in UK floodplains and the
propensity of floods to lead to loss of life. We see that predictions in
this area can be at variance with reality by orders of magnitude, not just
small degrees of uncertainty or “error”. The causes of these differences are
multifarious: data issues, modelling biases, and conceptual problems.

It will seem trite and self-serving for us to suggest that “more research
needs to be done in this field”. The only excuse we put forward to support
this contention is that these topics have received systematic attention only
in the last decade or so, whereas other areas of flood risk assessment
have a history of many decades or more. What is needed is balance: we
should not be content to polish the exponents of equations predicting flood
probability if the “consequences” variables suffer from the kinds of errors
and uncertainties that this chapter has explored.
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14.1. Introduction to Flood Risk Management
in the Thames Estuary

London and the Thames Estuary are threatened by flooding from storm
surges in the North Sea and high fluvial flows in the River Thames and
its tributaries. The area at risk is low-lying, densely populated and of
critical importance to the economic wellbeing of the UK. In 1953 a storm
surge in the North Sea breached flood defences at several locations in East
Anglia and the Thames Estuary, resulting in disastrous flooding in which
309 people died. Following the 1953 floods, plans were put in place for
construction of a comprehensive system of flood defences in the Thames
Estuary, the centrepiece of which was the Thames Barrier, completed in
1982 (Gilbert and Horner, 1984). As well as this moveable barrier, the
flood defence system incorporated 337 km of raised defences together with
eight other major barriers across tributaries to the Thames. It has been
estimated that the current flood risk management system will provide a

357



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch14

358 J.W. Hall, H. Harvey and O. Tarrant

flood defence standard of 1:1000 years in the year 2030 for most of the tidal
Thames floodplain, and at present the standard is higher.

With more than 20 years passed since the barrier was constructed, the
Environment Agency embarked upon the Thames Estuary 2100 (TE2100)
project to review strategic options for flood risk management in the
Thames Estuary over the course of the 21st century. Over this time frame
sea level rise and other climatic changes can be expected to increase
flood risk. Continued development in the natural floodplain to promote
economic growth could potentially further increase the consequences of
future flooding.

The TE2100 project has involved comprehensive analysis of flood risk
in the Thames Estuary and of options for future flood risk management.
Summaries of the project are available at the Environment Agency’s website
http://www.environment-agency.gov.uk/te2100. In keeping with the theme
of this volume, in this chapter our emphasis is upon the analysis of
uncertainties in flood risk analysis in the Thames Estuary. We do not deal
with the analysis of options or decisions in TE2100, though the analysis of
uncertainties described here is intended to inform the process of deciding
between flood risk management strategies.

The principles and practice of uncertainty analysis are described
elsewhere in this volume. The aim of this chapter is to provide a practical
example of uncertainty analysis in a complex system in which:

• the consequences of flooding are potentially very serious, in societal and
economic terms;

• the probabilities of flooding are, on the whole, low so require careful
analysis to quantify and cannot be estimated from observed flood
frequencies;

• the potential investment of government resources is high;
• some aspects of the present flood risk, for example, the reliability of flood

defences, are quite uncertain.

This combination of circumstances means that special attention has been
paid to the analysis of uncertainty in TE2100, which means that it is an
illustrative example for similarly high profile applications worldwide.

14.2. Flood Risk Analysis of the Thames Estuary System

The Thames Estuary flood defence system is illustrated in Figure 14.1.
Flooding within the Thames Estuary is a consequence of extreme water
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Figure 14.1. Main components of the Thames Estuary flood defence system.

levels in the southern North Sea (at the mouth of the estuary in the east)
and/or extreme flows in the River Thames, which has its tidal limit at
Teddington in the west (the nearby gauging station is at Kingston, which
is referred to in the description below). Practically the entire length of the
river/estuary east of Teddington is protected by raised defences, as well
as by tide-excluding barriers, most notably the moveable Thames Barrier,
which is designed to prevent extreme tides from penetrating up the river
into London. Flooding in this system may therefore occur by the following
mechanisms:

• extreme water levels in the estuary exceeding the crest level of the flood
defences;

• breaching of the flood defences;
• failure to close the Thames Barrier or other barriers.

Flooding may also occur due to extreme flows in the tributaries that flow
into the estuary (e.g. River Lee and River Roding) or intense local rainfall,
but these mechanisms are not addressed in this chapter.

Analysis of flood risk in the estuary requires a system model that
integrates:

• the joint probability of water levels in the estuary and flows in the River
Thames (together referred to as “boundary conditions”);

• a hydrodynamic model, which is used to compute water levels throughout
the estuary for given combinations of boundary conditions;

• the probability of barrier failure to close;
• reliability analysis of the flood defence structures;
• two-dimensional models of inundation of the floodplain in the event of

flood defence overtopping or breaching;
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• damage functions (e.g. depth-damage functions) that allow computation
of the consequences of flooding.

This process may be summarised in the following equation for Expected
Annual Damage (EAD):

EAD =
∫

p(x)D(x)dx, (14.1)

where D(x) denotes the damage associated with event-defining vector x and
p(x) denotes the associated probability density. In other words, EAD is an
average over all aleatory uncertainty (that to do with natural variability —
Hall and Solomatine, 2008), encoded in p(x). The purpose of uncertainty
analysis is to explore the influence of epistemic uncertainty (that to do with
a deficit of knowledge — Hall and Solomatine, 2008), whether with respect
to parameter values or model structure.

The aleatory uncertainties integrated out in Equation (14.1) are:

• The tidal variation of sea level at the mouth of the estuary (taken as the
tide gauge at Southend) and discharge entering the estuary at Kingston.
It is assumed that an event can be adequately described by a pair of
scalars — peak water level at Southend and the corresponding discharge
at Kingston — where probability is captured in the form of a joint
probability density function over these boundary conditions.

• The reliability of passive structures (defences) and active structures, such
as frontager gates, embedded in the defence line. These reliabilities are
expressed using “fragility curves” (Dawson and Hall, 2002), which express
the conditional probability of defence failure (in some specified mode)
given water level in the estuary against the defence (“load”).

• The reliability of active structures (barriers or barrages), in terms of their
“failure to operate”. If an active structure fails it is assumed that this fail-
ure results in the structure being completely open throughout the event.
The probability of failure to operate is assumed to be unconditional.

Estimation of EAD involves two distinct elements of calculation. One
involves estimating the behaviour of the physical system for given “events”,
where an event is defined by the boundary conditions, the configuration
of the barrier system and the state of the defence system. The other
involves estimating the probability of occurrence of those situations. These
two are then brought together in a probability-weighted sum (integration
of continuous distributions is approximated numerically by sampling and
summation).
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In general, clarity and flexibility are maximised if modelling of the
physical system and consideration of the probable occurrence of particular
events are kept separate. On the other hand, it is sometimes necessary to
introduce optimisations which violate this separation. Any such optimisa-
tion should be undertaken with care. In particular, the intended modes of
use of the model must be taken into account, as otherwise limitations may
be introduced which inhibit these uses. Of particular note is the possibility
of rendering it difficult or impossible to examine uncertainty in particular
variables.

Figure 14.2 shows a high level data flow diagram for an idealised version
of the expected damage estimation. The two paths through the calculation
are marked “S” (statistical) and “P” (physical). In the same way as other
complex applied risk analysis studies (Helton, 1993; Storlie and Helton,
2006), the Thames analysis relied upon Monte Carlo simulation to compute
the risk estimate. If events are sampled according to probability density, all
of the weights are equal to 1/n, where n is the number of samples. The
possibility of weighting the final sum, rather than using brute force Monte
Carlo integration, is included for two reasons. Firstly, in the case of discrete
random variables, such as that of barrier system state, it may be appropriate
to simulate each possibility and take a probability weighted sum of the
results to find the expectation. Secondly, it enables a potentially efficient
class of optimisations to be accommodated. This class includes importance

Figure 14.2. Data flow schematic of the risk (expected damage) estimation process,
showing the separate data flows associated with physical system modelling (P) and
probabilities of occurrence (S).
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Figure 14.3. Data flow diagram of the expected damage calculation as implemented.

sampling, which is not used here, and a pre-processing approach, which is.
Figure 14.3 summarises the procedure by means of which EAD is estimated.

1. Choose a sample of main river Boundary Conditions (BCs) and associ-
ated weights appropriate to the integration method.

2. Evaluate the barrier control rule. If the barrier should be closed,
propagate using both open barrier and closed barrier structure functions,
partitioning weight from Step 1 according to probability of failure to
close the barrier. If the barrier should be open, propagate once only,
using open barrier structure functions and weight from Step 1.

3. Interpolate into structure functions selected at Step 2 using main river
boundary conditions to find the main river water levels.

4. Interpolate in-river water levels spatially from hydraulic model nodes
onto defences.
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5. Estimate return period of the water level at the mouth of each
tributary, and select tributary levels to match by interpolation into
return period/level curve from database.

6. Given a set of in-river water levels, estimate the probability of breaching
of each defence, and volumes given breach and overtopping.

7. Estimate expected damage conditional on these probabilities and
volumes.

8. Accumulate the sum of product of weights from Step 2 and the event
conditional expected damages from Step 7.

The final result of the accumulation in Step 8 is then an estimate of expected
annual damage.

14.3. Sources of Uncertainty in the Flood Risk Calculation

Inevitably there are uncertainties in each step of the analysis described
above. These originate from the scarcity of data with which to estimate the
relevant input distributions and uncertainties in the various models that are
used to compute system states for given inputs. These sources of uncertainty
are summarised in Table 14.1. They relate only to uncertainties in the
present day risk estimate. Looking over the 21st century risk is expected to
change for a variety of reasons, including climate change, development in the
floodplain and deterioration of and/or improvements to the flood defences.
Uncertainties in these future changes are dealt with in Section 14.7.

Table 14.1 also summarises the evidence from which probability dis-
tributions representing these epistemic uncertainties have been estimated.
In Table 14.2 the range of different qualities of evidence for uncertainty
analysis are summarised. Whilst for some variables there are ample
observations from which to estimate uncertainties, in other cases the
evidence is from analogous cases or expert judgment. This classification
can be compared with the results of sensitivity analysis reported later in
this chapter to identify those variables which are a priority for improving
the quality of available evidence.

14.4. Process of Uncertainty Analysis

The evidence summarised in Table 14.1 was used to estimate proba-
bility distributions to represent each of the epistemic uncertainties. A
large Monte Carlo sample was taken from each of these distributions
and the EAD calculation was run with each member of this sample.



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch14

364 J.W. Hall, H. Harvey and O. Tarrant

Table 14.1. Summary of sources of uncertainty in the flood risk analysis calculation.

Variable or
function

Sources of present day
uncertainty

Sources of evidence about
uncertainty

Distribution of
water level at
Southend

Statistical uncertainties in
estimating extreme sea
levels

Standard error estimates from
extreme value analysis of
Southend water level (Dixon
and Tawn, 1994; Dixon and

Tawn, 1995; Dixon and Tawn,
1997). Spread of various fitted
distributions from alternative
extreme value distribution
functions (see Figure 14.4)

Distribution of
discharge at
Kingston

Statistical uncertainties in
extreme discharge

Confidence intervals on extreme
value distribution fitted to
daily flow data.
Inter-comparison of alternative
extreme value distributions

Probability of
failure to close
barriers

Limited empirical evidence of
failure probabilities

Uncertain reliability
of mechanical
and human systems

Reliability analysis of barrier
systems

Water level at
defences

Hydraulic modelling of water
levels in the river, given

boundary conditions.
Includes model
parameterisation (channel/
defence/floodplain
geometry, roughness
parameterisation) and
numerical errors

Comparison with observations
with model predictions,

particularly during extreme
events

Defence crest level Scarcity/accuracy of
measurements

Generic information on typical
errors in survey methods e.g.
ground survey error ≈ ±10 mm,
low level LiDAR error
≈ ±270mm etc.

Probability of
breaching of
flood defences
(conditional
probability
distribution)

Scarcity of information about
defence composition and
condition.

Limitations of quantified
knowledge of failure modes

Lower and upper bounds on
defence fragility functions,
which have been computed
from uncertainty analysis of
reliability calculations

(Continued)
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Table 14.1. (Continued)

Variable or
function

Sources of present day
uncertainty

Sources of evidence about
uncertainty

Probability of
failure to close
frontage gates
and other in-line
structures

Limited empirical evidence of
failure probabilities

Uncertain reliability
of mechanical and human
systems

Reliability analysis of gate
systems

Condition grade of
flood defence
structures

Inaccuracies in condition
assessments of structures

Limited knowledge about the
relationship between
condition grade and
probability of failure.

Benchmarking of condition grade
assessments against examples
of defences of known condition
(a total of 17860 the condition
grades assigned by delegates on
Environment Agency condition
assessment courses)

Inflow volume to

floodplain in the
event of defence
failure.

Assumptions about breach

dimensions and inflow
volume (parameterised as:
weir constant, breach width
multiplier, breach duration,
hydrograph multiplier)

Uncertainty analysis of influential

variables in for breach
dimensions and inflow volume

Ground elevation
in the floodplain

Errors in LiDAR survey of the
floodplain

Ground truth at thirteen points
in the survey area
(root-mean-square error
(RMSE) ranged from 0.021 m
to 0.061 m)

Floodplain water
levels

Model uncertainties in
numerical models of
floodplain inundation

Benchmarking of the approximate
flood spreading model used
versus simulations using a full
shallow water equation solver

Location and type
of properties and
people in the

floodplain

Classification and aggregation
of properties

Benchmarking of property
database

Property threshold
levels

Scarcity of precise threshold
measurements

Survey of 127 properties yielding
a mean threshold height of
0.303m and a standard
deviation of 0.135m

Depth-damage
functions

Sampling and systematic
errors in data on flood
damages (Penning-Rowsell,
2003)

Regional and local variations
Omission of indirect

and intangible damages

Published depth-damage
functions have three curves:
lower, indicative and upper
damage susceptibility
(Penning-Rowsell, 2005).

Indirect and intangible damages
were omitted
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Figure 14.4. Comparison of published extreme value distributions of water levels at
Southend (with 90% confidence intervals shown dotted where available).

Table 14.2. Summary of types of evidence available upon which to base uncertainty
estimates.

Quality of information available
for uncertainty analysis Examples of variables

Direct observations from which to
estimate uncertainties

Distribution of water level at Southend
Distribution of discharge at Kingston
Water level at defences
Defence crest level
Ground elevation in the floodplain
Location and type of properties and people

in the floodplain
Property threshold levels

Observations at locations that may
not be directly applicable to the
Thames Estuary

Depth-damage functions
Condition grade of flood defence structures

No, or very limited, relevant
observations. Model
inter-comparisons available

Floodplain water levels

No relevant observations.
Model-based analysis

Probability of failure to close barriers
Probability of breaching of flood defences
Probability of failure to close frontage gates and

other in-line structures
Inflow volume calculation
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A distribution from the resulting sample of EAD was then constructed
to obtain a picture of how uncertainty in input parameters and model
performance translate into uncertainty in the value of EAD.

Imperfect representation of physical reality by the model components
is expressed as a probability distribution over the value of an intermediate
variable conditional on the model-predicted value of that variable and, in
some cases, the values of other variables, such as spatial location. As an
example, hydraulic model error is expressed as a normal distribution with
mean equal to the model prediction and standard deviation a function of the
location in the estuary (the error model is based upon previous benchmark
studies of the Thames hydraulic models).

14.4.1. Dependence

Unless otherwise stated, variables were treated as being independent and
functions as being independent, conditional upon their inputs. Thus the
reliability of difference sections of flood defence was treated as being
independent conditional upon the input water level.

The tidal and fluvial boundary conditions (z, q) of the system do
show statistical dependence (Svensson and Jones, 2002). Joint probability
analysis of tidal elevations and flows has been conducted in several recent
studies. Write the joint density function on z × q as fZ,Q(z, q). A large
(2,400,000 member) Monte Carlo sample from fZ,Q(z, q) was available
from previous studies, developed using the method described in Hawkes
et al. (2002). We write this large sample as S = {vi = (zi, qi): i = 1, . . .,
2, 400, 000}. The marginal cumulative distributions on z and q are written
FZ(z) and FQ(q) respectively.

Whilst the uncertainty in the dependence function is acknowledged,
the approach adopted here is to incorporate only the uncertainty in
the two marginal distributions (flow at Kingston and Southend water
level). The dependence between these two variables is assumed to be
known and constant. The uncertainties surrounding flow at Kingston and
Southend water level were presented in the form of distributions of errors,
incorporating both sampling errors and model uncertainties. For any given
realisation of this error distribution there is some corresponding distribution
F ′

Z(z) at Southend or F ′
Q(q) at Kingston (we take these errors to be

independent). The joint sample S can be transformed so that its marginals
correspond to F ′

Z(z) and F ′
Q(q) by the transformation z′i = F ′−1

Z (FZ(zi))
and similarly for q′i, for all i, yielding a transformed sample S′. This
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process can be repeated as many times as necessary to generate a stable
Monte Carlo estimate of the implication of the uncertainties in marginal
distributions.

14.4.2. Response surfaces

A näıve risk analysis implementation using the method set out in
Figure 14.3 would propagate the full Monte Carlo sample S, calculating
an event expected damage for each member of the sample and setting all
weights w to the reciprocal of the sample size 1/|S|. The computational
cost of this approach would be prohibitive, however.

If event expected damage varies smoothly in each boundary condition,
it allows an approach based on interpolation. Event expected damage
was calculated at a grid of points covering the boundary condition space.
Event expected damage for any event can then be estimated using bi-linear
interpolation. The resulting response surface is illustrated in Figure 14.5,
which shows event expected damage for the barrier open and barrier closed
situations at a location a few kilometres upstream from the Thames Barrier.
The boundary condition space is represented by the horizontal plane.
Damage is represented by position on the vertical axis and colouration.
The response surfaces illustrate how tides dominate when the barrier is
open, while with the barrier closing both tide (by controlling water level at
time of closure) and flow (through its accumulation during the period of
closure) show some influence.

14.5. Uncertainties in Future Changes

Appraisal of options for flood risk management in the Thames Estuary
involves quantification of future as well as present day risks. Looking into
the future, flood risk will change, due to a variety of processes of change,
and the range of uncertainties also increases. In Table 14.3 the potential
drivers of change in flood risk are summarised. Whilst evidence upon which
to base estimates of these future changes and associated uncertainties is
rather scarce, for TE2100 we have been able to quantify a number of the
key uncertainties.

Future changes in relative sea level in the Thames Estuary are
attributable to both eustatic and isostatic effects. Bingley et al. (2007) stud-
ied vertical land movement in the Thames Estuary, which they estimated
to be in the range 1.09+/–0.64mm/yr. Table 14.4 reports projections of
relative sea level rise in 2095 along with the associated uncertainties, which
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Figure 14.5. Response surfaces of expected damage (integrated over defence state) for
a flood area upriver of and near Thames Barrier, (a) barrier open and (b) barrier closed.

are reported as 90% confidence interval. There remains the question of
how the emissions scenarios should be combined. Some discussion of this
problem is provided by Hall et al. (2007) and references therein.

Howard et al. (2008) employed an ensemble of Hadley Centre Regional
Climate Model (RCM) runs, coupled with the POL CS3 surge model to
analyse potential future changes in storm surge frequency and height. The
analysis showed no significant trend in storm heights in an SRES A1B
scenario.

Analysis of the impacts of climate change on flows in the River Thames
has been conducted by Reynard et al. (2004), Kay et al. (2008) and
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Table 14.3. Drivers of future change in variables or functions that determine flood risk
in the Thames Estuary.

Variable or function Driver of change in the future

Variable: Extreme water level Mean sea level rise
at Southend Changing storm surge frequency

Variable: Discharge at Kingston Changing rainfall
Changing land use

Variable: Discharge in tributaries Changing rainfall
Changing land use

Variable: Probability of failure to close
barriers (that influence river water
levels)

Deterioration of mechanical/control systems
Technological changes may enable improved
reliability in future

Function: Water level at defences Changes in channel morphology

Variable: Defence crest level Settlement

Variable: Probability of breaching of
flood defences (conditional probability
distribution)

Deterioration

Variable: Probability of failure to close
frontage gates and other in-line
structures

Deterioration of mechanical/control systems
Changes in frontage usage

Variable: Condition grade Deterioration

Variable: Weir equation constant None

Variable: Breach width None

Variable: Event duration None

Variable: Inflow volume calculation None

Function: Water level at points in the
floodplain

None

Variable: Location and type of
properties and people in the
floodplain

Land use and demographic changes

Variable: Property threshold levels None

Function: Depth-damage relationships Changing wealth and household contents

Table 14.4. Thames Region relative

time mean sea level change (metres)
from present day to 2095 under 3 dif-
ferent scenarios with 90% confidence
intervals (after Howard et al., 2008).

A1Fi A1B B1

Mean 0.56 0.47 0.40
Min 0.24 0.21 0.19
Max 0.88 0.73 0.61
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Figure 14.6. Estimated future Kingston flow estimates (with 95% confidence intervals)
obtained by combining present day uncertainties with G2G ensemble estimates of
potential increases.

Bell et al. (2008), using a range of downscaling methods, including a
grid-based hydrological model (G2G) coupled with Hadley Centre RCM
ensemble outputs mentioned above. The spread of these various model
studies provides some evidence for quantification of the range of potential
uncertainties in future flow estimates. Each of these model predictions,
along with the associated uncertainties, have been combined with the
(uncertain) estimated present day flows to give the future flows illustrated in
Figure 14.6. This has been done by sampling the ensemble members (with
equal probability) and applying the sampled increase factors to samples
from the (skew) distribution of flow at given return period. The projected
changes associated with the 1:100-year flow has been applied to flows
above this return period, because to extrapolate the growth in increase
to high return periods would result in implausibly high increases (e.g.
approximately 130% at 10,000 years). These estimates should be treated
with considerable caution because they are derived from a relatively small
sample of outputs from only one combination of climate and hydrological
models. The extension of the results to high return periods is not warranted
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by the analysis and is conducted here out of necessity to provide uncertainty
estimates of Kingston flows at all return periods of relevance to TE2100. Of
particular concern is the extent to which the highest postulated increases
in flows at very high return periods are physically realisable given the
floodplain storage that will be utilised at very high flows.

The analysis of future changes in flow and surge has been carried
out separately (though driven by the same Hadley regional climate model
output). These separate analyses will not provide evidence upon which to
assess the potential change in dependency between flow and surge. Svensson
and Jones (Svensson and Jones, 2004, 2005a,b) used regional climate model
and shelf-seas model outputs to make a preliminary assessment of changes
in the dependence between sea surge and river flow, using precipitation
as a proxy for river flow. Several locations on the south- and west-coast
of Britain show significant increases in the dependence between sea surge
and precipitation in the period 2071–2100, compared to the control run
1961–1990. Svensson and Jones did not study the Thames Estuary, so
conclusions for TE2100 are hard to draw.

With regard to uncertainties in future defence condition, Buijs et al.
(2009) report on analysis of embankment consolidation as well as providing
quantified analysis of deterioration for a selected number of defences
on the Dartford to Gravesend embayment. The analysis indicates the
embankments constructed in the 1970s now have a consolidation rate of
4 mm/year with a range of between 1 mm/year and 6mm/year.

Location and type of properties in the floodplain has been explored
by means of a combination of demographic, economic and land use
modelling. The results of the analysis are reported in Hall et al. (2009)
and Hall et al. (2010), who adopted a scenario-based approach to explore
potential land use and socio-economic futures for London and the Thames
Estuary (Figure 14.7).

14.6. Results of Uncertainty Analysis

Figure 14.8 presents the cumulative distribution function for Expected
Annual Damage (EAD) for the Thames Estuary, i.e. it represents the
uncertainty in the EAD taking into account all of the uncertainties listed
in Table 14.1. Risk estimates for the present and for 2100 are illustrated.
The contributions to uncertainty in 2100 are discussed in Section 14.7.
Mean estuary-wide EAD is estimated as £560 million with 10th and 90th
percentiles of £270 and £970 respectively.
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Figure 14.7. Potential socio-economic change in London and the Thames Estuary: maps
of population by ward for present day (centre) and 2100 where clockwise from top left
four maps show different development scenarios (from Hall et al., 2009).

The implication of uncertainties in future changes (with exception of
the socio-economic uncertainty which was dealt with as scenarios rather
than probabilistically) is illustrated in the cumulative distribution function
in Figure 14.8. The mean estuary-wide expected annual damage is estimated
to increase to £1890 million in 2100, with 10th and 90th percentiles of £540
and £2790 respectively. It is clear that future changes add considerably to
the total risk in the Thames Estuary (even without considering changing
vulnerability due to socio-economic change) and also to the uncertainty in
the risk estimate.

The panel on the right-hand side of Figure 14.8 presents the evolution
of the values of the deciles of the distribution of EAD as the number of
samples is increased. These give an indication of the robustness of the
results displayed in the main figure. Examination of these plots indicates
that at the final sample sizes (240 for present day, 220 for 2100) the
general form of the cumulative distribution functions is stable, although
local adjustments continue. These adjustments relate predominantly to two
situations.

1. Quantiles at high cumulative probabilities show lower stability than
those at low cumulative probabilities. Much larger sample sizes are
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Figure 14.8. Distribution of EAD for the whole Thames Estuary (solid line: present day;
dashed line: 2100). Right-hand panels show convergence of the risk estimates during the
Monte Carlo sampling procedure.

needed to estimate the upper tail of the distribution precisely, as the
probability density is low and only a very small proportion of the overall
sample provides information in this region.

2. Stability is also low around regions of low gradient in the cumulative
density plots, where EAD increases rapidly with a small increase in
cumulative probability. Here, the variation relates to the sample density
needed to precisely locate such steps in the function.

Analysis was halted at the point shown in these diagrams as considerable
additional computational expense would have been required for relatively
minor improvements in precision.

Figure 14.9 illustrates how uncertainty in the flood risk estimate
varies through the estuary, by presenting the coefficient of variation of the
risk estimate for a number of distinct flood areas. This EAD is located
spatially largely upriver of the Thames Barrier, with lesser contribution
from elsewhere in the estuary. This pattern holds in 2005 and 2100. The
particular forms of the curves of cumulative probability of EAD (not
illustrated here) vary considerably depending on location, reflecting the
nature of the topography and distribution of building stock.
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Figure 14.9. Map of coefficient of variation of EAD.

14.7. Sensitivity Analysis

Variance-based sensitivity analysis (Saltelli et al., 2000) provides a means of
identifying variables that make the greatest contribution to the variation in
EAD. It was noted above that some of the uncertainty estimates for input
variables to the risk calculation are more reliable than others. Sensitivity
analysis provides a means of identifying the extent to which the EAD
estimate is sensitive to these assumptions. It also helps to identify variables
that should be targets for future data collection.

Variance-based sensitivity analysis requires a large number of model
runs, with the number of runs increasing with the number of input variables.
The run time of the system model described above is sufficient that it
was necessary to reduce the problem order. First, the input variables were
grouped by type. Thus, for example, it is assumed that crest level error is
fully dependent at the scale of the flood areas shown in Figure 14.9, such
that, for a given sample member, all defences in a flood area will have the
crest levels corresponding with the same cumulative probability. The result
of this grouping was a set of 12 variables. Next, a screening method was
applied to identify and remove variables from the analysis that make no
noticeable contribution to the uncertainty in the risk estimate.

14.7.1. Screening using the Method of Morris

The Method of Morris (Morris, 1991; Saltelli et al., 2000) was applied to the
12 variable groups. This method provides an indication of which variables
influence the output of the model most strongly and, more importantly,
which have little or no influence. The results of the Morris analysis are,
for each input variable, a pair of measures, µ and σ, which are measures,
respectively, of the total effect of a given variable and the extent to which
it interacts with other variables. The Method of Morris does not provide a
robust ranking of variables’ contribution to variance in output (EAD), but
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Figure 14.10. Output of Method of Morris for a typical flood area.

a more qualitative indication. Its purpose is to separate those variable with
a significant effect from those without.

Figure 14.10 shows example results for a location a few kilometres
upstream of the Thames Barrier. We see that defence crest level and
hydraulic model error dominate, with the flow boundary condition and
the choice of value of the weir equation constant following. However, note
that crest level will tend to be over-emphasised because of the assumption
of full dependence in variations in level of all relevant defence sections.
Sea level uncertainty is also clear of the main group of less influential
variables.

The results of the Method of Morris were used to filter variables with
no noticeable influence on the estimate of EAD so that the subsequent
variance-based analysis could focus upon the most influential variables,
which were found to be: Southend water level; Kingston flow; water level at
defences; crest level; inflow volume calculation; probability of breaching;
condition grade; floodplain water levels; property threshold levels; and
depth damage functions.
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14.7.2. Variance-based sensitivity analysis

Variance-based sensitivity analysis decomposes the variance V in the EAD
estimate (labelled here as Y ) into the contributions from the various
input factors, which can be labelled X1, . . . , Xt. The sensitivity index Si

represents the fractional contribution of a given factor Xi to the variance
in EAD. In order to calculate the sensitivity indices the total variance V

in the model output Y is apportioned to all the input factors Xi as (Sobol,
1993):

V =
∑
i<j

Vi +
∑
i<j

Vij +
∑

i<j<l

Vijl + · · · + V1,2,...,k,

where

Vi = V [E(Y |Xi = x∗
i )],

Vij = V [E(Y |Xi = x∗
i , Xj = x∗

j )] − Vi − Vj ,

V [E(Y |Xi = x∗
i )] is referred to as the Variance of the Conditional

Expectation (VCE) and is the variance over all values of x∗
i in the

expectation of Y given that Xi has a fixed value x∗
i . This is an intuitive

measure of the sensitivity of Y to a factor Xi, as it measures the amount
by which E(Y |Xi = x∗

i ) varies with the value of x∗
i , while all the effects of

the Xjs, j �= i, are averaged. The first order (or “main effect”) sensitivity
index Si for factor Xi is therefore defined as:

Si = Vi/V.

Also of interest is the influence of factor Xi when acting in combination
with other factors. There are 2k − 1 of such interactions, so it is usually
impractical to estimate the effect of all of them. A more practical approach
is to estimate the k total sensitivity indices, STi (Homma and Saltelli, 1996):

STi = 1 − E(Y |X∼i = x∗
∼i)

V (Y )
,

where X∼i denotes all of the factors other than Xi. The total sensitivity
index therefore represents the average variance that would remain as long
as Xi stays unknown. The total sensitivity indices provide an indicator
of interactions within the model. For example, factors with small first
order indices but high total sensitivity indices affect the model output Y

mainly through interactions — the presence of such factors is indicative of
redundancy in the model parameterisation.
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For more in-depth description of variance based sensitivity analysis, the
reader is referred to Saltelli et al. (2000) and Saltelli et al. (2004). For the
purposes of the sensitivity indices in this study, the software SimLaba was
used.

Variance based sensitivity analysis was applied to the ten variable
identified as being influential by the Morris analysis described above, setting
the variables not included in these shortlists to median values. In total, 768
samples were run, and results for 384 and 768 samples compared. Few
changes in rank order of importance were found in the dominant variables,
and additional runs were deemed unlikely to offer further insights.

Results are presented in Figures 14.11 and 14.12 for first order (Si)
and total order (STi) indices respectively. The legend order is consistent
between these plots to aid comparison. Variables with an index value of
less than 5% of the maximum are excluded. Variables that have a much
higher total sensitivity index than the first-order sensitivity index indicate
redundancies in the model. This is to be expected in the present model as,
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Figure 14.11. Estuary-wide first-order sensitivity indices.

aSimLab was developed by the EU Joint Research Centre and is freely available for
non-profit use from: http://www.jrc.cec.eu.int/uasa/prj-sa-soft.asp.
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Figure 14.12. Estuary-wide total sensitivity indices.

for example, a systematic reduction in defence crest levels is very similar in
effect to a systematic increase in water levels against those defences.

Variance-based sensitivity analysis indicates that the input variables
which contribute most to uncertainty in estimates of EAD are defence crest
level and water level at the defences. Crest level and river water level are
closely related. That they both appear ahead of others suggests that the
total error in the maximum head achieved during an event is a dominant
effect. Other variables which show influence in certain areas are: river flow at
the western boundary (Kingston), inflow volume, water level at the eastern
boundary (Southend), and floodplain water levels. Uncertainty on Southend
water level is highest on low probability events, the influence of which is
correspondingly limited. In general there is high consistency between first
order and total order rank orders.

The dominance of crest level uncertainty in the central and upper
reaches of the estuary (which contribute most to flood risk) is consistent
with the fact that almost all defences in this area have crest level standard
deviation set at 0.34m, based on the known quality of survey data available
for this study. Better quality survey data would reduce the contribution of
crest level to the total uncertainty in the risk estimate.
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The sensitivity results for 2100 show that sea level rise also contributes
significantly, and depth-damage curve error shows some influence. The
uncertainty in sea levels (see Figure 14.4) might be expected to be more
influential (both at present and in 2100), but this is highest on low
probability events, the influence of which is correspondingly limited. Sea
level rise, meanwhile, influences events of all probabilities of occurrence
equally, so is actually more influential. The appearance of depth-damage
curves in 2100 when it does not show for the present day is because more
flooding is predicted to occur in 2100 (assuming no change to the flood
defence system).

As with the Method of Morris, samples of vector valued variables (e.g.
defence crest level) were generated with equal cumulative probability. This
is in contrast with the uncertainty analysis, where each element of some
such variables (thus, for example, the crest level of each individual defence)
is sampled independently. This limitation will tend to over-emphasise the
influence on total variance of vector-valued variables where errors are largely
independent, and the greater the multiplicity of the variable (that is, the size
of the vector), the greater the extent of this bias. The dominating presence
of crest level error may be to some extent an artefact of this computation-
ally necessary simplification. The variables associated with the boundary
conditions, Southend water level and Kingston flow, are singletons. Their
influence may, as a corollary of the above, be underestimated relative to
vector-valued variables. The strong showing of some these variables is
therefore particularly notable: boundary condition uncertainty contributes
significantly to output uncertainty. An intermediate case is that of river
model error (referred to as “water level at defences” error). In uncertainty
analysis this is assumed to be fully dependent for a given sub-system
of defences, and fully independent between. The possible bias resulting
from an assuming estuary-wide dependence in sensitivity analysis is thus
considerably less than for defence crest level. A further corollary is that
those variables with high multiplicity but low influence can be presumed to
have very low contribution to output uncertainty.

14.8. Conclusions

Decisions upon investment in major capital works of flood defence, such as
in the Thames Estuary, are based upon quantified estimates of flood risk.
Given the significance of these decisions it is important to scrutinise the
uncertainties in risk estimates. These originate from incomplete information



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch14

Uncertainty and Sensitivity Analysis in the Thames Estuary 381

about input variables in the risk calculation and from uncertainties in the
process-based models used to compute water depths in the floodplain and
consequential damage. In this chapter we have described in outline the
system of models used to compute economic flood risk in the Thames
Estuary, and an associated uncertainty and sensitivity analysis.

The principles and practice of Monte Carlo uncertainty analysis are well
known. Methods of variance-based sensitivity analysis are also becoming
more widely used (Hall et al., 2005; Hall et al., 2009). However, complex
flooding systems such as the one described in this chapter still represent a
considerable challenge for uncertainty and sensitivity analysis.

In order to implement the uncertainty analysis, the system model has
been reconfigured so that the process of sampling from random variables is
separated from the process of calculating flood depths and damage. In this
way it is possible to access and manipulate each of the sampling procedures
and analyse their influence.

The theoretical structure for flood risk analysis with systems of flood
defences is now well known (Dawson et al., 2005). In the case of the Thames
Estuary it has been necessary to pay additional attention to the treatment
of barrier states and barrier failure. The approach that is proposed here is
flexible and scalable so that it could be readily applied to adapted system
configurations with new barriers.

The boundary conditions in the analysis (flows and tide water levels at
opposite ends of the system) are known to be correlated. A procedure for
resampling the joint distribution of these two variables was implemented,
based upon rescaling the marginal distributions.

The computational expense of a single realisation of the risk analysis
to compute EAD is considerable. In order to conduct uncertainty analysis
involving repeated propagation of large Monte Carlo samples, a family of
response surfaces was constructed. Cloud computing facilities were used to
distribute the analysis on multiple compute nodes (Harvey and Hall, 2010).
Reasonably stable quantiles for the distribution of EAD were obtained
based upon 220 samples of the input vectors.

Variance-based sensitivity analysis for systems with large numbers of
input variables is computationally more intensive. Non-influential variables
were screened out using the Method of Morris before applying Sobol’s
method for calculating the variance-based sensitivity indices. The computa-
tional expense has been reduced by the grouping of variables, though at the
cost of having to make a conservative assumption about their dependence,
which is then reflected in an over-estimate of their influence on the EAD
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estimate. It was not necessary to make this assumption in the uncertainty
analysis of EAD.
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15.1. Introduction

Ensemble forecast techniques are beginning to be used for hydrological pre-
diction by operational hydrological services throughout the world. Ensemble
weather and climate prediction systems have been established, with the first
of these systems becoming operational in the early 1990s, predicting the evo-
lution of the atmosphere from weather to climate scales. Examples are the
EPS (Ensemble Prediction System) operated by the European Centre for
Medium Range Weather Forecasts (ECMWF) (Molteni et al., 1996) and the
GEFS (Global Ensemble Forecast System) operated by the National Cen-
ters for Environmental Prediction in the US (Tracton and Kalnay, 1993).

Atmospheric ensemble forecasts are generated by perturbing the initial
conditions and introducing different model physics, assumed a priori to
be equally likely, and computing the evolution of the atmosphere due
to these perturbed initial conditions and different model physics. With

387
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the availability of predicted ensemble forcings, such as precipitation and
temperature, producing hydrological ensemble forecasts from them is a
logical next step (Bartholmes and Todini, 2005). Such ensembles have found
application in several operational fluvial forecasting systems used for the
short and medium ranges. The European Community Sponsored EFAS
system (De Roo et al., 2003; Gouweleeuw et al., 2005, Pappenberger et al.,
2005) and the Hydrological Ensemble Forecast System (HEFS) in the US
National Weather Service (NWS, 2007a) are prime examples.

For water resources planning and management, ensemble forecasts with
lead times as long as several months are necessary. Such long-range hydro-
logic forecasts may be obtained through the use of long-range atmospheric
ensemble forecasts from, for example, historical observations, the ECMWF
seasonal ensemble forecasting system, the NCEP Climate Forecast System
(CFS) (Saha et al., 2006) or downscaled General Circulation Models (GCM)
predictions (Luo et al., 2007). These ensembles can then be processed
through a hydrological-hydraulic model cascade to provide a long-range
ensemble water resources forecasts. An example of such long-range forecast-
ing based on historical observations is the Ensemble Streamflow Prediction
(ESP) procedure (Day, 1985) used by the US NWS. In this procedure
an empirical ensemble of precipitation and temperature inputs is sampled
from the long-term historical time series of catchment-average temperature
and precipitation. Ensemble forecasts are attractive because they not only
provide an estimate of the most probable future state of the system, but
also an estimate of the range of possible outcomes. Indeed, many users
are risk-averse, and are often more concerned with having a quantitative
estimate of the probability that catastrophic outcome may occur than with
having a single estimate of the most probable future outcome.

Not only does ensemble prediction offer a general approach to prob-
abilistic hydrologic prediction, it also offers an approach to improve the
absolute accuracy of hydrologic forecasts by helping identify and address
all major sources of uncertainty. To produce reliable (i.e. probabilistically
unbiased) and skilful hydrologic ensemble forecasts, the forecast system
must be able to reduce and account for uncertainties from a wide range of
sources. These include uncertainty in precipitation and other atmospheric
forcing inputs, uncertainty in initial hydrological conditions, uncertainty
in structures and parameters of hydrologic models, and uncertainty in
human regulation and control of hydrologic variables. Figure 15.1 identifies
major sources of uncertainty that need to be addressed in a comprehensive
hydrologic ensemble forecast system (NWS, 2007b).
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Figure 15.1. Major sources of uncertainty in a hydrological ensemble forecasting system
(NWS, 2007b). PE stands for Potential Evaporation, SWE stands for Snow Water
Equivalent.

The existing atmospheric and hydrological ensemble forecast techniques
do not fully account for important uncertainties (Pappenberger et al.,
2005). As these techniques rely on imperfect models of the processes they
represent, model forecasts (both atmospheric and hydrologic) contain a
complex set of biases that must be removed to meet the user require-
ments. In this chapter, we describe all important aspects of hydrological
ensemble forecasting from the viewpoint of developing an integrated, end-
to-end hydrologic ensemble forecast system that leverages recent scientific
advances and, if available, human forecasters: atmospheric aspects, hydro-
logical aspects, data assimilation (DA), verification and post-processing as
shown in Figure 15.2.

The term ensemble preprocessing in Figure 15.2 refers to the process
to create an unbiased and skilful ensemble NWP forecast from either a
raw deterministic NWP forecast or a raw ensemble NWP forecast (see
Section 15.2). The data assimilator in Figure 15.2 uses available measure-
ments to determine an ensemble of hydrological states (see Section 15.3.1).
The ensemble post-processor in Figure 15.2 creates a bias-corrected ensem-
ble from a deterministic hydrological forecast or an ensemble hydrological
forecast (see Section 15.3.2 and 15.3.3). The preprocessor, data assimilator
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Figure 15.2. Major components in an operational hydrological ensemble forecasting
system (NWS, 2007b). QPF stands for Quantative Precipitation Forecast and QTF
stands for Quantative Temperature Forecast, SWE stands for Snow Water Equivalent.

and post-processor can be used and are often researched independently from
each other. Ideally, they should be used in combination with one another.
However, research into the combined use of all components envisioned
is at an early stage and a number of significant challenges remain (see
Section 15.5). Combined use of the preprocessor and the post-processor
has been realised in the HEPS system, which is currently under testing for
deployment by the NWS.

15.2. Atmospheric Uncertainty Aspects

The ideal input into a hydrological ensemble prediction system would be an
ensemble of weather and climate forecasts that has three essential properties
(WMO, 2007; Ebert, 2007):

• reliability: the agreement between the forecast probability and the
observed frequency over many cases;

• sharpness: the tendency to forecast with a concentration of large
probabilities around some value, as opposed to small probabilities spread
over a wide range of values;

• resolution/discrimination: the ability of the forecast to produce different
probabilities of exceedance for different events/discriminate between true
events and true non-events.

An important atmospheric aspect of hydrologic ensemble prediction
is whether current atmospheric forecasts account for all of the important
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meteorological and climatological uncertainties. Existing raw ensemble
weather and climate forecasts meet the above properties to only a limited
degree. This is not only due to the number of ensemble members being lim-
ited by computing resources (and hence subject to sampling uncertainty),
but also because the EPS does not currently account for all significant
sources of uncertainty. The result is that the forecasts are not necessarily
reliable; they can be biased in the mean and typically do not display enough
variability, leading to an underestimation of the uncertainty (Buizza et al.
2005).

Different approaches have been proposed to derive reliable proba-
bilistic forecasts from raw model ensembles, a process that involves a
combination of bias correction and downscaling in some form. Most of
these methods are based on the idea of correcting the current forecast
using past forecasts and corresponding observations, as has been done for
deterministic forecasts. These include the Bayesian Processor of Output
(BPO) (Krzysztofowicz, 2004), Bayesian Model Averaging (BMA) (Raftery
et al., 2005), ensemble dressing/best-member method (Roulston and Smith,
2003), non-homogeneous Gaussian regression (Gneiting et al., 2005), logistic
regression (Hamill et al., 2004; Hamill and Whitaker, 2006), analogue
techniques (Hamill and Whitaker, 2006), forecast assimilation (Stephenson
et al., 2005), and constrained bivariate modelling of forecast and observed
variables that accounts for temporal scale-dependent relationships in both
forecast errors and precipitation and temperature variability over the entire
forecast period (Schaake et al. 2007).

Reggiani and Weerts (2008a) present an application of the BPO for a
deterministic precipitation forecast. Slougther et al. (2007) applied BMA
to a multi-model ensemble of spatially-distributed rainfall forecasts for the
coastal region of the north-western US (Oregon). Improvements of the
best-member methods have been proposed by Wang and Bishop (2005)
and Fortin et al. (2006). Wilks and Hamill (2007) compared logistic
regression, non-homogenous Gaussian regression and ensemble dressing
using a 15 member reforecast dataset with a lead time of 15 days from
1979 to present (Hamill and Mullen, 2006). An important conclusion by
Wilks and Hamill (2007) is that there appears to be no single best forecast
method for all applications, and that extensive work is necessary on the
ensemble model output statistics methods in the future.

As the development and application of bias correction and down-
scaling techniques are usually location-specific, it is difficult to compare
objectively their performance over a range of space-time scales, and to
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assess systematically their strengths and weaknesses. Toward that end,
significant community-wide effort is necessary. From the point of view of the
operational centres, data requirements for bias correction and downscaling
are a large issue as they require some form of systematic hindcasting over a
long period (Hamill and Mullen, 2006). Also, it is expected that, due to the
highly variable nature of precipitation, data requirements for precipitation
ensemble hindcasts, particularly for significant to extreme precipitation
events, may differ greatly from those for other atmospheric variables.

15.3. Hydrologic Uncertainty Aspects

In addition to atmospheric uncertainty as described above, a complete
hydrologic ensemble forecast system must be able to reduce, to the
greatest extent possible, and account for all major sources of hydrologic
uncertainty. These include model initial conditions (e.g. soil moisture and
snow water equivalent), model parameters, model structures, and human
control of hydrologic variables (e.g. reservoir operations, irrigation) (see
Figure 15.1). It is expected that even with timely implementation of
“best available” science and technology, there will always exist significant
“residual” hydrologic uncertainty, which will have to be accounted for via
statistical modelling.

Given the above, a hydrologic ensemble forecast system may include
several components to deal with various hydrologic uncertainties (see
Figure 15.2). In Section 15.3.1 we describe DA post-processing and multi-
model ensembles in some detail.

15.3.1. Data assimilation

The role of DA in hydrological ensemble prediction is to produce the best
possible estimates of initial hydrological conditions and as such to constrain
uncertainty at the start of the forecast. Besides a realistic representation
of the system state (soil moisture, snow water equivalent, groundwater,
etc.) by the ensemble mean, the ensemble members must provide realistic
estimation of the uncertainty in the system state.

Observed precipitation and temperature data will typically be used
in establishing (hydrological) model boundary conditions. Available obser-
vations can be effectively used in quantifying and reducing the error in
the modelled water levels and discharges from the process models. These
observations may include in situ measurements of water levels, discharge,
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snow water equivalent, soil moisture and groundwater levels. They may
include remotely sensed observations from radar or satellites.

Sequential DA techniques provide the general framework in real-time
forecasting for explicitly taking into account input uncertainty, model
uncertainty and output uncertainty. The Extended Kalman Filter (EKF),
an extension of the Kalman filter (Kalman, 1960) for linear systems,
became popular in hydrologic forecasting in the late 1970s and early 1980s
(Chiu, 1978; Georgakakos, 1986a,b; Kitanidis and Bras, 1980). However, the
linearisation in the EKF is notoriously inaccurate if the non-linearities are
strong. A possible way to circumvent these problems is by letting the errors
evolve with the non-linear model equations by performing an ensemble of
model runs. This has led to the development of the well-known Ensemble
Kalman Filter (EnKF) (Burgers et al., 1998; Evensen, 1994) and particle
filter techniques such as sequential importance resampling filter and residual
resampling filter (Arulampalam et al., 2002; Doucet et al., 2001; Gordon
et al., 1993).

Dual parameter and state estimation was investigated using EnKF
techniques (Moradkhani et al., 2005b; Vrugt, 2004). Weerts and El Serafy
(2006) investigated the use of particle filters and EnKF using a conceptual
hydrological rainfall runoff model for improving flood forecasts. Slater and
Clark (2006) investigated the use of EnKF for assimilating snow water
equivalent data into a streamflow forecasting model SNOW-17 for possible
implementation in the US NWS operational forecasting system. Francois
et al. (2003) showed the potential to improve streamflow simulations
by assimilating ERS-1 SAR data into a conceptual hydrological model.
El Serafy and Mynett (2004) showed the potential of EnKF by comparing
it with EKF using a 1D hydrodynamic model of the Rhine to improve flood
forecasting. Other applications of using EnKF to update hydraulic flood
forecasting models are given by Neal et al. (2007), Madsen et al. (2003)
and Shiiba et al. (2000).

15.3.2. Post-processing

Despite a long history in the hydrologic literature, automatic DA is
relatively new in operational hydrology for various reasons. Similarly,
explicit accounting of parametric uncertainty via a parametric uncertainty
processor and accounting of structural uncertainty via, e.g. multi-model
ensemble techniques are only in their infancy in the operational arena.
As implementing these advances requires rather significant upgrades to
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current forecast systems, it is likely that in the early days of operational
hydrologic ensemble forecasting, a purely statistical “catch-all” ensemble
post-processor is necessary to reduce and account for the integrated
hydrologic uncertainty (Seo et al., 2006).

Post-processing of deterministic hydrological forecasts is often done by
applying simple Autoregressive- (AR) and/or Moving Average (ARMA)
type models (Broersen and Weerts, 2005; Madsen et al. 2000). This type
of post-processing is used in many operational flood forecasting systems
around the world. Recently, new initiatives on post-processing of hydrolog-
ical forecasts (including ensemble forecasts) from a probabilistic viewpoint
have been described in the literature. Reggiani and Weerts (2008b) applied
the BPO method (Krzysztofowicz, 2004) to post-process deterministic
hydrological forecasts of the River Rhine. Reggiani et al. (2008) applied
the BPO to ensemble hydrological forecasts, again for the River Rhine.

In the US NWS, an ensemble post-processor of an ARX type has
been developed and implemented (Seo et al. 2006). A combination of
linear regression and probability matching, it attempts to correct biases in
model streamflow simulation in the mean, and to account for all hydrologic
uncertainties in a lump-sum manner. While shown to produce reliable
streamflow ensembles in dependent validation, independent validation
indicates that the procedure is subject to potentially large uncertainties
due to sampling and/or non-stationarities (see Figure 15.3).

The final observation is that post-processing of hydrological forecasts
follows the trend in the atmospheric community on post-processing of
deterministic and ensemble forecasts. Methods proposed in the literature
are promising but yet need to prove themselves in an operational real-time
forecast setting.

15.3.3. Multi-model ensemble

Estimation theory states (see, e.g. Schweppe, 1973) that combining
informative forecasts from different models reduces forecast uncertainty
(Georgakakos et al., 2004). It is also well known that structural errors in
hydrologic models are very difficult to correct. As these errors tend to
be strongly correlated in time (for lumped models) or in space and time
(for distributed models), addressing them through post-processing requires
complex and often heavily parameterised statistical modelling. Multi-model
ensembles offer potential for accounting for structural uncertainty without
such data- and parameter-intensive statistical modelling.
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Figure 15.3. Reliability diagrams for probabilistic prediction at Newport, Pennsylvania,
US, based on post-processed ensemble traces in the dependent (left-hand side) and
independent (right-hand side) validation periods. The diagrams for 1- and 5-day-ahead
predictions are in solid and dashed lines, respectively. The two lines for each lead time
correspond to the two dependent (left-hand side) and independent (right-hand side)
validation periods. The threshold is the 97.5th-percentile flow. The solid and dotted
lines in the lower-right corner are the histograms of the predicted probability for lead
times of 1 and 5 days, respectively (from Seo et al. 2006).

Vrugt and Robinson (2007) compared BMA and EnKF for probabilistic
streamflow forecasting. The results from that study suggest that for
the watershed under consideration, BMA cannot achieve a performance
matching that of the EnKF method. Beckers et al. (2008) applied the
BMA method to a multi-model ensemble, made up of several meteorological
forecasts combined with a hydrological model and a model cascade of a
hydrological-hydraulic model for the forecasting point at Lobith on the
Rhine. Table 15.1 shows the Root Mean Squared Error (RMSE) of the
different forecasts used in the BMA method. Figure 15.4 shows an example
of the outcome of the BMA.

15.4. Verification

The methods discussed above are used to improve the reliability, skill
and resolution of probabilistic hydrological forecasts. Forecast verification
techniques may be applied to assess these attributes. As with the ensemble
forecasting approach, these techniques have been developed primarily
within the atmospheric sciences, but are often equally applicable to other
disciplines, such as the hydrological sciences (Wilks, 2006).
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Table 15.1. RMSE of the individual forecast models and the BMA mean forecast for
different lead times, with the lowest RMSE’s highlighted in grey. All calculations used
a training period of 28 days (from Beckers, Sprokkereef and Roscoe, 2008).

Forecast
Meteorological

input

Hydrological/
hydraulic

model
RMSE

(24–48 hrs)
RMSE

(48–72 hrs)
RMSE

(72–96 hrs)

1 HIRLAM HBV 0.252 0.329 0.428
2 ECMWF HBV 0.249 0.313 0.379
3 DWD-LM HBV 0.249 0.302 0.347
4 DWD-GME HBV 0.249 0.306 0.345
5 HIRLAM HBV/SOBEK 0.196 0.258 0.381
6 ECMWF HBV/SOBEK 0.196 0.250 0.340

7 DWD-LM HBV/SOBEK 0.195 0.238 0.314

8 DWD-GME HBV/SOBEK 0.195 0.239 0.303

9 LobithW (statistical model) 0.176 0.250 0.366

BMA mean forecast 0.179 0.235 0.307
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Figure 15.4. BMA water level (m) forecast (solid line) with the lower and upper
confidence bounds (dashed lines) versus measured water level (m) (marker x) at Lobith
for a water level peak in March 2007 (from Beckers, Sprokkereef and Roscoe, 2008).

From the viewpoint of operational hydrologic forecasting, there
are at least three types of verification of interest: (i) diagnostic;
(ii) trend; and (iii) prognostic. Diagnostic verification is concerned with
assessing different attributes of ensemble forecasts, such as reliability, skill,
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resolution, discrimination, etc., to diagnose the performance of the forecast
system and process so that cost-effective improvements may be made. Trend
analysis is concerned with being able to discern and assess improvement in
forecast quality over time. Prognostic verification is concerned with being
able to provide the users of the forecast, such as the forecasters and the
emergency managers, with verification information that may be directly
used for decision making. Such verification information would come from
translating and casting all available verification information into the context
of the forecasting and decision-making problem at hand.

Methods for verification of forecasts are well established (Wilks, 2006),
and such verification provides clear insight into value and skill of the
ensemble predictions at different lead times, giving valuable information
to the forecaster in interpreting the forecast products.

Roulin and Vannitsem (2005) evaluated the skill of a hydrological
ensemble prediction system, integrating a water balance model with
ensemble precipitation forecasts from ECMWF — EPS, for two Belgian
catchments. Recently, verification of ensemble forecasting in the Rhine basin
was carried out by the German Bundesanstalt für Gewässerkunde (BfG or
Federal Institute of Hydrology) in cooperation with Dutch Waterdienst
(Renner and Werner, 2007). Results clearly show that bias in the ensemble
hydrological forecasts is not only influenced by the quality of the ensemble
meteorological forecasts, but also by the catchment size and the variability
of the hydrological regime.

To ascertain the quality of probabilistic hydrological forecasts, several
verification techniques can be applied. Reliability can be assessed through,
for example, reliability diagrams or attribute diagrams. An example is given
in Figure 15.5. These diagrams measure the agreement between predicted
probabilities and observed frequencies. If the forecast is reliable, then
whenever the forecast probability of an event occurring is P, that event
should occur a fraction of P of the time (Ebert, 2007).

Measures for assessing the overall quality of ensemble forecasts include
the Brier Score (BS), which measures the mean squared error in the
probability space for a specific threshold. The Brier Skill Score (BSS)
measures skill relative to a reference forecast (usually climatology or näıve
forecast). The Ranked Probability Score (RPS) is another way of assessing
the overall quality of the probabilistic forecast. RPS measures the squared
difference in probability space when there are multiple categories (when
there are only two categories RPS is equal to the BS). As with the BSS, the
ranked probability skill score measures skill relative to a reference forecast.
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Figure 15.5. Example of a reliability diagram for the gauging station at Andernach on
the Rhine. The dark-grey line with circles shows the reliability of the error corrected flow
forecasts (Q.fah) at Andernach, verified against the observations (Q.m). The light-grey
line with triangles shows the reliability of the uncorrected flow forecast (Q.fh) verified
against the baseline simulation (Q.uh). Confidence intervals are given for α = 0.05.
Histograms of forecast probabilities are given in the upper-left and lower-right corners
(from Renner and Werner, 2008).

RPS applies when there are a discrete number of categories, but it can be
extended to continuous categories as the Continuous Ranked Probability
Score (CRPS). CRPS is particularly attractive in that it does not depend
on the particular choice of thresholds, and that it allows comparative
verification with single-value forecasts, for which CRPS reduces to absolute
mean error.

The Relative Operation Characteristic (ROC) is a measure to assess
the ability of the forecast to discriminate between events and non-events.
The ROC curve plots the hit rate (Probability of Detection (POD)) against
the false alarm rate (Probability of False Detection (POFD)). The curve
is created using increasing probability thresholds to make the yes/no
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Figure 15.6. Example of a ROC diagram for the gauging station at Lobith on the River
Rhine. In this case the ensemble flow forecast is verified against the observed flow at
a threshold of 3110 m3/s, which is the 90% exceedance frequency. The curves show the

ROC for lead times of 4, 7 and 9 days (from Renner and Werner, 2008).

decision (WMO, 2007). Figure 15.6 shows an example of the ROC for
the ECMWF–EPS discharge forecast for Lobith (River Rhine) for 90%
exceedance frequency at three different lead times (4, 7 and 9 days)
determined over three years of ensemble forecasts (20052007). As expected,
the skill measured by the ROC curves decreases with increasing lead times.

15.5. Promises and Challenges

It is clear that the use of ensembles of atmospheric inputs, combined with
advanced methods of reducing and accounting for hydrologic uncertainties
have significant benefits in providing a more complete, and statistically
sound quantification of uncertainty in the hydrological forecast. The utility
of ensemble forecasts in increasing the skill and lead time of hydrological
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predictions has been shown by several authors (Regimbeau et al., 2007;
Roulin; 2007), and Roulin (2007) showed that using the ensemble forecast,
or even the ensemble mean, to underpin flood warning has more relative
economic value than using the deterministic forecast alone. Such translation
of the probabilistic forecast into an economical value that balances the
expected damage due to a flood event against the expected loss due
to a false warning (and possible ensuing evacuation) can thus provide
stakeholders with an instrument for rational decision making in the presence
of uncertainty (Raiffa and Schlaifer, 1961).

Development of hydrologic ensemble forecasting techniques is at an
early stage. Developing improved techniques will require major interna-
tional interdisciplinary collaborations involving forecast producers and fore-
cast users as well as the science community. Accordingly, an international
effort, the Hydrologic Ensemble Prediction Experiment (HEPEX), was
launched in 2004 (Schaake et al., 2007). HEPEX has organised several
workshops and a number of test-bed projects to address specific science
issues and to demonstrate the strengths and limitations of existing methods.
More information about HEPEX can be found at http://www.hepex.org.

15.5.1. Ensemble DA

In the US NWS, forecasters play an integral part in DA. They routinely
practice manual DA, referred to as “Run-Time Modifications” (MODS).
To be operationally viable, automatic DA must be able to perform
comparably to manual DA, but also allow forecaster intervention and
control. Maintaining complementarities between automatic DA and manual
control is essential in an operational forecast system as in the real world
there will be critical times when automatic DA may not work for various
reasons. Accordingly, it is necessary to objectively evaluate the performance
of automatic DA (Seo et al., 2008) and ascertain the optimal balance
between automatic and manual DA that best capitalises on scientific and
computational advances and human forecasters.

Most DA techniques used in or proposed for hydrologic forecasting are
adopted and/or adapted from electrical engineering, weather forecasting
and oceanography. Many hydrologic DA problems are, however, very non-
linear not only in the physical processes but also in the observational
processes. Also, almost all hydrologic systems modelled for operational
forecasting are not well observed, and hence subject to very large degrees
of freedom. Such systems are likely to pose very underdetermined inverse
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problems. Lastly, operational hydrologic forecasting is very often concerned
with extreme events, such as floods and droughts, whereas, with the
exception of particle filtering, all DA techniques are “optimal” only in the
second-order moment sense.

For the above reasons, general and flexible techniques that combine
strengths of variational assimilation and ensemble Kalman filter, and
that allow easy transition from single-value to ensemble DA, such as the
maximum likelihood ensemble filter (MLEF, Zupanski, 2005), are extremely
attractive. For example, the US NWS is developing a variant of MLEF
that is essentially an ensemble extension of 2D Variational Assimilation
(2DVAR) for lumped hydrologic models (Seo et al., 2003a). Note that,
in this approach, operational experience gained from the single-value DA
is directly transferable to ensemble DA. This is an extremely important
consideration for operational forecasting, given that single-value forecasting
is expected to continue to be practiced for the foreseeable future, even after
introduction of ensemble forecasting capabilities. Such a phased approach
(from single-value to ensemble DA) is pursued in NWS also for DA for
distributed hydrologic models (Seo et al., 2003b) and for hydrologic routing
using a variable three-parameter Muskingum model (O’Donnell, 1985).

15.5.2. Post-processing

Statistical post-processing is an amalgamation of prediction, bias correction
and scaling, for each of which different solutions may be possible. As the
ensemble forecast system improves over time, it may be expected that
statistical post-processing will become largely a problem of bias correction
and scaling. For example, for streamflow each post-processed ensemble
member should be probabilistically unbiased at all temporal scales of
aggregation. Such a requirement arises from the fact that the user must
be able to generate reliable probabilistic products from post-processed
ensembles for any chosen forecast time window. To ascertain strengths of
weaknesses of various competing techniques for these different aspects of
post-processing, community-wide efforts are needed.

15.5.3. Ensemble verification

Ensemble verification as it is applied in operational hydrology today
borrows heavily from the atmospheric science community. One of the
distinguishing aspects of streamflow or precipitation ensembles is that they
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are multi-scale in nature, and hence should be verified over a wide range
of spatiotemporal scales of aggregation. Unlike verification measures for
single-value forecasts, most of the measures for ensemble forecasts are not
expressed in physically meaningful units. While this poses little problem for
diagnostic verification, it makes the use of verification information for real-
time forecasting and decision making very difficult. This is an extremely
important aspect of hydrologic ensemble forecasting; its promise can be
realised only if the user is able to use the probabilistic information with
ease and clarity in real-time decision making. The US NWS is developing
such verification measures and the results will be reported in the near
future.
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16.1. Introduction

Recent extensive flood events in Britain have focussed the interest of the
hydrological community on improved methods of flood forecasting that
could help to decrease flood losses under the increasing probability of
flood occurrence. Disasters such as floods, which might arise from human-
induced environmental changes, are not only dangerous for the natural
environment but also for human beings. Consequently, new methodologies
are required to mitigate the effects of such flooding both before and during
events. In this chapter, we consider various aspects of model-based, real-
time flood forecasting, concentrating on the research being carried out
at Lancaster under the aegis of the Flood Risk Management Research
Consortium (FRMRC). In particular, we discuss the development of models
and methods that allow for the real-time updating of forecasts and model
parameters in flood forecasting systems.

Refsgaard (1997) gives a review of different updating techniques used
in real-time flood forecasting systems, as well as the comparison of two

∗Peter Young is also Adjunct Professor in the Integrated Catchment Assessment and
Management (iCAM) Centre, Fenner School of Environment and Society, Australian
National University, Canberra.
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different updating procedures applied to a conceptual hydrological model
of a catchment, including rainfall-flow and the flow routing models. In
relation to his classification, the methods developed in the present chapter
utilise both parameter and state updating. However, unlike approaches
such as the Extended Kalman Filter (EKF) algorithm used by Refsgaard,
where the updating is carried out within a single, nonlinear, state space
setting, with the parameters considered as adjoined state variables, our
state and parameter estimation procedures are carried out separately but
concurrently, employing co-ordinated recursive estimation algorithms. This
avoids the well-known deficiencies of the EKF (such as problems with
covariance estimation and convergence for multi-dimensional, nonlinear
models) and yields more statistically efficient estimates of the model
parameters. (i.e. it reduces the uncertainty on these estimates). Based on
the results of previous research (Romanowicz et al., 2004), the present study
also considers an implementation based on the modelling and forecasting
of water level (stage) rather than flow. This approach avoids the errors
introduced by the conversion of levels to flow; it can be applied in the
situation where flow observations are not available; and it directly yields
the forecasts of water levels, with their associated uncertainty estimates,
that are normally required for flood forecasting and warning.

The real-time adaptive updating procedures applied in this project
follow the methodology for the online forecasting of rainfall-flow processes
described originally by Young (2001a, 2002). This exploits the top-down,
Data-Based Mechanistic (DBM) approach to the modelling of environ-
mental processes (e.g. Young, 2001b, 2003, 2009, 2011 and the prior
references therein), concentrating on the identification and estimation of
those “dominant modes” of dynamic behaviour (Young, 1999a) that are
most important for the objective of high quality flood prediction. This
DBM approach involves inductive modelling, where the dominant mode
model structure is identified from the available data; the parameters that
characterise this model structure are estimated from the same data; and the
model is validated against other, separate data sets. In the resulting model,
which can be interpreted directly in hydrological terms, the most important
hydrological processes active in the catchment are modelled using the State
Dependent Parameter (SDP) method (Young, 2000, 2001c; Young et al.,
2001) of estimating the effective rainfall nonlinearity and nonlinear water
level routing, together with a Stochastic Transfer Function (STF) method
(Young, 2005) for characterising both the linear effective rainfall-water level
behaviour and linear water level routing processes.
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The complete model consists of these linear and nonlinear stochastic,
dynamic, hydrological elements connected in a manner that represents
the physical structure of the catchment, accounting for both surface and
groundwater effects on river water level or flow. Bearing in mind that
the objective of flood forecasting is to predict the water level of the river
at future times, the Lancaster system has been developed specifically for
water level (stage) forecasting, thus avoiding the uncertainties associated
with the stage–discharge calibration relationship. It is important to note,
however, that there have been numerous previous studies where DBM
models have been concerned with flow modelling and forecasting, and that
the procedures developed here for water level forecasting could be used
equally well for flow forecasting, if this is required.

The adaptive forecasting system utilises a state space form of the
complete catchment model, which provides the basis for Data Assimilation
(DA) and forecasting of water levels at specified geographical locations
using a modified Kalman Filter (KF) (Kalman, 1960) forecasting engine.
Here, the predicted model states (water levels) and important adaptive gain
parameters are updated recursively, in real-time, in response to input data
received in real-time from remote sensors in the catchment. In this way,
the extraction of information content in the data is maximised, leading to
improved stochastic forecasts of water level or flow.

16.2. Research Background

The main objective of the research described in this chapter is the
development of a methodology for operational real-time flood forecasting
systems at extended lead times and a strategy for updating both the states
(here river water levels or flows) and associated model parameters in real
time. The research reflects the developments underway in the National
Flood Forecasting System (NFFS), a dedicated user interface that provides
for the incorporation of user-specified hydrological and hydraulic models
(see Chapter 18); as well as the efficient import and processing of numerical
weather predictions, radar data and online meteorological and hydrological
data. Therefore, the tools and routines that are described here must fulfil
the requirements of the NFFS. In this regard, the team at Lancaster
have co-operated with the developers of the NFFS, Delft Hydraulics, in
the initial incorporation of the Lancaster River Severn forecasting system
into the NFFS, thus demonstrating that the system is compatible with
the NFFS.
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The DBM approach allows for online, real-time updating of parameters
and states in either DBM models or the related hybrid-metric-conceptual
(HMC) forecasting models (Wheater et al., 1993). The same basic approach
can be applied to any model of this general, quasi-distributed type: i.e.
lumped parameter models for rainfall-level and level routing (or flow
equivalents), connected in a manner that represents the geographical nature
of the catchment and the location of rainfall and flow gauges within
the catchment. However, some difficulties in parameter updating may be
experienced in large models whose parameters are not identifiable from the
data because the model is over-parameterised. Although the basic tools
are also appropriate for fully distributed (partial differential equation)
hydrological and hydraulic models, they have not been developed nor
tested in this framework and further research would be necessary in this
connection.

We have also considered the use of other procedures, such as the topical
numerical Bayesian approach to forecasting, as in the ensemble Kalman
filter (EnKF: see e.g. Moradkhani et al., 2005b) and other more complex
methods that exploit Monte Carlo Simulation (MCS) analysis. However,
since these methods are computationally expensive and complicated to
implement because of the need for multi-realisation MCS, they should only
be used if the nonlinear stochastic structure is such that much simpler, and
computationally inexpensive, analytic Bayesian procedures, such as the KF
are inappropriate. In the present context, this does not seem to be the case.

In particular, DBM model identification, echoing many previous con-
ceptual catchment modelling studies, shows that rainfall-flow (or water
level) processes can be represented by the serial connection of an “effective
rainfall” nonlinearity, that represents the nonlinear catchment storage (soil
moisture) dynamics, and a linear process, here in the form of a transfer
function, which is simply the discrete-time equivalent of a differential
equation model (Young, 2005). The impulse response function of this
linear module nicely reflects the underlying unit hydrograph properties of
the catchment and it can be decomposed into a parallel pathway form
that represents fast (surface and near-surface) processes, as well as slow,
groundwater processes that affect the base-flow of the river. Stochastic
forecasting using such a “Hammerstein” model can be carried out by a
simple modification of the KF that allows for the nonlinear input and the
heteroscedasticity (changing variance) of the prediction errors.

It could be argued that the simple distributional assumptions that
are required for the Bayesian interpretation of the KF are not entirely
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valid. However, it should be realised that the KF does not require such
assumptions (Kalman developed the algorithm using orthogonal projection
theory) and it is robust to their violation. Moreover, from a practical
standpoint, recent comparison of the results obtained from the EnKF
(Moradkhani et al., 2005) and analytical KF results using a DBM model
(Young, 2006, 2010a, 2010b, 2013) for the Leaf River in the USA show
that the simpler KF-based approach produces results that are as good, if
not better, than the much more computational expensive and complicated
EnKF approach.

An online flood forecasting system should be capable of producing
forecasts over a whole a range of lead-times. Long lead-time forecasts may
be important in flood warning, because of the need to make decisions
about demountable defences. Although the accuracy of such long lead-
time forecasts is naturally compromised by the inevitable uncertainty
propagation that affects the forecasts, reasonable results have been obtained
so far (Romanowicz et al., 2006). On the other hand, the short-to-medium
(4 to 10-hour-ahead) forecasts in NFFS are critical in decisions about public
flood warnings and it is here where an adaptive stochastic system, inher-
ently optimised for the minimisation of forecasting errors and uncertainty
at specified lead-times, has particular advantages over more conventional
deterministic alternatives.

The development of real-time updating methods for online flood
forecasting requires the development of generic tools. All of the results
presented in the present chapter were obtained using routines available
in the CAPTAIN Toolbox (Taylor et al., 2007) for MatlabTM (see later,
Section 16.7).

16.3. The Lancaster Real-Time Flood Forecasting System

In this chapter, flood forecasting is understood in a specific sense: namely
the derivation of real-time updated, online forecasts of the flood level at
certain strategic locations along the river, over a specified time horizon into
the future, based on the information about the rainfall and the behaviour of
the flood wave upstream. Depending on the length of the river reach and the
slope of the river bed, a realistic forecast lead time, obtained in this manner,
may range from hours to days. The information upstream can include
the observations of river water levels and/or rainfall measurements. In the
situation where meteorological ensemble forecasts are available, they can be
used to further extend the forecast lead times (Cluckie et al., 2006), as in
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the approach presented by Krzysztofowicz (1999, 2002) and Pappenberger
et al. (2005), but such information was not necessary for the lead times
required in the present study.

The flow forecasting procedures described here are incorporated within
an online, two-step DA procedure based on DBM models, formulated within
a stochastic state space setting for the purposes of recursive state estimation
and forecasting. In the first step, available observations of rainfall and river
water levels at different locations along the river are sequentially assimilated
into the forecasting algorithm, based on the statistically identified and
estimated stochastic, dynamic DBM models, in order to derive the multi-
step-ahead forecasts. These forecasts are then updated in real-time, using
a Kalman filter-based approach, when new data become available. The
incorporation of new observations into the dynamic model via DA is
performed online for every time step (here every hour) of the forecasting
procedure.

DA techniques have found wide application in the fields of meteorology
and oceanography and an extensive review of sequential DA techniques,
together with examples of their application in oceanography is presented in
Bertino et al. (2003). The problems described there involve the integration
of multi-dimensional, spatiotemporal observations into fully distributed
numerical ocean models and thus differ from the flood forecasting systems,
which have much smaller spatial dimensionality. However, certain aspects
of the problem remain the same and this has led to recent applications of
the EnKF (see earlier) in a flow forecasting context.

The EnKF was developed (Evensen, 1994) as an alternative to the
EKF approach. The EnKF is an adaptation of the standard, analytic
KF algorithm to nonlinear systems using Monte Carlo sampling in the
prediction (or propagation) step and linear updating in the correction (or
analysis) step. It has been applied to rainfall-flow modelling (Moradkhani
et al., 2005b; Vrugt et al., 2005), where sequential, EnKF-based estimation
is exploited to update both the hydrological model parameters and the
associated state variables for a single rainfall-flow model (in contrast to the
present paper which considers a much more complicated, quasi-distributed
catchment model, involving a number of inter-connected rainfall-water level
and routing models). Moradkhani et al. (2005a) also apply a Particle
Filter (PF) algorithm to implement sequential hydrologic DA. Yet another
approach to DA is presented by Madsen and others (Madsen et al., 2003;
Madsen and Skotner, 2005), who apply updating to the modelling error
of the distributed Mike-11 flow forecasts, at the observation sites, using
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a constant-in-time, proportional gain depending on the river “chainage”.
Essentially, this gain is included to adjust for a hydrological model bias.

One problem with both PF and EnKF is that they are computationally
intensive approaches to DA and forecasting, requiring many Monte Carlo
realisations at each propagation step. Moreover, due to the high complexity
of these approaches, there may be questions about the identifiability of
parameters involved in the different aspects of the applied routines (e.g.
the estimation of the variance hyperparameters associated with stochastic
inputs: see later, Section 16.4.1.2). In order to reduce the computational
burden of EnKF and other MCS-based schemes, regularisation may be
introduced (Sørensen et al., 2004). However, as we shall see in this chapter,
the relatively simple nonlinear nature of the rainfall-flow and level routing
processes means that there are simpler and computationally much less
intensive alternatives to DA that are able to provide comparable forecasting
performance.

There are a number of simplified, conventional approaches to flow rout-
ing that have been applied to flow forecasting. Amongst others, for example,
these include the Muskingham model with multiple inputs (Khan, 1993)
and Multiple Regression (MR) models (Holder, 1985). The Muskingum
model is deterministic and does not give the required uncertainty bounds
for the forecasts. Moreover, these more conventional models tend to have a
completely linear structure and so, naturally, they do not perform as well
as nonlinear alternatives within the nonlinear rainfall-flow context.

In contrast, a considerable amount of research has been published
recently on the application of nonlinear methods in flood forecasting.
Amongst others, Porporato and Ridolfi (2001) present the application of
a nonlinear prediction approach to multivariate flow routing and compare
it successfully with ARMAX model forecasts. However, this approach does
not have a recursive form and requires online automatic optimisation when
applied to online forecasting. Another nonlinear approach is the application
of neural networks for flood forecasting (Park et al., 2005; Thirumalaiah
and Deo, 2000). As discussed in these papers, neural network models can
yield better forecasts than conventional linear models and, if designed
appropriately, they also allow online DA. However, they normally have an
overly complex nonlinear structure and so can provide over-parameterised
representations of the fairly simple nonlinearity that characterises the
rainfall-flow process (see Section 16.4.1). They are also the epitome of
the black-box model and provide very little information on the underlying
physical nature of the rainfall-flow process: information that can instill
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confidence in the model and allows for better implementation of the
forecasting algorithm within a recursive estimation context.

In this chapter, we consider another approach to simplified mod-
elling that utilises statistical estimation to identify the special, serially
connected nature of the rainfall input nonlinearity in the rainfall-water
level process and then exploits this in order to develop a computationally
efficient forecasting algorithm. This is based on statistically estimated,
stochastic-dynamic DBM models of the rainfall-water level and level
routing components of the system. These are then integrated into an
adaptive, modified version of the standard recursive KF state estimation
algorithm that generates both the state variable forecasts and their 95%
confidence bounds. Here, the state variables are defined as the “fast-flow”
and “slow-flow” water levels, that together characterise the main inferred
variables in the identified DBM rainfall-water level models. The serial
input nonlinearity in the rainfall-flow model represents an effective rainfall
transformation of the measured rainfall, the nature of which is estimated
directly from the data using SDP estimation (Young, 2000, 2001c; Young
et al., 2001).

In contrast to the model predictions produced by a fully distributed
parameter model, the water level forecasts in this case are made only at
the location of measurements, in accordance with the goal of the flood
forecasting system under consideration. Of course, the resulting water level
forecasts could be used to update the predictions of inundation risk along
a river by conditioning the risk predictions of a fully distributed flood
forecasting model in real time (Romanowicz and Beven, 1998; Romanowicz
et al., 2004).

16.4. Methodology

In this chapter, we develop further an earlier approach to forecasting
system design for a single component rainfall-flow model (Young, 2001a,
2002) so that it can be used with a complete, multi-component, quasi-
distributed model covering a large part of the River Severn catchment
in the UK. In Section 16.5, we describe, in some detail, a considerably
enhanced version of an earlier system (Romanowicz et al., 2004), where
water levels are forecast instead of flows and there is a modified approach to
the online adaption of the variance hyper-parameters. These enhancements
were introduced to facilitate the incorporation of the forecasting system
into the National Flood Forecasting System (NFFS) developed for the
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UK Environment Agency (EA) by Delft Hydraulics. The extension also
includes the application of a larger number of rainfall gauging stations;
the development of an enhanced method of dealing with the rainfall-water
level nonlinearity; and a simpler, more robust method of accounting for the
heteroscedastic variance. As a result of these changes, the forecasts have
smaller bias, lower uncertainty levels and longer lead times.

The use of water levels, instead of flows, enables much better utilisation
of existing water level observations, including those stations for which rating
curves do not exist or are not reliable. All of the river gauging stations
provide water level measurements which, as usual, could be transformed
into flow using the rating curve specific to each station. However, variations
in flow velocity and the way that losses of energy due to friction change
with water level and gradient mean that this transformation is not very
well defined, particularly for high flows. Moreover, it is normally based
on historic calibration that may well have become out-of-date or could
have been changed during an extreme flood event. Hence, by using water
level measurements instead of the flows, we bypass those uncertainties
related to water level-flow conversion. Additionally and conveniently, we
also tend to decrease the heteroscedasticity of the prediction errors.
Since water levels are usually measured relative to a base level (i.e. the
historically justified minimum water level at a given gauging station)
a correction for this reference datum is introduced for each gauging
station.

16.4.1. The nonlinear rainfall-water level model

The DBM model used in the present catchment modelling context is
derived from the linear STF model. Comprehensive tutorials on transfer
function models for linear and nonlinear hydrologic systems are available
as Appendix 2 of the report presented to the FRMRC (Young et al.,
2006) and an encyclopaedia article by the first author (Young, 2005). The
reader who is not familiar with such models is advised to consult these
tutorials, which show how such models are simply convenient forms of
the differential equations, that are the basis of many hydrological models,
or their discrete-time equivalents. These discrete-time STF models are
particularly straightforward and convenient when modelling from discrete-
time sampled data and have been used in the present study. However,
equivalent continuous-time STF models could have been utilised and have
certain advantages in the case of rapidly sampled or non-uniformly sampled
datas (Young, 2004, 2008, 2011).



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch16

416 P.C. Young, R.J. Romanowicz and K. Beven

In standard discrete-time STF modelling, it is assumed that the rainfall
r(t) and water level y(t) measurements are sampled uniformly in time at a
sampling interval of ∆t time units (hours in this case). These discrete-time,
sampled measurements, {r(t), t1 < t < tN} and {y(t), t1 < t < tN}, are
denoted by rk = r(tk) and yk = y(tk), respectively, where N is the total
number of samples. The linear STF model relating rk to yk takes the form,

yk =
B(z−1)
A(z−1)

rk−δ + ξk, (16.1)

where δ is a pure, advective time delay of δ∆t time units, while A(z−1) and
B(z−1) are polynomials of the following form:

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · · + anz
−n

B(z−1) = b0 + b1z
−1 + b2z

−2 + · · · + bmz
−m,

in which z−r is the backward shift operator, i.e. z−ryk = yk−r. In
Equation (16.1), ξk is a noise term that is assumed to account for all
the uncertainty associated with the inputs affecting the model, including
measurement noise, unmeasured inputs, and uncertainty in the model. Note
that by multiplying throughout this model by A(z−1) and applying the
backward shift operator, it can be written in the alternative discrete-time
equation form:

yk = −a1yk−1 − · · · − anyk−n + b0rk−δ + · · · + bmrk−δ−m + ηk, (16.2)

where ηk = A(z−1)ξk is the transformed noise input. This shows that the
river water level at the kth hour is dependent on water level and rainfall
measurements made over previous hours, as well as the uncertainty ηk

arising from all sources.
Unfortunately, a linear STF model such as (16.1) is unable to

characterise the relationship between rainfall and flow because it cannot
describe how the level in the river responds to rainfall under different
catchment wetness conditions. However, it has been shown (Romanowicz
et al., 2004a,b; Young, 1993, 2002, 2003, 2004, 2006; Young and Beven,
1994; Young and Tomlin, 2000) that the nonlinearities arising from the
relationship between measured rainfall rk and “effective” rainfall, denoted
here by uk, can be approximated using gauged flow or water level as a
surrogate measure of the antecedent wetness or soil-water storage in the
catchment. In particular, the scalar function describing the nonlinearity
between the rainfall rk and effective rainfall uk, as a function of the soil
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moisture surrogate yk, is initially identified non-parametrically using State
Dependent Parameter (SDP) estimation (Appendix 16.2). As in the case
of the rainfall-flow modelling and forecasting studies considered previously
and cited above, the SDP nonlinearity can be parameterised by a power-law
relationship. In the present rainfall-level application, however, the power-
law relationship is not quite such a good approximation and it has been
modified to take into account the somewhat changed non-parametric SDP
estimation results, where there is a flattening of the flood wave due to the
over-bank flooding. It should be mentioned that this flattening effect is
visible both for the flows and water levels. The modified relation, which
allows the gain associated with the power law to change for higher water
levels, takes the form:

uk = c0 · c(yk) · yγ
k · rk; c(yk) =

{
1 for yk < y0
cp for yk ≥ y0

}
, (16.3)

where uk denotes the effective rainfall; c0 is an arbitrary scaling constanta;
cp(0 < cp ≤ 1.0) is a constant describing the degree of flattening of the
flood wave; and y0 is related to the bank-full water level.

It should be noted here that the non-parametric estimation results
suggest a more complicated function than (16.3): this minor modification
to the standard power law was selected for simplicity at this phase of the
study and a superior function, that better matches the non-parametrically
estimated shape of the nonlinearity, is being investigated using more
flexible radial basis functions (Beven et al., 2011). Indeed, in the case of
the nonlinear level routing models, described later in Section 16.5.3, the
nonlinear relationships are no longer approximated at all by a power law
and so they have been parameterised using such radial basis functions.

The power-law exponent γ and constants {cp and y0} in (16.3) are
estimated by a special optimisation procedure that includes the concurrent
estimation of the following linear STF model between the delayed effective
rainfall uk−δ and water level:

yk =
B(z−1)
A(z−1)

uk−δ + ξk , (16.4)

aThis is normally selected to ensure that the relationship between uk and yk makes
physical sense (e.g. if they have similar units, then the sum of the uk is equal to the sum
of the yk).
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where δ is a pure, advective time delay of δ∆t time units and ξk is usually a
heteroscedastic (changing variance) noise term that is assumed to account
for all the uncertainty associated with the inputs affecting the model,
including measurement noise, unmeasured inputs, and uncertainty in the
model. The orders of the STF denominator and numerator polynomials,
n and m respectively, are identified from the data during the estimation
process and are usually in the range 1–3. The triad [n m δ] is normally used
to describe this model structure. Finally, combining Equations (16.3) and
(16.4), the complete rainfall-flow model can be written as:

yk =
B(z−1)
A(z−1)

uk−δ + ξk uk = {c(yk)yγ
k}rk, (16.5)

where the scalar constant cp is incorporated into c(yk). It can also be written
in the equation form of (16.2), with rk replaced by uk. Note also that, while
the STF relationship between effective rainfall and water level is linear, the
noise ηk is dependent on the model parameters, thus precluding linear least
squares estimation and requiring more advanced STF model estimation
procedures available in the CAPTAIN Toolbox (see Section 16.7). And,
of course, the complete model between measured rainfall and water level
is quite heavily nonlinear because of the effective rainfall nonlinearity
in (16.5).

16.4.1.1. State space formulation of the rainfall-water level model

In a typical STF model describing the hourly changes of water levels in
response to rainfall inputs, n = m = 2, so that the general model (16.5)
reduces to:

yk =
b0 + b1z

−1

1 + a1z−1 + a2z−2
uk−δ + ξk uk = {c(yk)yγ

k}rk. (16.6)

The decomposition of the STF component of this DBM model (Young,
2005; Young et al., 2006) into the fast and slow water level components y1,k

and y2,k is based on a partial fraction expansion of the second order STF
in (16.6) and it has the form:

fast component: y1,k =
β1

1 + α1z−1
uk−δ, (16.7)

slow component: y2,k =
β2

1 + α2z−1
uk−δ, (16.8)
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where α1, α2, β1 and β2 are parameters derived from the model parameters
in (16.6) and the total gauged flow is the sum of these two components and
the noise ξk, i.e.,

yk = y1,k + y2,k + ξk. (16.9)

The associated residence times (time constants) {T1, T2}, steady state gains
{G1, G2} and partition percentages{P1, P2}, are given by the following
expressions:

Ti =
∆t

loge(αi)
;Gi =

βi

1 + αi
;Pi =

100Gi

G1 +G2
i = 1, 2.

The parameters of this DBM model are derived from statistical model
identification and estimation analysis based on the observed rainfall-water
level data. The value of the DBM method depends on the amount of
information available in these data to statistically estimate the model
parameters. Here, the Simplified Refined Instrumental Variable (SRIV)
option of the rivbjid algorithm in the CAPTAIN Toolbox, as well as
associated DBM statistical modelling concepts, are used to identify the
order of the STF model (the values of n, m and δ) and to estimate the
associated parameters (see the cited references).

For forecasting purposes, the DBM model (16.6), considered in its
decomposed form (16.7) to (16.9), is converted to a stochastic state space
form. This then allows for the solution of the resulting state equations
within a KF framework. It also facilitates the online, real-time estimation
of both water level components, as well as the optimisation of the
hyperparameters (parameters associated with the stochastic inputs: see
Section 16.4.1.2) of the state space model, based on a multi-step-ahead
forecast error criterion. The state equations of the decomposed DBM model
have the form:

xk = Fxk−1 + Guk−δ + ζk

yk = hT xk + ξk,
(16.10)

where

F =
[−α1 0
0 −α2

]
G =

[
β1

β2

]
ζk =

[
ζ1,k

ζ2,k

]
hT = [1 1].

Here, the elements of the state vector xk = [x1,k x2,k]T are, repectively,
the fast and slow components (16.7), (16.8), of the rainfall-water level
process; while the system noise variables in ζk are introduced to allow for
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un-measurable stochastic inputs to the system. For simplicity, it is assumed
that these are zero mean, serially uncorrelated and statistically independent
random variables, with a purely diagonal covariance matrix.

In hydrological applications, the observation noise ξk is often complex
in form, being serially correlated in time (coloured noise), heteroscedastic
(changing variance: see Sections 16.4.1.2 and 16.4.1.5) and it does not
necessarily have rational spectral density. However, in the circumstances
where it can be assumed to have rational spectral density, it can be modelled
using an Autoregressive (AR) or Autoregressive, Moving Average (ARMA)
process (Box and Jenkins, 1970; Young, 2005, 2011) of an order that
is identified from the data. This can then be incorporated into the KF
DA and forecasting procedure by extending the state vector. This is an
alternative to the “error correction” or “error updating” procedures that
have been suggested over a number of years (e.g. Goswami et al., 2005).
In this connection, note that the present paper utilises STF models for
rainfall-water level and flood routing forecasts, taking account of system
nonlinearities, but the models used by Goswani et al. are linear STF
models that are not appropriate to the modelling of nonlinear hydrological
processes, except perhaps for single events, because they do not account for
catchment storage effects.

16.4.1.2. The modified Kalman filter forecasting engine

For water level forecasting purposes, the state space model discussed in the
previous section is used as the basis for the implementation of the following
special KF state estimation and forecasting algorithm, which is a simply
modified version of the standard KF algorithm:

a priori prediction:

x̂k|k−1 = Fx̂k−1 + G{c(yk−δ)y
γ
k−δ}δ (16.11a)

Pk|k−1 = FPk−1FT + σ2
kQr, (16.11b)

a posteriori correction:

x̂k = x̂k|k−1 + Pk|k−1h[σ2
k + hTPk|k−1h]−1{yk − hT x̂k|k−1} (16.11c)

Pk = Pk|k−1 − Pk|k−1h[σ2
k + hTPk|k−1h]−1hT Pk|k−1 (16.11d)

σ2
k = λ0 + λ1(y2

k). (16.11e)

In these equations, Pk is the error covariance matrix associated with the
state estimates; Qr is the 2 × 2 Noise Variance Ratio (NVR) matrix, as
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discussed in Section 16.4.1.3; and the subscript notation k|k−1 denotes the
estimate at the kth sampling instant (here hour), based on the estimate at
the previous (k−1)th sampling instant. The differences between this version
of the KF and the standard version of the algorithm are: the nonlinear
input entering in Equation (16.11a); the state-dependent NVR matrix term
σ2

kQr, replacing the constant covariance matrix Q; and the state-dependent
variance defined in Equation (16.11e) and appearing in Equations (16.11b),
(16.11c) and (16.11d).

The f -step-ahead forecasts are obtained by simply repeating the
prediction f times, without correction (since no new data over this interval
are available). The f -step ahead forecast variance is then given by:

var(ŷk+f |k) = σ̂2
k + hTPk+f |kh, (16.11f)

where Pk+f |k is the error covariance matrix estimate associated with the
f -step ahead prediction of the state estimates. This estimate of the f -step
ahead prediction variance is used to derive 95% (approximate) confidence
bounds for the forecasts. This is under the approximating assumption
that the prediction error can be characterised as a nonstationary Gaussian
process (i.e. twice the square root of the variance at each time step is used
to define the 95% confidence region).

16.4.1.3. State adaption

In the above KF Equations (16.11a) and (16.11b), the model parameters
αi, i = 1, 2 and βj , j = 1, 2, that define the state space matrices F and G
in (16.10), are known initially from the model identification and estimation
analysis based on the estimation data set. However, by embedding the
model equations within the KF algorithm, we have introduced additional,
unknown parameters, normally termed “hyperparameters” to differentiate
them from the model parameters.b In this example, these hyperparameters
are the elements of the NVR matrix Qr and, in practical terms, it is
normally sufficient to assume that this is purely diagonal in form. These two
diagonal elements, in this example, are defined as NVRi = σ2

ζi
/σ2, i = 1, 2.

These specify the nature of the stochastic inputs to the state equations and
so define the level of uncertainty in the evolution of each state (the quick

bOf course this differentiation is rather arbitrary since the model is inherently stochastic
and so these parameters are simply additional parameters introduced to define the
stochastic inputs to the model when it is formulated in this state space form.
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and slow water level states respectively) relative to the variance of the
measurement uncertainty σ2. The inherent state adaption of the KF arises
from the presence of the NVR parameters, since these allow the estimates
of the state variables to be adjusted to allow for the presence and effect
of the unmeasured stochastic disturbances that naturally affect any real
system.

Clearly, the NVR hyperparameters have to be estimated in some
manner on the basis of the data. One well known approach is to exploit
Maximum Likelihood (ML) estimation based on prediction error decompo-
sition (Schweppe, 1965; Young, 1999b). Another, used in the River Severn
forecasting system described later, is to optimise the hyperparameters by
minimising the variance of the multi-step-ahead forecasting errors. In effect,
this optimises the memory of the recursive estimation and forecasting
algorithm (Young and Pedregal, 1999) in relation to the rainfall-water level
data. In this numerical optimisation, the multi-step-ahead forecasts are
ŷk+f |k, where f is the forecasting horizon. The main advantage of this latter
approach is, of course, that the integrated model-forecasting algorithm is
optimised directly in relation to the main objective of the forecasting system
design; namely the minimisation of the multi-step prediction errors.

16.4.1.4. Alternative formulations of the Kalman filter

The formulation of the KF used in the previous sections is not the only
formulation that could be used in the present context. It has been assumed
here that most of the uncertainty in the level forecasts is associated with
the noise ξk on the output level measurement yk in the state equations
(16.10). This yields a particularly simple formulation of the KF but it is
not necessarily the best one. An equally plausible assumption is that the
level measurement is quite accurate and that the uncertainty derives mainly
from the many stochastic influences affecting the state variables: i.e. it is
the result of the “system input disturbance vector” ζk. In this connection,
it should be recalled that the function of the KF is to attenuate the effects
of the measurement noise ξk, whilst preserving the effects of these input
disturbances, which are assumed to be real but unmeasurable inputs to the
system.

This alternative “low measurement noise” formulation of the KF has
the advantage that the state update will correct the state estimates so that
the estimated output ŷk = hx̂k will always be close to the measured level yk,
because the measurement noise ξk is constrained to be small. However, this
is not such a simple formulation and its implementation introduces various
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complications. For instance, it would require constrained optimisation of the
hyperparameters NVRi = σ2

ζi
/σ2, i = 1, 2 under the prior assumption that

the variance σ2 of the noise ξk is known and is set at a relatively low value
in relation to the magnitude of the level measurements: i.e. the specification
and imposition of a high signal-noise ratio. Moreover, in order to introduce
the required heteroscedastic features, all of the above hyperparameters will
have to be made time variable or state-dependent in some manner.

Finally, as in the case of the measurement noise in the present
formulation (see previous discussion in Section 16.4.1.1, above), it is quite
likely that these input disturbances are serially correlated in time (i.e.
they are coloured noise sequences). This is complicated because there are
two major states, x1,k and x2,k for each rainfall-level component of the
catchment model and so two input disturbances are required for each of
these sub-models. Consequently, an extension to include coloured input
disturbances would require a further extension of the state vector to allow
for the additional stochastic states required in this situation. These latter
considerations are the subject of current research at Lancaster in order to
evaluate whether they introduce sufficient improvement in performance to
justify the increased complexity (see also Vaughan and McIntyre, 2012).

16.4.1.5. Parameter adaption

Although the parameters and hyperparameters of the KF-based forecasting
system can be optimised in the above manner, we cannot be sure that the
system behaviour may not change sufficiently over time to require their
adjustment. In addition, it is well known that the measurement noise ξk
is quite highly heteroscedastic: i.e. its variance can change quite radically
over time, with much higher variance occurring during storm events. For
these reasons, it is wise to build some form of parameter adaption into the
forecasting algorithm.

(i) Full Parameter Adaption. It is straightforward to update all of the
parameters in the rainfall-water level (or flow) model since the parameter
estimation algorithms in the CAPTAIN Toolbox can be implemented in
a “real-time recursive” form that allows for sequential updating and the
estimation of time-variable parameters: see Chapter 10 of Young (2011).

(ii) Gain Adaption. Full parameter adaption adds complexity to the final
forecasting system and previous experience suggests that a simpler solution,
involving a simpler scalar gain adaption is often sufficient. This is the
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approach that was used successfully for some years in the Dumfries flood
warning system (Lees et al., 1993, 1994) and it involves the recursive
estimation of the gain gk in the following relationship:

yk = gk.ŷk + εk, (16.12)

where εk is a noise term representing the lack of fit and, in the case of the
second order model (16.6),

ŷk = ŷ1,k + ŷ2,k =
b̂0 + b̂1z

−1

1 + â1z−1 + â2z−2
uk−δ, (16.13)

where the “hats” denote the estimated values. In other words, the time
variable scalar gain parameter gk is introduced so that the model gain
can be continually adjusted to reflect any changes in the steady state
(equilibrium) response of the catchment to the effective rainfall inputs.

The associated recursive estimation algorithm for gk is one of the
simplest examples of the KF, in which the single state variable is the
unknown gain gk, which is assumed to evolve stochastically as a Random
Walk (RW) process (Young, 2011)c:

pk|k−1 = pk−1 + qg (16.13a)

pk = pk|k−1 −
p2

k|k−1ŷ
2
k

1 + pk|k−1ŷ
2
k

(16.13b)

ĝk = ĝk−1 + pkŷk{yk − ĝk−1ŷk}. (16.13c)

Here, ĝk is the estimate of gk; while qg is the NVR hyperparameter defining
the stochastic input to the RW process, the magnitude of which needs to
be specified. This NVR defines the “memory” of the recursive estimator,
so that the higher its magnitude, the less the length of the memory: if the
memory is too short, however, the estimate will tend to be too volatile;
while if it is too long, it will not respond quickly enough to changes in the
gain. The adapted forecast is obtained by simply multiplying the initially
computed forecast by ĝk. Note that gain adaption of this kind is quite
generic and can be applied to any model, not just the DBM model discussed
here.

cIt is also a scalar example of Dynamic Linear Regression (DLR) algorithm (Young,
1999b) available as the dlr routine in the CAPTAIN Toolbox.
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(iii) Variance Adaption. The heteroscedasticity of the observational noise
suggests that the noise variance should be updated in some manner.
Sorooshian and Dracup (1980) present an approach to deal with correlated
and heteroscedastic errors of flow measurements, based on a maximum
likelihood approach; and an alternative procedure of either transforming
the observation errors using an AR(1) model to obtain uncorrelated
error, or introducing a Box–Cox transformation (Box and Cox, 1964)
to deal with heteroscedasticity. Their methodology follows an en bloc
estimation procedure with hydrological model and error transformation
parameters treated as deterministic variables. Vrugt et al. (2005), on the
other hand, apply a non-parametric, local difference-based estimator of the
observation error variance, based on Hall et al. (1990) to model the error
heteroscedasticity in their EnKF solution of the rainfall-flow model.

In order to account for the heteroscedasticity in the present study, a
new approach is used, where the variance σ2

k of ξk is identified from the data
as a state-dependent function of the simulated output, taking the following
form:

σ2
k = λ0 + λ1ŷ

2
k, (16.14)

where λ0 and λ1 are new hyperparameters that are optimised together
with the NVR hyperparameter that control the gain updating procedure
discussed in (i). The estimate σ̂2

k of σ2
k is fed back to the recursive KF

engine (see previously, Section 16.4.1.2) as an estimate of the observational
variance.

It is interesting to note, at this point, that an analysis of the hetero-
scedastic characteristics of the noise, in the above manner, has revealed
the advantage of modelling in terms of the water level variable instead of
the flow. In particular, the transformation of the water level yk into the
flow variable, Qk through the rating curve, may be written in the form
Qk = f(yk). According to delta-method calculations (Box and Cox, 1964),
for a smooth function f(·), the asymptotic variance AV (Qk) of the flow Qk

as y → yk will have the form

AV (Qk) = ḟ(yk)2var(yk); ḟ(yk) =
[
df

dy

]
y=yk

. (16.15)

Here, the function denotes the rating curve relationship, which often can be
approximated by a power function of water levels, with the power greater
than 1. Hence, the variance of the flow is increased in comparison with
the water level variance, in particular for larger flows. In this regard, it is
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interesting to note that Sorooshian and Dracup (1980) regarded error in
the rating curve transformation of the water level observations as a main
source of heteroscedasticity in the flow data.

16.4.1.6. Single module summary

The combination of a KF incorporation of the state space model with the
gain and variance updating described in the previous sections, provides
a tool for online DA. The NVR hyperparameters associated with the
stochastic inputs to the state space equation (16.10) are estimated in the
first place by maximum likelihood based on prediction error decomposition
(see earlier, Section 16.4.1.3). Subsequently, in line with the current
forecasting objectives, the hyperparameters minimising the variance of the
f -step ahead prediction errors for the maximum water levels are estimated
using an optimisation routine from the MatlabTM computational software
environment (based on the simplex direct search method (Nelder and
Mead, 1965)). The optimisation is performed only during the estimation
(calibration) stage and the optimal values obtained in this manner are then
used during the application of the real-tine forecasting scheme.

In summary, the procedure for developing a single module of the
forecasting system can be summarised as follows:

(1) Based on the available input-output data, estimate the complete
nonlinear DBM model (16.6), using an optimisation procedure that
exploits the rivbj routine in the CAPTAIN Toolbox to jointly optimise
the nonlinear parameters {cp, γ} and the STF model parameters
{a1, a2, b0, b1, δ}, ensuring that the chosen model is physically mean-
ingful, in accordance with DBM modelling requirements.

(2) Formulate the state space model and optimise the hyperparameters,
without online updating, using maximum likelihood estimation based
on prediction error decomposition.

(3) Optimise the updating and heteroscedastic variance parameters using
a set of optimisation criteria based on the f -step ahead forecast error,
where f is the required forecasting interval.

Three criteria are used during the identification of the model structure
and estimation of its parameters. The first is a coefficient of determination
associated with the water level predictions R2

fp = (1 − σ2
fp/σ

2
y), with σ2

fp

and σ2
y denoting the variances of f-step prediction error and observations,

respectively. This is a multi-step-ahead forecasting efficiency measure,
similar in motivation to the Nash–Sutcliffe efficiency measure used for
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model calibration (Nash and Sutcliffe, 1970). The others are the YIC
(Young, 1989, 2001b) and AIC (Akaike, 1974) criteria, which are model
order identification (identifiability) statistics: a low relative measure of these
criteria ensures that the chosen model has a dynamic structure that reflects
the information content of the data, so ensuring well identified parameters
and no over-parameterisation.

16.4.2. River water level routing

Following previous practice with flow routing, the water level routing down
the river can utilise linear dynamic models in a transfer function form. For
instance, a first-order example of such a model takes the form:

yi,k =
b0

1 + a1z−1
yi−1,k−δ + ξk, (16.16)

where yi−1,k and yi,k are, respectively, the upstream and downstream water
level measurements from the gauges an δ is the advective delay. If the
noise ξk can be modelled well by and AR or ARMA process, then this can
further enhance the model in forecasting terms. Model identification and
estimation of this model is based on the same statistical procedures used
in the rainfall-water level modelling, except that the added complexity of
the SDP nonlinearity is now removed. Note that the Muskingum model,
mentioned previously in Section 16.3, can be considered as a special case
of this linear model (Young, 1986), so it would be identified from the data
using the linear STF model (16.16) if it provided a suitable model of the
level data.

Once again, if the STF model is of this first-order form, it represents
a single linear store, whilst if it is higher order, it can be decomposed into
a number of linear stores arranged in series or parallel, depending on the
identification and estimation results. The incorporation of this model into
the KF forecasting engine also involves the same procedure as in the rainfall-
water level case, except that now the component of the KF devoted to this
sub-model will be in its standard linear form, if necessary incorporating an
SDP model for heteroscedastic noise. As we shall see in the Section 16.5,
this approach to level routing is applied to the River Severn reach between
Abermule and Welsh Bridge, where the model is first order with a pure
advective time delay of δ = 23 hours.

Further DBM modelling research has shown that, quite often, this linear
approach to level routing can be improved by following the same SDP
approach used in the case of rainfall-water level modelling. This leads again
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to a Hammerstein model form with an input nonlinearity that transforms
the upstream water level before it enters the linear store. In the first-order
case, this SDP model takes the form:

yi,k =
b0

1 + a1z−1
f(yi−1,k−δ) + ξk, (16.17)

where f(yi−1,k−δ) represents the nonlinearly transformed, advectively
delayed upstream water level. Once again, if the noise ξk can be modelled
well by and AR or ARMA process then this can be introduced to good
effect. For forecasting, this model is introduced into the KF forecasting
engine but now with the input nonlinearity present, as in the rainfall-water
level case. In Section 16.5, this nonlinear approach to level routing is applied
to the River Severn reaches between Buildwas and Bewdley.

16.4.3. The complete catchment forecasting system

Each rainfall-water level forecasting sub-system, together with the other
sub-systems associated with the linear and nonlinear routing models,
constitute modules in the complete forecasting system for the entire
catchment. These are connected in a manner defined by the geographical
location of the rainfall and flow sensors. The forecasts at each of the
gauging stations are then based only on the upstream gauging station. The
forecast lead times may be extended following the approach of cascading
the predictions from upstream reaches as inputs to downstream reaches
(Beven et al., 2006; Romanowicz et al., 2008) but the forecasting accuracy
is affected as a result. Of course, the use of this kind of routing model relies
on data acquisition along the river at as many points as is economically
justified in order to obtain the required accuracy of the distributed forecasts
along the river.

The complete model synthesised in this manner could be incorporated
as a single large state space model within the modified KF forecasting
engine. While this approach was evaluated and found to function satisfacto-
rily, it was naturally simpler to disaggregate the system into a combination
of suitably interconnected KF algorithms, each defined on the basis of
the appropriate rainfall-water level or water level-water level model at
the specified location. For the lead times not exceeding the natural sub-
reach delay, these modules are effectively independent from each other.
However, for larger lead times, when the forecasts of the rainfall-flow and
routing modules are introduced instead of observed input, the modules
become coupled. The influence of the uncompensated correlation between
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the modules on the forecasting performance does not seem to be large but
it is a subject for future research.

In line with our decomposition of the KF, the optimisation of the
hyperparameters for the whole forecasting system is based on the separate
optimisation of the hyperparameters in each module. Overall optimisation
was attempted but this failed because the optimisation hypersurfaces were
too flat to allow for satisfactory convergence. Of course, this optimisation
can be based on a number of different criteria. For example, it could seek to:

(1) maximise a statistical likelihood function (ML optimisation);
(2) minimise overall forecasting errors, or at specific forecasting horizons;
(3) minimise forecasting errors at flood peaks;
(4) satisfy multi-objective criteria (multi-objective optimisation), etc.

However, for simple illustrative purposes, in the present case study,
optimisation was based on (2), namely, minimising the sum of the squares
of the forecasting errors at specific forecasting horizons.

16.5. Case Study: The River Severn

The methodology outlined in the previous sections has been used to derive
a real-time, adaptive forecasting system for the River Severn in the UK,
as far downstream as the gauge at Bewdley. A map of the River Severn
catchment is shown in Figure 16.1, where the locations considered are
shown as black dots, with associated place names. The River Severn above
Buildwas has one major tributary, the River Vyrnwy, which enters the
main river upstream of the Montford gauging station. The data used
in this study consist of hourly measurements of rainfall at the Dollyd,
Cefn Coch, Vyrnwy Llanfyllin and Pen y Coed, in the Upper Severn and
Vyrnwy catchments; and hourly water level measurements at Meifod, on the
Vyrnwy, and Abermule, Welsh Bridge (Shrewsbury) and Buildwas, on the
River Severn. The Severn catchment area at Abermule is 580 km2, at Welsh
Bridge 2325km2 and at Buildwas 3717km2. The Vyrnwy catchment area
at Meifod is 675km2. The length of the River Severn between Abermule
and Welsh Bridge is about 80 km; the distance between Welsh Bridge
and Buildwas is about 37 km and the distance between Buildwas down
to Bewdley is 40 km. There are 12 bridges on the 18 km long reach between
Buildwas and Bridgenorth Bridge and a similar number on the 22 km long
reach between Bridgenorth Bridge and Bewdley. There are also a number of
rapids and weirs. It is worth noting that releases from the Llyn Clywedog
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Figure 16.1. The River Severn catchment showing the water level/flow (black circles)
and rainfall (small black squares) measurement sites used in the study.

reservoir, on Severn above Abermule, and Lake Vyrnwy, on the Vyrnwy
tributary of Severn, are used to enhance low flows. Also, the water releases
for water level maintenance may have an effect on low water level behaviour
at Abermule and Meifod. As regards the data used for DBM modelling,
model structure identification and estimation is based the October 1998
year flood event data; and the validation data starts at 9 am on the 24th
of October 2000. In addition, the flood event in February 2002 is used for
the validation of the sub-reaches between Buildwas and Bewdley.

The aim of the forecasting system design is the development of
a relatively simple, robust, online forecasting system, with acceptable
accuracy and the longest possible lead-time. In order to maximise the lead-
times, rainfall measurements are used as an input to the rainfall-water
level forecasts in the upper part of the Severn catchment. The sequential
structure of the DBM forecasting model is shown as a block diagram in
Figure 16.2, which also defines the nomenclature for the rainfall and water
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Figure 16.2. Block diagram of the River Severn Forecasting System DBM model.

level variables down the system. So far, the forecasting system has only
been developed as far as Bewdley because, further downstream, there are
numerous weirs controlling water levels locally along the river and the flow
is no longer at all natural. We will only be able to extend the system to
the lower part of the Severn when the additional information about the
man-induced changes on the river are available.

In the following Sections 16.5.1.1 to 16.5.3.3, we present the rainfall-
water level and water level routing models for the River Severn from
Abermule down to Bewdley. The water level routing model for Welsh
Bridge uses the averaged water levels from Abermule (Severn) and Meifod
(Vyrnwy) as a single input variable: the use of these observations as
two separate input variables was not possible due to their high cross-
correlation and the associated poor identifiability of the model parameters
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Table 16.1. Model structure identification results.

Model Forecast R2
T R2

T
Model type Location structure lead [h] calibration validation

Nonlinear Abermule [2 2 5] 5 0.954 0.945
Nonlinear Meifod [2 2 5] 5 0.970 0.953
Linear Welsh Bridge [1 1 23] 28 0.947 0.948
Linear Buildwas [2 2 7] 35 0.970 0.961

(multi-collinearity). All the DBM sub-models in this network are estimated
using the statistical identification and estimation procedures discussed in
Section 16.4. The results from this estimation and validation analysis for
Abermule, Meifod, Welsh Bridge and Buildwas, as well as their diagnostic
performance measures are summarised in Table 16.1.

16.5.1. Rainfall-water level modelling

The two nonlinear models described in this first section relate composite
rainfall measures, obtained as a linear combination of rainfall gauge
measurements with optimised weights, to the water levels measured at each
location.

16.5.1.1. Rainfall-water level model for Abermule

The rainfall-water level model for Abermule uses rainfall measurements
from three gauging stations in the Upper Severn catchment, Cefn Coch,
Pen-y-Coed and Dolydd, as inputs. The weights for the rainfall mea-
surements are derived through the least squares optimisation of the
difference between the observed and modelled water levels at Abermule. The
nonlinearity between the rainfall and water levels is identified initially using
the non-parametric sdp estimation routine from the CAPTAIN toolbox.
This non-parametric (graphical) relation is then parameterised using a
step-wise power law parameterisation of the form given in (16.3) and the
coefficients cp and γ are optimised simultaneously with the estimation of
the other STF model parameters. The model, after the decomposition into
slow and fast components, has the form:

y1,k =
0.0038

1 − 0.9955z−1
u1,k−5 +

0.134
1 − 0.9304z−1

u1,k−5 + ξk (16.18a)

u1,k =
{

1 y1,k < 3.36
0.68 y1,k ≥ 3.36

}
y0.7
1,k · r1,k. (16.18b)
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The identified residence times for the fast and slow flow components of this
model are 13 hours and 9 days, respectively. This model explains 93% of the
variance of the observations, with the variance of the simulation modelling
errors equal to 0.037m2.

The prediction error series shows both autocorrelation and het-
eroscedasticity, even though the latter is noticeably smaller than in the
case of the model based on flow rather than water level measurements. In
the case of the autocorrelation, an AR(3) model for the noise is identified
based on the AIC criterion. The noise model could be incorporated into
the forecasting model, as mentioned previously. However, in order to make
the whole catchment model as simple as possible, and in compliance
with the design objectives, it was decided not to do this in the upper reaches,
down to Buildwas, but to retain the adaptive estimation of heteroscedastic
variance of the predictions, with the option of introducing a noise model
if the performance needed improvement and the added complexity could
be justified at a later stage. As we shall see later in Section 6.2, however,
AR noise models are incorporated in the nonlinear routing models from
Buildwas to Bewdley. Note that, although the standard errors on the
parameters of the STF model are generated during the estimation, the
standard error estimates on the decomposed model parameters, shown here
in (16.18a)–(16.18b), would need to be obtained by Monte Carlo simulation
(e.g. Young, 1999a, 2001b, 2003) and this was not thought necessary in this
illustrative example.

Based on these initial results, the gain and heteroscedastic variance
updating procedures described earlier were applied to the rainfall-water
level model (16.18a)–(16.18b). At the calibration stage, the resulting five-
step-ahead forecasts of water levels explained 95.4% of the observational
variance. The subsequent validation stage was carried out for the year 2000
floods and the results are shown in Figure 16.3, where the 5-hour-ahead
forecast explains 94.5% of the variance of observations, only a little less
than that obtained during calibration. The bank-full level at this site is at
about 3.7m.

The results obtained so far, of which those shown in Figure 16.3 are
typical, suggest that the adaptive forecasting system predicts the high water
levels well, which is the principal objective of the forecasting system design.
The magnitude and timing of the lower peaks is not captured quite so
well. This may be due to a number of factors, such as the changes in the
catchment response times arising from a dependence on the catchment
wetness. These possibilities have not been investigated so far, however,
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Figure 16.3. Abermule: 5-hour-ahead validation forecast, 24th October 2000. Note that
here and in subsequent forecasting figures, the term “standard error” is used to mean
twice the standard deviation, which is equivalent to the 95% uncertainty interval.

because the forecasting performance is considered satisfactory in relation
to the current objectives.

16.5.1.2. Rainfall-water level model for Meifod

The same procedure used in the last section was applied to derive the
DBM model for the Meifod gauging station on the River Vyrnwy. Amongst
the rainfall measurement stations on the Vyrnwy catchment, three were
chosen: Pen-y-Coed, Llanfyllin and Vyrnwy. The weights for the rainfall
measurements were optimised, together with the parameters of the DBM
model. The best rainfall-water level model, without any adaptive updating,
has the same form as for Abermule, that is [2 2 5], and explains 92% of
the variance of the observations. The full model equation, with the STF
decomposition and the modified power-law transformation of the rainfall is
given below:

y2,k =
0.0247

1 − 0.9711z−1
u2,k−5 +

0.0424
1 − 0.8491z−1

u2,k−5+ξk (16.19a)

u2,k =
{

1 y2,k < 2.1
0.72 y2,k ≥ 2.1

}
y0.1
2,k · r2,k. (16.19b)
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Figure 16.4. Meifod: 5-hour-ahead validation forecast based on upstream water level
and rainfall inputs.

The identified residence times for the fast and slow flow components of this
model are 6 hours and 34 hours, respectively.

The online updated 5-hour-ahead forecast for Meifod, over the calibra-
tion period in October 1998, explains 97% of the variance of observations.
The validation was performed on the same time period in the year 2000
as the Abermule model and the results are shown in Figure 16.4. Here,
the model explains 95.3% of the variance of observations. As in the case of
Abermule, the results show some nonlinearity in timing. However, we do
not have any information about the bank-full level for this site.

16.5.2. Linear water level routing

The part of the River Severn down from Meifod and Abermule to Bewdley
is modelled using two linear routing models, each of the form outlined
in Section 16.4.2. At each gauging station, the linear STF model is
identified and estimated based on the water level measurements at each
gauge and the nearest downstream gauging station. The first-order form of
Equation (16.16) is identified for the two models using the rivbj routine in
CAPTAIN for linear STF model estimation.
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16.5.2.1. Water level routing model for Welsh Bridge

The best results for the water level data between Abermule, Meifod and
Welsh Bridge were obtained when the STF model was calibrated on the
water level data with the minimum water level at Welsh Bridge removed
for identification and estimation purposes. It was then re-introduced for
implementation of the model in the forecasting engine. The first-order
model estimated in this manner is given below: it has a time delay of
23 hours and a residence time of about 28 hours.

y4,k =
0.0692

1 − 0.9650z−1
y3,k−23 + ξk, (16.20)

where y3,k−23 denotes denotes the average (circled A in Figure 16.2) of
the water level measurements y1,k and y2,k at Meifod and Abermule,
respectively, delayed by 23 hours; and y4,k denotes water level at Welsh
Bridge. The 5 hour-ahead forecasts of water levels for Abermule and
Meifod enable the Welsh Bridge water level forecasts to be extended to
28 hours, which should be more than adequate for flood warning purposes
at Shrewsbury. The resulting, adaptively updated, water level forecast at
Welsh Bridge explains 94.7% of the output variation.

Validation of the model at Welsh Bridge was performed using all of the
upstream models: i.e. rainfall-water level models for Meifod and Abermule
and water level routing model for Welsh Bridge, with summed water
level observations/forecasts for Abermule and Meifod. The resulting online
updated 28-hour-ahead forecasts are shown in Figure 16.5, validated on
year 2000 floods. These forecasts explain 94.8% of the observed water level
variance at Welsh Bridge, a little better than the calibration performance.

16.5.2.2. Water level routing model for Welsh Bridge–Buildwas

Identification and estimation of the water level routing model for Welsh
Bridge–Buildwas resulted in a [2 2 7] model, which explains 98% of the
variance of the observations. This model has the following decomposed STF
form:

y5,k =
0.0034

1 − 0.9866z−1
y4,k−7 +

0.6456
1 − 0.4669z−1

y4,k−7 + ξk, (16.21)

where y4,k−7 denotes denotes the water level measurement at Welsh Bridge,
delayed by 7 hours and y5,k denotes water level at Buildwas. Here, the
residence times are about 1 hour for the fast component and about 3 days
for the slow component. The bank-full level at this site is at about 6m.
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Figure 16.5. Welsh Bridge: 28-hour-ahead validation forecast based on upstream water
level and rainfall inputs.

It is not clear what physical interpretation can be given to this identified
parallel pathway model but it is probably a reflection of some complexity
of the flow process in the river between Welsh Bridge and Buildwas and it
would be interesting to investigate this further.

Finally, when the adaptive updating procedures were applied to the
model and the 28 hour-ahead forecasts were used to extend the total forecast
lead time of the final model to 35 hours, the forecast explains nearly 97%
of the variance of observed water levels at Buildwas. The validation of the
model was performed on the November floods from the year 2000 and the
results are shown in Figure 16.6. The model explains 96% of the variance of
the water level observations at Buildwas. The high peak values are predicted
with reasonable accuracy, while the lower water level changes are over-
predicted and there is a visible time difference between the simulated and
observed water levels for the smaller peaks.

16.5.3. Nonlinear water level routing

The three, nonlinear routing models described in this section relate the
upstream water levels to the downstream water levels measured at each
location. The part of the River Severn down from Welsh Bridge to Bewdley



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch16

438 P.C. Young, R.J. Romanowicz and K. Beven

100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

9

10

time [h]

st
ag

e 
[m

]
Standard Error Bounds
Level Forecast
Level Data

Figure 16.6. Buildwas: 35-hour validation forecast, 24th October 2000.

is modelled using three nonlinear routing models, each of the form outlined
in Section 16.4.2. The Welsh Bridge–Buildwas reach was incorporated again
in order to extend the forecast downstream using the same nonlinear
modelling approach. At each gauging station, the nonlinear STF model
is identified and estimated based on the water level measurements between
this gauge and the nearest downstream gauging station.

The first-order form of Equation (16.17) is identified for all three of
these models using the same statistical approach to that described for the
rainfall-water level models discussed in previous sections. In each case, the
identified non-parametric SDP nonlinearity is then parameterised using a
Radial Basis Function (RBF) approximation (although any alternative,
flexible parameterisation would be suitabled) and a ten element RBF is
sufficient for all three models. In the final estimation phase of the modelling,
the RBF parameters are re-optimised concurrently with the associated STF
parameters, again using a similar optimisation procedure to that used for
the rainfall-water level modelling. The results from the estimation analysis

dThe RBF is often portrayed as a “neural” function but this can be misleading: as used
here, the RBF is simply composed of Gaussian-normal shaped basis functions that, when
combined linearly using optimised parameters (“weights”), can approximate well smooth
nonlinear curves, such as the SDP-type nonlinearity.
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Table 16.2. Model structure identification: Nonlinear routing.

Model Forecast R2
T R2

T
Model type Location structure lead [h] calibration validation

Nonlinear Buildwas [1 1 8] 8 0.997 0.996
Nonlinear Bridgenorth [1 1 2] 10 0.997 0.996
Nonlinear Bewdley [1 1 4] 14 0.998 0.989
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Figure 16.7. The estimated SDP nonlinearity for the Welsh Bridge–Buildwas routing
model: the non-parametric estimate is shown as the black, full line, with its standard
error bounds shown dotted; the red line is the optimal RBF estimate (see text).

for the DBM models for Buildwas, Bridgenorth and Bewdley, as well as
their diagnostic performance measures are summarised in Table 16.2.

16.5.3.1. Nonlinear water level routing for Welsh Bridge–Buildwas

The linear water level routing model for Welsh Bridge–Buildwas has been
presented in Section 16.5.2.2, but the same reach can be modelled using the
nonlinearly transformed water levels at Welsh Bridge as an input to a linear
first-order transfer function. The nonlinear relation is parameterised using
ten radial basis functions as explained above and Figure 16.7 compares the
RBF parameterised nonlinearity (red line) with the initial non-parametric
estimate (black line). Note that this red line is not estimated as a RBF



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch16

440 P.C. Young, R.J. Romanowicz and K. Beven

approximation to the non-parametric black line; it is the finally optimised
RBF function and is plotted here to show that it compares well with the
initial non-parametric estimate. Note also how the state-dependent gain
defined by this nonlinear curve reduces substantially at water levels greater
than 3 m, possibly suggesting that over-bank flow is occurring above this
level.

The best identified model structure for Welsh Bridge–Buildwas reach,
incorporating this nonlineaity, has the form:

y5,k =
0.4683

1 − 0.5224z−1
f4(y4,k−8) + ξk, (16.22)

where f4(y4,k−8) denotes the nonlinearly transformed input water level at
Welsh Bridge delayed by 8 hours and y5,k denotes water level at Buildwas.
The noise ξk is identified by the AIC criterion as AR(13) process. The model
residence time is equal to 1.5 hours.

The 8-hour-ahead forecast for Buildwas explains 99.42% of output
water level variation for the validation period in November 2000. The
results of validation are shown in Figure 16.8. The validation of the same
model on the February 2002 flood data results in 99.62% explanation of the
data.

Figure 16.8. Buildwas: 8-hour-ahead validation forecast using the nonlinear SDP rout-
ing model.
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16.5.3.2. Nonlinear water level routing for Buildwas–Bridgenorth

The best identified model structure for the Buildwas–Bridgenorth reach has
the form:

y6,k =
0.6692

1 − 0.3616z−1
f5(y5,k−2) + ξk, (16.23)

where f5(y5,k−2) denotes denotes the nonlinearly transformed input water
level at Buildwas delayed by 2 hours and y6,k denotes water level at
Bridgenorth. The noise ξk is identified by the AIC criterion as AR(11)
process. The model residence time is equal to 1.0 hours.

The 2-hour-ahead forecast for Buildwas explains 99.99% of output
water level variation for the validation period in 2002. However, as the
forecast is only 2 hours ahead, it is useful to extend it using upstream
forecasts. Also, the validation forecasts so far, as shown in Figures 16.3
to 16.8, have illustrated the overall performance of the forecasting system.
In practice, however, the multiple-step-ahead forecasts, from a few hours
ahead to the maximum forecast horizon, are required on demand at any
time. Here, therefore, the results are presented in this operational mode.
Figure 16.9 shows a series of six such operational forecasts over the
major flood peak. The numbered circle with an interior cross mark is the
forecasting origin in each case: all the forecasts are plotted as red lines over
a period of between 3 and 14 hours ahead, together with their associated
standard error bounds. The water level before the first forecast, at point 1,
has declined from the previous flood peak and has levelled out. This is
the first forecast where an increase in water level is predicted and occurs.
At point 2, the forecast shows the water level continuing to rise sharply
and so another, overlapping, forecast is shown at point 3, which predicts a
still further rise but with the first sign of flattening out at the flood peak
(these two forecasts tend to merge and are not easy to separate on the
graph). Before point 4, the measured water levels have not been changing
much around their peak values for about 12 hours, but the latest water
level measurements at this point suggest a possible forthcoming decline
and this is, indeed, confirmed by the forecast. Finally at points 5 and 6,
the forecasts predict the continuing decline to the end of this particular
data set.

Note that with the present implementation, the updated operational
estimate of the level can be somewhat removed from the measurement
because the measurement noise variance is not constrained to be small
(compare the level forecast with the measured level at the start of the
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Figure 16.9. Bridgenorth: 14-hour-ahead operational forecasts using the nonlinear SDP
routing model. The numbered circle with an interior cross marks the forecasting origin in
each case (see text); the red line is the forecast; and the shaded bands are the estimated
standard error bounds.

forecast period). If the alternative formulation outlined in Section 16.4.1.4
had been used, however, this updated estimate would be much closer to the
measured level, with the closeness depending on the specified variance of
the measurement noise σ2.

16.5.3.3. Nonlinear water level routing for Bridgenorth–Bewdley

The best identified model structure for the Bridgenorth–Bewdley reach has
the form:

y7,k =
0.4923

1 − 0.4496z−1
f6(y6,k−4) + ξk, (16.24)
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where f6(y6,k−4) denotes the nonlinearly transformed input water level at
at Bridgenorth delayed by 4 hours and y7,k denotes water level at Bewdley.
The noise ξk is identified by the AIC criterion as AR(11) process. The model
residence time is just greater than one hour.

The 4-hour-ahead forecast for Bewdley explains 99.1% of ouput water
level variations over the validation period in 2002 (the same 2002 flood event
as at Bridgenorth, but considering a different peak wave). As in the previous
reach, this forecast can be combined with the 10-hour-ahead forecast from
Bridgenorth, thus obtaining a total 14 hours forecast lead time. Figure 16.10
shows this 14-hour-ahead forecast obtained for the same 2002 event, which
explains 98.87% of the water level variations at Bewdley for this validation
period.

It should be noted that the percentage of the variance explained pro-
vides a good measure of the overall performance and the figures cited in this
and previous sections are based on the whole forecast period. In order to
obtain a better idea of comparative performance, however, it is worth look-
ing at shorter periods, for example over flood peaks. In the case of a 100 hour
period covering the peak wave in 2002, for instance, the percentage expla-
nation of the 14-hour-ahead forecast is 89.7%, while for the “naive” forecast
(the current water level projected 14 hours ahead), this drops to 27.4%.
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Figure 16.10. Bewdley: 14-hour-ahead validation forecast using the nonlinear SDP
routing model.
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16.6. Comments

The main aim of the Lancaster Real-Time Forecasting Study has been the
derivation of a relatively simple and robust, online system for the forecasting
of water levels in a river catchment, with the maximum possible lead-
time and good real-time forecasting performance under high water level
conditions. As a result, the analysis and forecasting system design is based
on the water levels, rather than the more conventional flow variables, in
order to obtain superior long-term forecasting performance. This removes
the need to introduce the nonlinear water level-flow transformation, thus
reducing the reliance on the prior calibration of this relationship and
conveniently reducing the magnitude of the heteroscedasticity in the
model residuals. In addition, improved forecasting performance is obtained
by the introduction of real-time adaptive mechanisms that account for
changes in both the system gain and the variance of the forecasting errors
(heteroscedasticity).

An important contribution of the study is the development of an
adaptive forecasting and DA system for a fairly large part of the River
Severn catchment, based on a statistically estimated stochastic-dynamic,
nonlinear DBM model composed of inter-connected rainfall-water level and
water level routing modules. Although this adaptive forecasting system
design is generic and could be applied to a wide variety of catchment
systems, it has been developed specifically for the River Severn between
Abermule and Bewdley, including the effects of the Vyrnwy tributary,
using DBM models. As such, it is a quasi-distributed system: i.e. spa-
tially distributed inputs but lumped parameter component models that
consist of four main sub-models: two rainfall-water level models and four
water level routing models for the river gauging stations downstream to
Bewdley.

Without introducing external rainfall forecasts, the maximum length of
the forecasting lead-time that can be handled successfully by this adaptive
forecasting system depends on the advective delays that are inherent in the
rainfall-water level dynamics; delays that depend on factors such as the
changing speed (celerity) as the flood-wave moves along the river and
the flood starts to inundate the floodplain. The gain adaptation can only
off-set this nonlinearity in the effective time delay partially, but this still
results in acceptable flood peak predictions. The result is a state/parameter
updating system, where the parameter updating is limited to the minimum
that is necessary to achieve acceptable long-term forecasting performance,
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combined with good potential for practical robustness and reliability. In
this sense, the system represents a sophisticated development of the flood
warning system for Dumfries (Lees et al., 1993, 1994) that was operative
during the 1990s. Sometimes, however, it may be necessary to adaptively
update more parameters in the sub-models that comprise the catchment
model. This is aided by the real-time recursive nature of the parameter
estimation algorithms (Young, 2011) and a recent examples are given in
Young (2010a,b).

The DA involves sequential updating at each measurement location. As
a result, the forecast uncertainty of this decomposed model will be different
from the uncertainty of the entire system, unless the correlation between
the observations is negligible. However, we decided to use the decomposed
system for the model identification and parameter estimation phase of the
analysis due to much better identifiability of this decomposed form and
the associated higher robustness of the resulting model. Further work is
being undertaken on the propagation of uncertainty in the entire forecasting
system (Beven et al., 2006). However, in order to check the estimates of the
uncertainty bands of the forecasts, we applied an empirical approach based
on the observed behaviour of the past forecast (Gilchrist, 1978), which
confirmed that they are reasonable.

In order to achieve the main aim of the study, namely acceptable long-
horizon flood forecasting, the research reported here has concentrated on
a design that achieves good forecast accuracy at high water levels for long
lead times. Our results show that the changes of water level dynamics for
these high peak values can be predicted adequately using the recursively
updated adaptive gain and variance parameters. As a flood event continues,
the same methodology can be used to produce accurate forecasts with
much smaller prediction variance for shorter lead times. However, there
remain some differences in the forecast responses for low flow values that
we feel could be reduced further and research is continuing to investigate
this possibility.

16.7. Conclusions

The main conclusions of the study described in this chapter are summarised
below.

• The main objectives of a real-time flood forecasting system are to guide
decision making about whether flood warnings should be issued to the
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stakeholders and the public and to help avoid the issuing of false warn-
ings. To this end, the forecasting system proposed here is able to provide
reasonably accurate forecasts, based on real-time adaptive mechanisms
for state and parameter updating, together with the estimates of
uncertainties. This will allow the decision-making process in the future
to be based on an appropriate assessment of risk when issuing a warning.

• The Lancaster DBM model-based system is designed specifically to
satisfy these objectives: its main aim is to process the online signals from
the rainfall and water level sensors in a statistically efficient manner, in
order to minimise forecasting errors.

• The DBM model-based state updating methods can be applied to
any model that satisfies the KF requirements (e.g. models such as
IHACRES (Jakeman et al., 1990), PDM (Moore, 1985, 2007) and
HYMOD (Moradkhani et al., 2005b)). However, large, physically-based
models are normally over-parameterised and so suffer from inherent
ambiguity (equifinality). As a result, both parameter estimation and
updating is problematic: a rather unsatisfactory solution requires the
modeller to select a subset of identifiable parameters, with the remaining
ones constrained, either deterministically or stochastically (e.g. using
tightly defined Bayesian priors), to assumed known values.

• The DBM model/modified KF approach can match, or improve upon, the
performance of the currently popular but computationally very intensive,
methods of numerical Bayesian analysis (e.g. the ensemble KF), yet it
is computationally much more efficient, with updates taking only a few
seconds.

• Research and development is continuing to further improve the fore-
casting system performance. This includes the reduction of the auto-
correlation in the multi-step-ahead forecasting errors by extending the
stochastic parts of the DBM model in the upstream reaches down to
Buildwas.

• A forecasting system based on the approach described in this chapter has
now been incorporated as an option in the National Flood Forecasting
System under the Environment Agency project Risk-based Probabilistic
Fluvial Flood Forecasting for Integrated Catchment Models. Some details
are available in the Phase 1 Report (Environment Agency, 2009).

• The forecasting system has been developed with, and exploits, compu-
tational tools from the CAPTAIN Toolbox (e.g. Taylor et al., 2007) for
MatlabTM. For the latest information on CAPTAIN, see http://capt-

aintoolbox.co.uk/Captain Toolbox.html. A fully functional, version
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of this Toolbox can be downloaded via this website or directly from
http://www.lancs.ac.uk/staff/taylorcj/tdc/download.php.

Appendix 16.1. Recursive Estimation and the Kalman Filter

Recursive estimation is the embodiment of real-time updating. In recursive
estimation, either the estimate of a model parameter vector, or the estimate
of a state variable vector, are updated at the kth sampling instant based
on the estimate obtained at the previous (k − 1)th sampling instant. This
update also depends upon the model that describes the relationship between
the parameters or state variables and the latest data received at the kth

sampling instant. So, for example, the state of a catchment model at a
given kth hour, as defined by the hourly flows at various locations in
the catchment, is updated on the basis of the estimates of these flows
at the previous (k − 1)th hour, the catchment model, and the latest
flow measurements, as received remotely from flow gauges at the various
locations at the kth hour.

Recursive estimation was first developed by K. F. Gauss, sometime
before 1826. A translation and an interpretation of his recursive linear least
squares regression algorithm, in modern vector-matrix terms, is available
in Appendix 2 of the first author’s tutorial text on recursive estimation and
time-series analysis (Young, 2011). Over one hundred and thirty years later,
apparently without any knowledge of the Gauss algorithm, the systems
theorist, Rudolf Kalman, developed a related algorithm for state variable
estimation (Kalman, 1960). This Kalman Filter (KF) algorithm, as it
has come to be known in many areas of science and social science, is a
special form of recursive linear least squares estimation where the constant
parameters considered by Gauss are replaced by state variables generated
by a dynamic linear system, in the form of a set of linear, stochastic
state equations (a vector Gauss–Markov process). Such equations could,
for example, be those of a linear catchment model.

The simplest way to derive the linear least squares regression algorithm
of Gauss is to consider the well known problem of estimating of the set of n
unknown, constant parameters xj , j = 1, . . . , n, which appear in a “linear
regression” relationship of the form:

xk = h1,kx1 + h2,kx2 + · · · + hn,kxn, (A.1)

where the measurement yk of xk is contaminated by noise, i.e.

yk = xk + ek = h1,kx1 + h2,kx2 + · · · + hn,kxn + ek, (A.2)
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while the hj,k; j = 1, 2, . . . , n, are exactly known, linearly independent
variables which are also statistically independent of the measurement noise
on yk.

Most readers will recognise this problem and will know that the
minimisation of the least squares criterion function for k samples, i.e.

J2 =
k∑

i=1




n∑
j=1

[yi − hj,ixj ]2


 (A.3)

requires that all the partial derivatives of J2 with respect to each of the
parameters xj , j = 1, 2, . . . , n, should be set simultaneously to zero. Such
a procedure yields a set of n linear, simultaneous algebraic equations that
are sometimes termed the “normal equations” and which can be solved to
obtain the en bloc estimates x̂j , j = 1, 2, . . . , n, of the parameters xj , j =
1, 2, . . . , n, based on the k data samples.

A simple and concise statement of the least squares results in the multi-
parameter case can be obtained by using a vector-matrix formulation: thus
by writing (A.2) in the alternative vector form,

yk = hT
k x + ek, (A.4)

where

hT
k = [h1,k h2,k · · · hn,k ]; xT = [x1 x2 · · · xn ]. (A.5)

The superscript T denotes the vector/matrix transpose, and hT
k x is the

vector inner product. With this notation, we are able to define J2 as

J2 =
k∑

i=1

[yi − hT
i x ]2 =

k∑
i=1

e2k. (A.6)

Using the rules of vector differentiation, the partial derivatives of J2 with
respect to the vector of parameters x are given by,

∂

∂x

k∑
i=1

[yi − hT
i x ]2 = −2

k∑
i=1

hi[yi − hT
i x ], (A.7)

so that the normal equations are obtained from,

1
2
∇x (J2) = −

k∑
i=1

hiyi +

[
k∑

i=1

hihT
i

]
x = 0, (A.8)
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where 1
2
∇x (J2 ) denotes the gradient of J2 with respect to all the elements

of x .

(a) The Recursive Least Squares Algorithm

Now, provided that the matrix [
∑k

i=1 hihT
i ] is non-singular,e then the

solution to the normal equations (A.8) takes the form

x̂k =

[
k∑

i=1

hihT
i

]−1 k∑
i=1

hiyi, (A.9)

where x̂ k is the estimate of x based on the k data samples. This solution
can be written as,

x̂k = Pkbk (A.10)

where,

Pk =

[
k∑

i=1

hihT
i

]−1

; bk =
k∑

i=1

hiyi (A.11)

and we see that P−1
k and bk can be obtained recursively from the equations:

P−1
k = P−1

k−1 + hkhT
k ; bk = bk−1 + hkyk. (A.12)

A few lines of matrix manipulation (see page 30 et seq in Young, 2011)
then produces the following Recursive Least Squares (RLS) algorithm for
updating the estimate x̂k of xk from the previous estimate x̂k−1:

x̂ k = x̂k−1 + Pk−1hk[1 + hT
k Pk−1hk]−1{yk − hT

k x̂ k−1}, (A.13)

where Pk is obtained recursively from Pk−1 by the equation:

Pk = Pk−1 + Pk−1hk[1 + hT
k Pk−1hk]−1hT

k Pk−1. (A.14)

It is interesting to note that, following a little more matrix manipulation,
an alternative form of the recursion (A.13) is the following:

x̂k = x̂ k−1 + Pk{hkyk − hkhT
k x̂ k−1}. (A.15)

eThe need for linear independence between the xj now becomes clear since linear depen-

dence would result in singularity of the matrix Ck = [
Pk

i=1 hih
T
i ] with det[C(k)] = 0

and the inverse “blowing up”.
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This second form shows that the recursive update is in the form of a
“gradient algorithm”, since {hkyk − hkhT

k x̂ k−1} is proportional to the
instantaneous gradient of the squared error function [yk − hT

k x̂ ]2. However,
the form (A.13) is usually preferred in computational terms.

Equations (A.13) and (A.14) constitute the RLS algorithm. It is
interesting to note the simplicity of the above derivation in vector-matrix
terms which constrasts with the complexity of Gauss’s original derivation
(see Appendix A of Young, 2011) using ordinary algebra. Note also that
the RLS algorithm provides a computational advantage over the stage-wise
solution of the en bloc solution (A.9). In addition to the now convenient
recursive form, which provides for a minimum of computer storage, note
that the term 1 + hT

k Pk−1hk is simply a scalar quantity. As a result, there
is no requirement for direct matrix inversion even though the repeated
solution of the equivalent classical solution (A.9) entails inverting an n×n

matrix for each solution.
Since the RLS is recursive, it is necessary to specify starting values x̂0

and P0 for the vector x̂ and the matrix P, respectively. This presents no
real problem, however, since it can be shown that the criterion function-
parameter hypersurface is unimodal and so an arbitrary finite x̂ 0 (say
x̂ 0 = 0), coupled with a P0 having large diagonal elements (say 106 in
general), will yield convergence and performance commensurate with the
stage-wise solution of the same problem. This setting is often referred to
as a “diffuse prior”, which exposes the fact that the algorithm has obvious
Bayesian interpretation, in the sense that the a priori estimate x̂k−1 at the
k − 1th sampling instant is updated to the a posteriori estimate x̂k at the
kth sampling instant, based on the new data received at the kth sampling
instant.

This Bayesian interpretation is enhanced still further if it is assumed
that the noise ek is a Gaussian white noise process with variance σ2,
for then the estimate x̂k will also have a Gaussian distribution and the
statistical properties of the estimate, in the form of the covariance matrix,
are conveniently generated by the algorithm if it is modified slightly to the
form:

x̂k = x̂ k−1 + Pk−1hk[σ2 + hT
k Pk−1hk]−1{yk − hT

k x̂ k−1} (A.16a)

Pk = Pk−1 + Pk−1hk[σ2 + hT
k Pk−1hk]−1hT

k Pk−1, (A.16b)

where now Pk is the covariance matrix, i.e.

Pk = E{x̃ kx̃
T
k }; x̃k = xk − x̂k, (A.16c)
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so that the square root of the diagonal elements of Pk quantify the
estimated standard errors on the elements of the estimate x̂k.

(b) The Kalman Filter

In the RLS algorithm, there is an implict assumption that xk is time
invariant; an assumption that can be made explicit by stating that,

xk = Fxk−1; F = In, (A.17)

where In is the identity matrix (a purely diagonal n× n matrix with unity
diagonal elements).

Using orthogonal projection theory, Kalman (1960) extended this
assumption by considering the situation when xk is not a vector of
constant parameters, as in the RLS algorithm, but a vector of time-
variable stochastic variables generated by the following set of stochastic
state equations (a “Gauss–Markov process”):

xk = Fxk−1 + ζk, (A.18)

where F is a “state transition matrix” that defines the dynamic behaviour
of xk and is not, therefore, an identity matrix. This equation is obviously
a generalisation of (A.17), allowing xk to vary over time in a stochastic-
dynamic manner, where the stochasticity arises from the input ζk, which
is assumed to be a vector of zero mean, white noise inputs with covariance
matrix Q, which can be time-variable if there is information on this.

In practice, we might expect that, if xk is a physically meaningful state
vector, then it may be affected by one or more input variables. For instance,
if the state variables are both observed and unobserved flows occurring at
locations along a river, then these flows will be caused by the variations in
the rainfall. We might also expect that not all the flows will be observed (e.g.
some could be flows defined by the STF decomposition analysis discussed in
the main text, which separates the observed flow into unobserved quick and
slow components). Consequently, it is necessary to specify how the observed
(measured) variables are related to the state variables by introducing a
“measurement equation” that accounts also for any noise on these measured
variables.

In the case of a single input variable uk−δ, delayed by δ samples (which
is relevant to the rainfall-level models considered in this chapter, where uk−δ

is the delayed effective rainfall), these additional factors can be introduced
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quite straightforwardly by extending the model (A.18) to the form:

x k = Fx k−1 + Guk−δ + ζk (A.19a)

yk = hT xk + ek. (A.19b)

Here, the second equation (A.19b) is the measurement equation and it is
very similar to the regression equation (A.4), except that it will be noted
that the subsript k on h has been removed, showing that it is composed of
constant elements. Although the elements of h could vary, if this is required,
it is more usual, within this dynamic systems setting, that they will be
constant since the relationship between the observed variable yk and the
state vector xk will normally remain fixed. For example, in the case of state
equations (16.10) in the main body of this chapter, the measured water level
is sum of the quick and slow components, so that h = [1 1].

Given the stochastic state equations (A.19a) and (A.19b), the recursive
equations of the KF can be written in the following prediction-correction
form:

a priori prediction:

x̂k|k−1 = Fx̂k−1 + Guk−δ (A.20a)

Pk|k−1 = FPk−1FT + Q (A.20b)

a posteriori correction:

x̂k = x̂k|k−1 + Pk|k−1h[σ2 + hTPk|k−1h]−1{yk − ŷk|k−1} (A.20c)

Pk = Pk|k−1 − Pk|k−1h[σ2 + hT Pk|k−1h]−1hT Pk|k−1 (A.20d)

ŷk = hT x̂k; ŷk|k−1 = hT x̂k|k−1. (A.20e)

The derivation of these equations is straightforward (Young, 2011) but, in
any case, they make intuitive sense:

• Since the stochastic inputs ζk and ek both involve only zero mean,
white noise variables, the state prediction equation (A.20a) provides a
logical prediction of the state vector xk, given the equation (A.19a) for
its propagation in time, because the expected values of these random
inputs is zero and the dynamic system is assumed to be stable. Here,
the subscript notation k|k − 1 denotes the estimate at the kth sampling
instant (in the main text one hour), based of the estimate at the previous
(k − 1)th sampling instant.
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• The state update Equations (A.20c) and (A.20d) follow directly from
their equivalent Equations (A.16a) and (A.16b), respectively, in the RLS
algorithm.

• The covariance matrix prediction in Equation (A.20b) is not quite so
obvious but, if we consider the estimation error x̃k = xk − x̂k then,

x̃ k = Fx k−1 − Fx̂k−1 + ζk = Fx̃k−1 + ζk

because the effects of the input term Guk−δ cancel out. Consequently,
the covariance matrix Pk|k−1, which is the expected value of x̃ kx̃

T
k , is

given by:

Pk|k−1 = E{x̃kx̃
T
k } = E{F[x̃k−1x̃

T
k−1]F

T }+E{ζkζT
k } = FPk−1FT+Q.

Here, use is made of the matrix identity [Fx̃ k−1]T = x̃T
k−1F

T , associated
with a matrix product; as well as the fact that the expected value
of the cross-products between x̃ k−1 and ζk are zero because they are
uncorrelated.

• The estimate ŷk of the underlying “noise-free” output ẙk (see later
comment), i.e. ẙk = hTx k, is simply a combination of the state estimates
defined by the known measurement equation vector h (e.g. in the case
of the state space model (16.10) in the main text, hT = [1 1] and the
estimate is the sum of the two state variables, in this case the “quick”
and “slow” component water level estimates).

• Like its simple RLS relative, the KF can be considered in Bayesian terms.
It must be emphasised, however, that the Gaussian assumptions utilised
for this Bayesian interpretation of the algorithm are not essential to
its success as an estimation algorithm. The algorithm is robust to the
violation of these assumptions in the sense that the estimate x̂k is still
the minimum covariance linear unbiased estimator of the state vector xk

(Norton, 1986).

In the context of the present chapter, the main reason for using the KF
algorithm is forecasting water level or flow. The f -step-ahead forecasts are
obtained by simply repeating the prediction steps in (A.20a) and (A.20b) f
times, without correction (since no new data over this interval are available).
The f -step ahead forecast variance is then given by:

var(ŷk+f |k) = σ̂2
k + hTPk+f |kh, (A.20f)

where Pk+f |k is the error covariance matrix estimate associated with the
f -step ahead prediction of the state estimates. This estimate of the f -step



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch16

454 P.C. Young, R.J. Romanowicz and K. Beven

ahead prediction variance is used to derive approximate 95% confidence
bounds for the forecasts, under the approximating assumption that the
prediction error can be characterised as a nonstationary Gaussian process
(i.e. twice the square root of the variance at each time step is used to define
the 95% confidence region).

It is important to note one important aspect of the stochastic formu-
lation of the KF in relation to flood forecasting: namely the assumption
that the measured water level (or flow) variable is subject to error and
uncertainty. The objective of the KF is to provide an estimate of this
variable so, at each recursion, the state update equation (A.20c) adjusts
the estimate of the state vector x̂k to its most likely value, based on the
past estimates and the latest noisy measurement. The associated estimate
of the water level ŷk in Equation (A.20e) is adjusted accordingly and it
will not, in general, be equal to the measured water level. It is possible to
over-ride this aspect of the KF and ensure that the estimate is updated so
that the estimated water level is very close to the latest measured value by
setting the noise variance σ2 to a low value.

This means that the forecast generated by the KF should not be
considered a forecast of the measured water level variable but an estimate
of the underlying “noise-free” variable ẙk = hTxk (see A.4), together
with a quantification of the uncertainty associated with this estimate. It
is important to stress this point as there is a tendency to judge the quality
of a forecast by how close it forecasts the measured water level. In fact, the
forecast is the mean of an estimated random variable defined by this mean
value and the associated confidence bounds, so that a good forecast is one
in which, most of the time, the measured water level falls within the 95%
confidence interval associated with the forecast.

Finally, it should be mentioned that other, more complex recursive
algorithms have been developed for special problems: for instance, the
recursive form of the Refined Instrumental Variable (RIV) algorithm
discussed and used in the main text and Young (2011), which involves
iteration as well as recursion.

Appendix 16.2. State-Dependent Parameter STF Models

Nonlinearity in rainfall-flow and water level models is very important
because it defines the way in which the model responds under different
catchment wetness conditions. Fortunately, it is straightforward to extend
the linear STF model to allow for such nonlinear phenomena. In particular,



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch16

A Data-Based Mechanistic Modelling Approach to Real-Time Flood Forecasting 455

the SDP STF model class can characterise a wide variety of nonlinear,
stochastic, dynamic phenomena, including chaotic systems.

In the discrete-time case, the general SDP form of the STF model
between rainfall rk and level yk is one where all of the parameters can be
functions of other variables. In the case where each SDP is a function of
only one variable, the model can be written as follows (cf Equation (16.1)):

yk =
B(wk, z

−1)
A(vk , z−1)

rk−δ + ξk (A.21)

where,

A(vk , z
−1) = 1 + a1(v1,k)z−1 + a2(v2,k)z−2 + · · · + an(vn,k)z−n,

B(wk, z
−1) = b0(w0,k) + b1(w1,k)z−1 + b2(w2,k)z−2 + · · · + bm(wm,k)z−m.

In other words, it is assumed that any parameter in this SDTF model
(A.21) may vary over time because it is a function of other (“state”)
variables vi,k, i = 1, 2, . . . n and wi,k, i = 0, 1, 2, . . .m that are the elements
of the vectors vk and wk. Typical variables used in this regard are the
input rk or output yk and their past values, which are the state variables
associated with the Non-Minimal State Space (NMSS) representation
of the STF model (see Taylor et al. (2000) and the prior references
therein).

The general SDP model subsumes a simple nonlinear model that is
particularly important in a hydrological context. This is the “Hammerstein”
model, where a single SDP nonlinearity affects the numerator parameters
in the SDTF model (A.21) while the denominator coefficients are time-
invariant: i.e.

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · · + anz
−n,

B(w0,k, z
−1) = b0(w0,k) + b1(w0,k)z−1 + b2(w0,k)z−2 + · · · + bm(w0,k)z−m.

Furthermore, the numerator SDPs bi(w0,k), i=0, 1, 2, . . .m are defined
so that the SDP nonlinearity w0,k can be factored out of the model,
producing a single, nonlinearity operating on the input variable uk−δ. In
the hydrological context considered here, this nonlinearity is found to be a
function of the flow or level variable, in this case either the level yk, for the
rainfall-level model (16.5); or the upstream level yi−1,k−δ , for the routing
model (16.17). In the rainfall-flow case, this converts the measured rainfall
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into an “effective rainfall” (see Section 16.4.1). This model can be written
in the form,

yk =
B(z−1)
A(z−1)

uk−δ + ξk, (A.22)

where the effective rainfall uk−δ = f(rk−δ) is the SDP-transformed rainfall.
The SDP nonlinearity in the Hammerstein model is normally inferred

from the data in two stages. First, the sdp algorithm in the CAPTAIN
Toolbox is used to obtain a non-parametric (graphical) estimate that
identifies the basic characteristics of the nonlinearity. Then, a parametric
form that is able to model the non-parametric curve is selected and the
parameters of this parameterised nonlinearity and the associated linear STF
are estimated concurrently by optimisation based on either nonlinear least
squares or maximum likelihood. A typical example of such an effective rain-
fall nonlinearity is shown in Figure 16.11, where the initial non-parametric
estimate is shown as a full line, while the final optimised, parametric estimate
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Figure 16.11. Typical SDP effective rainfall nonlinearity estimation results.
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is shown as a dash-dot line. Also shown are the Standard Error (SE) bounds
on the non-parametric estimate (dashed lines) and the initial parametric fit
to the non-parametric estimate. In this case, the parametric function is of
the form uk = (1 − eγyk)rk.
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17.1. Introduction

Flood warning is a well established way to mitigate the damage from flood-
ing. Given sufficient lead-time, valuables and other property can be moved,
flood resilience measures invoked (e.g. flood boards, sandbags) and people
evacuated from areas at risk. Flood control structures can also be operated
to reduce the risk from flooding, and emergency works performed to clear
watercourses of debris, and to reinforce flood defences and embankments.
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Flood warning is usually most effective when a long lead-time can
be provided, and a flood forecast provides a way of extending the time
available as well as increasing the accuracy of the warning, and reducing
the false alarm rate. For river level and flow forecasting, the approaches
used can range from simple correlation techniques through to complex
integrated catchment models combining rainfall-runoff, flow routing and
coastal forecasting components. However, there are many uncertainties
associated with the generation of forecasts, and these are often characterised
as arising from initialisation, modelling and forcing errors (e.g. Beven, 2009;
Laeger et al., 2010).

It has long been recognised that an estimate of the uncertainty in a
flood forecast should be obtained to assist with operational decision making
(e.g. Buizza, 2008; Krzysztofowicz, 2001; Schaake et al., 2007) although
with much debate about the extent to which this information should be
disseminated. Some potential operational benefits include being right more
often when issuing warnings, providing a more realistic representation of
capabilities in communicating with other organisations and the public,
and being more likely to bracket what actually happens in terms of flood
warning threshold crossings and timings.

The resulting uncertainty estimates may be used qualitatively, such
as through simple graphical displays, or in a more quantitative way, as
inputs to a user’s flood incident management procedures or decision-
support system, perhaps using cost-loss and risk-based techniques to assist
in decision making (e.g. Hall and Solomatine, 2008; Krzysztofowicz, 1999;
Roulin, 2007; Todini, 2004). Options for communicating uncertainty include
making the estimates available only to technical experts, such as flood
forecasting duty officers, through to making them widely available to the
public in radio and television broadcasts, and via the internet.

For real-time use, the operational requirement is usually to derive
estimates of the forecast uncertainty from all sources, for the locations
where these are required, which are often called “forecasting points”. The
two main options are (i) to assess and take account of forecast errors
through comparison with real-time and/or historical observations and (ii) to
make prior assumptions about the magnitude of individual sources of
uncertainty (in rating curves, rainfall forecasts, etc.), and to propagate
these estimates through the model cascade. Examples of techniques in the
first category include probabilistic data assimilation and forecast calibration
methods, whilst the second approach is often called forward uncertainty
propagation (e.g. Beven, 2009; Pappenberger et al., 2007).
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Probabilistic data assimilation techniques make use of real-time obser-
vations to improve the forecast and, in addition to assessing the overall
uncertainty in a forecast, also aim to reduce the uncertainty. One of
the earliest operational applications was to estimate uncertainty for a
forecasting system for the River Nith in Scotland, using a Data-Based
Mechanistic (DBM) approach (Lees et al., 1994). Other approaches include
Ensemble Kalman Filtering (EKF) (Evensen, 1994) and Particle Filtering
(PF) (Moradkhani et al., 2005).

By contrast, the aim of (probabilistic) forecast calibration techniques
is to make an off-line assessment of the uncertainty over a hindcasting
period, by comparing previous forecasts with the subsequently observed
river levels and flows. The resulting statistical model is then assumed to
apply during real-time operation. Post-processing techniques of this type
include Bayesian uncertainty processors (Krzysztofowicz and Herr, 2001;
Krzysztofowicz and Kelly, 2000; Reggiani et al., 2009; Reggiani and Weerts,
2008; Todini, 2008), quantile regression (Koenker, 2005; Weerts et al.,
2011), percentile matching (Wood and Schaake, 2008), hydrological model
output statistics processors (Montanari and Brath, 2004; Seo, et al., 2006),
and Autoregressive Moving Average (ARMA) error prediction (Moore,
2007; Moore et al., 2010). However, this is a developing area (Wilks and
Hamill, 2007), and operational applications have only recently started to be
implemented.

By contrast, simple forward uncertainty propagation techniques such as
“what-if” approaches have been used by operational forecasters for decades;
for example, to explore the sensitivity of forecasts to assumptions about
future rainfall, and to other factors, such as flood defence failures and gate
operations. These methods are also widely used off-line to explore model
performance, and to assess the needs for improvements to models and the
underlying data.

More sophisticated approaches have also been developed, such as the
Ensemble Streamflow Prediction (ESP) technique which was introduced
into operational use in the 1980s for forecasting river flows at medium
to long lead-times (Day, 1985; Wood and Schaake, 2008). In its original
form, this approach was based on sampling of individual years from the
historical meteorological record, and propagating these values through the
forecasting model. However, in more recent developments, the estimates are
conditioned on categorical rainfall forecasts of the next month’s rain (Moore
et al., 1989) or short-range rainfall forecasts and other information. Also,
with the introduction of ensemble meteorological forecasting techniques in
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the 1990s, much of the focus in recent years in Europe, the US and elsewhere
has been on the operational use of ensemble rainfall forecasts in improving
flood forecasts at longer lead-times, and for flash flood events (e.g. Cloke and
Pappenberger, 2009; Environment Agency, 2010a; Golding, 2009; Thielen
et al., 2009; Webster and Hoyos, 2004).

The current situation is therefore that there are many uncertainty
estimation techniques potentially available or under development, which
capture and/or reduce the overall uncertainty to various extents, and
which perform best at different lead-times. Varying levels of investment
may also be required in terms of staff time and software development,
and possibly also in computing infrastructure to overcome model run-time
constraints.

Here, initial work is described on developing a decision framework and
guidelines to help potential users through these various choices, taking
account of typical hydrological and operational constraints, such as flood
warning lead-time requirements and model run-times. Some key design
principles were that a risk-based approach should be used, matching the
effort expended and accuracy of the technique to the level of flood risk, and
that the approach should be generic and capable of being extended in the
future as new techniques become available.

The overall aim is to help practitioners to select and implement
appropriate real-time techniques which can add value to the forecasting
process and are robust enough to use operationally (Laeger et al., 2010).
Also, the focus was on techniques for the generation of uncertainty
estimates, rather than the communication of uncertainty. Whilst this is
an important topic, it remains an active area for research (e.g. Demeritt
et al., 2007; Demuth et al., 2007; Nobert et al., 2010).

The resulting framework builds on similar guidelines developed for
related areas, such as for deterministic flood forecasting (Environment
Agency, 2002), and flood risk modelling generally (Beven et al., 2010).
Several examples are presented for application of the framework within
the Environment Agency in England and Wales, for whom the original
version was developed (see Laeger et al., 2010), together with a number
of uncertainty estimation techniques for integrated catchment forecasting
models. The examples are included to illustrate key concepts, rather than
necessarily being the recommended approaches to use in any given situation.
A brief look to the future of probabilistic forecasting is also provided,
together with some key priorities for research.
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17.2. A Proposed Framework for Selecting Operational
Uncertainty Estimation Techniques

17.2.1. Operational requirements

When estimating uncertainty in forecasts in real-time, two key questions
are: (i) how will the information be used?; and (ii) what minimum lead-time
is required for decision making?

Probabilistic information can be used in several ways, ranging from
just a qualitative assessment, through to the requirement for calibrated
probability distributions for input to a decision-support system (see
Section 17.2.4). The level of effort required to develop techniques, and
interpret outputs, varies between approaches, and should ideally be linked
to the level of risk. For example, a more sophisticated approach is probably
required for a tidal barrier, protecting many thousands of people from flood
risk, than for isolated properties in a rural area.

Here, risk is defined as the combination of probability and consequence,
where consequence is typically defined in terms of the number of properties
at risk from flooding (although other choices are sometimes made, such as
the likely economic damage). In the framework, the level of risk influences
both the choice of technique and the extent of the analysis work performed
in collating the information required to apply the framework. For example,
for a low risk location, if run-times are likely to be an issue, then a simpler,
faster technique might be used whereas, for a high risk location, additional
investment in computer processing power might be found to be worthwhile,
following extensive testing of prototype configurations to assess the impacts
on system performance.

Table 17.1 provides an indication of the types of probabilistic outputs
which might be required (Environment Agency, 2010b). Each approach
requires a different level of detail in terms of the probabilistic information
provided. Although it is difficult to generalise, the requirement for the
probabilistic content of forecasts increases moving down the table, with
higher risk applications requiring a more detailed approach.

Flood warning authorities are also increasingly adopting performance
targets and levels of service agreements for the warning, forecasting
and dissemination components of the overall flood warning service (e.g.
Andryszweski et al., 2005). For probabilistic forecasts, in addition to
objectives for deterministic performance measures such as maximum false
alarm rates, and the accuracy of peak levels, further measures might also
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Table 17.1. Summary of typical operational requirements for probabilistic flood fore-
casts (adapted from Environment Agency, 2010b).

Category Requirement Description

Qualitative Visualisation “Eyeball” assessments of the spread of
ensemble members with forecast lead-time,
and relative to threshold values, and of other
factors such as the clustering of ensembles.

Persistence-based
approaches

Techniques which compare the number of
threshold exceedances between successive
model runs.

Intermediate Threshold-frequency
approaches

Calibration of thresholds based on the
historical model performance, obtained over
a calibration period (e.g. based on flow
return periods) (e.g. Reed et al., 2007).

Quantitative Physical-threshold
approaches

As for threshold-frequency approaches but
using actual threshold values in decision
making (e.g. flood defence levels).

Cost-loss approaches Assessment of appropriate actions based on
consideration of the economic value or utility
of forecasts, and the optimum probability
thresholds for taking action.

Bayesian uncertainty
processors

(whole-system
versions)

Similar to cost-loss approaches, considering the
predictive uncertainty taking account of all

information available up to the time of the
forecast, and including economic and
subjective views of flood warning decision
criteria.

be introduced for the probabilistic component. Again, a higher standard
of performance may be required for high risk locations. For example, some
key measures which quantify different aspects of the forecast include the
following items (e.g. Weerts et al., Chapter 15 of this volume):

• Reliability — which is a measure of the agreement between the forecast
probability and the observed frequency over many flood events (e.g. the
forecast bias).

• Resolution — which indicates the ability of the forecast to discriminate
between true events and true non-events among different events.

• Sharpness — which is a measure of the tendency to forecast with a
concentration of large probabilities around some value, as opposed to
small probabilities spread over a wide range of values.
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Incremental improvements in existing measures might also be assessed; for
example, the reduction in false alarm rates.

As with deterministic forecasts, the issue then arises of how to assess
performance at the design stage, before a system has been implemented.
However, often an initial estimate may be obtained from the performance of
the same technique on a similar catchment or — for higher risk locations —
by exploratory modelling using a pre-operational model configuration.

Another consideration is the lead-time requirement for flood warning.
Many studies have shown that the effectiveness of flood warnings increases
as the lead-time is increased, although eventually a point of diminishing
returns is reached, and the risk of false alarms also increases (e.g. World
Meteorological Organisation, 1994). Typically, the severity of warnings is
escalated as the forecast time of the event approaches, ranging from an
initial alert in the early stages, through to a full flood warning when
flooding seems imminent. Also, longer lead-times may be required for higher
risk locations; for example, where large numbers of properties need to
be evacuated if flooding seems likely, decisions need to be made about
deploying demountable defences, or critical infrastructure is at risk.

Lead-time requirements vary between organisations. For example, in
the Environment Agency, a minimum lead-time of 2 hours is specified
for flood warnings, where technically feasible, with longer lead-times for
high risk locations (e.g. to trigger a Major Incident Plan) whilst Outlook
Statements are currently provided for 2–5 days ahead. For small fast-
response catchments, rainfall forecast inputs are typically required to
achieve this flood warning lead-time whilst, for larger catchments, an
adequate lead-time may be possible based on rainfall alone estimated from
rain gauge or weather radar observations, or by routing flows from river
gauging stations further upstream. However, for Outlook Statements, for
the typical scale of catchments in the UK, forecasts usually rely solely on
rainfall forecasts as the main forcing input at longer lead-times.

When translating these requirements into the minimum lead-time
required (ideally) for flood forecasts, the additional time required for deci-
sion making and issuing the warning also needs to be considered (e.g. Carsell
et al., 2004; Environment Agency, 2002; Sene, 2008). Approaches to issuing
warnings can include loud hailers, sirens, door knocking, telephone calls
and — more recently — automated multi-media dissemination systems.
The time taken to issue a warning, from taking the initial decision to issue
a warning, to contacting the final person, varies between approaches, and
often depends on the number of properties at risk.
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17.3. Hydrological Constraints

Having defined the main operational requirements, in practice it may not
always be possible to achieve these due to a combination of hydrological
and operational constraints. The main hydrological constraints are:

• The catchment response time.
• The lead-time provided by meteorological forecasts (where used).

The catchment response time is the time taken for a rainfall input to
translate into flows at the required forecasting point(s) in an integrated
catchment model. Obviously this is not a fixed value, and can depend on
factors such as antecedent conditions, the location in the catchment, rainfall
depths and distributions, and artificial influences. However, the notion of a
typical response time under flooding conditions is useful when deciding on
the most appropriate uncertainty estimation techniques to use.

For meteorological forecasts, in addition to rainfall inputs, some other
operational uses in flood forecasting can be for air temperature forecasts (for
snowmelt forecasting), and air pressure and wind field forecasts (for coastal
surge forecasting). For short- to medium-range forecasting, the current “state
of the art” is to use high resolution non-hydrostatic Numerical Weather
Prediction (NWP)models with a grid resolution as small as 1–2km embedded
in regional and global-scalemodels, combined with nowcastingmodels for the
next few hours ahead (e.g. Golding, 2009; Roberts et al., 2009).

Typically, at these length scales, forecast skill is exhibited for lead-times
up to several days ahead, although obviously decreases with increasing lead-
time and is significantly less for some types of event, such as convectively
driven storms. Lower resolution forecasts may show skill weeks to months
ahead in some parts of the world, although the model length scales used
(typically 25–100km at present) are less suitable for use with hydrological
forecasting models except in very large catchments. Meteorological services
therefore often only issue forecasts up to a fixed lead-time, which is presently
typically 0–6 hours ahead for the nowcasting component, 2–5 days for
the current generation of high-resolution local area forecasting models,
but 10–15 days ahead or longer for ensemble forecasts derived at a global
scale (e.g. Cloke and Pappenberger, 2009; Weerts et al., Chapter 15 of this
volume; Werner et al., Chapter 19 of this volume).

When using meteorological forecasts in a flood forecasting model, the
maximum forecast lead-time that can be provided consists of the sum
of the catchment response time and the maximum lead-time for which
meteorological forecasts are available (or are considered to add value).
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Figure 17.1. Illustration of some key timescales in real-time hydrological forecasting.

The catchment response time is also an important factor when considering
the value of data assimilation since, at longer lead-times, the information
content of the observed river levels or flows diminishes, reducing the value
of this approach.

Figure 17.1 summarises these various timescales and lead-times,
together with a number of other timescales which are important to the
forecasting process.

The uppermost bar shows the time available for model operation in
real-time, relative to an example period of historical data for calibration
of the techniques. Normally some time elapses between calibrating the
technique and using it operationally, as shown by the white bar. There
may also be anecdotal evidence from before the start of observations, which
can sometimes be used during model development as part of the model
validation process, such as evidence of peak water levels or flood extents in
major historical flood events.

The inset shows a breakdown of some typical times for real-time
operation, with the maximum flood forecast lead-time possible consisting
of the sum of the hydrological response time and the lead-time provided
by the meteorological forecast. Some probabilistic techniques, such as
Bayesian model averaging (see Section 17.6.3), also require an initialisation
or training period of recent observed data during real-time operation.



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch17

Uncertainty Estimation in Fluvial Flood Forecasting Applications 471

In some organisations, a “climatological” forecast may also be generated
for longer lead-times — for example assuming zero rainfall or mean values
for the time of year — although this is not shown in the figure.

The figure also shows four catchment scenarios for the lead-time
requirement for flood warnings, indicated as Types 1, 2, 3 and 4. For
a Type 1 catchment, the required flood warning lead-time can only be
obtained by using a flood forecast which relies solely on meteorological
forecasts. This might be the situation for a small fast response catchment,
for example, or for a large catchment in which a very long lead-time is
ideally required for issuing warnings (e.g. for evacuating large numbers
of properties). By contrast, for the Type 2 situation, the forecast relies
mainly on rainfall observations by rain gauge, weather radar or satellite.
Types 3 and 4 place even less reliance on rainfall data, and correspond to
larger catchments in which the required lead-time can be achieved simply
by routing flows from river gauging station observations further upstream
(for Type 4 catchments).

These catchment types are a development of those proposed by
Lettenmaier and Wood (1993) and — for the Environment Agency situation
of relatively short flood warning lead-time requirements — it proved
convenient to adopt the catchment type classifications shown in Table 17.2
(Environment Agency, 2010b). Here, a distinction is made between the
hydrological (catchment runoff) and hydraulic (river channel flow routing)
response times.

The advantage of introducing this classification scheme is that, in the
absence of other information (for example, performance statistics for an
existing model), the catchment type can be linked to the main types
of errors which cause uncertainties in a forecasting model, which are
(Environment Agency, 2010b):

• Initialisation Errors — due to errors in the observations used to estimate
precipitation; potential evaporation and temperature; discharge or other
boundary conditions used in calculating the model states in historical
mode of operation to initialise a forecast into the future (and which will
normally be updated as new observations are received).

• Modelling Errors — arising from an uncertain model structure and its
parameters, model resolution, uncertain river control structure operat-
ing/management rules etc.

• Forcing Errors — errors which occur in the forecast-mode of operation
when a model component is forced with an input derived from another
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Table 17.2. Links between lead-time requirements and catchment response (adapted
from Lettenmaier and Wood, 1993).

Type Catchment Criterion
Description and key forcing inputs for

flood warnings

1 Very fast
responding
basins

Twarning

� Ttotal

The desired lead-time is such that the
warning or outlook must be issued on
the basis of water that has not yet
fallen as rain. In this case a rainfall
forecast is the only means to provide a
timely warning when using a flood
forecasting model.

2 Small-to-
medium-size
basins

Twarning

< Ttotal and
Tcatchment

� Triver.

The warning or outlook will be issued on
the basis of water that is already in the
catchment and is mainly determined by
the hydrological travel time.

3 Medium-size

basins

Twarning

< Ttotal and
Tcatchment

∼ Triver

The warning or outlook will be issued on

the basis of water that is already in the
catchment and river and the response
time is determined by the hydrological
response time and the hydraulic
response time.

4 Large river
basin

Twarning

< Triver or
Tcatchment

� Triver

The warning or outlook will be issued on
the basis of water that is already in the
main channel; or the hydrological
response time is insignificant compared
to the hydraulic response time.

5 Coastal/tidal
zone

Twarning

� Tsurge

The desired lead-time is such that the
warning or outlook may be issued on
the basis of wind conditions that have
not yet occurred. In this case wind and
pressure forecasts are necessary for a
timely warning.

Twarning = desired warning time, Ttotal = total response time, Triver = travel time

through main river, Tcatchment = hydrological response time, Tsurge = coastal forecast
lead-time

model with its own initialisation and modelling errors; for example,
a NWP model or the hydrological or flow routing outputs at a flow
forecasting point further upstream.

Note that, whilst this classification is often used, in practice the initialisa-
tion and modelling errors are often inter-related; in particular, the initial
conditions for a model run are often derived from a previous model run
rather than, say, from direct observations of soil moisture.
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Figure 17.2. Example of the contributions to total uncertainty as a function of
forecast lead-time for a specific downstream location in a large river. Key to sources
of uncertainty: I = rating curve(s) for upstream station(s), II = flow routing or

hydrodynamic component, III = runoff from major tributaries and headwaters, IV =
initial soil moisture conditions, V = areal rainfall estimates from observations (rain
gauges, weather radar), VI = rainfall forecasts (adapted from Werner et al., Chapter 19
of this volume).

Figure 17.2 illustrates how the main sources of error in a flood forecast
can vary with the forecast lead-time. The example is for a forecasting point
at the downstream end of a large river catchment, and shows how there
is a transition from initialisation and modelling errors to forcing errors as
the lead-time increases. Of course, a similar figure for a small, fast response
catchment might show almost complete reliance on rainfall forecasts even
at short lead-times.

For this example, Figure 17.3 illustrates how these different sources
of uncertainty vary in both magnitude and type with a selection of
increasing lead-times. Although these results are specific to the catchment
and forecasting model considered, plots of this type can assist with focussing
effort on which methods to use, and the sources of uncertainty to consider.

Table 17.3 summarises how initialisation, modelling and forcing errors
typically arise for each of the five catchment types defined in Table 17.2.
This type of assessment can provide a focus for off-line forward uncertainty
propagation analyses to assist with model development and — as discussed
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Figure 17.3. Illustration of the main sources and magnitude of uncertainty for three
lead-times, for the example shown in Figure 17.2 (key as for Figure 17.2).

later — can also help with selecting an appropriate uncertainty estimation
technique for real-time use.

17.4. Operational Constraints

A number of operational constraints may also limit the choice of uncertainty
estimation technique. For probabilistic forecasting applications, these typ-
ically relate to the time and budget available, data volumes and record
lengths, and model run-time issues.

As in other areas of flood risk management, the first of these items is
often linked to the level of risk. For example, for higher risk locations, a
higher investment might be justified, as shown by a formal cost–benefit
analysis, based on the estimated cost of implementation and the likely
damages which could be avoided through improved forecasts. However, it
is worth noting that, although flood warning benefit estimation techniques
are well-established for deterministic forecasts (e.g. Carsell et al., 2004;
Environment Agency, 2002), techniques for estimating the additional
incremental benefits from probabilistic forecasts are still under development
and an active area for research.

The issue of data volumes and record lengths is one which, to some
extent, can be addressed through additional computing power, and other
operational measures, such as collecting more data. Data volumes are most
likely to be an issue when using grid-based forcing inputs, such as ensemble
rainfall forecasts, and may limit the amount of data which can be stored
online. This can influence the length of the initialisation period which can
be provided for some techniques, and can also cause bottlenecks in data
transfer with potential run-time issues.

The record length requirements for calibrating probabilistic techniques
are in many ways similar to those required for deterministic forecasting



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch17

Uncertainty Estimation in Fluvial Flood Forecasting Applications 475

Table 17.3. Dominating uncertainties for each forecasting situation (Environment
Agency, 2010b).

Type Catchment Source

1 Very fast responding
basins

Initialisation Errors:

— Past Areal Mean Rainfall
— Potential Evaporation

Modelling Errors:

— Rainfall-Runoff Model Parameters
— Rainfall-Runoff Model Structure

Forcing Errors:

— Rainfall Forecasts

2 Small-to-medium-size
basins

Initialisation Errors:

— Past Areal Mean Rainfall
— Potential Evaporation

Modelling Errors:

— Rainfall-Runoff Model Parameters
— Rainfall-Runoff Model Structure

Forcing Errors:

— Rainfall Forecasts (for longer
lead-times/outlook statements)

3 Medium-size basins A mixture/combination of 2 and 4
4 Large river basins Initialisation Errors:

— High Flow Ratings
— Ungauged Lateral Inflows
— Tidal Boundary

Modelling Errors:

— Hydraulic/Routing Model Parameters
— River Channel/Floodplain Survey
— River Control Structures

Forcing Errors:

— High Flow Ratings (forecast inflows)
— Forecast Tidal Boundary
— Forecast Lateral and other Inflows (for longer

lead-times/outlook statements)
— Rainfall Forecast (for even longer

lead-times/outlook statements)

5 Coastal/tidal zone Initialisation Errors:

— Water levels in the coastal zone

Modelling Errors:

— Bathymetry

— Model domain/resolution

Forcing Errors:

— High Flow Ratings (forecast inflows/levels)
— Boundary Conditions

— Wind and Pressure Forecast
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techniques. Ideally, the observational record should include one or more
extreme events to provide reassurance that the model can cope with low
probability events although, due to limited record lengths, often this is not
possible (hence the key role of data assimilation in helping to cope with the
unexpected, as discussed later).

Calibration records should also be homogeneous, in the sense of
correcting for, or excluding, any periods in which there were changes
in instrumentation, catchment characteristics, model components, or the
forcing inputs used to operate the model. Whilst this is generally straight-
forward to achieve for the hydrological component, if deterministic or
ensemble meteorological forecasts are used, then hindcasting for this
component can be a considerable undertaking, which is best performed
by the meteorological service providing the information (e.g. Uppala et al.,
2005). Alternatively, for the ensemble forecasting component, an older form
of the current operational NWP model might be used instead, alongside
the latest operational model for the deterministic component. For example,
modern high-end personal computers are now fast enough to operate some
models from 5–10 years ago in real-time, allowing hindcasting exercises
to be performed quickly and easily, at the expense of some reduction in
performance compared to using the latest operational models.

However, of the various operational constraints, model run-times are
perhaps the main concern, since for some techniques multiple model runs
may be required for each forecast that is issued, placing an additional load
on the forecasting system. This may also limit the number of ensemble
members which can be considered (leading to sampling issues), or may even
mean that a probabilistic forecast cannot be obtained in an operationally
useful time. The time available for model runs typically consists of the
interval between forecast runs, less any time for pre- and post-processing
of inputs and outputs. For some forecasting services, model runs might
only be performed hourly, or less, whereas, in the case of the Environment
Agency for example, forecast runs are performed every 15 minutes in the
time leading up to, and immediately following, a flood event. However,
it is also important to note that there are a number of probabilistic
forecasting techniques for which the additional run-time requirement is
minimal, compared to that of the underlying, deterministic flood forecasting
model: several examples are provided later.

The most likely situations in which forecast times may become
prohibitive are with forward uncertainty propagation techniques for models
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that include a hydrodynamic component, and for some ensemble data
assimilation and hydrological uncertainty processing techniques. In this
situation, some approaches to reducing run-times can include (Laeger et al.,
2010):

• Computational improvements, e.g. parallel processing, faster processors.
• Model configuration changes, e.g. nested models, model simplification or

rationalisation.
• Statistical approaches, e.g. sampling or grouping of ensembles.
• Model emulators, e.g. simpler models to emulate the behaviour of more

complex models.

Typically, computational improvements would normally only be considered
for high-risk locations, or performed as part of an organisational upgrade
to computer systems.

Model configuration changes are a cheaper option and, in Environment
Agency practice, for example, deterministic hydrodynamic models are
usually required to complete a model run of a specified duration, on a
specified computer processor, within a time of less than six minutes. To
achieve this it is usual to simplify the model using a coarser discretisation
in areas away from the forecasting point(s) of interest, and to make other
changes which improve the model stability and convergence. Run-time
reductions of 1–2 orders of magnitude are sometimes possible without
sacrificing model performance at the key forecasting points (e.g. Chen et al.,
2005). However, if multiple model runs are required, the overall time to
derive a forecast may still be prohibitive (depending on the overall forecast
run interval).

The third option, of statistical sampling approaches, is one which has
been considered extensively in meteorology, and more recently in ensemble
hydrological forecasting (e.g. Cloke and Pappenberger, 2009). However,
results tend to be model and situation specific, requiring extensive testing
of the impact of reduced sample sizes on the overall model outputs.

The final option, of emulators, requires development of a simpler, faster
running model to emulate the behaviour of the more complex model at
specific cross-sections of interest in flood warning. The objective is to
generate a compact, parametrically efficient model to recreate the behaviour
of the parent distributed model. The resulting emulation can be very
accurate and fast for a wide range of flow conditions (e.g. Beven et al., 2008)
while still allowing a mapping of level or flow forecasts back to physical
cross-section data to provide real-time inundation estimates.
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Of course, emulation of this type depends on the accuracy of the
original hydrodynamic model. Where the hydrodynamic model is used to
simulate the effects of different control strategies, or complex backwater
effects, different emulators might be needed for different conditions. The
state-space form of the emulator is readily incorporated into existing
Kalman filter-based data assimilation algorithms such as those described in
Romanowicz et al. (2006, 2008), if level data can be made available at the
emulation site.

17.5. Decision Tree

Having defined the main requirements and constraints, the overall frame-
work is summarised in a series of key questions and worksheets, supported
by a range of flowcharts and tables. This section presents several examples
of these items for application to flood forecasting in real-time. The full
framework is discussed in Laeger et al. (2010) and Environment Agency
(2010b), which also considers off-line applications of uncertainty estimation
techniques.

The framework is based around the following overall classification of
techniques:

• Forward Uncertainty Propagation — methods which seek to estimate the
uncertainty from individual sources requiring prior assumptions based on
experience and/or analysis of historical data.

• Probabilistic Data Assimilation — methods which use real-time obser-
vations to improve a forecast, including providing an estimate of uncer-
tainty.

• Probabilistic Forecast Calibration — methods which aim to calibrate the
probabilistic content of forecasts by evaluation of the recent or historical
performance over a hindcasting period (sometimes called conditioning,
or statistical post-processing).

For example, Table 17.4 shows suggestions for the most appropriate general
category of technique to use for some of the operational requirements
summarised in Table 17.1.

Given ongoing research on this topic, this table in particular is intended
just as an initial guide on choice of techniques, and it is anticipated that it
will be improved and extended in future issues of the framework. Also,
it is worth noting that the categories of probabilistic data assimilation
and forecast calibration — although convenient to use here — sometimes
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Table 17.4. Initial indication of uncertainty estimation requirements for several
approaches to decision making using probabilistic forecasts (adapted from Environment
Agency, 2010b).

Operational
Requirement

Forward Uncertainty
Propagation

Probabilistic
Data

Assimilation

Probabilistic
Forecast

Calibration

Visualisation Sensitivity tests may be sufficient Optional Not required

Persistence-based
approaches

Sensitivity tests may be sufficient Optional Not required

Threshold-
frequency
approaches

Sensitivity tests may be sufficient Recommended Recommended

Physical-
threshold
approaches

Sensitivity tests may be sufficient Essential Essential

Cost-loss
approaches

Sampling from probability
density function or
physically-based reasoning

Essential Essential

mean different things to different people (with alternative names including
updating and conditioning, sometimes with qualifiers such as “...with
respect to historical data”).

Another point to note is that, for some forecasting situations, a
combination of data assimilation and forecast calibration techniques may
be useful. This takes advantage of the reductions in uncertainty provided by
data assimilation techniques for lead-times within the catchment response
time, whilst still providing an overall estimate of uncertainty at longer lead-
times using forecast calibration techniques (see Figure 17.1).

To provide an overall summary of the technique selection process,
Figure 17.4 presents a decision tree summarising the main choices between
approaches, whilst taking account of the main hydrological and operational
constraints. The grey shaded area indicates forward uncertainty propaga-
tion techniques, for which perhaps the most commonly considered sources of
uncertainty in integrated catchment models are those illustrated, i.e. rainfall
inputs (e.g. rain gauges, weather radar), rainfall-runoff model parameters,
rating curves and ensemble rainfall forecasts. For illustration, two possible
model run-time reduction approaches are shown: these might also need to be
considered for some probabilistic data assimilation and forecast calibration
techniques (although this is not illustrated here).
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Figure 17.4. Example of a decision tree providing an initial guide to the selection of
techniques. Note (1) — depends on the operational requirement, including the level of
risk (QPF = Quantitative Precipitation Forecast).

Table 17.5 also provides an overall summary of techniques which might
be used for a range of potential applications. Of course, it is not possible
to summarise all aspects of a complex decision-making process in a single
diagram or table, but this is at least a starting point for deciding on which
techniques should be considered in each situation.

The framework is intended to be adapted and improved as further
information becomes available. Also, the discussion so far has been mainly
in terms of the generic classifications of forward uncertainty propagation,
data assimilation and forecast calibration techniques. The following section
describes examples of specific techniques which might be included in the
framework for each of these categories, together with the rationale for some
of the decisions which are shown in Figure 17.4. The focus is on real-time
uncertainty estimation techniques, rather than off-line techniques.
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Table 17.5. Suggestions for techniques which might be used for different applications
(adapted from Environment Agency, 2010b).

Potential
Application Description

Qualitative
assessments
of uncertainty

Inclusion of plumes, spaghetti plots and other graphical ways of
displaying uncertainty in the outputs to flood forecasting and
warning duty officers. These estimates could be derived using
data assimilation and/or forecast calibration techniques,
depending on the operational requirement and lead-time, and/or
forward uncertainty propagation of ensemble rainfall forecasts.

Resilience to
telemetry
failure

Provision of backup uncertainty estimation techniques in real-time
in case of telemetry failure at one or more forecasting points
where data assimilation is used, typically for high-risk locations.
By definition, the absence of real-time data means that forward
uncertainty propagation techniques are used. Typically this
would be based on the latest update of total error before failure;
however, that uncertainty may expand rapidly in reach-to-reach
model cascades if there are multiple failures but will be
constrained again as soon as there is a site with working
telemetry.

Reduction of
uncertainty

Use of real-time data to both constrain uncertainty, and to provide
estimates of uncertainty, at a range of lead-times, for use in
operational decision making, and possibly decision-support
systems/cost-loss approaches, etc. This requires the use of data
assimilation techniques, possibly combined with forecast
calibration techniques for higher risk applications, and at longer
lead-times.

High risk
locations

For obtaining calibrated probabilistic forecasts suitable for input to
decision-support systems, cost-loss approaches, and other types
of operational decision making, both data assimilation and
forecast calibration techniques may be required, depending on
the level of risk, and the operational requirement.

Flash flooding
applications

For providing flood warnings at lead-times beyond the hydrological
response time of the catchment, estimates of uncertainty can be
derived using data assimilation and/or forecast calibration
techniques for lead-times up to the response time, then ensemble
rainfall forecasts or deterministic rainfall forecasts with a forecast
calibration technique.

Outlook
statements

As for flash flooding, for long lead-times, beyond the hydrological
response time of the catchment, this requires the use of forecast
calibration techniques, and/or ensemble rainfall forecasts, and
could involve data assimilation and/or forecast calibration
techniques at shorter lead-times, depending on the level of risk,
model run-times and the operational requirement.

(Continued)
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Table 17.5. (Continued)

Potential
Application Description

Probabilistic
inundation
mapping

Mapping flood depths and extent in real-time with estimates of
uncertainty, based on estimates for levels both at forecasting
points, and intermediate locations (e.g. at nodes in
hydrodynamic models). The use of emulators is an option where
full hydrodynamic models are computationally prohibitive for
real-time forecasting using multiple/ensemble model runs (as an
alternative to reduced complexity models), particularly where
forecasts are only required at cross-sections of particular interest
for flood warning purposes.

Rainfall-level
models

Calibration and implementation of new types of models, such as
rainfall-level models (with estimates of uncertainty) without
introducing uncertainty through the rating curve in estimating
discharge.

Multi-model
ensembles

Use of ensembles consisting of the outputs from several types of
model to investigate model structural issues together with
techniques such as Bayesian model averaging.

17.6. Examples of Uncertainty Estimation Techniques

17.6.1. Forward uncertainty propagation

In forward uncertainty propagation techniques, prior assumptions are made
about the nature of the individual sources of initialisation, modelling and
forcing errors in a cascade of flood forecasting models.

Some examples might include uncertainties in the catchment averaging
scheme for rainfall data (when rain gauges are used), rating curves at high
flows and individual parameter values in a model, such as the roughness
coefficients in a hydrodynamic model. Model structural errors might also be
considered. Depending on the sources of uncertainty considered, sampling
techniques can range from qualitative estimates, such as assuming a likely
range of values, through to Monte Carlo, Bayesian, fuzzy set, multi-model
and other approaches (e.g. Beven, 2009; Beven, Chapter 3 of this volume).

Although an important tool for off-line use, such as for investigating
model performance issues, for real-time use, some significant limitations of
this approach can include:

• The run-times can quickly become prohibitive if large sample sizes are
required and/or the model includes a hydrodynamic component.
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• The resulting uncertainty estimates and/or probability distributions are
necessarily based on the prior assumptions, and usually will not account
for all sources of uncertainty, and the interactions between them.

The issue of parameter interdependence can be particularly important, since
for many types of model the individual parameters, or sets of parameters,
cannot be considered in isolation; for example, for the parameters which
define the surface stores in a rainfall-runoff model. Where there is some
understanding of the degree of independence, this can be estimated by
multivariate sampling schemes such as Latin hypercube or Copula sampling
(Beven, 2009).

So, although forward uncertainty propagation can be a useful technique
for off-line use, for real-time use there are more powerful data assimilation
and forecast calibration techniques which provide estimates for the overall
uncertainty, and avoid these potential run-time and sampling issues (see
Sections 17.6.2 and 17.6.3). However, the approach is well-suited for real-
time use in some situations, including the following two applications:

• In situations where there is an obvious dominating source of uncertainty,
such as when using rainfall forecasts at long lead-times, or for flash flood
situations.

• As a back-up to data assimilation and other techniques which rely on
a feed of real-time data, in the event of telemetry or instrumentation
failure.

In the first example, the main value is for the use of ensemble rainfall
forecasts at lead-times beyond the catchment response time. Here, the
effectiveness of probabilistic data assimilation approaches reduces, and
typically the overall uncertainty is dominated by the uncertainty in rainfall
forecasts. Of course, ensemble meteorological forecasts themselves are
normally generated as part of a sampling process for initial conditions
with the inherent uncertainties and limitations that this causes, such as
dependence on prior assumptions, partial sampling of overall uncertainty
etc. Due to computational limitations, there are also necessarily limitations
on the number of ensemble members which can be provided. From a
hydrological forecaster’s perspective, the sampling approach is normally
decided by the meteorological service and — as for the maximum lead-
time available — is not a factor which can be changed when using a
specific meteorological forecasting product. However, it is worth noting
that this too is an active area for research, with the latest operational
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Figure 17.5. Example of propagation of STEPS ensemble rainfall forecasts through a
PDM rainfall-runoff model for the Upper Calder catchment to the town of Todmorden.
Note that, for this example, the STEPS forecasts ran to 15:00 on 21 January 2008, as
indicated by the black dots, with a further 6 hours of zero rainfall appended to each
(Environment Agency, 2010b).

numerical weather prediction models allowing for uncertainty both in
initial conditions and model parameters and grid resolution. Also, some
nowcasting approaches for short-range forecasts are now being formulated
within an overall stochastic framework to provide ensemble nowcasts, as
illustrated in Figure 17.5.

The figure shows an example of the propagation of a 30-member
ensemble rainfall forecast through a rainfall-runoff model using the STEPS
nowcasting approach (Bowler et al., 2006). Multi-model NWP ensembles are
also increasingly used for medium- to long-range meteorological forecasting.

The second application — as a backup to more sophisticated tech-
niques — might be used in situations where it is essential to provide an
estimate of uncertainty, even in the event of telemetry or instrumentation
failures. In this case, data assimilation techniques which rely on those
real-time feeds of data may fail. One example might be when uncertainty
estimates are used as inputs to a decision-support system for a high-risk
location, such as a tidal barrier. However, even in this case, as described
in the following section, it is worth noting that some probabilistic data
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assimilation techniques can continue to provide uncertainty bounds which
reflect the lack of real-time data, and so may also be useful in this situation.

17.6.2. Probabilistic data assimilation

Data assimilation techniques are widely used to improve the accuracy
of forecasting model outputs, and deterministic approaches include input
updating, state updating, parameter updating and output updating (e.g.
Moore, 1999; Refsgaard, 1997; Serban and Askew, 1991).

For some approaches, uncertainty estimates can be derived as part
of the assimilation process. The term probabilistic data assimilation is
used here for approaches of this type, which typically involve some form
of filtering scheme. These include Kalman filtering approaches (Kalman,
1960), including extended and ensemble versions, and particle filters.

Figure 17.6 shows some possible locations in an integrated catchment
model at which different interventions can be made to reduce and quantify
forecast uncertainty.

As for deterministic data assimilation approaches, the great value
of probabilistic approaches is the ability to adapt to new, unexpected

Figure 17.6. Illustration of the sources of errors, and possible types of improvement, in
an end-to-end integrated catchment flood forecasting model (A = forecast calibration,
B =state updating, C = parameter updating, D = output updating and/or forecast
calibration) (Environment Agency, 2010b).
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situations as they arise, as reflected by the real-time data. In particular,
from an operational perspective, the next flood event is the most important,
and will usually be different from all previously observed events, due to
factors such as:

• Differences in the rainfall pattern and depths around the catchment.
• Rainfall/radar observation uncertainty.
• Rainfall forecast uncertainty.
• Antecedent condition and runoff generation uncertainty.
• River channel effects such as roughness/velocity uncertainty and rating

curve uncertainty.
• Event-specific factors, such as flood defence failures and telemetry

failures.

The use of real-time data (data assimilation) is therefore important in
updating model outputs to allow — to some extent — for unforeseen factors
as they occur, whilst noting that the information content of observed levels
and flows decreases with increasing lead-time, particularly for lead-times
beyond the catchment response time.

For probabilistic approaches, real-time data can be used in three main
ways:

• Use a probabilistic data assimilation technique which generates estimates
of uncertainty as part of the assimilation process, as an addition to an
existing deterministic forecasting model.

• Use a forecasting model capable of both modelling river levels or flows
and updating values in real-time, with estimates of uncertainty.

• Apply a deterministic data assimilation approach and then use a forecast
calibration technique to estimate the remaining uncertainty in forecasts
(see Section 17.6.3).

Ensemble Kalman filtering provides one example of a technique which
can be used with an existing model (Burgers et al., 1998; Butts et al., 2005;
Evensen, 1994; Weerts and El Sarafy, 2006; Weerts et al., Chapter 15 of
this volume). The method has the advantage of making few assumptions
about the nature of the relationship between inputs and outputs, but for
operational use there are two important factors to consider:

• As for forward uncertainty propagation techniques, the probabilistic
interpretation of the outputs depends strongly on the validity of the prior
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assumptions, and whether all sources of uncertainty and their interactions
are included.

• There may be run-time limitations on the number of ensemble members
which can be considered, again affecting the probabilistic interpretation
of outputs due to the reduced sample size.

Particle filtering approaches (Moradkhani et al., 2005) require fewer prior
assumptions, but may still have run-time constraints, and may be more
sensitive to assumptions about the sources of model and observation errors
(Weerts and El Sarafy, 2006).

One simpler approach which avoids both of these potential problems is
to use a method which considers total uncertainty, at the forecasting points
of interest, and only requires a single run of the underlying deterministic
model.

For example, in the adaptive gain approach (Lees et al., 1994), the basis
of the method is to apply a scalar multiplicative gain to correct the model
forecast at specific locations where observed data are available. The gain
is presumed to evolve stochastically, for example as a random walk. The
change in gain over time can then be evaluated using a Kalman filter,
with the gain being updated as pairs of observations and model predictions
become available. Forecasts are generated by multiplying the deterministic
forecast of the hydrological or hydraulic model by the forecast value of
the gain. Since the forecasting of the gain is done in a stochastic rather
than deterministic fashion, uncertainty bounds on the prediction can be
provided.

In addition, in the event of failure of an instrument or telemetry feed,
an estimate for the uncertainty is still provided although, as illustrated in
Figure 17.7, the bounds widen out for the time that the data feed is lost.
The example is for a trial application of the approach to estimating the
uncertainty in river level forecasts at the Linstock gauging station in the
River Eden catchment in England for a flood event in January 2005 when
there were several “drop-outs” in the data available for this gauge.

This approach is one component in the DBM modelling methodology
(Beven et al. 2011; Leedal et al., 2008; Lees et al., 1994; Romanowicz et al.,
2006, 2008; Smith et al., 2012; Young, 2002; Young et al., Chapter 16 of
this volume). The full DBM methodology provides an example of the use of
a stochastic model, capable of both providing a forecast, and an estimate
for the probability distribution of levels or flows.

The basic elements of a DBM model are a non-linear transformation
of the input time series which feeds into a linear transfer function that
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Figure 17.7. Adaptive Gain applied to outputs from ISIS model for Linstock, River
Eden. Solid line: hydrodynamic model forecasts. Dots: hourly observed water levels.
Grey: 95% prediction quantiles for 4 hour-ahead forecasts.

controls the distribution of the predicted outputs in time. In a cascade
of model components where observations are available in real-time at a
number of sites, the propagation of uncertainty through the cascade can be
constrained by the use of data assimilation using a modified Kalman filter
technique.

The resulting model might be used as the primary forecasting approach,
or as part of a multi-model ensemble, combining several modelling
approaches, as described in the next section. One particular advantage of
the DBM approach is that relationships can be derived directly between
rainfall and levels, avoiding the usual need for a valid high flow rating
equation when developing rainfall-runoff models. Figure 17.8 shows an
example of the 95% confidence limits derived using the DBM approach
for another location in the River Eden catchment, this time for a high flow
event in January 2009.
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Figure 17.8. Example of outputs from a DBM model cascade for the River Eden,
January 2009. Continuous plot of six hour ahead forecasts at Sheepmount using hourly
time-steps and updating.

17.6.3. Probabilistic forecast calibration

Probabilistic forecast calibration techniques aim to assess the uncertainty
in model forecasts, over a hindcasting period. Post-processing techniques
of this type are often an addition to an existing model, and so are quick
to operate since they do not require multiple model runs. They are often
developed as a purely statistical “catch-all” (ensemble) post-processor, in
order to reduce and account for the integrated hydrologic uncertainty (Seo
et al., 2006).

Quantile regression (Koenker, 2005) provides one example of this
approach. Here, the uncertainty is assessed by applying a statistical model
which has been calibrated off-line, typically using several years or more of
observations and hindcasts. The basis of the method is to derive regression
relationships for the transformed forecast errors, for a user-selected set of
quantile values (e.g. 5%, 25%, 50%, 75% and 95%) and lead-times (e.g. 1,
2, 3, 6, 12, 24 and 48-hours ahead). Various formulations can be considered,
and Figure 17.9 shows an example of the output for one case study, in which
the best results were obtained when the transformed forecast errors were
conditioned on the value of the predicted water level or flow (Weerts et al.,
2011).

In this example, the forecast extends to 48-hours ahead, and at the
longer lead-times relies on rainfall forecasts derived from a deterministic
NWP model. To derive the quantile regression model, an archive of
four years of rainfall forecasts was used, in addition to archived values
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Figure 17.9. Example of quantile regression outputs for the Welshbridge forecasting
location in the Upper Severn catchment during November 2009.

for weather radar, rain gauge, river level and river flow data over that
period.

As indicated earlier, an alternative approach to deriving uncertainty
estimates at longer lead-times is to use ensemble rainfall forecasts. In
principle the use of real-time ensembles should be better able to cope with
the unexpected, such as previously unobserved rainfall distributions and
intensities, compared to the use of uncertainty estimates calibrated on a
historical period. Ideally, rather than using the raw outputs (as provided by
the meteorological service), calibrated estimates would be used. However,
this remains an active research area, and the raw outputs continue to be
used in most hydrological forecasting applications to date (e.g. Weerts et al.,
Chapter 15 of this volume; Wilks and Hamill, 2007). Note also that, at long
lead-times, most well-designed ensembles will tend towards a climatological
estimate of future conditions.

One other consideration is that, due to computer processing limitations,
the area resolution of ensemble meteorological forecasts is usually an
order of magnitude less than for deterministic forecasts, although this gap
continues to narrow. For example, a typical situation is that, for a grid
resolution of 1 km for the deterministic product, the resolution for the
ensemble product might be 4–5km or more. Also, an archive of hindcast
ensemble forecasts is required for calibration, which may not necessarily be
available, or may require a time-consuming hindcasting or re-analysis task.
As an alternative, an archive can be built up over time by saving forecasts
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as they are used operationally. However, the resulting records may not be
homogeneous due to changes to model parameterisations, data assimilation
procedures, model resolution, etc., which meteorological services often make
over time to improve forecast accuracy. This in turn is an argument for
using a system of version control and controlled upgrades to new products
as these become available. A third approach, which was discussed earlier,
is to use an older, less computationally intensive operational NWP model
for the ensemble component, in parallel with the latest operational model
for the deterministic component.

Another approach is to combine a probabilistic forecast calibration
approach to assess the hydrological model error with an ensemble rainfall
forecasting approach to assess the rainfall forecast error (Moore et al.,
2010), the latter dominating the forecast uncertainty at longer lead-times.
Figure 17.10 shows an example of this approach combining a parametric
ARMA approach with the STEPS ensemble rainfall forecast estimates
shown in Figure 17.5.

In this example, the ARMA model is applied to the logarithm of errors
from a PDM rainfall-runoff model (Moore, 2007) simulation, and theoretical
quantiles employed to obtain uncertainty bands, under limiting assumptions

Figure 17.10. Uncertainty of flow forecasts using a STEPS ensemble rainfall forecast
with time-origin 06:00 21 January 2008. Model uncertainty is indicated by the 95%
probability band in grey. Rainfall forecast uncertainty is indicated across the graphs by
the high, medium and low percentile flows (90th, 50th and 10th percentiles). Observed
river flow: black line. Simulated river flow: red line. Percentile flows obtained using
ensemble rainfall forecasts: green line-simulated. The blue line is the ARMA updated
forecast.
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of normality and constant variance of the residual errors. In this case, the
“real-time” raw ensemble rainfall forecast inputs may be expected to better
reflect the uncertainty of a specific “unusual” storm, rather than storm
conditions “typical” over the period of calibration. The ARMA uncertainty
bands provide an estimate of total model uncertainty, but are conditional
on the use of rainfall observations rather than forecasts. Used together as
shown in Figure 17.10, they provide a way of jointly assessing uncertainty
due to model error and rainfall forecast error. The use of calibrated ensemble
rainfall forecasts might lead to further improvements, once techniques for
this approach become available.

Finally, the use of multi-model ensembles provides another route to
assessing model uncertainty, and in particular model structural errors. In
this approach, several hydrological models are operated in parallel, and
techniques such as Bayesian model averaging (Beckers et al., 2008; Raftery
et al., 2005; Todini, 2008; Vrugt and Robinson, 2007) can be used to
provide an overall estimate of uncertainty, based on the performance of the
individual models in the recent past. Ideally, models should be of different
types or “brands” to provide a truly competing set of outputs. Of course,
if the models include a hydrodynamic component, there may be run-time
issues with this approach. Also, there is no guarantee that any of the models
in the ensemble provides the “correct” forecast in a given flood event,
although the resulting forecast would be expected to be more robust than
the usual situation of relying on the outputs from a single forecasting model.

17.7. Current Research Themes in Probabilistic
Flood Forecasting

In the past decade, there has been a huge increase in interest in probabilistic
flood forecasting techniques. Many organisations with flood warning respon-
sibilities are starting to implement operational or trial applications. Here,
initial ideas have been outlined for a risk-based framework for categorising
and selecting techniques, depending on the operational requirement and the
hydrological and operational constraints.

Whilst much of this interest has been prompted by recent improvements
in the resolution of ensemble rainfall forecast products, this has also
extended to consideration of other sources of uncertainty, such as in tidal
surge forecasts, and model-related errors. There has also been a resurgence
of interest in Kalman filtering and related techniques which were first
applied to flood forecasting applications in the 1970s (Chiu 1978; Wood
and Szollosi-Nagy, 1980).
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The overall expectation is that the use of probabilistic information
should lead to better risk-based decision making in issuing flood warnings
and other operational decisions during flood events. From a practitioner’s
point of view, the principle benefits are (Laeger et al., 2010):

• Providing a more structured and transparent approach for assessing
uncertainties and their effects on flood forecasts regardless of the
experience of individual forecasters. This should provide a clear audit
trail of the information available and how it has (or has not) influenced
operational decisions.

• Increasing lead-times through using rainfall forecast ensembles, albeit
often with additional uncertainty at longer lead-times (however, work still
needs to be done to assess the readiness of duty officers and professional
partners to utilise these forecasts).

• Allowing for calculated precautionary actions to be taken in high-risk
locations in response to low probability forecasts.

• Providing additional information to support marginal decisions.
• Targeting model, telemetry and data improvements to the areas where

they matter most. Off-line assessments of model performance after floods
events can play a major role in this.

The uncertainty framework described here attempts to provide an
overall structure to guide the selection of appropriate techniques to meet
some of these different requirements, whilst recognising that some of
these methods still remain active areas for research. In particular, the
development of forecast calibration techniques for ensemble meteorological
forecasts has been noted as an area where further research is required.

Of course, beyond the purely technical issues, there are a number of
questions which remain active areas for research, including the issues of:

• The operational applications of uncertainty information, particularly for
low probability/high impact events.

• Improved understanding of the assumptions and limitations in the
probabilistic estimates provided.

• Communication of uncertainty information to professional partners and
to the public.

• Assessing the incremental economic benefits from the availability of
uncertainty information.

• Training and raising awareness for technical experts and professional
partners.
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• Techniques for reducing model run-times, such as emulators and statis-
tical sampling.

• Performance measures and validation techniques for probabilistic flood
forecasts.

Major advances have been made in these areas in recent years, with
an ever-widening set of case studies and applications available to inform
practitioners on the benefits of a probabilistic approach.
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CHAPTER 18

Case Study: Decision Making for Flood

Forecasting in the US National
Weather Service

Robert Hartman and John Schaake
NOAA National Weather Service, USA

18.1. Introduction

River and flood forecasts for the US are produced by 13 National Weather
Service (NWS) River Forecast Centers (RFCs). The RFCs have four basic
functions:

1. Continuous hydrometeorological data assimilation, river basin mod-
elling, and hydrologic forecast preparation.

2. Technical support and interaction with supported and supporting NWS
offices.

3. Technical support and interaction with outside water management
agencies and users.

4. Applied research, development, and technological implementation to
facilitate and support the above functions.

RFCs provide hydrologic guidance for timescales that vary from hours
(flash flood guidance and support to local flood warning systems), to
days (traditional flood forecasts), to weeks (snowmelt forecasts), to months
(reservoir inflow and seasonal water supply). The following is a brief
description of how guidance for each of these timescales is produced.
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18.2. Flash Flooding and Rapid Hydrologic Response

The NWS defines a flash flood as a flood event which occurs within six
hours of the causative event. The rapid and often localised development of
these events requires real-time assessment and immediate public warning.
As such, the National Weather Service responsibility for public flash flood
watches and warnings rests with 122 continuously staffed Weather Forecast
Offices (WFOs). RFCs support the WFO flash flood warning system by
providing flash flood guidance (amount of rain required to cause flash
flooding) based on current watershed conditions. Flash flood guidance is
provided in gridded form for durations of 1, 3 and 6 hours.

Many cities and counties with serious flash flood problems have
installed and actively maintain automated local flood warning systems.
The California–Nevada RFC pioneered the concept, design, development,
and application of ALERT (Automated Local Evaluation in Real Time).
The systems consist of automated event-reporting rain and river gauges
and a computer system that analyses current and developing hydrologic
conditions. Data from the river and rain gauges are generated in response
to changing conditions (e.g. 0.04 inches of rain or 0.1 foot change in river
level) and transmitted to the computer base station using line-of-sight radio
operated on a hydrologic warning frequency. All data are automatically
passed to the nearest WFO as well as the supporting RFC. Collaboration
among the operators of these systems is facilitated by organisations such
as the Alert Users Group (http://www.alertsystems.org) and the National
Hydrologic Warning Council (http://hydrologicwarning.org).

18.3. Flood Forecasting

Flood forecasts are provided for more than 4000 locations in the US.
Operational flood forecasting is an exercise in system integration as shown
in Figure 18.1. Data collection, meteorological forecasting, hydrologic
modelling, co-ordination, decision support, product generation, and dis-
semination components must all come together in a robust environment
that works efficiently and reliably.

Operational flood forecasting is highly dependent upon reliable and
timely data. The RFCs rely on data collected by many other agencies
and groups. It is important to note that the flood forecasting function
at all RFCs relies heavily upon automated data as opposed to manual
observations. Automated data are transmitted from field sites using a
variety of techniques that include line-of-sight radio, microwave, satellite,
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Figure 18.1. Operational flood forecasting process.

telephone, and meteor burst. Agencies that collect and provide real-time
hydrometeorological data include the US Bureau of Reclamation (USBR),
US Army Corps of Engineers (USACE), US Geological Survey (USGS),
US Forest Service (USFS), US Natural Resources Conservation Service
(NRCS), state agencies, cities and counties with local flood warning sys-
tems, numerous irrigation districts, and many utility companies involved in
hydropower generation. In combination, the network consists of thousands
of measurements from rain gauges, air temperature sensors, river gauges,
and gauges that measure reservoir elevation. Many other variables such
as wind speed, wind direction, relative humidity, and barometric pressure
are also available. Data are collected in a local database at each RFC and
screened for quality before being passed along to the river forecasting model.
A significant proportion of RFC resources are dedicated to data collection,
storage, processing and quality control.

The RFCs use the CHPS (Community Hydrologic Prediction System,
www.nws.noaa.gov/oh/hrl/chps/index.html) to simulate and project river
flows and stages. CHPS is based on the Deltares FEWS (Flood Early
Warning System, www.deltares.nl) infrastructure with extensions to meet
RFC modelling, computation, interface, and data requirements. Many of
the forecast watersheds in the US require the use of a snow model. The
snow model accumulates solid precipitation, manages the heat content of
the snowpack, and delivers meltwater to the soil model when the snowpack
begins to melt. The temporal delay caused by this natural process is
important to both flood management and water resources interests. If all
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precipitation in the US fell as rain, flooding would be significantly worse
and more frequent and agricultural irrigation would be significantly less
reliable.

CHPS is operated at each RFC in an interactive fashion through a
graphical user interface. The interface allows the forecaster to run, evaluate,
and modulate the operation at each forecast point. Model performance is
evaluated over the last several days to several weeks and the streamflow
is projected for the next 2–10 days (varies by RFC) using current model
conditions as well as forecasts of temperature, precipitation, and reservoir
regulation.

Forecasts of streamflow necessarily include forecasts of precipitation
and air temperature. These weather forecasts are critical to the NWS’s
ability to provide adequate public warning time in the event of a flood.
Quantitative Precipitation Forecasts (QPF), temperature forecasts and
snow levels for the next two to ten days in six hour blocks are integrated into
RFC hydrologic forecasts by the RFC HAS (Hydrometeorological Analysis
and Support) unit (Figure 18.2).

The HAS unit is a staff of professional meteorologists specifically
tasked with ensuring that forecast weather is included in the hydrologic
forecast process. The HAS unit integrates guidance from the NCEP’s
(National Center for Environmental Prediction) Hydrometeorological Pre-
diction Center (HPC) and the WFOs in the RFC area. Some HAS units
also operate mesoscale atmospheric models and orographic procedures
that utilise both synoptic and mesoscale model information. On the RFC
operations floor, the interaction between the HAS unit meteorologists and
forecast hydrologists contributes to the quality of NWS hydrologic forecasts
and guidance.

Figure 18.2. Operational hydrometeorological analysis and support function.
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Each RFC breaks up its forecast workload into several geographic
pieces. This allows forecasters to simultaneously concentrate on specific
problem areas. The art of flood forecasting involves a delicate and skilled
balance of experience, analysis of current conditions, and analysis of
model guidance. Traditionally, RFC flood forecast hydrologic models extend
several days into the future. But, flood warnings released to the general
public may only extend one-to-two days due to excessive uncertainty. The
traditional flood forecasting approach has been deterministic and has not
attempted to quantify the uncertainty. Hydrologic forecasters balance lead
time and accuracy with each forecast issued. Frequent updates during flood
events are used to keep up with of changing conditions.

Hydrologic forecasting requires a great deal of co-ordination. Many
federal, state, local and private entities are involved in storing, releasing
and diverting streamflow. The integration of water management activities
into the forecast process is critical to the accuracy and utility of resulting
forecasts.

While the RFCs generate the flood forecast guidance, it is the WFOs
that issue public flood warnings. The 122 WFOs provide decision support
for local customers and issue public advisories, watches and warnings that
include known impacts associated with forecast water levels.

18.4. Reservoir Inflow Forecasting

In addition to flood forecasts, RFCs provides reservoir inflow forecasts
to the appropriate water management agencies. These forecasts allow
reservoir operators to anticipate regulation changes required by very wet
or very dry weather. Reservoir forecasts are produced in the flood forecast
modelling process and are updated once a day and more often if required
as conditions change. Reservoir operators inform the RFCs of regulation
plans and changes so that planned reservoir releases can be incorporated
in downstream river forecasts.

One of the major challenges to extending river forecast lead times to
beyond a few days is to account for the effects of future reservoir operations
and their uncertainty.

18.5. Spring Snowmelt Forecasting

Snowmelt forecasts are provided each spring to assist water and emergency
management entities in dealing with the timing and magnitude of the
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spring snowmelt peak. These may be made for lead times ranging from
a week to several months. To generate these forecasts, RFCs use the flood
forecast model described above in an ensemble mode. This approach, called
Ensemble Streamflow Prediction (ESP), provides a distribution of future
streamflow outcomes that can be sampled in any way desired. The process
starts with the current model conditions (or states) and then develops a set
of forecast scenarios based on the historical observations of temperature and
precipitation. The approach is extremely flexible in that any time window
and any attribute of streamflow can be analysed. The most typical use is for
weekly, monthly, and seasonal volumes and peaks. In addition, the system
can be used to describe a whole host of information such as the distribution
of low flow stages during the upcoming summer. This technique has been
very successful in quantifying spring flood risks in the Upper Midwest of
the US weeks in advance.

18.6. Seasonal Water Supply Forecasting

Water supply forecasts predate flood forecasting efforts in most parts of the
western US. These forecasts are extremely important to water managers
interested in providing water for agricultural, municipal, environmental,
and commercial purposes. Winter precipitation stored in the mountain
snowpack makes seasonal water supply forecasting possible. In many basins
of the western US as much as 70% of the annual streamflow arises from the
melting of the seasonal snowpack each spring. Two modelling approaches
are used to prepare seasonal runoff estimates.

Statistical models have been used to forecast spring runoff for many
years and they remain the tool of choice for many involved in this process.
Statistical models are simple to use and make direct use of monthly
snow course, snow pillow, and precipitation data. As they are optimised
to predict the seasonal volume, they are among the most accurate and
dependable. The statistical model resembles a multiple linear regression
where the independent variables include monthly snow course, snow pillow,
precipitation and, occasionally, streamflow observations. The models are
calibrated in advance using an average of 30 years of observed data.
Principal components analysis is used to deal with correlation among the
input variables. Cross-validation errors are computed to find equations that
forecast as well as fit the observed data.

The same process (ESP) used to generate the weekly snowmelt forecasts
can be extended to estimate seasonal volumes. ESP forecasts for each
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watershed are developed and compared with the results from the statistical
models. Often the approaches complement each other lending insight to the
process. Small adjustments are sometimes made to ensure that the ESP
(both weekly snowmelt and seasonal) and statistical models are consistent.
Over the past decade, ESP procedures have gained popularity as they
can provide updated forecasts on a daily basis and are less susceptible to
the central tendency issues exhibited by statistical regression models when
conditions are far from average.

Seasonal volume forecasts are commonly coordinated with other agen-
cies. The exchange of information in this process improves the quality of
forecasts and minimises conflicting public forecast information.

18.7. Forecast Uncertainty

A major limitation of the existing operational hydrologic forecast system
in the US is that much more information about forecast uncertainty is
needed. Accordingly, a new approach is being developed that will use
ensemble techniques to quantify uncertainty. This will enable longer-lead
times and more informative flood forecasts. Weather and climate forecast
information will be used to generate ensemble precipitation and temper-
ature forecasts for each hydrologic forecast sub-area. New techniques for
ensemble data assimilation will be developed to account for uncertainty in
initial conditions. In addition to this, statistical post-processing techniques
will be developed to ensure that the final hydrologic forecasts are unbiased
and statistically reliable. A significant effort will be required to educate
potential users and ensure that they have decision support tools that can
make effective use of the uncertainty information.

Other hydrologic forecast system improvements under development
include applications of distributed modelling, improved methods to esti-
mate hydrologic model parameters and account for their uncertainty, and
methods to provide spatially distributed hydrologic forecast information.
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19.1. Introduction

Flood forecasting, warning and response are generally held as an effective
non-structural approach to reduction of flood risk, primarily by addressing
the potential of reduction of flood-related losses with the availability of a
timely and effective warning (UN ISDR, 2004; WMO, 2006), as well as the
potential of reduction of the flood hazard through flood alleviation measures
(e.g. temporary defences, inundation areas). The recognition of this strength
has led to relative widespread implementation of flood forecasting and
warning services, particularly where the legal and institutional settings of
such systems are well established to ensure a flood warning is responded to
effectively.

Real-time flood forecasting makes use of a cascade of inter-linked
hydrological and in some cases hydrodynamic models, embedded in a data-
management environment. These model chains are run in two principal
operational modes; (i) a historical mode, and (ii) a forecast mode. In the
first mode the models are forced by hydrological and meteorological

506
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observations over a limited time period prior to the onset of the forecast.
In the second mode, the models are run over the required forecast lead
time, whereby the internal model states at the end of the historic run are
taken as initial conditions for the forecast run. Often the models will be
forced using quantitative forecasts of precipitation and temperature. The
forecasting lead-time depends primarily on the lead-time requirement posed
by flood warning, and may extend from as little as 2–3 hours to as much as
up to 240 hours ahead. In the latter case the shorter lead-times may be used
in the actual operational warning, while forecasts at the longer lead-times
are used as guidance.

In each of the steps in the model and data processing chain, uncer-
tainties can be attributed to the model inputs, the model structure,
internal model states and model parameterisation, with the total predictive
uncertainty accumulating in the output product (Pappenberger et al.,
2007). Depending on the lead-time at which forecasts are issued in
comparison to the hydrological response time, the dominant uncertainties
will lie in the inputs derived from observations, the hydrological runoff and
routing models, or if applicable, the hydraulic models. As the process of
forecasting is geared primarily at providing timely and accurate information
for the flood-warner when deciding on the issuing of a flood warning,
the uncertainties within the process will need to be considered. These
uncertainties are generally recognised and in most operational forecasting
systems these are indeed addressed.

In this chapter, several examples of how uncertainties are addressed
and constrained within operational forecasting systems are given, with the
examples selected to cover a wide range of approaches with which this can
be done. These examples are taken from operational forecasting systems
that use the Delft FEWS (Werner et al., 2004, 2013) operational fore-
casting system to manage data and models in the real-time environment.
This system has been applied in several operational forecasting systems,
including forecasting systems for the Rhine basin in the Netherlands
(Sprokkereef, 2001) and Switzerland (Bürgi, 2002), across England and
Wales and Scotland (Cranston et al., 2007; Lardet et al., 2007; Werner,
et al., 2009; Whitfield, 2005). In the first section we give an overview of the
Delft FEWS data-management environment. Key to this data management
system is that it is centred on the data instead of the models used for
forecasting, allowing it to be flexible to the data and models used. Secondly,
we describe how the uncertainties/errors in the model chain can be reduced
through real-time data assimilation (error correction and/or state updating)
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in an operational setting. Thirdly, we focus on how input uncertainty can
be quantified either by applying what-if scenarios and/or through using
probabilistic weather forecasts. Finally, we end this chapter with a look
forward at how a more complete description of the predictive uncertainty
can be derived and reduced using Bayesian revision of ensemble predictions.
Examples of the methods described taken from the operational systems
also illustrate some of the methods used in disseminating the probabilistic
forecast information.

19.2. The Delft FEWS Operational Forecasting System

Operational flood forecasting systems have been under development at
forecasting centres for several decades. Particularly where these have been
used operationally for significant time, the systems have often developed
gradually, and in many cases have been centred on the particular use of a
given model and the data it requires (Werner and Whitfield, 2007). While
this model-centric approach leads to a system that can adequately provide
forecasts using the model and data it was designed for, it offers distinct
disadvantages in the face of changing model and data requirements.

The Delft FEWS flood forecasting system (Werner et al., 2004, 2013)
takes a different approach. Rather than setting the models central stage,
the system gives data and data processing a central position. To fulfil the
data requirement in providing a forecast at the lead time needed in flood
warning, the system allows a sequence of data handling and processing
steps to be defined. These steps could include the import of data from a
variety of external sources such as observed hydrological and meteorological
data or numerical weather prediction models, transformation of data
across spatial and temporal scales, and where required, the running of
hydrological and hydraulic process models. As in any other step in the
data processing sequence, models are considered to each have a data input
requirement, a specific role, and a data output product. Models linked to
the system can be connected through the use of an open data exchange
interface (Werner and Heynert, 2006), and some 30+ process models are
currently capable of being used. This open approach to integration of
models and data has several advantages. The relative simplicity with which
a wide variety of modelling systems can be configured to run operationally
within the framework enables easier migration of new techniques from the
academic to the operational arena. Additionally, the use of the system
by operational forecasting staff can be decoupled from the specifics of
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Figure 19.1. Main user display of the Delft FEWS system, as configured for the Rhine
and Meuse basins. The stations selected are the hydrological gauging stations, where
observed water levels are available. Many of these sites are also the primary warning
locations.

the models themselves. This may be of significant benefit as it will
result in lower efforts in re-training large numbers of staff involved in
operational forecasting following a change of the models and data (Werner
and Whitfield, 2007). Since its introduction, the Delft FEWS framework has
been applied in several operational flood forecasting systems, as well as a
number of pilot, pre-operational, and research systems (see e.g. Figure 19.1,
depicting the front end of the Delft FEWS system as configured for the
Rhine basin).

A key element to how time-series data are handled within the frame-
work is that the ensemble dimension is included, thus allowing ensembles of
time series data to be easily stored and processed. When running through
a cascade of data processing and modelling steps, or workflow, there are
essentially two methods available in running through an ensemble:

(i) Each ensemble member is run individually, meaning the coordination of
the ensemble run is within the forecast processor in Delft FEWS which
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is used to run the required sequence of steps. As a result, a model used
in this way need not be aware that it is run within an ensemble, and
from the perspective of the model it is used in exactly the same way as
in a deterministic run.

(ii) The ensemble is passed to the data processing step or the process model
as a whole. In this case, the responsibility of dealing with the ensemble
is vested in the data processing step itself. Typically this method is
used in establishing statistical properties of the ensemble, where the
complete ensemble must be considered.

The two methods in running ensembles allow flexible definition of
how ensembles are used in the forecast process. In many cases, the same
cascade of process models and data handling steps will be configured once
to run in deterministic mode, and then again to run using input data that
has an ensemble dimension, in which case the cascade will be run as an
ensemble.

19.3. Reducing Uncertainty through Data Assimilation

Within the cascade of processing steps and process models that constitute a
forecast, uncertainties accumulate from the various sources to form the total
uncertainties in the forecast (Pappenberger et al., 2007). The availability of
real-time data up to the start time of the forecast can, however, be utilised
to reduce the uncertainties. Where observed precipitation and temperature
data will typically be used in establishing (hydrological) model boundary
conditions, observations of water levels and discharge can be effectively
used in quantifying error in the modelled water levels and discharges from
the process models. Through data assimilation the quantification of these
errors can be used to improve the reliability of the forecasts. Refsgaard
(1997) describes four basic approaches in data assimilation: (i) updating
of the inputs to the model; (ii) updating of the internal model states;
(iii) updating of the model parameters; and (iv) correction of errors in
the model outputs. Of these the second and fourth are currently the
most applied in operational forecasting systems using the Delft FEWS
framework.

19.3.1. Error correction

Error correction (also known as output correction) is one of the oldest
and most versatile methods of data assimilation (Broersen et al., 2005;
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Madsen et al., 2000), and it is applied in almost all operational forecasting
systems. The basic principle of error correction is that systematic errors
(i.e. structural differences between model and discharge measurements)
during the historical mode (up until the start of forecast or forecast T0) are
used to derive a statistical model of that systematic error. This statistical
model can then be used during the forecast mode to predict the error when
there are no measurements available.

A good example where the use of this error correction method leads to
a better historical simulation (and as a consequence also a better forecast)
is the operational forecasting system for the Rivers Rhine and Meuse
(Sprokkereef, 2001). Interpolated temperature and rainfall fields, derived
from synoptic meteorological measurement stations, are used as inputs to
hydrological model of the Rivers Rhine and Meuse. Subsequently, discharges
calculated by the hydrological model are input into the hydrodynamic
model of the Rhine and Meuse. In Figure 19.2 the measured discharge of
the Meuse at the gauge of Borgharen is shown by the thick grey line. The
dashed line shows the results of the hydrological-hydraulic model cascade
without any form of data assimilation. If error correction is applied at
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Figure 19.2. Simulated flows at the gauge at Borgharen on the Meuse River for two
flood events. Both the flow at Borgharen simulated using corrected inputs (SOBEK+RE)
and using simulated inputs (SOBEK) are shown.
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the main tributaries (Ourthe, Vesdre, Ambleve, Sambre and Lesse) as
well as at the upper model boundary (Chooz) the simulations with the
hydrodynamic model of the Meuse improve dramatically, resulting in the
solid line which is much closer to the measurements than the dashed
line. It is clear that error correction will result in much better forecasts
during operational forecasting because the initial state of the hydraulic
model is closer to the “true” state of the modelled system at the start of
the forecast.

The effect of error correction on the forecast is shown for two locations
along the Rhine in Figure 19.3. Here the Root Mean Square Error (RMSE)
of the HBV forecasts at Maxau (upper boundary hydraulic model) and
Cochem (tributary) are shown as a function of lead time for a hindcast
period (December 2002–January 2003). Figure 19.3a shows that error
correction results in a large improvement (lower RMSE) for the first
24 hours. The RMSE values, however, increase rapidly with increasing lead
time. After 32 hours only a small improvement of the forecasts is visible
at the gauge at Cochem (Mosel). For lead times longer than in the order
of 72 hours, the forecasts at Maxau without error correction even perform
slightly better than with error correction. Figure 19.3b shows an example
of how the error correction works during a forecast at Maxau, the upper
boundary of the hydrodynamic model.
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Figure 19.3. (a) Lead-time accuracy of the discharge forecast expressed as RMSE at
the gauging stations of Cochem on the Mosel River, and Maxau on the Rhine River.
Both the accuracy with and without error correction are shown. (b) Shows an example
of the corrected and simulated flows at the gauge of Maxau in the Rhine for the forecast
of 24th of December 2002.
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19.3.2. State updating

Another approach to data assimilation with the objective of improving
the forecast is to update the state of the hydrological model or the
hydraulic models through sequential data assimilation. With sequential
data assimilation the prior Probability Density Function (pdf) of the
model state is estimated (forecasted). This prior estimate of the pdf of the
model state is subsequently updated by using the available measurements
resulting in a posterior pdf of the model state. This can then be used during
the next forecasting step.

Operational sequential data assimilation through ensemble Kalman
filtering in meteorological, hydrological and hydraulic forecasting (El Serafy
et al., 2007; Evensen, 1994; Evensen, 2003; Madsen and Canizares, 1999;
Weerts and El Serafy, 2006) or residual re-sampling filtering (van Leeuwen,
2003; Weerts and El Serafy, 2006) is becoming more and more feasible
through enhanced computing power and the availability of generic data
assimilation packages (El Serafy et al., 2007) which can be used within the
Delft FEWS framework. The main advantage of state updating (filtering)
over output correction is that it is possible to explicitly take both model
and data uncertainties into account. However, the specification of the model
and data uncertainties is also the main difficulty in implementing such a
filter because these uncertainties are generally poorly known.

Besides the issue of estimating the model and data uncertainties, a
compromise between the computational costs to run an ensemble filter
(the required computational costs correspond to N times a normal model
run, where N is the ensemble size) and the accuracy of the outcome of that
filter (the largerN the more accurate the estimate of the prior and posterior
model pdf becomes) must be reached. El Serafy et al. (2004) showed that
with an ensemble size of in the order of 30 members acceptable results could
be obtained for the Rhine.

In the operational forecasting system for the Rhine, an ensemble
Kalman filter using 32 ensemble members is implemented for the hydraulic
SOBEK-RE model of the Rhine using the generic data assimilation module
DATools, one of the components available in the Delft FEWS system.
Correlated Gaussian noise on the calculated water level using a linear
correlation function with a correlation length of about 40 km is generated
using the data uncertainty engine (Brown and Heuvelink, 2007). This
noise accounts for system and input errors. Observations at 14 gauging
(each at an intermediate distance of about 20–40km) along the main river
are being used to update the system state (water level and discharge).
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Figure 19.4. (a) RMSE of the water level forecast at the gauge of Lobith on the Rhine
with EnKF and without assimilation as a function of lead time determined over a
two month hindcast (December 2002/January 2003). (b) Observed water level together
with the mean of the EnKF water level forecast and the water level forecast without
assimilation at Lobith for an event in January 2003.

The observation error is thought to be uncorrelated Gaussian noise with
a standard deviation of 0.05m. During the forecast no noise is applied
and the mean of the 32 ensembles will converge to the reference run
(no assimilation).

Figure 19.4a shows an example of the EnKF filtering on the forecast
at the measurement station Lobith at the Dutch–German border. From
this figure, it becomes clear that the EnKF forecast of the water level
starts much closer to the measurements and slowly converges to the forecast
without assimilation because the influence of system and input noise is not
filtered out during the forecast. The maximum error at the start of the
forecast without assimilation can be as large as 0.45m against 0.13m for
the ensemble mean forecast with assimilation.

Figure 19.5a shows an example of the effect of EnKF for the gauge
at IJsselkop, which is located downstream of Lobith. The observations here
are used for verification and not used in assimilation, confirming that EnKF
can improve the estimate of the states along the river. Obviously the results
will depend on the selected correlation scales of the input and system noise,
the selected observation error and the amount and the location of gauges
with observations used in updating.

Figure 19.4b and Figure 19.5b show the RMSE at Lobith and IJsselkop
respectively for a hindcast with and without EnKF over a two month
period (December 2002–January 2003). It shows that the RMSE of the
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Figure 19.5. (a) RMSE of the water level forecast at the gauge of IJsselkop on the
Rhine with EnKF and without assimilation as a function of lead time determined over a
two month hindcast (December 2002/January 2003). (b) Observed water level together
with the mean of the EnKF water level forecast and the water level forecast without
assimilation at IJsselkop for an event in January 2003.

forecasts with EnKF at T0 (start of forecast) is almost equal to the assumed
measurement error. It takes more than two days before the RMSE converges
to the RMSE of the forecast without assimilation. For locations upstream
of Lobith this is less (in the order of one day) and for locations further
downstream (for example IJsselkop) this convergence equally takes more
than two days.

19.4. Quantifying Input/System Uncertainty

Application of data assimilation has been shown to significantly reduce
uncertainties at the shorter lead-times. However, as lead times increase,
the innovation from using real-time data in data assimilation will clearly
decrease. Figure 19.6 shows a schematic view of the relative contribution
of different sources of uncertainty at varying lead-times. At short lead-
times, where the innovation from data assimilation is the most apparent,
the dominant source of uncertainty is that from the gauged data used in
data assimilation. As lead-times increase, uncertainties in routing observed
data from upstream gauges to the forecast point of interest will start to
influence the total uncertainty. For lead-times beyond the time of travel
between the upstream gauging stations and the point of interest, errors in
modelling the runoff response from the catchments, as well as incorrect
representation of the initial state of the runoff models, will begin to
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Figure 19.6. Schematic representation of relative contributions of differing sources of
uncertainty to the total uncertainty in the forecast at different lead times.

dominate the uncertainty in the forecast. These model uncertainties are
combined with the uncertainty of the temperature and more importantly
precipitation observations used in determining the boundary conditions to
the runoff response models. The uncertainty in the observations themselves
will be exacerbated by methods used to derive, for example, catchment
average precipitation and temperature.

At lead-times greater than the response time from observed rainfall,
uncertainties in the prediction of rainfall and temperature will dominate
the uncertainties in the response, increasing in importance as the lead time
of the forecast increases. It is clear that how important each of these sources
of uncertainty is will depend on the relation between the desired warning
lead-time and the response times of each of the contributions (Lettenmaier
and Wood, 1993; Werner et al., 2005), but the desire for extending lead
times either for use in operational warning or as guidance on the trend will
mean that the uncertainties in inputs to the forecast cascade derived from
numerical weather prediction will increase in significance.

For the forecaster to make use of forecast values at, in particular,
the longer lead-times, it is important that the influence of uncertainty
in the inputs is quantified. A logical approach to this quantification is to
explore the sensitivity of the forecast values due variable inputs. Within
the operational forecasting systems utilising the Delft FEWS framework,
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several approaches are used, ranging from ad-hoc application of differing
input scenarios, to probabilistic ensemble forecasting.

19.4.1. Quantifying input uncertainties through what-if

scenarios

A common approach to exploring the effect of uncertain inputs into
the forecast cascade is through the use of what-if scenarios. In these,
the forecaster applies ad-hoc transformations to the inputs, such as
multiplication and time shifts, and re-runs the forecast to investigate the
impact. Within the Delft FEWS framework any number of forecasts can
be made with differing what-if scenarios applied to the inputs, and the
resulting forecasts compared to explore the influence of variation in the
inputs. In several cases, the what-if scenarios to be applied have been
standardised, creating what could be referred to as an empirical ensemble.
Table 19.1 provides an overview of some of the empirical methods used in
operational forecasting systems utilising Delft FEWS. It is clear that these
examples take a very pragmatic line in indicating uncertainty to both the
forecaster and, sometimes, to the end user. In some of the cases the request
for implementation of such an indication of uncertainty, however crude from
a statistical point of view, was made explicitly by the users of the forecasts
to provide some indication of uncertainty (Bürgi, 2002; Halquist, 2006).

All of the approaches described in Table 19.1 are constructed within
the process of making a forecast. Where a standardised set of scenarios is
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Figure 19.7. Forecast for the Emme at Emmenmat in Switzerland, showing the default
forecast, as well as upper and lower scenarios using user defined multipliers on flow,
precipitation and temperature.
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Table 19.1. Examples of empirical methods for considering input uncertainties applied
in operational forecasting systems.

Approach Forecasting system Description

What-if
scenarios

Several Support of what-if scenarios is taken in almost
all operational forecasting systems to
investigate the influence of uncertain
(meteorological inputs). Scenarios are

implemented during the forecast process and
typically apply multipliers to the forecast
rainfall, or allow the forecaster to input a
user defined forecast rainfall profile based on
own judgement.

Standardised
multipliers on
meteorologi-
cal and
hydrological
inputs

FEWS-Rhine

Federal Office
for the
Environment,
Switzerland

In the currenta operational forecasting system
used for the Rhine basin in Switzerland
(Bürgi, 2002), a standardised what-if
scenario is applied. The normal forecast
derives temperature and precipitation inputs
from the Meteo-Suisse 7 km NWP model for
the shorter lead times, falling back to
ECMWF deterministic forecast for the
longer lead times. A mini ensemble is
created by setting user-defined multipliers
on forecast precipitation and temperature.
An additional multiplier is set for
post-processing the hydrograph to allow for
an indication of increasing error with lead
time when there is neither snow nor
precipitation. Figure 19.7 gives an example
of the results of this three member ensemble.

Combinations
of meteoro-
logical input
products

National Flood
Forecasting
System
(NFFS)

Environment
Agency, UK

In NFFS two deterministic rainfall forecast
products are available, a radar nowcast
product and a NWP forecast product.
Under normal forecasting conditions these
time series are merged, with the radar
gaining priority until it runs out, then
falling back to the NWP forecast and finally
to a zero rainfall profile. To explore the
influence of each of these inputs, a set of
standard what-if scenarios have been
defined, using different combinations of
input products. The combinations explored
include the default merged rain profile, a
radar-only forecast, an NWP-only forecast,
as well as a forecast using zero future
rainfall (Figure 19.8).

(Continued)

aThe use of this standardised scenario has since been superseded by the operational use
of a hydrological ensemble forecast using a meteorological ensemble input.
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Table 19.1. (Continued)

Approach Forecasting system Description

Re-sampling
best guess
and 5% and
95%
confidence
interval
precipitation
forecast

HPC QPF
Sampling

NCRFC,
National
Weather
Service, USA.

The Hydrometeorological Prediction Centre
(HPC) in the US produces both a
best-guess quantitative precipitation
forecasts, as well as 5% and 95%
confidence interval forecasts. These are
sampled using the first 24, first 48 and first
72 (60 in the case of CI forecasts) hours of
precipitation data to obtain a nine member
empirical ensemble precipitation input.
This is used in the operational forecast as
an input to a nine member hydrological
ensemble forecast (Halquist, 2006).

combined in an empirical ensemble, this is generally sampled in one of the
first steps of the data processing cascade, with the following steps being
configured to simply loop over the available samples.

19.4.2. Quantifying uncertainty through ensemble weather

prediction

In a special issue dedicated to advances in quantitative precipitation fore-
casting through numerical weather prediction, Collier and Krysztofowicz
(2000) pointed out the importance of the availability of a forecast of the
short-term precipitation to avoid falling back to an assumption of zero
future rain in the middle of a storm. The utility of such a precipitation
forecast has since been widely demonstrated (e.g. Golding, 2000; Habets,
2004; Ibbit et al., 2000).

Whilst the use of numerical weather prediction for deriving boundary
conditions in the forecast has been a significant development in extending
the lead time of hydrological forecasting, it is recognised that there are
also considerable uncertainties in these weather predictions. To address
these, ensemble prediction systems have been established, with the first of
these systems becoming operational in the early 1990s. Examples are the
ECMWF-EPS system operated by the European Centre for Medium Range
Weather Prediction (Molteni et al., 1996) and the GEFS system operated
by the US National Centre for Environmental Protection (Tracton and
Kalnay, 1993). These are global ensemble prediction systems, predicting
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Figure 19.8. Standard set of scenarios used by the Environment Agency in England and
Wales. The different forecast inputs are shown in the top figure. These include observed
catchment rainfall, radar actuals, radar forecasts (lead time 6 hours), NWP forecast (lead
time 36 hours) and a zero rainfall profile. The middle figure shows four scenarios created
using differing combinations of these inputs. The lower input shows the response to these
scenarios at the gauge of Gargrave on the Aire, for a forecast on the 7th of January 2005
at 23:00.

the evolution of the weather with an emphasis on medium-term predictions
(5–15 days lead-time). Ensemble forecasts are generated by perturbing the
initial conditions, assumed a priori to be equally likely, and computing
the evolution of the meteorology due to these perturbed initial conditions.
The availability of predicted ensemble parameters such as precipitation
and temperature, makes the use of these ensembles in creating ensemble
hydrological forecasts a logical next step (Bartholmes and Todini, 2005),
with the European Community Sponsored EFAS system (De Roo et al.,
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2003; Gouweleeuw et al., 2005) being an example, but these ensembles have
also found application in several operational fluvial forecasting systems.

Predictions from these global ensembles may be applied in forcing
the hydrological models in two ways, either directly where the boundary
conditions (usually temperature and precipitation) are obtained directly
from the meteorological ensemble, or indirectly where these are obtained
following a downscaling approach (Buizza, 2004). Although skill is shown
in using the direct approach for medium-sized basins (Roulin, 2007), these
are generally better applicable to larger-scale basins. For smaller basins,
the indirect approach may be applied, where the large-scale predictions
are downscaled using for example regression techniques (Regimbeau et al.,
2007), possibly complemented with re-sampling techniques to ensure spatial
correlations are correctly maintained (Clark et al., 2004). Alternatively, a
limited area ensemble prediction system such as COSMO-LEPS (Marsigli,
2005) may be used, which is nested on the members of the ECMWF global
ensemble. The direct approach in deriving hydrological forcing can then be
followed again (Diomede et al., 2006).

In contrast to the creation of an ensemble through re-sampling within
the forecast process, the complete set of ensemble inputs are now simply
imported in Delft FEWS using a suitably configured import process. During
this import the ensemble size and available lead-time are identified from the
import source, allowing it to dynamically adjust to variations in lead-time
and ensemble size.

Subsequent to the import of the ensemble, the cascade of data
processing and process models can simply be run for each ensemble member
to derive a hydrological forecast ensemble. In most cases the process models
are unaware that they are running as a part of an ensemble. Currently
the ensembles used in Delft FEWS apply the direct approach to model
forcing, where catchment precipitation and temperature inputs are obtained
through averaging the NWP grid cells or through an appropriate spatial
interpolation approach, which may include an elevation correction. Besides
this simple scaling due to altitude, no downscaling methods are currently
applied. If available, this would, however, simply require integration of an
additional step in the cascade run for each ensemble member.

Table 19.2 provides some examples of ensemble prediction systems
used in driving the hydrological ensemble forecast from selected operational
forecasting systems utilising the Delft FEWS framework. This shows that
in several cases, multiple ensembles are even considered. The first two
of these EPS are relatively straightforward, with all ensemble members
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Table 19.2. Overview of meteorological ensembles applied in operational forecasting
systems using the Delft FEWS framework.

Ensemble system Forecasting system Description

ECMWF-EPS FEWS-NL Rhine and
Meuse Catchments,
Institute for Inland
Water Management

and Waste Water
Treatment, the
Netherlands

Global Ensemble Prediction System
(EPS). The current T255L40 EPS has
a horizontal resolution of about 80
km, and has 51 members, of which

the first member is the control run
(Molteni et al., 1996). The lead time
of the re-sampled EPS used here is
240 hours at a resolution of 12 hours.

COSMO-LEPS FEWS-NL See above

FEWS-DE Rhine
Catchments,
Federal Institute
of Hydrology,
Germany

FEWS-Po,
ARPA-SIM,
Bologna, Italy

FEWS-Rhine
(experimental),
Federal Office for
the Environment,
Switzerland

Limited-area Ensemble Prediction
System. This 16 member EPS is
obtained by running a
non-hydrostatic limited area model,
nested on the members of the
ECMWF-EPS ensemble. The
ECMWF-EPS ensembles used in
providing the 16 member forecast are
obtained through a cluster analysis of
the full 51 EPS members for three
ensuing forecasts. The resulting 10 km
resolution ensemble is much better
suited to resolving severe weather at
small scales (Marsigli et al., 2005).

SRNWP-PEPS FEWS-Rhine
(experimental)
See above

This ensemble of short range NWP
products is actually a multi-model, or
poor man’s ensemble (Quiby and
Denhard, 2003). The ensemble is
constructed using the deterministic
high resolution NWP models from
participating Meteorological agencies
across Europe, with up to 21
ensemble members being available at
any one time (depending on how
many contributing deterministic
forecasts are available). The lead time
of each member varies, as well as the
resolution and the spatial domain.

being uniform in length, and with uniform spatial and temporal resolution.
The SRNWP-PEPS ensemble is an exception to this. This is in effect a
multi-model ensemble, with differing spatial and temporal resolutions, as
well as differing domains for each ensemble member. This variability is
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Figure 19.9. Example of two NWP ensemble forecasts for the River Rhine at Maxau,
COSMO-LEPS and ECMWF-EPS. Both forecasts have the base time of 1st March 2007
06:00 UTC; (a) and (b) show the raw ensemble outputs, while (c) and (d) shows the
parameterised ensemble outputs.

quite challenging to run, with the ran properties for each member being
adapted dynamically by Delft FEWS depending on the properties of each
of the contributing deterministic NWP models. The variability in lead-time
also creates difficulties in interpreting the results using standard statistical
parameterisations as the number of ensemble members to consider will differ
with lead-time.

Figure 19.9 provides an example of outputs from both the ECMWF-
EPS ensemble and the COSMO-LEPS ensemble for the Rhine at Maxau
for the same forecast base time. In the upper two plots the raw ensemble
outputs are shown, 16 members for the COSMO-LEPS ensemble and
50+ members control run for the ECMWF-EPS ensemble. The lower
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plots show the parameterised ensemble results, showing the minimum and
maximum of all members, the median and the inter-quartile range. The
ensemble results can be seen to be quite different for these two NWP
ensembles. These differences are attributed to scale effects, as this gauge is
towards the upper end of the catchment. For gauges further down in the
catchment these differences are less pronounced. There is for both also
an under-representation of spread at the shorter lead-times. This is an
obvious consequence of considering only the meteorological uncertainties, as
described through the meteorological ensemble forecast. The meteorological
uncertainties become significant only at lead times greater than the response
time of the runoff and routing processes in the catchment (see Figure 19.6).

19.4.3. Quantifying uncertainty through multi-model

ensembles

Considering only the meteorological uncertainties as discussed above
shows that at the shorter lead times there is an under-representation of
uncertainty. At these lead-times, uncertainties in the process models will
have a significant contribution to the overall uncertainty (see Figure 19.6)
and when considering uncertainties in the metrological predictions, only
these are clearly not addressed. It is widely accepted that in process models
such as runoff response and routing models there may be multiple-model
structures and model parameterisations that simulate the behaviour of the
true system to an equally acceptable degree (Beven and Freer, 2001; Duan
et al., 2007). An approach to addressing this is to apply an ensemble of
models, either as a multi-model ensemble where optimal calibrations of
models of differing structure are used in the forecast cascade (Duan et al.,
2007; Georgekakos et al., 2004; Regonda et al., 2006), or through running
multiple parameter sets of the same model structure (Weerts et al., 2003).
Predictions made with the differing models can be post-processed through,
for example, Bayesian model averaging to improve the forecasting skill
(Duan et al., 2007).

Application of such multiple-model ensembles requires significant com-
putational resources, as well as extensive knowledge and support require-
ments for multiple process models, making the approach organisationally
difficult to implement in an operational environment. A few cases of
operational forecasting systems implementing the Delft FEWS framework
do, however, apply a more pragmatic approach to running multiple model
ensembles. In the National Flood Forecasting System in England and Wales
(Whitfield, 2005) and in FEWS Scotland (Cranston et al., 2007), there are
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several forecast locations where multiple models are used to predict flows
and levels at the same point. Typically the multiple models are chosen
to improve forecasting resilience. In several reaches of the River Severn,
for example, a hydrodynamic model is applied as the primary forecast
model. However, should this fail, a simple hydrological routing model is also
run, and as a last option a correlation model relating observed upstream
flows and levels to the downstream point may also be applied. Under most
conditions all models will be available, thus providing some indication of the
variability in the forecast due to differing model structures, and providing
a sanity check on the forecasts made with the primary model.

19.4.4. Quantifying uncertainty in seasonal predictions

Most of the applications of both the empirical ensembles and the meteo-
rological and hydrological ensembles described above consider forecasts for
the short and medium ranges. For water resources planning, volumetric
forecasts with even longer lead-times may be desirable. Such seasonal
forecasts can clearly be derived through extending the lead-time of the
meteorological ensemble forecasts, using for example downscaled GCM
predictions (Luo et al., 2007) and processing these through the model
cascade. Another approach available within the Delft FEWS framework
follows the empirical ensemble streamflow prediction procedure proposed
by Day (1985). In this procedure an empirical ensemble of precipitation
and temperature inputs is sampled from the validated long-term time
series of catchment average temperature and precipitation. A sample is
drawn from each available year in the historical series using the current
day as the starting point. The ensemble thus created is a representation
of the climatology of catchment temperature and precipitation, and can
be run through the forecast model cascade, resulting in climatology-based
seasonal forecast, conditional on the states of the system at the time of
forecast.

Figure 19.10 shows an example of a seasonal forecast for the gauge at
Dilworth on the Buffalo River in the northern US. Figure 19.10a shows the
mean catchment precipitation series from 1948–2004. This is re-sampled to
create an ensemble of 54 members. Figure 19.10b shows the cumulative
precipitation of each ensemble member, as well as the ensemble mean.
Figure 19.10c shows the resulting hydrological forecast, conditioned on the
initial states from January 2005. The ensemble mean is shown as well as
the 10% and 90% confidence limits. Note that spring snowmelt dominates
flooding in this basin.
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Figure 19.10. Seasonal forecast for Dilworth on the Buffalo River, MN, USA. (a) Mean
catchment precipitation series from 1948 through 2004. (b) Cumulative precipitation of
each ensemble member, as well as the ensemble mean. (c) Ensemble mean and 10–90%
confidence interval of the forecast discharge.

19.5. Quantifying and Reducing Predictive Uncertainty
with the Bayesian Forecasting System (BFS)
Approach

The previous section discussed several approaches of addressing uncertain-
ties in either the inputs or in the model structure. Particularly when only
uncertainties in the meteorological inputs are considered, the representation
of the uncertainty at the short lead-times is seen to be too low. As there
will be model error at these short lead-times, this under-representation
of uncertainty will lead to lower skill at these shorter lead-times. It is at
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these shorter lead-times, however, that the prime interest of flood warning
lies, with the longer lead-times being used more as guidance. A more
comprehensive approach to gain a description of the overall uncertainty
of a flow forecast available within the Delft FEWS framework is through
the application of Bayesian revision. Krzysztofowicz (1999) proposed the
Bayesian Forecasting System (BFS) theory for stream flow predictions.
This theory constitutes a general framework for Bayesian inference on the
uncertainty of a flow forecast, while using deterministic hydrological and/or
hydraulic models.

The basic concept of the BFS is to derive the uncertainty of a forecast
by “revising” prior knowledge on the behaviour of the system over a
historical period of operation. If performed correctly, the result of the
revision process, referred to as posterior density function, represents a
reliable assessment of the uncertainty of the forecast, which is conditional
on a whole range of information available at the begin of a forecast. It is
referred to as predictive uncertainty (Krzysztofowicz, 2001; Todini, 2007).

A simple Bayesian uncertainty processor for a flood forecasting system,
based on the application of Bayes theorem, can be formulated in terms of
the random variables sn,hn,h0 (Krzysztofowicz and Kelly, 2001) as follows:

φn(hn|sn, h0) =
fn(sn|hn, h0)gn(hn|h0)

kn(sn|h0)
, (19.1)

where sn is the flow forecasted at lead time n (expressed in the number
of hours or days), hn is the flow which has been retroactively observed for
day n, and h0 is the flow observed at the onset of the forecast. We note
that we have limited the conditioning to the random variables h0 and hn.
However, the formulation can be arbitrarily expanded to include additional
conditioning variables, if necessary.

The conditional probability density fn(g|g) is a likelihood of actual
discharges, given a model forecast and conditioning observation(s). The
conditional density gn(g|g) is a prior probability density function on the flow
predicted for day n, conditional on the observation h0. The denominator
kn(sn|h0) is the expected density on the forecasted flow sn given by the
total probability law:

kn(sn|h0) =
∫ ∞

−∞
fn(sn|hn, h0)gn(hn|h0)dhn. (19.2)

The prior knowledge on the system, which is stochastically described by
the conditional probability density function gn(hn|h0), is based on assumed
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probability distributions on water levels. A proper specification of the prior
density is essential in obtaining an informative posterior. Failing to do so
may compromise the performance of the processor. The determination of
an adequate prior function constitutes a challenge, especially in the absence
of a sufficiently long historic time series of observations, as is the case in
poorly monitored basins.

In the most simplistic case, the prior density is assumed as constant
function, gn(hn) = c, whereby all possible flow rates are regarded as equally
probable (uninformative prior). Such a prior will, however, not deliver a
posterior density with adequate informative content about the expected
uncertainty of the flow forecast. However, with sufficient observations
available, more elaborate prior densities can be proposed. The densities
can be subsequently conditioned on additional information, such as multiple
stream flow observations at locations further upstream and different points
in time.

The revision of the prior density is performed by means of a combina-
tion with a likelihood function, as stated in Equation (19.1). The likelihood
function is a probability density on future flow rates for a given lead-
time, conditional on forecasts produced by the flow forecasting model.
The likelihood can also be conditioned on additional information, such
as multiple flow observations at locations further upstream, as shown in
Reggiani and Weerts (2007, 2008). In fact it is a stochastic specification
of the forecasting model error, and enters the processor via Equation
(19.1). The likelihood function is ultimately responsible for importing
model bias or systematic peak time lag errors into the Bayesian revision
process.

Another challenge in applying Equation (19.1) consists in the esti-
mation of parameterised expressions for the density functions fn(g|g)
and gn(g|g). Performing the underlying statistical analysis online during
a real-time flow forecast is generally undesirable due the computational
efforts required by processing large amounts of data. Extended calculation
times are incompatible with the time constraints imposed by forecasting
operations.

A solution to this problem has been proposed by Krzysztofowicz and
Kelly (2001). They first carry out a statistical analysis of long series
of observations against forecasts off-line, and subsequently parameterise
empirical probability distributions via suitable parametric models. These
models, for example Weibull or gamma distributions, imply fitting two or
three parameters to the data points. In more complex situations, modelled
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Figure 19.11. Empirical and modelled probability distributions and densities for
selected months, established at the gauge of Lobith on the River Rhine.

distributions obtained by piecewise fits can also be considered. These can
then be used online through rapid evaluation of algebraic expressions, with
a significant reduction of the calculation time involved.

Figure 19.11 shows an example of empirical distributions of observed
and modelled water levels at the gauging station Lobith on the River Rhine.
The four sub-plots refer to probability distributions for selected months,
representing the seasons winter, spring, summer and winter, respectively.
The empirical distributions on the observed water levels are performed over
a 100+ year series of observations from 1st January 1901 to 1st June 2007.
The distribution of the modelled flows refers to a period from 1st June 2004
to 1st June 2007, for which continuous forecasts were available.

Figure 19.12 presents a sequence of plots showing the evolution of the
predictive uncertainty for an ensemble stream-flow forecast produced with
the ECMWF ensemble weather prediction system (Molteni and Buizza,
1996) applied to the River Rhine. The resulting ensemble forecast includes
50 member forecasts plus 1 control run. The lead-time ranges from 1–6 days.
The boxes show the observed and forecasted discharges at the gauging
station at Lobith on the 9th February 2007. The vertical lines in the lower
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Figure 19.12. Prior and revised posterior distributions of an ensemble stream flow
prediction for a flood event on the 9th February 2007 at the gauge of Lobith on the
River Rhine.

box are the forecast discharge ensembles; the dashed vertical line in the
upper box is the discharge that has been observed on that particular
forecasting day. The continuous black line is the discharge observed at
Lobith at the onset of the forecast. It can be observed that for lead-
times of 1 and 2 days the forecast discharge and the conditional probability
distributions collapse onto one single curve. This can be explained through
the mutual resemblance of the weather forecast ensemble members during
the first 24 hours. From day 3 onwards the forecasted discharges and
respective density functions begin to diverge.

The effect of the Bayesian revision of the prior density is evident. The
processor, which has been trained on the basis of additional information
from a forecasting model and upstream observations, learns from historical
experience and delivers a revised posterior distribution. With increasing
lead time the posterior densities are shifted, whereby the peak of the
distribution (corresponding to maximum probability of occurrence) moves
closer towards the (retrospectively) observed discharge.
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Figure 19.13. Verification of the Bayesian processor for the period 1st June 2007–1st
October 2007 on the River Rhine at Lobith.

Figure 19.13 shows a verification of the uncertainty processor for the
period between June to September 2007 and a forecasting lead time of
2 days. The continuous line indicates the observed discharge, the lighter
shadowed area shows the 10%–90% probability interval for the prior,
and the darker area represents the respective probability interval for
the posterior density. The prior probability density function has been
conditioned on upstream observations.

The envelope determined by the lightest grey shaded area indicates
the uncertainty band for the unprocessed ensemble forecast, derived by
simple probability ranking. It represents the 10%–90% probability interval
for the total uncertainty of the model chain, expressed by the total
probability P (sn > s∗). While P (sn > s∗) represents the unconditioned
probability of the model chain, the Bayesian processor delivers a poste-
rior probability density on the expected stream flow, hn, conditional on all
information (observations and model forecast) available at the start of the
forecast.

The reliable estimation of the predictive uncertainty provided through
the framework described offers significant possibilities for objective
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uncertainty assessment. At the time of writing this framework was yet to be
applied in an operational forecasting system, but verification of the results
for the Rhine basin show a improvement of forecast skill at both short and
long lead times (Reggiani et al., 2008).

19.6. Discussion and Conclusions

The range of methods in quantifying and reducing uncertainties in hydro-
logical forecasts as applied in the operational forecasting systems described
above clearly illustrate the importance of explicit consideration of the
uncertain forecast when used as an element in the flood warning decision
process.

The empirical ensemble methods described have often been adopted out
of pragmatic considerations of the forecasters involved in the operational
forecasting processes, to gain insight into forecast uncertainty prior to
more complex approaches, such as that provided through Bayesian revision
becoming operational (Halquist, 2006). Although these empirical methods
lack the statistical formalism of the more advances ensemble approaches,
their value to the forecaster should not be underestimated. A good example
is given in the running of different combinations of input data, including a
forecast with zero forecast rainfall (Figure 19.8). Whilst this zero rainfall
forecast may not be very useful in indicating a potential threshold crossing
at the onset of a flood event, it does clearly indicate to the forecaster
the degree to which the predicted hydrograph is affected by the forecast
precipitation. The confidence the forecaster has invested in the precipitation
forecast will in turn determine how confident that forecaster will be on
issuing a warning that is predominantly in the domain of the hydrograph,
influenced either by the observed (albeit also uncertain) precipitation or
the uncertain forecast precipitation.

It is clear that the use of ensembles of meteorological inputs, combined
with advanced methods of post-processing, have significant benefits in pro-
viding a more complete and statistically sound quantification of uncertainty
in the forecast. The utility of ensemble forecasts in increasing the skill of
hydrological predictions has been shown by several authors (Regimbeau
et al., 2007; Roulin, 2007), and Roulin (2007) showed that using the
ensemble forecast to underpin flood warning has more relative economic
value than using the deterministic forecast alone, or even the ensemble
mean. Such translation of the probabilistic forecast into an economical
value that balances the expected damage due to a flood event against the
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expected loss due to a false warning (and possible ensuing evacuation) can
thus provide stakeholders with an instrument for rational decision making
under conditions of uncertainty (Raiffa and Schlaifer, 1961).

The examples described from operational systems utilising the Delft
FEWS forecasting framework also show that many of the technological
constraints once apparent in running ensemble forecasts operationally
have now largely been overcome. This allows methods that provide more
complete analyses of the full predictive uncertainty, such as that provided in
the Bayesian revision approach to be applied in the operational forecasting
domain as opposed to being used only in academic study. Despite this poten-
tial in the operational use of the ensemble methods, and increasing adoption
in operational forecasting systems, significant challenges remain in the
dissemination of these ensemble results. Operationally, a warning issued on
the basis of a (probabilistic) forecast is never a fully automated process, but
is done following interpretation of the forecast results by the duty forecaster.
Surveys of both lay persons (Handmer and Proudley, 2007) and hydrologists
(Demeritt et al., 2007) and their response to probabilistic forecast products
suggest that difficulty in interpretation of such probabilistic forecasts is
not to be underestimated. The examples of ensemble forecasts shown
in the various figures in this chapter demonstrate some of the methods
available with the Delft FEWS framework for dissemination of ensemble
forecasts. The visual information obtained from the different methods is
quite clear in Figure 19.12, when the raw “spaghetti” output from an
ensemble forecast is compared against the same forecast represented as
a statistical representation. Other methods of summarising probabilistic
forecast information to support interpretation by the forecaster are being
explored, including examples such as those presented in Ramos et al. (2007)
and Werner et al. (2005).

For all methods of quantifying uncertainty in the forecast, it is
important that once the forecast has been made these are suitably verified
(Schaake et al., 2007). Methods for verification of forecasts are well-
established (Wilks, 1995), and such verification provides clear insight
into the value and the skill of the ensemble predictions at different lead
times, giving invaluable information to the forecaster in interpreting the
forecast products. This again reflects the importance of the forecaster in the
flood warning process. The primary objective of reducing and quantifying
uncertainties in this process is to increase the confidence with which
warnings are issued, and as a result, increase the reliability of these flood
warnings.
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CHAPTER 20

Real-Time Coastal Flood Forecasting

Kevin Horsburgh
National Oceanography Centre, Liverpool, UK

Jonathan Flowerdew
Met Office, Exeter, UK

20.1. Elements of Coastal Flood Forecasting

The coastal flood warning system for the UK was established as a direct
result of the worst natural disaster to affect the country in recent times —
the 1953 North Sea storm surge. During the night of 31 January, coastal
flooding caused the loss of 307 lives in East Anglia and a further 1,795
fatalities in the Netherlands (McRobie et al., 2005). Storm surges are the
sea level response to wind stress and atmospheric pressure gradient (Pugh,
1987). Surges and high tides are critical components of total sea level during
coastal flood events. Together they may exceed coastal defence thresholds
directly, or raise the still water level such that storm wave action can cause
significant overtopping or breaching. The operational warning system that
was created is called the UK Coastal Monitoring and Forecasting Service
(UKCMF) and is summarised diagrammatically in Figure 20.1. UKCMF
provides a primary alert service for coastal flood risk to the Environment
Agency, which is in turn responsible for local interpretation and warning
the public.

This section considers the various sources of uncertainty that may
contribute to forecast inaccuracies for coastal flooding. It conveys the
limitations of the numerical methods employed to generate sea level
predictions, and the means of error quantification. For coastal flooding
there are a number of key areas of uncertainty: defence failure; overtopping
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Figure 20.1. Components of the UK Coastal Monitoring and Forecasting service.

rates; accuracy of tidal predictions; accuracy of surge generation; and
uncertainty in the meteorological forcing that causes storm surges and
waves. In an estuarine environment water levels will also be affected by
river flow, and any attempts at forecasting must take fluvial and pluvial
processes into account. This level of complexity has been explored in
probability forecasting exercises as part of the Flood Risk Management
Research Consortium (Xuan, 2007) but here the focus is limited to the
marine processes of surge and tide.

Tidal heights for coastal forecasts are derived from tide tables generated
using harmonic analysis, since even at the finest resolution (e.g. Jones
and Davies, 1996) numerical models do not give comparable accuracy.
Storm surges are forecast with a hydrodynamic ocean model which is
run once with tide and meteorological forcing, and then again with tides
only; the surge is obtained by subtracting the two. Harmonically-predicted
tide and computer-modelled surge are then added to provide a time series
of water level upon which wave effects are added. The most significant
source of uncertainty for storm surge magnitude is the causal meteorology,
specifically the wind strength at the sea surface and the horizontal gradients
of atmospheric pressure at sea level. This uncertainty can be managed
effectively using a suite of surge models forced by a meteorological ensemble.
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A case study is presented here that demonstrates the utility of ensemble
surge forecasting.

20.2. Uncertain Inputs

20.2.1. Tidal predictions

Tidal predictions are obtained from a harmonic analysis of tide gauge
observations (usually a dataset of one year or longer). Practically, this
involves a least-squares fitting procedure to obtain the amplitudes and
phases of a number of distinct frequencies. Tides are predicted to great —
but not 100% — accuracy. The observed sea level also contains the effects of
atmospheric forcing (the surge) which is noise as far as harmonic analysis
is concerned. In this chapter we only use the word “surge” to imply a
genuine meteorological contribution to sea level. Generally, the difference
between observed sea levels and tidal predictions is properly referred to as
the residual.

Some examples of the stability (over time) of tidal constituents are
given in Pugh (1987). Tides at most ports are predicted using either 60 or
100 constituents, and the combined instantaneous error can amount to
several centimetres of amplitude, as well as phase errors (in the time of
high water for instance) of tens of minutes. These errors are proportional
to the tidal amplitude so are typically largest in regions of high tidal
range such as the Bristol Channel. Horsburgh and Wilson (2007) showed
mathematically how small phase advances with respect to the predicted
tide create a residual with tidal period that peaks halfway up the rising
tide, as illustrated in Figure 20.2. This phenomenon may reflect the limit
of accuracy of the harmonic method, or it may result from an increase in
water depth due to surge. The latter is one aspect of tide-surge interaction.
Tides and surges are (to first order) shallow water waves, with phase speeds
of (gh)1/2 where h is the water depth and g is the acceleration due to Earth’s
gravity. A positive surge will therefore increase the water depth and thus
the phase speed of both tide and surge as they travel. It is impossible,
generally, to distinguish a genuine surge that alters the phase of the tide
from a harmonic error. In fact, many properties of a non-tidal residual time
series stem from the choice of definition (i.e. subtraction). In an arithmetic
sense this is perfectly correct but it can be misleading if one wishes to
quantify sea level change due to real meteorological drivers.

One method of estimating the error inherent in harmonic analysis is to
run a numerical model with no meteorological forcing. To demonstrate this,
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Figure 20.2. Illustration of how a simple phase alteration, with no change to the
amplitude, can give rise to a residual with tidal period. The solid line (O) represents
observations, the dotted line tidal predictions (T), and the dashed line the corresponding

residual (R = O-T).

the NOC CS3X surge model was run for the year 2004, forced only by its
lateral tidal boundary conditions (as described in Section 20.2.2). On the
basis of that run, a 50-constituent harmonic analysis was performed for the
44 port locations that make up the UK strategic tide gauge network. Using
these constituents, the tide at every port was then predicted for 2005. The
time series at each site were finally compared with the directly simulated
values when the model was restarted for 2005. The Root Mean Square
(RMS) error, averaged over all gauge sites, was 7 cm with a maximum
value of 29 cm at Newport, in the Bristol Channel. This experiment is
unrealistically noise free; if one were to add some white noise to the analysed
time series (to represent the effect of weather on the basic process of
harmonic analysis) it seems reasonable to conclude that a typical harmonic
prediction error for the UK coastline is of the order 10 cm.

During very light winds it is possible to infer harmonic errors from tide
gauge data. In the absence of significant wind stress the surge component
of any sea level observation can be approximated by a pressure correction,
the so-called inverted barometer effect (see Pugh, 1987). This equates a
supposed slope of the sea surface to the horizontal pressure gradient, and
yields a rule of thumb where sea level changes by 1 cm for each millibar
of deviation from the mean sea level pressure of 1012 mb. Figure 20.3
shows such an occurrence where the pattern of tides at Avonmouth was
well predicted, yet mean high water errors of 30 cm were recorded over the
four day period. Winds over the south-west of the UK were less than 10m/s
during this time, and an inverse barometer correction has been applied to
the observed data.
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Figure 20.3. Tidal predictions (solid line) and observed inverse-barometer corrected sea
level (dots) at Avonmouth tide gauge for the period 6–10 October 2006.

Table 20.1. High water residual error at Avonmouth for 6–10 October 2006.

RMS error at all high
waters for October 2006

Error at 19.30 on
7 October 2006

Standard tide table supplied to STFS 30 cm 44 cm
Analysis based on data for October 2006 20 cm 25 cm
Analysis based on previous 30 days

measurements
— 13 cm

In an attempt to improve the predictions a new analysis was performed
based on data for the month of October 2006 only. The tide was re-predicted
(necessarily using fewer constituents) and both RMS and maximum errors
were reduced as seen in Table 20.1. A further improvement was obtained by
analysing 30 days of data terminating at 00 UTC on 7 October 2006, and
then generating predictions for just 24 hours. Short-term predictions based
on recent real-time data offer prospects of an automated analysis-prediction
approach to optimise the operational forecasting of the tidal component of
sea level.

Obviously this technique is not appropriate for making predictions
any further into the future. Furthermore, when stronger winds give rise
to any appreciable surge then the short period analyses are likely to be less
accurate. The use of artificial intelligence techniques (e.g. fuzzy systems or
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neural networks) to improve tidal forecasting is an active area of research,
having shown some utility in real-time forecasting of sea levels in the North
Sea (Randon et al., 2007).

20.2.2. Uncertainty in the surge models

Storm surges are the sea level response to wind stress and atmospheric
pressure gradient, and they are a critical component of total sea level during
coastal flood events. Numerical models for storm surge prediction solve
the governing equations of fluid flow on regular grids. A good review of
storm surge modelling is given by Gonnert et al. (2001), and operational
coastal flood warning systems for European seas are described in detail by
Flather (2000). To achieve finer resolution around coastlines, it is possible
to nest finer grids (e.g. Greenberg, 1979) or use finite element techniques
(e.g. Jones and Davies, 2006). Since the wind and atmospheric pressure
gradient are spatial fields that give rise to a free surface gradient, then two-
dimensional depth-averaged models of both surges and wind-driven currents
have been very successful as predictive tools in shelf seas. A recent review of
operational capabilities (Ryabinin et al., 1996) found that 75% of models
used internationally were two-dimensional and depth-averaged, and that
their forecast skill was comparable to 3D models that resolved the vertical
structure of current. All 2D models typically solve the following equations in
discretised form, where Cartesian formulations are used here for simplicity
(the equations are more usually expressed in spherical coordinates for
regular latitude-longitude grids):

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV = −g ∂η

∂x
− 1
ρ

∂Pa
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+

1
ρH

(τsx − τbx), (20.1)
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− 1
ρ

∂Pa
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+

1
ρH

(τsy − τby), (20.2)

1
H

∂η

∂t
+
∂U

∂x
+
∂V

∂y
= 0, (20.3)

where U and V are vertically averaged velocity fields in the x and y

directions, η is the free surface elevation, H is the total depth, f is the
Coriolis parameter, g is Earth’s gravity, ρ is the uniform density of water,
Pa is the atmospheric pressure, τsx and τbx are respectively surface and
bed stresses in the x direction, with similar terms for the y direction in
Equation (20.2).
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The current UK operational surge model, CS3X, covers the entire
north-west European continental shelf at 12 km horizontal resolution. Its
surface boundary conditions are the sea level pressure and 10m wind fields
from the Met Office North Atlantic Extended (NAE) atmospheric model, at
a similar spatial resolution (0.11◦ longitude by 0.11◦ latitude). Tidal input
at the model open boundaries consists of the largest 26 constituents. Finer
resolution models of the Bristol Channel and south coast are nested within
this outer domain. The model suite runs four times each day and simulations
consist of a six hour hindcast portion (where the model is forced with mete-
orological reanalysis) followed by a 48 hour forecast. The modelled surge is
derived by subtracting a tidal model run from one forced by both tide and
atmosphere. Validation of the models is performed monthly by comparison
with observed sea level data from the UK national tide gauge network.
Typical monthly mean RMS errors in the model accuracy are of the order
10 cm, but maximum instantaneous errors at the critical time of high
water can be up to 60 cm (Wortley et al., 2007) although such an error is
very rare.

The wind stress on the sea surface is usually parameterised with a
quadratic formulation:

τsx = CDρaWx|W |, (20.4)

where ρa is the density of air, |W | is wind speed 10 m above the sea
surface, and Wx is its component in the x coordinate direction. The drag
coefficient, CD, is not generally constant but is prescribed to have some
dependence on wind speed, and occasionally surface roughness (i.e. the
wave field) in coupled wave-surge models (see Wolf, 2008, for a review).
Any error in wind strength or direction supplied by the atmospheric model
will result in corresponding surge errors. The performance of NOC model
codes (effectively the numerics and choice of parameters) is known to be
comparable with surge prediction models from other European nations
(Flather et al., 2003). Nevertheless, all deterministic models are constrained
by the limitations in their forcing, and the non-linear response to that
forcing. Forecasters and managers can control for this by understanding
the magnitude of such errors, and the circumstances in which they tend
to occur, as well as by employing complementary probabilistic forecasting
techniques.

Sensitivity studies based on two events illustrate the dependency of
surge models on fairly small changes in the wind field. Event 1 was a surge
affecting all North Sea ports on 31 October 2006–1 November 2006, where
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the residual peaked at around 2.2m at Sheerness. Event 2, on 2–3 December
2006, mainly affected the west coast and produced an observed residual
of almost 1m at Liverpool. On both occasions the models performed
well, predicting the surge to within 20 cm at all times, implying that the
modelled meteorology was accurate for those events. Figure 20.4a shows
the impact of a 10% increase in wind speed over the simulation period. The
maximum difference obtained between the standard run and the modified
wind run was 40–50cm over the southern North Sea with larger values in
the Thames Estuary, even for this modest perturbation to the wind speed.
Larger differences are obtained when the wind error is larger, or when the
wind direction also contains systematic inaccuracy as in Figure 20.4b. The
time series for Sheerness (Figure 20.4c) illustrates the significance of these
differences at a local level.

Figure 20.5 shows the equivalent diagrams for the surge of 2–3
December 2006. This represents a different type of weather pattern where
the most significant surge was along the west coast and in the Irish Sea. In
this case, when the winds forcing the model were artificially increased by
10%, there was a difference of approximately 30 cm in parts of Liverpool Bay
with values up to 50 cm in estuaries and inlets. The selected time series plot
is for Liverpool, where the residual is shown. Although the perturbations
used in these trials were arbitrary (and the perturbation chosen was time
invariant), the results nevertheless demonstrate the consequences of small
inaccuracies in the forcing data. Closed marine basins like the North
Sea or the Irish Sea effectively act as integrators for any sea level error.
These sensitivity studies make a strong case for ensemble-based forecasting
of surge, where realistic uncertainties in the meteorology are explicitly
handled. In contrast, changes in key parameter choices within the surge
model (e.g. the drag coefficients for both bed friction and air-sea coupling)
had a less significant effect on the surge response in these trials.

20.3. Ensemble Surge Forecasting

The non-linearity of both meteorological and ocean models means that any
deterministic forecast is strongly affected by its initial conditions, as well as
choices for those parameters used to describe unresolved physical processes
(e.g. bed friction in hydrodynamic models). Another argument for the
ensemble forecasting of surges is that a single, deterministic forecast (which
contains implicit error) makes it difficult for a forecaster to accurately
determine the risk of a particular critical threshold or warning level being
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(a)

(b)

(c)

Figure 20.4. Sensitivity of Event 1 (31 October–1 November 2006) to differences in
wind forcing. (a) Maximum elevation difference with 10% increase in wind. (b) Maximum
elevation difference with 30◦ change in wind direction. (c) Sheerness time series for tide

(green), total level (red), total level with 10% increased winds (black).
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(a)

(b)

(c)

Figure 20.5. Sensitivity of Event 2 (2–3 December 2006) to differences in wind forcing.
(a) Maximum elevation difference with 10% increase in wind; (b) Maximum elevation
difference with 30◦ change in wind direction; (c) Liverpool residual time series for
unperturbed level (red); level with 10% increased winds (black).
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exceeded. Ensemble forecasting quantifies the uncertainty by making many
numerical simulations using different choices of initial states and key
parameters. It is a popular method for handling the uncertainty inherent in
short-term weather prediction and climate models (e.g. Buizza et al., 2005).
The computational expense of numerical weather and hydrodynamic models
rules out a Monte Carlo approach, where the uncertainty in model input
is randomly sampled over thousands of trials. Instead, ensemble members
are chosen very carefully to efficiently sample the uncertainty. A recently
developed ensemble-based surge forecasting system has been validated over
the period 2006–2008 (Flowerdew et al., 2010). The meteorological input
to the NOC CS3X surge model is taken from the Met Office Global and
Regional Ensemble Prediction System (MOGREPS, Bowler et al. 2008).
MOGREPS is based on two ensembles: the regional North Atlantic and
European (NAE) model provides the meteorological data. During 2006–
2008 it ran with double the grid spacing (0.22◦) of the deterministic
model. A lower resolution global model provides boundary conditions for
the regional system. Each forecast cycle starts with a single meteorological
analysis based on observations, to which perturbations are applied to gen-
erate 24 ensemble members (23 perturbed controls, plus one unperturbed
control).

The meteorological perturbations are generated using the Ensemble
Transform Kalman Filter (ETKF). This scheme uses estimates of the
observation error to scale and mix differences between the individual
members and the ensemble mean, taken from the T +12 state of the
previous forecast cycle (Wang and Bishop, 2003). The ETKF is based
on data assimilation theory and aims to quantify the uncertainty in the
meteorological analysis: the perturbations thus generated are valid from
the initial time, which is essential for a short-range ensemble system. The
MOGREPS system currently runs twice per day, with global forecasts at
0000 and 1200 GMT, and regional runs at 0600 and 1800. The regional
simulations forecast out to T +54 hours and the output is available to
forecasters approximately six hours after the run begins. The 24 MOGREPS
regional ensemble members then drive 24 separate simulations of the surge
model, which is initialised from the deterministic model suite.

During the development of the ensemble system it became apparent
that the initial condition of the surge model was a far less important con-
straint on the surge development than the forcing meteorology. Figure 20.6
shows the results of a sensitivity experiment based around a significant
surge event in the Irish Sea. Initial conditions for the surge model were
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Figure 20.6. Upper panel: sea level residual curves from the surge event at Liverpool on
18 January 2007. The significance of the different curves is explained above the diagram.
Lower panel: standard deviation from the ensemble of 24 residuals at Liverpool.

taken from each ensemble member at 0600 on 18 January 2007; the complete
ensemble was then run forward using the atmospheric forcing from just
one ensemble member. The figure shows the spread of residual values from
the 24 runs at Liverpool, where the surge was greatest. The lower plot
demonstrates that the memory of the initial state is lost rapidly, with the
standard deviation halving in less than three hours. These results imply
that for surge models the surface boundary conditions (i.e. meteorological
forcing) are dominant over the initial condition, whose influence decays
quickly into the next forecast.
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The ensemble surge model output can be processed to provide a variety
of useful graphical products that are available to forecasters. The upper
panel in Figure 20.7 shows the mean and spread of the ensemble residual
at midday, on 20 October 2008. We define spread as the standard deviation
of all ensemble members, including the control run. The white contours
show a surge of approximately 1m in Liverpool Bay, and the red shading
indicates an uncertainty of typically 6 cm in the forecast.

The narrow spread in this instance implies only small uncertainty in
the forecast. The lower panel in Figure 20.7 is a probability plot showing
the fraction of surge members that exceed 0.6m at the forecast time. This
is a useful graphical means of translating the ensemble output into some
estimate of risk, or threshold exceedance, at critical locations.

20.4. Surge Ensemble Verification

Verification of the ensemble surge forecasting system took place over the
winters of 2006/2007 and 2007/2008. The observational data were taken
from 36 tide gauges of the UK national network, available from the British
Oceanographic Data Centre (BODC) both as real-time (raw) data and
quality-controlled data after a three month processing delay. To maximise
the significance of the verification statistics, and integrate any local effects
into meaningful diagnostics, the verification measures combined the results
from all 36 locations. Quality control was applied to the raw observations,
including a filter that selected from multiple observations whichever surge
most closely matched the preceding data. The results use model forecasts
at the corresponding times to all available observational data, at 15 minute
intervals; it is probably better practice to average both the model and
observed data onto hourly values to remove sea level variability (specifically
seiching) which the hydrodynamic model cannot resolve.

It was found that one of the most useful indicators of forecast accuracy
was the ensemble spread (which is a readily available diagnostic for
forecasters, as we have seen). This is demonstrated in Figure 20.8, which
shows a good relationship between the spread of the ensemble and the actual
forecast errors. In the case of low spread, which occurs most frequently,
there is an error of approximately 10 cm that is not spread-dependent
(i.e. the intercept on the y-axis in Figure 20.8). This value is consistent
with the limits of accuracy on tidal prediction, from which the observed
residuals are derived. Figure 20.8 shows that the individual perturbed
members have the greatest RMS error, since they are deliberately adjusted
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Figure 20.7. Upper panel: ensemble mean and spread of sea level residual for 1200 on
20 October 2008 from forecast on 1800 19 October 2008. Lower panel: probability of
residual exceeding 0.6m at 1200 on 20 October 2008 from the same ensemble forecast.
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Figure 20.8. RMS error of the forecasts for all observations, binned as a function of
ensemble spread. The grey histograms indicate the relative population of each spread
value, given by the right-hand scale. Error-spread performance is shown for the ensemble

mean (triangles), individual perturbations (diamonds), the control member (crosses) and
the corresponding deterministic model run (squares).

Figure 20.9. Spread (lower) and error quantities (symbols as in Figure 20.8) in the
residual as a function of forecast lead time.

away from the best estimate (the analysis) of the state of the atmosphere.
The ensemble mean consistently has the lowest error, particularly at high
spreads, which implies that the sampling of uncertainty provided by the
system allows the mean to produce, on average, a better forecast than any
perturbed member (or the control member). The ensemble mean also has
lower RMS error than the corresponding deterministic forecast over this
relatively short verification period.

Figure 20.9 shows the spread and the errors of the various
forecast quantities, as a function of lead-time. The ensemble variance is
approximately linear with lead-time, as would be expected of a random
walk process. The forecast errors are dominated by the initial 12 cm error,
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Figure 20.10. Spread (vertical dashes) and error quantities (symbols as in Figure 20.8)
in the residual compared with a modelled hindcast residual, as a function of forecast
lead-time.

which reduces to 7–8 cm when the five ports with highest tidal range are
excluded. There is some growth of error with lead-time, and at the full
extent of the forecast period (T +48), the ensemble mean (triangles) again
performs best. The semidiurnal oscillation in the error quantities can be
attributed to errors in tidal predictions, and is virtually eliminated when
residual RMS errors are recalculated with respect to the hindcast residual
(as in Figure 20.10) rather than the observed residual. The hindcast residual
is derived from a surge model forced with reanalysed meteorology; a tide-
only run is subtracted to yield a modelled residual that has no dependency
on observations, and thus contains no errors due to limitations of the
harmonic method. The ensemble spread is a much better match to this
meteorologically-focused aspect of surge forecast error.

A common application in forecasting is to make a yes/no decision (e.g.
close a barrier, evacuate a district, etc.) and a large number of empirical
measures have been devised to assign skill to the forecasts that inform such
decisions. One useful verification measure is the Brier Skill Score (BSS).
This is a variant of the Brier Score (BS) which is the mean squared error
of probability forecasts:

BS =
1
N

N∑
k=1

(Pk −Ok)2. (20.5)

In the case of storm surges, P could be the ensemble probability of either
the residual or the total water level exceeding a particular threshold. The
observations (O) of the event take the value 1 if the threshold was exceeded
and 0 if it was not. However, for rare events like flooding it is possible to
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get a reasonable BS in the absence of any real skill. The BSS measures the
improvement of the probabilistic forecast relative to a reference forecast
based on climatology (in our case, how frequently the same threshold is
exceeded over the verification period).

BSS = 1 − (BS/BSref). (20.6)

A perfect BSS is 1. If the ensemble BSS is no better than a guess
based on the climatological frequency of occurrence then the best available
BSS is 0. Figure 20.11 presents the BSS of our ensemble prediction of
residuals greater then 1m, as a function of lead-time, aggregated over all
ports and the full validation period. These results have been calculated
against hindcasts rather than observed residuals because of the greatly
reduced statistical noise. Corresponding results based on the tide gauge
data are discussed in Flowerdew et al. (2010). In these calculations, an
event was defined as the hindcast residual exceeding 1 m at some point
within a 12 hour window. The ensemble forecast probability was the fraction
of members with residuals that exceeded 1m within the same window
(although not necessarily at precisely the same time). The choice of a

Figure 20.11. Brier skill score (relative to hindcast) for ensemble prediction of residuals
greater than 1m. For comparison with the full ensemble (plus symbols) we show the
control member (crosses, “ndress’), and two dressings of the control member: “odress”

(diamonds) and “mdress” (triangles).
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12 hour window is appropriate since tide is a critical component when total
water levels are considered.

The comparison traces in Figure 20.11 show the results from three
different ways of converting (“dressing”) a single deterministic forecast into
a probabilistic one. Here they are applied to the ensemble control member.
The simplest scheme (“ndress”) assumes the deterministic forecast to have
no error, giving p = 0 if the forecast is below the threshold and p = 1
if it exceeds it. The “odress” scheme assumes a constant Gaussian error
with a standard deviation equal to the overall RMS forecast error (4 cm
when verifying against hindcasts). In this case the forecast probability is
the fraction of this assumed distribution that exceeds the threshold. The
last method (“mdress”) uses a Gaussian error distribution whose standard
deviation is the overall RMS error plus and a fraction of the individual
forecast magnitude. These comparisons quantify the benefit obtained from
the ensemble’s dynamical representation of forecast error over and above
simpler climatological expressions of forecast error. As Figure 20.11 shows,
for this threshold the ensemble and magnitude-based dressing have jointly
the best skill, ahead of the constant dressing, and far better then the
undressed control. The improvement is larger at longer lead-times (which
hints at the usefulness of longer forecasts).

The BSS for total water levels (including harmonically predicted tides)
exceeding port-specific alert levels is illustrated in Figure 20.12. The
ensemble now clearly performs better than either method of climatological
dressing, showing the value of its dynamic simulation over the simple sta-
tistical approaches. Extrapolation implies that the ensemble has increased
skill over climatologically dressed forecasts out to about six days.

20.5. Case Study: 9 November 2007

On the 9 November 2007, the east coast of the UK experienced the worst
storm surge for approximately 50 years. It was initially feared that the
event would be as bad as the North Sea storm surge of January 1953,
but fortunately the forecasts for both winds and surges decreased over the
24 hours preceding the event. There was minor flooding in East Anglia,
and some precautionary evacuations, but surge levels from the wash to
the Thames were typically 20 cm lower than the long-range predictions.
Although the maximum residual of 2.4m (above Ordnance Datum Newlyn
(ODN)) was the third highest seen in the Sheerness tide gauge record,
this is not the most useful metric. The effects shown in Figure 20.2,
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Figure 20.12. BSS (relative to hindcast) for ensemble prediction of total water level
exceeding the port-specific alert level. Lines and symbols as for Figure 20.11.

combined with the fact that wind stress is most effective at generating
surge in shallow water, resulted in the maximum residual being obtained
typically 3–5 hours prior to high water at this location (Horsburgh and
Wilson, 2007). A more practical measure is the skew surge, which is the
difference between the elevation of the predicted astronomical high tide
and the nearest experienced high water (e.g. de Vries et al., 1995). In terms
of skew surge (or indeed the total water level) the 2007 surge elevations in
the Thames were approximately 1m less than in 1953.

A full account of the event and performance of the deterministic model
is given by Horsburgh et al. (2008). Their analysis shows that the storm
surge along the east coast of the UK was modelled accurately throughout
the entire period. The deterministic forecast available immediately prior
to the event (at midnight on 9 November 2007) was within 9 cm of the
observed skew surge level at Lowestoft and within 21 cm at Sheerness (see
Figure 20.14 for locations). The accuracies of the surge hindcast using
re-analysed meteorological forcing were 1 cm and 8 cm respectively. The
MOGREPS-driven surge ensemble system was on trial at the time of
the storm, and Figure 20.13 shows the ensemble of sea level residuals at
Sheerness from the run at 1800 GMT on 8 November 2007. In this figure,
the red curves show the warning thresholds for individual ports; if the
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Figure 20.13. Ensemble surge elevation (m) for Sheerness from the 1800 GMT run of
MOGREPS on 8 November 2007. The green lines are the residuals from the 24 individual
ensemble members and the yellow line is the forecast from the deterministic model. The
red curves denote the warning thresholds acted on by UKCMF forecasters.

threshold is predicted to be exceeded then the green ensemble curve will
intersect the red curve. Sea level forecasts at Sheerness are of importance
because when combined with river flow measurements they determine the
closure of the Thames Barrier. High water at Sheerness on 9 November 2007
can be identified by the minimum in the solid red curve in Figure 20.13,
approximately 18 hours into this forecast. As expected, the residual peaks in
the complete ensemble (green curves) are found approximately four hours
earlier. By high water, only three of the 24 ensemble members (and the
deterministic model, shown by the yellow line) predicted that the threshold
would be exceeded. In the event it was not, however, the Thames Barrier
was closed as a precaution.

Table 20.2 shows values of the skew surge from the earlier ensemble ran
(at 0600 GMT) for both Sheerness and Lowestoft, and compares them with
observations and successive runs of the deterministic model. The ensemble
mean forecast for Sheerness was superior to either of the deterministic
forecasts (although this was not the case for Lowestoft). The best accuracy
was obtained from the re-analysis model runs. These are not available to
forecasters, of course, but it is their superior accuracy that makes them so
useful in statistical verification.
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Table 20.2. Values (m) of the observed skew surge for Sheerness and Lowestoft at the
first high water on 9 November 2007, from forecasts of the deterministic surge model,
and from the ensemble forecast run at 0600 GMT on 8 November 2007.

Lowestoft Sheerness

Tide gauge observations 1.66 0.83
1200 deterministic forecast on 8 November 2007. 1.85 1.11
0000 deterministic forecast on 9 November 2007. 1.57 1.04
Reanalysis (hindcast) model run 1.65 0.91
MOGREPS ensemble mean 1.90 0.98
MOGREPS ensemble minimum 1.37 0.32
MOGREPS ensemble maximum 2.27 1.28

Figure 20.14. Difference (m) between the sea level residual from the ensemble member
giving the largest skew surge along the UK east coast and that of the deterministic
model, at 0400 GMT on 9 November 2007. The locations of Lowestoft (L) and Sheerness
(S) are shown.

The higher sea level residuals exhibited by a minority of ensemble
members would have had implications for the flood hazard in eastern
England. Regional forecasters are interested in the sea levels that might be
achieved in the most extreme case. To demonstrate the spatial properties
of the ensemble that gave the largest skew surge along the UK east coast,
Figure 20.14 depicts the difference between the residuals of that member
and the deterministic model. In the case of the most extreme forecast, sea
levels would have been higher by up to 80 cm along the affected coastline
for a period of more than three hours spanning high water. Although that
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Figure 20.15. Potential inundation (without defences or in the event of a breach) for one
of the most affected areas on 9 November 2007. The brown shading indicates the flood
extent with sea levels of 2.86 m above ODN (as occurred); red areas are the additional
inundation with sea levels of 3.24 m above ODN as predicted by the most extreme
ensemble member. The black arrow (bottom right) shows the location of a power station.

particular scenario had only a 1 in 24 chance of occurrence, it is valid to
explore the potential consequences with detailed inundation mapping.

A map of the flooding that would have occurred in the absence of
defences is given in Figure 20.15. It is not currently feasible to include
coastal defences in this type of mapping. Therefore, Figure 20.15 could be
thought of as showing the inundation extent in the event of a serious breach.
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The brown shading indicates the (undefended) flooding that would have
occurred on 9 November 2007 with the actual sea levels; the red shading
shows additional flooding had the most extreme forecast been realised. In
this instance, the area affected by the higher water levels is not significant
overall, although a power station is specifically affected when the higher
level is imposed. The same spread of values at other vulnerable locations
may have had more significant implications. Figure 20.15 implies a step-like
topography that exposes all low lying areas to risk at moderate extreme
levels. There is presumably a higher threshold which, if exceeded, would
place larger areas at risk. This scenario demonstrates a particular use of
ensemble predictions. Wherever a series of locally critical thresholds can
be identified, inundation mapping using simple GIS-techniques or more
complex dynamic models (e.g. Bates et al., 2005) can set multiple warning
levels to which the probabilistic output of a surge ensemble system can
be applied. Ensemble forecasts of sea level combined in this way with
locally determined, risk-based thresholds can form part of a cost/loss
decision making tool that provides a robust scientific and economic basis
for mitigation decisions.

During this event, which had a high media profile, the ensemble
predictions gave confidence to those responsible for emergency response
because they provided a measure of uncertainty at critical times in the
forecast period. Event-based results such as these, and the outcomes of
the broader verification process described earlier, endorse the utility of
probability-based forecasts for coastal flood risk management. As mean sea
levels rise by 20–90 cm towards the end of this century (IPCC, 2007), coastal
flood managers will become more reliant on operational warning systems
in order to protect lives and infrastructure. Forecasting systems must
become more sophisticated in response to this challenge. Although it is clear
that the current forecasting process performs well, future improvements to
all aspects of the modelling system (e.g. wave-surge coupling) will lead
to better risk management and long-term decisions on coastal defence.
Ensemble surge modelling is a key component of this improved system.
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21.1. Risk and Probability

We need first to consider the terms “flood risk” and “probability of
flooding”. They are often taken as synonymous, but in the context of
decision theory, they mean different things, as the following example
illustrates. Suppose that a river may overtop its banks, but that there is
some uncertainty as to which of the following three events may occur: there
is no flooding (denoted by E1 ); the river overtops its banks by up to 50 cm
(E2 ); or, the flood depth is greater than 50 cm (E3 ). One, and only one,
of the three events may occur, and their probabilities of occurrence will
be denoted by p(E1 ), p(E2 ) and p(E3 ), with p(E1 ) + p(E2 ) + p(E3 ) = 1;
for the moment, we do not consider how these probabilities are calculated.
Now suppose that the engineer responsible for a city’s flood defences must
decide which of three courses of action he/she will take: from his/her
experience in dealing with similar flood threats he/she may decide not to
issue a flood warning (a decision denoted by d1 : “Green”), because similar
meteorological and hydrological conditions in the past have not caused
flooding. Alternatively, he/she may decide to take some provisional steps
to deal with possible flooding (d2 : “Orange”), or to go the step further and
issue a full flood warning with mobilisation of civil defences and evacuation
of people (d3 : “Red”). One, and only one of the decisions d1 , d2 , d3 can be
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Table 21.1. Decision table for a hypothetical
example on flood warning.

Event: E1 : E2 : E3 :

Probability: p(E1) p(E2) p(E3)
Decision:
d1: Green C(1,1) C(1,2) C(1,3)
d2: Orange C(2,1) C(2,2) C(2,3)

d3: Red C(3,1) C(3,2) C(3,3)

taken. Then to each combination of decision di with event Ej (i, j = 1, 2, 3)
there will be a set of consequences denoted by C(i, j); for example with
i = 1 and j = 3, corresponding to the issue of no flood warning and the
occurrence of a severe flood, the consequence C(1,3) is likely to include the
component “engineer loses job”. Suppose, for the sake of simplicity, that
the consequences C(i, j) can be measured in terms of financial loss (almost
always, the consequences must be measured in terms of “utility”, measured
on a scale from zero to one and which has a one-to-one relationship with
the ordered set of consequences C(i, j)). Then the events, probabilities,
decisions and consequences can be put in the form shown in Table 21.1.

A final column may be added to this table, giving the “expected
utility” (or, when utility can be measured in terms of cost, the less
general “expected cost”). In terms of expected cost, the values in this
additional column are the sums of the C(i, j) in each row, weighted with
their corresponding probabilities: giving, for the first row, p(E1 )C(1,1) +
p(E2)C(1,2) + p(E3 )C(1,3) with similar expressions for the second and
third rows. Decision theorists refer to these “expected costs” as the “risks”
associated with the different decisions; note that, with this definition, a
“flood risk” involves not only the probabilities of flooding p(Ej), but also
their consequences C(i, j). This example, although greatly oversimplified,
illustrates another important point: whilst the hydrological modeller may
be able to estimate the probabilities of flood events occurring, these
probabilities by themselves are of no use for decision making, without the
essential contribution supplied by the decision-maker: namely, (i) the list of
decisions from which he/she must choose the “best” (in this case, the three
decisions “Green”, “Orange” and “Red”), and the consequences C(i, j)
associated with the combinations of decisions with uncertain events. This
is why collaboration between hydrological modeller and decision-maker is
so important: the risk associated with each of the possible decisions cannot
be determined by either one acting independently of the other.
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The title of this chapter is “Detecting Long-Term Change in Flood
Risk”. In light of the preceding discussion, we therefore interpret this in
terms of changes in the probabilities of flooding.

21.2. The Meaning of “Long-Term”

A further comment is needed concerning the nature of “long-term” changes.
A long-term change in flood probabilities may be interpreted as meaning
either (i) that the probability of flooding shows a trend, whether increasing
or decreasing; or (ii) that because of year-to-year persistence in geophysical
phenomena, there are very slow changes in the probability of flooding
over long periods, without any overall trend being evident. Distinguishing
between (i) and (ii) is obviously very difficult, perhaps even impossible,
since what may appear as a trend over a rather short period of record may,
over a much longer period of record, come to be seen as part of a slow
fluctuation. This is clear, for example, in the very long sequence of Nile
water levels (Figure 21.1) used as an example in the book by Beran (1994),
and in other long geophysical records.
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Figure 21.1. Annual minimum water levels 622–1284: Nile River at the Roda gauge,
Cairo (Tousson, 1925, p.366–385: in Beran, 1994).
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Figure 21.2. Mean annual (top) and maximum mean daily (bottom) flows for the
Paraguay River at Puerto Pilcomayo for the period 1910–2000.

In practice, however, the questions about flood frequency that hydrolo-
gists are called upon to answer are based on flood records that usually began
some 50 years ago, and which commonly do not exceed 100 years’ duration.
Changes in flood probabilities cannot be established over periods longer
than the period of flood record, and for the purpose of this contribution
we therefore take “long-term” to mean “extending over a period of 50 to
100 years’ duration”. Figure 21.2 (bottom) shows the annual maximum
mean daily flows of the Paraguay River at Puerto Pilcomayo for the period
1910–2000; the mean annual flows (top figure) appear to show an increasing
trend since about 1970, and this trend is possibly reproduced, although less
strongly, in the annual maxima of the bottom figure. As another example,
Figure 21.3 shows the number of closures of flood barrier on the River
Thames, since its construction in 1983. There appears to be a positive
trend up to about 2001; thereafter, the data may suggest a negative trend,
or it may simply be that this is an artefact of the year-to-year variability
in number of closures.
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Figure 21.3. Number of closures of flood barrier per year on the River Thames. (Source:
UK Environment Agency.)

21.3. The Need for Care in Selecting a Hypothesis
for Testing Trends

When analysing changes in flood phenomena, whether in terms of the
numbers of floods occurring per decade (N say) or the magnitudes of
floods (Q), it is common to begin with plots of the variables N or Q against
time (i.e. year number). If a trend looks apparent in the plot, then a formal
test of significance, whether parametric or non-parametric, is made, and
a conclusion is drawn as to whether the observed trend is “statistically
significant”, or whether it could reasonably be ascribed to chance. Although
common, this procedure is incorrect because the hypothesis being tested is
suggested by the same data that are used to test it. The statistical argument
is therefore circular. For a statistical test of a null hypothesis (such as the
null hypothesis that no trend exists in a flood record) to be valid, the
hypothesis should be independent of the data on which it is to be tested.

A further caution is necessary where trends in several flood records
collected over a region, such as in a large drainage basin, are to be tested
for trend. It is common for the record at each site to be tested individually
and separately from the others. However, regional flood records are likely
to be correlated: extreme floods at one gauging site are likely to occur in
the same years as extreme floods at other gauging sites not too distant
from it. Statistical tests for trends in which the record from each site is
treated individually are likely to overestimate the significance of a trend.
The effects of cross-correlation between flood flows is illustrated by the
Douglas et al. (2000) in their analyses of trends in extreme flows in the
USA; they reported no evidence of significant trends in flood flows, but
noted that:

“A dramatically different interpretation would have been achieved if
regional cross-correlation had been ignored. In that case, statistically
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significant trends would have been found . . . in two thirds of the flood
flow analyses.”

Instead of using statistical tests of whether flood characteristics have
changed over time during a period of record using time t as an independent
variable (particularly after looking at the data), it is better to relate the
flood characteristic to the possible variables which might be driving the
change. Changes in land use, particularly deforestation and urbanisation,
or long-term fluctuation in climate, may give rise to changes in flood
characteristics. It is then appropriate to look for causative variables, such
as growth in impervious area within a drainage basin, or crop yields
as measures of the growth of land under cultivation, to which flood
characteristics may be related. Where changes in flood characteristics may
be a consequence of fluctuating climate, possible explanatory variables may
be suggested by anomalies in sea surface temperatures or climatic indices
such as the North Atlantic Oscillation Index (Hurrell et al., 2003), the
Pacific Decadal Oscillation Index (Mantua et al., 1997), and others: see, for
example, Allasia (2007).

Thus instead of relating flood characteristics to time t, it is preferable
to relate them to variables which are possible drivers of change, denoted
generically by x. Relation to such variables may also be a surer way
of extrapolating flood characteristics into the future. If deforestation, as
measured by the variable x, is expected to continue into future years at
a rate that can be estimated, however crudely, or if the variability of a
chosen climate related index can be estimated, this may provide a better
guide to future flood characteristics than extrapolation of a trend on a time-
variable t. However, there may also be advantage in looking for relationships
between flood characteristics and both variables, x and t; if adding the
time-variable t to a relation between flood characteristics and a causative
variable x adds no further information, we can assume that x is a good
predictor of future changes in flood characteristics. If, however, information
is added by the inclusion of t, then x does not by itself explain the observed
changes, and additional causative variables must be explored.

The above paragraph refers to the extrapolation of trends in flood
characteristics into the future, but there may also be scope for extending
them into the past, either by correlation with longer flood records at other
sites, or by using explanatory variables correlated with the flood character-
istic of interest. Other proxies used for the extension of annual maximum
discharges time series into the past are tree rings (Schongart et al. 2005)
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and laminated sediments (Sander et al. 2002; Werritty et al., 2006, among
others).

Time-trends in variables describing flood magnitudes, and the rela-
tionships between them and explanatory variables, can be explored using
either parametric or non-parametric methods; we discuss some of the details
below. The point of departure for parametric methods is a probability
distribution for the flood variable (such as annual maximum instantaneous
discharge in m3 s−1) with a small number of parameters, one or more of
which are related to the explanatory variable(s). The parameters in this
model are then estimated from whatever flood record is available. The
starting point when non-parametric methods are used is commonly the
null hypothesis that no time-trend (or relationship with an explanatory
variable) exists. This hypothesis is then tested using the flood record and if
it is rejected, a specific form is assumed for the relationship and the flood
record is used to estimate its parameters.

21.4. Parametric Methods for Flood Frequency Analysis
that Allow for Long-Term Trend Detection

Setting aside for the moment the possibility of trends, it is well known
(e.g. Coles, 2001) that the analysis of extremes such as flood magnitudes
by parametric methods can be approached in two ways, generally termed
(i) the “block” approach, and (ii) the Peaks-Over-Threshold (POT)
approach. Another alternative is to analyse trends by examining the number
of events by unit time (iii).

21.4.1. “Block” methods

In the block approach, units of time (usually years) are taken, and the
maximum event (such as peak discharge) observed in each time-unit (block)
is abstracted and used to form a derived sequence of annual maxima.
Thus if a record of daily flow in a river is of length N years (assuming
the years complete), the derived sequence will have N values of annual
maximum discharge. Except perhaps in very large drainage basins, it is
often reasonable to assume that the N annual maxima are statistically
independent, being a sample from the Generalised Extreme Value (GEV)
distribution (Coles, 2001) with Cumulative Distribution Function (cdf)
given by:

G(q) = exp{−[1 + ξ(q − µ)/σ]−1/ξ}, (21.1)
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where µ, σ and ξ are parameters which determine the distribution position,
dispersion and shape. Coles (2001) gives a full account of how to estimate
the parameters µ, σ, ξ from the available flood record; see also Tawn and
Coles (Section 2.5, this volume). Where a trend in flood magnitude Q is
thought to be present, the parameter µ in (21.1) may be related to time t
by including another parameter β to give a linear relationship of the form:

µ(t) = α+ βt, (21.2)

or, preferably, a linear relationship with a causative variable x instead of t:
see Coles (2001) who gives an example in which annual maximum sea level
at Fremantle, Australia, is related to the value of the Southern Oscillation
Index (SOI) SOI(t) in year t, µ(t) = α+β SOI(t). Alternative models would
relate the dispersion and shape parameters σ and ξ to these variables (Coles,
2001, Chapter 6). In the case of a model using (21.1), with the parameters
σ, ξ not regarded as time-variant, the four parameters α, β, σ, ξ can be
estimated by maximum likelihood, and likelihood theory provides a large
sample test, if needed, of the null hypothesis of no trend, β = 0.

21.4.2. POT methods

The second POT approach uses a threshold discharge, denoted by u (Coles,
2001, Chapter 4) and all discharges that exceed this threshold are retained
for analysis. Thus within any given year, the number of extreme events
may be zero (if no event exceeds the threshold), one, or any greater
number. Provided that the threshold is set sufficiently large, the excess
over the threshold y=Q−u, conditional on Q > u is the generalised Pareto
distribution with cumulative distribution function,

H(y) = 1 − (1 + ξy/σ̃)−1/ξ, (21.3)

where σ̃ = σ + ξ(u − µ) and the parameters µ, σ, ξ define the distribution
position, dispersion and shape, as in the case of the GEV distribution.
Similar devices to those described for GEV distribution can be used to
introduce time-trends into the parameters, or to explore relationships with
causative variables such as the extent of deforestation, or climatic indices.

21.4.3. Methods for analysing trends in the number of flood

events per unit of time

The number of times per year, per decade, or any other time unit, that
a river overflows its banks or exceeds some other threshold, may also be
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of interest, and in this case the variable to be analysed — the number
of flood events per unit of time — will constitute a sequence of integers,
possible small and including zeros. To analyse such a record for time-trend,
or to explore a relationship with explanatory variables, simple regression
methods — with the usual assumptions that observations of the response
variable are continuous, normally distributed and with constant variance —
are unlikely to be satisfactory and an approach which describes adequately
the non-negative-integer character of the observations is to be preferred.
Generalised Linear Models (GLMs) are appropriate for the purpose, and a
plausible point of departure is that the number of events in the j-th time
interval, say Nj , is a Poisson variable with time-variant mean. A GLM
relating this flood variable to an explanatory variable, say time x, using a
linear model would be defined as follows:

E[N] = µ(x)

g[µ(x)] = α+ βx, (21.4)

where g[·] is a known link function (McCullagh and Nelder, 1989). One
appropriate form for the link function when data are Poisson distributed is
the logarithm, so that the second of the two equations in (21.4) becomes

loge[µ(x)] = α+ βx. (21.5)

Table 21.2 shows the number of closures of the River Thames Flood
Barrier, to prevent tidal surges, over the period 1983–2006. Assuming that
the number of closures follows a Poisson distribution with mean linear
related to year number, fitting the model defined by (21.4) and (21.5) by
maximum likelihood shows that the parameters α and β are estimated by
α̂ = -185.5 ± 41.6 and β̂ = 0.0934 ± 0.0208, and Figure 21.4 shows the
relation between the observed and fitted frequencies of closures.

21.5. Non-Parametric Methods for Long-Term Trend
Detection in Flood Records

A good account of non-parametric statistical methods is given in the book
by Hipel and McLeod (1994), and the Mann–Kendall test in particular
has been widely used for trend analysis in environmental time series. An
advantage often advanced in support of this test is that, in contrast to the
parametric methods described above, there is no requirement to specify
the probability distribution of the data to which it is applied: the basic
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Table 21.2. Number of closures of the Thames Flood Barrier against
tidal surges, 1983–2006 (Source: UK Environment Agency).

Year 1983 1984 1985 1986 1987
N 1 0 0 0 1

Year 1988 1989 1990 1991 1992
N 1 0 3 0 1

Year 1993 1994 1995 1996 1997
N 5 1 3 4 0

Year 1998 1999 2000 2001 2002
N 3 3 6 11 2

Year 2003 2004 2005 2006
N 8 2 5 1

Figure 21.4. Relationship between observed numbers (crosses) of closures of the River
Thames Flood Barrier and estimated numbers (line) by GLMs.

requirement is only that values in the data sequence be statistically indepen-
dent, a not-unreasonable assumption in the case of annual maximum flood
discharges (except possibly in very large basins with year-to-year storage).

However, as pointed out by Cox and Hinkley (1974), there are a
number of general considerations which limit the practical importance of
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non-parametric methods. Where the Mann–Kendall test is used to identify
a trend in time, the null hypothesis of time-trend absent is tested against
the alternative hypothesis of monotonic time-trend, so that no explicit
mathematical form of the nature of any trend is specified. If the null
hypothesis is rejected and it is required to say something about the form
of the trend (whether, for example, it is linear), parameters must be
introduced to describe it. If the parameters must be estimated from the
flood record, they will be subject to uncertainty, and the Mann–Kendall test
does not supply measures of this uncertainty. A similar comment applies
where, say, annual floods are to be related to an explanatory variable such
as the percentage of natural forest remaining in a drainage basin or the
intensity of Sea Surface Temperature (SST) anomalies. The Spearman rank
correlation test (Hipel and McLeod, 1994) can be used to test whether the
ranked series (of annual floods and percentage forest or SST) are correlated,
but the test says nothing about the form of the relationship between the
two variables.

As a test for whether time-trends exist in annual flood series, the Mann–
Kendall test has other limitations. Where annual flood series are available
from several gauging stations with correlated records, it is natural to ask
whether any time-trend is similar at the several sites, so that a regional
estimate of the time-trend could be calculated. Although multivariate
versions of the Mann–Kendall test exist (Hirsch et al., 1982; Hirsch and
Slack, 1984; Lettenmaier, 1988) it is not obvious how they could be adapted
to provide estimates of a regional trend in flood magnitude, and of its
uncertainty. The same comment holds for the case where several correlated
flood records are to be related to explanatory variables X .

We conclude this section with a quotation from Cox and Hinkley (1974)
in their discussion of non-parametric methods: “. . . the main objective in
analysing data, especially fairly complicated data, is to achieve a description
and understanding of the system under investigation in concise and simple
terms. This nearly always involves a model having a small number of
unknown parameters as possible, each parameter describing some important
aspect of the system.”

21.6. Normal Scores Regression

Like the Mann–Kendall test for trend, normal scores linear regression is
a statistical test of the hypothesis that no trend exists, without providing
estimates of parameters that describe the form of any trend, where one is
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shown to exist, nor of their standard errors. Like the Mann–Kendall test, it
requires no assumption about the nature of the probability distribution of
values in the annual flood sequence. The procedure is to put the values in
the flood series in ascending order of magnitude, and then to replace each
value (say the i-th) in this derived sequence by the expected value of the
i-th value in a sample from a normal distribution. A linear regression is
calculated and the significance of its slope is tested in the usual way.

The normal scores test, and the Spearman rank correlation test, were
among the tests used to test for trend in over 1000 flood records analysed
and presented in the UK Flood Estimation Handbook (Robson and Reed,
1999).

21.7. Conclusion

The analysis of limited flood records for the detection and explanation of
trend, whether in flood magnitudes or in numbers of flood occurrences per
unit of time, requires particular attention to the causes of the trend and to
the spatial correlation that may exist in regional flood records.
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22.1. Introduction

There is a widely held perception that flood risk has increased across Europe
during the last decade (EEA, 2005). Following extensive flash flooding in
England, the Pitt Review (2008) concluded that “[t]he summer 2007 floods
cannot be attributed directly to climate change, but they do provide a
clear indication of the scale and nature of the severe weather events we
may experience as a result.” The review further asserted that, “timely
decisions will allow organisations the flexibility to choose the most cost-
effective measures, rather than being forced to act urgently and reactively.
Early action will also avoid lock-in to long-lived assets such as buildings
and infrastructure which are not resilient to the changing climate.” This
echoes the position held by the Stern Review (2006) that early action on
adaptation will bring clear economic benefits by reducing the potential
costs of climate change to people, property, ecosystems and infrastructure.
The UK Government’s Climate Change Act places a statutory requirement
upon competent authorities to undertake risk assessments as part of their
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duties covering adaptation to climate change. The Environment Agency
(2007) also called on key utilities and public services to take responsibility
for “climate proofing” critical infrastructure, facilities and services.

Following the flooding of the summer 2007, the UK Government’s Envi-
ronment Secretary at the time, Hilary Benn, announced that budgets for
flood risk management would reach at least £650 million in 2008, increasing
to £700 million in 2009 and eventually attaining £800 million by 2010.
Inevitably, higher spending on flood defence infrastructure will prompt
questions about when and where to prioritise investment. This chapter
addresses three complementary issues. First, we define the terminology and
then summarise the latest scientific evidence on detection of changes in
climate and their attribution to human influence. Although we are primarily
concerned with climate change detection we explain the current limits to
attribution. Second, we provide an assessment of trends in rainfall and
flood metrics across the UK and then review the factors that determine
the potential detectability of changing climate extremes at regional scales.
Third, we describe a methodology and provide a case study of detection
times for projected changes in seasonal precipitation extremes in north-
west (NWE) and south-east (SEE) England. Results for other regions of
the UK are reported in Fowler and Wilby (2010).

22.2. Detection and Attribution Studies

Detection is the process of demonstrating that climate has changed in
some defined statistical sense, without providing the reason(s) for the
change (Hegerl et al., 2007). A change is detected in observations when the
likelihood of an observation (such as an extreme temperature) lies outside
the bounds of what might be expected to occur by chance. Changes may
not be found if the underlying trend is weak compared with the “noise”
of natural climate variability (e.g. McCabe and Wolock, 1991; Wolock and
Hornberger, 1991). Conversely, there is always a small chance of spurious
detection (perhaps due to an outlier event at one end of the observational
record). The change might not necessarily occur linearly, indeed, there is
evidence of abrupt, step changes in global climate such as the widespread
changes in precipitation that occurred in the 1960s (Baines and Folland,
2007; Narisma et al., 2007). We should also keep in mind that climate
records from neighbouring sites are often strongly correlated, a feature
that is exploited by studies that pool data to maximise the strength of the
signal (e.g. Fowler and Kilsby, 2003a; Pujol et al., 2007). However, trends
are highly susceptible to false tendency and/or causation (see Legates



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch22

580 R.L. Wilby, H.J. Fowler and B. Donovan

et al., 2005; Sparks and Tryjanowski, 2005). This can arise because data
are not homogeneous, being affected by a host of non-climatic influences
such as encroachment of urban areas, changes in observer, instrumentation,
monitoring network density, station location or exposure (see Davey and
Pielke, 2005; Kalnay and Cai, 2003).

Attribution is the process of establishing the most likely cause(s) of
detected changes at a defined level of statistical confidence (Hegerl et al.,
2007). The problem for climate change studies is that there is no physical
control, unlike epidemiological studies of causation. So attribution ulti-
mately comes from comparing earth system observations against an earth
systems model. Thus, attribution of observed climate change to human
influence is accepted when there is consistency between a modelled response
to combined human plus natural forcing and the observed pattern of climate
behaviour. Climate models are used to isolate the unique “fingerprints” of
different external forcings such as greenhouse gas concentrations, variations
in solar radiation, or sulphate aerosols originating from volcanic eruptions.
In one of the classic studies of this kind, Stott et al. (2001) showed that
rising global mean temperatures in the second half of the twentieth century
could only be explained by combining the human influence on atmospheric
composition with natural forcings by solar output and volcanism.

Both detection and attribution require accurate characterisation of
internal climate variability, ideally over several decades or longer. Internal
climate variability is normally defined by long control simulations of coupled
ocean–atmosphere global climate models without external forcing because
instrumental records are too short. Alternatively, climatologies of the last
millennium may be reconstructed from proxy evidence such as tree rings or
lake sediments. Whenever an observation lies outside the range of internal
variability, climate change may be detected; whenever a pattern of climate
anomalies is only explained by inclusion of human influences in model simu-
lations, attribution is established. However, uncertainties in the representa-
tion of physical processes in climate models, in reconstructing climate from
proxy data, and in the effects of the forcing agents mean that attribution
results are most robust when based on several models (Zhang et al., 2006).

Evidence of human influences on the climate system has been accu-
mulating steadily since the first detection studies published in 2007
(Table 22.1). Early studies focused on large-scale, long-term changes in
variables such as seasonal or annual global mean temperatures (e.g. Stott
and Tett, 1998; Tett et al., 1999). However, since the IPCC Third Assess-
ment Report (IPCC, 2001) there has been a proliferation of studies covering
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Table 22.1. Examples of climate change detection and attribution studies.

Realm Spatial/Temporal domain Sources

Temperature Mean temperature trends for North America Karoly et al. (2003)
Mean temperature trends in Australia Karoly and Braganza

(2005)
Annual mean central England temperatures Karoly and Stott

(2006)

Four indices of temperature extremes
over US

Meehl et al. (2007)

Decadal mean temperatures over six
continents

Stott (2003)

European summer temperature anomaly
of 2003

Stott et al. (2004)

Global mean temperature changes Stott et al. (2001)

Precipitation Volcanic influence on global mean Gillett et al. (2004b)
Precipitation over land areas Lambert et al. (2004)
Twentieth century annual precipitation

trends
Zhang et al. (2007)

Decreasing totals over SW Australia Timbal et al. (2005)
Trends in winter rainfall over SW Australia Cai and Cowan (2006)

Troposphere Sea level pressure Gillett et al. (2003)
Tropopause height changes Santer et al. (2003)
Atmospheric moisture content Santer et al. (2007)
Near surface humidity Willett et al. (2007)

Oceans Heat content of oceans Barnett et al. (2005)
Arctic sea ice extent Gregory et al. (2002)
Wave conditions in the North Sea Pfizenmayer and

von Storch (2001)

Hydrosphere Trend in global drought Burke et al. (2006)
Global hydrological cycle since 1550 Tett et al. (2007)
Trend in arctic river discharges Wu et al. (2005)

Biosphere Length of the growing season Christidis et al. (2007)
Warming over different vegetation types Dang et al. (2007)
Canadian forest fires Gillett et al. (2004)

a much wider range of variables, and some are now even attributing climate
changes at sub-continental scales (see Barnett et al., 2005). For example,
Karoly and Stott (2006) assert that the observed warming in annual mean
central England temperatures since 1950 is very unlikely due to natural fac-
tors but is consistent with the expected response to anthropogenic forcing.

With the possible exception of rainfall reductions over south-west
Australia (Timbal et al., 2005), attribution of rainfall trends to human
influence is not yet possible below the scale of the global land area, broken
into latitudinal zones (Zhang et al., 2007). However, changes in moderately
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extreme precipitation events are, in theory, more robustly detectable
than changes in mean precipitation (Hegerl et al., 2004; 2006) because
as precipitation increases (under higher temperatures and greater water
holding capacity of the atmosphere) a greater proportion falls in heavy
and very heavy rainfall events (Katz, 1999; Pall et al., 2007; Trenberth
et al., 2003). Disproportionate increases in heavy rainfall have been widely
reported for the observed climate record (Groisman et al., 2005) but rates
of change and/or regional patterns of observed and simulated rainfall
extremes show little similarity in early studies (e.g. Kiktev et al., 2003).
This is partly due to the inability of climate models to adequately resolve
extreme precipitation at sub-grid box scales, the scale mismatch between
point observations and gridded climate model output, and the difficulty of
defining statistically robust “extreme” indices (Hegerl et al., 2006).

Attributing individual extreme weather events to human activities
presents additional challenges. It is often said that this kind of event is con-
sistent with expected climate changes or might become more commonplace
in the future. Formal attribution can only be accomplished in a probabilistic
sense. In much the same way that smoking increases the risk of lung cancer
by X%, the risk of an extreme meteorological event is said to be Y% more
likely as a consequence of past greenhouse gas emissions than without.
For example, the exceptional European heat wave in the summer of 2003
resulted in an area-average temperature anomaly of 2.3◦C compared with
the 1961–1990 average. By simulating probability distributions of summer
temperatures with and without anthropogenic emissions it was shown that
the risk of a 2003 heat wave has increased by a factor of at least two
due to human influence (Stott et al., 2004). Attributing changes in flood
risk to carbon dioxide emissions is highly problematic because of the very
large uncertainty in modelled precipitation changes at the river catchment
scale (Prudhomme et al., 2003). For example, using results from the EU
PRUDENCE project, Fowler and Ekström (2009) showed the extent to
which the present generation of Regional Climate Models (RCMs) is unable
to reproduce properties of observed extreme summer rainfalls.

22.3. Changes in UK Flood Risk Indices

Long-term changes in UK fluvial flood risk have been reviewed else-
where (see Wilby et al., 2008). Several studies report increasing winter
precipitation, larger multi-day rainfall totals, and higher contributions from
intense daily events since the 1960s (Table 22.2). Others suggest strong
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Table 22.2. Observed changes in UK precipitation and runoff (from Wilby et al., 2008).

Region Period (metrics) Key findings Sources

9 homogeneous
rainfall
regions

1766–2000
(monthly rain)

Significantly wetter winters
in west Scotland; 1990s
unusually wet

Alexander
and Jones
(2001)

102 stations
across
Scotland

1914–2004,
1961–2004
(daily, seasonal
rain and snow
cover)

Increased winter rainfall
since 1960s across all
regions but up to 70% in
north; increase in spring
rainfall in west since
1910s; large reductions in
autumn/spring snow
cover; increase in heavy
winter rain in north and
west

Barnett et al.
(2006)

28 rainfall

stations and
15 gauging
stations

1881–onwards Increase in annual rainfall

maxima in since 1960s; no
long-term trend in rainfall
maxima, flood peaks,
overall flood volume or
duration

CEH &

UKMO
(2001)

56 gauging
stations across
western UK

1962–2001
(seasonal,
annual flow)

Significant increases in
mountainous west during
autumn and winter

Dixon et al.
(2006)

204 stations
across UK

1961–2000 (daily
rain)

Significant increase in
annual maxima, 5- and
10-day rainfall events over
Scotland and northern
England, especially in the
1990s

Fowler and
Kilsby
(2003a;b)

97 undisturbed
catchments
across UK

1963–2002,
1973–2002
(annual flow)

Increasing runoff trend for
Scotland, and maritime
western areas of England
and Wales

Hannaford
and Marsh
(2006;
2007)

56 stations in
the English
Lake District

1971–2000 (daily,
monthly rain)

Increased heavy
precipitation at high
elevation sites; weakening
of the Cumbrian rain
shadow

Malby et al.
(2007)

689 stations
across UK

1961–2006 (daily
rain)

Heavy precipitation events
are making a greater
contribution to winter
totals and less in summer

Osborn et al.
(2000);
Maraun
et al.
(2008)

(Continued)
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Table 22.2. (Continued)

Region Period (metrics) Key findings Sources

890 gauging
stations

1870–onwards
(seasonal rain,
peak flows)

Increase in winter rainfall
since 1960s; flood rich and
flood poor periods but no
overall trend

Robson
(2002),
Robson
et al.
(1998)

47 gauging
stations across
UK

1970–2002
(seasonal flow)

Significant increases during
autumn and winter at
<25% sites; no clear
regional pattern

Wade et al.
(2005)

13 meteoro-
logical and 38
gauging
stations across
Scotland

1970–1996
(seasonal rain,
flow)

Significant increase in runoff
for one third of sites

Werritty
(2002)

15 rivers in
England and
Wales

1865–2002
(reconstructed
seasonal flow)

Significant long-term
increase in winter flow in
only three rivers;
increasing annual flows
since 1970s

Wilby (2006)

Stations with
snowfall
>13 cm in
Britain

1861–1996
(catalogue of
heavy
snowfalls)

Decadal variability in the
frequency of heavy
snowfall peaking in the
1860s, 1870s and the
1970s; no overall trend

Wild et al.
(2000)

regional gradients with larger winter increases in the north and west of the
UK, and at higher elevation sites. These patterns translate into increased
winter mean runoff, especially in the upland areas of western England and
Wales. The most widely accepted explanation is that the changes were
forced by a strongly positive phase of the North Atlantic Oscillation (NAO)
since the 1960s. This displaced storm tracks northwards and strengthened
westerly moisture advection from the Atlantic over north-west Europe
(Haylock and Goodess, 2004). Whether or not recent variability in the
NAO is itself a manifestation of anthropogenic forcing remains an open
question (Hegerl et al., 2007). However, when longer UK rainfall-runoff
records are analysed, many of the trends found in shorter series cease to
be significant (CEH and UKMO, 2001; Robson, 2002; Robson et al., 1998;
Wilby et al., 2008). As mentioned above, trend detection for extreme events
is far from straightforward because the outcome can depend on the chosen
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metric, period of record, power of the statistical test, and confounding
factors:

• Flood risk metrics. A variety of indices have been used to detect changes
in flood risk. For example, the sample studies in Table 22.2 employ series
of monthly, seasonal and annual rainfall/river flow, annual maxima of
daily rainfall intensities/river flows or N -day rainfall totals/maximum
flows, proportional contribution of heavy events to total rainfall, and
annual counts of peaks over threshold flows. Analyses may be performed
using point or area average data, individual records, data from networks
of stations, via pooling of (rainfall) maxima by region or elevation, and
using gridded extreme indices (e.g. Alexander et al., 2006). In some
cases, more exotic indicators may be applied such as frequencies of
flood generating atmospheric circulation patterns (e.g. Bárdossy and
Filiz, 2005), changes in the timing of extreme events (e.g. Fowler and
Kilsby, 2003b); or standardised precipitation indices (e.g. Seiler et al.,
2002). In any event, the chosen metric should be meaningful in terms of
flood generation mechanisms and interpretable from a policy perspective
(e.g. sub-daily data are needed for flash flooding). Fortuitously, model
experiments show that changes in indices of extreme precipitation are
stronger than corresponding changes in mean precipitation (Hegerl et al.,
2004). Widely employed indicators of extreme events (e.g. number of days
with precipitation greater than 10mm, or the fraction of total rainfall due
to events exceeding the 95th percentile amount) are acknowledged to be
“not as extreme” as they could be (Frich et al., 2002; Tebaldi et al.,
2006). Here, the trade-off is between having extremes that are severe
enough to have repercussions for society, yet are not so rare that there
are insufficient events to enable detection of change.

• Period of record. When longer rainfall and river flow records are analysed,
many trends found in shorter series cease to be significant. This can be
due to the influence of outliers (at the start or the end of the record),
or simply the large multi-decadal variability of the UK rainfall regime.
It is widely recognised that extreme statistics derived from conventional
30 year climatological periods are subject to large uncertainty (Kendon
et al., 2008; Lane, 2008). Following a detailed review of the 2000/01 UK
flooding, it was recommended that records of at least 50 years duration
should be used for investigating possible climate change signals in rainfall
and river flows (CEH and UKMO, 2001; Kundzewicz and Robson,
2004). Unfortunately, continuous river flow records of this length, with
accompanying meta-data, are rare. Out of more than 1000 flow records
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held by the Global Runoff Data Centre, less than 200 worldwide have
continuous daily flow series longer than 40 years that extend into the
late 1990s (Kundzewicz et al., 2005).

• Statistical tests. As noted, climate variability affects the detectability
of a trend within a finite series of observations. The possibility of
erroneous trend detection (Type I errors) are controlled by choosing an
appropriate statistical test, and level of confidence. Widely used methods
for extremes include (logistic) linear regression, “change point” tests, and
the non-parametric Spearman rank correlation and Mann–Kendall tests
(Lanzante, 1996). Alternatively, an actual trend might be overlooked
because it is overshadowed by short-term climate fluctuations (Type II
error). In this case, the detectability depends on the power of the test as
a function of record length, magnitude of the trend and rarity of event(s).
Even when presented with the same data, different (flood) indices may
reveal different numbers of significant trends (e.g. Svensson et al., 2005).
Detectability of trends in very rare events is particularly difficult for
small sample sizes but can be improved through regional pooling of data
(Frei and Schär, 2001). For most practical situations, this points to the
necessity of analysing “less extreme” extremes.

• Confounding factors. Unerring faith in detected trends without a sup-
porting conceptual framework can lead to invalid statistical inference
(Sparks and Tryjanowski, 2005). Creeping or sudden changes in mete-
orological records can arise for a range of reasons such as changing
instrumentation or instrument location, observing or recording practices,
site characteristics, or sampling regime (Zwiers and von Storch, 2004).
Some claim that the entire observational record has been contaminated
to some extent by human influences on climate and hydrology (Tett et al.,
2007). Discharge records may respond to a host of non-climatic influences
including land cover and management, urbanisation, river regulation,
water abstraction and effluent returns, or flood flows may bypass gauging
structures (Archer, 2007; Legates et al., 2005). Occasionally false trends
and biases arise from the statistical method used to divide data, such
as percentile-based indices for temperature and precipitation extremes
(Michaels et al., 2004; Zhang et al., 2005).

In summary, the choice of index, spatial and temporal scale of
aggregation, statistical test (including significance testing), and the account
taken of confounding factors, all require careful justification in a detection
study. The next section briefly describes earlier work on climate change
detection at river catchment scales. Then we outline a method for detecting
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changes in heavy precipitation using RCM output. This involves calculating
when and where changes in downscaled rainfall metrics are not likely to have
been entirely the result of (model-estimated) natural internal variability.

22.4. Detection Time for Changes in Heavy Precipitation

Detection times for climate change trends in hydroclimatic data depend on
the strength of the assumed trend, the sample variance of the time series in
question, and the probabilities of making errors of Type I or II. Preliminary
estimates using data for river catchments in the US and UK suggest that
statistically robust trends in seasonal runoff are unlikely to be found until
the second half of the 21st century (Wilby, 2006; Ziegler et al., 2005).

The same statistical relationship can be inverted to estimate the
strength of trend required for detection by specified time horizons. For
example, Figure 22.1 shows that, on average, a 60% change in winter rainfall
is needed for detection by 2025 given long-term (L) inter-annual variability
over the UK catchments used by Wilby (2006), whereas the change needed
for detection by 2055 is 44%. The smallest changes needed for detection
in winter rainfall over the same periods are in the River Tyne catchment
(54% and 39% respectively). Even smaller changes are needed for detection
in annual rainfall totals by 2025 and 2055 (25% and 18% respectively).

Analysis of UK winter and annual rainfall totals suggests that changes
of ∼25% will be needed for early detection (by year 2025) in the best
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Figure 22.1. Detectable trends (% change) in seasonal mean rainfall by 2025 and 2055
for sample variances derived from short (S, 1961–1990), medium (M, 1921–1990) and
long (L, 1865–1990) records. Each point represents a different river catchment; the bars
show the mean detection trend by time horizon and variance estimate.
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case catchment (River Tyne). Although increases (or decreases) in seasonal
totals could affect overall flood risk, it is suspected that more useful flood-
risk information can be extracted from daily precipitation indices. Further-
more, as noted before, projected trends in indices of heavy precipitation may
be detectable earlier than trends in seasonal means (Hegerl et al., 2004).
However, more complex flood events involving rainfall and snowmelt, or
fluvial flooding and tidal surge (as in Svensson et al., 2002) are clearly not
captured by “rain only” indices.

22.5. Case Study: North-West and South-East England

Here, we provide a case study for detecting changes to extreme rainfall
metrics based on a combination of Regional Frequency Analysis (RFA)
and pattern scaling. The estimation of the frequencies of extreme events
is difficult as extreme events are, by definition, rare and observational
records are often short. In RFA, data from the “region” are assumed to
share the same frequency distribution and only differ in their magnitude
(mean or median values). Therefore, RFA trades “space for time” and pools
standardised data from several different sites within a “region” to fit a single
frequency distribution (Hosking and Wallis, 1997).

22.5.1. Data

We employed RCM output from the PRUDENCE (Prediction of Regional
scenarios and Uncertainties for Defining European Climate change risks and
Effects) ensemble, which contains daily data for a range of climatic variables
for control (1961–1990) and future (2071–2100) time slices (Christensen
et al., 2007). We used 13 RCM integrations from the PRUDENCE ensemble.
All experiments yield daily precipitation totals for control (1961–1990) and
future (2071–2100) time periods (Christensen et al., 2007) under the IPCC
SRES A2 emissions scenario (Nakićenović et al., 2000) (Table 22.3). Nine of
the RCM experiments were performed by nesting within the atmosphere-
only high-resolution Global Climate Model (GCM) HadAM3H of the UK
Hadley Centre. One RCM, HadRM3P, was nested within HadAM3P, a
more recent version of the same atmosphere-only GCM; but HadRM3H
and HadRM3P can be considered as essentially the same model for Europe
(Moberg and Jones, 2004). The variable resolution global atmospheric
model, Arpége, is nested directly within HadCM3. Additionally, two
RCM integrations, HIRHAM and RCAO, are driven by lateral boundary
conditions from two separate integrations of the ECHAM4/OPYC3 coupled
ocean–atmosphere GCM.
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Table 22.3. The thirteen RCM integrations used in this study. The first part of each
acronym refers to the RCM, and the last letter to the GCM supplying the boundary
conditions. All RCM integrations are from PRUDENCE.

Institution/Model Origin
Acronym and References RCM GCM

ARPH French Meteorological Service; ARPEGE/IFS
variable resolution global model. Model:

Déqué et al. (1998).

Arpège HadCM3

HADH Hadley Centre, UK Met Office, Exeter;
Regional model at the Hadley Centre.
Model: Jones et al. (2004a)

HadRM3P HadAM3P

HIRH Danish Meteorological Institute, Copenhagen;
Dynamical core from HIRLAM,
Parameterisations from

HIRHAM HadAM3H

HIRE ECHAM4. Model: Christensen et al. (1996,
1998). Physiographic datasets: Hagemann
et al. (2001), Christensen et al. (2001).

ECHAM4

RCAOH Swedish Meteorological and Hydrological
Institute, Stockholm; Rossby Centre
Atmosphere Ocean Model.

RCAO HadAM3H

RCAOE Model: Jones et al. (2004b), Meier et al.
(2003), Döscher et al. (2002), Räisänen et al.
(2004).

ECHAM4/
OPYC

CHRMH Swiss Federal Institute of Technology (ETH),
Zurich; Climate High-Resolution Model.
Model: Lüthi et al. (1996), Vidale et al.
(2003).

CHRM HadAM3H

CLMH GKSS, Institute for Coastal Research,
Geesthatcht, Germany; Climate version of
“Lokalmodell” of German Weather Service.
Model: Steppeler et al. (2003).

CLM HadAM3H

REMOH Max Planck Institute for Meteorology,
Hamburg, Germany; Dynamical core from
“EuropaModell” of German Weather
Service, Parameterisations from ECHAM4.
Model: Jacob (2001), Roeckner et al. (1996).

REMO HadAM3H

PROMH Universidad Complutense de Madrid, Spain;
Climate version of PROMES model. Model:
Castro et al. (1993), Arribas et al. (2003).

PROMES HadAM3H

REGH The Abdus Salam International Centre for
Theoretical Physics, Italy (ICTP);
Dynamical core from MM5,
Parameterisations from CCM3. Model:
Giorgi et al. (1993a,b, 2000), Pal et al.
(2000).

RegCM HadAM3H

(Continued)
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Table 22.3. (Continued)

Institution/Model Origin
Acronym and References RCM GCM

RACH The Royal Netherlands Meteorological
Institute (KNMI), Netherlands; Dynamical
core from HIRLAM, Parameterisations from
ECMWF physics. Model: Tiedtke (1989,
1993), Lenderink et al. (2003).

RACMO2 HadAM3H

METH Norwegian Meteorological Institute; Version of
HIRHAM. Model: Christensen et al. (2001),
Hanssen-Bauer et al. (2003).

MetNo HadAM3H

All the RCMs operate with grid spacing of ∼0.5◦ longitude by ∼0.5◦

latitude (∼50 km spatial resolution) over a European domain and data were
re-gridded to a regular 0.5◦ × 0.5◦ grid to allow direct comparison between
models. Suffixes E and H denote RCMs driven by ECHAM4/OPYC3
and HadAM3H/P/HadCM3 GCMs respectively. More details of the exper-
imental design of the PRUDENCE integrations can be found in Jacob et al.
(2007).

A dataset of comparable spatial scale to the RCM outputs was produced
by aggregating a daily observed precipitation 5 km by 5 km grid produced
by the UK Meteorological Office (Perry and Hollis, 2005a,b) to the regular
0.5◦×0.5◦ grid. This was achieved by taking a daily average across the 5 km
boxes contained within each 0.5◦×0.5◦ grid cell for each day of 1961–1990.

22.5.2. Detection indices

Seasonal Maximum (SM) series of 1, 5 and 10 day precipitation totals
were extracted for each grid cell, for each RCM time-slice (the control
period, 1961–1990, and future period, 2071–2100), and for observations.
These SM series were standardised by their median (Rmed; following Fowler
et al., 2005) and the standardised SM were then pooled for each of the
nine UK rainfall regions delineated by Wigley et al. (1984) (Figure 22.2).
The homogeneity of these regions for extreme precipitation was confirmed
previously by Fowler and Kilsby (2003a).

Next, a Generalised Extreme Value (GEV) distribution was fitted to
each pooled SM sample using Maximum Likelihood Estimation (MLE)
and return values of precipitation intensities with average recurrence of
10 and 50 years were estimated. The estimates were then rescaled using
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Figure 22.2. The RCM regular 0.5◦ by 0.5◦ grid and the nine coherent rainfall regions.
The regions are: North Scotland (NS), East Scotland (ES), South Scotland (SS),
Northern Ireland (NI), Northwest England (NWE), Northeast England (NEE), Central
and Eastern England (CEE), Southeast England (SEE) and Southwest England (SWE)
(from Fowler et al., 2007).

the regional average Rmed from the original SM dataset. We also calculate
the associated error by the 95% confidence intervals on the return value
estimates via the delta method using three different estimates of variance to
test the sensitivity: (i) RCM pooled sample variance; (ii) observed variance,
1961–1990; (iii) observed variance, 1958–2002 (full length of record). Note
that the use of the full record of observed variance gives a more conservative
estimate of confidence intervals compared to the RCM pooled sample
variance.

A further step is needed to estimate transient changes in the return
values of precipitation intensities for each RCM between the two time-
slices, 1961–1990 and 2071–2100. We applied a conventional pattern scaling
approach (Mitchell, 2003). The technique assumes that regional changes in
extreme precipitation (or any climate variable) will occur in proportion to
the projected change in global mean temperature, in this case, from the two
GCMs providing lateral boundary conditions for the 13 PRUDENCE RCMs
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(i.e. HadCM3 and ECHAM4). Pattern scaling was based on the change in
global mean temperature predicted for 30-year time slices centred on the
years 1975, 2025, 2055 and 2085. Therefore, designating the global mean
temperature as Ty where y is the central year (1975, 2025, 2055 and 2085
respectively), the scale factor for each GCM time slice may be written as:

SFy =
Ty − TCon

TFut − TCon
, (22.1)

where TCon and TFut indicate the global mean temperature for the control
(1961–1990) and future (2071–2100) time slices respectively. For intervening
years the scale factors were linearly interpolated to provide transient scale
factors. Therefore, for 1990 to 2100, SF varies from zero to one. The
transient scale factors show that global mean temperature change will
accelerate over the next 100 years. An alternative to pattern scaling on
global mean temperature change would be to simply apply linear scaling
between 1990 and 2100; this would imply earlier detection times. We use
the more conservative non-linear pattern-scaling to estimate return values
of precipitation intensities and the associated confidence intervals for each
year between 1990 and 2100.

22.5.3. Detection times

We define a detectible increase in extreme precipitation, Dx, as the point
(year) at which we would reject (at the α = 0.05 or 95% significance
level) the null hypothesis that the return level estimated for the 1961–1990
period, µc, and the return level estimated for a year x (where x > 1990),
µx, are equal in favour of the alternative hypothesis that µx is greater
(lower) than µc. This statistical test is based on the signal-to-noise ratio
and provides a distribution that is approximately normally distributed with
a mean of zero and a standard deviation of 1; N(0,1) (see Equation 22.2).
We then use a two-tailed Student’s t-test (assuming that the trend can go
down as well as up) to estimate the point at which the return levels are
shown to be from a significantly different population at the α = 0.05 level,
i.e. where Dx ≥ 1.96:

Dx =
|µx − µc|√
σ2

f + σ2
c

≥ 1.96 (22.2)

where µx is the pattern-scaled return level for year x, µc is the estimated
return level for the control period (1961–1990), σ2

f is the variance in the
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return level estimate for the RCM generated future period (2071–2100) and
σ2

c is the variance in the return level estimate for RCM generated control
period (1961–1990). Note that the observed variance, 2σ2

o , for 1961–1990
and 1958–2002 respectively, was substituted for the summed variance from
the RCM control and future integrations, σ2

f + σ2
c , in Equation (22.2) to

establish the sensitivity of the test to assumed variance (where the delta
confidence intervals on the return level estimates were also calculated using
the same assumed variance estimate, either RCM generated or observed for
1961–1990 and 1958–2002 respectively, as previously stated).

This test defines the “detection year”, Dx, as the first year at which
Dx ≥ 1.96 (the transient return level estimate for year x is significantly
different to the return level estimate for the control period (1961–1990) at
the α = 0.05 level).

We apply the principle of equal weighting across different RCMs to
produce probability distributions of estimated Dx for change to the return
levels of seasonal extreme precipitation in the nine UK rainfall regions.
This is reasonable because weighting RCMs in the PRUDENCE ensemble
by their skill at reproducing observed extremes did not make any practical
difference since most are driven by lateral boundary conditions from
the same GCM, HadAM3H/CM3 (Fowler and Ekström, 2009; Manning
et al., 2009). However, we examine the sensitivity of Dx to the assumed
variance in extremes and to the α level used in the detection test. The
analysis is truncated at 2100 as we cannot assume that the pattern scaling
relationship holds true after this time. Furthermore, although the analysis
includes summer precipitation extremes, it should be noted that the present
generation of RCMs do not adequately reproduce observed extremes during
this season (Fowler and Ekström, 2009). Throughout the study we define
the point beyond which the probability of detection is more likely than
not as when more than 50% of the RCMs suggest a significant change in
extreme precipitation.

22.5.4. Results

Cumulative Frequency Distributions (cdfs) of detection time by region and
season are presented for 1 and 10 day precipitation totals at the 10-year
return level. Figure 22.3 shows the detection times for significant change
(at the α = 0.05 level) to winter extreme precipitation. In these plots,
the vertical black dotted line indicates the year 2050 and the horizontal
red dashed line indicates the point at which the probability of detection
is 0.5 (i.e. the chance of detection is 50%). Beyond this point, change to
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Figure 22.3. Detection year for significant change (α = 0.05) in the return levels of
maximum 1-day (upper panels) and 10-day (lower panels) winter precipitation totals
with 10-year return period in NWE (left-hand column) and SEE (right-hand column).
Data used to estimate natural variability were: observed 1958–2002 (red lines); RCM
1961–1990 (green lines); observed 1961–1990 (black lines).



December 9, 2013 10:32 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch22

Detecting Changes in Winter Precipitation Extremes and Fluvial Flood Risk 595

these metrics is more likely than not to be detectible. Three individual
cumulative frequency distributions are shown on each plot: the green cdf
shows the detection time, Dx, using RCM internal variability (i.e. using
Equation 22.2); the red cdf shows the same but for observed variability for
1961–1990 (i.e. substituting this into Equation 22.2); the black cdf shows
the same but for the full record of observed variability from 1958–2002 (i.e.
substituting this into Equation 22.2).

The detection time, Dx, is sensitive to (i) the assumed variance used to
calculate confidence intervals on the return level estimates (95% confidence
intervals are calculated in all cases) and in the detection test, and (ii) the
α significance level used in testing “detectability” (note that the standard
used is the α = 0.05 level). We find that there are no consistent patterns
(across regions) of earlier or later detection time for the different assumed
variance estimates. For the two case study regions, use of the observed
variability for 1961–1990 yielded longer detection times. Across all regions,
for the winter 1 day 10-year return level, the mean detection time is 2045
for RCM-estimated variability, 2055 for observed variability 1961–1990, but
2042 for the longer observed variability 1958–2002. Note that even with
regional pooling of data, confidence intervals for the return period estimate
are wide due to the relatively large uncertainty (variability) in the estimate.
In the case study regions, use of the observed variability available from the
5 km gridded dataset (for 1958–2002) provides the shortest detection times
for 1-day totals. However, for the 10-day totals the RCM-estimated natural
internal variability enables earlier detection. In these cases, low variance of
seasonal maxima within the RCM integration (and/or outliers in the longer
observed record) decreases (increases) the width of confidence intervals and
thus produces shorter (longer) detection times.

Records prior to the early 19th century are thought to be less represen-
tative of the present climate regime (see for example, Marsh et al., 2007)
and so were not used to characterise the variance statistic. Even so, it is
recognised that long-term rainfall and reconstructed runoff records can help
to quantify multi-decadal variability without anthropogenic climate change
(see Jones et al., 2006). For example, a 200-year monthly precipitation series
for the English Lake District varied by −17% to +11% of long-term average
between the driest (1850s) and wettest (1920s) decades (Barker et al., 2004).

For the two exemplar regions, future changes in some winter precipita-
tion indices could be detectable relative to 1958–2002 conditions as early
as the 2020s and 2030s (Table 22.4). The earliest detection year (2027) was
found for 10-day winter precipitation totals in SEE, although even earlier
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Table 22.4. Detection years for significant changes in 1- and 10-day
seasonal precipitation totals with 10-year return period, using variance
estimates based on observations for the period 1958–2002. Note that
summer was excluded because of the low confidence in RCM projections
of regional rainfall. See Fowler and Wilby (2010) for other regions.

1-day 10-day

Season NWE SEE NWE SEE

Dec–Feb 2030 2046 2047 2027
Mar–May 2047 2083 2052 2052
Sep–Oct 2039 2071 2060 2058

detection may be possible in south-west England (not shown). Detection
years were earlier for 1- than 10-day precipitation totals in NWE; but the
opposite applies in SEE. However, detection is earliest for 10-year return
period winter precipitation indices, and earlier than for spring or autumn.
At 50-year return periods it is unlikely that changes will be detectible
by 2050, and for some regions changes are not even detectible by the
end of the 21st century (not shown). Across all regions and seasons, the
earliest detection times were generally found in winter, for longer duration
(10-day) precipitation events, with shorter (10-year) return periods, based
on estimates of variability taken from RCM output. The earliest mean
detection times for variance estimates based on observations (1958–2002)
were also found for winter 10-year return period events but were broadly
similar for 1- and 10-day totals.

22.6. Concluding Remarks

Following extensive flooding in England during summer 2007, budgets
for flood risk management were significantly increased. This raises the
questions as to when and where to prioritise future investment in flood
management measures. This chapter has summarised scientific evidence for
the detection and attribution of extreme events to climate change. Although
attribution is not yet possible at regional scales, techniques are emerging
for detection of trends in flood indices at river catchment scales, and for
estimating the time-horizons for formal detection. We set the scene by
reviewing evidence of changing flood risk in the observational records of the
UK and by identifying some of the main factors that confound detection.
We then demonstrated a method for estimating detection times for changes
in seasonal precipitation extremes projected by the EU PRUDENCE RCM
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ensemble. We showed that for selected regions and extreme precipitation
indices, the climate change signal(s) in the PRUDENCE projections could
be detectable as early as the 2020s. The next step is to broaden the analysis
to a national scale, and to investigate a larger suite of extreme indicators.
By identifying potential “hotspots” of emerging flood risk, a more targeted
approach to monitoring and investment might then be feasible.
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CHAPTER 23

Flood Risk in Eastern Australia —

Climate Variability and Change

Stewart W. Franks
School of Engineering, University of Tasmania,

Australia

23.1. Introduction

The use of empirical flood frequency analysis is widespread throughout
hydrological practice — however, flood risk estimation is typically achieved
through relatively simple statistical analyses of relatively short data series
without any regard to the climatological conditions that produce floods.
The basic assumption underlying empirical flood frequency analysis is that
annual maximum flood peaks are Independently and Identically Distributed
(iid). The implied assumption is that the climate is statistically “static” at
all timescales — the risk of a flood of a given magnitude is taken as being
the same from one year to the next, irrespective of the underlying climate
mechanisms. Whilst the iid assumption may hold in many locations, if
violated this may lead to substantially biased estimates of both short-term
and long-term risk.

Additionally, in recent decades there has been concern over the idea of
anthropogenically-induced climate change — specifically that human inputs
of carbon dioxide and other radiatively active (or “greenhouse”) gases will,
or even are already, changing the radiative energy balance of the planet
in a detrimental way. Such a change in the planetary radiative balance is
thought by many to lead irrevocably to “disastrous climate change”. Over
recent years, it has been speculatively suggested that regional climates will
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be marked by an “enhanced hydrological cycle” resulting in substantial
changes to flood frequency and severity.

Such concerns over possible anthropogenic climate change have resulted
in numerous studies that have sought to employ statistical analyses of
trends in hydrologic time series in the hope of identifying a consistent
“climate change signal” (see Kundzewicz and Robson, 2004). Typically
these studies utilise simple statistical tests for trend and/or step changes
in observed flood sequences. Key to climate change detection approaches is
that if a trend is identified and cannot be attributed to other changes, for
instance land use changes, then anthropogenic climate change is the most
likely suspect.

A possible problem with these approaches is again an implicit
assumption of hydrologic stationarity. In common with typical engineering
approaches to flood risk estimation, hydrologic time series are assessed
statistically without any understanding of the underlying climate processes
that produce hydrologic variability for entirely natural reasons.

In this chapter, the empirical evidence for natural long-term changes in
flood frequency is examined for eastern Australia. In particular, the causal
climate mechanisms for changes in flood regimes are investigated using
known documented climatological phenomena such as the El Niño-Southern
Oscillation (ENSO). Subsequently, the assumption of stationarity of flood
risk is explored with regard to the traditional engineering estimation of flood
risk. The role of non-stationary flood risk in confounding climate change
detection methodologies is also explored.

23.2. Notation

AEP Annual Exceedance Probability
DDR Drought Dominated Regime
ENSO El Niño-Southern Oscillation
FDR Flood Dominated Regime
iid independent and identically distributed
IPO Interdecadal Pacific Oscillation
ITCZ Inter Tropical Convergence Zone
NINO3 area of equatorial Pacific Ocean used for monitoring

ENSO events
PDO Pacific Decadal Oscillation
SPCZ South Pacific Convergence Zone
SST Sea Surface Temperatures
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23.3. Empirical Studies of Variability and Change
in Eastern Australia

It is well known that Australia experiences one of the most markedly
variable climates — numerous studies have previously documented regional
climate shifts across Australia. Importantly, there is an abundance of
evidence that climate variables affecting Australia shifted significantly
during the 1940s. In particular, Cornish (1977) noted a marked and abrupt
change in annual average rainfall across eastern Australia occurring around
1945. Related to these observations of rainfall change, Allan et al. (1995)
showed that Indian Ocean Sea Surface Temperatures (SST) were cooler at
mid-latitudes and warmer in the subtropical latitudes in the periods 1900–
1941 when compared with the period 1942–1983. In addition they found
similar anomalies in surface winds, concluding that the, “semi-permanent
anticyclone in the mean flow field of the atmosphere over the southern
Indian Ocean in the austral summer was weaker in the first 42 years of the
1900s.”

In parallel with these studies noting change in standard meteorological
rainfall, Erskine and Warner (1988) investigated floods, sediments and geo-
morphological changes in eastern Australia and identified what they termed
Flood- and Drought- Dominated Regimes (FDR/DDR). The essence of
the concept is that eastern Australia regularly experiences shifts from one
climatological state to another — whereby high rainfall periods lead to
marked variability in sediment delivery and accumulation.

In a recent study of instrumental annual maximum flood series, Franks
and Kuczera (2001) demonstrated there is an apparent shift in flood
frequency across eastern Australia. Utilising 41 gauges located across
New South Wales, 37 of these (or 90%) could be shown to have experienced
an increase in flood risk after 1945. Franks (2001) demonstrated that the
change in the instrumental flood frequency record could be objectively
identified as being broadly in line with the previous observations of a shift
in annual rainfall and circulation patterns as noted above by Allan et al.
(1995).

To demonstrate the marked shifts in eastern Australian flood risk,
Figure 23.1 shows a typical annual maximum flood series from a representa-
tive flow gauge. As can be seen, a marked increase in flood risk is apparent
around 1945. Of particular interest is that the mean annual maximum flood
post-1945 is approximately twice that occurring in the pre-1945 period. Also
apparent in Figure 23.1 is a return to lower flood risk occurring around
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Figure 23.1. Typical time series of maximum annual flood for a catchment in eastern
Australia.

the mid-1970s. Figure 23.1 clearly demonstrates that the assumption that
individual annual maximum flood events are clustered and therefore do not
satisfy the iid assumption. This record and the majority of others in eastern
Australia indicate that some process or processes must be operating that
dictate structure in terms of temporal patterns in the instrumental flood
records.

Importantly, this time series clearly indicates that flood risk estimation
will be biased if based on a sub-set of the data arising from one or other of
the flood or drought dominated regimes. This therefore demonstrates the
need to understand the underlying climatological causal factors that give
rise to actual flood behaviour.

23.4. Climatological Phenomena and Flood Risk

In addition to empirical hydrological observations of changing climate risk,
climatological insights into the mechanisms of climate variability point to
the invalidity of a purely empirical approach to risk estimation. Indeed,
numerous previous studies have shown that a strong relationship exists
between streamflow and the ENSO phenomenon.

In terms of New South Wales climate, the warm El Niño events are
associated with marked reductions in rainfall and increased air tempera-
tures and evaporative demand, whereas the cool La Niña events typically
deliver enhanced rainfall totals and cooler air temperatures. It is therefore
clear that as individual wet and dry years are usually associated with
ENSO extreme events, year-to-year flood and drought risk might also vary
according to ENSO state.
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Recent climatological studies have also revealed multi-decadal variabil-
ity in the modulation of the magnitude of ENSO impacts. In particular,
Power et al. (1999) have investigated marked temporal changes in ENSO
correlations to Australian rainfall records. The temporal stratification of
the rainfall sequences was achieved according to what has been termed the
Inter-decadal Pacific Oscillation (IPO). The IPO was defined by anomalous
warming (1920–1945 and 1975–2001) and cooling (1945–1975) in the Pacific
Ocean. Power et al. (1999) showed how Australian ENSO correlations
changed with the observed changes in persistent large-scale Pacific Ocean
SST anomalies. Importantly, Power et al. (1999) demonstrated that indi-
vidual ENSO events (i.e. El Niño, La Niña) had a stronger impact across
Australia during the negative phase of the IPO, implying that there exists
a multi-decadal modulation of the magnitude of ENSO events.

Figure 23.2 shows the derived IPO index. Also plotted is the Pacific
Decadal Oscillation (or PDO) independently derived by Mantua et al.
(1999) and similarly utilised in assessing ENSO impacts in Pacific salmon
fisheries. Importantly, the IPO and PDO (hereafter referred to as IPO-
PDO) state changes occur in the mid-1940s and the mid 1970s, broadly in
line with the observations of change in eastern Australian rainfall and flood
records.

To assess historic regional flood risk and its possible association with
ENSO extremes, Kiem et al. (2003) employed a state-wide index and
subsequently stratified according to ENSO classifications based on the

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1920 1930 1940 1950 1960 1970 1980 1990 2000

PDO
IPO

IP
O

 a
nd

 P
D

O
 in

di
ce

s

YEAR

Figure 23.2. Time series of the IPO (dashed line) and PDO (solid line) climate indices.
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NIÑO3 index — an index of SST anomalies in the eastern equatorial Pacific
Ocean. Each year from 1924 to 1999 was given an ENSO classification of
El Niño, La Niña or neutral, based on the six month October to March
average NIÑO3 value. The index was then further stratified according to
the multi-decadal IPO-PDO classifications. The stratified flood frequency
data were analysed using Bayesian flood frequency analysis (Kuczera, 1999)
to quantify uncertainty on quantiles and thus elucidate the key controls on
New South Wales flood risk.

If the flood gauges were correlated perfectly, treating them as entirely
uncorrelated would imply 41 independent records with any inferred change
having substantial statistical support. In fact, if the gauges were correlated
perfectly the true support would be equivalent to that of a single record.
Developing a regional index of flooding, in effect collapses the flood data into
a single time series, with any correlation between gauges being accounted
for implicitly. Adopting this alternative extreme, if the gauges are not
perfectly correlated (as would seem most likely), the statistical support
of the 40 gauges, will be underestimated. This simplified approach is
adopted here.

A regional index is derived through a purely statistical approach – the
individual records are scaled by the mean of the log annual flood maximum
discharge. The log is used in this study to weight each gauge equally under
the assumption of a log-normal flood frequency model. For example:

xj
t =

ln Qj
t∑N

i=1 ln Qj
i/N

,

where xj
t is the normalised index for gauge, j, at time, t, and where N is

the total length of the flood record. For each year, the resultant 40 scaled
time series are then averaged to provide a gauge-mean log maximum;

RIt =
M∑

j=1

xj
t/M for t = 1, . . . , N,

where RIt is the normalised regional index, and M is the total number
of gauges. The advantage of this approach is that each gauge is weighted
equally in the derivation of the regional index as a function of the typical
magnitude of the annual flood.

To assess the role of ENSO extremes, Figure 23.3 presents the flood
frequency under El Niño and La Niña conditions along with the associated
90% confidence limits. From this plot it can be readily seen that a much
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Figure 23.3. Flood frequency curves associated with El Niño and La Niña classified
years.

higher flood risk must be associated with La Niña events than with El
Niño events. It is also immediately apparent that the degree of separation
of the confidence limits indicating a highly statistically significant difference
between the two ENSO extremes.

Given the clear role of La Niña events in flood risk identified in
Figure 23.3, to test the hypothesis that the IPO-PDO apparently modulates
the magnitude of La Niña events, as suggested by Power et al. (1999),
a stratification on La Niña under different IPO-PDO phases is required.
To achieve this test, the regional index is stratified according to La Niña
events occurring under negative IPO-PDO phase and then according to
La Niña events occurring under neutral and positive IPO-PDO phases.
Figure 23.4 shows the resultant flood frequency curves. As can be seen, the
frequency curve associated with La Niña events under negative IPO-PDO is
markedly higher than the flood frequency associated with all other La Niña
events.

Finally, given the multi-decadal persistence of IPO-PDO phases, it is
desirable to assess the variability of flood risk under the different IPO
phases irrespective of inter-annual ENSO events. Figure 23.5 shows the
flood frequency curves for IPO-PDO negative (IPO<−0.5) against non-
negative IPO-PDO phases. Again, it can be seen that IPO-PDO negative
phase corresponds to a much increased flood risk when compared to
the non-negative phases of IPO-PDO. Of interest, the solid line plotted
in Figure 23.5 indicates the 100 year (1% AEP) flood that would be
derived through a solely statistical analysis of the entire time series.
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Figure 23.4. Flood frequency curves for La Niña events under IPO negative conditions
and all other La Niña years.

Figure 23.5. Flood frequency curves for IPO negative (<0.5) and IPO non-negative
conditions.

As can be seen, the 100 year flood would occur on average every 16 years
of IPO-PDO negative conditions. It is therefore clear that monitoring of
the multi-decadal IPO-PDO phase may provide valuable insight into flood
risk on multi-decadal scales, whilst the joint occurrence of inter-annual La
Niña events within the IPO-PDO negative phase represents further elevated
flood risk.

In assessing the apparent modulation of ENSO by the multi-decadal
IPO-PDO mode, Kiem et al. (2003) also demonstrated that the frequency
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of El Niño and La Niña events also varied between the different phases of
the IPO-PDO. Again utilising the NINO3 index of ENSO extremes, it was
demonstrated that the negative (or cool) IPO-PDO phase was associated
with a statistically significant increase in the number of La Niña events
compared to the positive (or warm) phase of the IPO-PDO mode. Kiem
et al. (2003) concluded that there was an apparent dual modulation of
ENSO both in terms of magnitude of the impacts of individual events but
also in terms of the frequency with which they occur. The reader is directed
to Kiem et al. (2003) for more details.

23.5. Causes of Variability

Given the high degree of hydro-climatological variability explained by the
combined ENSO and IPO-PDO indices, it is advantageous to develop a
qualitative conceptual understanding of the physical mechanisms of ENSO
and IPO-PDO processes. In particular, it is important to ask how IPO-PDO
processes interact with ENSO to ultimately deliver the marked observations
of variability.

23.5.1. IPO modulation of ENSO event magnitude

Whilst ENSO processes were initially identified using atmospheric pressure
differences between Tahiti and Darwin, the most obvious indication of
ENSO events is given by eastern equatorial Sea Surface Temperature (SST).
The standard model of ENSO processes is given by the “delayed action
oscillator”. Individual ENSO events are seen as preferred states arising
from the internal interaction of oceanic and atmospheric processes in the
equatorial Pacific.

In essence, an anomalous perturbation in this coupled system, if
sufficiently large, is magnified through the interaction of processes due to
positive feedback reinforcing the anomalies in each. A longitudinal shift
in equatorial circulation (i.e. Walker cell) is developed which subsequently
interferes with the Inter Tropical Convergence Zone (ITCZ) and the South
Pacific Convergence Zone (SPCZ). It has previously been demonstrated
that relatively small shifts in the location of the SPCZ result in very large
rainfall anomalies either side of the SPCZ (Salinger et al., 1995).

The ITCZ-SPCZ is most significant as it delivers rain-bearing cloud
bands across eastern Australia. The SPCZ is most active during November
through to April (Folland et al., 2002) which in general terms coincides
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with the season of highest and most variable rainfall over eastern Australia,
and also corresponds to the period of greatest ENSO event impact
(Kiem and Franks, 2001). Warm El Niño events disrupt the SPCZ,
preventing its propagation to its usual southern latitude. Cold La Niña
events represent an enhancement of the neutral ENSO state, with the
effect that the SPCZ propagates further south than normal delivering more
frequent rain-bearing cloud bands across south-east Australia (Salinger
et al., 1995).

In contrast to the equatorial nature of ENSO processes, the IPO
processes are revealed in mid-latitude SST anomalies across the Pacific
and Indian Oceans. Indeed the IPO index itself is derived from principal
component analysis of the modes of SST variability revealing the pre-
dominance of the low frequency component in the mid-latitudes (Power
et al., 1999). A recent study by Folland et al. (2002) assessed the location
of the SPCZ as a function of both ENSO and IPO. They demonstrated
that the IPO SST anomalies affect the location of the SPCZ during the
austral summer (November–April) in a manner similar to that induced
by ENSO but on a multi-decadal timescale. Importantly, the results of
Folland et al. (2002) showed that the SPCZ was at its southern-most
during La Niña events under IPO negative conditions. This provides strong
corroborative evidence of the enhancement of La Niña events under IPO
negative conditions as originally suggested by Power et al. (1999), and as
inferred from flood and water supply drought analyses (see also Kiem and
Franks, 2004).

23.5.2. IPO modulation of ENSO frequency

Whilst recent climatological research points to the explanation of IPO
modulation of the magnitude of individual ENSO events, the issue of the
IPO modulation of ENSO frequency is less clear. A number of previous
studies have observed and evaluated changes in the relative frequencies
of El Niño and La Niña events using historical or long-term proxy data,
although these studies did not have the advantage of IPO processes in
their considerations. When IPO stratification of an ENSO time series is
considered, it is immediately apparent that the IPO negative phase appears
to be associated with a higher frequency of La Niña events (Kiem et al.,
2003; Kiem and Franks, 2004). Indeed between 1945 and 1976 almost 50%
of all years in IPO negative states are classified as La Niña according to
the NINO3 classification (Kaplan et al., 1998).
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To elucidate how IPO processes may affect La Niña frequency, con-
sideration of the nature of the IPO signal and long-term changes in SST
may be of some use. Recent climatological research has attempted to
explain the observations of long-term change in equatorial SST anomalies.
Kleeman and Power (2000) note that there are two key mechanisms by
which equatorial SST anomalies may arise; (a) stochastic forcing by atmo-
spheric transients or chaotic climate dynamics within the equatorial zone,
and (b) extra-tropical/mid-latitude forcing due to gyres or thermohaline
circulations, external to the equatorial zone. Of these two possibilities,
Kleeman and Power (2000) suggest that observations of subtropic sub-
duction and consequent upwelling in the equatorial Pacific point to an
influence of the mid-latitude SST anomalies (and hence IPO) interacting
with ENSO.

In terms of IPO-PDO, the negative state is associated with cooling mid-
latitude SST anomalies. This water is subducted and transported to the
equatorial Pacific where upwelling permits the anomalously cool water to
return to the surface and influence the development of La Niña conditions.
This circulation, known as a Sub Tropic Cell (STC) or gyre, provides a
mechanism by which long-term anomalies represented by the IPO may
prejudice equatorial SST and hence predispose ENSO processes towards
a particular ENSO state. This oceanographic mechanism indicates the
possibility of IPO SST anomalies influencing ENSO SST anomalies. As
noted earlier, the instrumental record indicates a clear increased frequency
of La Niña events under IPO negative conditions, however no statistically
significant difference was observed for El Niño events. Nonetheless, the
possibility of IPO modulation of ENSO through subtropical cells may have
substantial basis.

To assess the possibility of frequency changes in El Niño and La Niña
events occurring on multi-decadal timescales, a proxy record of derived
ENSO extremes is analysed (D’Arrigo et al., 2005). A 30-year moving
window is applied to the classified ENSO climate states and the number
of individual El Niño and La Niña events was recorded. Figure 23.6 shows
the variability of the frequency of El Niño and La Niña, as well as the
difference between El Niño and La Niña counts. As can be seen, there
is marked variability in ENSO event frequency occurring on multi-decadal
timescales. It is therefore clear that ENSO event frequency is highly variable
over long periods of time and will have likely led to marked variability in
pre-instrumental flooding across eastern Australia.
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Figure 23.6. (a) Frequency of El Niño (dashed line) and La Niña (grey line) occurring
within a 30 year moving window when applied to D’Arrigo et al. (2005) ENSO paleo-
reconstruction data. (b) The number of El Niño events minus the number of La Niña

events, clearly indicating variable periods of alternating dominance.

23.6. Implication of Multi-Decadal Variability

It is clear from the instrument records both of rainfall and floods, as well as
from sedimentary records, that eastern Australia has experienced marked
changes in flood risk over decadal timescales. It should also be clear that
known climatological processes such as ENSO and IPO-PDO appear to have
played a strong role in determining such variability. There are a number of
potential implications arising from these observations:

• Traditional flood frequency based on simple statistics and limited data
may be significantly in error if no account of the prevailing climate state
is included in flood risk estimation.

• Studies seeking to attribute changes in flood frequency as evidence of
anthropogenic climate change may reveal highly significant trends that
are in fact natural in origin.
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The following sections seek to quantify the possible errors arising both in
flood risk estimation and in climate change attribution.

23.6.1. Assessing uncertainty in long-term flood risk

estimation arising from limited samples

of multi-decadal variability

To assess the uncertainty associated with the iid assumption employed in
traditional flood risk estimation, a simple Monte Carlo-based methodology
is developed. The representative series of annual maximum flood data
shown earlier in Figure 23.1 was employed. These data were stratified
according to the positive and negative phases of the IPO-PDO. Log-normal
flood frequency distributions associated with each of these phases were
calculated. Figure 23.7 shows marked differences in the resultant flood
frequency curves with the IPO negative phase. This figure demonstrates
a statistically significant increase of a factor of 2.5 in the 1:100 year
flood risk, an increase typical across eastern Australia (Micevski et al.,
2006).

To generate feasible Monte Carlo realisations of long-term flood risk, a
pre-instrumental PDO reconstruction is employed. This series of IPO-PDO
phase transitions was derived from assessing multiple proxy reconstructions
for Pacific climate variability, whereby statistically significant step changes

Figure 23.7. Derived flood frequency curves for IPO negative (solid) and IPO positive
(dashed) periods.
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in the derived time series were evaluated for coherence. A composite
IPO-PDO index of phase transitions was then derived (see Verdon and
Franks, 2006, for more details). Ten thousand individual sub-samples of
the composite IPO-PDO time series were then randomly generated of
length n years. Monte Carlo generated annual maximum flood series were
then sampled from the flood frequency distributions associated with the
corresponding IPO-PDO phase. The resultant distributions of the mean
annual flood and the 1:100 year flood were then calculated. This process
was repeated for values of n from 30–300 years.

To demonstrate the uncertainty of the mean annual flood risk as a
function of available data length, n, and unknown IPO-PDO climate state,
Figure 23.8 shows the simulated median and 90% uncertainty envelope of
the Monte Carlo derived distributions. As can be seen, the uncertainty
envelope is particularly wide for data lengths of 30 years, indicating a
10% chance of the true value being either under 60,000Ml/d or over
180,000Ml/d. Whilst Figure 23.8 does indicate a reduction in the upper
and lower uncertainty limits as the available data length, n, increases it is
worthwhile to note that even with 150 years of data the residual uncertainty
remains very large.

Figure 23.9 demonstrates the corresponding uncertainty envelope for
the estimated 1:100 year flood, a common criterion in practical engineering
and planning processes. In this case, it can again be seen that the
uncertainty envelopes are wide, even as the length of available data, n,
increases.

Figure 23.8. Uncertainty in mean annual maximum flood risk as a function of data
length.
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Figure 23.9. Uncertainty in 1:100 year flood risk as a function of data length.

23.6.2. Implications for empirical climate change detection

methodologies

As noted earlier, the current interest in anthropogenically-induced climate
change has led to a number of studies whereby trends and changes are
assessed in hydrological records with the aim of climate change attribution.
Perhaps the simplest form of trend detection is a simple linear trend applied
to an available time series. To assess the potential for significant error
in such methodologies (or misattribution) Figures 23.10a and b show the
employed representative time series with (a) a linear trend applied to the
entire data set, and (b) linear trends applied from 1920–1975 and 1945–
1998.

Figure 23.10a clearly shows no discernable trend when all available data
are available (gradient=−21 Ml/d/yr; p =0.963). If we were back in 1975,
as shown in Figure 23.10b, we would have identified a marked upward trend
in flood risk (gradient= 1837 Ml/d/yr; p =0.0528). However, if our records
only began in 1945, then we would have identified a marked and significant
downward trend in flood risk (gradient=−2471 Ml/d/yr; p = 0.0188).
Clearly, in the presence of multi-decadal variability the length of sample
available as well as the sampling of the prevailing multi-decadal climate
states could lead to many false claims of statistically significant trends.

More typically, a Mann–Kendall non-parametric test for monotonic
trends is employed in the identification of change in hydrological flood
time series (see Kundzewicz and Robson, 2004, for an overview of alter-
native methodologies). Interestingly, when applied to the two sub-series,
the identified trends become even more highly statistically significant
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Figure 23.10. Trends in the annual maximum flood risk data, when (a) all data are
employed, and (b) when data are subsampled.

(1920–1975 −p = 0.017; 1945–1998 −p = 0.008). Clearly, such high levels
of statistical confidence are incorrect in the presence of multi-decadal
variability. Put simply, the assumptions about the data employed in the
tests are invalid.

To assess the possible errors associated with identifying statistically
significant trends associated with the presence of multi-decadal variability
in flood series, the Monte Carlo-derived sequences derived above were each
individually tested for monotonic trends using the Mann–Kendall test. Each
occurrence of significance was recorded at the 10%, 5% and 1% significance
level. The fraction of Monte Carlo replicates corresponding to significant
trends was then plotted as a function of sample length, n.
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Figure 23.11. The number of replicates displaying significant trends according to the
Mann–Kendall test. As can be seen, the statistical significance of the test is exaggerated
under natural variability at multi-decadal timescales.

Figure 23.11 shows the number of replicates out of 10,000 that returned
significant trends as a function of multi-decadal flood variability and sample
data length. Figure 23.11 clearly shows that utilising 30 years of data,
almost 30% of replicates are found to contain significant trends at the
10% level, 20% at the 5% level and 15% at the 1% level. These represent
marked errors in the application of the test in the presence of multi-decadal
variability. It should also be noted that as the length of data in a sample
increases, the fraction of errors decrease but do not disappear even after
300 years.

As noted by Kundzewicz et al. (2004), hydrological time series that
display marked variability may be effectively filtered through the analysis
of serial correlation in the records. However, an open question remains as to
whether one should arbitrarily select a threshold significance level of serial
correlation on which to accept or reject individual time series. Moreover,
it is entirely feasible that individual regional climate may display only
aperiodic epochs of elevated/reduced flood risk as a complex function of
the interaction of climate modes, unlike the apparently periodic time series
employed here. This would further confound attempts to filter datasets
prior to trend analysis.
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Ultimately, the application of simple statistical techniques cannot
provide a definitive analysis of the causes of changes in hydrological time
series without robust understanding of the causal mechanisms that lead to
floods. Furthermore, without such insights there may be a misattribution
of change.

23.7. Discussion and Conclusions

Flood risk estimation is a cornerstone of practical engineering and planning
processes. The consequences of significant error in flood risk estimation
techniques are substantial. In this study, it has been demonstrated that
traditional flood risk estimation techniques based on simple statistical
analysis of relatively short flood histories may result in large biases
when applied to catchments that experience marked multi-decadal climate
variability.

It should be noted that under the traditional iid assumption, 30 years
of data are typically deemed an adequate minimum for robust flood risk
estimation. The results presented here demonstrate that uncertainty in both
the mean annual maximum and the 1:100 year flood risk may be in error
by as much as a factor of three when only limited data are available. Whilst
this uncertainty reduces as a function of available data length, the residual
uncertainty still remains high when compared to the invalid uncertainty
estimates under the iid assumption. These results indicate the importance
of understanding processes in providing appropriate flood risk estimates
given both multi-decadal variability and limited instrumental records.

The approach adopted contains a number of specific assumptions.
Above all, the approach adopted assumes that whilst flood risk varies
on multi-decadal timescales according to the IPO-PDO, it also assumes
that this association is itself stable. In other words, that the association
between IPO-PDO and variable flood risk observed within the instrumental
record (typically the 20th century), holds for the centuries prior. It is
entirely possible that at longer timescales than the instrumental record
other processes may mean a more or less variable association between the
IPO-PDO and eastern Australian flood risk. From the viewpoint of the
requirement to provide robust flood risk estimates and their uncertainty
that may need to be equally applicable now as in 100 years time, the
assumption seems suitably conservative.

This assumption can be tested through the development of appropriate
and robust proxy measures of pre-instrumental climatic risk in eastern
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Australia. This is the subject of current research and will be reported in
future.

An additional assumption is that anthropogenic effects on climate
have been negligible over the period of the instrumental record. This is
a necessary and seemingly robust assumption. As noted by Kundzewicz
and Robson (2004), analyses of long-term flood risk from over 195 quality
gauged stations has not provided any general proof as to how anthropogenic
climate change may or may not affect flood risk. It remains possible
that anthropogenic emissions of radiatively active gases may affect flood
extremes. However, it is clear that historic variability on multi-decadal
timescales has been a destructive feature of natural Australian climate
variability prior to recent concerns over climate change. On the basis of
the available evidence it appears that it should remain the primary concern
for the immediate future.

Whilst this chapter has focused on eastern Australian flood data,
it should also be appreciated that ENSO is a quasi-global phenomena,
affecting regional climates across the world. Significant impacts have been
detected across Asia, the Americas and more recently there have been a
number of studies indicating a complex role for ENSO in affecting European
climates albeit interacting with the Arctic and North Atlantic Oscillation
(Zanchettin et al., 2008). It should therefore be considered that changes
in flood frequency in regional climates, whether historically or into the
future, can occur as a function of entirely natural climate variability. It
is clear that a more sophisticated approach to climate change detection
is required whereby causal physics are employed to evaluate changes in
climatic regime. Until then, speculative claims of enhanced hydrological
cycles arising through consideration of only simplified physics or through
blind adoption of climate model output should be viewed with obvious
caution.
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CHAPTER 24

Translating Uncertainty in Flood

Risk Science
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David Leedal
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24.1. Introduction

It has long been recognised that effective communication is a central
component of Flood Risk Management (FRM). The many professionalsa

charged with the delivery of flood risk reduction within communities
frequently request that communications are clear, short and simple. But as
the previous chapters in this book serve to testify, the modelling of future
flood risk is increasingly associated with uncertainties of many types, not
only those associated with the scientific tools selected.

Considerable international progress is being made to quantify the
uncertainties surrounding the prediction and forecasting of floods and
most other hydrometeorological risks. However, to those whose profes-
sional function requires them to deliver FRM on the ground, scientific
formulations of future risk are articulated in a complex language which is
relatively inaccessible and in some cases also impenetrable. The challenge
of communicating these uncertainties in inter-professional communication
discourse in everyday language remains a major international challenge
(Frewer et al. 2003; Hall, 2006; Klir, 2006; Lavis et al. 2003). Kinzig et al.

aThe term “professional” we take to include all those for whom FRM and communication
is a part, even if only a small part, of their professional role and paid employment.

627
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(2003) have called for “a new science-policy forum” between scientists and
policy makers, but the choice of the appropriate language to use within this
forum and the inclusion of uncertainty in it have proved problematic. This
is not least because the “ownership” of the uncertainty remains contested
at this interface.

The principal goal of this chapter is to explore some of the translatory
challenges that are introduced into the professional agendas when flood risk
managers are presented with increasingly complex scientific models that
come with an embedded “health warning”. First, we explore conceptualisa-
tions of “effective communication” in a range of fields in FRM. Second, we
identify and consider the many interfaces at which communications can sit
in FRM and the various constraints upon effective communication. Thirdly,
the concept of uncertainty and its “ownership” within communications is
discussed, referring to two examples of flood risk communication tools: the
flood warning; and the flood risk map. Finally, examples of methods to
communicate the inherent uncertainty in the message are discussed, using
an example of an effective flood risk map with visualisations of the
embedded uncertainty, currently under development (Leedal et al. 2010).

24.1.1. What is effective communication?

In order to comprehend the makings of effective communication there
is a need to firstly grasp the characteristics of communication as a
concept. Faulkner et al. (2007) outline five features of communication.
The process of communicating is inherently purposive; that is to say,
communication is driven by an underlying current of intentions. In its
simplest form communication may be understood as a means of transferring
information from one party to another; however, in reality this shallow
form of communication rarely occurs free from other connotations. Instead
communication might be viewed as a process of negotiation whereby we test,
confirm and re-evaluate our ideas with one another. A deeper and perhaps
hidden layer of communication is the influence upon the relationship
between the communicating parties, in maintaining, building or eroding
ties. In this light, communication is a social act. Thirdly, communication
functions in a field of various expectations, with regards to the outcome
of the communication and how this can be achieved, for example. Such
expectations are influenced by the communicator’s underlying assumptions
about the other party (e.g. their agenda, capability). Content, tone, mode of
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message delivery can further influence expectations in the communication
process. Furthermore, communication represents a learning process; facil-
itating an improved understanding beyond the subject matter at hand.
Some exchange of mutual trust seems to be implicit in this, i.e. trust
between the relevant parties involved in the exchange is required. The
final characteristic of communication is the requirement for a system of
transmission. Language is the most common mode of transfer, though
advancement in information technologies has witnessed the construction of
new communication tools, particularly employing visualisation techniques
and thus broadening the scope of communication channels or the “tool kit”
for communication.

In conceptualising the challenges of communicating across the science-
to-professional interface Faulkner et al. (2007) argue that the fields of
semantics and semiotics may have something to offer. Semantics acknowl-
edges the agency of the individual in creating meaning from the world
(Sarukkai, 2007). Semiotics is concerned with “signs”, which may be
linguistic, visual or auditory; semantics involves the study of meaning
attached to these signs (Chandler, 2002). Meaning is to be understood and
therefore identified within the social context of the speaker and listener,
and so it is intrinsically bound to social and cultural norms (Stamper
et al. 2000). One might consider signs then as “sign posts” which orientate
communication, interpretation and assimilation of information; moreover,
signs are considered as norm-triggers and therefore related to human
behaviours (e.g. Stamper et al., 2000). The debate itself is interesting
theoretically but in taking a pragmatic approach to semiotics here, we
understand effective communication to be simply defined as a meaningful
“fit” between the mode of information transfer (communication “tool kit”)
to the range of communicative purposes. Seeking a “good fit” is not a case of
simply finding the missing jigsaw piece; the social context of communication
means that these pieces continue to shape-shift and therefore what may
have worked successfully in the past is not necessarily meaningful in the
“now”. Effective communication should be viewed as a continuing process
of seeking this good fit of language and signs between communicating
parties, thereby ensuring that the message is understood in the manner
it was intended (Faulkner et al., 2007). Articulating risk and uncertainty
therefore requires a sensitised domain for translation to avoid the pitfall of
information being “lost in translation.”



December 9, 2013 10:33 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch24

630 H. Faulkner, M. Alexander and D. Leedal

24.1.2. Communicating in scientific language at a range

of professional interfaces

This chapter specifically engages with communication operating at the
scientific community–professional stakeholder interface. Effective commu-
nication at this interface seeks the middle ground in satisfying the
scientist’s detail of knowledge, with the requirements of the end user of
this information. In the context of FRM, information is passed through
a complex web of communication channels, differing knowledge domains
and contexts of the multiple stakeholders involved in FRM (Figure 24.1;
Faulkner et al., 2007; Morss et al., 2005). This observation underlines our
argument that translating complex and uncertain science into a set of
different conceptualisations of risk, for purposes of communicating with
stakeholders, is a considerable additional challenge for FRM professionals.

The overarching communication challenge is thus a process of sen-
sitising communication to these apparently conflicting demands. The
category of “professional stakeholders” accommodates multiple roles, pro-
fessional obligations, organisational agendas and varying resource bases

Figure 24.1. Pattern of information flow in FRM in the UK. The various professionals
stakeholders involved are suggested to have an uncomfortable intermediary translatory
function between the scientists at the source of flood risk science and the lay audience to
whom they are formally or informally obliged to communicate about flood risk. (From
Faulkner et al., 2007.)
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which collectively serve to complicate the already challenging task of
communicating from the sciences: a “one size fits all” is clearly inap-
propriate (see Figure 24.4). It is crucial to consider the position of
professional roles within the FRM cycle, functioning between flood events
(e.g. emergency planning, asset management) or in real-time (e.g. forecast-
ing and warning, emergency response), in order to optimise appropriate
communication instruments. There is an apparent need for dialogue and
some form of translational discourse to communicate uncertainty and
encourage acceptance, ownership and adoption into professional roles.

24.1.3. Uncertainty

The sources of uncertainty in flood forecasting and runoff prediction models
are largely associated with their assumptions, structure and boundary
conditions. Articulation of the uncertainties in a single model is fraught with
difficulty, but to complicate matters further the FRM problem involves a
cascade of models. For example tide, wave and weather forecasts can be used
as input to models of flood size, timing frequency, routing and inundation
pattern. Those then provide the input to models of flood defence failure
or become part of damage and economic and social assessments of flood
impact. Faulkner et al. (2007) depict how uncertainties become cascaded
in ways that can be only partially constrained. Additionally, longer-term
flood forecasting in a non-stationary environment will also be necessarily
uncertain.

It is only recently that methods have been considered for communicating
these uncertainties to the end-user of flood science (e.g. Butts et al., 2006;
Leedal et al., 2010a,b). Uncertainty communication represents a unique chal-
lenge, for while the understanding and responsibility for risk estimation and
communication has been adopted and enveloped within the remits of profes-
sional roles, uncertainty remains in a battlefield of contested ownership and
therefore largely neglected in everyday risk communication (see Table 24.1).
This chapter hopes to shed some light on the context in which uncertainty
must be deployed, alongside some of the barriers or constraints that might be
faced in transferring uncertainty from science to practice.

24.2. Professional “Ownership” of Uncertain
Science — a Step too Far?

The post-modern take on risk and risk communication alludes to trans-
parency and building trust between science and practitioners. The corollary
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Figure 24.2. This highlights how a range of logistic, professional and psychological
factors can constrain the effectiveness of the optimisation of language and “extant
communication challenge” (Faulkner et al. 2007). In the UK setting, a range of tools

are now available to choose from when approaching risk assessments and communicating
findings to stakeholders.

to this has to be, however, that we need to enhance the communication of
uncertainty as well as the message about risk. Part of the problem of the
reluctance to embrace uncertainty is that professional contexts, and other
constraining factors, diminish the effectiveness of the exchanges.

There is resonance in the concept of “the effective plan of application”
with the views expressed by some consulting engineer practitioners at
the Flood Risk Management Research Consortium’s Risk and Uncertainty
Practitioners’ Workshop (held at Lancaster University in January 2006).
At this meeting, the professionals’ suggestion was that they would be happy
to make some estimates of uncertainty in flood hazard and flood risk if
they were provided with some recipes to use (and preferably recipes that
would not be much more expensive to apply than existing procedures).
However, unless more professional leadership was evident, they doubted
that they would be able to provide estimates of uncertainty to clients,
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Table 24.1. The uncertainty content of some current communication tools.

High-level methods Intermediate methods Detailed methods

Brainstorming Analysis of Interconnected Event tree analysis
Consuitation

exercises
Decision Areas (AIDA) Figure of merit

Risk register Decision trees Joint probability methods
Screening Expert judgment Extreme value methods

Pairwise comparisons FMECA (Failure Mode,
Element, and Criticality
Analysis)

Risk ranking matrix Fragility curves
S-P-R-C models Cost-benefit analysis
Uncertainty radial charts Cost-effectiveness analysis
NUSAP Cross-impact analysis

Bayesian analysis
GLUE
Monte Carlo analysis
Probabilistic reliability
Scenario modelling
Sensitivity analysis
Utility theory

unless clients demanded them. This suggested an initial unwillingness to
embrace ownership of uncertainty, or at least a reluctance to be criticised
for going out on a limb and deciding which methods to use.

A more careful reading of professionals’ reluctance to embrace uncer-
tainty could be that decisions in management situations are binary, and
shades of grey are unwelcome. Hall (2002), Todini (2006), and Hall
and Solomatine (2008) have argued that it is helpful when exploring
the communication of uncertainty at the science–professional interface to
distinguish between the decision uncertainty that preoccupies flood risk
managers, and the scientific uncertainty of a flood risk assessment or
within a warning. Whereas to the scientist, scientific uncertainty is a
challenging part of the professional domain, for agency professionals and
other flood managers decisions have to be made; decisions often with
considerable implications for cost, well-being, and (not least) liability. Some
of these decisions will be binary (on–off, yes–no), such as issuing a flood
warning, raising demountable flood barriers or control gates, and deciding
whether a development site is in or out of a flood risk zone. Decision
uncertainty therefore, includes a far wider range of imponderables than
the certainty of the scientific forecast alone. Because the articulation of
these imponderables may be even less certain than the science, it is not
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surprising that scientific uncertainty is an unwelcome part of decision
uncertainty from the perspective of a manager (Faulkner et al., 2007, and
see Maxim and van de Sluijs, 2011). Beven (2001) comments on the current
mismatch in uncertainty articulation from the modeller to practitioner.
The modeller’s approach for quantifying model uncertainty is invariably
construed in mathematical terms, whereas the practitioner’s responsibility
for communicating this onto lay stakeholders, or indeed the public, requires
a qualitative language. Professional stakeholders have consistently reported
the need for simplicity in scientific communication and accurate information
(see McCarthy et al., 2007). It appears that the need for clarity and
conviction in decision making is at odds with the inherent uncertainty
in flood inundation and forecast models; nevertheless, it is an ethical
imperative to pass on these uncertainties to the decision-makers who will
use their predictions.

24.3. The Need for a Conversation

While the scientific community and professional stakeholders operate
in distinct structural and intellectual domains, effective communication
necessitates interaction at the interface of these two groups. Interactive
models of communication have been promoted at the professional-to-
public interface and represent an equally appropriate approach here
(e.g. Defra/Environmental Agency, 2004; Frewer et al., 2003; Penning-
Rowsell et al., 2000). Interactive communication naturally implies a shared
ownership of uncertainty. There are a series of questions that this poses,
particularly surrounding issues of responsibility: who is responsible for
promoting and facilitating this notion of shared ownership? Is the scientist
required to tailor research outputs to the end-user context? Will uncer-
tainties increase the burden on decision makers? Herein lays the niche and
necessity for a formalised translational discourse.

The implication of contextual factors (i.e. varying institutional, social
and knowledge domains across professional stakeholders) upon effective
communication means that any mode of communication must be tailored
to the “audience”. Caution must be taken at this point in using these terms
of “audience” or “end-user” which imply that scientific knowledge or tools
are simply delivered as products to a passively receiving group. In reality,
it is crucial to acknowledge that the end-users actively engage with these
“products” which are assimilated within their existing frameworks for
understanding (Morss et al., 2005). The end-user must then be viewed
as an active participant within the research process in order to facilitate
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Figure 24.3. Integrated end-to-end research in FRM. A non-linear process whereby
multiple communication pathways exist and must be sustained in order to facilitate
co-knowledge production and the development and uptake of new tools (after Morss
et al., 2005).

knowledge exchange and encourage the uptake of new ideas and tools. Morss
et al. (2005) present the evolution of end-to-end research perspectives and
propose a desired, integrated and iterative model which not only connects
the two ends (research and decision maker) but promotes a feedback cycle
for the interchange of information (Figure 24.3).

In order to bridge semiotic divides it is crucial that the scientific
and end-user communities build upon “conversations” (Colin Green, cited
in Faulkner and Ball, 2007). FRMRC members reported that effective
strategies for “building bridges” and enhancing risk and uncertainty com-
munication may include for instance one day meetings, software libraries,
manuals and guidance documents regarding the use of methods via a
website and online “tool kit” (see Figure 24.4, and Pappenberger and
Faulkner, 2004). Nobert et al. (2010) highlight the importance of early-
stage engagement with end-users in steering initial project designs and
outputs.

One of the concerns about “not talking” across the scientific–
professional divide is the build-up of assumptions about the “other”. For
instance, Nobert et al. (2010) report on interviews with forecasters on their
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Figure 24.4. FRMRC Wiki pages. screen shot of decision tree to guide users in selecting an appropriate methodology for quantifying
uncertainty (see http://www.floodrisknet.org.uk/methods/DecisionTree).
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reservations about the use of EPS in civil protection agencies. Some of the
following responses were recorded:

“They want it black and white” (Flood forecaster, Germany);

“But these people simply don’t understand. . . I don’t care what the proba-
bility is. Give me the exact figure. . .” (Flood forecaster, Serbia).

A post-modernist reflection on science means we should not consider
translation as a process of simplification. We need to move away from
assumptions of “the simple other” and instead acknowledge that the end-
user is merely operating within differing institutional and social contexts
to that of the scientific community. An understanding of these differences
is required in order to obtain our goal for effective communication.

As the opening of this chapter explained, communication is a social
act and a process of learning; communicating parties learn not just from
each other, but also about the other. Suggestions made in Pappenburger
and Faulkner (2004) may provide a useful step forward in targeting both
aspects of this learning process. Initiatives such as the FRMRC Wiki pages
on uncertainty enable a joint transfer of knowledge; from the scientific
community advising on uncertainty quantification methods and from the
end-user’s ability to contribute and add to the pages (see Figure 24.4).
The success of collaborative knowledge products has been assessed in
the global environmental change research community. Weichselgartner and
Kasperson (2009) build on Nowotny’s term of “socially-robust knowledge”
and extend this to emphasise the need for “context-sensitive knowledge”
construction in order to facilitate the transmission of scientific knowledge
into the policy arena (cited in Weichselgartner and Kasperson, 2009;
Nowotny, 1999; Pennesi, 2007). This notion of “context-sensitive” knowl-
edge construction is reiterated here as an important step forward in
enhancing the communication from the sciences to practitioners in the FRM
context, and in doing so facilitating the uptake of uncertainty assessment,
integration and ownership.

24.4. In Practice — Flood Warning and Flood
Risk Mapping

This section seeks to ground the discussion thus far in two current and
contrasting areas of FRM in England and Wales; namely within the context
of flood warning and floodplain planning. These two domains operate along
differing temporal continuums and exhibit contrasting communication
distances from the scientific interface.
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24.4.1. Flood warning in England and Wales

In the UK, the debate about communicating under conditions of uncertainty
has been increasing, as FRM professionalsb seek to address their new
remit of “joined-up” working. This requirement of connectivity between and
within stakeholder groups has been reinforced most recently by the 2007
floods and the subsequent Pitt Review (e.g. recommendation 17: 2007).
Here, predictions regarding the likelihood of flood occurrence are based
on communications from meteorological and hydrological scientists at the
Met Office to scientists and practitioners within the Environment Agency
(EA). The response of river systems is presented using the EA’s National
Flood Forecasting System (NFFS) and is used to steer flood warning
managers appropriating flood warnings; within the agency, to professional
partners — for instance, other Category One and Two responders under the
Civil Contingencies Act, 2004 — and members of the public. Cross-agency
communication means that warning messages are translated into different
institutional cultures and organisational structures, charged with various
responsibilities and priority-settings.

Flood warning communications occupy a continuum of timescales
(Faulkner et al., 2007). In the long-term, working relationships may form
between scientists and practitioners and discourses exchanged regarding
aspects of risk, warning and effective response. Routine multi-agency
meetings are conducted through Local Resilience Forums (LRF)c for
example, and provide a forum for developing a common understanding of
flood risk, warning codes and the relevant responses of the agencies involved

bIn the UK, the Civil Contingencies Act (2004) provides a statutory framework for
civil protection. “Category One” organisations as outlined in the Act include Local
Authorities; emergency services (blue light services such as police, fire and rescue,
ambulance); health agencies (Primary Care Trust, Health Protection Agency); and
government agencies (Environment Agency, Scottish Environment Agency). These
organisations function at the core of emergency response and are subject to the full
set of civil protection duties. “Category Two” responders are referred to in the Act as
“co-operating bodies” and are required to cooperate and share relevant information to
aid emergency response; this category includes the Strategic Health Authority, Health
and Safety Executive, transport and utility companies.
cLocal Resilience Forums (LRF) aim to facilitate the requirement for a joined-

up, multiagency approach in emergency management emphasised in the UK’s Civil
Contingencies Act (2004). Membership consists of representatives from Category One
and Two Responder groups. Regional Resilience Forums (RRF) also exist in the UK
and similarly aim to enhance co-ordination for regional-wide emergency preparedness
(i.e. between central government and the region and from the region to local responders).



December 9, 2013 10:33 9in x 6in Applied Uncertainty Analysis for Flood Risk Management b1530-ch24

Translating Uncertainty in Flood Risk Science 639

in flood incident management. Rehearsals and exercises are a regular part
of this process.

At the short-term end of this continuum lies operational response to
an occurring flood event. Depending on the nature of the flood (lead and
lag time) timings for communications can be heavily constrained, and the
effectiveness of planning and rehearsals are put to the test. Here radar
models are conflated into weather prediction ensembles, yet these are again
further translated by professional meteorologists and somehow quickly con-
verted into short messages. At this scientific–professional interface, scientific
information may be considerably conflated and any nuances in the message
disappear. Whilst uncertainty estimations may be there in the radar-to-
meteorological exchange, they are simplified or dropped as the pressure of
real-time operational activity builds up. In this sense, communication and
operationalisation of uncertainty in flood forecasting into flood warning, is
currently neglected. Indeed, responding practitioners receive relatively the
same level of detail as is made publicly available. EA warnings are tempered
by confidence estimates, which lack clarity and are inadequately designed
for professional application (Faulkner et al., 2007). There is a need for
practitioners to be educated about the concept of uncertainty and model
assumptions from which uncertainty estimates may be based. McCarthy
et al. (2007) have shown that there is an enthusiasm for this amongst
practitioners when given the opportunity to “play” with new visualisations
and to clarify meaning with scientists. In an operational setting it may well
be useful to continue the dialogue from the scientist to practitioner and
collectively discuss uncertainty outputs (e.g. ensembles) and implications
for decision making. This could be achieved via a shared telephone or web
video conference call. It is crucial to consider uncertainty communication in
a practical setting such as this; uncertainty needs to be perceived as salient,
useable and as a mechanism for robust decision making.

24.4.2. Flood risk mapping and floodplain planning

in England and Wales

Floodplain planning clearly operates on a longer timescale, as such
communication channels include face-to-face meetings, email exchange and
presentations and are not subject to the time constraints of operational
warning and flood response. Constraints from planning policy (PPS25) and
recent EU Floods Directive Guidelines mean that planners are now required
to develop flood risk maps, based on different exceedance probabilities.
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While there is no stipulation for uncertainty boundaries, it is foreseeable
that this will become a future recommendation. Research has shown,
however, that this is an un-welcomed ownership issue (Faulkner et al.,
2007). The rationale accounting for this is the presumption that uncertainty
boundaries will enable people to disregard or circumvent the imperatives
of legislation. This represents an apparent constraint to the ownership of
uncertainty and it is vital to remain mindful of these challenges facing
the planning domain (Tunstall et al., 2009). The inclusion of uncertainty
in flood risk maps needs to be clear, understandable and relevant to this
context in order to appease its integration into a planning setting.

24.5. “Knowing by Sight” — Visualisation Strategies
for Communicating Uncertainty

This section moves away from “the talk” to describe how visualisation
techniques may also facilitate the transfer of knowledge and uptake of
new ideas. Any visualisation needs to be designed according to the task
at hand: asking who is the user?; what are the users’ goals?; and how does
the visualisation tool seek to enhance goal attainment?

24.5.1. “In the mind’s eye”: what is visualisation?

Visualisation techniques are a means of evoking visualisation, but it is
crucial to stress that visualisation itself is a cognitive process. Visualisation
techniques may therefore be considered as a means of combining computer
power with human vision, steering decision making and learning as well as
scientific insight (MacEachren and Ganter 1990; MacEachren et al., 2005).
There is a vast literature base detailing “efficient vision” and the role played
by existing, mental schemas and how these may in turn be utilised to design
effective interfaces for visualisation tools (see MacEachren and Ganter,
1990; MacEachren and Kraak, 2001; Neisser, 1976). Subsequent work has
expanded on the semiotics of visualisations (see MacEachren, 2001). Visu-
alisation techniques have been employed within various disciplines and have
thus manifested in a number of branches such as Geovisualisation (GVis),
information visualisation and scientific visualisation. Geovisualisation stems
from cartography and engages specifically with the exploration, analysis,
synthesis and presentation of georeferenced information, with particular
emphasis on the need for interactivity and active end-user engagement
(MacEachren, ibid); and is therefore perhaps the closest counterpart from
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which flood science may draw. Effective visualisation requires a balancing
act, between the need to simplify, abstract and represent detailed scientific
knowledge so as to be comprehensible to the end-user; whilst simultaneously
minimising the loss of detail and nuances in the data (Ishikawa et al., 2005).
The following sections will consider suggestions for visualisation strategies
and presentation options for conveying uncertainty and, furthermore, will
critique the purpose of visualisation and what it can hope to achieve.

24.5.2. Mapping

Mapping is a widely acknowledged, powerful tool for visualisation and has
become the keystone for flood risk communication, evolving from mere
outlines of flood extents to more sophisticated detailing of depth–velocity
functions of flood waters. The EU Floods Directive (2007) stipulates that
all EU countries must produce flood hazard and risk maps by 2013 towards
the establishment of FRM plans by 2015 (van Alphen et al., 2009; Moel
et al., 2009). Flood inundation modelling is the cornerstone of flood map
production and as this book has testified is by no means a “perfect science”.
While considerable effort has been made by the scientific community
to develop numerical methods for quantifying this uncertainty, there is
no formal, legislative obligation to incorporate boundaries of uncertainty
inherent within the flood risk maps to which FRM strategies will evolve.

The presentation of uncertain information or data accuracy has been
explored widely in cartography (see MacEachren et al., 2005 for a review).
Colour, e.g. saturation, hue and texture, and the concept of “focussing”
(Davis and Keller, 1997; MacEachren, 1992) and object boundaries, e.g.
fuzziness, transparency (Pham and Brown, 2005) in particular have been
highlighted as effective strategies for portraying uncertainty and reliability
in data. In relation to flood science it has been widely voiced that the
presentation of floodplain boundaries, traditionally depicted as single lines,
should be alternatively presented as a series of probabilities (Bales and
Wagner, 2009: Smemoe et al., 2007; see Figure 24.5).

The use of video clips and real-time animations of flood inundation
models, predicted hydrographs and ensembles of predicted hydrographs
have also been implicated as a powerful means of communicating from
the scientific domain to practitioners (Faulkner et al., 2007). One concern
for uncertainty presentation is that it should not over-complicate and
confuse the picture (Beard and Mackaness, 1993). There are numerous
approaches for avoiding a “messy” picture. MacEachren’s work has paid
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Figure 24.5. Flood probability map for the Virgin River in S.Utah (after Smemoe et al.,
2007).

attention to the user interface for interactive mapping and distinguishes
two presentation styles; whereas bivariate representation pairs data and
uncertainty (e.g. through bivariate colour in map presentation, or the
option to view each in isolation or alongside each other; e.g. Cliburn et al.,
2002); data certainty/uncertainty can be alternatively represented through
threshold mapping i.e. the user selects a threshold of certainty, past which
data is masked (e.g. Leedal et al., 2010b). These considerations are crucial
for communicating uncertainty in a visual form.

24.5.3. Visually explicit ensembles

The evolution of modelling practices has obviously sparked new forms of
visual presentation; this is particularly the case with the development of
ensemble modelling for forecasting (otherwise termed Ensemble Prediction
Systems (EPS); Nobert et al., 2010). Ensemble forecasting is internationally
well established and deployed to aid decision making in forecasting agencies
(McCarthy, 2007); however, the roll-out of this tool into operational warning
and responding agencies has not been witnessed within the UK. McCarthy
(2007) discusses a number of reservations voiced by EA staff, which included
concerns for a change in the way decisions are currently made, the need
for further training and overburdening warning staff. On the other hand,
Nobert et al. (2010) present a “success story” for operational EPS in
Sweden, between the Swedish Meteorological and Hydrological Institute
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(SMHI) and Civil Protection Authorities (CPAs). A number of reasons for
this success are described and include the importance of tailoring both the
“product” (from the initial design, “upstreaming”) and training to end-
user needs and professional cultures. One of the aims of this chapter sought
to propose ideas to encourage the acceptance and adoption of uncertainty
within decision making; these findings by Nobert et al. (2010) and the
successful application of EPS in Sweden offer profound insights for the UK
challenge. McCarthy et al. (2007) demonstrated how current professional
stakeholders rely (and are happy to do so) on the “expert advice” when
it comes to judging uncertainty. While ensembles were viewed as useful,
some professionals were concerned about competency and responsibility in
interpreting them. The four day workshop conducted by McCarthy et al.
(2007; 2008) simulated a real-time event and showed the important value of
interaction between scientists, communication and visualisation tools, and
end-users. Similar fora for enabling professional stakeholders to engage with
the science (the scientist and new tools) are one way of raising awareness
of new communication and assessment tools and their efficacy, as well as
the self-efficacy of end-users to employ such tools.

24.5.4. Maps and visualisations as decision support tools

The outputs from flood modelling and forecasting have been integrated into
decision support instruments, targeting different end-users and operating
at various stages within the FRM cycle, with more recent work focussed
on real-time support. Decision support systems are understood as tools for
supporting user decision making, through centralising resources, mining
resources and weighing up and evaluating alternative decision choices
(Rinner, 2003). Sophisticated DSS for flood management are being increas-
ingly developed; for supporting forecasting and flood incident response
(e.g. Abebe and Price, 2005; Butts et al., 2006); as well as spatial planning
(e.g. Milograna et al., 2009; Pasche et al., 2007). The option to centralise
and query vast quantities of data is a central asset to DSS and enabling
the user to integrate with the data in a manner suiting their decision needs
(e.g. Zerger and Wealands, 2004). Multi-Criteria Decision Support Systems
(MCDSS) have further sought to capture the complex frameworks in
which flood management decisions must be made; with further exploration
into group MCDSS for facilitating communication within and between
professional stakeholder groups (see Levy et al., 2007).
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The decision support literature highlights the growth of risk assessment
and communication, based on interactive interface designs and user-controls
(e.g. Todini, 1999). Saying this however, there are limited examples where
uncertainty is explicitly addressed; this may be partly due to a lack of clarity
as to how uncertainty can improve decision making. Butts et al. (2006)
acknowledge the need to address uncertainty presentation and encourage
the development of understandable and consistent methods designed with
the end user in mind. It is imperative that uncertainty is integrated
intuitively within such systems to complement decision making, rather than
complicate it. There are numerous design suggestions for the visualisation of
uncertainty; assuming it does not “complicate the picture” but is presented
in a readable form, users can begin to fully comprehend its meaning (within
professional and decision-making realms) and this may go some length
towards adoption and a shared ownership of uncertainty.

24.6. An Example: the Probabilistic Flood Inundation
Visualisation Tool (PFIVT)

A Probabilistic Flood Inundation Visualisation Tool (PFIVT) has been
developed by Leedal et al. (2010a). This tool, like all forms of visual
communication, is an object composed of a series of signs (or semiotic
systems). The viewer must decode these signs to form meaning. According
to structuralist semiotic principles, the key question becomes: “what is the
code required for two or more people to ‘correctly’ interpret the semiotic
system?” This question can be recast from the point of view of the producer
of the object, for example, “given the information I intend to communicate,
what are the tools, knowledge and understanding required by the audience
such that the intended message can be consistently recovered?” From this
perspective, the success of the object is judged on its ability to provide
a code that will allow the viewer to reconstitute the message intended by
the producer. To achieve success, the code must be rich enough to span
the information content of the message while being accessible enough to
maintain the viewer’s interest. If the viewer is confused by the code, he or
she may reject it or develop a subjective interpretation of the message.

The sections below provide:

• a brief description of the modelling exercise used to produce the data for
the PFIVT;

• an introduction to the PFIVT and the design process used in its
production; and
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• a very brief discussion of issues relating to the PFIVT from a social
semiotic perspective.

24.6.1. The Mexborough probabilistic flood

inundation model

A flood risk mapping study was commissioned to produce a model-
based estimate of the magnitude of the 1% annual exceedance probability
(1% AEP) event in Mexborough, South Yorkshire, UK. This region is
vulnerable to flood damage with the last significant flood event occurring
in June 2007. The study was carried out within a probabilistic framework
using an ensemble of results generated by the TUFLOW 2D hydrodynamic
flow routing model. The model incorporated a digital elevation model of
the region and operated at a 10 m grid resolution. The experiment design
took into account three key modelling uncertainties:

1. The magnitude of the design event. The 1% AEP design event was esti-
mated from past data tables using standard Flood Estimation Handbook
(FEH) flood frequency analysis techniques within the WinFAP software
package. This analysis resulted in an estimate of the 95% uncertainty
range for the 1% design event flow of between 76.7 and 92.9m3s−1.

2. The value of a global Manning’s roughness coefficient (this is an empiri-
cal coefficient determined by channel roughness and other characteristics
such as sinuosity). This parameter is well known in hydrological mod-
elling fields to exert a significant influence on simulated flow dynamics
while also being difficult to define from observations of the system under
study; as a result, this parameter is often used to tune a flow routing
model in order to fit the observed data (Morvan et al., 2008). For this
study, a uniformly distributed random variable with 95th percentiles of
00.05 and 0.2 was used for Manning’s roughness coefficient.

3. The channel capacity. For the type of hydrodynamic simulation used
in this study, it is assumed that flows exceeding the channel capacity
will spill onto the flood plane for storage and/or conveyance downslope.
The channel capacity is often difficult to calculate and is therefore
commonly estimated as being equal to the median annual maximum
flood (QMED). However, this itself is difficult to estimate if data are
scarce and, as here, often approximated using catchment descriptors
and empirical equations. For this study, a uniformly distributed random
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variable with 95th percentiles of 12 and 54m3s−1 was used for channel
capacity.

Five hundred model runs were made drawing the three parameters
described above at random from their respective probability distribution
functions. After completing the model runs, the probability that inundation
would be observed in any one of the 10m cells within the model domain
was calculated. For example, if a cell became inundated in all 500 model
runs, then that 10m× 10m region of the floodplain was ascribed a 100%
probability of being flooded during a flood of magnitude equal to the
design event; if a cell was inundated in half of the ensemble members then
the corresponding region of the floodplain was ascribed a probability of
flooding of 50% and so on.d The raw experiment results took the form
of large amounts of numerical data. We needed to apply some form of
intermediate processing in order to make the data accessible to human
users. The PFIVT was designed as a tool to provide this intermediate layer.
In the discussions that follow, the PFIVT is the “object”, the designers of
PFIVT and the probabilistic study are the “producers” and the end user
is the “viewer.”

24.6.2. The PFIVT

We can assess what codes are available to the producers and how effective
these are at communicating the desired message to the viewer by applying
a simple structuralist semiotic analysis (van Leeuwen and Jewitt, 2001,
pp. 140–152). A first step is to define the content of the message intended
by the producers, and to make the simplifying assumption that this is
an objective statement of the entire scope of the message.e A four-point
description of the message carried by the PFIVT could take the following
form:

• It is possible to use a computer together with some scientific principles to
estimate the extent of a flood event of a given magnitude. It is possible
to estimate the frequency of a flood of a given magnitude;

dDetails of the experiment design were supplied by N. Hunter and J. Neal, personal

communication, January 10, 2010.
eThis task is made somewhat easier here by the fact that this chapter and the PFIVT
object share an author. Otherwise an analysis would have to consider the additional
layer of interpretation involved in the translation of message from model study to web
tool author to chapter author!
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• We, the producers of the object, estimate a flood of the magnitude of this
study to have a 1 in a 100 chance of happening in any given year; the
inundation modelling exercise has been performed within a probabilistic
paradigm;

• It is important for us to communicate the estimate of flood extent for the
design event together with the uncertainty associated with this estimate;

• We can address the above by overlaying, on a scalable map of the region,
an outline that shows the extent of the flood inundation at a probability
level chosen by the viewer.

These four points, together with the data collected from the probabilistic
flood risk mapping exercise, form the producer’s message. A successful
PFIVT tool must allow viewers to consistently reconstruct the above
message. The task is therefore to define a semiotic system contained by the
PFIVT to facilitate the unerring “take up” of this message by the viewer.

24.6.3. Model “the viewer”

The first design stage for the PFIVT was to form a model of the viewer.
This model incorporated assumptions about the high level objectives of
the viewer i.e., the things the viewer would want to achieve using the
PFIVT. The high-level objectives were then broken down into sub-tasks.
This process of abstraction was repeated until the tasks were very simple
and would require no problem solving on the part of the user. For example,
a high-level task that the producers anticipated would be carried out by
the viewer was: “to view the extent of uncertainty in flood inundation
modelling”. This objective was decomposed through sub-tasks such as
“show inundation overlays on a map at chosen levels of probability”. After
several iterations of this process we arrived at, or close to, the unit task
level of operation. An example of a unit task could be: move a slider to
the 50th percentile value. This process can be very time consuming; also,
the definition of the viewer’s objectives and the granularity at which we
assume the unit task has been achieved is inevitably rather subjective.

Having identified a large number of unit tasks, a Goals, Operators,
Methods and Selection (GOMS) study was performed. This process is
defined in detail by Dix et al. (2004, p. 422); but briefly, the GOMS study
defines the following:

• Goals: the objective(s) that the user wishes to achieve. The goals need
to have been reduced to a level close to the unit task defined above.
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• Operators: these are the lowest level actions that can be carried out by
the user or the user acting on the system, for example “move a slider”
or “read the contents of a dialogue box” in order to achieve the goal.
The purpose of defining the operators is to arrive at easily described
operations that can be converted into design or programming elements.

• Methods: there is often more than one way to achieve the goal (different
button/mouse click combinations, etc.). The methods section of the
GOMS study contains a list of these.

• Selection: this is the assumed choice from the available methods taken
by a user. In the case where more than one method is available it is
usual to explicitly define which selection the viewer will take based on
assumptions or known information about the viewer.

As an example, we can consider the goal of “choose an inundation
probability within the PFIVT”. A GOMS analysis of this task takes the
form:

GOAL: CHOOSE-PROBABILITY
. [select GOAL: USE-SLIDER-METHOD
. . . MOVE-MOUSE-TO-SLIDER
. . . DRAG-AND-RELEASE-SLIDER
. . GOAL: USE-TEXT-BOX-METHOD
. . MOVE-FOCUS-TO-TEXT-BOX
. . INPUT-PROBABILITY-VALUE]

Analysing the GOMS units (for example the depth of nesting of
goals), provides indicators of the performance of the modelled viewer. The
combination of many GOMS units was used to predict the requirements
and actions of the viewer and translate these into the design elements of
the PFIVT.

24.6.4. Visual analysis

In parallel with the GOMS approach, a more aesthetic design process
was followed using principles taken from the field of visual analysis
and informed by the sort of concerns discussed above in relation to
cartographic message content. This type of analysis aided the design
process in terms of supporting decisions for element placement, text
layout etc. As well as this, the method also encouraged a reflective and
critical analysis of the production process. This forced us to develop an
awareness of the culturally situated motivations behind design decisions,
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such as the choice of text and the map viewpoint. The visual analysis
considers the PFIVT to be an object made-up of a set of semiotic
resources where these resources not only provide the tools to allow the
viewer to decode the message, but also to consciously, or otherwise,
reproduce the social relations between the producer and viewer. The
implication of the social semiotics is not pursued in great detail in this
chapter as the PFIVT is a small-scale and speculative research project;
however, it is important to reflect that these issues will be significant
if probabilistic flood risk visualisation tools become widely-used by large
organisations.

The PFIVT object needed to integrate representational mechanisms
from entirely different families, most significantly, text fields together
with images of both naturalistic and scientific modality. Text was used
to provide instruction and guidance to the viewer, naturalistic modality
(photo-realistic representation) was used to communicate the location of
the study site,f scientific modality was used to make the results of computer
simulation visible.

The salience of different components of the object were considered and
manipulated to provide an effective balance of focus for the viewer. For
the PFIVT, the background map image, with its bright colour content,
becomes the immediate focus of the object. This was considered correct as
it provides a familiar and interesting introduction for the viewer. Attention
is then drawn away to the user interaction controls situated top-left. This
mechanism takes advantage of the top-to-bottom left-to-right flow of text on
the printed page. According to Kress and van Leeuwen (1996) the left–right
placement of items within a Roman script environment not only provides
a familiar guide for the viewers’ focus, but also provides a sense of “given”
(on the left-hand side) and “new” (on the right-hand side). Figure 24.6a
shows the PFIVT web interface together with added indicators of the
grouping of related elements within the page and the anticipated flow of
the viewers’ focus.

This flow is used within the PFIVT design to draw the attention of
the viewer from the map image to the primary dynamic interaction tool
which is a slider for selecting probability thresholds. The operation of the
slider tool is illustrated in Figure 24.6b. The slider is used to select from the
model study data the maximum inundation extent forecast to occur at the
chosen probability level. From the slider tool, the left-to-right flow draws

fAn abstraction of this is also an option by using a map-based representation.
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the viewer past a text-based description of the chosen scenario and on to a
popup menu inviting the viewer to “choose a definition” from a list of words
that may be unfamiliar but important for developing an understanding of
concepts within probabilistic FRM.

Similarly, top-to-bottom placement of elements can be used to generate
a sense of movement between the “ideal” or general essence of information,
to the “real” or more “down to earth” formulation of the information. Here,
the ideal took the form of both the numerical text field giving the chosen
inundation probability and the text field describing the chosen scenario.
The real includes the Google map and overlay showing where the flood
outline is situated and a text field providing a definition in plain English of
the terms and concepts used by the PFIVT object.

The control elements, or widgets, (shown in grouping 2 within
Figure 24.6a) were framed together to signify a common purpose and make
use of the principle of consistency, i.e. the re-use of familiar design elements.
In the field of Human–Computer Interaction (HCI), consistency is cited as
being an important mechanism in aiding the viewers’ understanding and
learning. It takes advantage of any familiarity the viewer may have with
common design elements (Reiman, 1994). The viewer does not need to
travel too far with eye or mouse within the group of control elements. This
should allow the viewer to operate the page efficiently. Also, no elements
are introduced that are not commonly found on standard webpages.

Google MapsTM were chosen for the mapping interface; the map pane
is labelled as grouping 1 in Figure 24.6a. This choice takes advantage of the
consistency principle by reusing a map navigation interface that is already
familiar to a large number of potential viewers.

Both distance and point of view are important semiotic resources and
it is wise to be sensitive to their use. When the PFIVT webpage loads, the
default distance between the viewer and the study site was set such that
the inundation region roughly fills the available map pane. The point of
view is always from directly above the site. This inevitably defines the
viewer as an actor with a god-like overview of our simulated disaster.
We feel this is a concern as the chosen distance and point of view have the
secondary effect of imparting the producers’ message with an innate sense of
authority which, however unintentionally, may be misplaced. However, from
the default distance the viewer is free to use familiar interaction methods
to zoom and pan within the study site taking a close-up tour of regions of
interest. It is worth bearing in mind that this process could be emotive for
the viewer as he or she may be viewing their own home.
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Figure 24.6a. The PFIVT web interface. The anticipated focus of attention and order
with which the user assimilates the information on the page is indicated by the dashed
shapes, arrows and sequence numbers that have been added to the figure.

The juxtaposition of images of natural modality (the satellite option
of Google MapsTM) with an image of scientific modality (the inundation
overlay) is also problematic. The inundation overlay has been produced
using best practice within the remit of the modelling study and the image
has been accurately georeferenced to the underlying map; however, by
linking these two types of image we are taking advantage of the sense of
realness afforded by photorealistic representation in order to impart the
same realness to the results of the modelling experiment. This process
provides an illusionary link between the virtual world of computer-based
simulations and the real world captured by aerial photography. In effect,
we are placing equal information value on the content of the images. As
with considerations of point of view and distance, the overlay approach
may provide a good practical solution to the visualisation problem;
however, the implications of such design choices should always be carefully
considered.
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Figure 24.6b. This mosaic of elements from the PFIVT (actual layout is shown in
Figure 24.6a) illustrates the connection between the interactive slider tool and the
inundation overlay. The viewer moves the slider control to select the inundation overlay
image. The connection between slider, text and overlay is accomplished with DHTML.g

The figure shows results for a 100, 70 and 5% chance of an actual 1% AEP event
inundation exceeding the extent shown.

gA combination of HTML, JavaScript and, in this case, access to elements of the Google
MapsTM API.
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24.6.5. Words and pictures

The interactive element of the PFIVT, i.e. the dynamic linking between
the slider tool, the text fields and the inundation overlay, together with the
ability to zoom and navigate within the map pane, provide a simple
and intuitive mechanism for communicating spatial probabilistic flood
inundation information. The PFIVT makes use of two prominent text-based
elements to augment the message presented by the map figure. The first of
these elements was positioned directly to the right of the slider tool. The
text within the field is selected automatically by the page code as the viewer
moves the slider. The text adds a descriptive element to the chosen scenario.
The choice of wording is designed to add to the information content by
using qualitative expressions such as “very unlucky”, “a little unlucky” etc.
The probability values are expressed as percentages as research has shown
that this is the most readily understood format (Biehl and Halpern-Felsher,
2001). The actual text is shown in Table 24.2. Example definition text is
shown in Table 24.3.

24.6.6. Trials and testing

At the time of writing, the PFIVT is in the early stages of user-testing.
The tool has been demonstrated at a number of workshops where users
have been able to try the tool out for themselves. The aim of these trials is
to assess how far it is possible to optimise the tool for the end users’ needs.
A sub-goal is to explore the manner in which the uncertainty inherent in a
modelling exercise of flood inundation can be owned jointly by the producer
and viewer using methods such as the PFIVT. An active part of the new
research associated with the PFIVT is to modify and enhance the design
inline with the results of trials and testing.

24.6.7. Summary on the Mexborough tool

The PFIVT object provides a set of semiotic resources to communicate a
message from the producer to the viewer. These resources include familiar
mechanisms such as webpage widgets (sliders, text boxes and popup menus,
etc.) but also less obvious mechanisms such as point of view, information
value and left-to-right top-to-bottom placement. Given that both the
producer and viewer are culturally situated, the power relations present
in the wider cultural settings of these actors will be reproduced to a greater
or lesser extent by the semiotic resources used within the object. With this
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Table 24.2. Dynamically selected text fields applied to the string: “<field 1> chance
that the 1% AEP event will be larger than the extent shown. Therefore <field 2> for
the 1% AEP event to be <field 3>” (where the fields are replaced by the appropriate
text in the table depending on the position of the slider).

Text <field 1> Text <field 2> Text <field 3>

5% it would be very unlucky but still possible as large as this
10% it would be very unlucky but still possible as large as this
20% it would be unlucky but still possible of this size
30% it would be unlucky but still possible of this size
40% it would be a little unlucky but still possible of this size
50% there is an even chance smaller or larger

than this size
60% it would be a little unlucky but still possible of this size
70% it would be lucky but still possible of this size
80% it would be lucky but still possible of this size
90% it would be very lucky but still possible as small as this

95% it would be very lucky but still possible as small as this

Table 24.3. Example definitions available to the PFIVT viewer via a popup menu linked
to a text area.

Concept Definition

Return
period

The return period is the average amount of time in years that you
would expect a flood of a particular size to occur once. For example,
a flood with a return period of 100 years would be expected to occur
10 times in a century. It is very important to realise that this does
not mean that if a flood with that return period has just happened
that there will definitely not be another one for 100 years! In
addition to this, the accuracy with which the return period can be
calculated is not perfect, so there is always some degree of
uncertainty in this value. It is generally advised to use the annual
exceedance probability (which is 1 divided by the return period)
when expressing flood risk.

Percentile Probabilities can be expressed as percentage values. Here an
expression such as “80% chance that the 1% AEP event will be
larger than that shown. . .” means the study that estimated the size

of the 1% AEP flood found that 80% (or 8 out of 10) of the
acceptable computer simulation results showed a flood larger than
the flood shown on the map.

Probability
of
exceedance

This webpage shows that flood extent forecasting can never be exact.
This is because flood forecasting is based on computer estimates of
what might happen during a real flood. One way to communicate
the range of possibilities for what might happen is to specify the
chance that a flood will be bigger than the one shown on the map.
For example, a probability of exceedance of 20% means that the
computer simulation estimates that the 1% AEP event has a 20%
(or 1 in 5) chance of being bigger than the one shown on the map.
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in mind, the designer of the resource can take care not to communicate in
a way that alienates, confuses or misleads the viewer.

24.7. Towards a Translational Discourse

Visualisation should not be considered as the end product but as a prompt
for inciting learning, decision making and new modes of thinking. For
instance, the forecast example by McCarthy et al. (2007) shows that
user-interaction with new visualisation tools and with tools designers can
alter initial assumptions and facilitate the want for new techniques, and
most importantly, the self-efficacy of the end-user to utilise new techniques.
The expressed desire for “simplicity” voiced by end-users arguably stems
from an uneasiness with new and seemingly complicated tools. For new tools
to be fully integrated and not viewed as “the shiny new toy” (only to be
neglected soon after) it is crucial that any new visualisation tool presented
is user-friendly and self-explanatory; if not its use needs to be explained
by an interpreter. The function of the translation should be to effectively
translate the science in a way that meets the end-user’s declared needs.

While risk communication has been well-established from science
to practitioner, boundaries of uncertainty remain obscured in issues of
responsibility and ownership. This chapter has highlighted the need for
translation across the scientific and practitioner domains. These two
domains sit in differing social, institutional and knowledge contexts so as
to make the goal of effective communication, a communication challenge.
Effective communication requires satisfaction of both parties by optimising
the “fit” of communication tools (language, computational tools and
visualisations) transferring the message (with embedded uncertainties)
to a declared professional purpose; whilst simultaneously satisfying the
needs of the scientist to minimise the loss of information associated
with the translation of the signs and norms of science. Faulkner et al.
(2007) argue that information loss on translation may be reduced by more
effective discourse and exchanges between those scientists developing risk
prediction models and those professional agencies charged with managing
risk-prone settings. Improving the effectiveness in risk and uncertainty
communication in FRM could be facilitated by constructing a “translational
discourse” which straddles these divided domains of science and practitioner
(Figure 24.7).

In order to build, adopt and maintain a translational discourse we must
strive to meet a series of objectives. Firstly there is a need to promote a
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Figure 24.7. Towards a translational discourse between scientific and professional
domains. (a) The positions of translational discourse straddling domains. (b) The
functional content of translational discourse, suggesting the probable components of the

debate and the tools to be developed and promotions involved (Faulkner et al., 2007).

definitional exchange, acknowledging that meanings assigned to key terms
are variable between and within the professional and scientific domain.
These semantic differences need to be understood in the context they were
constructed. The search for “neutral” definitions is perhaps futile and would
only strip terms of their meaning and context in which they must be applied;
therefore, the semiotic differences in these terms should be articulated and
appreciated in conversation. This feeds into the next objective to enhance
respective understanding of differing domains associated with different
professional groups (and indeed within science itself). Understanding relates
not only to the context in which these groups operate (e.g. institutional
frameworks) but also suggests a need for comprehending the assumptions
and expectations constructed between and within professional groups and
with/from the scientific community. It is vital that all communicate their
desired needs and goals.

These objectives support the call for a collaborative discourse between
these seemingly opposing domains. There is a need to strip away the
sentiment of “the other” in favour of a united “we” (Pellizzon, 2003). There
are numerous strategies in which this may be achieved, such as the creation
of virtual institutions (Mansilla et al., 2006) and expanding the number
of joint-conferences, seminars and workshops. The need for a more open,
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transparent and collaborate research process has been voiced as an impor-
tant step towards more salient knowledge production (Weichselgartner and
Kasperson, 2009). It is a matter of true end-to-end research for sustaining
working relationships and knowledge exchange (Morss et al., 2005); erasing
technocratic traditionalism and instead considering the stakeholders of
science as active participants in the research process (Voinov and Bousquet,
2010).

Ultimately, such efforts require funding and leadership to promote and
motivate a collaborative community effort; Faulkner et al. (2007) suggest
the Environment Agency and Defra are the natural partners for the role,
though some academic leadership should also be sought. In terms of driving
uncertainty communication forward, incentives and disincentives should be
considered to ensure a professional obligation and standard is met. Ethical
standards for uncertainty analysis and communication must be appraised
(Faulkner et al., 2007). These suggestions nestle within the code of practice
for risk and uncertainty communication proposed by Pappenberger and
Beven (2006). In the short-term a guidance manual to outline the objectives
for cultivating a translational discourse is required to steer this forward in
the near future.

24.8. Conclusion

This book recognises and seeks to describe and measure the uncertainty in
the science of flood risk. The present chapter has discussed how on top of
the modelling, parameter and validation uncertainties discussed elsewhere
in this volume, decision makers face a wider range of operational (often
binary) choices of which these scientific uncertainties are merely one subset.
This chapter has explored the manner in which effective communications
about risk and uncertainty get translated. We argue the tools used should
and can be tailored for particular exchanges and needs; an argument we
develop using material from the field of semiotics. The material we debate
here recognises that the communication needs are very different in differing
FRM settings and we use the fields of warnings and flood risk mapping as
two examples of communication and translation of science.

In particular, we have discussed how the ownership of the uncertainty
in the communication is often contested or ignored. Getting the use of
new tools to describe into professional practice may need an improved con-
versation at the science–professional interface. To address the considerable
challenge of embracing and owning uncertainty for those undertaking these
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exchanges remains considerable. There is a need for a new professional
function — the science–professional interpreter, working to develop the
translational discourses that are going to be increasing needed as non-
stationarity continues to confound our abilities to validate models. A nego-
tiated ownership and articulation of uncertainty is a good starting point.

Flood science has thus far focussed on the enhancement of communica-
tion, i.e. to transfer “what we know”, but this chapter has suggested that
new technologies, especially interactive animation and visual depiction of
how confident we are about what we know, might prompt new thinking in
users. Whether this new generation of visualisations and decision support
instruments will change the data requirements of end-users in the long-
term remains to be seen, as does whether uncertainty will influence the
act of decision making itself and decision outcomes. We conclude that
visualisation techniques and forums for conducting “conversations” between
scientists and stakeholders go hand-in-hand, and are key drivers in seeking
a translational discourse.
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lead-time requirement, 468

operational requirements, 466,
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model, 525

quality, 397
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false alarms, 468
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forecasting resilience, 525
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framework for uncertainty analysis,
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decisions, 41, 42, 46
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fuzzy set, 49, 184, 253, 258, 259

gain adaptation, 423, 444

gamma, 217

distribution, 528

gauging station, 246, 359, 515, 529

Gaussian distribution, transformed,
118, 119, 121

General Circulation Model (GCM),
122, 125

uncertainty due to, 128, 139

weighting, 128

Generalised Additive Models (GAM),
116

Generalised Extreme Value (GEV)
distribution, 107, 111, 184, 199,
200, 203–205, 207, 209, 210, 215,
216, 221, 224, 227, 228

shape parameter, 107, 109

Generalised Likelihood Uncertainty
Estimation (GLUE), 40, 49–51,
87–95, 140, 180, 245, 258

limits of acceptability, 90, 94

Generalised Linear Models (GLM),
115, 125

for multisite rainfall, 116, 119,
122

reproduction of extremes, 116,
143

Generalised Logistic (GL)
distribution, 199, 200, 201, 217,
224, 226–228

Generalised Method of Moments
(GMM), 132

Generalised Pareto (GP) distribution,
108, 190, 204, 215, 217–219, 221,
224–226

Generalised Sensitivity Analysis
(GSA), 87

generator, 134

GLIMCLIM software package, 119

GPS, 247

ground-based scanning lasers, 241

groundwater flooding, 102

Gumbel (EVI) distribution, 109, 111,
162, 172, 203, 204, 213

underestimation of uncertainty,
110

Hammerstein model, 428

HEPEX (Hydrologic Ensemble
Prediction Experiment), 400

heteroscedasticity, 410, 415, 425, 433,
434

Hidden Markov Model (HMM), 118,
121, 124

hierarchical model, 128

hydraulic models, 362, 264, 367, 507,
513, 527

hydraulic structures, 242

hydrodynamic model, 506, 512, 525,
545, 550

hydrograph, 257, 518, 532

hydrologic ensemble forecasting, 400

hydrologic uncertainties, 392, 399

hydrometric data, 238

hypothesis testing, 39, 88, 89

importance sampling, 78, 81

imprecise probabilities, 48

imputation, 144

index flood method, 171

indirect flood loss, 339–341

individual accepted risk, 287

infiltration, 237

info-gap theory, 51, 52, 54, 90, 156

initial conditions, 237, 387, 505, 507,
520, 545, 548

input errors, 91, 252

instability, 270

insurance, 7

intensity-duration-frequency
relationships, 113

curves, 114

inter-site correlation, 170, 177

interactions, 116, 125

interpolation, 105, 363, 368, 521

danger of, 105
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inundation, 255, 257, 263, 359, 506,
559, 560

inverse barometer, 541, 542
isostatic, 368

JERS-1, 250
joint probability, 18, 359, 367

Kalman Filter (KF), 409, 420, 422,
447, 451, 513

Kendall, Maurice, 157
kinematic flow, 237

L-moments, 162, 198, 204–207
Lancaster Real-Time Flood

Forecasting System, 411
land use planning, 5
lead time, 409, 411, 428, 437, 444,

503, 507, 508, 512, 515, 519,
523–527, 530, 554, 555

level II probabilistic calculation, 285
level III probabilistic methods, 283
LiDAR, 241, 242, 244, 364, 365
likelihood

function, 74, 122, 253, 528
informal weights, 50, 92
log-likelihood, 111
maximum, 162, 198, 204–207,

214, 215, 221, 227
penalised, 207
profile, 202, 205, 206, 222, 223
ratio statistic, 125
ratio test, 111

limit states, 270
limits of acceptability, 91, 92, 185
LISFLOOD, 29, 31
log-Lévy distribution, 134
logistic regression, 116
loss function, 70
loss of life, 336, 349, 350, 351, 354,

355

maintenance, 12
Markov chain

model for dependent extremes,
108

model for precipitation
occurrence, 115

Markov Chain Monte Carlo
(MCMC), 201, 204, 208, 209, 215

maximum likelihood estimation, 121
for extremes, 110

problems with, 131

MCM, 343, 344

measurement error, 167
Median Annual Maximum Rainfall

(RMED), 112
method of moments, 162

method of Morris, 375, 376, 380,
381

Middlesex University’s Flood Hazard
Research Centre, 336

missing data, 105, 118

mis-specified model, 122

model

boundary conditions, 510
cascade, 511, 525

error, 161, 376, 380

forecast, 504

good practice, 32

mis-specified, 122
model calibration, 68

rejection, 89

run-times, 476

structure, 507, 524–526
structural errors, 252

uncertainty, 143

models of everywhere, 41

MOGREPS (Met Office Global and
Regional Ensemble Prediction
System), 548, 556

moment scaling function, 135

monitoring network, design of, 103,
141

Monte Carlo, 162, 165, 176, 548

estimate, 368

sample, 367, 368
simulation, 78, 87, 283, 361

uncertainty analysis, 381

morphological change, 238

multi-attribute, 16
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Multi-Coloured Manuals (MCM), 336
multi-criteria approach, 16
multifractal, 136

process, 133
multi-model ensemble, 393
multiple imputation, 199
multi-scaling process, 133
Muskingum routing model, 413, 427

NaFRA (National Flood Risk
Assessment), 337–340, 342–344

Nash–Sutcliffe, 80
National Flood Forecasting System

(NFFS) UK, 414, 524
National Narew Park, 255–257
National Property Database (NPD),

339, 343
National Weather Service (US), 499,

500, 519
Navier–Stokes equations, 233
negative binomial, 216–218
Negative Weibull (EVIII), 203
nested models, 111
Net Present Value (NPV), 18
New Orleans, 8
Neyman–Scott model, 130

multi-site, 139
Noise Variance Ratio (NVR), 420
North Atlantic Oscillation, 116, 119
North Sea, 4, 357, 359, 538, 544, 555
numerical scheme, 237
Numerical Weather Prediction

(NWP), 469, 484, 508, 516, 519
ensemble rainfall forecasting, 491
ensemble rainfall forecasts, 484,

490
models, 240
multi-model ensemble, 482, 484
nowcasting, 469, 484

NUSAP (Numerical, Unit, Spread,
Assessment and Pedigree), 52, 53

objective function, 132
optimal, 133

Occam’s razor, 252
operational constraints, 474

operational hydrology, 393

opportuneness, 52

optimal design, 270
optimisation, 4, 12, 361

process, 291

overdispersion, 115

overtopping, 270, 359, 363, 538

paradigm, 4
parameter, 72, 360, 367, 505, 510,

524, 544, 545, 548
best value, 72

uncertainty, 104, 112, 121, 122,
138, 139, 143

bootstrap approach to, 122

for extremes, 109, 111
Pareto optimality, 180

particle filter, 412

Peaks-Over-Threshold (POT) series,
108, 160, 201, 202, 210, 211, 216

piping, 270

Poisson cluster models, 130, 136, 138
reproduction of extremes, 131,

132
reproduction of scaling

properties, 135
variants on, 131

Poisson distribution, 199, 202, 216,
217

pooling, 202, 214, 228

poor man’s ensemble, 522
possibilities

fuzzy, 49

posterior distribution, 78, 530

post-processing, 389, 401, 518, 532
precipitation, 372

convective, 141

daily, 115
data, 105, 141, 144

from climate model, 123

gamma distribution for, 116
measurement, 105

rainfall, 102

relevant duration, 102, 140

scaling relationships, 136
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seasonality in, 104, 115, 116, 126

spatial aggregation, 140

spatial structure, 141, 142

variability, 102, 104, 114, 121,
123, 126, 139, 141, 142

preprocessing, 389

Present Value of Damages (PVd), 345

prior information, 54

prior knowledge, 527

probabilistic

approach, 270

design, 270

hydrological forecasts, 397

inundation map, 482

optimisation, 290

probability

axioms, 69

calculation, 270

coherent, 70

conditional probability, 71

prognostic, 396

prognostic verification, 397

pumping stations, 17

quantile regression, 489

radar, 520

RADARSAT, 249

radial basis function (RBF), 438

rainfall, 359

rainfall-flow nonlinearity, 416

rainfall model, 182

rainfall-runoff models, 140, 180, 238,
240

rainfall-water level modelling, 412,
432–434, 436, 438, 444

random cascade, 133

bounded, 134

for multisite rainfall, 135

parameter estimation for, 135

range of uncertainty, 129

rating curve, 167, 238

real-time

flood forecasting, 407, 506, 543

flow forecasting, 407, 528

receptor and consequence, 339
recursive estimation

Gauss, K.F., 447, 450
recursive least squares, 449
regional climate model, 122, 372
regression, 504, 505
rejection sampling, 80
reliability, 156, 390, 396, 467

analysis, 270, 359, 364
reliable, 388
repeat-pass satellite radar

interferometry, 246, 250
resampling, 117, 381
resilience, 156
resolution, 12, 390, 397, 467, 522,

539, 543, 544, 548
response surface, 368, 381
response time, 507, 516, 524
return level, 109, 114

confidence interval for, 111
interpretation under climate

change, 111
uncertainty in, 112

return period, 4, 160, 363, 371, 372
Reynolds-Averaged Navier–Stokes

(RANS) equations, 233
Rhine basin, 507, 509, 532
risk

analysis, 7, 9, 12, 13, 17, 18, 21,
270, 358, 361, 368, 381

assessment, 12
averse, 15

risk communication, 11
Risk to Life model, 350–353
River Lugg, 162
River Severn, 525

flood forecasting, 429–431, 435,
437, 444

River Thames, 361, 367, 369, 555, 556
River Wye, 183
River Zelivka, 187
robustness, 13, 52, 373

analysis, 19

Sacramento, 156
safety factors, 5
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safety level, 271

Saint Venant equations, 26, 234, 235

sampling error, 161
satellite

images, 254

radar altimetry, 246, 247, 259
scaling relationships, 136

scenario analysis, 53, 54
screening method, 375

SDSM software package, 125

sea level rise, 358, 368, 380
seasonality, 116, 126

sensitivity analysis, 19, 262, 375,
377–381

sensitivity index, 377

sets of probability distributions, 19
settlement, 270

shallow water equation, 365

sharpness, 390, 467
single site, 203, 210, 211, 215

skew surge, 556, 557, 558
skill, 396

Sobol method, 262, 381

societal accepted risk, 287
socio-economic change, 7, 373

soft data, 251

S-P-R-C (Source, Pathway, Receptor
and Consequence) model, 335, 336,
339, 349

stage, 246, 247

stakeholders, 5, 9, 533
Stanford Watershed model, 26

State Dependent Parameter (SDP)
estimation, 417, 438, 439,
455–457

state updating, 507, 513

stationarity, 19, 253
statistical

analysis, 528

downscaling, 123
inference

for extremes, 110

Stochastic Transfer Function (STF),
415

subjective, 68

Surface Water Ocean Topography
(SWOT), 250

surge, 372

frequency, 369

model, 369

storm, 538, 539, 543, 553, 555

Synthetic Aperture Radar (SAR)
interferometry, 241, 248, 249, 252,
259

systematic errors, 76

systems analysis, 270

Taylor approximations, 162, 163, 173

Thames Barrier, 357, 359, 368, 374,
376, 557

Thames Estuary, 357, 358, 368, 372,
373, 380, 382, 545

2100 project, 358, 382

threshold exceedance, 550

tidal predictions, 539, 540, 553

tide gauge, 360, 540, 541, 550, 554,
555

TOPMODEL, 187

topographic data, 240, 241

total sensitivity index, 378

transfer functions, 408, 415–420, 426,
427, 432–436, 438, 451, 454–456

trend, 396

tuning, 72

turbulence, 130, 233, 243

turbulent kinetic energy, 237

Type I error, 39, 89

Type II error, 39, 42, 89

unbiased, 505

uncertainty, 236, 240, 244, 245, 262,
263, 270

aleatory, 19, 360

analysis, 358, 363, 372, 380,
381

communication, 32

epistemic, 19, 360

framework, 39
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