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Preface

Everyone loves to talk about big data, of course for various reasons. We got into that
discussion when it seemed that there is a serious problem that big data is throwing
down to the system, architecture, circuit and even device specialists. The problem is
of scale, of which everyday computing experts were not really aware of. The last big
wave of computing is driven by embedded systems and all the infotainment riding
on top of that. Suddenly, it seemed that people loved to push the envelope of data
and it does not stop growing at all.

According to a recent estimate done by Cisco
®

Visual Networking Index (VNI),
global IP traffic crossed the zettabyte threshold in 2016 and grows at a compound
annual growth rate of 22%. Now, zettabyte is 1018 bytes, which is something that
might not be easily appreciated. To give an everyday comparison, take this estimate.
The amount of data that is created and stored somewhere in the Internet is 70 times
that of the world’s largest library—Library of Congress in Washington DC, USA.
Big data is, therefore, an inevitable outcome of the technological progress of human
civilization. What lies beneath that humongous amount of information is, of course,
knowledge that could very much make or break business houses. No wonder that we
are now rolling out course curriculum to train data scientists, who are gearing more
than ever to look for a needle in the haystack, literally. The task is difficult, and here
enters the new breed of system designers, who might help to downsize the problem.

The designers’ perspectives that are trickling down from the big data received
considerable attention from top researchers across the world. Upfront, it is the
storage problem that had to be taken care of. Denser and faster memories are
very much needed, as ever. However, big data analytics cannot work on idle data.
Naturally, the next vision is to reexamine the existing hardware platform that
can support intensive data-oriented computing. At the same time, the analysis of
such a huge volume of data needs a scalable hardware solution for both big data
storage and processing, which is beyond the capability of pure software-based
data analytic solutions. The main bottleneck that appeared here is the same one,
known in computer architecture community for a while—memory wall. There is a
growing mismatch between the access speed and processing speed for data. This
disparity no doubt will affect the big data analytics the hardest. As such, one

v



vi Preface

needs to redesign an energy-efficient hardware platform for future big data-driven
computing. Fortunately, there are novel and promising researches that appeared in
this direction.

A big data-driven application also requires high bandwidth with maintained
low-power density. For example, Web-searching application involves crawling,
comparing, ranking, and paging of billions of Web pages or images with extensive
memory access. The microprocessor needs to process the stored data with intensive
memory access. The present data storage and processing hardware have well-known
bandwidth wall due to limited accessing bandwidth at I/Os, but also power wall due
to large leakage power in advanced CMOS technology when holding data by charge.
As such, a design of scalable energy-efficient big data analytic hardware is a highly
challenging problem. It reinforces well-known issues, like memory and power wall
that affects the smooth downscaling of current technology nodes. As a result, big
data analytics will have to look beyond the current solutions—across architectures,
circuits, and technologies—to address all the issues satisfactorily.

In this book, we attempt to give a glimpse of the things to come. A range
of solutions are appearing that will help a scalable hardware solution based on
the emerging technology (such as nonvolatile memory device) and architecture
(such as in-memory computing) with the correspondingly well-tuned data analytics
algorithm (such as machine learning). To provide a comprehensive overview in this
book, we divided the contents into three main parts as follows:

Part I: State-of-the-Art Architectures and Automation for Data Analytics
Part II: New Approaches and Applications for Data Analytics
Part III: Emerging Technology, Circuits, and Systems for Data Analytics

As such, this book aims to provide an insight of hardware designs that capture
the most advanced technological solutions to keep pace with the growing data and
support the major developments of big data analytics in the real world. Through
this book, we tried our best to justify different perspectives in the growing research
domain. Naturally, it would not be possible without the hard work from our excellent
contributors, who are well-established researchers in their respective domains. Their
chapters, containing state-of-the-art research, provide a wonderful perspective of
how the research is evolving and what practical results are to be expected in future.

Singapore Anupam Chattopadhyay
Chip Hong Chang

Hao Yu
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Chapter 1
Scaling the Java Virtual Machine
on a Many-Core System

Karthik Ganesan, Yao-Min Chen, and Xiaochen Pan

1.1 Introduction

Today, many big data applications use the Java SE platform [13], also called
Java Virtual Machine (JVM), as the run-time environment. Examples of such
applications include Hadoop Map Reduce [1], Apache Spark [3], and several graph
processing platforms [2, 11]. In this chapter, we call these applications the JVM
applications. Such applications can benefit from modern multicore servers with
large memory capacity and the memory bandwidth needed to access it. However,
with the enormous amount of data to process, it is still a challenging mission for
the JVM platform to scale well with respect to the needs of big data applications.
Since the JVM is a multithreaded application, one needs to ensure that the JVM
performance can scale well with the number of threads. Therefore, it is important to
understand and improve performance and scalability of JVM applications on these
multicore systems.

To be able to scale JVM applications most efficiently, the JVM and the various
libraries must be scalable across multiple cores/processors and be capable of
handling heap sizes that can potentially run into a few hundred gigabytes for some
applications. While such scaling can be achieved by scaling-out (multiple JVMs)
or scaling-up (single JVM), each approach has its own advantages, disadvantages,
and performance implications. Scaling-up, also known as vertical scaling, can be
very challenging compared to scaling-out (also known as horizontal scaling), but
also has a great potential to be resource efficient and opens up the possibility

K. Ganesan
Oracle Corporation, 5300 Riata Park Court Building A, Austin, TX 78727, USA
e-mail: karthik.ganesan@oracle.com
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4 K. Ganesan et al.

for features like multi-tenancy. If done correctly, scaling-up usually can achieve
higher CPU utilization, putting the servers operating in a more resource and energy
efficient state. In this work, we restrict ourselves to the challenges of scaling-up on
enterprise-grade systems to provide a focused scope. We elaborate on the various
performance bottlenecks that ensue when we try to scale up a single JVM to multiple
cores/processors, discuss the potential performance degradation that can come out
of these bottlenecks, provide solutions to alleviate these bottlenecks, and evaluate
their effectiveness using a representative Java workload.

To facilitate our performance study we have chosen a business analytics work-
load written in the Java language because Java is one of the most popular
programming languages with many existing applications built on it. Optimizing
JVM for a representative Java workload would benefit many JVM applications
running on the same platform. Towards this purpose, we have selected the LArge
Memory Business Data Analytics (LAMBDA) workload. It is derived from the
SPECjbb2013 benchmark,1;2 developed by Standard Performance Evaluation Cor-
poration (SPEC) to measure Java server performance based on the latest features
of Java [15]. It is a server side benchmark that models a world-wide supermarket
company with multiple point-of-sale stations, multiple suppliers, and a headquarter
office which manages customer data. The workload stores all its retail business data
in memory (Java heap) without interacting with an external database that stores data
on disks. For our study we modify the benchmark in such a way as to scale to very
large Java heaps (hundreds of GBs). We condition its run parameter setting so that
it will not suffer from an abnormal scaling issue due to inventory depletion.

As an example, Fig. 1.1 shows the throughput performance scaling on our
workload as we increase the number of SPARC T5 CPU cores from one to 16.3 By

0
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10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

Throughput Scaling over 16 Cores

Throughput scaling factor (measured) Throughput scaling factor (perfect scaling)

Fig. 1.1 Single JVM scaling on a SPARC T5 server, running the LAMBDA workload

1The use of SPECjbb2013 benchmark conforms to SPEC Fair Use Rule [16] for research use.
2The SPECjbb2013 benchmark has been retired by SPEC.
3Experimental setup for this study is described in Sect. 1.2.3.
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Fig. 1.2 Single JVM scaling on a SPARC M6 server with JDK8 Build 95

contrast, the top (“perfect scaling”) curve shows the ideal case where the throughput
increases linearly with the number of cores. In reality, there is likely certain system
level, OS, Java VM, or application bottleneck to prevent the applications from
scaling linearly. And quite often it is a combination of multiple factors that causes
the scaling to be non-linear. The main goal of the work described in this chapter is
to facilitate application scaling to be as close to linear as possible.

As an example of sub-optimal scaling, Fig. 1.2 shows the throughput perfor-
mance scaling on our workload as we increase the number of SPARC M6 CPU
nsockets from one to eight.4 There are eight processors (“sockets”) on an M6-8
server, and we can run the workload subject to using only the first N sockets. By
contrast, the top (“perfect scaling”) curve shows the ideal case where the throughput
increases linearly with the number of sockets. Below, we discuss briefly the common
factors that lead to sub-optimal scaling. We will expand on the key ideas later in this
chapter.

1. Sharing of data objects. When shared objects that are rarely written to are
cached locally, they have the potential to reduce space requirements and increase
efficiency. But, the same shared objects can become a bottleneck when being
frequently written to, incurring remote memory access latency in the order of
hundreds of CPU cycles. Here, a remote memory access can mean accessing the
memory not affined to the local CPU, as in a Non-Uniform Memory Access
(NUMA) system [5], or accessing a cache that is not affined to the local
core, in both cases resulting in a migratory data access pattern [8]. Localized
implementations of such shared data objects have proven to be very helpful in
improving scalability. A case study that we use to explain this is the concurrent
hash map initialization that uses a shared random seed to randomize the layout
of hash maps. This shared random seed object causes major synchronization
overhead when scaling an application like LAMBDA which creates many
transient hash maps.

4Experimental setup for this study is described in Sect. 1.2.3.
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2. Application and system software locks. On large systems with many cores, locks
in both user code and system libraries for serialized implementations can be
equally lethal in disrupting application scaling. Even standard system calls like
malloc in libc library tend to have serial portions which are protected by per-
process locks. When the same system call is invoked concurrently by multiple
threads of same process on a many-core system, these locks around serial por-
tions of implementation become a critical bottleneck. Special implementations of
memory allocator libraries like MT hot allocators [18] are available to alleviate
such bottlenecks.

3. Concurrency framework. Another major challenge involved in scaling is due
to inefficient implementations of concurrency frameworks and collection data
structures (e.g., concurrent hash maps) using low level Java concurrency control
constructs. Utilizing concurrency utilities like JSR166 [10] that provide high
quality scalable implementations of concurrent collections and frameworks has a
significant potential to improve scalability of applications. One such example is
performance improvement of 57% for a workload like LAMBDA derived out of
a standard benchmark when using JSR166.

4. Garbage collection. As a many-core system is often provisioned with a propor-
tionally large amount of memory, another major challenge in scaling a single
JVM on a large enterprise system involves efficiently scaling the Garbage
Collection (GC) algorithm to handle huge heap sizes. From our experience,
garbage collection pause times (stop-the-world young generation collections) can
have a significant effect on the response time of application transactions. These
pause times typically tend to be proportional to the nursery size of the Java
heap. To reduce the pause times, one solution is to eliminate serial portions of
GC phases, parallelizing them to remove such bottlenecks. One such case study
includes improvements to the G1 GC [6] to handle large heaps and a parallelized
implementation of “Free Cset” phase of G1, which has the potential to improve
the throughput and response time on a large SPARC system.

5. NUMA. The time spent collecting garbage can be compounded due to remote
memory accesses on a NUMA based system if the GC algorithm is oblivious
to the NUMA characteristics of the system. Within a processor, some cache
memories closest to the core can have lower memory access latencies compared
to others and similarly across processors of a large enterprise system, some
memory banks that are closest to the processor can have lower access latencies
compared to remote memory banks. Thus, incorporating the NUMA awareness
into the GC algorithm can potentially improve scalability. Most of the scaling
bottlenecks that arise out of locks on a large system also tend to become worse
on NUMA systems as most of the memory accesses to lock variables end up
being remote memory accesses.

The different scalability optimizations discussed in this chapter are accomplished
by improving the system software like the Operating System or the Java Virtual
Machine instead of changing the application code. The rest of the chapter is
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organized as follows: Sect. 1.2 provides the background including the methodolo-
gies and tools used in the study and the experimental setup. Section 1.3 addresses
the sharing of data objects. Section 1.4 describes the scaling of memory allocators.
Section 1.5 expounds on the effective usage of concurrency API. Section 1.6
elaborates on scalable Garbage Collection. Section 1.7 discusses scalability issues
in NUMA systems and Sect. 1.8 concludes with future directions.

1.2 Background

The scaling study is often an iterative process as shown in Fig. 1.3. Each iteration
consists of four phases: workload characterization, bottleneck identification, per-
formance optimization, and performance evaluation. The goal of each iteration is
to remove one or more performance bottlenecks to improve performance. It is an
iterative process because a bottleneck may hide other performance issues. When
the bottleneck is removed, performance scaling may still be limited by another
bottleneck or improvement opportunities which were previously overshadowed by
the removed bottleneck.

1. Workload characterization. Each iteration starts with characterization using
a representative workload. Section 1.2.1 describes selecting a representative
workload for this purpose. During workload characterization, performance tools
are used in monitoring and capturing key run-time status information and
statistics. Performance tools will be described in more detail in Sect. 1.2.2. The
result of the characterization is a collection of profiles that can be used in the
bottleneck identification phase.

2. Bottleneck identification. This phase typically involves modeling, hypothesis
testing, and empirical analysis. Here, a bottleneck refers to the cause, or limiting
factor, for sub-optimal scaling. The bottleneck often points to, but is not limited
to, inefficient process, thread or task synchronization, an inferior algorithm or
sub-optimal design and code implementation.

3. Performance optimization. Once a bottleneck is identified in the previous phase,
in the current phase we try to work out an alternative design or implementation to
alleviate the bottleneck. Several possible implementations may be proposed and
a comparative study can be conducted to select the best alternative. This phase
itself can be an iterative process where several alternatives are evaluated either
through analysis or through actual prototyping and subsequent testing.

Workload
Characterizat�on

Bo�leneck
Ident�f�cat�on

Performance 
Opt�mizat�on

Performance 
Evaluat�onApps Opt�mized

Performance

Fig. 1.3 Iterative process for performance scaling: (1) workload characterization, (2) bottleneck
identification, (3) performance optimization, and (4) performance evaluation
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4. Performance evaluation. With the implementation from the performance opti-
mization work in the previous phase, we evaluate whether the performance
scaling goal is achieved. If the goal is not yet reached even with the current
optimization, we go back to the workload characterization phase and start another
iteration.

At each iteration, Amdahl’s law [9] is put to practice in the following sense.
The goal of many-core scaling is to minimize the serial portion of the execution
and maximize the degree of parallelism (DOP) whenever parallel execution is
possible. For applications running on enterprise servers, the problem can be solved
by resolving issues in the hardware and the software levels. At the hardware level,
multiple hardware threads can share an execution pipeline and when a thread is
stalled from loading data from memory, other threads can proceed with useful
instruction execution in the pipeline. Similarly, at the software level, multiple
software threads are mapped to these hardware threads by the operating system in a
time-shared fashion. To achieve maximum efficiency, sufficient number of software
threads or processes are needed to keep feeding sequences of instructions to ensure
that the processing pipelines are busy. A software thread or process being blocked
(such as when waiting for a lock) can lead to reduction in parallelism. Similarly,
shared hardware resources can potentially reduce parallelism in execution due to
hardware constraints. While the problem, as defined above, consists of software-
level and hardware-level issues, in this chapter we focus on the software-level issues
and consider the hardware micro-architecture as a given constraint to our solution
space.

The iterative process continues until the performance scaling goal is reached or
adjusted to reflect what is actually feasible.

1.2.1 Workload Selection

In order to expose effectively the scaling bottlenecks of Java libraries and the JVM,
one needs to use a Java workload that can scale to multiple processors and large
heap sizes from within a single JVM without any inherent scaling problems in the
application design. It is also desirable to use a workload that is sensitive to GC
pause times as the garbage collector is one of the components that is most difficult
to scale when it comes to using large heap sizes and multiple processors. We have
found the LAMBDA workload quite suitable for this investigation. The workload
implements a usage model based on a world-wide supermarket company with an
IT infrastructure that handles a mix of point-of-sale requests, online purchases,
and data-mining operations. It exercises modern Java features and other important
performance elements, including the latest data formats (XML), communication
using compression, and messaging with security. It utilizes features such as the
fork-join pool framework and concurrent hash maps, and is very effective in
exercising JVM components such as Garbage Collector by tracking response times
as small as 10 ms in granularity. It also provides support for virtualization and cloud
environments.
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The workload is designed to be inherently scalable, both horizontally and
vertically using the run modes called multi-JVM and composite modes respectively.
It contains various aspects of e-commerce software, yet no database system is
used. As a result, the benchmark is very easy to install and use. The workload
produces two final performance metrics: maximum throughput (operations per
second) and weighted throughput (operations per second) under response time
constraint. Maximum throughput is defined as the maximum achievable injection
rate on the System under Test (SUT) until it becomes unsettled. Similarly weighted
throughput is defined as the geometric mean of maximum achievable Injection Rates
(IR) for a set of response time Service Level Agreements (SLAs) of 10, 50, 100,
200, and 500 ms using the 99th percentile data. The maximum throughput metric is a
good measurement of maximum processing capacity, while the weighted throughput
gives good indication of the responsiveness of the application running on a server.

1.2.2 Performance Analysis Tools

To study application performance scaling, performance observability tools are
needed to illustrate what happens inside a system when running a workload. The
performance tools used for our study include Java GC logs, Solaris operating
system utilities including cpustat, prstat, mpstat, lockstat, and the Solaris Studio
Performance Analyzer.

1. GC logs. The logs are very vital in understanding the time spent in garbage
collection, allowing us to specify correctly JVM settings targeting the most
efficient way to run the workload achieving the least overhead from GC pauses
when scaling to multiple cores/processors. An example segment is shown in
Fig. 1.4, for the G1 GC [6]. There, we see the breakdown of a stop-the-world
(STW) GC event that lasts 0.369 s. The total pause time is divided into four parts:
Parallel Time, Code Root Fixup, Clear, and Other. The parallel time represents
the time spent in the parallel processing by the 25 GC worker threads. The other
parts comprise the serial phase of the STW pause. As seen in the example,
Parallel Time and Other are further divided into subcomponents, for which
statistics are reported. At the end of the log, we also see the heap occupancy
changes from 50.2 GB to 3223 MB. The last line describes that the total user
time spent by all GC threads consists of 8.10 s in user land and 0.01 s in the
system (kernel), while the elapsed real time is 0.37 s.

2. cpustat. The Solaris cpustat [12] utility on SPARC uses hardware counters to
provide hardware level profiling information such as cache miss rates, accesses
to local/remote memory, and memory bandwidth used. These statistics are
invaluable in identifying bottlenecks in the system and ensure that we use the
system to the fullest potential. Cpustat provides critical information such as
system utilization in terms of cycles per instruction (CPI) and its reciprocal
instructions per cycle (IPC) statistics, instruction mix, branch prediction related
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Fig. 1.4 Example of a segment in the Garbage Collector (GC) log showing (1) total GC pause
time; (2) time spent in the parallel phase and the number GC worker threads; (3) amounts of time
spent in the Code Root Fixup and Clear CT, respectively; (4) amount of time spent in the other part
of serial phase; and (5) reduction in heap occupancy due to the GC

Fig. 1.5 An example of cpustat output that shows utilization related statistics. In the figure, we
only show the System Utilization section, where CPI, IPC, and Core Utilization are reported

statistics, cache and TLB miss rates, and other memory hierarchy related statis-
tics. Figure 1.5 shows a partial cpustat output that provides system utilization
related statistics.

3. prstat and mpstat. Solaris prstat and mpstat utilities [12] provide resource
utilization and context switch information dynamically to identify phase behavior
and time spent in system calls in the workload. This information is very useful
in finding bottlenecks in the operating system. Figures 1.6 and 1.7 are examples
of a prstat and mpstat output, respectively. The prstat utility looks at resource
usage from the process point of view. In Fig. 1.6, it shows that at time instant
2:13:11 the JVM process, with process ID 1472, uses 63 GB of memory, 90%
of CPU, and 799 threads while running the workload. However, at time 2:24:33,
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Fig. 1.6 An example of prstat output that shows dynamic process resource usage information. In
(a), the JVM process (PID 1472) is on cpu4 and uses 90% of the CPU. By contrast, in (b) the
process goes into GC and uses 5.8% of cpu2

Fig. 1.7 An example of mpstat output. In (a) we show the dynamic system activities when the
processor set (ID 0) is busy. In (b) we show the activities when the processor set is fairly idle

the same process has gone into the garbage collection phase, resulting in CPU
usage dropped to 5.8% and the number of threads reduced to 475. By contrast,
rather than looking at a process, mpstat takes the view from a vCPU (hardware
thread) or a set of vCPUs. In Fig. 1.7 the dynamic resource utilization and
system activities of a “processor set” is shown. The processor set, with ID
0, consists of 64 vCPUs. The statistics are taken during a sampling interval,
typically one second or 5 s. One can contrast the difference in system activities
and resource usage taken during a normal running phase (Fig. 1.7a) and during a
GC phase (Fig. 1.7b).

4. lockstat and plockstat. Lockstat [12] helps us to identify the time spent spinning
on system locks and plockstat [12] provides the same information regarding
user locks enabling us to understand the scaling overhead that is coming out of
spinning on locks. The plockstat utility provides information in three categories:
mutex block, mutex spin, and mutex unsuccessful spin. For each category it lists
the time (in nanoseconds) in descending order of the locks. Therefore, on the
top of the list is the lock that consumes the most time. Figure 1.8 shows an
example of plockstat output, where we only extract the lock on the top from
each category. For the mutex block category, the lock at address 0x10015ef00
was called 19 times during the capturing interval (1 s for this example). It was
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Fig. 1.8 An example of plockstat output, where we show the statistics from three types of locks

called by “libumem.so.1‘umem_cache_alloc+0x50” and consumed 66258 ns of
CPU time. The locks in the other categories, mutex spin and mutex unsuccessful
spin, can be understood similarly.

5. Solaris studio performance analyzer. Lastly, Solaris Studio Performance Ana-
lyzer [14] provides insights into program execution by showing the most
frequently executed functions, caller-callee information along with a timeline
view of the dynamic events in the execution. This information about the code
is also augmented with hardware counter based profiling information helping
to identify bottlenecks in the code. In Fig. 1.9, we show a profile taken while
running the LAMBDA workload. From the profile we can identify hot methods
that use a lot of CPU time. The hot methods can be further analyzed using the
call tree graph, such as the example shown in Fig. 1.10.

1.2.3 Experimental Setup

Two hardware platforms are used in our study. The first is a two-socket system
based on the SPARC T5 [7] processor (Fig. 1.11), the fifth generation multicore
microprocessor of Oracle’s SPARC T-Series family. The processor has a clock
frequency of 3.6 GHz, 8 MB of shared last level (L3) cache, and 16 cores where
each core has eight hardware threads, providing a total of 128 hardware threads,
also known as virtual CPUs (vCPUs), per processor. The SPARC T5-2 system used
in our study has two SPARC T5 processors, giving a total of 256 vCPUs available
for application use. The SPARC T5-2 server runs Solaris 11 as its operating system.
Solaris provides a configuration utility (“psrset”) to condition an application to use
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Fig. 1.9 An example of Oracle Solaris Studio Performer Analyzer profile, where we show the
methods ranked by exclusive cpu time

Fig. 1.10 An example of Oracle Solaris Studio Performer Analyzer call tree graph

only a subset of vCPUs. Our experimental setup includes running the LAMBDA
workload on configurations of 1 core (8 vCPUs), 2 cores (16 vCPUs), 4 cores (32
vCPUs), 8 cores (64 vCPUs), 1 socket (16 cores/128 vCPUs), and 2 sockets (32
cores/256 vCPUs).

The second hardware platform is an eight-socket SPARC M6-8 system that is
based on the SPARC M6 [17] processor (Fig. 1.12). The SPARC M6 processor has
a clock frequency of 3.6 GHz, 48 MB of L3 cache, and 12 cores. Same as SPARC
T5, each M6 core has eight hardware threads. This gives a total of 96 vCPUs per



14 K. Ganesan et al.

Fig. 1.11 SPARC T5
processor [7]

Fig. 1.12 SPARC M6 processor [17]

processor socket, for a total of 768 vCPUs for the full M6-8 system. The SPARC
M6-8 server runs Solaris 11. Our setup includes running the LAMBDA workload on
configurations of 1 socket (12 cores/96 vCPUs), 2 sockets (24 cores/192 vCPUs), 4
sockets (48 cores/384 vCPUs), and 8 sockets (96 cores/384 vCPUs).

Several JDK versions have been used in the study. We will call out the specific
versions in the sections to follow.
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1.3 Thread-Local Data Objects

A globally shared data object when protected by locks on the critical path of
application leads to the serial part of Amdahl’s law. This causes less than perfect
scaling. To improve degree of parallelism, the strategy is to “unshare” such data
objects that cannot be efficiently shared. Whenever possible, we try to use data
objects that are local to the thread, and not shared with other threads. This can be
more subtle than it sounds, as the following case study demonstrates.

Hash map is a frequently used data structure in Java programming. To minimize
the probability of collision in hashing, JDK 7u6 introduced an alternative hash map
implementation that adds randomness in the initiation of each HashMap object.
More precisely, the alternative hashing introduced in JDK 7u6 includes a feature
to randomize the layout of individual map instances. This is accomplished by
generating a random mask value per hash map. However, the implementation in JDK
7u6 uses a shared random seed to randomize the layout of hash maps. This shared
random seed object causes significant synchronization overhead when scaling an
application like LAMBDA which creates many transient hash maps during the run.
Using Solaris Studio Analyzer profiles, we observed that for an experiment run
with 48 cores of M6, CPUs were saturated and 97% of CPU time was spent in the
java.util.Random.nextInt() function achieving less than 15% of the system’s pro-
jected performance. The problem came out of java.util.Random.nextInt() updating
global state, causing synchronization overhead as shown in Fig. 1.13.

Fig. 1.13 Scaling bottleneck due to java.util.Random.nextInt
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Fig. 1.14 LAMBDA Scaling with ThreadLocalRandom on M6 platform

The OpenJDK bug JDK-8006593 tracks the aforementioned issue and uses a
thread-local random number generator, ThreadLocalRandom to resolve the prob-
lem, thereby eliminating the synchronization overhead and improving performance
of the LAMBDA workload significantly. When using the ThreadLocalRandom
class, a generated random number is isolated to the current thread. In particular,
the random number generator is initialized with an internally generated seed.
In Fig. 1.14, we can see that the 1-to-4 processor scaling improved significantly
from a scaling factor of 1.83 (when using java.util.Random) to 3.61 (when using
java.util.concurrent.ThreadLocalRandom). The same performance fix improves the
performance of a 96-core 8-processor large M6 system by 4.26 times.

1.4 Memory Allocators

Many in-memory business data analytics applications allocate and deallocate
memory frequently. While Java uses an internal heap and most of the allocations
happen within this heap, there are components of applications that end up allocating
outside the Java heap using native memory allocators provided by the operating
system. One such commonly seen component would be native code, which are
code parts written specific to a hardware and operating system platform accessed
using the Java Native Interface. Native code uses system malloc() to dynamically
allocate memory. Many business analytics applications use crypto functionality for
security purposes and most of the implementations for crypto functions are hand
optimized native code which allocates memory outside the Java heap. Similarly,
network I/O components are also frequently implemented to allocate and access
memory outside the Java heap. In business analytics applications, we see many such
crypto and network I/O functions used regularly resulting in calls to the OS system
call malloc() from within the JVM.

Most modern operating systems, like Solaris, have a heap segment, which allows
for dynamic allocation of space during run time using system calls such as malloc().
When such a previously allocated object is deallocated, the space used by the object
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can be reused. For the most efficient allocation and reuse of space, the solution is
to maintain a heap inventory (alloc/free list) stored in a set of data structures in
the process address space. In this way, calling free() does not return the memory
back to the system; it is put in the free-list. The traditional implementation (such
as the default memory allocator in libc) protects the entire inventory using a single
per-process lock. Calls to memory allocation and de-allocation routines manipulate
this set of data structures while holding the lock. This single lock causes a potential
performance bottleneck when we scale a single JVM to a large number of cores
and the target Java application has malloc() calls from components like network
I/O or crypto. When we profiled the LAMBDA workload using Solaris Studio
Analyzer, we found that the malloc() calls were showing higher than expected CPU
time. A further investigation using the lockstat and plockstat tools revealed a highly
contended lock called the depot lock. The depot lock protects the heap inventory
of free pages. This motivated us to explore scalable implementations of memory
allocators.

A set of newer memory allocators, called Multi-Thread (MT) Hot allocators [18],
partition the inventory and the associated locks into arrays to reduce the contention
on the inventory. A value derived from the caller’s CPU ID is used as an index into
the array. It is worth noting that a slight side effect of this approach is that it can
cause more memory usage. This happens because instead of a single free-list of
memory, we now have a disjoint set of free-lists. This tends to require more space
since we will have to ensure each free-list has sufficient memory to avoid run-time
allocation failures.

The libumem [4] memory allocator is an MT-Hot allocator included in Solaris.
To evaluate the improvement from this allocator, we use the LD_PRELOAD
environment variable to preload this library, there by malloc() implementation in this
library is used over the default implementation in the libc library. The improvement
in performance seen when using libumem over libc is shown in Fig. 1.15. With
the MT-hot allocator, the performance in terms of throughput increases by 106%,
213%, and 478% for 8-core (half processor), 16-core (1 processor), and 32-core
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Fig. 1.15 LAMBDA workload throughput improvement with MT-hot alloc over libc malloc() on
T5-2
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(2 processors) configurations, respectively, on T5-2 in comparison to malloc() in
libc. Note that while JVM uses mmap(), instead of malloc(), for allocation of its
garbage-collectable heap region, the JNI part of JVM does use malloc(), especially
for the crypto and security related processing. The workload LAMBDA has a
significant part of operation in crypto and security, so the effect of MT Hot allocator
is quite significant. After switching to an MT-Hot allocator, the hottest observed
lock “depot lock” in the memory allocator disappeared and reduced the time spent
in locks by a factor of 21. This confirmed the necessity of an MT-Hot memory
allocator for successful scaling.

1.5 Java Concurrency API

Ever since JDK 1.2, Java has included a standard set of collection classes called
the Java collections framework. A collection is an object that represents a group
of objects. Some of the fundamental and popularly used collections are dynamic
arrays, linked lists, trees, queues, and hashtables. The collections framework is
a unified architecture that enables storage and manipulation of the collections in
a standard way, independent of underlying implementation details. Some of the
benefits of the collections framework include reduced programming effort by pro-
viding data structures and algorithms for programmers to use, increased quality from
high performance implementation and enabling reusability and interoperability. The
collection framework is used extensively in almost every Java program these days.
While these pre-implemented collections make the job of writing single threaded
application so much easier, writing concurrent multithreaded programs is still a
difficult job. Java provided low level threading primitives such as synchronized
blocks, Object.wait and Object.notify, but these were too fine grained facilities
forcing programmers to implement high level concurrency primitives, which are
tediously hard to implement correctly and often were non-performant.

Later, a concurrency package, comprising several concurrency primitives and
many collection-related classes, as part of the JSR 166 [10] library, was devel-
oped. The library was aimed at providing high quality implementation of classes
to include atomic variables, special-purpose locks, barriers, semaphores, high
performant threading utilities like thread pools and various core collections like
queues and hashmaps designed and optimized for multithreaded programming. The
concurrency APIs developed by the JSR 166 working group were included as part
of the JDK 5.0. Since then both Java SE 6 and Java SE 7 releases introduced
updated versions of the JSR 166 APIs as well as several new additional APIs.
Availability of this library relieves the programmer from redundantly crafting these
utilities by hand, similar to what the collections framework did for data structures.
Our early evaluation of Java SE 7 found a major challenge in scaling from the
implementations of concurrent collection data structures (such as concurrent hash
maps) using low level Java concurrency control constructs. We explored utilizing
concurrency utilities from JSR 166, leveraging the scalable implementations of
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concurrent collections and frameworks and saw very significant improvement in the
scalability of applications. Specifically, the LAMBDA workload code uses the Java
class java.util.concurrent.ConcurrentHashMap. The efficiency of its underlying
implementation affects performance quite significantly. For example, comparing the
ConcurrentHashMap implementation of JDK8 over JDK7, there is an improvement
of about 57% in throughput due to the improved JSR 166 implementation.

1.6 Garbage Collection

Automatic Garbage Collection (GC) is the cornerstone of memory management
in Java enabling developers to allocate new objects without worrying about deal-
location. The Garbage Collector reclaims memory for reuse ensuring that there
are no memory leaks and also provides security from vulnerabilities in terms of
memory safety. But, automatic garbage collection comes at a small performance
cost for resolving these memory management issues. It is an important aspect of
real world enterprise application performance, as GC pause times translate into
unresponsiveness of an application. Shorter GC pauses will help the applications
to meet more stringent response time requirements. When heap sizes run into a few
hundred gigabytes on contemporary many-core servers, achieving low pause times
require the GC algorithm to scale efficiently with the number of cores. Even when
an application and the various dependent libraries are ensured to scale well without
any bottlenecks, it is important that the GC algorithm also scales well to achieve
scalable performance.

It may be intuitive to think that the garbage collector will identify and eliminate
dead objects. But, in reality it is more appropriate to say that the garbage collector
rather tracks the various live objects and copies them out, so that the remaining
space can be reclaimed. The reason that such an implementation is preferred in
the modern collectors is that, most of the objects die young and it is much faster
to copy the fewer remaining live objects out than tracking and reclaiming the
space of each of the dead objects. This will also give us a chance to compact the
remaining live objects ensuring a defragmented memory. Modern garbage collectors
have a generational approach to this problem, maintaining two or more allocation
regions (generations) with objects grouped into these regions based on their age. For
example, the G1 GC [6] reduces heap fragmentation by incremental parallel copying
of live objects from one or more sets of regions (called Collection Set or CSet in
short) into different new region(s) to achieve compaction. The G1 GC [6] tracks
references into regions using independent Remembered Sets (RSets). These RSets
enable parallel and independent collection of these regions because each region’s
RSet can be scanned independently for references into that region as opposed to
scanning the entire heap. The G1 GC has a multiphase complex algorithm that has
both parallel and serial code components contributing to Stop The World (STW)
evacuation pauses and concurrent collection cycles.
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With respect to the LAMBDA workload, pauses due to GC directly affect the
response time metric monitored by the benchmark. If the GC algorithm does not
scale well, long pauses will exceed the latency requirements of the benchmark
resulting in lower throughput. In our experiments with monitoring the LAMBDA
workload on an M6 server, we had some interesting observations. While at the
regular throughput phase of the benchmark run, the system CPUs were fully utilized
almost at 100%. By contrast, there was much more CPU headroom (75%) during a
GC phase, hinting at possible serial bottlenecks in Garbage Collection. By collecting
and analyzing code profiles using Solaris Studio Analyzer, the time the worker
threads of the LAMBDA workload spend waiting on conditional variables increase
from 3%, for a 12-core (single-processor) run, to to 16%, for a 96-core (8-processor)
run on M6. This time was mostly spent in lwp_cond_wait() waiting for the young
generation stop-the-world garbage collection, observed to be in sync with the
GC events based on a visual timeline review of Studio Analyzer profiles. Further
the call stack of the worker threads consists of the SafepointSynchronize::block()
function consuming 72% of time clearly pointing at the scalability issue in garbage
collection.

G1 GC [6] provides a breakdown of the time spent in various phases to the user
via verbose GC logs. Analyzing these logs pointed to a major serial component
“Free Cset,” for which the processing time was proportional to the size of the heap
(mainly the nursery component responsible for the storage of the young objects).
This particular phase of the GC algorithm was not parallelized and some of the
considerations included the cost involved in thread creation for parallel execution.
While thread creation may be a major overhead and an overkill for small heaps,
such a cost can be amortized if the heap size is large and running into hundreds
of gigabytes. A parallelized implementation of the “Free Cset” phase was created
for testing purposes as part of the JDK bug JDK-8034842. We noticed that this
parallelized implementation for the “Free Cset” phase of G1 GC provided major
reduction in pause times for this phase for the LAMBDA workload. The pause times
for this phase went down from 230 ms to 37 ms for scaled runs on 8 processors (96
cores) of M6. The ongoing work in fully parallelizing the FreeCset phase is tracked
in the JDK bug report JDK-8034842. Also, we observed that a major part of the
scaling overhead that came out of garbage collection on large many-core systems
was from accesses to remote memory banks in a Non-Uniform Memory Access
(NUMA) system. We examine this impact further in the following subsection.

1.7 Non-uniform Memory Access (NUMA)

Most of the modern many-core systems are shared memory systems that have Non-
Uniform Memory Access (NUMA) latencies. Modern operating systems like Solaris
have memory (DRAM, cache) banks and CPUs classified into a hierarchy of locality
groups (lgroup). Each lgroup includes a set of CPU and memory banks, where the
leaf lgroups include the CPUs and memory banks that are closest to each other in
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Fig. 1.16 Machine with
single latency is represented
by only one lgroup

Fig. 1.17 Machine with multiple latency is represented by multiple lgroups

terms of access latency, with the hierarchy being organized similarly up to the root.
Figure 1.16 shows a typical system with a single memory latency, represented by
one lgroup. Figure 1.17 shows a system with multiple memory latencies, represented
by multiple lgroups. In this organization, the CPUs 1–3 belong to lgroup1 and will
have the least latency to access Memory I. Similarly, CPUs 4–6 to Memory II, CPUs
7–9 to Memory III, and CPUs 10–12 to Memory IV will have the least local access
latencies. When a CPU accesses a memory location that is outside its local lgroup,
a longer remote memory access latency will be incurred.

In systems with multiple lgroups, it would be most desirable to have the data
that is being accessed by the CPUs in their nearest lgroups, thus incurring shortest
access latencies. Due to high remote memory access latency, it is very important
that the operating system be aware of the NUMA characteristics of the underlying
hardware. Additionally, it is a major value add if the Garbage Collector in the Java
Virtual Machine is also engineered to take these characteristics into account. For
example, the initial allocation of space for each thread can be made so that it is
in the same lgroup as that of the CPU on which the thread is running. Secondly,
the GC algorithm can also make sure that when data is compacted or copied from
one generation to another, some preference can be given to ensure that the data
is not copied to a remote lgroup with respect to the thread that is most frequently
accessing the data. This will enable easier scaling across multiple cores and multiple
processors of large enterprise systems.
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To understand the impact of remote memory accesses on the performance of
garbage collector and the application, we profiled the LAMBDA workload with the
help of pmap and Solaris tools cpustat and busstat, breaking down the distribution
of heap/stack to various lgroups. The Solaris tool pmap provides a snapshot of
process data at a given point of time in terms of the number of pages, size of pages,
and the lgroup in which the pages are resident. This can be used to get a spatial
breakdown of the Java heap to various lgroups. The utility cpustat on SPARC uses
hardware counters to provide hardware level profiling information such as cache
miss rates and access latencies to local and remote memory banks. Similarly, the
busstat utility provides memory bandwidth usage information, again broken down at
memory bank/lgroup granularity. Our initial set of observations using pmap showed
that the heap was not distributed uniformly across the different lgroups and that a
few lgroups were used more frequently than the rest. Cpustat and bustat information
corroborated this observation, showing high access latencies and bandwidth usage
for these stressed set of lgroups.

To alleviate this, we tried using key JVM flags which provide hints to the
GC algorithm about memory locality. First, we found that the usage of the flag
-XX:+UseNUMAInterleaving can be indispensable in hinting to the JVM to dis-
tribute the heap equally across different lgroups and avoid bottlenecks that will arise
from data being concentrated on a few lgroups. While -XX:+UseNUMAInterleaving
will only avoid concentration of data in particular banks, flags like -XX:+UseNUMA
when used with Parallel Old Garbage Collector have the potential to tailor the
algorithm to be aware of NUMA characteristics and increase locality. Further, oper-
ating system flags like lpg_alloc_prefer in Solaris 11 and lgrp_mem_pset_aware
in Solaris 12, when set to true, hint to the OS to allocate large pages in the local
lgroup rather than allocating them in a remote lgroup. This can be very effective
in improving memory locality in scaled runs. The lpg_alloc_prefer flag, when set
to true can increase the throughput of the LAMBDA workload by about 65% on
the M6 platform, showing the importance of data locality. While ParallelOld is an
effective stop-the-world collector, concurrent garbage collectors like CMS and G1
GC [6] are most useful in real world response time critical application deployments.
The enhancement requests that track the implementation of NUMA awareness into
G1 GC and CMS GC are JDK-7005859 and JDK-6468290.

1.8 Conclusion and Future Directions

We present an iterative process for performance scaling JVM applications on
many-core enterprise servers. This process consists of workload characterization,
bottleneck identification, performance optimization, and performance evaluation in
each iteration. As part of workload characterization, we first provide an overview
of the various tools that are provided as part of modern operating systems most
useful to profile the execution of workloads. We use a data analytics workload,
LAMBDA as an example to explain the process of performance scaling. We identify
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various bottlenecks in scaling this application such as synchronization overhead
due to shared objects, serial resource bottleneck in memory allocation, lack of
usage of high level concurrency primitives, serial implementations of Garbage
Collection phases, and uneven distribution of heap on a NUMA machine oblivious
to the NUMA characteristics by using the profiled data. We further discuss in
depth the root cause of each bottleneck and present solutions to address them.
These solutions include unsharing of shared objects, usage of multicore friendly
allocators such as MT-Hot allocators, high performance concurrency constructs as
in JSR166, parallelized implementation of Garbage Collection phases, and NUMA
aware garbage collection. Taken together, the overall improvement for the proposed
solutions is more than 16 times on an M6-8 server for the LAMBDA workload in
terms of maximum throughput.

Future directions include hardware accelerations to address scaling bottlenecks,
increased emphasis on the response time metric where GC performance and
scalability will be a key factor, and horizontal scaling aspects of big data analytics
where disk and network I/O will play crucial roles.
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Chapter 2
Accelerating Data Analytics Kernels
with Heterogeneous Computing

Guanwen Zhong, Alok Prakash�, and Tulika Mitra

2.1 Introduction

The past decade has witnessed an unprecedented and exponential growth in the
amount of data being produced, stored, transported, processed, and displayed. The
journey of zettabyte of data from the myriad of end-user devices in the form of
PCs, tablets, smart phones through the ubiquitous wired/wireless communication
infrastructure to the enormous data centers forms the backbone of computing today.
Efficient processing of this huge amount of data is of paramount importance. The
underlying computing platform architecture plays a critical role in enabling efficient
data analytics solutions.

Computing systems made an irreversible transition towards multi-core archi-
tectures in early 2000. As of now, homogeneous multi-cores are prevalent in all
computing systems starting from smart phones to PCs to enterprise servers. Unfor-
tunately, homogeneous multi-cores cannot provide the desired performance and
energy-efficiency for diverse application domains. A promising alternative design
is heterogeneous multi-core architecture where cores with different functional
characteristics (CPU, GPU, FPGA, etc.) and/or performance-energy characteristics
(simple versus complex micro-architecture) co-exist on the same die or in the same
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system. Given an application, only the cores that best fit the application can be
exploited leading to faster and power-efficient computing.

Another reason behind the emergence of the heterogeneous computing is the
thermal design power constraint [14, 24, 25, 28, 31–33]. While the number of cores
on die continues to increase due to Moore’s Law [23], the failure of Dennard
scaling [11] has led to rising power density that forces a significant fraction of
the cores to be kept powered down at any point in time. This phenomenon, known
as the “Dark Silicon” [12], provides opportunities for heterogeneous computing as
only the appropriate cores need to switch on for efficient processing under thermal
constraints.

Heterogeneous computing architectures can be broadly classified into two
categories: performance heterogeneity and functional heterogeneity. Performance
heterogeneous multi-core architectures consist of cores with different power-
performance characteristics but all sharing the same instruction-set architecture.
The difference stems from distinct micro-architectural features such as in-order
core versus out-of-order core. The complex cores can provide better performance
at the cost of higher power consumption, while the simpler cores exhibit low-
power behavior alongside lower performance. This is also known as single-ISA
heterogeneous multi-core architecture [18] or asymmetric multi-core architecture.
The advantage of this approach is that the same binary executable can run on
all different core types depending on the context and no additional programming
effort is required. Examples of commercial performance heterogeneous multi-cores
include ARM big.LITTLE [13] integrating high-performance out-of-order cores
with low-power in-order cores, nVidia Kal-El (brand name Tegra3) [26] consisting
of four high-performance cores with one low-power core, and more recently
Wearable Processing Unit (WPU) from Ineda consisting of cores with varying
power-performance characteristics [16]. An instance of the ARM big.LITTLE
architecture integrating quad-core ARM Cortex-A15 (big core) and quad-core ARM
Cortex-A7 (small core) appears in the Samsung Exynos 5 Octa SoC driving high-
end Samsung Galaxy S4 and S5 smart phones.

As mentioned earlier, a large class of heterogeneous multi-cores comprise
of cores with different functionality. This is fairly common in the embedded
space where a multiprocessor system-on-chip (MPSoC) consists of general-
purpose processor cores, GPU, DSP, and various hardware accelerators (e.g., video
encoder/decoder). The heterogeneity is introduced here to meet the performance
demand under stringent power budget. For example, 3G mobile phone receiver
requires 35–40 giga operations per second (GOPS) at 1W budget, which is
impossible to achieve without custom designed ASIC accelerator [10]. Similarly,
embedded GPUs are ubiquitous today in mobile platforms to enable not only
mobile 3D gaming but also general-purpose computing on GPU for data-parallel
(DLP) compute-intensive tasks such as voice recognition, speech processing, image
processing, gesture recognition, and so on.

Heterogeneous computing systems, however, present a number of unique chal-
lenges. For heterogeneous multi-cores where the cores have the same instruction-set
architecture (ISA) but different micro-architecture [18], the issue is to identify
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at runtime the core that best matches the computation in the current context.
For heterogeneous multi-cores consisting of cores with different functionality, for
example CPU, GPU, and FPGAs, the difficulty lies in porting computational kernels
of data analytics applications to the different computing elements. While high-
level programming languages such as C, C++, Java are ubiquitous for CPUs,
they are not sufficient to expose the large-scale parallelism required for GPUs
and FPGAs. However, improving productivity demands fast implementation of
computational kernels from high-level programming languages to heterogeneous
computing elements. In this chapter, we will focus on acceleration of data analytics
kernels on field programmable gate arrays (FPGAs).

With the advantages of reconfigurability, customization, and energy efficiency,
FPGAs are widely used in embedded domains such as automotive, wireless
communications, etc. that demand high performance with low energy consump-
tion. As the capacity keeps increasing together with better power efficiency
(e.g., 16 nm UltraScale+ from Xilinx and 14 nm Stratix 10 from Altera), FPGAs
become an attractive solution to high-performance computing domains such as data-
centers [35]. However, complex hardware programming model (Verilog or VHDL)
hinders its acceptance to average developers and it makes FPGA development a
time-consuming process even as the time-to-market constraints continue to tighten.

To improve FPGA productivity and abstract hardware development using com-
plex programming models, both academia [3, 7] and industry [2, 40, 43] have
spent efforts on developing high-level synthesis (HLS) tools that enable auto-
mated translation of applications written in high-level specifications (e.g., C/C++,
SystemC) to register-transfer level (RTL). Via various optimizations in the form
of pragmas/directives (for example, loop unrolling, pipelining, array partitioning),
HLS tools have the ability to explore diverse hardware architectures. However, this
makes it non-trivial to select appropriate options to generate a high-quality hardware
design on an FPGA due to the large optimization design space and non-negligible
HLS runtime.

Therefore, several works [1, 22, 29, 34, 37, 39, 45] have been proposed using
compiler-assisted static analysis approaches, similar to the HLS tools, to predict
accelerator performance and explore the large design space. However, the static
analysis approach suffers from its inherently conservative dependence analy-
sis [3, 7, 38]. It might lead to false dependences between operations and limit
the exploitable parallelism on accelerators, ultimately introducing inaccuracies
in the predicted performance. Moreover, some works rely on HLS tools to improve
the prediction accuracy by obtaining performance for a few design points and
extrapolating for the rest. The time spent by their methods ranges from minutes to
hours and is affected by design space, and number of design points to be synthesized
with HLS tools.

In this work, we predict accelerator performance by leveraging a dynamic
analysis approach and exploit run-time information to detect true dependences
between operations. As our approach obviates the invocation of HLS tools, it
enables rapid design space exploration (DSE). In particular, our contributions are
two-fold:
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• We propose Lin-Analyzer, a high-level analysis tool, to predict FPGA per-
formance accurately according to different optimizations (loop unrolling, loop
pipelining, and array partitioning) and perform rapid DSE. As Lin-Analyzer does
not generate any RTL implementations, its prediction and DSE are fast.

• Lin-Analyzer has the potential to identify bottlenecks of hardware architectures
with different optimizations enabled. It can facilitate hardware development with
HLS tools and designers can better understand where the performance impact
comes from when applying diverse optimizations.

The goal of Lin-Analyzer is to explore a large design space at an early stage and
suggest the best suited optimization pragma combination for an application mapping
on FPGAs. With the recommended pragma combination, a HLS tool should be
invoked to generate the final synthesized accelerator. Experimental evaluation with
different computational kernels from the data analytics applications confirms that
Lin-Analyzer returns the optimal recommendation and its runtime varies from
seconds to minutes with complex design spaces. This provides an easy translation
path towards acceleration of data analytics kernels on heterogeneous computing
systems featuring FPGAs.

2.2 Motivation

As the complexity of accelerator designs continues to rise, the traditional time-
consuming manual RTL design flow is unable to satisfy the increasingly strict
time-to-market constraints. Hence, design flows based on HLS tools such as Xilinx
Vivado HLS [43] that start from high-level specifications (e.g., C/C++/SystemC)
and automatically convert them to RTL implementations become an attractive
solution to designers.

The HLS tools typically provide optimization options in the form of pragmas/di-
rectives to generate hardware architectures with different performance/area trade-
offs. Pragma options like loop unrolling, loop pipelining, and array partitioning
have the most significant impact on hardware performance and area [8, 21, 44].
Loop unrolling is a technique to exploit instruction-level parallelism inside loop
iterations, while loop pipelining enables different loop iterations to run in parallel.
Array partitioning is used to alleviate memory bandwidth constraints by allowing
multiple data reads or writes to be completed in one cycle.

However, this diverse set of pragma options necessitate designers to explore
a large design space to select the appropriate set of pragma settings that meets
performance and area constraints in the system. The large design space created
by the multitude of available pragma settings makes the design space exploration
a significantly time-consuming work, especially due to the non-negligible runtime
of HLS tools using the DSE step. We highlight the time complexity of this step by
using the example of Convolution3D kernel, typically used in big data domain.
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Listing 2.1 Convolution3D kernel
. . .
/ * C o n s t a n t v a l u e s o f a window f i l t e r : { c11 , . . . , c21 , . . . , c33 } * /
loop_1 : f o r ( i = 1 ; i < N�1; i ++) {

loop_2 : f o r ( j = 1 ; j < M�1; j ++) {
loop_3 : f o r ( k = 1 ; k < K�1; k ++) {

b [ i ] [ j ] [ k ]= c11 * a [ i �1][ j �1][k�1]+
c13 * a [ i + 1 ] [ j �1][k�1]+ c21 * a [ i �1][ j �1][k�1]+
c23 * a [ i + 1 ] [ j �1][k�1]+ c31 * a [ i �1][ j �1][k�1]+
c33 * a [ i + 1 ] [ j �1][k�1]+ c12 * a [ i ] [ j �1][ k ]+
c22 * a [ i ] [ j ] [ k ]+ c32 * a [ i ] [ j + 1 ] [ k ]+
c11 * a [ i �1][ j �1][ k +1]+ c13 * a [ i + 1 ] [ j �1][ k +1]+
c21 * a [ i �1][ j ] [ k +1]+ c23 * a [ i + 1 ] [ j ] [ k +1]+
c31 * a [ i �1][ j + 1 ] [ k +1]+ c33 * a [ i + 1 ] [ j + 1 ] [ k + 1 ] ;

}
}

}

Table 2.1 HLS runtime of Convolution3D

Input size Loop pipelining Loop unrolling Array partitioning HLS runtime

32*32*32 Disabled loop_3 factor:30 a, cyclic, 2 b, cyclic, 2 44.25 s

loop_3, yes loop_3 factor:15 a, cyclic, 16 b, cyclic, 16 1.78 h

loop_3, yes loop_3 factor:16 a, cyclic, 16 b, cyclic, 16 3.25 h

Table 2.2 Exploration time of convolution 3D: exhausted vs. Lin-Analyzer

Input size Design space
Exploration time

Exhaustive HLS-based DSE Lin-Analyzer

32*32*32 120 10 daysa 29.30 s
aFor few design points with complex pragmas, the HLS tool takes a long time and thus we stop the
program after 10 days

Listing 2.1 shows the Convolution3D kernel. We use a commercial HLS tool,
Xilinx Vivado HLS [43], to generate an FPGA-based accelerator for this kernel
with different pragma combinations and observe the runtime for this step, as shown
in Table 2.1. It is noteworthy that the runtime varies from seconds to hours for
different choices of pragmas. As the internal workings of the Vivado HLS tool is
not available publicly, we do not know the exact reasons behind this highly variable
synthesis time. Other techniques proposed in the existing literature, such as [29],
that depend on automatic HLS-based design space exploration are also limited by
this long HLS runtime.

Next, we perform an extensive design space exploration for this kernel using the
Vivado HLS tool by trying the exhaustive combination of pragma settings. Table 2.2
shows the runtime for this step. It can be observed that even for a relatively smaller
input size of .32 � 32 � 32/, HLS-based DSE takes more than 10 days.
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However, in order to find good-quality hardware accelerator designs, it is
imperative to perform the DSE step rapidly and reliably. This provides design-
ers with important information about the accelerators, such as FPGA perfor-
mance/area/power at an early design stage. For these reasons, we develop Lin-
Analyzer, a pre-RTL, high-level analysis tool for FPGA-based accelerators. The
proposed tool can rapidly and reliably predict the effect of various pragma settings
and combinations on the resulting accelerator’s performance and area. As shown in
the last column of Table 2.2, Lin-Analyzer can perform the same DSE as the HLS-
based DSE, but in the order of seconds versus days. In the next section, we describe
the framework of our proposed tool.

2.3 Automated Design Space Exploration Flow

The automated design space exploration flow leverages the high-level FPGA-based
performance analysis tool, Lin-Analyzer [46], to correlate FPGA performance with
given optimization pragmas for a target kernel in the form of nested loops. With the
chosen pragma that leads to the best predicted FPGA performance within resource
constraints returned by Lin-Analyzer, the automated process invokes HLS tools to
generate an FPGA implementation with good quality. The overall framework is
shown in Fig. 2.1. The following subsections describe more details in Lin-Analyzer.

2.3.1 The Lin-Analyzer Framework

Lin-Analyzer is a high-level performance analysis tool for FPGA-based accelerators
without register-transfer-level (RTL) implementations. It leverages dynamic analy-
sis method and performs prediction on dynamic data dependence graphs (DDDGs)
generated from program traces. The definition of DDDG is given below.

Definition 1 A DDDG is a directed, acyclic graph G.VG;EG/, where VG D Vop

and EG D Er [ Em. Vop is the set containing all operation nodes in G. Edges in Er

represent data dependences between register nodes, while edges in Em denote data
dependences between memory load/store nodes.

As the DDDG is generated from a trace, basic blocks of the trace have been
merged. If we apply any scheduling algorithms on DDDG, operations can be
scheduled across basic blocks. The inherent feature of using dynamic execution

Lin-Analyzer

Design Space Exploration

Unrolling, 
pipelining, 
partitioning

Pragmas

FPGA 
Performance

Chosen 
Pragmas

HLS Tool FPGA 
Implementation

Fig. 2.1 The proposed automated design space exploration flow
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trace is that it automatically enables global code motion optimization. In contrast,
almost all of the current state-of-the-art HLS tools use static analysis and therefore,
need to leverage advanced scheduling algorithms such as System of Difference
Constraints (SDC) scheduling [4, 7, 43, 44] to perform global code optimization.
However, the inherent feature of the dynamic trace coupled with the dataflow
nature of accelerators makes DDDG a good candidate for modeling hardware
behavior [38].

With the DDDG, Lin-Analyzer mimics HLS tools and estimate performance of
FPGA-based accelerators directly from algorithms in high-level specifications such
as C/C++ without generating RTL implementations.

2.3.2 Framework Overview

Figure 2.2 shows the Lin-Analyzer framework. As we can see, Lin-Analyzer
consists of three stages: Instrumentation, DDDG Generation & Pre-optimizationi
and DDDG Scheduling. It starts from high-level specifications (C/C++) of an

DDDG

LLVM 
Bitcode

Instrumented 
LLVM IR
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Library
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Dynamic 
Trace

C/C++

Instrumentation

Input data

DDDG
FPGA 
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Runtime instructions inside a trace 
contains information such as 
instruction IDs, opcodes, operands, 
memory address, basic block IDs etc.

Pre-optimizations:
Removing supporting instructions 
and their dependence
Removing shared load/store 
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Mapping each unique memory 
address to a memory bank 
(partitioning factor)
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… ...
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RC List 
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Fig. 2.2 The Lin-Analyzer framework
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algorithm with changes and optimizations. By inserting profiling functions into
the original codes, Lin-Analyzer collects dynamic trace in Instrumentation stage.
According to pragmas provided by users, Lin-Analyzer extracts a sub-trace from the
dynamic trace and builds a dynamic data dependence graph (DDDG) to represent
hardware accelerators. As initial DDDG usually contains unnecessary information
and needs to be optimized, Lin-Analyzer performs pre-optimizations on it and
creates a new DDDG. With the optimized DDDG, it schedules the nodes with
resource constraints and estimates performance of the FPGA-based accelerator for
the given algorithm. As the analysis is based on DDDG of the relevant sub-trace and
utilizes fast scheduling algorithm, runtime of Lin-Analyzer is small even for kernels
with relative large data size and complex pragma combination such as complete
loop unrolling, large array partitioning factors, and loop pipelining.

2.3.3 Instrumentation

A program trace of the kernel containing dynamic instance of static instructions
is required for DDDG generation. In this work, we utilize the Low-Level Virtual
Machine (LLVM) [19] to instrument programs and collect traces. LLVM leverages
passes to perform code analysis, optimization, and modification based on a machine-
independent intermediate representation (IR), which is a Static Single Assignment
(SSA) based representation.

Lin-Analyzer first converts an application in C/C++ into LLVM IR and
instrument the IR by inserting profiling functions. The profiling functions are
implemented in the Profiling Library and used to record basic block frequency
and trace information. With the instrumented LLVM IR, Lin-Analyzer invokes the
embedded Execution Engine, an LLVM Just-in-Time (JIT) compiler, to run the IR
with input data if available. After execution, a run-time trace is dumped into the
disk. The dynamic trace includes runtime instances of static instructions and detailed
information can be found in Fig. 2.2.

2.3.4 Optimized DDDG Generation

To perform analysis on whole dynamic trace is inefficient and slow, as trace typically
contains million or even billion of instruction instances. Therefore, Lin-Analyzer
only focuses on a subset of the trace and creates a DDDG for the sub-trace. Size
of the sub-trace is based on pragmas given by users. The initial generated DDDG
usually includes unnecessary operations and dependences, and is not good enough
to represent hardware accelerators. Thus, Lin-Analyzer performs pre-optimizations
on DDDGs before scheduling.



2 Accelerating Data Analytics Kernels with Heterogeneous Computing 33

2.3.4.1 Sub-trace Extraction

Size of a sub-trace is related to loop unrolling and loop pipelining pragmas. A
kernel in the form of a nested (perfectly or non-perfectly) loop can be represented
by L D fL1; ::;Li; ::;LKg with K loop levels and the innermost loop level is LK .
Users can apply loop unrolling pragma at any loop levels in L. Assume a given
unrolling factor tuple is fU1; ::;Ui; ::;UKg, where Ui is the factor of i-th loop
level. Lin-Analyzer extracts Ui iterations of Loop Li as the sub-trace if its inner
loops (fLiC1;LiC2; : : : ;LKg) are completely unrolled; otherwise, the sub-trace only
includes UK iterations of Loop LK .

According to Vivado HLS [43], the HLS tool only considers loop pipelining
when the pipelining pragma is applied at one loop level Li in L and all its inner
loops (L0 D fLiC1;LiC2; : : : ;LKg) are forced to be completely unrolled irrespective
of their unrolling factors. In this case, the sub-trace contains all instruction instances
of the inner loops L0. If Li is the innermost loop level (i D K), Lin-Analyzer extracts
UK iterations of LK as the sub-trace.

2.3.4.2 DDDG Generation & Pre-optimizations

Once the sub-trace is ready, Lin-Analyzer generates a dynamic data dependence
graph (DDDG) to represent the hardware accelerator.In our implementation, a node
in the DDDG represents a dynamic instance of an LLVM IR instruction, while an
edge represents register- or memory-dependence between nodes. We only consider
true dependences. Anti- or output-dependences are not included, as they could be
potentially eliminated by optimizations. As we work with dynamic traces, control
dependences are not considered.

The initial generated DDDG normally contains supporting instructions and
dependences between loop index variables, which cannot model hardware
accelerators properly [38]. Therefore, we perform several optimizations before
scheduling.

• Removing supporting instructions and their dependences: Some of the instruc-
tions in a nested loop are related to computation directly, while others are
supporting instructions that are used to keep computation in the correct sequence
such as instructions related to loop indices, instructions used to obtain memory
address of a pointer or based address of an array, etc. Those instructions
might potentially introduce true dependences that are not relevant to actual
computation, for example, dependence between loop index variables. To remove
those information in DDDG, Lin-Analyzer assigns zero latency to those nodes.

• Removing redundant load/store operations: A program might potentially contain
redundant memory accesses (load or store). This redundancy increases memory
(BRAM) bandwidth requirement of a hardware accelerator. To save memory
bandwidth, Lin-Analyzer removes redundant memory access operations.
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• Associating memory banks with memory addresses: In our implementation, we
assume a memory bank only allows one write and two reads at the same cycle.
To restrict the DDDG with the memory constraint, Lin-Analyzer maps each
unique address of load/store instructions to a memory bank index. The number
of memory banks supported is related to array partitioning factors provided by
users.

• Tree height reduction: An application might sometimes contain long expression
chains. To expose potential parallelism and reduce height of the chains, we
employ tree height reduction similar to Shao’s work [38].

• Functional unit bypassing: When applying loop pipelining and unrolling prag-
mas at the innermost loop level, we observe (through RTL simulation) that HLS
tool (Vivado HLS [43]) enables functional unit bypassing optimization, which
is shown in Fig. 2.3. The optimization bypasses output registers of pipelined
functional units and directly sends results to the next units connected. Lin-
Analyzer also enables similar optimization when users apply loop pipelining and
unrolling pragmas at the innermost loop level.

2.3.5 DDDG Scheduling

Lin-Analyzer leverages Resource-Constrained List Scheduling (RCLS) algorithm to
schedule nodes on a DDDG. The algorithm takes the optimized DDDG generated by
the previous stage and a priority list as inputs. The priority list is obtained from As-
Soon-As-Possible (ASAP) and As-Late-As-Possible (ALAP) scheduling policies.
The RCLS algorithm works with the following assumptions:

1. Nodes in the DDDG are associated with hardware functional units. Configura-
tions of those units follow the default setting of Vivado HLS such as functional
types, latencies, and resource consumption;

2. Data is stored into memory banks (FPGA BRAM) and each bank supports one
write and two reads at the same cycle;
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3. Nodes that are supporting instructions are removed by assigning zero latency;
4. As most of the accelerator designs are restricted by BRAM and DSP resource, in

current implementations, we only consider these two resource constraints.

Based on the above assumptions, Lin-Analyzer finds the minimum latency of the
DDDG utilizing ASAP policy, which only schedules a node with the condition that
all predecessors of the node are completed. ALAP policy schedules a node as late
as possible when its successors are all finished. RCLS scheduling takes timestamps
(a priority list) of nodes returned by ALAP scheduling as an input. Both ASAP and
ALAP have no resource limitation, which is infeasible. Therefore, Lin-Analyzer
leverages resource-constrained list scheduling policy to obtain a feasible schedule
of minimum latency within FPGA resource constraints.

The RCLS policy schedules a DDDG node with the following conditions:

• All predecessors of the node have been scheduled and completed;
• Among the unscheduled ready nodes, the node has the highest priority;
• There are sufficient FPGA resources for allocating the node.

The resource management (allocation and release) is provided by FPGA Resource
Allocator (FRA). To schedule a type T node, FRA checks if there exists an allocated
T functional unit available. If all T units are occupied and there are still sufficient
resources, FRA allocates a new T functional unit for the node and records its
occupied status; otherwise, the node is assigned with an available allocated T
functional unit. Functional units consist of pipelined and non-pipelined designs. In
this work, we utilize pipelined functional units for floating-point operations and
the rest uses non-pipelined units. For pipelined units, if a node using this kind of
unit is scheduled, the occupied pipelined unit will be released in the next cycle by
FRA. For non-pipelined unit, an occupied functional unit will be released only if the
associated node finishes.

When RCLS policy finishes scheduling all nodes in the DDDG, Lin-Analyzer
obtains the final schedule and execution latency of the DDDG. With the loop bounds
and latency of sub-trace, Lin-Analyzer predicts execution cycles of an FPGA-based
design for the kernel.

2.3.6 Enabling Design Space Exploration

Designers can use HLS tools to develop diverse hardware implementations
by inserting various optimization pragmas. The three prominent pragmas, loop
unrolling, loop pipelining, and array partitioning, have significant impact on FPGA
performance and resource consumption [9, 29]. Therefore, the three pragmas are
supported in this work and Lin-Analyzer enables rapid design space exploration
with this feature.

Loop Unrolling With this optimization, HLS tools can schedule instructions of
multiple loop iterations and exploit more instruction-level parallelism. To mimic
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the optimization on HLS tools, Lin-Analyzer properly selects size of sub-trace
according to unrolling factors as explained in Sect. 2.3.4.1 and predicts performance
on the optimized DDDG generated. Assume that designers provide loop unrolling
optimization with factor u, Lin-Analyzer extracts a sub-trace containing dynamic
instruction instances of u loop iterations and generates an initial un-optimized
DDDG. After pre-optimization in Sect. 2.3.4.2, Lin-Analyzer schedules nodes in
the new generated optimized DDDG with RCLS policy and obtains latency IL of
the sub-trace according to loop unrolling configuration. With loop bounds, unrolling
factor u and latency IL of the sub-trace, Lin-Analyzer predicts performance of the
FPGA-based accelerator.

Loop Pipelining Operations in a loop iteration i are executed in sequence. The
next iteration i C 1 of the loop can only start execution when all operations
inside the current loop iteration i are complete. Loop pipelining optimization
enables operations in the next loop iteration i C 1 begin execution without waiting
for the current loop iteration i to be finished. This concurrent execution manner
significantly improves performance of hardware accelerators. With pipelining
optimization enabled, performance of an accelerator is determined by an initiation
interval (II) of the loop. II is a constant clock cycle period required between the
start of two consecutive loop iterations. To predict performance of accelerators with
loop pipelining enabled, Lin-Analyzer does not perform scheduling and calculates
the minimum initiation interval (MII) to approximate the II instead. This can reduce
the size of sub-trace and help to reduce Lin-Analyzer’s runtime. The calculation of
MII is done by the following Eqs. (2.1)–(2.4),

MII D max.RecMII;ResMII/ (2.1)

ResMII D max.ResMIImem;ResMIIop/ (2.2)

ResMIImem D max
m

��
Rm

RPortsm

�
;

�
Wm

WPortsm

��
(2.3)

ResMIIop D max
n

��
Fop_Parn

Fop_usedn

��
(2.4)

where RecMII is the recurrence-constrained MII and ResMII is the resource-
constrained MII. ResMIImem is used to analyze MII that is restricted by memory
bandwidth, while ResMIIop is limited by number of floating-point hardware units.
The number of memory read and write operations of array m within a pipelined stage
are represented by Rm and Wm, respectively. The number of read and write ports of
array m depends on number of memory banks associated, which is related with
array partitioning factors. The available number of read and write ports of array m
are denoted by RPortsm and WPortsm, respectively. Fop_Parn and Fop_usedn are the
number of floating-point functional unit of type n returned by ALAP scheduling and
RCLS policy, respectively. Fop_Parn denotes the maximum number of functional
units that can run simultaneously without resource constraints.
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Fig. 2.4 Array partitioning example for three strategies with factor 2 [43]. For simplicity, the
partitioning factor used here is two

In this work, we use latency IL of the selected sub-trace as its pipeline depth.
With loop bounds, pipeline depth IL, and the estimated MII, Lin-Analyzer predicts
performance of the FPGA-based accelerator using the equation in [20].

Array Partitioning Data in FPGA-based accelerator is stored into one or multiple
memory banks which are composed of FPGA BRAM resource. As memory ports
per bank are limited, the number of read/write through the same bank at the same
cycle is restricted (we assume two-read and one-write ports per memory bank).
Accelerators might suffer from this memory bandwidth bottleneck. In Vivado HLS
[43], it supports array partitioning pragma to split data into multiple memory
banks to improve the bandwidth. The partitioning strategies include three types,
block, cyclic, and complete as shown in Fig. 2.4. To simulate array partitioning
optimization, Lin-Analyzer first maps addresses of load and store operations in the
DDDG to memory banks, and leverages FRA to keep track of read/write ports used
each bank and prevent RCLS scheduling from violating memory port constraints.
Memory bank number Bank_Nm related to array partitioning factor is calculated as
below,

Bank_Nm D
�
.addrm/=.dsizem=pf e/ if block
.addrm/ modulo .pf / if cyclic

(2.5)

where addrm represents a memory address of array m, sizem denotes array size
of m, and pf describes the partition factor. Memory-port constraint is released for
complete array partitioning, as the whole array is implemented with registers.

An Example Figures 2.5 and 2.6 show two examples to describe how Lin-Analyzer
estimates FPGA performance when given different pragmas. In the examples, the
fadd functional unit has 5-cycle latency and it is a pipelined design. Memory
operations (load and store) have 1-cycle latency. These FPGA node latencies follow
the default setting of Vivado HLS.
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… …
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
%tmp = load float* %arrayidx, align 4
%arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
%tmp1 = load float* %arrayidx2, align 4
%add = fadd float %tmp, %tmp1
%arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
%tmp2 = load float* %arrayidx4, align 4
%add5 = fadd float %tmp2, %add
store float %add5, float* %arrayidx4, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 16
br i1 %exitcond, label %for.end, label %for.body

%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
%tmp = load float* %arrayidx, align 4
%arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
%tmp1 = load float* %arrayidx2, align 4
%add = fadd float %tmp, %tmp1
%arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
%tmp2 = load float* %arrayidx4, align 4
%add5 = fadd float %tmp2, %add
store float %add5, float* %arrayidx4, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 16
br i1 %exitcond, label %for.end, label %for.body
… …

0     %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1 %arrayidx = getelementptr inbounds float* %A, i64 %indvars.iv
2 %tmp = load float* %arrayidx, align 4
3 %arrayidx2 = getelementptr inbounds float* %B, i64 %indvars.iv
4 %tmp1 = load float* %arrayidx2, align 4
5 %add = fadd float %tmp, %tmp1
6 %arrayidx4 = getelementptr inbounds float* %C, i64 %indvars.iv
7 %tmp2 = load float* %arrayidx4, align 4
8 %add5 = fadd float %tmp2, %add
9 store float %add5, float* %arrayidx4, align 4
10 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
11 %exitcond = icmp eq i64 %indvars.iv.next, 16
12 br i1 %exitcond, label %for.end, label %for.body

for (i=0; i<N; i++) {
C[i] += A[i] + B[i]; 

}
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Fig. 2.5 An example without optimization pragma: 1 Lin-Analyzer instruments the source
code and generates dynamic trace; 2 Given loop unrolling factor uf (uf = 1, which means
no optimization), Lin-Analyzer extracts dynamic instruction instances of one loop iteration as
a sub-trace; 3 With the sub-trace, our tool generates an un-optimized DDDG to represent the
hardware accelerator; 4 Lin-Analyzer performs pre-optimizations on the un-optimized DDDG;
5 Lin-Analyzer performs RCLS scheduling on the optimized DDDG. Latency IL of the sub-trace

returned from the scheduling graph is 12 cycles and the total FPGA execution cycle of the loop is
.12 � N/ cycles, where N is the loop bound

Figure 2.5 shows the example without optimization, which means that loop
unrolling uf and array partitioning factors pf are equal to 1 and no loop pipelining
is enabled. In Fig. 2.5, the instructions in the sub-trace highlighted in green are
supporting instructions, which are used to keep computation being carried out in
the correct manner. Lin-Analyzer removes the supporting instructions by assigning
zero-latency as their edge weights. As we can see that, there is a true dependence
between Instruction 0 and 10, which are related to loop indices. This kind of
dependence is removed after performing optimization on an initial DDDG. With
the optimizations mentioned in Sect. 2.3.4.2, Lin-Analyzer schedules the DDDG
leveraging RCLS policy. The final scheduling graph is shown in Fig. 2.5. Array
A, B, and C consume only one memory bank (BRAM consumption depends
on their size) because of pf D 1 and can support two-read and one-write
operations simultaneously. Based on the scheduling, we know the latency of uf
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Fig. 2.6 An example with loop unrolling pragma (uf D 2): With a new optimization pragma 1 ,
Lin-Analyzer extracts a new sub-trace, creates an initial DDDG accordingly 2 , performs pre-
optimization to generate the optimized DDDG 3 , and schedules nodes on the DDDG. Latency IL
of the sub-trace returned from the scheduling graph is 13 cycles in this case and the total FPGA
execution cycle of the loop with unrolling factor uf D 2 is .13 � N=2/ cycles

loop iterations and Lin-Analyzer predicts its FPGA performance for this kernel
without optimization. In this example, the hardware accelerator uses one 32-bit fadd
functional unit, which consumes 2 DSPs.

Figure 2.6 shows the same example with loop unrolling enabled (uf D 2).
As the time spent on collecting the whole trace is a one-time cost, Lin-Analyzer
reuses the whole trace from the previous example and extracts a new sub-trace
according to loop unrolling pragma provided. With the new sub-trace, Lin-Analyzer
follows similar steps in the previous example and predicts performance of the
hardware accelerator with loop unrolling enabled without generating any RTL
implementations. In Fig. 2.6, Instruction 9 and 22 in blue are used to store data
in Array C. As we do not enable array partitioning pragma (pf D 1), Array C only
allows one write operation per cycle due to memory bank constraint and thus Lin-
Analyzer spends two cycles on Instruction 9 and 22. In this example, the hardware
accelerator shares one 32-bit fadd functional unit, which consumes 2 DSPs.

When we apply loop pipelining pragma on the example in Fig. 2.5, we follow
the same steps in the figure and calculate the initiation interval II with Eqs. (2.1)–
(2.4). In the example, there is no recurrence loop dependence and thus RecMII is 0.
The number of memory read and write operations (RA and WA) of Array A within
a pipelined stage from the figure is 1 for both. The available number of read and
write ports of Array A are 2 and 1, respectively. With Eq. (2.3) for Array A, we have
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d RA
RPortsA

e D d 1
2
e D 1, while d WA

WPortsA
e D d 1

1
e D 1. Data of Array B is the same

with that of A. For Array C, RC is 0, as there is no memory read. According to
Eq. (2.4), ResMIImem is 1, which means that the hardware accelerator with the given
configuration is not constrained by memory ports. The maximum number of fadd
functional unit Fop_Parfadd returned by ALAP scheduling is 1, and the number of
fadd functional unit Fop_usedfadd used in RCLS scheduling is 1. Based on Eq. (2.4),
we get ResMIIop D 1. We calculate MII D 1 with Eq. (2.1) and use its value to
approximate the II. The pipeline depth of the accelerator leverages the latency of
the sub-trace, which is IL D 12. Therefore, the total FPGA execution cycle of the
hardware accelerator with loop pipelining enabled is .II�.N�1/CIL D N�1C12 D
N C 11/ cycles. As we can see in Fig. 2.5, the two fadd instructions, 5.fadd and
8.fadd, can start execution at every 6 � i .i 2 Œ1; 2; : : :�/ cycles simultaneously and
thus with loop pipelining enabled, the hardware accelerator consumes two 32-bit
fadd functional units, which uses 4 DSPs.

From the above examples, Lin-Analyzer can explore different hardware archi-
tectures of a kernel rapidly by changing combinations of pragmas without any
RTL implementations. This ability makes Lin-Analyzer can explore and evaluate
a large design space of hardware implementations in the order of seconds to
minutes. However, similar to other works using dynamic analysis [15, 38, 41],
if different program inputs have significant impacts on behaviors of an application,
Lin-Analyzer might also suffer from inaccuracy when predicting performance. In
this case, selecting a representative input for generating trace is necessary and
crucial. Moreover, in current implementation, as Lin-Analyzer only optimizes for
FPGA performance, it tries to use available resources as much as possible if
necessary. Area-performance tradeoff in accelerator design will be included inside
our framework in future.

2.4 Acceleration of Data Analytics Kernels

The experiment is set up on a computer with an Intel Xeon CPU E5-2620 running at
2.10 GHz with 64 GB RAM and the OS used is Ubuntu 14.04. We leverage Xilinx
Vivado HLS version 2014.4 as the HLS tool and frequency of accelerators is set to
100MHz. Our target FPGA device is Xilinx ZC702 Evaluation Kit [43]. We select
four kernels related to big-data applications for evaluation.

• GEMM: This kernel is a generic matrix–matrix multiplication application
from Polybench Benchmark Suite [30]. It is widely used in machine learning
applications such as Convolutional Neural Network [36].

• KMeans: This kernel is a clustering algorithm, which is used extensively in data-
mining. It is modified from Rodinia Benchmark Suite [6].

• CONV2D & CONV3D: Convolution 2D/3D can be used to implement edge
detection and smoothing as a filter. It is an important computation in signal/image
processing, machine learning, and elsewhere [17, 42]. The two kernels are
adapted from Polybench Benchmarks Suite GPU version [30].
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2.4.1 Estimation Accuracy

Given loop unrolling, loop pipelining, and array partitioning pragmas, Lin-Analyzer
predicts FPGA performance for kernels in C/C++. As Vivado HLS is based on
static analysis, it might conservatively add false loop-carried dependences and
limit the exploitable parallelism of accelerators. To analyze estimation quality
of Lin-Analyzer, we describe prediction accuracy separately for different pragma
combinations.

2.4.1.1 Loop Unrolling and Loop Pipelining

Considering loop unrolling and loop pipelining pragmas, Fig. 2.7 shows the per-
formance (execution cycle counts) comparison of Lin-Analyzer and Vivado HLS
for GEMM, KMeans, CONV2D, and CONV3D kernels. The Y-axis denotes the
execution cycle counts of different configurations, while the X-axis describes
various configuration combinations consisting of loop unrolling and loop pipelining.
As we can see from the figure, the predicted performance from Lin-Analyzer
(the yellow dashed lines with triangles) matches the ones from Vivado HLS
(the green solid lines with stars) very closely for all four kernels. The average
difference between the execution cycle counts returned from Vivado HLS and the
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Fig. 2.7 Accuracy of Lin-Analyzer compared to Vivado HLS considering loop unrolling and loop
pipelining pragmas. (a) GEMM. (b) KMeans. (c) CONV2D. (d) CONV3D
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Table 2.3 Performance comparison with loop unrolling and loop pipelining enabled: Lin-
Analyzer vs. Vivado HLS

Benchmark GEMM KMeans CONV2D CONV3D

Difference (%) 3.25 3.78 1.63 3.75
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Fig. 2.8 Performance comparison with loop unrolling, loop pipelining, and array partitioning:
Lin-Analyzer vs. Vivado HLS for CONV3D. Due to false loop-carried dependences, Vivado HLS
generates inefficient designs, which leads to difference with predictions from Lin-Analyzer

ones estimated by Lin-Analyzer is calculated for the same configuration across all
combinations and shown in Table 2.3. From the table, Lin-Analyzer can predict
performance of FPGA-based accelerators with loop unrolling and loop pipelining
enabled within 4.0% difference across all four kernels, which is quite accurate.

2.4.1.2 Array Partitioning

Figure 2.8 demonstrates the result comparison between Lin-Analyzer and Vivado
HLS for CONV3D kernel with loop unrolling, loop pipelining, and array partitioning
enabled. In Fig. 2.8, we fix loop unrolling and loop pipelining configuration and
analyze performance when varying array partitioning factors. The Y-axis denotes
the execution cycle counts of different configurations, while the X-axis describes
different array partitioning factors applied varying from 1 to 16 in step of 2. (ui-Pj)
represents a configuration combination consisting of loop unrolling factor i applied
at the innermost loop level and loop pipelining applied at loop level j. Solid and
dashed lines represent results from Vivado HLS and Lin-Analyzer, respectively.

As a memory bank on FPGAs has limited ports, which potentially hinders HLS
tools to exploit more parallelism, array partitioning pragma is designed to split
data into multiple memory banks and increase memory bandwidth. This pragma
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usually works with loop unrolling or loop pipelining. In Fig. 2.8, performance
(the red solid line with stars, u3-P3-HLS) from Vivado HLS with configuration
u3-P3 remains constant when applying different array partitioning factors, which
means that increasing memory bandwidth has no impact on hardware performance.
The results from Lin-Analyzer (the red dashed line with stars, u3-P3-LIN) show
different behavior compared to Line u3-P3-HLS. It demonstrates that increasing
memory bandwidth can actually improve performance. The reason that leads to
the performance discrepancy of Vivado HLS and Lin-Analyzer can be explained
as follows. HLS tools rely on static analysis and perform conservative dependence
analysis. It might potentially add false loop-carried dependences. In the example
above, the false loop-carried dependences introduced by Vivado HLS leads to a
high recurrence II (RecII) values and the MII in Eq. (2.1) is dominated by RecII.
Therefore, increasing memory bandwidth in this case cannot help to exploit more
parallelism. As Lin-Analyzer relies on dynamic trace and all dependences are
known, Line u3-P3-LIN shows that increasing memory bandwidth can help to
reduce execution cycles of accelerators. A hand-written RTL code or enabling
dependence pragma to disable specific loop-carried dependence in HLS tools can
effectively improve hardware performance as predicted by Lin-Analyzer in Line u3-
P3-LIN. In addition, by simulating RTL codes generated by Vivado HLS, we find
that for some configurations with array partitioning enabled, there exist redundant
memory loads. This further deteriorates the hardware performance due to the
memory inefficiency in Vivado HLS designs when compared to optimized hand-
written RTL implementations.

Although results from the two might be different, Lin-Analyzer can accurately
predict the hardware performance trends with array partitioning enabled. Moreover,
Lin-Analyzer also can help designers to better understand design bottlenecks and
generate high-quality FPGA-based accelerators with HLS tools.

2.4.2 Rapid Design Space Exploration

As mentioned in Sect. 2.3, given various pragma combinations consisting of loop
unrolling, loop pipelining, and array partitioning, Lin-Analyzer can rapidly evaluate
hardware performance accordingly and enable design space exploration to find the
high-quality design point without generating RTL implementations. The design
space we consider is shown below,

• Loop unrolling factor: Its range includes divisors of loop bound N.
• Loop pipelining: Its range includes True and False.
• Array partitioning: The factor can vary from 1 to 16 in steps of 2. The partitioning

types are cyclic, block, and complete.

Table 2.4 demonstrates the design space exploration results with exhaustive
HLS-based method and Lin-Analyzer. Kernels considered in this work are listed
in Column 1. Number of loop levels and design space of each kernel are shown
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Table 2.4 Design space exploration results

Configuration Total DSE Time (s)

Lin-Analyzer

Benchmark Loop
levels

Design
space

Exhaustive Lin-Analyzer Exhaustive Profiling DSE Total

GEMM 3 85 1,1,2 1,1,2 36579.48 176.38 8.99 185.37

KMeans 2 136 (8,12,16),1,1 (8,12,16),1,1 3922.33 1.26 45.47 46.73

CONV2D 2 62 16,1,1 16,1,1 26573.13 5.48 17.28 22.76

CONV3D 3 65 16,1,2 16,1,2 21586.68 12.85 9.62 22.47

Configuration format is (array partitioning factor, loop unrolling factor, pipeline level)

in Column 2 and 3, respectively. To evaluate accuracy of DSE with Lin-Analyzer,
we leverage Vivado HLS to perform exhaustive DSE with the same design space
(shown as Exhaustive in Table 2.4) and record HLS exploration time and execution
cycles of the generated accelerator implementations.

The optimal design points of each kernel given by Exhaustive DSE and Lin-
Analyzer are shown in Column 4 and 5 in Table 2.4. The configuration format
used here is (array partitioning factor i, loop unrolling factor j, pipeline level k).
The pipeline level k means that a pipelining pragma is applied at loop level Lk.
Column 4 and 5 in Table 2.4 demonstrate that the configurations, which achieves
the best performance for each kernel within the design space given, recommended
by Exhaustive method and Lin-Analyzer are exactly the same.

The exploration time of Exhaustive method is shown in Column 6 in Table 2.4.
As Lin-Analyzer relies on dynamic trace, its exploration time consists of two parts:
Profiling and DSE. The Profiling part is the time spent on collecting dynamic trace,
which is a one-time overhead and can be amortized. The total exploration time of
DSE with Lin-Analyzer is shown in Column 9 in Table 2.4. Comparing Column
9 with 6, we can see that the exploration time needed by Lin-Analyzer is only
a fraction of the time using Exhaustive method while recommending the correct
configuration combinations. Exploration time speedup of each kernel normalized
to Exhaustive method is shown in Fig. 2.9. The results in Fig. 2.9 confirm that
Lin-Analyzer is capable to perform rapid architectural exploration and the average
speedup achieves 617X for the four kernels.

To evaluate the quality of the best design points (within the design space
considered) given by our automated DSE flow, we compare their execution time
of FPGA implementations with CPU-based performance for all the kernels. CPU-
based performance is obtained by running single-thread C implementations of the
same kernels on one Intel Xeon CPU E5-2620 at 2.1 GHz and one ARM Cortex-A15
core (from Odroid-XU3 [27]) at 2.0 GHz. We utilize ‘-O3’ as the GCC optimization
option. Besides, we also run OpenCL implementations for the four kernels using
4 Cortex-A15 from Odroid-XU3 [27]. The OpenCL implementations are obtained
from Polybench Benchmark Suite GPU version [30] and Rodinia Benchmark
Suite [6].
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Fig. 2.9 Exploration time speedup compared to exhaustive HLS-based DSE
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Fig. 2.10 Speedup of different implementations normalized to single-thread C design on one
ARM Cortex-A15 core. FPGA implementations, HLS-FPGA, leverage the best design points
returned by the proposed automated DSE framework. C-1-Xeon denotes single-thread C implemen-
tation on one Intel Xeon core, while OpenCL-4-A15 represents OpenCL implementations using
four ARM Cortex-A15 cores

The results are shown in Fig. 2.10. In the figure, we use C-1-Xeon, C-1-A15,
OpenCL-4-A15, and HLS-FPGA to denote the corresponding implementations.
For GEMM and KMeans, performance of HLS-FPGA can achieve around 1.6x
speedup compared to that of C-1-A15 and better than OpenCL-4-A15. Compared
to implementations on the high-end CPU, C-1-Xeon, performance of HLS-FPGA is
slightly slower. The reason for GEMM is that its II is dominated by memory band-
width. Due to the limited FPGA BRAM resource, we cannot leverage large array
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partitioning factors to increase memory bandwidth. For KMeans, as it can be easily
vectorized and has less computation operations compared to other kernels, CPU
and OpenCL implementations can be well optimized to match FPGA performance.
CONV2D and CONV3D have extensive memory reads and computations and there
is no dependence among different output data. However, they are memory-bound
kernels on the CPU, as the ratio between their arithmetic operations and memory
accesses is low [5]. In Fig. 2.10, due to the memory-bound problem, OpenCL-4-
A15 can not achieve good speedup compared to C-1-A15. However, HLS-FPGA
achieves around 40x speedup compared to C-1-A15 implementations and roughly
5x speedup compared with C-1-Xeon. The reason is that with array partitioning
enabled, Vivado HLS can exploit more instruction-level parallelism and utilize deep
pipelining. Thus, their FPGA implementations can instantiate lots of functional units
for computation and occupy up to 92% DSP resource. This demonstrates that the
design points returned by our automated DSE framework have high quality.

As Lin-Analyzer does not rely on HLS tools or generate any RTL implemen-
tations, its runtime scales linearly with more complex configuration combinations
(larger unrolling and partitioning factors, pipelining at higher loop levels, etc.). This
makes Lin-Analyzer be an attractive complementary tool for HLS to perform design
space exploration.

2.5 Conclusion

In this chapter, we focus on accelerating data analytics kernels on heterogeneous
computing systems featuring FPGAs. In particular, we present a toolchain, called
Lin-Analyzer, that allows easy but performance-efficient implementation of data
analytics kernels on FPGA-based accelerators. Lin-Analyzer relies on the dynamic
data dependence graph (DDDG) to avoid the false data dependences created by the
static analysis techniques used in most existing techniques including commercial
HLS tools. This results in an accurate performance estimation of FPGA-based
accelerators without resorting to time-consuming HLS runs. The tool also helps
in identifying design bottlenecks while exploring various pragmas such as loop
unrolling, pipelining, and array partitioning. Lastly, Lin-Analyzer can assist HLS
developers in identifying potential limitations of the HLS tool. Our experimental
evaluation with a number of data analytics kernels confirms the effectiveness of
Lin-Analyzer.
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Chapter 3
Least-squares-solver Based Machine Learning
Accelerator for Real-time Data Analytics in
Smart Buildings

Hantao Huang and Hao Yu

3.1 Introduction

Among various energy consumers, it is reported that over 70% electricity is
consumed by more than 79 million residential buildings and 5 million commercial
buildings in the USA [1]. There is an increasing need to develop cyber-physical
energy management system (EMS) for modern buildings composed of both micro-
grid and smart IoT hardware [2]. For smart energy management system, collecting
information from IoT devices can help recognize energy consumption profile and
perform accurately load forecasting with consideration of occupants behavior. As
such, load balance can be achieved based on demand-response strategy for better
energy efficiency [3].

One direct application of demand-response strategy in energy management
system (EMS) is the real-time dynamic electricity price [4] based on the demand.
An accurate load forecasting can help schedule the energy demand to reduce the
electricity cost. However, energy data analytics for load forecasting is challenging
since it is greatly affected by occupants behavior and environmental factors [5].
Occupants behavior is of random nature and very hard to predict [6]. Using real-
time sensed data from occupation location, power meters and various sensors can
capture occupants behavior for more accurate data analytics. However,uploading
data to the cloud and processing backend take latency and edge device such as smart-
gateway is computational resource limited. Therefore, a computationally efficient
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data analytics (machine learning algorithm) is greatly needed for real-time smart
building energy management system.

Machine learning algorithms can be broadly classified into: supervised learning,
unsupervised learning, and reinforcement learning [7]. Supervised learning based
neural network is widely applied for energy data analytics. Supervised learning
will learn the connection between two subset of data, inputs and outputs, to build
a model. Two central problems under supervised learning are classification and
regression. Both problems share the same goal to build a mode to predict the
output based on the input. However, the difference between two problems is the
fact the dependent attribute (output) is categorical for classification and numerical
for regressions [8].

In the smart building EMS, the pre-trained model from machine learning
algorithms will be loaded in the embedded system to perform data analytics such as
short-term load forecasting. However, previous works [3, 9, 10] have limitations in
twofold. Firstly, since various factors affect load forecasting, the pre-trained model
cannot be adjusted with the new arrival data. Moreover, traditional supporting vector
machine and neural network based algorithms [3] consume large hardware resource
to analyze energy data with poor efficiency and latency. Secondly, previous energy
data analytics [9, 10] ignores the real-time occupant profile, whose distribution
at different functionalized location (office, resting area, kitchen, etc.) can signifi-
cantly affect the short-term energy load forecasting accuracy. As such, the energy
management system of building towards comfort and energy-efficiency is still not
optimized.

In this work, we present a fast machine learning accelerator for smart building
data analytics. A computational efficient machine learning is developed using a
regularized least-squares solver with incremental square-root-free Cholesky fac-
torization. A scalable and parameterized hardware architecture is developed in
a pipeline and parallel fashion for both regularized least-squares and matrix-
vector multiplication. With the high utilization of the FPGA hardware resource,
our implementation has 128-PE in parallel operated at 50-MHz. Experimental
results have shown that the proposed machine-learning accelerator (on FPGA) has
good forecasting accuracy with an average speed-up of 4:56� and 89:05�, when
compared to general CPU and embedded CPU. Moreover , 450:2�, 261:9� and
98:92� energy saving can be achieved comparing to general CPU, embedded CPU
and GPU.

The rest of this chapter is organized as follows. The Internet of Things (IoT)
based smart-grid and smart building are presented in Sect. 3.2. The machine
learning algorithm based on least-squares and backwards propagation is discussed in
Sect. 3.3. Then Sect. 3.4 elaborates the Cholesky decomposition based least-squares
solver. In Sect. 3.5, detailed implementation on FPGA hardware is elaborated.
Experimental results regarding accuracy, speed-up, and energy consumption by
FPGA implementation are presented in Sect. 3.6 with conclusion drawn in Sect. 3.7.
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3.2 IoT System Based Smart Building

3.2.1 Smart-Grid Architecture

The overall Internet of Things (IoT) based smart-grid and smart building system is
illustrated in Fig. 3.1. The key components from smart gird are the two-directional
main electricity power grid and additional renewable energy based electricity power
grid. By utilizing smart-grid, customers cannot only buy electricity from main power
grid but also sell electricity from renewable solar energy to generate profits with
dynamic prices. Smart building is the main element of the smart-grid for power
consumption. Therefore, accurately predicting the energy demand of building can
support the balance between supply and demand of smart-grid.

3.2.2 Smart Gateway for Real-Time Data Analytics

Smart gateway is the major control center, harboring the ability in storage and
computation. Our smart gateway will be BeagleBoard-xM. As Fig. 3.1 shows, smart
building is an IoT based system with various connected sensors. Environment
sensors can collect information on light intensity, humidity, and temperature and
send the data to micro-controller to understand environment. Energy sensor are used
to collect the current of each appliance and through smart sockets, on-off control can
be performed according to save energy. Moreover, occupancy provides information
about the activity of occupants and location base services such as lighting and air-
con can be provided accordingly. All these smart control is operated based on the
pattern defined in the micro-controller and learnt by supervised learning process.
Therefore, it is important to recognize (classify) the environment and occupants
behavior to respond accordingly for customized services. Moreover, accurately
predicting the energy demand of next minute or hour and then adjusting the supply
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are the key to achieve load balancing. However, due to the limited computation
resource of smart-gateway, an FPGA based machine learning accelerator is designed
to perform fast interference, model update, and re-train the machine learning model.

3.2.3 Problem Formulation for Data Analytics

In this chapter, data analytics refers to supervised machine learning, which is
classification problem and regression problem. The classification problem is used
for recognitions and regression problem is for prediction such as load forecasting.
Details of each problem formulation are shown as below.

Objective 1: Minimize the error rate of classification.

min e D
NX
i

xi=N

s:t: xi D f .fe1; fe2; : : :/ D f0; 1g
(3.1)

where f .�/ represents the trained model from training data and fe1; fe2: : : represent
input data for this model. xi D 0 represents the accurate prediction, xi D 1

represents the false prediction, and N represents the number of predictions.
Objective 2: Improve the accuracy of energy demand forecasting with time

interval t.

min er D
tD23X
tD0

.yt � f .Et;Mt;Tt//
2 (3.2)

where yt is actual energy demand at time t and f .Et;Mt;Tt/ is the model predicted
result with input features: energy consumption data Et, occupants motion profile
Mt and environmental Tt until time t. f .�/ is the machine learning trained model.
Once the new energy consumption data is ready, the machine learning model will
be re-trained with new arrival data to build up customized energy forecasting model.

3.3 Background on Neural Network Based Machine
Learning

In this section, the fundamental of neural network based machine learning is
introduced with comparison of two training methods.

Neural network (NN) is a family of network models inspired by biological neural
network to build the link for a large number of input–output data pair. It typically
has two computational phases: training phase and testing phase.
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Table 3.1 A list of parameters definitions in machine learning

Parameter Elements Definitions

X [x11, x12, x13,. . . ,xNn] A set of n dimension data in N training samples

T [t11, t12, t13,. . . ,tNM] A set of M target classes in N training samples

H [h11, h12, h13,. . . ,hNL] A set of L hidden nodes in N training samples

A [a11, a12, a13,. . . ,anL] Input weight matrix between X and H

� [�11, �12, �13,. . . ,�LM] Output weight matrix between H and T

Y [y1, y2, y3,. . . ,yM] A set of M model outputs

ˇ N.A. Learning rate set by designers

– In the training phase, the weight coefficients of the neural network model are
first determined using training data by minimizing the squares of error difference
between trial solution and targeted data in a so-called `2-norm method.

– In the testing phase, the neural network model with determined weight coeffi-
cients is utilized for classification or calculation given the new input of data.

Formally, the detailed descriptions of each parameter are summarized in
Table 3.1. Given a neural network with n inputs and M outputs shown in Fig. 3.2, a
dataset .x1; t1/; .x2; t2/; : : :; .xN ; tN/ is composed of paired input data X and training
data T with N number of training samples, n dimensional input features and M
classes. During the training, one needs to minimize the `2-norm error function with
determined weights: A (at input layer) and � (at output layer):

E D jjT � F.A;� ;X/jj2 (3.3)

where F.�/ is the mapping function from the input to the output of the neural
network.

The output function of this neural network classifier is

Y D HF.A;� ;X/; Y D fy1; y2; : : :ymg
Label.X/ D arg max

i2f1;2;:::;mg
yi

(3.4)

where Y 2 R
N�m. Here N represents the number of testing samples. The index of

maximum value Y is found and identified as the predicted class.

3.3.1 Backward Propagation for Training

The first method to minimize the error function E is the Backward Propagation (BP)
method. As shown in Fig. 3.2a, the weights are firstly initially guessed for forward
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Fig. 3.2 Trainings of neural network: (a) backward propagation; and (b) least-square solver

propagation. Based on the trial error, the weights are further calculated backward
with derivatives of weights calculated by

OE D
�
@E

@a11
;
@E

@a12
;
@E

@a13
: : :

@E

@aDL

�
(3.5)

where D is the output dimension of previous layer and L is the input dimension of
the next layer. For the current layer, each weight can be updated as

adl D adl � ˇ � @E

@adl
; d D 1; 2; : : :;D; l D 1; 2; : : :;L (3.6)
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where ˇ is the learning constant that defines the step length of each iteration in the
negative gradient direction. Note that the BP method requires to store the derivatives
of each weight. It is expensive for hardware realization. More importantly, it may be
trapped on local minimal with long converging time. Hence, the BP based training
is usually performed off-line and has large latency when analyzing the real-time
sensed data.

3.3.2 Least-Squares Solver for Training

One can directly solve the least-squares problem using the least-squares solvers of
the `2-norm error function E [11–13]. As shown in Fig. 3.2b, the input weight A can
be first randomly assigned and one can directly solve output weight � as follows.

We first find the relationship between the hidden neural node and input training
data as

preH D XA C B; H D 1

1C e�preH
(3.7)

where X 2 R
N�n. A 2 R

n�L and B 2 R
N�L is random generated input weight and

bias formed by aij and bij between Œ�1; 1�. N and n are the training size and the
dimension of training data, respectively. The output weight � is computed based on
pseudo-inverse .L < N/:

� D .HTH/�1HTT (3.8)

However, performing pseudo-inverse is also expensive for hardware realization.
The comparison of BP and least-squares solver can be summarized as follows.

BP is a relative simple implementation by gradient descent objective function with
good performances. However, it suffers from the long training time and may get
stuck in the local optimal point. On the other hand, least-squares solver can learn
very fast, but pseudo-inverse is too expensive for calculating. Therefore, solving
`2-norm minimization efficiently becomes the bottleneck of the training process.

3.3.3 Feature Extraction with Behavior Cognition

Input features are very important to train an accurate machine learning model. In
this chapter, occupants behavior is analyzed based on the active occupant motion in
each room since it indicates the potential behavior of occupants in the room [14].
Rooms inside the same house have vastly different occupants behavior profiles due
to different functionalities. Therefore, we extracted behavior profiles for different
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rooms, respectively. For each room i, there are four states represented by S for
occupants positioning:

S D

8̂̂
<
ˆ̂:

s1 W 0 no occupant in the room i
s2 W 0 �! 1 occupants entering the room i
s3 W 1 occupants in the room i
s4 W 1 �! 0 occupants leaving the room i

(3.9)

where motion state S is detected by indoor positioning system via WiFi data every
minute. The probability of occupants motion for room i can be expressed as:

Mi.t/ D Ti.s2/C Ti.s3/

Ti
; t D 1; 2; 3; : : :; 96 (3.10)

where Ti.sj/ represents the time duration with corresponding state sj. Mi.t/ is
occupant motion probability of room i in Ti time interval. Figure 3.3 presents an
example of motion probability in different rooms. As a conclusion, all the features
and their descriptions for data analytics are summarized in Table 3.2.

Our work differs from previous works [15, 16] such as sequential learning or
recursive learning from two manifold. Firstly, the training data size in our work is
fixed size with adding new arrival data and removing old data. This is preferred
since environment and occupants change with several levels of seasonality [3]. Old
data from months ago tend to bias the new change of load demand. Secondly, our
learning algorithm focuses on tuning the size of neural network. Since training data
is changed, it is more effective to re-train the model than using sequential learning
method to update the out-dated model.

Fig. 3.3 Motion probability within 15 min interval in three different rooms (Living room, bed
room, and basement)
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Table 3.2 Input features for short-term load forecasting

Inputs Descriptions

1 Date type: weekday is represented by 1 and weekend is represented by 0

2–25 Eg(d-7,t), Eg(d-6,t), Eg(d-5,t), Eg(d-4,t), Eg(d-3,t), Eg(d-2,t), Eg(d-1,t):
Energy of the 7 days preceding to the forecasted day at the same hour

26–121 Mo(d-7,t), Mo(d-6,t), Mo(d-5,t), Mo(d-4,t), Mo(d-3,t), Mo(d-2,t), Mo(d-1,t):
Occupants motion of the 7 days preceding to the forecasted day at the same
hour

122–169 Te(d-7,t), Te(d-6,t), Te(d-5,t), Te(d-4,t), Te(d-3,t), Te(d-2,t), Te(d-1,t):
Temperature and Humidity of the 7 days preceding to the forecasted day at
the same hour

169-t C(t), C(t-1), C(t-2),. . . ,: Prior to time t, new collected data temperature,
humanity, energy and occupants motion

3.4 Least-Squares Solver Based Training Algorithm

In this section, we firstly reformulate a regularized least-squares problem. Then
square-root-free Cholesky decomposition is discussed to reduce the complexity.
Final, an incremental least-squares method is introduced to further simplify the
operation to basic linear algebra subprograms (BLAS).

3.4.1 Regularized `2-Norm

Considering (3.8), a better generalized training method is to minimize the training
error and the norm of the output weights, which can be defined as a regularized
`2-norm as follows:

min jjH� � Tjj2 C �jj� jj2 (3.11)

where H is the hidden-layer output matrix generated from the Sigmoid function for
activation; and � is a user defined parameter that biases the training error and output
weights [11]. This problem can be reformulated as

min jj QH� � QTjj2

where QH D
�

Hp
�I

�
QT D

�
T
0

� (3.12)

where I 2 R
L�L and QH 2 R

.NCL/�L. This is a standard least-squares problem with
general solution:

� D . QHT QH/�1 QHT QT; QH 2 R
N�L (3.13)
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where QT 2 R
.NCL/�M and M is the number of classes. The new training algorithm

is summarized in Algorithm 1. The complexity of solving output weight will be
reduced by the square-root-free Cholesky decomposition and incremental least-
squares solutions.

Algorithm 1 The proposed training algorithm of neuron network

Input: Training Set .xi; ti/; xi 2 Rn; ti 2 RM ; i D 1; : : :N, activation function G.ai; bi; xj/,
maximum number of hidden neuron node L and accepted training error �.

Output: Neuron Network output weight �
1: Randomly assign hidden-node parameters
.aij; bkj/; i D 1; 2; : : :; n; j D 1; : : :; l; k D 1; 2; : : :;NI

2: Calculate the hidden-layer output matrix H
preH D XAC B; H D 1=.1C e�preH/

3: Form regularized `2-norm

QH D
�

Hp
�I

�
QT D

�
T
0

�

4: Calculate the output weight
� D . QHT QH/�1 QHT QT

5: IF (l � L or error > �)
Increase number of hidden node
l D lC 1, repeat from Step 1

6: ENDIF

3.4.2 Square-Root-Free Cholesky Decomposition

The main step for a direct solution of the training problem is the standard least-
squares problem of minimizing jj QT � QH� jj2. This can be the solution using SVD,
QR, and Cholesky decomposition. The computational cost of SVD, QR, or Cholesky
decomposition for the problem is O.4.N C L/L2 � 4

3
L3/, O.2.N C L/L2 � 2

3
L3/, and

O. 1
3
L3/, respectively [17]. Therefore, we use Cholesky decomposition to solve the

least-squares problem. Moreover, its incremental and symmetric property reduces
the computational cost and hence saves half of memory required [17]. Here, we
use HL to represent the matrix with L number of hidden neuron nodes, which
decomposes the symmetric positive definite matrix QHT QH into

QHT QH D QDQT (3.14)

where Q is a lower triangular matrix with diagonal elements qii D 1 and D is a
positive diagonal matrix. Such method can maintain the same space as Cholesky



3 Least-squares-solver Based Machine Learning Accelerator 61

factorization but avoid the extracting the square roots as the square root of Q is
resolved by diagonal matrix D [18].

QHT
L

QHL D � QHL�1 hL
�T� QHL�1 hL

�

D
� QHT

L�1 QHL�1 vL

vT
L g

�
(3.15)

where .vL; g/ is a new column generated from new data hT
LhL, compared to

QHT
L�1 QHL�1. Therefore, we can find

QLDLQT
L D

�
QL�1 0

zT
L 1

��
DL�1 0
0 d

��
QT

L�1 zL

0 1

�
(3.16)

Therefore, we can easily calculate the vector zL and scalar d for Cholesky decom-
position as

QL�1DL�1zL D vL; d D g � zT
LDL�1zL (3.17)

where QL and vL are known from (3.15), which means that we can continue to use
previous factorization result and only update according part. Algorithm 2 shows
more details on each step. Note that Q1 is 1 and D1 is QHT

1
QH1.

3.4.3 Incremental Least-Squares Solution

The optimal residual for least-squares problem QH� D T is defined as r:

r D T � QH�ls D . QH. QHT QH/�1 QHT � I/T (3.18)

Therefore, r is orthogonal to QH, where the projection of r to QH is

< r; QH >D TT. QH. QHT QH/�1 QHT � I/T QH D 0 (3.19)

Similarly, for every iteration of Cholesky decomposition, xl�1 is the least-squares
solution of T D QHƒl�1 � � with the same orthogonality principle, where ƒl is the
selected column sets for matrix QH. Therefore, we have

T D rl�1 C QHƒl�1 � xl�1
QHT
ƒl

QHƒl xl D QHT
ƒl
.rl�1 C QHƒl�1 � xl�1/

(3.20)



62 H. Huang and H. Yu

where xl�1 is the least-squares solution in the previous iteration. By utilizing
superposition property of linear systems, we can have

" QHT
ƒl

QHƒl xtp1

QHT
ƒl

QHƒl xtp2

#
D
" QHT

ƒl
rl�1

QHT
ƒl

QHƒl�1 � xl�1

#

xl D xtp1 C xtp2 D xtp1 C xl�1

(3.21)

where the second row of equation has a trivial solution of Œxl�1 0�T . Furthermore,
this indicates that the solution of xl is based on xl�1 and only xtp is required to be
computed out from the first row of (3.21), which can be expanded as

QHT
ƒl

QHƒl xtp1 D
" QHT

ƒl�1
rl�1

hT
l rl�1

#
D
	

0

hT
l rl�1



(3.22)

Due to the orthogonality between the optimal residual QHƒl�1 and rl�1, the dot
product becomes 0. This clearly indicates that the solution xtp1 is a sparse vector
with only one element. By substituting square-root-free Cholesky decomposition,
we can find

QTdxtp D hT
l rl�1 (3.23)

where xtp is the same as xtp1. The other part of Cholesky factorization Q for
multiplication of xtp1 is always 1 and hence is eliminated. The detailed algorithm
including Cholesky decomposition and incremental least-squares is shown in
Algorithm 2. By utilizing Cholesky decomposition and incremental least-squares
techniques, the computational complexity is reduced with only 4 basic linear algebra
operations per iterations.

3.5 Least-Squares Based Machine Learning Accelerator
Architecture

3.5.1 Overview of Computing Flow and Communication

The top level of proposed VLSI architecture for training and testing is shown in
Fig. 3.4. The description of this architecture will be introduced based on testing
flow. The complex control and data flow of the neural network training and testing
is enforced by a top level finite state machine (FSM) with synchronized and
customized local module controllers.

For the neural network training and testing, an asynchronous first-in first-out
(FIFO) is designed to collect data through AXI4 light from PCIe Gec3X8. Two
buffers are used to store rows of the training data X to perform ping-pong operations.
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Algorithm 2 Fast incremental least-squares solution

Input: Activation matrix QHL, target matrix QT and number of hidden nodes L
Output: Neuron Network output weight x
1: Initialize r0 D QT, ƒ0 D ;, d D 0, x0 D 0, l D 1,
2: While jjrl�1jj22 � �2 or l � L
3: c.l/ D hT

l rl�1, ƒl D ƒl�1 [ l
4: vl D QHT

ƒl
hl

5: Ql�1w D vl.1 W l� 1/. zl D w:=diag.Dl�1/

6: d D g� zT
l w

7: Ql =

	
Ql�1 0

zT
l 1



, Dl =

	
Dl�1 0

0 d




(Q1 D 1;D1 D h1 � hT
1 )

8: QT
l xtp =

	
0

c.l/=d




9: xl D xl�1 C xtp, rl D rl�1 � QHƒl xtp, l D lC 1
10: END While

Fig. 3.4 Accelerator architecture for training and testing

These two buffers will be re-used when collecting the output weight data. To
maintain high training accuracy, floating point data is used with parallel fixed point
to floating point converter. As the number indicated on each block in Fig. 3.4, data
will be firstly collected through PCIe to DRAM and Block RAM. Block RAM is
used to control the core to indicate the read/write address of DRAM during the
training/testing process. The core will continuously read data from block RAM for
configurations and starting signal. Once data is ready in DRAM and the start signal
is asserted, the core will process computation for neural network testing or training
process. An implemented FPGA block design on Vivado is shown in Fig. 3.9.
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Fig. 3.5 Detailed architecture for online learning

3.5.2 FPGA Accelerator Architecture

As mentioned in the Sect. 3.3, operations in neural network are performed serially
from one layer to the next. This dependency reduces the level of parallelism of
accelerator and requires more acceleration in each layer. In this chapter, a folded
architecture is proposed as shown in Fig. 3.5. Firstly, the input arbitrator will take
input training data and input weight. A pipeline stage is added for activation after
each multiplication result. Then depending on the mode of training and testing,
the input arbitrator will decide to take label or output weight. For testing process,
output weight is selected for calculation neural network output. For training, label
will be taken for output weight calculation based on Algorithm 2. To achieve similar
software-level accuracy, floating-point data is used during the computation process
and 8-bit fixed point is used for data storage.

3.5.3 `2-Norm Solver

As mentioned in the reformulated `2-norm Algorithm 2, Step 5 requires forward
substitutions. Figure 3.6 provides the detailed mapping for forward substitutions
on our proposed architecture. For the convenient purposes, we use QW D V to
represent Step 5, where Q is a triangular matrix. Figure 3.7 provides the detailed
equations in each PEs and stored intermediate values. To explore the maximum
level of parallelism, we can perform multiplication at the same time on each row
to compute wi; i ¤ 1 as shown in the right of Fig. 3.7. However, there is different
number of multiplication and accumulations required for different wi. In the first
round, to have the maximum level of parallelism, intuitively we require L�1 parallel
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Fig. 3.6 Computing diagram of forward/backward substitution in L2-norm solver

Fig. 3.7 Detailed mapping of forward substitution

PEs to perform the multiplication. After knowing w2, we need L � 2 parallel PEs
for the same computations in the second round. However, if we add a shift register,
we can store the intermediate results in the shift register and take it with a decoder
of MUX. For example, if we have parallelism of 4 for L D 32, we can perform 8

times parallel computation for the round 1 and store them inside registers. This helps
improve the flexibility of the process elements (PEs) with better resource utilization.
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Fig. 3.8 Computing diagram of matrix–vector multiplication

3.5.4 Matrix–Vector Multiplication

All the computation relating to vector operation is performed on processing
elements (PEs). Our designed PE is similar as [19] but features direct instruction
to perform vector–vector multiplications for neural network. Figure 3.8 gives an
example of vector–vector multiplication (dot product) for (3.7) with parallelism of
4. If the vector length is 8, the folding factor will be 2. The output from PE will be
accumulated twice based on the folding factor before sending out the vector–vector
multiplication result. The adder tree will be generated based on the parallelism
inside vector core. The output will be passed to scalar core for accumulations. In
the PE, there is a bus interface controller. It will control the multiplicand of PE and
pass the correct data based on the top control to PE.

3.6 Experiment Results

In this section, we firstly discuss the machine learning accelerator architecture and
resource usage. Then details of FPGA implementation with CAD flow are discussed.
The performance of proposed scalable architecture is evaluated for regression
problem and classification problem, respectively. Finally, the energy consumption
and speed-up of proposed accelerator are evaluated in comparison with CPU,
embedded CPU and GPU.

3.6.1 Experiment Setup and Benchmark

To verify our proposed architecture, we have implemented in on Xilinx Virtex 7
with PCI Express Gen3x8 [20]. The HDL code is synthesized using Synplify and
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Fig. 3.9 Vivado block design for FPGA least-squares machine learning accelerator

Fig. 3.10 Training cycles at each step of the proposed training algorithm with different paral-
lelisms (N D 74; L D 38; M D 3 and n D 16)

the maximum operating frequency of the system is 53.1 MHz under 128 parallel
PEs. The critical path is identified as the floating-point division, where 9 stages of
pipeline are inserted for speedup. We develop three baselines (x86 CPU, ARM CPU,
and GPU) for performance comparisons.

Baseline 1: General Processing Unit (x86 CPU). The general CPU implementa-
tion is based on C program on a computer server with Intel Core -i5 3.20GHz core
and 8.0GB RAM.

Baseline 2: Embedded processor (ARM CPU). The embedded CPU (Beagle-
Board-xM) [21] is equipped with 1GHz ARM core and 512MB RAM. The
implementation is performed using C program under Ubuntu 14.04 system.

Baseline 3: Graphics Processing Unit (GPU). The GPU implementation is
performed by CUDA C program with cuBLAS library. A Nvidia GeForce GTX
970 is used for the acceleration of learning on neural network.

The dataset for residential load forecasting is collected by Singapore Energy
Research Institute (ERIAN). The dataset consists of 24-henergy consumptions,
occupants motion, and environmental records such as humidity and temperatures
from 2011 to 2015. Features for short-term load forecasting is summarized in
Table 3.2. Please note that we will perform hourly load forecasting using real-time
environmental data, occupants motion data, and previous hours and days energy
consumption data. Model will be retrained sequentially after each hour with new
generated training data.
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3.6.2 FPGA Design Platform and CAD Flow

The ADM-PCIE-7V3 is a high-performance reconfigurable computing card
intended for high speed performance applications, featuring a Xilinx Virtex-7
FPGA. The key features of ADM-PCIE 7V3 are summarized as below [20]

– Compatible with Xilinx OpenCL compiler
– Supported by ADM-XRC Gen 3 SDK 1.7.0 or later and ADB3 Driver 1.4.15 or

later.
– PCIe Gen1/2/3 x1/2/4/8 capable
– Half-length, low-profile x8 PCIe form factor
– Two banks of DDR3 SDRAM SODIMM memory with ECC, rated at 1333 MT/s
– Two right angle SATA connectors (SATA3 capable)
– Two SFP+ sites capable of data rates up to 10 Gbps
– FPGA configurable over JTAG and BPI Flash
– XC7VX690T-2FFG1157C FPGA

The development platform is mainly on Vivado 14.4. The direct memory access
(DMA) bandwidth is 4.5GB/s. The DDR3 bandwidth is 1333 MT/s with 64 bits
width.

The CAD flows for implementing the machine learning accelerator on the ADM-
PCIE 7V3 are illustrated in Fig. 3.11. The Xilinx CORE Generator System is first
used to generate the data memory macros that are mapped to the BRAM resources
on the FPGA. The generated NGC files contain both the design netlist, constraints
files and Verilog wrapper. Then, these files together with the RTL codes of the
machine learning accelerator are loaded to Synplify Premier for logic synthesis.

AXI4 Comm. DRAM Contr. 
PCI-E core

.ngc

Block RAM

.ngc.ngcIP 
package

.ngc.ngcLeast-squares 
HDL

Synthesis Syn Lib

Vivado Synthesis

.edf .xdc .ncf

Ngdbuild, Map, par, bitgen .bit

.ucf.edf.ncf

Synopsys 
Synplify
Premerier

Xilinx Vivado
Design Suit

Xilinx Core
Generator

Configure

ADM-PCIE 7V3

Fig. 3.11 CAD flows for implementing least-squares on ADM-PCIE 7V3
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Fig. 3.12 Alpha-Data PCIe 7V3 FPGA board

Note that the floating-point arithmetic units used in our design are from the
Synopsys DesignWare library. The block RAM is denoted as black box for Synplify
synthesis. The EDF file stores the gate-level netlist in an electronic data interchange
format (EDIF), and the UCF file contains user-defined design constraints. Next, the
generated files are passed to Xilinx Vivado Design Suite to merge with other IP core
such as DRAM controller and PCI-E core. In the Vivado design environment, each
IP is packaged and connected. Then, we synthesize the whole design again under
Vivado environment. Specifically, the “ngbbuild” command reads in the netlist in
EDIF format and creates a native generic database (NGD) file that contains a logical
description of the design reduced to Xilinx NGD primitives and a description of
the original design hierarchy. The “map” command takes the NGD file, maps the
logic design to a specific Xilinx FPGA, and outputs the results to a native circuit
description (NCD) file. The “par” command takes the NCD file, places and routes
the design, and produces a new NCD file, which is then used by the “bitgen”
command for generating the bit file for FPGA programming. Figure 3.12 shows
Alpha-Data PCIe FPGA board.

3.6.3 Scalable and Parameterized Accelerator Architecture

The proposed accelerator architecture features great scalability for different applica-
tions. Table 3.3 shows all the user-defined parameters supported in our architecture.
At circuit level, users can adjust the stage of pipeline of each arithmetic to satisfy the
speed, area, and resource requirements. At architecture level, the parallelism of PE
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Table 3.3 Tunable parameters on proposed architecture

Parameters Descriptions
Circuits {MAN EXP} Word-length of mantissa, exponent

{PA, PM , PD, PC} Pipe. stages of adder, mult, div and comp
Architectures P Parallelism of PE in VC

n Maximum signal dimensions

N Maximum training/test data size

H Maximum number of hidden nodes

Table 3.4 Resource
utilization under different
parallelism level (N D 512,
H D 1024, n D 512 and
50 Mhz clock)

Paral. LUT Block RAM DSP

8 52,614 (12%) 516 (35%) 51 (1.42%)

16 64,375 (14%) 516 (35%) 65 (1.81%)

32 89,320 (20%) 516 (35%) 96 (2.67%)

64 139,278 (32%) 516 (35%) 160 (4.44%)

128 236,092 (54%) 516 (35%) 288 (8.00%)

can be specified based on the hardware resource and speed requirement. The neural
network parameters n;N;H can be also reconfigured for specific applications.

Figure 3.10 shows the training cycles on each step on proposed training
algorithms for synthesized dataset. Different parallelism P is applied to show the
speed-up of each steps. The speed-up of 1st-layer for matrix–vector multiplication
is scaling up with the parallelism. The same speed-up improvement is also observed
in the Step 3, 4, and 9 in Algorithm 2, where the matrix–vector multiplication is the
dominant operation.

However, when the major operation is the division for the backward and
forward substitution, the speed-up is not that significant and tends to saturate
when the division becomes the bottleneck. We can also observe in Step 7, the
memory operations do not scale with parallelism. It clearly shows that matrix–
vector multiplication is the dominant operation in the training procedure (1st Layer,
Step 3, Step 4, and Step 9) and our proposed accelerator architecture is scalable to
dynamically increase the parallelism to adjust the speed-up.

The resource utilization under different parallelism is achieved from Xilinx ISE
after place and routing. From Table 3.4, we can observe that LUT and DSP are
almost linearly increasing with parallelism. However, Block RAM keeps constant
with increasing parallelism. This is because Block RAM is used for data buffer,
which is determined by other architecture parameters (N;H; n). Figure 3.13 shows
the layout view of the FPGA least-squares solver.
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Fig. 3.13 Layout view of the FPGA with least-squares machine learning accelerator implemented
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Table 3.5 UCI Dataset Specification and Accuracy

Benchmarks Data size Dim. Class Node No. Acc. (%)

Car 1728 6 4 256 90.90

Wine 178 13 3 1024 93.20

Dermatology 366 34 6 256 85.80

Zoo 101 16 7 256 90.00

Musk1 476 166 2 256 69.70

Conn. Bench 208 60 2 256 70

3.6.4 Performance for Data Classification

In this experiment, six datasets are trained and tested from UCI dataset [22], which
are wine, car, dermatology, zoo, musk and Connectionist Bench (Sonar, Mines vs.
Rocks). The details of each dataset are summarized in Table 3.5. The architecture
is set according to the training data set size and dimensions to demonstrate
the parameterized architecture. For example, N D 128.74/ represents that the
architecture parameter (training size) is 128 with the actual dataset wine size of
74. The accuracy of the machine learning is the same comparing to Matlab result
since the single floating-point data format is applied for the proposed architecture.

For speed-up comparison, our architecture will not only compare to the time
consumed by least-squares solver (DS) training method, but also SVM [23] and BP
based method [24] on CPUs. For example, in dataset dermatology, the speed-up of
training time is lower comparing to CPU based solution when the parallelism is 2.
This is mainly due to the high clock speed of CPU. When the parallelism increases to
16, 4:70� speed-up can be achieved. For connectionist bench dataset, the speed-up
of proposed accelerator is as high as 24:86�, when compared to the least-squares
solver software solution on CPUs (Table 3.6). Furthermore, 801:20� and 25:55�
speed-up can be achieved comparing to BP and SVM on CPUs.

3.6.5 Performance for Load Forecasting

Figure 3.14 shows the residential load forecasting with FPGA and CPU implemen-
tation. Clearly, all the peaks period are captured. It also shows that approximation
by number representation (fixed point) will not degrade the overall performance.
To quantize the load forecasting performance, we use two metrics: root mean
square error (RMSE) and mean absolute percentage error (MAPE). Table 3.7 is
the summarized performance with comparison of SVM. We can observe that our
proposed accelerator has almost the same performance as CPU implementation. It
also shows an average of 31.85% and 15.4% improvement in average on MAPE and
RMSE comparing to SVM based load forecasting (Table 3.7).
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Fig. 3.14 7-Day residential load forecasting by proposed architecture with comparison of CPU
implementation

Table 3.6 Parameterized and scalable architecture on different dataset with speed-up comparison
to CPU

Benchmarks FPGA (ms) CPU (ms) BP (ms) SVM (ms) Imp. (CPU)

Car 44.3 370 36,980 1182 8:35�
Wine 207.12 360 11,240 390 1:74�
Dermatology 19.45 160 17,450 400 8:23�
Zoo 22.21 360 5970 400 16:21�
Musk 24.09 180 340,690 3113 7:47�
Conn. Bench 14.48 360 11,630 371 24:86�

Table 3.7 Load forecasting accuracy comparison and accuracy improvement comparing to FPGA
results to SVM result

Machine Learning
MAPE RMSE

Max Min Avg Max Min Avg

NN FPGA 0:12 0:072 0:92 18:87 6:57 12:80

NN CPU 0:11 0:061 0:084 17:77 8:05 12:85

SVM 0:198 0:092 0:135 20:91 5:79 15:13

Imp. (CPU)(%) 4:28 �18:03 �9:52 �6:19 18:39 0:39

Imp. (SVM)(%) 41:01 21:74 31:85 9:76 �13:47 15:40

3.6.6 Performance Comparisons with Other Platforms

In the experiment, the maximum throughput of proposed architecture is
12.68 Gflops with 128 parallelism for matrix multiplication. This is slower
than GPU based implementation 59.78 Gflops but higher than x86 CPU based
implementation 5.38 Gflops.
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Table 3.8 Proposed architecture performance in comparison with other computation platform

Platform Type Format Time (ms) Power (W) Energy Speed-up E. Imp.
x86 CPU Train Single 1646 84 138.26 J 2.59� 256.0�

Test 1.54 84 0.129 J 4.56� 450.2�
ARM CPU Train Single 32,550 2.5 81.38 J 51.22� 150.7�

Test 30.1 2.5 0.0753 J 89.05� 261.9�
GPU Train Single 10.99 145 1.594 J 0.017� 2.95�

Test 0.196 145 0.0284 J 0.580� 98.92�
FPGA Train SingleC Fixed 635.4 0.85 0.540 J – –

Test 0.338 0.85 0.287 mJ – –

To evaluate the energy consumptions, we calculate the energy for a given imple-
mentation by multiplying the peak power consumption of corresponding device.
Although this is pessimistic analysis, it is still very likely to reach due to intensive
memory and computation operations. Table 3.8 provides detailed comparisons
between different platforms. Our proposed accelerator on FPGA has the lowest
power consumption (0:85W) comparing to GPU implementation (145W), ARM
CPU (2:5W) and x86 CPU implementation (84W). For training process, although
GPU is the fastest implementation, our accelerator still has 2:59� and 51:22�
speed-up for training comparing to x86 CPU and ARM CPU implementations.
Furthermore, our proposed method shows 256:0�, 150:7�, and 2:95� energy saving
comparing to CPU, ARM CPU, and GPU based implementations for training
model. For testing process, it is mainly on matrix–vector multiplications. Therefore,
GPU based implementations provide better speed-up performance. However, our
proposed method still has and 4:56� and 89:05� speed-up for testing comparing to
x86 CPU and ARM CPU implementations. Moreover, our accelerator is the most
low-power platform with 450:1�, 261:9� and 98:92� energy saving comparing to
x86 CPU, ARM CPU and GPU based implementations. In summary, our proposed
accelerator provides a low-power and fast machine learning platform for smart-grid
data analytics.

3.7 Conclusion

This chapter presents a fast machine learning accelerator for real-time data analytics
in smart micro-grid of buildings with consideration of occupants behavior. An
incremental and square-root-free Cholesky factorization algorithm is introduced
with FPGA realization for training acceleration when analyzing the real-time sensed
data. Experimental results have shown that our proposed accelerator on Xilinx
Virtex-7 has a comparable forecasting accuracy with an average speed-up of 4:56�
and 89:05�, when compared to x86 CPU and ARM CPU for testing. Moreover,
450:2�, 261:9�, and 98:92� energy saving can be achieved comparing to x86 CPU,
ARM CPU, and GPU.
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Chapter 4
Compute-in-Memory Architecture
for Data-Intensive Kernels

Robert Karam, Somnath Paul, and Swarup Bhunia

4.1 Introduction

In modern computing systems, energy efficiency has become a major design
challenge. This is especially true in the deep nanoscale regime, where transistors
no longer enjoy the same cubic reductions in energy at new process nodes that
they once did [2]. In this era, alternative approaches to improve energy efficiency
have become the subject of intense research, including new algorithms, highly
optimized accelerators, smarter hardware–software partitioning, and sophisticated
power management techniques [4]. The demand for improved energy efficiency is
not limited to any one application domain; rather, it spans diverse areas, including
scientific computations, web serving, multimedia storage, and analytics. Many of
these applications call for the processing of large volumes of data, and are therefore
referred to as data-intensive applications. Such applications exacerbate the problem
of energy scaling by placing an additional constraint on the system: memory
bandwidth, especially from secondary storage, and the associated transfer energy
become bottlenecks to system performance. In the past decade, integrated graphics
processing units (GPUs) and other on-chip accelerators have largely addressed
the issue of compute energy for these applications, while cache hierarchies have
partially alleviated the memory bottleneck.

However, technology scaling gives rise to two main barriers to energy scalability.
The first is the fact that Dennard scaling, which called for the cubic reduction in
energy at new process nodes, no longer holds, and the fact that for many workloads,

R. Karam • S. Bhunia (�)
University of Florida, Gainesville, FL 32611, USA
e-mail: robkaram@ufl.edu; swarup@ece.ufl.edu

S. Paul
Intel Corporation, Hillsboro, OR 97124, USA
e-mail: somnath.paul@intel.com

© Springer International Publishing AG 2017
A. Chattopadhyay et al. (eds.), Emerging Technology and Architecture
for Big-data Analytics, DOI 10.1007/978-3-319-54840-1_4

77

mailto:robkaram@ufl.edu
mailto:swarup@ece.ufl.edu
mailto:somnath.paul@intel.com


78 R. Karam et al.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0D

2D

4D

6D

8D

10D

12D

1

2

3

4

5

6Relative Growth in Mem. DW
# of cores

Required Memory BW
Total off-chip IO Power[w]
off-chip IO Energy [p/b]

Fig. 4.1 Scaling trends for off-chip bandwidth and power suggest that a large gap exists between
the technology projections and system requirements. Alternative architectures which can reduce
this effect will be critical for efficient data-intensive computing in the coming years [11]

additional cores in a multicore system do not provide the same benefits they once
did, due to physical (e.g., thermal) constraint [3]. These energy-constrained, over-
provisioned systems are unable to meet the performance requirements for emerging
data-intensive applications. The second barrier is posed by the ever-increasing gap
between on-chip memory, processor frequency, and external data rates (Fig. 4.1).
Even advanced caching techniques are unable to fully address (i.e., hide) the off-
chip access latency incurred especially during data-intensive workloads.

As datasets grow from petabytes (1015 B) to exabytes (1018 B) and beyond,
attention has turned to off-chip computing frameworks, which physically bring the
processing and memory closer together. In many cases, this helps alleviate some of
the issues facing data-intensive computing by reducing the required data transfer
energy, while providing additional opportunities for optimization, such as increased
area- and energy-efficiency. The Malleable Hardware Accelerator, or MAHA,
has emerged as a suitable off-chip computing framework [9, 10]. MAHA can be
described as memory-centric, because it leverages dense, 2D memory arrays for
both storage and computation, in the form of multi-input, multi-output lookup tables
(LUTs). Computation is mixed-granular, in that it supports bit-sliceable and fused
logic operations. MAHA supports both spatial and temporal computing models
to achieve optimal energy efficiency: spatial because operations are executed—
often in parallel—across a number of interconnected processing elements (PEs);
and temporal because, at their core, each PE is an ultra-light-weight and extensible
instruction processor.

This chapter describes the basic MAHA architecture and two of its specific
embodiments, namely memory-centric computing, in which computations occur in
close proximity to, though still physically outside of the memory, and in-memory
computing, where computation occurs inside the memory array. Both versions make
use of the memory for computation, though the amount of data movement, and
the associated transfer energy, will differ. Both versions also have a smaller logic
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datapath than a typical processor, but are nevertheless extensible, so that they are
able to support new instructions using the available LUT memory. A custom-
designed software tool is used to generate the configuration file for the MAHA
fabric. It can therefore be used to accelerate a wide range of data-intensive kernels
from various application domains. Furthermore, the architecture is amenable to
domain customization, where certain features, including the datapath and intercon-
nect fabric, can be modified to better suit the specific needs of a target domain,
improving area- and energy-efficiency over more general purpose accelerators, such
as Field Programmable Gate Array (FPGA) or General Purpose Graphics Processing
Units (GPGPU), and certainly over a General Purpose Processor (GPP). Finally,
as a memory-centric architecture, it can benefit from using emerging nanoscale
memory technologies, such as Resistive RAM (RRAM) or Spin-Transfer Torque
RAM (STTRAM), to improve area- and energy-efficiency [5, 6].

The rest of the chapter is organized as follows: Sect. 4.2 will describe the MAHA
architecture for both memory-centric and in-memory computing models, the appli-
cation mapping tool flow, and the general process for domain customization. Next,
Sect. 4.3 will present a number of case studies which take the general framework
and procedure for domain customization, and demonstrate how they can be used to
achieve extreme energy-efficiency for data-intensive kernels in numerous domains,
using both memory-centric and in-memory computing models.

4.2 Malleable Hardware Acceleration

This section describes the general MAHA architecture for data-intensive applica-
tions and the corresponding software framework.

4.2.1 Hardware Architecture

At a high level, the Malleable Hardware Accelerator consists of a set of intercon-
nected processing elements called Memory Logic Blocks, or MLBs. A single MLB
consists of components typically found in a microprocessor, such as instruction
memory, data memory, a register file, and a datapath, as shown in Fig. 4.2. In MLB
terminology, the instruction memory is referred to as the schedule table, while
the data memory, partially used for LUT responses, is called the function table.
Instruction execution occurs over multiple cycles, just as in a typical processor, and
constitutes the temporal computing aspect. MLBs communicate using a hierarchical
interconnect, which emphasizes lower latency, more energy-efficient local commu-
nication with other MLBs. This constitutes the spatial computing aspect. By finding
the right balance of spatial and temporal computing, optimal energy efficiency can
be achieved for a particular application under area, power, and delay constraints.



80 R. Karam et al.

Fig. 4.2 Integration of a reconfigurable security accelerator in a typical System-on-Chip [1]

Within this general framework, two implementation classes, or embodiments of the
MAHA architecture, are possible:

Memory-Centric A paradigm in which processing occurs in close proximity to,
but still distinctly separates from the memory.

In-Memory A paradigm in which the memory array is augmented with
additional circuitry, enabling the memory itself to either store
data or process it in situ. The memory can perform on-demand
context switching between these two modes.

For memory-centric accelerators, no modifications are required to the memory
array, but additional peripheral logic is needed. Accelerators implementing memory-
centric computing can typically be retrofitted into existing computing systems
with additional software support, such as operating system (OS) integration, or
device drivers. Conversely, in-memory accelerators require significant design-time
modifications of the memory array, as well as the peripheral logic. They can
also leverage the extremely high bandwidth available within the memory array,
rather than relying on a read/write interface to the memory [10]. Accelerators
implementing in-memory computing require more drastic changes to the system
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architecture; for example, an in-memory accelerator can be integrated into the CPU
cache, or into the last level memory device, such as a solid state drive (SSD). Such
changes would require replacement of an existing CPU, or swapping out of old
SSDs for one with the in-memory accelerator. This is in addition to the necessary
OS and driver support.

In both cases, internal accelerator parameters such as the MLB’s schedule and
function table sizes, the logic datapath and functional units, as well as the connec-
tivity and number of levels in the MLB interconnect hierarchy can be customized
to a specific domain. This can result in significantly improved area- and energy-
efficiency over a general accelerator framework, as described in the Case Studies
(Sect. 4.3).

4.2.2 Application Mapping

Given this general framework, it is important to have a parameterized software
tool with which to map applications into a particular hardware configuration. The
MAHA mapper tool achieves this goal, and is capable of mapping diverse applica-
tions of varying complexity given a certain input configuration. The configuration
consists of several components, as well as the input parameters listed in Table 4.1.

4.2.2.1 Application Description Using an Instruction Set Architecture

The mapper requires an instruction set definition that includes common control and
data flow operations.

bits Bit-sliceable operations which do not require a carry bit. These are
generally logic functions such as AND, OR, or XOR.

bitswc Bit-sliceable operations which require a carry bit. For example, a 32-
bit ADD, SUBTRACT, or COMPARE operation which can be bit-sliced
into two 16-bit or four 8-bit sub-operations.

mult Represents a signed, 2-input multiplication operation, A D B � C.
shift/rotate A 3-input operation, with a bit indicating SHIFT or ROTATE, the

amount by which to shift or rotate, and the input operand.
sel An N-input to 1-output selection operation, which takes as input N

operands and log2.N/ select bits.
complex A variable instruction which represents the general class of LUT

operations. The number of inputs and the bit-widths of each input are
constrained by the LUT size.

load/store Represents a read or write operation to the data memory.

In order to provide greater flexibility, the ISA description must define which
of these operations are supported on the target architecture. Determining which
operations are suitable for datapath execution and when a single memory read
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may be more advantageous can help to improve energy efficiency. For example,
in a given technology, it may be advantageous to perform a single table lookup of
several fused and bit-sliced logic operations than to execute the same operations
sequentially with a coarser operand granularity. Such tradeoffs are evaluated by the
tool using energy models described by input configuration files. These files define
the power and latency for datapath and lookup operations, as well as inter-MLB
communications through different levels of the interconnect.

4.2.2.2 Application Mapping to the General Framework

The mapping process consists of two stages. First, the decomposition of operations
with varying granularity. A number of supported operations can be decomposed
into smaller sub-operations; these include bits, bitswc, mult, sel, shift/rotate, and
load/store. The decomposition is followed by the judicious fusion of multiple
lookup and datapath operations. Three fusion routines are incorporated into the
tool: first, fusion of random LUT-based operations; next, fusion of bit-sliceable
operations; and finally, fusion of custom datapath operations. Fusion is performed
using graph traversals on the input, a control and dataflow graph (CDFG), following
the decomposition. The level of decomposition and fusion is in part determined by
the input functions, as well as the available schedule table memory and the MLB
interconnect. Scheduling of instruction execution is performed following a modulo
scheduling policy in which vertices are mapped into a particular MLB.

Given the number of modules in each level of the memory hierarchy and their
I/O bandwidth, the software tool places the MLBs in a hierarchical fashion such
that the number of inputs and outputs crossing each module is minimized. To
realize this, a bi-partitioning approach is followed, first allocating MLBs to the first
level modules, then distributed among second level modules. This continues until
each MLB has been mapped to the lowest memory module. Signal routing is also
performed hierarchically, beginning first by routing primary inputs to each MLB,
then routing signals which cross each level of the memory hierarchy, and finally
routing primary outputs from each MLB.

Finally, the bitfile generation routine accepts the placed and routed netlist and
generates the control or select bits for the programmable routing switches, the
schedule table, and the LUT entries. Functionality is then validated by applying
inputs to the datain bus and noting the outputs available at the dataout bus of the
instrumented memory.

4.2.3 Domain Customization for Efficient Acceleration

One of the greatest benefits of accelerator platforms such as FPGA and GPU
is their flexibility to map diverse applications—FPGA using a purely spatial
reconfigurable fabric, and GPUs using hundreds or thousands of lightweight cores
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with a very particular execution model that is geared towards graphics processing.
However, this flexibility comes at a price of significantly lower area- and energy-
efficiency compared to a dedicated hardware accelerator for a given application. For
reconfigurable platforms, domain-specific accelerators represent a happy medium
between application specific accelerators such as application specific integrated
circuits (ASICs) and general purpose FPGAs and GPUs. Rather than optimizing the
circuitry for a specific application, these accelerators customize the reconfigurable
architecture to a given domain of applications, such as security, signal processing,
analytics, or machine learning. The general procedure for customizing an architec-
ture to a given domain can follow a top-down approach:

1. Identify typical applications belonging to the domain.
2. Identify kernel functions or algorithms within these applications.
3. Identify atomic operations common to the majority of the kernel functions.

While this approach cannot guarantee that future applications in this domain will
enjoy the same level of acceleration that modern kernels (off of which the archi-
tecture is based), balancing domain-specificity with general-purpose computing can
in some cases provide a measure of future-proofing, especially if the operations
are more general, i.e. preprocessing that is common to all algorithms, rather than
specific functions found in a given subset. This is discussed in more detail in
Sect. 4.3.2.

4.3 Case Studies for Memory-Centric Computing

The following case studies demonstrate the advantages of memory-centric comput-
ing for two specific domains: security/cryptography and text analytics.

4.3.1 MAHA for Security Applications

Security is an important design metric for many systems, including embedded,
personal, and enterprise level computing. Pure software implementations of diverse
security algorithms, including encryption and hashing, can be costly. Therefore, the
inclusion of hardware cryptographic modules has become a de facto standard for
many devices, including embedded System-on-Chip, as shown in Fig. 4.2. This case
study explores how the memory-centric MAHA architecture can be customized
to the security domain of applications, resulting in the Hardware Accelerator for
Security Kernels, or HASK [1].
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4.3.1.1 Domain Exploration

To develop the security accelerator, a number of algorithms were analyzed, includ-
ing the Advanced Encryption Standard (AES), Blowfish, CAST-128, IDEA, MD5,
and SHA-1. These applications make use of addition, mixed-granular bitwise logical
operations (such as AND, OR, and XOR), circular and logical shifts, and finally
non-linear functions such as substitution boxes (S-Boxes), which differ among
each application and are amenable to implementation as lookup tables (LUTs). In
addition, a number of complex logic operations such as Z D .A ^ B/ _ .A ^ C/ are
common in cryptographic hashing algorithms.

In general, security algorithms are deterministic, and therefore amenable to
parallelism and pipelining, depending on the application and energy/latency require-
ments. Most algorithms operate on the input data, maintain an internal state, and
iterate over the internal state using different key inputs for a given number of rounds.
Therefore, latency can also be improved by applying instruction-level and data-
level parallelism within each round; this in turn affects the type and number of
communications required for a given application mapping, and ultimately the choice
of interconnect network topology selected for the accelerator.

4.3.1.2 Architecture Description

The Security Nano-Processor (SNP), shown in Fig. 4.3, represents the smallest
unit of the Hardware Accelerator for Security Kernels (HASK) [1]. Each SNP
operates independently, with its own local data and instruction memory. Based on
the observed communication patterns, a two level hierarchical interconnect was
chosen for HASK; the first level contains groups of four SNPs and is called the
cluster; the second level, called the tile, contains four clusters, as well as a central
controller responsible for writing to the instruction memory of each SNP, as well as
facilitating data transfer between the main memory and local SNP memory.

Security Nano-Processors

Each SNP contains components typical to a RISC-style processor, including an
SRAM memory array, a register file, and a program counter. A lightweight, cus-
tomized datapath, and two-way execution engine help reduce latency and improve
efficiency for security kernels. The register file is designed to have a large number
of read ports (8) and write ports (4) to support the wide execution engine. Each SNP
has a dedicated schedule table that holds the 128 � 80-bit (2� 40) wide instructions
which are preloaded when the SNP is configured. A number of standard operations
are supported in the datapath, including add, shift, simple logical operations, and
load/store. A number of domain-specific optimizations are made to improve area-
and energy-efficiency:
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Fig. 4.3 Block diagram of a single Security Nano-processor (SNP) showing two-way execution
engine, dedicated lookup and data memories, as well as typical RISC-style processor features,
including the instruction memory (sched. table) and register file [1]

• hardware support for variable width vectorized lookup table (LUT) operations
• a fused logical unit for arbitrary 3-input functions
• a byte-addressable register file
• support for SIMD-style datapath operations.

Each SNP supports 8-bit input lookup operations with variable output sizes,
including 8, 16, and 32 bits to map nonlinear functions (e.g., AES S-BOX)
efficiently. The first 4 kB of memory in each SNP is reserved for LUTs and uses
an asymmetric memory design to achieve a 40% reduction in read energy [8], as
well as fine-grained wordline segmentation allowing efficient access to the variable
width LUTs. The remaining memory is used as a byte addressable scratchpad-
memory that stores inputs and resultant data. Complex logical operations such as
.A ^ B/ _ .A ^ C/ are mapped to a novel reconfigurable logic datapath which is
capable of implementing arbitrary logical functions of up to three inputs. This is
realized and encoded using a Reed-Muller expansion, which results in substantially
fewer required transistors than an equivalent canonical representation [15].

Interconnect Architecture

To support the typical communication requirements of security kernels, HASK
employs a sparse hierarchical interconnect that leverages data locality and the
spatio-temporal MAHA mapping to improve optimize energy efficiency. SNPs
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within the same Cluster have a fully connected shared bus. Similarly, a 16-bit shared
bus is used for inter-cluster communication; however, unlike the fully connected
intra-cluster bus, the intercluster bus can only be reached from one SNP per cluster,
termed the Gateway SNP, or gSNP, through which all communications must be
routed. A gSNP can broadcast to multiple inter-Tile buses in the same cycle,
allowing the architecture to scale to an arbitrary size while maintaining limited
connectivity between any two nodes.

These communication buses form a time-multiplexed programmable intercon-
nect. Because the communication requirements for the security applications are
both constant and known a priori, they can be scheduled at compile time. Routing
information is stored in the instructions as an immediate value and decoded at
runtime to control communication buses. If a buffer is enabled on a given cycle,
output data from the SNP’s operation is written to the appropriate bus. Subsequently,
other SNPs can read the data into their local register files.

4.3.1.3 Results and Comparison to Other Platforms

The representative cryptographic applications mentioned in Sect. 4.3.1.1 were
mapped to the accelerator, and latency, area, energy, and energy-efficiency were
estimated from careful simulation at 32nm. Results were compared with FPGA
implementations (at the same process node) and CPU implementations using a
highly optimized cryptography library. Compared to the CPU, FPGA and HASK
significantly improved latency, though the latency improvement from FPGA was
greater. As a result, both platforms improve iso-area throughput substantially over
CPU. Similarly, both accelerators see an order of magnitude improvement in energy
efficiency, with HASK seeing greater improvements in energy than FPGA. These
improvements for both FPGA and HASK relative to CPU are due to the following
common factors:

• they perform their computations in lightweight processing elements
• they contain domain-specific hardware, with few to no extraneous functional

units
• they leverage different types of parallelism within the algorithms to improve

latency and throughput
• they utilize dedicated hardware structures and lookup tables to evaluate complex

and fused logical functions

For the majority of the benchmark applications, HASK latency is slightly worse
than that of FPGA. However, since HASK implementations generally use less die
area than FPGA, the iso-area throughput is better than that of FPGA, and HASK
uses less energy than FPGA on average for the same set of benchmarks. This energy
improvement is sufficiently high such that an improvement in energy efficiency,
measured as the energy delay product (EDP) is observed. The primary reasons
behind the improvement in energy efficiency for HASK over FPGA are as follows:
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• it supports LUT operations of different bitwidth
• it has dedicated hardware for fused logic operations, which reduces the total

number of operations (energy)
• it uses a spatio-temporal mapping rather than purely spatial interconnect, which

greatly reduces mapping complexity and routing energy
• the highly customizable memory structure of FPGAs results in energy inefficient

memory accesses [13]

In addition, the HASK configuration bitstream is generally smaller than the
equivalent FPGA implementation. This is an important consideration for embedded
or remotely configured platforms, where a smaller bitstream size is advantageous
due to aggressive area, power, and storage constraints.

4.3.2 MAHA for Text Mining Applications

Text mining applications use statistical methods to find relevant information within
data sources. Analyzing textual data sources is crucial to many businesses, and it is
widely accepted that the majority of business intelligence data is found in unstruc-
tured datasets. Meanwhile, the amount of data needing analysis grows exponentially,
making energy efficiency for data-intensive text mining kernels a challenge. Due to
physical limitations—power consumption, space, and cooling requirements, among
others—as well as processor-to-memory bandwidth bottlenecks within the system
itself, the practice of increasing computational power simply by adding more of the
same processing elements (PEs) will inevitably reach a fundamental limit [3]. A
dedicated, yet flexible, accelerator for text analytics is therefore attractive; however,
due to the breadth of the text analytics field, the number and complexity of different
algorithms, approaches, and techniques for performing analysis, and the existing
infrastructure of data warehouses and processing centers, the options for such an
accelerator are limited. We note three critical requirements for such a system:

• It must support the acceleration of multiple kernels found in a variety of common
text analytics techniques.

• It must be amenable to hardware retrofitting and seamless operating system
integration with systems at existing data warehouses while requiring minimal
host-side software development and compiler overhead

• It must function independent of the input data representation (encoding) and
potentially accept a variety of languages as input.

In this case study, we describe a reconfigurable hardware accelerator residing at
the interface to the last level memory device, as shown in Fig. 4.4, which is designed
specifically to accelerate text analytics data processing applications. The accelerator
connects to the last level memory (LLM) and host system using the existing
peripheral interface, such as SATA or SAS. By employing massively parallel
kernel execution in close proximity to the data, the processor-to-memory bandwidth
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Fig. 4.4 System architecture showing the location of the accelerator and the last level memory
device. Due to the close proximity of the two, the system bus is only used to transfer the
results to the CPU, rather than an entire data set. This also allows the use of port multipliers
without significant bandwidth requirements, as data processing occurs before the communication
bottleneck is reached [7]

bottleneck, which plagues data-intensive processing systems today, is effectively
mitigated by minimizing required data transfers, thus reducing transfer latency and
energy requirements. Several architectural customizations enable efficient, hardware
accelerated text processing for ubiquitous kernels. In particular, the hardware is
capable of accelerating character downcasting and filtering for string tokenization,
as well as the token frequency analysis, a basic operation found in many text
analytics and natural language processing techniques. A data engine that interfaces
the LLM to the accelerator also ensures the input matches the expected or supported
languages and encodings while mapping characters to an internal compressed
representation to reduce power consumption.

4.3.2.1 Domain Exploration

Examples of text mining applications can include text indexing and search, pattern
mining, summarization, sentiment analysis, and classification, among others. These
applications require similar preprocessing steps on the text, including the following:

Tokenization Dividing a text stream into a series of tokens based on
specific punctuation rules.

Change of Case Changing all characters to lowercase.
Stemming Removal of suffixes from tokens, leaving the stem.
Stop Word Removal Removal of common, potentially
Frequency Analysis Counting the number of times each (stemmed) token has

appeared in an individual document and the corpus as a
whole.
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Fig. 4.5 (a) Overall accelerator architecture, showing eight interconnected PEs, the controller for
SATA/SAS configuration, as well as an on-chip data distribution engine. (b) Microarchitecture of
the PE, showing separate lookup and data memories with an output SE for bit-specific access. The
core consists of an instruction table, register file, datapath, and a small CAM [7]

Tokenization, change of case, and frequency analysis represent three kernels,
which are trivial relative to the complexity of the full application, but are never-
theless necessary and time-consuming tasks. Stemming and stop word removal can
be considered extensions of frequency analysis, and are potentially more complex
depending on the target language.

4.3.2.2 Architecture Description

A single processing element (PE) is shown in Fig. 4.5. Similar to the HASK
architecture, each PE in the text mining accelerator operates independently and
has its own local data and instruction memory. The interconnect fabric differs in
that it is a two level hierarchy, with clusters of 8 PEs at the lowest level, which is
advantageous for many text mining kernels, especially token frequency counting.
Several customizations are also made to the datapath and PE architecture to satisfy
the requirements of text mining applications.

The Text Mining Processing Element

The text mining PE is designed to accelerate a wide range of text analytics tasks
while minimizing data movement, as shown in Fig. 4.5. This is accomplished by
accelerating individual text mining primitives, as listed in Sect. 4.3.2.1. Here, we
describe how one of the more complex operations, token frequency counting, can
be accelerated (Fig. 4.6).

Analyzing how often a term appears in a document is one of the most common
operations performed on textual data. Therefore, dedicated hardware is added to
each PE which is capable of efficiently counting the occurrence of terms in the data
set [5]. This hardware utilizes two kinds of memory: a CAM, which enables single-
cycle lookup of terms already encountered, and an SRAM array, which stores the
corresponding term counts. Rather than relying on a software hash table or a similar
data structure, the CAM enables single-cycle, parallel lookup, without collisions or
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Fig. 4.6 Hardware implementation of TF counting using CAM and SRAM for storage. Data input,
output, and some control signals are shown for reference [5]

requiring support for chaining or other collision handling techniques. However, the
CAM is a limited hardware resource, and so it must be carefully sized. In general,
when the dictionary memory is full, either the entries (terms/frequencies) can be
consolidated by iteratively merging with terms/frequencies in other PEs, making use
of the high-bandwidth local interconnect, or instead writing terms and frequencies
to file and merging later (i.e., on the host CPU).

Interconnect Architecture

PEs are organized in a two level hierarchy. The lowest level of hierarchy consists
of eight PEs connected by a shared bus, with 8 bit dedicated per PE. The choice
of an eight PE cluster helps accommodate the frequency counting application,
which benefits from high-bandwidth intra-cluster communication as previously
mentioned. However, inter-cluster communication is far less frequent, and so
requires significantly less bandwidth. Therefore, the architecture may be scaled by
adding multiple clusters connected by a 16-bit wide mesh interconnect. Similar to
the concept of gateway SNPs from HASK, the routerless design is made possible
by providing a dedicated connection for one of every four PEs in the cluster to the
shared bus, making it responsible for reading and writing data from and to other
clusters.
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4.3.2.3 Results and Comparison to Other Platforms

The text preprocessing kernels were mapped to the accelerator, and latency, area,
energy, and energy-efficiency were estimated from careful simulation at 32nm.
Results were compared with optimized CPU and GPU implementations, two
platforms which are commonly employed to process textual data. The accelerator
and GPU significantly outperformed the CPU, and the GPU slightly outperformed
the accelerator for most benchmarks. However, from the perspective of energy-
efficiency, the accelerator was two orders of magnitude more efficient than the GPU,
and up to four orders of magnitude more efficient than the CPU when area efficiency
is factored in. This is due to several reasons:

• The accelerator contains dedicated hardware for operations like term frequency
counting, which are expensive on the CPU and GPU

• The accelerator does not contain extraneous hardware which is not used by the
text mining kernels, improving area-efficiency

• The accelerator has close proximity to the data, which significantly reduces
transfer energy and latency.

Many of these are shared with HASK’s improvements over CPU, namely, the
domain-specific hardware and lack of unnecessary functional units. However, the
overall system integration of the text mining accelerator differs significantly from
HASK, in that it is intended to be retrofitted into existing data warehouses, rather
than used as an embedded security accelerator. This type of integration is more
appropriate for data intensive workloads, such as text mining, when small kernels
(e.g., downcasting) with little computational complexity must be applied to an entire
massive dataset.

4.4 Case Studies for In-Memory Computing

The previous case studies detailed two memory-centric accelerator architectures,
which saw an overall reduction in data movement, though it still had to be read out
of the last level of memory storage device. This alone had a significant, positive
impact on energy efficiency for data-intensive kernels in both security and text
mining domains. However, it is possible to take this one step further by actually
computing within the memory array, rather than just doing so in close proximity.
This section presents two case studies which detail such in-memory computing
architectures; the first case study details a compute-in-Flash memory architecture for
general data-intensive applications from various domains, including analytics-style
applications; the second describes a novel multifunctional memory design where
resistive memory elements (RRAM) are used both for traditional storage, and for
acceleration of complex neuromorphic computing tasks.
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4.4.1 Flash-Based MAHA

Flash memory, as well as emerging non-volatile memory technologies such as
resistive memory (RRAM) and spin-transfer torque (STTRAM), promises several
improvements over traditional volatile SRAM storage, including access energy,
read/write latency, and integration density. Their nonvolatility also makes them
excellent candidates for off-chip, in-memory computing frameworks. This case
study presents such a framework based on NAND Flash memory.

4.4.1.1 Domain Exploration

Unlike the domain explorations performed for the security and text mining memory-
centric accelerators, this architecture instead targets general data-intensive appli-
cations. Therefore, the domain exploration begins by analyzing the extent to
which applications with certain properties will benefit from the off-chip compute
framework, when compared to a software-only solution. In order to compare
between a software-only solution and a hybrid system with off-chip in-memory
accelerator, application characteristics and the system configuration are expressed
using a set of primitives:

g fraction of load/store (memory reference) instructions.
f fraction of instructions amenable to acceleration in the off-chip framework
c fraction of instructions in the host processor’s ISA that are translated to

that of the off-chip accelerator.
o fraction of the host processor’s original instructions which result in an

output; f � c � o thus produces outputs which needs to be transferred back
to the host processor.

eoffchip average energy per instruction in the off-chip compute engine
etxfer energy expended in the transfer of an output from the off-chip framework

to the host processor.
toffchip ratio of cycle time for the off-chip compute framework to that for the host

processor.
n fraction of the application which can be accelerated by exploiting paral-

lelism in the off-chip framework.
ttxfer time taken in terms of processor clock cycles to transfer an output from the

off-chip compute framework to the host processor.

With these primitives, the average time to execute an instruction in a system with
a host processor and the off-chip compute framework can be formulated as:

Tsys D Toffchip C Tproc C Ttxfer (4.1)

Toffchip D toffchip � .If>g.f / � .f � g C f � c � n/C If�g.f / � f � c � n/ (4.2)

Tproc D .1 � f / � tproc (4.3)



94 R. Karam et al.

Ttxfer D ttxfer � .If>g.f / � ..f � g/ � o C f � c � o/C If�g.f / � f � c � o/ (4.4)

IA.x/ D
(

x; x 2 A

0; x … A
(4.5)

Here, Toffchip, Tproc, and Ttxfer denote the fraction latencies in the off-chip compute
framework due to processor execution and in the transfer of the resultant output
from the off-chip platform to the processor. A similar expression for the energy of
the resultant system is given below which shows the transfer energy increasing and
the processor energy decreasing with increasing f :

Esys D Eoffchip C Eproc C Etxfer (4.6)

Eoffchip D eoffchip � .If>g.f / � .f � g C f � c/C If�g.f / � f � c/ (4.7)

Eproc D .1 � f / � eproc (4.8)

Etxfer D etxfer � .If>g.f / � ..f � g/ � o C f � c � o/C If�g.f / � f � c � o/ (4.9)

By substituting typical values (based on 45 nm technology) for eoffchip, etxfer,
toffchip, n, and ttxfer, as 50 pJ, 10,000 pJ, 15, 0.01, and 10,000, respectively, the general
system trends can be derived. Figure 4.7a shows the three components and the total
system energy with g D 0:7 and c D o D 0:05, respectively. As shown in Fig. 4.7a,
for the values of c and o selected, values of f close to g yield the lowest energy. When
c and o differ by an order of magnitude, the total energy is dependent on f . A similar
dependence on c, o, and f was observed for total execution latency. Combining these
trends enables the derivation of system’s energy efficiency for different inputs, as
shown in Fig. 4.7b–d: in short, for applications which are not data-intensive (lower
g), the overall energy efficiency of the hybrid system is reduced. On the other hand,
applications that are data intensive (high value of g), with a small output size (low
value of o), are most likely to see improvements in energy-efficiency through off-
chip, in-memory computing.

Using the SimpleScalar architectural simulator, a set of 10 data-intensive bench-
mark applications were compiled and executed, after which runtime parameters
based on the previously defined primitives were logged and used as input into the
model. These benchmarks include the Advanced Encryption Standard (AES), Auto-
matic Target Recognition (ATR), the Secure Hashing Algorithm (SHA-1), Motion
Estimation (ME), Smith-Waterman (SW), 2D Discrete Cosine Transform (DCT),
Discrete Wavelet Transform (DWT), Maximum Entropy Calculation (MEC), Color
Interpolation (CI), and Census (histogram calculation). It was observed that over
75% of the energy expended in program execution was due to data transport.
This suggests that optimizing the compute model for data-intensive tasks can
improve energy efficiency. As previously observed in the security and text mining
accelerators, physically relocating compute resources closer to the last level of
memory can significantly reduce the data transfer energy and latency overhead. Or,
in the more drastic case, the conventional software pipeline and caching mechanisms
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Fig. 4.7 Energy and performance for a hybrid system with a host processor and off-chip
accelerator. (a) Energy per operation in the hybrid system with c D o D 0:05 and g D 0:7.
Improvement in energy-efficiency (EDP) for the hybrid system with: (b) c D o D 0:005;
(c) c D o D 0:05; (d) c D o D 0:5 [10]

can be replaced with a distributed compute and memory framework, which can
better leverage local computation to improve energy efficiency. This second case
is presented here.

4.4.1.2 Architecture Description

The in-memory MAHA architecture is similar to the general architecture presented
in Sect. 4.2. The primary difference is that, instead of operating in close proximity to
the memory with no modifications to the memory array, the Flash is augmented with
additional circuitry that leverages the extremely high internal memory bandwidth
and effectively processes data in situ.

Overview of Current Flash Organization

The typical organization of NAND Flash memory is shown in Fig. 4.8a, including
the Flash memory array, as well as several peripheral structures which control the
read and write operations from and to the memory array. A special component,
called the Flash Translation Layer (FTL), converts the logical address of a location
to its corresponding physical address—this is done to support operations like wear
leveling, since overusing the same physical addresses will reduce the lifetime of
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Fig. 4.8 (a) Modifications to Flash memory interface to realize MAHA framework. A small
control engine (CE) outside the memory array is added to initiate and synchronize parallel oper-
ations inside the memory array; (b) Modified Flash memory array for on-demand reconfigurable
computing. The memory blocks (called MLB) are augmented with local control and compute logic
to act as a hardware reconfigurable unit. (c) MLBs are interconnected in a hierarchy, leveraging the
existing Flash memory hierarchy for area- and energy-efficient inter-MLB communication [10]
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the device. NAND Flash is organized in units of pages, and a number of pages are
combined to form a block. During a read operation, the page content is first read
into the page register, and subsequently transferred serially to the Flash external
interface.

Modifications to Flash Array Organization

By introducing certain design modifications to the Flash memory, it is transformed
into a resource which can be converted on-demand into a set of processing elements
(MLBs), which communicate over a hierarchical interconnect.

Compute Logic Modifications

A group of N Flash blocks is logically clustered to form a single MLB. The
custom datapath is implemented using static CMOS logic, and a custom dual ported
asynchronous read register file is used to store temporary values. All operations
within a given MLB are scheduled beforehand and stored in the schedule table,
which is implemented using a 2-D flip-flop array.

Typical NAND Flash requires that an entire page be read at once during a read
operation. However, this framework must operate on smaller data sizes; therefore, a
narrow-read scheme is used for the memory blocks to allow reading a fraction of a
page at a time. This is realized using wordline segmentation, whereby AND gates are
inserted into the wordline and selectively enabled by the controller to read a portion
of the page at once. This necessarily incurs hardware overhead, but can improve
energy efficiency when small operands (relative to the size of the page) are stored
in contiguous regions of memory within a page. For example, a 2 kB page can be
segmented such that 512 bytes can be read, rather than all 2 kB of memory at once.

Routing Logic Modifications

The Flash-based MLB uses a set of hierarchical buses in order to minimize the
inter-MLB interconnect overhead. This hierarchy is analogous to the existing Flash
memory organization in 4 levels of hierarchy: banks, subbanks, mats, and subarrays.
Because higher levels of hierarchy have more sparse connections, the applications
running on the Flash-based MAHA framework must be mapped in a way that
exploits local communication. This in turn improves execution latency and reduces
power consumption.

4.4.1.3 Results and Comparison to Other Platform

The additional circuitry and peripheral logic required to implement the MLBs
and interconnect result in relatively small (�5%) area overhead compared to a
baseline Flash design. When compared against a software-only system, the CPU
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with MAHA off-chip accelerator demonstrates considerable improvements for data-
intensive applications:

• Data-intensive applications which are not compute intensive, and where the
output size is similar to the input size, see the lowest improvement from the
off-chip compute framework.

• Data- and compute-intensive applications where the output datasize is similar to
the input (e.g., AES) can see slightly better, but still small, improvements.

• Data-intensive applications that are less compute-intensive, and where the output
data size is similar to the input (e.g., time/frequency domain transforms) see
moderate improvements.

• Map/Reduce-style applications (e.g., Census), where the output size is small
compared to the input, see the greatest improvement. This is especially promising
for many analytics applications, which fall into this category.

Therefore, the in-memory computing model is amenable to data-intensive appli-
cations. The use of NAND Flash in this case study can be extended to other
emerging nonvolatile memory technologies as well.

4.4.2 MultiFunctional Memory

Emerging memory devices such as Resistive RAM (RRAM) or Spin-Transfer
Torque RAM (STTRAM) have interesting properties which can be leveraged for
increased efficiency and integration density for several applications [5]. RRAM
demonstrates promising properties, including low programming voltage, fast
switching speed, high on/off ratio, excellent scalability, reasonable programming
endurance, high data retention, and compatibility with silicon CMOS fabrication
processes [14]. Most promising is the fact that RRAM can not only serve as a
traditional data storage medium, it has also found utility as a means to textitprocess
data in a brain-inspired computing system. This multifunctional memory can be
used within the MAHA framework to accelerate the weighted-sum operation which
is common to machine learning algorithms in artificial intelligence applications.
This weight is represented as the conductance of each cell in an RRAM array [12],
and thus requires analog components to read out and digitize the output.

4.4.2.1 Architecture Description

The standard 1-transistor, 1-resistor (1T1R) memory array is shown in Fig. 4.9a.
By rotating the bitlines by 90ı, as shown in Fig. 4.9b, a “pseudo-crossbar array”
can be implemented, and the memory array can switch on-demand between storage
mode and computation mode. Figure 4.9c demonstrates how this multifunctional
memory array can be integrated into the MAHA framework, replacing the LUT and
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Fig. 4.9 (a) Block diagram of the conventional 1-transistor, 1-resistor (1T1R) memory array;
(b) the multifunctional memory (MFM) with a rotated, pseudo-crossbar array; (c) system
level block diagram showing a single processing element (PE) containing the MFM—note the
replacement of LUT and Data memory found in other instances of the MAHA framework with the
single, multifunctional memory block [12]

Data memories found in other instances of MAHA with the MFM to realize one
processing element.

In this context, each PE consists of a 256�256 MFM array responsible for data
storage as well as computation. Meanwhile, the schedule table is considerably
smaller than other instances of MAHA, holding just 32 entries; however, each
instruction is 545 bits wide—this comes from a 2-bit opcode selecting between
standard computing mode, memory mode, and no-op, a 1 bit read/write flag, an
8 bit value controlling the wordline selection, 6-bits for mux and datapath logic, 16
bits for data source and destination registers, and the remaining 512 bits to indicate
the status of the 256 bit lines and 256 select lines in the MFM array.
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This system was tested using a number of applications which are amenable to
acceleration with a neuromorphic computing framework. These include the Iterative
Shrinking Threshold Algorithm, Stochastic Gradient Descent, K-means clustering
(centroid calculation), Gaussian Blur, Sobel Gradient, and Radial Basis Function
in artificial neural networks. Compared with other platforms, the MFM framework
vastly reduced power consumption and improved energy efficiency [12].

4.4.2.2 Results and Comparison to Other Platforms

Compared with the standard Flash MAHA implementation, MFM shows improve-
ments in applications amenable to neuromorphic acceleration for the following
reasons:

• MFM increases the hardware resource reusage by using the same memory for
storage and computation, rather than having separate data and lookup memories.
This improves energy and area efficiency.

• The use of RRAM allows storing 4 bits per cell, for a total of 16 states, reducing
the amount of required memory. In addition, RRAMs higher integration density
improves area efficiency.

• Compared with an SRAM-based framework, RRAM has significantly better
leakage energy; in fact, unselected cells have almost no leakage whatsoever. Con-
versely, SRAM, which must remain constantly powered, contributes significantly
to system leakage power.

This case study demonstrated the feasibility of using an emerging nonvolatile
memory technology, namely RRAM, as an alternative computing fabric. This can
be used as an accelerator for data-intensive machine learning applications, which
can be applied to a number of domains, including analytics.

4.5 Conclusion

In this chapter, novel memory-based or in-memory computing architectures have
been presented, which can vastly improve energy efficiency compared to existing
platforms for data-intensive applications. The basic hardware architecture—a set
of interconnected, lightweight processing elements—was customized to meet the
needs of various domains, including security and text mining and analytics, showing
significant improvements in energy efficiency. It was shown how this framework,
which relies heavily on memory elements for both storage and computation, can
exploit the properties of existing (e.g., Flash) and emerging (e.g., RRAM) memory
technologies for further improved performance and efficiency, for both general data-
intensive kernels, as well as for learning algorithms with a novel, multifunctional
memory framework. By focusing on energy-efficiency and scalability in the design,
this framework and its embodiments can arise to the challenge of efficient comput-
ing for data-intensive kernels in the future.
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Chapter 5
New Solutions for Cross-Layer System-Level
and High-Level Synthesis

Wei Zuo, Swathi Gurumani, Kyle Rupnow, and Deming Chen

5.1 Introduction

The rise of the Internet of Things—billions of internet connected sensors constantly
monitoring the physical environment has coincided with the rise of big data and
advanced data analytics that can effectively gather, analyze, generate insights
about the data, and perform decision making. Data analytics allows analysis and
optimization of massive datasets: deep analysis has led to advancements in business
operations optimization, natural language processing, computer vision applications
such as object classification, etc. Furthermore, data-processing platforms such as
Apache Hadoop [29] have become primary datacenter applications, but the rise of
massive data processing also has a major impact on the increasing demand for both
datacenter computation and data processing in edge devices to improve scalability
of massive sensing applications.

This increase in computation demand is not simply an increase in aggregate
computational throughput, but also a demand for energy efficiency. Datacenters now
commonly consume multiple MW: each of the top ten supercomputers in the Top500
list consumes more than 2 MW (and up to 17.8 MW)—enough that some datacenters
also require their own dedicated power plant. Edge devices are no less critical:
devices with wired power but high power consumption impose restrictions on both
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heat dissipation and aggregate power consumption, and devices on battery power
have direct lifetime, cost, and physical size implications due to power consumption.

The rise in computation demand has corresponded to a rise in computation
acceleration hardware. Graphics processing units (GPUs) have long been used for
acceleration of data parallel algorithms, but the energy efficiency of GPU-based
acceleration can still be an order magnitude less efficient compared to FPGA-based
hardware acceleration [7, 8, 20]. FPGAs have seen recent adoption in datacenters;
the Catapult project [24] brings FPGAs into in Microsoft’s datacenters, accelerating
Microsoft’s Bing search. FPGAs are also tested for acceleration in Google, Intel,
and IBM, and there are recent startups targeting Hadoop acceleration for FPGAs in
the datacenter [10].

The adoption of FPGAs in the datacenter as well as for acceleration in edge
devices has led to significant performance and energy efficiency advantages, par-
ticularly for low latency and high throughput processing of massive data analytics
applications. However, development for FPGAs remains complex and challenging.
The continuing growth in size and complexity of FPGA devices has driven effort
in the Electronic Design Automation (EDA) industry to improve design flow
productivity by improving high level design space exploration, reducing complexity
and required expertise for design entry, improving debugging and verification, and
automating tedious and error-prone low-level implementation details.

In the past, the pressure to improve EDA tools for hardware design led to the
transition from transistor-level to gate-level design, and then from gate-level to
first structural RTL and eventually behavioral RTL in Verilog and VHDL. These
advances include development of now-standard technology for synthesis including
placement and routing for low-level circuit implementations, and RTL and logic
synthesis to translate RTL to circuits. The continued growth in design complexity
is now driving the development and adoption of high-level synthesis (HLS), which
translates C/CCC, SystemC, CUDA, OpenCL, Java, or Haskell (among others) to
RTL implementations automatically; manual RTL design, even in behavioral RTL is
extremely challenging to simultaneously meet performance, area, power, and time-
to-market constraints for typical large and complex applications. This is particularly
emphasized for data analytics applications, the time-to-market pressure is extreme,
where developers may desire iterative performance optimizations hundreds of times
per year, and the same developers desire the performance and energy efficiency
advantages of FPGA-based acceleration yet often lack low-level hardware design
expertise to manually design accelerators.

For these reasons, HLS has proven a viable and rapidly adopted method for
performing hardware development for FPGA-based acceleration. Although HLS-
based design helps automate design and optimization of hardware accelerators,
design in high-level languages also introduces several new challenges for design
automation: the system level design must consider both implementations of each
function, and efficiency of communications between functions. In addition, we
must consider hardware/software codesign options to select the best method for
offloading complex computation to the FPGA including both partial and fully
hardware accelerated algorithm implementations. Next, issues such as design
closure become more challenging—whereas manual RTL designers often have
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experience analyzing and optimizing the low-level circuit in order to meet latency
and achievable frequency constraints, HLS-generated RTL is significantly more
challenging (or entirely infeasible) to optimize manually. However, HLS users often
have little insight into how modifications of high level code affect the critical path
latency and achievable frequency in output RTL. Thus, although HLS is necessary
to improve design productivity, there are several remaining bottlenecks that we will
address in this article to ensure that HLS-based design flows can meet quality and
productivity demands.

Cross-layer design methodology (CLDM) flows span multiple abstraction levels,
with challenges and optimization opportunities at each of these levels. These
unaddressed challenges represent limitations in quality and design productivity, and
the challenges are yet more complex when considering the interactions between
different design layers. In this chapter, we identify research directions and opportu-
nities related to interactions among design layers in a HLS-based flow (Sect. 5.2),
and present four representative techniques that use cross-layer (or stage) interaction
information to optimize designs (Sect. 5.3).

5.2 ESL Design Flow Challenges

Our CLDM flow is an EDA flow that starts with a system-level specification in
a high level language (HLL), and proceeds through a series of design stages to
eventually produce a physical circuit implementation. Each design stage performs
analysis, optimization, and refinement before generating hardware specifications at
a lower level of design abstraction. For example, system synthesis optimizes and
performs several design tasks before generating a system architecture and HLL
code partitioned into software and hardware portions. Then, high level synthesis
takes the hardware portion of HLL code and after its design tasks produces RTL.
Finally, RTL synthesis and physical design take the RTL as input and produce circuit
implementations and/or FPGA configuration files.

We decompose a CLDM flow into three main interacting stages as shown in
Fig. 5.1: system synthesis, high level synthesis, and RTL synthesis and physical
design. Typically, each stage of the design flow optimizes at one abstraction
level while ignoring details from other stages. For example, high-level synthesis
optimizes resource allocation, scheduling and binding of computation operations,
but does not explore hardware/software codesign decisions made by system-level
synthesis or optimization of blocks of combinational logic during logic synthesis.
However, a CLDM flow provides superior quality of results and design productivity
by integrating decision making and optimization across all design stages.

Each stage of the CLDM flow may be further decomposed into a set of tasks
performed at the same level of abstraction. These tasks optimize different aspects
of the hardware architecture and application implementation, and interact with each
other to explore the design options at each level of abstraction. Before describing
the interactions within each stage and between stages of the CLDM flow, we will
first introduce each stage of the CLDM flow and the component tasks.
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(C/C++/SystemC)
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Fig. 5.1 Research opportunities on mixed-level co-synthesis in a CLDM flow: forward and
backward paths

1. System Synthesis System synthesis starts from system-level specifications in C,
CCC, or other suitable high-level languages produced by software engineers.
These system-level specifications define required functional behavior of the
algorithms, as well as high-level constraints in area, latency, throughput, power
consumption, and cost. System synthesis explores system level architectures
to specify the major computational and communication components including
CPUs, HW accelerators and the communications between them. Based on the
algorithm features, system synthesis explores the task-level design space to
perform HW/SW partitioning (CoDesign). HW/SW CoDesign examines options
for mapping the algorithm to either a CPU (software) or custom accelerators
(HW). CoDesign determines which HW/SW mappings best improve latency and
throughput while minimizing area, power consumption, and required communi-
cations between software and hardware components.

2. High-level Synthesis For each hardware task, HLS automatically translates the
C/CCC algorithm description into register transfer level (RTL) specifications.
HLS performs standard optimization of the high level language input including
dead code elimination, function inlining, and constant propagation, then per-
forms a sequence of hardware optimizations. First, we allocate functional units
that will perform computations, then schedule the applications’ operations into
control steps while respecting data dependence, latency, throughput, and area
constraints. Finally, HLS uses the scheduling result and allocation to assign
(bind) operations to functional units while minimizing required storage and
multiplexing resources to implement the schedule.

3. RTL Synthesis, Logic Synthesis, and Physical Design Starting from the
RTL specifications, the next stage of a CLDM flow optimizes the RTL, then
performs elaboration and technology mapping to translate behavioral RTL
to hardware structures into FPGA or ASIC-specific hardware components.



5 New Solutions for Cross-Layer System-Level and High-Level Synthesis 107

From this circuit structure, we then perform placement and routing to realize
the physical implementation of the circuit. In addition, this stage may perform
repeated optimization through floorplanning, retiming, and iterative enhance-
ment of place and route results.

CLDM flows include both feed-forward and feedback paths both between
synthesis stages and within individual stages. Feed-forward and feedback paths
influence hardware quality of results significantly. RTL/logic synthesis and physical
design quality is directly influenced by the quality of the input RTL, which is in turn
influenced by the quality of system level synthesis. At a high level, this feed-forward
dependence is intuitive, and directly influenced by two general factors: (1) the ability
of synthesis algorithms to effectively consider design constraints and select the
best solution given design constraints and quality estimations and (2) the ability to
effectively estimate output hardware metrics (e.g., area, latency, throughput, power).

These two factors require significant independent implementation effort, yet are
clearly highly interrelated: algorithms that select solutions clearly depend critically
on the fidelity of hardware estimations. Although high-level design estimations can
have good prediction fidelity, the interrelation of estimation quality and optimization
efficacy leads to the need for common feedback paths.

Within a single synthesis stage, there are many common feedback paths: if
HW/SW CoDesign cannot find a design partitioning that meets design constraints,
it will provide feedback to architectural specification in order to select different
system architecture components (e.g., higher performance CPU or larger FPGA if
we cannot meet performance goals). In HLS, there may be feedback paths between
allocation, scheduling, and binding stages—for example, requesting increased
allocation of functional resources or different memory partitioning to improve
schedule latency, or decreased allocation of resources to reduce design area. There
are also strong interactions between logic synthesis and the place and route process.
Retiming in logic synthesis requires accurate path delay information, which depends
on the physical layout and connections of the gates, which are produced by place
and route.

In addition, there are critical feedback interactions between synthesis stages:
scheduling in HLS requires accurate delay estimation to determine the critical
path and correctly divide a sequence of operations into control steps while also
meeting constraints in achievable frequency. However, the delay of combinational
paths is directly affected by RTL/logic synthesis and physical design: chaining and
optimization of combinational paths can significantly affect combinational delay,
and placement and routing of the circuit can also significantly impact delay—up
to 70% of delay in modern FPGAs can be due to signal routing. Thus, a feedback
path between RTL/logic synthesis and physical design and HLS is necessary to help
achieve timing closure.

Similarly, there are feedback interactions between system synthesis and HLS:
system synthesis optimizes communication between blocks using information about
communication frequency and data access patterns to optimize buffers, communi-
cation channel bandwidth, and optimization priority. Furthermore, system synthesis
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makes high level estimates of the achieveable latency, frequency, and throughput
of a hardware accelerator and decides between HW/SW mapping options based
on performance increase relative to estimated area consumption of the hardware
architecture. However, the area and performance metrics are only known after HLS
or even RTL synthesis, thus requiring feedback to system synthesis in order to refine
estimates and validate high level decision making.

These strong interactions within and between synthesis stages motivate the need
for feedback paths that help to refine performance and area estimations and thus
overall hardware quality. However, despite the importance of feedback paths to
output quality, it is not feasible to simply perform the entire hardware design process
iteratively—while it is inexpensive to explore alternative algorithm implementations
during the system synthesis stage, it would be prohibitively expensive to perform the
entire HLS, RTL/logic synthesis and physical design process for every algorithm
option (and every optimization option within each algorithm). The design space for
even a single algorithm and constrained set of optimization options may require
multiple months of HLS and RTL/logic synthesis time to explore [8]. In fact,
each stage of a CLDM flow can individually explore many thousands of design
options for an algorithm—naively combining all stages is infeasible and a waste of
computational effort.

In total, the interactions between synthesis stages are both challenges and
opportunities. Effectively integrating feedback path interactions to refine design
quality increases tool complexity and worst-case runtime complexity, yet there is
significant optimization opportunity when tools leverage later analysis to feedback
and refine earlier decisions. Furthermore, although worst-case runtime increases
in iterative design, effective feedback, update heuristics, and guided optimization
can substantially improve quality with minimal runtime overhead; despite runtime
overhead, the overall design cycle may still be accelerated due to a reduction in
designer effort. Thus, both feed-forward and feedback interactions can significantly
improve design quality by integrating system-level, behavioral-level, and RTL
information. In this chapter, we limit ourselves to cross-layer interactions between
adjacent abstraction levels; iterative techniques that further integrate CLDM flows
across all design stages will further increase design flow complexity, but may prove
to be effective to further improve design quality.

5.3 System-/High-Level Synthesis Techniques

In this section, we propose and demonstrate four representative cross-layer tech-
niques for improving productivity and both feed-forward and feedback interactions
in CLDM flows. First, we begin with two system-level techniques for analyzing
and optimizing high level language source code before high-level synthesis in
order to improve the hardware suitability of high level language descriptions
and applicability of typical HLS optimizations, which improves feed-forward
interaction of system-level exploration and HLS. Then, we introduce two HLS
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techniques that integrate with RTL/logic synthesis and physical design: one that
provides feed-forward interaction by analyzing generated RTL for multi-cycle paths
and generating appropriate RTL synthesis constraints, and another that integrates
feedback interaction by iteratively refining HLS timing estimates based on post-
RTL synthesis timing analysis of combinational path latency.

5.3.1 Polyhedral Transformation to Improve HLS Optimization
Opportunity

High level synthesis optimization techniques concentrate on parallelization of input
C/CCC code, together with a variety of source code optimizations such as loop
unrolling or memory partitioning that improve parallelization opportunity. HLS
optimizations include specifications of communication between code blocks, for
example, a user can denote that two loops can communicate through a first-in
first-out (FIFO) buffer. However, despite the parallelization optimizations, complex
applications with multiple communicating functions/modules commonly contain
code organization that is intuitive for C/CCC coding style, but not compatible with
HLS optimizations. Thus, for these applications, the lack of feed-forward interaction
to transform HLL input for HLS optimization compatibility leads to significantly
reduced quality of results compared to manual RTL design.

HLS tools provide a variety of powerful optimizations including loop unrolling,
parallelization, data pipelining, memory optimizations (partitioning and/or merg-
ing), and fine-grained data communication. However, applicability of these powerful
optimizations is limited by code structure and data dependence; in many cases,
the optimizations cannot be applied because conservative analysis in HLS cannot
guarantee that the transformed code would remain functionally correct. With more
complex analysis and source transformation, however, we can produce functionally
equivalent transformed HLL (C/CCC) code that is also suitable for further HLS
optimization.

The desired source transformations rely on data-dependence analysis, which
has been well studied in the compiler community. In particular, the Polyhedral
model has been an attractive method for advanced dependence analysis. Whereas
traditional data-dependence analysis examines only the dependences within a single
loop body, the polyhedral model analyzes the entire loop and series of data loads and
stores. With this more complete analytical model for data-dependence relations, the
polyhedral model can explore high-level loop transformations that produce func-
tionally equivalent loop traversals with improved data dependence relations. The
polyhedral model includes source-to-source transformations to generate improved
loop nests. For example, the polyhedral model may transform a loop to improve
buffer sizes (through loop tiling), or reduce dependence distance by transforming
row-major to column-major or diagonal access patterns.
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Therefore, to achieve high quality results for HLS of complex applications, we
use a feed-forward interaction between compiler analysis and code optimization
to HLS can effectively transform HLL input source in order to improve the
applicability and effectiveness of HLS optimizations. In our prior work [35], we
adopted polydral model transformations for HLS. We build an integrated poly-
hedral framework which transforms C loops to expose optimization opportunities
across multiple communicating modules. In particular, given an input application
composed of several blocks, we target two types of important optimizations: (1)
intra-block parallelization: improving the latency at block level by duplication and
parallelization within a single block, and (2) inter-block pipelining: improving the
latency at the application level by enabling data streaming between different blocks
to overlap execution. Both of these optimizations are supported by existing HLS
tools, but are challenging to apply in practice due to conservative data-dependence
analysis.

In Fig. 5.2, we show a flowchart of our framework. We start with a data-
dependent multi-block program as input, then perform analysis and source-to-source
transformations with the objective of minimizing total application latency. Then,
our framework automatically inserts the corresponding HLS directives into the
transformed C code and performs HLS to produce an optimized RTL design. Our
optimization framework consists of three major steps, described as follows:

5.3.1.1 Step 1

First, we systematically define and model a set of data access patterns using the
Polyhedral model, classify them, and derive the associated loop transformations.
The program inputs are composed of multiple data-dependent blocks where each
block contains a single multi-dimensional loop nest.

Fig. 5.2 Overview of the
framework [35]



5 New Solutions for Cross-Layer System-Level and High-Level Synthesis 111

Given a loop nest of dimension D that accesses an N-dimensional array, the array
access pattern is defined by matrix M whose size is N�D, where the rows i represent
the data access pattern in dimension of i of the data array, and columns j represent
the access pattern in the loop level j. Given the array access pattern M, loop iteration
vector i, and constant offset vector o, the array access vector S is defined as

s D Mi C o (5.1)

We now describe how to define the array access patterns using M. For simplicity
of demonstration, we illustrate the data access pattern for a two-dimensional array,
although the same approach is applicable to higher dimension arrays.

Let M D
�

a1 b1
a2 b2

�
, based on the value of a1, a2, b1, and b2, we classify three

array access patterns as follows, based on how they traverse a multi-dimensional
array.

• Column and reverse column: M D
�˙1 0

0 ˙1
�

• Row and reverse row: M D
�
0 ˙1

˙1 0

�

• Diagonal access:
In this category, the loops traverse in a diagonal line. Based on the slopes of

the diagonal lines, we further divide this into two cases:

slope � 1 M D
�˙1 N � b1 � 1

0 ˙1
�

and slope < 1 M D
�

N � a1 � 1 ˙1
˙1 0

�

With a fixed array access pattern M, we can compose the array access vector
using formula (5.1), and this is later used as input to the polyhedral model
compilation framework to guide the code transformation and code generation.

5.3.1.2 Step 2

Next, the input array is tested with many loop transformations to determine whether
the transformed loop is still functionally identical (i.e., it preserves all data-
dependencies). For each loop transformation that preserves data-dependencies, we
build a performance model to estimate optimization opportunity, and choose the
loop tranformation(s) with the best estimated performance.

Our performance metric combines modeling of both intra- and inter-block
speedup together with associated implementation overheads. A program is defined
as a sequence of K blocks b1; b2; : : : ; bk, where each block’s latency is denoted lati,
and due to linear dependence of the input code, the worst-case total program latency
is the sum of blocks’ latencies: latbase D P

i lati.
The overall latency of a parallelized application latp after applying our optimiza-

tion is then represented by:



112 W. Zuo et al.

latp D latbase

Sintra
p � Sinter

p

C costp (5.2)

Sintra
p and Sinter

p are the intra- and inter-block speedup and costp represents the
implementation overhead. We now describe how to compute each of these items in
detail.

• Sintra
p Given the fixed resource budget of the FPGA, we can derive the maximally

allowed parallization degree, Maxpar, and using this, we define Sintra
p as follows:

Sintra
p D

8<
:

Maxpar pattern p enables parallelization
for all the blocks

1 otherwise

• Sinter
p Similarly, if we can transform all the blocks to follow the same data pattern

for inter-block communication, we can fully enable inter-block pipelining.
Therefore, we define Sinter

p as follows:

Sinter
p D

�
K pattern p enables pipelining
1 otherwise

where K is the number of blocks in the program.
• costp The overhead is incurred when the access pattern is diagonal, where the

loop is skewed. In this case, we first use the maximum loop bound for the loop
boundary, and then use internal if condition to filter out false loop iterations, the
loop body will be executed only when the if-statement is true. However, these
preparations take extra cycles, and the number of empty cycles is proportional to
the slope of the diagonal pattern (larger slopes produce more skewed loops, and
therefore incur more empty loop iterations). Hence, we define the performance
overhead as follows:

costp D

8̂
<
:̂
0 slope D 0 or slope D 1
C � slope 1 � slope < N
C � 1

slope 0 < slope < 1

where C is a constant.

Once these items are calculated, we can calculate the overall latency using
formula (5.2) for each given access pattern. Therefore, we use this modeling method
to evaluate each access pattern generated in Step 1, and select the access pattern
with the minimum latency as the access pattern matrix to guide the polyhedral
transformation.
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Fig. 5.3 Communication block [35]

5.3.1.3 Step 3

Finally, for the chosen transformation, we automatically perform the loop trans-
formations at the source code level, insert high-level synthesis directives, and
generate the communication blocks that interface the data-dependent blocks. If
the communication block is a simple FIFO, we automatically insert FIFO high-
level synthesis directives; if the communication interface requires multiple reads
or a more complicated pattern, we customize the communication blocks. The
customized communication block is an automatically inserted reuse buffer that
can handle more complex stencil reuse patterns compared to a simple FIFO. The
implementation of the reuse buffer uses multi-ported BRAMs or registers depending
on the resource and buffer sizes, as shown in Fig. 5.3.

5.3.1.4 Evaluation

We evaluate the framework with a set of real-world applications with multiple data-
dependent computation blocks. The output of our framework is transformed C code
with HLS optimization pragmas, which is passed to the AutoPilot.1 HLS tool for
synthesis to Verilog RTL. Table 5.1 shows the latency in clock cycles, resources,
and achieved frequencies of each different implementation of all the benchmarks.

We compare the performance of three different implementations. The first
implementation is the baseline—synthesis of the original source code without
polyhedral optimization or AutoPilot optimization. The second implementation is
an improved version—it applies the HLS directives of intra-block parallelization
and inter-block pipelining optimization without code transformation. We observed
that although the second implementation tries to use optimization, it fails whenever
the default data access pattern does not support it. The third implementation is our

1AutoPilot was acquired by Xilinx, and is now Vivado HLS.
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Table 5.1 Performance and resource comparison of different implementations

Benchmark Implementation Cycles LUT FF DSP BRAM Frequency (MHz)
Deconv w/o trans, w/o opt 5408 3234 948 24 48 151

w/o trans, w/ opt 1809 6433 2650 24 5 182

w/ trans, w/ opt 257 13,819 13,826 108 17 182
Denoise w/o trans, w/o opt 5408 3266 948 24 5 160

w/o trans, w/ opt 1809 6503 2672 24 5 182

w/ trans, w/ opt 250 13,817 13,824 108 17 230
Seg w/o trans, w/o opt 9864 3735 1202 30 24 117

w/o trans, w/ opt 9864 3735 1202 30 24 117

w/ trans, w/ opt 500 48,796 9560 216 34 156
Seidel w/o trans, w/o opt 64,803 1400 891 2 2 103

w/o trans, w/ opt 1818 13,375 6626 32 6 134

w/ trans, w/ opt 1130 47,402 20,040 96 14 134
Jacobi w/o trans, w/o opt 5373 5563 1890 3 16 101

w/o trans, w/ opt 1439 39,430 18,832 64 10 134

w/ trans, w/ opt 482 38,877 18,664 64 10 133

proposed implementation: it transforms the source code and then enables the intra-
and inter-block optimization. From Table 5.1, we observe that on average, HLS
optimization without polyhedral transformation improves performance by 4.89�,
but that increases to 29.59� with polyhedral transformation.

5.3.2 Polyhedral Code Generation for High-Level Synthesis

In addition to the benefits of code analysis and optimization, there is a strong
interaction between code generation and HLS output quality. Although polyhedral
models can dramatically enhance HLS optimization opportunity at the source code
level, the polyhedral model transformed loops are often more complex and use
CPU-oriented code features that are unsuitable for HLS. Table 5.2 lists some critical
differences between C for CPUs and C for hardware. In order to fully take advantage
of polyhedral optimizations, it is important that code generation for HLS avoids
unsuitable features.

In [34], we tailor polyhedral code generation for HLS. Using the state-of-the-
art polyhedral code generator CLooG [5], we explore code generation schemes
tailored for efficient HLS. Particularly, we explore techniques to significantly
improve resource utilization on FPGAs, and a technique designed for effective code
generation for rectangular loop-tiling boundaries leading to further improvements
in resource utilization, while retaining parallelization optimization opportunity
exposed by our prior polyhedral optimizations.
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Table 5.2 Polyhedral code generation for CPU vs. circuit

Property CPU Circuit

Performance Cycle counts Cycle and clock period

Code size Memory/cache (cheap) Logic gates (expensive)
Branches High performance penalty No performance penalty

for mis-prediction for mis-prediction
Floating point OPs FPU (cheap) Dedicated FP module

(expensive and slow)

In order to evaluate the effect of different code generation techniques, we start
with the state-of-the-art code generator CLooG [5], and studied the area, perfor-
mance, power, and energy of various code generation techniques. Our framework
is based on PoCC, the Polyhedral Compiler Collection [22], which includes both
CLooG and Pluto [6, 27]. We examine four representative stencil computations
from PolyBench [23]—a suite of benchmarks with loop nests suitable for polyhedral
optimizations. Jacobi-1D (J1D) is a 1D 3-point iterative Jacobi process, and Jacobi-
2D (J2D) is a 2D 5-point iterative Jacobi process. Seidel-2D (Seid) is a 2D 9-point
iterative Seidel process, and FDTD-2D (FDTD) is a finite-domain time difference
discrete solver. In addition, we use a matrix-multiplication kernel GEMM. These
five codes each benefit from loop tiling and have large data reuse potential. The
four stencils pose numerous code complexity challenges when required tiling
transformations are applied.

We primarily studied four code generation techniques for improved hardware
quality, including: (1) Turning off polyhedra separation to restructure loops with
less nesting but more (inner) conditionals to reduce code size and enable resource
sharing. (2) Optimizing division operations to replace floating-point divisions by
appropriate integer divisions and offsets. (3) Using hierarchical min/max operations
to reconstruct a balanced min/max tree at the iteration boundaries to simplify
boundary computation. (4) Simplifying loop bounds using sub-bounding box tiling
to find a parallelogram hull to approximate the tile origin domain to further simplify
boundary computation.

We will now discuss each of these techniques in detail, explain the key concept of
each technique, and evaluate the effectiveness by applying to the five benchmarks.

5.3.2.1 Turning Off Polyhedra Separation

When generating the code, ClooG offers options to control polyhedra separation.
That is, when on, CLooG generates code structures with more loop nests and
fewer conditionals, where each loop nest represents a convex sub-polyhedra. In
contrast, when no separation is used, the generated code contains fewer loop nests
but more (inner) conditionals. The first option works well when running on CPUs
because it effectively simplifies the control flow and makes branching behavior
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Table 5.3 Impact of separation

LUT FF DSP CP (ns) Cycle Pwr (mW)

FDTD-sep 39,803 24,532 56 11.313 12,622,094 1378.49

FDTD-nosep 25,595 16,692 40 8.965 11,500,269 1452.56

Gemm-sep 1822 1532 14 7.609 14,567,698 1302.43

Gemm-nosep 1822 1532 14 7.609 14,567,698 1302.43

J1D-sep 11,926 7586 14 8.435 7,638,461 1384.48

J1D-nosep 11,327 7350 14 8.100 5,724,101 1411.92

J2D-sep 24,818 15,351 35 8.990 13,356,949 1435.77

J2D-nosep 14,216 10,103 27 8.582 21,800,977 1427.02

Seid-sep 32,561 19,599 9 8.763 159,281,806 1459.67

Seid-nosep 32,561 19,599 9 8.763 159,281,806 1459.67

more predictable. Thus, it reduces branch misprediction performance penalties.
However, in hardware branch mispredictions cause no penalties, yet the “polyhedral
separation” options result in a code with more complicated loop structures and thus
more complex finite state machine control and less resource efficient hardware.
Hence, we evaluate the impact of using this option; Table 5.3 shows the impact
of separation on our five benchmarks.

We first observe that Seidel-2D and GEMM both have identical code output
with and without polyhedra separation, but the other three benchmarks have a
strong benefit in resource savings. In terms of latency, the effect varies: FDTD
improves both achievable clock period and latency in cycles whereas Jacobi-2D
increases latency in cycles. This latency tradeoff is intuitive; on one hand, turning
off separation will reduce the number of loop nests, which reduces startup and
completion costs for outer loop nests. However, without separation there will also
be more branching conditions in the innermost loop nest. When these conditions
are sufficiently simple to be implemented via predication, they will impose little
performance degradation, but when they are complex they can increase the inner
loop latency, increase the number of pipeline stages, or make the inner loop
infeasible for pipelining.In the case of Jacobi-2D, complex conditions with divisions
in the innermost loop increase the pipeline from 33 stages to 77 stages. We will later
introduce other code generation techniques which can address this gap.

5.3.2.2 Division Optimization

Next, we optimize division operations. The original code generated by CLooG
frequently uses floating-point divisions together with floor and ceiling operations
for loop boundary control. With custom, dedicated, high-performance floating-point
functional units, these operations perform well in CPUs, but impose significant
resource use and latency overheads on FPGA hardware implementations. Therefore,
we evaluate a series of alternative implementations for these operations that replace
floating point division with integer division with appropriate scaling and bounds-
checking in order to reduce both area and latency.
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First, IntDiv replaces the expensive floating-point division by appropriate inte-
ger division and offsets. Precisely, we replace floor and ceiling operations with
the following two operations: d x

y e ((x > 0)? (1 C (x � 1)/y): (x /

y)) and b x
y c ((x > 0)? (x / y): (1 C (x C1)/ y)) Next, MulUB

is a technique to scale the upper bound constraints to eliminate division whenever

possible. That is, cX �
j

x
y

k
is replaced by y �cX � x. Finally, LcmLB is a technique

to scale the lower bound constraints to eliminate division whenever possible. That

is,
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and lcm.y; v/ can be computed at compile time if y and v are constants.
Table 5.4 shows the results of applying these three techniques to our benchmarks,

starting from the version already optimized by the first technique. We observe that
the first optimization that replaces floating-point division with integer produces dra-
matic improvements in LUT and FF resource use for all of the stencil applications,
with as much as a 4� reduction. This does lead to an increase in DSP use, but
that increase is more than compensated for by the reduction in other resources.
Optimizations that improve the upper and lower-bounds checking further improve
resource use. In total, division optimization significantly reduces resource use which
also produces minor improvements in cycle time, latency in cycles and power
consumption.

5.3.2.3 Hierarchical Min/Max Operations

The third technique we have evaluated is a simple re-organization of conjunctions
in a tree, versus a sequence. Currently, for a bound of the form cX � A ^ cX �
B ^ cX � C ^ cX � D, CLooG generates cX � min.min.min.A;B/;C/;D/. We
instead generate a balanced tree of operations cX � min.min.A;B/;min.C;D// to
leverage operation parallelism

Table 5.5 summarizes the results of applying this technique to applications
already optimized by eliminating polyhedra separation and division transforma-
tions. These improvements, albeit marginal, further reduce resource usage in all
cases.

5.3.2.4 Loop-Tiling Bound Simplification

Finally, we explore general optimization of loop tiling bounds. Loop-tiling is
an essential loop transformation to improve data locality, data reuse, and hence
the overall performance. The polyhedral model provides powerful techniques for
effective loop tiling, but the default CLooG-generated code might have irregular
tiling shapes that precisely capture the loop dimension, but create complex loop
boundaries. Such code executes effectively on CPUs by precisely iterating over the
loop space without any empty iterations. However, for HLS, complex loop bound-



118 W. Zuo et al.

Table 5.4 Impact of division optimization

LUT FF DSP CP (ns) Cycle Pwr (mW)

FDTD-nosep 25,595 16,692 40 8.965 11,500,269 1452.56

C IntDiv 11,319 8864 100 8.948 11,487,327 1365.44

CMulUB 9210 7456 62 8.722 11,486,905 1366.24

C LcmLB 9988 7572 50 8.668 11,488,085 1364.21

Gemm-nosep 1822 1532 14 7.609 14,567,698 1302.43

C IntDiv 1822 1532 14 7.609 14,567,698 1302.43

CMulUB 1822 1532 14 7.609 14,567,698 1302.43

C LcmLB 1822 1532 14 7.609 14,567,698 1302.43

J1D-nosep 11,327 7350 14 8.100 5,724,101 1411.92

C IntDiv 2759 1897 17 8.148 3,194,601 1312.37

CMulUB 2495 1787 16 8.853 3,094,421 1312.42

C LcmLB 2496 1835 15 7.946 3,094,951 1312.11

J2D-nosep 14,216 10,103 27 8.582 21,800,977 1427.02

C IntDiv 6312 4749 39 8.757 12,408,718 1318.99

CMulUB 5221 4164 32 8.596 12,150,238 1319.23

C LcmLB 4968 4148 31 8.428 12,148,886 1320.37

Seid-nosep 32,561 19,599 9 8.763 159,281,806 1459.67

C IntDiv 8844 5909 33 8.460 159,265,028 1369.15

CMulUB 7934 5227 18 7.908 159,265,296 1366.94

C LcmLB 7573 5125 16 8.039 159,265,212 1368.42

Table 5.5 Impact of hierarchical min/max

LUT FF DSP CP (ns) Cycle Pwr (mW)

FDTD-ns-dopt 9988 7572 50 8.668 11,488,085 1364.21

C hier 9746 7542 50 8.273 11,486,733 1365.45

Gemm-ns-dopt 1822 1532 14 7.609 14,567,698 1302.43

C hier 1822 1532 14 7.609 14,567,698 1302.43

J1D-ns-dopt 2496 1835 15 7.946 3,094,951 1312.11

C hier 2496 1835 15 7.946 3,094,951 1312.11

J2D-ns-dopt 4968 4148 31 8.428 12,148,886 1320.37

C hier 4968 4148 31 8.428 12,148,886 1320.37

Seid-ns-dopt 7573 5125 16 8.039 159,265,212 1368.42

C hier 7495 5097 16 8.348 159,265,212 1370.78

aries can cause inefficient scheduling and resource allocation, thus diminishing
the benefit of precise tiling boundaries. Thus, the last technique we evaluate is to
simplify loop bounds using sub-bounding box tiling to find a parallelogram hull to
approximate the tile origin domain to further simplify boundary computation. This
technique trades between preciseness in loop iteration (but less efficient hardware
implementations) and less precise loop iterations that have empty iterations, but
more efficient hardware implementations.
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Fig. 5.4 Optimization for point loop [34]

We start with an input polyhedral representation using standard polyhedral tiling
including a polyhedral schedule for all loops/dimensions. First, we generate the tile
loop boundaries, and find a parallelogram that approximates the tile origin space.
We combine the parallelogram domain with the input scheduling functions. Next,
we generate the point loop boundaries to scan the iteration points within the tile in
the order specified by the user-specified schedule. At this step, point loop boundaries
are made of the intersection of the tile bounds and the iteration domain bounds.

Figure 5.4 illustrates our method with the loop iteration domain of the Seidel
benchmark. The dashed lines are the boundaries of the loop iteration domain, and
each rectangular box is a tile. Without our method, all tiles that intersect with the
loop bounds require a complicated code structure to describe the loop shape. Using
our method, we approximately generate only rectangular tiles, which are easy to
describe in code and thus lead to more efficient hardware.

Table 5.6 shows the results comparing our technique with the default code
generated by ClooG. In all cases, our sub-bounding box method uses fewer
resources than the default code generation technique.

5.3.2.5 Experimental Results

In addition to the five benchmarks used during exploration, we tested all of our
techniques on a set of eleven computation kernels. Results demonstrate that these
optimizations can reduce area by 2� on average (up to 10�) without significant
effect on latency or power consumption. Figure 5.5 represents the detailed compar-
ison data, where HLSOpt includes all of the optimizations discussed above.
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Table 5.6 Impact of bounding-box

LUT FF DSP CP (ns) Cycle Pwr (mW)

Seid-s-itr 7133 4366 9 7.704 159,135,759 1361.17

C BB 5882 3637 5 7.874 159,143,274 1352.77

J2D-s-itr 4037 3237 24 8.244 11,761,063 1320.35

C BB 3236 2514 19 7.943 11,752,537 1300.22

J1D-s-itr 2004 1558 15 8.068 3,094,952 1294.78

C BB 1808 1475 15 8.12 3,074,938 1295.32

FDTD-s-itr 7259 5780 51 8.986 11,357,291 1369.41

CBB 6956 5549 50 8.768 11,354,663 1368.06
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Fig. 5.5 Area ratio (normalized to default)

5.3.3 Multi-Cycle Path Analysis for High-Level Synthesis

HLS tools take high level language input specifications and design constraints
in latency, throughput, area, and power and generate RTL that attempts to meet
these constraints. The RTL is then passed to RTL synthesis and physical design—a
feed-forward interaction where the area and achievable clock period determined by
critical path delay is directly influenced by the quality of HLS-produced RTL. Due
to resource and/or dependency constraints, HLS tools cannot always deeply pipeline
datapaths to achieve a single cycle initiation interval in all designs [17]. In this
case, the tools generate multi-cycle paths—paths with more than one clock cycle
available for signal propagation. However, timing analysis during RTL synthesis
assumes that every register-to-register path has only one clock cycle for signal
propagation. RTL synthesis considers multi-cycle paths to be timing exceptions,
which critical path analysis may report as difficult to detect false positives [13].
Ideally, to prevent clock period degradation, HLS tools can insert registers to break
long paths, but these registers waste resources without improving execution latency.
In the worst case, inserting registers can significantly increase the number of control
steps and hurt execution latency due to pipeline imbalance.
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To overcome this challenge, we introduce a feed-forward interaction between
HLS and RTL synthesis to improve circuit quality and guide optimization effort
towards critical paths. In our prior work, we perform behavioral level multi-cycle
path analysis (BL-MCPA) [31, 33] and identify multi-cycle paths in a hardware
design by calculating the interval (in cycles) between the state-transitions of the
source and sink register of combinational paths. Thus, instead of breaking long
combinational paths into single-cycle segments, we construct multi-cycle paths to
reduce latency and register usage and then pass this information to RTL synthesis.
With the multi-cycle path information, RTL synthesis improves the accuracy of
timing analysis by filtering false positive critical paths.

Earlier works on multi-cycle path analysis detect paths with cumulative latency
greater than one cycle, but rather than finding these required multi-cycle paths,
we identify available multi-cycle paths—paths where the amount of time available
for computation is greater than the necessary time, thereby providing optimization
opportunity. Traditionally, precise multi-cycle path analysis must analyze the
state-transition graph (STG) in which each state is the state combination of all flip-
flops (FFs) in the circuit. Thus, the number of states in an STG scales exponentially
with the number of FFs. Multi-cycle path analyses which attempt to analyze the
whole STG are not practical [4, 26], while heuristic approaches [16, 19] deliver
pessimistic results that do not improve circuit timing [13]. With the behavioral-
level information from HLS, we avoid exponential time complexity of the prior
exhaustive enumeration techniques by dividing circuit states into equivalent groups
and analyzing the relationships between equivalent groups instead of individual
circuit states.

BL-MCPA detects multi-cycle paths using the hardware architecture generated
after binding and the cycle-accurate behavioral model generated by scheduling.
We extract behavioral information from the CDFG and build an STG. Although
we operate at both the behavioral and register transfer level, we consider our
analysis behavioral-level because it relies on behavioral-level information for both
accuracy and time complexity. We prove that our behavioral-level STG represents all
reachable circuit states without exponential growth in the number of nodes or edges
between nodes, and present our multi-cycle analysis, which considers all reachable
circuit states by considering both control flow and guarding conditions (register
assignment enables).

Our multi-cycle analysis consists of three high-level steps: (1) Construct an
RTL datapath to identify combinational paths. (2) Construct a behavioral-level state
transition graph (STG) and annotate with control flow and define-use chains [12].
(3) Analyze the STG to identify multi-cycle paths and determine available cycles
for each path.

5.3.3.1 Circuit States and Control-States

We formally define circuit states, control-states, and reachable states as in [13]. For
a circuit with N-bits of flip-flops(FFs) .r0; : : : ; rN�1/, we represent a circuit state
as a bit-vector b D .bo; : : : ; bN�1/, where bi is the value of FF ri in state S and
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the set of possible states P has 2N states. The N bits of state FFs contain both NC

control FFs (control-states) and ND data FFs (data-states) where N D NC C ND

and NC 	 ND. Any combination of control and data state can be represented by a
bit-vector b.

HLS can use behavioral information to precisely track the set of control FFs
and data FFs, but RTL synthesis tools cannot distinguish between control and data
FFs, particularly because there are data-dependent conditional state transitions. We
define a circuit state S as a reachable state if and only if the circuit can reach state
S from an initial circuit state S0 through a sequence of state transitions. The set of
reachable states R is a subset of all possible states P. We can thus also consider
reachable control (and data) states RC and RD, where R is a subset of RC � RD.

We use the STG defined in [11], which is generated after scheduling, to model
circuit behavior in the control-state space, and denote it as Control-STG. We now
formally connect the Control-STG and circuit STG, then extend the Control-STG
with data-dependent behavior and control-flow information. Leveraging the precise
control-state information from the Control-STG, we divide the circuit states into
control-equivalent state sets (CES), and capture state transitions on data FFs by
register assignments.

5.3.3.2 Capturing Conditional Behavior in the STG

The Control-STG captures control-flow behavior, but does not explicitly represent
conditional behavior of register assignments. Thus, we first explain register assign-
ment guarding conditions and present a guarding condition aware STG (GA-STG).

In a HLS flow, guarding conditions of register assignments are generated from the
following 2 cases: (1) Predicated operations produced by If-conversion [1, 21, 28],
and (2) Control-flow dependent register assignments of �-nodes.

In the first case, the guarding condition is uniquely derived from the execution
condition of the parent basic block (BB)2 of the register assignment. In the
second case, the guarding condition is uniquely derived from the incoming BB
of the �-node. Hence, the guarding condition of a register assignment can be
represented by its parent BB. In both cases, different BBs in the control flow derive
different guarding conditions and thus we use BBs to distinguish different guarding
conditions that appear in the same control-state.

We build the guarding condition aware STG (GA-STG) for our multi-cycle
analysis by extending the STG construction approach in [11]: Starting from a
scheduled CDFG, we build control-states for each BB and the linear state transitions
between states in the same BB. We then generate (virtual) register assignments from
operations, and attach them to the corresponding control-states.

2A basic block is a portion of the code within a program with only one entry point, only one exit
point and without conditional branches.
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We then connect linear control-flow of different BBs by adding merge-edges
between control-states from different BBs. Specifically, for each control-flow edge,
we add a merge-edge from the last control-state in the source BB to the first control-
state in the sink BB, and associate the merge-edge with the branching condition
of the control-flow edge. Such a merge-edge indicates its source and sink control-
states refer to the same control-state in the final control-STG, but the execution of
the register assignment and state-transition in the sink control-state is predicated by
the associated condition. If a BB has multiple predecessors, we need to duplicate its
first state as well as the underlying register assignments, then connect the duplicated
states with each of its predecessor’s last state. These duplicated states belong to
different control-states in the final control-STG.

The predication produces an intermediate control-STG which can be complex:
states from different BBs may refer to the same control-state, but are guarded by
different conditions. Thus we eliminate such ambiguities by replacing the nodes
in the intermediate control-STG with guarding condition equivalent states (GESs).
During the replacement, we keep the edges unchanged, thus we obtain a GA-STG
after the replacement.

Finally, we perform register allocation and binding to determine the target
register of register assignments. It is important to note that the GA-STG represents
the relation between state-transitions guarded by different conditions without the
need to evaluate the conditions. We assign a weight of 1 to edges that represent
control-state transitions, and 0 to merge-edges that represent predicated execution.
This edge weighting scheme, together with the SDC scheduler, ensures that the
distance between two GESs in the GA-STG represents the number of cycles for
a sequence of transitions between the two GESs. The GA-STG also represents the
datapath between register assignments, similar to FSMD [14], to support multi-cycle
path analysis.

5.3.3.3 Data Dependency Analysis

We first identify data dependencies between register assignments in the GA-STG.
For each data dependency edge, the HLS tool will generate combinational paths
between the registers to implement the computation. Thus, we implicitly identify
underlying combinational paths between registers by identifying data dependencies
between register assignments.

Our SSA-form [12] CDFG explicitly represents data dependencies with use-
define chains. For a given register assignment A, we perform a depth-first search on
the Directed-Acyclic Graph (DAG), which consists of operations and data depen-
dence edges until we reach operations that are annotated as register assignments.
Thus, we collect all data dependencies of A.
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5.3.3.4 Available Cycles Calculation

For each edge .d; u/ 2 EA, which represents a data dependency from register
assignment d to u, we calculate the minimal number of cycles available for the
state-transition made by d to propagate across combinational paths until it reach the
sink assignment u. We denote the number of cycles as k.d; u/, which is the number
of cycles of the transition sequence from SC.d/ to SC.u/ with the minimal number
of transitions, i.e. the shortest path distance from SC.d/ to SC.u/ in the GA-STG
[denoted by Od.SC.def/; SC.use//]. Formally: k.d; u/ D Od.SC.d/; SC.u//.

Now, we have k.d; u/ computed for every edge .d; u/ 2 EA by applying the
all-nodes shortest path algorithm to the GA-STG. However, there may be multiple
register assignments that assign register R.u/ and R.d/ in different state transitions
(from different GESs), which may imply different shortest-paths, one for each GES.
Thus, we must compute the final number of cycles for combinational paths as the
minimum number of cycles for all data dependency edges between register R.u/ and
R.d/.

5.3.3.5 Multi-cycle Constraints Generation

During the annotation process, there may be multiple constraints on a combinational
node. To ensure correct timing constraints generation, we only generate the
constraint with smallest cycle count [9]. Then we write these constraints to a TCL
file and pass it together with corresponding RTL to the RTL synthesis tool. These
constraints filter out falsely identified critical paths (i.e. paths that have long delay,
but do not affect the critical path) during the RTL synthesis, so as to guide synthesis
efforts to attain timing closure, and eventually improve the quality of the final RTL
synthesis output.

5.3.3.6 Evaluation

We evaluate BL-MCPA on CHStone [15], which contains both control and data-
intensive benchmarks. We compare the number of circuit states and the equivalent-
state sets (CESs and GESs) in Table 5.7. They represent the problem size of the
multi-cycle path analysis at RT-level and behavioral-level, respectively. The table
suggests that our BL-MCPA needs to analyze a much smaller STG than prior multi-
cycle path analysis making this technique feasible for practical designs.

Next, we compare hardware quality of RTL synthesis with and without BL-
MCPA, which primarily affects timing quality and clock period. Using an Altera
Stratix IV FPGA, we evaluate each design in both execution time and area. We
incrementally apply multi-cycle constraints and multi-cycle chaining to demonstrate
the effects of the analysis and chaining independently. The baseline flow disables
both BL-MCPA and multi-cycle chaining. Then, the Cconstraints flow enables
BL-MCPA and generates multi-cycle path constraints to guide synthesis effort,
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Table 5.7 Comparison on
the problem size of MCPAs

Behavioral-level RT-/gate-level

Benchmark CESs GESs FFs jPja
dfmul 46 129 1848 21848

dfdiv 158 273 3484 23484

gsm 289 630 9088 29088

mpeg 78 129 2120 22120

aes 251 301 9575 29575

mips 251 332 4562 24562

dfadd 49 201 3905 23905

dfsin 421 906 11,348 211;348

adpcm 160 191 13,412 213;412

sha 170 220 7318 27318

blowfish 489 522 21,749 221;749

jpeg 830 1234 23,194 223;194

a
P is the set of possible circuit states defined in [31]

but multi-cycle chaining is still disabled. Thus, this flow leverages differences in
available cycles even though all combinational paths are still limited to single cycle
cumulative latency. Finally, the CconstraintsCmcc flow enables BL-MCPA and
allows unlimited multi-cycle path chaining (given data dependence limitations).

For all three flows, we run all CHStone benchmarks targeting 200 MHz,
300 MHz, and 400 MHz. Results indicate that this analysis allows a reduction
in the critical path analysis without actually modifying the circuit; thus BL-MCPA
reduces achieved design latency by 12% by improved analysis without actual
circuit changes. Combining BL-MCPA with multi-cycle chaining, we achieved
25% latency reduction as well as 29% register usage reduction at 300 MHz.
We observed that the effects of multi-cycle constraints and multi-cycle chaining
are more significant at higher target fmax. For example, the Cconstraints and
CconstraintsCmcc flows are able to achieve 24% and 26% CP reduction at
400 MHz, respectively. These reductions are larger than the ones that are made at
200 MHz, which are 10% and 16%, respectively. Similarly, the latency and register
usage reductions are also larger at 400 MHz than 200 MHz. This is because the RTL
timing analysis is more sensitive at a higher fmax, hence providing extra multi-cycle
information improves the quality of RTL timing analysis more significantly at a
higher fmax (Table 5.8).

5.3.4 Layout-Driven High-Level Synthesis for FPGAs

HLS-based flows attempt to optimize the area, latency (in clock cycles) and
achieveable frequency (fmax) of designs in order to meet designers’ performance and
cost objectives. In particular, fmax is limited by critical path delay, which is signif-
icantly impacted by low-level circuit implementation details including technology



126 W. Zuo et al.

Table 5.8 Normalized
performance and register
usage at different fmax

200 MHz 300 MHz 400 MHz

CP Cc 0.90 0.88 0.76

CcCm 0.84 0.83 0.74

Cycles Cc 1.00 1.00 1.00

CcCm 0.94 0.90 0.86

Latency Cc 0.90 0.88 0.76

CcCm 0.79 0.75 0.64

Regs Cc 1.09 1.09 1.08

CcCm 0.84 0.71 0.66

mapping, placement, and routing. However, these details are difficult to estimate
at the behavioral level; HLS tools accept constraints including target fmax and
micro-benchmarking based pre-characterized component latencies [30] to estimate
datapath latency and allocate operations to control cycles. However, actual datapath
delay is significantly affected by logic synthesis optimization, technology mapping,
register packing, placement, and routing. Furthermore, variations in optimizations
and interconnect delay, which can be up to 70% of circuit delay [18] can affect
different implementations of the same operation. Inaccuracies in behavioral level
delay estimates can affect both fmax and latency in clock cycles, and thus we must
integrate post-synthesis timing information in order to minimize latency in cycles
while maximizing fmax.

Currently, HLS tools depend on logic synthesis tools to optimize to identify
and optimize the design’s critical path instead of modifying timing estimates and
regenerating RTL to improve implementation quality. Logic synthesis tools attempt
to fix timing closure using retiming and/or resynthesis [25]. However, although
these tools can optimize some paths, they are limited to transformations that
maintain the exact RTL behavior. Thus, these limitations force users to undergo
design iterations to improve performance when logic synthesis optimizations are
insufficient—challenging in RTL, but even more challenging with HLS because
the mapping between the HLL and RTL implementation is obfuscated by HLS
transformations.

Thus, we introduce a feed-back path from logic synthesis to HLS[32] that updates
timing estimates based on Altera Quartus’ [2] post placement and routing (PAR)
delay estimates. We iteratively enhance the RTL and back-annotate post-PAR delays
to improve both fmax and latency in cycles. This work reduces user design iteration
and improves ability to meet user design objectives. In order to keep the iteration
time feasible, we use Quartus’ fast-PAR, and we demonstrate that our benchmarks
converge in few iterations with fast overall runtime.

Our LLVM-based HLS framework begins with a control-dataflow graph (CDFG),
and performs analysis and optimization both in LLVM-IR and our FPGA-specific
IR. In our layout-driven flow, we start with pre-characterized component delays
as in other HLS flows, but then iteratively refine the delays with back-annotated
post-synthesis and PAR information. In each iteration, HLS optimizes design
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Fig. 5.6 Layout-driven HLS
flow [32]

Iteration 

Delay
Table

Scheduling

Binding

Multi-cycle
constraints

Delay
Extraction

Logic Synthesis
& PAR

Delay
Updates

Code Generation

Delay Estimation

CDFG

Converged 

performance considering the fmax constraint and annotated delay estimates. This
flow reduces design iteration while improving timing closure and still maintaining
reasonable synthesis time. For synthesis time specifically, we examine Quartus’
synthesis options including Quartus’ fast-PAR tool which can reduce iteration
runtime by up to 10� [3, pp. 2–35]; all tested benchmarks converge in just three
iterations.

We divide our flow into three stages: Initialization, Iteration, and Finaliza-
tion: Initialization performs an initial synthesis based on pre-characterized delay
estimates, then Iteration repeats a cycle of back annotation and regeneration of
optimized RTL; Finalization performs a final RTL code generation and full Quartus
synthesis. An overview of our flow is shown in Fig. 5.6. During Iteration, there are
two different options for how to update the delay information as well as optional
iterative constraints generation.

5.3.4.1 Component Pre-characterization

As a one-time task for each target platform, we perform component pre-
characterization [30] for 188 micro-benchmarks of elementary operations, MUXs
and storage elements of varying bit-widths. Each micro-benchmark is synthesized
in Quartus for the target platform, and we measure resource use, critical delay, and
power consumption.

5.3.4.2 Initialization Stage

Initialization begins with a simplified baseline synthesis similar to a non-iterative
HLS flow. Firstly, we refine the CDFG to build a modified CDFG which contains
only non-computation operations, and chains of computational operations are
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replaced by data dependence edges (data edges). Then we estimate the delay of the
data edges in the modified CDFG by accumulating the delay of individual computa-
tional operations in the original chains using the pre-characterized, platform-specific
component delays as in [30].

Based on these delay estimates, we build a delay table and the corresponding
inputs to the SDC scheduler. Using the estimates, the scheduler assigns operations
to clock cycles, preserving the fmax (clock period) constraint and CDFG dependency
constraints. We then generate an initial RTL, we perform an initial Quartus logic
synthesis, and fast-PAR to generate timing information and then continue to the
Iterate stage.

5.3.4.3 Iteration Stage

After Initialization, Iteration will repeatedly extract the Quartus timing information,
back-annotate to update the CDFG, repeat HLS scheduling and binding, generate
constraints, and finally repeat synthesis in Quartus. We will now present details for
the steps in our iteration stage: RTL synthesis, timing extraction, back annotation,
and constraints generation.

RTL Synthesis

We integrate with Altera Quartus tool to perform logic synthesis and PAR on
the generated RTL. Though this is a generic step in HLS flows, we explore
three different synthesis options to study the impact of synthesis quality on delay
estimation.

We use Fast PAR option and run logic synthesis (also with hierarchy flattening
and logic optimization) followed by fast placement and routing of the design using
the “early timing estimation” option to perform a quick PAR, and timing analysis.

Timing Extraction

Every data edge in our CDFG corresponds to a chain of computational operations;
there may be many gate-level paths in the post-synthesis implementation that
correspond to a single data edge in the CDFG. However, among the set of gate-
level paths, only the critical paths, i.e. the gate-level paths with the largest delay,
have an impact on the data edge delay and HLS scheduling.

To find the set of gate-level paths that affect the delay of data edges in our CDFG,
we take advantage of a property of HLS: each node in our CDFG is allocated a
register to store the input and/or output operands. Thus, the set of paths that affect
the critical path are the set of paths from the source register to the sink register,
a set of paths easily extracted from post-synthesis timing reports. We generate
“path filter” for each data edge in the CDFG, so that Quartus correctly reports the
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corresponding critical gate-level path delay for the data edge according to the filter.
A path filter is described by the source and sink register of the path, and the MUX
input for the path. However, we have to apply the keep synthesis attribute to the
MUX inputs, otherwise we cannot exactly match the MUX input with the filter in
the post-synthesis implementation.

Back Annotation

After we have extracted the relevant timing information from the post-synthesis
timing reports, we now back-annotate this information to the CDFG to refine timing
estimates for the following HLS RTL generation. For the back annotation update
function, we explore two options that will be compared in detail in evaluation.

Moving Average (MAVG)—This update function is a simple filter that averages
the current extracted timing value with the timing value of the previous iteration.
Specifically, estnC1 D .estn C delayn/=2, where delayn is the extracted timing
value from Quartus; estn is the timing estimate of iteration n calculated by the
same equation recursively, starting from pre-characterization based delay estimation
(est0).

Average (AVG)—This update function simply performs the average of the delay
estimates of all iterations up to the current point. Whereas the moving average
has exponentially decreasing importance of older datapoints, this update function
linearly decreases importance.

Constraint Generation

In order to improve synthesis quality and quality of back-annotated delays, we also
generate multi-cycle constraints for multi-cycle operations. Over-relaxed timing
requirements may lead to sub-optimal implementations of gate-level paths; over-
estimated delays from sub-optimal gate-level paths may generate low-performance
hardware. Instead, we implement a more appropriate technique: for each data edge,
we round the estimated delay up to the next integer number of cycles and generate
an appropriate constraint. Although our approach is a coarser-grained approach to
multi-cycle constraint generation, it gives Quartus sufficient optimization opportu-
nity and allows the iterative process to properly track variation in delay estimates of
long paths. The simple multi-cycle constraints are generated based on the estimated
critical delay from the CDFG; given an estimated delay estn, we generate the multi-
cycle constraint destn � 0:5 � Tclkecycles. The value 0.5 tightens constraints by a
half cycle on average in order to encourage optimization.
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Table 5.9 Geometric means
of performance metrics
(normalized to non-iterative,
the smaller the better)

AVG AVGCC MAVG MAVGCC

400 CP 0.84 0.83 0.84 0.84

Cycles 1.00 0.97 0.99 0.95

Latency 0.84 0.81 0.83 0.80

450 CP 0.81 0.81 0.80 0.81

Cycles 0.98 0.96 0.99 0.97

Latency 0.80 0.78 0.79 0.78

500 CP 0.88 0.87 0.86 0.89

Cycles 0.99 0.95 0.98 0.95

Latency 0.87 0.83 0.84 0.84

5.3.4.4 Evaluation

For our experimental evaluation, we use our HLS platform and QuartusII 13.0
synthesis and fast PAR tool targeting a Stratix IV device (EP4SGX70), speedgrade
2 and we use the CHStone [15] set of benchmarks. We report fmax and also calculate
the latency of the hardware by multiplying the number of cycles and the minimal
achievable clock period, i.e. the reciprocal of fmax. We set the number of iterations
to 10; as we will see, in practice, all benchmarks converge in three iterations.

Using FAST-PAR synthesis, we now investigate the impact of the two update
functions, each with or without constraints. We denote the average update function
AVG and average with multi-cycle constraints as AVGCC. Similarly, we denote the
moving average function options as MAVG and MAVGCC. We synthesize each
benchmark from the CHStone set for iterations with each of 4 00MHz, 450 MHz,
and 500 MHz fmax constraints.

Table 5.9 shows the geometric mean cycles, clock period, and execution latency
for each of AVG, AVGCC, MAVG, and MAVGCC for each of the user constraints.
In all cases, all four update function combinations provide overall improvement in
both fmax and total execution latency. Both the AVG and MAVG functions produce
similar quality results on average, at the end of third iteration. When we let our flow
continue to run for ten iterations, we observed that AVG flow improves execution
latency by 2% more than the MAVG flow. However, this small improvement is at
the cost of 3� additional runtime. Figure 5.7 compares the convergence property
of AVG and MAVG for the AES benchmark as a histogram of the magnitude of
estimation updates of ten iterations. The tighter distribution of estimation updates
in the AVG function lets the flow further refine the design to get additional
improvement.

In Fig. 5.8, we show the final achieved frequency using MAVG of each of
the application for each user constraint; we see that on average we achieve over
400 MHz and we commonly reach physical limitations of the device such as the fmax

of the 36� 36MULT. In ADPCM, GSM, and SHA, execution latency improvement
is mainly due to reductions in the number of clock cycles while the fmax remains
unchanged. In other benchmarks such as JPEG, MIPS, and MPEG2, execution
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latency improvement is primarily due to increased fmax and unchanged number of
clock cycles. In addition, our flow is able to simultaneously optimize both cycles
and fmax in benchmarks such as AES and BLOWFISH.

Improve fmax by Increasing Cycles

Finally, in certain cases, our flow increases the number of cycles in order to meet
a target fmax similar to the other frequency improvement techniques. Particularly in
the floating point benchmarks, DFMUL, DFADD, DFDIV, and DFSIN, we need to
increase the latency in clock cycles in order to meet fmax through a finer-grained
division of operations into clock cycles. In most cases, our improvement to fmax

offsets the cycles increment to achieve an overall execution latency improvement.
For resource consumption, there is little difference in resource usage between

iterative and non-iterative flows or between different options of the iterative flows.
We also compare runtime of different flows including the run-time of the initial non-
iterative (pre-characterization based) flow. The flows with fast-PAR, but without
multi-cycle constraints generation have average runtime of �12 min: 3–4� slower
than the no PAR integrated flow. With the addition of filtered multi-cycle constraints,
there is a minimal overhead over the no-constraints FAST-PAR flows. There was
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also no significant difference between AVG and MAVG. Thus, we used the flow
to reduce the latency of the hardware by up to 22% and increase the fmax by upto
24%, compared to a non-iterative flow. Our flow achieved from 65% to 91% of the
theoretical fmax on the Stratix IV device.

5.4 Conclusion

As design complexity continues to grow, EDA tool complexity grows correspond-
ingly. With this increasing complexity, the quality impact of interactions between
different stages in tool flow can no longer be ignored. This chapter identifies a set
of challenges and opportunities in cross-layer design methodology (CLDM) flows.
We present four representative techniques that improve Quality of Results (QoR)
by integrating analyses and optimizations across multiple abstraction levels. Exper-
imental results show that each of these representative techniques is promising to
improve QoR through integration of cross-layer information. We believe that such a
new design methodology is important for fast and high-quality hardware design for
both the edge devices and datacenter accelerators in the era of Internet of Things.
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Chapter 6
Side Channel Attacks and Their Low Overhead
Countermeasures on Residue Number System
Multipliers

Gavin Xiaoxu Yao, Marc Stöttinger, Ray C.C. Cheung, and Sorin A. Huss

6.1 Introduction

Modular multiplications are the fundamental arithmetic operations for several pop-
ular public-key cryptography algorithms including Rivest-Shamir-Adleman (RSA)
[23] and Elliptic Curve Cryptography (ECC) [14, 18]. The efficiency of the modular
multiplier receives great attention from researchers and Residue Number System
has therefore been introduced to perform this operation [21].

In RNS, a large integer is represented by several residues, whose size is much
smaller than the original number. The operation is performed on these small residues
independently and, therefore, a parallel architecture is available for RNS modular
multiplication [13]. The parallel RNS architecture can thus provide a high speed for
different public-key cryptography algorithms. It was first deployed to perform RSA
[13, 20, 22], and then introduced for ECC [8, 24]. Recently, with the proposal of the
bilinear pairing as a cryptographic primitive [11, 12], the high speed architectures
using RNS have also been utilized for pairing-based computation [2, 27].

Besides speed performance, a cryptosystem should also resist various attacks.
The Side Channel Attack or Analysis (SCA) [15, 16] uses the information other
than the primary channel to reveal the secret, which bypasses the cumbersome
cryptanalysis (SCA may also be combined with the cryptanalysis and thus makes the
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cryptanalysis much more efficient), and has already demonstrated its powerfulness
[17]. The side channel leakages include, but are not limited to, time [15], power [16],
electro-magnetic emission [5], photon emission [25], and even sound [7]. In order to
secure a cryptosystem, numerous countermeasures have been proposed to minimize
and/or randomize the side channel leakage, e.g., Wave Dynamic Differential Logic
(WDDL) [26], randomized projective coordinate [3], etc.

RNS has also been proposed as the underlying arithmetic structure, namely
Leakage Resistant Arithmetic (LRA) [1], to secure a cryptosystem against SCA.
This method employs the Mixed-Radix System (MRS) to perform one expensive
computation called Base Extension (BE). However, MRS-based BE is not friendly
to fully parallel architectures, and most RNS implementations perform BE by
means of the parallelizable Chinese Reminder Theorem (CRT). Note that the RNS
is attractable for its parallelism and, therefore, the LRA did not gain popularity
although it promises better side channel resistance, at least theoretically. Recently,
the work in [9] proposed to accommodate the LRA into the CRT-based BE context
by precomputation. We will show in the sequel that LRA and CRT-LRA still suffer
from several vulnerabilities.

In this work, we first examine the SCA resistance of current cryptosystems using
LRA. By exposing the vulnerabilities, we propose appropriate countermeasures.
The main contributions of this work are:

• The vulnerabilities are examined for the RNS-based modular multiplier, and the
second order attacks are designed for the cryptographic architectures using LRA.

• Several low overhead countermeasures are proposed against various attacks,
which can also be embodied independently to satisfy different security require-
ments.

• Experiments on implemented multipliers are performed in order to demonstrate
the efficiency of the proposed methods.

The remaining of this paper is organized as follows: Sect. 6.2 recaps the back-
grounds on SCA and the RNS modular multiplier with coverage of recent advances.
Section 6.3 reviews the vulnerabilities of the current RNS modular multiplier,
and demonstrates attacks accordingly. In Sect. 6.4 we propose countermeasures
against these attacks. The implementation results are provided in Sect. 6.5. Further
discussions about the RNS-based SCA countermeasures are included in Sect. 6.6
and Sect. 6.7 finally concludes the paper.

6.2 Preliminaries

Due to the nature of this work, we employ many symbols to formalize the
presentation. For the ease of reference, we summarize them in Table 6.1, and the
their definitions are provided in the appropriate context. The notations which only
appear locally are excluded from the table.
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Table 6.1 List of symbols Symbol Definition

avg Operator to compute average

HD Operator for Hamming distance

HW Operator for Hamming weight

˚ Operator for bitwise xor

jxjy Operator for x mod y

ai One coprime candidate to form the RNS base

bi One modulus in base B

b�1
i;j jb�1

i jbj

ci One modulus in base C

di di D 2w � bi;�2bw=2c < di < �2bw=2c

B 1st RNS base

C 2nd RNS base

MB

Q
B

MC

Q
C

Bi MB=bi DQn�1
jD0;j¤i bj

QBi;j
Qn�1

jD0;j¤i.bj � cj/

N Application modulus

n Number of moduli in one RNS base

w Bitlength of one RNS modulus

˛ avg
�
HW.jaijbi /

�
; ai ¤ bi

ˇ Noise normalized to the HD/HW model

�i �i D jxi � B�1
i jbi

� � D bPn�1
iD0 �i=bic

6.2.1 Power Analysis and Related Countermeasures

6.2.1.1 Power Analysis

For simplicity and clarity, we mainly focus on the power analysis in this work.
The attack by directly interpreting the power traces of a cryptosystem is known
as Simple Power Analysis (SPA). A more sophisticated attack is the Differential
Power Analysis (DPA) [17]. The basic principles of DPA are as follows: the power
consumption for an unchanged bit value is different from that for a flipped one. More
specifically, 0!0 and 1!1 cost less dynamic power than 0!1 and 1!0 [17]. For
most processors, the registers are written after being pulled-up or -down. Suppose
that the power consumption is uniform for the same kind of action (stay or flip) for
every bit, then the dynamic consumption when writing the register is proportional to
the Hamming weight of the written value. The Hamming weight, denoted as HW.�/,
counts how many 1’s are presented in the binary value representation.

Subsequently, an attacker can make hypotheses on the intermediate values using
the Hamming weight model, whereas the hypothesis space is much smaller than
the key space. The hypotheses are compared to the measured power traces using
statistics analysis, e.g., maximum likelihood [16] or correlation coefficient [4]. A
match indicates (a part of) the secret.
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For ASICs or FPGAs, the registers are directly refreshed by the fan-in source
without previous pull-up or -down operations. So, the model to be exploited should
not be the Hamming weight, but the Hamming distance, which indicates how many
bits have been flipped. The Hamming distance is denoted as HD.�; �/, and equals
to the Hamming weight of the bitwise XOR between the previous and the current
value, i.e.:

HD.x; y/ D HW.x ˚ y/ (6.1)

Subsequently, similar attack steps can be applied to the Hamming distance model.

6.2.1.2 Power Analysis Countermeasures

According to the mode of action, the SCA countermeasures can be classified into
hiding and masking methods [17]. Techniques which to minimize the leakage or
make the leakage undistinguishable belong to hiding class, e.g., one can increase the
noise by adding a noise generator, or decease the leakage by using a balanced circuit,
such as WDDL [26]. Techniques to cut off the dependency between the intermediate
values and the secrecy are denoted as masking. For public-key cryptography, one
can use the mathematical equivalent or congruence to randomize the intermediate
values. Take ECC for example: the standard projective .X W Y W Z/ can be utilized
to represent the affine projective .x; y/ by defining x D X=Z; y D Y=Z. Then one
can multiply the same random number to X;Y;Z, i.e., .rX W rY W rZ/, to represent
the same point and all intermediate values are randomized [3]. The strength of the
masking countermeasures is metered by the degree of randomness, i.e., the number
of possible variances, and it is usually represented by its bitlength. For instance, the
ECC coordinate has dlog2 re-bit randomness.

Another taxonomy of the countermeasures is related to the hierarchical level the
techniques are applied to. A cryptosystem can be structured into several layers as
depicted in Fig. 6.1. Thus, the WDDL countermeasure belongs to the logic level.
Most of the masking methods for symmetric cryptography and hardware shuffling
belong to the arithmetic level. Masking approaches for public-key cryptography
usually fall into the algorithm level, etc. Note that the countermeasures on different
layers are independent to each other and can be applied concurrently in order to
enhance the SCA resistance.

6.2.2 RNS Modular Multiplier

6.2.2.1 Residue Number System

The RNS base B is defined by n pairwise coprime constants fb0; b1; : : : ; bn�1g.
Each bi is called an RNS modulus. Then any integer less than MB D Q

B D
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Fig. 6.1 Hierarchical levels
of a cryptosystem

Fig. 6.2 The cox-rower architecture for the CRT-based RNS modular multiplier [13]

Qn�1
iD0 bi can be represented uniquely by:

fXgB D fx0; x1; : : : ; xn�1g (6.2)

where xi D jXjbi and jXjbi represents X mod bi. The original value X can be
recovered by the Chinese Remainder Theorem (CRT) from RNS:

X D
ˇ̌
ˇX jxi � B�1i jbi � Bi

ˇ̌
ˇ
MB

(6.3)

where Bi D MB=bi D Qn�1
jD0;j¤i bj holds.

RNS enjoys a natural parallelism. Each RNS modulus bi forms an RNS
channel. For computations in the ring Z=MBZ, the basic arithmetics are performed
independently by the corresponding residues in the channels:

fjX � YjMBgB D fXgB � fYgB
D fjx0 � y0jb0 ; jx1 � y1jb1 ; : : : ; jxn�1 � yn�1jbn�1g

(6.4)

where � 2 fC;�;�;
g. Due to the fact that jxi � yijbi is independent on any other
channels, parallel architectures similar to those depicted in Fig. 6.2 are available to
accelerate the computation, and both the computation and the storage are assigned
to each channel [2, 8, 13, 24].
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Note that in RNS arithmetics Eq. (6.4), modulo-MB takes place implicitly. Also,
the division is only available when Y has the multiplicative inverse, i.e., Y and
MB are coprime. Then the RNS division can be performed by either the channel
division or the channel multiplication by the inverse. In the channel reduction,
modulo-bi takes place for almost all arithmetics and, therefore, the efficiency of
such modular reductions is significant to the resulting performance. In order to
simplify the channel reduction, bi is usually chosen as a pseudo-Mersenne number
with the form bi D 2w � di, where �2bw=2c < di < 2bw=2c holds. Then the channel
multiplication can be performed by Algorithm 1.

Algorithm 1 Channel multiplication with pseudo-Mersenne modulus

Require: xi; yi < 2
w � di; 0 < di < 2

bw=2c

Ensure: R WD jxiyij2w
�di

1: R xi � yi

2: R jRj2w C di � bR=2wc
3: R jRj2w C di � bR=2wc
4: if R � 2w � di then
5: R jRC dij2w

6: end if
7: return R

6.2.2.2 RNS Modular Multiplication

RNS cannot be utilized directly when the factorization of the modulus is either
impossible or infeasible. Yet, in order to take the advantage of RNS, researchers
have proposed to deploy RNS in the Montgomery modular algorithm [22]. This
algorithm transforms the representation of X0 to X D jX0RjN , where N is the
application modulus, and R > N. Then the modular multiplication of jX0Y 0jN
changes to jXYR�1jN D jX0Y 0RjN in the transformed domain and it can be
performed without the trial division with R a power of 2 [19]. For RNS Montgomery
algorithm, R is set to MB, so that modulo-R is automatically performed in the RNS
representations. However, the operation .T C Q � N/=MB cannot be taken in base
B, and another base C D fc0; : : : ; cn�1g, where MC D Qn�1

iD0 ci is coprime to
MB, is introduced to execute the division as well as to enlarge the dynamic range.
The procedure is as given in Algorithm 2, and the overhead results in two base
extensions.

The Base Extension (BE) is aimed to compute the representation of X in base C
given its representation in base B (and vice versa). This operation is performed by
partially recovering X and then computing jXjcj . Using the CRT-based BE, Eq. (6.3)
is written as

X D
ˇ̌̌
ˇ̌

n�1X
iD0

�i � Bi

ˇ̌̌
ˇ̌
MB

D
n�1X
iD0

�i � Bi � � � MB (6.5)
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Algorithm 2 RNS Montgomery modular multiplication [22]
Require: RNS bases B and C, MB;MC > 2N;
Require: gcd.N;MB/ D 1; gcd.MB;MC/ D 1

Require: fXgB[C; fYgB[C;X;Y < 2N
Require: fN0gB fj � N�1jMBgB,
Require: fM0gC fjMB

�1jMCgC; fNgC
Ensure: fUgB[C W U � T �MB

�1 mod N;U < 2N

1: fTgB[C fXgB[C � fYgB[C \\ in bases B&C
2: fQgB fTgB � fN0gB \\ in base B
3: fQgC fQgB \\ 1st BE
4: fSgC fTgC C fQgC � fNgC \\ in base C
5: fUgC fSgC � fM0gC \\ in base C
6: fUgB fUgC \\ 2nd BE
7: return fUgB[C

where �i D jxi � B�1i jbi and � can be computed from

� D
�Pn�1

iD0 �i � Bi

MB

�
D
� n�1X

iD0

�i � Bi

MB

�
D
� n�1X

iD0

�i

bi

�
(6.6)

In [13], the computation of bPn�1
iD0 �i=bic is further simplified to the sum of the

several significant bits of �i=2
w with enlarged dynamic range and error correcting.

Then jXjcj yields from:

jXjcj D
ˇ̌̌
ˇ

n�1X
iD0

ˇ̌̌
�i � jBijcj

ˇ̌̌
cj

� � � jMBjcj

ˇ̌̌
ˇ
cj

(6.7)

The CRT-based BE is now friendly to a fully paralleled design and can reuse
the datapath of the channel operations. In [13], the authors proposed an architecture
named cox-rower as depicted in Fig. 6.2. The cox is an accumulator for � computa-
tion, and each rower performs one channel in base B and one channel in base C. On
such a cox-rower architecture, the � computation is distributed to the n rowers and
the computation of Eq. (6.7) is also performed by the parallel rowers in a multiply-
accumulate fashion.

Recently, the authors of [6] proposed to merge several multiplication steps and
to use f�UgC instead of fUgC as the output. Consequently, the number of channel
multiplications in one RNS modular multiplication is reduced from 2n2 C 7n to
2n2 C 4n. In [2], the authors substitute jBijcj with QBi;j D Qn�1

iD0;i¤j.bi � cj/, and the

bit-length of QBi;j (denoted as v) is now much shorter than that of jBijcj (denoted
as w). Thus, n2 w � w-bit multiplications in one BE are replaced by n2 v � w-bit
operations.
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6.2.2.3 Leakage Resistant Arithmetic

Besides the CRT-based BE, another BE method stems from the Mix-Radix number
System (MRS). Based on MRS-BE, Bajard et al. propose the Leakage Resistant
Arithmetic (LRA) as an SCA countermeasure [1]. Instead of having fixed bases
B and C, the base B in LRA is randomly formed by n constants out of 2n
coprimes, whereas the remaining n constants form C. Therefore, the value of
MB is randomized resulting in jX0MBjN , i.e., the Montgomery representation of
X0. This method can be viewed as a masking technique, whereas the mask is
MB. The security introduced by LRA is determined by the number of possible

combinations, i.e.,

 
2n

n

!
. However, the MRS-based BE contains serial steps, which

is in contradiction to the parallelism of RNS. Thus, the real effectiveness and
efficiency of MRS-LRA is yet unclear.

On the other hand the CRT-based BE is more popular, thanks to the cox-
rower architecture. The area overhead is only an accumulator for cox, and all the
computations utilize the same parallel datapath. Therefore, the work in [9] proposed
to move LRA to the CRT context. The basic idea of the CRT-LRA is the same:
select randomly n coprimes out of 2n to form the base B. Next, one computes the
parameters jBijcj and jMBjcj with respect to the selected bi during runtime. We call
this step mask initialization in this paper. We will show in the next section that both
MRS-LRA and CRT-LRA are vulnerable to attacks that are specifically targeting
RNS designs.

6.3 Attacks on the RNS Modular Multiplier

6.3.1 Attack Assumptions

Before detailing the attacks, we first establish the hardware architecture and the
assumptions on the attacks. We employ the cox-rower architecture as Fig. 6.2,
whereas each rower performs one channel in base B and one channel in base C.

The number of possible candidates for RNS moduli is limited to 2w=2 because one
needs pseudo-Mersenne numbers for efficient channel reductions as Algorithm 1,
and this number is usually less than 232, i.e., within the capability of exhaustive
search. In fact, the searching space for suitable moduli are even constrained by the
following fact:

• The moduli are pairwisely coprime.
• The value and/or the Hamming weight of di are small for the ease of multiplica-

tions in Algorithm 1.
• The interval of any two moduli is possibly small to reduce the computation

complexity [2, 27].
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• The moduli is probably directly provided because the expensive encoding and
decoding of RNS may be performed on software instead of packed hardware.

Therefore, without loss of generality, we assume that the attacker has knowledge
of the 2n coprime moduli candidates: fa0; a1; : : : ; a2n�1g. If he or she can reveal the
n moduli out of 2n which form base B, or the other n coprimes forming base C, then
the mask is transparent, and the RNS-based modular multiplier is disarmed. Such
attacks can be regarded as second order SCA.

We also assume that the attacker knows the scheduling strategy, that is, the
attacker can align the side channel leakage measurements, and knows which
operation is being performed at any given point in time. This implies that the
countermeasures messing up timing, e.g., dummy clock, are disabled. We turn off
other hiding protection methods such as noise generator or WDDL as well, so that
the attacks can take place directly on the LRA-protected modular multiplier.

Another assumption is that the RNS modular multiplier uses the same unchanged
mask in one attack set. Note that the RNS mask is not likely to change every modular
multiplication, otherwise the time overhead increases dramatically. For MRS-LRA,
changing mask takes twice the time of one modular multiplication, and CRT-LRA
requires even more time because of the mask initialization. Note that the proposed
method is still effective if the mask is changing all the time, since the statistic
analyses, such as averaging, can filter the changed masks although more power
traces are required.

6.3.2 Limited Randomness

Theoretically, the randomness provided by LRA is

 
2n

n

!
, which requires that n

must be sufficiently large. In [1], the authors suggest n D 18 as the minimum,
which is equivalent to 33-bit randomness. Note that 233 is still within the ability
of an exhaustive search and this implies that a system must change the mask quite
often. Again, the overhead of changing masks is not negligible. Furthermore, with
the shrunk size of the operand for algorithms such as ECC, the maximum value n is
limited. For instance, n is usually not greater than 8 for 256-bit operands [8].

Things get even worse, as [27] suggested to use a relatively small n to reduce the
computational complexity. For 256-bit operands, the optimal n is just 4 with w D 64,

and

 
8

4

!
results to only 70. Thus, one can easily find the mask by exhaustive search.

Therefore, increasing the mask space is strongly recommended.
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6.3.3 Zero Collision Attack

Zero values exhibit distinguishable behaviors in the side channel leakage, e.g., the
power consumption would suddenly drop to a low value for a Hamming weight
model. Therefore, if the intermediate value of one channel is zero, we assume
that the attacker can observe this zero collision, and then derive the mask or the
key according to the input, the operation when zero collision happens, and other
information.

For an input X, the first operation is to encode X into the RNS representation,
i.e., to compute jXjbi . We regard the time performing this operation as the point of
interest. Then one straightforward attack is to feed all the 2n coprimes and, if the fed
coprime is in a base, the point of interest should exhibit the zero collision behavior.
For ai, if the collision happens during the channels are generating the representation
in B, then ai 2 B, otherwise ai 2 C holds.

One may argue that a power consumption decrease caused by one channel to
zero collision is not obvious comparing to noise and other effects. This argument
is true if we simply use ai as the input. Let ˛ be the average Hamming weight of
jai � bjjbj when ai ¤ bj. Then ˛ is usually a small value (˛ 	 w), especially when
the technique detailed in [2] is utilized. The overall Hamming weight is expected to
be ˛n when ai 62 B and ˛.n � 1/ when ai 2 B. So, when one out of n values turns
to zero causes little effect on the overall Hamming weight change. Let the general
noise be ˇ in the Hamming weight model. Then the Signal-to-Noise Ratio (SNR) is
given by:

˛n � ˛.n � 1/
ˇ

D ˛

ˇ
(6.8)

Since ˛ features a small value, the effectiveness of this method is not very good.
Also, a small value checker can prevent this attack. All the inputs smaller than a
certain bit-length can be considered as illegal and this constraint is able to counteract
quite a few attacks besides the zero collision attack which also rely on small input
or small intermediate results.

Therefore, we propose to use rz � ai as the input, where rz is a random number
satisfying 2.n�2/w < rz < 2

.n�1/w. If ai D bj (such ai is denoted as a.j/), the collision
would happen in channel bj. Otherwise, if the ai ¤ bj, the average Hamming weight
of the channel should satisfy:

avg
�
HW

�jrz � aijbj

�� D w=2; ai ¤ bj (6.9)

So, if ai 2 B, the overall Hamming weight should be w.n � 1/=2. Otherwise, it
should be wn=2. Thus, the SNR expression changes to:

nw=2 � .n � 1/w=2
ˇ

D w

2ˇ
(6.10)
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Since w � ˛, the performance of the zero collision is improved a lot. Figure 6.3
shows the power trace under the zero collision attack with input rz � ai, and the
single trace can already reveal whether ai 2 B or ai 2 C. The experiment setup is
elaborated in Sect. 6.5.

In addition, this zero value is propagating as shown in Fig. 6.3. For a standard
Montgomery operation, the next operation is to multiply by jMB

2jN . So, after
reduction the result is the representation in the Montgomery domain given by:

jXMBjN D jX � jMB
2jN � MB

�1jN (6.11)

The following multiplication exploits this zero as input and after multiplication and
channel reduction, this value will still be zero. In the CRT-based method, �i and the

Power trace
with no
collision

Base

Power trace
with collision
in base     

Power trace
with collision
in base     

Fig. 6.3 SPA combined with the zero collision attack. When zero collision happens, the power
consumption will decrease, and according to the position of such power consumption drop, the
attacker can determine in which base the collision happened
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�i � jBijcj are also zero. Then, we can overlay the power points at the aforementioned
operation and the SNR can be further improved by filtering the noise.

Even when doing so, the SNR value may be still unsatisfying when ˇ is large.
One can try to collide k coprimes instead of only one at a time. Then rz should be
2.n�k�1/w < rz < 2.n�k/w, and the input is given by rz � Qk�1

iD0 a.i/. The downside of

this approach is that the order of attempts increases to

 
2n

k

!
and, therefore, k may

not be too large.
The above discussion is referring to the Hamming weight model. For the

Hamming distance model, the situation is slightly different: a single zero value
does not have an obvious behavior in the power traces since the xor result with
the previous or the next value is not zero any more. One naive method is to apply
one normal input followed by an all-zero input. Then, the system degrades to the
Hamming weight model. Anyhow, this attack can be prevented by the small value
checker.

For the Hamming distance model, if the value is unchanged, the distance value is
zero. Therefore, we can take rz �ai and r0z �ai as inputs consecutively, where 2.n�2/w <
r0z < 2.n�1/w is also a random number. Then, if ai D bj, channel bj will stay on zero
for two consecutive cycles, but other channels should feature a Hamming distance
of w=2 on average. Note that we cannot input rz �ai twice, otherwise all the channels
will have the zero Hamming distance, no matter whether ai 2 B or not.

6.3.4 Attacks on Mask Initialization

In [9], Guillermin proposed the CRT-LRA by computing the required parameters
during runtime when the bases B and C are determined. The following two matrices
are precomputed and stored, whereas a�1i;j stands for ja�1i jaj :

A D

0
BBBBB@

1 ja0ja1 : : : ja0ja2n�1

ja1ja0 1 : : : ja1ja2n�1

:::
:::

: : :
:::

ja2n�1ja0 ja2n�1ja1 : : : 1

1
CCCCCA

(6.12)

A�1 D

0
BBBBB@

1 a�10;1 : : : a�10;2n�1
a�11;0 1 : : : a�11;2n�1
:::

:::
: : :

:::

a�12n�1;0 a�12n�1;1 : : : 1

1
CCCCCA

(6.13)
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Then the parameters needed by the CRT-based RNS modular multiplication can
be computed as follows after the selection of B and C, where a.k/ stands for the
selected ai serving as the kth coprime in the bases:

jMBjcj D
ˇ̌̌
ˇ̌

n�1Y
kD0

bk

ˇ̌̌
ˇ̌
cj

D
ˇ̌̌
ˇ̌

n�1Y
kD0

ja.k/ja.nCj/

ˇ̌̌
ˇ̌
a.nCj/

(6.14)

jMCjbj D
ˇ̌̌
ˇ̌

n�1Y
kD0

ck

ˇ̌̌
ˇ̌
bj

D
ˇ̌̌
ˇ̌

n�1Y
kD0

ja.nCk/ja.j/
ˇ̌̌
ˇ̌
a.j/

(6.15)

jMB
�1jcj D

ˇ̌̌
ˇ̌

n�1Y
kD0

b�1
k

ˇ̌̌
ˇ̌
cj

D
ˇ̌̌
ˇ̌

n�1Y
kD0

a�1
.k/;.nCj/

ˇ̌̌
ˇ̌
a.nCj/

(6.16)

jB�1
i jbi D

ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

b�1
k;i

ˇ̌̌
ˇ̌̌
bi

D
ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

a�1
.k/;.i/

ˇ̌̌
ˇ̌̌
a.i/

(6.17)

jC�1
i jci D

ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

c�1
k;i

ˇ̌̌
ˇ̌̌
ci

D
ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

a�1
.nCk/;.nCi/

ˇ̌̌
ˇ̌̌
a.nCi/

(6.18)

jBijcj D
ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

bk

ˇ̌̌
ˇ̌̌
cj

D
ˇ̌̌
jMBjcj � a�1

.i/;.nCj/

ˇ̌̌
a.nCj/

(6.19)

jCijbj D
ˇ̌̌
ˇ̌̌ n�1Y
kD0;k¤i

ck

ˇ̌̌
ˇ̌̌
bj

D
ˇ̌̌
jMCjbj � a�1

.nCi/;.j/

ˇ̌̌
a.j/

(6.20)

There are in total 5n parameters for jMBjcj , jMCjbj , jMB
�1jcj , jB�1i jbi , and

jC�1i jci , respectively, and for each parameter n multiplications have to be executed.
To compute jBijcj or jCijbj only needs one multiplication each, but there are 2n2 of
them. In total, 7n2 multiplications are required for mask initialization. (If techniques
in [6] are deployed, 3n more multiplications are required.)

This initialization is performed with a fixed scheduling implied by [9], but this
step leaks information about the selected ai. Take jMBjcj for example. One only
needs 4n2 hypotheses about the ja.0/ja.nCj/ to fill in the multiplier. Once ja.0/ja.nCj/

is spotted, cj is derived, and one can recover ja.1/ja.nCj/ , ja.2/ja.nCj/ , etc., one by
one among the 2n candidates. Additionally, all mask initialization computations
are linked by the index. For ja.0/ja.nCj/ , the same index .n C j/ is also used to
access matrices A and A�1 for jBijcj , jC�1i jci , and jM�1B jcj , while the index .0/
addresses jB�1i jbi and jM�1B jcj . Therefore, a single trace of the mask initialization will
clearly provide sufficient interesting points to attack, and the leakage will disarm the
LRA protection. Hence a second order attack on the max initialization face can be
mounted, similar to the second order attacks known on masked AES.
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Fig. 6.4 v � w-bit asymmetric multiplier architecture for channel multiplication and reduction

6.3.5 Channel Reduction Leakage

asymmetric multiplier. One w � w-bit multiplication takes dw=ve cycles on this
multiplier architecture using the multiply accumulate method. This asymmetric
multiplication can also perform the channel reduction in Algorithm 1, where the
multiplication di � bR=2wc is carried out as in Fig. 6.4.

When addressing the architecture in Fig. 6.4, one can target REG1 for leakage
extraction. In step 2 of Algorithm 1, REG1 stores bxiyi=2

wc and in step 3 it stores
one of the following values:

bR=2wc D
( �bxiyi=2

wc � di=2
w
˘
; t < 2w

�bxiyi=2
wc � di=2

w
˘C 1; otherwise

(6.21)

where t D jxiyij2w C jbxiyi=2
wc � dij2w . Therefore, the leakage at REG1 is

HD.bxiyi=2
wc; bR=2wc/. There are 2w possible bxiyi=2

wc and 2n possible di values,
so one may exploit n2wC1 hypotheses to mount a DPA attack.

Furthermore, di is usually a small integer with a low Hamming weight so that
its representation may be tailored efficiently as detailed below. Such a small di can
considerably simplify the DPA attack. In steps 3 of Algorithm 1, bR=2wc is only
of dlog2.di C 1/e bits length. Therefore, all the .w � dlog2.di C 1/e/ leading bits

A typical processing cell design is depicted in Fig. 6.4. It utilizes a v � w-bit
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are zeros. Note that before bR=2wc is loaded, bxiyi=2
wc is stored in REG1 and the

Hamming weight of the leading .w � dlog2.di C 1/e/ bits are exposed.
Another way to utilize the property of the small di is to reveal the Hamming

weight of the values stored in SREG0. Small di implies that its binary representation
consists mostly of 0’s, and the values before and after di loaded will expose their
Hamming weight at SREG0. Therefore, the time points before and after loading
di are of interest, and we may input bit value of either all 1’s or 0’s to reveal the
Hamming weight of di.

6.4 Countermeasures

In this section, we propose some dedicated countermeasures to protect the RNS
modular multiplier from the outlined attacks. The functions of these methods are
summarized in Table 6.2.

6.4.1 Enlarged Coprime Pool

Instead of only selecting n coprimes out of 2n, we extend the selecting pool to m,

where m � 2n holds. Therefore, the equivalent randomness is

 
m

n

!
and one can just

select a proper m value to meet the required randomness degree. The overhead is an
enlarged storage for A and A�1.

However, the overhead might be undesirable when n is small. For n D 4 and w D
64 one requires to achieve a 33-bit randomness with m D 768, which means that
one needs 2� 7682 � 64 bits = 9 MB to store A and A�1. It is quite a large overhead
considering the operand is of only 256 bits, i.e., 32 bytes size. Additionally, to select
768 coprimes near 264 is not a trivial work.

To avoid to oversize m, one way is to employ a larger n value. For n D 8;w D 32,
which can also handle 256-bit operands, m only needs to be 72 for a 33-bit

Table 6.2 Countermeasures
for RNS modular multiplier
and their functions against
various attacks

Attacks

Counter- Limited Zero Mask Channel

measures random collision init. reduction

Enlarged pool X
Plus-N X X X
Init. shuff. X
Random pad. X X
Channel shuff. X X X X

Symbol Xmeans that the countermeasure is effectively
against the attack
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Fig. 6.5 Result of attack using the channel reduction leakage

randomness and the storage of A and A�1 decreases to just 2 � 722 � 32 bits
= 40.5 KB. We propose additional methods to increase the randomness in the
following subsections.

6.4.2 Plus-N Randomness

Note that x � xCrN .mod N/, where r is a random number, and one can use xCrN
to represent x in order to randomize the intermediate results. In the Montgomery
domain, this is equivalent to add a multiple of N2, i.e., XY C rN2, after the product
computation, and by Montgomery reduction, the result is given by .XYCrN2/N�1 D
XYN�1 C rN. In a rower the plus-N is performed after the multiplication but before
the channel reduction. The result for the ith channel is randomized from xiyi to
xiyi C rjN2jbi . The resulting data flow is as depicted in Fig. 6.5. The multiplication
rjN2jbi can be performed either by the same multiplier for xiyi or by a dedicated
multiplier to accelerate computation.

The randomness is determined from the bitlength of r. As in a channel, r < 2w

and the equivalent randomness is up to w bits. Note that a small n implies a large
w and this method compensates the limitation of the enlarged coprime pool quite
well. For n D 4, one can add a 64-bit randomness for example. The overhead is that
the product xiyi changes to xiyi C rjN2jbi , which has one more bit, so the multiplier
width is increased by 1-bit. As the overall dynamic range is enhanced to .r C 3/N2,
we need to add an additional channel or to enlarge w.

Besides providing a superior randomness, the plus-N countermeasure is also
resistant to the zero-collision attack and to attacks on channel reduction. For
zero collision attack, the intended intermediate value is rzbi, so that after the
channel reduction, the result is zero. With plus-N redundancy, the value changes
to rzbi C rjN2jbi and the zeros after the channel reduction disappear. For the channel
reduction attacks, one cannot control the value xiyi CrjN2jbi by feeding certain input
values and the size of the hypothesis space is maximized to 2w.
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6.4.3 Initialization Shuffling

In order to obstruct the attacks on the mask initialization, we propose to shuffle
the computation. There are 2n2 C 5n parameters for Eqs. (6.14)–(6.20). These
computations are in general independent on each other, so that one can randomize
the order of execution. The shuffle method can be applied at different levels.

1. All the rowers are synchronized to compute one set of the parameters simulta-
neously whereas the order for different sets is randomized. There are 7 sets of
parameters and jBijcj is calculated after the computation of jMBjcj , as well as for

jCijbj and jMCjbj . Therefore, there are in total

 
7

2

!
�
 
5

2

!
� 3Š D 1260 possible

permutations.
2. Consider jBijcj or jCijbj with the same j as one parameter. Then one rower has
7 parameters to compute and there are n rowers available. If a rower computes
one parameter randomly at a time and the rowers are independent, there will be
1260n permutations.

3. Each parameter needs n consecutive multiplications, and the order of the
multiplicand can be randomized, too. There are nŠ possible permutations.

4. Point 3 can be combined with Points 1 and 2 and the number of overall
permutation results from a multiplication of the individual permutations.

5. One does not necessarily need to finish the computation of one parameter
before starting the computation of the next parameter. One may suspend one
computation, compute another parameter, and resume the previous one. For one
rower, there are 7n multiplications, and these multiplications can be shuffled with
the support of a RAM. In the case that the rowers are synchronized, the number
of possible permutations is 

7n

2n

!
�
 
5n

2n

!
� .nŠ/4 � .3n/Š

Otherwise,

  
7n

2n

!
�
 
5n

2n

!
� .nŠ/4 � .3n/Š

!n

The variants of initialization shuffling in the above are listed in ascending order
according to their overheads. For the synchronized rower, one control signal can
handle all the rowers and this is easy to implement. For the asynchronized rowers,
each rower should have an independent control logic. Note that the randomness
provided by the initialization shuffling should be of the same order as that from other
countermeasures: on one hand, the adversary cannot gain advantage by attacking
mask initialization; on the other hand, the overhead from initialization shuffling
should be minimal as long as the security specification is achieved.
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6.4.4 Random Padding

One may argue to choose di to be around 2bw=2c, so that bR=2wc in step 3 of
Algorithm 1 is of approximately w bits. Thus, the Hamming weight of bxiyi=2

wc
is not directly leaked at REG1 in Fig. 6.4. Indeed, the leakage is not the Hamming
weight of the values at SREG0 before and after di loading, but it is still linear to
these values since di is fixed. Also, as shown in Eq. (6.21), we can still perform the
DPA, although the computation of the hypothesis HD.bxiyi=2

wc; bR=2wc/ is more
complex. Furthermore, since di ' 2bw=2c, the size of di is usually greater than v bits
and the multiplication by di takes more than one cycle on the architecture depicted
in Fig. 6.4.

We still suggest to use a small di, but the higher zero bits should be padded with
random values, so that the leakage at SREG0 is minimized. In step 3 of Algorithm 1,
the higher bits of input bR=2wc are also padded, so that the leakage at REG1
changes to HD.bxiyi=2

wc; rjjbR=2wc/, where r is a random number of bit-length
.w�dlog2.di C1/e/, and jj denotes the concatenation operator. Therefore, the attack
targeting channel reduction is annihilated. The random padding can also obstruct the
zero collision attack, since the higher bits feature not a zero but a random value.

6.4.5 Channel Task Shuffling

In most previous work, the independency of operations within RNS is exploited
by a parallel architecture, i.e., in spacial domain. Instead of assigning one rower
to perform one channel in B and one channel in C , we propose to randomize the
computation between the rowers, i.e., shuffle in the spacial domain. The overhead,
however, results in more storage for the parameters. Originally, one rower needs to
store .2n C 5/w bits for parameters and several intermediate values. With spacial
shuffling, one rower needs to store all the .2n2 C 5n/w parameters. This method
is intended to cope with the attacks using spacial information, such as EM attack.
However, for the power analysis, its advantage is limited since the overall power
consumption remains unchanged. Besides the parallelism in the spacial domain, we
can also aim at the independency in time domain. One can employ k rowers, and
each rower is responsible for 2n=k channels. Then these n=k channel operations are
independent to each other and thus the order to perform these computation may be
randomized. Although the channel shuffling works for all the outlined attacks, its
randomness is limited. For the time shuffling, the randomness depends on 2n=k,
which is usually a small number so that the computation can be accelerated by a
parallel architecture. Therefore, we propose to combine channel shuffling with other
countermeasures in order to enhance the resistivity against SCA.
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6.5 Implementation

We exploited SASEBO-GII platform, which embeds a Virtex-5 FPGA, to test the
efficiency of the proposed methods. Synthesis was performed on the top of Xilinx
ISE 12.4 tool set. The countermeasures were implemented on a design for a 256-bit
RNS multiplier with n D 4;w D 67. The logic utilization and the timing for the
different countermeasures are listed in Tables 6.3 and 6.4.

The basic deign is without countermeasures enabled. It consists four Processing
Elements (PEs), a microcoded controller and a data buffer, which utilizes 2498
slices, 16 DSPs and 11 18 Kb Block RAMs (BRAMs) in total. For each PE, 4 DSPs
forms a 69 � 18 signed 2’s complement multiplier, and 2 BRAMs serve as the
simple dual port memory for the local storage. One BRAM is used for instruction
ROM, and two are used as the interface buffer to communicate with the host. One 68
� 68-bit multiplication takes four cycles, and the channel reduction takes two. One
BE takes five cycles. The coprocessor can achieve the frequency of over 165 MHz
after placement and routing, and therefore, one modular multiplication takes
238.1	s. Although it is not designed for speed or logic utilization performance,
this work is comparable to the state-of-the-art 256-bit modular multiplier design.

Table 6.3 Utilization of the
logic fabric for the
countermeasures for RNS
modular multiplier on
XC5VLX50 FPGA

Logic utilization

Designs #slices #BRAM # DSP

Basic design 2498 (34.7%) 11 (11.5%) 16 (33.3%)

CRT-LRA [9] 2504 (34.8%) 12 (12.5%) 16 (33.3%)

Enlarged pool 2502 (34.8%) 14 (14.6%) 16 (33.3%)

Plus-N 2498 (34.7%) 12 (12.5%) 16 (33.3%)

Init. shuff. 2510 (34.9%) 12 (12.5%) 16 (33.3%)

Random pad 2538 (35.2%) 12 (12.5%) 16 (33.3%)

Channel shuff. 2508 (34.9%) 12 (12.5%) 16 (33.3%)

All enabled 2543 (34.9%) 15 (15.6%) 16 (33.3%)

Table 6.4 Timing of mask initialization and one modular multiplication for the countermeasures
for RNS modular multiplier

Frequency # Cycles Time (	s)

Designs (MHz) Mask init. Mod. mul. Mask init. Mod. mul.

Basic design 168 – 40 – 238.1

CRT-LRA [9] 165 210 40 1273 242.4

Enlarged pool 165 858 40 5200 242.4

Plus-N 168 – 47 – 279.8

Init. shuffling 165 210 40 1273 242.4

Random padding 165 – 40 – 242.4

Channel shuffling 165 – 40 – 242.4

All enabled 163 858 47 5264 288.3
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Table 6.5 Performance comparison of hardware implementations of one 256-bit elliptic curve
scalar multiplication

Area Freq. Cycle Delay

ECC p Arithmetic n w Platform # Logic # DSPs (MHz) (�103) (ms)

Ours Any p-256 Novel RNS 4 67 Virtex-5 2498 Slices 16 168 240.1 1.43

[10] NIST p-256 Pseudo-
Mersenne

– – Virtex-4 1715 Slices 32 490 303.4 0.620

[8] Any p-256 RNS 8 33 Stratix II 9177 ALM 96a 157.2 106 0.68

[24] Any p-256 RNS 15 35 Virtex 32,716 LUTs – 39.7 157 3.95
aAltera gives the DSP occupation in number of 9-bit multipliers, 96 9-bit multipliers equivalents
to 24 18-bit multipliers

The comparison of the ECC implementation is as shown in Table 6.5. Note that
this design folds one 68 � 68 multiplications into four cycles, and we intentionally
reduce the number of pipeline stages to suppress the noise for the SCA sake.
A fully unrolled and pipelined design can achieve much less cycle count and faster
frequency, and hence, have better timing performance [27].

With CRT-LRA enabled as [9] , the overhead is the mask initialization and more
memory for the storage of matrix A and A�1. For mask initialization, it consists of
140 modular multiplications and costs 210 cycles on four PEs. The storage overhead
is 96 more entries, which is equivalent to 6.5 Kbit.

The enlarged pool design extends the number of coprimes from 8 to 16, so the
possible number of mask changes from

�
8
4

� D 70 to
�
16
4

� D 1820. The storage over-
head is 544 new entries, which is equivalent to 36.1 Kbit. The mask initialization
also costs more cycles due to the additional channels [1]. It consists of 572 modular
multiplications, and by distributing them to the four PEs, it costs 858 cycles.

The r � N or r � N2 computation in the plus-N technique uses the same 18 �
68-bit multiplier, so that there is no area overhead but it costs one cycle. The size of
r for r � N2 is up to 17 bits, so that the computation of r � N2 only takes one cycle.
The r for r � N cannot be beyond 10-bit, otherwise the dynamic range provided by
w D 67, n D 4 is not sufficient. For a larger r, one needs to add more channels
or enlarge w to extend the dynamic range. Also, due to one more cycle for plus-N
operation, one modular multiplication costs seven more cycles.

The initial shuffling, channel shuffling basically are overhead free. The design
is achieved by adding additional logic to the instruction pointer to shuffle the
execution. The output is several cycles delayed to synchronize the signals, but the
throughput maintains the same.

The overhead for random padding is that multiplexers is added to before SREG0
and REG1 and after SREG2, so that random values are padded to the higher bits
when they are zeros, and discarded to yield the correct results.
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6.6 Discussion

Although the outlined attacks and proposed countermeasures were implemented
on the CRT-LRA design, they also work for MRS-LRA implementation. The only
difference between the CRT-LRA and MRS-LRA is the load of mask initialization.
For MRS-LRA, it only needs to compute jM�1B jcj as given in Eq. (6.16), and one
can still attack this step and use shuffling to counter the attack. Nevertheless, the
MRS-based RNS modular multiplier is not suitable for parallel operation, while the
proposed methods address the much faster CRT-based implementations.

As stated in Sect. 6.2, the advocated method is located at arithmetic level, and it
can well cooperate with additional countermeasures implemented at both logic and
algorithm level.

6.7 Conclusion

In this work, we first examine the effectiveness of the existing RNS-based SCA
countermeasures and expose their vulnerabilities. Then, we elaborate on dedicated
countermeasures and demonstrate their suitability and efficiency. The proposed
methods do not compromise the parallelism and the speed of the RNS modular
multiplier. At the same time, the logic overhead is negligible. They can work
independently or in a combined manner, so that the randomness level is fully
customizable according to the working specification and/or the budget. Furthermore,
the proposed countermeasures are located at arithmetic level and are thus compatible
to additional countermeasures at the algorithm and/or the logic level. Extensive
experiments were detailed and the results confirm the advantages of the proposed
methods.
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Chapter 7
Ultra-Low-Power Biomedical Circuit Design
and Optimization: Catching the Don’t Cares

Xin Li, Ronald D. (Shawn) Blanton, Pulkit Grover, and Donald E. Thomas

7.1 Introduction

As reported by United Nations and US Census Bureau, the US population has
enormously grown during the past several decades, climbing from 209 million in
1970 to 310 million in 2010. Most importantly, the percentage of senior citizens
(more than 65-year old) is expected to reach 21.28% in 2050. With the rapid
booming of senior citizen population, the expenditure of healthcare continuously
increases at a rate of 5–10% per year in the USA. Such a trend is also observed
worldwide over a large number of other countries.

To reduce healthcare cost while simultaneously delivering high-quality health
services, developing new portable and/or implantable biomedical devices is of great
importance. Billions of US dollars could be saved by reforming today’s healthcare
infrastructure with these biomedical devices for various medical applications
[8, 24]:

• Health monitoring: Health condition should be reliably monitored for each
person to predict and diagnose chronic diseases at the very early stage. For
instance, ECG signals can be continuously measured and automatically classified
by a portable biomedical device to diagnose arrhythmia [3, 19, 29].

• Clinical treatment: Clinical therapy should be reliably delivered for each patient
for both preventative care and disease treatment. Taking neuroprosthesis as an
example, brain signals are sensed and decoded by an implantable device to con-
trol the prosthesis of a patient with neurological disorder [5, 11, 13, 21, 22, 26].
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Towards these goals, miniaturized portable and/or implantable biomedical cir-
cuits must be designed and deployed to reliably sense, process, and transmit a
large amount of physiological data with extremely low-power consumption. These
circuits must carry several important “features”:

• High accuracy: A biomedical device must accurately generate the desired output,
such as diagnosis result for arrhythmia [3, 19, 29], and movement direction and
velocity for neuroprosthesis [5, 11, 13, 21, 22, 26], that is not contaminated
by artifacts, errors, and noises originated from human body and/or external
environment [6, 17, 25].

• Small latency: The response of a biomedical device must be sufficiently fast for
a number of real-time applications such as vital sign monitoring [7, 31] and
deep brain stimulation [9, 18]. In these cases, physiological data must be locally
processed within the biomedical device to ensure fast response time, especially
when a reliable wired or wireless communication channel is not available to
transmit the data to an external device (e.g., smart phone, cloud server, etc.)
for remote processing. Even in the cases where data transmission is possible
such as neuroprosthesis control [5, 11, 13, 21, 22, 26], the raw data must be
locally processed and compressed before transmission in order to minimize the
communication energy.

• Low power: To facilitate a portable and/or implantable device to continuously
operate over a long time without recharging the battery, its power consumption
must be minimized. Especially for the implantable applications where power
consumption is highly constrained (e.g., less than 100 	W), it is necessary
to design an application-specific circuit, instead of relying on general-purpose
microprocessors, to meet the tight power budget [12, 15, 16, 27, 28, 30, 32].

• Flexible reconfigurability: Reconfigurability is needed to customize a biomedical
device for different patients and/or different usage scenarios. For instance, the
movement decoder of neuroprosthesis should be retrained every day to accom-
modate the time-varying characteristics of neural sources, recording electrodes
and environmental conditions [26]. It, in turn, requires a reconfigurable circuit
implementation that can be customized every day.

The aforementioned features, however, are considered to be mutually exclusive
today. Taking neuroprosthesis as an example, executing a sophisticated movement
decoding algorithm is overly power hungry for portable and/or implantable applica-
tions. For this reason, renovating the healthcare infrastructure with portable and/or
implantable biomedical devices requires an even higher standard of performance
than what can be offered by today’s circuit technology.

In this chapter, we discuss a radically new design framework to seamlessly
integrate data processing algorithms and their customized circuit implementations
for co-optimization. The proposed framework could bring about numerous oppor-
tunities to substantially improve the performance of biomedical circuits. From this
point of view, it offers a fundamental infrastructure that enables next-generation
biomedical circuit design and optimization for many emerging applications.
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7.2 How Can We Beat the State of the Art?

In this chapter, we attempt to address the following fundamental question: How can
we further push the limit of accuracy, latency, power, and reconfigurability to meet
the challenging performance required for portable and/or implantable biomedical
applications? Historically, algorithm and circuit designs have been considered
as two separate steps. Namely, a biomedical data processing algorithm is first
developed and validated by its software implementation (e.g., MATLAB, CCC,
etc.). Next, a circuit is designed to implement the given algorithm. Such a two-step
strategy suffers from several major limitations that motivate us to fundamentally
rethink the conventional wisdom in this area.

First, since the biomedical data processing algorithms are particularly developed
and tuned for their software implementations, they are not fully optimized for
circuit implementations. Ideally, data processing algorithms should be customized
to mitigate the non-idealities induced by circuit implementations (e.g., nonlinear
distortion of analog front-end, quantization error of digital computing, etc.). Second,
while a circuit implementation inevitably introduces various non-idealities, these
non-idealities can be classified into two broad categories: (1) critical non-idealities
that may significantly distort the output of a biomedical circuit, and (2) non-critical
non-idealities that can be effectively mitigated or even completely eliminated by the
data processing algorithm. A good circuit implementation should optimally budget
the available resources (e.g., power) to maximally reduce the critical non-idealities
rather than the non-critical ones.

Motivated by these observations, we propose to develop a radically new design
framework to seamlessly integrate data processing algorithms and their customized
circuit implementations for co-optimization, as shown in Fig. 7.1. Our core idea is
to view a biomedical circuit, along with the data processing algorithm implemented
by the circuit, as an information processing system. We develop an information-
theoretic metric, referred to as information processing capacity (IPC) that extends
the conventional communication notion of channel capacity to our application of
biomedical data sensing, processing, and transmission. IPC quantitatively measures
the amount of information that can be processed by the circuit. Intuitively, IPC is
directly correlated to the accuracy of the circuit implementation. If a circuit can
accurately process the input data and generate the desired output, its IPC is high.
Otherwise, its IPC is low. In the extreme case, if a circuit cannot generate any
meaningful output due to large errors, its IPC reaches the lowest value zero.

IPC can efficiently distinguish critical vs. non-critical non-idealities. It is strongly
dependent on the critical non-idealities that distort the output, and is independent
of the non-critical non-idealities that can be eliminated by the data processing
algorithm. Hence, it serves as an excellent “quality” metric that we should maximize
in order to determine the optimal data processing algorithm and the corresponding
circuit implementation subject to a set of design constraints (e.g., latency, power,
reconfigurability, etc.).
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Co-optimization based on an 
information theoretic framework

Circuit design (optimally reduce critical non-idealities that 
cannot be tolerated by data processing algorithm)

Algorithm design (optimally mitigate non-idealities induced 
by circuit implementation)

Design constraints

Accuracy, latency, power and reconfigurability

Fig. 7.1 An information-theoretic framework is proposed to co-optimize data processing algo-
rithms and their customized circuit implementations for higher accuracy, smaller latency, lower
power, and better reconfigurability of biomedical devices

It is important to note that our proposed design framework is not simply to
combine algorithm and circuit designs. Instead, we aim to develop new methodolo-
gies that would profoundly revise today’s data processing algorithms and integrated
circuit designs for biomedical applications. In particular, our proposed information-
theoretic framework can optimally explore the tradeoffs between accuracy, latency,
power, and reconfigurability over all hierarchical levels from algorithm design to
circuit implementation. From this point of view, the proposed framework based
on IPC offers a fundamental infrastructure that enables next-generation biomedical
circuit design and optimization for numerous emerging applications.

7.3 Information Processing Capacity

In this section, we describe an information-theoretic metric, IPC, to quantitatively
measure the amount of information that can be processed by a biomedical circuit.
It serves as a “quality” measure, when we co-optimize the algorithms and circuits
for data sensing, processing, and transmission of biomedical devices. It, in turn,
facilitates us to achieve superior accuracy, latency, power, and reconfigurability over
the conventional design strategies.

7.3.1 Information-Theoretic Modeling

The IPC of a biomedical circuit can be mathematically modeled based on informa-
tion theory. Without loss of generality, we consider a biomedical circuit, including
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(a)

(b)

Circuit implementation for 
information processingInput Output yCKT

Ideal information
processing systemInput Output yIDEAL

Fig. 7.2 An information-theoretic framework is proposed to co-optimize data processing algo-
rithms and their customized circuit implementations for higher accuracy, smaller latency, lower
power, and better reconfigurability of biomedical devices. (a) circuit implementation with non-
idealities, and (b) ideal implementation

data sensing, processing, and transmission modules in general, as an information
processing system shown in Fig. 7.2a. Since the circuit implementation is not
perfect due to non-idealities, the aforementioned information processing system
may generate errors where its output yCKT deviates from the desired value.

To accurately characterize the “error” of the biomedical circuit, we further
consider an ideal information processing system that guarantees to provide the
correct output yIDEAL, as shown in Fig. 7.2b. In other words, the ideal system is
“conceptually” implemented with a circuit with “infinite” precision. It does not
carry any non-ideality and, hence, is error-free. The “difference” between yCKT and
yIDEAL indicates the non-idealities caused by the circuit implementation. However,
quantitatively measuring such a difference is non-trivial, since a biomedical circuit
can be applied to a broad range of usage scenarios (e.g., various physiological
signals, various users, various environmental conditions, etc.). The comparison
between yCKT and yIDEAL must cover all these scenarios where yCKT and yIDEAL are
not just two numerical numbers and, hence, we cannot compare their difference
by simply subtracting yCKT from yIDEAL. The information-theoretic metric, IPC,
quantitatively measures the “quality” of approximating yIDEAL by yCKT. To derive
the mathematical representation of IPC, we consider two different cases: (1) discrete
output and (2) continuous output.

First, if the outputs yCKT and yIDEAL are discrete values (e.g., the diagnosis result
of arrhythmia may be positive or negative), yCKT and yIDEAL can be modeled as
two discrete random variables to cover the uncertainties over all usage scenarios.
In general, we assume that yCKT and yIDEAL take M possible values fy1, y2, ���,
yMg. The statistics of these two random variables can be described by using their
joint probability mass function (PMF) pmf(yCKT, yIDEAL). Table 7.1 shows a simple
example for the binary random variables yCKT and yIDEAL (i.e., either TRUE or
FALSE) where their statistics are fully described by four probabilities: true positive
rate PTP, false negative rate PFN, false positive rate PFP, and true negative rate PTN.
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Table 7.1 Confusion matrix
of a binary classifier

yCKT

True False

yIDEAL True PTP PFN

False PFP PTN

IPC is defined as the mutual information I(yCKT, yIDEAL) between yCKT and yIDEAL

[2, 4]:

I .yCKT; yIDEAL/ D
X
yCKT

X
yIDEAL

pmf .yCKT; yIDEAL/ � log

�
pmf .yCKT; yIDEAL/

pmf .yCKT/ � pmf .yIDEAL/

�
:

(7.1)

Intuitively, the IPC metric in (7.1) measures the amount of information carried
by yIDEAL that can be learned from yCKT. In one extreme case, if the circuit
implementation is perfect, yCKT is identical to yIDEAL and, hence, IPC reaches its
maximum. In the other extreme case, if yCKT does not follow yIDEAL at all due to
large errors, there is no information about yIDEAL that can be learned from yCKT and,
hence, IPC reaches its minimum (i.e., zero).

There are two important clarifications that should be made for IPC. First, instead
of directly measuring the information carried by the circuit output yCKT, we take
the ideal output yIDEAL as the “reference” and measure the information related
to yIDEAL. Since yIDEAL represents all the important information of interest, IPC
accurately captures our “goal” and ignores the “don’t cares.” This is the reason why
IPC can serve as an excellent quality metric to guide our proposed algorithm/circuit
co-optimization.

Second, IPC is different from other simple accuracy metrics that directly
measure the difference between yCKT and yIDEAL based on statistical expecta-
tions. To understand the reason, we consider the example in Fig. 7.3a for which
we may simply define the accuracy as the summation of the true positive rate
PTP and the true negative rate PTN. Fig. 7.3b shows how this accuracy met-
ric varies as a function of the false positive rate PFP and the false negative
rate PFN where the probabilities for yIDEAL to be TRUE and FALSE are set
to pmf(yIDEAL D TRUE) D 0.01 and pmf(yIDEAL D FALSE) D 0.99, respec-
tively. In this example, we set pmf(yIDEAL D TRUE) to be much less than
pmf(yIDEAL D FALSE) to mimic the practical scenarios where pmf(yIDEAL D TRUE)
and pmf(yIDEAL D FALSE) are highly unbalanced. For example, in the application
of arrhythmia diagnosis [3, 19, 29], the probably of being positive (i.e., with
arrhythmia) should be much less than the probability of being negative (i.e., without
arrhythmia), since arrhythmia is only carried by a small group of unhealthy patients
over the entire population.

Studying Fig. 7.3a, we observe that the simple accuracy metric heavily depends
on the false positive rate PFP, but weakly depends on the false negative rate PFN,
because the probability pmf(yIDEAL D TRUE) is extremely small. If we maximize



7 Ultra-Low-Power Biomedical Circuit Design and Optimization: Catching. . . 165

Fig. 7.3 (a) The
conventional accuracy metric
is not appropriately
influenced by the false
negative rate PFN, if
pmf(yIDEAL D TRUE) is
much less than
pmf(yIDEAL D FALSE). (b)
The proposed IPC metric is
appropriately influenced by
both the false positive rate
PFP and the false negative rate
PFN, even if
pmf(yIDEAL D TRUE) and
pmf(yIDEAL D FALSE) are
highly unbalanced
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the aforementioned accuracy metric for algorithm/circuit co-optimization, it would
aggressively minimize the false positive rate PFP, thereby resulting in a large false
negative rate PFN. Consequently, a large portion of the unhealthy patients with
arrhythmia may be mistakenly diagnosed as healthy ones.

On the other hand, Fig. 7.3b shows the relation between our proposed IPC and
PFP and PFN. It can be observed that IPC is influenced by both PFP and PFN.
Hence, by maximizing IPC, we take both PFP and PFN into account. This simple
example demonstrates that when pmf(yIDEAL D TRUE) and pmf(yIDEAL D FALSE)
are highly unbalanced, IPC can appropriately guide our proposed algorithm/circuit
co-optimization, while the simple accuracy metric fails to work.

Finally, it is worth mentioning that if the outputs yCKT and yIDEAL are continuous
values (e.g., movement decoding for neuroprosthesis results in the velocity value
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that is continuous), yCKT and yIDEAL can be modeled as two continuous random
variables and their statistics can be described by the joint probability density
function pdf(yCKT, yIDEAL). In this case, IPC can again be defined as the mutual
information I(yCKT, yIDEAL) between yCKT and yIDEAL [2, 4]:

I .yCKT; yIDEAL/ D
Z C1
�1

Z �1
�1

pdf .yCKT; yIDEAL/ � log

�
pdf .yCKT; yIDEAL/

pdf .yCKT/ � pdf .yIDEAL/

�
:

(7.2)

In the following sub-sections, we will further discuss how IPC can be used for
design and optimization of biomedical circuits.

7.3.2 Soft Channel Selection

Soft channel selection is an important task that is facilitated by our proposed
algorithm/circuit co-optimization based on IPC. We consider the multi-channel
biomedical device in Fig. 7.4, where channel selection is one of the most important
tasks [1, 10, 23]. Appropriately selecting the important channels and removing the
unimportant ones can efficiently minimize the amount of data for sensing, process-
ing, and transmission, thereby substantially reducing the power consumption.

Today’s channel selection is typically considered as a binary decision: a channel
is either selected or not selected for recording. With the proposed information-
theoretic framework based on IPC, we are now able to make a “soft” decision
for each channel, referred to as soft channel selection. Namely, instead of simply
including or excluding a given channel, we can finely tune the resolution of the
channel (e.g., the number of bits required to represent the signal from the channel).
Intuitively, an important channel should be designed with high resolution, while an
unimportant channel can be designed with low resolution. The channel resolution
is directly correlated to the power consumption of both analog front-end (e.g.,

Data 
processing 
and learning

Sensor Filter ADCChannel 1

Sensor Filter ADCChannel 2

Sensor Filter ADCChannel N

Data sensing and conditioning

Fig. 7.4 A multi-channel biomedical device is shown to illustrate the application of soft channel
selection
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Fig. 7.5 The proposed soft
channel selection reduces the
power of the analog front-end
by up to 10� compared to the
conventional binary channel
selection
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sensors, analog filters, ADCs, etc.) and digital computing (e.g., digital filters, data
processors, etc.). It, in turn, facilitates us to optimally explore the tradeoff between
accuracy and power. In the extreme case, if the resolution of a channel is set to
0-bit, the channel is completely removed and it is equivalent to the conventional
binary channel selection in the literature.

To demonstrate the efficacy of our proposed soft channel selection, we consider
a preliminary example of movement decoding for neuroprosthesis, where our
objective is to decode the movement direction from electrocorticography (ECoG)
[26]. Fig. 7.5 compares the optimal IPC for both the conventional binary channel
selection and the proposed soft channel selection. Note that the proposed approach
successfully reduces the power of the analog front-end by up to 10�. It is important
to mention that the proposed idea of soft channel selection can be further extended
to other important applications such as data compression and transmission.

7.3.3 Robust Data Processing

To maximally reduce the power consumption for portable and/or implantable
applications, fixed-point arithmetic, instead of floating-point arithmetic, is often
adopted to implement data processing algorithms and the word length for fixed-
point computing must be aggressively minimized. While fixed-point arithmetic has
been extensively studied for digital signal processing during the past several decades
[14, 20], it is rarely explored for many emerging data processing tasks that involve
sophisticated learning algorithms (e.g., movement decoding for neuroprosthesis). It
remains an open question how to revise these algorithms to maximally tolerate the
quantization error posed by finite word length. Based upon IPC, data processing
algorithms can be completely redesigned to mitigate the quantization error so that
these algorithms can be mapped to fixed-point implementations with extremely low
resolution.
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Fig. 7.6 A data learning algorithm typically consists of two steps: feature extraction and classifi-
cation/regression

Fig. 7.7 The proposed data
learning algorithm reduces
the required word length by
2-bit, compared to the
conventional approach
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As shown in Fig. 7.6, a learning algorithm typically consists of two steps: (1)
feature extraction and (2) classification (e.g., to determine movement direction
for neuroprosthesis) and/or regression (e.g., to determine movement velocity for
neuroprosthesis). We propose to maximize the IPC metric of a classification or
regression engine subject to the constraint that all arithmetic operations for both
feature extraction and classification/regression are quantized. Our reformulated
learning algorithm solves a “robust” optimization problem to find the optimal,
quantized classifier or regressor that is least sensitive to quantization error. It, in turn,
offers superior performance over other conventional approaches where quantization
error is not explicitly considered within the learning process.

As an example for illustration purpose, we consider the classification prob-
lem of decoding the movement direction from electrocorticography (ECoG) for
neuroprosthesis. Fig. 7.7 shows the optimized IPC metric as a function of word
length. To achieve the same IPC, our proposed approach can reduce the word
length by 2-bit compared to the conventional classifier. Note that the word length of
fixed-point arithmetic is directly correlated to the power consumption of its circuit
implementation. Hence, reducing word length is of great importance for low-power
portable and/or implantable biomedical devices.
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7.4 Case Study: Brain–Computer Interface

Brain–computer interface (BCI) has been considered as a promising communica-
tion technique for patients with neuromuscular impairments. For instance, neural
prosthesis provides a direct control pathway from brain to external prosthesis
for paralyzed patients. It can offer substantially improved quality of life to these
patients. To create a neural prosthesis, we must appropriately measure the brain
signals and then accurately decode the movement information from the measured
signals [5, 11, 13, 21, 22, 26].

A variety of signal processing algorithms have been proposed for movement
decoding in the literature. Most of these algorithms first extract the important
features to compactly represent the information carried by the brain signals. Next,
the extracted features are provided to a classification and/or regression engine to
decode the movement information of interest. While most movement decoding
algorithms in the literature are implemented with software on microprocessors, there
is a strong need to migrate these algorithms to hardware in order to reduce the power
consumption for practical BCI applications.

7.4.1 System Design

Fig. 7.8 shows a simplified block diagram for the proposed hardware implementa-
tion of BCI. It consists of three major components:

• Signal normalization: The magnitude of brain signals varies from subject to
subject and from channel to channel. Hence, representing brain signals by fixed-
point arithmetic requires a large word length (i.e., a large number of bits). In

Fig. 7.8 A simplified block diagram is shown for the proposed hardware implementation of BCI



170 X. Li et al.

order to minimize the word length and, consequently, the power consumption for
fixed-point computation, we must appropriately normalize the brain signal from
each channel.

• Feature extraction: There are many different feature extraction approaches for
movement decoding of BCI. For instance, given the brain signal recorded from
a particular channel, we can apply discrete cosine transform (DCT) and consider
the DCT coefficients as the features for decoding [28].

• Classification: Once all features are extracted for multiple channels, they are
further combined to decode the movement information. For instance, all features
can be linearly combined by a linear classifier to determine the movement
direction of interest. Here, a variety of linear classification algorithms (e.g.,
linear discriminant analysis, support vector machine, etc.) can be used, where
the classifier training is performed offline. The on-chip classification engine
performs the multiply-and-accumulate operations to determine the final output
(i.e., the movement direction) from the features.

7.4.2 Experimental Results

We consider the ECoG data set collected from a human subject with tetraplegia
due to spinal cord injury [26]. The ECoG signals are recorded with a high-density
32-electrode grid over the hand and arm area of the left sensorimotor cortex. The
sampling frequency is 1.2 kHz. The human subject is able to voluntarily activate his
sensorimotor cortex using attempted movements.

Our objective is to decode the binary movement direction (i.e., left or right) from
a single trial that is 300 ms in length. The ECoG data set contains 70 trials for each
movement direction (i.e., 140 trials in total). For movement decoding, 7 important
channels with 6 features per channel (i.e., 42 features in total) are selected based
on the Fisher criterion. A linear classifier is trained and implemented with 8-bit
fixed-point arithmetic to decode the movement direction.

The BCI system is implemented with a Xilinx FPGA Zynq-7000 board. For
testing and comparison purposes, we further implement a reference design based on
the conventional technique [30]. In this sub-section, we compare the performance
between our proposed hardware implementation and the reference design.

We estimate the power and energy consumption for both the proposed and the
reference designs by using Xilinx Power Analyzer, where the clock frequency is
set to 0.5 MHz. Table 7.2 compares the power consumption for these two different
designs. Note that the proposed design achieves more than 56� energy reduction

Table 7.2 Power and energy
consumption per decoding
operation

Proposed design Reference design

Power (mW) 0:72 3:8

Runtime (ms) 1:094 11:71

Energy (	J) 0:787 44:5
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Table 7.3 Power
consumption of different
functional blocks for the
proposed design

Signal normalization (	W) 25.2

Feature extraction (	W) 690.2
Classification (	W) 2.6

Fig. 7.9 A Xilinx FPGA Zynq-7000 board is used to validate the proposed hardware design for
movement decoding of BCI

over the reference design. Table 7.3 further shows the power consumption for differ-
ent functional blocks of the proposed design. Note that feature extraction dominates
the overall power consumption for our proposed hardware implementation. Hence,
additional efforts should be pursued to further reduce the power consumption of
feature extraction in our future research.

To validate the proposed design on the Xilinx Zynq-7000 board, we first load our
hardware design to the FPGA chip through the programming interface. Next, the
ECoG data set is copied to an SD card that is connected to the Zynq-7000 board.
When running the movement decoding flow, a single trial of the ECoG signals is first
loaded to the SRAM block inside the FPGA chip. Next, these signals are passed to
the functional blocks of signal normalization, feature extraction and classification
for decoding. The decoding results are read back to an external computer through
an RS-232 serial port on the Zynq-7000 board so that we can verify the decoding
accuracy. Fig. 7.9 shows a photograph of the Xilinx FPGA Zynq-7000 board where
the RS-232 port and the programming interface are both highlighted.
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7.5 Summary

In this chapter, we describe a new design framework for ultra-low-power biomedical
circuits. The key idea is to co-optimize data processing algorithms and their circuit
implementations based on an information-theoretic metric: IPC. The proposed
design framework has been demonstrated by a case study of BCI. Our experimental
results show that the proposed design achieves more than 56� energy reduction over
a reference design. As an important aspect of our future research, we will further
apply the proposed design framework to other emerging biomedical applications.
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Chapter 8
Acceleration of MapReduce Framework
on a Multicore Processor

Lijun Zhou and Zhiyi Yu

8.1 Introduction

In recent years, with the increasing development of integrated circuit technology,
the society surrounded by great variety of electronic terminals is undergoing deep
change in the era of big data. Processors, the core components of the era of big data,
need to meet increasing computing requirements and energy challenges. Multi-core
processors with parallel processing ability and energy efficiency are favored [1], and
they can improve the energy efficiency further with hardware accelerations.

The famous parallel framework, MapReduce [2], is commonly used for high
throughput big data applications. For example, one of the MapReduce platforms
Hadoop provides strong support to deal with big data. How to implement MapRe-
duce on multicore processors to fully utilizing the parallelism capability is becoming
a critical issue. What’s more, we also consider how to design a reconfigurable
hardware acceleration solution based on multicore processors to further improve
system efficiency.

The main work and contributions of this work include:

• Feature extraction and acceleration of MapReduce Applications: We analyze,
implement, and accelerate several important high throughput algorithms of the
Cloud Suite benchmark. For the PageRank algorithm which is commonly used
in Web search, we propose a software–hardware co-design acceleration. It splits
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the matrix in software to improve parallelism, and it adds multiply adders in
hardware to reduce write back operations. For text mining algorithm Naive-
Bayes, we propose a method called topo-MapReduce [3], which significantly
reduces the amount of inter-core communication.

• A Scalable and Reconfigurable MapReduce Acceleration Framework: We pro-
pose and design a multi-layer reconfigurable MapReduce acceleration framework
based on a multi-core processor. It supports automatic configuration of MapRe-
duce framework. A flexible packet/circuit switched inter-core communication
method is designed to obtain flexible and high efficient network-on-chip (NoC).
The multicore processors contain multi-port memory, supporting multiple oper-
ations in acceleration arrays to improve the performance. Experimental results
show that the system can accelerate nearly 40 times than pure software approach.

The rest of the chapter is organized as follows. Section 8.2 describes MapReduce
framework and related research on multicore platform. Section 8.3 proposes
two optimized implementations of big data algorithms on multicore processors.
Section 8.4 presents the Configurable MapReduce Acceleration Framework for
MapReduce applications. Section 8.5 analyzes the experimental results. Finally,
Sect. 8.6 concludes this chapter.

8.2 MapReduce Framework on Multicore Processors

8.2.1 Introduction to MapReduce

Many parallel programming models are proposed for big data analysis. Google
proposed MapReduce [2] for large-scale data in 2006, which is particularly suitable
for massive data search, mining, analysis, and machine learning. Figure 8.1 shows
the process of text classification in MapReduce, and Fig. 8.2 is an overview of
the framework of the operation. However, this method usually distributes the work
across many servers, and neglects to exploit the parallel computation capability of
one node/processor.

8.2.2 Related Work

MapReduce is developed by Google in order to deal with large scale of data.
Yahoo supports a better implementation of Hadoop in open source version. In the
Benchmark Competition Sort (data sorting contest), Yahoo completed 100 TB data
sorting in 72 min, by using 2100 machines installed of Hadoop [4].

The Phoenix project from Stanford University implemented MapReduce in
multicore processors [5]. They proposed a real-time system Phoenix based on
MapReduce framework. It can automatically manage threads, dynamic task schedul-
ing, data segmentation and fault tolerance and many other functions.

Zhou Haijie in Fudan University implemented a simple MapReduce framework
in a 16-core processor. The parallel programming model of large data correlation
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Fig. 8.1 Text classification in MapReduce framework

Fig. 8.2 Overview of MapReduce framework

is realized, and the data management of general multicore programming model is
optimized. Xiao Zhiwei in Fudan University analyzed the performance bottleneck
of multi-core cluster, and proposed a hierarchical MapReduce Model to optimize
Hadoop. The model can make full use of the data locality and task parallelism of
the system. Experimental data shows that the system can speed up 1.4–3.5 times
compared to the original Hadoop.
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Fig. 8.3 This 64-core processor contains eight clusters, and each cluster contains eight RISC
processors. In each cluster, a circuit-switching ring is implemented to achieve one-cycle com-
munication within the cluster. Processors in different clusters communicate with each other using
packet-switching routers

8.2.3 Experimental Platform

We have designed and implemented 16-core [6], 24-core [7] and 64-core processors
in 2012, 2013, 2015, respectively. The 16-core processor supports both shared
memory and message passing as communication mechanisms. The 24-core pro-
cessor combines circuit switching and packet switching network-on-chip to obtain
both efficiency and flexibility, and designed an application specific acceleration
array to further improve system efficiency. The structure diagram of the 64-core
processor is shown in Fig. 8.3. It has the following characteristics: (1) application
level parallelism by partitioning the chip into multiple domains for different appli-
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cations such as multimedia, communication, and big data applications, (2) efficient
accelerators in each domain for different applications, (3) various hierarchical
interconnection schemes to support communication between processor–processor,
processor–accelerator, and accelerator–accelerator. The experiments of this chapter
is based on this 64-core processor platform.

8.3 Accelerating Algorithms Based on MapReduce
in Multicore Processors

This chapter selects two important algorithms: graph analysis (PageRank) and data
analysis (Bayes classification) to show feature analysis and their accelerations.

8.3.1 Acceleration of PageRank Algorithm

8.3.1.1 Math Model of PageRank

PageRank is proposed to improve the network search efficiency. The main idea is to
calculate the importance of a page by the quality of pages it is linked. An intuitive
formula can be obtained as Eq. (8.1):

R.i/ D C
X

j2B.i/

R.j/

N.j/ (8.1)

8.3.1.2 Hardware Accelerator for Pagerank

Figure 8.4 is the flow of Pagerank algorithm, and we can see that most of
computation of PageRank is multiply. In addition, temporary variants G matrix and
V vector need to be written back to the shared memory after every iteration because
cache cannot fit the massive data, which wastes time and energy significantly.
We design an acceleration unit which consists of 32-bit multiplier and 32-bit
accumulator. The 32 bits input contains R1 and L1. Output O D R1H �L1H CR1L�L1L

(H means high part and L means low part). For the N bit, it will accelerate N=2
times in theory. The implementation of this accelerator is shown in Fig. 8.5. There
are four pairs of accelerators in each cluster, each containing a 32-bit multiplier and
32-bit accumulator, which means four dimension of matrix can be calculated at the
same time.
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Fig. 8.4 The flow of
PageRank algorithm. V_old
is the temporary variable for
V, which is the importance of
one page, and G is the
transferring matrix
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Fig. 8.5 Implementation of accelerators for Pagerank in the 64-core processor

8.3.2 Acceleration of Naive-Bayes Algorithm

Massive data mining has become an important area in big data era. A number
of algorithms such as Bayes classification are proposed, and are widely used in
business, life, and scientific research and other fields. The principle of Bayes
classification algorithm is to classify text according to the frequency of emergence.
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8.3.2.1 Math Model of Naive-Bayes Algorithm

The Naive-Bayes algorithm [8] is based on the probabilistic models. It calculates the
score of a class ci as the probability of a document dt.a1; a2; : : :; aj/ to be assigned
to ci, as shown in Eq. (8.2), and classifies dt in the class with highest score. Here
.a1; a2; : : :; aj/ is a binary or weighted vector representing the terms in document dt.

P.cijdt/ D P.ci/P.dtjci/

P.dt/

D P.ci/…8j2dt P.ajjci/

P.dt/
(8.2)

P.ajjci/ D Tci.aj/P
v2V Tci.v/

(8.3)

In Eq. (8.3), Tci.aj/ is the number of occurrences of term aj in class ci andP
v2V Tci.v/ is the summation of the numbers of occurrences of all terms in

documents of class ci, and V is the term vocabulary. Thus, it can conclude that
P.ajjci/ defines the representativity of a term aj in class ci as being the ratio of the
frequency of term aj in class ci and the total frequency of all terms in class ci.

8.3.2.2 Hardware Accelerator for Naive-Bayes

The existing technology for Naive-Bayes algorithm is based on the Mahout machine
learning platform of the distributed cluster, which partitioning tasks into multiple
machines to count word frequency. Each machine uses double hash linear detection
to match the specific words and calculate word frequency statistics. This method
can be divided into two steps. The first step is the segmentation of data and
word frequency statistics. It sends data and operation rules to distributed node and
calculates the results. The second step is to find the text word frequency using double
hash matching.

The most computing cost of the Naive-Bayes is the indexing of the term and
counting the frequency of every term in one class. So a highly efficient matching
discipline between data and its storage location will accelerate the process of term
indexing.

The Hash operation is divided into different functional modules to analyze its
bottlenecks, as shown in Fig. 8.6. We can see that HashCode occupies the most
time. Therefore, it can improve efficiency significantly by using hardware circuit
to accelerate HashCode. Algorithm 1 shows the pseudo-code of HashCode, and its
accelerator circuit is shown in Fig. 8.7.
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Fig. 8.6 Percent of time cost by modules of Hash operation

Algorithm 1 HashCode Algorithm
Require: cha is the element to be hashed, i is the index of character in cha, EOF is the end

character of one word, SEED is the constant factor.
Ensure: i > -1 and is an integer.
1: function HASHCODE (cha)
2: i 0
3: while chaŒi�Š D EOF do
4: temp chaŒi�
5: Hash SEED � chaŒi�C Hash
6: i iC 1
7: temp Hash
8: end while
9: Return Hash

10: end function

8.3.2.3 Task Mapping Scheme: Topo-MapReduce

How to map applications efficiently on multi-core resources is also a key issue which
can impact the results significantly. The optimization idea for the Hash table is that
the huge hash table can be divided into a number of blocks, where the hash value in
conflict can be divided into the same block (Map). And then the statistical frequency
only needs to be completed (Reduce) in the same processor nodes. Looking up one
word’s frequency only needs to match the hash value of the word to determine where
it is, avoiding cross-clusters access for accelerating frequency statistics.
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As shown in Fig. 8.8, we propose a new mapping model, Topo-MapReduce, as
follows:

• Avoid cross-cluster access: Each cluster possesses one part of hash table, and
avoids cross-cluster access.

• Inter-cluster searching: Each task is to be processed by one core. If the hash
mapping entrance is outside of this core’s range, the task will be sent to the
adjacent cluster.

• Inner-cluster searching: When the task reaches the right cluster, it will be
analyzed and find the memory by the master core, then sent to the destination
processor.
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Different from MapReduce, Topo-MapReduce divides tasks into several smaller
independent parts. Those independent parts do not need to reduce together and save
much inter-core communication.

8.4 Configurable MapReduce Acceleration Framework

Figure 8.9 is the overall architecture of the configurable MapReduce acceleration
framework. This system is divided into four parts: controller, mapping and sorting,
address allocation, and merge.

• Controller: it is responsible for data exchange between processors and accelera-
tors, as shown in Fig. 8.10.

• Mapping and sorting: mapping is responsible for partitioning and transferring the
received data to the address allocation. Sorting is necessary because the output
from mapping needs to be sorted in MapReduce. Figures 8.11 and 8.12 shows
the diagram for sorting.

• Address allocation: it receives data from mapping and sorting unit, and schedules
address to merge part.

• Merge: it receives data from address allocation block and mapping block, merges
data, and transfers the results to shared storage in clusters.

Fig. 8.9 Architecture of the configurable MapReduce acceleration framework
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Fig. 8.10 Controller module
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8.4.1 High Throughput Data Transferring

We designed parallel and efficient data transferring solution, by taking full advan-
tage of high communication bandwidth of internal NoC network, with two key
features:

• Data transferring between processors/memories and acceleration execution
array: The 64-core processors support hierarchical multi-port shared memory.
The data from the memory of processor cores can be poured into acceleration
array simultaneously. As shown in Fig. 8.13a, the processor p in bottom left
corner configures the ring node, and arranges other processors to move data
in the shared memory to the accelerators (shown as a) simultaneously, which
increases the input speed of data significantly.

• Data transferring between accelerators: circuit switching is designed for data
transferring between accelerators, to improve the data transfer capability. As
shown in Fig. 8.13b, four different data transferring between accelerators can be
done simultaneously.
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8.5 Experiment Result Analysis

8.5.1 Pagerank with Hardware Accelerations

For pagerank algorithm, the hardware acceleration gains two times speedup at
maximum when data size is big, as shown in Fig. 8.14.

8.5.2 Topo-Mapreduce

As shown in Fig. 8.15, Topo-MapReduce increases the performance by 17% at
8-core situation, and by 29% at 40-core situation, compared to the original MapRe-
duce. In MapReduce model, more cores means more inter-core communication,
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Fig. 8.15 The speedup ratio (speedup divided by number of cores) comparison between MapRe-
duce and Topo-MapReduce with different numbers of cores

which slows down the speedup significantly, while Topo-MapReduce constrains
the conflict items and saves lots of inter-core communication and improves per-
formance.

8.5.3 Configurable Mapreduce Acceleration Framework

TeraSort sort is used as a benchmark to verify the efficiency of the Configurable
MapReduce Acceleration Framework. 1 TB input data is generated by Hadoop’s
official test data generation tool, and takes 3 h and 40 min in a nine node cluster
server, and the throughput T = 1 TB/3 h40 min = 69 Mbps. Using the multi-core
platform we designed, we obtain a throughput of 333 Mbps under the amount of test
data 1 GB. In the case of larger data and larger number of Reducer, the throughput
is estimated to be 2630 Mbps, which is roughly 40 times than existing cluster.

Table 8.1 shows the results of several algorithms implemented in the Config-
urable MapReduce Framework Acceleration Array platform, using Xilinx FPGA
VC707. Table 8.2 shows that the speedup of the framework with different number of
accelerators. These comparisons show that the speedup of the framework increases
as the application data volume increases. This is mainly due to the efficient inter-
core communication of multi-core chip.



8 Acceleration of MapReduce Framework on a Multicore Processor 189

Table 8.1 Speedup of configurable mapreduce framework for different applications, system is
implemented in Xilinx FPGA VC707

Algorithms Area Frequency Data volume Throughput Speed up

Terasort 6% 333 1 GB 1.4 20.3

K-means 10% 244 3200 points 1.9 7.9

MatrixMul 11% 166 1000 dime 3.4 6.3

The area is the utilization percentage of FPGA

Table 8.2 Speedup of configurable mapreduce framework with different data

Multicore Multicore

Cluster (10 accelerators) (10,000 accelerators)

Throughput 69 333 2630

Compared with cluster 1 4.8 38.9 time

8.6 Conclusion

A Configurable MapReduce framework Accelerating Array including its algorithm,
hardware accelerations, and platform is presented in this chapter. High performance
is achieved by specific algorithm accelerators and a Configurable MapReduce
Acceleration framework, based on a multicore processor equipped with circuit
switching and packet switching. Some benchmark algorithms are accelerated by
specific algorithm accelerators. An optimized mapping scheme, Topo-MapReduce,
is adopted to avoid communication congestion and reduce communication latency.
The Configurable MapReduce acceleration framework is designed to reduce the
bottleneck of communication and computing. Experimental results show that the
improved MapReduce framework with hardware acceleration can speed up by 40
times at maximum compared to the software solution, and the proposed Topo-
MapReduce can further speed up by 29% at maximum compared to the original
MapReduce.
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Chapter 9
Adaptive Dynamic Range Compression
for Improving Envelope-Based Speech
Perception: Implications for Cochlear Implants

Ying-Hui Lai, Fei Chen, and Yu Tsao

9.1 Introduction

A cochlear implant (CI) is currently the only electronic device that can facilitate
hearing in people with profound-to-severe sensorineural hearing loss (SNHL). In
a report published in December 2012, the US Food and Drug Administration
estimated that approximately 324,200 people worldwide have received cochlear
implants, and predicted that this number will continue to increase in the near
future [1]. Although CI devices can considerably improve the hearing capabilities
of individuals with profound-to-severe SNHL in quiet environments, their efficacy
markedly degrades in a noisy and/or reverberating environment [2, 3]. In a CI device,
the input sound signal is received via a microphone and fed into a speech processor.
The speech processor captures the multi-channel temporal envelopes of the input
signal, and then generates electric stimulations that directly excite the residual
auditory nerves [4, 5]. Due to biological constraints, the dynamic range (DR) of
stimulation generated by a speech processor in a CI is much smaller than that of a
real speech signal. Hence, a compression scheme is required to compress the DR of
the input signal to a desirable level.
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In the past, several compression strategies have been proposed. Among them,
static envelope compression (SEC) is a popular method that is widely adopted in
current CI devices. The SEC strategy uses a fixed compression ratio (CR) [6] to
convert the acoustic amplitude envelope to an electric current signal [7, 8]. Although
the SEC strategy can confine the overall electrical current signal applied to the CI
to within a preset DR, the CR is not optimized to make the best use of the DR
for speech perception. Yet, the DR of a temporal envelope is an important factor
in speech intelligibility for CI users [9–11], particularly under noisy conditions.
Therefore, designing a satisfactory, adaptive compression strategy that can perform
compression effectively while maintaining a satisfactory DR is important.

More recently, a novel adaptive envelope compression (AEC) strategy has been
proposed [12–14]. The AEC strategy aims to provide deeper modulation than the
SEC strategy to endow CI recipients with improved speech intelligibility. The
AEC strategy shares a concept with the adaptive wide-dynamic range compression
(AWDRC) amplification scheme, which is designed for hearing aids [15]. The AEC
strategy aims to optimize the CR while confining the compressed amplitude of the
speech envelope within a preset DR. To this end, the AEC strategy dynamically
updates the CR in real time, so that the local DR of the output envelope waveform
can be effectively increased, resulting in a larger modulation depth and improved
intelligibility.

In this chapter, we present four sets of experiments to show the effects of
the AEC strategy. We first evaluated the performance of AEC under challenging
listening conditions. Then, we investigated the effects of the adaptation rate in
the AEC strategy on the intelligibility of envelope-compressed speech. Finally,
we investigated the compatibility of the AEC strategy with noise reduction (NR)
methods. We show that the AEC strategy has better speech perception performance
than the SEC strategy, and can be suitably adopted in a CI speech processor.

The remainder of this chapter is organized as follows. Section 9.2 reviews speech
processing in a CI device. Section 9.3 introduces vocoder-based speech synthesis,
which is an important tool and is popularly used in the field of CI research.
Section 9.4 introduces the compression scheme, including the conventional SEC
strategy and the proposed AEC strategy. Section 9.5 presents the experimental setup
and four sets of experimental results. Finally, Sect. 9.6 provides the concluding
remarks and summarizes this chapter.

9.2 Speech Processor in CI Devices

A CI device consists of four fundamental units: (1) a microphone that picks up
the sound, (2) a signal processor that converts the sound signals into electrical
signals, (3) a transmission system that transmits the electrical signals to implanted
electrodes, and (4) an electrode array that is implanted into the cochlea [16, 17]. The
combination of the first two units comprises the speech processor in a CI device.
Figure 9.1 shows the design of a speech processor with eight channels. As shown
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Fig. 9.1 Block diagram of an eight-channel speech processor [4]

in the figure, sound signals are first picked up by a microphone and then passed
through a pre-emphasis filter to amplify high frequency components and attenuate
low frequency components. The emphasized signals are then processed through a
set of bandpass filters (eight filters in Fig. 9.1) to generate a set of bandpass signals.
These bandpass signals are then processed by rectifiers and low-pass filters to create
a set of temporal envelopes, each representing a specific frequency band. In general,
the electrical DR of a CI recipient, between the threshold current (T-level) and the
maximum comfortable current (C-level), is 5–20 dB [18, 19]. This DR is markedly
less than that of sound levels encountered in real-world environments. For example,
the DR of speech signals for a single speaker is 40–50 dB [9, 20]. Therefore,
the speech processor of a CI device requires a compression (or automatic gain-
control [17, 21]) strategy. The compression stage (i.e., COMP. in Fig. 9.1) is used
to compress the wide temporal envelope to output magnitudes within the ranges of
0–1 [17]. The base level is the envelope level that produces a magnitude of 0, which
yields a current at T-level. The saturation level is the envelope level that produces
a magnitude of 1, which yields a current at C-level. Finally, the temporal envelopes
are multiplied by non-simultaneous, biphasic pulse trains delivered as an electrical
current through the cochlea via the electrode array.

Speech perception by CI users is primarily facilitated via temporal envelopes.
The compression stage narrows down the envelope DR and, accordingly, may
reduce speech comprehension by CI recipients, especially under challenging listen-
ing conditions (e.g., in noise and/or reverberation). Therefore, a suitable compres-
sion scheme is requisite so that CI users can obtain additional temporal envelope
information.
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9.3 Vocoder-Based Speech Synthesis

Although the number of CI recipients has greatly increased in recent years, one key
challenge remains in the CI research field: it is difficult to conduct experiments on
real CI recipients. To address this challenge, vocoder simulations derived from CI
speech processing strategies have been presented to normal-hearing (NH) listeners
in an attempt to predict the intelligibility of CI speech processing [12, 22]. Many
studies have shown that vocoder simulations could predict the pattern of the
performance observed by CI users, including the effects of background noise [23],
the type of speech masker [24], and the number of electrodes [2, 25, 26].

Figure 9.2 shows the block diagram of an eight-channel tone-vocoder. The signal
processing units of the tone-vocoder are similar to those of the CI speech processor
(refer to Fig. 9.1). The input signals are first processed through the pre-emphasis
filter (with a 3-dB/octave roll-off and 2000-Hz cutoff frequency). The bandpass
filters (sixth-order Butterworth filters) are then used to filter the emphasized signal
into eight frequency bands between 80 and 6000 Hz (with cutoff frequencies of 80,
221, 426, 724, 1158, 1790, 2710, 4050, and 6000 Hz). The temporal envelope of
each spectral channel is extracted by a full-wave rectifier, followed by a low-pass
filter. The envelope of each band is then compressed using a compression strategy
(COMP in Fig. 9.3). Here, we implemented both the SEC and AEC strategies for
COMP (refer to Figs. 9.3 and 9.4). The SEC strategy uses a fixed CR to confine
the DR of the amplitude of the entire envelope to within a preset value; the AEC
strategy, on the other hand, dynamically varies the CR value in a frame-by-frame
manner (e.g., 2.5 ms in this study), with the maximum and minimum values of the
compressed amplitude limited to a preset range. The compressed envelopes are then
modulated using a set of sine waves (i.e., tone i in Fig. 9.2), where the frequencies
for these sine waves are equal to the center frequencies of the bandpass filters.
Finally, the amplitude-modulated sine waves of the eight bands are summed, and
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Fig. 9.2 Block diagram of an eight-channel tone-vocoder
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the level of the summed signal is adjusted to yield a root-mean-square (RMS) value
equal to that of the original input signal. Notably, the vocoder simulations are not
expected to predict the absolute results, but rather the performance trends noted by
CI users. In the present chapter, we adopted the tone-vocoder, as shown in Fig. 9.2
to conduct four speech recognition tests on NH subjects.

9.4 Compression Scheme

The goal of the compression scheme in a CI device is to convert the sound signal
into an electrical signal within the preset DR. In this section, we first review
a popular compression scheme, namely the SEC strategy. Then, we present the
recently proposed AEC strategy.

9.4.1 The Static Envelope Compression Strategy

The SEC strategy uses a linear transformation to compress the DR of the input
signal to a desirable level [6]. Figure 9.3 shows the block diagram of the SEC-
based speech processor in one channel. In Fig. 9.3, x and y denote the envelopes of
input and output envelope signals, respectively. The output-compressed amplitude
envelope signal y is computed as:

y D ˛ � .x � Nx/C Nx; (9.1)

where Nx is the mean of the input amplitude envelope x, and ˛ is a scaling factor
(SF), which is determined in order to ensure that the output amplitude envelope
falls within a desirable DR:

UB D LB � 10 DR
20 : (9.2)

In Eq. (9.2), UB and LB denote the upper bound (i.e., the maximum) and
lower bound (i.e., the minimum) of the output amplitude values, respectively. From
Eq. (9.2), it can be seen that the mean value of the output amplitude envelope equals
that of the input amplitude envelope (i.e., Ny D Nx).
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Notably, using a small SF in Eq. (9.1) induces a large CR, and vice versa. When ˛
equals 0, the compressed amplitude envelope becomes a direct current (DC) signal
with a constant value of Ny (i.e., Ny D Nx), and the DR is 0 dB; when ˛ equals 1, the
output amplitude envelope has the same DR as the input amplitude envelope. For
the SEC strategy, ˛ is set by audiology, and a fixed value is applied to the whole
amplitude envelope so as to confine its DR to a preset value. A previous study [11]
showed that by setting ˛ to 1/3, 1/5, and 1/13 in Eq. (9.1), the DR of multi-channel
amplitude envelopes of the Mandarin version of sentences for the Hearing in Noise
Test (MHINT) [27] were adjusted to 15, 10, and 5 dB, respectively.

9.4.2 The Adaptive Envelope Compression Strategy

For the SEC strategy as shown in Fig. 9.3, a fixed ˛ is applied to the whole amplitude
envelope to confine its DR to a preset value. Although fixed mapping can effectively
confine the DR, the SEC strategy does not make optimal use of the DR for speech
perception. Recently, the AEC strategy was proposed to confine the amplitude
envelope of speech signal within a fixed DR while continuously adjusting the SF for
short-term amplitude [12–14]. Using the AEC strategy, the local DR approaches that
of the uncompressed amplitude envelope, and thus the AEC-processed amplitude
envelopes yield higher intelligibility than do the SEC-processed envelopes [12–14].
Figure 9.4 demonstrates the block diagram of the AEC-based speech processor in
one channel. Compared with the SEC strategy (in Fig. 9.3), the AEC strategy uses a
feedback unit to calculate the bounds and to apply the AEC rules and peak clipping
unit in each channel. In Fig. 9.4, x, z, and y denote the input, compressed, and output
envelopes, respectively, and
˛ is the step size. Instead of using a fixed SF, the AEC
strategy adjusts the SF value for each speech frame to compute the compressed
amplitude envelope:

zt D ˛t � .xt � Nx/C Nx; (9.3)
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Fig. 9.4 The block diagram of the ith channel speech processor with the AEC strategy



9 Adaptive Dynamic Range Compression for Improving Envelope-Based. . . 197

where zt and xt are the compressed and original envelopes, respectively, at the tth
speech frame, and ˛t is the adaptive SF that is updated with 
˛:

˛tC1 D ˛t C
˛: (9.4)

In Fig. 9.4, the boundary calculation and the AEC rules units are used to
determine 
˛ in Eq. (9.4). Given an input envelope, the boundary calculation unit
computes the DR of the compressed envelope by estimating two bounds: the upper
bound, UB; and the lower bound, LB, represented as:

UB D Nx C ˛0 � .max.x/ � Nx/
LB D Nx C ˛0 � .min.x/ � Nx/ ; (9.5)

where max.x/ and min.x/ are the maximum and minimum values of input amplitude
envelope x, and ˛0 is an initial SF for the AEC strategy. Generally speaking, the fixed
compression rate used for the SEC strategy, ˛ in Eq. (9.1), can be used as the initial
SF ˛0 for the AEC strategy in Eqs. (9.3) and (9.5).

With the estimated UB and LB based on Eq. (9.5), 
˛ in Eq. (9.4) is determined
by two AEC rules, as:

1. Increasing-envelope rule: This rule aims to keep the compression process as
close to linear as possible, such that ˛ D 1. By doing so, fewer input signals
will be perturbed by compression when producing the output signal. When zt lies
between UB and LB, the AEC strategy will increase ˛t by using a positive 
˛
in Eq. (9.4), accordingly increasing the SF value. This increasing-envelope rule
stops when ˛tC1 reaches 1, which corresponds to the absence of compression
application. In this scenario, the original signal is used as the output signal.

2. Decreasing-envelope rule: This rule aims to ensure that the amplitude of the
output envelope will not fall outside the preset DR. When zt in Eq. (9.3) becomes
larger than UB, or lower than LB, the AEC strategy will decrease ˛t by using
a negative 
˛ in Eq. (9.4), which accordingly reduces the SF value. This
decreasing-envelope rule stops when ˛tC1 reaches the initial value, ˛0.

The AEC strategy follows the above two rules to dynamically adjust the SF
values so as to compress the input amplitudes to fit the DR of the electrical current
applied to the CI. However, when sudden changes in the input envelope happen,
overshooting or undershooting may occur. To overcome such issues, the peak
clipping unit is applied, as shown in Fig. 9.4, to ensure that the output envelope
falls between the maximum and minimum levels, where UB and LB in Eq. (9.5) can
be used as maximum and minimum values, respectively. Finally, the compressed
amplitude envelope is computed as:

8<
:

yt D zt; if LB < zt < UB
yt D UB; if zt > UB
yt D LB; if zt 6 LB

: (9.6)

Figures 9.5a, b show examples of the SEC- and AEC-processed amplitude
envelopes of the 6th channel (i.e., flow D 1790 Hz, fhigh D 2710 Hz) in a noisy



198 Y.-H. Lai et al.

0 0.5 1 1.5 2 2.5 3 3.5 4
60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4
60

80

100

120

140

A
m

p.
 M

ag
.

A
m

p.
 M

ag
.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

Time (s)

α
t

AEC

SEC

UB

LB

(a)

(b)

(c)

UB

LB

Fig. 9.5 Examples of the amplitude envelope processed using the (a) SEC and (b) AEC (i.e., 
˛
was 0.001 per 2.5 ms). The envelope waveforms were extracted from the 6th channel (i.e., f low D
1790 Hz, f high D 2710 Hz) of a testing sentence masked by an SSN masker at 0 dB, and compressed
to a DR of 5 dB. In (c), the solid line shows the SF ˛t used in the AEC strategy for the compressed
amplitude envelope in (b); the dashed line indicates the fixed SF used in the SEC strategy in (a)

environment, when masked by speech-shape noise (SSN) at 0 dB signal-to-noise
ratio (SNR). The UB and LB in this example are 125.3 and 70.6, respectively,
yielding a DR of approximately 5 dB. As seen in Fig. 9.5a, b, both the SEC and AEC
strategies effectively compress the DR of the amplitude envelope within the preset
DR; however, the local (e.g., around 1.1 s) DR is larger for the envelope processed
using the AEC strategy, which had a DR of 4.3 dB in Fig. 9.5b, than for that
processed by the SEC strategy, which had a DR of 2.3 dB in Fig. 9.5a. Figure 9.5c
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shows the SF values used in the SEC and AEC strategies for compression of the
sentences in Fig. 9.5a, b, respectively. From Fig. 9.5c, the SEC strategy applies a
fixed SF of ˛ D 1=13, while the AEC strategy continuously adjusts its SF ˛t. It
has been noted that the SF ˛t for the AEC strategy is generally larger than the fixed
SF of ˛ D 1=13 employed in the SEC strategy. These results indicate that the AEC
strategy can modulate the SF, based on the characteristics of the input signals so as to
utilize the usable DR optimally. Moreover, the AEC strategy generates an amplitude
envelope with a larger DR and, consequently, a larger modulation depth.

9.5 Experiments and Results

In this section, we present four sets of experiments used to verify the effects of
the AEC strategy. In Experiment-1 and Experiment-2, we tested the performance
of the AEC strategy in noise and in reverberation, respectively. In Experiment-3,
we explored the effect of the adaptation rate in the AEC strategy. Experiment-4 was
designed to investigate whether the advantage of a front-end noise reduction scheme
could be preserved upon integration with a subsequent AEC strategy, and how this
advantage would be influenced by the factors of input SNR, type of NR, and type of
noise.

9.5.1 Experiment-1: The Speech Perception Performance
of AEC in Noise

CI recipients have limited hearing DR for speech perception. This may partially
account for their poor speech comprehension, particularly under noisy conditions.
The proposed AEC strategy aims to maximize the modulation depth for CI
recipients, while confining the compressed amplitude envelope to the preset DR.
The purpose of Experiment-1 was to compare speech recognition synthesized by
the proposed AEC strategy and by the SEC strategy under noisy conditions.

9.5.1.1 Subjects and Materials

Eleven (age range: 18–24 years; six females and five males) NH native-Mandarin
speakers were recruited to participate in the listening tests. Sentence lists from the
MHINT database were used to prepare the testing materials [27]. All sentences
were pronounced by a male native-Mandarin speaker, with a fundamental frequency
ranging from 75 to 180 Hz, and recorded at a sampling rate of 16 kHz. Two types
of maskers: an SSN and two equal-level interfering male talkers (2T) were used to
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corrupt the testing sentences at two SNR levels (5 and 10 dB), which were chosen
to avoid the ceiling/floor effects.

9.5.1.2 Procedure

The listening tests were conducted in a soundproof booth. The stimuli were played
to listeners through a set of Sennheiser HD headphones at a comfortable listening
level. The speech was compressed to an envelope DR of 5 dB in a vocoder
simulation, which was done by using the SF ˛ D 1=13 and ˛0 D 1=13 in Eq. (9.1)
and Eq. (9.4), respectively. Each subject participated in a total of eight [2 SNR levels
� 2 types of maskers � 2 envelope compression strategies, i.e., the SEC and AEC
strategies, respectively] testing tasks. Each task contained ten sentences, and the
order of the eight tasks was randomized across subjects. None of the ten sentences
were repeated across testing tasks. Subjects were instructed to repeat what they
heard, and were allowed to listen to each stimulus twice. The sentence recognition
score was used to evaluate the performance, which was calculated by dividing the
number of words correctly identified by the total number of words in each testing
task. During testing, each subject was given a 5-min break every 30 min during the
test.

9.5.1.3 Results and Discussion

Figure 9.6 shows the listening test results in terms of mean sentence recognition
scores at different SNR conditions. As shown in Fig. 9.6, the AEC strategy yielded
higher speech recognition performance than did the SEC strategy in the three noisy
testing tasks (5 dB and 10 dB for SSN, and 5 dB for 2T). To confirm the significance
of the improvements further, two-way analysis of variance (ANOVA) and post-hoc
comparisons were used to analyze the results of the two strategies under the four
noisy conditions.

For the SSN results in Fig. 9.6, the ANOVA measures indicated significant effects
of SNR level (FŒ1; 10� D 36:03, p < 0.005), compression strategy (FŒ1; 10� D
33:41, p < 0.005), and the interaction between SNR level and compression strategy
(FŒ1; 10� D 5:52, p D 0.041). The post-hoc analyses further confirmed that the score
differences between the SEC-processed sentences and AEC-processed sentences
were significant (p < 0.05). For the 2T results, shown in Fig. 9.6b, the ANOVA
measures indicated the significant effect (FŒ1; 10� D 77:87, p < 0.005) of SNR
level, a non-significant effect of compression strategy (FŒ1; 10� D 3:14, p D
0.107), and a significant interaction between SNR level and compression strategy
(FŒ1; 10� D 12:63, p D 0.005). The post-hoc analyses further showed that the score
difference at 5 dB SNR was significant (p < 0.05) while that at 10 dB SNR was
non-significant (p D 0.46) in Fig. 9.6b.

To analyze the advantage of the AEC strategy further, it is worthwhile to revisit
the examples shown in Fig. 9.7. From this figure, it can be seen that the AEC-
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Fig. 9.6 The mean recognition scores of SEC and AEC in (a) SSN and (b) 2T maskers. The DR of
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Fig. 9.7 Examples of amplitude envelope processed by (a) AEC (i.e., 
˛ D 0:1) and (b) SEC
strategies, and (c) the compression ratio ˛ used in the AEC and SEC (dashed line). The envelope
waveforms were extracted from the 6th channel of a testing sentence masked by SSN at 5 dB SNR,
and compressed to 5 dB DR within [LB, UB]

processed envelope around 1 s and 2 s in Fig. 9.7a has a larger DR than that
processed by the SEC strategy in Fig. 9.7b. Moreover, Fig. 9.7c demonstrates that
the SEC strategy employs a fixed compression factor, where ˛ D 1=13, while the
AEC strategy uses a small amplitude compression ratio, or a large SF ˛t, for the
frames around 1 s and 2 s, thus yielding a large modulation depth for the amplitude
envelope and improved speech intelligibility.

In summary, the results of this experiment showed that the intelligibility of
the AEC-processed sentences was significantly better than their SEC-processed
counterparts under noisy conditions. This suggests that the proposed AEC strategy
holds promise for improving speech perception performance under noisy listening
conditions for patients with CI.
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9.5.2 Experiment-2: The Speech Perception Performance
of AEC in Reverberation

Reverberation, which results from multiple reflections of sounds from objects and
surfaces in an acoustic enclosure, causes spectro-temporal smearing of speech [28].
Previous studies have indicated that a reverberating environment may reduce a CI
recipient’s ability to identify words [29, 30]. In Experiment-2, we intended to assess
the effects of the AEC strategy in reverberation.

9.5.2.1 Subjects and Materials

Nine (age range: 19–27 years, four females and five males) NH native-Mandarin
speakers were recruited to participate in the listening tests. As with Experiment-1,
sentence lists from the MHINT [27] were used to prepare the testing materials. The
reverberant conditions were simulated by head-related transfer functions recorded
in a 5.5 m � 4.5 m � 3.1 m (length � width � height) room with a total volume of
76.8 m3 [31]. The average reverberation time of the experimental room (T60 D 1:0 s)
was reduced to T60 D 0:6, 0.4 and 0.2 s by adding floor carpeting, absorptive panels
on the walls, and a ceiling, respectively. Additional details on simulating reverberant
conditions can be found in previous studies [31, 32].

9.5.2.2 Procedure

The listening tests were conducted in a soundproof booth. The stimuli were played
to listeners through a set of Sennheiser HD headphones at a comfortable listening
level. The speech signals were compressed to the envelope DR of 5 dB in the
vocoder simulation. This was done by using the SF ˛ D 1=13 and ˛0 D 1=13

in Eq. (9.1) and Eq. (9.3), respectively. Each subject participated in a total of eight
[D 4 reverberant conditions (i.e., T60 D 0; 200; 400, and 600 ms) � 2 envelope
compression strategies (i.e., SEC and AEC)] testing tasks. Each task contained ten
sentences. The order of the eight tasks was randomized across subjects, and none of
the ten sentences were repeated across testing tasks. The subjects had repeated what
they had heard during the experiments, and were allowed to listen to each stimulus
twice. The sentence recognition score was used to compare speech recognition
performance.

9.5.2.3 Results and Discussion

Figure 9.8 shows the listening test results in terms of mean sentence recognition
scores for all testing tasks. The two-way ANOVA measures were computed by
using the recognition score as the dependent variable. The reverberant condition, the
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Fig. 9.8 The mean recognition scores of SEC and AEC. The DR of envelope amplitude is confined
to 5 db. The error bars denote the SEM values. An asterisk indicates a statistically significant (p<
0.05) difference between SEC and AEC scores

T60 value, and the compression strategy were considered as the two within-subject
factors. ANOVA results indicated significant effects in the reverberant condition
(FŒ3; 24� D 208:62, p < 0.05), the compression strategy (FŒ1; 8� D 35:01, p <
0.05), and in the interaction between the reverberant condition and compression
strategy (FŒ3; 24� D 8:05, p D 0:001). Post-hoc analyses showed that the score
differences between the SEC-processed sentences and AEC-processed sentences
were significantly different (p < 0.05) under the reverberant conditions of T60 D 0

and 200 ms in Fig. 9.8.
In accordance with the intelligibility advantage observed in Experiment-1, the

results of Experiment-2 showed that the amplitude envelope processed by the
AEC strategy yielded higher intelligibility scores for vocoded sentences under
reverberation compared to those processed using the SEC strategy. This makes
the AEC strategy a highly promising way of enhancing speech comprehension in
implanted listeners under reverberant conditions in the future. Interestingly, the
above intelligibility advantage was not observed for all reverberant conditions. This
indicated that there was no significant improvement in intelligibility found under the
reverberant conditions of T60 D 600ms in Fig. 9.8. This may be partially attributed
to the usage of initial compression parameters (e.g., ˛0 and 
˛) in the experiment.
It is worthwhile to investigate optimal configuration of compression parameters so
as to achieve the best performance for the AEC-based speech processing for CI
recipients under reverberant listening conditions in future studies.
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9.5.3 Experiment-3: The Effect of Adaptation Rate
on the Intelligibility of AEC-Processed Speech

As mentioned in Sect. 9.4.2, the AEC strategy specifies the rate at which the SF
value should be updated, using the adaptation rate outlined in Eq. (9.4), which is
determined based on the two AEC rules. The adaptation rate used in the AEC
strategy is similar to the attack time (AT) and release time (RT) of the wide-
dynamic-range compression (WDRC) amplification scheme that is widely used
in hearing aids [33]. The AT and RT describe the duration required for a hearing
aid device to respond to a changing input signal [34]. When setting an inadequate
time constant value for AT/RT, the gain will fluctuate rapidly and thus generate an
undesirable pumping effect. Conversely, when setting an excessive time constant
value, a lag in perception will be induced. Previous studies have explored the effects
of AT/RT values on the intelligibility and satisfactory sound quality of a hearing
aid for its users [35–38]. Their results indicated that AT and RT values should
be carefully optimized in order to achieve satisfactory performances in speech
intelligibility, listening comfort, and sound quality. For this reason, the adaptation
rate is an important parameter in the AEC strategy. In this section, we investigate the
effect of the adaptation rate in Eq. (9.4) on the intelligibility of the AEC-processed
speech.

9.5.3.1 Subjects and Materials

Eight NH, native-Mandarin listeners (age range: 19–26 years, four females and four
males) listeners were recruited to participate in the listening experiment. Sentences
from the MHINT were used as the testing materials [27]. Two types of maskers,
SSN and 2T, were used to prepare the noisy testing sentences at SNR levels of 5 and
10 db, which were chosen based on a pilot study to avoid ceiling and floor effects.

9.5.3.2 Procedure

The listening tests were conducted in a sound-proof room, and stimuli were played
to listeners through a set of Sennheiser HD headphones at a comfortable listening
level. The DR of the envelope waveforms were compressed to 5 db in tone-vocoder
simulations, where the ˛ values of SEC and ˛0 of the AEC strategy were set to 1/13
[11]. Four different envelope compression methods were used in this experiment,
i.e., SEC, AEC with
˛ D 0:001, AEC with
˛ D 0:01, and AEC with
˛ D 0:1.
The last three are referred to as AEC.001, AEC.01, and AEC.1, respectively.
Each subject participated in a total of 16 (2 SNR levels � 2 types of maskers � 4
envelope compression methods) listening tasks. Each task contained ten sentences,
and the order of the 16 tasks was randomized across subjects. None of the ten
sentences were repeated across the listening task. Subjects were instructed to repeat
what they heard, and they were allowed to listen to each stimulus twice. The
sentence recognition score was used to evaluate the performance.
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Fig. 9.9 The mean recognition scores for Mandarin sentences with (a) an SSN masker and
(b) a 2T masker at SNR levels of 5 and 10 db. The error bars indicate SEM values

9.5.3.3 Results and Discussion

Figure 9.9 demonstrates the speech recognition scores in terms of the mean
recognition rates for all testing tasks. From Fig. 9.10a, we noted that the three AEC
strategies (AEC.001, AEC.01, and AEC.1) produced notably higher intelligibility
scores than the SEC strategy in the SSN test condition. From Fig. 9.9b, we noted
that AEC.001 yielded notably higher recognition scores than did the SEC strategy
in the 2T masker condition. One-way ANOVA and Tukey post-hoc comparisons
were conducted to analyze the results of the four compression strategies in the
four testing conditions further. These analyses are summarized in Table 9.1. In the
table, each mean score represents the corresponding recognition score in Fig. 9.10,
and n denotes the sample size. For the results of the SSN masker, the ANOVA
measures confirmed that the intelligibility scores differed significantly across the
four groups, with (F D 10:25, p < 0.001) and (F D 5:80, p D 0:003) at SNR
levels of 5 db and 10 db, respectively. The Tukey post-hoc results further verified
the significant differences for the following group pairs at both SNR levels of 5 and
10 db: SEC with AEC.001; SEC with AEC.01; and SEC with AEC.1. Moreover,
the ANOVA results for the 2T masker confirmed that the intelligibility scores
differed significantly across the four groups, with (F D 3:00, p D 0:048) and
(F D 3:49, p D 0:029) at SNR levels of 5 and 10 db, respectively. The Tukey
post-hoc comparisons verified the significant differences between the group pairs of
SEC and AEC.001 at both SNR levels (5 and 10 db).

These results confirm that the value of adaptation rate, 
˛, indeed affects the
intelligibility of AEC-processed speech. The use of an inappropriate value of 
˛
may diminish the benefits affecting speech intelligibility, especially under testing
conditions using an interfering masker. To demonstrate the effect of the adaptation
rate further, Fig. 9.10 highlights the results obtained by the traditional SEC strategy;
the AEC strategy with a very slow adaptation rate, where 
˛ D 0:0001; and the
AEC strategy with a fast adaptation rate, where 
˛ D 0:1. The examples showed
that, when using an inadequate
˛ value, such as 0.0001 as shown in Fig. 9.10b, the
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Fig. 9.10 Examples of the amplitude envelope processed by (a) SEC, (b) AEC with a very slow
adaptation rate, 
˛ D 0:0001, and (c) AEC with a fast adaptation rate, 
˛ D 0:1. The envelope
waveforms were extracted from the 6th channel of a testing sentence masked by SSN at 5 db, and
compressed to 5 db DR

benefits of the AEC strategy are limited, as the available DR is not effectively used.
Conversely, when using a similarly inadequate 
˛ value, such as 0.1, as shown
in Fig. 9.10c, a pumping effect may occur. Consequently, some envelopes will fall
within the range of peak clipping, accordingly causing speech signal distortions.
In addition, when the envelope waveform varies too rapidly, speech intelligibility
will also be decreased. From the results of Figs. 9.9 and 9.10, when 
˛ is equal to
0.001, the optimal balance between benefits, the pumping effect, and the distortion
in the AEC strategy becomes evident. In this experiment, we only selected these
three values of 
˛ (slow, moderate, and fast adaptation rate) to investigate the
performance of the AEC strategy. Future studies should further investigate the effect
of 
˛ while considering the wider characteristics of language, such as the band
importance function or the tone of Mandarin, in addition to the noise types.
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Table 9.1 The mean recognition scores for different strategies, where each factor was
included in the one-way ANOVA and Tukey post-hoc testing

Post-hoc comparison*

Test condition Strategy n Mean score F p (groupi, groupj)

SSN 10.25 <0.001

(SNRD 5 db) SEC 8 51.8 (SEC, AEC.001)

AEC.001 8 89.1 (SEC, AEC.01)

AEC.01 8 76.9 (SEC, AEC.1)

AEC.1 8 77.4

SSN 5.80 0.003

(SNRD 10 dB) SEC 8 68.3 (SEC, AEC.001)

AEC.001 8 91.0 (SEC, AEC.01)

AEC.01 8 89.5 (SEC, AEC.1)

AEC.1 8 85.4

2T 3.00 0.048

(SNRD 5 db) SEC 8 25.9 (SEC, AEC.001)

AEC.001 8 43.2

AEC.01 8 29.2

AEC.1 8 23.0

2T 3.49 0.029

(SNRD 10 dB) SEC 8 52.5 (SEC, AEC.001)

AEC.001 8 72.5

AEC.01 8 53.1

AEC.1 8 52.5

9.5.4 Experiment-4: The Effect of Joint Envelope Compression
and Noise Reduction

An NR method plays a crucial role in the improvement of sound quality/intelli-
gibility in noisy conditions [39–42]. Chung [43] found that NR methods greatly
enhanced the modulation depth of noise-suppressed signals, but these benefits were
somehow eliminated by the compression stage. On the other hand, the benefits of
NR approaches can be maintained or even further improved by using a suitable
compression strategy. Previous studies of NR have found that integrating the NR
approach with a fixed compression ratio strategy benefits speech perception by CI
recipients [44]. The aim of this experiment was to evaluate how the AEC strategy
interacted with the NR approaches in the handling of noisy speech.

9.5.4.1 Subjects and Materials

Eight NH, native-Mandarin listeners (age range: 19–26 years, four females and four
males) were recruited to participate in the listening test. The MHINT sentences
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were used to test the performance, with SSN and 2T maskers used to corrupt testing
sentences. The test speeches included 0, 5, and 10 db SNR levels.

9.5.4.2 Signal Processing with NR and Envelope Compression

In this set of experiments, an NR process was implemented before the AEC strategy
in an eight-channel tone-vocoder. Figure 9.11 shows the block diagram of the NR-
and AEC-based tone-vocoder in one channel. In the figure, the noisy speech signal
was first processed by an NR method and then fed into a standard tone-vocoder,
where the SEC strategy or the AEC strategy could be used as the compression
scheme. We adopted two types of NR approaches, namely the Wiener filtering
approach [45] and the Karhunen Loeve theorem (KLT) algorithm [46] in this set
of experiments. The Wiener filtering approach utilizes a priori SNR statistics to
design a gain function to filter out noise components from the noise input. For
the KLT method, the KLT algorithm is first applied to the noisy signal. The KLT
components that represent the signal subspace were modified by a gain function,
while the remaining KLT components that represent the noise subspace were nulled.
An enhanced signal was obtained by applying the inverse KLT of the modified
components. The techniques used in these two algorithms have been detailed in
previous studies [45, 46].

Following the NR stage in Fig. 9.11, the envelope of the noise-suppressed signal
was extracted via bandpass filtering and waveform rectification. Next, in the CR
estimation (CRE) stage, the appropriate SF for the SEC strategy or the initial SF
(i.e., ˛0) for the AEC strategy was determined based on the input envelope (x in
Fig. 9.11). This SF was then used to transform the output envelope to generate
a compressed signal (z in Fig. 9.11). The final peak clipping stage was used to
confine the compressed envelope to within the expected DR (y in Fig. 9.11). The
compressed envelopes were then modulated by a set of sine waves (i.e., tone i)
with frequencies equal to the center frequencies of the bandpass filters. Finally, the
envelope-modulated sine waves of the eight bands were combined, and the level
of the combined signal was adjusted to produce an RMS value equal to that of the
original input signal.

Figure 9.12 shows examples of an amplitude envelope processed by the Wiener
filtering and KLT methods, followed by the SEC and AEC strategies, under same

Noisy acoustic 
amplitude

NR 
(Wiener or KLT) BPF i RECT. LPF SEC/AEC OutputPeak 

clipping

CRE 

X

Tone i

/ 0

x z y

x

Fig. 9.11 Block diagram for obtaining the output tone-vocoded speech for speech enhancement
methods followed by a compression strategy (either AEC or SEC) in the ith channel
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Fig. 9.12 Examples of the amplitude envelope for (a) WienerCSEC, (b) WienerCAEC, (d)
KLTCSEC, and (e) KLTCAEC processing. The envelope waveforms were extracted from the
6th channel of a testing sentence masked by the SSN masker at SNR 5 db, and compressed to a
5-dB DR. In (c) and (f), the solid lines show the SF used in the AEC strategy for (b) and (e); the
dashed lines show the fixed SF in the SEC strategy for (a) and (d)

testing conditions (SSN masker at SNR 5 db). The envelope was extracted from the
sixth channel, and compressed to a 5-dB DR, where the initial SF was computed
by the CRE stage. We noted two findings: (1) the KLT performance was similar
to that of the Wiener filtering approach when integrated with the same compression
strategy, and (2) the AEC strategy can provide better modulation depth than the SEC
strategy when it is integrated with the same NR algorithm.

9.5.4.3 Procedure

As NR methods were used in this experiment, the SF should differ from the values
used in Experiment-1, in order to ensure that the output envelope falls within the
desirable DR, which was 5 db in this experiment. As shown in Fig. 9.11, the CRE
stage computes an ˛ value for the SEC strategy and an ˛0 for the AEC strategy,
based on the NR-processed signals. Four different signal processing methods were
used: (1) WienerCSEC, (2) WienerCAEC, (3) KLTCSEC, and (4) KLTCAEC. The
adaptation rate (
˛) of the AEC strategy was 0.001 in this experiment.

The listening tests were conducted in a soundproof booth. Each subject partic-
ipated in a total of 24 (3 SNR levels � 2 types of maskers � 4 types of signal
processing) testing tasks. Each task contained ten sentences, and the order of these
24 tasks was randomized across subjects. None of the ten sentences were repeated
across the testing conditions. Subjects were instructed to repeat what they heard,
and they were allowed to listen to each stimulus twice.
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9.5.4.4 Results and Discussion

Figure 9.13 shows the mean speech recognition scores for all of the testing tasks. For
the SSN results indicated in Fig. 9.13a, the mean recognition rates for WienerCSEC,
WienerCAEC, KLTCSEC, and KLTCAEC, respectively, were: 18.4%, 33.6%,
15.8%, and 41.1% for 0 db SNR; 23.3%, 53.9%, 14.1%, and 53.0% for 5 db
SNR; and 15.7%, 52.6%, 24.1%, and 64.1% for 10 db SNR. For the 2T results in
Fig. 9.13b, the mean recognition rates were: 2.3%, 3.1%, 1.1%, and 2.6% for 0 db
SNR; 4.3%, 15.6%, 6.5%, and 14.4% for 5 db SNR; and 17.1%, 40.6%, 17.3%,
and 41.3% for 10 db SNR. Three-way ANOVA measures was used to analyze these
data for the following three factors: the type of masker (masker), SNR level (SNR),
and processing method (F1). The results indicated that all of the main effects and
second-order interaction were significant (refer to Table 9.2). Tukey’s post-hoc
analysis showed significant differences for the following group pairs: WienerCSEC
and WienerCAEC; WienerCSEC and KLTCAEC; WienerCAEC and KLTCSEC;
and KLTCSEC and KLTCAEC.

The results of the three-way ANOVA and Tukey post-hoc comparisons indicated
that the AEC strategy can provide higher speech recognition scores than the
SEC strategy when integrated with a Wiener filter or KLT. The reason for the
poorer performance of the SEC strategy compared to the AEC strategy in noisy
conditions may be similar to that applicable in hearing aids [47, 48], where the
static compression processing will increase the low-level noise during the pauses
in the speech signal and thereby decrease the SNR performance for the NR
algorithm. Therefore, the SEC strategy did not benefit as much from the NR
algorithm as the AEC strategy. Moreover, the results in Table 9.2 show that different
NR algorithms, such as the Wiener filter and KLT, did not produce significant
differences when integrated with the same compression strategy (i.e., SEC or AEC).
In contrast, different compression strategies produced significantly different results
when integrated with the same NR algorithm, where the AEC strategy consistently
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Fig. 9.13 Mean recognition scores for Mandarin sentences with (a) an SSN masker and (b) a 2T
masker, at SNR levels of 0, 5, and 10 dB. The error bars indicate SEM values
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Table 9.2 The mean recognition scores for different strategies, where three factors (types of
masker [masker], SNR levels [SNR], and processing method [F1]) were included in three-way
ANOVA and Tukey’s post-hoc testing

Source of
variance

Type III sum
of squares df

Mean
square F p

Post-hoc
comparison*
(groupi,
groupj)

Corrected model 65; 113:9a 17 3830.2 20.03 <0.001

(1,2), (1,4), (2,3), (3,4)

Intercept 110; 544:0 1 110,544.0 578.15 <0.001

SNR � F1 3800:57 6 633.43 3.31 0.004

Masker � F1 4892:81 3 1630.94 8.53 <0.001

Masker � SNR 2508:07 2 1254.04 6.56 0.002

Masker 19; 784:38 1 19,784.38 103.47 <0.001

SNR 12; 065:76 2 6032.88 31.55 <0.001

F1 22; 062:35 3 7354.12 38.46 <0.001

Error 33; 269:05 174 191.20

Total 208; 927:00 192

Corrected total 98; 382:99 191

F1 group variable: 1, WienerCSEC; 2, WienerCAEC; 3, KLTCSEC; 4, KLTCAEC
Dependent variable: speech intelligibility scores
aR2 D 0:669 (adjusted R2 D 0:624)

outperformed the SEC strategy. NR algorithms probably did not yield significant
differences due to the very narrow electrical DR (5 db) used for CIs. Since noisy
signals processed by an NR algorithm will generate speech with increased DR, a
smaller SF has to be used to ensure that the sound signals remain within the audible
range (i.e., between UB and LB). From the examples of Figs. 9.5c and 9.12c, the
initial SF, ˛0, was larger without than with NR, under the same testing conditions,
and the speech intelligibility scores were higher for a larger SF. This provides further
evidence that the compression strategy is more important than the NR method in
noisy conditions for compressed speech perception.

In summary, this experiment investigated the performance of the AEC strategy
when integrated with different NR algorithms. The results indicate that integration
of NR algorithms with the AEC strategy provided better speech intelligibility than
with the SEC strategy, implying that the AEC strategy, integrated with NR methods,
is useful for further improving the speech perception performance in CI recipients.

9.6 Summary

A non-linear, compressive mapping function is normally used in CI devices to con-
vert an acoustic amplitude envelope to an electric current signal (with a narrow DR).
The present chapter assessed the performance of compression strategies (i.e., static
vs. adaptive) relative to that of CI speech processing by vocoded simulation.
More specifically, we used a simple compression function, as shown in Eqs. (9.3)
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and (9.6), called the AEC strategy, to compress the amplitude envelope into a preset
DR. Note that most of the present acoustic-to-electric conversions in CI devices use
a fixed mapping function. It is reasonable to foresee that the adaptive mapping (from
acoustic to electric) function will improve the speech comprehension of implanted
patients. In addition, the signal processing in the AEC strategy is similar to that
used by the SEC strategy, but is characterized by additional boundary calculations
(for UB and LB). Furthermore, the AEC rules optimally and continuously adjust
for the compression ratio on a frame-by-frame basis. Since these two additional
units are rather simple, the computation load for the AEC strategy is reasonable
when compared with the conventional SEC strategy. This enables for the practical
implementation of the AEC strategy by means of microprocessors.

The results of these experiments showed that the amplitude envelope processed
by the AEC strategy yielded significantly higher intelligibility scores for vocoded
sentences in noisy and in reverberation conditions than when it was processed by
the SEC strategy. Moreover, integration of NR methods with the AEC strategy
outperformed integration of NR methods with the SEC strategy under noisy
conditions. This makes the proposed AEC strategy a highly promising approach for
the enhancement of speech comprehension in noisy conditions for listeners with CIs.
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Chapter 10
Neuromorphic Hardware Acceleration Enabled
by Emerging Technologies

Zheng Li, Chenchen Liu, Hai Li, and Yiran Chen

10.1 Introduction

As demand on high performance computation continuously increases, the traditional
von Neumann computer architecture becomes less efficient as the appearance of
“Memory Wall[1], which greatly hindered the overall performance of computing
engines. In recent years, neuromorphic hardware systems have gained great atten-
tion. Under such a condition, many improved or alternative computing architectures
were motivated. As an important instance, neuromorphic computing systems have
emerged as a promising solution for “Big Data” applications. Neuromorphic
computing systems can potentially provide the capabilities of biological perception
and information processing within a compact and energy-efficient platform[2].
Many research activities have been carried out on algorithm enhancement [3] and/or
system implementations built upon the conventional CPU, GPU, or FPGA [4].

As a highly generalized and simplified abstract of a neuromorphic system, an
artificial neural network (NNW) usually uses a connection matrix to represent a set
of synapse networks. Nowadays, many NNW models have been proposed, which
can be generally classified as feedforward (FFW) and feedback or recurrent types.
In the FFW class, the signals flow only in the forward direction, whereas brain state
in a box (BSB), a representative of feedback NNW, in which the signals can flow in
forward as well as backward direction.

BSB was used by Anderson er al. [5] as a fully connected neural network called
to model psychological effects observed in probability learning. The BSB model is a
simple, auto-associative,nonlinear, energy-minimizing neural network [6, 7]. In this
network, each unit, which has no self-connection, is fully connected to every other
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unit in the network. A common application of the BSB model is optical character
recognition for printed text [8]. Recently, a multi-answer character recognition
method based on the BSB model has been developed to improve reliability and
robustness for noisy or occluded text images [9]. An input character image is
processed through the BSB models in parallel for the recall (pattern recognition)
operation. When all recalls are completed, a set of candidates are selected based on
the convergence speed.

Different from BSB, an FFW neural network feathering an open loop data
path as its name implies. The FFW neural network was the first and simplest
type of artificial neural network devised. Despite its simplicity, around 90/100 of
NNW applications use FFW architecture[10]. According to the layers count of
computational units, FNN can be sorted as single layer or multi-layer perceptron. A
single-layer perceptron network consisting of a single layer of output nodes.

On the other hand, for all NNWs regardless of FFW or feedback, the net
inputs of a group or groups of neurons can be transformed into matrix-vector
multiplication(s). Similar to the biological systems, the neural network algorithms
inherently are adaptive to the environment and resilience to random noise. As a
consequence, hardware realizations of neural networks require a large volume of
memory and are associated with high design complexity and hardware cost [11].
Algorithm enhancement can alleviate the situation but cannot fundamentally resolve
it. More efficient hardware-level solutions become necessary.

Traditionally, Complementary Metal–Oxide–Semiconductor (CMOS) transistor-
based Static Random-Access Memory (SRAM), Ternary Content Addressable
Memory (TCAM) were employed to construct the weight matrix between two lay-
ers. Prohibitive area and power consumption prevent these designs from extensive
application. Fortunately, the emerging memristor provides a promising solution for
neural network implementations.

The existence of the memristor was predicted in circuit theory nearly 40 years
ago [12]. However, it wasn’t until 2008 that the first physical realization was
demonstrated by HP Lab through a TiO2 thin-film structure [13]. Afterward, many
memristor materials and devices have been reported or rediscovered. The memristor
has many promising features, such as non-volatility, low-power consumption, high
integration density, and excellent scalability [14, 15]. More importantly, the unique
property to record the historical profile of the excitations on the device makes it an
ideal candidate to realize synapse behavior in electronic neural networks [16, 17].

In this chapter, we take BSB and single layer perceptron as examples of feedback
and FFW to validate the neuromorphic hardware acceleration enabled by emerging
memristors, we build a training as well as recall circuit for a BSB system and high
reliable active function component for a single layer perceptron. Weight mapping
and algorithm optimization for hardware oriented design was studied. Key design
parameters and physical constraints have been extracted and analyzed. Effectiveness
of our designs is demonstrated by performing comprehensive simulations w.r.t.
quality of domain of attraction, distinguish margin, failure rate of recognition, etc.
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10.2 Background

10.2.1 Neural Network

An NNW is constituted by a number of artificial neurons that are interconnected
together. The structure of artificial neuron is inspired by the concept of biological
neuron shown in Fig. 10.1a. Basically, it is the processing element in the nervous
system of the brain that receives and combines signals from other similar neurons
through thousands of input paths referred to as dendrites. Each input signal
(electrical in nature), flowing through dendrite, passes through a synapse or synaptic
junction. The accumulated signals are nonlinearly modified at the output before
flowing to other neurons through the branches of axon [7].

The artificial neuron is modelled based on the biological neuron shown in
Fig. 10.1b. Basically, it has an op-amp summer-like structure. Each input signal
flows through a weighted path which can be positive (excitory) or negative
(inhibitory). The summing node accumulates all the input-weighted signals, and
then passes to the output through an activation or transfer function as shown in
Fig. 10.1b. In other words, the neuron performs two types of operations, (1) a dot
product of the inputs x1; : : : ; xn and the weights w1; : : : ;wn, and (2) the evaluation
of an activation function. The dot product operation can be seen in Eq. 10.1. The
activation function of the neuron is shown in Eq. 10.2.

DPj D
nX

iD1
xiwij (10.1)

yj D f .DPj/ (10.2)

Fig. 10.1 (a) Sketch of a biological neuron (b) Model of artificial neuron
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yi D S.yinj/ D

8̂̂
<
ˆ̂:
1; yinj > 1.TH/

yinj ; �1.�TH/ � yinj � 1.TH/

�1; yinj < �1.�TH/

(10.3)

In our FFW design,the sigmod function shown in Eg.1.3 is used as active
function. On the other hand, the mathematical model of the BSB recall function
will be represented as [18]

x.t C 1/ D S.˛ � Ax.t/C ˇ � x.t// : (10.4)

10.2.2 Memristor Preliminaries

The memristor is a non-linear passive two-terminal device of which the resistance
is determined by the historical profile of the applied electrical excitations. The
existence of memristor devices was predicted as early as 1970s by Chua et. al
[12] and firstly demonstrated in 2008 by HP labs [13]. Besides TiO2 thin film
developed by HP labs, many materials with various mechanisms were discovered
to be memristive behavioral. Here we majorally focus on the TiO2 memristor
technology for its long-term validation and authority.

Figure 10.2 illustrates the cross-section of the TiO2 thin-film memristor and
the corresponding variable resistor model, which can be regarded as two serially
connected resistors. Here, RL and RH , respectively, denote the low resistance
state (LRS) and the high resistance state (HRS). The overall memristance can be
expressed as M.p/ D p �RH C .1�p/ �RL, where p.0 � p � 1/ is the relative doping
front location, which is the ratio of doping front position over the total thickness
of the TiO2 thin film. The velocity of doping front movement v.t/, driven by the
voltage applied across the memristor v.t/, can be expressed as

v.t/ D dp.t/

dt
D �v � RL

h2
� V.t/

M.p/
(10.5)

Fig. 10.2 (a) TiO2 memristor structure. (b) Equivalent circuit
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where �v is the equivalent mobility of dopants, h is the total thickness of the thin
film, and M.p/ is the total memristance when the relative doping front position
is p. In general, a certain energy (or threshold voltage) is required to enable the
state change in a memristive device [19]. When the electrical excitation through a
memristor is greater than the threshold voltage, i.e., V.t/ > Vth, the memristance
changes (in training). Otherwise, a memristor behaves like a resistor.

10.2.3 Memristor Array

There are two types of structures to organize the memristor-based memory matrix,
crossbar and 1T1R. The crossbar employs a memristor device at each intersection
of horizontal and vertical metal wires without any selectors [20], as shown in
Fig. 10.3a. The crossbar structure is characterized by the high storage density
by providing a large number of signal connections within a small footprint and
conduct the weighted combination of input signals [21, 22]. This structure is usually
applied in designs with analog input. However, sneakpath [23] in such selection free
structures hinders reliability and efficiency of sensing and programming.

Practically, the one-transistor-one-resistive (1T1R) structure shown in Fig. 10.3b
can safely solve this problem by adding an access transistor (or emerging selector
[24]) for each memristor at a sacrifice of more area overhead. NNW designs using
digital input will benefit from the 1T1R structures in R/W reliability. For instance,
in the 1T1R array illustrated in Fig. 10.3b.

In this chapter, we use analog and digital computational scheme in BSB and
FFW design, respectively. As a result, crossbar is employed by BSB design and
1T1R structure is applied in FFW design.

Fig. 10.3 (a) Memristor crossbar (b) 1T1R cell structure
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10.3 Design Methodology

In this section, we will conceptually explain how to program a memristor crossbar
to store the information of connection matrix. In other words, the mapping method.
And the training method of BSB design, mimics the software training algorithm
and adjusts the memristors iteratively to reach the required input/output function.
The last but not the least is the recall component design for FFW design which
applies the offline train scheme. A set of modifications to the algorithm are required
since the hardware constrains which we will illustrate with details in the following
sections.

10.3.1 Weight Mapping

10.3.1.1 Mapping Method for BSB System

Let us use the N-by-N memristor crossbar array shown in Fig. 10.3a to demonstrate
its matrix computation functionality. Here, we apply a set of input voltages VT

I D
ŒVI;1;VI;2; : : : ;VI;N � on the word-lines (WLs) of the array, and collect the current
through each bit-line (BL) by measuring the voltage across a sensing resistor. The
same sensing resistors are used on all BLs with resistance rs or conductance gs =
1/rs. The output voltage vector VT

O D ŒVO;1;VO;2; : : : ;VO;N �. Assume the memristor
sitting on the connection between WLi and BLj has a memristance of mi;j . The
corresponding conductance gi;j D 1=mi;j. Then, the relation between the input and
output voltages can be represented by

VO D C � VI (10.6)

Here, matrix C can be represented by the memristors conductance and the load
resistors as

C D D � GT D diag.d1; : : : ; dN/

2
64

g1;1 � � � g1;N
:::
: : :

:::

gN;1 � � � gN;N

3
75

T

(10.7)

where di D 1=.gs CPN
iD1 gi;j/. To differentiate the mathematical connection matrix

A in neural network, we use C to describe the physical relation between VI and VO.
Thus, all the terms in C must be positive values.

Please note that some noniterative neuromorphic hardware uses the output
currents IO as output signals. Since the BSB algorithm discussed in this chapter
is an iterative network, we take VO as output signals, which can be directly fed back
to inputs for the next iteration without extra design cost.
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Equation (10.6) indicates that a trained memristor crossbar array can be used to
construct the positive matrix C, and transfer the input vector VI to the output vector
VO. However, C is not a direct one-to-one mapping of conductance matrix G as
indicated in Eq. (10.7). Though a numerical iteration method can be used to obtain
the exact mathematical solution of G, it is too complex and hence impractical when
frequent updates are needed.

For simplification, assume gi;j 2 G satisfies gmin�gi;j�gmax , where gmin and
gmax, respectively, represent the minimum and maximum conductance of all the
memristors in the crossbar array. Thus, a simpler and faster approximation solution
to the mapping problem is defined as

gj;i D ci;j � .gmax � gmin/C gmin (10.8)

A decayed version of C, referred to as OC can be approximately mapped to the
conductance matrix G of the memristive array. Plugging Eq. (10.8) into Eq. (10.7),
we have

Oci;j D ci;j � .gmax � gmin/C gmin

gs C .gmax � gmin/ �PN
jD1 ci;j C N � gmin

(10.9)

Note that many memristive materials, such as TiO2, demonstrate a large
gmax=gmin ratio [13]. Thus, a memristor at the HRS under a low-voltage excitation
can be regarded as an insulator, that is, gmin  0. Moreover, the BSB connection
matrix is a special matrix with a small

PN
jD1 ci;j. For example, all BSB models used

for character recognition in our experiments show
PN

jD1 ci;j < 5when N D 256. The

term
PN

jD1 ci;j can be further reduced by increasing the ratio gs=gmax. As a result,

the impact of
PN

jD1 ci;j can be ignored. These two facts indicate that Eq. (10.9) can
be further simplified as

Oci;j D ci;j � gmax=gs (10.10)

A memristor is a physical device with conductance g > 0. Therefore, all elements
in matrix C must be positive as shown in Eq. (10.7). However, in the original BSB
recall model, ai;j 2 A can be either positive or negative. An alternative solution
is moving the whole A into the positive domain. Referring Eq. (10.4), since the
output x.t C 1/ will be used as input signal in the next iteration, a biasing scheme
at x.t C 1/ is needed to cancel out the shift induced by the modified A. The
biasing scheme involves a vector operation since the shift is determined by x.t/.
To better maintaining the meaning of A in physical mapping and leveraging the
high integration density of memristor crossbar, we propose to split the positive and
negative elements of A into AC and A� as

aCi;j D
(

ai;j; if ai;j > 0

0; if ai;j � 0
and a�i;j D

(
0; if ai;j > 0

�ai;j; if ai;j � 0
(10.11)
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As such, (10.4) becomes

x.t C 1/ D S.ACx.t/ � A�x.t/C x.t// (10.12)

where we set ˛ D ˇ D 1. Thus, AC or A� can be mapped to two memristor
crossbar arrays M1 and M2 in a decayed version OAC and OA�, respectively, by
following (10.9).

10.3.1.2 Mapping Method for Feedforward System

Instead of crossbar, 1T1R structure is employed in our FFW design because of the
digital operational scheme. And we set the resistance range of Memristor devices
from 50K� to 1 M� [25, 26]. The according conductance g 2(1	S, 20	S).

Figure 10.4a compares the effective cell conductance Qg and the Memristor
conductance g. The result shows that they are very close when the select transistor
is on. This is because the transistor’s conductance gON (at the order of mS) is much
higher than g. When the transistor is turned off, the extremely small goff . nS/
dominates the cell conductance. So Qg of an OFF cell has negligible impact on the
computation. Therefore, a BL current virtually comes only from those ON cells
enabled by WL pulses and the computing on every BL is nearly independent from
others.

We also investigated the relationship between g and the BL voltage when the cell
is on. Figure 10.4b presents the result when g D 20	S. As BL voltage increases,
both VGS and VDS of the select transistor decrease, leading to the reduction of gON.
Because the memristor and the transistor in a cell are connected in series and g is
much smaller than gon, Qg is primarily determined by g. The reduction of gON causes
only 4:0% in the change of Qg. As g decreases, the variance of Qg induced by the
change of BL voltage becomes even more significant.
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Fig. 10.4 (a) Qgij vs. gij at ON/OFF states. (b) Change of Qgij and gij as BL voltage varies
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Fig. 10.5 (a) Training flow. (b) Conceptual circuit diagram. (c) Error detection circuit

10.3.2 Training Algorithm Optimization

Figure 10.5a shows the operational flow of the BSB training circuit, including two
memristor crossbars, referred to as M1 and M2. In addition, the corresponding
circuit diagram is shown in Fig. 10.5b. Our goal is to develop a method to train
the memristor crossbars as autoassociative memories for prototype patterns. The
training scheme leverages the recall circuit to verify the training result and generate
the control signals.

Step 1. Initializing the Crossbar Arrays: At the beginning of a training procedure,
all memristance values in M1 and M2 are initialized to an intermediate value. The
initialization does not have to be precisely accurate. Indeed, even when all of the
memristors are all at either LRS or HRS, the crossbar arrays can still be successfully
trained but it requires more time to reach convergence according to the simulation
results.

Step 2. Selecting a Prototype Pattern �.k/ 2 Bn.k D 1; : : : ;m/: Here, Bn is the n-
dimension binary space (1, 1). Assume a training set includes m prototype patterns
and each pattern �.k/ has the same probability to be chosen every time. The counter
ST is used to record in sequence the number of patterns that have been successfully
trained. When ST>0, those patterns that have been trained are excluded from the
selection.

Step 3. Sending �.k/ to the BSB Recall Circuit: We convert �.k/ in binary space
(�1,1) to a set of input voltages within the boundary (�0.1 V, 0.1 V). These input
signals are supplied to the two memristor crossbars simultaneously. The resulting
signals VO can be obtained at the output of the BSB recall circuit.

Step 4. Error Detection: An error is defined as the difference between the
prototype pattern and the recall result; that is, the difference between the input
and output signals of the recall circuit. A piece of error detection circuitry for bit
i is shown in Fig. 10.5c, which generates only the direction of the weight change
based on the simplified algorithm[27]. In total, N pieces of error detection blocks
are needed for an N�N crossbar array. Considering that the range of Vout.i/ could be
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different from that of Vin.i/, we apply a scalar � to the input vector and take � �Vin.i/
as the target output signal. Rather than generating � � Vin.i/ in every training, we use
the preset threshold voltages for error detection. Since Vin.i/ is either 0.1 or 0.1 V,
four thresholds are needed, including

VCth_h D 0:1�C  VCth_l D 0:1� � 
V�th_l D �0:1� �  V�th_l D �0:1�C 

(10.13)

Here,  represents the tolerable difference.
The error detection output Diff.i/ could be 1, 0, or 1. When jVout.i/ � � �

Vin.i/j <  , Diff.i/ = 0, meaning the difference between the normalized Vin.i/ and
Vout.i/ is so small that we consider them logically identical. Otherwise, Diff.i/ =
C1 or �1, indicating the normalized jVout.i/j is greater or less than the normalized
jVin.i/j, respectively.

Step 5. Training Memristor Crossbar Arrays: If Diff is not a zero vector, which
means some error has been detected, the crossbar arrays need to be further tuned.
In order to control the training step with a finer granularity, we modify only one
memristor crossbar each time. For example, one could train M1 or M2 when the
iteration number is odd or even, respectively.

The weight updating of a memristor crossbar array is conducted by columns,
during which constant voltage pulse signals are applied to M1 or M2. Note that
the real resistance change of a memristor is also determined by its array location
and device characteristics. In the design, such difference can be compensated by
properly controlling the amplitude/width/shape of training pulses and paying more
training iterations.

The polarity of the training pulse for the jth column is determined by Diff.j/.
The design supplies the training pulses on all the rows of a memristor crossbar. The
jth column is connected to ground and all the others are supplied with half of the
training voltage. For M1, the training pattern is either the current selected prototype
pattern �.k/ (if Diff.j/ D 1/ or its element-wise negated version (if Diff.j/ = �1).
The training signals to M1 and M2 have opposite polarities. That is, the training
pattern of M2 uses the current prototype pattern when Diff(j) = 1 or its element-
wise negated version when Diff.j/ D �1.

Note that the mapping method uses M1 and M2 to represent the positive and
negative terms of the BSB connection matrix, respectively. However, the proposed
training scheme operated in real design circumstance cannot and does not have to
guarantee an identical mapping to software generated matrix. In fact, what matters
most is the overall effect of M1 and M2, not exact memristance values in each
individual crossbar array.

Step 6. If Training is Completed?: The counter ST increases by 1 if a prototype
pattern goes through Step 25 and reports no error without further tuning M1 and
M2. Otherwise, the ST is reset to 0 whenever an error is detected and all of the
patterns in Bn are available in Step 2. ST = m means the entire training set has been
successfully learned and hence the training stops.
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10.3.3 Recall Component Optimization

10.3.3.1 BSB Recall Implementation

To realize the BSB recall function at circuit level, we first convert the normalized
input vector x(t) to a set of input voltage signals V(t). The corresponding functional
description of the voltage feedback system can be expressed as

V.t C 1/ D S0.G1ACV.t/ � G1A�V.t/C G2V.t//

D S0.G1VAC.t/ � G1VA�.t/C G2V.t//
(10.14)

Here, G1 and G2 are the signal gain amplitudes resulted by peripheral circuitry,
corresponding to ˛ and ˇ in (10.4).

We use Vbn to represent the boundary of the input voltage, that is, VbnVi.t/Vbn

for any Vi.t/ 2 V.t/. The new saturation boundary function is modified accordingly.
Note that Vbn must be smaller than Vth so that the memristances do not change
during the recall process. Practically speaking, Vbn can be adjusted based on the
requirement of convergence speed and accuracy.

Figure 10.6 shows the diagram of the BSB recall circuit built based on Eq. (10.4).
The design is an analog system consisting of three major components.

1. Memristor Crossbar Arrays As the key component of the overall design,
memristor crossbar arrays are used to realize the matrix–vector multiplication
function in the BSB recall operation. Two memristor crossbar arrays M1 and M2

are required to represent the matrices AC and A�, respectively. They both have the
same dimension as the BSB connection matrix A.

V(0)

M1 M2

-vbn

vconv

COMP

SUM
AMP

SUM
AMP

V(t+1)

vi(t+1)

vi(t)

vi(t) vi(t+1)R2

R1

R4

R5

R6
+

–
+

–

R7
R3

vA+,i(t)

SUM
AMP

COMP

COMP

-vbn

vbn

vbn
vi(t+1)

^

vA+,i(t)^

vA+,i(t)^

^VA+(t) VA–(t)^

vA-,i(t)^

Fig. 10.6 Conceptual diagram of the BSB recall circuit
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2. Summing Amplifier The conceptual structure of SUM-AMP is shown in the inner
set of Fig. 10.6. In our design, the input signal Vi.t/ along with the voltage outputs of
crossbar arrays V OAC;i.t/ and V OA�;i.t/ is fed into a summing amplifier (SUM-AMP).
Assume R1 D R4 D R6 D 1=gs;R2 D R3 D R5 D R7 D 1=gmin, and G1 D G2 D
1, the output of the SUM-AMP is

Vi.t C 1/ D gs

gmin
� V OAC;i.t/ � gs

gmin
� V OA�;i.t/C Vi.t/

D V OAC;i.t/ � V OA�;i.t/C Vi.t/
(10.15)

indicating that the decayed effect has been canceled out. The SUM-AMP naturally
conducts S./ function by setting its output voltage boundary to Vbn. Moreover, the
resistance values R1R7 can be adjusted to match the required and in Eq. (10.12), if
they are not the default value 1. For an N dimensional BSB model, N SUM-AMPs
are required.

3. Comparator A new set of voltage signals V.t C 1/ generated from the SUM-
AMPs will be used as the input for the next iteration. Meanwhile, ever Vi 2 V
compares with CVbn and Vbn to determine if path i has converged. The recall
operation stops when all N paths reach convergence. In total, N COMPs are needed
to cover all of the paths.

10.3.3.2 FFW Active Function Implementation

Figure 10.7 depicts an overview of our proposed spiking computing architecture that
leverages the compact resistive crossbar structure. The design adopts the rate coding
model and represents data using the frequency of spikes (pulses) [28]. Through
different bitlines (BLs) in a resistive crossbar array, the synaptic weighting functions
of different entries are executed in parallel. The integrate and fire circuits (IFCs)
as post-neurons generate output spikes based on the strength of the weighted pre-
neuron signals from the crossbar.

A single-layer neural network with N pre-neurons and M post-neurons can be
implemented using an N � M resistive crossbar array in the following approach:
First, the activity pattern of pre-neurons xN�1 is transferred into a set of pulses to
wordlines (WLs). Here we assume the duration of an input pulse is tm. The number
of spikes on WLi within a computation period T (that is, nx;i) is determined by xi 2 x.
The synaptic weight between the jth pre-neuron and the ith post-neuron is mapped
to conductance gij at the crosspoint of WLi and BLj. The total weighted signal to
post-neuron j is transferred to the current flowing through BLj and accumulated on a
capacitor Cm in IFC. Once the voltage on Cm reaches to a predefined threshold Vth,
the IFC fires an output spike and resets Cm. The activity function of postneurons
yM1 is represented by a set of spike numbers such as Œny;0; ny;1; : : : ; ny;M1�

T .
We use Vx;i.t/ and Vy;j.t/ to denote the voltages on WLi and BLj at time t, respec-

tively. The current flows through all the connected resistive devices contributes to
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Fig. 10.7 Sketch of the spiking FFW design with a 1T1R cell array

the total current on BLj, such as

Iy;i.t/ D
N�1X
iD0

gi;jŒVx;i.t/ � Vy;i.t/� (10.16)

On the other hand, the voltage across Cm and the current flowing through it also
follows

Iy;i.t/ D Cm
dVy;i.t/

dt
(10.17)

By combining Eqs. (10.16) and (10.17), the increase of Vy;j within a small epoch
at time t can be derived as

dVy;j.t/

dt
D Œ1 � e�

1
Cm

PN�1
iD0 gij �

PN�1
iD0 gijVx;i.t/PN�1

iD0 gij

: (10.18)

indicating that the change of Vy; j.t/ is approximately proportional to the weighted
pre-neuron signals

PN�1
iD0 gi;jVx;i.t/. Moreover, the IFC fires a spike whenever Vy;j

reaches Vth. Thus, the spike number produced at post-neuron j is

ny;j.t/ /
Z t

�D0

N�1X
iD0

gijVx;i.�/d�: (10.19)



230 Z. Li et al.

Equation 10.19 implies that the computation of connection matrix in neural
network can be performed by resistive crossbar array using spike signals.

In addition, we observed that the delay of IFC is a critical parameter determining
the performance of the spiking neuromorphic system. Let’s set k D Vth=VI . Then
the time duration to switch Vy,j from 0 V to Vth can be derived by:

�� D �Cmln.1 � k/PN�1
iD0 Qgijıi

: (10.20)

The number of output pulses generated during an input pulse duration of tm can be
calculated by

ny;j D tm
�� C t0

D tm
˛PN�1

iD0 Qgijıi
C t0

; (10.21)

where t0 is the delay overhead of the IFC. ˛ D �Cm � ln.1 � k/ represents the BL
charging efficiency, which is determined by the integration capacitor Cm and the
threshold voltage Vth of the IFC design.

We proposed a new IFC design featuring high speed and low power consumption.
Figure 10.8a depicts its schematic. During the operation, the BL voltage Vy

continues increasing until it reaches Vth. Then the differential pair .M1M4/ together
with the following two cascaded inverters generates a high voltage at Vs, which in
turn enables the discharging transistor M13. Consequently, Vy decreases quickly and
eventually turns off M13. As such, the firing of one output spike at Vout is completed

Fig. 10.8 The IFC circuit: (a) the schematic. (b) the simulation waveforms



10 Neuromorphic Hardware Acceleration Enabled by Emerging Technologies 231

and a new iteration of integrate-and-fire starts. To improve the IFC throughput, we
tended to reduce its intrinsic operation delay and make it shorter than the integrating
time in Eq. (10.20). A positive feedback loop .M7 � M9/ was deployed based on
the traditional comparator for this purpose. Another approach was to minimize the
discharge time of Cm once a spike is fired out, i.e., using a large M13 to provide
sufficient discharging current.

We implemented and simulated the IFC design with Globle Foundry 130 nm
technology. VI is set to 1.2 V , and Vth is set to 0.5 V in which the system shows
best computation accuracy. An MIM capacitor with a capacitance of 153fF (which
is the minimum value offered by the PDK) is used as Cm. The design parameters
were carefully selected so that the intrinsic delay of the integrate-and-fire is shorter
than even the minimum BL integrating time. Also, it will achieve fast output spikes
if the frequency of which is still within the range that can be reliably captured by the
sensing circuit. The waveforms of Vy, Vs, and Vout under the fastest firing frequency
(568.2 M spikes/s) are shown in Fig. 10.8b.

The area of the IFC design at Global Foundry 130 nm technology is 175:3	m2,
which is compatible to that of traditional designs, e.g., 120	m2 at 65 nm technology
in [22]. The energy consumption of our design is 0.48pJ-per-spike, which is about a
quarter of the one in [22] (2pJ-per-spike).

10.4 Simulation and Evaluation

10.4.1 BSB System Evaluation

10.4.1.1 BSB training

The training method iteratively programs the memristor circuit until the required
input–output function is achieved, therefore it can overcome most of the impact
of process variations and signal fluctuations. In this section, simulation results are
presented to demonstrate the training results for the proposed hardware training
method and to compare with existing software synthesis methods. First, we
compare the convergence speeds between prototype patterns and untrained patterns,
essential for the realization of the racing the BSB recall function [17]. Second, the
performance of a memristor crossbar as an autoassociative memory is analyzed.

In convergence speed analysis, we start with the simple linear memristor model
and then employ the nonlinear TiO2 memristor model based on the real device
measurement [13] to demonstrate the training effect. Last, fabrication defects are
considered by assuming that defected cells exist and are randomly distributed in the
crossbar arrays. All input patterns are (�1,C1) binary patterns with a length of n.
The experimental setup is listed in Table 10.1.
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Table 10.1 Simulation setup

Recall Circuit Memristor parameters

RH.˝/ RL.˝/ h.nm/ �v.m2 � s�1 � V�1/ Vth.V/

10K˝ 1K˝ 10 1:00E�14 1.1

Summing amp parameters

G1 G2.Recall=Train/ VopC.V/ Vop�.V/

30 0.6/0 1.05 -1.05

Comparater Sensing res. Recall voltage VRV

Vref_h.V/ Vref_l.V/ RS.˝/ For “1” For “-1”

1.0 -1.0 1000 0.1 -0.1

Training Circuit Memristance movement �M

Linear model Nonlinear model

˙3˝ each step .RH �RL��v �RL�VT �t/
h2�M

Comparator Training time Training voltage VT .V/

Vthh .V/ Vthl .V/ t.�s/ For “1” For “0”

˙0:125 ˙0:115 10 1.5 -1.5

Convergence Speed

In the BSB recall process, the learned prototype patterns should converge much
faster than the unlearned patterns. If this phenomenon appears, then the circuit
has remembered the prototype patterns and has the ability to classify whether an
input pattern is in the set of prototype patterns or not. We conduct the following
two experiments to analyze the BSB circuit performance based on the convergence
speeds.

Experiment 1 There are eight different randomly generated prototype patterns,
N = 16. The BSB system is trained to remember these patterns and all eight learned
prototype patterns and 100 unlearned random patterns are then recalled.

The results in Fig. 10.9 clearly show that there is a convergence speed gap
between the prototype patterns and the unlearned patterns. Especially, the eight
prototype patterns all converge to the magnitude boundary before the ninth iteration,
whereas the fastest convergence speed for unlearned patterns is the 12th iteration.
The larger the hamming distance between the input pattern and the prototype
patterns, the more iteration are required to converge, if convergence is even possible.

Experiment 2 The 26 lowercase characters from “a” to “z” are used as input
patterns. We use 20 patterns of lowercase character a representing different size-
font-style combinations as the prototype patterns for training. To compare their
convergence speeds, 500 patterns representing the other 25 lowercase characters
with different sizes/fonts/styles are also recalled. Figure 10.10 shows the result. It
can be clearly observed that the 20 prototype patterns of the lowercase character
“a” converge much faster than the other character patterns. Compare with result of
experiment 1 in Fig. 10.9, as the size of the BSB memory N increases (from 16
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Fig. 10.9 Exp. 1: Iteration number vs. magnitude summation of output voltage signals
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Fig. 10.10 Exp.2: Iteration number vs. magnitude summation of output signals

to 256), the convergence speed gap between prototype patterns and the unlearned
patterns becomes more obvious. In conclusion, a simple but effective training
method is realized by circuits and it can be used to construct the hardware
architecture for the racing BSB algorithm proposed in [18].
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BSB as Autoassociative Memory

Uniform Size of Domain of Attraction: An associative memory prefers a large
overall domain of attraction, indicating that every input pattern eventually converges
to a prototype pattern. When optimizing the training algorithm, it requires to
uniformly increasing the domain of attraction for every prototype pattern rather
than focusing only on a few of them. Thus, uniform size of domain of attraction
is a useful measurement standard for the performance of associative memory. The
number of (1, 1) binary input patterns that are at the Hamming distance of l away
from �.k/ and whose final states are �.k/ is defined as its domain of attraction,
denoted by Doa.�.k/; l/. The uniform size of domain of attraction, denoted by
UniDoa.k/, means the percentage for the

Pp
lD0 Doa.�.k/; l/ over the maximum

of the
Pp

lD0 Doa.�.k/; l/ for all prototype patterns �.1/; : : : ; � .m/, which is defined
as [29]

Uni-Doa.k/ D
( Pp

lD0 Doa.�.k/; l/

max1�k�m
Pp

lD0 Doa.�.k/; l/

)
� 100 (10.22)

Quality of Domain of Attraction From testing all the possible input patterns, we can
use the corresponding output patterns to evaluate the quality of domain of attraction,
which reflects the overall performance of the BSB associative memory (not only for
different prototype patterns). As we generate random binary patterns to test, we can
calculate their Hamming distance with all prototype patterns. The prototype pattern
with the least hamming distance to the input pattern is regarded as the most likely
prototype pattern in the sense of Hamming distance. Then, we can divide the (1,
C1) binary input patterns into four classes based on their final state.

1. Best: among the nearest prototype patterns in the sense of Hamming distance.
2. Good: a prototype pattern that is not one of the nearest prototype patterns in

the sense of Hamming distance, meaning it is not the most likely prototype
pattern.

3. Negative: a spurious state (final state is none of the prototype patterns).
4. Bad: a state that is not convergent but trapped in a limit cycle.

The quality of the domain of attraction is represented by the number of (�1, C1)
binary input patterns in each class (Table 10.2).

Experiment 3 We compare the training effect of our embedded hardware circuit
with the classic BSB training algorithms proposed by Lillo et al. [30] and Perfetti
[31], and a more recent BSB training algorithm, Park [29]. The test case is taken
from [19]. In this experiment, we consider the following five prototype patterns
with n = 10:
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Table 10.2 Specs of the
fabricated STT-MRAM

Best Good Negative Bad

Hardware(linear) 419 6 465 134

Hardware(nonlinear) 465 0 473 86

Lillo et al. [7] 164 1 859 0

Perfetti [31] 164 1 859 0

Park [29] 164 1 859 0

r1

Hardware(linear)
Hardware(nonlinear)
Lillo et al. (1994)
Perfetti (1995)
Park (2010)
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Fig. 10.11 Exp.3: Uniform size of domain of attraction

�.1/ D Œ�1;C1;�1;C1;C1;C1;�1;C1;C1;C1�T

�.2/ D ŒC1;C1;�1;�1;C1;�1;C1;�1;C1;C1�T

�.3/ D Œ�1;C1;C1;C1;�1;�1;C1;�1;C1;�1�T

�.4/ D ŒC1;C1;�1;C1;�1;C1;�1;C1;C1;C1�T

�.5/ D ŒC1;�1;�1;�1;C1;C1;C1;�1;�1;�1�T

(10.23)

Figure 10.11 and Table 10.2 summarize the simulation results of the uniform
size of domain of attraction, and the quality of domain of attraction, respectively.
The results obtained from our proposed hardware design are labeled as Hardware.

The simulation results show that our hardware circuit performs better than Lillo
et al. [7] in the class of Best in the quality of domains of attraction test. Compared
with Perfetti [18], our scheme is competitive for the similar performance in uniform
size and the quality of domains of attractions. However, it has a large drop in
error correction rate when Hamming distance l � 2. Since our hardware circuit
was built based on the fundamental training algorithm, it cannot be as good as
Park [19], the state-of-the-art training algorithm developed based on constrained
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optimization. However, our scheme advances for its simple structure and low
computation requirement. Moreover, it provides much faster training speed than
the traditional software solutions since we utilize memristor crossbars embedded
on-chip.

10.4.1.2 BSB Recall

The robustness of the BSB recall circuit was analyzed based on Monte Carlo
simulations at the component level. The experimental setup is listed in Table 10.1.
Memristor device parameters are taken from [6].

We tested 26 BSB circuits corresponding to the 26 lowercase letters from “a” to
“z”. The character imaging data was taken from [15]. Each 16�16 points character
image can be converted to a (1, C1) binary vector with N = 256. Accordingly, each
BSB recall matrix has a dimension of 256 256. The training set of each character
consists of 20 prototype patterns representing different size/font/style combinations.

In each test, we created 500 design samples for each BSB circuit and ran
13,000 Monte Carlo simulations. The defected input pattern in Fig. 10.12 has been
considered in evaluation.

BSB Recall Circuit Under Ideal Condition

Sending an input pattern to different BSB circuits will result in different converging
speeds. Figure 10.13 is the example when processing a perfect “a” image through
BSB circuits trained for 26 lowercase letters. The BSB circuits for “a”, “i”, and
“s” reach convergence with the least iteration numbers. The multianswer character
recognition method considers the three letters as winners and takes them to context
aware word recognition, such as perception-prediction model [18, 32]. Figure 10.14
shows the performance of the BSB circuit design under ideal condition without input
defects, process variations, or signal fluctuations. The x-axis and y-axis represent
input images and the BSB circuits, respectively. All of the winners are highlighted
by the black blocks.

Fig. 10.12 (a) Random point defects. (b) Random line defects
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Fig. 10.13 Iterations of 26 BSB circuits for a perfect “a” image

Fig. 10.14 Performance of
26 BSB circuits under ideal
condition

Process Variations and Signal Fluctuations

A BSB circuit corresponding to its trained input pattern always wins under the ideal
condition. However, after injecting noise into the input pattern or circuit design,
some BSB circuits might fail to recognize its trained input pattern. We use the
probability of failed recognitions (PF) to measure the performance of a BSB circuit
(Table 10.3).

1. Random Noises The random noise in the BSB circuit comes from process
variations as well as the electrical signal fluctuations. The second to fifth rows in
Table 10.3 summarize the impact of every single random noise contributor based
on Monte Carlo simulations. Here, we assume two memristor crossbar arrays are
fully correlated, i.e., CorrM D 1. The simulation results show that the BSB circuit
design has a high tolerance for random noise: compared with the ideal condition
without any fluctuation (IDEAL), the random noise of circuits causes only slight
performance degradation. This is because resilience to random noise is one of
the most important inherent features for the BSB model as well as other neural
networks.
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Table 10.3 PF(%) of 26 BSB circuits for 26 input patterns

Random point numbers 0 10 20 30 40 50

IDEAL 0 2.1 4.2 5.3 10.0 20.8

M.�sys D 0:1&�rdm D 0:1/ 0 1.9 4.6 6.5 14.2 24.7

Rs.� D 0:1/ 0 1.8 4.3 6.2 13.7 24.1

SUM-AMP .� D 0:1/ 0 1.9 4.4 7.7 13.5 23.1

COMPARATOR .� D 0:1/ 0 2.3 5.5 5.4 11.1 22.0

CorrM D 0:6 5.6 10.2 17.2 22.7 30.8 38.6

OVERALLCorrM D 0:6 4.6 8.2 15.2 20.7 32.8 36.6

Random line numbers 0 1 2 3 4 5

IDEAL 0 7.3 13.8 21.5 35.8 50.2

M.�sys D 0:1&�rdm D 0:1/ 0 7.4 14.8 25.5 38.8 53.6

Rs.� D 0:1/ 0 7.4 14.8 25.3 35.1 51.8

SUM-AMP .� D 0:1/ .� D 0:1/ 0 7.7 15.3 23.4 34.7 52.6

COMPARATOR 0 6.9 14.5 23.3 33.7 53.2

CorrM D 0:6 5.1 14.4 24.7 34.6 44.2 55.1

OVERALLCorrM D 0:6 6.3 15.4 24.2 34.1 44.0 58.2
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Fig. 10.15 Comparison of the impacts of static/dynamic noise

2. Static Noise Versus Dynamic Noise The noise matrices of NM and NRs

mainly affect the mapping between the connection matrix and memristor crossbar
array. Physically, these noise elements come from process variations and remain
unchanged. So, they can be regarded as static noise (NS). In contrast, the noise of the
SUM-AMPs and COMPs induced by electric fluctuations demonstrates a dynamic
behavior during circuit operation. We classify them as dynamic noise (ND). We can
adjust NS and ND and observe the combined impact on the BSB circuit performance.
For simplicity, we set �rdm.M/ D �.RS/ D �S; �.AMP/ D �.COMP/ D �D, and
CoorM D 1 to exclude the impact of correlations between M1 and M2. The result in
Fig. 10.15 shows that the dynamic noise dominates PF. For example, when �D = 0.5
and �S = 0.1, PF is high even with a clean input image. Decreasing D but increasing
S results in PF reduction in all the regions. From BSB circuit design point of view,
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Fig. 10.16 Impact of CorrM

the accuracy and the stability of the iteration circuit is more important than the
programming accuracy of the memristor crossbar.

3. Impact of CorrM The BSB circuit uses two memristor crossbar arrays to split
the positive and negative elements of A. Reducing CorrM , that is, increasing the
difference in the systematic noises of M1 and M2, can be regarded as AC and
A� having different overall shifts. This induces a directional noise in the recall
function. As a consequence, CorrM demonstrates a higher impact. As shown in the
sixth row in Table 10.3, decreasing the correlation between two crossbars from 1 to
0.6 demonstrates a large impact on the performance. Figure 10.16 shows that when
decreasing CorrM from 1 to 0, the average PF dramatically increases.

10.4.2 FFW System Evaluation

We evaluated the performance and robustness of the proposed spiking neuromorphic
design by using the application of digital image recognition. Since the simulation
time increases dramatically with the design scale, the crossbar with 32 rows
was selected for training and recognition of images with 32 pixels. Six images
corresponding to number 0 � 5 in Fig. 10.17a were used as the standard training set.
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Standard Patterns 6%3% 9% 12% 15%

(a) (b)

Fig. 10.17 (a)The standard training set of six patterns. (b) An example of noise pattern “5” under
different single bit error rate

In the feedforward network (“F”) implementations, the back-propagation and
delta rule[humiao] were adopted to perform training and programmed Memristors
to particular resistance states. Meanwhile, a double crossbar array is used in each
system to obtain negative weights as we did in the BSB system design. The 1T1R
structure in the design can effectively suppress the sneak path leakage and therefore
make programming very efficient.

The system performance was measured by the probability of failed recognition
(PF). The analysis was conducted based on Monte-Carlo simulations (i.e., 10,000
simulations per configuration). Noise patterns with a certain bit error rate (BER)
were generated and used as the testing images. The example in Fig. 10.17b shows
that visually, it is already very difficult to identify an image with a BER >9%.

In this design, we are particularly interested in the impacts of physical con-
straints, including the limited available resistance state levels and output spike
number. We evaluated and compared the designs of which the ReRAM devices
provide the continuous analog resistance states (“A”) or only 8 discrete resistance
levels (“D”). The efficiency of the digitized output spikes was studied by comparing
the result obtained directly from the analog BL current (“C”) and that achieved
based on real output pulses (“P”).

Thus, the configuration “AC” performs closely to the mathematical neural
network model and was taken as the baseline in the following evaluations. The
configuration “DP” corresponds to our proposed spiking neuromorphic design.

Here, we assumed 8 discrete resistance levels of ReRAM devices and 20 mV
sensing margin of BL output op-amp design.

The reliability analysis was conducted by assuming that the ReRAM resistances
(“PV”) and the IFC spike generation speed (“IFC”) follow normal distributions
with a standard deviation of 10% and 5%, respectively.

10.4.2.1 FFW Recall

We realized a 1-layer feedforward network based on the scheme in Fig. 10.7 for
image recognition. It maps an input pattern to the output through a direct graph
without iterations. A 32�6 crossbar array was trained so that output j has the
strongest response to number j of the six training patterns. Figure 10.18 gives the
simulation result when any standard pattern is used as the input. Output j generates
the biggest spike number to pattern j but demonstrates much weaker responses to
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Fig. 10.19 The simulation results of the FFW implementation. (a) PF;all of FDP at various Ts;
(b) PF;all under different configurations; (c) PF;ind of FAC; (d) PF;ind of FDP

other patterns. Here, we say the recognition of a noisy testing image is failed when
the corresponding output doesn’t produce the most spikes or another output has the
same number of spikes.

The Computation Period T Selection The input pulse duration T determines
the output spike granularity and hence greatly affects the system performance.
Correspondingly, we investigated the performance of FDP configuration by varying
T from 10 ns to 80 ns. Figure 10.19 presents the results expressed by the average
failure rate of all the patterns (PF;all) under different BERs.

The results show that when T is less than 20 ns, the design cannot produce
enough output spikes to differentiate the top two strongest outputs, resulting in a
lot of failures. PF;all quickly drops to 5:57% when increasing T to 30 ns. Further
prolonging T demonstrates marginal improvement. To guarantee sufficient system
performance, T D 30 ns was selected, corresponding up to 15 input pulses per
computation period.

The Impact of Physical Constraints was evaluated by comparing the recognition
qualities of different configurations shown in Fig. 10.19. FAC as the baseline has
the least failures. Reducing the resistance states to 8 discrete levels inevitably
results in quality loss when mapping the analog values of a connection matrix to
the limited conductances in a crossbar. Compared to FAC, PF;all of FDC increases
0:71% at BER=12%. Changing from the analog BL current to the digitalized spikes
(FAC vs. FAP) causes up to 2.08% more recognition failures, implying that this
feedforward network implementation is more sensitive to the granularity of output
signals. Overall, our proposed FDP obtains a PF;all of 5.57% at BER=12%, which is
4:21% higher than the baseline FAC and 1.46% worse than the computing engineer
of [15].
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Figure 10.19c, d shows the statistical results of each individual pattern (PF;ind) of
FAC and FDP, respectively. Numbers 2�5 with high similarity in training patterns
are more sensitive to the input defects during testing. The probability of failures is
much smaller for numbers 0 and 1.

The system reliability was conducted by including the variations in ReRAM
resistances and the IFC spiking generation. Figure 10.19e shows the relative PF;all

of FDP under different conditions, all of which are normalized to the ideal one
without any variations. The variations in memresistances can barely affect the
system performance because it is buried under the resistance offset caused by the
mapping from connection matrix to crossbar array. The impact of the fluctuation in
IFC spiking generation is more obvious. Even though, PF;all under the worst scenario
is still < 5.65%.

10.5 Conclusion

In this chapter, we proposed two neural network implementations including feed-
forward and feedback (BSB) network based on the emerging memristor technology.
We realize the transformation of the mathematical expression of BSB training
and recall model to pure physical device relation and design the corresponding
circuit architecture. The multi-answer character recognition algorithm is used in
the experiments for robustness analysis of the proposed design. We also thoroughly
study the impacts of various noises induced by process variations and electrical
fluctuations and discuss the physical constraints in circuit implementation.

And we proposed a novel spiking based FFW design, which is a mixed-signal
system that uses the digitalized spikes for data transferring and leverages the high
density crossbar structure for parallel computation in analog format. Such a design
naturally minimizes the use of analog components and therefore obtains significant
savings in design area and energy consumption, compared with BSB crossbar-based
computing engine with fully analog operation. We carefully studied the feasibility of
the proposed spiking based design in terms of the computation accuracy, efficiency,
and reliability. The realization of neural network models demonstrated that our
design has a good tolerance in resistive device imperfection but more vulnerable
to the fluctuations in output spike generation.
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Chapter 11
Energy Efficient Spiking Neural Network Design
with RRAM Devices

Yu Wang, Tianqi Tang, Boxun Li, Lixue Xia, and Huazhong Yang

11.1 Introduction

The explosion of big data brings huge demands for higher processing speed, lower
power consumption, and better scalability of computing systems. However, the
traditional “scaling down” method is approaching its limit, making it more and more
difficult for CMOS-based computing systems to achieve considerable performance
improvements from device scaling [1]. Moreover, from the architecture level,
the memory bandwidth required by high-performance CPUs has also increased
beyond what conventional memory architectures can efficiently provide, leading to
an ever-increasing memory wall [2] challenge to the efficiency of von Neumann
architecture. In this way, new technologies, from both the device level and the
architecture level, are required to overcome these challenges.

The spiking neural network (SNN) is an emerging computing model, as shown
in Fig. 11.1, which encodes and processes information with time-encoded neural
signals [3]. As a bio-inspired architecture abstracted from actual neural system,
SNN not only provides a promising solution to deal with cognitive tasks, such as
the object detection and speech recognition, but also inspires new computational
paradigms beyond the von Neumann architecture and boolean logics, which can
drastically promote the performance and efficiency of computing systems [4, 5].
However, an energy efficient hardware implementation and the difficulty of training
the model remain as two important impediments that limit the application of SNN.

On the one hand, we need an applicable computing platform to utilize the poten-
tial ability of SNN. IBM [6] proposes a neurosynaptic core named TrueNorth. To
mimic the ultra-low-power processing of brain, TrueNorth uses several approaches
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Fig. 11.1 Spiking neural network

to reduce the power consumption. Specifically, TrueNorth uses digital messages
between neurons to reduce the communication overhead and event-driven strategy to
further save the energy computation [5]. However, the CMOS based implementation
still has some limitations that are hard to avoid, while some RRAMs’ inherent
advantages can overcome these difficulties. First, on-chip SRAM, where the synapse
information is stored, is a kind of volatile memory with considerable leakage
power, while RRAM is non-volatile with very low leakage power [7]. Another
limitation is that TrueNorth may still need adders to provide the addition operation
of neuron function, but RRAM crossbar can do the addition, or the matrix–
vector multiplication, with ultra-high energy efficiency by naturally combining the
computation and memory together [8–10]. Consequently, RRAM shows potential
on implementing low-power spiking neural network.

On the other hand, from the perspective of algorithm, the efficient training of
SNN and mapping a trained SNN onto neuromorphic hardware present unique
challenges. Recent work of SNN mainly focuses on increasing the scalability
and level of realism in neural simulation by modeling and simulating thousands
to billions of neurons in biological real time [11, 12]. These techniques provide
promising tools to study the brain but few of them support practical cognitive
applications, such as the handwritten digit recognition. Even TrueNorth [13] uses
seven kinds of applications to verify its performance, but the training and mapping
methods for spike-oriented network are not discussed in detail. In other words,
the mapping problem and efficient training method for SNN, especially for the
real-world applications, to achieve an acceptable cognitive performance is severely
demanded. Moreover, SNN can also be used for brain system simulation. For
example, IBM made the cat cortex simulation (with �109 neurons and � 1013

synapses) on Blue Gene supercomputer cluster (with 147,456 CPUs and 144 TB
memory) [14]. And such applications in the field of biological researches are out of
discussion in this chapter.
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These two problems are always coupled together and only by overcoming these
two challenges can we actually utilize the full power of SNN for real-time data
processing applications. In this chapter we discuss these two problems with the
RRAM based system architecture and two different offline training algorithms of
SNN. We use the MNIST digit recognition task [15] as an application example for
the real-time classification. The goal of this chapter is to design an RRAM-based
SNN system with higher classification accuracy and to analyze its strengths and
weaknesses compared with other possible implementations.

The rest of this chapter is organized as follows:

• Section 11.2 introduces the background knowledge, including SNN and RRAM.
• Section 11.3 compares different models of spiking neural networks for practical

cognitive tasks, including the Spike Timing Dependent Plasticity (STDP), the
Remote Supervised Method (ReSuMe), and the latest Neural Sampling Learning
Scheme. We show that the neural sampling method which transfers the ANN
to SNN is promising for real-word applications while STDP and ReSuMe can
NOT be used alone in the classification task since both of them are unsupervised
learning method.

• Section 11.4 shows an RRAM-based implementation of SNN architecture. Two
different specific networks, i.e. (1) STDP cascaded with three-layered ANN and
(2) four-layered SNN transferred from full-connected ANN, are built and mapped
to our system. The RRAM implementation mainly includes an RRAM crossbar
array working as network synapses, an analog design of the spiking neuron, an
input encoding scheme, and a mapping algorithm to configure the RRAM-based
spiking neural network. And these elements will be described separately.

• In Sect. 11.5, a case study of digit recognition tasks is introduced to evaluate
the performance of RRAM-based SNN. We compare the power efficiency and
recognition performance of SNN and the RRAM-based artificial neural network
(ANN). The experiment results show that ANN can beat SNN on the recognition
accuracy, while SNN usually requires less power consumption. Based on these
results, we discuss the possibility of using boosting methods, which combine
some weak SNN learners together, to further enhance the recognition accuracy
for real-world application.

11.2 Preliminaries

11.2.1 Spike Neurons

The neuron is the basic building block of SNN. Different mathematical models of
spiking neurons have been explored with different levels of computational efficiency
and biological plausibility [16]. The model of Leaky Integrate and Fire (LIF)
[17] is one of the most widely used models for its computing efficiency. In this
model, a one-order differential function determines the state variable V.t/ and a
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Fig. 11.2 Analog LIF neuron

threshold function determines whether the neuron spikes and then resets. And it is
described as:

V.t/ D
(
ˇ � V.t � 1/C Vin.t/ when V < Vth

Vresetandsetaspike when V � Vth

(11.1)

where V.t/ is the state variable and ˇ is the leaky parameter; Vth is the threshold
state which the state variable makes comparison with and once exceeding, the state
variable will reset to Vreset.

An analog LIF neuron implementation is shown in Fig. 11.2: the integrator
calculates the state of the neuron V.t/ and the RC works as the leaky path. When
V.t/ > Vth, the transistor will be conducted and V.t/ will be reset.

11.2.2 RRAM Device Characteristics

Figure 11.3a shows a 2D filament model of HfOx based RRAM device [18]. The
model is a sandwich structure with a resistive layer between two metal electrodes.
The conductance is exponentially dependent on the tunneling gap (d). Therefore, we
will take advantage of the variable conductance of the RRAM device by setting the
value of tunneling gap d. For the HfOx based RRAM device, the I–V relationship
can be empirically expressed as follows [18]:

I D I0 � exp

�
� d

d0

�
� sin h

�
V

V0

�
(11.2)

where d is the average tunneling gap distance. I0 (�1 mA), d0 (�0.25 nm) and V0
(�0.25 V) are fitting parameters through experiments. When V << V0, there exists
the approximation that sinh. V

V0
/  V

V0
. The I–V relationship is linear under this

condition. In this work, we will scale down the RRAM voltage to under 0.1 V in
order to take advantage of the approximately linear I–V relationship.
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Fig. 11.3 (a) Physical model of the HfOx based RRAM. The resistance of the RRAM device is
determined by the tunneling gap distance d, and d will evolve due to the filed and thermally driven
oxygen ion migration. (b) Structure of the RRAM Crossbar Array

As shown in Fig. 11.3b, the relationship between the input voltage vector (Vi)
and output voltage vector (Vo) can be expressed as follows [19]:

Vo;j D
X

k

ck;j � Vi;k (11.3)

where k (k = 1; 2; : : : ;N) and j (j = 1; 2; : : : ;M) are the index numbers of input and
output ports, and the matrix parameter ck;j can be represented by the conductivity of
the RRAM device (gk;j) and the load resistors (gs) as:

ck;j D gk;j

gs C
NP

lD1
gk;l

(11.4)

The continuous variable resistance states of RRAM devices enable a wide range
of weight matrices that can be represented by the crossbar. The precision of RRAM
crossbar based computation may be limited by non-ideal factors, such as process
variations, IR drop [20], drifting of RRAM resistance [21], etc. However, SNN only
requires low precision of single synaptic value, meanwhile the binary input and LIF
operation also alleviate the precision requirement of matrix vector multiplication.
Therefore, the RRAM crossbar array is a promising component to realize matrix–
vector multiplication for synapse weight computation in neural networks.
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11.3 Training Scheme of SNN

The spiking neural network faces a huge problem that it is difficult to train the
synaptic weights when applied in the real-world applications. In this section, we
compare different SNN training algorithms, including the Spike Timing Dependent
Plasticity (STDP), Remote Supervision Method (ReSuMe), and the latest Neural
Sampling learning scheme. We show that the neural sampling method which
transfers the ANN to SNN is promising for real-word applications while STDP and
ReSuMe can NOT be used alone in the classification task since both of them are
unsupervised learning method.

11.3.1 Spike Timing Dependent Plasticity (STDP)

Synapses connect neurons to each other and transmit signals between them. The
synaptic weights, which determine the connecting strength of neurons, are learnable.
Spike Timing Dependent Plasticity (STDP) [22] is an unsupervised learning rule
that updates the synaptic weights as a function of the relative spiking time of pre-
and post-synaptic neurons and the exponential window form of STDP is shown as:


w D
8<
:

aC � wij.1 � wij/ � exp
�
� jtj�tij

�


if tj � ti

a� � wij.1 � wij/ � exp
�
� jtj�tij

�


if tj < ti

(11.5)

where wij is the synaptic weight between pre- and post-synapse neuron ni; nj; ti; tj
are the spiking time of neuron ni; nj; a is the maximum learning rate and � is
the time constant of the learning window. According to Eq. (11.5), the synaptic
weight is limited in the interval of Œ0; 1�. The learning rate is decided by the time
interval of ni; nj spiking: The closer between pre- and post-synaptic spikes, the larger
the learning rate. The weight update direction is decided by which neuron spikes
first: For the excitatory neuron, if the post-synaptic neuron nj spikes later than ni,
the synapse will be strengthened; otherwise, it will be decayed; for the inhibitory
neuron, vice versa. When every synaptic weight no longer changes or is set to 0/1,
the learning process is finished. As an unsupervised method, STDP is mainly used
as a feature extraction method. We cannot build a complete machine learning system
only based on STDP. A classifier is usually required for practical recognition tasks.
However, in our experiment, STDP method doesn’t demonstrate enough efficiency
of feature extraction. For example, we use the classic MNIST handwritten digit
dataset [15] to test the performance with a support vector machine (SVM) [23]
without a kernel, where two 50-dimension feature sets are extracted with STDP and
principal component analysis (PCA). The PCA-SVM method achieves a recognition
accuracy of 94% while the STDP-based method only reaches 91%. As PCA is
usually the baseline for evaluating the performance of feature extraction, STDP does
NOT demonstrate an efficient method for real-world cognitive applications or many
other machine learning tasks.
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11.3.2 Remote Supervision Method (ReSuMe)

Remote Supervision Method (ReSuMe) is a supervised learning method proposed
in [24]. The algorithm introduces a supervised spike train for each synapse while
training. The training process comes to an end if the post-synaptic spike train is
the same as the supervised spike train. However, ReSuMe faces the difficulty on
the pattern design of supervised spike trains and little guidance is offered on how to
define the differences between different spike train. Although some papers [25] have
attempted to build learning systems under ReSuMe learning algorithm, to the best
of our knowledge, we have NOT seen any efficient way to solve a real-world task.

11.3.3 Neural Sampling Learning Scheme

The Neural Sampling learning scheme transforms the leaky Integrate-and-Fire (LIF)
neuron into a nonlinear function (named Siegert function) [26] which represents
the relationship between the input and output firing rate of a neuron, just as
shown in Fig. 11.4. Moreover, Neftci demonstrates that nonlinear function, which
is equivalent with LIF neuron, is satisfied with neural sampling conditions in [28]
and can be approximated to sigmoid function under certain condition. Therefore,
it can take advantage of contrastive divergence (CD), which is a classic algorithm
exploited in restricted Boltzmann machine (RBM) to train the network. Moreover,
the spiking RBM can be stacked into multi-layer to form the spiking deep belief
network (DBN), which has demonstrated satisfying performance. In [26], Connor
shows that a 784�500�500�10 spiking DBN achieves the recognition accuracy of
95:2% on MNIST dataset [15]. Recent research results show that it is unnecessary to
introduce the Siegert approximation when transferring ANN to SNN, it is better for
recognition accuracy if the ReLU neuron is introduced when training the original
artificial network. The experiment results [29] show that spiking ConvNet achieves
99.1% accuracy on MNIST dataset when including ReLU neurons for original
network training. The introduction of ReLU neuron makes it promising for high-
performance large-scaled SNN model because of the better recognition accuracy
for large-scaled ReLU-based artificial networks compared with Sigmoid-based (or
tanh-based) ones.

Fig. 11.4 Siegert approximation used in spiking neural network training [27]
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In Sect. 11.4, we will make a hardware mapping of the spiking neural network
which is trained under (1) STDP + three-layer ANN classier, (2) neural sampling
learning method, to RRAM-based platform. The specific RRAM-based system is
only used for forward (inference) process, while the training process done on the
CPU platform will not be discussed in this work.

11.4 RRAM-Based Spiking Learning System

For an SNN system used for real-time classification applications, an offline training
scheme is needed to decide the weights of the neural networks, i.e. coefficients
in the crossbar matrix. To our best knowledge, there are two kinds of SNN
training methods to build up classification systems: (1) unsupervised SNN training
method, for example, Spike Timing Dependent Plasticity (STDP), is first introduced
for extracting features; then the supervised classifier is introduced to finish the
classification task. (2) First train an equivalent ANN using the gradient-based
method, then transfer ANN to SNN and map SNN to the RRAM-based system
for real-world applications. We design the two offline trained RRAM based SNN
systems based on these two training methods [27, 30], and show them in the
following subsections.

11.4.1 Unsupervised Feature Extraction + Supervised Classifier

As an unsupervised method, STDP is mainly used for feature extraction. We
cannot build a complete classification system only based on STDP. A classifier
is usually required for practical recognition tasks. Therefore, when mapping the
system onto hardware, just as shown in Fig. 11.5, a five-layer neural network system
is introduced: a two-layer spiking based neural network and a three-layer artificial
neural network.

The first two layer SNN is trained using an unsupervised learning rule: spike
timing dependent plasticity (STDP) [22], which updates the synaptic weights
according to relative spiking time of pre- and post-synaptic neurons. The learning
rate is decided by the time interval: the closer distance between pre- and post-
synaptic spikes, the larger the learning rate. The weight updating direction is decided
by which neuron spikes first: for the excitatory neuron, if the post-synaptic neuron
spikes later, the synapse will be strengthened; otherwise, it will be decreased. When
every synaptic weight no longer changes or is set to 0/1, the learning process is
finished.

There is a converting module between the two layer SNN and 3-layer ANN to
convert the spiking trains into the spike count vectors. Then the spike count vectors
are sent into the following layers of the network (the 3-layer ANN). We use a 3-layer
ANN as a classifier to process the features extracted from the input data by the
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Fig. 11.5 System structure of unsupervised feature extraction + supervised classifier: 2-layer
STDP based SNN + 3-layer ANN [27]

previous 2-layer SNN. We use the CMOS analog neuron in Sect. 11.2 for the LIF
neuron; and the RRAM crossbar for synaptic computation in both 2-layer SNN
(vector addition) and 3-layer ANN (matrix vector multiplication).

An experiment is made on MNIST digit recognition dataset to evaluate the
performance of such system framework. The training algorithm is implemented
on the CPU platform where LIF neurons are used in the first two layers and the
sigmoid neurons are used in the last three layers. For the testing process (forward
propagation of neural networks), we use circuit level simulation where the weight
matrix is mapped to RRAM-based crossbar. Since the input images are 28�28 sized
256-level gray images, the first layer has 784 input channels. The five-layer spiking
neural network system has five layers of neurons in all and the experiment result
with the network size of “784�100SNN+100�50�10ANN” shows the recognition
accuracy of 91.5% on CPU platform and 90% on RRAM-based crossbar model
(circuit simulation result). The performance is a little worse than that of the three-
layer ANN sized “784�100�10” with the recognition accuracy of 94.3% on CPU
platform and 92% on RRAM-based crossbar model (circuit simulation result).

An interesting point comes from the energy consumption part, we find out that
both ANN and SNN use the RRAM crossbar as the matrix vector multiplication
part, ANN will consume more power than SNN with similar or even smaller neuron
numbers. For example, the proposed “784�100SNN+100�50�10ANN” consumes
327.36 mW on RRAM while the power consumption increases to 2273.60 mW
when we directly use “784�100�10ANN.” The energy/power saving of SNN
comparing ANN mainly comes from the different coding basis. The input voltage of
SNN can be binary since it transforms the numerical information into the temporal
domain, so there is no need for SNN to hold a large voltage range to represent
multiple input states as implemented in ANN. ANN needs input voltages of 0.9 V,
but SNN can work with much lower voltage supply (0.1 V). On the other hand,
binary coding in SNN can avoid the usage of large number of AD/DA on the input
and output interfaces, and the AD/DA consumes considerable large portion of power
in the RRAM based NN systems [31].
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Fig. 11.6 System structure: transferring ANN to SNN—neural sampling method [30]

11.4.2 Transferring ANN to SNN: Neural Sampling Method

The neural sampling method provides a way to transfer ANN to SNN, thus offering
a useful training scheme on classification tasks. A equivalent transformation is
made between the nonlinear function (named Sigert function, which is similar to
sigmoid function) of ANN and the Leaky Integrate-and-Fire (LIF) neuron of SNN.
Therefore, it is possible to first train the ANN made up of the stacked Restricted
Boltzmann Machine (RBM) structure using Contrastive Divergence (CD) method.
In this way, a satisfying recognition accuracy of ANN can be first achieved. And
then, the spike-based stacked RBM network with the same synaptic weight matrices
can also be implemented for the classification tasks. The system structure is shown
in Fig. 11.6 [30].

Since spike trains propagate in the spiking neural network, original input x D
Œx1; : : : ; xN � should be mapped to spike trains X.t/ D ŒX1.t/; : : : ;XN.t/� before
running the test samples where Xi.t/ is a binary train with only two states 0/1. For
the ith input channel, the spike train is made of Nt spike pulses with each pulse width
T0, which implies that the spike train lasts for the length of time Nt � T0. Suppose the
spike number of all input channels during the given time Nt � T0 is Ns, then the spike
count Ni of the ith channel is allocated as:

Ni D
Nt�1X
kD0

Xi.kT0/ D round

 
Ns � viPN

kD1 vk

!
(11.6)

which implies

Ni

Ns
D viPN

iD1 vi

(11.7)

Then the Ni spikes of the ith channel is randomly set on the Nt time intervals. For
an ideal mapping, we would like to have Ni << Nt to keep the spike sparsity on
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Table 11.1 Important
parameters of the SNN
system

Network size 784� 500� 500� 10
Number of input spike (Ns) 2000

Number of pulse interval (Nt) 128

Input pulse voltage (V) 1 V

The pulse width (T0) 1 ns

the time dimension. However, for the speed efficiency, we would like the running
time Nt � T0 to be short. Here, T0 is defined by the physical clock, i.e. the clock of
the pulse generator, which implies that we can only optimize Nt directly. Here, we
define the bit level of the input as

log

�
Nt

mean.Ni/

�
(11.8)

which evaluates the tradeoff between time efficiency and the accuracy performance.
We train the SNN with the size of 784 � 500 � 500 � 10. And the parameters

are shown in Table 11.1. The experiment results show that the recognition accuracy
of MNIST dataset is 95:4% on the CPU platform and 91:2% on the ideal RRAM-
based hardware implementation. The recognition performance decreases about 4%
because it is impossible to satisfy with Nt << Ns on the RRAM platform.

We show the results for recognition under different bit level quantization of
input signal and RRAM devices, together with RRAM process variation and input
signal fluctuation. The simulation results in Fig. 11.7a show that an 8-bit RRAM
device is able to realize a recognition accuracy of nearly 90%. The simulation
results in Fig. 11.7b show that the input signal above 6-bit level achieves satisfying
recognition accuracy (>85%). Based on the 8-bit RRAM result, different levels
of signal fluctuation are added on the 8-bit input signal. The result shown in
Fig. 11.7c demonstrates that the performance of accuracy just decreases 3% given
20% variation. Figure 11.7d shows that when RRAM device is made in 8-bit level
with the 6-bit level input, the performance does not decrease under 20% process
variation. The sparsity of the spike train leads to the system robustness, making it
insensitive to the input fluctuation and process variation.

The power consumption of the system is mainly contributed by three parts: the
crossbar, the comparator, and the RmemCmem leaky path. The simulation results show
that the power consumption is about 3:5mW on average. However, it takes Nt D 128

cycles with the physical clock T0 D 1 ns. Though input conversion from numeral
values to spike trains leads to about 100� clock rate decrease, the system is able
to complete the recognition task in real time (�1	s/sample), thanks to the short
latency of RRAM device.
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Fig. 11.7 Recognition accuracy under (a) different bit-level of RRAM devices, (b) different bit-
level of input module, and (c) different degrees of input signal fluctuation, (d) different degrees of
process variation of RRAM devices [30]

11.4.3 Discussion on How to Boost the Accuracy of SNN

The experiment results in the above subsections show that the recognition accuracy
will decay after transferring an ANN to an SNN. However, due to the ultra-high
integration density of the RRAM devices and the 0/1 based interfaces of SNN, SNN
tends to consume much less circuit area and power compared with ANN. This result
inspires us that we may integrate multiple SNNs with the same or even less circuit
area and power consumption of ANN, and combine these SNNs together to boost
the accuracy and robustness of the SNN system.

Previously, an ensemble method [31] is proposed to boosting the accuracy
of RRAM-based ANN systems, named SAAB (Serial Array Adaptive Boosting),
which is inspired by the AdaBoost method [32]. The basic idea of AdaBoost, which
is also its major advantage, is to train a series of learners, such as ANNs or SNNs,
sequentially, and every time we train a new learner, we try to “force” the new learner
to pay more attention to the “hard” samples incorrectly classified by previous trained
learners in the training set. The proposed technique can improve the accuracy of
ANN by up to 13.05% on average and ensure the system performance under noisy
conditions in approximate computation applications.

SAAB boost the computation accuracy at the cost of consuming more power and
circuit area. As SNN usually consumes much less area and power compared with the
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ANN, there is a chance to integrate multiple SNNs under the same circuit resource
limitation of ANN. And these SNNs can be boosted together by the similar idea
of SAAB. However, the inherent attributions of SNN systems should be considered
when designing the boosting algorithm. According to our observation, there are two
types of errors in the SNN-based classification tasks: (1) a traditional type: more
than one neuron in the output layer spikes and the neuron spiking the most is not the
target neuron; and (2) a special type of SNN: no neuron in the output layer spikes; It
is interesting to observe that most of the wrong trials are the special type and it can
be reduced slightly when increasing the input spike counts. We regard such samples
as the difficult classifying cases. When seeking for the possibility to make up the
performance loss after transferring ANN to SNN with a boosting-based method,
this problem should be considered.

11.5 Conclusion

In this chapter, we first introduce the background knowledge of SNN and metal-
oxide resistive switching random-access memory (RRAM). Then, we compare
different training algorithms of SNN for real-world applications, and demonstrate
that the Neural Sampling method is much more effective than other methods.
We also explore the performance and energy efficiency by building the SNN-
based energy efficient system for real time classification with RRAM devices. We
implement different training algorithms of SNN, including Spiking Time Dependent
Plasticity (STDP) and Neural Sampling method. Our RRAM-based SNN systems
for these two training algorithms show good power efficiency and recognition
performance on real-time classification tasks, e.g., the MNIST digit recognition.
Finally, we discuss a possible direction to further improve the classification accuracy
by boosting multiple SNNs.

However, there are still many challenges remaining in this spiking neural network
structure. For example, the encoding mechanism from original data to spiking is
not quite clear. It perhaps has a huge effect on system performance and power
efficiency. Thus, how to design a proper encoding mechanism is one possible
method of improving the performance of the system. In addition, the non-ideal
circuit condition (e.g., the interconnection effect, the input variation) should be
considered for future RRAM-based system design.

Acknowledgements This work was supported by 973 project 2013CB329000, National Science
and Technology Major Project (2011ZX03003-003-01, 2013ZX03003013-003) and National
Natural Science Foundation of China (Nos. 61373026, 61261160501, 61271269), and Tsinghua
University Initiative Scientific Research Program. And we gratefully acknowledge the support
from Prof. Shimeng Yu with the help of RRAM model.



258 Y. Wang et al.

References

1. L. Chang, Y.-K. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, T.-J. King, Extremely
scaled silicon nano-CMOS devices. Proc. IEEE 91(11), 1860–1873 (2003)

2. W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM
SIGARCH Comput. Arch. News 23(1), 20–24 (1995)

3. W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural
Netw. 10(9), 1659–1671 (1997)

4. T. Masquelier, S.J. Thorpe, Unsupervised learning of visual features through spike timing
dependent plasticity. PLoS Comput. Biol. 3(2), e31 (2007)

5. D. Querlioz, W. Zhao, P. Dollfus, J. Klein, O. Bichler, C. Gamrat, Bioinspired networks
with nanoscale memristive devices that combine the unsupervised and supervised learn-
ing approaches, in 2012 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH) (IEEE, 2012), pp. 203–210

6. P.A. Merolla, J.V. Arthur, R. Alvarezicaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson,
N. Imam, C. Guo, Y. Nakamura et al., A million spiking-neuron integrated circuit with a
scalable communication network and interface, Science 345(6197), 668–673 (2014)

7. B. Govoreanu, G.S. Kar, Y. Chen, V. Paraschiv, 10�10 nm2 HF/HFOx crossbar resistive ram
with excellent performance, reliability and low-energy operation, Electron Devices Meeting
IEDM Technical Digest. International (2011), pp. 31.6.1–31.6.4

8. B. Li, Y. Shan, M. Hu, Y. Wang, Memristor-based approximated computation, in IEEE
International Symposium on Low Power Electronics and Design (2013), pp. 242–247

9. T. Tang, R. Luo, B. Li, H. Li, Energy efficient spiking neural network design with RRAM
devices, in International Symposium on Integrated Circuits (2015), pp. 268–271

10. T. Tang, L. Xia, B. Li, R. Luo, Spiking neural network with RRAM: can we use it for real-world
application? in Design, Automation and Test in Europe (2015), pp. 860–865

11. R. Wang, T.J. Hamilton, J. Tapson, A. Van Schaik, An FPGA design framework for large-
scale spiking neural networks, in Proceedings - IEEE International Symposium on Circuits
and Systems (2014), pp. 457–460

12. E. Painkras, L.A. Plana, J. Garside, S. Temple, Spinnaker: A 1-w 18-core system-on-chip
for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48(8), 1943–1953
(2013)

13. S.K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. Arthur,
A. Cassidy, M. Flickner, P. Merolla, Cognitive computing systems: algorithms and applications
for networks of neurosynaptic cores, in The 2013 International Joint Conference on Neural
Networks (IJCNN) (2013), pp. 1–10

14. D. Kuzum, R.G. Jeyasingh, B. Lee, H.-S.P. Wong, Nanoelectronic programmable synapses
based on phase change materials for brain-inspired computing. Nano Letters 12(5), 2179–2186
(2011)

15. Y. Lecun, C. Cortes, The MNIST database of handwritten digits (1998)
16. E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw.

15(5), 1063–1070 (2004)
17. G. Indiveri, A low-power adaptive integrate-and-fire neuron circuit, in ISCAS (4) (2003),

pp. 820–823
18. S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.-S.P. Wong, Stochastic learning in oxide binary

synaptic device for neuromorphic computing. Front. Neurosci. 7,186 (2013)
19. M. Hu, H. Li, Q. Wu, G.S. Rose, Hardware realization of BSB recall function using memristor

crossbar arrays, in Proceedings of the 49th Annual Design Automation Conference (ACM,
2012), pp. 498–503

20. P. Gu, B. Li, T. Tang, S. Yu, Y. Wang, H. Yang, Technological exploration of rram crossbar
array for matrix-vector multiplication, in ASP-DAC (2015)

21. B. Li, Y. Wang, Y. Chen, H.H. Li, H. Yang, Ice: inline calibration for memristor crossbar-based
computing engine, in Proceedings of the conference on Design, Automation & Test in Europe
(European Design and Automation Association, 2014), p. 184



11 Energy Efficient Spiking Neural Network Design with RRAM Devices 259

22. S. Song, K.D. Miller, L.F. Abbott, Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

23. C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. (TIST) 2(3), 27 (2011)

24. F. Ponulak, ReSuMe - new supervised learning method for spiking neural networks, Institute
of Control and Information Engineering, Poznan University of Technology. Available online
at: http://d1.cie.put.poznan.pl/~fp/research.html (2005)

25. J. Hu, H. Tang, K.C. Tan, H. Li, L. Shi, A spike-timing-based integrated model for pattern
recognition. Neural Comput. 25(2), 450–472 (2013)

26. P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, M. Pfeiffer, Real-time classification and sensor
fusion with a spiking deep belief network. Neuromorphic Eng. Syst. Appl 61, 1–10 (2015)

27. T. Tang, R. Luo, B. Li, H. Li, Y. Wang, H. Yang, Energy efficient spiking neural network
design with RRAM devices, in 14th International Symposium on Integrated Circuits (ISIC)
(IEEE, 2014), pp. 268–271

28. E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, G. Cauwenberghs, Event-driven contrastive
divergence for spiking neuromorphic systems (2013). Preprint, arXiv:1311.0966

29. P.U. Diehl, D. Neil, J. Binas, M. Cook, Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing, in International Joint Conference on Neural Networks
(2015)

30. T. Tang, L. Xia, B. Li, R. Luo, Y. Wang, Y. Chen, H. Yang, Spiking neural network with RRAM:
can we use it for real-world application? In Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition (EDA Consortium, 2015), pp. 860–865

31. B. Li, L. Xia, P. Gu, Y. Wang, H. Yang, Merging the interface: power, area and accuracy co-
optimization for RRAM crossbar-based mixed-signal computing system, in Design Automation
Conference (2015), pp. 1–6

32. Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms (CRC Press, 2012)

http://d1. cie. put. poznan. pl/~{} fp/research.html


Chapter 12
Efficient Neuromorphic Systems and Emerging
Technologies: Prospects and Perspectives

Abhronil Sengupta, Aayush Ankit, and Kaushik Roy

12.1 Introduction

Deep Learning Networks (DLN) are inspired from the hierarchical organization of
neurons and synapses in the human brain and are an important class of machine
learning algorithms. Since its inception, it has been widely adopted in multifarious
recognition tasks. Lately, DLNs have redefined the state of the art for many
cognitive applications including computer vision [1], speech recognition [2], and
natural language processing [2] across various application domains. For instance,
Baidu’s Deep Speech 2 recently demonstrated English and Mandarin language
recognition at par to human capabilities. Google’s DeepMind recently defeated
AlphaGo world champion. Tesla is using deep learning powered vision, sonar and
radar processing in their self-driving systems. Also, deep learning is being adopted
for ever-more tasks, for example, face recognition by Facebook, data analytics by
IBM, recommender systems by Amazon, and so on.

DLN performance (accuracy) is a strong function of the network scale. Hence,
the network size has been commensurate with the target accuracy and the problem
complexity. LeCun et al. used Convolutional Neural Networks (CNN) for handwrit-
ten digits classification using 1 million parameters in 1998 [3]. In 2012, Krizhevsky
et al. used a CNN with 60 million parameters for object classification having 1000
classes [4]. Deepface used 120 million parameters to classify human faces [5]. In
a nutshell, large DLN models are preferred by Machine Learning practitioners and
this necessitates developing efficient systems to power DLNs.

Lately, conventional computing systems which are primarily based on von-
Neumann computing model have been extensively used in cognitive applications
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and have shown fascinating results across many domains. Majority of the current
DLN implementations are done on Graphic Processing Units (GPUs) owing to their
ability to deal with intensive parallel computations. For example, Tesla’s DLNs
uses in-vehicle GPU based supercomputers. Facebook is using GPUs to power its
machine learning algorithms. It seems appealing that systems based on conventional
computing styles like GPUs are addressing the computational needs of DLNs and
hence seems to be an ideal choice for accelerating DLN for cognitive applications.
The observation and the inference are correct but this simple treatment of facts veil
the skyrocketed power and memory requirements driving the modern computing
systems which is many orders higher than human brain.

There has been recent research to work around the memory bottlenecks in GPUs
by using techniques such as data batching and virtualized DLNs [6]. However,
the latency requirements can be unsuitable for real-time applications. Previous
works have also used specialized hardware for DLN acceleration [7]. This work
underscores the memory access associated power requirements and shows that
the DRAM accesses account for significant power consumption. Consequently, the
DLN performance on conventional computing systems is presently limited by the
memory and power bottlenecks. Hence, with complex, bigger, and deeper networks
that can achieve brain-like cognitive capabilities being developed, there is a dire
need to develop brain-like energy-efficient architectures that can drive them.

These power and memory bottlenecks in the conventional computing systems
are primarily a consequence of the mismatch between the conventional com-
puting systems and computing patterns involved in these cognitive applications.
MOS transistors, being on/off switches, have served as an ideal match to the
abstractions of switching functions and Boolean logic, which (together with von
Neumann architecture) form the underpinnings of modern computing. While cur-
rent computing platforms are well suited to applications that involve arithmetic
computations and storing and retrieving large amounts of data, they are known to
be highly inefficient—requiring orders of magnitude more energy consumption—
for performing tasks that humans routinely perform, such as visual recognition,
semantic analysis, and reasoning. This inefficiency stems from the realization
of neuron and synapse functionality by translating the underlying mathematical
functions to Boolean logic gates and subsequently to transistors, resulting in
hundreds of transistors to mimic a single neuron/synapses. In this chapter we will
review typical von-Neumann computing based CMOS architectures used for DLN
implementations and demonstrate the manner in which spintronic crossbar array
based “in-memory” computing platforms can lead to more compact and energy-
efficient implementations.

12.2 Neural Network Basics

DLNs are feed-forward networks where the computational units—the neurons are
connected to neurons in other layers through programmable connections termed
as synapses. Figure 12.1a shows an NN with one hidden layer. DLNs are usually



12 Efficient Neuromorphic Systems: Prospects and Perspectives 263

Fig. 12.1 (a) Feedforward NN consists of neurons in one layer connected to another layer through
programmable synaptic weights, (b) IF spiking neuron computing model: x is the input spike train
and v is the neuron membrane potential. The neuron generates an output spike y whenever v crosses
the threshold voltage vth

characterized by multiple such hidden layers. Depending on the type of connectivity,
a DLN can either be fully connected (Multi-Layer Perceptron) or have sparse
connectivity (Convolutional Neural Network). The net input a neuron receives is the
weighted summation of its inputs. Thus, a neuron computation involves a weight
fetch from a memory (SRAM) followed by a multiply-and-accumulate (MAC)
operation for every input it receives. Once, all the inputs have been processed for
the above-mentioned operations, a non-linear computation is done to compute the
neuron’s output activation potential. This output then acts as the input for the next
layer neurons.
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DLN architectures discussed above have achieved record-breaking results for
many classification problems but the substantial computational cost of training
and running deep networks have motivated the research for the more biologically
plausible NN version called Spiking Neural Networks (SNN). In recent years, deep
SNNs have become an increasingly active field of research which is primarily
motivated by the extremely energy-efficient cognitive processing in human brain.
Driven by brain-like event-driven computations, SNNs involve data processing in
an input-triggered fashion. Unlike conventional ANNs where a vector is given at the
input layer once and the corresponding output is produced after processing through
several layers of the network, SNNs require the input to be encoded as a spike train.
At a particular instant, each spike is propagated through the layers of the network
while the neurons accumulate the spikes over time causing the output neuron to fire
or spike. Thus, the spike information is used to communicate between the layers
of the network. Figure 12.1b describes the functionality of an Integrate-Fire (IF)
spiking neuron. Note that more bio-plausible models also include a leak-term in the
membrane potential which causes it to decay in the absence of spikes.

12.3 General Purpose Computing Architecture

In this section we describe a general purpose architecture to implement SNNs. It
involves an SRAM which stores the SNN weights and inputs and a computation
core to perform the neuronal computations. Figure 12.2 shows the block diagram
of the architecture and the logical dataflow between the constituent blocks. The
SRAM memory stores the input data (image pixel values and weights) for the trained
SNN. Efficient data movement is achieved by buffering the input data—image data
and weight data in FIFOs. Image and weight data are read from SRAM memory
and processed by an array of Neuron Units (NUs). The NUs keep accumulating
weights depending on the input spikes, until all the inputs for a particular neuron
are processed. After this, the NUs produce the output spikes which are written back
to the SRAM.

Here we discuss the logical dataflow involved between the different components
for a time-step in SNN computation. Input data read from the SRAM is stored
into the Input FIFO to stream across the NU array as all the neurons in a layer
share the same inputs. Corresponding to the input data, weight data are fetched
from the SRAM and stored into the weight FIFOs for temporal reuse by the NUs.
Each NU receives the weights from its dedicated weight FIFO. The input FIFO
is flushed and new set of data are read from SRAM and put in the Input FIFO,
after the input processing is finished. Similarly, the weight FIFO gets flushed, new
weights read from SRAM and stored into weight FIFO, once the weight processing
finishes. When all the computations for the neurons currently scheduled into the
NUs are done, the next set of neurons are scheduled into the NUs, corresponding
weights read from SRAM into their respective weight FIFOs. Each NU performs
“accumulate-and-fire” operation. The NUs are connected in a serial fashion to allow
data streaming from Input FIFO to the rightmost NU.



12 Efficient Neuromorphic Systems: Prospects and Perspectives 265

FIFO FIFO FIFO FIFO FIFO
F

IF
O

C
O

N
T

R
O

L
R

E
G

IS
T

E
S

NU NU NU NU NU

to SRAM MEMORY

SRAM 
MEMORY

F
IF

O

Fig. 12.2 General purpose computing architecture—logical dataflow and the constituent blocks

The neuron computations are done layer wise—read the inputs and weights
from SRAM, compute all the outputs corresponding to the first layer, store back
the outputs in SRAM and proceed to the next layer. Within a layer neurons are
temporally scheduled in the NUs. First, the output computations for the first set
of ‘N’ neurons are done, then the next set of ‘N’ neurons from the same layer are
scheduled in the NU and this goes on until all the neurons in the current layer have
been evaluated. Hence, we temporally map different layers of the neural network
and different neurons within a layer to compute the entire neural network for a
given input data.

For a typical fully connected network, the memory component of energy
consumption (access + leakage) on this architecture is more than 50% on an
average across various computing workloads. As discussed before, the general
purpose computing frameworks have separate processing (core) and data storage
components (SRAM). The volume of data to process has drastically increased with
increasing DLN size. The DLN size has been ever-increasing to get better accuracy
and solve more complex recognition tasks. Consequently, data movement between
core and memory has been increasing and is becoming one of the most critical
performance and energy bottlenecks in these computing systems. On one hand,
this limits the research community to use sub-optimal architectures for solving
the recognition problems and on the other hand this impedes their deployment on
mobile computing platforms which are energy limited.

The size of the SRAM needed scales directly with the network size and the net-
work size is a strong function of target accuracy and problem complexity. AlexNet
[4], for instance, contains 5 convolutional layers with 2 fully connected layers and
uses 2.3 million weights. The more recent VGG-16 [1] contains 16 convolution
layers and 3 fully connected layers and uses 14.7 million weights. However, larger
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memories lead to increased power consumption due to increased memory access and
leakage power and the memory component of energy (access + leakage) is typically
higher than the computation component. Eventually, the memory-driven limitations
affect the size of DLN that can be used. To work around these bottlenecks, Machine
Learning practitioners must use less desirable DLN architectures (e.g., smaller
number of layers and neurons). Additionally, memory imposed bandwidth also
limits the number of NUs one can have in the NU-array for neuronal computations.
Hence it is imperative to develop innovative architectures which addresses the rigid
memory limitations of general purpose frameworks used towards DLN acceleration.

12.4 Underlying Device Physics

Before we present “In-Memory” computing architectures based on spintronic
technologies that can potentially alleviate the memory-bandwidth limitations of
conventional CMOS based neuromorphic architectures, let us discuss the underlying
device physics of such emerging technologies that can provide a direct mapping to
synaptic and neural functionalities.

Let us first illustrate the device structure and principle of operation of a Magnetic
Tunnel Junction (MTJ: Fig. 12.3a) [8]. The MTJ consists of two ferromagnets (FMs)
separated by a tunneling oxide barrier (MgO). The magnetization direction of one
of the layers (denoted by “pinned” layer, PL) is magnetically hardened so that it
serves as the reference layer. The magnetization of the “free” layer (FL), can be
manipulated by an input charge current. The MTJ is characterized by two stable
resistance states, namely the low-resistance parallel (P) configuration (“free” and
“pinned” layer magnetizations are parallel) and the high-resistance anti-parallel
(AP) configuration (“free” and “pinned” layer magnetizations are anti-parallel).
The MTJ can be switched between the two stable states by charge current flow
through the stack due to spin-transfer torque (STT) effect generated by charge
current flowing through the “pinned” layer [9]. Recent experiments have shown
that such an MTJ structure with in-plane magnetic anisotropy (IMA) can also be
switched by a charge current flowing through a heavy-metal (HM) underlayer due to
the injection of spins (whose polarization is transverse to the direction of both spin
and charge current) at the FL-HM interface (assuming spin-Hall effect [10] to be
the dominant underlying physical phenomenon). Such HM induced MTJ switching
has been proven to be more energy efficient than STT induced switching [11, 12].
Further, it opens up the possibility of device structures that can exhibit decoupled
“write” and “read” current paths, as will be explained in later sections. It is also
worth noting here that at non-zero temperature, the magnetization dynamics of the
MTJ is characterized by thermal noise, which can be accounted for by an additional
thermal field. In the presence of thermal noise, the switching behavior of the MTJ
due to the flow of a charge current through the “pinned” layer, during the “write”
cycle, is stochastic in nature and the probability of switching increases with increase
in the magnitude of input current [13].
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Fig. 12.3 (a) Magnetic tunnel junction consists of two nanomagnets separated by a spacer, (b)
spin-orbit torque induced domain wall motion due to charge current flowing through a heavy-metal
(HM) underlayer

In addition to monodomain magnets discussed above, we will also utilize
multi-domain magnets having a domain wall separating oppositely polarized mag-
netic domains. Recent experiments on magnetic nanostrips of Pt/CoFe/MgO and
Ta/CoFe/MgO have revealed high domain wall velocities due to charge current
densities that are two orders of magnitude lower than that achievable by con-
ventional spin-transfer torque (STT) [14, 15]. Additionally, domain wall motion
was observed to be against the direction of electron flow (i.e., in the direction of
current flow) in multilayer structures with Pt as the underlayer, thereby suggesting
that current induced spin-orbit torque is the main mechanism of domain wall
motion in such multilayer structures (with negligible contribution from conventional
STT). In such magnetic heterostructures with high perpendicular magnetocrystalline
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anisotropy (PMA), spin orbit coupling and broken inversion symmetry leads to
the stabilization of homochiral domain walls through the Dzyaloshinskii-Moriya
exchange interaction (DMI). Such interfacial DMI at the FM-HM interface leads to
the formation of a Néel domain wall with specific chirality. The DMI strength in
such structures with HM underlayers has been observed to be sufficiently strong
to impose a Néel wall configuration in FMs where conventional magnetostatics
would have yielded a Bloch configuration [14, 15]. As shown in Fig. 12.3b, when
an in-plane charge current is injected through the HM, a transverse spin-current is
generated due to deflection of opposite spin-polarizations on the top and bottom
surfaces of the HM due to spin-Hall effect. The accumulated spins at the FM-HM
interface leads to DMI stabilized Néel domain wall motion [14, 15]. The direction
of domain wall motion is in the direction of charge current flow and the final
magnetization of the ferromagnet is given by the cross-product of the direction of
injected spins at the FM-HM interface and the magnetization direction of the FM at
the domain wall location.

12.5 Proposals for Spintronic Neuromimetic Devices

The building blocks of the brain (neurons and synapses), as well as artificial models
thereof, are fundamentally different from the switching functions and Boolean logic
gates that CMOS transistors naturally realize. The significant disparity between
the brain and corresponding CMOS implementations results in area and power
consumptions that are orders of magnitude higher than that involved in the brain. For
example, almost 20 transistors would be required to implement the functionality of a
single analog spiking neuron [16]. On the other hand, digital neurons would require
area and power hungry multipliers and adders to compute the weighted summation
of inputs. The situation is even worse for a synapse, where storing even a single-bit
weight would require a 6-T/8-T SRAM cell [17]. To realize networks comprising
billions of neurons and connectivity levels exceeding 10,000 synapses per neuron,
nanoelectronic devices that can more naturally and efficiently mimic synaptic and
neural functionalities are imperative.

Recent discoveries in spintronics have brought forward a set of device phenom-
ena that can provide a direct mapping of neuronal and synaptic computations, laying
the foundation for a quantum leap in the efficiency of neuromorphic computing.
Consider the computational units in an ANN. Inputs to the neuron get multiplied
by stored synaptic weights and are subsequently summed up and passed through
a thresholding function. As shown in Fig. 12.4, the synaptic functionality can be
implemented using a device structure composed of a Magnetic Tunnel Junction
(MTJ) where the “free” layer is a domain wall motion based magnetic strip (DWM).
A DWM is a ferromagnet with oppositely polarized magnetic domains separated by
a transition region termed as domain wall (DW). In the device shown in Fig. 12.4, the
position of the domain wall encodes the conductance of the MTJ, which represents
the synaptic weight. Therefore, the read current represents the product of the input
(read voltage) and synaptic weight (conductance).
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Fig. 12.4 Magnetic bilayer structure (DW-MTJ) as a spintronic synapse

As mentioned in the previous section, recent experiments on ferromagnet-heavy
metal (HM) bilayers have provided a promising mechanism for efficient control
of domain wall (DW) motion using current densities that can be �100� lower
than conventional spin-transfer torque driven DW motion [18]. Inspired by this
development, the proposed device (shown in Fig. 12.4) is a magnetic heterostructure
that also includes a Heavy Metal (HM) where a current flowing through the HM can
be used for deterministic control of DW motion and hence, the MTJ conductance
[18]. We will refer to this device as DW-MTJ for the rest of this chapter and
demonstrate its application to realizing neural and synaptic units.

Let us next consider the neuron computation in ANNs, which involves sum-
mation of synaptic inputs and performing a thresholding operation on the result.
Figure 12.5 [18] shows how the DW-MTJ device discussed above, together with
a reference MTJ and a single transistor, can be used to realize this computation.
The DW-MTJ together with the Reference MTJ (Fig. 12.5) forms a resistive divider
network. Input synaptic current is fed into the HM layer, moves the domain wall,
and changes the MTJ conductance, thereby causing a variation in the output current
provided by the transistor, which represents the neuron output.

A more biologically realistic neural computing model in comparison to the
artificial neuron is the spiking neuron model. Such a neuron receives input spikes
and generates an output spike only when its membrane potential crosses a threshold.
The neuron’s membrane potential increases on the arrival of an input spike and
leaks back to its resting potential in the absence of a spike. Interestingly, the
magnetization dynamics of an MTJ offers a direct mapping to the functionality
of such spiking neurons (Fig. 12.6). Incoming synaptic current flowing from the
“free” to the “pinned” layer gets spin-polarized by the “pinned” layer and causes
the “free” layer magnetization to be oriented parallel to the “pinned” layer. As
shown in Fig. 12.6, when input spikes are transmitted to the MTJ, the magnetization
or the conductance of the MTJ starts “integrating.” However, upon removal of the
stimulus the magnetization starts “leaking” back. The MTJ conductance increases
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Fig. 12.5 Spintronic device (DW-MTJ) as an artificial neuron

by a specific amount for each spike and finally switches to the parallel (high-
conductance) state at the end of the fifth input spike (Fig. 12.6) (analogous to the
“spiking” of a biological neuron). Such a functionality can be exploited to build
MTJ based spiking neurons. Further, thermal noise inherent in such devices can
be exploited to perform probabilistic inference with stochastic spiking neurons
[19, 20]. The MTJ switches probabilistically depending on the magnitude of the
input synaptic current (Fig. 12.7). HM induced MTJ switching can significantly
further improve the energy efficiency of this process.

12.6 Crossbar based “In-Memory” Computing Architecture

While the proposed spintronic devices realize the primitive functions required
to implement individual neurons and synapses, realizing a multi-layer network
where spin-neurons and synapses are cascaded requires hybrid circuits that involve
spin devices and a few CMOS transistors. Furthermore, to support the broad
range of neuromorphic applications, there is a need to design computing fabrics
that can realize networks of varying sizes and topologies, and can perform both
training/learning and evaluation. In doing so, it is critical to ensure that the intrinsic
efficiency of spin neurons and synapses is preserved at the system level.



12 Efficient Neuromorphic Systems: Prospects and Perspectives 271

Fig. 12.6 MTJ as a
leaky-integrate-fire spiking
neuron. The magnetization or
conductance integrates on
each spike and starts leaking
once the spike is removed
(a) Input current stimulus and
(b) MTJ conductance have
been shown as a function of
time

Note that the main computing kernel in a DLN is dot-product computation
between the inputs and corresponding synaptic weights for each neuron followed
by neuron processing. Figure 12.8 shows a possible design of such a spintronic
computing kernel that consists of a crossbar array of spin-synapses driving spin-
neurons. Input voltages applied across each row of the array result in the generation
of a weighted synaptic current (weights are spin-synapse conductances), which
is summed up and provided as input to each neuron along the column. CMOS
transistors operate as axons (gate voltage is modulated by a resistive divider network
consisting of a reference MTJ and the DW-MTJ). Note that the proposed processing
unit can be cascaded (the drain of each output transistor drives a row of the next
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Fig. 12.7 (a) Probabilistic
neural inference can be
performed by spin-Hall effect
induced MTJ switching in
presence of thermal noise, (b)
variation of MTJ switching
probability with magnitude of
input current for different
pulse width durations

crossbar array). Hence, this unit can be used as a building block to construct scalable
neuromorphic architectures and assists in implementing the dot-product computing
kernel that is an essential component of such neuromimetic algorithms.

Let us analyze the spin-based ANN design shown in Fig. 12.8 and determine its
advantages over a CMOS based implementation. In order to provide an intuitive
insight to the energy efficiency of the proposed system, let us consider a “spin-
neuron” with “free layer” dimensions of 80 nm � 20 nm. Micromagnetic simulations
indicate that a current of �10.6	A can displace the domain wall between the two
extreme edges within 2 ns leading to a maximum energy consumption of 0:1 fJ
(including energy consumption during neuron “reset” operation). This is almost two
orders of magnitude lower in comparison to analog (�700 fJ) and digital (�832.6 fJ)
CMOS neuron designs in 45 nm technology [18]. Additionally, the synaptic resistive
crossbar array can be operated at ultra-low voltages of �100 mV due to the low
current requirements of the spin-neurons. In contrast, the crossbar arrays have to be
operated at a much higher voltage (�500 mV) to drive analog CMOS neurons. This
results in power (V2=R) savings by a factor �25� per synapse and thereby helps in
reducing the overall power consumption of the neuromorphic system.
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12.7 Conclusions

In this chapter, we provided a vision for “in-memory computing” architectures
built on spintronic crossbars for neuromorphic computations. Crossbars alleviate
the memory-bandwidth associated performance limitations in DLN acceleration.
Additionally, it also removes the energy consumption associated with continuous
data transfer between a separate memory and the computation core which is
a dominant component of energy consumption in such data-intensive applica-
tions. Inner-product computing kernels based on spintronic crossbar arrays driving
magneto-metallic spintronic neurons can pave the way for compact and energy-
efficient neuromorphic architectures.
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Chapter 13
In-Memory Data Compression Using ReRAMs

Debjyoti Bhattacharjee and Anupam Chattopadhyay

The fast decline of Moore’s law is paving the way for a new set of emerging
technology devices that offer improved reliability, performance, endurance, and
energy-efficiency. Resistive Random Access Memories (ReRAMs) have emerged
as one of the most promising technologies for logic and memory applications [1].
ReRAMs are non-volatile, ultra compact memories with low leakage power and
high endurance. Large passive crossbar arrays can be realized by means of devices
such as a select device in series to a switch (1S1R) or a Complementary Resistive
Switch (CRS), to prevent parasitic currents [2]. 1S1R-based devices offer non-
destructive readout, unlike CRS-based devices in which readouts are destructive,
which makes 1S1R devices suitable for implementation of logic.

Internet-of-things (IoT) is an umbrella term encompassing a wide range of
applications and diverse devices, that generally share two common characteristics—
connectivity and low energy requirements. Irrespective of the specific network
topology, bit rates and communication standards, a considerable amount of energy
budget of the IoT nodes is allocated for communication. The energy consumed by
the communication sub-system is more or less directly proportional to the amount of
data transmitted or received. Therefore, it is of paramount importance to compress
the data before transmission.

LZ77 is a lossless compression technique, introduced by Abraham Lempel and
Jacob Ziv [3]. LZ77 along with LZ78 forms the basis for multiple variations such as
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LZW, LZSS, LZMA, and others. In addition, it forms the core of several ubiquitous
compression schemes such as GIF, DEFLATE, etc. LZ77 was awarded as an IEEE
Milestone in 2004.

This chapter is devoted to the introduction of an in-memory computing architec-
ture using ReRAM crossbar arrays and how various functions can be realized using
the architecture. We demonstrate a low-area implementation of LZ77 compression
algorithm using the ReRAM based in-memory architecture. In Sect. 13.2, the
ReRAM based VLIW Architecture for in-Memory comPuting (ReVAMP) archi-
tecture is introduced. In Sects. 13.2.1 and 13.2.2, realization of identity comparator
and priority multiplexer is presented using ReVAMP. In Sect. 13.3, we present the
details of compression using LZ77 algorithm on ReVAMP and the performance
of the proposed implementation is analyzed. Section 13.5 presents a review of the
existing works in the domain of in-memory computing using ReRAMs.

13.1 LZ77 Compression Algorithm

LZ77 is a lossless compression algorithm that forms the basis of multiple other com-
pression algorithms [3]. In LZ77, compression is achieved by replacing repeated
occurrences of data with reference to a single copy of that data that existed earlier
in the uncompressed data stream. Such a match is encoded as a length-distance
pair of numbers. This implies that the next length number of characters match the
characters at distance characters behind it in the uncompressed scheme. The term
length is also referred to as offset. The pseudo-code for LZ77 compression is shown
in Algorithm 1.

LZ77 uses a sliding window data structure to find matches. The sliding window
is divided into two parts, namely the Look-ahead buffer and the Dictionary buffer.
The Dictionary buffer stores the most recent uncompressed data stream that is used
to look for matches. The Look-ahead buffer contains the uncompressed data stream
that is yet to be encoded. The larger the sliding window is, the encoder searches for
finding longer matches, but it adds to the overhead of higher number of comparisons
required for finding the longest prefix. Determining the longest prefix is the major

Algorithm 1 LZ77 compression algorithm pseudo-code

1 Fill Look-ahead buffer from input ;
2 while Look-ahead buffer is not empty do
3 Find longest prefix p of view starting in Look-ahead buffer;
4 offset := position of p in window;
5 length := number of characters in p;
6 X := first char after p in view;
7 Output (offset, length, X);
8 Add length+1 chars to the Look-ahead buffer;
9 end
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Table 13.1 LZ77 compression of string aacaacbcabaaac with dictionary buffer size 8 and Look-
ahead buffer size 6

Dictionary Look-ahead
Sl#

8 7 6 5 4 3 2 1 0 1 2 3 4 5
Output

1 a a c a a c (0,0,a)

2 a a c a a c b (1,1,c)

3 a a c a a c b c a (3,3,b)

4 a a c a a c b c a b a a a (5,2,b)

5 c a a c b c a b a a a c (7,2,a)

6 c b c a b a a a c (8,1,$)

computation in the LZ77 algorithm. To determine individual match in characters
in Look-ahead buffer and Dictionary buffer, identity comparator is needed. For
determining the correct values of offset, length and X, priority multiplexers would
be needed, with the priority based on the length of the match.

Example 1 To facilitate understanding of the algorithm, we present an example for
encoding the string aacaacbcabaaac. Table 13.1 demonstrates the encoding of the
string using a dictionary buffer size of 8 and a Look-ahead buffer size of 6. The
encoded output is shown in the last column of the table, is of the form (distance,
length, next character X). It should be noted that the distance is relative to the
right edge of the dictionary buffer. The buffers operate on the principle of a sliding
window, i.e. the data stream to be compressed is pushed left into the buffer. As noted
in the algorithm, the shift is equal to the length of the match found in the dictionary,
and a further position.

Initially, the dictionary buffer is empty and there are no matches, hence (0,0,a)
is the output. The next character a in the Look-ahead buffer is a match with one
character at distance 1 in the dictionary buffer, and hence the output is (1,1,c). At
distance 3, three characters match the left most three characters of the Look-ahead
buffer, and thus the output is (3,3,b). In the following step, two characters at distance
5 match the two left-most character of Look-ahead buffer, so the output is (5,2,b). In
this step, two characters match and the output is (7,2,a). In the last step, the output
is (8,1,$) as the last character c of the uncompressed string matches and to signify
the end of string, $ symbol is used.

13.2 ReVAMP Architecture for In-Memory Computing

In this section, we explain the general purpose in-memory computing platform,
ReVAMP, introduced in [4]. We also demonstrate how comparator and priority
multiplexer can be realized using instructions of ReVAMP.

The ReVAMP architecture, presented in Fig. 13.1, utilizes two ReRAM crossbar
memories with light weight peripheral circuitry. A ReRAM crossbar memory
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Fig. 13.1 ReVAMP architecture [4]

Fig. 13.2 ReVAMP
instruction set

Read wl

Apply wl s ws wb (v valwD−1) . . . (v val0)

consists of multiple 1S1R ReRAM devices [5], arranged in the form of a cross-
bar [6]. Like conventional RAM arrays, ReRAM memories are accessed as wD-bit
wide words.

One of the memory arrays is used as instruction memory (IM). The IM is
used as regular memory, with the program counter (PC) being used to access
the next instruction. The other array is used as data storage and computation
memory (DCM). In the DCM, in-memory computation using ReRAM devices takes
place.

Each ReRAM device has two input terminals, namely the wordline wl and
bitline bl. The internal resistive state Z of the ReRAM acts as a third input and
stored bit. The next state of the device Zn can be expressed as Boolean majority
function with three inputs, with the bitline input inverted, as shown in the following
equation.

Zn D M3.Z;wl; bl/

This forms the fundamental logic operation that can be realized using ReRAM
devices. Using the intrinsic function Zn, inversion operation can be realized. Since
majority and inversion operation form a functionally complete set, any Boolean
function can be realized using the Zn.

The ReVAMP architecture has a three-stage pipeline with Instruction Fetch (IF),
Instruction Decode (ID), and Execute (EX) stages. The ReVAMP architecture can
be programmed using two instructions—Read and Apply, with the format shown in
Fig. 13.2.
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Fig. 13.3 A ReRAM
crossbar array with two
wordlines and three bitlines

w1 s10 s11 s12

w0 s20 s21 s22

b0 b1 b2

Read instruction reads a specified word, wl from the DCM and stores it in the
Data Memory Register (DMR). The read out word, available in the DMR, can be
used as input by the next instruction.

The Apply instruction is used for computation in the DCM. The address wl
specifies the word in the DCM that will be computed upon. A bit flag s chooses
whether the inputs will be from primary input register (PIR) or DMR. Two-bit flag
ws is used to select the wordline input—11 selects ‘1’, 10 selects ‘0’, 00 selects wb
bit within the chosen data source for use as wordline input while 01 is an invalid
value for ws. Pairs .v; val/ are used to specify individual bitline inputs. Bit flag v
indicates if the input is NOP or a valid input. Similar to wb, bits val specifies the bit
within the chosen data source for use as bitline input.

We introduce the notations used for the implementation of the logic operations on
ReRAM crossbars. Figure 13.3 shows a ReRAM array with two wordlines and three
bitlines. Input w1 and w0 are the wordline inputs while b2, b1, and b0 are the bitline
inputs. The variable sij represents the internal states of device at wordline i and
bitline j. Input ‘1’, ‘0’, and 0 represent V/2, �V/2, and GND, respectively. From the
perspective of logic, inputs ‘1’ and ‘0’ represent Boolean logic 1 and 0, respectively,
while input 0 represents no-operation. In a readout phase, the presence of a 5	A
current is considered as Boolean logic 1 while absence of current is interpreted as
Boolean logic 0.

Figure 13.4 shows how a 32-bit word can be loaded into the DCM using the
ReVAMP instructions. The word w31W0, available in the PIR, is loaded into the DCM
by using an Apply instruction. This loads the words in inverted form in word i,
as shown in Fig. 13.4a. In the next cycle, the inverted word is read out from word
i using Read instruction, which stores it in the DMR. Another Apply instruction
is used to write the word in non-inverted form to word j, by selecting writing the
contents of the DMR as shown in Fig. 13.4c. The reader should understand the
equivalence of the ReVAMP instructions and the representation of the crossbar
operations, since these notations will be used interchangeably.

Figure 13.5 presents realization of basic Boolean functions. Figure 13.5a shows
how an array can be reset to 0, irrespective of its contents. This is true because
M3.x; 0;:1/ D 0. To compute AND of two inputs, the first input is loaded into
the array and then the negated second input is applied to the bitlines with ‘0’ as
wordline input, because M3.0; a;:.:b// D a:b. Similarly, OR of two inputs can be
computed, by changing the wordline input to ‘1’, since M3.0; a;:.:b// D a C b.
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Fig. 13.4 Loading a word
into DCM (a) Load word in
inverted form, (b) Read out
inverted word and (c) Write
word in non-inverted form

0 0 ... 0

`1’ 0 0 ... 0

w31 w30 w0

0 0 ... 0

`1’ w31 w30 ... w0

0 0 0

`1’ 0 0 ... 0

w31 w30 ... w0

w31 w30 w0

w31 w30 w0

w31 w30 ... w0

(a) Load word in inverted form (b) Read out inverted word

(c)  Write word in non-inverted form

Fig. 13.5 Realization of
basic Boolean functions

(a) Reset (b) AND (c) OR
‘0’ x x ‘0’ a1 a0 ‘1’ a1.b1 a0.b0

‘1’ ‘1’ ¬b1 ¬b0 ¬b1 ¬b0

0 0 a1.b1 a0.b0 a1+b1 a0+b0

This concludes the description of the ReVAMP architecture and basics of logic
function realization using it. In the following subsections, we present the realization
for identity comparator and priority multiplexer, which are required for LZ77
compression.

13.2.1 Comparator Design

An identity comparator compares the value of the inputs and generates a HIGH
output only when both the inputs are identical, otherwise the output is LOW. An
identity comparator for 4-bit values can be represented by the following equation:

c4 D .a0 ˇ b0/:.a1 ˇ b1/:.a2 ˇ b2/:.a3 ˇ b3/ (13.1)

a ˇ b D a:b C a C b (13.2)

where ai and bi represent the ith bits of input data signals a and b, respectively. a
represents the negated value of Boolean variable a. Operators :, C, and ˇ represent
Boolean AND, OR, and XNOR operations, respectively. The XNOR operation can
be expressed in terms of AND and OR operations as shown in (13.2).

Without loss of generality, we demonstrate the implementation of identity
comparator using ReRAM arrays, for 4-bit inputs, as shown in Fig. 13.6. The grayed
wordline represents the read out word.

Step 1: Word a is read out and an inverted copy of the word is created.
Step 2: Similar to step 1, another copy of a is created.
Step 3: In this step, ai:bi is computed in the by reading out and applying b via
the bitlines and ‘0’ as wordline input, since M3.a; 0; bi/ D ai:bi.
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a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘1’ 0 0 0 0 a3 �b3 a2 �b2 a1 �b1 a0 �b0
0 0 0 0 ‘0’ a3+b3 a2+b2 a1+b1 a0+b0
a3 a2 a1 a0 ‘1’ ‘1’ ‘1’ ‘1’

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0
a3 a2 a1 a0 a3 �b3 a2 �b2 a1 �b1 a0 �b0

‘1’ 0 0 0 0 ‘1’ 0 0 0 0
a3 a2 a1 a0 a2 �b2 a0 �b0

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘0’ a3 a2 a1 a0 ‘0’ a3 �b3 a2 �b2 a1 �b1 a0 �b0
a3 a2 a1 a0 0 a2 �b2 0 a0 �b0
b3 b2 b1 b0 a2 �b2 a0 �b0

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0
a3.b3 a2.b2 a1.b1 a0.b0 ‘0’ (a3 �b3).(a2 �b2) a2 �b2 (a1 �b1).(a0 �b0) a0 �b0

‘1’ a3 a2 a1 a0 0 a2 �b2 0 a0 �b0
b3 b2 b1 b0 (a1 �b1).(a0 �b0)

a3 a2 a1 a0 a3 a2 a1 a0
b3 b2 b1 b0 b3 b2 b1 b0

‘0’ a3.b3 a2.b2 a1.b1 a0.b0 E4 a2 �b2 (a1 �b1).(a0 �b0) a0 �b0
a3+b3 a2+b2 a1+b1 a0+b0 0 a2 �b2 0 a0 �b0
a3+b3 a2+b2 a1+b1 a0+b0

Fig. 13.6 Four bit identity comparator realization

Step 4: ai C bi; 0 � i � 3 is computed in the by reading out and applying b via
the bitlines and ‘1’ as wordline input, since M3.ai; 1; bi/ D ai C bi.
Step 5: The intermediate term ai C bi is read out and ORed with corresponding
ai:bi to compute ai ˇ bi. This completes completion of XNOR computation. It
should be noted that as long as the number of bits in the word is less than wD,
the bitwise XNOR of the words a and b can be computed using fixed number of
steps.
Step 6: The word holding the intermediate results ai C bi is reset to 0.
Step 7: Now, the computed XNOR terms are combined together using an AND-
reduction tree, as shown in Fig. 13.7. XNOR terms a2 ˇ b2 and a0 ˇ b0 are read
out and stored in inverted forms.
Step 8: The inverted XNOR terms are read out and ANDed with the appropriate
ai ˇ bi terms.
Step 9–10: The last two steps are similar to Step 7–8 and compute the final
identity comparator result E4.
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Fig. 13.7 AND-reduction
tree for identity comparator a3  b3 a2  b2 a1  b1 a0  b0

AND

AND

AND

13.2.1.1 Analysis

Each step except Step 6 involves a read operation followed by a computation—
which implies a Read instruction followed by an Apply instruction and therefore
requires two cycles. For computation of the bit-wise XOR, ten cycles are required.
One cycle is required to reset the word holding the intermediate term. For the AND-
reduction tree, there are dlog2 ne levels, where n is the number of bits in the inputs.
Each level requires four cycles, therefore the reduction tree computation requires
4dlog2 ne cycles. Thus, an n-bit (n � wD) identity comparator would require 11 C
4dlog2 ne cycles to be realized on ReVAMP architecture.

13.2.2 Priority Multiplexer Design

A priority multiplexer selects from one of the n data signals, based on the n control
signals, which have a predefined priority. Basically, the priority multiplexer selects
input signal ak, if control signal sk is ‘1’ and none of the other control signals with
priority more than sk are ‘1’. If none of the select signals are ‘1’, then the output
is invalid. A 4-bit priority multiplexer is represented by the truth table in Fig. 13.8b
and the following equations.

p4 D s3:a3 C s3:s2:a2 C s3:s2:s1:a1 C s3:s2:s1:s0:a0 (13.3)

V D s0 C s1 C s2 C s3 (13.4)

where sj and ak represent the control and data signals, respectively. Priority of
control signal sj is greater than sk, if j < k. The output signal valid V is ‘1’ when the
output is valid, otherwise it is low.

We demonstrate how priority multiplexers for 4, 3, 2, and 1 input can be realized
simultaneously using ReRAMs, with the overall delay being determined by the
delay of the 4-input priority multiplexer computation. Let a, b, c, and d by the data
inputs and s1, s2, s3, and s4 be the select signals to the four priority multiplexers,
respectively. The initial steps of the computation is shown in Fig. 13.9. In Step 1,
the select signals are read out and an inverted copy is written back. In Step 2, the st

i

is ANDed with the appropriate data signal. From Steps 3–5, the st
i terms are ANDed
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s3s3s2

a0

a1

a2
a3

P4
4-

to
-1

(a)

s1ss1s0

s3 s2 s1 s0 P4 V

1 X X X a0 1

0 1 X X a1 1

0 0 1 X a2 1

0 0 0 1 a3 1

0 0 0 0 X 0

V

0(b)

Fig. 13.8 4-Input priority multiplexer. (a) Block diagram. (b) Truth table

with the appropriate intermediate AND terms. In Step 7, the wordline storing the
inverted select signals is reset. From Step 8 onwards, the final result of the priority
multiplexer Pn is computed by using an OR-reduction tree (similar to Fig. 13.7). To
compute the valid output V , another OR-reduction tree for the select signals would
be required.

In general, two cycles are required to compute and write the inverted select
signals. n steps are required to compute all the AND terms with each step involving
a Read and Apply instruction. The reset operation requires one cycle. Finally, the
OR-reduction tree requires 4dlog2 ne cycles, similar to the AND-reduction tree. For
the computation of the valid output signal, additional 4dlog2ne cycles would be
required. Therefore, an n-input priority multiplexer requires 3C2nC8dlog2ne cycles
to complete execution. For the specific case of 4-input priority multiplexer, 27 cycles
are required.

In the next section, we demonstrate how LZ77 compression can be realized using
logic operations on ReRAM. We will be required to use the comparator and priority
multiplexer designs introduced above for LZ77 compression.

13.3 LZ77 Compression Using ReVAMP

In this section, we present the implementation details of LZ77 on the ReVAMP
architecture. We assume word length wD of the ReVAMP architecture to be 32. For
the LZ77 compression, we assume each character to be 8-bits, since ASCII text
representation uses 8-bits. In addition, we consider the Dictionary buffer to hold
4-characters and Look-Ahead buffer to hold 5-character. Let the contents of the
Dictionary buffer and the Look-ahead buffer be as shown in Fig. 13.10.

The key computation in LZ77 is finding the longest prefix p of view starting in
Look-ahead buffer that is present in the dictionary buffer. Initially, the individual
characters are compared in the Look-ahead buffer and Dictionary buffer—sj

i is the
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Step 1

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
a3 a2 a1 a0 b3 b2 b1 c3 c2 d3

‘1’ 0 0 0 0 0 0 0 0 0 0

s13 s12 s11 s10 s13 s12 s11 s13 s12 s13

Step 2

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3 a2 a1 a0 b3 b2 b1 c3 c2 d3

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s13 s12 s11 s10 s23 s22 s21 s33 s32 s43

Step 3

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12 a1.s11 a0.s10 b3.s23 b2.s22 b1.s21 c3.s33 c2.s32 d3.s43

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s13 s13 s13 s23 s23 s33

Step 4

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12.s

1
3 a1.s11.s

1
3 a0.s10.s

1
3 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3 c3.s33 c2.s32.s

3
3 d3.s43

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
s12 s12 s22

Step 5

s13 s12 s11 s10 s23 s22 s21 s33 s32 s43
‘0’ a3.s13 a2.s12.s

1
3 a1.s11.s

1
3.s

1
2 a0.s10.s

1
3 b3.s23 b2.s22.s

2
3 b1.s21.s

2
3.s

2
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3
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Fig. 13.10 Dictionary and
Look-ahead buffer

d4 d3 d2 d1 c1 c2 c3 c4 c5

Dictionary buffer Look-ahead buffer

Fig. 13.11 DCM layout

result of comparison of ith character in Look-ahead buffer and jth character in the
Dictionary buffer. This is followed by determining what are the series of characters
that match in the dictionary buffer—sjW1

i is 1, if characters from 1 to j positions in
the Look-ahead buffer matches the characters from location i in Dictionary buffer.
Using these results, the offset are determined. This is followed by determining the
length of the priority multiplexers—li indicates that a prefix of length i is present.
Using li, the outputs length and next character X is determined. Finally, the Dictio-
nary buffer is shifted appropriately, depending on the length of the longest prefix.

The computation in the ReVAMP architecture takes place in the Data and
Computation Memory (DCM). The layout of the DCM is shown in Fig. 13.11.
Word 0 holds the contents of the Dictionary buffer while word 1 and the first 8-bits
of word 2 act as Look-ahead buffer. In addition, word 2 holds results of character
comparisons. Word 3 holds the select signals for the priority multiplexers, priority
multiplexer outputs, and the valid bits. Word 3 holds constants 4, 3, 2, and 1 in
inverted forms and will also store the offset, length, and next character X that is
output by the algorithm. Finally, words 5–7 are used for computation.

To do so, we undertake the following sequence of operations. Compare the
characters to determine if a prefix of length 1 is present. s1i D .di DD c1/; 1 �
i � 4.

Similarly, comparisons are undertaken to determine if prefix of length 2, 3, and 4
are present. Each set of comparisons to determine a prefix of certain length t can be
performed in parallel on the words 5–6 in the DCM, using the comparator realization
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present in subsection 13.2.1. Once the comparison is complete, the st
i terms are read

out and written in inverted form to the word 2. Then the words 5–6 are reset and the
next set of comparisons are performed.

This is followed by computation of all the terms sjW1
i , 4 � fi; jg � 1 in parallel.

The s4W14 requires the most number of cycles to be computed, equal to 8 cycles.

Finally, two cycles are need to read out the sjW1
i terms and write it to word 3 in non-

inverted form.

sjW1
i D sj

i:s
j�1
i : : : s2i :s

1
i (13.5)

Using the sjW1
i terms, the offset can be determined by using a series of priority

multiplexers as shown in Fig. 13.12 along with some additional computation for
the AND and ORs. The priority multiplexers are realized in parallel, by the steps
described in Sect. 13.2.2. Once the priority multiplexer computations are over, the
AND and OR terms are computed sequentially to compute “offset.” The computed
offset is written to word 4. The computation words 5–7 are reset once again.

For computation of “length,” a single priority multiplexer is used with select
signals li, as defined below.

l4 D s4W14 (13.6)

l3 D s3W14 C s3W13 (13.7)

l2 D s2W14 C s2W13 C s2W12 (13.8)

l1 D s1W14 C s1W13 C s1W12 C s1W11 (13.9)

The select signals are computed in parallel with li. This requires six cycles.
Additional cycles are required to read out li and store li. This is followed by
computation for the priority multiplexer to determine “length.”

In order to compute the output character X, another priority multiplexer compu-
tation is used, with li as select signals as shown in Fig. 13.13, similar to that for
computation of “length.” If there is no-match in the Dictionary buffer, then the valid
bit v is 0 and c1 is the next character X. Using this, we can determine the correct next
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character. This completes computation of the output (offset, length, X) for this round
of the LZ77 algorithm. The computed output is readout using a Read instruction and
available in DMR to be read out.

The dictionary buffer and the Look-ahead buffer need to be updated before the
next iteration of the LZ77 can begin. For updating each character in the dictionary
buffer, a priority multiplexer operation is used followed by an OR operation, with
an inverted input. The priority multiplexers and the corresponding inputs and select
signals are shown in Fig. 13.14. We should note that the valid bit v is computed
once, since the select signals to the priority multiplexers are identical. Once the new
character at a given position has been computed, the old character is reset in word 0
and the new character is written.

All the characters in the Dictionary buffer locations are reset to 0 and based on
the length output, the contents of the Look-ahead buffer are loaded via the PIR and
Apply instructions for the next iteration of LZ77 algorithm.
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13.4 Performance Estimation

About 375 cycles are required for each iteration of the LZ77 algorithm. Updating
the dictionary buffer requires 148 cycles while the initial comparisons along with
computation of the sjW1

i terms require 92 cycles. To estimate the performance, we
assume mature ReRAM technology with 1 ns access time, based on [7]. For the
uncompressed text aacaacbcabaaac given in Example 1, seven iterations would be
needed to compress it using the proposed implementation of LZ77 and 2.625	s
would be required to complete all the iterations.

The area of the proposed implementation can be measured in terms of the
number of words required in DCM and IM. The proposed implementation requires
seven words only, with each word 32-bit wide in DCM. Assuming the DCM to be
addressed by 3-bits, each Apply instruction would require 201 bits and we assume
that the Read instruction is padded with 0 s to make it of the same length as the
Apply instruction. The proposed implementation requires 5.46 KB of memory for
storing the instructions, considering 32-bit aligned memory access.

13.5 Related Works

The majority of the work related to in-memory computing related to ReRAMs
can be broadly classified into three categories—dedicated circuit proposals, general
purpose computing architectures using ReRAMs, and design automation tools for
the architectures.

In [8], ReRAM cells were shown to be conditionally switchable sequential
logic devices, thereby allowing logic-in-memory operations directly. Feasibility
and performance of multiple logic-in-memory adder designs have been presented
in the recent literature by means of memristive simulations [9–11]. Level-1 and
Level-2 Binary Basic Linear Algebra Sub-routines (BiBLAS) were realized using
ReRAM crossbas arrays [12, 13]. Neuromorphic computing has also been realized
using ReRAMs [14–16]. Authors in [17] utilized the crossbar array as a Content-
Addressable Memory (CAM) structure similar to those earlier proposed in [18] for
realizing integer matrix multiplication.

A general approach to designing in-memory architecture for data-intensive
applications was presented in [19]. Gaillardon et al. [20] introduced a light weight
controller to enable general purpose computing using ReRAM arrays, using a bit-
serial operation mode with a single instruction. The ReVAMP architecture [4] has
two instructions and uses separate instruction and computation memories and allows
bit-level parallel operations, thereby offering considerable speedup over PLiM
computer [20].

Considerable amount of research has been undertaken for developing automation
tools related to logic synthesis and technology mapping using memristors. In [9],
the authors presented a basic methodology for computing Boolean functions using
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memristive devices. In [21], it has been shown that with two working memristors
which realize material implication, any Boolean expression can be computed.
In [22] and [23], logic synthesis solution for memristors that realize material
implication has been proposed. In [24], a compiler for flow for generating RM3

instructions, for the ReRAM based PLiM computer [20] for realization of Boolean
functions has been presented. In [25], heuristics for logic synthesis of MIG for two
variants of ReRAM has been proposed —one realizing material implication and
the other realizing majority function. In [25], the authors used a naïve technology
mapping with delay of 3k C c cycles, for an MIG with k levels and c number of
levels with ingoing complemented edges. In [26], the authors demonstrated logic
realization using memristive crossbar arrays using multi-bit adders and multipliers
as case studies. In [27], the authors proposed a delay optimal technology mapping
solution for memristive devices. Further, area-constrained technology mapping for
ReRAM devices was presented in [28].

13.6 Summary

This chapter introduced the ReVAMP in-memory computing architecture that
utilizes stateful logic operations on ReRAM crossbar arrays. Realizations of
comparator and priority multiplexer was presented using the ReVAMP instructions.
We presented implementation of LZ77 compression algorithm using the ReVAMP
instructions and analyzed the performance in terms of number of cycles and area in
terms of number of devices. Finally, we presented the landscape of research in the
field of in-memory computing using memristors.
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Chapter 14
Big Data Management in Neural Implants:
The Neuromorphic Approach

Arindam Basu, Chen Yi, and Yao Enyi

14.1 Introduction: Brain as a Source of Big Data

In the age of the Internet of Things (IoT) with millions of interconnected sensors
spewing out data, we are facing a data deluge—there is a need for solutions
to store and process this data. A unique set of IoT applications relates to the
human body—in particular wearables and implantables to collect data from the
human brain for neuroscientific research, prostheses or medical interventions [1–
6]. The study of the human brain is one of the most important frontiers in science
research today—there is a lot of emphasis on this with several billion dollar
efforts worldwide to understand more about the brain [7, 8]. To get an idea about
the scale of data generated by the brain, we first note from anatomy that the
average adult human cortex has approximately 1011 neurons, widely regarded as the
fundamental computational unit of the brain, with 1014 synapses or interconnections
[9]. Assuming average cortical firing rates (a neural firing or discharge refers to a
digital like pulse also called a spike or action potential) of 1–10Hz [10], the human
brain is generating at least 1011 spikes or events per second and about 1014 synaptic
operations per second. Assigning an unique address or identifier to each neuron
would need baddr D log2.10

11/  35 bits—hence, the data rate generated by the
brain is a whopping 3:5 Terabits/second. To put this in perspective, the exponential
growth of data has put internet data in the exascale ( 1018 bits). One human brain
can generate approximately the same amount of data in 106 s or 50 days! Of course,
this is an extreme case and we are not aiming to store all the neural firings of a
human brain over his or her lifetime (at least not at this moment) and neither do we
currently possess the technology to access this data (but we are constantly striving
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Fig. 14.1 The brain as a
source of big data: a single
human brain generates data at
a rate of 3:5 Terabits/second.
The total data can reach
exabyte scale within a year
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to record data from more neurons and this is one of the prime goals of the Brain
initiative)—but this helps to give an idea about the scale of the problem. Figure 14.1
shows the rapid scaling of data generated from a single human brain over time.

Just like any other application related to big-data, the problems of storage and
manipulation exist in this data generated by the brain. However, an added problem
stems in this case from the strict power dissipation requirement of electronics
implanted within the brain to collect the data. Any electronics in contact with
the cortical tissue cannot generate heat larger than 80mW/cm2 [11, 12] to avoid
damaging the neural tissue (temperature rise less than 1 ıC). Instead of implants,
another option is to collect data non-invasively through EEG from the scalp—
however, EEG provides a highly filtered (both spatially and temporally) picture of
the brain activity and is not informative enough for activities with many degrees
of freedom such as upper limb prostheses [13, 14]. Therefore, in the rest of this
chapter, we only consider the case of neural recording from implanted electrodes
that can provide enough information for dexterous motor control.

14.2 The Nature of Neural Data

The signals recorded by neural implants are obtained typically through microelec-
trode arrays such as the Utah or Michigan arrays [15–17]. The neural signals can
be broadly divided into two categories—(1) Local Field Potentials (LFP) that are
1–10mV in amplitude occupying a bandwidth of 1–100Hz produced by combined
activity of groups of neurons and (2) neural spikes or action potentials which are
much smaller (10–100	V in amplitude) but occupy a much larger bandwidth of
 0:2–5 kHz. While both signals have useful information [18, 19], most of the
studies on neural prosthetics that require fine motor manipulation typically use
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Fig. 14.2 A neural spike
recorded from the pre-frontal
cortex of a rat. Neural spikes
typically have a small
amplitude	 10–100	V
while occupying a large
bandwidth of	 0:2–5 kHz

0 5 10 15 20
−0.05

0

0.05

0.1

0.15

t (ms)
Sp

ik
e 

(m
V

)

neural spikes [20–23]. In this chapter, we will therefore focus on neural recording
systems for sensing and transmitting neural spikes. Unlike LFP signals where the
amplitude is informative, it is believed that spikes are like digital signals [24]
where the amplitude is non-informative but the timing and firing rate of spikes are
important. An example of a spike recorded from pre-frontal cortex of a rat is shown
in Fig. 14.2.

14.3 System Architectures for Neural Spike Recording
Systems: Neuromorphic Compression Schemes

The different blocks comprising a typical neural recording system are shown in
Fig. 14.3a. In a typical system, the neural signal is amplified by a low-noise amplifier
(LNA) [25–29], followed by an optional variable gain amplifier (VGA) and finally
an analog-digital converter (ADC) [29–32] before being transmitted wirelessly. We
can estimate the data rate for such a system under some mild assumptions. Denoting
the number of recording channels as Nchan, ADC sampling rate and bit resolution as
fADC and bADC, respectively, the data rate Rtyp of a typical neural implant is given by:

Rtyp D Nchan � fADC � bADC (14.1)

As an example, for moderate values of Nchan D 100, fADC D 20 kHz, and bADC D 10

bits, we get Rtyp D 20Mbps—a huge data rate that will drain out an implant’s
battery in a matter of hours given typical power requirements of  50–1000 pJ/bit
for wireless transmitters [33–36]. Hence, it is imperative to compress the data and
reduce the concomitant power dissipation so that the neural recording system can
be scaled in future to thousands or millions of channels. One possible way to do
this is to take inspiration from the brain—in the absence of the implant, the brain
would have processed the thousands of neural spikes recorded by the implant and
given a refined command to the next region. Similarly, we can also use electronics to
perform this signal processing on the implant, thus reducing the bandwidth of data
to be transmitted. Figure 14.3 shows three different modes of compression based on
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Fig. 14.3 Block diagram of a typical neural recording system which senses, digitizes and
wirelessly transmits the neural data. As an alternative to sending raw data, different neuromorphic
schemes may be used as shown to achieve different rates of compression. (a) Typical. (b) Mode 1.
(c) Mode 2. (d) Mode 3

the amount of signal processing kept on the implant. There is a trade-off in this case
between amount of extra area and energy expended on signal processing in-implant
versus the energy saved in reduced transmission. Clearly, it is not beneficial if the
added circuits for signal processing burn as much energy as the energy saved in
reduced data rate!

One way to perform the processing at very low energy/area overheads is to
use neuro-inspired analog circuits, sometimes also called ‘neuromorphic’ circuits
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following Carver Mead’s seminal paper [37]. Mead and others [38] have shown
that analog circuits require less energy and area than digital counterparts when
processing signals at a low resolution, typically � 8 bits. The brain also uses a
similar principle by computing using analog quantities such as charge, currents and
ionic concentrations and this is cited as one of the reasons for its power efficiency.
This is hence well suited for processing noisy sensory signals where precision is
limited by input signal to noise ratios. In the rest of the chapter, we will explore
several such schemes to compress neural recording data by extracting information
from it.

14.3.1 Compression Mode 1: Spike Detection

The first scheme is inspired by a communication protocol used in neuromorphic
chips. Several neuromorphic sensors and neural networks have been designed
using brain-inspired analog processing principles [39–44] while noise robust digital
pulses are used for communication [45, 46]. Since digital communication is much
faster (� 10Gbps) than the average firing rate of a neuron (� 10Hz), the firing
information of multiple neurons can be multiplexed on the same serial bus where
the identity of the source neuron is encoded in a simultaneously transmitted digital
address. This protocol is referred to as Address Event Representation (AER) and
allows neuromorphic spiking chips to communicate data from N neurons using only
log2.N/ wires.

The AER scheme can be adopted for neural implants as well since in many cases,
we are interested in only knowing the occurrence of spikes. In that case, circuits
are needed to distinguish spikes from background noise—these are called spike
detectors. Figure 14.3b denotes this scheme as Mode 1 with three possible variants.
The earliest instance of such detectors is based on simple thresholding circuits[24]
where it is assumed that the amplitude of the spike is larger than background noise
by a certain amount. A feedback loop is used to track the baseline noise level and
the spike detection threshold is set to a multiple of this value. However, this method
was found to produce high false positives in noisy conditions and hence an improved
detection method using a non-linear energy operator (NEO) has been proposed. The
NEO operator is defined as:

NEO.V/ D
�

dV

dt

�2
� d2V

dt2
� V (14.2)

Several analog implementations of the NEO scheme have been reported [47–50]
and an example of spike detection waveforms from the implementation in [47] is
shown in Fig. 14.4. We refer to this method as Mode 1-A.

The spike detection method discards all information about the amplitude and
shape of the neural spike—this information may, however, be useful at a later
stage to decide the identity of the source neuron. Hence, two other variants of
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Fig. 14.4 Input noisy neural signal and corresponding digital spike detection output from the
implementation in [47]. Only the detection result can be transmitted thus eliminating background
data

the previously mentioned detection scheme have been commonly used. In some
cases [51, 52], the authors use a regular spike detector to trigger the capture of a
pre-defined number of samples of the neural spike signal so that all the features
of the wave shape are retained for future extraction. We refer to this method as
Mode 1-B. The other prevalent approach is to extract the relevant features (such
as maximum, minimum, temporal width, derivative extrema) from the neural spike
waveform when triggered by the spike detector [36, 48, 53–56]. Only these features
are now digitized and transmitted providing a good trade-off between data reduction
and signal information retention. We refer to this as Mode 1-C.

We can now derive the data rates R1�A, R1�B, and R1�C required by each of the
compression schemes. Denoting the number of biological neurons recorded by the
sensor as Nneu (different from Nchan), firing rates of each neuron as fbio we can write
the equations as:

R1�A D Nneu � fbio � dlog2.Nchan/e (14.3)

R1�B D Nneu � fbio � fADC � bADC � tspk (14.4)

R1�C D Nneu � fbio � Nf � bADC (14.5)

where tspk denotes the time span of the neural signal per spike transmitted in Mode
1-B, Nf denotes the number of features extracted in Mode 1-C and other variables
have same meaning as defined earlier. We can estimate the degree of compression
by assuming some nominal values of the parameters: Nneu D 200, fbio D 10Hz,
tspk D 3ms, Nf D 4, Nchan D 100, fADC D 20 kHz and bADC D 10 bits. Then the
three data rates become R1�A D 14 kbps, R1�B D 120 kbps and R1�C D 80 kbps.
Compared to the typical data rate, these modes offer a compression between  100–
1000�.



14 Big Data Management in Neural Implants: The Neuromorphic Approach 299

14.3.2 Compression Mode 2: Spike Sorting

The next possible scenario for compression is to use the features of the spike
waveform to separate or classify each different wave shape into its own category
representing a different source neuron. This method of assigning each distinct
neural spike shape recorded on the same channel one unique identifier is called
‘spike sorting’ [57, 58]. Each category, in which spikes have similar shape, is
believed to be generated by one neuron. The reasoning behind spike sorting is
that the shape of spikes generated by neurons and recorded by an electrode is
stereotypical, determined by the morphology of the dendritic trees of the neuron
and the transmission pathway to the electrode. It is therefore believed that the shape
of spikes from different neurons are distinct from each other and does not change
over time, or at least over a significant amount of time. Though some work has
demonstrated spike sorting may not be necessary for robust decoding performance
[59, 60], the majority of work today still uses spike sorting to squeeze out as much
information as possible from the neural recording implant.

Some authors have integrated a spike sorting classifier on the implant [61, 62].
While there are some implementations that have used supervised methods similar
to template matching [63], most other approaches [64, 65] use unsupervised
clustering techniques due to the advantage of not needing explicit training sessions.
Figure 14.5 depicts the typical steps involved in spike sorting. After sorting, only
the distinct identifier of the source neuron needs to be sent resulting in huge
compression. We can estimate this data rate in Mode 2 as:

R2 D Nneu � fbio � dlog2.Nneu/e (14.6)

where the symbols have the same meaning defined earlier. Using the same values of
the parameters used in the earlier Sect. 14.3.1, we can estimate the data rate for this
mode to be R2 D 16 kbps equivalent to a compression of  1000� compared to a
typical case.

Fig. 14.5 The steps involved in spike sorting include feature extraction followed by unsupervised
clustering to separate the neural spikes into distinct categories according to their shape
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14.3.3 Compression Mode 3: Intention Decoding

The final and most advanced mode of compression is attained when the last stage
of signal processing—decoding intentions from the recorded multi-channel spike
train—is also integrated in the implant. This is shown in Fig. 14.3c as Mode 3. In
this chapter, we focus on systems for motor prosthesis only—hence, in this case,
intentions refer to ‘motor’ intentions or desire to move a limb. The fundamental of
current decoding algorithms can be referred back to the work done by Georgopoulos
and his colleagues [66, 67]. It is revealed in the experiment that the activity intensity
of some neurons in the motor cortex is tuned to be a sinusoidal function of the
movement direction of the arm with respect to a preferred direction where the
activity reaches its maximum. They therefore proposed to represent each neuron by
a vector indicating its preferred direction. The population vectors can be obtained
by linear combination of all preferred vectors in the group weighted by the firing
rate in the short time period of tens of millisecond, leading to a prediction on the
velocity of upcoming arm movement [68].

Current state-of-the-art decoding algorithms for mapping population activity into
motor intention can be categorized into two broad subgroups: inferential decoders
[69–71] and classifiers [1, 20, 72]. However, most of these algorithms are run using
bulky computers with wires connecting to the patient which impairs free movement
and are a risk for infection. Recently, some approaches have been proposed for
custom, low-power, compact hardware implementations of decoding algorithms
[73–75] of which only one has shown measured results from a low-power integrated
circuit [76] to decode motor intentions for dexterous finger movement as done in
[20]. In the rest of the chapter, we elaborate on the details of this design, show the
decoding performance and estimate achievable data compression using this scheme.

14.3.3.1 Algorithm: Extreme Learning Machine

The machine learning algorithm used in this work is the Extreme Learning Machine
(ELM) [77, 78]. It is a two-layer neural network (Fig. 14.6) where the first layer of
weights from inputs to hidden neurons (wij denotes weight from i-th input to j-th
hidden neuron) are fixed and random. Only the weights in the second layer from the
hidden neurons to output neurons need to be trained. Using ˇki to denote the weight
from the i-th hidden neuron to the k-th output neuron, we can express the k-th output
ok as:

ok D
LX
i

ˇkig.wi; x; bi/ D
LX
i

ˇkihi D hTˇk

wi; x 2 <DIˇki; bi 2 <I h;ˇk 2 <L (14.7)
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Fig. 14.6 Extreme Learning Machine (ELM) is a two-layer neural network where the weights of
the first layer are random and fixed. Only second layer weights are tuned according to the task

where x denotes the D-dimensional input vector, h is the L-dimensional output of
the hidden layer, g./ is the non-linear activation function of the hidden layer and
bi denotes the bias of the i-th hidden layer neuron. One of the commonly used
activation functions is the additive node where hi D g.wT

i x C bi/ and g W < ! < is
any non-linear function with finitely many discontinuities. While the outputs ok can
be directly used for regression, for classification, we assign the input sample to the
class belonging to the output neuron with the highest value.

The second layer weights can be obtained by a direct solution instead of typically
used iterative methods such as back propagation for multi-layer neural networks—
hence, the training time for ELM based systems is much smaller. The output weights
for each of the C classes can be optimized separately by using the same hidden layer
values. Suppose there are p samples and let H denote the p � L hidden layer matrix
where each row stores the output of the hidden neurons for one sample. Further, let
Tk 2 <p denote the target or desired values for the k-th hidden neuron. Then, the
ideal weights Ǒ

k for the k-th hidden neuron is obtained as solution of the following
optimization problem [78]:

Ǒ
k D arg min

ˇk

kHˇk � Tkk2 C �kˇkk2 (14.8)
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where the second term in the equation is needed for regularization and � is
optimized on the validation set as a hyper-parameter. Closed form solutions to the
value of ˇk can be obtained in two different ways for the cases where the number of
training samples is less or more than the number of hidden neurons [78].

To apply this neural network to neural decoding, the authors use an approach
similar to [20] where the Artificial Neural Network is replaced by an ELM. The
ELM decodes the onset time as well as the type of movement from the asynchronous
neural spikes every Ts D 20ms. First, instantaneous firing rate ri.tk/ at time tk of
each biological neuron is computed by counting the number of spikes in a time
window Tw D 100ms. Then, the input feature vector to the ELM at time tk is
defined by:

x.tk/ D Œr1.tk/; r2.tk/ : : : rD.tk/� (14.9)

The total number of output neurons C in this case is equal to M C 1 where there
are M movement types and one extra neuron is used to classify the onset time
of movement. For training, the last output for onset time is trained on the entire
dataset while the others are trained only on neural data during movement. Also,
the last neuron is trained to solve a regression problem where the target function is
trapezoidal—it gradually rises from 0 to 1 to mimic the gradually increasing activity
of biological neuron ensembles. To reduce false positives in detecting movement
onset, further processing is done on this ‘primary’ output by voting across the
decision for several consecutive time samples [76] to produce the post-processed
output. Another special signal processing feature of the IC is ability to include time
delayed versions of neuronal activity as additional inputs to the ELM, i.e the number
of inputs D to the ELM may be larger than the number of biological neurons N. This
feature, referred to as Time-delay based dimension increase (TDBDI), is especially
useful for chronic implants where the signal quality from many probes degrades
with time due to scarring and fibrotic encapsulation.

The main reason for choosing the ELM algorithm is that most of the multiplica-
tions to be done in this architecture are the D � L random scalings in the first stage
which can be done in very low energy and area using analog neuromorphic circuits.
The mismatch induced errors [79] in analog circuits is not a problem in this case but
can be part of the random coefficients. To get high accuracy, the trainable weights of
the second stage can be implemented using digital circuits. However, this does not
degrade system level energy efficiency as long as D >> C which ensures that the
number of multiplications in second stage are much less than that in the first stage.
The circuit implementation of this algorithm is shown next.

14.3.3.2 Chip Architecture

The system architecture for the neuromorphic ELM chip is shown in Fig. 14.7. Since
biological firing rate are sparse, the AER protocol described in Sect. 14.3.1 is used
to send the neural spikes to a desired channel based on the address or identity of
the source neuron. Then, the input handling circuits (IHC) compute an average
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Fig. 14.7 Overall architecture of the ELM based decoder IC has a decoder to pass input spikes to
desired channel, input handling circuits (IHC) to calculate average firing rate of spikes as a feature,
a synapse array to create the random weighting of inputs needed in stage 1 of ELM and an array
of hidden neurons

(a) (b)
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Fig. 14.8 (a) The IHC block comprises a counter and a moving average circuit to compute average
firing rate in digital domain. The DAC then converts the digital number to an analog current.
(b) The neuron is made of a current controlled oscillator (CCO) that clocks a counter (not shown)

firing rate using digital circuits in two steps (Fig. 14.8a). First, a counter estimates
instantaneous firing rates by counting the number of spikes in a time interval Ts.
Then a moving average circuit finds average firing rate in a time window Tw. This
digital number is then converted to an analog current IDAC using a digital to analog
converter (DAC) so that following steps can be implemented in the analog domain.
The major task of multiplication by a random number is performed by the synapse—
a current mirror comprising identical minimum sized transistors. Ideally, without
statistical variations, the current mirror would produce same output current as its
input. However, due to mismatch and sub-threshold operation of the transistors, the
output current from a mirror is given by:

Iout D e
VT=UT Iin (14.10)
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where 
VT denotes threshold voltage mismatch between the two mirror transistors
and UT denotes thermal voltage. In this architecture, the diode connected transistor
for every row is shared while the synapse just consists of a single mirror transistor.
Hence, the weight of the synapse connecting i-th input to the j-th neuron is given by
wij D e
VT;ij=UT . The sum of these currents are obtained by just wiring the drains of
the mirror transistors together. Finally, this current is converted to the hidden layer
output by passing it through a neuron circuit shown in Fig. 14.8b. The neuron is a
current controlled oscillator (CCO) whose frequency of oscillation is given by:

fCCO D Iin � Ileak

Cf � VDD
(14.11)

This equation is valid as long as Iin << Irst where Irst denotes the reset current
flowing through transistor M3 when turned fully on. The current Ileak serves the
function of the bias term bi in Eq. (14.7). Similar to the weights wij, these also
follow a log-normal distribution. The digital pulses from the CCO are used to
clock a counter which is enabled along with the neuron for Ten seconds. Also, the
counter can be stopped at a digitally programmable count value hmax which provides
a saturating nonlinearity. Hence, the hidden layer output after the counter can be
expressed as:

h D fCCOTen if fCCOTen < hmax

D hmaxotherwise: (14.12)

14.3.3.3 Measurement Results

The chip described above was fabricated in 0:35	m CMOS process. With 128 input
channels and 128 hidden neurons, the die size of this chip was 4:95 � 4:95mm2.
An example of the mismatch is shown in the variability in measured tuning curves
of the hidden neurons (Fig. 14.9) when the input spike frequency of only one

Fig. 14.9 Measured transfer
curves of the 128 hidden layer
neurons on the chip obtained
by sweeping the input spike
frequency of one of the
channels. The variation of the
curves is due to statistical
variations in the chip
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Fig. 14.10 (a) A map of the threshold variation across the 128 � 128 synaptic current mirror
transistors on one of the dies. (b) The weights due to mismatch fit a log-normal distribution as
expected

channel is varied. A more detailed characterization of the mismatch across the entire
synaptic array is shown in Fig. 14.10a. This figure is obtained by giving a fixed
input frequency to each channel one by one and recording the hidden neuron firing
frequency. These weights are fit to a log-normal distribution in Fig. 14.10b implying
an underlying gaussian distribution of 
VT . Across eight different dies, the mean
of the gaussian distribution varies from �0:1 to 0:57mV and the standard deviation
varies from 16:2 to 17:6mV.

The authors in [76] have applied the IC for decoding flexion and extension of
fingers and wrist from neural activity recorded from the M1 region of a non-human
primate. The experiment with the monkey is described in detail in [20]. In brief,
monkeys are trained to move individual fingers and wrist based on visual input while
simultaneously, a single-unit recording device implanted in the motor cortex is used
to record the brain activity. This data contains information about the monkey’s motor
intention and is used for the decoding. The entire data set has experiments performed
on three monkeys. This pre-recorded data was fed into the IC and the hardware
performance has been benchmarked with software decoding results reported in [20].

Figure 14.11 shows an example of the decoding being performed—three different
trials are shown. The bottom part of the figure shows neural spikes obtained after
sorting from N D 40 M1 neurons. The middle panel shows the onset detection
while the top panel shows predicted movement type. The authors reported that the
decoding accuracy increases to  96%, at par with software results, for a hidden
layer size of L D 60 neurons. It is also important to see how the decoding accuracy
degrades when less number of biological M1 neurons are available for recording.
This is shown in Fig. 14.12 for 8 different samples of the IC. It can be seen that
using delayed samples to increase dimension (TDBDI) helps in boosting decoding
accuracy for all samples. The result is specially significant when the number of M1
neurons is small. This clearly shows the benefit of TDBDI for chronic implants.
For this IC, the authors report a power dissipation of 414 nW for the case of D D 40
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Fig. 14.12 Using the time delayed samples for extra information helps in increasing decoding
accuracy especially when the number of biological M1 neurons is small. The results are verified
from 8 chips

and L D 60 resulting in an ultra-low energy per operation of 3:45 pJ/MAC where
MAC refers to multiply and accumulate. This is much smaller than recently reported
digital multiplier which requires 16–70 pJ/MAC [80–82].
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We can now estimate the amount of data compression achievable in this mode
of operation with an integrated neural decoder. In the beginning of a session, this
system needs to transmit the raw data rate of Rtyp or R1 or R2. This data is used for
training. Once trained however, the data rate R3 to be transmitted is given by:

R3 D fdeco � dlog2.C/e (14.13)

where C is the number of classes of movement and fdeco is the rate of classification.
As an example, for the case described earlier with fdeco D 50Hz and C D 13,
R3 D 200 bps with a compression factor of 105 over Rtyp showing the huge potential
of compression obtainable this way.

14.4 Conclusion and Discussions

Implantable brain machine interfaces are an emerging area of research which can
be used by patients with motor disabilities to interact naturally with prosthetics or
devices such as wheelchairs. More broadly, neural implants can be used to treat
other neural diseases such as Parkinson’s, epilepsy or depression. In this chapter,
we showed the issue of scaling neural implants to thousands of channels in the
future stems from increasing wireless transmission rates of the order of 200Mbps.
It was also shown that it is possible to achieve variable rates of compression from
10–105 by incorporating more processing steps into the implanted chip as opposed
to leaving it to the receiver module outside the body. To make this viable, the
processing has to be done in ultra low power so that the power budget of the implant
is not exceeded.

Neuromorphic or neuro-inspired analog circuits provide a viable alternative
for reducing power dissipation beyond what is achievable from current digital
circuits. In this chapter, we presented an extensive survey of the different levels
of compression that are achievable when integrating spike detection, sorting or
intention decoding within the neural implant. The most promising scheme for the
future large scale implants—intention decoding—is described in great detail starting
from the algorithm to chip architecture and details of sub-circuits. In the long term,
we envision that as brain sensing technologies mature so that thousands of neurons
can be simultaneously probed, integrated machine learners for intention decoding
will become a common feature for managing the ‘big data’ originating from neural
implants. However, to allow chronic or long-term recording using such devices,
some challenges still need to be overcome. One of the major issues in long-term
recordings is parameter drift such as change of probe impedance due to scarring or
gliosis. Though the current solution has a feature of TDBDI to counter this, there is
no automatic detection strategy of when to apply this and to which channels. This is
a topic that deserves more attention in future. Also, the current method of training
the machine learner used a trial structure where the time of movement was known—
in real life operation, there will not be any such precise temporal markers and
the training algorithm has to be modified to suit this. One promising possibility is
reinforcement learning based training [83] but more work is needed in this direction.
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Lastly, the current training paradigm used data from a monkey performing actual
movements. To move to a prosthetic control using imagined movements only, there
will be an aspect of visual feedback that will alter the neural data recorded by the
chip—a phenomenon referred to as ‘closed-loop’ decoder training. In this case, we
have to retrain the machine learner iteratively over several closed-loop experimental
trials and convergence of such training for ELM based decoders is an open avenue
for research.
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Chapter 15
Data Analytics in Quantum
Paradigm: An Introduction

Arpita Maitra, Subhamoy Maitra, and Asim K. Pal

15.1 Introduction

The basic model of classical computers was initially visualized by Alan Turing,
Von Neumann, and several other researchers in the 1930s and the decade after that.
However the model of computers, that Turing or Neumann studied, are limited by
classical physics and thus termed as classical computers. Till the end of nineteenth
century, most scientists believed that Newtonian laws governing the motion of
material bodies and Maxwell’s theory of electromagnetism are the fundamental
areas of physics. However, the discovery of X-rays and electrons towards the end of
that century finally helped the physicists to understand quantum mechanics around
1925. The limitation of classical mechanics could be understood clearly after that. In
1982, Richard Feynman presented the seminal idea of a universal quantum simulator
or more informally, a quantum computer.

Informally speaking, a quantum system of more than one particles can be
explained by a Hilbert space whose dimension is exponentially large in the number
of particles. Thus, one naturally expects that a quantum system can efficiently
solve a problem that may require exponential time on a classical computer. During
the 1980s, the initial works by Deutsch-Jozsa [12] and Grover [17] could explain
quantum algorithms that are exponentially faster than the classical ones. Most
importantly, in 1994, Shor discovered that in quantum paradigm, factorization and
discrete log problems can be efficiently solved [37]. This result had a major impact
in classical cryptography. This is because, there are lot of public key cryptosystems

A. Maitra • A.K. Pal
Indian Institute of Management Calcutta, Kolkata, India
e-mail: arpita76b@gmail.com; asim@iimcal.ac.in

S. Maitra (�)
Indian Statistical Institute, Kolkata, India
e-mail: subho@isical.ac.in

© Springer International Publishing AG 2017
A. Chattopadhyay et al. (eds.), Emerging Technology and Architecture
for Big-data Analytics, DOI 10.1007/978-3-319-54840-1_15

313

mailto:arpita76b@gmail.com
mailto:asim@iimcal.ac.in
mailto:subho@isical.ac.in


314 A. Maitra et al.

that are based on these two tools. The internet communication as a whole, including
the online banking system, depends on the security of these. Thus, in the field of
public key cryptography, this warranted for cryptographic primitives that can resist
attacks even with the existence of quantum computers. While commercial quantum
computers are still elusive, the recent developments in the area of experimental
physics are gaining huge momentum as evident from the award of Nobel prize
for Physics in 2012 to Wineland and Haroche for “ground-breaking experimental
methods that enable measuring and manipulation of individual quantum systems,”
a study on the particle of light, the photon. The Nobel prize in Physics, 2016,
is awarded to Thouless, Haldane, and Kosterlitz for “theoretical discoveries of
topological phase transitions and topological phases of matter.” These results might
have importance towards actual implementation of a quantum computer. Thus it
shows that this domain of research is indeed one of the top priorities in international
scientific community.

Data analytics is the technology of investigating raw data towards obtaining
valid conclusions regarding relevant information. Such techniques are exploited by
organizations to identify better business decisions towards verifying or disproving
the models they study. As these algorithms, in many cases, require high complexity,
it would always be interesting to investigate whether one can have more efficient
solutions in the quantum domain. Consider the example of a share market. There
we require huge computation in short time, need to communicate those data quickly
among different parties, and at the same time the data security has to be considered
with priority. While the data communication and security issues may be handled
as a part where much competition might not be involved, each of the companies
will be interested to have a better forecast than the other. Towards a better forecast,
which is the main purpose of data analytics, one requires to have huge statistical
calculations, which finally boils down to arithmetic, algebraic, combinatorial, and
symbolic computations. Thus, the main question here is whether we can have better
computational facilities in quantum paradigm. This is the focus of this material. At
the same time, we also touch a few issues in communication and security domain
that are relevant in data analytics and where the quantum paradigm has efficient
tools to offer.

Before proceeding further, let us present brief introductory materials. For detailed
technical understanding, one may refer to [29].

15.1.1 Basics of a Qubit and the Algebra

As a bit (0 or 1) is the basic element of a classical computer, the quantum bit (called
the qubit) is the fundamental element in the quantum paradigm, whose physical
counterpart is a photon. A qubit is represented as

˛j0i C ˇj1i;
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where ˛; ˇ 2 C (i.e., complex numbers), and j˛j2 C jˇj2 D 1. If one measures the
qubit in fj0i; j1ig basis, then j0i is observed with probability j˛j2, and j1i with jˇj2.
The original state gets destroyed after the observation and collapse to the observed
state.

That is, the qubits j0i; j1i are the quantum counterparts of the classical bits 0; 1.

The qubit j0i can be represented as

	
1

0



and j1i can be represented as

	
0

1



. The

superposition of j0i; j1i, i.e., ˛j0iCˇj1i can be written as ˛

	
1

0



Cˇ

	
0

1



D
	
˛

ˇ



,

where ˛; ˇ 2 C, j˛j2 C jˇj2 D 1.
Based on this definition, one may theoretically pack infinite amount of infor-

mation in a single qubit. However, it is not clear how to extract such information.
Further in actual implementation of quantum circuits, it might not be possible to
perfectly create a qubit for any ˛; ˇ. Nevertheless, it is clear that a single qubit may
contain huge information compared to a bit.

The basic algebra relating to more than one qubits can be interpreted as tensor
products. Thus, consider tensor product of two qubits as

.˛1j0iCˇ1j1i/˝.˛2j0iCˇ2j1i/D
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0
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D ˛1˛2j00i C ˛1ˇ2j01i C ˇ1˛2j10i C ˇ1ˇ2j11i. That is,
.˛1j0i C ˇ1j1i/˝ .˛2j0i C ˇ2j1i/ D ˛1˛2j00i C ˛1ˇ2j01i C ˇ1˛2j10iC
ˇ1ˇ2j11i.

However, any 2-qubit state may not always be decomposed as above. Consider
the state �1j00i C �2j11i with �1 ¤ 0; �2 ¤ 0. This can never be written as
.˛1j0i Cˇ1j1i/˝ .˛2j0i Cˇ2j1i/. This phenomenon is described as entanglement.
An example of maximally entangled state is j00iCj11ip

2
, which is an example of Bell

states or EPR pairs. We will later explain how to produce such entangled states and
why they are important in quantum information.

15.1.2 Quantum Gates

Now let us briefly describe the quantum gates. Such gates are basic primitives in
building a quantum computer. A quantum gate can be considered as a reversible
circuit having n qubits as inputs and n qubits as outputs. Mathematically, they can
be seen as 2n �2n unitary matrices where the elements are complex numbers. Let us
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first present a few examples of single input single output quantum gates. In matrix

Quantum input Quantum gate Quantum output

˛j0i C ˇj1i X ˇj0i C ˛j1i
˛j0i C ˇj1i Z ˛j0i � ˇj1i
˛j0i C ˇj1i H ˛ j0iCj1i

p

2
C ˇ j0i�j1i

p

2

form, the gate operations are as follows.

• X gate:

	
0 1

1 0


 	
˛

ˇ



D
	
ˇ

˛



;

• Z gate:

	
1 0

0 �1
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;

• H gate:
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ˇ
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˛Cˇp
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˛�ˇp
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#
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Note that ˛Cˇp
2

j0i C ˛�ˇp
2

j1i D ˛ j0iCj1ip
2

C ˇ j0i�j1ip
2

.
The 2-input 2-output quantum gates can be seen as 4 � 4 unitary matrices. An

example is the CNOT gate which works as follows: j00i ! j00i, j01i ! j01i,

j10i ! j11i, j11i ! j10i. The related matrix is

2
664
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3
775 :

As an application of these gates, let us describe the circuit in Fig. 15.1 to create
certain entangled states as follows: jˇ00i D j00iCj11ip

2
, jˇ01i D j01iCj10ip

2
, jˇ10i D

j00i�j11ip
2

, and jˇ11i D j01i�j10ip
2

.

15.1.3 No Cloning

While it is very easy to copy an unknown classical bit (i.e., either 0 or 1), it is
now well known that it is not possible to copy an unknown qubit. This result is
known as the “no cloning theorem” and was initially noted in [13, 43]. It has a huge
implications in quantum computing, quantum information, quantum cryptography,
and related fields.

Fig. 15.1 Quantum circuit
for creating entangled state

|βxy〉
x

y

H .
⊕
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The basic outline of the proof is as follows. Consider a quantum slot machine
with two slots labeled A and B. Here A is the data slot set in a pure unknown quantum
state j i whereas B is target slot set in a pure state jsi where A will be copied. Let
there exist a unitary operator which does the copying procedure. Mathematically, it
is written as U.j ijsi/ D j ij i. Note that, U being a unitary operator, UU� D I,
where .U�/ij D Uji, transpose of the matrix and scalar complex conjugate for each
element. Let this copying procedure work for two particular pure states, j i and
j�i. Then we have

U.j ijsi/ D j ij i;U.j�ijsi/ D j�ij�i:

From the inner product: hsjh jU�Uj�ijsi D h jh jj�ij�i. This implies h j�i D
.h j�i/2.

Note that x D x2 has only two solutions: x D 0 and x D 1. Thus we get either
j i D j�i or inner product of them equals to zero, i.e., j i and j�i are orthogonal
to each other. This implies that a cloning device can only clone orthogonal states.
Therefore a general quantum cloning device is impossible. For example, given that
the unknown state is one of j0i, j0iCj1ip

2
, two nonorthogonal states, it is not possible

to clone the state without knowing which one it is.
This provides certain advantages as well as disadvantages. The advantages are

in the domain of quantum cryptography, where by the laws of physics copying an
unknown qubit is not possible. However, in terms of copying or saving unknown
quantum data, this is actually a potential disadvantage. At the same time, it should
be clearly explained that given a known quantum state, it is always possible to
copy it. This is because, for a known quantum state, we know how to create it
deterministically and thus it is possible to reproduce it with the same circuit.

For explaining with an example, one may refer to Fig. 15.2. If an unknown
qubit j�i is either j0i or j1i, then it will be copied perfectly without creating any
disturbance to j�i. However, if j�i D j0iCj1ip

2
, say, then at the output we will get

entangled state j00iCj11ip
2

. Thus copying is not successful here.
This concept can also be applied towards distinguishing quantum states. Given

two orthogonal states fj i; j ?ig, it is possible to distinguish them with certainty.
For example, the pair of states

fj0i; j1igI

⊕

·|μ〉: control qubit

|0〉: target qubit
}may be entangled

Fig. 15.2 Explanation of no cloning with a simple circuit
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�
1p
2
.j0i C j1i/; 1p

2
.j0i � j1i/

�
I

�
1p
2
.j0i C ij1i/; 1p

2
.j0i � ij1i/

�

are orthogonal and can be certainly distinguished.
However, two non-orthogonal quantum states, this is not possible. For example,

given the two states are j0i, j0iCj1ip
2

, which are nonorthogonal, it is not possible to
exactly identify each one with certainty. These ideas are back-bone to the famous
BB84 Quantum Key Distribution (QKD) protocol [4].

15.2 A Brief Overview of Advantages in Quantum Paradigm

Next we like to briefly mention a couple of areas where the frameworks based on
quantum physics provide advantageous situations over the classical domain. We will
consider one example each in the domain of communication as well as computation.

15.2.1 Teleportation

Teleportation is one of the important ideas that shows the strength of quantum model
over the classical model [5]. Given a sharing of a pair of entangled states by the two
parties at distant locations, one just needs to send two classical bits of information
to send an unknown quantum state (this may contain information corresponding to
infinitely many bits) from one side to another side (Fig. 15.3).

As an example take jˇxyi D jˇ00i, G the CNOT gate, i.e., j00i ! j00i, j01i !
j01i, j10i ! j11i, j11i ! j10i. Further consider A D H;B D XM2 ;C D ZM1 .

Alice⇑
Bob⇓ |y 〉

|bxy〉 {
G

|y 〉
A M1

M2

B C

↑ ↑ ↑ ↑ ↑
|y0〉 |y1〉 |y2〉 |y3〉 |y4〉

Fig. 15.3 Quantum circuit for Teleporting a qubit
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This will provide the basic teleportation circuit. As a simple extension, one can use
any jˇxyi, G as CNOT and A D H;B D XM2˚x;C D ZM1˚y. The step by step
explanation for teleportation is as follows.

• j 0i D j ijˇ00i D .˛j0i C ˇj1i/ .j00iCj11i/p
2

• j 1i D ˛j0i .j00iCj11i/p
2

C ˇj1i .j10iCj01i/p
2

• j 2i D ˛ j0iCj1ip
2

.j00iCj11i/p
2

C ˇ j0i�j1ip
2

.j10iCj01i/p
2

D 1
2
.j00i.˛j0i C ˇj1i/ C

j01i.ˇj0i C ˛j1i/C j10i.˛j0i � ˇj1i/ � j11i.ˇj0i � ˛j1i//
• Observe 00, nothing to do. Observe 01, apply X. Observe 10, apply Z. Observe
11, apply both X;Z.

The importance of this technique in data analytics is that if two different places may
share entangled particles, then it is possible to send a huge amount of information
(in fact theoretically infinite) by just communicating two classical bits. Again, one
important issue to be noted is that, even if we manage to transport a qubit, in case it
is unknown, it might not be possible to extract the relevant information from that.

15.2.2 Deutsch-Jozsa Algorithm

Deutsch-Jozsa algorithm [12] is possibly the first clear example that demonstrates
quantum parallelism over the standard classical model. Take a Boolean function
f W f0; 1gn ! f0; 1g. A function f is constant if f .x/ D c for all x 2 f0; 1gn,
c 2 f0; 1g. Further f is called balanced if f .x/ D 0 for 2n�1 inputs and f .x/ D 1

for the rest of 2n�1 inputs. Given the function f as a black box, which is either
constant or balanced, we need an algorithm, that can answer which one this is. It
is clear that a classical algorithm needs to check the function for at least 2n�1 C 1

inputs in worst case to come to a decision. Quantum algorithm can solve this with
only one input. Note that given a classical circuit f , there is a quantum circuit of
comparable efficiency which computes the transformation Uf that takes input like
jx; yi and produces output like jx; y ˚ f .x/i (Fig. 15.4).

The step by step operations of the technique can be described as follows.

• j 0i D j0i˝nj1i

Fig. 15.4 Quantum circuit to
implement Deutsch-Jozsa
algorithm

|0〉

|1〉

n

H

H⊗n H⊗n M

y

x x

y⊕ f (x)

Uf

↑ ↑ ↑ ↑
|y0〉 |y1〉 |y2〉 |y3〉
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• j 1i D P
x2f0;1gn

jxip
2n

h j0i�j1ip
2

i

• j 2i D P
x2f0;1gn

.�1/f .x/jxip
2n

h j0i�j1ip
2

i

• j 3i D P
z2f0;1gn

P
x2f0;1gn

.�1/x�z˚f .x/jzi
2n

h j0i�j1ip
2

i
• Measurement: all zero state implies that the function is constant, otherwise it is

balanced.

The importance of explaining this algorithm in the context of data analytics
is that it is often important to distinguish between two objects very efficiently.
The example of Deutsch-Jozsa algorithm [12] demonstrates that it is significantly
efficient compared to the classical domain.

At this point we like to present two important aspects of Deutsch-Jozsa algo-
rithm [12] in terms of data analytics and machine learning. First of all, one must note
that we can obtain the equal superposition of all 2n many n-bit states just by using
n many Hadamard gates. For this, note the first part of j 1i which is

P
x2f0;1gn

jxip
2n .

This provides an exponential advantage in quantum domain as in the classical
domain we cannot access all the 2n many n-bit patterns efficiently. The second point
is related to machine learning. As we have discussed, we may have the circuit of
f available as a black-box and we like to learn several properties of the function
efficiently. In this direction, Walsh transform is an important tool. What we obtain
as the output of the Deutsch-Jozsa algorithm just before measurement is j 3i and

the first part of this is
P

z2f0;1gn
P

x2f0;1gn
.�1/x�z˚f .x/jzi

2n . Note that, the Walsh spectrum
of the Boolean function f at a point z is defined as Wf .z/ D P

x2f0;1gn.�1/x�z˚f .x/.

That is,
P

z2f0;1gn
P

x2f0;1gn
.�1/x�z˚f .x/jzi

2n D P
z2f0;1gn

Wf .z/
2n jzi. This means that using

such an algorithm, we can efficiently obtain a transform domain spectrum of the
function, which is not achievable in classical domain.

Testing several properties of Boolean functions in classical as well as quantum
paradigm is an interesting area of research in property testing [6], which are in
turn useful in learning theory. There are several interesting properties of Boolean
functions, mostly in the area of coding theory and cryptology, that need to be tested
efficiently. However, in many of the cases, the efficient algorithms are elusive. The
Deutsch-Jozsa Algorithm [12] is the first step in this area in quantum computational
model. In a larger view, the details of various quantum algorithms can be obtained
from [32].

15.3 Preliminaries of Quantum Cryptography

In any commercial environment, confidentiality of data is one of the most important
issues. Due to Shor’s result [37] on efficient factorization as well as solving discrete
logarithm in quantum domain, classical public key cryptography will be completely
broken in case a quantum computer can actually be built. One must note that many



15 Data Analytics in Quantum Paradigm: An Introduction 321

of the commercial security systems, including banking, are based on algorithms
whose security are promised by hardness of factorization or discrete log problems.
In this regard, we present a few basic issues in classical and quantum cryptography
that must be explained in any data centric environment.

The main challenge in cryptology in early seventies was how to decide on a secret
information between two parties over a public channel. The solution to this has been
proposed by Diffie and Hellman in 1976 [14]. The protocol is as follows.

• In public domain, the information about a suitable group G is made available.
For example, one can consider G D .Z�p ; �/ where the elements are f1; : : : ; p�1g
and the multiplication is modulo p. The prime p should be very large, say of the
order of 1024 bits.

• Given the generator g (which is again known in public domain) and another
element h, it is hard (using a classical computer) to obtain i such that h D gi.
This is well known as Discrete Logarithm Problem (DLP).

• Thus, it is believed that in the classical paradigm, it is not easy to obtain
gab using ga; gb only (which are available to the adversary from the public
channel) without any knowledge of a; b. Here gab is used as the secret key for
further secured communication. That is, this secret key is the output of the key
distribution algorithm which will be secretly shared by the participating parties
after communication over a public channel.

Now let us describe the famous RSA cryptosystem [35]. The RSA cryptosystem has
been invented by Rivest, Shamir, and Adleman in 1977 and this is undoubtedly the
most popular public key cryptosystem which is used in various electronic commerce
protocols. The security of this cryptosystem relies on the difficulty of factoring a
number into its two constituent primes. In practice, the prime factors of interest will
be several hundred bits long. A modulus N D p�q of 1024 bits, for example, would
be common. Let us now briefly describe the scheme.

Key Generation Algorithm

• Choose primes p; q (generally same bit size, q < p < 2q)
• Construct modulus N D pq, and �.N/ D .p � 1/.q � 1/
• Set e; d such that d D e�1 mod �.N/
• Public key: .N; e/ and Private key: d

Encryption Algorithm: C D Me mod N
Decryption Algorithm: M D Cd mod N

The RSA cryptosystem relies on the efficiency of the following:

• finding two large primes p; q, and computing N D pq;
• computing d D e�1 mod �.N/ given N D pq and e;
• computing modular exponentiations Me mod N and Cd mod N.

While it is very clear that if one can factor the modulus N, then RSA can be
immediately broken, the other two security problems are the following.
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• To compute d D e�1 mod �.N/ given N; e.
• To compute M D C1=e mod N given N; e;C [RSA Problem].

Naturally, in classical domain, there is no efficient algorithm to solve the above two
problems.

Till date, there is no efficient algorithm to solve DLP or RSA in classical
domain. However, in the famous work by Shor [37], it has been shown that both
these problems can be solved efficiently in quantum paradigm. This opens a new
area called post-quantum cryptography [31], where the cryptosystems are studied
considering that the adversary can attack the systems using quantum computers.
There are certain classical public key cryptosystems, for example, lattice based
and code based schemes for which no efficient quantum attack is known. However,
understanding these algorithms requires advanced background in mathematics and
computer science. Further, the commercial implementation of these schemes is not
as efficient as RSA.

On the other hand, Bennett and Brassard provided the idea of Quantum Key
Distribution [4] (QKD) where the physical laws are exploited towards the security
proof. This idea is quite elegant and easy to understand. More interestingly, while
the commercial quantum computers are still elusive, several QKD schemes have
already been implemented for commercial purposes [33, 34]. We now describe this
idea in more detail.

15.3.1 Quantum Key Distribution and the BB84 Protocol

Based on the above discussion, it is clear that the community needs a key distribution
scheme that can resist a quantum adversary. The famous BB84 [4] protocol
provides a secure quantum key distribution scheme which is secure under certain
assumptions. The scheme has received huge attention in the research community
as evident from its citation; it has also been implemented in commercial domain as
well.

Bennett and Brassard (the BB of BB84) initiated the seminal idea of QKD in
1979 based on the pioneering concept proposed by Wiesner in 1970. Both these
ideas have been published much later, i.e., the idea of Wiesner in 1983 [41] and that
of Bennet and Brassard in [3, 4]. The work published in 1984 [4] received more
prominence and that is why the 84 of BB84 comes. Interested readers may have
a look at [9] for a detailed history in this area. Informally speaking, the security
of BB84 protocol comes from no-cloning theorem and indistinguishability of non-
orthogonal quantum states. The basic steps of BB84 QKD may be described as
follows.

• One needs to transmit 0 or 1 securely.
• For this, one may consider the bases
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fj0i; j1igI
�
1p
2
.j0i C j1i/; 1p

2
.j0i � j1i/

�
:

• Choosing any one of the above bases, one may encode 0 to one qubit and 1 to the
other qubit in that basis.

• If only a single basis is used, then the attacker can measure in that basis to obtain
the information and reproduce.

• Thus Alice needs to encode randomly with more than one bases.
• Bob will also measure in random basis.
• Basis will match in a proportion of cases and from that the secret key will be

prepared.

This is the brief idea to obtain a secret key between two parties over an insecure
public channel using the BB84 [4] protocol. After obtaining the secret key, one may
use a symmetric key cryptosystem (for example, a stream cipher or a block cipher,
see [38] for details) for further communication in encrypted mode. One may refer
to [22] for state-of-the-art results of quantum cryptanalysis on symmetric ciphers,
though it is still not as havoc as it had been on classical public key schemes.

15.3.2 Secure Multi-Party Computation

Let us now consider another important aspect of cryptology that might be relevant in
data analytics. Take the example of an Automated Teller Machine (ATM) for money
transaction. This is a classic example of secure two or multi-party computation.
Due to such transactions and several other application domains which are related to
secure data handling, Secure Multi-Party Computation (SMC) has become a very
important research topic in data intensive areas. In a standard model of SMC, n
number of parties wish to compute a function f .x1; x2; : : : ; xn/ of their respective
inputs x1; x2; : : : ; xn, keeping the inputs secret from each other. Such computations
have wide applications in online auction, negotiation, electronic voting, etc. Yao’s
millionaire’s problem [44] is considered as one of the initial attempts in the domain
of SMC. Later, this has been studied extensively in classical domain (see [18] and
the references therein). The security of classical SMC usually comes from some
computational assumptions such as hardness of factorization of a large number.

In quantum domain, Lo [24] showed the impossibility for secure computation
in certain two-party scenario. For example, “one out of two parties secure com-
putation” means that only one out of two parties is allowed to know the output.
As a corollary to this result [24], it had been shown that one out of two oblivious
transfer is impossible in quantum paradigm. It has been claimed in [23] that given
an implementation of oblivious transfer, it is possible to securely evaluate any
polynomial time computable function without any additional primitive in classical
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domain. However, it seems that such a secure two-party computation might not
work in quantum domain. Hence, in case of two-party quantum computation,
some additional assumptions, such as the semi-honest third party, etc., have been
introduced to obtain the secure private comparison [40].

In [45], Yao had shown that any secure quantum bit commitment scheme can
be used to implement secure quantum oblivious transfer. However, Mayers [27]
and Lo et al [25] independently proved the insecurity of quantum bit commitment.
Very recently some relativistic protocols [26] have been proposed in the domain
of quantum SMC. Unfortunately, these techniques are still not very promising for
practical implementations. Thus, considering quantum adversaries, it might not
be possible to achieve SMC and in turn collaborative multi-party computation in
distributed environments without compromising the security.

15.4 Data Analytics: A Critical View of Quantum Paradigm

Given the background of certain developments in quantum paradigm over the
classical world, now let us get into some specific issues of data analytics. The first
point is, if we consider use of one qubit just as storing one bit of data, then that would
be a significant loss in terms of exploiting the much larger (theoretically infinite)
space of a qubit. On the other hand, for analysis of classical data, we may require to
consider new implementation of data storage that might add additional overhead as
data need to be presented in quantum platform. For example, consider the Deutsch-
Jozsa [12] algorithm. To apply this algorithm, we cannot use an n-input 1-output
Boolean function, but we require a form where the same function can be realized
as a function with equal number of input and output bits. Further the same circuit
must be implemented with quantum circuits so that the superposition of qubits can
be handled. These are the overheads that need to be considered.

Next let us come to the issue of structured and unstructured data. In classical
domain, if a data set with N elements are not sorted, then in worst case, we require
O.N/ search complexity to find a specific data. In quantum domain, the seminal
Grover’s algorithm [17] shows that this is possible in only O.

p
N/ effort. For a

huge unsorted data set, this is indeed a significant gain. However, in any efficient
database, the individual data elements are stored in a well-structured manner so
that one can identify a specific record in O.log N/ time. This is exponentially small
in comparison with both O.N/ and O.

p
N/ and thus, in such a scenario, quantum

computers may not be of significant advantage.

15.4.1 Related Quantum Algorithms

To achieve any kind of data analysis, we require several small primitives. Let us
first consider finding minimum or maximum from an unsorted list. Similar ideas as
in [17] can be applied to obtain minimum or maximum value from an unsorted list



15 Data Analytics in Quantum Paradigm: An Introduction 325

of size N in O.
p

N/ time as explained in [15] and [2], respectively. The work [20]
considers in detail quantum searching in ordered list and sorting. However, in
such a scenario where ordered lists are maintained, quantum algorithms do not
provide very significant improvements. Matrix related operations are necessary
elements in any kind of data analytics. Given n � n matrices, A;B;C, the matrix
product verification problem is to decide whether A � B D C. While the classical
domain algorithms must require �.n2/ time, we have O.n

5
3 / algorithm in quantum

domain [10]. Such algorithms heavily use results related to quantum walks [39]. In
a related direction, solution of a system of linear equations had naturally received
serious attention in quantum domain and there are interesting speed-up in several
cases. Further these results [19] have applications towards solving linear differential
equations, least square techniques and in general, in the domain of machine learning.
One may refer to [32] for a detailed description of quantum algorithms and then
compare their complexities with the classical counterparts.

While there are certain improvements in specific areas, the situation is not always
hopeful and a nice reference in this regard is [1], where Aaronson says

“Having spent half my life in quantum computing research, I still find it miraculous that
the laws of quantum physics let us solve any classical problems exponentially faster than
today’s computers seem able to solve them. So maybe it shouldn’t surprise us that, in
machine learning like anywhere else, Nature will still make us work for those speedups.”

One may also have a look at [8, 21] for very recent state-of-the-art discussions
on quantum supremacy. While most of the explanations do not provide a great
recommendation towards advantages of quantum machine learning, for some initial
understanding of this area from a positive viewpoint, one may refer to [42].

15.4.2 Database

The next relevant question is if we have significant development in the area of
quantum database. In this direction there are some initial concept papers such
as [36]. This work presents a novel database abstraction that allows to defer
the finalization of choices in transactions until an entity forces the choices by
observation in quantum terminology. Following the quantum mechanical idea, here
a transaction is in a quantum state, i.e., it could be one of many possible states or
might be a superposition. This is naturally undecided and unknown until observed
by some kind of measurement. Such an abstraction enables late binding of values
read from the database. The authors claimed that this helps in obtaining more
transactions to succeed in a situation with high contention. This scenario might
be useful for applications where the transactions compete for physical resources
represented by data items in the database, such as booking seats in an airline
or buying shares. However, these are more at the conceptual level, where actual
implementation related details cannot be exactly estimated.
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Let us now look at what happens when we are interested in a series of
computations which are possibly the most occurring phenomenon in practice.
Consider two scenarios, one from a static data set (structured) and another from
a dynamic data set where arbitrary search, addition, modification, and alteration are
allowed. In static case, the database is generally maintained in such a manner so
that the search efforts are always logarithmic. Now consider a little more complex
scenario, where the database grows or shrinks arbitrarily and the search and other
write operations are allowed in arbitrary sequence. Even in case of such dynamic
updations, we always try to maintain some well-known balanced tree structures.
Hence, in both the scenarios, we do not have any clear advantage in quantum
domain.

15.4.3 Text Mining

Text mining is an integral part of data analytics given the popularity of social
media. Consider a scenario involving text mining problem, which uses a bag of
words and unsupervised or semi-supervised clustering technique. In the simplest
situation, let there be N words in a given corpus (dictionary). Say, the topics are
to be extracted in an unsupervised manner from a set of n stories or documents.
Each document contains a set of words. Each topic can be seen as a distribution
over the set of words in the corpus and also a document can be considered to be a
distribution over the set of (unknown) k topics, where the value of k is determined
at the beginning depending on the granularity of the topics required. A simple (or
innermost iteration) requires going through the documents one by one, allocating
the words in the document to topics, while simultaneously modifying the probability
distributions of topics in the documents and words in the topics. Now consider just
one iteration only. There are two main steps: (1) to create the dictionary (in this case,
say the dictionary is fixed, cannot be modified), and (2) we can study one document
at a time. For each document, we can allocate each word to a topic and topics to
stories following the distributions. It is obvious to see that in classical computation
the fixed dictionary is best to be organized as a sorted array. Once this is done,
the search efforts are logarithmic in classical domain and we should not get any
immediate improvement in the quantum counterpart. In this regard, we also need to
refer to topic modeling. Given a corpus of words, topic modeling is more static in
nature. However, with time the database of the corpus has to go through changes
due to both additions and deletions. The corpus size will generally increase, along
with rapid increase in number of stories to be analyzed. Further, with more and
more computing capabilities, finer topics and sub-topics will have to be retrieved.
Here big data analysis may play an important role and related algorithms should be
evaluated in quantum paradigm.

Let us now refer to certain statistical analysis [7] in this domain on a classical
model. The idea of Latent Dirichlet allocation (LDA) is described here. This is based
on a generative probabilistic model for collections of discrete data, for example,



15 Data Analytics in Quantum Paradigm: An Introduction 327

text. LDA is a three-level hierarchical Bayesian model. Each item of a collection is
considered as a finite mixture over an underlying set of topics. These techniques can
be used in text classification. However, it is not very clear how these complex ideas
can be lifted in quantum domain. In a follow-up work [16], this has been extended
where the authors present a Markov chain Monte Carlo algorithm for inference
(for quantum speed-up for Monte Carlo methods, one may refer to [28]). This
algorithm is applied to analyze abstracts from scientific journals using Bayesian
model selection to identify the number of topics. Text mining is one of the most
important topics in the domain of analytics and thus this kind of scenarios need to be
explored in quantum domain. One may refer to [11] where several ideas of quantum
Markov chains are discussed from a different information-theoretic viewpoint and
it is not very clear how long it will take to connect ideas from machine learning
domain and the paradigm of quantum information to obtain meaningful commercial
results.

15.5 Conclusion: Google, PageRank, and Quantum
Advantage

In this review, we have taken an approach to present certain introductory issues in
quantum paradigm and then explained how they relate to basics of data analytics.
We described several aspects in the domain of computation, communication, and
security and pointed out why the computational part should receive prime attention.
In the quantum computational model, we have enumerated several significant
improvements over the classical counterpart, but the two main concerns that remain
are as follows.

• Can we fabricate a commercially viable quantum computer?
• (Even if we have a quantum computer) Can we have significant improvements in

computational complexity for algorithms related to data analytics?

Let us now conclude with a very practical and well-known problem in the domain
of data analytics that received a significant attention. This should help the reader
to form his/her own opinion regarding the impact of quantum computation on a
significant problem. The problem is related to PageRank. PageRank is an algorithm
used by Google Search to rank the websites through their search engine results. It
is a method of quantifying the importance of the web pages, i.e., PageRank may
be viewed as a metric proposed by Google’s owners Larry Page and Sergey Brin.
According to Google:

“PageRank works by counting the number and quality of links to a page to determine a
rough estimate of how important the website is. The underlying assumption is that more
important websites are likely to receive more links from other websites.”

Informally speaking, the PageRank algorithm heuristically provides a probability
distribution. This is used to represent the likelihood that an entity, randomly clicking
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on web links, will arrive at any particular page. It is very natural that this kind
of technique will require huge amount of computational resources and further
there will be continuous efforts in upgrading such strategies. Some parts of such
effort might involve a lot of “rough” heuristics where exact quantification in such
a complex environment might be very hard. In [30], it has been outlined that a
quantum version of Google’s famous search algorithm may be significantly faster.
However, till date it is not clearly understood how such quantum algorithms may
behave on a huge network. We have to wait and watch to experience how the
quantum algorithms will evolve to solve the complex problems of data analytics
in the coming days.
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