

Lecture Notes in Computer Science 4375
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Wolfgang Lehner Norbert Meyer
Achim Streit Craig Stewart (Eds.)

Euro-Par 2006Workshops:
Parallel Processing

CoreGRID 2006, UNICORE Summit 2006,
Petascale Computational Biology and Bioinformatics
Dresden, Germany, August 29-September 1, 2006
Revised Selected Papers

13

Volume Editors

Wolfgang Lehner
TU Dresden
Database Technology Group
Nöthnitzer Str. 46, 01187 Dresden, Germany
E-mail: wolfgang.lehner@tu-dresden.de

Norbert Meyer
Poznań Supercomputing and Networking Center
ul. Z.Noskowskiego 10, 61-704 Poznań, Poland
E-mail: meyer@man.poznan.pl

Achim Streit
Forschungszentrum Jülich (FZJ)
Zentralinstitut für Angewandte Mathematik (ZAM)
52425 Jülich, Germany
E-mail: a.streit@fz-juelich.de

Craig Stewart
Indiana University
University Information Technology Services
2711 East Tenth Street, Bloomington, Indiana 47408-2671, USA
E-mail: stewart@iu.edu

Library of Congress Control Number: 2007926755

CR Subject Classification (1998): C.1-4, D.1-4, F.1-3, G.1-2, H.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-72226-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72226-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12056460 06/3180 5 4 3 2 1 0

Preface

Parallel and Distributed Computing, although within the focus of computer sci-
ence research for a long time, is gaining more and more importance in a wide
spectrum of applications. These proceedings aim to demonstrate the use of par-
allel and distributed computing concepts in different application scenarios and
attempt to spark interest in novel research directions to advance the embracing
model of high-performance computing research in general. The objective of the
workshop is to specifically address researchers coming from universities, indus-
trial and governmental research organizations, and application-oriented compa-
nies in order to close the gap between purely scientific research and the appli-
cability of the theoretical ideas to real-life problems. The individual research
contributions published in the current proceedings are the result of three differ-
ent workshops that were collocated at the Euro-Par Conference 2006 in Dresden,
Germany:

The CoreGRID Workshop on Grid middleware

The general focus of the CoreGRID workshop is first to assess the current state
of the art; second, new approaches in the areas of Knowledge and Data Man-
agement on Grids, Grid Resource Management and Scheduling, and Grid Infor-
mation, Resource and Workflow Monitoring Services are discussed; and finally,
it serves as a forum for the exchange of ideas between the user community and
Grid middleware developers. The CoreGRID workshop on Grid middleware was
organized by the CoreGRID Network of Excellence and took place August 28–29,
2006, in Dresden. CoreGRID is the European Research Network for strength-
ening and advancing scientific and technological excellence in the area of Grid
and Peer-to-Peer technologies. In particular, the workshop was organized by
Domenico Talia (University of Calabria, Italy), Ramin Yahyapour (University
of Dortmund, Germany), and Norbert Meyer (Poznań Supercomputing and Net-
working Center, Poland).

The UNICORE Summit 2006 Workshop

The UNICORE Grid technology provides seamless, secure, and intuitive access
to distributed Grid resources. UNICORE is a mature and well-tested Grid mid-
dleware system, which is nowadays used in daily production processes world-
wide. Beyond this production usage, the UNICORE technology serves as a solid
basis for many European and international projects. The UNICORE Summit
is a unique opportunity for Grid users, developers, administrators, researchers,
and service providers to meet, get an inside view of UNICORE, share experi-
ences, and discuss future developments. The two-day UNICORE Summit 2006

VI Preface

Workshop was held August 30–31, 2006, in Dresden and was mainly organized
by Achim Streit (Forschungszentrum Jülich, Germany) and Wolfgang Ziegler
(Fraunhofer Gesellschaft SCAI, Germany).

The Petascale Computational Biology and Bioinformatics
Workshop

The general topic of this workshop is to address the issues that bioinformatics or
computational biology applications can or should accomplish within petascale
computing environments and the kind of obstacles that must be overcome in
order to implement and use effective solutions for important problems in the life
sciences (biology, biochemistry, environmental sciences, etc.). The workshop was
held on August 28, 2006, and it was organized by Craig Stewart (Indiana Uni-
versity, USA), Michael Schroeder (Technische Universität Dresden, Germany)
and Matthias Müller (Technische Universität Dresden, Germany).

All workshops were tightly integrated into the 12th Euro-Par Conference,
held in Dresden, Germany, from August 29 to Septemper 1, 2006. This specific
Euro-Par Conference was part of an annual series of international conferences
focusing on the advancement of parallel computing by covering topics from hard-
ware architectures over algorithms and software design to specific application
needs. The Euro-Par Conference is therefore the meeting point of the interna-
tional community in this particular research field and attracts scholars as well
as technology-oriented decision makers from all over the world.

Acknowledgments

Many organizations and individuals were involved in the preparation and ac-
tual realization of the workshops collocated at the Euro-Par Conference 2006
in Dresden. At the Technische Universität Dresden, the Center of Information
Services and High Performance Computing (ZIH) contributed staff and general
infrastructure. The ZIH was supported by the Institute of System Architecture
(Database Technology Group) and the Institute of Scientific Computing in the
organization of the workshops. Specifically, the workshop organizers would like
to mention Claudia Schmidt and Guido Juckeland for their support, ranging
from tackling all administrative challenges to carefully preparing the current
volume of the workshop proceedings. Additionally, we would like to express our
sincere ‘Thank You’ to all other institutions and industrial organizations that
contributed in various ways to make the workshops a real success story. Finally,
we are also grateful to the huge number of individuals ranging from organizers to
authors and reviewers who helped set up a high-quality scientific program. They
all did a great job in preparing and actually carrying out the individual work-
shops. Within this context, we appreciate the support of Springer for agreeing to
publish these workshop proceedings; this will definitely help future Euro-Par con-
ferences and collocated workshops to continuously attract top-notch researchers
presenting outstanding research results.

Preface VII

It is our hope that these proceedings will help advance research in parallel
computing in general and act as a catalyst in promoting the idea of parallel
computing to a wide spectrum of applications. It was our pleasure hosting the
workshops in Dresden and we hope that the discussions and the current proceed-
ings are beneficial for sustainable growth and awareness of parallel computing
concepts in future applications.

September 2006
Wolfgang Lehner

Norbert Meyer
Achim Streit

Craig Stewart

Organization

Euro-Par Steering Committee

Chair
Christian Lengauer University of Passau, Germany

Vice-Chair
Luc Bougé ENS Cachan, France

European Representatives

José Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Rainer Feldmann University of Paderborn, Germany
Christos Kaklamanis Computer Technology Institute, Greece
Paul Kelly Imperial College, UK
Harald Kosch University of Passau, Germany
Thomas Ludwig University of Heidelberg, Germany
Emilio Luque Universitat Autònoma de Barcelona, Spain
Luc Moreau University of Southampton, UK
Rizos Sakellariou University of Manchester, UK

Non-European Representatives

Jack Dongarra University of Tennessee at Knoxville, USA
Shinji Tomita Kyoto University, Japan

Honorary Members

Ron Perrott Queen’s University Belfast, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers

Wolfgang E. Nagel Technische Universität Dresden, Germany
Anne-Marie Kermarrec IRISA Rennes, France

X Organization

Euro-Par 2006 Local Organization

Euro-Par 2006 was organized by the Center for Information Services and High
Perfomance Computing (ZIH) of the Technische Universität Dresden.

Conference Chairs

Wolfgang E. Nagel Center for Information Services and High
Performance Computing (ZIH) and Dept. of
Computer Science, Inst. for Computer
Engineering, Technische Universität Dresden

Wolfgang V. Walter Dept. of Mathematics, Inst. for Scientific
Computing, Technische Universität Dresden

Wolfgang Lehner Dept. of Computer Science, Inst. for System
Architecture, Technische Universität Dresden

General Organization

Claudia Schmidt

Technical Support

Kirsten Kern, Ronny Zschitzschmann

Grid Village, Exhibits

Dietmar Augustin, Stefan Pflüger

Proceedings

Guido Juckeland

Secretariat

Jenny Baumann

Organization XI

Euro-Par 2006 Workshop Program Committees

CoreGrid Workshop on Grid Middleware

Program Chairs

Norbert Meyer Poznan Supercomputing and Networking
Center, Poland

Domenico Talia University of Calabria, Italy
Ramin Yahyapour University of Dortmund, Germany

Program Committee

Artur Andrzejak
Alvaro Arenas
Angelos Bilas
Maciej Brzezniak
Marco Danelutto
Bruno Le Dantec
Marios Dikaiakos
Ewa Deelman
Vladimir Getov
Dick Epema
Antonia Ghiselli
Sergei Gorlatch

Pierre Guisset
Domenico Laforenza
Philippe Massonet
Salvatore Orlando
Thierry Priol
Yves Robert
Paolo Trunfio
Rizos Sakellariou
Frederic Vivien
Paul Watson
Roman Wyrzykowski
Wolfgang Ziegler

UNICORE Summit

Program Chairs

Achim Streit Forschungszentrum Jülich, Germany
Wolfgang Ziegler Fraunhofer Gesellschaft SCAI, Germany

Program Committee

Agnes Ansari
Rosa Badia
Piotr Bala
John Brooke
Anton Frank
Edgar Gabriel
Alfred Geiger
Odej Kao
Paolo Malfetti

Ralf Ratering
Johannes Reetz
Mathilde Romberg
Bernd Schuller
David Snelling
Stefan Wesner
Ramin Yahyapour

XII Organization

Additional Reviewer

Graham Fagg
Björn Hagemeier

Petascale Computational Biology and Bioinformatics

Program Chairs

Craig Stewart Indiana University, USA
Matthias Müller TU Dresden, ZIH, Germany
Michael Schroeder TU Dresden, Biotec, Germany

Table of Contents

CoreGRID Workshop on GRID Middleware

Introduction . 3
Norbert Meyer, Domenico Talia, and Ramin Yahyapour

Architecture of a Network Monitoring Element . 5
Augusto Ciuffoletti and Michalis Polychronakis

Support for Automatic Diagnosis and Dynamic Configuration of
Scalable Storage Systems . 15

Zsolt Németh, Michail D. Flouris, Renaud Lachaize, and
Angelos Bilas

Adding Dynamism to OGSA-DQP: Incorporating the DynaSOAr
Framework in Distributed Query Processing . 22

Arijit Mukherjee and Paul Watson

Review of Security Models Applied to Distributed Data Access 34
Antonia Ghiselli, Federico Stagni, and Riccardo Zappi

Security Requirements Analysis for Large-Scale Distributed File
Systems . 49

Syed Naqvi, Olivier Poitou, Philippe Massonet, and Alvaro Arenas

Coupling Contracts for Deployment on Alien Grids 61
Javier Bustos-Jiménez, Denis Caromel, Mario Leyton, and
José Piquer

A Transparent Framework for Hierarchical Master-Slave Grid
Computing . 74

Nadia Ranaldo and Eugenio Zimeo

A Multi-level Scheduler for the Grid Computing YML Framework 87
Sébastien Noël, Olivier Delannoy, Nahid Emad,
Pierre Manneback, and Serge Petiton

Virtual Environments - Framework for Virtualized Resource Access in
the Grid . 101

Micha�l Jankowski, Pawe�l Wolniewicz, Jǐŕı Denemark,
Norbert Meyer, and Luděk Matyska

Grid Meta-Broker Architecture: Towards an Interoperable Grid
Resource Brokering Service . 112

Attila Kertész and Péter Kacsuk

XIV Table of Contents

A Super-Peer Model for Multiple Job Submission on a Grid 116
Pasquale Cozza, Carlo Mastroianni, Domenico Talia, and Ian Taylor

A Scheduling Algorithm for High Performance Peer-to-Peer Platform . . . 126
Nabil Abdennadher and Régis Boesch

Brokering Multi-grid Workflows in the P-GRADE Portal 138
Attila Kertész, Gergely Sipos, and Péter Kacsuk

Diet: New Developments and Recent Results . 150
A. Amar, R. Bolze, A. Bouteiller, A. Chis, Y. Caniou, E. Caron,
P.K. Chouhan, G. Le Mahec, H. Dail, B. Depardon, F. Desprez,
J.-S. Gay, and A. Su

Execution Support of High Performance Heterogeneous
Component-Based Applications on the Grid . 171

Massimo Coppola, Marco Danelutto, Nicola Tonellotto,
Marco Vanneschi, and Corrado Zoccolo

Towards a Grid Information Knowledge Base . 186
Wei Xing, Marios D. Dikaiakos, and Rizos Sakellariou

UNICORE Summit 2006

Introduction . 193
Achim Streit and Wolfgang Ziegler

A Versatile Execution Management System for Next-Generation
UNICORE Grids . 195

Bernd Schuller, Roger Menday, and Achim Streit

Towards More Flexible and Increased Security and Privacy in Grids 205
Willy Weisz

Integration of Grid Cost Model into ISS/VIOLA Meta-scheduler
Environment . 215

Ralf Gruber, Vincent Keller, Michela Thiémard, Oliver Wäldrich,
Philipp Wieder, Wolfgang Ziegler, and Pierre Manneback

A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous
Point . 225

R. Menday, B. Hagemeier, B. Schuller, D. Snelling,
S. van den Berghe, C. Cacciari, and M. Melato

Grid-Based Processing of High-Volume Meteorological Data Sets 235
Guido Scherp, Jan Ploski, and Wilhelm Hasselbring

BLAST Application on the GPE/UnicoreGS Grid . 245
Marcelina Borcz, Rafa�l Kluszczyński, and Piotr Ba�la

Table of Contents XV

Job Management Enterprise Application . 254
Thomas Soddemann

UNICORE Deployment Within the DEISA Supercomputing Grid
Infrastructure . 264

Luca Clementi, Michael Rambadt, Roger Menday, and
Johannes Reetz

Petascale Computational Biology and Bioinformatics

Introduction . 277
Craig A. Stewart

Progress in Scaling Biomolecular Simulations to Petaflop Scale
Platforms . 279

Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou,
T.J. Christopher Ward, Mark Giampapa, Michael C. Pitman, and
Robert S. Germain

Progress Towards Petascale Applications in Biology: Status in 2006 289
Craig A. Stewart, Matthias Müller, and Malinda Lingwall

Toward a Solution of the Reverse Engineering Problem Using
FPGAs . 304

Edgar Ferrer, Dorothy Bollman, and Oscar Moreno

Two Challenges in Genomics That Can Benefit from Petascale
Platforms . 313

Catherine Putonti, Meizhuo Zhang, Lennart Johnsson, and
Yuriy Fofanov

High Throughput Image Analysis on PetaFLOPS Systems 323
Robert Henschel, Matthias Müller, and Yannis Kalaidzidis

Author Index . 331

CoreGRID Workshop on
GRID Middleware

Introduction

Norbert Meyer, Domenico Talia, and Ramin Yahyapour

Workshop Chairs

Grids today still need investigation in several areas to provide models and tools
for developing high-level scalable applications. Grid middleware is an active re-
search area that is bringing several results to Grid developers and users. The
goal of this workshop is to provide a bridge between the application community
and the developers of middleware services, especially in terms of parallel and
distributed computing, with the following major issues:

– To gather current state of the art and new approaches in the areas of knowl-
edge and data management, resource management and information systems

– To include work-in-progress contributions
– To provide a forum for exchanging the ideas between the users’ community

and grid middleware developers
– To disseminate existing results and provide input to the CoreGRID Network

of Excellence

The CoreGRID Workshop on Grid Middleware was held in conjunction with
Euro-Par 2006 in Dresden, August 28-29, 2006 and was organized by the three
CoreGRID Institutes: the Institute on Knowledge and Data Management, the
Institute on Grid Information, Resource and Workflow Monitoring Services and
the Institute on Resource Management and Scheduling.

In the call for papers, the list of the suggested topics included the following
specific subjects:

– Distributed data storage on Grids
– Information and knowledge management in Grids
– Distributed data mining and knowledge
– Monitoring and information systems
– Fault tolerance, reliability and sustainability
– Application and kernel level checkpointing
– Accounting and user accountmanagement in and acrossVirtualOrganizations
– Workflow frameworks
– Grid scheduling architectures
– Multi-level scheduling strategies
– Evaluation and benchmarking of Grid scheduling systems
– Scheduling of high-performance parallel applications
– Performance prediction

The workshop was chaired by the leaders of the three CoreGRID Institutes:
Domenico Talia, Norbert Meyer and Ramin Yahyapour. The Program Commit-
tee involved many researchers both from CoreGRID and external research teams.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 3–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 N. Meyer, D. Talia, and R. Yahyapour

A total of 24 papers were submitted to the workshop. After the review process,
16 papers were selected by the Program Committee and were presented at the
meeting in Dresden in five sessions focused on the following major topics:

– Knowledge and Data Management on Grids
– Grid Resource Management and Scheduling
– Grid Information, Resource and Workflow Monitoring Services

An additional invited talk was given by Graeme Kerr from Oracle (member
of the CoreGRID IAB) on distributed data management in Grids. The Grid
Middleware workshop was attended by about 40 participants coming from several
countries. The atmosphere was very active and several interesting discussions
arose during the paper presentations.

Architecture of a Network Monitoring Element

Augusto Ciuffoletti1 and Michalis Polychronakis2

1 CNAF-INFN, Bologna, Italy
2 FORTH-ICS, Heraklio, Greece

Abstract. A Network Monitoring system is a vital component of a Grid;
however, its scalability is a challenge. We propose a network monitoring
approach that combines passive monitoring, a domain oriented overlay
network, and an attitude for demand driven monitoring sessions. In order
to keep into account the demand for extreme scalability, we introduce a
solution for two problems that are inherent to the proposed approach:
security and group membership maintenance.

Keywords: network monitoring, passive network monitoring, on de-
mand network monitoring, network monitoring element, scalability is-
sues, security issues.

1 Introduction

Monitoring the network infrastructure of a Grid has a vital role in the man-
agement and the utilization of the Grid itself. The Global Grid Forum (GGF)
schema [7], splits this activity into three distinct phases: production, publication,
and utilization of measurements. Here we focus on the production and publi-
cation, with a special concern for scalability: for measurement production we
address the usage of passive network monitoring techniques, while for the pub-
lication activity we adopt a domain-oriented overlay network which reduces the
complexity of the task.

The challenge comes from the fact that a Grid oriented network monitoring
should address network routes, not single links, since this is the kind of informa-
tion needed to optimize distributed applications. Since each pair of Grid Services
should be individually monitored, this makes an O(n2) complexity for many as-
pects of network monitoring: from the size of the database containing the results,
to the number of pings that probe the system.

We combined a number of ideas in order to limit the complexity of our so-
lution: i) monitoring shouldn’t address single Grid resources, but pools with
similar connectivity; ii) monitoring tools shouldn’t inject traffic, but observe ex-
isting traffic; iii) monitoring activity should be tailored on application needs.
Only the integration of above ideas can effectively control the problem size, and,
in some sense, the first two open the way for the application of the third one.

We observe that a Grid topology is made of pools of resources reachable
through dedicated ingress points: the accessibility of such pools depends on
ingress points connectivity, and local administration avoids internal bottlenecks.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 5–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

6 A. Ciuffoletti and M. Polychronakis

Therefore the monitoring topology can be simplified by monitoring Network El-
ements between ingress points of distinct pools.

One Network Monitoring architecture, called GlueDomains [3], has been re-
cently designed and prototyped according to a two levels hierarchical overlay;
the purpose of such experiment was mainly the assessment of a number of design
principles. A Grid-wide deployment of GlueDomains was carried out during the
summer of 2006, as part of the Italian branch of the Large Hadron Collider Com-
puting Grid Project (LCG). Apart from the statistics collected (usual packet loss
and roundtrip time, together with an experimental one way jitter measurement
tool, published through the GridICE Grid Information Service [2]), the most rel-
evant results from the GlueDomains experiment concern the ease of deployment,
as well as the resilience, and stability of the architecture, which were assessed
during a one month trial. GlueDomains is included in the current release of the
Italian branch of LCG.

GlueDomains architecture centers around a number of specialized units host-
ing the agents in charge of monitoring the network. Such agents are able to
autonomously (re)configure their activity based on a dynamic description of the
network monitoring topology, available from a relational database. The moni-
toring activity was based on a domain partitioning of Grid resources: the target
of such monitoring is the Network Element, which abstracts the network infras-
tructure in charge of interconnecting two domains.

One relevant lesson learned from GlueDomains experience is the identification
of the role played by the agent that concentrates the network monitoring activity
for a domain. This role corresponds to a new resource in the Grid architecture,
which is mainly dedicated to network monitoring. In the architecture proposed in
this paper we call such agent a Network Monitoring (NM) Element: its activity
is organized into Network Monitoring Sessions.

Another cornerstone concept in our architecture is passive monitoring, which
is non-intrusive by nature. The internal architecture of NM Elements adopts
specific hardware and software solutions to address passive network monitoring.

A third concept that cuts down network monitoring complexity is an applica-
tion driven configuration: this is feasible in a Grid, where applications negotiate
computing resources with resource brokers, which can configure Network Moni-
toring Sessions on the fly, providing adequate credentials to NM Elements. The
relevant conclusion is that, if networkmonitoring activity is bound to applications,
it will increase linearly with system throughput, not with the square of system size.

A relevant aspect of an application driven approach is the interface that a
NM Element should offer to the outside. Currently brokers find resource char-
acteristics in the Grid Information System (GIS), automatically collected by
preconfigured network monitoring sessions. This attitude is inappropriate in an
application driven scenario for its limited scalability, and it would be prefer-
able to connect NM Elements to brokers through a publish-subscribe system.
Given that this aspect is still a research topic, we indicate a composite interface,
which decouples the input, consisting of monitoring requests, from the output,
consisting of observation records.

Architecture of a Network Monitoring Element 7

The scheme described above is based on some knowledge shared by all the
NM Elements, which can be assimilated to a group membership. Such common
knowledge consists of the certificates needed to enforce security, complemented
by the composition of Domains. Such data should be readily accessible by any
Grid component, although the throughput for access operations can be quite
asymmetric: frequent read queries should be performed promptly, while infre-
quent updates can be treated lazily. We address this problem by replicating this
directory on each NM Element, and using an epidemic algorithm in order to
maintain consistency of distinct network views.

2 Inside View of a Network Monitoring Element

The internal structure of a Network Monitoring Element is layered according
to the scheme in Figure 1. The upper layer is in charge of implementing the
interfaces to the outside, offering a Network Monitoring Service.

(proxy)

Network
Monitoring
Database Sensor

Monitoring
Network

Service
Monitoring
Network User Interface

GIS Interface

Information
Grid

Service

Network Monitoring Element

Certification
Authority

User
Application

Network Monitoring Element

Fig. 1. Interfaces between the NM Element and other Grid components

The NM Service offers three distinct interfaces: one for user applications (re-
source brokers included), another for the Grid Information Service (GIS), and
one that interacts with the Certification Authority. The User Application In-
terface allows the submission of a request for a specific monitoring session: the
NM Service checks broker credentials and verifies local resources availability be-
fore accepting a request. In response, the broker receives an acknowledgement.
The User Application Interface also provides users with access to the Network
Monitoring database. The GIS interface allows the publication of observations
coming from network monitoring sessions. We do not explore the architecture of
the GIS in this paper, but we note that it should enforce certain access limits:
for instance, the results of an on demand network monitoring activity should be
visible, as a general rule, only to trusted users. The GIS should be informed of
such limited access by the NM service which received the request.

The lower layer is composed of two distinct modules that do not interact with
each other. The Network Monitoring Sensor supports monitoring sessions: the
implementation of sessions is delegated to specialized modules that take their

8 A. Ciuffoletti and M. Polychronakis

configuration from the upper layer. The results of the monitoring activity are
delivered to the NM Service via dedicated one-way streams from the specific
session to the upper layer. We distinguish between preconfigured and on demand
sessions: the former are configured directly by the NM Service module using
the Grid topology described by the Network Monitoring Database, while the
latter are configured by an outside user application, through the NM Service.
The Network Monitoring Database describes the domain partition of the Grid, as
well as its components: for each element in the Grid (NM elements, Computing,
Storage etc.), the database holds a certificate (which contains a reference to a
domain) for the element, together with other relevant attributes.

2.1 The Passive Network Monitoring Component

The NM Sensor receives measurement requests from the NM Service: its interface
is summarized in Table 1, and Figure 2 describes its internal architecture.

The NM Service creates a new measurement session by sending a create re-
quest, which specifies the type of the measurement and any measurement-specific
parameters, and returns a measurement identifier (mid). The creation of a new
measurement session does not imply that the measurement will immediately
begin upon the receipt of the create request; this allows the NM Service to
activate or deactivate the measurement, also depending on resources availability
and timing requirements.

The measurements are carried out using specialized modules implemented on
top of MAPI [18], an API for building passive network monitoring applications.1

The basis of MAPI is the network flow abstraction, which is generally defined
as a sequence of packets that satisfy a given set of conditions. These conditions
range from simple header-based filters, to sophisticated protocol analysis and
content inspection functions.

The back-end of the NM Sensor consists of the basic components of MAPI,
namely the monitoring daemon mapid and the communication agent commd.
Packets are captured and processed by mapid: a user-level process with exclu-
sive access to the captured packets [18]. The monitoring modules are built as
separate applications on top of MAPI. MAPI internally handles all the commu-
nication between the modules and the monitoring daemon, making it completely
transparent.

The computed results of a measurement are pushed back to the NM Service
either on-the-fly, or upon the end of the measurement: the desired behavior is
passed in the create request.

In the rest of this section we describe the operation of the modules collecting
some relevant network metrics.

The Network Traffic Load module provides traffic throughput metrics of vary-
ing levels of granularity by passively measuring the number of bytes transferred
through the monitored link. Besides aggregate throughput, fine-grained per-flow
measurements are available for observing the throughput achieved by specific

1 MAPI is available at http://mapi.uninett.no

Architecture of a Network Monitoring Element 9

Table 1. API of the NM Sensor

Function Parameter Description

create Type Measurement type: traffic load, packet loss, or RTT
Arguments Measurement-specific parameters
Return value Measurement session identifier (mid) or error type

start Identifier The mid of the session to be started
Return value Acknowledgement or error type

stop Identifier The mid of the session to be stopped
Return value Acknowledgement or error type

close Identifier The mid of the session to be terminated
Return value Acknowledgement or error type

Monitoring
Interface

Captured Packets

Monitoring
Agent (mapid)

Communication
Agent (commd)

I/O Bus

NMS

Traffic Load
Module

MAPI stub

Packet Loss
Module

MAPI stub

RTT
Module

MAPI stub

Fig. 2. The architecture of the Network Monitoring Sensor

applications or hosts. MAPI supports generic BPF filters [14], as well as more
fine-grained filtering using pattern matching in the packet payloads through
string searching or regular expressions.

An estimation of the Packet Loss Ratio between two domains is measured
by two cooperating observation points, which keep track of packets of specific
flows that do not reach the destination within a timeout period. The packet loss
module needs traffic information from both ends. This is achieved by creating a
network flow in the local sensor, which keeps track of the outgoing packets with a
destination IP address that belongs to the remote domain, and a second network
flow at the destination domain, specified by the dstdomain parameter. The NM
Element of the other domain is instructed to create a second network flow, which
keeps track of the incoming packets with a source IP address that belongs to
the local domain. The packet loss ratio is then estimated by correlating the data
from the two network flows.

10 A. Ciuffoletti and M. Polychronakis

The Round-Trip Time is estimated using the time difference between the SYN
and ACK packets exchanged during the lifetime of existing TCP connections [12].
Each request specifies the destination domain for the end-to-end RTT measure-
ment using the dstdomain parameter. The module then creates a network flow
that captures the SYN and ACK packets of existing TCP connections between the
two domains, in the unidirectional flow from the local to the remote domain.
RTT is estimated from the time interval between the last-SYN and the first-ACK
that is sent from the local to the remote domain. The accuracy of the measure-
ment increases with its duration, since a longer duration allows for more TCP
connections to be tracked, which gives a better RTT estimation.

2.2 Outline of a Secure Group Membership Scheme

Security issues impose the use of certificates in order to identify the source
of configuration inputs to NM elements: this can be assimilated to the secure
management of a membership. An efficient and scalable certificates distribution
scheme is required [19], conceptually based on the NM Database, where cer-
tificates are stored. Access to this database must be secure and scalable, and
characterized by a small read access latency, a non bursty network overhead,
and a predictable write access latency.

In order to implement such characteristics, the database is replicated: an
(almost) complete replica of the whole database is kept at each NM Element.
The broadcast of update operations is performed using a number of circulating
tokens, each containing a stack of recently issued updates. The number of tokens
circulating in the system is tuned automatically, based on a feedback mechanism
that enables each NM Database Proxy to inject (or remove) a token when needed.

The peer-to-peer protocol used for token circulation is made secure using the
same certificates that are stored in the database itself: upon receiving a token
from a neighbor, the NM Database Proxy authenticates it using the public key of
the sender retrieved from the local database. In the exceptional case that peer’s
certificate is not present in the local database, a copy is downloaded from the
neighbor.

The protocol is resilient to network and host failures, since it does not follow
a preplanned path (or overlay network): tokens wander randomly in the system.
Although mostly based on random decisions, the protocol promises an excellent
stability and predictability: this conclusion is justified by simulation results re-
ported in [5]. The load is evenly distributed in time and space, while the update
latency remains constant.

The interface offered by this module to the upper layer consists of the op-
erations outlined in Table 2, and extends the use of the DB to the storage of
rather static characteristics of the Network Monitoring topology (like domain
partitioning): the select function returns the desired data, while the update
returns an acknowledgement. They take as parameters an SQL-like query and
the id of the Element for which the NM Service issues the request.

While the select function is clearly synchronous, the update function is not:
the acknowledgement reflects the fact that the request has been successfully

Architecture of a Network Monitoring Element 11

Table 2. API of the NM Database Module

Function Parameter Description

select SQL select query The SQL-like query that returns the desired data
Submitter The id of the Element which submitted the query
Return value A data structure containing selected data

update SQL update query The SQL-like query that modifies the database
Submitter The id of the Element which submitted the query
Return value A data structure containing the query id

check Query id The id of the query
Return value A data structure containing the status of the query

queued, not necessarily performed. In order to check the (likely) completion of a
requested update, the interface offers the check function, which takes as param-
eter the update id returned as an acknowledgement, and returns the current
status of the update request, derived from the internal queue. The returned
status contains a prediction of the completion time.

3 Related Work

The network monitoring management has been addressed by a number authors:
solutions are differentiated in the way they cope with scalability and security.

NWS [22] is the ancestor of network monitoring services, and it shares the
same building blocks with the architecture introduced in this paper: sensors and
a directory for available monitoring functions. However, NWS did not consider
at all scalability and security issues. Therefore, despite its importance as a proof
of concept, its applicability is limited to small, protected networks.

TopoMon [9] can be regarded as an evolution of NWS, in a direction which
is somewhat complementary to the approach followed in our work. In fact,
TopoMon extends NWS with tools and support for managing link level topology,
a knowledge we explicitly exclude from our interests. Although we understand
that this information is relevant (for instance, in view of a reservation service
that cannot ignore the existence of shared links when allocating end to end
communication resources), we prefer to explore scalability and security issues,
which are not addressed by TopoMon, instead of insisting on tools for exploring
communication infrastructure.

The JAMM [20] sensor management system has been implemented at LBNL
for purposes which are close to ours, and is able to configure sensors upon request
from applications. An LDAP based directory service keeps records of available
sensors, and data from sensors flow to the user applications through special-
ized gateways. The authors suggest to use encrypted communication in order to
ensure security.

The architecture we present in this paper addresses security and scalability
aspects in a different way. In JAMM, gateways are used to decouple producers
from users, in order to limit the fan out from the sensors. Our model is character-
ized by a more composite approach to scalability: a support for domain partition

12 A. Ciuffoletti and M. Polychronakis

is provided, which limits the size of the problem, directory management is ad-
dressed with explicit reference to its complexity, passive monitoring is explicitly
supported to contain communication footprint, and finally the solution of the
fan out problem is delegated to a GIS, without introducing a new solution to a
problem that must be necessarily solved elsewhere.

An interesting approach to the problem of retrieving monitoring data is offered
by Gigascope [8], a stream oriented database for storing captured network data
in a central repository for further analysis using an SQL-like query language.

A large scale project that focuses on a scalable, secure monitoring infras-
tructure is NIMI [1]. The architecture introduced in this paper shares several
aspects with such large scale prototype: mainly, the strict separation of concerns
regarding making measurements, requesting measurements, analyzing results,
configuring probes is reflected in the internal structure of our NME. In our
architecture, which is at the design stage, we introduce a decentralized global
view of the overall network monitoring system, which serves as a support also
to service discovery. Such aspect is not covered by NIMI, which bases the local
knowledge of each probe on the information received by Configuration Point of
Contacts, without introducing any form of coordination between them.

We employ passive monitoring as a technology that fits our scalability require-
ments: likewise, this approach is a cornerstone of the CoMo project [11]. One
purpose of this project is to allow users to query network data gathered from
multiple administrative domains in a secure and reliable way, without interfering
with resource availability. The white paper which is available does not address
the organization of a registry of available sensors, which is needed to address a
large, domain structured network.

Sprint’s passive monitoring system [10] also collects data from different mon-
itoring points into a central repository for analysis. The authors observe that
the amount of data collected becomes rapidly unmanageable: in our design, this
drawback is resolved with the introduction of a domain oriented overlay network,
and by offering an interface for on demand monitoring.

Arlos et al. [6] propose a distributed passive measurement infrastructure that
supports various monitoring equipment within the same administrative domain.

An approach that makes use of passive monitoring is often based on packet
analysis libraries, which extract the desired pieces of information from the mon-
itored traffic. The most widely used library for this purpose is libpcap [16],
which provides a portable API for user-level packet capture. The libpcap inter-
face supports a filtering mechanism based on the BSD Packet Filter [15], which
allows for selective packet capture based on packet header fields. CoralReef pro-
vides a set of tools and supports functions for capturing and analyzing network
traces [13]. Nprobe [17] is a monitoring tool for network protocol analysis. It
is based on commodity hardware, and speeds up network monitoring tasks using
filters implemented in a programmable network interface.

The passive monitoring components of our system are based on MAPI [18],
which shares some functionality with the above monitoring systems, but at the
same time provides a more expressive programming interface with significantly

Architecture of a Network Monitoring Element 13

extended functionality and, in many cases, increased monitoring performance.
Additionally, the distributed version of MAPI [21] enables distributed network
monitoring applications through a flexible interface that allows the manipulation
of many remote monitoring sensors from a single application.

The overall approach described in this paper is derived from the GlueDo-
mains [4] prototype, which has been successfully deployed and used in the Grid
infrastructure of the Italian National Nuclear Physics Institute (INFN). How-
ever, the existence of a centralized repository for configuration data, together
with an extended use of active monitoring techniques, limits the scalability of
the GlueDomains prototype to approximately 50 domains, which is reasonable
only for a small-scale grid.

4 Conclusions

In this paper we outline the internal architecture and the interface of a net-
work monitoring service, specifically addressing security and scalability issues.
The basic building block is the Network Monitoring Element, a specialized Grid
component. A Grid contains several instances of this component, which is respon-
sible for monitoring Network Elements between Network Monitoring Domains.
A Network Monitoring Element carries out its monitoring activity using passive
monitoring, virtually without network overhead. Its activity is described by a
number of Network Monitoring Sessions. We exclude manual intervention for
its configuration, which should be carried out automatically, either using pre-
configured sessions, or preferably according to requests from resource brokers.

References

1. A. Adams, J. Mahdavi, M. Mathis, and V. Paxson. Creating a scalable architecture
for internet measurement. In Proceedings of INET98, Geneva, July.

2. C. Aiftimiei, S. Andreozzi, G. Cuscela, N. D. Bortoli, G. Donvito, S. Fantinel,
E. Fattibene, G. Misurelli, A. Pierro, G. Rubini, and G. Tortone. GridICE: Re-
quirements, architecture and experience of a monitoring tool for grid systems. In
Proceedings of the International Conference on Computing in High Energy and
Nuclear Physics (CHEP2006), Mumbai - India, February 2006.

3. S. Andreozzi, A. Ciuffoletti, A. Ghiselli, and C. Vistoli. Monitoring the connectivity
of a grid. In 2nd Workshop on Middleware for Grid Computing, pages 47–51,
Toronto, Canada 2004.

4. S. Andreozzi, A. Ciuffoletti, A. Ghiselli, and C. Vistoli. Gluedomains: Organization
and accessibility of network monitoring data in a grid. Technical Report TR-05-15,
Universit di Pisa, Largo Pontecorvo - Pisa -ITALY, May 2005.

5. S. Andreozzi, D.Antoniades, A.Ciuffoletti, A.Ghiselli, E.P.Markatos,
M.Polychronakis, and P.Trimintzios. Issues about the integration of passive
and active monitoring for grid networks. In CoreGRID Integration Workshop
2005, november 2005.

6. P. Arlos, M. Fiedler, and A. A. Nilsson. A distributed passive measurement in-
frastructure. In Proceedings of the 6th International Passive and Active Network
Measurement Workshop (PAM’05), pages 215–227, 2005.

14 A. Ciuffoletti and M. Polychronakis

7. R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, B. Tierney, and R. Wolski.
A grid monitoring architecture. Recommendation GWD-I (Rev. 16, jan. 2002),
Global Grid Forum, 2000.

8. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream
database for network applications. In Proceedings of the ACM SIGMOD interna-
tional conference on Management of data, 2003.

9. M. den Burger, T. Kielmann, and H. E. Bal. TOPOMON: A monitoring tool for
grid network topology. In International Conference on Computational Science (2),
pages 558–567, 2002.

10. C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki, and F. To-
bagi. Design and Deployment of a Passive Monitoring Infrastructure. In Proceed-
ings of the Passive and Active Measurement Workshop, Apr. 2001.

11. G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The CoMo
white paper. Technical Report IRC-TR-04-17, Intel Research, 2004.

12. H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times. SIGCOMM
Comput. Commun. Rev., 32(3):75–88, 2002.

13. K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy. The architecture
of CoralReef: an Internet traffic monitoring software suite. In Proceedings of the
2nd International Passive and Active Network Measurement Workshop, Apr. 2001.

14. S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-
level packet capture. In Proceedings of the USENIX Winter Conference, January
1993.

15. S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture for
User-level Packet Capture. In Proceedings of the Winter 1993 USENIX Conference,
pages 259–270, January 1993.

16. S. McCanne, C. Leres, and V. Jacobson. libpcap. Lawrence Berkeley Laboratory,
Berkeley, CA. (software available from http://www.tcpdump.org/).

17. A. Moore, J. Hall, E. Harris, C. Kreibich, and I. Pratt. Architecture of a net-
work monitor. In Proceedings of the 4th International Passive and Active Network
Measurement Workshop, April 2003.

18. M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø. Design of
an application programming interface for IP network monitoring. In Proceedings
of the 9th IEEE/IFIP Network Operations and Management Symposium (NOMS),
pages 483–496, April 2004.

19. A. S. Tanenbaum. Computer Networks, chapter 8.5. Prentice Hall, 4th edition,
2003.

20. B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Thompson. A monitoring sensor
management system for grid environments. Cluster Computing, 4(1):19–28, Mar.
2001.

21. P. Trimintzios, M. Polychronakis, A. Papadogiannakis, M. Foukarakis, E. P.
Markatos, and A. Øslebø. DiMAPI: An application programming interface for
distributed network monitoring. In Proceedings of the 10th IEEE/IFIP Network
Operations and Management Symposium (NOMS), April 2006.

22. R. Wolski. Dinamically forecasting network performance using the network weather
service. Technical Report TR-CS96-494, University of California at San Diego,
January 1998.

Support for Automatic Diagnosis and Dynamic
Configuration of Scalable Storage Systems

Zsolt Németh1, Michail D. Flouris2, Renaud Lachaize3, and Angelos Bilas3

1 MTA SZTAKI Computer and Automation Research Institute
P.O. Box 63, Budapest, H-1518, Hungary

zsnemeth@sztaki.hu
2 Department of Computer Science, University of Toronto,

Toronto, Ontario M5S 3G4, Canada
3 Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas

P.O.Box 1385, Heraklion, GR 71110, Greece
{flouris,rlachaiz,bilas}@ics.forth.gr

Abstract. Distributed storage systems are expected to serve a broad spectrum
of applications, satisfying various requirements with respect to capacity, speed,
reliability, security at low cost. Virtualization techniques allow flexible configu-
ration of storage systems in order to meet resource constraints and application
requirements. Violin provides block level virtualization that enables the exten-
sion of storage with new mechanisms and combining them to create modular
hierarchies. Creating and maintaining such virtualization hierarchies however, is
a complex task where a human system administrator is the most expensive and
less efficient element. We introduced Conductor, an automated support system
that tries to grasp human expertise with declarative rules that are applied to stor-
age management. So far the initial, static configuration capabilities of Conductor
have been elaborated. Static features however, are not sufficient for practical pur-
poses as the storage system evolves, i.e. requirements, workloads, access patterns
may change in time. This paper presents work in progress that is aimed at ex-
tending Conductor with supporting dynamic features. We introduce the concepts
of global and directed reconfigurations and discuss their potential strengths and
weaknesses.

Keywords: distributed storage management, virtualization, rule based system.

1 Introduction

As the volume of digital data increases, scalable storage systems provide a means of
consolidating all storage in a single system to improve cost-efficiency (Figure 1a). For
this reason, storage system architectures are undergoing a transition from directly- to
network-attached. This new architecture offers potential for flexible configuration of
storage systems to better match application needs and thus improve their performance.
This is an important concern because distinct application domains have very diverse
storage requirements; Scientific computation, data mining, e-mail serving, e-commerce,
search engines, operating system (OS) image serving or data archival impose different

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 15–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 Z. Németh et al.

system−area network

storage resource pool

LAN / WAN
Client workstations, remote−access clients, ...

Application

Server
Application

Server
Application

Server

Server
Application

Mail

Server
Application

Database

Server
Application

Server

Server
Application

ServerServer
Application

(a) Networked storage architecture

Physical Allocation Layer

Content−Based Addressing Layer

Partition 1 Partition 2

V.Machine 1 V.Machine 2

...

...

...

Versioning Versioning

(b) Virtual hierarchy example

Fig. 1. Generic networked storage organization (a) and example virtual hierarchy to consolidate
storage for virtual machines

tradeoffs in terms of I/O throughput, latency, reliability, capacity, high-availability, se-
curity, data sharing and consistency.

Violin [3] is a kernel-level framework for building and combining virtualization
functions at the block level. Violin targets commodity storage nodes and replaces the
current block-level I/O stack with an improved I/O hierarchy that allows for (i) easy
extension of the storage hierarchy with new mechanisms and (ii) flexible combining of
these mechanisms to create modular hierarchies with rich semantics. As an example,
Figure 1b shows a virtual hierarchy that provides a private virtual disk to each of many
virtual machines running on a single system [4]. This system uses partitioning, version-
ing, and content addressable storage layers to provide the illusion of private disks on
top of the same physical storage. More scenarios of advanced virtualization semantics
are discussed in [4].

We proposed Conductor [2], a rule-based expert system that is aimed at providing
support for configuring and maintaining virtual storage hierarchies in scalable storage
systems, such as Violin. Currently, this task relies entirely or mostly on the expertise
and intuition of human system administrators. Moreover, most configuration activities
are usually complex, not exact, and thus, hard to formalize. Conceptually, Conductor
maintains a knowledge base about the storage system as facts, e.g. devices, properties,
measured values, structures, and expertise expressed as rules, e.g. how the characteris-
tics of a disk are changed if striped or what are the symptoms of a faulty disk. Based
on the facts and rules Conductor will be able to infer new information that may indicate
symptoms of problems or may trigger corrective reconfiguration actions.

Storage requirements of applications can be divided in two categories: (a) Statically
satisfiable requirements, such as capacity, archival capability, fault tolerance level, en-
cryption, and compression. (b) Dynamically satisfiable requirements that refer mostly
to performance characteristics, such as throughput and response time, albeit, some static
requirements may also change over time for a given application.

Support for Automatic Diagnosis and Dynamic Configuration 17

In its current status, as presented in our previous work [2], Conductor is able to deal
with static (initial) system configuration. The focus of the work so far has been to sug-
gest optimal configurations that fully satisfy functional (static) requirements, but only
approximate performance (dynamic) requirements based on estimated performance val-
ues for system components. The performance of a storage element depends both on its
physical characteristics as well as the specific application workload. The latter is usually
only approximately known at system configuration time. Therefore, initial (static) sys-
tem configuration usually relies on estimated values for dynamic (performance) charac-
teristics. This is also what happens in Conductor; For instance, when a system needs to
provide a virtual volume that offers a certain level of I/O throughput, Conductor relies
on estimated values for the throughput of physical devices and heuristics to estimate
the throughput of the final virtual device. In essence, Conductor currently addresses
two challenges:

– It captures human expertise in the form of rules of a production system. They rep-
resent “rules of thumb” that a human administrator would follow, e.g. “to achieve
a certain level of throughput stripe a virtual volume over a number of devices”.
However, to grasp real human expertise and introduce sophisticated rules beyond
elementary ones currently implemented, this aspect of Conductor needs to be fur-
ther investigated.

– It reduces the complexity of searching the configuration space. In this direction,
Conductor uses heuristics and tries to reduce search complexity without compro-
mising the quality of the generated solutions significantly.

In this paper, we focus on how to augment Conductor in order to satisfy dynamic
requirements, as both workload and system characteristics evolve over time.

Satisfying dynamic requirements requires continuous monitoring of a storage system
to detect whether certain goals are being violated. Monitoring is system specific and is
usually possible by instrumenting the I/O path at user- or kernel-level. Monitored data
are inserted into Conductor’s knowledge base in form of facts and subsequently Con-
ductor is able to detect if certain (dynamic) requirements are not met by simply compar-
ing the monitored information to the original specifications; For instance, if throughput
of a specific volume drops below a minimum threshold during high traffic conditions,
this may imply that the system is not able to satisfy application requests at the agreed
rate. Whenever Conductor detects a discrepancy from the original specification it trig-
gers corrective actions that will reconfigure the system. Now, we discuss two main
alternative approaches to dynamic reconfiguration: (a) global dynamic reconfiguration
and (b) directed dynamic reconfiguration.

2 Global Reconfiguration

One approach to deal with dynamic features is to trigger a full system reconfiguration
when problems are detected. This procedure resembles static configuration: a new vir-
tual hierarchy is built from scratch, however, using actual, measured values as opposed
to the estimated values used in static system configuration. For instance, if throughput

18 Z. Németh et al.

to a specific physical disk is measured to be half of the estimated throughput, then this
measured value may lead to more realistic configuration. This scheme can be further
refined by establishing certain statistical properties of measured values or relationships
between them. As an example it may be projected that encrypted volumes have x per-
cent higher latency where x is established from actual measurements. Hence, not only
can measured values replace estimated ones, but also actual experience can refine the
way configuration is realized by updating the knowledge base in Conductor. In this
sense, measured values also serve as refinements to the existing experience over a longer
period; certain trends, relationships between performance and workload, further details
of projecting the performance can be established and incorporated into both static and
dynamic (re)configuration.

Global reconfiguration is a natural extension of static configuration and re-uses ex-
isting mechanisms in Conductor. While initial configuration may not meet performance
requirements due to the use of estimated values for performance characteristics, re-
configuration of the system using feedback from the actual system can narrow the gap
between required and achieved values. However, this approach has several potential
disadvantages.

A main issue is the overhead that a global reconfiguration incurs. Our previous
work [2] shows that this is an extensive process. First, configuration itself is an ex-
haustive search and even though various search strategies have been investigated to
reduce complexity by several orders of magnitude, it may still exhibit an exponential
behavior. Moreover, reconfiguration affects the entire storage hierarchy independently
of the type or focus of the problem, which may not scale in large storage systems. Fi-
nally, another potential weakness of global reconfiguration is that although it uses more
realistic actual performance values, it omits workload information. Workload behavior
may depend on the structure of the hierarchy itself. Thus, rebuilding the full hierarchy
from scratch may result in different workload behavior and, as a consequence, reduce
the usefulness of the measured values.

3 Directed Reconfiguration

Instead of triggering a global system reconfiguration, an alternative approach is to first
detect the type of performance problem as accurately as possible as well as the location
where it occurs in a storage hierarchy and then solve it by directed, local reconfigu-
ration. This, less intrusive approach requires detecting the origins of discrepancies in
dynamic characteristics. Today, this diagnostic procedure is the task of experienced hu-
man operators that understand both application requirements as well as symptoms of
specific performance problems. Automating this procedure is essential for improving
the cost-efficiency of large scale storage systems.

Directed reconfiguration relies on the inference mechanism of production systems [5]
that is especially appropriate for diagnostic purposes. If the expertise of a human operator
is expressed as rules in the production system, then measured facts (monitored values)
about system components can be used to infer (diagnose) the location of a problem.

Support for Automatic Diagnosis and Dynamic Configuration 19

The location where a problem is first detected is not necessarily the origin of the
problem. For this reason, diagnosis involves multiple, recursive steps, where inferred
information at each step may lead to further decomposing the system to simpler com-
ponents. For instance, if the bandwidth of a volume is less than expected, diagnosis
needs to examine which of the constituent virtual or physical devices of the volume
may be responsible. This recursive procedure, essentially follows the structure of vir-
tual volumes, as they are composed out of (possibly multiple layers of) physical devices,
storage nodes, and network paths. When a problem is localized with diagnosis, the ac-
tions that will be taken by directed reconfiguration represent another form of human
expertise and are empirical, inexact, and hard to formalize.

Directed reconfiguration may lead to better decisions compared to global reconfigu-
ration, since diagnosis tries to preserve as much as possible the existing structure. This
allows for selecting the most promising reconfiguration actions in a given situation and
can lead to better configurations in fewer steps, avoiding a costly (and potentially more
disruptive) global reconfiguration that has to try a plethora of possibilities. For exam-
ple, if there is an indication that 10% more bandwidth is required in a virtual volume,
directed reconfiguration may suggest immediately an upgrade of the volume from 2-
to 3-way striping, instead of trying all possible configurations using measured perfor-
mance values.

The main drawback of directed reconfiguration is that in several cases it may not be
easy to find the exact scope and cause of a problem. Even human system administra-
tors sometimes can do little more than an intelligent guess – this type of experience
can hardly be formalized. It is thus likely that only a subset of the potential problems
and their symptoms will be formalized as rules. Nevertheless, we anticipate that signifi-
cant classes of performance problems can be detected by this method and addressed by
efficient system reconfiguration.

4 Related Work

Due to the overall complexity of administering storage systems, the application of ab-
stract control and intelligent methods, have been proposed in recent work. While there
are some similarities with our work in certain details, none of them address the issue of
configuring and maintaining virtual storage hierarchies.

Polus [7] aims at mapping high level QoS goals to low level storage actions by intro-
ducing learning and reasoning capabilities. The system starts with a basic knowledge
of a system administrator expressed as “rules of thumb” and it can establish quantita-
tive relationships between actions taken and their observed effects to performance by
monitoring and learning.

Ergastulum [1] is aimed at supporting the configuration of storage systems with re-
ducing the search complexity of possible design decisions by utilizing heuristics with
randomization and backtracking.

A novel approach presented in [6] tries to predict the effect of certain actions and
helps with making decisions at data distribution. It establishes a set of What... if... state-
ments where the hypothetical effect (what part) of a certain circumstance (if part) is
stored. These relations are obtained by statistical, analytical or simulation methods.

20 Z. Németh et al.

5 Conclusions

Our goal in this work is to examine how we can extend the existing static features of
Conductor [2] to automatically configure large scale storage systems so that they satisfy
application requirements for dynamic system characteristics. We introduce two poten-
tial approaches: The first, global reconfiguration, is a direct extension of Conductor and
can be implemented in a straightforward manner. The second one, directed reconfigu-
ration aims at capturing further human expertise when managing large storage systems.
One of the main challenges here is introducing appropriate diagnostic rules in the pro-
duction system.

Global and directed reconfiguration can also be seen as complementary to each other:
Global reconfiguration uses measured data but omits structural information. Its effect is
global and it is most useful when problematic spots cannot be identified either because
they are related to the entire structure with no specific focus or appear too frequently
or simply cannot be diagnosed. On the other hand, directed reconfiguration takes into
account measured data and structural information and tries to locate the problematic
spot and the possible causes as precisely as possible. It is more appropriate for “local”
problems in the system structure, such as performance hot-spots.

Finally, we are currently implementing the two approaches. This requires addressing
the following challenges: (a) Capturing human expertise in the form of rules for diag-
nosis purposes can happen at various levels of detail. (b) Although detecting a certain
problem is easy, it is hard to decide if action must be taken or if the problem is tem-
porary, can be tolerated and should thus, be ignored. (c) Improving the management
system by extending the knowledge base gradually with new rules as more experience
is acquired with new applications and new system components. (d) Performing experi-
ments with realistic setups that reflect situations encountered in real life.

Overall, we believe that rule-based expert systems, such as Conductor, tuned to the
needs of storage applications, can offer significant help in managing large scale storage
systems and improving their cost-efficiency.

References

1. E. Anderson, M.Kallahalla, S. Spence, R. Swaminathan, Q.Wang. Ergastulum: Quickly Find-
ing Near-Optimal Storage System Designs. HP Laboratories SSP technical report HPL-SSP-
2001-05 (2002)

2. Zs. Németh, A. Bilas, M.D. Flouris, R. Lachaize: Conductor: An Intelligent Configuration
Framework for Storage Area Networks. Book on Knowledge and Data Management in Grids,
CoreGRID series, Springer Verlag, 3, 2006

3. M.D.Flouris, A. Bilas: Violin: A Framework for extensible Block-level Storage. 22nd IEEE /
13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
April 2005, Monterey, CA, USA. IEEE Computer Society 2005.

4. M. Flouris, R. Lachaize, and A. Bilas. Violin: a Framework for Extensible Block-Level Stor-
age. Book on Knowledge and Data Management in Grids, CoreGRID series, Springer Verlag,
3, 2006

Support for Automatic Diagnosis and Dynamic Configuration 21

5. M.Klein, L.B.Methile: Expert systems: A Decision Support Approach. Addison-Wesley, 1990.
6. E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayan an, G. R. Ganger. Informed data

distribution selection in a self-predicting stor age system. Proc. of the International Conference
on Autonomic Computing, ICAC-0 6, Dublin, Ireland, June 2006.

7. S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer, D. Pease. Polus: Growing Storage
QoS Management Beyond a ”Four-year Old Kid”. USENIX FAST ’04 Conference on File and
Storage Technologies, March 2004, San Francisco, CA, USA.

Adding Dynamism to OGSA-DQP:

Incorporating the DynaSOAr Framework in
Distributed Query Processing

Arijit Mukherjee and Paul Watson

School of Computing Science, Newcastle University,
Claremont Tower, Claremont Road, Newcastle Upon Tyne, United Kingdom

{Arijit.Mukherjee,Paul.Watson}@ncl.ac.uk
http://www.cs.ncl.ac.uk

Abstract. OGSA-DQP is a Distributed Query Processing system for
the Grid. It uses the OGSA-DAI framework for querying individual
databases and adds on top of it an infrastructure to perform distributed
querying on these databases. OGSA-DQP also enables the invocation of
analysis services, such as Blast, within the query itself, thereby creating
a form of declarative workflow system. DynaSOAr is an infrastructure
for dynamically deploying web services over a Grid or a set of networked
resources. The DynaSOAr view of grid computing revolves around the
concept of services, rather than jobs where services are deployed on de-
mand to meet the changing performance requirements. This paper de-
scribes the merging of these two frameworks to enable a certain amount
of dynamic deployment to take place within distributed query processing.

Keywords: Dynamic deployment, Web Service, Grid, distributed query
processing.

1 Introduction

OGSA-DQP[1], [2] is a publicly available service-oriented distributed query pro-
cessor for the Grid. It provides distributed query functionality on databases
spread over the Grid using the commonly used service for data access and inte-
gration, OGSA-DAI[3]. OGSA-DQP supports the evaluation of queries expressed
in a declarative fashion over one or more services, including data access services
and external analysis services. It can be seen as complimentary to other service
orchestration mechanisms, such as workflow languages.

Because the services can be potentially located on computational resources
distributed across the internet, communication costs can play a major role in
the performance of the system. Co-locating the query evaluation service and
the analysis service with the data, even with an on-the-fly deployment may
prove to be potentially beneficial in the long run, especially when frequent, long-
running queries are executed. DynaSOAr[5] is a framework, which enables such
dynamic deployment of services on available computational nodes. An enhanced

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 22–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Adding Dynamism to OGSA-DQP 23

version of OGSA-DQP has been created which incorporates DynaSOAr concepts.
This paper briefly describes the DynaSOAr architecture, and its use within the
OGSA-DQP context. Experimental results and analyses show how DynaSOAr
may benefit service-oriented distributed query processing by moving the analysis
and data retrieval code near the actual data.

The paper is organized as follows: Section 2 provides a brief introduction to
the OGSA-DQP concept and functionality. Section 3 describes the DynaSOAr
architecture in brief, followed by the use of DynaSOAr infrastructure within the
OGSA-DQP context in Section 4. The experimental setup, results and analysis
are covered in Section 5. Related works are discussed in Section 6, current and
future directions in Section 7, with conclusions in Section 8.

2 Brief Description of OGSA-DQP

OGSA-DQP is composed of two major services (i) Grid Distributed Query
Service (GDQS) and (ii) Query Evaluation Service (QES). The GDQS is imple-
mented as an extension to the standard OGSA-DAI service, and is deployed as
an OGSA-DAI data service with an exposed data service resource1. The DQP
data service resource thus exposed, supports querying over a set of OGSA-DAI
data services, each wrapping a database on some computational node. It also
supports the invocation of analysis services over the query results. An example
of a typical query, in OQL, supported by OGSA-DQP is as follows:

%print select p.ORF, g.id, calculateEntropy(p.sequence)
from p in protein_sequences, g in goterms, t in protein_goterms
where g.id=t.GOTermIdentifier and p.ORF=t.ORF and
p.ORF like "YBL06%" and g.id like "GO:0000%";

In this example, the query spans over three databases (protein sequence, goterm
and protein goterm) which can be distributed over a large geographical area, and
an analysis service exposed as a Web Service is also invoked on each sequence el-
ement. Based on the schema and WSDL imported from the data and the analysis
services and the resources available to it, a query compiler/optimizer component,
Polar*[6], generates a parallel query plan, which is partitioned into sub-plans.
These sub-plans are distributed to the participating evaluation services each of
which is responsible for evaluating the sub-plan assigned to it and conveying
the result back either to the root partition or other evaluation services. Finally,
the result is collected at the node evaluating the root partition and sent to the
GDQS and hence to the consumer.

1 A data service resource implements the core OGSA-DAI functionality. It accepts
perform documents from data services, parses and validates them, executes the data-
related activities specified within them and constructs response documents. It can
also cache data for retrieval by third-parties (if the data service resource is configured
to support asynchronous data delivery). Data service resources are accessed via data
services.[4]

24 A. Mukherjee and P. Watson

3 DynaSOAr Architecture

DynaSOAr is a framework, which provides a generic infrastructure for deploy-
ing web services as and when required, on available nodes. DynaSOAr achieves
this dynamic deployment by processing the incoming consumer request at differ-
ent levels between two different components, namely a DynaSOAr Web Service
Provider and a Host Provider, with a defined interface between them.

– The DynaSOAr Web Service Provider is the entity with which consumers
interact. It advertises the services it can provide, receives SOAP messages
from consumers requesting a service from a particular endpoint associated
with the message, and is responsible for arranging the processing of the
request. The Web Service Provider achieves this by choosing an appropriate
Host Provider and forwarding the message to it with any associated Quality
of Service (QoS) parameters and an added element in the message header
identifying a software repository where the service code can be found in case
a dynamic deployment is required.

– The Host Provider is responsible for controlling the computational resources,
such as a cluster or a grid, on which services can be deployed, and requests
for those services can be processed. It accepts the SOAP messages forwarded
by the Web Service Provider on behalf of the services hosted by it, and sends
back any response generated after processing the request.

When a message reaches the Host Provider, there can be two different interaction
patterns depending on whether or not the requested service is already deployed
on the node -

1. If the service is already deployed on the computational node where the re-
quest is to be processed, then the Host Provider routes the SOAP message
to the service on that node. In Figure 1a, the consumer makes a request
for service S2, which is already deployed on node N1 and N2. Based on the
current information about the system load, the Host Provider routes the
request to the lightly loaded node N2 where the request is processed and
the response is sent back.

2. The second case is where the consumer makes a request for a service, which
is not already deployed on any of the available nodes, such as the request
for service S8 sent by the consumer in Figure 1b. In this case, a decision
is made about the target node where the service is to be deployed and the
message is forwarded to that node. The node downloads the service code
from the software repository, deploys the service dynamically, and processes
the request.

It is to be noted that in the scenarios described above, the consumer is not aware
of the resources behind the Web Service Provider or the fact that the service
has been dynamically deployed. They interact with the Web Service Provider by
sending SOAP messages which is the standard way of interacting with a service.

Adding Dynamism to OGSA-DQP 25

(a) Routing request to existing
deployment

(b) Request service not already
deployed

Fig. 1. Routing requests in DynaSOAr

DynaSOAr has two other components to support dynamic deployment, namely
a Registry Service, and the Service Repository.

– The DynaSOAr Registry Service is provided by GRIMOIRES[7], which is
a UDDI-based registry, with added support for storing metadata as RDF
triplets. Whenever the provider of a service decides to make the service
available via DynaSOAr, the service code needs to be uploaded to the service
repository, as a result of which the registry is updated with the information.
The service is added to the registry without any concrete accessPoints (in
UDDI terms), but a reference to the Service Repository web service is added
to it. Every time a service is deployed on any of the available nodes, the
entry of that service in the registry is updated with the actual endpoint.

– The Service Repository manages the upload or download of the service code.
The Host Providers communicate with this service while downloading the
service code for a service to be deployed.

The description so far consisted of a single Host Provider. However, in reality,
several Host Providers may be available to one Web Service Provider. It might be
advantageous to make a selection between the available Host Providers based on
certain parameters, such as cost, dependability, QoS, security. To facilitate this,
another component, the broker, with the same interface as the Host Provider, has
been introduced in the architecture to make such decisions. The broker has the
knowledge about one or more Host Providers, and is able to make the decisions
based on the characteristics of the available Host Providers and the QoS or
security requirements requested by the consumer. Figure 2 describes the generic
architecture of DynaSOAr with all its components.

DynaSOAr is a generic framework allowing the structure to grow dynamically
to any level or depth. There can be any number of brokers and any number of
Host Providers, thereby creating the space for a Web Service Market Place, where
the brokers can choose between all available providers meeting the consumer
requirements to process the requests.

26 A. Mukherjee and P. Watson

Fig. 2. Generic DynaSOAr Architecture

The generic architecture of DynaSOAr does not restrict the dynamic deploy-
ment functionality to web services alone. As described in [5], DynaSOAr enables
the dynamic deployment of virtual machines like VMWare[8] and Microsoft Vir-
tual PC[9] and also .NET services and stored procedures over SQLServer.

4 Dynamic OGSA-DQP

The features of OGSA-DQP and the requirements for distributed query pro-
cessing make it a prime candidate for the use of the DynaSOAr infrastructure.
Usage scenarios in OGSA-DQP, which can benefit from the DynaSOAr features,
include the following -

1. Frequent and long-running queries can benefit from the on-the-fly deploy-
ment of an analysis service such that it is co-located with relevant data.

2. A new database wrapped by the OGSA-DAI data service can be deployed
to enable the GDQS to serve queries involving the new database.

3. An increased degree of parallelism can be obtained by deploying multiple
copies of the analysis service on multiple nodes.

4. Increased performance for a database scan can be enabled by deploying vir-
tual machines containing a copy of the database.

5. Even though the deployment of virtual machines is costly in terms of time
required, in the case of frequent and long-running use of the database present
in the virtual machine or the service deployed in it, the initial deployment
cost can be outweighed by the benefits.

6. Polar* performs some basic optimization based on the information available
to it. But this optimization can be enhanced by considering the dynamic
deployment scenario, where the scheduler should be able to schedule deploy-
ment of new evaluation or analysis services on new computational nodes if
it finds the existing deployments to be heavily loaded.

Adding Dynamism to OGSA-DQP 27

4.1 Implementation

As a proof of concept the publicly available OGSA-DQP has been modified to
incorporate the DynaSOAr features into it. In the DynaSOAr-enabled OGSA-
DQP, the primary requirement is to create a structure similar to the Web Service
Provider - Host Provider structure of DynaSOAr. The Grid Distributed Query
Service (GDQS) corresponds to the Web Service Provider, which advertises itself
as capable of providing distributed query processing functionality over a set of
databases exposed as OGSA-DAI data service resources, and a set of analysis
services, either provided by a remote provider, or by the GDQS itself. In the
latter case, the analysis service may not be deployed on any node available to
the GDQS, but the Service Repository stores the service code, and the registry
contains information about this potentially available service.

As in case of the public OGSA-DQP, a DQP data service resource must be cre-
ated from the deployed GDQS factory data service resource when initializing the
service. In the second initialization step, this data service resource imports the
schema of the databases exposed by OGSA-DAI and the WSDL of the analysis
service. During this second phase, the GDQS in the dynamic version of OGSA-
DQP tries to co-locate the evaluation services with the OGSA-DAI-wrapped
databases by dynamically deploying the Query Evaluation Service, which is a
standard web service, onto the nodes where the data resides. If an analysis service
advertised by the GDQS is added to the DQP data service resource configura-
tion, the GDQS using the DynaSOAr framework deploys the service on a suitable
computational node. Once these new services are deployed, the schema and the
WSDL are imported from them in the same way as in case of the standard
OGSA-DQP. The complete deployment process is shown in Figure 3.

As the new services are deployed, the registry is updated with the corre-
sponding information, so that another data service resource for the same GDQS
will be able to reap the benefit of the previous deployment by re-using the al-
ready deployed services. This is the point where the advantages of DynaSOAr
over currently available job-based grid systems become apparent. The services
deployed using DynaSOAr will be accessible until they are explicitly removed
from the server, or the server becomes unavailable, compared to the jobs, which
do not persist beyond a single execution. Thus we can achieve a “deploy once,
use many times” philosophy with DynaSOAr, which has a positive effect on the
performance of the distributed queries as shall be seen in the analysis of the
experimental results.

5 Experiment

5.1 Setup

To analyze the performance of the Dynamic OGSA-DQP system, several exper-
iments have been performed and the results analyzed. The initial experiments
primarily concentrated on the dynamic deployment of the analysis services and

28 A. Mukherjee and P. Watson

Fig. 3. DynaSOAr enabled OGSA-DQP

the impact made by this on the performance of the distributed query process-
ing activities. The DynaSOAr framework was setup on a set of Linux machines
within the Newcastle University GIGA cluster - each of them being a four-
processor Intel� XeonTM CPU 2.80GHz system, with 2GB memory, and Fedora
Core 4 installed on them. The GDQS was deployed on another Linux machine
- a four-processor Intel� XeonTM CPU 3.06GHz with 1GB memory and Fe-
dora Core 4 installed on it. The DynaSOAr Registry and Service Repository
service were co-located with the GDQS. The analysis service code, along with
the Query Evaluation Service code were uploaded to the Service Repository,
and a copy of the same analysis service was deployed on a Linux (one-processor
Intel� XeonTM CPU 2.40GHz system with 1GB memory and Red Hat Enter-
prise 3 Linux) system at the Edinburgh Parallel Computing Centre (EPCC) at
Edinburgh University. The network between Newcastle University and EPCC is
JANET, which is a high performance gigabit network connecting the universities
in the United Kingdom.

Five databases were exposed as OGSA-DAI data resources on five of the Linux
systems that were part of the already established DynaSOAr framework. One
of the databases used for the test queries was loaded with several tables, each
with 100,000 records, and fixed record sizes of 128 bytes, 256 bytes, 512 bytes,
1 Kbytes, 2 Kbytes, 4 Kbytes, 8 Kbytes and 10 Kbytes. The experiments were
designed to fetch data out of each table in chunks of 100, 200, 400, 800, 1000,
2000, 5000, 10000, 20000 and 50000 tuples and perform the analysis on each
tuple using the analysis service. Results were collected in order to compare the
performance of the system with a remote analysis service, to the performance
with a local service dynamically deployed using the DynaSOAr framework, i.e
to investigate item (1) in Section 4.

Adding Dynamism to OGSA-DQP 29

5.2 Results and Analysis

In preliminary experiments, the DynaSOAr framework was used to deploy the
analysis service on separate hosts. The deployment cost includes the time re-
quired to transfer the service code from the repository to the target host and the
time taken for the actual deployment within the web service container, Apache
Tomcat in this case - where the packaged service (packed as a WAR file) is
unpacked into a proper directory structure and the various libraries are loaded
before the service can be accessed. Figure 4a shows the time taken to deploy the
service on different hosts and the average time for deployment.

The average time required for an individual service deployment on a compu-
tational node was approximately 32.4 seconds. This is a one-time cost and is
incurred only during the DQP initialization phase. Copies of the same service
can be deployed in parallel on multiple nodes if required, so that the total de-
ployment cost of all copies becomes equivalent to the cost of a single deployment.
Once the service is deployed locally, the performance of the queries executed by
this GDQS reaps the full benefit of this one-time deployment, as is evident from
the other experiments.

A set of ten queries was executed on a test database, retrieving 100, 200, 400,
800, 1000, 2000, 5000, 10000, 20000 and 50000 tuples from the database. Each
query was used to retrieve datasets of different sizes, such as 128 bytes, 256 bytes,
512 bytes, 1 Kbytes, 2 Kbytes, 4 Kbytes, 8 Kbytes and 10 Kbytes. Each query
also invoked the analysis service for each retrieved tuple. An example query used
in the tests is as follows:

%print select p.id, calculateEntropy(p.sequence) from p in
proteinsequence_random_sequence_128s where p.id < 20000;

This query retrieves 20,000 tuples from the database and invokes the analysis
service (calculateEntropy in this case) on the sequence attribute of each tuple.
The results of these experiments are shown in Figure 4b and Figure 4c.

Figure 4b compares the invocation cost (in milliseconds) of a local and a re-
mote deployment of the same service for different result cardinalities, ranging
from 100 to 20,000. Figure 4c compares the average invocation cost (in millisec-
onds) of the local and remote service for different sized tuples, from 128 bytes
to 10 Kbytes.

It is evident from the plotted results that the invocation cost increases rad-
ically for the remote analysis service as the number of tuples increase starting
from 100 tuples to 20000 tuples. In Figure 4b, the total cost of invoking the
analysis service increases as the number of tuples retrieved from the database
increase. But, the rate of increase is far more substantial when the analysis ser-
vice is remote, than when it is local. In Figure 4c, the average invocation cost
per tuple is plotted against the average tuple size, starting from 128 bytes to
10Kbytes. In this case, for both local and remote services, the invocation cost
tends to increase as the tuple size increases, but the effect of a remote service is

30 A. Mukherjee and P. Watson

(a) Required deployment time on
different hosts

(b) Comparing average invocation
cost for different tuple sizes

(c) Comparing local and remote
service invocation cost

(d) Comparison of the total evaluation
cost

Fig. 4. Performance Analysis of DynaSOAr-enabled OGSA-DQP

significantly higher than a local service, and it can be inferred that the cost of
invoking the remote service will increase further if the data size increases.

Figure 4d shows the total query evaluation cost for two scenarios, (1) when
the analysis service was local and (2) when the analysis service was remote.
This figure shows that the total query evaluation costs when the analysis service
was remote are significantly higher than the total evaluation costs when the
service was local. The difference between these two values becomes equal to
the average cost of deployment (an average of 32.4 seconds) when the number of
tuples is approximately 1000, and starts increasing even more significantly as the
number of tuples increase. This data validates the statement made earlier in this
paper that the one-time deployment cost can be outweighed by the performance
benefits in case of frequent, long-running queries.

These results clearly show that for the queries using analysis services over
the data retrieved from the databases, the performance of DynaDQP is much
better than the standard OGSA-DQP where the analysis service can be remote
from the data. The difference in the performance is quite noticeable considering
the fact that a very high-speed Internet backbone exists between the server
at Edinburgh Parallel Computing Centre and the Linux cluster at Newcastle
University. The performance difference would probably be even more prominent
if the analysis service resides much further apart geographically, because a higher
communication cost would be incurred in that case.

Adding Dynamism to OGSA-DQP 31

6 Related Work

Although in the DynaSOAr architecture, the Host Provider sits on top of existing
Grid infrastructure as a high level service, it can exploit the results of work
producing components on which dynamic deployment frameworks can be built.
In particular, the job scheduling fabrics like Condor[20] can be utilized as a means
of gathering machine characteristics, and CPU loads. However, deployment of
services rather than jobs raises other issues, such as making the decision about
whether to deploy a service on a new node or to use an existing but possibly
overloaded deployment. The GridSHED project [10],[11] for job scheduling has
been investigating this area, and the results are being utilized to design an
effective scheduling system for DynaDQP.

There is some work on dynamic deployment as in [18], but this is essentially
tied to a particular implementation of Grid middleware and web service con-
tainer (WS-RF[12] and the Globus Toolkit[13]) without addressing the more
widespread deployment scenarios involving commonly used standard toolkits
such as Axis and Tomcat. The work described in [21] is built on top of special-
ized hardware. Moreover, the deployment of different types of components such
as virtual machines, stored procedures, .NET services together in one framework
is not addressed in any of the current systems.

This paper focuses on the use of the dynamic deployment framework within
the context of Distributed Query Processing. To our knowledge, there is no cur-
rent distributed query processing system which is factored out as inter-operable
services and allows on-the-fly deployment of evaluation and analysis services on
available nodes thereby co-locating the data processing and analysis code with
the data, as proposed in [19]. The analysis of the results clearly indicate that
moving the code to the data, even with an initial deployment cost can potentially
be beneficial, especially for frequent execution of long running queries over huge
data sets.

7 Current and Future Directions

At present, work is under way to enable the DynaSOAr framework (and hence
DynaDQP) to support the usage of virtual machines for dynamic deployment of
data access services, evaluation services, analysis services and databases. It has
been accepted by OGSA-DAI as well that the availability of a deployment-ready
OGSA-DAI service would greatly help the dynamic deployment work, and work
is going on in that respect too.

In OGSA-DQP, the compiler/optimizer performs some static scheduling based
on a very simple cost model, but that does not consider the inherent dynamism
in a Grid system where the dynamics of the environment is liable to change
drastically. The effects of changes in resources at runtime have been considered
in the investigations into adaptive distributed query processing [17], [16]. It will
be an effective solution to combine the findings of GridSHED, DynaSOAr and
the adaptive DQP investigation.

32 A. Mukherjee and P. Watson

Some work has been done in this area of fault-tolerant distributed query pro-
cessing [14], [15]. The concepts of the dynamic DQP are also relevant to fault-
tolerant query processing systems where a failure of an evaluation node can be
handled through the deployment of the same service on another node or a virtual
machine as a replacement of the failed node, and by replaying certain sections
of the query evaluation to regain the state where the processing stopped due to
the failure.

Virtual Machines are an important aspect for the Dynamic DQP framework.
Some basic work has already been done on deploying Microsoft’s Virtual PC
systems in DynaSOAr. It is being extended to incorporate VMWare systems,
and the deployment of databases in virtual machines. Deploying databases in
virtual machines does however raise other key issues such as keeping the copy in
sync with the original database.

8 Conclusion

This paper presents an overview of ongoing work on enabling dynamic service
deployment in OGSA-DQP using the DynaSOAr framework. We believe that
distributed query processing can potentially benefit from the dynamic deploy-
ment mechanisms of DynaSOAr by deploying evaluation and analysis services
closer to the data, and this claim is supported by the experimental results. It
also includes scope of creating software market places, where the computational
resources can be chosen from a pool of available Host Providers based on the
cost and (or) the quality of service provided by the host.

The project is continuing to investigate different aspects of the system, such
as scheduling new deployments, routing requests between multiple instances of
the same service, deploying virtual machines and databases, and the future work
involves looking into the utility of the framework for adaptive and fault-tolerant
distributed query processing systems and evaluating various transport technolo-
gies for transferring the service code.

Acknowledgments. We wish to extend our gratitude to our collaborators in
GridSHED: Isi Mitrani and Jennie Palmer. We wish to acknowledge the sup-
port from our colleagues in OGSA-DAI, OGSA-DQP and DAIT projects at
Manchester University and EPCC. We wish to thank Jim Smith for his help-
ful discussions. We would also like to thank the UK Engineering and Physical
Sciences Research Council, and the DTI for the GridSHED and DAIT projects.

References

1. Alpdemir, M.N., Mukherjee, A., Gounaris, A. et.al.: OGSA-DQP: A Service for
Distributed Querying on the Grid. In: Advances in Database Technology - EDBT
2004. Lecture Notes in Computer Science, Vol. 2992. Springer-Verlag, 858–861

2. OGSA-DQP, http://www.ogsadai.org.uk/about/ogsa-dqp/
3. OGSA-DAI, http://www.ogsadai.org.uk/

http://www.ogsadai.org.uk/about/ogsa-dqp/
http://www.ogsadai.org.uk/

Adding Dynamism to OGSA-DQP 33

4. OGSA-DAI Glossary of Terms, http://www.ogsadai.org.uk/documentation/
ogsadai-wsrf-2.2/doc/reference/glossary.html

5. Watson, P., Fowler, C., Kubicek, C., Mukherjee, A. et. al.: Dynamically Deploying
Web Services on a Grid using Dynasoar. In: Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, ISORC
2006, IEEE Computer Society 2006

6. Smith, J., Gounaris, A., Watson, P. et. al.: Distributed Query Processing on the
Grid. In: Grid Computing 2002. Lecture Notes in Computer Science, Vol. 2536.
Springer-Verlag, 279–290

7. GRIMOIRES, http://twiki.grimoires.org/bin/view/Grimoires/
8. VMWare, http://www.vmware.com/
9. Microsoft Virtual PC, http://www.microsoft.com/windows/virtualpc/

default.mspx/
10. Palmer, J., Mitrani, I.: Optimal Server Allocation in Reconfigurable Clusters with

Multiple Job Types. In: Computational Science and its Applications (ICCSA 2004),
Assisi, Italy, 2004.

11. Kubicek, C., Fisher, M., McKee, P., Smith, R.: Dynamic Allocation of Servers
to Jobs in a Grid Hosting Environment. BT Technology Journal, Vol. 22, 2004.
251–260

12. Web Services - Resource Framework, http://www.globus.org/wsrf
13. Globus Toolkit, http://www.globus.org/toolkit
14. Smith, J., Watson, P.: Fault-Tolerance in Distributed Query Processing. In: 9th

International Database Engineering And Application Symposium. IDEAS 2005,
http://ideas.concordia.ca/ideas2005/ , IEEE, 329–338

15. Smith, J., Watson, P.: Failure Recovery Alternatives In Grid Based Distributed
Query Processing: A Case Study. The University of Newcastle upon Tyne, number
CS-TR-957, April 2006

16. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A. et. al.: Practical
Adaptation to Changing Resources in Grid Query Processing. In: The 22nd Inter-
national Conference on Data Engineering, ICDE 2006

17. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A. et. al.: Adapt-
ing to Changing Resource Performance in Grid Query Processing. In: VLDB
Workshop on Data Management in Grids, DMG 2005, http://liris.cnrs.fr/~
jpierson/DMG VLDB05/

18. Qi, L., Jin, H., Foster, I., Gawor, J.: HAND: Highly Available Dynamic De-
ployment Infrastructure for Globus Toolkit 4, http://www.globus.org/alliance/
publications/papers.php#HAND

19. Watson, P., Lee, P.: The NU-Grid Persistent Object Computation Server. In: 1st
European Grid Workshop, Poznan, Poland, 2000

20. Tannenbaum, T., Wright, D., Miller, K., and Livny, M.:Condor - A Distributed
Job Scheduler. In:Beowulf Cluster Computing with Linux, T. Sterling, Ed.: The
MIT Press, 2002.

21. Chrysoulas, C., Haleplidis, E., et. al.:Applying a Web-Services Based Model to
Dynamic-Service Deployment. In: International Conference on Intelligent Agents,
Web Technology, and Internet Commerce (IAWTIC), Vienna, Austria, November
2005

http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc/reference/glossary.html
http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc/reference/glossary.html
http://twiki.grimoires.org/bin/view/Grimoires/
http://www.vmware.com/
http://www.microsoft.com/windows/virtualpc/default.mspx/
http://www.microsoft.com/windows/virtualpc/default.mspx/
http://www.globus.org/wsrf
http://www.globus.org/toolkit
http://ideas.concordia.ca/ideas2005/
http://liris.cnrs.fr/~jpierson/DMG_VLDB05/
http://liris.cnrs.fr/~jpierson/DMG_VLDB05/
http://www.globus.org/alliance/publications/papers.php#HAND
http://www.globus.org/alliance/publications/papers.php#HAND

Review of Security Models Applied to

Distributed Data Access

Antonia Ghiselli2, Federico Stagni1, and Riccardo Zappi2

1 Istituto Nazionale di Fisica Nucleare sez. di Ferrara,
via Saragat 1 - 44100 Ferrara, Italy
{federico.stagni}@fe.infn.it

http://www.fe.infn.it
2 Istituto Nazionale di Fisica Nucleare CNAF,
viale Berti Pichat, 6/2 - 40127 Bologna, Italy

{antonia.ghiselli,riccardo.zappi}@cnaf.infn.it
http://www.cnaf.infn.it

Abstract. In this paper, we explore the technologies behind the security
models applied to distributed data access in a Grid environment. Our
goal is to study a security model allowing data integrity, confidentiality,
authentication and authorization for VO users. We split the process for
data access in three levels: Grid authentication, Grid authorization, local
enforcement. For each level, we introduce at least one possible techno-
logical solution. Finally, we show our vision of a SOA oriented security
framework.

This work is developed as part of the CoreGRID Network of Excel-
lence, for the Institute on Knowledge and Data Management.

Keywords: Grid, data management, security, authentication, authoriza-
tion, policy, acl, XACML, SAML.

Introduction

In this report, we will explore the technologies behind the security models applied
to distributed data access in a Grid environment. Our goal is to study a security
model allowing data integrity, confidentiality, authentication and authorization
for VO (Virtual Organizations) users [13]. Although the effort will be to create
a generic model, the work will be based on a Grid framework with the following
assumptions: Grid users are organized in VOs with existing tools to manage
memberships and credentials. In other words, we want to define policies for
resource usage on the basis of user credentials, and to enforce them on the basis
of Grid status.

The rest of this paper is organized as follows: in section 1 we introduce our
approach to security with some definitions. In section 2 we explain some gen-
eral requirements. In section 3 we describe the technologies to build a security
framework. In section 4 we introduce the technologies to build a Grid data access
framework.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 34–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.fe.infn.it
http://www.cnaf.infn.it

Review of Security Models Applied to Distributed Data Access 35

1 Definitions

Initially, the Grid was referred to as Computational Grid, thinking as a way to
share computational facilities. However, much of the Grid jobs are data inten-
sive, and to stress this point, today we normally think of Grids in term of Data
Grids : most large jobs that require Grid services, especially in the scientific do-
main, involve the generation of large datasets, and their consuption [1]. There
is a necessity for the reservation and the scheduling of data repositories, and so
we need to express some policies to govern their access. Moreover, thousands of
people may want to use storage resources to share him/her data with a limited
set of other researchers, or maybe with no one but themself. The future stor-
age systems will contain critical user information for various applications and
purposes, like for example life science and financial ones.

Grids need an authorization framework to handle the users privacy necessities,
and their limits too. In other words, we want to control the access to the Grid
users’ data on the basis of some high controlled sharing rules.

1.1 Grid Data Management Systems

A distributed system is a collection of independent computers that appears to
its users as a single coherent system. Similarly, a distributed data access system
is a distributed data storage, with ubiquitous and transparent data access and
migration. A Grid Data Management System (GDMS) is a data access system
acting in a Grid environment. GDMS offer a common view of storage resources
distributed over several administrative domains. Therefore, they must allow the
smooth integration or removal of resources, without affecting the integrity of
neither the individual independent domains nor the system as a whole. Problems
behind the implementations of such a system are:

– processes communication: the way distributed processes exchange
informations.

– Naming: name resolution and localization.
– Synchronization, consistency and replication: the way data are synchronized

and the definition of policies for the consistency and the replication of data.
– Security: the way to gain security for data access.

1.2 Security

We define a security architecture as a set of features and services that tackles a
set of security requirements and can handle a set of cases[16]. Grid systems in
use today do not address security in a systematic way: just to make an example,
historically in Globus [17] an authenticated user is a good user. This emphasizes
the authentication aspect, but Grids need a strong authorization mechanism.
Our aim is to enable new Grid infrastructure developer to create more secure
systems, capable to attract new Grid users and applications. Security models
should define “who can do what, when and where”. A Grid middleware should

36 A. Ghiselli, F. Stagni, and R. Zappi

encompass a security framework, in which we can distinguish two virtual black
boxes: the authentication box and the authorization box:

– authentication deals with the verification of the identity of an entity within a
network. An implementation should provide an agnostic plug point for mul-
tiple authentication mechanisms, and the means for conveying the specific
mechanism used in any given authentication operation.

– Authorization deals with the verification of an action that an entity can
perform after authentication was performed successfully. The goal of an au-
thorization framework is to provide a light-weight, configurable, and easily
deployable policy-engine-chaining infrastructure that is agnostic to back-end
enforcers and evaluators, as well as the run-time container infrastructure and
the state model that hosts them. The framework allows for a combined and
flexible decision making process, taking into account information, assertions
and policies from a variety of authorities.

We can make a brief comparison between the high-level techniques besides au-
thentication and authorization. The first link in the Grid security chain is au-
thentication. Grid resources authenticate remote users using basically two ways:
the first uses a session key, and the second, which is the mostly used too, uses the
Public Key Interface (PKI). On the other hand, we need a Privilege Management
Infrastructure (PMI): a PMI is to authorization what a PKI is to authentication
[2]. Just to make an example, we can express some user’s attributes using the
X.509 Attribute Certificate (AC), which maintains a strong binding between a
user’s name and its attributes. Certification Authorities (CAs) digitally sign a
public key certificate; in a similar way, the entity that signs an AC is called
an Attribute Authority (AA), while the root of trust of the PMI is called the
Source of Authority (SOA), which may delegate its power to subordinate AAs.
Like Certificate Revocation List (CRL), an AA could issue an Attribute Certifi-
cate Revocation List (ACRL) to revoke privileges from an AC. Obviously, ACs
is just one of the possible solutions to join users and their attributes.

2 Requirements

Integration, interoperability and trust are the building blocks of the requirements
behind a Grid security infrastructure. In this section we give some brief and
general guidelines, but we want to point out that more specific requirements will
be glean in the proceeding of this paper.

– Confidentiality is the property that information doesn’t reach unauthorized
individuals, entities, or processes. It is achievable by a mechanism for ensur-
ing that only those entitled to see information or data can access them.

– Integrity is the assurance that information can only be accessed or modified
by those authorized to do so. Data integrity is a nontrivial problem especially
when storage hardware and networks are not perfect.

Review of Security Models Applied to Distributed Data Access 37

– Resilience is an important requirement as the Grid links and nodes are very
dynamic in nature and may change over the time. The GDMS security archi-
tecture should remain intact and should deliver the promised level of security
assurances even if its composition changes over the time. The resilience pro-
vides an abstraction layer to hide the architectural changes from the overall
security architecture.

– Data Lifecycle Management (DLM) is the process of managing data through-
out its lifecycle. GDMS should ensure that the data contents will be pro-
tected from malevolent entities.

– Fault Tolerance is a desirable feature especially when transfers of large data
files occur.

2.1 Data Types

In section 1, we’ve made a really brief history of the evolving of the concept of
Grid, from Computing Grids to Data Grids, and we mentioned the data types
involved in it. To understand all the security requirements, we have to think to
who is using Grid now, who is going to use it soon, and who wish to use it, but
can’t trust it for some security reason. At the present time, the majority of Grid
tools are growing behind some specific needs, mainly HEP1 experiments. These
applications produce and consume a considerably high amount of data with
heavy impact on the bandwith, but probably they don’t need a high security
system, because the main purpose of this activities is to be fast. In the future,
much more people is going to use Grids and peer-to-peer systems, not only with
the actual purposes. In the next generation file sharing, a user will want to give
access to his/her files only to a limited set of people. There’s the need for a high
control over who is authorized to view them. This means more protection levels,
but less performance too. What we want to stress here, is that every data type
needs different protection levels, and that a Grid security system must take care
of this principle. Different data types can determine the way we achieve data
integrity, confidentiality, authentication and authorization.

The next generation storage elements would be able to publish the Quality of
Protection (QoP) they can assure to the data they own. In this way, the QoP will
be decisive for the entire data storage system. Just to make an example, a user
should request the resource provider to not have read access to his/her data: this
is a non-trivial challenge, and obviously not all the storage elements will be able
to enforce this demand, because this is depending of the locally implemented
security system: it determines the QoP and the Service Level Agreement (SLA),
which defines how data is protected while in transit over the service. Security
negotiations should be used to establish secure sessions between the endpoints.
A security infrastructure featuring support for negotiations and establishment of
end-to-end and/or hop-to-hop security associations has broader applicability to
general networked environments like Grids. Security negotiations require some
brokering agent to mediate between the endpoints.

1 High Energy Physics.

38 A. Ghiselli, F. Stagni, and R. Zappi

3 Data Management Security Technologies

We can roughly divide the process to reach access to a Grid resource in 3 lev-
els: first of all there’s a Grid authentication process, then authorization on a
Grid-ID base, and finally local enforcement using the resource-specific security
framework. In figure 1 you can see the all-round security process.

Fig. 1. The security process

3.1 Authentication

Grid computing is, in its essence, about bridging organizational boundaries. In
order to do so, we can report here two commonly identified solutions: virtual
organizations [13] and federated trust.2 We are not going to explain the difference
between these two models, because they are quite theoretical and in practice
it is often hard to distinguish the boundaries between them. Grid users are
traditionally organized in VOs.

In a Grid environment the authentication model is normally based on the con-
cept of trusted third parties (TTPs): the first link in the authentication chain is the
certification authorities (CAs), which in practice are trust anchors for VOs. This
model makes use of the Public Key Infrastructure (PKI) technology: CAs issue
X.509 certificates, where essentially a unique identity name and the public key of
an entity are bound through the digital signature of that CA. It is possible that
some GDMS may require further security controls, but these issues are out of the
scope of a Grid authentication service, because they suppose a specific contract
between the user and the resource, outside the Grid security infrastructure.

2 For more information, see http://www.projectliberty.org/

Review of Security Models Applied to Distributed Data Access 39

An authentication service must define distinctly the Grid identity of any user:
this mean that every user inside a Grid is given a background, a description.
With description we mean not only user’s VOs, but his/her role inside every VO
he is member of. In the proceeding of this paper we will refer to this kind of
enhanced authentication as of “Grid authentication”.

Role Based Access Control. Access Control technologies has evolved from
two fundamental types: Discretionary Access Control (DAC), and Mandatory
Access Control (MAC). DAC permits the granting and revoking of access control
privileges to be left to the discretion of end users, typically the resource owner.
MAC is a way of restricting access to objects based on the sensitivity of the
information contained in the objects. These policies aren’t well suited for VOs
authorization requirements, because we need to take access decisions on the basis
of the roles that individual users have as part of an (Virtual) Organization. In the
Role Based Access Control (RBAC) [5] user access rights are defined by roles
in the form of user attributes, letting a separated management access control
policy defining what roles are allowed to do what actions on resources. The roles
represent typically organizational roles such as secretary, manager, employee,
etc. In the authorization policy, they are given a set of permissions, and each
user is then assigned to some or more roles. When accessing a target, a user
establishes a session and, during it, he can request the activation of some of
the roles he is authorized to play. After that, the user will be represented by
his/her roles, and so the authorization framework will deal with roles rather
users themselves.

We present here two existing estensions. The first is the hierarchical RBAC
model, which is just a more sophisticated RBAC type, in which the senior roles
inherit the privileges of the more junior roles. For example, there might be the
following hierarchy:

employee ≤ programmer ≤ manager ≤ director

Giving the role “programmer” some permissions means that managers and di-
rectors will inherit them. The hierarchical extension to RBAC fits very well the
Grid VO requirements, and so we assume that the Grid end systems, like the
storage ones, will be able to enforce the capabilities applied to VO roles in a
hierarchical fashion.

The second RBAC extension is the temporal RBAC model (TRBAC) [6],
which supports periodic role enabling and disabling, and temporal dependencies
among such actions. Consider for example the case of a part-time staff in a
company: what we want to do, is to give him authorization only on working
days. With TRBAC, we can assign the part-time staff a role, and enable it
only during a temporal interval. The role enabling/disabling depends on some
requirements, that can be used to constrain the set of roles that a particular user
can activate at a given time. Enabling/disabling actions can be given a priority
to help in solving conflicts.

An RBAC system will become a must to manage the future Grid authoriza-
tions. Without it, the wide mutable nature of VO-like systems would become a

40 A. Ghiselli, F. Stagni, and R. Zappi

nightmare for all systems administrators, who should take care of granting ev-
ery single user with his/her capabilities. RBAC simplify the VO’s administrator
life too, because they have just to assign every user with a somewhat restricted
set of roles. In this way the user’s identity is managed at VO-level, while the
end-systems deal with roles only. We can have the right granularity level with
the less possible effort.

Anyway, this isn’t perfect yet: assume that a user, like

User = JohnDoe/V O = NeV O/Roles = ExRole, NeRole

is trying to do something nasty, for example he is using his ExRole capabilities
to store a malware in his role shared space. If the system (or the administrator)
recognizes it, it should be possible for him to boot that user from his resources
without affecting his entire VO/role. There are two possibilities:

– if the end-system doesn’t deal with the users authentication names, the only
possibility is to do a report to the NeVO VO, asking it to reject that user: to
do this, there is first the need to recognize the user, and this isn’t practical
nor fast.

– The second and best option is to let the end-systems to know the effective
user names, although the policy end-systems should only use the VO/roles
associations to determine the capabilities. In other words, the end-systems
authorization frameworks should use the effective user names only for in-
depth security reasons.

State of the Art: VOMS. In 3.1 we have stated that, from our point of view,
a “Grid authentication” should give a user a complete background and identi-
fication. Actually, a framework that can be used to reach this objective is the
Virtual Organization Membership Service [8], which is an accepted authentica-
tion and authorization framework into existing Grid projects, like for example
EGEE3 and OSG.4

VOMS is an Attribute Authority (AA). Users can be organized in a hierar-
chical structure with groups and subgroups, thus implementing a hierarchical
RBAC system. To allow for more flexibility, users are also characterized by two
other sets of credentials: roles and capabilities. Roles are used to specify the users’
properties as members of some groups. The main difference between groups and
roles is that a user can choose which of his roles are to be listed in his credentials,
while all his groups are always specified. Capabilities are expressed as free-form
strings of characters, and can be used to describe the user’s special character-
istics. VOMS is traditionally presented as an authorization framework, but in
this paper we introduced it as an authentication one. The reason besides this
choice is that VOMS is used to define the “Grid user identity” (it can provide a
“Grid authentication”), which is not a grant for authorization on any end sys-
tem: the enforcement of these VO-managed attributes at local level must reflect

3 http://public.eu-egee.org/
4 http://www.openscienceGrid.org/

Review of Security Models Applied to Distributed Data Access 41

the agreements between the VO and the Resource Provider (RP). However it
should be possible for an RP to override the permissions granted by a VO, for
example banning unwanted users.

3.2 Authorization

Authentication frameworks and Attribute Authorities (AA) can provide a coarse-
grained granularity to identify the users’ roles and background in a Grid. An
authorization system can make use of these information for fine-grained access
decisions, using a policy authorization service.

Evaluating the Policies. In this section we will explore the policy interactions
and their relations with the Privilege Management Infrastructure (PMI) intro-
duced in section 1.2. First of all, we have to remind some of the requirements
for a policy authorization service:

– a future authorization service will be based on a recognized policy expression
language and exchange format, and will use a Request/Response protocol to
allow intra-site and multiple site scalability. This implies the investigation
for the use of “standard” format languages and protocols.

– It will use the principle of ownership in respect to the policy and decision
making precedence. This means that the final decision will always reside with
the resource owner. It should be able to explicitly accept or reject policies
from other domains, and to distribute them.

– A future authorization service will separate authorization infrastructure from
the policy itself, providing only secure environment and mechanism for site-
authority controlled policy enforcement. The policy evaluation engine will be
implemented as a separate service that will be able to call external separate
decision points.

We can give a more formal specification for this requirements, using the following
definitions:

Policy: The combination of rules and services, where rules define the criteria
for resource access and usage.

Policy Decision Point (PDP): The point where decisions about the policies
are made. It evaluates applicable policies and renders authorization decisions. In
a loosely coupled distributed environment like Grid, a local to a resource (des-
ignated) PDP can call other PDPs requesting for evaluating policy components
related to their domain of authority to provide a final decision.

Policy Enforcement Point (PEP): The point where the policy decisions
are actually enforced. This is the system entity that performs access control,
by making decision requests and enforcing authorization decisions. From a data
management perspective, this means that every storage resource should have a
local PEP to enforce the policy decisions.

42 A. Ghiselli, F. Stagni, and R. Zappi

Policy Authority Point (PAP): The point that owns the authority over the
PDPs. We should remind that sometimes PAP indicates the Policy Administra-
tion Point, which is the system entity that creates and administer the policies.

Policy Information Point (PIP): The system entity that act as a source of
attribute values.

The PDP-PEP interaction is the key for a good policy distribution. There are
two possible basic implementations, the pull model and the push model. The
pull model is the more used one, in which a supplicant first ask for the resource
PEP to authorize himself, and then the PEP ask to an external PDP for the final
decision. We can see a brief example to clarify the way these policy points interact
each other. To allow user access on a storage resource, for example a SRM[1]
implementation, the storage agent requests via his own PEP an authorization
decision from a designated PDP, that evaluates the authorization request against
the policy defined for the request, resource and user attributes/roles. During the
policy evaluation, the PDP may also request specific user attributes from a Policy
Information Point (PIP), or asking an authentication service for user identity
confirmation. It should be noted that these controls are a burden for a high
percentage of the actual Grid data, but should be a must for some of the future
Grid storage uses: data owners and the system administrators should be able to
choose how much security controls will be needed. When the PDP identifies the
applicable policy instance, it collects the required context information, evaluates
the request against the policy, and communicate the decision back to the PEP.
After receiving a PDP decision, the PEP conveys the service request to the
resource, that may also have a locally determined policy implying additional
restrictions on resource usage and/or access. All these communications can be
secured using cryptographic technologies like SSL/TLS or MLS.

In essence, when making an authorization decision, we should be able to
combine information from a number of different sources. In other words, policies
should be defined at different levels, like VO, site, or other stakeholders. It should
be noted that every level should have the permission to define different kind of
policies, and that sometimes they could overlap each other. For example, a VO-
level PDP could force some of his self-managed group/role to not exceed a disk
quota of 100 Mbytes, but a resource-level PDP should impose a more restrictive
permission. We think that every controversial decision should be resolved in favor
of the local decision point, which could be the PEP closest match. This PDP,
called “Master PDP”, composes the final decision, optionally contacting other
PDPs. In figure 2, we show a possible interaction flow between Policy Points.

The solution presented above has known performance problems: requesting a
remote PDP decision involves the use of time and resource hungry components,
such as building a remote SSL/TLS connection, message parsing, possible re-
mote policy request and PDP/AuthZ service invocation [11]. For this reasons,
there’s the need for investigation over the PDP-network topology, in order to
avoid useless communications. This trade-off can be resolved using distributed
policy caching, combining pull and push operation models, using short-validity
authorization tickets, or implementing a policy guessing mechanism. In addition,

Review of Security Models Applied to Distributed Data Access 43

Fig. 2. Interactions between Policy Points in an all-round authorization process. Not
all of the shown communication are mandatory.

everyone of the listed services should be a bottleneck for the entire authorization
framework; in this situation, consider for example the devastating effects of a
Denial Of Service (DOS) attack to anyone of the listed policy points.

Using a standard policy language. Nowadays, the language for writing ac-
cess control polices that best fit the listed requirements is the eXtensible Access
Control Markup Language (XACML) [20], which is an XML based technology
developed and standardized by Organization for the Advancement of Structured
Information Standards (OASIS).5 It should be considered a “de facto” standard
for expressing policies. XACML includes an access control language, a process-
ing environment and a request-and-response protocol that let developers write
policies that determine what users can access on a network or over the Web.
XACML can also be used to connect disparate access control policy engines.
Every policy is defined for the target triad “Subject-Resource-Action”. The pro-
cessing environment assumes interactions between the policy points described in
the previous section.

XACML has many benefits over other access control policy languages:

– One standard access control policy language can replace dozens of application-
specific languages.

5 http://www.oasis-open.org/

44 A. Ghiselli, F. Stagni, and R. Zappi

– Administrators save time and money because they don’t need to rewrite
their policies in many different languages.

– Developers save time and money because they don’t have to invent new
policy languages and write code to support them. They can reuse existing
code.

– Good tools for writing and managing XACML policies will be developed,
since they can be used with many applications.

– XACML is flexible enough to accommodate most access control policy needs
and extensible so that new requirements can be supported.

– One XACML policy can cover many resources. This helps avoid inconsistent
policies on different resources.

– XACML allows one policy to refer to another. This is important for large
organizations. For instance, a site-specific policy may refer to a company-
wide policy and a country-specific policy.

– It provides facilities to support the core and hierarchical RBAC approach.

Anyway, XACML doesn’t define protocols or transport mechanisms to protect
the message security with authenticity, integrity and confidentiality. Full imple-
mentation of this model depends on use of other standards, for example the
OASIS Security Assertion Markup Language (SAML) [19] [21]. SAML is an
XML standard that supports web single sign on, attribute-based authorization
and securing web services. There are threes basic SAML components: assertions,
protocol, and binding. Assertions can be one of three types: authentication, at-
tribute, and authorization. Authentication assertion validates the identity of the
user. The attribute assertion contains specific information about the user, while
the authorization assertion identifies what the user is authorized to do. The
protocol defines how SAML request and receives assertions. There are several
available binding for SAML, that define how message exchanges are mapped to
SOAP, HTTP, SMTP and FTP among others.

State of the Art: Gridmap File, CAS, G-PBox. One of the first attempt to
provide authorization in Grid was in the form of the Globus Gridmap File. This
file was simply a list of the authorized user, identified by a distinguished name,
and the equivalent local user account name they are to be mapped into. This
solution is infeasible for the next generation Grids, because the resource owner
can’t set a policy for who is allowed to do what, and maximize the workload of
the resource administrator who must keep track of all the authorized users. This
system isn’t scalable nor flexible [3].

The Globus team developed the Community Authorization Service (CAS) [9].
CAS allows for a separation of concerns between site policies and VO policies. It
allows the resource owner to grant access to a portion of his/her resource to a VO.
The CAS server acts as a trusted intermediary between VO users and resources:
the users first contact the CAS asking for a permission to use a resource, the
CAS server consults its policy, and grants or deny the access. CAS does not
issue Attribute Certificate’s (AC), but whole new proxy certificates, and this
isn’t a good solutions, because a security system should use standards. Another

Review of Security Models Applied to Distributed Data Access 45

problem is that CAS completely remove control from site administrators, and
that it requires a VO to know everything about the configuration of its farms.

One of the most interesting authorization framework is the Grid Policy Box
(G-PBox),[7] which can be used for the representation and management of poli-
cies for Grid infrastructures. It’s based upon the composition of modular objects,
Policy Boxes (PBox), which are policy repositories hierarchically-distributed to
independent administrative-based layers, each containing only policies regarding
itself. In G-PBox, there are PBoxes at VO, domain, farm and site level, with the
possibility to have sub-farm levels. Each and every client that wants to be policy-
aware, has a configured PBox that will be contacted whenever a policy decision
is required. From a theoretical point of view, we can think at every PBox as
being a Policy Authority Point containing a Policy Decision Point, while every
resource should have a local Policy Enforcement Point. In G-PBox, the policies
are defined using XACML.

3.3 Local Security Enforcement

There are basically two ways to enforce access control over data: the first is to
allow Grid access only, the second is to allow local access in parallel to Grid
access.

In the Grid enforced security model, users can access their files only via Grid
tools and services. As stated in [14], “the easiest way of implementing this is
to assign all files in a storage element to a service userid, for example gstorage,
and to add a component, which runs under this identity and interacts with the
user”: the users should go through the Grid middleware services to gain access to
their files. With this type of service, we can easily have a standard authorization
service for all the Grid resources, with uniform security semantics, that can take
authorization decisions like a centralized authorization service. This model gives
support for resources with weak local authorization mechanism.

In the Site enforced security model, if we want to allow local access in parallel
to Grid access, we have to implement a mapping from Grid identities to local
userids. If a Grid service has to act on the user’s behalf, then it needs the user’s
credential to be delegated. With this model, the site storage administrator has
full control over his resources, and he will be able to use the local authorization
mechanism he prefers.

The choice from a Grid user’s point of view should be the Grid security model,
because it integrates the site peculiarities into a uniform security model, where
every Grid storage site looks the same. Although this last point could be reached
also in the site enforced security model using an additional layer for the stan-
dardization, we have to remind that an external security service will let site
administrators to administer their own local security, in a site technology inde-
pendent fashion. The real problem besides this is that the Grid security model is
not acceptable by some sites due to their local policies, and in addition existing
security infrastructure can’t be replaced overnight. Each domain typically has
its own authentication and authorization infrastructure that is reputed secure
and reliable, and site administrators won’t replace it in favor of a single new

46 A. Ghiselli, F. Stagni, and R. Zappi

model or mechanism. From the beginning of the Grid computing one of the fun-
damental requirements was to let every site to use his own security mechanism,
and this implies the use of a site enforced security model. In the Globus Toolkit
[17], gateways are used to translate between the common GSI infrastructure and
local site mechanisms, for example Kerberos Identities or local UNIX users and
groups. In LCMAPS [18], we can map Grid users to local ones, and primary and
secondary local groups, which are predefined by the resource owner: LCMAPS
is used to delegate some global Grid credentials to the local site security system,
in this case the UNIX uid/gid match, with the possibility to add ACLs if the
file system (and the kernel) can handle them.

Access Control List. Access Control List (ACL) is a means of determining
the appropriate access rights to a given object, depending on certain aspects of
the process that is making the request, principally the process’s user identity.
This is a deliberately general definition, because ACLs have been implemented
in many ways in different environments.

The POSIX.1e ACLs [12] are an estension of the POSIX.1 permission model,
the standard 9-bit access permissions of the UNIX systems. The extended ACLs
support more fine-grained and complex permission scenarios, that are difficult
or impossible to implement with the minimal model. Unfortunately, the work
behind ACLs never became a POSIX formal standard, and at the time of writing
there’s a wild mix of implementations with subtle differences and incompatibil-
ities. We aren’t going to explain how they work, we just say that they can be
applied to files and directories, increasing flexibility and security.

For our purposes, the worst problems come when we have to preserve per-
missions in a distributed system: it’s very difficult to implement a system able
to preserve as much information as possible. There are a number of complica-
tions that make the operation prone to implementation errors, especially when
we have different kernels and file systems. The semantics of ACLs differ widely
among UNIX systems alone, not to speak of non-UNIX ones. A full ACL support
over any kind of distributed system requires a mechanism so that all access de-
cisions are performed in a way that honors ACLs: this means that every remote
site should have a system-ACL support. Using only fs-ACLs will will lead to
interoperability problems, although the good part is that they are automatically
enforced on the end systems. In a Grid environment, there’s the need to translate
the resource-dependent ACLs in a common format.

In a Grid, we need to map a global security mechanism into a local one, which
is independent from the “Grid security infrastructure”. This brief discussion on
ACL wants to remark the fact that every Grid resource should expose its security
capabilities because not all of them are able to enforce the security and privacy
requirement of some data types, due to the lack of security potentiality.

A PEP implementation can be used to map a Grid-ID in a local account, using
File System ACL to enforce the Grid Authorization response. For our purposes,
an example of an SRM implementation that can act as a PEP is StoRM [4].

Review of Security Models Applied to Distributed Data Access 47

4 Building a Grid Data Access Framework

Grid middleware should define a Grid security framework, encompassing both
authentication and authorization in a standard way, and interfacing with local
storage elements. Ensuring integrity, confidentiality and interoperability between
heterogeneous systems can be achieved using a Web Service Architecture [22],
which is an incarnation of a Service Oriented Architecture (SOA) in the context
of the World Wide Web. SOA is the leading architectural style for building the
current and future generation Grid technologies. Protocols based on Web Ser-
vices provide important benefits for Grids, particularly in avoiding the tendency
that proprietary binary protocols frequently become closely tied to particular
implementations or languages. As stated in [10], “the Grid authorization model
should be built on top of upcoming standards in the area of authorization, e.g.
XACML, SAML, and WS-Authorization”.

We think that a Grid authentication model should include an attribute au-
thority that issues attribute assertions, and that a Grid authorization model
should be built over a standard policy language. Different Policy Points should
make decisions based on initiator identity and attributes, and so what is needed
is a standard attribute language, that allow for interoperability between AA’s
and and PDPs. In addition, we have to remember that there may be sev-
eral authorities that assert attributes for users, including other users. In sec-
tion 3.2 we have already outlined the Policy Points actions, using the pull and
push models. We should extend these variants thinking at the interactions be-
tween an authorization mechanism and a AA. From a technological point of
view, a number of methods for requesting and encoding attributes already ex-
ist: for example X.509 Attribute Certificates[15], SAML[19] Attribute Asser-
tions and XACML[20] Attributes. Since the emerging of the use of XACML
for policy expression and the capabilities of SAML for attribute encoding, we
should be able to combine this upcoming standards building a Grid Data Access
Framework.

5 Conclusions

In the past sections we explored the technologies behind security in a Grid en-
vironment, focusing on the Grid Data Management Systems security aspects.
With this paper, we didn’t want to propose a definite solution, instead we de-
fined some of the requirements and boundaries that we’ll guide our future works
in this field. In the following months, we will outline a Grid-based RBAC model
for accessing distributed data, and we’ll follow the implementation of a multipol-
icy authorization framework, based on XACML and SAML specifications. We’ll
define policies applicable to GDMS, their distribution and consuption, and inter-
actions with monitoring and accounting services. At the same time we’ll study
methods to increase the performance of the whole authorization system.

48 A. Ghiselli, F. Stagni, and R. Zappi

References

1. J. Gu A. Shoshani, A. Sim. Storage resource manager: Essential components for
the grid. 2003.

2. D. Chadwick. An x.509 role-base privilege management infrastructure. Technical
report, 2002.

3. D. Chadwick. Authorization in grid computing. Information Security Technical
Report, (10):33–40, 2005.

4. E. Corso, S. Cozzini, F. Donno, A. Ghiselli, L. Magnoni, M. Mazzucato, R. Murri,
P.P. Ricci, H. Stockinger, A. Terpin, V. Vagnoni, and R. Zappi. Storm, an srm
Implementation for lhc Analysis Farms, Computing in High Energy Physics. In
In Proceedings of the International Conference on Computing in High Energy and
Nuclear Physics (CHEP2006), Mumbai, India, Feb 2006.

5. S. Gavrila D.R. Kuhn R. Chandramouli D. Ferraiolo, R. Sandhu. Proposed nist
standard for role-based access control. ACM Transactions on Information and
System Security (TISSEC), (3):224–274, 2001.

6. E. Ferrari E. Bertino, P. A. Bonatti. Trbac: A temporal role-based access control
model. ACM Transactions on Information and System Security (TISSEC), (4):
191 – 233, 2001.

7. A. Caltroni et al. G-Pbox: a Policy Framework for Grid Environments. INFN
Grid-it.

8. Alfieri et al. Voms, an authorization system for virtual organizations. In In pro-
ceedings of 1st European Across Grid Conference.

9. L. Pearlman et al. The community authorization service: Status and future. In In
proceedings at CHEP03, March 24-28 2003, La Jolla, California.

10. Nagaratman et al. Security architecture for open grid services. memo GWD-I,
GGF OGSA Security Workgroup, 2002m revised 2003.

11. Y. Demchenko et al. Job-centric Security model for Open Collaborative Environ-
ment, pages 69–77. IEEE Computer Society, 2005.

12. A. Grunbacher. Posix access control lists on linux. In Submitted for publication at
the USENIX ATC, San Antonio, Texas, June 2003.

13. S. Tuecke I. Foster, C. Kesselman. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, (15(3)), 2001.

14. A. Frohner P. Kunszt. glite data management security model disussion, 2005.
15. R. Housley S. Farrel. Rfc3281: An internet attribute certificate profile for autho-

rization. Technical report, 2002.
16. EGEE security JRA3. Global security architecture. 2004.
17. The Globus security team. Gt 4.0 security. http://www.globus.org/toolkit/docs/

4.0/security/, 2005.
18. M. Steenbakkers. Guide to lcmaps version 0.0.23. http://www.dutchGrid.nl/

DataGrid/wp4/lcmaps/edg-lcmaps gcc3 2 2-0.0.23/, 2003.
19. OASIS SAML TC. Oasis security assertion markup language (saml) tc.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=security, 2005.
20. OASIS XACML TC. Oasis extensible access control markup language (xacml) tc.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml#
XACML20, 2005.

21. OASIS XACML TC. Saml 2.0 profile of xacml v2.0. http://docs.oasis-open.org/
xacml/2.0/access control-xacml-2.0-saml-profile-spec-os.pdf, 2005.

22. W3C WG. Web services architecture. http://www.w3.org/TR/ws-arch/, 2004.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 49–60, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Security Requirements Analysis for Large-Scale
Distributed File Systems*

Syed Naqvi1, Olivier Poitou1, Philippe Massonet1, and Alvaro Arenas2

1 Centre of Excellence in Information and Communication Technologies (CETIC), Belgium
{syed.naqvi,olivier.poitou,philippe.massonet}@cetic.be

2 CCLRC Rutherford Appleton Laboratory, UK
a.e.arenas@rl.ac.uk

Abstract. This paper presents an analysis of security requirements of large-scale
distributed file systems. Our objective is to identify their generic as well as spe-
cific security requirements and to propose potential solutions that can be em-
ployed to address these requirements. FileStamp – a multi-writer distributed file
system developed at CETIC is considered as a case study for this analysis. This
analysis yields that the existing range of security solutions can be employed to
secure large-scale distributed file systems. However, they should be holistically
employed to triumph over the security chinks in the FileStamp’s armor.

Keywords: security services, requirements analysis, highly scalable systems,
distributed data management.

1 Introduction

The exponential growth in the scale of distributed data management systems and corre-
sponding increase in the amount of data being handled by these systems require
efficient management of files by maintaining consistency, ensuring security, fault tol-
erance and good performance in terms of availability and security. Read only systems
such as CFS [1] are much easier to design as the time interval between meta-data up-
dates is expected to be relatively high. This allows the extensive use of caching, since
cached data is either seldom invalidated or kept until its expiry. Security in a read-only
system is also quite simple to implement. Digitally signing a single root block with the
administrator’s private key and using one-way hash functions allow clients to verify
the integrity and authenticity of all file system data. Finally, consistency is hardly a
problem as only a single user, the administrator, can modify the file system.

Multi-writer file systems face a number of operational issues not found in the read
only systems. These issues include maintaining consistency between replicas, enforc-
ing access control, guaranteeing that update requests are authenticated and correctly
processed, and dealing with conflicting updates.

* This research work is supported by the European Network of Excellence CoreGRID (project

reference number 004265). The network aims at strengthening and advancing scientific and
technological excellence in the area of Grid and Peer-to-Peer technologies. The CoreGRID
webpage is located at www.coregrid.net

50 S. Naqvi et al.

This paper is organized in the following manner: an overview of FileStamp distrib-
uted file system is presented in section 2. Its generic and specific security requirements
are elaborated in section 3. Section 4 presents a detailed account of technologies that
can be employed to address the security requirements of the FileStamp. Finally some
conclusions are drawn in section 5.

2 FileStamp Architecture

FileStamp is a distributed file system developed at CETIC with the aim of finding a
solution to the problems encountered in multi-writer file systems. It is a highly scal-
able, completely decentralized multi-writer peer-to-peer file system. The current ver-
sion of the FileStamp is based on Pastis [2] architecture. It aims at making use of the
aggregate storage capacity of hundreds of thousands of PCs connected to the Internet
by means of a completely decentralized network. Replication allows persistent storage
in spite of a highly transient node population, while cryptographic techniques ensure
the authenticity and integrity of file system data.

Fig. 1. FileStamp Layered Architecture

The layered architecture of FileStamp is shown in figure 1. Routing and data stor-
age are handled by the Pastry [3] routing protocol and the PAST [4] distributed hash
table (DHT). The good locality properties of Pastry/PAST allow Pastis to minimize
network access latencies, thus achieving a good level of performance when using a
relaxed consistency model. In Pastis, for a file system update to be valid, the user
must provide a certificate signed by the file owner which proves that he has write
access to that file.

The format of the Pastis certificate is shown in figure 2. This certificate is issued
by the file owner and it grants the write access to a given user. The expiration date
allows access revocation.

 Security Requirements Analysis for Large-Scale Distributed File Systems 51

Fig. 2. Pastis certificate format

Authentication of the certificate is performed by the DHT nodes and FS clients. They
verify both signatures when storing and/or retrieving a UCB (User Certificate Block).

This certificate has two crucial problems. First, it always gives write permission to
its users whereas in a real life application, a user may only be given read permission
while accessing the file. Second, its format is not standardized. It does not correspond
with the format of the X.509 certificate and hence it renders compatibility problem
with the existing standard credentials. This issue is discussed in detail in section 4.1

3 Security Requirements of FileStamp

The security requirements of FileStamp are driven by the roadmap of Open Grid Ser-
vices Architecture (OGSA) [5]. OGSA security model casts security functions as
OGSA services. This strategy allows well-defined protocols and interfaces to be de-
fined for these services and permits an application to outsource security functionality
by using a security service with a particular implementation to fit its current need.

3.1 Generic Requirements

This is the set of security services that constitutes the fundamental requirements for
any data management system.

3.1.1 Authentication
Authentication provides plug points for multiple authentication mechanisms and
the means for conveying the specific mechanism used in any given authentication
operation. The authentication mechanism may be a custom authentication mechanism

52 S. Naqvi et al.

or an industry-standard technology. The authentication plug point must be agnostic to
any specific authentication technology.

Authentication between two entities of FileStamp nodes means that each party es-
tablishes a level of trust in the identity of the other party. In practical use an authenti-
cation protocol sets up a secure communication channel between the authenticated
parties, so that subsequent messages can be sent without repeated authentication steps,
although it is possible to authenticate every message. The identity of an entity is typi-
cally some token or name that uniquely identifies the entity.

3.1.2 Authorization
Authorization allows for controlling access to grid resources based on authorization
policies (i.e., who can access a resource, under what conditions) attached to each
service. It also allows for service requestors to specify invocation policies (i.e. who
does the client trust to provide the requested service). Authorization should accom-
modate various access control models and implementation.

In the grid environments, the virtual organisations (VOs) [6] introduce challenging
management and policy issues, resulting from often complex relationships between
local site policies and the goals of the VO with respect to access control, resource
allocation, and so forth. In particular, authorization solutions are needed that can em-
power FileStamp to set policies concerning how resources assigned to the community
are used without, however, compromising site policy requirements [7].

3.1.3 Availability
Availability of a requested data item is an important performance parameter. A well-
known technique for improving availability in distributed systems is replication. If
multiple copies of data exist on independent nodes, then the chances of at least one
copy being accessible are increased. Aggregate data access performance will also tend
to increase, and total network load will tend to decrease, if replicas and requests are
reasonably distributed.

3.1.4 Confidentiality
Confidentiality is the property that information does not reach unauthorized individuals,
entities, or processes. It is achievable by a mechanism for ensuring that only those enti-
tled to see information or data have access to that information. The confidentiality re-
quirement includes point-to-point transport as well as store-and-forward mechanisms.

3.1.5 Integrity
Integrity is the assurance that information can only be accessed or modified by those
authorized to do so. Data integrity is a nontrivial problem especially when storage
hardware and networks are not perfect. Data loss and corruption must be timely
caught and swiftly fixed. As systems grow in size and complexity, problems may pass
unnoticed until recovery becomes difficult and expensive.

3.2 Specific Requirements

This is the set of security services that are specifically needed for FileStamp. These
services complement the generic set of security services and are needed to enhance
the quality of security of the data management system.

 Security Requirements Analysis for Large-Scale Distributed File Systems 53

3.2.1 Resilience
Resilience is an important requirement as the grid links and nodes are very dynamic
in nature and may change over the time. FileStamp security architecture should re-
main intact and should deliver the promised level of security assurances even if its
composition changes over the time. The resilience provides an abstraction layer to
hide the architectural changes from the overall security architecture.

3.2.2 Data Lifecycle Management (DLM)
Data Lifecycle Management (DLM) is the process of managing data throughout its
lifecycle from conception until disposal across different storage media, within the
constraints of the entire process. The lifecycle is the time from the moment data is
created until it is deleted or stored indefinitely. Security assurances require spanning
the entire lifecycle of data. FileStamp should ensure that the data contents will be
protected from the malevolent entities throughout its lifecycle.

3.2.3 Fault Tolerance
Fault tolerance is a desirable feature especially when transfers of large data files oc-
cur. Protocols such as GridFTP [8] allow for resuming transfers from the last byte
acknowledged. Overlay networks provide caching of transfers via store-and-forward
protocols. However, caching reduces performance of the overall data transfer and the
amount of data that can be cached is dependent on the storage policies at the interme-
diate network points.

4 Solutions for the FileStamp Security Requirements

In this section, solutions to the security requirements of FileStamp are provided. The
premier objective of this section is to identify the range of existing technologies that
can be employed in FileStamp. However, solutions to all the security requirements do
not already exist. In situations where existing solutions are either inadequate or non-
existent, we have discussed the potential solutions and have given reference to our
ongoing work in that direction.

The aim of this approach is to workout new solutions which are needed for the se-
curity architecture of the grid data management systems without reinventing the
wheel.

4.1 Authentication

Most of the current grid tools are built on Grid security Infrastructure (GSI) [9] or
Secure Hyper Text Transfer Protocol (HTTPS) [10], both of which use X.509 certifi-
cates [11] for securely establishing a grid identity [12].

Other schemes include PGP keys [13], SSH keys [14], and SPKI [15] keys and
protocols. SPKI focuses on authorization certificates more than identity certificates.
SSH is primarily a private/public key mapping with no real attempt to provide global
names. The X.509 scheme has a small set of trusted third parties called Certification
Authorities (CAs). These CAs are used to sign identity certificates that contain sub-
scriber's public key. This improves the scaling properties of public key distribution in

54 S. Naqvi et al.

that only the CA's public key needs to be distributed in an out-of-band secure manner.
In systems without a trusted third party, such as PGP, each key holder must find some
secure way of establishing the association of his identity with his public key, to each
party with which he wishes to establish authenticated communication. In the X.509
infrastructure, the individual subscriber’s public key can be transmitted in a public
key certificate as part of a TLS connection handshake and can be accepted as valid if
the certificate is signed by a trusted CA. Another feature of the X.509 infrastructure is
that it supports multiple independent CAs. In a Grid each site may chose which CAs it
will accept for binding domain names and public keys.

We recommend the use of X.509 infrastructure for FileStamp. It will not only
standardize its authentication mechanism (unlike owner’s issued certificates) but also
facilitate its interactions with the grid world. FileStamp with X.509 infrastructure will
be easily integrated with any grid platform. Initially, a local CA can be created that
will deliver the standard X.509 certificates to the bona fide users of FileStamp. Later
the certificates of other CAs (such as Belgian Grid CA [16]) can be used for authenti-
cation purposes.

4.2 Authorization

FileStamp may simply employ local mapping of the users (like UNIX authorization
matrix). This mapping also serves as an access control check – access to the resource
is denied if the user is not listed in the local mapping configuration. In this scheme,
once the user is mapped to a local identity, local policy management and enforcement
mechanisms constrain the user’s actions to those allowed by local policy. This ap-
proach allows the local operating system to act as a sandbox. Thus, administrators can
use normal policy administration tools to configure policy.

This simple approach has the advantage of being easy for site administrators to un-
derstand and configure because it uses existing local policy management and en-
forcement mechanisms with which the administrator is presumably already familiar.
However, in the context of the grid environment, this approach has several shortcom-
ings (such as scalability, lack of expressiveness, consistency of policies, etc.).

These problems are addressed in the Community Authorization Service (CAS)
[17]. The idea behind the evolution of CAS is inspired from the Role Based Access
Control (RBAC) [18]. CAS allows for a separation of concerns between site policies
and VO policies. Specifically, sites can delegate management of a subset of their
policy space to the VO. CAS provides a fine-grained mechanism for a VO to manage
these delegated policy spaces, allowing it to express and enforce expressive, consis-
tent policies across resources spanning multiple independent policy domains. CAS
implementations are built on the Globus [19], thus allowing for easy integration of
CAS with existing Grid deployments.

Other solutions include VOMS [20], Akenti [21], and PERMIS [22]. VOMS (Vir-
tual Organization Management Service) and CAS are similar architecturally in that
both issue policy assertions to a user that the user then presents to a resource for the
purpose of obtaining VO issued rights. The primary difference between the two sys-
tems is the level of granularity at which they operate. The policy about what member-
ships a user has is centralized in the VOMS server, but the policy regarding exactly
what rights those memberships grant is distributed among the sites. CAS assertions

 Security Requirements Analysis for Large-Scale Distributed File Systems 55

provide the rights directly and do not need interpretation by the resource. This com-
plete centralization of policy can achieve better consistency especially in situations
where policies are changing dynamically.

Akenti and PERMIS, while having differences in implementation and features, are
architecturally similar in that they provide a resource with an authorization decision in
regards to a request. While the CAS implementations provide simple authorization
decision functionality, they are limited to supporting CAS policy assertions and do
not have as rich a feature set as either Akenti or PERMIS. It is possible that either
of these systems, with some modifications, could be used to provide resource-side
functionality for CAS (i.e., parse the CAS assertion and use it to authorize the user's
request.)

We recommend the use of CAS with the implementation of a local authorization
server for FileStamp. Local authorization server would accept authorization queries
from request servers, apply all applicable local and community policies, and return a
yes or no answer. This authorization server would need to be highly trusted by the
resource server and highly available. This service could potentially take CAS creden-
tials, forwarded by the resource, and use their credentials in making its decision, or it
could contact the CAS server itself. Such a server could be implemented by using
Akenti or PERMIS.

4.3 Availability, Confidentiality, and Integrity

Grid technologies enable transparent access to a wider resource pool, across organiza-
tions as well as within organizations; they can be used as a building block to realize
stable, highly reliable execution environments. In such a complex environment, pol-
icy-based autonomous control and dynamic mobility are keys to realizing systems that
are highly flexible and recoverable. Availability is often not considered in literature,
when it comes to a model design. Nevertheless, in a production environment we can-
not expect user not having assurances regarding the availability of what they pay for.
GSI provides mechanisms to grant availability of data owned by a user on a remote
resource. These are achieved by means of secure communication protocols, such as
HTTPS. As far as services availability is concerned, Globus relies on a dedicated
module that manages a limited set of grid events.

Use of some adequate encryption technologies is indispensable to guarantee the se-
cure communications across the grid nodes which assure the confidentiality and also
integrity. Encryption indirectly assures the availability too; however, the protection
against the denial of service attack is addressed in the security policy. There exist a
range of encryption technologies from HTTPS (where a layer of security is added on
the top of HTTP) to Secure Hash Algorithm (SHA) [23] (where it is computationally
difficult or impossible to hack and the integrity check – checksum – is also per-
formed).

Figure 1 shows graphic representations of these two encryption schemes. In figure 1a,
the layered architecture of HTTPS is shown. Figure 1b depicts how the SHA works. The
quick comparison of these two techniques show that SHA seems quite powerful as it
require considerable computing power to break the algorithm; however, in the specific
context of the grid applications notably FileStamp, we need to consider the overhead
incurred due to the encryption operations. Large datasets will consume enormous

56 S. Naqvi et al.

Fig. 1a. HTTPS Architecture

Fig. 1b. SHA Architecture

computing cycles for the SHA processing and HTTPS may not be considered as de-
pendable solution especially when network connections are not reliable.

We recommend the use of encryption technology for FileStamp as the data move-
ments across the grid nodes will be subject to potential attacks if there will be plain
text data exchange between the nodes. However, the selection of some specific
encryption technology is a tricky issue that depends on the nature of data (required
security level of the data movement) and the affordability of the total cost of the en-
cryption algorithms. A simple technique such as HTTPS can be employed for generic
situations and some more powerful techniques can be used for providing higher level
of security assurances. SHA consumes enormous amount of computing power but in
return it provides highest security assurances.

4.4 Resilience and Fault Tolerance

General trend for the attainment of resilience and fault tolerance in the distributed
systems is to maintain ample number of replicas of the dataset. When some node fails
then the load/job is transferred to some other node. The quality of service depends on
how efficiently the system recognizes the faulty nodes and how transparently the jobs
are migrated from the faulty nodes to working nodes without interrupting operations.

 Security Requirements Analysis for Large-Scale Distributed File Systems 57

In order to assure resilience and fault tolerance features, FileStamp should be able to
negotiate the terms of security parameters with the nodes so that new replicas be cre-
ated if the set of nodes expands resulting in the need of more replicas; or failure of
some existing nodes bearing replica sets need to be compensated by generating new
replicas.

We recommend the phased approach (as mentioned in [24]) to deal with the resil-
ience and fault tolerance issue. According to this approach:

1. In Phase I, the service providers that need to interact are identified. It is generally

assumed that this is undertaken through a manager entity – which is forming the
VO in order to undertake a particular activity.

2. In Phase II, the identified providers are asked to join the VO. This phase may
involve negotiation between the manager entity and the providers (or directly be-
tween the providers) to ensure that a Service Level Agreement (SLA) is estab-
lished between the entity and each provider (or directly between the providers).

3. In Phase III, the providers interact to perform the particular activity desired by the
manager entity.

A set of protocols is needed to perform these negotiations. Negotiation protocols

are the set of rules that govern the interaction. They are required to realize SLA-aware
resource management system.

We recommend the use of Service Negotiation and Acquisition Protocol (SNAP)
[25] as negotiations protocol. SNAP is structured around the negotiation of SLAs to
solve the negotiation problems at run-time. When SNAP is used to submit a file trans-
fer job to a community scheduler, the scheduler understands that a transfer requires
substantial storage space on the destination resource, and substantial network and
endpoint I/O bandwidth during the transfer. The distributed applications (common in
Grid environments) exacerbate the coordination problems of community schedulers.
Not only do SLAs coordinate use of resources by mutually distrustful schedulers, they
also coordinate the use of distrustful resources for a single application goal. The file
transfer emphasizes such distributed goals by requiring real-time coordination of
significant endpoint and network capability.

4.5 Data Lifecycle Management (DLM)

Data lifecycle management (DLM) is a policy-based approach to managing the flow
of an information system's data throughout its life cycle – i.e. from creation and initial
storage to the time when it becomes obsolete and is deleted. Security assurances re-
quire spanning the entire lifecycle of data. Existing Grids are already managing huge
quantities of data [26]. Since Grids maximize the utilization of computing resources,
their potential to generate new data and consume storage is very high, making storage
capacity and DLM critical issues. By targeting data to appropriate storage media (pri-
mary disk storage, secondary serial advanced technology attachment (ATA) storage,
tape, etc.) DLM solutions can influence on the overall protection of the data besides
significantly reducing the cost of Grid storage infrastructures. FileStamp should en-
sure that the data contents will be protected from the malevolent entities throughout
its lifecycle.

58 S. Naqvi et al.

We recommend a two-tier approach to handle the DLM issue in the FileStamp
system:

First, the security policy should explicitly mention the desired lifecycle of the data
being managed by the FileStamp system. The dynamic nature of the grid environ-
ments does not permit some rigid definition of any parameter including security;
however, the security policy of a VO is generally fixed for that VO and hence the
VOs using the FileStamp should include a formal description of the stage where the
data generated by the VO operations be destroyed from the storage devices.

Second, FileStamp should also employ some secure storage management technique
such as HSM (Hierarchical Storage Management) [27]. HSM is policy-based man-
agement of file backup and archiving in a way that uses storage devices economically
and without the user needing to be aware of when files are being retrieved from
backup storage media. The hierarchy represents different types of storage media, such
as redundant array of independent disks systems, optical storage, or tape, each type
representing a different level of cost and speed of retrieval when access is needed.

5 Conclusions

Global connectivity of computing and storage resources opens up the possibility of
misusing information to a degree never seen before. The objective to facilitate use of
these resources by protecting them against any misuse must, however, be realistic
given the current technical infrastructure. It is important that the security technologies
be integrated in these systems from the inception stage rather than considering them
as add-on optional features. Security issues should not be overlooked while designing
these systems as they are critical to the success of these scalable distributed systems.

In this paper, the security requirements of large-scale distributed file systems are
addressed. The FileStamp multi-writer distributed file system is considered as a case
study for this analysis. Various security requirements are identified and the potential
solutions corresponding to these requirements are proposed. However, it is important
to remember that the analysis of security requirements is a process, the risk and threat
pictures are always changing, and their analysis needs to be continuously updated. In
other words, overall infrastructure of large-scale distributed file systems should be
subject to constant review and upgrade, so that any security loophole can be plugged
as soon as it is discovered.

References

1. Dabek F., Kaashoek M., Karger D., Morris R., and Stoica I., Wide-Area Cooperative Stor-
age with CFS, In the proceedings of 18th ACM Symposium on Operating Systems Princi-
ples (SOSP’01), chateau Lake Louise, Banff, Canada, October 2001

2. INRIA Project PASTIS http://regal.lip6.fr/projects/pastis/pastis_fr.html
3. Rowstron A. and Druschel P., Pastry: Scalable, Distributed Object Location and Routing

for Large-Scale Peer-to-Peer Systems, Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), 2001, pp 329-350

 Security Requirements Analysis for Large-Scale Distributed File Systems 59

4. Druschel P., and Rowstron A., Past: Persistent and Anonymous Storage in a Peer-to-Peer
Networking Environment, Proceedings of the 8th IEEE Workshop on Hot Topics in Oper-
ating Systems (HotOS-VIII)? 2001), pp. 65-70

5. Welch V., Siebenlist F., Foster I., Bresnahan J., Czajkowski K., Gawor J., Kesselman C.,
Meder S., Pearlman L., Tuecke S., Security for Grid Services, Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Computing (HPDC’03),
2003

6. Foster I., Kesselman C., and Tuecke S., The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Application, 15
(3), pp. 200-222, 2001

7. Foster I., Kesselman C., Pearlman L., Tuecke S., and Welch V., The Community Authori-
zation Service: Status and Future, In Proceedings of Computing in High Energy Physics
03 (CHEP '03), La Jolla, California, USA, March 24-28, 2003

8. Allcock W. et al., GridFTP: Protocol extensions to FTP for the Grid, GGF Document Se-
ries GFD.20, April 2003

9. Foster I., Kesselman C., Tsudik G., Tuecke S., A Security Architecture for Computational
Grids, ACM Conference Proceedings 1998, ISBN 1-58113-007-4, pp 83-92

10. Rescorla E., Hyper Text Transfer Protocol (HTTP) over Transport Layer Security (TLS),
Internet Engineering Task Force (IETF) draft RFC # 2818, May 2000

11. Chokhani S., Internet X.509 Public Key Infrastructure Certificate Policy and Certification
Practices Framework, Internet Engineering Task Force (IETF) draft RFC # 2527, March
1999

12. Thompson M., Olson D., Cowles R., Mullen S., Helm M., CA-based Trust Issues for Grid
Authentication and Identity Delegation, Global Grid Forum (GGF) Certification Authority
Operations Working Group Community Practices Document, Oct 2002

13. Garfinkel S., PGP: Pretty Good Privacy, O'Reilly & Associates, 1994
14. Barret D. and Silverman R., SSH: The Secure Shell, O'Reilly & Associates, 2001
15. Ellison C., SPKI Requirements, IETF RFC 2692 1999, http://www.ietf.org/rfc/rfc2692.txt
16. The Certification Authority of Belgian Grid Initiative – www.begrid.be/certification.htm
17. Pearlman L., Welch V., Foster I., Kesselman C., Tuecke S., A Community Authorization

Service for Group Collaboration., Proceedings of the IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002

18. Ferraiolo D., Cugini J., and Kuhn D., Role Based Access Control (RBAC): Features and
Motivations, Proceedings of the 11th Computer Security Applications Conference, pp 241-
248, New Orleans, LA, USA, 11-15 December 1995

19. Foster I. and Kesselman C., Globus: A Metacomputing Infrastructure Toolkit, Interna-
tional Journal of Supercomputer Applications, 11 (2). 115-129. 1998

20. VOMS Architecture v1.1, http://gridauth.infn.it/docs/VOMS-v1_1.pdf, May 2002.
21. Thompson M., Johnston W., Mudumbai S., Hoo G., Jackson K., and Essiari A., Certifi-

cate-based Access Control for Widely Distributed Resources, 8th Usenix Security Sympo-
sium, 1999

22. Chadwick D. and Otenko A., The PERMIS X.509 Role Based Privilege Management In-
frastructure, 7th ACM Symposium on Access Control Models and Technologies, 2002

23. National Institute of Standards and Technology, Secure Hash Standard, Federal Informa-
tion Processing Standards Publication 180-1, April 17, 1995

24. Olmedilla D., Rana O., Matthews B., and Nejdl W., Security and Trust Issues in Semantic
Grids, Proceedings of Schloss Dagstuhl Seminar no. 05271: Semantic Grid: The Conver-
gence of Technologies, Dagstuhl, Germany, July 03-08, 2005

60 S. Naqvi et al.

25. Czajkowski K., Foster I., Kesselman C., Sander V., Tuecke S., SNAP: A Protocol for Ne-
gotiating Service Level Agreements and Coordinating Resource Management in Distrib-
uted Systems, Lecture Notes In Computer Science; Vol. 2537, Revised Papers from the 8th
International Workshop on Job Scheduling Strategies for Parallel Processing, pp 153-183,
ISBN:3-540-00172-7, 2002

26. Silicon Graphics Incorporate (SGI), SGI and Intel on the Grid – Unique Capabilities for
Grid Computing, Whitepaper, 2005

27. Watson, R., High Performance Storage System Scalability: Architecture, Implementation
and Experience, Proceedings of 22nd IEEE / 13th NASA Goddard Conference on Mass
Storage Systems and Technologies 2005, pp145-159, 11-14 April 2005

Coupling Contracts for

Deployment on Alien Grids

Javier Bustos-Jiménez3, Denis Caromel1, Mario Leyton1, and José Piquer2

1 INRIA Sophia-Antipolis, CNRS-I3S, UNSA. 2004, Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France

First.Last@sophia.inria.fr
2 Departamento de Ciencias de la Computación, Universidad de Chile. Blanco

Encalada 2120, Santiago, Chile
{jbustos,jpiquer}@dcc.uchile.cl

3 Escuela de Ingenieŕıa Informática. Universidad Diego Portales Av. Ejercito 441,
Santiago, Chile

javier.bustos@udp.cl

Abstract. We propose coupling based on contracts as a mechanism
to address the problem of exchanging information between parties that
require information to work together. Specifically, we show how our ap-
proach can be used to couple the deployment of an application with a
Grid infrastructure deployment descriptor using ProActive[11,2].

To achieve this, we identify the properties related with information
exchange between parties, and we group the properties of interest into
typed clauses. We then propose that interfaces can be built using shared
typed clauses. If the interfaces between parties are compatible, the cou-
pling of the interfaces can yield a coupling contract. The clauses belong-
ing to the contract represent what information can be shared between
the parties, and the type of the clause specifies how this information will
be shared.

Finally, we show how the deployment of applications on the Grid can
benefit from the proposed approach. Unfamiliar applications can couple
with deployment descriptors to deploy on alien Grids, without modifying
or inspecting neither of them.

1 Introduction

Originally, distributed resources were managed using a centralized approach.
This has been shown to be unpractical in the Grid. The resources can be nu-
merous, heterogeneous, with distributed ownership, and having different policies
[8,14].

The problem of scheduling an application on distributed resources was ad-
dressed using different strategies. This generated a diversity of mechanism for
resource acquisition protocols (LSF [16], PBS[10], SGE[9], Globus-gram[8], etc.).
At that point in time, application developers were forced to choose and bind an
application to a specific resource acquisition protocol. Migrating from one re-
source acquisition protocol to another required modifying the application.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 61–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

62 J. Bustos-Jiménez et al.

Later, new levels of abstractions were introduced which allowed the applica-
tion developers to abstract the application, not only from the resource acquisition
protocol used, but also from other Grid infrastructure details such as communi-
cation protocols, software location, etc.[3].

In the current scenario, we can now imagine having repositories of applications
and repositories of Grid infrastructures. The problem of finding a suitable Grid
infrastructure for an application can be seen as a problem of classified advertise-
ments and matchmaking [12,13] or a problem of database search like UDDI web
services [6].

We set sail from this point. Let us imagine two candidate parties (ex: applica-
tion and Grid infrastructure) that have already been matched. To work together,
each party requires and provides information from the other. We propose cou-
pling based on contracts as a mechanism to address the problem of exchanging
information in a generic way between unfamiliar parties. Specifically, we show
how our approach can be used to couple the deployment of an unfamiliar ap-
plication with an unfamiliar Grid infrastructure descriptor using ProActive[11].
Therefore, our objective is the deployment of an application on a Grid infras-
tructure without modifying or inspecting either.

This paper is organized as follows. In section 2 we review the related work.
Then in section 3 we explain our coupling proposal, and in section 4 we show
how this proposal is applied for deployment on the Grid using ProActive. Finally
we conclude and present our future work in section 5.

2 Related Work

The problem of finding suitable resources for a given application have already
been addressed by techniques such as matchmaking in Condor [12,13], collections
in Legion [4], or using resource management architectures like Globus[5].

In the case of Condor, the resource acquisition is viewed as a three stage pro-
cess composed of advertisement, matchmaking, and claiming. The requirements
are advertised by the involved parties (jobs and resources), suitable matches
are found, and finally the claiming of the resources takes place. To achieve the
claiming, the advertised information from each party is exchanged.

While this approach has been acknowledged as suitable for finding matches,
how the advertised information sharing is done has been overlooked. Up to now,
techniques like the ones proposed by Condor allow finding suitable matches by
specifying what information is exchanged, but no mechanism is provided for
defining how the information exchange should take place.

For example, if an application is looking for n nodes, and a Grid infrastruc-
ture can provide m nodes (n < m), then these two parties will be matched. If no
how semantics are provided for the claiming face, the following scenario could
happen: the application could decide to take advantage of the m nodes provided
by the infrastructure, while the infrastructure can decide to provide only the n

Coupling Contracts for Deployment on Alien Grids 63

nodes advertised by the application. The result would be the application trying
to use m nodes, while the infrastructure is only providing n nodes. Therefore, a
mechanism is required to specify how the information exchange takes place.

To address this issue, we propose the addition of a new stage called coupling,
thus rendering four stages: advertisement, matchmaking, coupling, and claiming.
Once the matchmaking has taken place, the semantics of how the information
will be shared between the parties will be addressed in the coupling face, before
the resources are successfully claimed.

Another related approach corresponds to the Web Services Agreement (WS-
Agreement) Specification[1], which is about to become a draft recommendation
of the Global Grid Forum[7]. The WS-Agreement is a two layer model: Agree-
ment Layer and Service Layer. Many of the concepts introduced in this paper find
their reflection in the Agreement Layer. According to the specification “an agree-
ment defines a dynamically-established and dynamically-managed relationship
between parties”, much like the proposed coupling contracts. Also, the proposed
coupling interfaces can be seen as agreement templates in WS-Agreement, since
they are both used to perform advertisement. Additionally, in the same way that
interfaces and contracts are composed of clauses, in WS-Agreement templates
and agreements are composed of terms. Finally, the concept of constraints is
present in both approaches.

The similarity of the proposed approach and WS-Agreement Specification is
encouraging when we consider that both were conceived independently. On the
other hand, the main difference in the approaches is that the definition of a
protocol for negotiating agreements is outside of the WS-Agreement Specifica-
tion scope. Therefore, we believe that WS-Agreement could benefit from the
proposed automated coupling approach, built using typed clauses. From the
WS-Agreement perspective, typed clauses can be seen as an automated negoti-
ation approach because they provide an automated mechanism for accepting or
rejecting an agreement.

3 Coupling Matches with Contracts

In this section we describe our approach for coupling parties (ex: application and
descriptor) that require exchanging information to work together.

Figure 1i shows the problematic. Unfamiliar parties cannot exchange infor-
mation with each other in a generic way. Our approach proposes to capture the
properties of how the information exchange occurs into types (Figure 1ii). A
group of typed clauses will then form an interface that will specify what infor-
mation is required and provided by each party (Figure 1iii). The coupling of
the interfaces will yield a contract, that will allow the parts to couple and work
together on a common goal (Figure 1iv).

In the rest of this section we provide the details on how the parties can couple
using the proposed approach. Later in section 4 we will show how this approach

64 J. Bustos-Jiménez et al.

Fig. 1. Coupling Matches with Contracts

can be used to couple distributed application with Grid deployment descriptor
using the ProActive[11] Grid middleware.

3.1 Clause Types

Let a and b be matched parties that require information from each other, or
from an external source e like the environment to work together. We have iden-
tified that the information requirements can be exposed and fulfilled using typed
clauses. The type of the clause represents a specific configuration of the following
properties:

1. Ability to set a value. This defines which party has the ability to set a
value for the clause. Possibilities are any permutation of a, b, e:
{abe, ab, be, ae, a, b, e}.

2. Ability to set empty values. This defines which party can set this clause
as empty. The possibilities are any permutation of a, b: {a, b, ab,−}.

3. Ability to set constraints to the values, thus narrowing the space of
possible values. This can be done by providing an explicit list of alterna-
tives, or using comparison operators (<, >, =, . . .). The alternatives are
permutations of: a, b: {ab, a, b, −}.

4. Priority. If more than one party can set a value, an empty value, or the
constraints, this identifies which has the priority. The alternatives are com-
binations of a, b, e: {abe, aeb, bae, bea, . . .}. The order in which they are
expressed defines the priority.

For example, we have identified the types depicted in Table 1. Conceptually
the types can be interpreted as:

A The value can only be set by a. Since b can set the value to empty, then b
can force a to provide a value.

B Corresponds to the symmetrical of A.

Coupling Contracts for Deployment on Alien Grids 65

Table 1. Types

Type Name — Set value — Set empty — Set constraints — Priority

A a b - a
B b a - b

A-PRI ab - b ab
B-PRI ab - a ba
ENV e - - e

A-PRI The value can be set either by a or b, where b can provide a default
value, and a can override the default.

B-PRI Corresponds to the symmetrical of A-PRI.
ENV The value can be set from the environment.

The flexibility of the approach allows defining the types of interest only, and
extending the set of types as required. The definition of new typed clauses is
possible using these or future imagined properties. For example, we could imagine
handling the priorities at a finer grain, thus having to specify three priorities for
setting the value, setting the empty value, and setting the constraints. In this
work we will focus on the types depicted in Table 1, because these represent the
types of interest in section 4.

3.2 Typed Clauses

We will define a typed clause (clause for short) as having the following fields:

1. Type Corresponds to one of the allowed clause types. These are: A, B,
A-PRI, B-PRI, ENV.

2. Name Corresponds to the name of the clause.
3. Value The value that will be set, empty or not.
4. Constraints The restrictions imposed on the values that can be set, if al-

lowed by the type.

We will say that a clause pair named clsa and clsb compose a shared clause
cls if both clauses names match clsa = clsb. The shared clause cls is type
compatible if clsa.type = clsb.type, and incompatible otherwise.

The fields of a type compatible shared clause are defined as:

– Name: cls = clsa = clsb,
– Type: cls.type = clsa.type = clsb.type,
– Value: cls.value = cls.type.priority(clsa.value, clsb.value)
– Constraint: cls.constraints = cls.type.priority(clsa.constraints, clsb.

constraints)

We will say a clause, shared or not, is valid if and only if cls.value �= empty
and cls.value satisfies cls.constraints such that: cls.constraints(cls.value) =
true. Note that two invalid clauses can be separately invalid, but the shared
clause composed using both of them can be a valid clause.

66 J. Bustos-Jiménez et al.

3.3 Coupling Interfaces

An coupling interface (interface for short) corresponds to a group of clauses. A
party can expose more than one interface, thus allowing coupling with more than
one party. An interface is defined by:

1. A name
2. Set of clauses identified by their names

Thus for a party a we can identify an interface by a.int name. And for iden-
tifying a clause belonging to an interface we write: a.int name.cls name.

We will say that two interfaces canbe coupled (a.int name and b.int name),
if there are no type incompatible shared clauses between the interfaces. The result
of the interface coupling corresponds to the set of all shared clauses, and will denote
it as: a.int name � b.int name.

3.4 Coupling Contracts

A coupling contract (contract for short) corresponds to the interaction between
two interfaces of different parties. If there exists two interfaces a.int and b.int,
such that both interfaces can be coupled, then the contract is defined as a set of
clauses:

Contract = a.int � b.int ∪ (a.int − (a.int � b.int)) ∪ (b.int − (a.int � b.int))

This means that the clauses contract will contain the shared clauses between
the interfaces, the unshared clauses of a, and the unshared clauses of b.

We will say that two parties a and b can be coupled if:

1. A contract can be built between them: two interfaces belonging to a and b
can be coupled, and

2. the contract is valid: every clause in the contract is valid.

3.5 Matching Parties: Descriptors and Applications Example

Typed clauses can also be used to perform advertisement and matchmaking in
the Condor style. Both parties can expose their interface (advertisement) to a
matchmaker or broker. To determine if the two parties are a suitable match, the
coupling contract can be generated and validated.

The clauses belonging to the interfaces will specify what information is shared
(provided or required) for the matchmaking. And the type of the clauses will
specify how the information is shared for the coupling.

4 Coupling Distributed Applications with Deployment
on the Grid

In this section we show how the concepts defined in section 3 can be applied.
Specifically, we aim at coupling a distributed application with Grid resources

Coupling Contracts for Deployment on Alien Grids 67

using the Grid middleware ProActive. ProActive already provides a mechanism
based on deployment descriptors for deploying on the Grid. We will show how
this mechanism can benefit from the use of coupling contracts to couple appli-
cations with deployment descriptors.

This section is organized as follows. We will first provide some background on
ProActive. Then, we will show how coupling contracts have been incorporated
into ProActive.

4.1 Background on ProActive Deployment Descriptors

Within the ProActive Descriptor Deployment Model [3], it is possible to de-
ploy applications on sites that use heterogeneous protocols, without changing
the application source code. All information related with the deployment of the
application is described in an XML Deployment Descriptor. Thus, eliminating
references inside the application code to: machine names, submission protocols
(local, rsh, ssh, lsf, globus-gram, unicore, pbs, lsf, nordugrid-arc, etc.) and com-
munication protocols (rmi, jini, http, etc.).

The Descriptor Deployment Model is shown in Figure 2.

Deployment Descriptor

VN

Nodes

Connectors Acquisition

Creation
Infrastructure

Mapping

Application Codes ADL

Fig. 2. Descriptor Deployment Model

The infrastructure section contains the information necessary for booking re-
mote resources. Once booked, ProActive Nodes can be created (or acquired) on
the resources. To link the Nodes with the application code, a Virtual Node (VN)
abstractions is provided, which corresponds to the actual references in the ap-
plication code. Virtual Nodes have a unique identifier which is hardcoded inside
the application and the descriptor.

68 J. Bustos-Jiménez et al.

A deployer can change the mapping of the application→ Virtual Node to deploy
on a different Grid, without modifying a single line of code in the application.

4.2 The Problematic of Applications and Descriptors

In the traditional approach, the application developer and the descriptor devel-
opers need to have a previous agreement on the name of the Virtual Node. This
means that the name of the Virtual Node is hardcoded inside the application
and the descriptor. If the application wants to use a new descriptor, then either
the descriptor or the application has to be modified to agree on the new Virtual
Node name.

A possible solution to this problem is passing the Virtual Node name as
a parameter to the application. Nevertheless, the problem of figuring out the
proper Virtual Node name from the descriptor remains. To find out the name of
the Virtual Node, inspection of the descriptor has to be performed, which can be
a problem for someone alien with respect to the Grid infrastructure’s descriptor.

Furthermore, the Virtual Node name is not the only information sharing prob-
lem that the application and descriptor have. For example, a descriptor might
be configured to deploy on k nodes, but the application only requires j nodes
(j < k). Without shared clauses, the descriptor has to be modified to comply
with the requirements of the application.

Modifying the application or the descriptor can be a painfull task, specially if
we consider that the person deploying the application (deployer) may not be the
author of either. To complicate things further, the application source may not
even be available for inspecting the requirements and performing modifications.
Figure 3 illustrates the issue. The deployer is not aware of the application or
descriptor requirements.

Fig. 3. Matching and Coupling Contracts

Nevertheless, using coupling contracts, the deployment can be further en-
hanced by enabling automated matchmaking and coupling of applications and
descriptors.

4.3 Clause Types

The involved parties are the application (a) and the descriptor (b), and the
environment information (e) (given through java properties). To improve the

Coupling Contracts for Deployment on Alien Grids 69

Table 2. ProActive Deployment Clause Types

Type Name — ProActive Type Name

A Application
B Descriptor

A-PRI ApplicationPriority
B-PRI DescriptorPriority
ENV JavaProperty

clarity of the example, we have renamed the clause types identified in the Table 1
to the names shown in Table 2.

4.4 Clauses in ProActive Descriptors

Clauses can be specified using XML tags as shown in the example of Figure 4
for the descriptor. To define the clauses a new section labeled clauses has been
added at the beginning of the descriptor to hold the interfaces. The clauses
shown in the example correspond to:

PROACTIVE HOME & MAX NODES Correspond to descriptor set clauses. The value
is set directly in the descriptor, and can be used later on, inside the descriptor
or the application.

VIRTUAL NODE NAME Corresponds to a clause that the descriptor enforces the
application to set. If the application doest not set this value, the clause inside
the coupling contract will not be valid, and the application will not be allowed
to couple with the descriptor. In the example, we force the application to
set the name of the Virtual Node.

LOAD BALANCING Corresponds to a clause that the application has set, but the
descriptor can override. In the example, we imagine that an application is
capable of handling, or not, the load balancing. By default the application
will assume that no load balancing is provided by the Grid infrastructure
(Figure 5), and thus handle the load balancing at the application level. Nev-
ertheless, the descriptor is aware if load balancing can be done at the Grid
infrastructure level and activate it. The application can then access the con-
tract’s clauses to learn if the infrastructure is using the load balancing and
disable the application load balancing mechanism.

NUMBER OF NODESCorresponds to a clause that the descriptor has set a value, but
the application may override. Additionally, the descriptor has set constraints
indicating that the value must be an integer between 1 and MAX NODES.

USER NAME Corresponds to a clause that is set from the environment. In this
case, the username can be specified from the environment as a java property.

Figure 4 also shows an example of how the clauses can be used inside descrip-
tors. Note that the value of the clause VIRTUAL NODE NAME has not been set in the
descriptor, since it is of type Application. This means that the value used inside
the descriptor will be the one set from the application. Also note, that clauses
obtained from the environment can also be used, like the USER NAME clause.

70 J. Bustos-Jiménez et al.

<clauses>
<interface name="descriptor-example-interface">
<Descriptor name="PROACTIVE_HOME" value="ProActive/"/>
<Descriptor name="MAX_NODES" value="100/"/>
<Application name="VIRTUAL_NODE_NAME" value=""/>
<DescriptorPriority name="LOAD_BALANCING" value="on"/>
<ApplicationPriority name="NUMBER_OF_NODES" value="1">
<!--// (NUMBER_OF_NODES>0) && NUMBER_OF_NODES<=MAX_NODES -->
<integerConstraint>
<and>
<biggerThan>0</biggerThan>
<smallerOrEqualThan>${MAX_NODES}</smallerOrEqualThan>

</and>
</integerConstraint>

</ApplicationPriority>
<JavaProperty name="USER_NAME" value="user.name"/>

<interface>
</clauses>
...
<virtualNodesDefinition>
<virtualNode name="${VIRTUAL_NODE_NAME}"/>
</virtualNodesDefinition>

...
<sshProcess class="org.objectweb.proactive.core.process.SSHProcess"

hostname="example.host" username="${USER_NAME}"/>

Fig. 4. Example of clauses in descriptor

4.5 Clauses in ProActive Applications

We have also provided a mechanism for specifying clauses and interfaces from
the application. This can be done through an API, or loading the clauses from an

//Create a new interface
ClausesInterface ci= new ClausesInterface("application-example-interface");

//Set the clauses in this interface
//set(<type>, <clause name>, <value>, [<constraint>])

ci.set(Application, "VIRTUAL_NODE_NAME", "testnode",);
ci.set(ApplicationPriority, "NUMBER_OF_VIRTUAL_NODES", "16");

// LOADBALANCE="on" || LOADBALANCE="off"
OrConstraint oc = new OrConstraint();
oc.add(new EqualsConstraint("on"));
oc.add(new EqualsConstraint("off"));
ci.set(DescriptorPriority, "LOAD_BALANCING", "off", new StringConstraint(oc));

//Parse and load the descriptor using the coupling interface. If the application and
descriptor can not be coupled an exception will be thrown

ProActiveDescriptor pad = ProActive.getProactiveDescriptor("descriptor.xml", ci);

//Clauses from the coupling contract can be used in the application
CouplingContract cc = pad.getCouplingContract();
String loadBalancing = cc.getValue("LOAD_BALANCING");

//The application can take decisions based on the clauses
if(loadBalancing.equals("on")){...}
else{...}

Fig. 5. Example of clauses in application

Coupling Contracts for Deployment on Alien Grids 71

external XML file. Since the XML approach has already been shown for the de-
scriptor, Figure 5 shows an example using the API. First an interface is created,
and then the clauses are added to the interface. The interface is then passed
as a parameter when parsing the descriptor. The parsing will try to generate a
coupling contract using the application’s and the descriptor’s interfaces.

If the application can be coupled with the descriptor, then the application
can retrieve the coupling contract and consult the contract’s clauses. For exam-
ple, using this strategy the application can know if the descriptor activated the
infrastructure load balancing, and avoid using the application load balancing.

4.6 Constraints

Constraints are boolean expressions that will be evaluated for each clause when
the contract is built. The constraints can be of two types: integer or string. For
each constraint the logical operators: and, or, xor are allowed. Also, boolean
operators are provided for each type of constraint. The integer operators are:
biggerThan,biggerOrEqualThan,smallerThan,smallerOrEqualThan,equals.
The string case sensitive operators are: subString, superString, equals.
Figure 6 shows the constraint grammar specified using XML Schema[15] for the
integer type constraints.

<xs:element name="integerConstraint">
<xs:complexType>
<xs:choice>
<xs:element name="and" type="intConst"/>
<xs:element name="or" type="intConst"/>
<xs:element name="xor" type="intConst"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:complexType>
<xs:complexType name="intConst">
<xs:choice minOccurs="1" maxOccurs="unbounded">
<xs:element name="and" type="intConst"/>
<xs:element name="or" type="intConst"/>
<xs:element name="xor" type="intConst"/>
<xs:element name="biggerThan" type="xs:string"/>
<xs:element name="biggerOrEqualThan" type="xs:string"/>
<xs:element name="smallerThan" type="xs:string"/>
<xs:element name="smallerOrEqualThan" type="xs:string"/>
<xs:element name="equals" type="xs:string"/>

</xs:choice>
</xs:complexType>

Fig. 6. Integer Constraint Schema Grammar

Figure 4 shows an example where the clause NUMBER OF NODES is constrained
to be: 0 < NUMBER OF NODES <= MAX NODES. Note that MAX NODES is defined as
a Descriptor type clause. Figure 5 shows an example using string constraints.
The clause LOAD BALANCING is constrained to be either on or off.

72 J. Bustos-Jiménez et al.

5 Conclusions and Future Work

We have shown an approach for coupling parties that require exchanging in-
formation to work together. To achieve this, we have identified the properties
related with information exchange between parties, and we have grouped the
properties of interest into typed clauses. We have then proposed that interfaces
can be built using shared typed clauses.

If two interfaces between parties are compatible, the coupling of the interfaces
can yield a coupling contract. The clauses belonging to the contract represent
what information can be shared between the parties, and the type of the clauses
specify how this information will be shared.

Using the proposed coupling approach, we have shown how coupling con-
tracts can be applied for automated deployment of unfamiliar applications on
alien Grids. For this, we have provided a mechanisms to specify clauses in the
application and the deployment descriptor using the Grid middleware ProAc-
tive. As a result, the approach can now be used to couple applications with
descriptors, without having to modify or inspect either.

Nevertheless, it can be argued that the proposed approach requires each party
to know beforehand the names of the clauses used in the coupling. In reality, only
a subset of the clauses belonging to the coupling contract have to be known: the
ones that must be provided with a value to make the contract valid. Furthere more,
if two different interfaces couple with a third generating two valid coupling con-
tracts, the clauses contained in these contracts can be different. While this seems
strange, it is a direct result of the proposed approach being boolean: either the
contract is valid or not. In the future, we would like to extend this concept by
introducing Conformance Levels in coupling contracts. Thus, a minimum confor-
mance level (i.e. minimum set of known clauses) could be provided for basic appli-
cations, and higher conformance levels (i.e. a superset of the lower conformance
levels) could be used for more advanced features that require more specific clauses.

From the Grid infrastructure side, in the future we would like to identify stan-
dard interfaces for coupling applications with different types of Grids. The idea is
to be able to release applications packaged with interfaces that certify the deploy-
ment of an application with a Grid interface. On the other hand, from the appli-
cation point of view, we would like to identify interfaces for common structured
parallel programming patterns. For example, if an application uses the master-
slave pattern, then it can benefit by coupling with a Grid interface optimized by
deploying the master on a more powerfull or better connected resource than the
regular slaves. Thus, a Grid could provide an optimized interface for applications
exploiting different patterns such as: farm, pipe, divide and conquer, etc.

References

1. Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.
Web services agreement specification (ws-agreement). Draft Version 2005/09.
http://forge.gridforum.org/projects/graap-wg .

http://forge.gridforum.org/projects/graap-wg

Coupling Contracts for Deployment on Alien Grids 73

2. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming, Com-
posing, Deploying, for the Grid. Springer Verlag, 2005.

3. F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and
descriptor-based deployment of object-oriented grid applications. In Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, pages 93–102, Edinburgh, Scotland, July 2002. IEEE Computer Society.

4. Steve Chapin, Dimitrios Katramatos, John Karpovich, and Andrew Grimshaw.
Resource management in legion. Legion Winter Workshop, 1997.

5. Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kesselman, Stuart Mar-
tin, Warren Smith, and Steven Tuecke. A resource management architecture for
metacomputing systems. In IPPS/SPDP ’98: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture Notes in
Computer Science, pages 62–82, London, UK, 1998. Springer-Verlag.

6. D. Fensel and C. Bussler. The web service modeling framework WSMF. Electronic
Commerce Research and Applications, 1(2):113–137, Summer 2002.

7. Global Grid Forum. http://www.gridforum.org/.
8. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit, 1996.
9. Wolfgang Gentzsch. Sun grid engine: Towards creating a compute power grid. In

CCGRID, pages 35–39. IEEE Computer Society, 2001.
10. R. Henderson and D. Tweten. Portable batch system: External reference specifi-

cation. Technical report, NASA, Ames Research Center, 1996.
11. ProActive. http://proactive.objectweb.org.
12. R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource man-

agement for high throughput computing. In In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing, 1998.

13. R. Raman, M. Livny, and M. Solomon. Policy driven heterogeneous resource co-
allocation with gangmatching. In Proc. of the 12th IEEE Int’l Symp. on High
Performance Distributed Computing (HPDC-12), 2003.

14. INRIA OASIS Team and ETSI. 2nd grid plugtests report.
http://www-sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf.

15. W3C. Xml schema: Formal description. http://www.w3.org/TR/
xmlschema-formal/.

16. S Zhou. Load sharing in large-scale heterogenous distributed systems. In Proceed-
ings of the Workshop on Cluster Computing, 1992.

http://www.gridforum.org/
http://proactive.objectweb.org
http://www-sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xmlschema-formal/

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 74–86, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Transparent Framework for Hierarchical
Master-Slave Grid Computing

Nadia Ranaldo1 and Eugenio Zimeo2

1 Department of Engineering, University of Sannio,
82100 Benevento, Italy

ranaldo@unisannio.it
2 Research Centre on Software Technology (RCOST), University of Sannio,

82100 Benevento, Italy
zimeo@unisannio.it

Abstract. The use of grid computing to easily and efficiently execute data and
compute-intensive applications strongly depends on new software development
approaches able to separate application-domain aspects from non-functional
ones, such as task mapping and deployment. In this paper, we present an object-
oriented framework that is able to transparently transform non-distributed
programs into hierarchical master-slave ones, and to map and schedule them
onto a grid computing system. Moreover, the framework is able to leverage
services delivered by the underlying middleware platform, such as resource
management and communication, to satisfy user requirements. The paper
presents the framework architecture, a reflection-based implementation and its
evaluation atop of a hierarchical grid middleware.

1 Introduction

Thanks to the increasing amount of resources available across the Internet and to
improvements of wide-area network performance, in recent years grid computing is
emerging as a viable computing paradigm to execute data and compute-intensive
applications.

At the state of the art, two of the main difficulties to wide diffusion of grid
technologies are usability and efficiency: if the computing environment provided by
the grid system is seamless, user-friendly and efficient, users will potentially exploit
wide-area distributed resources to obtain high performance with a little effort related
to the management of the distributed system and the deployment of applications on it.
Existing distributed programming approaches based on message-passing (such as
MPICH-G2 [1]) adopted for not or limited distributed systems (such as parallel
machines or clusters of workstations), or “standard” approaches based on object-
oriented technologies (such as Java RMI and CORBA) are hardly applicable to write
and execute applications in highly dynamic and geographically distributed computing
environments. These approaches, in fact, require to directly deal with problems not
encountered for sequential programming, such as non-determinism, synchronization,
data partitioning and distribution, load-balancing, fault-tolerance, security, etc.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 75

To overcome the burden of these approaches, new programming models,
abstractions, tools and methodologies are required. In this connection, we believe that
object-oriented component frameworks for high-level distributed programming are
strategic to increase the spread of grid computing technologies (even in industrial and
enterprise environments) and the productivity of grid programmers. This
convincement derives from the analysis of similar technologies, such as Enterprise
Java Beans and application servers employed in enterprise environments to separate
functional and non-functional aspects in distributed software systems.

To improve efficiency, scalability and adaptability of applications, a framework for
grid computing has to: (1) permit the programmer to focus only on domain-dependent
aspects of an application, rather than on control and coordination aspects of
distribution, which depend on the target environment; (2) be able to reuse the same
application logic into different computing environments (such as parallel machines,
clusters and Grids).

As concerning distributed computing models, in this work we focus on the master-
slave pattern [2], which is a widespread architectural pattern adopted to implement
coarse-grained parallel and distributed applications either in local- and wide-area
networks. We focus on the hierarchical version of such pattern, since it is particularly
effective to be used in intrinsically hierarchical grid computing systems, because of
well-defined and limited communication patterns among computing nodes. In these
systems, computing nodes are often hosted by heterogeneous resources characterized by
limited-bandwidth communication in the levels of the hierarchy close to the user, and
high communication performance in the other levels, typically not directly accessible
through the Internet because they are often clusters accessible only through a front-end.
In future we intend to take into account other widespread patterns currently adopted in
the distributed computing, such as divide and conquer and pipeline.

This paper presents a framework to simplify the development of parallel and
distributed object-oriented applications for grid systems. The framework, called TMS
Framework (Transparent Master-Slave Framework), is able to transparently
implement hierarchical master-slave applications in a hierarchical grid environment,
and to satisfy Quality of Service (QoS) requirements by dynamically exploiting
services delivered by underlying middleware platforms. The framework was
implemented by leveraging reflection mechanisms provided by a meta-object protocol
[3]. We considered, moreover, its customisation for a hierarchical grid middleware
[4], which delivers an economy-driven resource broker usable by the TMS
Framework to automatically map and schedule distributed tasks satisfying time and
cost constraints specified by the user.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the TMS Framework. Section 4 describes a reflection-based
framework implementation. Section 5 presents an evaluation of the TMS Framework
in writing a distributed application and a preliminary experimental analysis, and
finally Section 6 summarizes the paper and presents future work.

2 Related Work

Some frameworks for master-slave applications in dynamic and heterogeneous
systems have been proposed in literature. The most significant ones are AppLeS

76 N. Ranaldo and E. Zimeo

Master-Worker Application Template (AMWAT) [5] and Condor Master-Worker
(MW) [6]. Also Javelin 3 [7] and Satin [8] are interesting proposals.

AMWAT is a library that provides a software template to implement self-
scheduling master-slave applications written in C, C++, and Fortran in distributed
memory architectures. The AMWAT programming interface specifies the high-level
functionalities that the application developer must minimally supply. Such
functionalities are provided in form of portable and reusable modules. In particular,
the Application Template module contains fifteen application activity functions,
which are provided by developers to implement application-specific functions.

Condor MW is a framework proposed for implementing grid-enabled master-slave
applications written in C++. Condor MW provides a “top-level” interface to
application software and a “bottom-level” interface, called Infrastructure
Programming Interface (IPI). The top-level interface permits to parallelize an
application and requires the programmer to re-implement some abstract classes, in
particular the MWTask, which is the abstraction of one unit of work, and the
MWWorker, which represents a slave process. The IPI interface permits to use
existing grid computing toolkits without any changes from the view-point of the
application developer.

While the AMWAT approach focuses on application performance in terms of
execution time, the Condor MW approach emphasizes the delivery of high throughput
computing. It typically deals with many processor faults, since the default Condor
behaviour is to vacate a running process on a remote machine when it is no longer in
idle status.

Even if the approaches described above permit to simplify writing of master-slave
applications by hiding distribution, scheduling and communication aspects, they still
require to explicitly write code for the distributed version of the problem, requiring a
specific implementation of the application for the master-slave pattern and so limiting
the programmer productivity and existing code re-use.

A better separation of functional aspects from non-functional ones can be reached
through the new programming approach based on skeletons [9], conceived to design
easy-to-use structured parallel programming environments. The idea is to capture
recurring patterns in parallel and distributed applications in generic software
constructs that can be customized by the programmers to write different applications.

A recent proposal is HOC [10] based on Web services, which requires configuring
services through application-specific code, such as, in the master-slave pattern, how
to split input parameters among the slaves and how to process them. Such
customisation is obtained through the implementation of specific interfaces.

Another proposal that focuses on grid systems is Lithium [11], a library based on
Java and RMI, which supports common skeletons, including pipelines, task farms,
iterative and data parallel skeletons.

As for the skeleton-oriented approaches, our goal is to simplify writing distributed
applications, considering the difficulty in learning new paradigms and programming
approaches. For this reason, we propose a framework that permits writing (or re-
using) an application in a sequential version, hiding the distributed aspects related to

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 77

the pattern/s adopted for its deployment. Our idea is to configure the pattern-related
aspects through a preliminary phase that requires writing a configuration file and the
classes for the framework customization. Moreover we focus on a framework
implementation that hides pattern-related aspects in some configurable components of
the system, able to leverage existing grid services, for example resource discovery
and load balancing.

Most of the distributed computing environments for master-slave applications,
which deliver scheduling functionalities, use mapping algorithms that try to optimise
only the execution performance [12] [13] [5]. In a future commercialisation of grid
technologies, the resource price will represent a distinctive property to regulate the
supply-and-demand for resources. To this end, the work in [14] represents one of the
first effort to introduce economy-driven mapping algorithms for generic applications
with no control or data dependencies; whereas a previous paper of the authors [15]
defines a heuristic for mapping tasks to the slaves of a master-slave application based
on deadline and budget constraints.

3 TMS Framework

The TMS Framework design is based on the following principles: (1) separation of
concerns: the framework has to permit a programmer to concentrate only on the
domain-dependent aspects, without dealing with low-level aspects of distributed
computation such as the definition of the number of resources, the distribution of
tasks among the resources, synchronization, etc.; (2) code re-use: the framework has
to permit the re-use, in a distributed computing environment, of existing code written
to solve the same problem in sequential manner, so permitting to use, in a nearly-
seamless way, the same code for execution on a single workstation, or on a
homogeneous cluster or on a heterogeneous wide-area distributed system; (3)
adaptability: the framework has to dynamically leverage services delivered by the
underlying computation architecture in order to automatically optimise application
execution and fulfil user QoS requirements.

The main objective of the proposed framework is to re-use existing code for
sequential execution to automatically produce a parallel and distributed version of it
through the adoption of the hierarchical master-slave pattern at run-time. The
hierarchical master-slave pattern consists of extending the single master of the
canonical pattern to a hierarchy of masters at different levels. The master at the top
controls the overall computation and distributes it among the masters at lower levels,
and so on, until the computation is sent to the slaves, which directly process the
request. The collection of computed results is performed in the reverse order. With
respect to the master-slave pattern, it permits to increase scalability by removing the
centralized control of a single master, which could easily become a bottleneck for a
high number of resources and limited-bandwidth networks.

The TMS Framework provides a run-time distributed environment in which
masters and slaves run. To achieve separation of concerns, it defines a generic

78 N. Ranaldo and E. Zimeo

architectural skeleton, which can be customized by the user through application-
domain code used for sequential version, and some descriptive information for the
deployment. The distribution aspects that depend on the underlying computational
infrastructure are captured and managed by the framework, without the necessity of
application-domain code modification.

The framework is designed so to automatically manage and trigger well-defined
coordination activities of the hierarchical master-slave model, which are: (1) splitting
of the workload, (2) call to slaves, (3) waiting and gathering of results performed by
the master. The idea is to set up such well-defined activities through a configuration
phase, which permits to specify the policies to adopt for each activity. In figure 1, the
main components of the framework are shown, considering one level of the hierarchy
for simplicity.

The framework is used to dynamically parallelize object-oriented applications
whose functional aspects are delivered through a method of a class (called in the
following Task class), which implements a sequential solution to a given problem. To
transparently turn the sequential computation of such method into a parallel one, a
Task object is used to customize the main framework component, called TMS Task.
The TMS Task is loaded into the TMS Framework of each computing node and is
configured in order to act as master or slave of the computation. For a master node the
TMS Task consists of the replication of the original Task object, and a customisable
framework component, called Master Behaviour, which performs the master
functionalities of workload splitting and result gathering.

invoke

TMS Framework
 configure
application

Application

reply result

Configuration Information

Master
Behaviour

TMS
Task

Task

Resource Management

create
master and slaves

Communication

request
execution

execute

Task

create slave

. . .

. . .

Communication

TMS Framework

CommunicationResource Management Resource Management

create

TMS Framework

create

create slave

create master

Slave
Behaviour

Task

execute

Slave
Behaviour

TMS
Task

TMS
Task

request
execution

Fig. 1. TMS Framework Architecture

For a slave node the TMS Task consists of the replication of the original Task
object, and a framework component, which performs the slave activities, called Slave
Behaviour component.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 79

The framework contains other two configurable components used to capture and
manage the main capabilities required to distribute and manage a master-slave
application, that are the Resource Management and the Communication components.
The Resource Management component has the task to schedule and manage the
masters and slaves on distributed resources. The communication and synchronization
between masters and slaves is managed by the Communication component.

4 Reflection-Based Implementation

The main goal of the TMS Framework is the implicit implementation of the
hierarchical master-slave pattern, which can be achieved following static or dynamic
approaches.

The static approach is based on specialized pre-compilers, which take care of
parallelising the application and deploying it on distributed resources. Such approach
does not fit in a dynamic distributed environment since it does not permit to perform
on-the-fly modifications in order to adapt applications to variations in underlying
services and resource availability.

The dynamic approach permits to overcome such limitations and is based on the
openness of the system to change, even at run-time, some aspects of its behaviour.

We propose a version of the TMS Framework based on a dynamic approach
implemented with reflection mechanisms [2]. A reflection-based framework permits
to easily adapt components to changing conditions, and to extend or reconfigure the
system to meet new requirements. With this approach, an application is logically
divided in two parts: the meta-level and the base-level. The meta-level is the part of
application which provides knowledge of its properties and makes the system self-
aware. The system properties available at the meta-level are represented by Meta
Objects, which encapsulate and represent information about a single system aspect
that should be adaptable. The base-level models and implements the application logic
and represents the various services the system offers. Its implementation uses
information and services provided by the meta-level to remain flexible and
independent from those aspects that are likely to be modified.

A reflection-based TMS Framework requires individuating the set of Meta Objects,
which capture the incomplete parts of the framework and permit to customize it for
the execution of an application. Reflection mechanisms are also used to customize the
Resource Management and Communication components so to deliver functionalities
exploiting existing basic services of the underlying middleware.

4.1 MOP-Based Implementation

We implemented the dynamic master-slave pattern by exploiting the reflection
features provided by Meta-Object Protocol (MOP) implemented in ProActive [3]. It is
a proxy-based run-time mechanism, which permits reification of method invocations
and constructor calls. It is entirely written in Java and avoids any modification or
extension to the JVMs, as opposed to other meta-object protocols.

80 N. Ranaldo and E. Zimeo

By using MOP, the TMS Framework permits to employ every existing class to
transparently instantiate the set of master and slave active objects (ProActive objects),
keeping the application very similar to that used for a sequential computation.

Therefore, the hierarchical master-slave pattern is dynamically implemented and an
existing object can be turned in a master able to transparently split the overall task
into sub-tasks and in a slave able to perform the assigned part of the overall task.

C
o

m
m

un
ic

at
io

n
S

er
vi

ce
s

R
es

o
u

rc
e

M
an

ag
em

en
t

S
er

vi
ce

s

MiddlewareTMS FrameworkLocal JVM

Application
Active
Object

Remote JVM
R

es
o

u
rc

e
M

an
ag

em
en

t

Active
Object

C
om

m
un

ic
at

io
n

method call Remote JVM

Remote JVM

reply

TMS
RunActive

Active
Object

Active
Object

Remote JVM

Active
Object

Remote JVM

Active
Object

. . .

request
 execution

create
active

objects

Fig. 2. MOP-based TMS Framework implementation

The behaviour of active objects, with respect to the parallelism exploitation
patterns, is specified through the implementation of the RunActive interface of
ProActive, delivered by the framework and called TMSRunActive, which specifies
the actions executed by the active object when a method execution request is received
(see figure 2). In particular, if the active object is a master, the following actions are
performed: (1) to collect information on the performance capabilities of each resource
available for computation; (2) to perform a partition of input parameters following the
policies indicated in a configuration file; (3) to send method calls to the active objects
which are masters or slaves of the lower level, using as input parameters: the original
input parameter, if it is a non-partitioned parameter, or the corresponding part of the
partition, if it is a partitioned parameter; (4) to wait for the collection of each partial
results, which are assembled following the policy specified in a configuration file. If
the active object is a slave, it directly executes the method.

4.2 Programming Model

The programming model of the TMS Framework permits the parallelisation of one or
more tasks, each represented by a method of an existing class. The parallelisation is
initialised through the Configuration Phase, performed delivering a configuration file
and invoking the static method of the TMSFramework class:

Object configureDistributedTask(Object original, String configFile);

that returns a reified object. The input parameters are original, which is an instance
of the class used to perform the distributed task and configFile, which is the name
of the configuration file used to configure the deployment of active objects. It is an

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 81

XML-based file, called Job Description Format (JDF) in which a part depends on the
underlying middleware adopted for active objects deployment, while another is
common and is used for the reflection mechanisms. The common part contains the
following information: (1) the methods whose invocations have to be distributed over
the active objects; (2) for each method, the input parameters that have to be
partitioned and the policy to partition each of them; (3) for each method, the
assembling policy of the output parameter.

A partition policy is specified by the implementation of the following method of
the SplitHelper interface:

public Object[] split (Object[] data, double[] caps);

in which, data represents the information used to obtain a partition on an input
parameter and caps the performance information on each active object, used to
eventually obtain a load balanced partition.

SplitHelper
<interface>

+ split(Object[], double[]):Object[]

AssembleHelper
<interface>

+ assemble(Object[]):Object

TMSFramework

+ configureDistributedTask(Object, String):Object
+ getConfigurationInfo(Object):ConfigurationInfo

TMSRunActive

+ runActivity(Body)

RunActive
<interface>

+ runActivity(Body)

Fig. 3. Class Diagram of MOP-based TMS Framework

An assembling policy is specified by the implementation of the following method
of the AssembleHelper interface:

public Object assemble (Object[] data);

in which data represents the partial results to assemble into a single object
representing the overall result of the distributed computation.

The Configuration Phase is followed by the Execution Phase, in which the user
performs method invocations in the same way as for standard objects. The method
invocation on ProActive active objects is asynchronous, which permits to increase the
concurrency among local and remote activities.

4.3 User QoS Requirements

The default version of ProActive leverages Java RMI and, as a consequence, requires
the direct handling of scheduling functionalities of resource discovery, selection and
task mapping, limiting the capability to fulfil user QoS requirements.

Through the adoption of the ProActive-HiMM adapter [16], the TMS Framework
can be configured to transparently leverage HiMM functionalities. HiMM is a Java-
based middleware able to exploit hierarchical collections of computers interconnected
by heterogeneous networks. Even if HiMM is not a complete grid middleware (it lacks
of sophisticated security mechanisms and efficient data access), it delivers all the basic

82 N. Ranaldo and E. Zimeo

services of resource discovery, management, scheduling, and efficient communication
mechanisms useful to implement master-slave applications into a grid system.

HiMM, in particular, provides an economy-driven broker for master-slave
applications which is responsible for automatic resource discovery and task mapping
on the basis of availability, performance and cost of resources, and on time and cost
parameters specified by the user. It is based on the task mapping heuristic proposed in
[15] which permits to minimize the total execution time without exceeding a fixed
budget. The HiMM resource broker can be adopted by the TMS Framework to
transparently deploy the distributed tasks of resources satisfying time and cost
constraints specified by the user in the configuration phase. This is obtained following
the programming model described above and using a file (JDF – Job Description
Format – file) which contains all the information necessary to exploit broker
functionalities of HiMM, which are application information (task dependencies,
overall complexity, single task complexity, etc), application code, input data and user
requirements. The current version of the HiMM broker does not take into account the
mapping problem of master hierarchy because it focuses on a grid system with an
intrinsic hierarchical topology, in which the masters are naturally hosted on those
machines used as front-end for pools of resources such as clusters.

5 Framework Evaluation

To evaluate the usefulness for programming and to analyse the performance delivered
by TMS Framework, a simple application is described. It is the well-known
multiplication of square matrices implemented with the master-slave pattern and
using the strip partitioning of the left matrix: the master partitions the received left
matrix and sends the parts to slaves for processing.

A standard class Matrix, eventually already written for sequential applications,
delivers a constructor to initialise a bi-dimensional array of float values, and the
multiply method that sequentially executes the multiplication between the current
matrix, used as right matrix, and the matrix passed as parameter, used as left matrix.

The following code shows the use of the TMS Framework to turn a standard
instance of Matrix into a transparent master-slave one:

...
Matrix rigMat = new Matrix(...); // initialisation
Matrix leftMat = new Matrix(...);
Matrix result = null;
String configFile = null;

 // Configuration Phase: definition of the XML-based JDF file
 ...

rigMat=(Matrix)TMSFramework.configureDistributedTask(
 rigMat,configFile);
// Execution Phase
result = rigMat.multiply(leftMat);
...

The parallelisation of the multiplication of two matrices requires to specify, in a
JDF file, the class which contains the method to parallelise, that is Matrix, and the
classes which implement the SplitHelper and AssembleHelper interfaces used,
respectively, to split a matrix in blocks of rows and to assemble blocks of rows into
one block to return a single matrix.

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 83

We underline that such classes could be already available in a library included in
the framework or delivered by a third-part developer. A section of the JDF file for this
application is reported below.

<APPLICATION-STRUCTURE>
 <DISTR-PROG-MODEL>Master-Slave</DIST-PROG-MODEL>
<MIDDLEWARE-SPECIFIC-INFORMATION>
<USER-REQUIREMENTS>
<DEADLINE>50000</DEADLINE>
<BUDGET>100</BUDGET>
<MAPPING-POLICY>TIME_OPTIMIZATION</MAPPING-POLICY>

</USER-REQUIREMENTS>
...
</MIDDLEWARE-SPECIFIC-INFORMATION>
<TASKS>

<TASK>
 <TASK-CLASS-NAME>Matrix</TASK-CLASS-NAME>
 <METHOD-NAME>multiply</METHOD-NAME>
 <METHOD-PARAMETERS>
 <METHOD-PARAMETER>Matrix</METHOD-PARAMETER>
 </METHOD-PARAMETERS>
 <RETURN-TYPE>Matrix</RETURN-TYPE>
<DATA>

 <DISTRIBUTED-INPUTS>
 <INPUT>

 <INPUT-TYPE>Matrix</INPUT-TYPE>
 <INPUT-INDEX>0</INPUT-INDEX>
 <PARTITION>
 <PARTITION-CLASS-NAME>TMSFramework.util.MatrixSplitHelper

 </PARTITION-CLASS-NAME>
 <PARAMETERS>
 <PARAMETER>
 <INPUT-TYPE>Matrix</INPUT-TYPE>
 <INPUT-INDEX>0</INPUT-INDEX>
 </PARAMETER>
 </PARAMETERS>
 </PARTITION>

 </INPUT>
 </DISTRIBUTED-INPUTS>
 <ASSEMBLING>

<ASSEMBLING-CLASS-NAME>TMSFramework.util.MatrixAssembleHelper
 </ASSEMBLING-CLASS-NAME>

 <PARAMETERS>
 <PARAMETER>
 <INPUT-TYPE>Matrix</INPUT-TYPE>
 <INPUT-INDEX>-1</INPUT-INDEX>
 </PARAMETER>
 </PARAMETERS>

 </ASSEMBLING>
 </DATA>
</TASK>

 </TASKS>
</APPLICATION-STRUCTURE>

Figure 4 shows the components that must be provided by the developer to
configure the framework and Figure 5 shows the deployment of the components on a
pool of distributed resources through a broker for resource management. During the
configuration phase, the broker is adopted to discover and select a pool of resources
able to satisfy user performance and cost requirements specified in the JDF file.
Selected resources are adopted to build a hierarchical virtual machine managed
through HiMM.

We conducted a preliminary performance analysis on a network of workstations
composed of fourteen homogeneous machines, each equipped with Intel Pentium
Xeon 2.8 GHz, a RAM of 1GB, running Custer-Linux Rocks ver. 4 operating system,
and inter-connected by a Fast Ethernet network. The used software packages are Java
2 SDK 1.4.2, ProActive version 3.0 and HiMM version 1.1. We used the
multiplication of two square matrices as benchmark and adopted the time

84 N. Ranaldo and E. Zimeo

<interface>
SplitHelper

MatrixSplitHelper

+ split(Object[], double[]):Object[]

<interface>
AssembleHelper

MatrixAssembleHelper

+ assemble(Object[]):Object

TMS Framework Components

Matrix

...
+ multiply(Matrix): Matrix

Fig. 4. Configuration of the TMS Framework for the matrix multiplication application

Application

HIMM
Broker

Root Node
(master)

Net-IP

2.configure(
matrix)

2.3 build HiM

1. create

TMS
Framework

Configurator

JDF File 2.2 submit request
 with QoS
 parameters

Simple Node
(slave)

Simple Node
(slave)

2.1 reify matrix

2.5 replicate matrix2.6 return
reified matrix

Reified
matrix

3. multiply
(matrix2)

2.4 return
root Node

3.1 multiply(matrix2)

Matrix
SplitHelper

Matrix
AssembleHelper

TMS
RunActive3.2 split

(matrix2)

3.3 for each node i
multiply(matrix2_part[i])

Simple Node
(slave)

3.4 multiply
(matrix2_part[i])

TMS
RunActive

Matrix

3.5 assemble
(results[])

3.6 return result
3.7 return
 result

TMS
RunActive

Matrix

TMS
RunActive

Matrix

3.4 multiply
(matrix2_part[i])

3.4 multiply
(matrix2_part[i])

Fig. 5. Dynamics of the TMS Framework components for the execution of matrix multiplication
application

1

2

4

6

8

10

12

14

1700 1800 1900 2000 2100 2200 2300 2400

S
p

e
e
d

u
p

F
a
c
to

r

Matrix Size

2
4
6
8

10
12
14

 0
 50

 200

 400

 600

 800

 1000

 1200

 1400

 1800 1900 2000 2100 2200 2300 2400

E
x
e
c
u

ti
o

n
ti

m
e

(s
)

N. of nodes

1
2
4
6
8

10
12
14

Fig. 6. (a) Execution times (b) Speedup factors

 A Transparent Framework for Hierarchical Master-Slave Grid Computing 85

minimization heuristic considering the same performance parameters for each
resource so to obtain roughly the same execution time on each of them. We measured
the overall execution times and evaluated the speedup factor considering various
matrix sizes and various numbers of available resources. The execution times and
speedup factors are reported in figure 6 (a) and (b), whose trends show the system
efficiency.

6 Conclusion

We defined a component framework able to automatically implement the hierarchical
master-slave pattern in a distributed environment leveraging the application code for
the sequential solution. We described a reflection-based implementation that exploits
reflection to use the services of the underlying grid middleware. The usability of the
TMS Framework for writing distributed applications and the results of an
experimental analysis to prove the system efficiency were shown. In future, we will
test the system scalability of the TMS Framework for a heterogeneous hierarchical
environment. Moreover, we intend to customize the TMS Framework so to leverage
more efficient communication mechanisms based on IP multicast for master-slave
interactions and other middleware services, such as the WSRF-complaint services
delivered by Globus [17].

References

1. Karonis, N., Toonen, B., Foster, I.: Mpich-G2: A Grid-enabled Implementation of the
Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5) (2003)
551-563

2. Bushmann, F., et al.: Pattern-Oriented Software Architecture: A System of Patterns. J.
Wiley and Sons (1996)

3. Caromel, D., Klauser, W., Vayssiere, J.: Towards Seamless Computing and Metacomputing
in Java. Concurrency: Practice and Experience, Vol. 10 (11-13) (1998) 1043-1061

4. Di Santo, M., Frattolillo, F., Russo, W., Zimeo, E.: A Component-based Approach to
Build a Portable and Flexible Middleware for Metacomputing. Parallel Computing,
Elsevier, 28(12) (2002) 1789-1810

5. Berman, F., et al.: Adaptive Computing on the Grid Using AppLeS. IEEE Trans. Parallel
and Distributed Systems, 14(4) (2003) 369-382

6. Linderoth, J., Kilkarni, S., Goux, J. P., Yoder, M.: An Enabling Framework for Master-
Worker Applications on the Computational Grid. Proceedings of the Ninth IEEE
Symposium on High Performance Distributed Computing, Pittsburgh, Pennsylvania,
(2000) 43-50

7. Neary, M. O., Cappello, P.: Advanced Eager Scheduling for Java-Based Adaptively
Parallel Computing. Proceedings of the joint ACM-ISCOPE Conference on Java Grande,
(2002)

8. van Nieuwpoort, R. V., Kelmann, T., Bal, H. E.: Efficient Load Balancing for Wide-Area
Divide-and-Conquer Applications. Proceedings of the 8-th ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, Utah, (2001) 34-43

9. Cole, M. I.: Algorithmic Skeletons: a Structured Approach to the Management of Parallel
Computation. MIT Press & Pitman, (1989)

86 N. Ranaldo and E. Zimeo

10. Gorlatch, S., Dunnweber, J.: From Grid Middleware to Grid Applications: Bridging the
Gap with HOCs. In Future Generation Grids, Springer-Verlag, (2005)

11. Aldinucci, M., Danelutto, M., Teti, P.: An Advanced Environment Supporting Structured
Parallel Programming in Java. Future Generation Computer Systems, 19(5) (2003)
611–626

12. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrant A., Robert, Y.: Scheduling
Strategies for Master-Slave Tasking on Heterogeneous Processor Platforms. IEEE
Transaction on Parallel and Distributed Systems, 15(4) (2004) 319-330

13. Martino, V., Mililotti, M.: Scheduling in a Grid Computing Environment using Genetic
Algorithms. International Parallel and Distributed Processing Symposium, Florida, USA,
(2002)

14. Buyya, R., Murshed, M., Abramson, D.: A Deadline and Budget Constrained Cost-Time
Optimization Algorithm for Scheduling Task Farming Applications on Global Grids. In
Proceedings of Par. and Distr. Processing Techniques and Applications, USA, (2002)

15. Ranaldo, N., Zimeo, E.: An Economy-driven Mapping Heuristic for Hierarchical Master-
Slave Applications in Grid Systems. 15-th Heterogeneous Computing Workshop. In
Proceedings of the International Parallel and Distributed Processing Symposium, Greece
(2006)

16. Di Santo, M., Frattolillo, F., Ranaldo, N., Russo, W., Zimeo, E.: Programming
Metasystems with Active Objects. Proceedings of the International Parallel and
Distributed Processing Symposium, France, (2003)

17. WSRF. http://www.globus.org/wsrf

A Multi-level Scheduler for the Grid Computing

YML Framework

Sébastien Noël1, Olivier Delannoy3, Nahid Emad3, Pierre Manneback1,
and Serge Petiton2

1 Members of CoreGrid Institute on Resource Management and Scheduling
Faculté Polytechnique de Mons and CETIC, Mons, Belgium

{Pierre.Manneback,Sebastien.Noel}@fpms.ac.be
2 Member of CoreGrid Institute on System Architecture
INRIA-Futurs, LIFL, USTL, Villeneuve d’Ascq, France

Serge.Petiton@inria.fr
3 PRiSM - Laboratoire d’informatique - UVSQ, Versailles, France

{Nahid.Emad,Olivier.Delannoy}@prism.uvsq.fr

Abstract. This paper presents the integration of a multi-level sched-
uler in the YML architecture. It demonstrates the advantages of this
architecture based on a component model and why it is well suited to
develop parallel applications for Grids. Then, the multi-level scheduler
under development for this framework is presented.1

Keywords: Grid Computing, YML, Scheduling, Resource Management,
Workflow.

1 Introduction

High Performance Computing has emerged as a common need in many current
applications. In order to solve such applications, Grid computing infrastructures
have been developed to allow a high number of heterogeneous resources from dif-
ferent Virtual Organizations (VO) to be shared across a common network. Each
cluster in each VO has its own management system. For example, availability of
resources, access policies, Local Resource Manager (LRM), usage cost, etc. are
usually different from site to site. Therefore common tools have to be provided
to deal with resource heterogeneity and to facilitate the interconnection between
them. Moreover, resource states are highly dynamic and volatile and increase
the difficulty of managing a Grid infrastructure which is accessed concurrently
by multiple users.

The development of Grid applications requires thorough knowledge of internal
mechanisms and generally involves a preliminary step of identifying paralleliz-
able parts of the application. This identification step leads to the creation of
components, which are unitary tasks computed by one node of the Grid. An

1 This research work is carried out under the FP6 Network Of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265).

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 87–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

88 S. Noël et al.

application is divided into components initialized with different input param-
eters and launched taking into account precedence constraints. Such workflow
application is usually represented as a Direct Acyclic Graph and requires a high
level of control of the Grid infrastructure.

In this paper, we study the use of a framework called YML for developing
HPC applications on Grids and propose a multi-level scheduling architecture
for it. The paper is organized as follows: in section 2, we succinctly present the
YML framework and the associated workflow language YvetteML. Section 3 is
devoted to the description of a general architecture of a multi-level scheduler for
YML. Finally, section 4 presents some conclusions and perspectives

2 YML Framework

YML is a framework providing tools for parallelizing applications and has been
developped at PRiSM laboratories in collaboration with Inria-Futurs/LIFL [3]. It
focuses on two major aspects: the development of parallel applications and their
execution in a Grid environment. YML makes this development independent of
the Grid middlewares used underneath and hides the differences between them.

In the YML context, an application is divided into different computing sec-
tions, each of them containing some tasks sequentially or concurrently executed.
A task, called a component, is a piece of work that can be mapped to one
node in a parallel environment. It has some input and output parameters and is
generally reusable in different parts of the application as well as in different ap-
plications. YML provides a special type of component, called graph component,
which consists in the description of a subgraph. As we will see in 3.2, this kind
of component will be exploited for the distribution of an application.

YML divides the development of a parallel application into three major steps:

1. Definition of new components. This definition consists of an abstract descrip-
tion and implementation component description, which are both presented
in the next section.

2. Description of the parallel application. This description is independent of
any underlying middleware and makes use of the components as functional
units. It specifies the parallel and sequential parts of the application using
the YvetteML graph description language and provides notifications to syn-
chronise the execution of dependent components. This description is directly
deduced from the graph representation of the application. More information
on YvetteML is provided in subsection 2.3.

3. Compilation of the application. This step analyses and transforms the appli-
cation graph into a list of parallel tasks taking into account the precedence
constraints.

These three steps are all middleware independent and ensure that no Grid
relevant knowledge is necessary to develop parallel applications.

After the compilation of the application, the execution can be started using
a Workflow Scheduler which will interact with the underlying middleware. This

A Multi-level Scheduler for the Grid Computing YML Framework 89

Fig. 1. YML Workflow Scheduler interaction with the middleware

interaction, represented in figure 1, requires the use of a specialized backend
dedicated to the corresponding middleware. The execution of the application is
directed by the Workflow Scheduler, which will submit tasks to the middleware
through the dedicated backend. Each task is launched by a YML worker which
will contact the Data Repository Server to obtain component binary and input
parameters to start the computation.

2.1 YML Advantages

The comparison of YML with other workflow compatible frameworks like
Unicore[5] or DAGMan[1] for Condor[6] points up several advantages.

YML helps the developer in the whole process of parallelizing applications. It
starts at the early stage of component creation and goes through to the execution
of strongly constrained workflow applications on a Grid. Moreover, YML allows
the user to test and validate those applications on his own computer thanks to a
special backend, which relies on the multithreading capabilities of the underlying
operating system.

As we will see in the next subsection, component creation in YML is relatively
simple. Existing code can be reused by importing libraries as new components
without any adaptation. Those components are called by the application when
computational tasks have to be started. Moreover, the notions of abstract and
implementation descriptions of components add three interesting features to the
Grid scheduler that could be used in the framework:
– data migration at the start and at the end of the application can easily be

quantified from the abstract definition;
– the data used by a component is clearly defined in the abstract and imple-

mentation definitions; therefore this can be used in a checkpointing process
to move a component from one node to another;

– computation time of a component can be evaluated from the implementation
definition.

The use of Data Repository Servers hides the data migrations from the devel-
oper and ensures that the necessary data are always available to all application
components.

90 S. Noël et al.

The next subsections will present an example of how to use the YML frame-
work to create a squared-matrix product application.

2.2 Component Creation

A component has to be defined and registered in the YML catalog in order to be
used in a parallel application. This will be illustrated by a short example: a matrix
multiplication component. The component creation can be done in three steps.

Definition of custom datatypes: New datatypes can be defined in new
classes or in existing libraries (the YML compiler allows to include libraries, thus
improving reusability of code). Functions for serializing and deserializing data
have to be defined: the prototypes and their corresponding definitions (which
are not represented here) are required for I/O operations made by the final
component. Primitive datatypes such as integer, real and strings are already
provided by the YML framework.

#ifndef MATRIX_HH
#define MATRIX_HH 1
#include <matrix.h>

typedef math::matrix<int> Matrix;

template <> bool param_import(Matrix& param,
char* filename);

template <> bool param_export(const Matrix& param,
char* filename);

#endif

This new datatype is called Matrix and makes use of the Matrix TCL Lite library
[2] which does not require any modification.

Abstract definition: This definition includes a name for the component, a
short description and a list of input and output parameters. This list specifies a
name and a type for each parameter.

<?xml version="1.0" ?>
<yml-query login="userName" password="pass">
<component name="MatrixProduct" type="abstract"
description="Product of two matrices">

<param name="result" type="Matrix" mode="out"/>
<param name="mat1" type="Matrix" mode="in" />
<param name="mat2" type="Matrix" mode="in" />

</component>
</yml-query>

A Multi-level Scheduler for the Grid Computing YML Framework 91

This abstract definition is included in an XML request providing username
and password for authentication purposes. The Matrix type is a custom datatype
and has been defined at the previous step. The names of the three parameters
match the names of the variables in the implementation part.

Implementation: It is based on the abstract definition. The output will be
automatically sent to the Data Repository Server and made available for other
components. This implementation is currently done using C/C++ but other
programming languages can be added into all backends.

<?xml version="1.0" ?>
<yml-query login="userName" password="pass">

<component name="MatrixProduct_Impl" type="impl"
abstract="MatrixProduct"
description="Product of two matrices">

<globals>
<![CDATA[

#include <matrix.h>

]]>
</globals>
<source lang="CXX">

<![CDATA[

result = mat1 * mat2;

]]>
</source>

</component>
</yml-query>

This simple example demonstrates how easily components are created with YML.
After the creation of the components, the graph description language YvetteML
can be used to describe the application. Application creation with YvetteML is
presented in the next subsection.

2.3 Application Creation with YvetteML

YvetteML provides different features for creating applications. These features
are described in an illustrative example in figure 2, i.e. a parallel squared-matrix
product. This application makes use of:

– Component calls. Their role is to submit a new task to the Local Resource
Manager (LRM) providing the name of the component defined earlier and
the different input parameters (lines 15, 16, 27 and 35 of figure 2).

92 S. Noël et al.

1 <?xml version="1.0"?>
2 <yml-query login="userName" password="pass">
3
4 <application>
5 <source>
6 size := 4;
7 div := 2;
8 url1 := "http://www.prism.uvsq.fr/cni/yml/matrix1.csv";
9 url2 := "http://www.prism.uvsq.fr/cni/yml/matrix2.csv";

10
11 par
12 par (i:= 1; div) # i = index of the row
13 (j:= 1; div) # j = index of the column
14 do
15 compute MatrixLoad(mat[1][i][j],url1,size,div,i,j);
16 compute MatrixLoad(mat[2][i][j],url2,size,div,i,j);
17 notify(evtMatrixLoaded[1][i][j]);
18 notify(evtMatrixLoaded[2][i][j]);
19 enddo
20 //
21 par (i:= 1; div)
22 (j:= 1; div)
23 (k:= 1; div)
24 do
25 wait(evtMatrixLoaded[1][i][k]);
26 wait(evtMatrixLoaded[2][k][j]);
27 compute MatrixProduct(result[i][j][k],mat[1][i][k],mat[2][k][j]);
28 enddo
29 endpar
30
31 seq (i:= 1; div)
32 (j:= 1; div)
33 (k:= 1; div)
34 do
35 compute MatrixComp(final,i,j,size,div,result[i][j][k]);
36 enddo
37
38 </source>
39 </application>
40 </yml-query>

Fig. 2. Squared-Matrix Product Application using YvetteML

– Parallel sections. They are used to explicitly define sections which will be
executed in parallel (lines 11, 20 and 29 of figure 2) or to execute a parallel
loop with iterators (lines 12 and 21 of figure 2).

– Sequential loops. They are loops with iterators, which are executed sequen-
tially (line 31 of figure 2).

– Conditional statements. They can be used to test the value of iterators.

A Multi-level Scheduler for the Grid Computing YML Framework 93

– Event notifications. They are used to synchronize the different parts of the
execution when a precedence constraint has to be respected (lines 17, 18,
25 and 26 of figure 2). For instance in line 17, a new event called evtMa-
trixLoad is defined with an index ([1][i][j]) equal to that of the matrix that
has just been loaded by the MatrixLoad component. After this notification,
the corresponding wait call (in line 25) will stop blocking the execution of
the iteration in the parallel loop.

The application described in figure 2 is presented for illustrative purpose. It
makes use of three components: MatrixLoad (which loads part of a file into a
Matrix datatype), MatrixProduct (which computes the product of two matrices)
and MatrixComp (which composes the result Matrix by aggregating all sub-
matrices).

This section has briefly presented the YML framework. More details can be
found in [4]. Next section will describe the architecture of a scheduling model
that we are considering.

3 A Multi-level Scheduling Model in YML

We describe in this section a multi-level scheduling model based on the YML
framework. This model has multiple objectives:

1. to schedule a set of YML components with input data and precedence con-
straints issued from one or more users;

2. to provide computing resources for these components in a multi-middleware
environment;

3. to offer users a guarantee in terms of completion time of the application;
4. to dynamically reorganise the schedule if unexpected events occur.

The following subsections develop different aspects of the model and present a
case study.

3.1 An Economic Model

The context we focus on is characterized by the following points:

– the objective of the Grid is High Performance Computing;
– the applications are mostly compute-intensive rather than data-intensive;
– the resources are owned by different providers and part of different VOs;
– the number of resource providers ranges from several dozen to several

hundred;
– the architecture is not centralized.

Each cluster:

– is composed of homogeneous resources;
– has a single access point;
– has a previously negotiated access policy to one or more other sites;
– is managed by an LRM (which may be different from one cluster to another).

94 S. Noël et al.

The model we propose is based on an economic approach of resources and defines
different entities which will interact within the Grid infrastructure. An entity
can be a resource provider or a consumer, or both. Consumers require resources
owned by different providers and available on the Grid. When a provider receives
a request from a consumer, he will answer by proposing a set of suitable schedules
and associated cost for parts of the application depending on access policy of
the consumer and availability of local resources. He can possibly subcontract
parts or the whole application to other resource providers without mentioning
anything to the consumer.

This model can be used in different scenarios: either cooperation or competi-
tion between sites in the Grid infrastructure. Moreover, a hierarchy with different
layers of scheduling instances, as presented in [9], can be built.

Technically, the main idea is to provide a YML server for each LRM. This
YML server has 3 main purposes:

– to communicate with other YML servers and therefore, connect the different
clusters in a common Grid;

– to interact with the underlying LRM using a specialized backend;
– to provide the features missing in the LRM.

The following subsection presents a typical scenario with this economic model.

3.2 Scheduling Scenario

A typical scheduling scenario is as follows:

1. the user/consumer submits his application to the local YML server;
2. the YML server analyses the application and decides whether it can provide

the resources or not;
3. the YML server may forward the whole or parts of the request to other

resource providers;
4. suitable schedules are sent back in return of each request;
5. the local YML server gathers the information and proposes differents prices

to the user/consumer.

Steps 2, 3 and 4 are executed consecutively each time a YML server receives a
scheduling request. The different sequences of the above scenario are explained
in more detail in the next subsections.

Submission of the application. As described in section 2, the user makes use
of YvetteML to describe a parallel application. Within the submission request,
the user provides a completion time for the whole application or for some parts
of it depending on the requirements. The local YML server handles the user
requests in compliance with its local access policy. When the policy forbids
access or the user has no authorization, the request fails and the computation is
stopped. Otherwise, the scheduling process goes on to the next step.

A Multi-level Scheduler for the Grid Computing YML Framework 95

Analysis of the application graph. Taking into account the amount and
types of local resources on the one hand, and the current resource reservations
on the other hand, the YML server will attempt to find suitable schedules for
the whole or parts of the application. It will try to schedule successively:

1. the whole application;
2. parallel sections;
3. graph components;
4. tasks in the parallel sections.

If local resources are able to compute the whole application and meet the
user’s constraints, the scheduling process is either stopped or forwarded to other
YML servers in the Grid. In the first case, reservation is made on local resources
and the computation is started. In the latter case or in case the local infrastruc-
ture cannot provide sufficient resources for the whole application, the scheduling
continues with step 3.

Forwarding of the request. The local server can decide whether it forwards
the whole request or only parts of it (this decision can be made in compliance
with the access policy). In the latter case, the request is split into different sub-
requests and is sent to other sites. To forward a request in the Grid infrastructure,
the local server will interact with other resource providers with whom an access
policy has been negotiated.

Return of suitable schedules. Each server will aggregate the suitable local
schedules as well as schedules from other resource providers. Then, a reply is
sent to the user.

3.3 Access Policy

When an instance wants to join the Grid infrastructure (to provide or to use
resources), it has to negotiate access policies with one or more other scheduling
instances. We propose an access policy divided into two sections, each containing
static or dynamic information. This can be used to get a highly customizable
contract between both scheduling instances. The static information will be used
first to filter the list of resource providers without any interaction. The resulting
list will be filtered again by querying each resource provider.

A non-exhaustive list of possible parameters that can be set in an access policy
may include:

– time intervals;
– cost per node per time unit;
– constant/variable cost;
– application size;
– number of nodes;
– nodes description;
– number of providers;

96 S. Noël et al.

– resource reservation;
– forwarding policy of the requests;
– failure compensation;
– access priority;
– etc.

Some or all of these parameters have to be set so as to define an access policy
which can then be used in the resource discovery process. As presented in [7],
this process essentially involves two filtering steps: an authorization filtering and
a minimal requirement filtering.

The application requirements are defined by the YML Compiler, which ana-
lyzes the YvetteML code of the application provided by the user; this information
is used for the minimal requirement filtering.

Figure 3 presents the two-step reduction of the set of suitable resources. First,
a static filtering is applied to obtain a reduced list B. Then, if the list B is not
empty, requests are sent to the resource providers to obtain dynamic information
which will be used as a second filter to get a resource list C. This two-step
filtering aims to reduce the number of requests exchanged between the scheduling
instances.

Each resource provider in list C will be queried for possible schedules of the
application. This process is illustrated in the next subsection.

Fig. 3. Resource discovery process: static and dynamic filtering

3.4 Case Study

To describe the scheduling model, we will focus on an example Grid, presented
in figure 4: the Grid infrastructure contains 5 clusters from different Virtual
Organizations. An arrow from a server to another means that the first has an
access policy to contact the latter. For instance, YML server 1 has two resource
providers, namely servers 2 and 4 ; the rest of the Grid (servers 3, 5 and 6) is
not visible to server 1. When a server receives a request, it can handle the en-
tire request or ask other resource providers. An access policy has previously been

A Multi-level Scheduler for the Grid Computing YML Framework 97

Fig. 4. Example of Grid infrastructure with different Virtual Organizations

negotiated and can be different for each client of a single site. Therefore, a direct
request to a server may be less interesting than going through an intermediary.
For instance, in figure 4, policy (c) could be more expensive than (a)+(b2); in
this case, the client located in VO1 can ask for resources from server 2 which
will negotiate resources with server 4 in VO3. The negotiation between 2 and
4 is not visible to the first client. As in VO1, a YML server can have no local
resources; therefore, it acts only as a client and will contact other sites to get
computational resources.

An example application is represented in figure 5 by a graph showing the
interdependence between the tasks.

The start of the application is represented at the top of the figure and the
end at the bottom. Large dashed squares represent parallel sections of the ap-
plication, described by the user in the YvetteML code. Each task (which is a
component with input parameters) is represented by a plain arrow. Notifica-
tion arrows (dotted) are used to synchronise tasks and introduce precedence
constraints into the application. The example presented in figure 5 has two par-
allel sections; the first is a preprocessing stage needed to start the computation
process of the second one. For instance, the preprocessing tasks can be an ini-
tialization of the data. The duration is 3 for a preprocessing task and 10 for a
computing task.

The scheduling process or mapping the application in figure 5 on the Grid
presented in figure 4 will be simplified to help comprehension.

We suppose that:

– YML servers 3 and 4 are unavailable for computation;
– 3 nodes of YML server 2 are unavailable;
– the dialog between YML servers 4, 5 and 6 is not described;
– single task allocation is not presented but is effective in our model;

98 S. Noël et al.

Fig. 5. Example of application graph

– the parameters of access policy (c) are such that no schedules will be
proposed.

The response to each request is presented below from a YML server to another.
Symbols ① and ② refer to the parallel sections in figure 5.

1. Response from server 4 to server 1. Access policy (c) is such that no schedules
will be returned to YML server 1.

2. Response from server 4 to server 2
Table 1 presents 3 different sets of schedules. The whole application can be
coallocated to the resources of server 4 (or those of subcontractors which
is not indicated to server 2) but this coallocation cannot start before time
45. This means that many reservations have already been made or that
the access policy cannot provide enough resources before this time. Other
propositions consist in scheduling a parallel section (① or ②), which can be
started earlier (on time 3).

We suppose that the cost per node per time unit equals 2 in access policy
(b2) (which is static information). The cost for the different schedules can

Table 1. Set of schedules proposed by server 4 to server 2

application part starting time cost

① and ② [45,∞] (3*3+3*10)*2=78

① [3,17] 3*3*2=18

② [3,10] 3*10*2=60

A Multi-level Scheduler for the Grid Computing YML Framework 99

Table 2. Set of schedules proposed by server 2 to server 1

application part starting time cost

① and ② [45,∞] (3 ∗ 3 + 3 ∗ 10) ∗ (2 + 1) = 117

① [1,4] 3 ∗ 3 ∗ 1 = 9

① [3,17] 3 ∗ 3 ∗ (2 + 1) = 27

② [3,10] 3 ∗ 10 ∗ (2 + 1) = 90

be evaluated: 3 nodes x 3 time units x 2 for parallel section ① and 3 nodes
x 10 time units x 2 for parallel section ②.

YML server 2 will aggregate those prices with its local suitable schedules.
3. Response from server 2 to server 1

We suppose that the cost per node per time unit is not fixed in the access
policy and is therefore a dynamic information. This means that server 2 is
allowed to ask a different price at each request, depending on local consid-
erations.

The coallocation of the whole application can only be done by server 4
(or subcontractors): this is not indicated to server 1 which will see server 2
as only resource provider. Server 2 will increase the cost of the resources by
1 to take into account bandwidth use to access server 4.

A new schedule for parallel section ① is proposed by server 2, which aims
to enhance the use of local resources by applying an attractive cost of 1 per
node per time unit.

These schedules are received by YML server 1 which will choose some of
them and start resource reservation by requesting server 2.

3.5 Features for the Scheduling Model

As presented in [8], a Grid scheduling architecture should provide different im-
portant features. These features are discussed in this subsection using the eco-
nomic model described in 3.1.

The resource discovery process is not a major feature in our context. Each
LRM is responsible for managing resource status and for providing suitable
schedules depending on the resource availability.

In the same way, the status monitoring is not centralized and is only accessible
by the local YML server, which will ask the LRM to provide the necessary infor-
mation. This information can be accessed differently according to the installed
LRM.

The reservation of resources is not supported by all LRMs and can therefore
be managed by the YML server if necessary. In such Grid, the resource admin-
istrator has to ensure that YML is the only way of submitting tasks to the local
resources.

The accounting and billing features will be managed at the YML level.

100 S. Noël et al.

4 Conclusions and Perspectives

In this paper, we have presented the YML Grid computing framework which
can be used to develop parallel applications and execute them in a Grid envi-
ronment. We have also described a multi-level scheduling model which can be
used to build cooperative or competitive Grids using a customized access policy
between scheduling instances of the Grid. This scheduling model is currently
being integrated into the YML framework and will provide multi-middleware
capabilities.

We aim to validate this scheduling model by testing it on the YML framework.
This testing phase will open up new perspectives and show what will be needed
to be adapted in the current model.

References

1. Directed acyclic graph manager website. http://www.cs.wisc.edu/condor/dagman.
2. Techsoft - matrix TCL website. http://www.techsoftpl.com/matrix.
3. YML website. http://www.prism.uvsq.fr/cni/yml.
4. O. Delannoy, N. Emad, and S. Petiton. Workflow global computing with yml. To

appear in Proceedings of GRID2006, Barcelona.
5. D. W. Erwin and D. F. Snelling. Unicore: A grid computing environment. Lecture

Notes in Computer Science, 2150:825–834, 2001.
6. S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny. Deploying virtual

machines as sandboxes for the grid. In Second Workshop on Real, Large Distributed
Systems (WORLDS 2005), San Francisco, CA, December 2005.

7. J. M. Schopf. Ten actions when grid scheduling. Grid Resource Management, pages
15–23, 2004.

8. U. Schwiegelshohn and R. Yahyapour. Attributes for communication between grid
scheduling instances. Grid Resource Management, pages 41–52, 2004.

9. N. Tonellotto, P. Wieder, and R. Yahyapour. A proposal for a generic grid scheduling
architecture. volume TR-0015 of CoreGRID Technical Report, November 2005.

Virtual Environments - Framework for

Virtualized Resource Access in the Grid

Micha�l Jankowski1, Pawe�l Wolniewicz1, Jǐŕı Denemark2, Norbert Meyer2,
and Luděk Matyska23

1 Poznań Supercomputing and Networking Center,ul. Noskowskiego 10,
61-704 Poznań, Poland

{jankowsk,meyer,pawelw}@man.poznan.pl
2 Faculty of Informatics, Masaryk University, Botanická 68a,

602 00 Brno, Czech Republic
jirka@ics.muni.cz

3 Institute of Computer Science, Masaryk University, Botanická 68a,
602 00 Brno, Czech Republic

ludek@ics.muni.cz

Abstract. To assure secure access to any computer resources one must
provide an adequate level of authentication, authorization job isolation
and possibility of auditing user actions. In the grid environment that
comprises a large number of users and resources in different administra-
tive domains, these features are challenging. Grid economy and account-
ing related to it are becoming more and more important in an emerging
aspect of grid commercialization. Also, the requirements of the users
and administrators are becoming more and more sophisticated: check-
pointing and migration of jobs, detailed software requirements, quality
of service, collaborative work, and load balancing, to name a few. Virtu-
alization techniques, nowadays more and more matured and advanced,
seem to help solve the above-mentioned problems. In the present paper
we discuss some of these techniques as well as existing solutions and then
propose a framework for Virtual Environments. The framework focuses
on resource access control, but the benefits of virtualization are wider.

1 Introduction

Controlled and secure access to grid computational resources requires authen-
tication, authorization, an adequate level of job isolation and possibility of au-
diting user actions. This should be realized with as little administrative effort
as possible, though providing the administrators and Virtual Organization (VO)
managers with enough control on their resources and users. Grid economy, which
introduces accounting and billing requirements, also becomes more and more
important. From the users point of view the whole Grid should be seen as a
single computer with appropriate software, hiding all the technical details con-
nected with physical locations, middleware, operating systems, etc. The men-
tioned groups of requirements (described in detail in [13,14]) are closely related
on the conceptual level.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 101–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

102 M. Jankowski et al.

We have researched a number of existing solutions and found that there are
tools that provide for at least part of the functionality we are interested in,
however none of them addresses all the issues. These tools are widely used in
numerous projects and some of them have become standard, so it seems to
be reasonable to be compatible with them. Moreover, different users, resource
owners and VO managers may have different and often conflicting needs. For
example, there is no isolation level that would always be suitable; sometimes
complete encapsulation of jobs is a must, sometimes jobs need collaboration or
strict isolation is too heavy solution. Hence we have several components (”build-
ing blocks”) that could be used to build a perfect solution for a given situation,
but we need a way to put them together into a framework that will combine
these tools and their features gaining the synergy effect.

Virtualization technology has a long history in computer science [1]. It allows
for partitioning or combining real components of computer infrastructure (hard-
ware, software, networking, etc.) into virtual entities. This technique abstracts
from internal details of physical elements, provides isolation and common in-
terface for virtual elements, even if they share physical entities. Examples are
virtual memory, virtual machines and virtual networks. This technology seems
to be especially promising for grid middleware as it must cover large, loosely
coupled and heterogenous distributed systems and should hide its complexity
from the user.

In our previous papers we have introduced a concept of the Virtual Envi-
ronment, which we understand as encapsulation of user jobs in order to give a
limited set of privileges and be able to identify the user and organization on
behalf of which the job acts. Depending on requirements we may virtualize user
accounts [10],[11] or virtual machines [7]. The concept of ”combining real compo-
nents” opens a way for dynamic construction of an environment. The virtualiza-
tion technique simplifies the assignment of jobs to resources either by discovering
a statically created environment or by expressing parameters of a dynamically
created one, because the user’s requirements specified in an abstract language
may specify abstract features of the environment. In this work we describe an
idea of a framework for the creation and managing of Virtual Environments.
The structure of the paper is as follows: in section 2 we discuss advantages and
disadvantages of Virtual Accounts (VA) and Virtual Machines (VM); section 3
describes the concept and implementation of Virtual Workspaces (VW), which
we found especially useful in constructing our framework; section 4 provides ar-
chitecture of our framework; accounting issues will be discussed in section 5, and
finally section 6 concludes the paper.

2 Comparison of VA and VM

Both methods of virtualization: Virtual Accounts and Virtual Machines allow
for running jobs in separated Virtual Workspaces, but they are best suitable for
different purposes. Virtual Accounts is just a simple implementation of assigning
users to different Unix accounts. Different directories and Unix accounts are used

Virtual Environments - Framework for Virtualized Resource Access 103

to separate jobs. In case of workflow, tasks are run in the same account. Complete
knowledge about mapping from real to the Virtual Account is stored locally and
can be used to resolve all Unix accounts from standard accounting procedures.
Virtual Machines have far more possibilities. In fact Virtual Machines run several
instances of the operating system at the same time and thus provide complete
job separation. Virtual Machines are best suitable for resource centers where job
requirements differ, e.g. operating system requirements are different or even the
grid infrastructure for different users group is incompatible.

Virtual Machines can be used in two ways. One way is to set up static Virtual
Workspaces, for example, to run two different grid infrastructures, or to run
different grid testbeds for different VOs. Virtual Machines (or rather Virtual
Clusters) can also be set up on demand, for the lifetime of the job. This, however,
causes some overhead because either the Virtual Machine must be created and
started (which is time-consuming) or the Virtual Machine was created before
and must now be resumed and reconfigured (which is memory-consuming).

Accounting is very important for the system administrator. The resources
used must be calculated and stored. Standard accounting stores all information
locally. This causes problems for Virtual Machines, because when the machine is
deleted, all detailed information is lost. On the other hand, when the ma chine
is migrated, the information may be inaccurate. Estimated accounting is still
available from the Virtual Machine Management System (e.g. Xen[22,23]), but
they combine all details into one set of numbers. For instance, it is not possible to
distinguish between user time and system time, and information about executed
command names are not available. The solution is to use an external database
and send all information there during shutdown.

A similar limitation is connected with audit. Logging the operations performed
locally on the VM, on its virtual resources is usually not interesting for the phys-
ical machine administrator, but access to some physical devices (e.g. laboratory
equipment) or network connections may be the subject for audit. However, this
may be difficult as some relevant logs may be located on VM and lost on dele-
tion. Also if the VM user has root privileges, he may maliciously or accidentally
modify or remove the logs.

Using Virtual Machines it is possible to provide a service level agreement (SLA).
Resources assigned to the given Virtual Machine can be managed easily. SLA for
systems with Virtual Accounts is limited. To some extent it can be achieved by
careful configuration of the operating system and the queuing system.

The integration of virtual environments with the grid infrastructure is espe-
cially important. The Virtual Accounts can be easily integrated with Globus [15]
or gLite [17], because it is just a plugin to the grid middleware. With Virtual
Machines things are more complicated. Dynamic creation of Virtual Machines
is not compatible with existing grid resource brokers. Resource broker does not
know about wirtual environment, therefore it can not create wirtual workspace.
The resource broker just contacts the head node and submits the job to the clus-
ter. But in case of the Virtual Cluster the head node is not created yet and it
should be created after the resource broker submits the job to the site. Therefore

104 M. Jankowski et al.

Table 1. Summary of Virtual Accounts and Virtual Machines

Virtual Accounts Virtual Machines

Purpose small clusters Many VOs, many OS-es,
simple needs Many jobs at a time, SLA

Flexibility in some extent very flexible

Job separation limited full

Accounting full limited

Audit full limited
trusty may be untrusty

Administration easy difficult

SLA limited yes

integration with
grid systems easy difficult

resource consumption insignificant small to large

the submission process must have two steps, and an additional module (GRAM
Proxy) is needed. First, GRAM Proxy accepts the job from the resource broker
and then creates the Virtual Machine and submits jobs there

For Virtual Machines there is also a problem of administration. Virtual Ma-
chines are set up from partitions stored somewhere on a hard disk. But Virtual
Machines restored from the partition must be up to date, which means that
after startup some configuration must be updated, e.g. gridmap files, certificate
revocation list, some security patches etc. This causes additional time overhead
and delays job starting.

Summary of features for virtual systems is presented in table 1.
In general, Virtual Machines have a big potential, but quite often all site re-

quirement can be fulfilled with Virtual Accounts. For sites with thin nodes (single
or dual processors) a typical configuration of job management systems allows for
running only one job per node. In this way jobs are completely separated. For
large nodes with many jobs running at the same time, dynamic assignment can
be a very good solution, especially in the context of a service level agreement.

An intermediate solution with Virtual Machines set up statically to share the
same hardware between different grid infrastructures and with Virtual Account
used to ensure virtualization inside Virtual Machines is also possible.

Virtual Environments - Framework for Virtualized Resource Access 105

3 Virtual Workspaces Approach

An architecture called virtual workspaces [3,4,5,6] has been designed to automate
the creation and management of distributed dynamic virtual environments in
the Grid. The architecture comprises several services used to create and manage
virtual environments. When users want to submit a job to a Grid resource,
they contact an appropriate service to create a dynamic virtual environment
for them. For existing environment users can use another service to manage the
environment, e. g., to change the environment’s lifetime, to configure or terminate
the environment. During the lifetime of the virtual environment, standard Grid
services such as GRAM can be used for submitting jobs.

The Virtual Workspaces architecture does not enforce any virtual environment
implementation. Currently, the implementation of Virtual Workspaces based on
Dynamic Accounts and Virtual Machines is available. The background technol-
ogy is not pluggable—it is chosen at install time and then only the selected
implementation is available.

Virtual Workspaces can be simple (or atomic), and jobs are submitted di-
rectly into it, or it may consist of several (either atomic or complex) workspaces.
Complex workspaces are used to create virtual clusters with a set of definitions
of Virtual Workspaces for both the head node and worker nodes of a real clus-
ter. According to a specification of a virtual cluster, several Virtual Machines
are deployed on physical cluster nodes and set up to form an isolated private
IP network. The virtual machine running on a head node is the only part of a
virtual cluster with a public IP address. After all virtual machines forming the
virtual cluster are up and running, a GRAM service is started on the virtual
head node. Clients then use this GRAM service to start their jobs on the virtual
cluster.

To support Virtual Workspaces, each node of a physical cluster must run
the Xen Virtual Machine Monitor and several services for staging, starting and
managing Virtual Machines.

As the Virtual Workspace is just an environment for submitting users’ jobs,
it must be accessible from everywhere for users to be able to contact its services.
In other words, each Virtual Workspace (except for worker nodes of a virtual
cluster) has to be provided with a public network address. This may cause prob-
lems especially when more than one Virtual Workspace is allowed to be created
on a single physical machine.

On the other hand, users are provided with a way of deploying their own
environment which perfectly suits their needs. However, if users or VO admin-
istrators are allowed to provide a complete image of a Virtual Machine, it must
be done in such a way that site administrators are willing to trust the image.

If more detailed information on using specific resources is needed for accurate
accounting, coarse runtime data obtained from the Virtual Machine Monitor may
not be enough, and special monitoring tools providing data from the inside of a
Virtual Machine have to be deployed. Similar tools might be useful for logging
user activities.

106 M. Jankowski et al.

4 Architecture of the Framework

In our previous papers [13,14] we described a set of different requirements for user
management and access to resources. We stated that there are numerous tools
that provide at least part of the required functionality, however none of them
addresses all the issues. These tools are used in working Grids. We proposed to
put them into a pluggable framework that will combine the features gaining the
synergy effect.

Section 3 has described Virtual Workspaces effort in detail. Conceptually
the Virtual Workspace is the same as the Virtual Environment defined in our
previous papers. Moreover, VW implementation seems to fulfill most of our
requirements and its architecture is quite similar to our framework. Similarly
to our proposition VW employs WS–Stateful Resource [9] for modeling of the
workspace and managing its life cycle. Hence we would like our framework im-
plementation to be based on VW. In this section we will discuss how the VW
fits our framework, and which elements should be added or modified.

As we discussed in the previous section, both Virtual Environment imple-
mentations (Dynamic Accounts aka Virtual Accounts and Virtual Machines)
have their pros and cons. The decision on using or not VE and which one is
the preferable implementation is up to the resource administrator. This fact
should be transparent from the user point of view, but the VW require ex-
plicit create and life time management operations and to make things worse,
these two implementations provide slightly different interfaces. As a result, the
party that requests the job run (either a resource broker or directly the user -
let’s call them both ”client”) must take care of workspace management and be
conscious of actual interface. These operations may be necessary for advanced
global schedulers that support SLA or checkpointing and workspace migration.
Explicit workspace management is still redundant from the point of view of the
clients in most cases. The user just wants to run a job with specified parameters
and creation of the workspace is a technical detail that should be hidden. Also
most of existing brokers would require modification in order to support the VW
operations. The appreciated scenario is that the client calls the resource man-
ager service (like Globus GRAM) directly and without a previous request for
the workspace creation.

We propose to hide the creation and lifetime management inside the resource
manager, that will take care of the creation automatically. Any special user
requirements concerning hardware (number of nodes, memory, etc.), operating
system and software may be expressed in the job description. These informa-
tion passed to the resource manager may be used for the Virtual Environment
creation. Any creation parameters, that are not explicitly specified may obtain
default values. The Virtual Environment must live until the job is finished at
least, then it may be destroyed. The destruction may be performed periodically
or when the resources occupied by the VE are needed by someone else.

The described architecture is shown on figure 1. The newly proposed parts
are modified Globus GRAM (may be both WS and pre-WS one) which accepts
job management requests, VE database and VE Create & Mapping module that

Virtual Environments - Framework for Virtualized Resource Access 107

Fig. 1. Architecture of the Framework

interfaces the GRAM with VE database and VW implementation. Webservice
interface of VW may be accessible outside optionally and if this is the case, VW
operations must be synchronized with the Create & Mapping.

One of the most important features connected with the resource management
is fine grained and flexible authorization. The GT 4.0 Authorization Frame-
work [18,19] allows for a variety of authorization schemes, including a gridmap-
file, an access control list defined by a service, an SAML-based authorization
service and any custom authorization handler. The security descriptors allow
for flexible security configuration on different levels: container, service, and even
resource. There is a number of existing authorization systems and mechanisms
that already are or easily may be plugged into this Globus framework and fulfill
our authorization requirements. The administrator may properly configure the
Virtual Workspaces and WS GRAM services according to the local needs. The
pre–WS authorization is not equally flexible, but it is still possible to implement
its own, fine grained authorization using callouts mechanisms [20,21].

Note, that the authorization is closelly related to the workspace creation and
mapping user to the workspace. The limitations put on the workspace (e.g. privi-
leges of the virtual account or resources allocated to virtual machine) are simply
security enforcement mechanisms. Moreover, the following job run or file transfer
requests with the same credencials should be mapped to the same environment.

In case of VA implementation, creation of the environment is virtually equiva-
lent to the mapping operation and may be easily realized by the GRAM mapping
module. The environment is simply a record in the VE database that binds user

108 M. Jankowski et al.

Fig. 2. Proxy GRAM

to a virtual account. Note that VM meta data and deployment parameters are
equivalents of the static parameters of a physical machine with the VA system.
In case of VA the parameters are only evaluated if they fit to the real resources
(e.g. if required software is installed).

In case of VM implementation, virtual cluster matching the user requirements
must be actually created by the resource manager. The resource manager, that
actually runs the job, is located on the head node of the virtual cluster. In order
to make this fact invisible for the client, all client requests are accepted by the
GRAM that is located on the physical machine (e.g. on domain0 of Xen). It
is called ”proxy GAM” in that case. The proxy will access the VE database in
order to set/get the current user – VE mapping, create the VM if necessary and
forward the job request to the ”internal” GRAM see figure 2.

The Virtual Workspaces implementations are missing a database that might
be used for storing history of mappings user – Virtual Environment which is cru-
cial for accounting and auditing purposes. The following section describes in more
detail what should be stored in this database, how these data might be obtained
from the underlying system and how the information would be exposed outside.

5 Accounting and Audit

The auditing or accounting data is normally bound to a local account or Virtual
Machine instance. However, in a grid system one is interested in this information
in the context of the global user identity and his Virtual Organization. The
records of VE operations together with the standard system logs and accounting
data provide complete information on user actions and resource usage, but these
two sources must be combined. Virtual Environment Information Subsystem
enables this feature. It consists of VE Database, VE Information Service and
framework for collecting accounting and audit events - see figure 3.

Virtual Environments - Framework for Virtualized Resource Access 109

Fig. 3. Architecture of Virtual Environment Information Subsystem

The Virtual Environment Database stores all the relevant information con-
nected with the VE creation and deletion, just on the request of the VE ser-
vices. The database is also capable of storing any type of accounting data,
both standard and nonstandard, and any kinds of events described in string
values, all of this unified and connected to the grid user. These data may be col-
lected periodically or on request (e.g. just after the VE is deleted), by analyzing
sources like Unix accounting records, system logs etc. The sources may be quite
different, depending on VE implementation, operating system, used software
etc. so we use a pluggable framework. A plugin must be implemented for each
source.

The Virtual Environment Information Service is a frontend for the Virtual
Environment Database. Access to the data must be authorized and depends on
the users role: all the users have rights to read the accounting data referring to
themselves, managers of virtual organizations are able to read data referring to
all VO members, owners of resources are allowed to read all the data connected
to the resource.

As stated in section 2, the Virtual Machine implementation introduces some
problems connected with the accounting and audit data gathering. This may be
overcome by careful configuration and running some software on VM that will
put the relevant information to the VE database on the physical machine. This
workaround, however, will result in lower flexibility of the machine (e.g. the VM
is not fully transparent for the migration process).

110 M. Jankowski et al.

6 Conclusions

In the paper we have shown how the virtualization techniques simplify access and
administration of grid resources, and which solutions may be useful depending
on the situation. We have discussed the leading solution in the area: Virtual
Workspaces. We have also proposed a framework based on VW which allows
for easy integration of numerous existing grid middleware components. VW Our
contribution to VW is as follows: automatic (transparent for the client: user
or resource broker) creation of the virtual environment, database and service
supporting accounting and audit features.

Acknowledgment

This work has been supported by the CESNET Research Intent
(MSM6383917201) and by the EU CoreGRID NoE (FP6-004265). Implemen-
tation of Virtual Accounts System is included in EU BalticGrid project (RI-
026715) and in Clusterix - National Cluster of Linux Systems, project co-funded
by the Polish Ministry of Sciences.

References

1. A.Singh: An Introduction to Virtualization.
http://www.kernelthread.com/publications/virtualization/ (2004)

2. I.Foster, C.Kesselman, S.Tuecke: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

3. I.Foster, T. Freeman, K.Keahey, D.Scheftner, B.Sotomayor, X.Zhang: Virtual Clus-
ters for Grid Communities. CCGRID 2006, Singapore (2006).

4. K.Keahey, I. Foster, T. Freeman, X. Zhang: Virtual Workspaces: Achieving Quality
of Service and Quality of Life in the Grid. Scientific Programming Journal, Volume
13, 4/2005 (2005)

5. X.Zhang, K.Keahey, I.Foster, T.Freeman: Virtual Cluster Workspaces for Grid
Applications. ANL/MCS-P1246-0405 (April 2005)

6. K.Keahey, I.Foster, T.Freeman, X.Zhang, D.Galron: Virtual Workspaces in the
Grid. Europar 2005, Lisbon, Portugal (September 2005)

7. K.Keahey, K Doering, I.Foster: From Sandbox to Playground: Dynamic Virtual
Environments in the Grid. 5th International Workshop in Grid Computing (Grid
2004), Pittsburgh, PA (November 2004)

8. K.Keahey, M.Ripeanu, K.Doering: Dynamic Creation and Management of Runtime
Environments in the Grid. Workshop on Designing and Building Web Services
(GGF 9), Chicago, IL (October, 2003)

9. I.Foster, J.Frey, S.Graham, S.Tuecke, K.Czajkowski, D.Ferguson, F.Leymann,
M.Nally, I.Sedukhin, D.Snelling, T.Storey, W.Vambenepe, S.Weerawarana: Model-
ing Stateful Resources with Web Services, version 1.1. http://www-128.ibm.com/
developerworks/library/specification/ws-resource/(March 2004)

10. M.Kupczyk, M.Lawenda, N.Meyer, P.Wolniewicz: Using Virtual User Account Sys-
tem for Managing Users Account in Polish National Cluster. HPCN, Amsterdam,
(June 2001)

http://www-128.ibm.com/developerworks/library/specification/ws-resource/
http://www-128.ibm.com/developerworks/library/specification/ws-resource/

Virtual Environments - Framework for Virtualized Resource Access 111

11. M.Jankowski, P.Wolniewicz, N.Meyer: Virtual User System for Globus based grids.
Cracow ’04 Grid Workshop, (December 2004)

12. J.Denemark, M.Jankowski, A.Krenek, L.Matyska, N.Meyer, M.Ruda,
P.Wolniewicz: Best Practices of User Account Management with Virtual
Organization Based Access to Grid. 6th International Conference, PPAM 2005,
Springer-Verlag LNCS 3911, Poznan, (September 2005)

13. J.Denemark, M.Jankowski, L.Matyska, N.Meyer, M.Ruda, P.Wolniewicz: User
Management for Virtual Organizations. CoreGRID Integration Workshop, Pisa
(2005)

14. J.Denemark, M.Jankowski, L.Matyska, N.Meyer, M.Ruda, P.Wolniewicz: Core-
GRID Technical Report TR-0012: User Management for Virtual Organizations.
(2005)

15. http://www.globus.org
16. http://workspace.globus.org
17. http://glite.web.cern.ch/glite/
18. http://www.globus.org/toolkit/docs/4.0/security/authzframe/
19. B.Lang, I.Foster, F.Siebenlist, R.Ananthakrishnan, T.Freeman: A Multipolicy Au-

thorization Framework for Grid Security. Accepted by the IEEE NCA06 Workshop
on Adaptive Grid Computing (to appear in Proc. Fifth IEEE Symposium on Net-
work Computing and Application), Cambridge, USA (July 2006)

20. http://www.globus.org/toolkit/security/callouts/
21. GSI Admission Control and Identity Mapping Callout Specification, Draft.

(July 1, 2003)
22. P.Barcham at al: Xen 2002. University of Cambridge Computer Labolatory Tech-

nical Report UCAM-CL-TR-553, Cambridge, (January 2003).
23. P.Barham, B.Dragovic, K.Fraser, S.Hand, T.Harris, A.Ho, R.Neugebauer, I.Pratt,

A.Warfield: Xen and the Art of Virtualization. Symposium on Operating Systems
Principles (SOSP ’03) (October 2003)

Grid Meta-Broker Architecture:

Towards an Interoperable Grid
Resource Brokering Service

Attila Kertész1,2 and Péter Kacsuk2

1 Institute of Informatics, University of Szeged
H-6720 Szeged, Arpad ter 2, Hungary

keratt@inf.u-szeged.hu
2 MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P. O. Box 63, Hungary
kacsuk@sztaki.hu

CoreGRID Institute on Resource Management and Scheduling

Abstract. Grid computing has gone through some generations and as a
result only a few widely used middleware architectures remain. Using the
tools of these middlewares different resource brokers have been developed
to automate job submission over different grids. As grid resources were
grouped to Virtual Organizations, users seem to become isolated by these
groups. Enhancing interoperability among these VOs and grids will be
the main issue of future generation grids. This paper describes a meta-
brokering architecture that shows how to enable the interoperability of
various grids through their own resource brokers.

Keywords: Grid Computing, Meta-Broker, Resource Broker, Grid
Portal.

1 Introduction

The Grid was originally proposed as a global computational infrastructure to
solve grand-challenge, computational intensive problems that cannot be handled
within reasonable time even with state of the art supercomputers and computer
clusters [1]. Grids can be realized relatively easily by building a uniform mid-
dleware layer, on top of the hardware and software resources, the programming
concept of such distributed systems is not obvious.

Executing a job in a grid environment requires special skills like how to find
out the actual state of the grid, how to reach the resources, etc. As the number of
the users is growing and grid services are starting to become commercial, resource
brokers are needed to free the users from the cumbersome work of job handling.
Though most of the existing grid middlewares give the opportunity to choose the
environment for the user’s task to run, originally they are lacking such a tool that
automates the discovery and selection. Brokers meant to solve this problem. To
enhance the manageability of grid resources and users Virtual Organizations were
founded. This kind of grouping started an isolation process in grid development,

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 112–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Grid Meta-Broker Architecture 113

too. As resource management is a key component of grid middlewares, many solu-
tions have been developed [2]. Interoperability among these “islands” will play an
important role in grid research. This paper introduces a meta-brokering approach
to reach different grids through a common interface. Grids are typically accessed
through portals that serve as both grid application developer and executor envi-
ronments. This graphical interface helps the users to utilize grids, therefore it is
important to provide a portal for user-oriented grid services.

2 Related Work

In the past decade several projects targeted to build an efficient resource broker.
A proper solution should follow the standards of grid communities [8], the re-
quirements of user groups and the results of the latest grid middleware research.

Focusing on interoperability, the Grid Interoperability Project [4] has some
results on resource brokering between Unicore [6] and Globus [7] Grids. The
goal of their work was to create a semantic matching of the resource descrip-
tions. Their ontological mappings specialize only in these two middlewares. The
Gridbus Grid Service Broker [5] is designed for computational and data-grid
applications and supports all Globus middlewares and Unicore in experimental
phase. Both solutions aim at accessing resources from different grids, but their
architecture stays on the level of direct resource brokering.

3 Abstract Architecture

Utilizing the existing, widely used and reliable resource brokers and managing
interoperability among them could be new point of view in resource management.
The following figure (Fig. 1.) introduces an abstract architecture of a Meta-
Broker that enables the users to access resources of different grids through their
own brokers.

Designing such an interoperable Meta-Broker, the following guidelines are es-
sential: As standards play an important role of today’s grid development, the in-
terfaces must provide standard access. The architecture must be “plug-in based”
- the components should be easily extended by all means. The properties of the
underlying components are also important; we need to be aware of the recent
Grid Resource Brokers. The most efficient and widely used ones should be se-
lected in order to make this solution usable.

There are 4 major parts of this architecture. The Translator component is
responsible for translating the user requests to the language of the appropriate
broker that the Meta-Broker wants to invoke. It should “speak” the languages
of the interconnected brokers. The Information Collector stores the properties
of the reachable brokers and historical data of the previous submissions. This
information shows whether the chosen broker is available, or how reliable it is.
This database can be extended with the information of the resources reachable
by the utilized brokers. This can also limit or broaden the usability of the ap-
propriate broker. The Matchmaker selects the proper broker for a user request.

114 A. Kertész and P. Kacsuk

Fig. 1. Grid Meta-Broker Architecture

The job description contains the user request; this should be an exact specifi-
cation of the user’s job, including quality of service requirements and certificate
information about the user of the job - this can be used as a filter during match-
making. The Information Collector provides the broker information needed for
the Meta-Broker to decide where to submit the job. The resource broker prop-
erties and historical information stored in this component help the Matchmaker
to select the proper environment for the actual job defined by its job descrip-
tion. The Invokers are broker-specific components. They communicate with the
interconnected brokers, invoke them with job requests and collect the results.
Data handling is also an important task of this component. After the user up-
loaded the job and input files to the Meta-Broker, the Invoker should take care
of transferring them to the selected broker’s environment. After submission it
should stage back the output files, and upgrade the historical data stored in the
Information Collector with the appropriate broker’s log.

The user’s job description is independent from the execution environment, and
the Meta-Broker does not need to know how to access resources of different grids.
The interconnected brokers’ tasks are to perform the actual job submissions; to
find the best resource within their scopes, i.e. the VOs they have access to. The
Meta-Broker only needs to communicate with them. In this sense meta-brokering
stands for brokering over resource brokers instead of resources.

Grid portals give a user friendly access to grid resources and other grid ser-
vices. Using a Web-based portal, the user can submit a job easily, regardless
of location. The P-GRADE Portal [3] is a workflow-oriented, multi-grid portal
that provides all the functions needed for job submission. P-GRADE portal is
already connected to different grids and brokers. Integrating the Meta-Broker to
this portal will be the next step supporting interoperability in grids.

Grid Meta-Broker Architecture 115

4 Conclusions

The introduced meta-brokering approach opens a new way for interoperability
support. The design and the abstract architecture of the Grid Meta-Broker fol-
low the latest results and standards in grid computing. This architecture enables
a higher level brokering called meta-brokering by utilizing resource brokers for
different middlewares. This service can act as a bridge among the separated
“islands” of the current grids, therefore it enables more beneficial resource uti-
lization and collaboration.

Our future work aims at examining and summarizing the prevalent resource
brokers and developing the components of the Meta-Broker architecture accord-
ing to the properties of these brokers.

References

1. I. Foster, C. Kesselman, “Computational Grids”, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1998. pp. 15-52.

2. K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of Grid
Resource Management Systems for Distributed Computing”, International Journal
of Software: Practice and Experience, Wiley Press, New York, USA, May 2002.

3. Csaba Németh, Gábor Dózsa, Róbert Lovas, Péter Kacsuk, “The P-GRADE Grid
Portal”, Lecture Notes in Computer Science, Volume 3044, Jan 2004, pp. 10-19.

4. John Brooke, Donal Fellows, Kevin Garwood, Carole Goble, “Semantic Matching
of Grid Resource Descriptions”, Lecture Notes in Computer Science, Volume 3165,
Jan 2004, pp. 240-249.

5. Srikumar Venugopal, Rajkumar Buyya and Lyle Winton, “A Grid Service Broker for
Scheduling e-Science Applications on Global Data Grids”, Journal of Concurrency
and Computation: Practice and Experience, Wiley Press, USA (accepted in Jan.
2005).

6. D. W. Erwin and D. F. Snelling, “UNICORE: A Grid Computing Environment”,
In Lecture Notes in Computer Science, volume 2150, Springer, 2001, pp. 825-834.

7. I. Foster C. Kesselman, “The Globus project: A status report”, in Proc. of the
Heterogeneous Computing Workshop, IEEE Computer Society Press, 1998, pp.
4-18.

8. http://www.ggf.org

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 116–125, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Super-Peer Model for Multiple Job
Submission on a Grid

Pasquale Cozza1, Carlo Mastroianni2, Domenico Talia1, and Ian Taylor3

1 DEIS University of Calabria, 87036 Rende (CS), Italy
{pcozza,talia}@deis.unical.it

2 ICAR-CNR, 87036 Rende (CS), Italy
mastroianni@icar.cnr.it

3 Computer School, Cardiff University, UK
Ian.J.Taylor@cs.cardiff.ac.uk

Abstract. Submission of multiple jobs in a distributed and heterogeneous
environment is required by applications that rely on the “public-resource
computing” paradigm. We present here a scientific scenario for the analysis of
astronomical data, where some nodes are responsible for maintaining and
advertising job description files and other so called worker nodes, are dispersed
over the Grid to execute the jobs. Job assignment is performed through a
mechanism that matches adverts, containing job descriptions, with job queries
that are sent by available workers across the Grid exploiting an underlying
super-peer topology. With an analogous mechanism, a worker locates the input
data file needed to run a job and downloads it from a data center node. This
paper presents a super-peer protocol for the submission of a very large number
of jobs on a Grid environment. The super-peer architecture enables the
replication of data files on multiple data centers, which helps reduce the
processing load and speed up the application. A simulation analysis has been
performed to evaluate the impact of application and network parameters on
performance results.

1 Introduction

Recently, academic and industrial researchers have been promoting the convergence
of two paradigms for distributed computing, namely Grid and peer-to-peer (P2P),
which in the beginning tended to evolve separately [8]. Super-peer systems have been
proposed [7, 9] to achieve a balance between the inherent efficiency of centralized
networks, and the autonomy, load balancing and fault-tolerant features offered by P2P
networks. A super-peer node can act as a centralized resource for a limited number of
regular nodes (peers) of a Grid organization. At the same time, super peers connect
among them to form a P2P network at a higher level, thus enabling distributed
computing on a very large scale.

This paper reports on a distributed model based on the super-peer paradigm for the
support of applications that require the distributed execution of a large number of jobs
in a similar fashion to public-resource computing. The term “public resource
computing” [1] is used for applications in which jobs are executed by private-owned

 A Super-Peer Model for Multiple Job Submission on a Grid 117

computers that use their spare CPU time to support a large scientific computing
project. The pioneer project SETI@home [3] has attracted millions of participants
wishing to contribute to the digital processing of radio telescope data to search for
extra-terrestrial intelligence. A number of similar projects are today supported by the
BOINC software system (Berkeley Open Infrastructure for Network Computing [2]),
for example: the Einstein@home project [5] aims at detecting certain types of
gravitational waves, such as those produced by spinning stars; whereas the
Climate@home [4] focuses on long-term climate prediction. The BOINC
infrastructure is composed of a scheduling server and a number of clients installed on
users’ machines. The client software periodically contacts the scheduling server
reporting host’s hardware and availability, and receives a set of instructions for
downloading executable and input files. After that the client runs the assigned job and
uploads the resulting output files to the scheduling server.

The BOINC middleware is suited for CPU-intensive applications but it is
inappropriate for data-intensive tasks because of its centralized nature. BOINC
allows a project to configure a fixed static set of data servers that have to be
administered by an entity. Although this scheme enables a number of servers to help
load balance the network, the topology is static and is incapable of scaling
proportionately as the network grows and more bandwidth is needed for data
transfers. In BOINC, an administrator must configure these static machines, which are
generally dedicated for a specific project. Such machines are not only costly (to
purchase and maintain) but also they are centrally administered and therefore cannot
generally be used by other BOINC projects. In the scheme proposed here, the Job
initiator is lightweight and sends the data once to the network, which propagates it
across the data nodes as and when required. This helps to distribute the data load
dynamically in a decentralized fashion, both in topology and administratively, making
it far more suitable to the Grid domain. For example, inherent in BOINC-like
networks is the need to send a data file needed by several workers several times due
to the unreliability of the nodes. This replication represents an evident waste of
server-based bandwidth that could be avoided through a caching mechanism that
replicates the data across the network when it is first transferred, thereby not only
relieving the central bottleneck of the system but also it can place the data in a
location closer to where the work is being performed. Further, a number of projects
require many nodes to process the same data, with different parameters for example,
which can be exploited by such an overlay described here. Our gravitational-wave
example described here employs such an algorithm.

The super peer job submission protocol described in this paper enables caching of
the input data files in multiple data centers, i.e. in super-peers, which have sufficient
data storage facilities. Benefits of this replication strategy range from a larger degree
of reliability and fault-tolerance to a more efficient use of bandwidth and CPU
resources. The job submission protocol requires that job execution is preceded by two
matching phases, the first one for job assignment and the second one for downloading
of input data. Since input data files can be very large, focus is especially on the
download phase which is the most bandwidth consuming. A set of simulation runs
have been performed to evaluate the impact of the caching and replication mechanism
on a set of performance indices, such as overall time to execute all the jobs,

118 P. Cozza et al.

throughput, mean time to download a data file, and load experienced by data centers
and worker nodes. In particular, we simulated the behavior of the super-peer protocol
in a Grid containing 25 super-peers and 250 ordinary peers. The experimental results
show that the use of several data center can bring benefits to the Grid applications in
terms of lower total execution times, higher throughout and load balancing among
worker nodes. The study can also be used to determine the number of data centers
that, for a given number of jobs, maximizes the utilization of data center nodes.

In section 2 the super-peer model and the related protocol are presented in more
detail, whereas performance is analyzed in section 3. Conclusions and future work are
discussed in section 4.

2 Job Assignment and Data Download

A data-intensive Grid application can require the distributed execution of a large
number of jobs with the goal to analyze a set of data files. One sample application
scenario defined for the GridOneD project [6] shows how one might conduct a
massively distributed search for gravitational waveforms produced by binary stars
orbiting one around the other. In this scenario, a data file of about 7.2 MB of data is
produced every 15 minutes and it must be compared with a large number of templates
(between 5,000 and 10,000) by performing fast correlation. Data can be analyzed in
parallel by a number of Grid nodes to speed up computation and keep the pace with
data production.

The scenario evaluated in this paper assumed the existence of a Grid network in
which nodes are organized in a super-peer topology. The job manager node (i)
receives data from a detector, (ii) produces the job description files (or job adverts),
and (iii) collects output results. Simple peers, or workers, are available for job
execution: they issue a job query to get a job description and then a data query to
collect the corresponding input data file to be analyzed. Super-peer interconnections
are exploited to make job and data queries travel the network rapidly; super peers play
the role of rendezvous nodes, since they can store job and data adverts (and
potentially the data files themselves), and compare these files with queries issued to
discover them; thereby acting as a meeting place for both job or data providers and
consumers. Since input data files can require a large amount of storage memory, it is
assumed that only some of the peers in the network will cache such files. Such peers
are referred to as data centers (DC) nodes and can be located on super peers or
worker peers. We envisaged that the same user-driven process is used to configure a
peer; that is, each user decides if they want to be a super peer and/or data center, as
well as a worker. In the BOINC scenario, the existing dedicated machines would form
the obvious data-center backbone and other peers (with high storage and network
capacity) would also make themselves available in this mode.

Figure 1 shows a sample topology with 5 super-peers (2 of which are also data
centers), and the sequence of messages exchanged among workers, super-peers and
data centers to perform the job submission protocol. These messages are related to the
execution of a job by a single worker, labeled as W0. Note that here, we do not use
normal peers as data centers but we will be comparing this approach in later studies.

 A Super-Peer Model for Multiple Job Submission on a Grid 119

1. job advert
2. job query
3. job assignment
4. data query

5. data advert
6. data download request
7. data download
8. job results

Fig. 1. Super-peer job submission protocol: sample network topology and sequence of exchanged
messages to execute one job

The proposed protocol requires that job execution is preceded by two matching
phases that exploit the features of the super-peer network: the job-assignment phase
and the data-download phase.

In the job-assignment phase the job manager generates a number of job adverts,
which are XML documents describing the properties of the jobs to be executed (job
parameters, characteristics of the platforms on which they must be executed,
information about required input data files, etc.), and sends them to the local
rendezvous super-peer, which stores the adverts (step 1 in figure 1). Each worker,
when ready to offer a fraction of its CPU time (e.g., worker W0 in the figure), sends a
job query that travels the Grid through the super-peer interconnections (step 2). In
particular, a query message is sent to the directly connected super-peer, which in turn
forwards it to its neighbor super-peers and so on, until the message TTL parameter is
decremented to 0 or the job query finds a matching job advert. A job query is
expressed by an XML document and can contain the main hardware and software
features of the requesting node and CPU time and memory amount that the node
offers. A job query matches a job advert when the job query parameters are
compatible with the information contained in the job advert, for example concerning
the characteristics required for the host that will execute the job. Whenever the job
query gets to a rendezvous super-peer that maintains a matching job advert, such a
rendezvous assigns the related job to the requesting worker by directly sending it a
job assignment message (step 3).

120 P. Cozza et al.

In the data-download phase, the worker that has been assigned a job inspects the
job advert, which contains information about the job and the required input data file
(e.g. size and type of data). Then the worker sends a data query message to discover
the input file (step 4). In a similar fashion to the job assignment phase, the data query
travels the super-peer network searching for a matching input data file stored by a
data center. Since the same file can be maintained by different data centers, the data
center that receives a data query, in order to avoid multiple transmissions of the same
file, does not send data directly to the worker. Conversely, the data center sends only
a small data advert to the super peer connected to the worker and then to the worker
itself (step 5). The worker initiates the download operation after receiving the first
data advert (steps 6 and 7), and discards the subsequent adverts. After receiving the
input data, the worker executes the job, reports the results to the job manager (step 8)
and immediately issues a query for another job.

Replication of input data files on multiple data centers allows for a significant
saving of time in the querying phase and enables the concurrent retrieving of files
from different data centers. In the simulated scenario, it is assumed that all the data
centers possess the data files before starting the job submission process. In a more
dynamic scenario, the data file is initially maintained by only one data center, and the
other data centers could cache the file during the download phase. For example, if in
the network depicted in figure 1 the super-peer connected to the worker W0 becomes
capable of playing the data center role, it can store the data file downloaded by that
worker and provide it for successive requests issued by other workers.

In the job assignment phase the protocol works in a way similar to the BOINC
software, except that job queries are not sent directly to the job manager, as in
BOINC, but travel the super-peer network hop by hop. Conversely, the data download
phase differs from BOINC in that it exploits the presence of multiple data centers in
order to replicate input data files across the Grid network.

3 Performance Evaluation

A simulation analysis has been performed by means of an ad hoc event-based
simulator, written in C++, to evaluate the performance of the proposed super-peer
protocol. The parameters of the astronomical application mentioned in Section 2 were
used for the test case (e.g., file size, single job execution time, etc.). It is assumed that
all the jobs have similar characteristics and can be executed by any worker.

Simulation parameters, and corresponding values, are reported in Table 1. The
Grid network is composed of 25 Grid organizations, each containing one super-peer
node and 10 regular nodes on average. The super-peer overlay network is organized
so that each super-peer is connected to at most 4 neighbor super-peers. It is assumed
that local connections (i.e. between a super-peer and a local simple peer) have a larger
bandwidth and a shorter latency than remote connections. To compute download
times with a proper accuracy, a data file is split in 100 KB segments, and for each
segment the download time is calculated assuming that the downstream bandwidth
available at a data center is equally shared among all the download connections that
are simultaneous active from the data center to different workers.

In this preliminary study, it is assumed that the data centers download input data
files before the workers join the system and issue their job queries. In future work,

 A Super-Peer Model for Multiple Job Submission on a Grid 121

analysis will focus on a more complex scenario in which data files are replicated, as a
whole or in parts, during the execution of jobs.

The last two rows of Table 1 are related to parameters that were given varying
values in the simulation runs, specifically the number of jobs Njob and the number of
data centers Ndc, i.e. the number of super-peer nodes able to cache data files.

Table 1. Simulation parameters

Parameters Values
Grid size: overall number of nodes = super-peers + workers 275= 25 + 250
Maximum number of neighbors for a super-peer 4
Size of input data files 7.2 MB
Latency between two adjacent super-peers (or between two
remote peers in a direct connection) 100 ms

Latency between a super-peer and a local simple peer (worker) 10 ms
Bandwidth between two adjacent super-peers (or between two
remote peers in a direct connection) 1 Mbps

Bandwidth between a super-peer and a local simple peer 10 Mbps
TTL parameter for job and data queries 4
Mean Job execution time 500 s (±10%)
Number of jobs, Njob from 250 to 10000
Number of data centers, Ndc 1, 2, 3, 5, 9, 13

Performance indices are listed in Table 2. The index Texec, the overall time to

execute all the jobs, is crucial to determine the rate at which data files can be retrieved
from an astronomic telescope while guaranteeing that the workers are able to keep the
pace with data. By the throughput index Thr it is possible to evaluate the efficiency
of the job submission system. The remaining performance indices help determine the
load that is experienced by data centers and by workers in different scenarios.

Table 2. Performance indices

Performance index Definition
Overall execution time Texec Time to execute all the jobs (s)

Throughput Thr Average number of jobs completed per time unit
(jobs/s)

Percentage of activity time Pact
Average percentage of time in which a data
center is active, i.e. has at least one download
connection in progress

Mean download time Tdl Average time that it takes for a worker to
download a data file from a data center (s)

Max number of executed
jobs Jmax Maximum number of jobs executed by a single

worker

Figure 2 shows that the overall execution time decreases as more data centers are
made available in the network, for two main reasons: (i) data centers are less heavily
loaded and therefore data download time decreases, (ii) workers can exploit a higher

122 P. Cozza et al.

parallelism both in the downloading phase and during the execution of jobs. However,
depending on the number of jobs to be executed, it is possible to determine a suitable
number of data centers, beyond which the insertion of a further data center produces a
performance increase which does not justify the related cost. For example, if 10,000
jobs are to be executed, a significant reduction of Texec is perceived as the number
of data centers is increased up to a value of 9, whereas if the number of jobs is not
greater than 1,000 two or three data centers are sufficient to achieve a good
performance level. Analogous comments can be made about the throughput index,
reported in Figure 3. A further consideration is that the throughput increases with the
number of jobs because download and execution periods are alternated more
efficiently if workers execute a larger number of jobs. But this increase tends to be
negligible as the number of jobs is so large that the job submission system begins to
approach a stable working condition.

Fig. 2. Performance of the job submission super-peer protocol: overall execution time w.r.t. the
number of data centers, for different numbers of jobs

Fig. 3. Performance of the job submission super-peer protocol: throughput w.r.t. the number of
data centers, for different numbers of jobs

 A Super-Peer Model for Multiple Job Submission on a Grid 123

Fig. 4. Percentage of activity time of data centers, for different numbers of jobs

Fig. 5. Mean time to download an input data file w.r.t. the number of data centers, for different
numbers of jobs

Figure 4 reports the average percentage of time in which a generic data center
supports at least one download connection. Results confirm that the presence of an
excessive number of data centers can be inappropriate, especially if the number of
jobs is not very large. Indeed when the percentage of activity time decreases below
60%, machine utilization is very low resulting in a poor return of investment (ROI).

Figures 5 and 6 show performance results related to workers. Figure 5 proves that
the download time decreases as the number of data centers is increased, resulting in
smaller overall execution time. On the other hand, the download time hardly depends
on the number of jobs because the simultaneous number of connections that a data
center must serve is only related to the number of workers (250), not to the number of
jobs. Finally, figure 6 compares number of jobs executed by a worker on average
(obtained as Njob/250) to the maximum number of jobs executed by a single worker.

124 P. Cozza et al.

Fig. 6. Maximum number of jobs executed by a single worker w.r.t. the number of data centers,
for different numbers of jobs. This index is compared to the average number of jobs executed
by a single worker (dotted lines).

It is interesting to note that the two indices approach one another as the number of
data centers is increased, leading to a fairer load balancing among workers.

4 Conclusions

This paper reports the first results of a work in progress research on a decentralized
architecture for data intensive scientific computing on Grids according to the “public-
resource computing” paradigm. We presented a super-peer protocol for the
submission of a very large number of jobs in a Grid environment. In the discussed
scenario some Grid nodes maintain and advertise job description files, whereas a
number of worker nodes, dispersed over the Grid, execute single jobs. Job assignment
is performed by matching job descriptions with the job queries that when issued by
available workers, travel the Grid by exploiting an underlying super-peer topology.

Simulation analysis has been performed to evaluate the impact of application (the
number of jobs) and network parameters (the number of data centers) on performance
indices such as the overall time to execute all the jobs, throughput, efficiency of data
centers, load experienced by workers. Results show that the use of several data
centers can bring benefits to Grid applications in terms of lower total execution times,
higher throughput and load balancing among worker nodes. However, since a large
number of data centers also causes a smaller utilization of a single data center, the
study can also be used to determine the number of data centers that can maximize the
return of investment related to the deployment of new data centers.

Future work will move along a number of interesting research avenues, such as: the
analysis of (1) redundant computing for applications that require multiple executions
of each job; (2) caching of data file fragments on the P2P network, instead of storing
entire files, to improve data download performance; (3) performance of the super-
peer protocol in the case that input data is progressively fed as a data stream by an
external source.

 A Super-Peer Model for Multiple Job Submission on a Grid 125

Acknowledgements

This research work is carried out under the FP6 Network of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265). We would also
like to thank Eddie Al-Shakarchi, Tom Goodale, Andrew Harrison, Ian Kelley
Matthew Shields and Ian Wang for their help defining the distributed architecture
presented here.

References

1. Anderson, D.: Public computing: Reconnecting people to science, Proc. of Conference on
Shared Knowledge and the Web, Madrid, Spain, November 2003, pp. 17-19

2. Anderson, D. P.: BOINC: A System for Public-Resource Computing and Storage, 5th
IEEE/ACM International Workshop on Grid Computing, November 2004, Pittsburgh, PA,
pp. 365-372

3. D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.Werthimer: SETI@home: An
experiment in public resource computing, Communications of the ACM, November 2002,
Vol. 45 No. 11, pp. 56-61.

4. http://climateprediction.net/
5. http://einstein.phys.uwm.edu/
6. http://www.gridoned.org/
7. Mastroianni, C., Talia, D., Verta, O.: A Super-Peer Model for Resource Discovery Services

in Large-Scale Grids, Future Generation Computer Systems, Elsevier Science, Vol. 21, No.
8 (2005) 1235-1456.

8. Talia, D., Trunfio, P.: Towards a Synergy between P2P and Grids, IEEE Internet
Computing 7(4) (2003) 94-96

9. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network, 19th Int'l Conf. on Data
Engineering, IEEE Computer Society Press, Los Alamitos, CA, USA (2003)

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 126–137, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Scheduling Algorithm for High Performance
Peer-to-Peer Platform

Nabil Abdennadher and Régis Boesch

University of Applied Sicences, 4 Rue Prairie, 1202,Geneva, Switzerland
{nabil.abdennadher,regis.boesch}@hesge.ch

Abstract. This paper describes a scheduling algorithm used to execute parallel
and distributed applications on a Global Computing (GC) environment, called
XtremWeb-CH (XWCH). XWCH is an improved version of a GC tool called
XtremWeb (XW). XWCH is an enrichment of XW allowing it to match P2P
concepts: distributed scheduling, distributed communication and development
of symmetrical models. The scheduling algorithm takes into account the
heterogeneity and volatility of nodes. This paper illustrates the performance of
XWCH in a real CPU time consuming application.

Keywords: Peer-To-Peer, High Performance Computing, Scheduling Algorithm.

1 Introduction

High Performance Computing (HPC) landscape has radically changed since the end of
the last decade. Based initially on the use of parallel and vectorial computers equipped
with specific development environments, computing power consumers are adopting a
new approach which takes advantage of the Internet development. The idea consists on
deploying High Performance applications on anonymous connected computers by
using their available resources. Indeed, the challenge today is to extract, at low cost, a
reasonable computing power from a widely distributed platform (by executing
interactive applications) rather than extracting the maximum power from a local
supercomputer (by executing batch applications). In another words, the majority of the
world's computing power is no longer in supercomputer centers and institutional
machine rooms. Instead, it is now distributed in a hundred of thousands of personal
computers all over the world. This concept is known as Global Computing (GC).

The majority of GC projects adopted a centralized structure based on a
Master/Slave Architecture: SETI@home [1], Entropia [2], United Devices [3],
Parabon [4], XtremWeb [5], etc. A natural extension of the GC consists on
distributing the "decisional degree" of the master in order to avoid any form of
centralization. Thus, architectures such as Clients/Servers and Master/Slaves would
be withdrawn. This concept, known as Peer-To-Peer (P2P), was successfully used to
share and exchange files between computers connected to Internet. The most known
projects are Gnutella [6] and Freenet [7]. Indeed, file sharing is well adapted to this
model. However, the use of P2P in the field of HPC raises several theoretical and
practical problems. Dynamic scheduling algorithms for parallel/distributed
applications can not be easily distributed. P2P Computing also goes against the

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 127

policies and safety techniques largely used nowadays on Internet: Firewalls, NAT
addresses, etc. The objective of these techniques is to protect resources connected to
Internet from any voluntary or involuntary abusive use. Internet is then partitioned in
several protected zones which are unable to cooperate mutually. Problems related to
the development of a true P2P environment for HPC needs remain open.

This document describes a GC environment, called XtremWeb-CH (XWCH),
which converges towards a P2P system. XWCH is an improved version of a GC tool
called XtremWeb (XW). XWCH tries to enrich XW in order to match P2P concept:
distributed scheduling, distributed communication, development of symmetrical
models, etc. In P2P systems, nodes are assumed to be customers and servers at the
same time. Although it is utopian, this idea is retained as guide line in the XWCH
project.

This document is organized as follows: section 2 presents the features that should
be satisfied by a GC platform in order to be considered as a real P2P system. Section
3 introduces the XW tool in its original version. Section 4 details the new concepts
XWCH introduces compared to XW. It also describes the features of the scheduling
algorithm supported by XWCH. Section 5 presents the experiments carried out in
order to evaluate XWCH. Lastly, the section 6 gives some perspectives of this
research.

2 What Is a Real Peer-to-Peer System?

A true P2P environment should satisfy three criteria:

- Platform heterogeneity: The system should support heterogeneous architectures
(hardware) and platforms (software and operating systems). Since these resources
are anonymous, the system should take into account all administration policies
implemented by local administrators.

- Natural scalability: A P2P system should support a huge number of resources. It
should be scalable by itself and not by “doping”. For that purpose, the
performance of the system should be provided by its distributed structure:
distributed algorithms, distributed warehouses, distributed scheduling algorithms,
etc. This structure should allow open access and search procedures. The search
engine should take into account the dynamic nature of the network. The system
should be based on a demand-driven computation model: users' queries are only
processed when needed and prior results are stored in warehouses, where they can
be accessed later on.

- Symmetric view: a node belonging to a P2P platform should be server and client at
the same time.

File sharing systems like Gnutella and Freenet satisfy all these criteria. High
performance GC environments such as XtremWeb, Seti@home, Entropia do not
satisfy any of these criteria. They are based on a non symmetric view (Master/Slaves).
They are not scalable since the master is overloaded when the number of slaves
increases. The only HP oriented tool which seems to satisfy all these constraints is
WOS (Web Operating System) [8]. Unfortunately, this tool remained in a purely
conceptual state and no prototype was born.

128 N. Abdennadher and R. Boesch

3 XtremWeb

XW is a GC research project carried out at Université d’Orsay (France). Like other
Large Scale Distributed Systems (LSDS), XW platform uses remote resources (pocket
computers, PCs, workstations, servers) connected to Internet to execute a specific
application (client). The aim of XW is to investigate how a LSDS can be turned into a
High Performance Parallel Computer. XW belongs to the more general context of Grid
research and follows the standardisation effort towards Grid Services [9]. XW satisfies
the three main constraints imposed by any Large Scale Distributed Environment:
volatility, heterogeneity and security.

Security is particularly difficult in the context of LSDS because it’s impossible to
trust hundreds of thousands resources. Three main security problems, linked to GC
and P2P systems, are considered in the context of XW project:

- Data integrity/privacy: This problem could be resolved by applying the well
known solutions of encryption, public/private keys, etc.

- Protection of participating resources: No aggressive application should be able to
corrupt data or system of any participating resource. Sandboxing is the well
known technique to resolve this problem. The idea consists on filtering the system
calls which appear to be the main security holes of recent operating systems. [10]
explains how does XW use the sandboxing to resolve the resource protection
problem.

- Result certification procedure: This problem is linked to the lack of trust regarding
the result provided by the remote resource. Indeed, there is no way to control
precisely what happens on a participating resource. Faulty and malicious
behaviour must be detected.

A typical XW platform is composed of one coordinator and several workers
(remote resources). The coordinator is a three-tier layer allowing connection between
clients and workers through a coordination service. This layer is designed so as it
allows the mobility of clients and the volatility of workers.

3.1 The Coordinator

The coordinator is a three-tier architecture which adds a middle tier between client
and workers. There is no task direct submission/result transfer between clients and
workers. The coordinator accepts task requests coming from several clients,
distributes the tasks to the workers according to a scheduling policy, transfers
application code to workers if necessary, supervises task execution on workers, detect
worker crash/disconnection, re-launches crashed tasks on any other available worker,
collects and store task results to client upon request.

The coordinator is composed of three services: the repository, the scheduler and
the result server. The repository is an advertisement services. It publishes services
(client applications) to make them available through standard communication ports
(Java RMI, XML-RPC). These applications/services are first read from a database and
inserted into the task set. The scheduler is the service factory. It instantiates
applications and manages their life cycle. It starts them on workers (a task is an
instantiation of service or application), stops them as expected and corrects faults

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 129

(if any) by finding available workers to re-launch them. Finally the result server
collects results as they are provided by workers.

3.2 Workers

The worker architecture includes four components: the task pool, the execution
thread, the communication manager and the activity monitor. The activity monitor
controls whether some computations could take place in the hosting machine
regarding parameters such as CPU idle time and mouse/keyboard activity. The tasks
pool (worker central point) is managed by a producer/consumer protocol between the
communication manager and the execution thread. Each task should be in one of the
three states: ready to be computed, running or saving. The first state concerns
downloaded tasks, correctly inserted into the pool. The second state is for tasks being
computed. The last state corresponds to tasks which need to upload result file to the
coordinator. The communication manager ensures communication with the
coordinator; it downloads task files (binaries and input data) and upload results, if
any. When download completes, the task is inserted into the task pool. The execution
thread extracts the first available task from the pool, recreates the task environment as
provided by the client (binary code, input data, directories structure, etc.), starts
computation and waits for the task to complete. When the task completes, the
execution thread finally marks the task state as completed, allowing the
communication manager to send results to the coordinator.

In its original version, XW applications are standalone modules. The system does
not support any interaction between different tasks. However, developers can use
asynchronous Remote Process Call called XWRPC in order to distribute (parallelize)
their applications [11].

4 XtremWeb-CH

XtremWeb-CH (XWCH) is an upgraded version of XW. The aim of XWCH is to build
an effective Peer-To-Peer LSDS which satisfies the three criteria detailed in section 2.
XWCH adds four functionalities to XW:

1. Automatic execution of Parallel and Distributed Applications.
2. Automatic detection of the optimal granularity that can be implemented according

to the number of available workers and scheduling of tasks.
3. Support of direct communication between workers.
4. XWCH provides a set of monitoring tools allowing users to visualize the execution

of their applications.

4.1 Automatic Execution of Parallel and Distributed Applications

In XW, jobs submitted to the system are standalone. In case of parallel/distributed
applications, communicating modules are executed as separate jobs (tasks). It’s the
user responsibility to link manually output and input data of two communicating
tasks. Contrary to this approach, XWCH supports the execution of a whole
parallel/distributed application represented by is a set of communicating tasks. This

130 N. Abdennadher and R. Boesch

A
B

B
C

Fig. 1. Data flow graph representing a parallel/distributed application

application is modeled by a data flow graph where nodes are tasks and edges are
communications inter-tasks (Fig. 1). Tasks can have the same or different codes. In
Fig. 1, tasks having the same shape have the same code.

The data flow graph is represented by an XML file whose syntax is detailed in Fig. 2.
An application is composed of several modules (Module element in Fig. 2). A

module is represented by a source code and can have several binary versions (Binary
element in Fig. 2). A task is an instantiation of one module. Thus, several tasks can
correspond to the same module.

Precedence rules between tasks are described by Task elements. A task can have
several inputs (Input element in Fig. 2) but only one output (Output element in Fig. 2).
The element cmdLine indicates arguments/parameters used by the task. This field is
optional.

Fig. 2. XML syntax of a parallel/distributed application

A parallel/distributed application is thus, represented by:

- its XML file representing its data flow graph,
- the binary codes of its modules. Let’s recall that one module can have several

binary codes,
- its input data.

These files are compressed into one file.
XWCH can be perceived as a layer on XW that takes into account the

communications between tasks belonging to the same parallel/distributed application.
In this context, a task belonging to a given parallel/distributed application is
considered by XW as a standalone application.

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 131

A client can submit his application to XWCH by uploading its corresponding
compressed file. In addition to the three states that a task can have: ready, running
and saving, XWCH adds a fourth state: blocked. Tasks of a given application are
initially blocked and cannot be assigned to any worker, since their input data are not
available. Only tasks whose input data are given by the user are in ready state and can
be allocated to workers. When a task is assigned to a worker, it moves from ready to
running state. Input data needed by blocked tasks are progressively provided by
running tasks which finish their processing. XWCH detects the blocked tasks which
can pass to ready state and can, thus, be assigned to a worker.

4.2 Granularity and Scheduling

In parallel computing, the grain’s size (granularity) depends on the application and the
number of processors in the target parallel machine. This number is generally known
and fixed before the execution. Thus, the granularity is fixed during the development
of the application. In our context, the computer is the network, workers are free to
join and/or leave the GC platform whenever they want. The exact number of available
workers is known just before the execution and could be varied during the execution.
As a consequence, the best granularity can not be fixed before execution time. This
section describes how XWCH optimize the granularity of tasks and how these tasks
are scheduled during execution.

Data flow graph representing an application comprises generally a set of stages
{Si}. A stage Si is represented by a set of tasks having the same source code (module
in the XML file) and can be executed in parallel on different workers. The precedence
rules between two stages Si and Si+1 depends on the application. Tasks belonging to
the same stage have no precedence rules. They are fed with different data and are
executed according to the Single Program Multiple Data (SPMD) model. Thus, every
stage is responsible of processing a “quantity” of data noted Qi. The number of tasks
belonging to stage Si depends also on application but could be fixed according to the
number of workers.

Fig. 3 and 4 show two kinds of parallel/distributed applications experimented on
XWCH.

In Fig. 3, odd stages contain one task while even stages contain a variable number
of tasks. This means that odd stages concentrate results of even stages before sending
them to the next stage.

Si-2 Si-1 Si Si+1 Si+2

Fig. 3. Phylogenetic applications

132 N. Abdennadher and R. Boesch

 Si-1 Si Si+1

Fig. 4. Numerical application

In Fig. 4, every task of a stage Si sends its result to all tasks of stage Si+1 (multicast
operation).

To deploy an application on XWCH, three steps are required:

Discovery step: This step consists of searching for a set of available workers W to
execute the application (or one stage of the application). The output of this step is a
set of workers W = {(wj, pj)} where pj is the performance of wj. pj can be expressed in
term of CPU performance, main memory size, network bandwidth, etc.

Configuration step: Assuming that |W| = n, this step dispatches the quantity of data
to process by a stage Si (Q) among the n tasks which compose the given stage. A task
tk, supposed to be executed by worker wj (with performance pj), is assigned a quantity
of data qk function of pj. qk is called the workload of tk. The more the worker is
powerful, the bigger is qk. At this point, the system behaves as if the n workers are
fully monitored by the coordinator. In another term, granularity of the parallelization
and load balancing are fixed according to the number of available workers and the
state of the targeted P2P platform.

The output of the configuration step for a given stage S of a given application is a
set of couples {(qk, pj)} where pj is the performance of the worker that will process the
task having the workload qk.

The XML file, describing the application, is automatically generated at the end of
this step.

Execution step: Configuration step assumes that available workers W are fixed and
controlled by the coordinator. However, during execution, tasks allocation is not
totally controlled by the coordinator. Indeed, tasks are allocated to workers when the
coordinator receives work requests from workers. At this point, it is worth going into
some details:

- A work request is a remote procedure called by the workers and executed by the
coordinator.

- A work request, called by a worker, indicates its current performance p.
- One or several workers selected during discovery step can disappear during

execution step.
- One or several new workers can connect and start to send work requests after

discovery step.

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 133

During execution, the coordinator manages a set of tasks T = {tk} belonging to
different applications. Every task tk has its workload qk.

Ideally, tasks belonging to a given stage of a given task are executed in parallel on
workers selected during configuration step (or new workers with higher performance).
Since workers are volatiles, a work request received by the coordinator is not
necessarily sent by one of the workers selected during the configuration step.
Moreover, arrivals of work requests are unpredictable. For that reasons, the
scheduling policy of XWCH is the following: when receiving a work request from a
worker w having performance p, the task t allocated to w is the one whose workload q
is closer to p. Thus, the scheduler of XWCH allocates task t of T to w if:

|q - p | = min (|qk - p|) for all tk belonging to T.

The scheduling algorithm is executed inside the work request call. According to
this algorithm, a given task is not executed unless an appropriate worker calls a work
request. This means that a task could stay indefinitely in a ready state and never
assigned to a worker, the application is blocked. In order to avoid this situation, a
deadline is affected to each stage of the application: if a task spends in a ready state a
time higher than its deadline, it is automatically allocated to the first free worker. A
small value of the deadline, means that the user prefers allocate tasks to workers as
soon as possible. In this case, tasks could be assigned to a non appropriate worker. A
high value of the deadline means that the user prefers wait and allocate tasks to the
best appropriate worker. In this case, the task could be blocked indefinitely.

4.3 Direct Communication

Two versions of XWCH were developed. The first, called XWCH-sMs, manages inter-
tasks communications in a centralized way. The second version, called XWCH-p2p,
allows a direct communication between workers without passing by the coordinator.

In the XWCH-sMs (slave-Master-slave) version, workers cannot directly
communicate, they cannot "see" each other. Any communications between tasks take
place through the coordinator. This architecture overloads the coordinator and could
affect the application performances.

In order to cure the gaps of the XWCH-sMs version, it is necessary to have direct
worker-to-worker communications. In other term, the worker executing module A
(called worker A in Fig. 5) must be able to directly send its results to workers B and C.

The XWCH coordinator can, thus, allocate tasks B and C to two available workers.
Every worker receives the binary code of the module it will execute and the necessary
information relating to its input file (IP address, path and name of the input file). Data
transfer between workers A and B (resp. C) can thus take place on the initiative of the
receiver.

This version called XWCH-p2p has two main advantages:

1. it discharges the coordinator from data routing.
2. it avoids the duplication of communications.

In this context, the coordinator keeps only the responsibility of tasks scheduling.
XWCH-p2p tends towards the Peer-To-Peer concept which one of its principles is to
avoid any centralized control.

134 N. Abdennadher and R. Boesch

Signal (3)

XtremWeb-CH
coordinator

Client

Service Request (1)

Result (6)

Workers

Work request (4)

Signal (5)

Distributed and
Parallel

li iA

B

C

A

B

C

Work request (2)

Work request (4’)

Signal (5’)

Fig. 5. Execution of an application on a XWCH-p2p platform

Direct communication can only take place when the workers can “see” each other.
Otherwise (one of the two workers is protected by a firewall or by a NAT address),
direct communication is impossible. In this case, it is necessary to pass by an
intermediary (XWCH coordinator for example). This scenario is similar to XWCH-
sMs version. However, to avoid overloading the coordinator, one possible solution
consists on installing a relay machine, called "data collector" which acts as an
intermediary. This machine is used by worker A (in our example) to store its results
and by workers B and C to seek their data. “Data collector” machine is chosen by the
user when launching the application. This machine must be reachable by all workers
contributing to the execution of the concerned application.

4.4 Monitoring Tools

XWCH proposes a package of tools allowing the user to debug and/or visualize the
progression of the execution of their applications:

- Tasks allocation: The user can “spy” the execution of his application. He can
follow the allocation of tasks (which worker is executing which task).

- Progression of tasks execution: When executing, every task can send progression
report to its worker informing it about its state. Currently, this progression report
is expressed in term of percentage of execution.

- Step by step execution: It’s a debugging mode. When activated, every task sends
messages to the worker. These messages are inserted in the source code by the
developer.

5 Experimental Measures

The purpose of this section is to assess the performances of XWCH in a real case of a
CPU time consuming application. XWCH was evaluated in the case of a phylogenetic
application: PHYLIP (the PHYLogeny Inference Package) package [12]. The

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 135

parallelized version of PHYLIP is used by the Laboratory of virology at the Geneva
Hospital in order to generate phylogenetic tree related to HIV virus.

Phylogenetic is the science which deals with the relationships that could exist
between living organisms. It reconstructs the pattern of events that have led to “the
distribution and diversity of life”. These relationships are extracted from comparing
Desoxyribo Nucleic Acid (DNA) sequences of species. An evolutionary tree, termed
life tree, is then built to show relationship among species. This tree shows the
chronological succession of new species (and/or new characters) appearances.

In a medical context, the generation of a life tree for a family of microbes is
particularly useful to trace the changes accumulated in their genomes. These changes
are due, inter-alia, to the "reaction" of the virus to the treatments.

A multitude of applications aiming at building evolutionary trees are used by the
scientific community [13] [14] [15] [16]. These applications are known to be CPU
time consuming, their complexity is exponential (NP-difficult problem). Approximate
and heuristic methods do not solve the problem since their complexity remains
polynomial with an order greater than 5: O(nm) with m > 5. Parallelization of these
methods could be useful in order to reduce the response time of these applications.

PHYLIP is a package of programs for inferring phylogenies (evolutionary trees). It
is the most widely-distributed phylogeny package. PHYLIP has been used to build the
largest number of published trees. It has been in distribution since 1980, and has over
15,000 registered users. PHYLIP was ported on XWCH platform.

An evolutionary tree is composed of several branches. Each branch is composed of
sub-branches and/or leaf nodes (sequences). Two sequences belonging to the same
branch are supposed to have the same ancestors. To construct the tree, the application
defines a “distance” between all pairs of sequences. Evolutionary tree is then
gradually built by sticking to the same branch, the pairs of sequences having the
smallest distance between them. Even if the concept is simple, PHYLIP is a CPU time
consuming application. This complexity is due to two factors:

1. Methods used to group sequences into branches are complex. As an example, the
Fitch program, one of the most used methods, takes two hours to execute on a
Pentium 4 (3 GHz) with 100 sequences.

2. The application constructs not only one tree from the origin data set, but a set of
trees generated from a large number of bootstrapped data sets (somewhere
between 100 and 1000 is usually adequate). These data are randomly generated
from origin data. The final (or consensus) tree is obtained by retaining groups that
occur as often as possible. If a group occurs in more than a fraction l of all the
input trees it will definitely appear in the consensus tree.

The application, as adapted to XWCH, is composed of 5 programs: Seqboot,
Dnadist, Fitch-Margoliash, Neighbor-Joining and Consensus.

- Seqboot is a general bootstrapping and data set translation tool. It is intended to
generate multiple data sets that are re-sampled versions of the input data set. It
involves creating a new data set by sampling N characters randomly with
replacement, so that the resulting data set has the same size as the original, but
some characters have been left out and others are duplicated.

136 N. Abdennadher and R. Boesch

- Dnadist uses sequences to compute a distance matrix. It computes a table of
similarity between the sequences. The distance, for each pair of species, estimates
the total branch length between the two species. Each distance that is calculated is
an estimate, from that particular pair of species, of the divergence time between
those two species.

- Fitch-Margoliash (FITCH) and Neighbor-Joining (NJ): These two programs
generate the evolutionary tree for a given data set. FITCH method is a time
consuming method and can not be applied to a large number of sequences.

- Consensus: This program constructs the consensus tree from the set of trees
generated from bootstrapped data sets.

The structure of the obtained parallel/distributed application is shown in Fig. 3.
The application, as developed, has two parameters (fed by the user):

- Set of DNA Sequences from species under investigation.
- Number of evolutionary tree to generate: This parameter represents the quantity of

data: Q. It’s used to produce multiple data sets from original DNA sequences by
bootstrap re-sampling. The higher is Q, the finest is the result.
Two versions of PHYLIP were deployed on XWCH:

- The first version (Version 1 in Fig.6) is composed of Q tasks in the stage
corresponding to the FITCH module. Each task processes one data (one tree)

- In the second version (Version 2 in Fig.6), the number of tasks and their workload
are processed as explained in paragraph 4.2.

Execution times consumed by the two versions are shown in Fig. 6. PHYLIP was
executed on an XWCH platform composed of more than 100 heterogeneous PC
(Pentium 2, 3, 4) with Windows and Linux operating systems.

50 sequences. 100 workers

0

5

10

15

20

25

0 200 400 600 800

Q : number of replications

T
im

e
(i

n
 m

in
)

Version 1

Version 2

Fig. 6. Execution times of PHYLIP

For both versions, XWCH insures that executing codes are transferred from
coordinator to workers only at the start of the execution: if the same task is re-
executed on the same worker, its code is not downloaded again. The difference of
execution times in Fig. 6 is due to the synchronization between the coordinator and
workers: When a worker ends the execution of one task it stores the results locally
and on the relay, generates a work request call to ask for a new job, and finally
generates a data request call to receive input data it needs.

 A Scheduling Algorithm for High Performance Peer-to-Peer Platform 137

6 Conclusion

This paper presents a new GC environment (XtremWeb-CH), used for the execution
of high performance applications on a highly heterogeneous distributed environment.
XWCH can support direct communications between workers, without passing by the
coordinator. A scheduling policy is proposed in order to minimize synchronization
between coordinator and workers and optimize load balancing of workers. The
porting of PHYLIP on XWCH has demonstrated the feasibility of our solution. Other
experiments are in progress to evaluate XWCH in other High Performance
applications cases.

The current version of XWCH allows the decentralization of communications
between workers. The next step consists on designing a distributed scheduler. This
scheduler shall avoid allocating communicating tasks to workers that can not reach
each other. This approach offers a strong basis for the development of distributed and
dynamic scheduler and could confirm and reinforce the tendency detailed in section 2.

References

1. http://setiathome.berkeley.edu/
2. http://www.entropia.com/
3. http://www.ud.com/home.htm
4. Parabon Computation, Inc: The Frontier Application. Programming Interface, Version

1.5.2. 2004 (www.parabon.com)
5. Gilles Fedak et al. XtremWeb : A Generic Global Computing System. CCGRID2001,

workshop on Global Computing on Personal Devices. Brisbane, Australia. May 2001.
http://xtremweb.net

6. KAN G., Peer-to-Peer: harnessing the power of disruptive technologies, Chapter Gnutella,
O’Reilly, Mars 2001.

7. Ian Clarke. A Distributed Decentralised Information Storage and Retrieval System.
Division of Informatics. Univ. of Edinburgh. 1999. http://freenet.sourceforge.net/

8. Babin, G; P. Kropf; and H. Unger. A two-level communication protocol for a Web
Operating System: WOS. Vasteras, Sweden, Aug 1998. In IEEE Euromicro Workshop on
Network Computing, 939–944.

9. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System
Integration. IEEE Computer, pages 37-46, June 2002.

10. Franck Cappello et al. Computing on Large Scale Distributed Systems: XtremWeb
Architecture, Programming Models, Security, Tests and Convergence with Grid. In Future
Generation Computer Science (FGCS), 2004.

11. Samir Djilali. P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems
with Remote Procedure Call. GP2PC2003 colocated with IEEE/ACM CCGRID2003.
Tokyo Japan, May 2003.

12. http://www.phylip.com/
13. http://biowulf.nih.gov/apps/puzzle/tree-puzzle-doc.html
14. http://www.tree-puzzle.de/
15. http://www.dkfz.de/tbi/tree-puzzle/
16. Heiko A. Schmidt, Phylogenetic Trees from Large Datasets, 'Ph.D.' in Computer Science,

Düsseldorf, Germany, 2003.

Brokering Multi-grid Workflows

in the P-GRADE Portal�

Attila Kertész1,2, Gergely Sipos2, and Péter Kacsuk2

1 Institute of Informatics, University of Szeged
H-6720 Szeged, Arpad ter 2, Hungary

keratt@inf.u-szeged.hu
2 MTA SZTAKI Computer and Automation Research Institute

H-1518 Budapest, P. O. Box 63, Hungary
CoreGRID Institute on Resource Management and Scheduling

{sipos,kacsuk}@sztaki.hu

Abstract. Grid computing has gone through some generations and as
a result only a few widely used middleware architectures remain. The
Globus Toolkit is the most widespread middleware in most of the cur-
rent production grid systems, but the LCG-2 middleware dominates in
Europe. The paper describes a brokering solution that enables the in-
teroperability of various Globus and LCG-2 based grids during the exe-
cution of workflow applications, and supports users to utilize computing
and storage resources from multiple production grids by a single ap-
plication. The development and execution of such applications can be
managed by a Web-based Grid portal called P-GRADE Portal, and the
brokering of the workflows is carried out by its integrated GTbroker and
LCG-2 broker component.

Keywords: Grid Computing, Grid Portal, Resource Broker, Workflow
Management, Globus Toolkit.

1 Introduction

The Grid was originally proposed as a global computational infrastructure to
solve grand-challenge, computational intensive problems that cannot be handled
within reasonable time even with state of the art supercomputers and computer
clusters [1]. Grid computing tackles these tasks by aggregating geographically
and architecturally dispersed hardware and software resources into large virtual
super-resources.

Meanwhile grids can be realized relatively easily by building a uniform mid-
dleware layer, such as Globus [2], on top of the hardware and software resources,
the programming concept of such distributed systems is not obvious. Complex
problems often require the integration of several existing sequential and parallel
programs into a single application in which these codes are executed according
� This research work is carried out under the FP6 Network of Excellence CoreGRID

funded by the European Commission (Contract IST-2002-004265).

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 138–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Brokering Multi-grid Workflows in the P-GRADE Portal 139

to a graph, called workflow. The workflow concept introduces parallelism at two
levels. The top level parallelism comes from the graph concept, i.e., codes con-
tained by independent branches can be executed simultaneously. The bottom
level parallelism can be applied if some of the workflow nodes are themselves
parallel programs. Both top level and bottom level parallelism can be exploited
if the parallel branches contain parallel nodes. In such case several supercomput-
ers or clusters can be used simultaneously, and every parallel program would use
one of these systems. Consequently, multi-site parallel application execution can
be achieved without any performance degradation. The approach combines the
benefits of traditional single-site parallel processing and grid-like multi-site pro-
cessing. Although there are a large number of workflow-oriented grid activities,
most of them do not exploit these two possible levels of parallelism [4][5][6].

After the proper parallel processing approach has been selected the next step
is to choose a suitable application developer and execution environment. Grids
are typically accessed through portals that serve as both grid application de-
veloper and executor environments. As grid technology matures the number of
production grids dynamically increases. Although sometimes multiple grids are
served by the same portal, usually different portals are installed for different
grids. Even if a portal is connected to multiple grids, applications that utilize
services from these grids simultaneously are not supported.

The P-GRADE Portal [20] is a workflow-oriented portal that supports appli-
cations that utilize services from multiple grids simultaneously and demonstrates
how Web-based Grid portals can be implemented on top of the Globus middle-
ware [2].

Executing a job in a grid environment requires special skills like how to find out
the actual state of the grid, how to reach the resources, etc. Not only computer sci-
entists, but also people from other scientific fields started to deal with this topic,
because using the grid resources makes scientific development and research faster
and produces better results. As the number of the users are growing and grid ser-
vices are starting to become commercial, resource brokers are needed to free the
users from the cumbersome work of job handling. Though most of the existing
grid middlewares give the opportunity to choose the environment for the user’s
task to run, but originally they are lacking such a tool that automates the discov-
ery and selection. Brokers meant to solve this problem. The Globus middleware
does not provide brokering though it has an API that can be used to build such a
tool. GTbroker [24] is a proper solution for this toolkit to provide automated job
submission for the users.

This paper describes how this broker can be adopted by grid portals to reach
Globus resources in an automated way. The following sections introduce the
workflow management of the P-GRADE portal and the execution of the work-
flows with its incorporated brokers. This combination enables multi-grid bro-
kering, even for different middlewares (Globus 2, 3, 4 and LCG-2). Since this
portal is already connected to various grids, the automatic multi-grid workflow
execution has become reality.

140 A. Kertész, G. Sipos, and P. Kacsuk

2 The P-GRADE Portal

The P-GRADE Portal is a workflow-oriented grid portal with the main goal to
support all stages of grid workflow development and execution processes. It en-
ables the graphical design of workflows created from various types of executable
components (sequential, MPI [3] or PVM [17] jobs), executing these workflows
in Globus-based [2] computational grids relying on user credentials, and finally,
analyzing the monitored trace-data by the built-in visualization facilities. The
P-GRADE Portal provides the following functions (see also Fig. 1.): Defining
grid environments, creation and modification of workflow applications, manag-
ing grid certificates, controlling the execution of workflow applications on grid
resources and monitoring and visualizing the progress of workflows and their
component jobs.

Fig. 1. User activities supported by the P-GRADE Portal

Current portals support only isolated users, i.e., grid users cannot collaborate
via the portal either to develop applications together or collaboratively run ex-
isting applications. Multi-user portals provide controlled and concurrent access
to grid applications for multiple users during both the application development
and execution phases. This portal can connect several grids and able to sup-
port the simultaneous, collaborative execution of components of a workflow in
several connected grids. The P-GRADE portal can give the users all these func-
tionalities, so this portal is a collaborative-grid/user portal. In this paper we are
focusing on workflow management. For more information on the portal please
refer to [20].

3 Workflow Management in the P-GRADE Portal

Every workflow-oriented portal consists of a workflow GUI and a workflow man-
ager part. While the workflow GUI is the interface that enables the development,

Brokering Multi-grid Workflows in the P-GRADE Portal 141

submission and steering of workflows and the visualization of results, the workflow
manager is responsible for the execution and scheduling of workflow components
in the connected grids. It can simultaneously utilize multiple grids to execute dif-
ferent components of a workflow.

3.1 Workflow Notation

Workflow applications can be developed in the P-GRADE Portal by the graphi-
cal Workflow Editor. The Editor is implemented as a Java Web-Start application
that can be installed on the client machines “on the fly”, using a standard Web
browser. The Editor communicates only with the Portal Server, and it is com-
pletely independent from the grid infrastructures the Server is connected to.

Fig. 2. A workflow graph in the P-GRADE Portal

A P-GRADE Portal workflow is a directed acyclic graph that connects sequen-
tial and parallel programs into an interoperating set of jobs. The nodes of such
a graph are batch jobs, while the arc connections define data relations among
these jobs. Arcs define the execution order of the jobs and the input/output
dependencies that must be resolved by the workflow manager during execution
(Fig. 2.).

Nodes labeled as delta, cummu, visib, satel and ready represent executable
programs. Small squares labeled by numbers around the nodes are called ports

142 A. Kertész, G. Sipos, and P. Kacsuk

and represent input and output data files that the corresponding executables
expect or produce. (One port represents one input/output file.) Directed arcs
interconnect pairs of input and output ports if an output file serves as an input
file for another job. An input file – represented by an input port – can come
from three different sources: It can be produced by another job of the workflow,
come from the workflow developer’s desktop machine or from a storage resource.
An output file – represented by an output port – can also have the following
three target locations: A computational resource, the Portal server or a storage
resource (Fig. 3.).

Fig. 3. Input/output file handling

The semantics of the workflow execution means that a node (job) of the
workflow can be executed if, and only if all of its input files are available, i.e., all
the jobs that produce input files for this job have successfully terminated, and
all the other input files are available on the Portal Server and at the pre-defined
storage resources. Therefore, the workflow describes both the control-flow and
the data-flow of the application. If all the necessary input files are available
for a job, then the workflow manager transfers these files - together with the
binary executable - to the computational resource where the job is allocated for
execution. Managing the transfer of files and recognition of the availability of
the necessary files is the task of the workflow manager component of the Portal
Server. In case of using the brokering service over Globus-based VO-s, GTbroker
handles the necessary file transfers.

3.2 Developing and Editing Workflows

For simplicity let us examine a scenario, when a user works on workflows indi-
vidually during both the development and execution phases. In the P-GRADE

Brokering Multi-grid Workflows in the P-GRADE Portal 143

Portal a workflow can be loaded from the user’s private storage space – allo-
cated on the Portal Server – into the client-side Editor, can be edited locally,
and the updated version can be loaded back to the Server. The development of
a P-GRADE Portal workflow consists of two subtasks: Defining the structure of
the graph and specifying the properties of nodes (jobs and ports).

The graph structure can be defined using the drag and drop GUI elements
of the Workflow Editor. The properties of nodes can be specified using property
windows: by double clicking a job or a port a corresponding property window
can be popped up and the attributes of the affected component can be defined.

The job component of a workflow node can be defined in the following way:
using the job property window the user must specify the client side location
and the type of the binary executable. Optional start-up parameters can also
be given here (e.g. command line attributes). The job can be mapped onto a
computational resource in the following way: Using the “Grid” and “Resource”
dropdown listboxes first a grid, then a computational resource from that grid
must be chosen. Jobs can be mapped onto resources of the VO the user has valid
certificates to. If a broker is selected for job submission it can be seen from the
“Grid” name (SZTAKI MDS 2 BROKER – means that GTbroker is used for
the job in the SZTAKI Grid). The portal can interface with 2 kinds of brokers:
GTbroker for Globus 2 or 3 Grids and the broker component of the LHC Grid
infrastructure [22].

The job requirements can be set in the Workflow Editor of the portal. GT-
broker needs an RSL [2] file, which is created by the portal through the so-called
RSL Editor. The other broker needs a JDL [22] file, created by the JDL Editor.
They have a similar interface, so the user can use the same data to set the Job
attributes. From the job property window the user can select the RSL Editor,
when he/she has already chosen GTbroker for the “Grid” field. In this Editor
window the redirection of standard streams and brokering options can be set,
and a summary of the input/output files for the job can be viewed. The “Broker
options” enables selection of resource mapping guidelines and defining minimum
disk size, CPU speed and memory size requirements (Fig. 4.). Only this panel
requires additional information about the job compared to the JDL Editor. The
guidelines tell the broker to order the resources by disk size, CPU speed or mem-
ory size, or to use only clusters for execution environment. Clicking on “View”
at the bottom of the window the generated RSL file can be viewed.

4 Workflow Execution

Because none of the largest production grids contain workflow manager ser-
vices, workflow-oriented portals connected to them must incorporate workflow
managers, too. The P-GRADE Portal contains a DAGMan-based [11] workflow
manager subsystem which is responsible for the scheduling of workflow compo-
nents in grids. This section discusses the workflow executor subsystems of the
P-GRADE Portal with the brokering functions provided by GTbroker and the
LCG-2 Broker.

144 A. Kertész, G. Sipos, and P. Kacsuk

Fig. 4. The RSL Editor

4.1 Workflow Management in Details

One of the main goals of the P-GRADE Portal is to hide the low level details
of grid systems with high-level, technology-neutral interfaces that can be easily
integrated with different middleware. The GUI of the Portal is built with the
GridSphere portal framework [19], thus the various portal functions are imple-
mented as nearly independent portlets.

The “Certificate manager” portlet is responsible for uploading X.509 certifi-
cates into MyProxy servers [7] and for downloading short-term GSI proxies [12]
into the workflow manager. These proxies are used for authentication. The “Set-
tings” portlet can be used to specify Globus VOs and computational resources
for the portal application. The “Workflow” portlet is the graphical interface of
the workflow manager and can be used to submit and control workflows, to
monitor and visualize execution.

The “Workflow” portlet is interfaced with the Condor DAGMan [11] workflow
scheduler. DAGMan degrades workflows into elementary file transfer and job sub-
mission tasks and schedules the execution of these tasks. Although DAGMan itself
cannot invoke grid services, it supports customized grid service invocations by its
pre/post script concept [11]. One pre and one post script can be attached to every
node of a DAGMan workflow. DAGMan guarantees, that it first executes the pre
script, then the actual content script and finally the post script when it reaches
a workflow node. Consequently, the Portal Server automatically generates appro-
priate pre, content and post scripts for every workflow node when the workflow is
saved on the server. These scripts – started by DAGMan according to the graph
structure –, invoke the GridFTP and GRAM clients to access files and start up
jobs in the connected grids. DAGMan invokes these scripts in the same way in
both single- and multi-grid configuration. In general, when a broker is used for
job submission, the pre script invokes the broker, and the post script waits till the
execution is finished. The broker provides information about the actual job status
and the post script notifies the portal about the status changes.

Brokering Multi-grid Workflows in the P-GRADE Portal 145

4.2 Multi-grid Workflow Brokering

During workflow editing in the P-GRADE Portal the user has the opportunity to
select a resource for each job to run on, or to let a broker choose one. Currently
two brokers are used by the portal: the LCG-2 Broker and GTbroker (Fig. 5.).

Regarding Globus Grids, when the right order of the jobs is selected by DAG-
Man (according to the dependencies of the jobs), the actual job is given to GT-
broker to find a suitable environment and guide the job through the submission
process. This broker uses GT2 C API [2] functions to perform interaction with
the Globus resources and job submission. For determining the available hosts in
the grid it queries the MDS [2]. The job submission to resources is done through
GRAM, and a GASS server [2] is used to put the files needed for the job to the
remote host and to get back the result files if there are any. These tools enable
this broker to work without additional software on Globus Grids. Since most of
the current grids use this middleware, the simply adaptation makes this broker
relevant.

When a job of the workflow is selected to run with GTbroker, the pre script
executes the broker with an RSL file created by the RSL Editor. For QoS, user
requirements are taken into account during resource selection. The extended
RSL file contains the user requirements and job properties. Static and dynamic
information are also used for matchmaking.

In Globus Grids the MDS contains the static properties of the appropriate
VO resources. After getting the resources from the MDS, GTbroker orders them
by a predefined criterion. In the criteria one can use the following metrics: CPU
speed, number of CPUs, free CPUs on the node, disk size and whether a node
is a cluster. With these metrics the hosts can be ordered in a way that the ones
having the best resources for the actual job get higher priority than the others.
The user can modify the priority by selecting the suitable one in the RSL Editor
of the portal.

Dynamic information is also used by the broker. For PBS clusters the broker
can determine the actual load, right before submitting the job to the selected
resource. The pbsnodes command gives back the present availability and load
of each node in the selected cluster. This additional piece of information makes
the broker able to react for dynamic changes, and reject choosing an overloaded
cluster. With this method it automatically finds the best resources and submits
only jobs that can actually run.

Fault tolerance is supported by resubmissions. Should a job fail or be pending
for too long on a resource (this time interval is set in the broker), the broker
cancels and resubmits it to another high priority one. The actual state of the jobs
is tracked by the broker, that’s why it is possible to cancel and resubmit jobs.
After the job is successfully finished, the result files are staged back by the broker
and the workflow execution is continuing with the post script of DAGMan. The
job states are sent to the portal, so it can visualize the execution phases of the
job and therefore of the whole workflow. With this functionality the users are
aware of the state of their workflows and notified about each step the execution
is going through.

146 A. Kertész, G. Sipos, and P. Kacsuk

Fig. 5. Multi-grid workflow brokering

The LCG-2 brokering solution is also used by the P-GRADE portal to reach
LCG-2-based grids. This kind of broker is built in the LCG-2 architecture: it
uses the following parts: a User Interface machine is needed to use the Work-
load Management System. The Workload Manager is responsible for calling the
Matchmaker, interacting with the Information System (BDII), the Replica Lo-
cation Service, the Log Monitor and the Logging and Bookkeeping server. The
Matchmaker gets the job data in a JDL file, and tries to find a “close” host: it
takes into account the distance of the physical files on the Storage Elements to
the actual Computing Element; finally it submits the job there. The WM can be
informed of job failures through the Log Monitor, but automatic resubmission is
not provided unlike in the case of GTbroker. Both solutions provide automatic
workflow execution, but GTbroker relies only on Globus services and its usage
is not limited to grids with LCG-2 architecture.

In the executable workflow the jobs are mapped to resources or brokers. The
selected broker determines a VO for the job, from which the broker has to select
the executing site. In the case of pure Globus-based grids GTbroker queries the
MDS for resource information of the selected VO, and in LCG-2-based grids
the LCG-2 broker asks the BDII. The nodes of the workflow that need LCG-2
services can be selected to run on a grid supporting them, and nodes that require
only Globus services can be mapped to VOs handled by GTbroker (Fig. 5.). It
means that a workflow can be brokered over several VOs, even on different grids.
This multi-grid brokering is performed by the brokers connected to the portal.
The portal is able to adopt other brokering services, therefore the number of
reachable grids is growing.

Brokering Multi-grid Workflows in the P-GRADE Portal 147

5 Related Work

Workflows can be managed not only by grid portals, but by other traditional
grid user interfaces and problem solving environments (PSE) as well. Unicore
[13] and Triana [6] are two of the most well-known workflow-oriented PSEs. They
provide neither multi-grid access, nor collaborative user support. Although the
server of Triana is built on top of the GAT API [14] - thus it could abstract the
underling grid services from their actual implementations - it cannot distinguish
security domains from each other, which is a prerequisite of multi-grid access.

Pegasus [15] is a Web-based grid portal, which has the same isolated environ-
ment. Based on a special configuration file, filled up by the portal administrator
with Globus GRAM and GridFTP [2] site addresses, Pegasus is able to map
abstract workflows onto physical resources. At the same time – because of the
centrally managed resource list and the single certificate the manager applies
during workflow execution – Pegasus cannot be considered a multi-grid portal.

The GridFlow portal [16] applies a more complex workflow executor subsys-
tem than the above discussed environments. The workflow manager of GridFlow
handles workflows at two levels. It manages workflows at a global grid level
and schedules them at the level of different local grids, but it does not provide
collaborative development and execution capabilities.

KOALA [21] is a grid scheduler that uses some of the components of the
Globus Toolkit, supports processor and data co-allocation and provides auto-
matic resource selection. Users can interact with KOALA through so-called run-
ners, which are command line tools and require RSL file specifications. KOALA
has various runners for submitting and monitoring various kinds of jobs (MPI,
Ibis). Currently it is only available on their own multicluster system (DAS 2 –
Distributed ASCI Supercomputer 2), but they are planning to make it available
on other grids.

Regarding brokers, several solutions have been developed up till now. These
solutions usually require other tools to run and the user usually needs to modify
its configuration or even additional software needs to be installed to the grid
middleware. GTbroker is a broker for the Globus Toolkit, which uses only the
APIs and services provided by the toolkit, performs automatic resource discovery
and job submission with QoS and fault tolerant features. Since it does not need
any other tools, it can be easily incorporated into portals.

6 Summary and Conclusions

With the most advanced portals multiple users can work together to define and
execute grid applications that utilize resources of multiple grids. By connecting
previously separated grids and previously isolated users together, these portals
will revolutionize multidisciplinary research.

The P-GRADE Portal gives a Globus-based implementation for workflow
management even for the collaborative-grid, collaborative-user concept [23]. Due
to the multi-grid concept a single portal installation can serve user communities

148 A. Kertész, G. Sipos, and P. Kacsuk

of multiple grids. These users can define workflows using the high-level graph-
ical notations of the Workflow Editor, can manage certificates, workflows and
jobs through the Web-based interface of the Portal Server. With exploiting the
advanced workflow management features of the P-GRADE portal and the bro-
kering functions of GTbroker and LCG-2 Broker users can develop and execute
multi-grid workflows in a convenient environment. Users have access to more
VOs can create such multi-grid workflows that reach resources from even dif-
ferent grids. Furthermore, the execution of these workflows is carried out in an
efficient, brokered way. Since almost every production grid uses Globus middle-
ware today, these grids could all be accessed by the P-GRADE Portal and the
workflows created by the portal can produce the expected results.

P-GRADE Portal 2.1 [25] has been already connected to several European
grids (LHC Grid [22], EU GridLab testbed [14], UK OGSA test-bed [8], UK
NGS [10]) and serves as a graphical interface for several production grids like
SEE-GRID [9], HunGrid [18] and UK NGS [10]. While the 2.2 version is already
connected to the broker of the LCG middleware [22], the next, upcoming version
is connected to GTbroker.

References

1. I. Foster, C. Kesselman, “Computational Grids, The Grid: Blueprint for a New
Computing Infrastructure”, Morgan Kaufmann, 1998. pp. 15-52.

2. I. Foster C. Kesselman, “The Globus project: A status report”, in Proc. of the
Heterogeneous Computing Workshop, IEEE Computer Society Press, 1998, pp.
4-18.

3. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, J. Dongarra, “MPI: The
Complete Reference”, MIT Press, 1995.

4. Ewa Deelman, et al, “Mapping Abstract Complex Workflows onto Grid Environ-
ments”, Journal of Grid Computing, Vol.1, no. 1, 2003, pp. 25-39.

5. Matthew Addis, et al: “Experiences with eScience workflow specification and en-
actment in bioinformatics”, in Proc. of UK e-Science All Hands Meeting (Editor:
Simon J. Cox), 2003.

6. I. Taylor, et al., “Grid Enabling Applications Using Triana”, Workshop on Grid
Applications and Programming Tools, Seattle, 2003.

7. J. Novotny, S. Tuecke, V. Welch, “An Online Credential Repository for the Grid:
MyProxy”, in Proc. of 10th IEEE International. Symposium on High Performance
Distributed Computing, 2001

8. UK e-Science OGSA Testbed: http://dsg.port.ac.uk/projects/ogsa-testbed/

9. Southern Eastern European GRid-enabled eInfrastructure Development (SEE-
GRID): http://www.see-grid.org/

10. UK National Grid Service: http://www.ngs.ac.uk/

11. D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice: The
Condor Experience”, Concurrency and Computation: Practice and Experience,
2005, pp. 323-356.

12. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and Welch,
V. A National-Scale Authentication Infrastructure. IEEE Computer, 33 (12). 60-
66. 2000.

Brokering Multi-grid Workflows in the P-GRADE Portal 149

13. D. W. Erwin and D. F. Snelling., “UNICORE: A Grid Computing Environment”,
In Lecture Notes in Computer Science, volume 2150, Springer, 2001, pp. 825-834.

14. G. Allen et. al., “Enabling Applications on the Grid: A GridLab Overview”, In-
ternational Journal of High Performance Computing Applications, Issue 17, 2003,
pp. 449-466.

15. G. Singh et al, “The Pegasus Portal: Web Based Grid Computing” In Proc. of 20th
Annual ACM Symposium on Applied Computing, Santa Fe, New Mexico, 2005.

16. J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “GridFlow: WorkFlow Management
for Grid Computing”, In Proc. of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID’03), 2003, pp. 198-205.

17. V. Sunderam, J. Dongarra, “PVM: A framework for parallel distributed comput-
ing”, Concurrency: Practice and Experience, 2(4), 1990, pp. 315-339.

18. The HunGrid Virtual Organisation: http://www.lcg.kfki.hu/?hungrid&hungrid-
general

19. J, Novotny, M. Russell, O. Wehrens: “Grid-Sphere: A Portal Framework for Build-
ing Collaborations” in Proc. of the 1st International Workshop on Middleware in
Grid Computing, Rio de Janeiro, Brazil, 2003.

20. Csaba Németh, Gábor Dózsa, Róbert Lovas, Péter Kacsuk, “The P-GRADE Grid
Portal”, Lecture Notes in Computer Science, Volume 3044, Jan 2004, pp. 10-19.

21. KOALA Co-Allocating Grid Scheduler: http://www.st.ewi.tudelft.nl/koala
22. LCG-2 User Guide, 4 August, 2005: https://edms.cern.ch/file/454439/2/LCG-2-

UserGuide.html
23. Péter Kacsuk, Gergely Sipos, “Multi-Grid, Multi-User Workflows in the P-GRADE

Grid Portal”, Journal of Grid Computing, Feb 2006, pp. 1-18.
24. A. Kertész, “Brokering solutions for Grid middlewares”, in Pre-proc. of 1st Doc-

toral Workshop on Mathematical and Engineering Methods in Computer Science,
2005.

25. P-GRADE Grid Portal: http://lpds.sztaki.hu/pgportal

Diet: New Developments and Recent Results�

A. Amar1, R. Bolze1, A. Bouteiller1, A. Chis1, Y. Caniou1,
E. Caron1, P.K. Chouhan1, G. Le Mahec2, H. Dail1, B. Depardon1,

F. Desprez1, J.-S. Gay1, and A. Su1

1 LIP Laboratory (UMR CNRS, ENS Lyon, INRIA, UCBL 5668) / GRAAL Project
2 LPC / PCSV (CNRS / IN2P3 UBP Clermont-Ferrand)

Frederic.Desprez@inria.fr

Abstract. Among existing grid middleware approaches, one simple,
powerful, and flexible approach consists of using servers available in dif-
ferent administrative domains through the classic client-server or Remote
Procedure Call (RPC) paradigm. Network Enabled Servers (NES) im-
plement this model also called GridRPC. Clients submit computation
requests to a scheduler whose goal is to find a server available on the
grid. The aim of this paper is to give an overview of an NES middle-
ware developed in the GRAAL team called DIET and to describe recent
developments. DIET (Distributed Interactive Engineering Toolbox) is a
hierarchical set of components used for the development of applications
based on computational servers on the grid.

1 Introduction

Large problems ranging from numerical simulation to life science can now be
solved through the Internet using grid middleware. Several approaches exist for
porting applications to grid platforms; examples include classic message-passing,
batch processing, web portals, and GridRPC systems [31]. This last approach
implements a grid version of the classic Remote Procedure Call (RPC) model.
Clients submit computation requests to a scheduler that locates one or more
servers available on the grid. Scheduling is frequently applied to balance the
work among the servers and a list of available servers is sent back to the client;
the client is then able to send the data and the request to one of the suggested
servers to solve their problem. Thanks to the growth of network bandwidth and
the reduction of network latency, relatively small computation requests can now
be sent to servers available on the grid. To make effective use of today’s scalable
resource platforms, it is important to ensure scalability in the middleware layers.

The Distributed Interactive Engineering Toolbox (DIET) [18] project is fo-
cused on the development of scalable middleware with initial efforts focused
on distributing the scheduling problem across multiple agents. DIET consists
of a set of elements that can be used together to build applications using the
�

DIET was developed with financial supports from the French Ministry of Research
(RNTL GASP and ACI ASP) and the ANR (Agence Nationale de la Recherche)
through the LEGO project referenced ANR-05-CIGC-11.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 150–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Diet: New Developments and Recent Results 151

GridRPC paradigm. This middleware is able to find an appropriate server ac-
cording to the information given in the client’s request (e.g. problem to be solved,
size of the data involved), the performance of the target platform (e.g. server
load, available memory, communication performance) and the local availability
of data stored during previous computations. The scheduler is distributed us-
ing several collaborating hierarchies connected either statically or dynamically
(in a peer-to-peer fashion). Data management is provided to allow persistent
data to stay within the system for future re-use. This feature avoids unnecessary
communication when dependencies exist between different requests.

Several other Network Enabled Server (NES) systems have been developed in
the past [4,24]. Among them, NetSolve [5], Ninf [25], and OmniRPC [30] have
particularly pursued research involving the GridRPC paradigm. NetSolve, devel-
oped at the University of Tennessee, Knoxville allows the connection of clients
to a centralized agent and requests are sent to servers. This centralized agent
maintains a list of available servers along with their capabilities. Servers report
information about their status at given intervals, and scheduling is done based
on simple models provided by the application developers, LINPACK benchmarks
executed on remote servers, and/or information given by the Network Weather
Service (NWS). Some fault tolerance is also provided at the agent level. Data
management is managed either through request sequencing or using the Internet
Backplane Protocol (IBP). Client Proxies ensure portability and interoperability
with other systems like Ninf or Globus [6]. Ninf is an NES system developed at
the Grid Technology Research Center, AIST in Tsukuba. Close to NetSolve in its
initial design choices, it has evolved towards several interesting approaches using
either Globus [34,37] or Web Services [32]. Fault tolerance is also provided using
Condor and a checkpointing library [26]. The performance of the platform can be
studied using a powerful tool called BRICKS. As compared to the NES systems
described above, DIET is interesting because of the use distributed scheduling
to provide better scalability, the ability to tune behavior using several APIs, and
the use of Corba as a core middleware.

In this paper, we present the last developments done within the DIET project
that will provide the user with an efficient, scalable, and fault-tolerant system for
the deployment to deploy large scale applications over the net. This paper is or-
ganized as follows. In Section 2, we recall the architecture of the DIET middle-
ware and the characteristics that make it scalable over large scale grids. Then in
Section 3, we describe our most recent developments in resource and server man-
agement. The DIET platform deployment tool is described in Section 4 and fault-
tolerance detection and recovery are explained in Section 5. The visualization of
DIET’s behavior on large scale platforms is described in Section 6. Finally, before
a conclusion, we describe two new applications ported over DIET.

2 DIET Architecture

The DIET architecture is hierarchical for better scalability. The architecture
provides flexibility and can be adapted to diverse environments including

152 A. Amar et al.

Fig. 1. DIET hierarchical organization

heterogeneous network hierarchies.
DIET is implemented in Corba

and thus benefits from the many
standardized, stable services pro-
vided by freely-available and high
performance Corba implementa-
tions. DIET is based on several
components. A Client is an ap-
plication that uses Diet to solve
problems using an RPC approach.
Users can access Diet via different
kinds of client interfaces: web por-
tals, PSEs such as Scilab, or from
programs written in C or C++.
A SeD, or server daemon, pro-
vides the interface to computational
servers and can offer any number of
application specific computational
services. A SeD can serve as the
interface and execution mechanism

for a stand-alone interactive machine, or it can serve as the interface to a parallel
supercomputer by providing submission services to a batch scheduler.

Agents provide higher-level services such as scheduling and data manage-
ment. These services are made scalable by distributing them across a hierarchy
of agents composed of a single Master Agent (MA) and any number of Local
Agents (LAs). Each DIET hierarchy is independent but the MA can connect
to other MAs either statically or in a peer-to-peer fashion to access resources
available via other other hierarchies. Figure 1 shows an example of several Diet

hierarchies.
A Master Agent is an entry point of our environment. In order to access

Diet scheduling services, clients only need a string-based name for the MA (e.g.
“MA1”) they wish to access; this MA name is matched with a Corba identifier
object via a standard Corba naming service. Clients submit requests for a
specific computational service to the MA. The MA then forwards the request in
the Diet hierarchy and the child agents, if any exist, forward the request onwards
until the request reaches the SeDs. SeDs then evaluate their own capacity to
perform the requested service; capacity can be measured in a variety of ways
including an application-specific performance prediction, general server load, or
local availability of data-sets specifically needed by the application. SeDs forward
their responses back up the agent hierarchy. The agents perform a distributed
collation and reduction of server responses until finally the MA returns to the
client a list of possible server choices sorted using an objective function such as
computation cost, communication cost or machine load. The client program may
then submit the request directly to any of the proposed servers, though typically

Diet: New Developments and Recent Results 153

the first server will be preferred as it is predicted to be the most appropriate
server. The scheduling strategies used in Diet are described in Section 3.

Finally, NES environments like Ninf and NetSolve use a classic socket com-
munication layer. Nevertheless, several problems with this approach have been
pointed out such as the lack of portability or limitations in the number of sockets
that can be opened at once. A distributed object environment such as CORBA
has been proven to be a good base for building applications that manage ac-
cess to distributed services. It provides transparent communication in heteroge-
neous networks, but it also offers a framework for the large scale deployment
of distributed applications. Moreover, Corba systems provide a remote method
invocation facility with a high level of transparency. This transparency should
not dramatically affect the performance since the communication layers have
been carefully optimized in most Corba implementations [17]. Thus, Corba

has been chosen as a communication layer in DIET.

3 DIET Scheduling

3.1 Plug-In Schedulers

Diet provides a special feature for scheduling through its plug-in schedulers. As
the applications that are to be deployed on the grid vary greatly in terms of
performance demands, the Diet user is provided with the possibility of defining
requirements for scheduling of tasks by configuring the appropriate scheduler.
The performance estimation values to be used for scheduling are stored in a per-
formance estimation vector by the SeDs as a response to a client call propagated
from master agent to local agents and finally to the server level. The values
to be stored in this structure can be provided by CoRI (Collector of Resource
Information), which will be described in Section 3.2.

The standard values are to be identified based on standard estimation tags
given in Table 1. Application developers may also define performance values
to be included in a SeD response to a client request. For example, a DIET

SeD that provides a service to query particular databases may need to include
information about which databases are currently resident in its disk cache so
that data transfer times can be minimized.

The application developer can define their own performance estimation rou-
tine or function when developing the application-specific portion of the SeD. At
this point, any services added to the SeD will be associated with the declared
performance estimation routine. In the performance estimation routine, the SeD
developer should store in the provided estimation vector any performance data
to be used in the server response aggregation methods. At the time a DIET

service is defined, an aggregation method - the logical mechanism by which SeD
responses are sorted - is associated with the service. If application-specific data
are supplied (i.e., the estimation function has been redefined), an alternative
method for aggregation is needed. Currently, a basic priority scheduler has been
implemented, enabling an application developer to specify a series of perfor-
mance values that are to be optimized in succession. From the point of view of

154 A. Amar et al.

Table 1. Standard estimation tags used in DIET

Information tag multi- Explanation
starts with EST value

TCOMP the predicted time to solve a problem

TIMESINCELASTSOLVE time since last solve started (seconds)

FREECPU amount of free CPU (fraction between 0 and 1)

LOADAVG CPU load average

FREEMEM amount of free memory (Mb)

NBCPU number of available processors

CPUSPEED x frequency of CPUs (MHz)

TOTALMEM total memory size (Mb)

BOGOMIPS x the BogoMips

CACHECPU x cache size CPUs (Kb)

TOTALSIZEDISK size of the partition (Mb)

FREESIZEDISK amount of free space on partition (Mb)

DISKACCESREAD average time to read from disk (Mb/sec)

DISKACCESWRITE average time to write to disk (Mb/sec)

ALLINFOS x [empty] fill all possible fields

an agent, the aggregation phase is essentially a sorting of the server responses
from its children. A priority scheduler logically uses a series of user-specified tags
to perform the pairwise server comparisons needed to construct the sorted list
of server responses.

3.2 Collectors of Resource Information

As we have seen in the previous section, to make a good decision the scheduler
requires a measurement tool. In particular, DIET needs reliable resource infor-
mation from grid resource information services. In this section, we introduce the
requirements of DIET for a grid information service and the architecture of a
new tool called Collectors of Resource Information (CoRI).

For some time DIET has depended on a performance prediction tool called
FAST [29]. In this paper, we add new functionality to Diet. We are now able to
add any new monitoring tool interface or even any new prediction tool within
Diet. It could be dangerous to rely on a single prediction tool for all resource
information needs. For example, the prediction tool may not be available on a
given architecture and the software dependencies may fail or be too difficult to
satisfy in a particular environment. In this case, the scheduler does not receive
enough information. We propose a new feature which provides a basic set of
performance measurements that can satisfy basic scheduler needs. This tool must
always provide an answer in order to avoid the blockage of the grid system.
If the tool is not able to provide a measurement, a generic response must be
provided. Finally, the tool must provide one single interface for all kinds of
resource information services.

Diet: New Developments and Recent Results 155

The new tool has to solve two main problems. First, it must provide basic
measurements that are available regardless of the execution environment. The
service developer can then rely on this collector of resource information even if
no other resource services like FAST or NWS are available . Secondly, the tool
must manage the use of different collectors at the same time and in a similar
way. We offer two solutions to these problems: the CoRI-Easy collector for
the first problem, namely the collector, and the CoRI Manager for the second
problem, namely management of different collectors. In general, we refer to these
two solutions together as the CoRI tool.

CoRI-Easy is a set of simple requests for basic resource information, and CoRI
Manager allows developer teams to add other resource information services. As
CoRI-Easy is a resource information service, it is logical to add it as a collector
in the new CoRI Manager. FAST is also available as a collector in the Manager.
In addition, it is possible to add new collectors.

The CoRI Manager allows access to different modules (also referred to as col-
lectors). A module is any kind of element that can provide information about
the system. This modularity allows the separation of measurement sources and
the selection of a module. Even if the manager should unify the different resource
information services, the trace of data remains, and so the origin can be deter-
mined. For example, it could be important to distinguish the data coming from
the CoRI-Easy module and the FAST module, because the information from
FAST may give a more accurate estimation of the real value. The extensibility
of the system is also ensured by the modular design. Because the interface of the
manager allows the addition of a new module in some steps, additional modules
like Ganglia or NWS can easily be added.

To conclude this section and as a proof of concept, Figure 2 shows an experi-
ment using two kinds of scheduler. The first scheduler uses a simple round robin
algorithm wherein we have six servers and round robin works on a rotating basis
so that one server is assigned some work, then moves to the back of the list. The
second scheduler is a CPU scheduler that maximizes the ratio of BOGOMIPS

1+load average .

(a) Round Robin Scheduler (b) CPU Scheduler

Fig. 2. Comparison between the taskflows for 25 consecutive requests with task inter-
arrival time equal to 1 minute

156 A. Amar et al.

The behavior of both schedulers was also studied for requests with different
inter-arrival times on an heterogeneous cluster. In this paper we focus on 1
minute for the request inter-arrival time in order to see how the CPU scheduler
performs when sufficient time is provided for an accurate estimation of the load
average. The distribution of the tasks for the CPU scheduler was performed
only on the four fastest nodes resulting in quasi-equal small times for all the
tasks. In the case of the Round Robin scheduler, some tasks were privileged
by being assigned to the fastest servers while others required longer computing
times because all servers were used and some were slower. The total computation
time on the platform is smaller with the CPU scheduler due to the fact that the
tasks are assigned on the fastest servers. The overlapping of tasks observed in
the case of the Round Robin scheduler on the slowest processor resulted in larger
computing times.

3.3 DIET Batch Scheduler Management

Parallel grid resources, parallel machines or clusters of workstations are generally
managed by a reservation batch system such as Loadleveler1, PBS2, or OAR3).
Such a system is responsible for managing the submitted jobs and locating and
allocating the required resources. It accepts user submission scripts which must
normally contain a variety of information including the requested number of
resources and the amount of time (walltime) needed for the reservation. In order
to get the job completed as soon as possible, users can take into account the
hardware (walltime), the software he can rely on (NFS for copying some data)
and the actual workload on the system (number of resources to use in order to
receive resources as soon as possible).

An efficient grid middleware should provide transparent access to parallel
resources for the user. It must choose the best parallel resources that suit the
request, tune the parallel task to the right number of processors, provide the
corresponding walltime, and submit this information to the batch system in an
automatically built script in the language of the reservation system.

Simbatch4 is a C API which relies on the grid simulator Simgrid[20] to provide
models of clusters and their batch systems for multi-site grid simulations of
parallel tasks. Some batch systems have already been implemented, like PBS
and OAR (which respectively rely on FCFS and Conservative Backfilling), but
the API is defined to easily integrate new ones.

Simbatch has been designed to fulfill numerous goals such as facilitating the
conception and evaluation of grid scheduling algorithms using batch systems.
Experiments have been undertaken to validate the batch simulator. Figure 3
shows representative results for an experiment composed of 100 tasks, whose
input data and output data sizes are drawn uniformly between 1 and 20 Mbytes,

1 http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
2 http://www.clusterresources.com/pages/products/torque-resource-manager.php
3 http://oar.imag.fr/
4 http://graal.ens-lyon.fr/Simbatch

http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://oar.imag.fr/
http://graal.ens-lyon.fr/Simbatch

Diet: New Developments and Recent Results 157

whose computation time is drawn uniformly between 600 and 800 seconds, and
where the number of processors required is between 1 and 5. The platform is
composed of 7 machines, interconnected by a star topology and managed by an
OAR batch system. The experiment has been run on a real architecture and
simulated with the Simbatch tool and one can observe the error between the
measured flow in a real OAR batch system and the flow obtained for the same
experiment within Simbatch as a function of the submission date of the tasks.

 0

 1

 2

 3

 4

 5

 6

 7

 10000 20000 30000 40000 50000 60000 70000 80000

R
at

io
 b

et
w

ee
n

Si
m

ba
tc

h
an

d
O

A
R

 f
lo

w
s

Task ending time

Fig. 3. Flow comparison between Simbatch and OAR results.

3−agent distributed
scheduler

36,307
requests

requests

scheduler

22,867

centralized

Time (seconds)
0 200 400 600 800 1000 1200 1400 1600

0

5000

10000

12000

20000

25000

30000

35000

40000

C
o

m
p

le
te

d
 r

eq
u

es
ts

Fig. 4. Comparison of requests completed by a centralized Diet scheduler versus a
three agent distributed Diet scheduler

The high precision of Simbatch simulation results makes it possible to use
it as a performance prediction module in the DIET environment. Assuming
that a performance prediction function is given by the application programmer
in the SeD server, Simbatch can simulate several scenarios to choose the best
number of resources to use for the application to finish the soonest, as well as
the corresponding walltime.

158 A. Amar et al.

A grid environment must dialogue with batch schedulers to get information
on the parallel resources in order to make performance predictions and to submit
tuned parallel applications with the correct semantics.

Our work relies on the Elagi5 library. It provides in particular the possibility
to submit jobs to batch systems including Loadlever, Sun Grid Engine6, and
PBS. We have extended the recognized systems list with the OAR system and
we plan to complete integration for the WMS system used in the EGEE7 project
(Enabling Grids for E-science in Europe).

The DIET batch API provides several functions. A client can explicitly ask
for a parallel job, but otherwise, whenever possible DIET will choose the best
available allocation to minimize a given objective function. On the server side,
the resolution of the application must end with the diet_submit_call() which
builds and submits the script to the batch scheduler.

3.4 DIET Workflow Management

A large number of scientific applications are represented by interconnected tasks
which are structured based on their control and data dependencies. The workflow
paradigm on grids is well adapted for representing such applications and the
development of several workflow engines [3,27,33,35] illustrate significant and
growing interest in workflows within the grid community. The success of this
paradigm in complex scientific applications can be explained by the ability to
describe such applications in high levels of abstraction and in a way that makes
it easy to understand, change, and execute them.

Several techniques have been established in the grid community for defin-
ing workflows. The most commonly used model is the graph and especially the
directed acyclic graph (DAG). Since there is no standard language to describe
scientific workflows, the description language is environment dependent and usu-
ally XML based, though some environments use scripts. In order to support
workflow applications in the DIET environment, we have developed and inte-
grated a workflow engine. Our approach has a simple and a high level API, the
ability to use different advanced scheduling algorithms, and it should allow the
management of multi-workflow.

DIET users have traditionally submitted individual tasks, but we have ex-
tended the agent hierarchy by adding a new special agent to handle workflow
submissions. This special agent, called a MADAG, manages the different workflow
submissions. An overview of the new DIET architecture is shown in Figure 5.

The two architectures presented in the above figure can be used within the
same DIET platform. The use of the MADAG is based on the user choice to use
his own scheduling strategy or to use the global one provided by the MADAG.
It is obvious that when the user decides not to use the MADAG, there is no
collaboration between the different clients but he can use and test easily a new

5 http://grail.sdsc.edu/projects/elagi/
6 http://www.sun.qassociates.co.uk/software-grid-engine.htm
7 http://public.eu-egee.org/

http://grail.sdsc.edu/projects/elagi/
http://www.sun.qassociates.co.uk/software-grid-engine.htm
http://public.eu-egee.org/

Diet: New Developments and Recent Results 159

LA
LA

LA

MA

SeD
SeD

SeD

SeD
SeD

SeD

Client

Workflow

Manager

LA
LA

LA

MA

SeD
SeD

SeD

SeD
SeD

SeD
Client

Workflow
execution

Client

Workflow
execution

MA DAG

Ordering
+

Mapping

Ordering

Fig. 5. Software architecture of DIET workflow engine

scheduling algorithm by plugging it in the client code. On the other hand, when
the MADAG is used, the workflow submissions go through this special agent
and the multi-workflow can be handled more efficiently using core heuristics. To
avoid overloading due to multiple workflow submissions from different clients,
the MADAG is not responsible for workflow execution but it only manages the
scheduling aspects. Two working modes can be used in the MADAG: in the first a
complete schedule (which assign priority and mapping to each task) is provided
to the client, while in the second only task priorities are returned to the client.

4 DIET Deployment

An important factor that influences the efficiency of DIET is the mapping of
its components on available resources. We call mapping of the components on
available resources “deployment”. GoDIET [13] is designed to automate the
deployment of DIET platforms and associated services for diverse grid envi-
ronments. Key goals of GoDIET included portability, the ability to integrate
GoDIET in a graphically-based user tool for DIET management, and the abil-
ity to communicate in CORBA with LogService [14]. GoDIET automatically
generates configuration files for each DIET element while taking into account
user configuration preferences and the hierarchy defined by the user, launches
complimentary services (such as a name service and logging services), provides
an ordered launch of components based on dependencies defined by the hier-
archy, and provides remote cleanup of launched processes when the deployed
platform is to be destroyed.

To show that the efficiency of an NES environment can depend on the arrange-
ment, or deployment, of its components on available resources we performed sev-
eral experiments using DIET and shown in Figure 4. These experiments were
performed using 151 nodes of the Orsay cluster of the Grid’5000 testbed 8. De-
pending on the number of nodes available and the number and sizes of requests,
several deployments are possible. For example, we tested two deployments with
150 nodes. In the first deployment, one node is a centralized scheduler that is

8 http://www.grid5000.org

160 A. Amar et al.

used to manage scheduling for the remaining 150 nodes, which are dedicated
computational nodes servicing requests. In the second deployment, three nodes
are dedicated to scheduling and are used to manage scheduling for the remain-
ing 148 nodes, which are dedicated to servicing computational requests. In this
test the centralized scheduler is able to complete 22,867 requests in the allotted
time of about 1400 seconds, while the hierarchical scheduler is able to complete
36,307 requests in the same amount of time.

The distributed configuration performed significantly better, despite the fact
that two of the computational servers are dedicated to scheduling and are not
available to service computational requests. The deployment plan of components
is a very important factor that influences the throughput of the environment. Thus
a good planning approach is needed to arrange the resources in such a manner that
when the components are deployed on the resources, the maximum number of re-
quests can be processed in a time step. We called this process deployment planning.
We have shown in [16] that the optimal deployment on a cluster is a Complete
Spanning d-ary (CSD) tree; a CSD tree is a tree that is both a complete d-ary
tree and a spanning tree. This result conforms with results from the scheduling
literature. More importantly, we have presented an approach for determining the
optimal degree d for the tree. Finding the best deployment among heterogeneous
resources is a hard problem since it amounts to finding the best broadcast tree on a
general graph, which is known to be NP-complete. So we presented a deployment
heuristic that predicts the maximum throughput that can be achieved by the use
of available nodes. The main focus of the heuristic is to construct an hierarchy
so as to maximize the throughput of each node, where the throughput depends
on the number of children attached as children to the node in the hierarchy. The
given heuristic provides a deployment that can meet the user request demand, if
user demand is at most equal to the maximum throughput.

Finally, we gave a mathematical model [12] that can analyze an existing de-
ployment and can improve the performance of the deployment by finding and
then removing the bottlenecks. This is an heuristic approach for improving de-
ployments of NES environments in heterogeneous grid environments. The heuris-
tic is used to improve the throughput of a deployment that has been defined by
other means. The approach is iterative: in each iteration, mathematical models
are used to analyze the existing deployment to identify the primary bottleneck,
and the bottleneck is then removed by adding resources in the appropriate area
of the hierarchy. Using this model we can evaluate a virtual deployment be-
fore making a real deployment, provide a decision builder tool (i.e., designed to
compare different hierarchies or add new resources) and take into account the
hierarchies’ scalability.

5 DIET Fault-Tolerance

Grids are composed of many geographically distributed resources, each having
its own administrative domain. These resources are gathered using a WAN or
even the Internet. Those characteristics lead grids to be more error prone than

Diet: New Developments and Recent Results 161

other computing environments, raising the issue of fault tolerance. NetSolve

and Ninf includes some fault tolerant mechanisms based on a centralized design.
In this section we describe fault tolerant mechanisms incorporated in DIET that
specifically target decentralized designs.

5.1 Fault Detection

Most common failure scenarios include both intermittent network failures between
sites and node crashes. When considering unreliable networks, ensuring applica-
tion correctness requires fault detection approaches. Failure detectors can be clas-
sified based on two criteria: time to detect a failure and accuracy. Detection time
represents the time between a failure and definitive suspicion by the failure de-
tector. Accuracy is the probability of a correct answer from the failure detector
when queried at a random time. Classical failure detection systems, like TCP, are
based on heartbeats and timeouts. Maximum time to detect a failure depends both
on the arrival date of the previous heartbeat and on the maximum delivery time.
Considering a WAN or larger network, maximum delivery time is hard to bound,
leading to a tradeoff between long failure detection time and poor accuracy.

Fi Fi+1 Fi+3 Fi+4 Fi+5Fi−1 Fi+2

Failure

Hi+1 Hi+2 Hi+3 Hi+4

TM

TDu=U+E(D)+V(D)

Late

U

Hi

(Considering worst case Hi+4 not late)

q (observer)

p (observed)

V(D)
EAi

Freshness point

Expected
Arrival date

Suspect

Fig. 6. Sample execution of the DIET fault detector

DIET implements the Chandra, Toueg and Aguilera failure detector [15].
Considering a given heartbeat frequency and maximal time to detect a failure,
this detector has optimal accuracy. Another benefit of this fault detector is its
ability to adapt to detected network parameters and reconfigure itself according
to changing network delay or message loss probability. To our knowledge, this is
the first implementation of this algorithm.

Figure 6 presents a sample execution of the fault detector. The basic idea of
the algorithm is as follows. Given some QoS parameters, compute a heartbeat

162 A. Amar et al.

period U to be sent by the observed process p, and some time intervals [Fi, Fi+1)
on the observing process q (with respect to the local clock). At time Fi, if q
has received a heartbeat Hj , j � i, then q trusts p for the entire time interval
[Fi, Fi+1). If not, q starts suspecting p until it receives a heartbeat Hj , j � i. Fi

is called the freshness point: any outdated message with respect to Fi is ignored.
Thus maximum time to detect a failure does not depend on maximum message
delay, but on average message delay E(D) (worst case when failure happens just
after heartbeat emission). Parameters of the detector are the expected quality
of service, namely TDu the upper bound on time to detect a failure, TMu the
upper bound on average mistake duration, and TMRl the lower bound on av-
erage mistake recurrence time. As freshness point Fi+1 does not depend on the
reception date of heartbeat Hi, Fi+1 has to be set based on network parame-
ters and expected QoS. Once a large enough sample of previous heartbeats is
collected, we compute three values: EAi - the expected arrival date of Hi on q,
V(D) - the variance of message delay, and Pl - the probability that a message
will be lost. The variance is added to the estimated arrival date on q to set Fi+1.
When network parameters are changing, the observing process may reconfigure
the heartbeat period on p according to newly computed parameters.

DIET FD is a part of the DIET library included in every DIET entity. There
is no centralized fault detector: each entity is in charge of observing its neighbors.
Each observed server costs 750B of memory on the observer. As most compu-
tation is triggered by the reception of a heartbeat, and the typical heartbeat
period is less than one heartbeat per 5s, the computational cost per observed
service is marginal. Heartbeats are very small UDP messages (40 bytes including
UDP headers), thus the impact on the network of the fault detection service is
small. DIET FD is connected to DIET LogService and VizDIET and may be
used to collect statistics on network parameters and grid reliability.

5.2 MA Topology Recovery

Compared to other GridRPC systems, DIET uses a decentralized hierarchical
infrastructure. Master Agents and Local Agents are organized using a tree topol-
ogy. Each Agent is responsible for monitoring its neighbors and reports failures
to the GoDIET component. The consequence of the failure of an agent is a dis-
connection of the tree topology: some available services are not found by client
service requests. In order to reconnect the tree, each agent keeps the list of its
f ancestors. When detecting failure of its parent, the agent tries to reconnect to
the nearest (in the tree) alive ancestor. If this ancestor has also failed, it then
tries with the second nearest until it is able to reconnect the tree. Thus, the
algorithm is able to recover without central coordination from f − 1 simultane-
ous failures. During recovery, some available services may not be found. This is
the same property as in auto-stabilization (except that we are considering only
the crash of nodes and message loss). When reconnected, the agent updates its
ancestor list from its new parent. When the root of a tree has failed, GoDIET is
in charge of replacing the MA and notifies any client to use the new MA instead
of the failed one.

Diet: New Developments and Recent Results 163

5.3 Checkpoint/Restart Mechanism

Unexpectedly, the most intrusive failures are not those hitting infrastructure such
as the MA and LAs but the computing nodes [19]. This is mainly due to the large
amount of lost computation time. Process replication and process checkpointing
are two well known techniques to decrease the amount of lost computation in
case of crash failure. In replication, the same program is running on several
hosts. Any input of the program is atomically broadcasted to all the replicas.
When a failure hits the main process, one of the replicas is promoted as the
main process. Whenever a failure occurs, a new replica is created to replace the
missing one. Thus, having f replicas is sufficient to tolerate f − 1 simultaneous
failures, but divides the available computing power by f . Checkpoint based fault
tolerance relies on taking periodic snapshot of the state of a process, saving it
to another (safe) place. In case of a failure, the process state is recovered from
the checkpoint. This is the approach used in NetSolve and Ninf [2,26].

In Ninf the Condor checkpoint library is used. Checkpoint data are stored on a
stable checkpoint server holding all recovery data. If a failure hits the checkpoint
server, it is no longer possible to recover from any other failure. In order to solve
this issue the checkpoint data have to be replicated. [28] suggests the use of
computing nodes to host replicated checkpoint data. In DIET, checkpoint data
are considered equivalent to persistent data and distributed on computing nodes
using JuxMem. JuxMem manages data persistence across failures by replicating
it on several computing nodes.

Another important issue in checkpointing is software development cost. On
the one hand automatic checkpointing has low software development cost but
high overhead. On the other hand application checkpointing is tightly adapted to
the algorithm but requires new development for any new algorithm. The DIET

checkpoint API is designed to allow both simplicity and performance. From the
client point of view, checkpointing and fault tolerance are fully automatic. The
fault tolerance management is silently included in the usual RPC mapping layer
of the DIET client library. On the service side, each computational service can
choose whether it provides its own checkpoint mechanism to DIET (it only has
to register checkpoint files and notify the SeD when a checkpoint is ready to be
stored), or it can rely on DIET automatic checkpointing. In this case, the service
is linked with the Condor Stand-alone Checkpoint Library [21] to periodically
create a checkpoint file that can be restarted on any compatible architecture.

6 DIET Visualization and Large Scale Validation

DIET uses an event monitoring system called LogService [22]. This monitoring
service offers the capability to monitor information that must be gathered from
a distributed platform. LogComponent attaches to a component and relays infor-
mation and messages to LogCentral . LogCentral collects messages received from
LogComponents , then it stores or sends these messages to LogTools . LogTools

164 A. Amar et al.

connect themselves to LogCentral and wait for messages. The main interest of
LogService is that information are collected by a central point LogCentral that
receives LogEvents from LogComponents that are attached to the component
that need to be monitored. LogCentral offers the service of re-sending this in-
formation to several tools (LogTools) which are responsible for analyzing these
messages and offering a comprehensive view of the system to the user. On each
component of DIET there is a LogComponent that send information to Log-
Central . VizDIET [8] has been developed to offer visualization of the DIET

hierarchy. VizDIET implements the LogTools library to be able to connect to
LogCentral and collect all events from the DIET hierarchy (Figure 7). VizDIET

gives a graphical representation of the platform as well as some quantitative
and qualitative information (Figure 8) about the performance and behavior of
DIET. VizDIET is very useful to understanding the behavior and performance

Fig. 7. The LogService mechanism in DIET

Fig. 8. VizDIET screenshots

Diet: New Developments and Recent Results 165

of DIET as it dynamically displays the activity of the platform. Moreover it can
also read a log file of a previous DIET run and replay it.

Recently some tests have been done with DIET on Grid’5000 [11]. We have
evaluated the scalability of DIET over more than one thousand processors dis-
tributed in a nation-wide grid. The experimental process used for performing
these tests involved four main steps. (1) Reserve with OAR [10] 550 dual-
processor nodes that will be used to run the DIET components. (2) Generate
an XML file describing the reserved nodes and the desired deployment. (3) Use
GoDIET [13] to deploy the hierarchy of DIET components. (4) Launch 1040
clients which continuously submit requests to the hierarchy for solving a matrix
multiplication problem (dgemm).

During this experiment, there was one local agent managing each cluster. There
were a total of 540 SeDs running the same service (dgemm), eight local agents,
and one master agent. 13761 requests were computed by the DIET hierarchy.
The scheduling heuristic was a simple round robin approach that used the time
since last solve for each SeD to coordinate round-robin behavior amongst the dis-
tributed SeDs. Figure 9 shows that the time taken by agents to schedule requests
depends on the computing power of the nodes on the cluster. There are some huge
variations of response time except at Lyon and Paraci. This can be explained by
the fact that the nodes used by the SeDs and agents were shared with other users.
At Lyon and Paraci the nodes were reserved in an exclusive mode so that response
time remains relatively constant. The main goal of this experiment was to prove
that DIET can be used on large scale grids while maintaining a low response time
(average of 1.9 s) despite a heavy load (1040 clients). Further experiments will be
done to test and improve DIET features and performance.

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

in
 m

s
(lo

g
sc

al
e)

request number

Scheduling response time

MA orsay
bordeaux
toulouse

paraci
paravent

parasol
lyon
lille

orsay

Fig. 9. Response time of agents for scheduling client’s requests

166 A. Amar et al.

7 DIET Applications

7.1 A BLAST Application Using DIET

BLAST is a popular application in bioinformatics for comparing biological sequ-
ences such as nucleotides or amino-acid sequences. The aim of such comparisons
is to try to determine the function of a new sequence by finding homologies with
known sequences. A typical use of BLAST is to compare one or more sequences
to one or more biological databases. Many approaches to parallelizing BLAST
have been investigated [9,1,7,36,23] and three levels of parallelization can be
identified. In the fine grained parallelization approach, alignment searches are per-
formed in parallel on a single sequence pair. For the medium grained paralleliza-
tion, databases are partitioned so that alignments between a sequence and each
part of the database can be searched at once. With coarse grained parallelization,
the input is partitioned so that multiple sequences can be compared against one
or more databases at once.

Using the DIET middleware, we developed an “N-sequences versus one
database” service for BLAST queries. On the client side, the multi-request files
are partitioned into several smaller requests according to a user strategy (decided
by choosing an existing input plug-in or a self-made one). Then, the requests
are distributed over the available SeD’s, which treat them independently and
send back the results to the client which merges them after choosing an output
plug-in. On the server side, a scheduling strategy can be applied to choose the
most appropriate server to execute a request. The server then sends back the
result of the execution of a BLAST implementation (including mpiBLAST when
a server manages a cluster).

The next focus of the work on DIET BLAST is to introduce data replication
in the database management. In the current version, we assume that every server
declaring the DIET BLAST service owns the databases used for client requests.
We also want to introduce a generic data partitioning information system into
the DIET architecture to develop an “intelligent” request decomposition plug-in
for the client. This system should be used when the input data of a problem can
be divided into multi-size parts and could benefit other applications that use
DIET as middleware. The last step is to implement a database partition system
acting like mpiBLAST to improve the performance of the single sequence versus
one large database requests.

7.2 Cosmological Simulation with RAMSES and Galics

Ramses
9 is a grid-based hydro solver with adaptive mesh refinement. This code

is used to study large scale structure and galaxy formation: from the early uni-
verse’s structure, the evolution of the position, mass, and velocity of the different
particles is followed until now. The raw data produced by Ramses are then pro-
cessed using the Galics

10 software (HaloMaker, TreeMaker and GalaxyMaker)
9 http://www-dapnia.cea.fr/Phocea/Vie des labos/Ast/

ast sstechnique.php?id ast=904
10 http://galics.iap.fr/

http://www-dapnia.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904
http://www-dapnia.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904
http://galics.iap.fr/

Diet: New Developments and Recent Results 167

to extract the halos of matter (gathering of particles), to build the evolution tree
(how each particle has evolved), and finally to build galaxies.

The experiments are done on the Grid’5000 platform. Ramses is suited for this
platform as it is an MPI code. It is then convenient to use the Diet middleware
to provide a simpler, transparent way of using this cosmological simulator.

The simulation we’re working on is called a zoom simulation, wherein the
goal is to study in detail the evolution of the distribution of dark matter in the
universe. The first part consists of using Ramses on low resolution initial condi-
tions (few particles) to have a global map of the different particle clusters formed
from the primordial universe until now. These data are then post-processed using
HaloMaker, the halos’ descriptions are sent back to the user, who decides which
parts may be interesting to analyze more precisely. The simulation is then rerun
on all these different parts at a higher resolution (lots of particles), and on spe-
cific locations of the universe. The post-processing uses HaloMaker, TreeMaker
and GalaxyMaker sequentially and the final results are sent back to the user for
further interpretation.

The structure of this experiment is divided in three parts: the client who sends
the request and analyzes the data; the servers that run the simulation; and a
database containing the initial conditions. The two parts of the simulation are
basically the same: they run Ramses on initial conditions, post-process the data,
and return them to the client. Therefore, many SeDs capable of managing the
whole simulation may be deployed (each SeD offering two services: one for each
part), allowing Diet to chose the most accurate one at a given time, and bringing
total transparency to the user. The user will only have to send a request through
Diet, which will ask its hierarchy for the service, and run it. The access to the
database will also be transparent, as only the SeDs will have to extract the initial
conditions from it. Data management is one of our concerns as the amount of
transferred data may be large: we may have file sizes up to 1 Gb. We intend
to use the JuxMem

11 software for data management, which provides location
transparency as well as data persistence in a dynamic environment. However,
this part is not yet implemented in our prototype and we still use Diet for
communications between the SeDs and the client, and scp for communications
between the SeD and the database.

8 Conclusion and Future Work

In this paper we have presented the overall architecture of DIET, a scalable
environment for the deployment on the grid of applications based on the Network
Enabled Server paradigm as well as its most recent developments. Like NetSolve
and Ninf, DIET provides an interface to the GridRPC API defined within the
Global Grid Forum.

Our main objective is to improve the scalability of the platform using a dis-
tributed set of agents managing a large set of servers available through the net-
work. By being able to modify the number of schedulers, we are able to ensure
11 http://juxmem.gforge.inria.fr/

http://juxmem.gforge.inria.fr/

168 A. Amar et al.

a level of performance adapted to the characteristics of the platform (number of
clients, number and frequency of requests, performance of the target platform).
The management of the platform is handled by several tools like GoDIET for
the automatic deployment of the different components, LogService for monitor-
ing, and VizDIET for the visualization of the behavior of DIET’s internals.
Scheduling is of course one of the main research issue addressed within our tool.
Thanks to several APIs, we are able to tune the scheduler itself to either best
fit the needs of specific users or to test new heuristics for particular problems.

In our future work we plan to improve the flexibility of the plug-in schedulers,
improve the performance evaluation feature, port new applications, and finally
to test several DIET platforms at a large scale within the Grid’5000 project [11].

References

1. L. Carey A. E. Darling and W. chun Feng. The design, implementation, and
evaluation of mpiblast. In ClusterWorld 2003, 2003.

2. A. Agbaria and J.S. Plank. Design, implementation, and performance of check-
pointing in netsolve. dsn, 00:49, 2000.

3. K. Amin, G. von Laszewski, M. Hategan, N.J. Zaluzec, S. Hampton, and A. Rossi.
GridAnt: A Client-Controllable Grid Workflow System. hicss, 07:70210c, 2004.

4. P. Arbenz, W. Gander, and J. Mori. The Remote Computational System. Parallel
Computing, 23(10):1421–1428, 1997.

5. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi,
and S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science Dept.
Technical Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001.
http://www.cs.utk.edu/netsolve/.

6. D.C. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve Grid
Computing System. Concurrency And Computation: Practice And Experience,
14:1–23, 2002.

7. R.D. Bjornson, A.H. Sherman, S.B. Weston, N. Willard, and J. Wing. Turboblast:
A parallel implementation of blast based on the turbohub process integration ar-
chitecture. In Parallel and Distributed Processing Symposium., Proceedings Inter-
national, IPDPS, pages 183–190. TurboGenomics, Inc., 2002.

8. R. Bolze, E. Caron, F. Desprez, G. Hoesch, and C. Pontvieux. A monitor-
ing and visualization tool and its application for a network enabled server plat-
form. In M. Gavrilova et al., editor, Computational Science and Its Applications -
ICCSA 2006, volume 3984 of LNCS, pages 202–213, Glasgow, UK., 8-11 May 2006.
Springer.

9. R. C. Braun, K. T. Pedretti, T. L. Casavant, T. E. Scheetz, C. L. Birkett, and C. A.
Roberts. Parallelization of local BLAST service on workstation clusters. FGCS,
17(6):745–754, 2001.

10. N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G. Mouni, P. Ney-
ron, and O. Richard. A batch scheduler with high level components. In Cluster
computing and Grid 2005 (CCGrid05), 2005.

11. F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, and O. Richard. Grid’5000:
a large scale, reconfigurable, controlable and monitorable Grid platform. In SC’05:
Proc. The 6th IEEE/ACM International Workshop on Grid Computing Grid’2005,
pages 99–106, Seattle, USA, November 13-14 2005. IEEE/ACM.

http://www.cs.utk.edu/netsolve/

Diet: New Developments and Recent Results 169

12. E. Caron, P. K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical
Network Enabled Server. In The 13th Heterogeneous Computing Workshop (HCW
2004), Santa Fe. New Mexico, April 2004.

13. E. Caron, P. Kaur Chouhan, and H. Dail. Godiet: A deployment tool for distributed
middleware on grid’5000. In IEEE, editor, EXPGRID workshop. Experimental Grid
Testbeds for the Assessment of Large-Scale Distributed Apllications and Tools. In
conjunction with HPDC-15., pages 1–8, Paris, France, June 19th 2006.

14. Eddy Caron and Frédéric Desprez. Diet: A scalable toolbox to build network
enabled servers on the grid. International Journal of High Performance Computing
Applications, 20(3):335–352, 2006.

15. W. Chen, S. Toueg, and M. Kawazoe Aguilera. On the quality of service of failure
detectors. IEEE Transactions on Computing, 51(1):13–32, 2002.

16. P. K. Chouhan, H. Dail, E. Caron, and F. Vivien. Automatic Middleware Deploy-
ment Planning on Clusters. International Journal of High Performance Computing
Applications, 2007. To appear.

17. A. Denis, C. Perez, and T. Priol. Towards high performance CORBA and MPI
middlewares for grid computing. In Craig A. Lee, editor, Proc. of the 2nd Interna-
tional Workshop on Grid Computing, number 2242 in LNCS, pages 14–25, Denver,
Colorado, USA, November 2001. Springer-Verlag.

18. DIET. Distributed Interactive Engineering Toolbox. http://graal.ens-lyon.fr/
DIET.

19. S. Djilali, T. Herault, O. Lodygensky, T. Morlier, G. Fedak, and F. Cappello. Rpc-v:
Toward fault-tolerant rpc for internet connected desktop grids with volatile nodes.
In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 39, Washington, DC, USA, 2004. IEEE Computer Society.

20. A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications: the
simgrid simulation framework. In IEEE Computer Society, editor, 3rd International
Symposium on Cluster Computing and the Grid, page 138. IEEE Computer Society,
May 2003.

21. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration
of UNIX processes in the condor distributed processing system. Technical Report
1346, University of Wisconsin-Madison, 1997.

22. LogService. http://graal.ens-lyon.fr/DIET/logservice.html.
23. D.R. Mathog. Parallel blast on split databases. Bioinformatics, 19(14):1865–1866,

September 2003.
24. S. Matsuoka, H. Nakada, M. Sato, , and S. Sekiguchi. Design Issues of Network

Enabled Server Systems for the Grid, 2000. Grid Forum, Advanced Programming
Models Working Group whitepaper.

25. H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: to-
wards a Global Computing Infrastructure. Future Generation Computing Sys-
tems, Metacomputing Issue, 15(5-6):649–658, 1999. http://ninf.apgrid.org/papers/
papers.shtml.

26. H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The Design and Implemen-
tation of a Fault-Tolerant RPC System: Ninf-C. In Proceeding of HPC Asia 2004,
pages 9–18, 2004.

27. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, R. M. Greenwood, T. Carver, M. R.
Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflow. Bioinformatics, 20(17):3045–3054, nov 2004.

28. J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Transactions
on Parallel and Distributed Systems, 9(10):972–980, 1998.

http://graal.ens-lyon.fr/DIET
http://graal.ens-lyon.fr/DIET
http://graal.ens-lyon.fr/DIET/logservice.html
http://ninf.apgrid.org/papers/papers.shtml
http://ninf.apgrid.org/papers/papers.shtml

170 A. Amar et al.

29. M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a
Metacomputing Environment. In International Workshop on Performance Mod-
eling, Evaluation, and Optimization of Parallel and Distributed Systems (PMEO-
PDS’02), in conjunction with IPDPS’02, Apr 2002.

30. M. Sato, T. Boku, and D. Takahasi. OmniRPC: a Grid RPC System for Parallel
Programming in Cluster and Grid Environment. In Proceedings of CCGrid2003,
pages 206–213, Tokyo, May 2003.

31. K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and
Middleware APIs for GridRPC. In Workshop on Grid Application Programming
Interfaces, In conjunction with GGF12, Brussels, Belgium, September 2004.

32. S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluat-
ing Web Services Based Implementations of GridRPC. In Proceed-
ings of the 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11 2002), pages 237–245, July 2002.
http://matsu-www.is.titech.ac.jp/∼sirasuna/research/hpdc2002/hpdc2002.pdf .

33. G. Singh, E. Deelman, G. Mehta, K. Vahi, M.-H.i Su, G.B. Berriman, J. Good, J.C.
Jacob, D.S. Katz, A. Lazzarini, K. Blackburn, and S. Koranda. The pegasus portal:
web based grid computing. In SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, pages 680–686, New York, NY, USA, 2005. ACM Press.

34. Y. Tanaka, N. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G:
A Reference Implementation of RPC-based Programming Middleware for Grid
Computing. J. of Grid Comput., 1:41–51, 2003.

35. Condor Team. The directed acyclic graph manager. http://www.cs.wisc.edu/
condor/dagman.

36. C. Wang, B.A. Alqaralleh, B.B. Zhou, M. Till, and A.Y. Zomaya. A blast service
built on data indexed overlay network. In e-Science, pages 16–23, 2005.

37. Y. Tanaka and H. Takemiya and H. Nakada and S. Sekiguchi. Design, Implemen-
tation and Performance Evaluation of GridRPC Programming Middleware for a
Large-Scale Computational Grid. In Proceedings of 5th IEEE/ACM International
Workshop on Grid Computing, pages 298–305, 2005.

http://matsu-www.is.titech.ac.jp/~sirasuna/research/hpdc2002/hpdc2002.pdf
http://www.cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/dagman

Execution Support of High Performance
Heterogeneous Component-Based Applications

on the Grid�

Massimo Coppola1,2, Marco Danelutto2, Nicola Tonellotto1,3,
Marco Vanneschi2, and Corrado Zoccolo4

1 Information Science and Technologies Institute, National Research Council
Via G. Moruzzi 1, 56124 Pisa, Italy

2 Computer Science Department, University of Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italy

3 Information Engineering Department, University of Pisa
Via G. Caruso 16, 56122 Pisa, Italy
4 IAC Search & Media Italia S.r.l.
Corso Italia 58, 56100 Pisa, Italy

Abstract. Application deployment is becoming an increasingly hard
task, as complex, component-based Grid applications have to be de-
ployed on heterogeneous and dynamic Grids, interfacing to several dif-
ferent component frameworks and Grid middlewares. We describe the
architecture of the Grid Execution Agent (GEA), the deployment and
resource brokering tool of the Grid.it project. GEA has been designed
to ease the deployment of complex Grid applications written in a high-
level, structured way. To easily handle different component models over
heterogeneous Grid resources, the GEA design exploits multiple levels of
abstraction. Our approach allows consistent translation of the high-level
requirements from heterogeneous, multi-component applications, to low-
level operations over different middlewares. GEA architecture provides a
unified interface with services to locate resources, devise initial mapping,
and instantiate applications, and it is extensible to new component mod-
els. It supports dynamically reconfiguring, self-adapting applications by
allowing execution-time resource allocation changes.

1 Introduction

The vision of Computational Grids set forth at the end of last century is becom-
ing reality, at least from the point of view of the raw capability of coordinating
Grid resources into executing applications. However, standardization of middle-
ware and practical and efficient programming models for the Grid are still to be
� This work has been supported by: the Italian MIUR FIRB Grid.it project, No.

RBNE01KNFP, on High-performance Grid platforms and tools, and the European
CoreGRID NoE (European Research Network on Foundations, Software Infrastruc-
tures and Applications for Large Scale, Distributed, GRID and Peer-to-Peer Tech-
nologies, contract no. IST-2002-004265).

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 171–185, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 M. Coppola et al.

achieved. Thus, the advantages of large Grid computing platforms for several
tasks, including collaborative engineering, data exploration, high-throughput
computing, and of course distributed super-computing, are still hindered by the
difficulty in writing truly portable applications able to exploit dynamic, hetero-
geneous platforms, as well as to integrate legacy code.

While portals and graphical interfaces allow to manage simple applications
and to expose legacy ones as publicly available services, more complex applica-
tions designed to benefit from the nature of the Grid platforms still have to be
developed exploiting direct interaction with Grid middleware.

Beside the efforts spent in developing middleware systems, the tools provided
to deploy and manage the elements of the application do not offer yet a high level
of abstraction. Nowadays, the vast majority of applications exploiting Grids are
structured as bags of independent jobs, or workflows with simple, file-transfer
based interactions.

In the future, complex, multi-disciplinary applications will have to provide an
agreed QoS with respect to their fundamental characteristics, e.g. performance,
fault tolerance, security. In order to support these requirements more complex
and flexible programming models are needed, and applications will have to be
able to dynamically alter the set of resources allocated during the execution,
and to support multiple interaction protocols with resource management mid-
dlewares.

There is general consensus on the adoption of the software component abstrac-
tion to simplify the task of programming high performance and distributed ap-
plications, especially on Grids. Early examples of this trend are the CCA [1] and
GridCCM [2] approaches. Large, international research projects on Grid-aware
component models, like CoreGRID and GridCOMP, are a more recent outcome
of this trend.

Within the Grid.it project we developed the ASSIST [3] structured parallel
programming environment to produce software components, and we addressed in
the runtime tools the problem of composite application deployment on heteroge-
neous clusters and Grid resources. The ASSIST environment also supports mixing
different kinds of components in the same application (Grid.it components, Web
services, CCM). These abilities generate the need to integrate different protocols
in the run-time for communications, resource query and deployment activities.

In this work we describe the architecture of the Grid Execution Agent (GEA),
which provides resource brokering and management functionalities for the AS-
SIST environment. GEA insulates the run-time support of components from the
actual Grid middleware. Preliminary versions of GEA have already been intro-
duced in previous works [4,5].

Our main contribution is the design of a Grid application execution framework
where a very high-level, abstract description of applications, which is based on
software components, is translated into deploy actions using multiple levels of
interpretation. The proposed solution exploits plug-in classes to encode the pe-
culiarities, at the different levels of interpretation, of deployment protocols w.r.t.
component frameworks, computing processes and supporting middlewares.

High Performance Heterogeneous Component-Based Applications 173

The multi-level design of GEA allows easy and seamless configuration of re-
sources and component infrastructures, generally done at run-time, in order
(1) to host components from different frameworks, (2) to host components in-
teracting by means of different middlewares, supporting multi-framework in-
tegration, (3) to add support for user-transparent deployment of applications
on different Grid-middlewares. GEA is thus customizable to support different
high-level abstractions interacting with different existing middlewares, support-
ing HPC Grid applications in large-scale Virtual Organizations, and providing
the functionalities of an Invisible Grid [3].

The rest of this paper is structured as follows. In Sect. 2 we give a general
definition of the Deployment process, with special regard to hierarchical and
component-based applications. In Sect. 3 we discuss related work w.r.t. Grid
deployment. In Sect. 4 we describe the ASSIST programming environment and
the Grid.it component model. In Sect. 5 we discuss the approach to applica-
tion and requirement analysis and translation adopted by GEA, and the overall
architecture of the deployment system that results. In Sect. 6 we sum up our
contributions and illustrate future work directions.

2 Component Deployment in a Multi-middleware
Heterogenous Environment

Our aim is quite general: we want to be able to deploy applications made up
of distributed and parallel components, which can possibly belong to different
component frameworks, over a set of Grid resources that span a Virtual Or-
ganization, possibly encompassing resources managed by different middleware
systems.

According to our approach, the input of the deployment process includes the
application structure, a set of resource requirements (fixed constraints on the
execution of a single process or components), a set of QoS models (analytical
expressions of Quality of Service, relating it to the execution parameters of a
component) and a set of contracts (constraints that the free variables in the ap-
plication or component model shall satisfy). The initial application deployment
will usually involve assembling an overall application QoS model, to balance re-
source allocation, and decomposing global application contracts into contracts
suitable for the single components and modules. Merging contracts and require-
ments for each component with static knowledge about its implementation, we
obtain the information for its initial deployment.

We have to map a non trivial amount of high level information, concerning
application structure, deployment requirements and user-expected QoS into a
large amount of low-level actions about resource reservation and configuration,
process/job mapping and scheduling. Moreover, at run-time more sophisticate
models can be used, leading to dynamic changes to the initial deployment choices.

The general problem almost naturally breaks down into levels corresponding
to levels of abstraction in the application structure (see Fig. 1).

174 M. Coppola et al.

Application

Component
Comp.
Contract

Process

App.
Contract

Unfolding of Hierarchical Components

SLA
Template

Fig. 1. Abstraction layers for component-based applications execution

Application. An application is a hierarchical composition of components inter-
acting through communication patterns. We need to run it on a Grid while
enforcing a user-agreed performance contract, that is a user-dependent spec-
ification of the expected behavior of the application at runtime.

Component. The hierarchical composition of components can be unfolded
until the whole application is “exploded” to a complex graph of atomic com-
ponents. We need a standardized way to convey information about the struc-
ture and characteristics of every component, as well as models of the runtime
behavior of the components and their interactions. Such information is ex-
ploited to characterize every component with its own contract, in order to
select Grid resources that will host the component, deploy it and control its
behavior at runtime.

Process. Each component is made up of several processes (including functional
processes and support services). Every process will need its own mapping
and scheduling over concrete resources. A Service Level Agreement (SLA)
template has to be derived from the component contract for each implemen-
tation process, in order to negotiate an agreement with the Grid resources
and to globally enforce the QoS required by the user. Moreover, to deploy a
component, its processes need to be properly configured to interact.

Middleware. For each single process or job, the Grid middleware used to access
the selected resource (e.g. Globus) will generally need a specific set of actions
in order to successfully deploy the process.

High Performance Heterogeneous Component-Based Applications 175

The deployment activities at each abstraction layer below the first one (com-
ponent, process, middleware) can be arranged in a workflow, that encodes their
dependencies (a partial order over activities), the parameters and the configura-
tion information that each activity needs to transmit to the depending ones.

If we consider each deployment level as the satisfaction of a dependency graph
of actions, the overall application deployment is actually the product of the three
dependency graphs over components, over processes within them, and over Grid
middlewares exploited to access the resources.

To avoid generating large optimization problems, whose solutions would be
anyway approximate, we chose not to unroll and flatten the whole application
deployment to a single dependency graph of elementary activities.

Our approach instead exploits the hierarchical structure of the application to
split the deployment problem into smaller and smaller subproblems. This way
we can more easily devise deployment heuristics to reach good initial resource
mappings, and it is possible to reuse the same deployment system to perform
application adaptation, by deploying locally optimized additional entities (com-
ponents, processes).

3 Related Work

First-generation deployment mechanisms based on Globus [6] can deploy only
sequential jobs and “bag of tasks”, that is parallel “uniform” (SPMD) jobs to be
executed by homogeneous clusters. Condor-G [7] is a typical example of this kind
of approach, as deployment requirements are specified in detail at a very low level
of abstraction. Deployment is defined by elementary actions which depend both
on the application process structure, and on the middleware. Another obstacle to
the aggregation of heterogeneous Grid resources is that Grid middlewares provide
in general different APIs, functionalities and servers for resource location, access
and management.

These are clearly fundamental issues, which we must solve in order to en-
hance support for component-based applications, applications with non-trivial
structure, e.g. exploiting different frameworks and middlewares, and dynam-
ically adaptive applications, which need execution-time reconfiguration and
(re)deployment. A number of systems are currently being developed for the
Grid, which aim at solving the mentioned issues and supporting high-level
programming languages and environments.

Adage [8] is a tool for Grid deployment whose approach is based on the transla-
tion of different kinds of application descriptions, both flat message passing and
component-oriented ones, into a common XML format called GADe (Generic
Application Description). GADe represents an application as a graph of com-
puting entities, each one made up of processes, and each process containing a
set of code entities (components and DLLs). Currently CCM, and MPI trans-
lators have been developed which feed with GADe description the deployment
planning and execution modules of Adage. GridCCM and CCA translators are
in development.

176 M. Coppola et al.

Grid middleware interface in Adage is based on the GAT toolkit [9]. Adage
and GEA share a common approach [10] in adopting a core deployment engine
independent of application and middleware details, and exploiting a high-level
application description language. We differentiate from Adage as our description
language (ALDL) allows applications to mix processes and components from
different frameworks, and can express dynamic adaptive process networks. While
support for automatic translation of descriptions is less developed, GEA can
exploit ALDL to manage coallocation of resources over multiple middlewares
and frameworks.

The Proactive library [11] is a Java-based solution for parallel and distributed
programming. This library provides a programming model and a set of API
to develop complex Grid applications. Parallelism in Proactive applications is
defined by Active Objects, which host application control threads.

To obtain seamless deployment on different runtime environments, Proactive
exploits a descriptor-based approach. The Descriptor Deployment Model [12] of
Proactive is based on three levels of abstraction, (1) Virtual Nodes (VNs) host-
ing the application specific Active Objects, (2) Java Virtual Machines (JVMs),
hosting the application runtime environment, (3) processes, to create and/or
acquire JVMs. Virtual nodes are defined in the application code. They are pos-
sibly replicated, and instantiated (as Nodes) to run on actual JVMs. JVMs are
recruited exploiting information provided by processes.

These mappings are coded in XML Deployment Descriptors, with the target of
completely abstracting away from each other the hardware and software runtime
configuration, and decoupling application logic from deployment logic.

The approach results in a highly configurable deployment mechanism, which
can start new JVMs as needed on local and remote resources. Configuration is
left to the Proactive runtime, avoiding any reference to concrete resources in
the application code. The drawbacks, and main differences with respect to GEA
approach, are that it is difficult to extend the approach to non-Java components,
that mapping of application objects to resources is not automatic, and that a
first mapping step has to be performed by the user in designing the application,
by specifying the mapping of Active Objects to Virtual Nodes.

On the contrary, GEA’s Virtual Nodes represent compiler-generated sets of
processes, which are not related to the programmer’s view of the application,
but whose existence is suggested by the implementation of the run-time support.

To the best of our knowledge, KOALA [13] is the only other high-level tool to
provide extensive support for coallocation over Grids. KOALA manages reser-
vation and deployment of multi-job applications over the Grid. The job model
in KOALA is an executable to be run over a specified number of nodes, taking
as input a single data file. The Grid model consists of a set of clusters with
homogeneous nodes, interconnected by a known network and each one managed
by a compatible local resource manager. These assumptions allow to develop
algorithms for multi-site job scheduling taking into account problem parameters
like job sizes, input data sizes, available resource loads, network transfer band-
widths and job priority. With respect to KOALA, GEA is less integrated with

High Performance Heterogeneous Component-Based Applications 177

resource reservation mechanisms, and it would need more complex job scheduling
algorithms to find optimal allocation, due to the Grid model adopted. Never-
theless, GEA can deal with much more detailed resource constraints, allowing
to exploit a much more heterogeneous Grid and to satisfy compiler-generated
resource requirements in a dynamically evolving environment.

4 The ASSIST Environment Architecture

ASSIST is a high-level parallel programming environment: it provides a struc-
tured parallel programming language and a compiler to develop QoS enabled
parallel components [3,14]. Basically, applications are described by means of a
coordination language, which can express arbitrary graphs of (possibly) parallel
modules, which are the basic structural units of applications. ASSIST modules
are interconnected by typed streams of data, host portions of sequential code
(C, C++, Fortran) and can explicitly define even complex parallel semantics at
the module level.

A parallel module (parmod) coordinates a set of concurrent activities which
are performed by Virtual Processes (VPs). We do not fully describe here the AS-
SIST parallel coordination language [15] or its implementation, we only underline
that parmods allow to express parallel computations which are reconfigurable
during execution. User-defined code sections within the VPs are seen as the set of
atomic computations in the application by the reconfiguration run-time support.

The environment is designed to allow execution of parallel programs over
resources that are heterogeneous w.r.t. many characteristics, including CPU ar-
chitecture, operating system and middleware interface. The compiling tools can
also generate Grid.it components containing ASSIST code as well as alien soft-
ware resources (e.g. software components from other frameworks).

ASSIST/Grid.it components [3] are graphs of modules that are explicitly de-
clared as deployment units, and export information and control ports to allow
coordinated execution of several of them. Grid.it Components expose, among
others, Non-Functional ports related to QoS control. As shown in Fig. 2a, Grid.it
native components have a sophisticated internal structure, including different
classes of processes devoted to application execution and run-time support,

(1) computational processes (ASSIST processes in the figure),
(2) processes supporting the shared memory abstraction (HOC processes),
(3) manager processes implementing autonomic component behavior (CAM

and DCServer), i.e. steering and managing adaptation at the component
level,

(4) proxy processes allowing inter-component communication (component
bridges).

To deploy even a single component, a workflow of deployment actions is needed,
of which we show an example in Fig. 2b. Moreover, Grid.it native component
can interoperate with Corba/CCM ones (via IIOP-based RPC) [16] and with
Web Services (via HTTP/SOAP) [17], forming composite, multi-framework ap-
plications. Whether a wrapping approach is adopted, or component bridges

178 M. Coppola et al.

bridge

ASSIST
processes

HOC
processes

DCserverCAM

Functional Interfaces

Non−Functional
Interfaces

Component
bridge

Component

(a) The Grid.it distributed component model
implementation as a set of processes.

Component
Bridge

HOC master

HOC
slaves

HOC

ASSIST
processes

DC Server
CAM

Application

(b) Dependencies at the compo-
nent level among sets of processes.

Fig. 2. Process structure of a typical Grid.it component, and example of the deploy-
ment dependencies among it composing processes

are created, the overall deployment gets more complex. Running such a multi-
framework application requires the ability to devise and set up proper support
processes for any combination of resource, supporting middleware and supported
component framework.

Super-component have been introduced in [18] to describe higher-order compo-
nents, which can manage parametric graphs of arbitrary components according to
a parallel skeleton (i.e. well-known, parametric pattern of parallelism). They pro-
vide a fully compositional structure for self-managing Grid applications.

Super-components interact with the resource management and deployment
system to manage the life-cycle of their controlled components, and coordinate
their overall dynamic reconfiguration. To accomplish this task, they leverage on
a compositional self-adapting infrastructure, and on suitable behavioral models
corresponding to the parallel skeletons the specific super-component implements.

At any moment during an ASSIST application run, modules and components
can be assigned a new QoS contract, e.g. specifying a performance, security
or fault tolerance requirement. In order to fulfill the contracts, the component
framework continuously adapts component configurations, in terms of paral-
lelism degree, and process mapping [19]. This means having a progressive, dy-
namic deployment process where portions of the application are re-deployed
in order to meet a specific QoS target.

The adaptation mechanism relies on automatic user code instrumentation,
and on a hierarchy of Application Managers [3] exploiting knowledge about
the application structure and the run-time implementation. The hierarchy of
managers operating at different levels in the application structure is reflected
in the connections among the Non-functional ports of modules, components,
and super-components. Eventually, the whole execution is steered by the top-
level Application Manager (AM) component. Semantics and protocols of these

High Performance Heterogeneous Component-Based Applications 179

interactions are out of the scope of the paper, but we point out that some dy-
namic effects of resource management have non-local impact which need proper
handling in the management hierarchy (e.g. load balancing may need computing
resources in excess to be re-allocated to some seemingly unrelated part of the
application).

From the ASSIST point of view, the GEA is a component of the environ-
ment run-time support, the Grid Abstract Machine, as it manages the resource
allocation at all levels. ASSIST super-component managers leverage the GEA
when deploying new component(s), and the component and module run-time
support for reconfiguration (CAM and MAM entities) can contact GEA when-
ever resources are needed to spawn new processes in order to satisfy performance
contracts at the module level.

As a final remark, compositional, hierarchical component models (e.g. an im-
plementation of Fractal in Java or C++) also need an algorithmic way to break
down the overall application description into the set of descriptions of its compo-
nents, and in particular to project the application QoS specification over
that of components, in order to find appropriate resources to deploy each
component. This phase of “requirement unfolding” can happen outside of, or as
part of the deployment workflow. Current approach in Grid.it exploits the model
embedded in super-components. Transformation from application to component-
level requirements is recursively performed by the Application Manager, which
directly controls the unfolding step of deployment. As a different approach, a
compositional performance model for launch-time mapping has also been devel-
oped [20], which is suitable to devise a good initial resource allocation and speed
up the deployment of the whole application. Such a model can be produced and
evaluated during deployment, for instance implementing it within a particular
Component Translation Engine Plug-in (see Sect. 5.2).

5 Grid Execution Agent Design

The Grid Execution Agent (GEA) is the automatic tool developed within the
Grid.it project to seamlessly search resources for, deploy, and run complex
component-based Grid applications. The ASSIST/Grid.it environment targets
high-performance, data/computation intensive, and distributed applications.
GEA is designed to be a high-level resource management system, handling all
the low-level interaction with multiple Grid middlewares and with the code
providing dynamic adaptation. The Core of the Deployment cycle, as shown
in Fig. 3 in the inner box, follows the outline presented in [4]. We recall it
in short in the next section, before discussing its extension to a dynamic and
multi-middleware scenario.

5.1 Core Deployment Cycle

The input of the cycle is a description of the entities to deploy in a general
format, the Application Level Description Language (ALDL). This XML dialect
can encode the requirements for all the deployment entities, ranging from high

180 M. Coppola et al.

level performance specifications for components to concrete constraints on target
architectures for processes.

ALDL descriptions contain different types of information:

– static resource constraints and dynamic constraints – e.g. constraints related
to quantities that do not vary over time, like peak performance of a resource,
as opposed to those related to varying features, like available computation
bandwidth, which depends on resource load.

– hardware and software constraints – expressing the specific need of architec-
tures, operating systems, support or application libraries to be available to
an entity at its execution site.

– aggregate constraints – specifying constraints on groups of entities. Most
notably, constraints over communication networks (security, reachability)
and over sets of processes which employ specific common resources or launch
protocols (e.g. name services or fault-tolerant communication schemes).

GEA, starting from the ALDL description, automatically performs resource
discovery and selection, handles data and executable file transfers. Different GEA
modules perform successive steps of translation of high-level specifications into
deploy actions.

1. The ALDL description is parsed and an internal representation of the graph
of tasks is generated, annotated with specific requirements and constraints.

2. From the internal representation, resource queries are computed, which aim
at locating a set of resources satisfying all the static constraints.

3. Resource queries are executed exploiting the middleware.
4. A subset of the resources is selected, also exploiting information related to

dynamic constraints.
5. The graph of processes is mapped over the resources. This can result in

mapping cooperating entities over independently managed resources, thus
triggering coallocation in the following phase.

6. Finally, each entity is executed on the corresponding resource through the
middleware. This means e.g. staging and executing process code, configuring
its execution environment, or deploying a specific network configuration to
ensure a stated goal of communication QoS.

Actually, the discovery and mapping phases can loop until a set of resources is
found that allow to map the whole entity according to its execution constraints.
As a result of the deployment process, different parts of the ALDL description
are filtered, instantiated and translated into the appropriate forms to be enacted
on the middleware used by each part of the Grid computing platform.

5.2 A Modular Multi-middleware Architecture

The core cycle described in the previous section deploys applications over a
heterogeneous Grid, can exploit different middleware to access resources, but it
coordinates them in the execution of a single program.

High Performance Heterogeneous Component-Based Applications 181

Res. Config + Staging

Resource Selection

Resource Location

Core Deployment CycleGEA

Architecture

HTTP
Web Service

plain TCP

Execution

Process Translation Plug−in

M
id

d
le

w
a

re
 P

lu
g

−i
n

Monitoring

Process Mapping

Process Translation Plug−in

Process Translation Plug−in

ALDL Parser

Command Parser

Component Translation Engine Plug−In

D
e

p
lo

ym
e

nt
W

o
rk

flo
w

Channel Adaptor

Whiteboard System with Event−Oriented Interface

Fig. 3. GEA high-level architecture

As ASSIST was being developed into a component model, additional require-
ments were put onto GEA.

Separate/Dynamic Deployment. Applications are made up of multiple
components, and components are separate units of deployment. GEA has
to fully behave like a server, allowing to launch multiple components (even-
tually from different applications) and to manage each one separately over
possibly overlapping portions of the Grid.

Dynamic adaptation. Grid.it components can ask for and free resources (e.g.
processing nodes) at run-time, so they need access to deployment functions.

Access Protocols. GEA functionalities have to be accessible through different
protocols (plain TCP sockets, HTTP, Web Services), in order to exploit them
easily across the Grid.

Flexibility w.r.t. Component Models. Grid.it applications can exploit
components and services from other frameworks (CCM, Web Services),
which need to be deployed and accessed with their own protocols. Moreover,
it is a key feature to ease experimentation with various implementations of
a component model.

Higher Scalability. Provision to the user of a single point of access to the
whole Grid must not bring unneeded centralization and impair deployment
scalability.

Crossing of Domain Boundaries. GEA should be able to operate at the
boundary of a network and provide to the outside a unified access abstrac-
tion, independently of any Grid middleware present within the network.

182 M. Coppola et al.

The resulting extended architecture in Fig. 3 takes into account all these issues
and builds upon the core cycle used in the first design of GEA. It plans and enacts
the deployment workflow of Grid.it components, starting in the proper order the
server processes and service daemons needed by any component, as well as the
processes actually performing the computation.

A key point is that, to provide flexibility in experimenting with component
models, types of processes and diverse middlewares, GEA has been extended
via plug-in classes that implement different component setup workflows, process
launch protocols and interfaces to middleware primitives.

Channel Adaptor. A channel adaptor module is used in GEA to support mul-
tiple input protocols and control interfaces. For instance, the GEA server in-
teracts with the CAM component manager via TCP, with the user through
a set of command-line tools, provides Web Services / HTTP as a standard
interface. Authorization mechanisms (e.g. local or GSI authentication) can
be used to restrain the access to some of the adaptors, and, as different in-
terfaces can expose only part of the full set of GEA commands, to provide
different authorization levels.

Command Parser. The GEA command parser supports commands to man-
age the life-cycle of deployed entities (from providing them in archival form,
to monitoring their termination) and to control the configuration of the
GEA server. provide components in form of archives, to deploy component
instances, to dynamically add new resources, to monitor component termina-
tion, to quit the GEA server or to reload its static configuration information
(e.g. addresses of dynamic Grid information services). The command parser
is also in charge of managing multiple sessions: each component’s ALDL is
kept linked to a session identifier, which is a handle to monitor and steer
the component deployment and the set of allocated resources. The ALDL
representation of each component must be kept (1) to allow caching of com-
ponent archives and easily instantiate multiple copies of a component, (2) to
simplify handling of dynamic adaptation, as we can deploy additional pro-
cesses within a component by referring to their identifiers in the component
description. The parser manages multiple command session and internally
caches ALDL representation of components, in order to ease creating multi-
ple instances of a component, and to allow partial redeployment of a running
component.

ALDL Parser. The ALDL parser has been extended (w.r.t. [4]) to allow ex-
pressing explicit co-allocation and superposition of processes. A concept of
virtual node is used (close to that of Proactive) which is the abstraction
of a physical resource. Processes of different types are mapped to virtual
nodes, which are the units of low-level resource mapping. In order to sub-
sequently map virtual nodes on resources, process constraints are gathered
and summed up with the proper aggregation function (e.g. sum, for memory
requirements, union, for requirements over available libraries, and so on).

Component Translation Engine. The Component Translation Engine
is actually the highest level plug-in, transforming a component ALDL

High Performance Heterogeneous Component-Based Applications 183

specification into a network of process dependencies. The deployment work-
flow, hard-coded as a Java class in the plug-in, fulfills the dependency graph
among different types of processes in a given component model,

Process Translation Plug-in. Process Translation Plug-ins are a set of mid-
level translator classes, associated with the types of processes we need to
start. Each of these plug-ins can add special constraints over the resources
to select (e.g. having a public IP address), it can exploit information from
previously configured/deployed processes and service daemons, and it knows
the protocols to configure and deploy one type of processes (e.g. ASSIST
DCserver and ASSIST application processes). Translated requirements of all
processes within a component are produced by the appropriate plug-ins,
before starting the actual deployment process.

Core Deployment Cycle. As reported, the core deployment cycle has been
adapted from the previous GEA architecture, with all requirements gath-
ered from all virtual nodes first, and then satisfied all at the same time as
described in Sect. 5.1. The actual deploy order of processes (configuration,
staging and execution phases) in governed by the dependencies explicitly
introduced by the Component Engine and Process Translation plug-ins.

Middleware Plug-in. This is a low-level set of classes, one for each middle-
ware supported, exposing a set of primitives for the basic operations of all
the steps defined in the Core Deployment Cycle (resource location, selection,
mapping, staging and so on). Existing plug-ins support Globus managed re-
sources (using MDS as information repository), as well as SSL-based access
to clusters and local networks (XML static configuration files are used in
place of MDS). In some cases GEA extends the functionalities of the mid-
dleware, e.g. to provide status monitoring for resources accessed via simple
SSL.

Event System and GEA Whiteboard. A communication module is used as
a scratch-pad interface to allow uniform parameter management to plug-ins
of all levels. Different process types and different instances within a compo-
nent in general need to exchange and propagate synchronization informa-
tion, service addresses and other execution parameters (e.g. CCM processes
are run after their naming service is known and it is up). The whiteboard
implementation manages several kinds of events (TCP and HTTP commu-
nications, process termination, monitoring information) and uses them to
trigger deployment dependencies by means of callback functions that notify
registered plug-ins.

6 Conclusion and Future Work

We have presented the architecture of the GEA deployment tool developed
within the Grid.it project. The presented extension to the deployment cycle
developed in the previous implementation [4] allows greater flexibility and easier
customization of the application model, with respect to the types of component
we can actually deploy. The ASSIST application model, the Grid.it component

184 M. Coppola et al.

model and the launch and configuration procedures for component support ele-
ments are all boxed into separate plug-ins.

We are currently working on the integration of different component and ap-
plication models within GEA, including CCM components and Web Services
(within the Grid.it project) and POP C++ applications (within the CoreGRID
NoE). The new implementation matches with the extensions of the ALDL lan-
guage, which we just mentioned in this work, to cope with new mapping con-
straints and with contract specifications.

Currently, we are still working on the ALDL language to improve expres-
siveness w.r.t. QoS contract specification for applications and components. A
technique that allows to derive component constraints from application ones has
already been devised [20], which can be used to develop a Component Transla-
tion Plug-in to deal with a fully hierarchical component model (e.g. Fractal) to
devise an optimal initial application mapping starting from the ALDL specifica-
tion and the description of the available resources.

Both the implementation of a hierarchy of GEA servers for distributed deploy-
ment, and of more scalable deploy protocols for very large Grids, are in our future
plans. We have made preliminary experiments in this direction, exploiting hier-
archical and distributed communication schemes in overlay networks of servers.
We are going to exploit the flexibility of the GEA architecture to integrate these
prototypes as a new channel adaptor and dedicated low-level plug-ins.

References

1. Armstrong, R., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., Smolinski,
B.: Toward a common component architecture for high-performance scientific com-
puting. In: 8th IEEE International Symposium on High-Performance Distributed
Computing. (1999)

2. Pérez, C., Priol, T., Ribes, A.: A parallel CORBA component model for numerical
code coupling. In: GRID 2002 : Third International Workshop, Springer (2002)

3. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,
Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance Grid
programming in Grid.it. In: Proc. of the Workshop on Component Models and
Systems for Grid Applications. CoreGRID series. Springer (2005)

4. Danelutto, M., Vanneschi, M., Zoccolo, C., Tonellotto, N., Baraglia, R., Fagni, T.,
Laforenza, D., Paccosi, A.: HPC Application Execution on Grids. In Getov, V.,
Laforenza, D., Reinefeld, A., eds.: Future Generation Grids. CoreGRID. Springer
(2006) Dagstuhl Seminar 04451 – Nov. 2004.

5. Adami, D., Giordano, S., Repeti, M., Coppola, M., aforenza, D.L., Tonellotto,
N.: Design and Implementation of a Grid Network-Aware Resource Br oker.
In Fahringer, T., ed.: Parallel and Distributed Computing and Networking 2006.
ACTA Press (2006)

6. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Int. J. of
Supercomputer Applications and High Performance Computing 11 (1997) 115–128

7. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids. In: Proceedings of the
10th IEEE Symp. on High Performance Distributed Computing (HPDC10), San
Francisco, California, IEEE (2001)

High Performance Heterogeneous Component-Based Applications 185

8. Lacour, S., Pérez, C., Priol, T.: Generic application description model: Toward au-
tomatic deployment of applications on computational grids. In: 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid2005), Seattle, WA, USA, Springer-
Verlag (2005)

9. Allen, G., et al.: Enabling Applications on the Grid – A GridLab Overview. In-
ternational Journal of High Performance Computing Applications 17 (2003) 449 –
466 Special issue on Grid Computing: Infrastructure and Applications.

10. Coppola, M., Danelutto, M., Lacour, S., Pérez, C., Priol, T., Tonellotto, N., Zoc-
colo, C.: Towards a Common Deployment Model for Grid systems. To appear in
CoreGRID series. (2005)

11. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer-Verlag (2006)

12. Baude, F., Caromel, D., Mestre, L., Huet, F., Vayssière, J.: Interactive and
descriptor-based deployment of object-oriented grid applications. In: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, Edinburgh, Scotland, IEEE Computer Society (2002) 93–102

13. Mohamed, H., Epema, D.: The Design and Implementation of the KOALA Co-
allocating Grid Scheduler. In Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld,
A., Bubak, M., eds.: Advances in Grid Computing - EGC 2005: European Grid
Conference. Volume 3470 of LNCS. (2005) 640–650

14. Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M.V., Zoccolo, C.: ASSIST
as a research framework for high-performance Grid programming environments. In
Cunha, J.C., Rana, O.F., eds.: Grid Computing: Software environments and Tools.
Springer (2005) 1–32 (To appear, draft available as TR-04-09, Dept. of Computer
Science, University of Pisa, Italy, 2004).

15. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709–1732

16. Magini, S., Pesciullesi, P., Zoccolo, C.: Parallel software interoperability by means of
CORBA in the ASSIST programming environment. In: Kosch, H., Böszörmeny, L.,
Hellwagner, H.(eds.) Euro-Par 2003. LNCS, vol. 3648, pp. 679–688. Springer, Hei-
delberg (2004)

17. Aldinucci, M., Danelutto, M., Paternesi, A., Ravazzolo, R., Vanneschi, M.: Building
interoperable grid-aware ASSIST applications via WebServi ces. In: PARCO 2005:
Parallel Computing, Malaga, Spain (2005)

18. Aldinucci, M., Bertolli, C., Campa, S., Coppola, M., Vanneschi, M., Veraldi, L.,
Zoccolo, C.: Self-Configuring and Self-Optimising Grid Components in the GCM
model and their ASSIST Implementation. In: Joint Workshop on HPC Grid Pro-
gramming Environments and Components (HPC-GECO/CompFrame). (2006)

19. Aldinucci, M., Petrocelli, A., Pistoletti, E., Torquati, M., Vanneschi, M., Veraldi,
L., Zoccolo, C.: Dynamic reconfiguration of grid-aware applications in ASSIST.
In Cunha, J.C., Medeiros, P.D., eds.: 11th Intl Euro-Par: Parallel and Distributed
Computing. Volume 3648 of LNCS., Lisboa, Portugal, Springer (2005) 771–781

20. Tonellotto, N., Zoccolo, C.: Characterization of the performance of ASSIST pro-
grams. Technical Report TR-0007, CoreGRID - Network of Excellence (2005)

Towards a Grid Information Knowledge Base�

Wei Xing1, Marios D. Dikaiakos1, and Rizos Sakellariou2

1 Department of Computer Science, University of Cyprus, Cyprus
2 School of Computer Science, University of Manchester, UK
xing@ucy.ac.cy, mdd@ucy.ac.cy, rizos@cs.man.ac.uk

Abstract. In this paper, we present our work on building a Grid infor-
mation knowledge base, which is a key component of a semantic Grid
information system. A Core Grid Ontology (CGO) is developed for build-
ing a Grid knowledge base; and the SPARQL query language is adopted
to query the knowledge base.

1 Introduction

Information Services are regarded as a vital component of the Grid infrastruc-
ture. They address the problem of the discovery and ongoing monitoring of the
existence and characteristics of resources, services, computations and other enti-
ties of value to the Grid [1]. As Grids grow larger and gain widespread use, there
is an increasing need for Grid information systems to support complex queries,
such as:

1. Is there a VO providing exclusive access to a shared-memory multiprocessor
system with at least 16 processor, 8 GB of main memory, and a usage charge
of not more than 100 euros per CPU time?

2. Find services running Quantum Chromo-Dynamics calculations (QCD) us-
ing F90 and MPI?

3. Locate Grid-sites that offer access to a LAPACK software library installed
on a shared-memory multiprocessor with 16 to 64 processors?

4. Find the pricing and prior clientele of Grid service that provide access to the
XYZ workflow for real-time oil refinery simulations?

However currently no information system can answer the above queries. The
main problem of the existing information systems (e.g. MDS, RGMA, BDII) is
that they are actually designed and developed for providing particular informa-
tion to specific Grid sub-systems [2]. For instance, MDS of Globus is designed
and developed to support resource discovery; BDII of LCG is used mainly for
job scheduling. This makes them not adequate to provide information about
whole aspects of Grid systems, such as Grid entities, capability of Grids, Grid
resources, Grid middleware, Grid services, Grid applications, and Grid users.

� Work supported in part by the European Commission under the CoreGrid project.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 186–190, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards a Grid Information Knowledge Base 187

In brief, the main limitations of those systems are: (1) limitations on absorb-
ing heterogeneous information sources; (2) inadequate in supporting information
management, retrieval, and sharing in a large-scale multi-Grid systems.

To tackle these issues, we propose a semantic approach, which builds Grid in-
formation knowledge bases for Gris information services. The knowledge bases
contain semantic metadata of Grid entities, resources, middleware, services,
applications, and users. In this paper, we present the work of building a Grid in-
formation knowledge base. By using a Core Grid Ontology, we propose a ontology-
driven method to create a Grid knowledge base [3]. We also adopt SPARQL query
language to support the complex query to the Grid knowledge base [4].

The remaining of this paper is organized as follows. In Section 2, we describe
the Core Grid Ontology. In Section 3, we introduce our work of building a Grid
information knowledge base. Then, we describe how to query the knowledge base
using SPARQL in Section 4. Finally, we conclude our work in Section 5.

2 A Core Grid Ontology Framework

The main issue is how to build, update and manage the Grid knowledge base.
A Grid knowledge base may be built based on Grid ontologies, which define
fundamental Grid-specific concepts, and the relationships between them. Hence,
a Grid ontology is needed in order to build a Grid knowledge base. The main
problem for building an ontology for Grids is that there is currently a multitude
of proposed Grid architectures and Grid implementations, which are comprised
Grid entities, services, components, and applications. It is thus very difficult, if
at all feasible, to develop a complete Grid ontology that will include all aspects of
Grids. Furthermore, different Grid sub-domains, such as Grid resource discovery
and Grid job scheduling, normally have different views of, or interests about a
Grid entity and its properties. This makes the definition of Grid entities and
the relationships between them very hard. To tackle these issues, we propose
a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts,
and relationships. One of our main goals was to make this Core Grid Ontology
general enough and easily extensible to be used by different Grid architectures or
Grid middleware, so that the CGO can provide a common basis for representing
Grid knowledge about Grid systems, including resources, middleware, services,
applications.

A Core Grid Ontology (CGO) is proposed to define fundamental Grid-specific
concepts, and the relationships between them. One of the key goals is to make
this Core Grid Ontology general enough and easily extensible to be used by
different Grid architectures or Grid middleware, so that the CGO can provide
a common basis for representing Grid knowledge about Grid systems, including
Grid resources, Grid middleware, services, applications, and Grid users.

The Core Grid Ontology is designed and developed based on a general model
of Grid infrastructures, and described in the Web Ontology Language OWL [3].
Such an ontology can play an important role in building Grid-related Knowledge

188 W. Xing, M.D. Dikaiakos, and R. Sakellariou

bases and in supporting the realization of the Semantic Grid. We adopt the CGO
as the key building block for the GriSen. It is used for both the creation of a
Grid knowledge base and knowledge-based query.

3 Building a Grid Knowledge Base Using CGO

A Grid knowledge base is normally comprised of a set of Grid Ontology classes,
the relationships and constraints among those ontology classes, and instances
of the classes (i.e. Individuals). In reality, the knowledge base may contain a
large number of instances of different CGO classes. To build a Grid knowledge
base, creation and updating of the instances of the Grid knowledge base is most
important and difficult work. Traditionally, the instances of a knowledge base
are created by a manual process with ontology editor. However, the manual
process to build and maintain the instances is impossible or difficult for a Grid
system. First of all, Grids contain large number of different Grid entities. Hence,
the number of their instances is large. It is impossible to generate those in-
stances manually. Secondly, Grids are characterized as dynamic. Consequently,
the metadata information about them is also changed frequently. To catch up
those changes by hand is very difficult. To cope with these issues, we design an
ontology-driven approach that can fetch the information from grid information
sources, and represent heterogeneous information about Grids in OWL format.

4 Querying a Grid Knowledge Base

Another important consideration is how to query the Grid knowledge base. Grids
are complicate distributed system, which may comprise of a set of interacted
components and massive heterogeneous resources. Hence, a Grid user normally
does not know exactly what to ask about to the Grid knowledge base. To this
end, we design a ontology based query service that supports Grid information
navigation based on the definitions and relationships of the Grid entities in
the CGO. It can process user requests, and generate queries according to the
knowledge of CGO and users’ willing.

We adopt the SPARQL as the query language to query the metadata in the
Grid knowledge base [4]. SPARQL is a query language for getting information
from RDF graphs. It provides facilities to: 1) extract information in the form
of URIs, blank nodes, plain and typed literals; 2) extract RDF sub-graphs; 3)
construct new RDF graphs based on information in the queries graphs.

The SPARQL query language is based on matching graph patterns. The sim-
plest graph pattern is the triple pattern, which is like an RDF triple , but with
the possibility of a variable instead of an RDF term in the subject, predicate or
object positions. The query consists of two parts, the SELECT clause and the
WHERE clause. The SELECT clause identifies the variables to appear in the
query results, and the WHERE clause has one triple pattern.

Towards a Grid Information Knowledge Base 189

We design a OntoQuery service, which can help users make a SPARQL query
according to user’s questions. We illustrate how to query Grid knowledge base
using SPARQL with examples as follows:

(1) Is there a VO providing exclusive access to a shared-memory
multiprocessor system with at least 16 processors, 8 GB of main
memory, and a usage charge of not more than 100 euros per CPU
time?

PREFIX cgo: <http://grisen.grid.ucy.ac.cy/cgo/0.1/>
FROM <grisen.owl>
SELECT ?VO
WHERE { ?x cgo:hasName ?VO .

OPTIONAL { ?x cgo:hasCPUnum ?number . FILTER (?number > 64)}
OPTIONAL { ?x cgo:hasCPUType ? . FILTER (?number > 8)}
OPTIONAL { ?x cgo:price ?price . FILTER (?price =< 100)}

(2) Find services running Quantum Chromo-Dynamics calculations (QCD)
using F90 and MPI.

PREFIX cgo: <http://grisen.grid.ucy.ac.cy/cgo/0.1/>
FROM <grisen.owl>
SELECT ?Service
WHERE { ?x cgo:runningService ?service .

OPTIONAL { ?x cgo:hasName "QCD" .
?y cgo:installedOn .
?z cgo:hostsSoftware . }

(3) Find the pricing and prior clientelle of Grid services that
provide access to the XYZ workflow for real-time oil refinery
simulations.

PREFIX cgo: <http://grisen.grid.ucy.ac.cy/cgo/0.1/>
FROM <grisen.owl>
SELECT ?Service ?Workflow
WHERE { ?x cgo:runsOn ?service .

OPTIONAL { ?x cgo:hasName "PPC" . }
UNION { ?y cgo:access ?Workflow .
OPTIONAL { ?z cgo:hasName ‘‘XYZ’’ .

?s cgo:simulation ‘‘Oil’’ .}
}

The above examples show that the SPARQL is capable of querying a Grid
system, in particular, supporting complex queries about “the particular proper-
ties&values of the Grid entities”. Since SPARQL is a RDF-based query language,
we currently also investigate how it can be used to query the complicate rela-
tionships among the CGO classes which are represented in OWL.

5 Conclusions

In this paper, we present our on-going work on building a Grid Information
knowledge base, and querying the knowledge of Grid resources, Grid middleware,
services, applications, and Grid users based on a Core Grid Ontology.

Next step, we plan to implement a set of Grid services that can be used to build
and update a Grid information knowledge base automatically and dynamically.

190 W. Xing, M.D. Dikaiakos, and R. Sakellariou

References

1. M. D. Dikaiakos, R. Sakellariou, and Y. Ioannidis, “Information Services for Large-
scale Grids: A Case for a Grid Search Engine,” in Engineering the Grid: status
and perspective, J. Dongarra, H. Zima, A. Hoisie, L. Yang, and B. DiMartino, Eds.
American Scientific Publishers, January 2006.

2. S. Campana and A. S. M. Litmaath, “LCG-2 Middleware Overview,” LCG Technical
Document, https://edms.cern.ch/file/498079//LCG-mw.pdf.

3. W. Xing, M. Dikaiakos, and R. Sakellariou, “A Core Grid Ontology for the Semantic
Grid,” in Proceedings of 6th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2006). Singapore: IEEE Computer Society., May 2006, pp.
178–184.

4. E. Prud’hommeaux and A. Seaborne, SPARQL Query Language for RDF, W3C
Working Draft, July 2005.

UNICORE Summit 2006

Introduction

Achim Streit and Wolfgang Ziegler

Workshop Chairs

The UNICORE Grid technology provides a seamless, secure, and intuitive ac-
cess to distributed Grid resources. UNICORE is a full-grown and well-tested
Grid middleware system, which today is used in daily production worldwide.
Beyond this production usage, the UNICORE technology serves as a solid basis
in many European and International projects. In order to foster these ongo-
ing developments, UNICORE is available as open source under BSD licence at
http://www.unicore.eu.

The UNICORE Summit is a unique opportunity for Grid users, developers,
administrators, researchers, and service providers to meet. The first UNICORE
Summit was held in conjunction with “Grids@work - 2nd Grid Plugtests,” Octo-
ber 11–12, 2005 in Sophia Antipolis, France. In 2006 the style of the UNICORE
Summit was changed by establishing a Program Committee and publishing a
Call for Papers. The UNICORE Summit 2006 was held in conjunction with the
Euro-Par 2006 conference in Dresden, Germany, August 30–31, 2006. Although
it was a workshop at the Euro-Par 2006 conference, all papers were conference-
reviewed by at least four members of the Program Committee. The acceptance
rate was 38%.

We would like to thank the Program Committee members Agnes Ansari, Rosa
Badia, John Brooke, Anton Fank, Edgar Gabriel, Alfred Geiger, Odej Kao, Paolo
Malfetti, Ralf Ratering, Johannes Reetz, Mathilde Romberg, Bernd Schuller,
Dave Snelling, Stefan Wesner, and Ramin Yahyapour for their excellent job.
Special thanks go to Graham Fagg and Björn Hagemeier for providing additional
reviews.

Finally, we would like to thank all authors for their submissions, camera-ready
versions, and presentations at the UNICORE Summit 2006 in Dresden as well
as Dave Snelling for giving the opening talk.

The next UNICORE Summit will again take place in conjunction with the
Euro-Par conference, this time in Rennes, France, on August 28, 2007. More in-
formation can be found at http://summit.unicore.org/2007/. We are looking
forward to the next UNICORE Summit!

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, p. 193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Versatile Execution Management System for
Next-Generation UNICORE Grids

Bernd Schuller, Roger Menday, and Achim Streit

Research Center Jülich, Central Institute for Applied Mathematics, Jülich, Germany
{b.schuller,r.menday,a.streit}@fz-juelich.de

Abstract. This paper builds on extensive experience with the UNI-
CORE middleware to derive requirements for the next generation of Grid
execution management systems. We present some well-known architec-
tural ideas and design principles that allow building Grid servers that
are adaptable to any type of target systems, from single workstations or
PCs to huge supercomputers, and flexible enough for the novel usage sce-
narios and business models that are coming up in next-generation Grid
systems. These ideas are used to implement an execution management
system similar in scope to the UNICORE NJS.

1 Introduction

Compute resources available in present-day Grids range from small systems, such
as single PCs, to very large systems such as supercomputers (for example in the
DEISA project [1]) or PC farms as in EGEE[2].

These resources are made accessible through Grid middleware, specifically
execution management systems (EMS). They serve a variety of functions in the
areas authentication, authorisation and accounting (AAA), data management
and execution management.

Grid execution management systems have to serve a wide range of compute
resource capabilities, number of concurrent client connections, number of con-
current jobs, amount of data transferred and so on.

Additionally, in next-generation Grids new requirements are emerging [4]. In
traditional scenarios such as scientific computing Grids, business rules such as
billing or auditing procedures are simple, and usually hardcoded. However, busi-
ness concerns such as service level agreements play an increasingly prominent
role, as investigated for example in the NextGrid project[3]. To accommodate
these needs, EMSs in next-generation Grids have to be highly flexible and re-
configurable.

The remainder of this paper is organised as follows: in the next section we
present and review some experiences with the UNICORE Grid middleware made
in the course of project and production use. From the capabilities and more
importantly the shortcomings of this mature system, we derive a set of require-
ments for next-generation Grid servers. The remaining sections are devoted to
design and partial implementation of a system called XNJS, respecting these
requirements.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 195–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 B. Schuller, R. Menday, and A. Streit

2 Experiences with UNICORE

UNICORE, developed in the course of several German and European projects
since 1997, is a mature Grid middleware that is deployed and used in a variety of
settings, from small projects to large (multi-site) infrastructures involving high-
performance computing resources. UNICORE can be characterised as a vertically
integrated Grid system, that comprises a graphical client and various server and
target system components. The communication is based on a proprietary protocol
using serialised Java objects (abstract job objects, AJOs). An overview on the his-
tory and usage scenarios is given in [6]. UNICORE is being used in various projects
and production environments such as DEISA [1]. In the EU FP6 project UniGrids
[7], it has evolved into a web services based Grid environment compliant with the
web service resource framework (WSRF)[8], which is the prime candidate for re-
alising the Open Grid Services Architecture (OGSA)[9] vision.

The UNICORE software is available open-source under a liberal, BSD-type
license from the SourceForge repository [5].

The server side components of the current version of the UNICORE middle-
ware (UNICORE 4) are organised into three tiers, the Gateway, NJS and TSI,
that usually run on separate machines (Fig. 1).

Fig. 1. The UNICORE 4 architecture

They serve distinct functions. The gateway is the primary point of entry,
and can be considered a software firewall. It authenticates client requests and
forwards them on to the next tier. The target system interface (TSI) is a stateless
component talking directly to the underlying batch system. It offers a simple,
text-based protocol to the batch system, and is used to execute scripts, submit
batch jobs, request job status, get or write files and perform some common file
system operations such as “list directory” or “copy”. The main component in a
UNICORE server installation is the network job supervisor (NJS), which will be
discussed in detail in the next section.

A Versatile Execution Management System 197

2.1 The UNICORE NJS: A Gap Analysis

The central component of the UNICORE server side is the NJS (network job
supervisor). The NJS is a multithreaded Java application that offers a variety of
features, such as

– authorising users using the UNICORE user database (UUDB),
– translating the incoming abstract jobs into concrete jobs for the target sys-

tem using a process called incarnation,
– submitting the concrete jobs to the TSI and monitoring their status,
– managing the outcome,
– communicating with the gateway,
– submitting sub-jobs to other Grid sites,
– keeping job state.

In UNICORE, abstract jobs can be arbitrarily complex and may involve work-
flows spanning multiple Grid sites. The NJS is a combination of a workflow
processing engine and an execution management system for “atomic” jobs such
as executing a script on the target system associated with the NJS.

Furthermore, the NJS offers several interfaces for add-on functionality such
as brokering, resource reservation, and alternative file transfer mechanisms.

While the NJS (and thus UNICORE as a whole) offers a lot of functionality,
there are some shortcomings as well, in the areas of flexibility, scalability and
fault resilience.

Flexible processing and business rules. One limitation of the NJS is the fact that
the processing rules as well as the business rules are hardcoded. Therefore, new
requirements are only implementable by changing the core NJS code.

Currently, the processing rules are encoded into an object model, thus to add
new types of actions or to modify the processing for certain types of action needs
modifications of existing Java code.

Business rules are currently fixed as well (and mostly implicit). As an example
scenario for the need for flexible business rules, one might think of different
billing schemes based on the current user, such as pay-per-use for User A and
a computing time budget for User B. Another business rule might be related to
providing different resource views for different users. For example, User A should
be able to use at most 10 nodes of a cluster, while User B should be allowed to
use the full cluster. Currently, all users have the same set of available resources,
and UNICORE relies on the underlying batch system to enforce policies such as
the ones mentioned.

Scalability. As with any single software component, there are scalability issues
with the NJS as well. There is no possiblity for clustering groups of NJSs. Fur-
thermore, the current implementation of the NJS keeps a lot of state information
in-memory, so during long-term operation, out of memory errors may occur.

198 B. Schuller, R. Menday, and A. Streit

Fault resilience. Fault resilience has many facets, but as an example scenario,
consider the following. UNICORE was the Grid middleware of choice in the
OpenMolGRID project [10][11], that sucessfully targeted Grid-based drug de-
sign. Often, complex multi-step jobs involving many Grid sites were run. How-
ever, sometimes job parts failed due to networking problems, or failure of one
site, etc. This led to a failure of the whole job, and often to loss of results from
other job parts, because the users did not take any precautions such as saving
intermediary results. Here, the need for improved fault handling was felt, which
should be based on a flexible set of business rules.

Limiting the scope. The UNICORE NJS does both atomic jobs (plain execution
tasks) and multi-step, multisite workflows. We believe the workflow functionality
should be provided elsewhere, in the interest of simplicity and modularity, and
thus maintainability.

2.2 Requirements for a Next-Generation NJS

Analysing the experiences in using the current UNICORE implementation, we
can identify a set of principles for designing a next-generation Grid execution
management system. These can also be seen as non-functional requirements.

– Highly modular, reconfigurable and scalable architecture: The system must be
composed of building blocks with well-defined functionality and well-defined
responsibilities. These components must interact only using interfaces. The
components must not make any assumptions about their environment.

This ensures that an implementation of a subsystem can be replaced by
another implementation without breaking other parts of the system.

– No hardcoded processing rules: The actions executed to run a job, or to
transfer a file must be easy to modify, extend or even switch off. Additional
processing steps (such as encryption / decryption) should be pluggable into
the processing. It must be possible to add new types of actions without
having to change the system core.

– No hardcoded business rules: There must be no static business rules in the
system core. All business rules should be explicitly defined and configurable,
ideally even on a per client request basis.

– Scope limited to single-site actions: The system should only deal with ac-
tions on a single site. Multi-site workflow functionality should be provided
elsewhere.

A system that respects these principles will be easy to extend and adapt to
new requirements.

To keep such a highly flexible system transparent and manageable, one has
to take special care to give system administrators a detailed view on the current
configuration, and to allow them to monitor the system closely.

A Versatile Execution Management System 199

3 The XNJS: Design and Implementation of a
Next-Generation UNICORE NJS

In this section we outline the design and partial implemention of a Grid exe-
cution management system with we have named XNJS, that respects the basic
requirements outlined in section 2.2.

A high-level depiction of a typical Grid node is shown in Fig. 2. The execution
server resides in the “ Grid tier”.

Fig. 2. Three-tier architecture representation of a Grid node

The front-controller subsystem takes care of the client communication. In
present-day Grid systems this will usually be a set of WSRF compliant web
services or components talking a proprietary protocol.

The services offered by the EMS can be grouped into execution services, file I/O
services, and security services (authentication, authorization and accounting).

The actual resource, such as a batch system or database, is in the separate
target system tier. Here, there are two scenarios: the target system and the EMS
are running on the same machine, or, the EMS is running on a separate machine.

Additionally, there are aspects such as persistence, management, logging, etc.,
that are not shown in the figure but have to be taken into account in the design
and implementation as well.

200 B. Schuller, R. Menday, and A. Streit

3.1 Core Architecture

It is well known that one fundamental principle for designing modular systems
is the separation of interface from implementation [12]. When some component
uses some other component of the system, it must not refer to a concrete imple-
mentation, but to the abstract interface of that service only.

For the XNJS, we have chosen an architecture similar to the “Microkernel”
pattern [13] to maximise reconfigurability.

To realise this architecture, a component repository or component container
is necessary, allowing storage and retrieval of concrete realisations of needed
interfaces.

Using Java, this can be implemented using simple, lightweight containers such
as the PicoContainer [16] or more complex frameworks such as Spring [17]. These
containers offer convenient methods for dealing with component lifecycle, i.e.
starting and stopping components. For our implementation we have chosen Pico-
Container because of its easy embeddability and low memory footprint. Most
services will in turn be dependent on other services. To resolve these dependen-
cies, it is convenient to let the container take care of this task, and let it inject
the dependencies using setter methods or constructor parameters[15]. A very
important non-functional aspect of using dependency-injection is the improved
testability of the individual components. For tests, “mock” dependencies can be
used, allowing unit testing.

The actual runtime system configuration is defined at deployment time using
configuration files.

3.2 Execution Management

In this section we focus on the execution management engine. Its functionality is
the ability to execute a set of actions, keep track of action state, and offer some
interfaces to the outside world for adding new actions and querying their status.
Keeping such an engine flexible involves an extensible set of basic executable
“building blocks” and a reconfigurable and extensible processing scheme for these
executables.

Actions. Actions are the basic execution units in the XNJS. Actions are usually
created within the front-end controller of the XNJS, and submitted for processing
to the core execution engine. Their state chart is shown in Fig. 3.

If needed, the actions will communicate with the target system, invoke I/O
services, start sub-actions etc.

The Action includes an XML work description, for example, a JSDL [18]
document. The type of XML that is used defines the “type” of Action. The XNJS
can be extended easily by adding support for new types of actions, specifically
by adding processing code as outlined in the next section.

Processing Chains. The design of the processing itself should be flexible and
adaptable to various deployment and usage scenarios. For this purpose, we have
chosen to adopt a design pattern similar to the “chain of responsibility” from

A Versatile Execution Management System 201

Fig. 3. The statechart for actions

[14]. The processing of an Action instance is done by a finite chain of processing
elements (processors), that are called one after the other as depicted in Fig. 4.
Each processor may perform arbitrary operations, change the action state, etc.
Context information can be stored in the Action object itself that is passed along
the processing chain. The processing chain for a given Action type is configurable,
even at runtime if needed.

Processors can be used for any type of operation relevant during action ex-
ecution, such as running an application, data encryption and decryption, , ac-
counting and billing, or user notification. In this way, we realise the requirement
that there are no hardcoded business or processing rules.

One disadvantage of this concept may be noted: processing can become quite
complex, especially when different processors share context information, as is
common during processing of workflows. Here, the processor responsible for
workflow processing will start sub-actions, and will have to monitor these in
order to decide when to start any dependent parts of the workflow.

3.3 Security

In Grids, many different trust and security policies are used, which may also
change, thus it is vital that the EMS is flexible and does not have any hardcoded

202 B. Schuller, R. Menday, and A. Streit

Fig. 4. A chain of processing elements

security settings. Thus, the core XNJS just provides a set of classes and patterns
that can be used to build a solution that meets the security needs of the Grid it
is deployed into.

Client information. A Client class can be used to capture information about
the party that executes Actions on the XNJS, such as their name, authorization
tokens. The Client object is usually generated in the front-end component, using
information from the transport layer or the original message. This Client object
is part of the Action during the Action’s lifecycle.

Method call interception. We have employed the method call interception tech-
nique to allow very fine grained security checks. In the XNJS, the core method
calls include authentication information in the form of a “Client” object. These
method calls can be intercepted, and security checks can be executed. We have
used aspect-oriented programming techniques [19] using AspectJ [20]. Rules and
policies used to enforce security are pluggable, and easily extensible.

3.4 Status of the XNJS

The current status of the XNJS implementation is as follows.

Status of JSDL Processing. The most important functionality available in
the XNJS is processing of atomic jobs, as defined by a JSDL document. The
XNJS can execute JSDL jobs, including file staging in and out through local
copy or HTTP. It supports important UNICORE concepts, such as abstract
Application resources and abstract Filespaces (such as Root, Home, or Uspace).

Target System Support. Two target system interfaces currently exist. To sup-
port the use of the XNJS as “embedded” execution engine, a Java target system
interface is available. This executes jobs locally by spawning a sub-process. Al-
ternatively, an interface to a conventional Unicore 4.x TSI is available. Thus the
XNJS can be used as execution management system for all those batch systems
that can be accessed using Unicore 4.x, such as IBM LoadLeveler or PBS.

A Versatile Execution Management System 203

Management Interface. A running XNJS instance may be managed through
the standard Java Management Extensions (JMX) interface. This allows to mon-
itor the status of the Java virtual machine, to modify operational parameters,
and to cleanly shutdown the XNJS.[21]

4 Conclusions and Outlook

Starting from an analysis of the Unicore NJS Grid execution server, we have
derived some principles we believe to be indispensable for the next generation of
Grid execution management servers. Using several well known design principles
and patterns, we have designed and partly implemented a versatile, highly mod-
ular system that can be configured to suit various deployment needs and usage
scenarios.

The use of a microkernel architecture with dependency injection allows easy
configuration and simple testing and deployment of the system. The use of the
“chain of responsibility” pattern within the execution engine allows building
arbitrarily complex processing and business logic without modifying the core
software.

The inherent flexibility and reconfigurability of the XNJS makes it useful in
a variety of scenarios, for example

– as the backend behind a set of WSRF services implementing the UniGrids
Atomic Services or OGSA-BES interfaces, with the XNJS embedded into
the web services hosting,

– as a execution engine behind a web-application front end or a Representa-
tional State Transfer (REST)[22] interface,

– as part of a dynamic cluster of simple standalone worker nodes.

Future work will focus on ways to make the business rules of the system
(including terms of use, billing, access rights and permissions) more explicit and
dynamic.

References

1. DEISA: Distributed European Infrastructure for Supercomputing Applications
http://www.deisa.org

2. EGEE: Enabling Grids for e-Science
http://public.eu-egee.org/

3. NextGrid: Next-Generation Grids
http://www.nextgrid.org

4. Third report of the “Next Generation Grids” Expert Group
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3_eg_final.pdf

5. UNICORE at SourceForge:
http://unicore.sourceforge.net

6. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt, M.
Riedel, M. Romberg, B. Schuller, and Ph. Wieder: UNICORE - From Project
Results to Production Grids. L. Grandinetti (Edt.) "Grid Computing: The New
Frontiers of High Performance Processing", pp. 357-376, Elsevier 2005

204 B. Schuller, R. Menday, and A. Streit

7. UniGrids homepage:
http://www.unigrids.org

8. Web Service Resource Framework:
http://www.oasis-open.org/committees/tc

¯
home.php?wg

¯
abbrev=wsrf

9. The Open Grid Services Architecture, version 1:
http://www.ggf.org/documents/GFD.30.pdf

10. OpenMolGRID homepage:
http://www.openmolgrid.org

11. Dubitzky, W., McCourt, D., Galushka, M., Romberg, M., Schuller, B. Grid-
enabled data warehousing for molecular engineering; Parallel Computing 30 (2004),
1019–1035

12. David L. Parnas: “On the criteria to be used in decomposing systems into modules”,
Communications of the ACM 15(2), Dec. 1972,1053-1058.

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: “A System of Patterns:
Pattern-Oriented Software Architecture, Volume 1”, Wiley, 1996

14. E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design Patterns”, Addison-Wesley
Publishing Company, 1995

15. Dependency Injection: http://www.martinfowler.com/articles/injection.html
16. PicoContainer:

http://picocontainer.codehaus.org
17. The Spring framework:

http://www.springframework.org
18. Job submission description language (JSDL):

http://forge.gridforum.org/projects/jsdl-wg/
19. Elrad, T., Filman, R.E., Bader, A.: “Aspect-oriented programming: Introduction”,

Communications of the ACM, 44 (2001), p. 29-32
20. AspectJ:

http://www.eclipse.org/aspectj
21. Java Management Extensions (JMX):

http://java.sun.com/products/JavaManagement
22. Fielding, R. Th.: “Architectural Styles and the Design of Network-based Software

Architectures.” Doctoral dissertation, University of California, Irvine, 2000.

Towards More Flexible and Increased Security

and Privacy in Grids

Willy Weisz

University of Vienna, Institute for Scientific Computing, VCPC
weisz@vcpc.univie.ac.at

Abstract. The development of UNICORE started as a Grid-enabling
middlewarewith amonolithic security policy that restrictedGrid activities
to a set of users whose credentials (X.509 certificates) are pre-recorded in a
UNICORE User Database (UUDB), and to a task distribution completely
defined at job-submission time because the sub-jobs have to be signed by
the user with his private key. Later on projects aiming at allowing a re-
stricted interoperability with other Grid middleware lead to the adoption
of more flexible approaches like the the Explicit Trust Delegation (ETD).
ETD involves implicitly a more general concept: That of an attribute or
role which is attached to an identified and authenticated entity and which
defines the extent of the authorisations granted to that entity by the target
resource. Extending this concept to other authorisation-related aspects of
Grid computing is today an area of intensive research, that should also be
taken up by the UNICORE developers in order to enable the creation of
Virtual Organisations (VOs) that are able to take security as seriously as
necessary, and to opt for flexibility as much as possible.

1 General Remarks

Virtual Organisations (VOs) that make up the organisational units which use
Grid resources have two almost contradictory requirements: (1) Security that is
the prime requirement for the establishment of the trust required when allowing
the interoperation of resources belonging to different administration domains,
and (2) Flexibility that enable VOs to easily adapt to structures in user mem-
bership and resources changing during their lifetime.

The initial decision of the UNICORE design was to give security an overriding
primacy that resulted in a very strict and rather inflexible Security Model [1],
that originally didn’t foresee any interoperability with other Grid middleware.
Nevertheless the modular design of UNICORE eases the implementation of new
UNICORE Security Models that are more suitable to the security and working
requirements of VOs as seen as result of the continuing Grid research.

Departing from the traditional OS views on security, and analysing security
and authorisation models in real organisations recent projects came up with new
approaches to secure and flexible authorisation schemes.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 205–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 W. Weisz

2 Identification and Authorisation in an Organisation

2.1 Identification

In any organisation the security of internal and external operations relies on the
identification of the actors and the authorisations granted to them in any pos-
sible action scenario, including (manual or automated) information processing.
Virtual Organisations on the Grid have the same requirements.

Employees and collaborators as well as resources must be uniquely identifiable
in order to allow a well co-ordinated and optimisable running of the operation. In
plans and reports their respective tasks, rights and responsibilities are attached
to their identifiers; for people this is generally their common name possibly
extended by e.g. a function title or an affiliation with a department.

2.2 Attributes of Entities

In bigger organisations a comprehensive list of individually named human and
non-human resources may not be practical. In this case functions or roles with
their rights, privileges and duties may be defined and attributed in a many-
to-many relationship to individual resources. Overall work can thus be defined,
planned, carried out and reported upon as a function of these attributes. The
details including the assignments can be left to the possibly dislocated depart-
ments. These smaller units are also better suited to track promotions (or de-
motions), changes of responsibilities and privileges of their local personel, and
new or modified non-human resources. Only modifications in terms of changed
organigrams or roles need to be passed on to the higher company echelons.

2.3 Authorisation

When it comes to empowerments and thus responsibilities, the company poli-
cies should be defined as a function of roles and attributes of the entity (e.g.
clearance), not of the name of individuals. If a person may assume different roles
within the organisation its empowerment should be defined with regard to the
role he is actually assuming when performing a certain task. In analogy the se-
curity levels of computer systems (including their environment) have to be at
the basis of decisions on which applications are handed over to which hosts.

When organisations are co-operating in projects new authorisation challenges
arise:

• each partner provides collaborators which have certain roles and capabilities,
• within the project and even the project phases project roles are defined.

For some actions some capabilities for the project as well as some defined within
an individual partner organisation may be required. Projects spanning bound-
aries will thus base their authorisation decisions on the direct product of the
authorisation attributes of the individuals in their home organisations and those
defined within the projects.

Towards More Flexible and Increased Security and Privacy in Grids 207

3 Organisations in the Grid

The co-operative use of resources connected by the Internet (or any other net-
work of local networks) and belonging to independent administration domains —
the Grid — requires the formation of Virtual Organisations which must define
a matrix of authorisations based on the policies regulating the authorisations
within a domain and those agreed upon in the projects leading to the establish-
ment of a VO.

The communication power of the Grid makes the creation of flexible inter-
organisational projects very attractive. The flexibility of the VOs being such an
asset also means that frequent changes at short notice may happen, be it on the
user side or on the side of the resources. These changes generally bring about
modifications of the authorisation matrix.

4 Identification and Authentication on the Grid

The multi-administration structure of the Grid requires that the identity of
consumers and resources be stated unambiguously despite the many different
organisations responsible for them. This is made possible by the establishment
of X.509 Public Key Infrastructures (PKI) [4] where the public key of a cryp-
tographic key pair is embedded in a certificate which i.a. contains a unique
identifier for the entity owning the key pair, and is digitally signed by a “trusted
third party”, a trusted Certification Authority (CA). This certificate, for which
the CA declares that its identification item (the Distinguished Subject Name,
Subject DN) is uniquely attributed to this single entity, identifies the entity to
resource consumers and providers on the Grid. The private key of the pair is used
for authentication purposes and for signing digital documents and messages; the
public key is used by the communication partners to send the entity encrypted
messages.

The world-wide distribution of Grid consumers and resources makes it nec-
essary to also have CAs distributed over the world. The agreement on minimal
rules of operation to establish mutual trust has lead in 2005 to the International
Grid Trust Federation [5]. Nevertheless organisations or VOs may establish CAs
with special trust requirements, e.g. the UNICORE CA. Such a VO-centered
CA has the disadvantage that is doesn’t scale when the VO expands its user
community or resource pool.

Even more than the trust that can be put in the CAs the storage quality of
the private key determines the security level of the PKI. If its repository is a
computer disk, then the security level is a product of the user protecting the
file containing the key and the system administrator providing an overall secure
system: Nobody than the owner is allowed to access and be able to use the
private key. Much better security is achieved when the key pair is generated in
a secure cryptographic token (SmartCard or USB token) and the private key,
that is never allowed to leave the token is encrypted by a PIN only known to
the owner. Since the private key is only available on the token, it can only be

208 W. Weisz

used by the person who physically owns the token; and even in the case of theft
only the person knowing the PIN can activate the key, i.e. make it usable. When
the use of such tokens will become the rule, PKIs will reach a really trustable
security level.

5 Authorisation Based on Identity

Like the underlying operating systems, the most widely used Grid middlewares,
Globus and UNICORE, base their authorisation infrastructure solely on the
identity of the user (Discretionary Access Control, DAC). After the requestor
has been authenticated his identity is mapped to an OS-based identity and he
is welcome to an “almost help-yourself party”.

This lack of fine-grain authorisation in most operating systems has led the
creators of database systems to define their own access schemes mostly indepen-
dent of the OS-related identities. They define roles and access rights, and manage
them their own way. The lack of authorisation beyond the user identity makes
the Grid for the time being unfit for the use of federated databases. Neither
the OGSA-DAI project [6] nor the GGF DAIS-WG [7] have tackled the security
aspects of a gridified database access. But databases are but one resource that
needs fine-grain, role-based access rules, individuals’ health records in any kind
of container are another example.

This tradition of reducing the authorisation policy to the mere identification
and authentication of the entity requesting a resource has determined how secure
authorised accesses have been perceived for the Grid. It is clearly insufficient at
the level of VOs.

6 Authorisations Based on Properties of the Entities

In high security environments, entities (consumers and resources) are classified
according to security clearance levels. The corresponding authorisation scheme
(Mandatory Access Control, MAC) allows read access only to objects of the
same or a lower clearance level (Read Down) and write objects of the same or a
higher clearance level (Write Up). In most organisational environments MAC is
too restrictive a scheme.

The Role-Based Access Control (RBAC) has become the preferred autho-
risation scheme when DAC is too weak and MAC is too restrictive. It allows
policies that are more fine-grained than identity-based access rights. Changes of
the position in an organisation generally incur changes in roles for the entity.
Like with MAC hierarchies of roles can be constructed leading to hierachies of
authorisations.

Attribute-Based Access Control (ABAC) provides even more flexibility as
the attribute relations are less static than the consumer-resource authorisation
relations in RBAC.

Towards More Flexible and Increased Security and Privacy in Grids 209

7 User Database at the Grid Resource Site

The UNICORE and Globus assumption is that secure operations in Grids require
comprehensive lists of entities that are allowed to access resources at a local
administrative domain (e.g. the UUDB at a UNICORE V-site or the gridmap-
file for a Globus host). This of course doesn’t scale well and isn’t appropriate
for Virtual Organisations which may be short-lived and/or allow compositions
of users and network-attached hardware varying over the lifetime of the VO.

The Globus approach is more flexible as it allows a remote management of
the gridmap-file, e.g. by a VO management system like VOMS [8], whereas the
UNICORE User Database (UUDB) can only be maintained from the site where
it is located. UNICORE also requires that the X.509 Certificate be stored in the
UUDB which must therefore be continuously updated since, for security reasons,
the certificates have a limited life time und must thus be regularly renewed. The
certificates for Globus are stored at the user’s site where they have their first
home after they have been issued by the CA.

8 Managing Authorisation for VOs

As has been described in Sect. 2 the authorisation structure in bigger organ-
isations and for inter-organisational projects should move from concentrating
on identities and their rights to access resources to policies based on roles and
attributes of human and non-human resources. This is also true for Virtual
Organisations.

8.1 The Attributes of Requestors in Their Organisation

In his own organisation a user may assume roles or have certain attributes. These
attributes are signed by an Attribute Authority (AA) that is legitimised by this
organisation and recognised by the resource providers in the VO. Its statements
concerning attributes of an entity must bear the proof of its origin and a digital
signature verifiable by a recognised certificate.

8.2 The Attributes of Requestors in the VO

Similarly the VO itself may need an Attribute Authority that issues digital docu-
ments stating the attributes of the requestor within the VO. These attributes may
be functions of the identity of the requestor and/or of his roles and attributes as
defined by his home organisation, or be just defined by his role in the VO.

8.3 Privacy — Anonymity

In certain applications it may be important (or even required by law) that the
identity of the requestor be anonymised for the time of the resource usage, but
nevertheless be traceable at some point in time, e.g. for accounting purposes or
for feedback. This can be realised by mapping the identity to a “general user”
which is given attributes allowing traceability on a need-to-know basis.

210 W. Weisz

8.4 Attributes of the Resources

Likewise there must be Attribute Authorities that issue information document-
ing attributes of the resources. They may come from their administration domain
or be VO-related, e.g. availability to or costs for the VO.

8.5 Authorisation

In big real organisations a complex set of rules defines who is entitled to take
which decisions and who is to implement them. The company policies thus de-
fined are generally expressed as functions of roles and levels in the hierarchy, not
of individuals.

Likewise in VOs policies govern the authorisation decisions. The complete set
of information on the identities and attributes of consumer and resources triggers
a policy decision to grant (or deny) the requestor a set of privileges and access
rights that the policy enforcement engine will have to use in order to grant access
to resources.

The policy may even require a third party permission: The right to access
a person’s Electronic Health Record (or identifiable parts of it) that may be
distributed over a national Health Grid will require the patient’s consent (at
least in Austria). This third party will also need to be authenticated and its role
or attributes taken into account.

9 Consequences for the UNICORE Development

The need for a more flexible but nevertheless improved security and privacy
protection must trigger major changes in the UNICORE security infrastructure.
The integration of such developments is facilitated by the modular architecture.

9.1 Authentication

The UUDB is too inflexible for future Grid environments. Without sacrificing
security concerns an authentication mechanism is needed that doesn’t store all
potential users at the resource site, but rather security policies.

The Security Model of UNICORE doesn’t allow the use of Proxy Certificates
[9]. Without this facility no message-level security is possible. And the extension
to allow a limited interoperability with Globus transmits a private key over the
communication lines! Even so it is included in an encrypted blob, this is against
the proxy concept that the private key corrsponding to a proxy certificate is only
used on the system where it has been generated, and never leaves that system.

9.2 A First Use of Attributes: The Explicit Trust Delegation

The requirement to build dynamic Grid jobs for which an agent (e.g. a por-
tal) decides on the distribution of tasks after the end-user has submitted his job

Towards More Flexible and Increased Security and Privacy in Grids 211

description, require that other instances than the job signer (the end-user) get
authority to request actions on behalf of the end-user.

Since the UNICORE Security Model doesn’t allow the use of proxies this
delegation of rights of the end-user to UNICORE agents is managed by the
definition of a trust attribute that the end-user issues for that agent, the Explicit
Trust Delegation (ETD) [10].

Even so it is not presented as such, ETD can be seen as the first(?) intro-
duction of a formal policy based on attributes (trust) conferred to a Grid entity
(the agent) by an AA (the end-user).

9.3 The Proposed Authorisation Architecture

The authorisation arcitecture to be developed for UNICORE should provide the
following functions:

For any subject and target of a request a complete policy or set of policies
must be defined by a Source of Authority (SOA); this collection will be used to
derive decisions whether to accept or deny requests.

After being authenticated the request for use of resources (including all the
identity/role/attribute information provided by the client agent) is handed over
to the Policy Enforcing Engine (PEP).

The PEP hands the request over to the Policy Decision Point (PDP) which
applies the rules taking into consideration the identity/roles/attributes included
in the request, and if needed, requesting further information from Policy Infor-
mation Points (PIP), like e.g. AAs.

The decision to accept or deny derived by the PDP is then handed over to
the PEP which has to enforce it. The PEP should be provided with a default
rule (accept or deny) that it must enforce when the PDP is unable to decide
(e.g. due to insufficient information from PIPs).

9.4 Attribute Authorities

The collection of attributes of the requestor can be orchestrated by the User
Client or it can be initiated by the Policy Decision Point at the resource provider.
The former solution seems to be more scalable, at least for the attributes of the
requestor in his own organisation.

Since the attributes may be stored in different kinds of databases with differing
interfaces, it will be necessary to define a standardised protocol for transporting
the attributes over the Grid and an interface for plugins to be developed for the
individual underlying databases.

The transport protocols will be based on X.509 Attribute Certificates [11]
using the ASN.1 format [12] or the XML-coded Security Assertion MarkupLan-
guage (SAML) [13].

212 W. Weisz

9.5 Authorisation

Plugins replacing the monolithic UUDB have to be developed that implement
the authorisation architecture described in 9.3. The Explicit Trust Delegation
will have rules in the policy and will be decided by the PDP.

For the formulation of the policies standard languages will be used, like the
eXtended Access Control Markup Language (XACML) [14]. They must be able
to describe in easy to learn ways simple policy models as well as complex
requirements.

10 Authorisation in the Non-UNICORE World

10.1 VOMS

VOMS manages VOs and their constituency. Users can request to be added to
the VO and VOMS managers will accept or deny the request. Users can be
assigned attributes and capabilities. At the lowest sophistication level VOMS
generates for the Globus middleware on each of the systems available to the
VO the gridmap-file which contains the mapping of DNs to user identifications
known to the OS.

VOMS performs only PIP functions. The PDP function is left to the Globus
Gatekeeper.

10.2 Shibboleth

Shibboleth [15] is a middleware that provides a federated authorisation infras-
tructure for Web Single SignOn across organisational boundaries. It uses SAML
v1.1 for the exchange of attributes.

Shibboleth passes the authorisation information in form of opaque handles
which provide anonymity of users without loosing the capability to trace them
back, if necessary.

10.3 GridShib

The project GridShib [16] integrates Shibboleth with Grid technology as pro-
vided by the Globus Toolkit version 4 (GTK 4). One of the major challenges is
the efficient mapping of Shibboleth’s opaque handle with the DN of the certifi-
cates used in GTK 4.

10.4 PERMIS

PERMIS [17] is a “Privilege Management Infrastructure” that provides a com-
plete policy-based authorisation service. Policies are written in XML to support
an RBAC paradigm.

Towards More Flexible and Increased Security and Privacy in Grids 213

10.5 GridShibPERMIS

The GridShibPERMIS project [18] combines the strengths of Shibboleth as an
Identity and Attributes Provider, the Grid Infrastructure of GTK 4 and the
PDP provided by PERMIS.

The authentication based on the X.509 certificates is performed by GTK,
GridShib provides the PIP, PERMIS provides the policy-based authorisation
system with its interface called “GridShibPERMIS Context Handler” acting as
the PDP in the GTK authorisation framework.

11 Conclusion

UNICORE provides a solid framework for Grid computing that has already
started to inter-operate with other Grid middleware like Globus, has a solid
security infrastructure for a rather small, not too mobile user and resource com-
munity without the need to leave the UNICORE environment. When it comes
to communications with other security schemes the isolation of the approach
precludes really secure connections and information transmissions.

Since the inception of UNICORE the understanding of security on the Grid
has evolved towards more flexibility while providing more control over integrity
and privacy of information and usage of resources. UNICORE/GS, the follow-up
to the UNICORE framework used today, must provide a completly overhauled
security infrastructure. A look into developments in and surrounding the Globus
Toolkit provides guidelines and ideas for the development of a new UNICORE
Security Infrastructure Model, based on policies that take into consideration the
identity as well as attributes of users and resources.

The existence of standards for the expression and communication of attributes
and rules will make the inter-operation with other Grid middleware easier than
in the past. Even the problem of delegation of trust, which is the big hurdle for
a bi-directional UNICORE-Globus inter-operation should be solvable.

References

1. Goss-Walter, T., Letz, R., Kentemich, T., Hoppe, H.-C. and Wieder, P.: An Analy-
sis of the UNICORE Security Model, Global Grid Forum, Grid Forum Document -
Informational 18 (GFD-I 18), 2003,
http://www.gridforum.org/documents/GFD.18.pdf

2. Erwin, D. (ed.): UNICORE Plus Final Report, 2003, ISBN-3-00-011592-7,
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf

3. Grimm, Ch. and Pattloch, M. (coord.): Analyse von AA-Infrastrukturen in Grid-
Middleware, Version 1.1, March 2006
http://www.d-grid.de/fileadmin/user upload/documents/DGI-FG3-4/Analyse-AAI v1 1.pdf

4. Housley, R., Polk, W., Ford, W. and Solo, D.: Internet X.509 Public Key Infras-
tructure — Certificate and Certificate Revocation List (CRL) Profile, IETF RFC
3280, April 2002, http://www.ietf.org/rfc/rfc3280.txt

5. http://www.gridpma.org

214 W. Weisz

6. http://www.ogsadai.org.uk
7. http://forge.gridforum.org/projects/dais-wg/
8. Alfieri, R. et al.: From gridmap-file to VOMS: managing authorization in a GRID

environment, April 2004,
http://infnforge.cnaf.infn.it/docman/view.php/7/61/voms-FCGS.pdf,

9. Tuecke, S., Welch, V., Engert, D., Pearlman, L. and Thompson, M.: Internet X.509
Public Key Infrastructure (PKI) Proxy Certificate Profile, June 2004, IETF RFC
3820, http://www.ietf.org/rfc/rfc3820.txt

10. Snelling, D., van den Berghe, S. and Li, V. Q.: Explicit Trust Delegation: Security
for Dynamic Grids, Fujitsu Sci. Tech. J., 40,2,pp.282-294, December 2004,
http://www.fujitsu.com/downloads/MAG/vol40-2/paper12.pdf

11. Farrell, S. and Housley, R.: An Internet Attribute Certificate Profile for Autho-
rization, April 2002, IETF RFC 3281
http://www.ietf.org/rfc/rfc3281.txt

12. CCITT Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1), 1988

13. Security Assertion Markup Language (SAML) v2.0, OASIS Standard, 2005,
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

14. eXtensible Access Control Markup Language (XACML) 21.0, OASIS Standard,
2005
http://docs.oasis-open.org/xacml/2.0/access contrpl-xacml-2.0-core-spec-os.pdf

15. http://shibboleth.internet2.edu
16. http://gridshib.globus.org
17. http://www.permis.org
18. Chadwick, D.W., Novikov, A. and Otenko, O.: GridShib and PERMIS Integration,

Terena Networking Conference 2006, 15-16 May 2006, Catania (Sicily), Italy
http://www.terena.nl/events/tnc2006/core/getfile.php?file id=753

Integration of Grid Cost Model into ISS/VIOLA

Meta-scheduler Environment

Ralf Gruber1,6, Vincent Keller1,6, Michela Thiémard2,6, Oliver Wäldrich3,6,
Philipp Wieder4,6, Wolfgang Ziegler3,6, and Pierre Manneback5,6

1 École Polytechnique Fédérale de Lausanne, LIN-STI, Switzerland
Ralf.Gruber@epfl.ch, Vincent.Keller@epfl.ch

2 École Polytechnique Fédérale de Lausanne, DIT-EX, Switzerland
Michela.Thiemard@epfl.ch

3 Fraunhofer Gesellschaft, SCAI, St. Augustin, Germany
Oliver.Waeldrich@scai.fraunhofer.de, Wolfgang.Ziegler@scai.fraunhofer.de

4 Froschungszentrum Jülich GmbH, D-52425, Germany
ph.wieder@fz-juelich.de

5 Faculté Polytechnique de Mons and CETIC, Mons, Belgium
Pierre.Manneback@fpms.ac.be

6 members of CoreGRID

Abstract. The Broker with the cost function model of the ISS/VIOLA
Meta-Scheduling System implementation is described in details. The
Broker includes all the algorithmic steps needed to determine a well
suited machine for an application component. This judicious choice is
based on a deterministic cost function model including a set of param-
eters that can be adapted to policies set up by computing centres or
application owners. All the quantities needed for the cost function can
be found in the DataWarehouse, or are available through the schedulers
of the different machines forming the Grid. An ISS-Simulator has been
designed to simulate the real-life scheduling of existent clusters and to
virtually include new parallel machines. It will be used to validate the
cost model and to tune the different free parameters.

1 Introduction

The Intelligent Grid Scheduling System (ISS) [3] has been proposed to submit
n components Ck (1 ≤ k ≤ n) of an application A to a computational Grid
composed of r resources Ri (1 ≤ i ≤ r) each being a parallel machine with pi

nodes and mi main memory [9]. A component is executed on pk ≤ pi processors.
It is planned to apply ISS first to the HPC applications in Switzerland that
are executed on the parallel machines that form the SwissGrid. These machines
are located at the Swiss National Supercomputing Centre (CSCS) in Manno, at
the EPFL in Lausanne, at the ETHZ in Zürich, and at other Universities and
research institutions in Switzerland. The aim of ISS is to submit the components
of the different applications to well suited machines according to a deterministic
cost function. This cost function is presented in this paper.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 215–224, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 R. Gruber et al.

The ISS cost function includes terms that represent the investment costs per
sustained Tflops/s rate, energy consumption due to power supply and cooling,
maintenance, licences, and management costs, the infrastructure (room and cool-
ing system) and expenses for personnel taking care of the resources. The sus-
tained Tflops/s rate strongly depends on the usage of the machines and on the
type of application components that are executed. Machines that are not used
all the time can be expensive. Ecological arguments are now more and more
considered when deciding on the purchase of a machine. These can be taken
care of by the energy price per kWh, and by the cooling installation costs. With
all those characteristics, the overall costs of a component can vary by up to an
order of magnitude on the different machines. ISS should optimize the usage of
the different machines and help to decide on the policy when purchasing future
machines.

In a previous paper [1], the integration of the ISS into the VIOLA Meta-
Scheduler environment has been described. Specifically, the roles of the Meta-
Scheduler and UNICORE clients have been detailed. The whole scheduling of a
component Ck on machine i has been decomposed in three major steps: Prologue
(starts at time t0k) and Decision (made just after t0k), Execution (starts at time
tsk,i), and Epilogue (starts at time tek,i and ends after data collection at tdk,i). In
the Prologue phase, data needed to construct the cost model are collected and
used to minimize the cost function. The resulting choice is then forwarded to the
UNICORE client for submission to the chosen machine. The information about
the execution phase is treated in the Epilogue phase to create a file that can be
reused in the next job submission.

Different modules help to decide. Besides the UNICORE [4] and the Meta-
Scheduling Services (MSS) [5] there are three new modules: The DataWarehouse
(DW), the System Information (SI), and the Broker. Before execution of a com-
ponent, all the cost model relevant data collected during previous executions on
different machines can be found in the DW. They are accessed through the SI
and transferred to the Broker. SI also collects the data after execution that is
prepared by the VAMOS system [6] and sent to the Broker. The VAMOS system
maps Ganglia and accounting data into application relevent ones. This Epilogue
data are interpreted according to the Γ model [2]. This model characterizes par-
allel machines and applications. These data on the behaviour of the component
during execution are then stored by the SI in the DW, prepared to be reused in
the Prologue phase for the next execution.

The Broker includes all the algorithmic steps for the evaluation of the cost
model and for the preparation of the Epilogue data. The needed data are re-
quested from the SI and the MSS. All features of the Broker are described in
detail in this paper.

The application components Ck are parametrized by the Γ model [2] in which
the needs in processor performance, main memory bandwidth, network commu-
nication bandwidth and latency are estimated. Together with similar parameters
describing the parallel machines, a Γ value is computed that measures the com-
putation over communication needs of Ck. Γ model relevant parameters such as

Integration of Grid Cost Model 217

the number of operations O, the number of transferred data S, or the effective
processor performance ra can be measured on a machine that includes PAPI [10].
For those machines that do not have PAPI, these parameters can be estimated
according to the input parameters of the next execution, or with the Γ model
using measurements on one machine and by transforming them to the other.

The cost function model includes free parameters that have to be tuned for
each Grid. For this purpose, a Simulator has been designed.

2 Application Component Characteristics

The major reason for the development of an Intelligent Grid Scheduling System
(ISS) is the different needs of the application components in point of view of
processing performance, main memory bandwidth, communication bandwidth
and network latency. These characteristics have been parametrized in the Γ
model [2]. Similarly, the computer architectures have also been parametrized
in the same paper. Some important parameters can be directly measured using
Ganglia data [11]. This enables predicting to which machine an application com-
ponent should be submitted. For the Swiss HPC community the following type
of applications consume the major part of the HPC resources:

2.1 Embarrassingly Parallel Application Components

These applications do not demand inter-node communications. As a consequence,
the Γ parameter is huge. A big number of cases have to be executed, the results
collected and handled by a server. Typical applications are the immense amount of
independent data in high energy physics that has to be interpreted, the sequencing
algorithms in proteomics, parameter studies in plasma physics to predict optimal
magnetic fusion configurations, or a huge number of data base accesses for statis-
tical reasons.

Embarrassingly parallel applications need master/slave computer architec-
tures with a sufficiently powerful connectivity between the frontend server and
the different slaves. There is no communication needed between the slaves. Thus,
a weekly connected workstation farm can offer a sufficient computing perfor-
mance. Such clusters can for instance be formed of individual machines con-
nected through a bus-based network or even through the internet to a master.
As a consequence, the costs of such application components can be small.

2.2 Application Components with Point-to-Point Communications

Point-to-point communications typically appear in finite element or finite volume
methods when a huge 3D domain is decomposed in subdomains [7] and an explicit
time stepping method or an iterative matrix solver is applied. If the number of
processors grows with the problem size, and the size of a subdomain is fixed,
γa (=number of operations O over amount of data S sent over the network)
is independent of the problem size, and, consequently, Γ does not change. The

218 R. Gruber et al.

per processor performance is determined by the main memory bandwidth. The
number O of operations per step is directly related to the number of variables in
a subdomain times the number of operations per variable, whereas the amount
of data S transferred to the neighboring subdomains is directly related to the
number of variables on the subdomain surface. For huge point-to-point applica-
tions using many processing nodes, Γ << 1 for a bus (inadequate) 2 < Γ < 10
for the Pentium 4 cluster with a Fast Ethernet switch, 10 < Γ < 50 for the Xeon
cluster with a GbE switch, and the Opteron cluster with a Myrinet switch, and
Γ >> 100 for a Cray XT3. Application components with Γ > 1 can run well on
a cluster with a relatively slow and cost-effective communication network.

2.3 Application Components with Multicast Communication Needs

The parallel 3D FFT algorithm is a typical example with important multicast
communication needs. Here, γa decreases when the problem size is increased,
and the communication network has to become faster. Since ra = R∞, FFT
reaches close to peak performance. Thus, γM is big, and, as a consequence, the
communication parameter b must be big to satisfy Γ > 1. Such an application
has been discussed in [2]. It has been showed that with a Fast Ethernet based
switched network, the communication time is several times bigger than the com-
puting time, even when the problem size is small. Such an application needs a
faster switched network such as an efficient GbE, a Myrinet, a Quadrics, or an
Infiniband network.

2.4 Components Demanding Shared Memory

There are a few application components that demand a shared memory com-
puter architecture. A typical example are the direct simulation applications to
study turbulence phenomena applying a spectral method to the Navier-Stokes
equations. The main memory needs are small, the component can be run on sin-
gle processor machine. Very small phenomena have to be studied, needing very
small time steps. Typically, a million of time steps are needed for one simulation,
one step takes a few seconds on one processor. This leads to a few months of
CPU time per case. The user likes to distribute one case among a number of pro-
cessors. It can be seen that a distributed memory architecture is not well suited
for such a problem [8]. The reason comes from the fixed overall size of the appli-
cation. If the number of processors is increased, the per processor size reduces,
and the scalability is very poor. A real shared memory architecture is more ad-
equate. To reduce the turn-around times of these application components, the
Swiss computational Grid should include a few shared memory nodes.

3 Meta-scheduling Features

The Meta-Scheduling Service (MSS) delivers data on the availability of the dif-
ferent eligible machines in a Grid as a function of the number pk of processors

Integration of Grid Cost Model 219

reserved for a component. By means of these data it will be possible to estimate
tsk,i, i.e. the starting time of the application component Ck on machine i. The
time difference tsk,i − t0k is the time during which the component will sit in the
input queue. In fact, if pk is high the execution time tek,i − tsk,i is small, but the
waiting time tsk,i − t0k can become big.

4 The Broker

4.1 Action List

The Broker is active during the Prologue, the Decision, and the Epilogue phases.
It computes all data related to the cost model. The tasks of the Broker are:

1. Interprete job input data received from the UNICORE client
2. Collect application related data from DW through SI
3. Collect data on machine availabilities through MSS
4. Evaluate cost function and chooses a well suited machine
5. Send decision to MSS, after reservation to UNICORE client
6. Collect data on execution through SI
7. Prepare Γ model related data
8. Send epilogue data to DW through SI.

4.2 Decision: Grid Cost Model

The choice of a well suited machine depends on user requisites. Some users
would like to obtain the result of their application execution as soon as possible,
regardless of costs, some others would like to obtain results for a given maximum
cost, but in a reasonable time, and some others for a minimum cost, regardless
of time.

We will describe here in a few words the various elements that compose a cost
function z being able to satisfy users’ requests. This cost function depends on
costs due to machine usage, denoted by Ke, license fees, denoted by Kl, energy
consumption and cooling, denoted by Keco, waiting results time, denoted by Kw,
and amount of data transferred, denoted by Kd. Introducing two more quantities,
KMAX and TMAX , respectively maximum cost and maximum time, from
users point of view, we can formulate the following optimization problem:

min z = βKw(Ck, Ri, pk) +
n∑

k=1

FCk
(Ri, pk)

such that
n∑

k=1

(
Ke(Ck, Ri, pk) + Kl(Ck, Ri, pk)

+ Keco(Ck, Ri, pk) + Kd(Ck, Ri, pk)
)

≤ KMAX

max(tdk,i) − min(t0k) ≤ TMAX

(Ri, pk) ∈ R(Ck),

220 R. Gruber et al.

∀ 1 ≤ k ≤ n, where

FCk
(Ri, pk) = αk

(
Ke(Ck, Ri, pk) + Kl(Ck, Ri, pk)

)

+ βk

(
Kw(Ck, Ri, pk)

)
+ γk

(
Keco(Ck, Ri, pk)

)

+ δk

(
Kd(Ck, Ri, pk)

)
[ECU] ,

αk, β, γk, δk ≥ 0,

αk + β + γk + δk > 0,

and R(Ck), k = 1, ..., n is the eligible set of machines for component Ck. We
express the money quantity as Electronic Cost Unit ([ECU]).

In our model, the parameters αk, β, γk, and δk are used to weight the different
terms. They can be fixed by the users and/or by a simulator. For instance, by
fixing αk = γk = δk = 0 and β �= 0, one can get the result as rapidly as possible,
independent of cost. By fixing β = 0 and αk, γk, δk �= 0, one can get the result
for minimum cost, independent of time. These four parameters have to be tuned
according to the policies of the computing centres and user’s demands. In the
case of the Swiss HPC Grid, the overall usage of the machines should be high. For
instance, increasing β will increase usage of underused machines. One recognizes
that a simulator is needed to estimate these parameters.

The quantities Ke and Kl have the same weight αk. The reason is that license
fees are either paid directly by the user, then Kl = 0, fully paid by the computing
centre, then, the license fee is part of Ke, and Kl = 0 again, or it is invoiced per
unit CPU time, then, Kl > 0.

The Kd quantity depends on the amount of data transferred. The other K
values are:

Costs Due to Machine Usage: Ke

Ke(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

ke(Ck, Ri, pk, ϕ, t) dt [ECU].

Each computing center has its specific accounting, but generally they just bill
the execution time, depending on the number of CPU time used. Figure 1 shows
an example of ke(t) when day time, night time and weekends have different CPU
costs. The ϕ parameter introduces the priority notion.

Costs Due to License Fees: Kl

Kl(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

kl(Ck, Ri, pk, t) dt [ECU].

As costs due to machine usage, costs due to licenses may simply depend on
execution time and the number of CPUs used, independent of day time.

Integration of Grid Cost Model 221

M
on T
ue

W
ed

T
hu Fr

i

Sa
t

Su
n t

ke

Fig. 1. Example of CPU costs as a function of daytime

Costs Due to Turn-Around Time: Kw

Kw(Ck, Ri, pk) =
∫ max(td

k,i)

min(t0k)
kw(t) dt [ECU].

This cost is machine and application component dependent since tek,i is machine
and component dependent. It could be engineer’s salary or a critical time-to-
market product waiting cost.

Figure 2 shows an example of kw concerning engineer’s salary. Here, it is
supposed that the engineer looses his time only during working hours. A more
sophisticated function could be yearly graphs also including unproductive peri-
ods like vacations.

Figure 2 shows an example of kw of a critical time-to-market product. This
parameter could be also be used to tune the overall usage of the whole machine
park of a user community. Increasing β will activate machines that are underused.
Putting β = 0 in the simulator offers the opportunity to recognize overused
machines that should in addition be installed.

Costs Due to Energy Consumption and Cooling: Keco

Keco(Ck, Ri, pk) =
∫ te

k,i

ts
k,i

keco(Ck, Ri, pk, t) dt [ECU].

This cost can become relatively important if low-cost PCs are used in clusters.
For components that are memory bandwidth bound, the frequency of the proces-
sor could be lowered. The energy consumption grows with the second power of the
frequency, a reduction by a factor of 2.5 of the processor frequency reduces its en-
ergy consumption by a factor of 6. This has been tested with a laptop computer.
When reducing frequency from 2 GHz to 800 MHz, the overall performance of the
memory bandwidth bound application only was reduced by 10%. We have to men-
tion here that for low-cost PCs energy costs are comparable to investment costs.
Thus, in future it is crucial to be able to underclock the processor, adapting
its frequency to the application component needs. This would reduce the

222 R. Gruber et al.

M
on T
ue

W
ed

T
hu Fr

i

Sa
t

Su
n t

kw

M
on T
ue

W
ed

T
hu Fr

i

Sa
t

Su
n t

kw

Fig. 2. Left: Engineer’s salary cost function kw(t) due to waiting on the result. Right:
Time-to-market arguments can push up priority of the job.

M
on T
ue

W
ed

T
hu Fr

i

Sa
t

Su
n t

keco

M
on T
ue

W
ed

T
hu Fr

i

Sa
t

Su
n t

keco

Fig. 3. Today: Excessive costs of energy consumption and cooling. Future: Energy
consumption reduction due to frequency adaptation to application component needs.
Computer manufacturers are invited to open for on-line frequency underclocking.

worldwide PC energy consumption by at least 75% and would free in the near
future 30 nuclear power plants. Computer manufacturers must be convinced to
be able to have energy consumption graphs as the one depicted in Figure 3.

4.3 Epilogue: Prepare Data for Next Execution

After execution, the SI collects the application component data from all the
databases build up by Ganglia on each node. The Γ model relevant information
is extracted and sent to the Broker which computes the Γ model [2] data used
for the next execution of the same application component. This data is then sent
to the DW through SI.

In addition to the execution data, information on the choice of the machine
is also stored on the DW such that in an ulterior step a statistical study can be
performed on the adequacy of the machines in the Grid for the set of application
components submitted during a certain period in time. This study can then be
used to get some insight on which machine should in future be purchased. After a
few years it will then be possible to tend towards a well adapted set of machines
that form the Grid for a given user community.

Integration of Grid Cost Model 223

5 Simulator to Tune Parameters

The cost model equations include the free variables α, β, γ and δ. It is not clear
how they have to be chosen. The ISS-Simulator has been designed to validate
the choices of these parameters. In fact, the ISS-Simulator aims to understand
the learning process of the Grid system with real machine parameters and real
monitored data (see [3]) coming from real applications. It can also be used to
predict an imaginary, well suited, set of machines adapted to the applications
of a real or a virtual user community. This prediction could also be used in the
future to help computer centers to buy new machines. This simulator will be
described in more details in another paper.

6 Conclusions

The Broker with the cost function model of the ISS/VIOLA Meta-Scheduling
System implementation has been described in detail. The Broker includes all the
algorithmic steps needed to determine a well suited machine for an application
component. This judicious choice is based on a deterministic cost function model
including a set of parameters that can be adapted to policies set up by computing
centres or application owners. All the quantities needed for the cost function
can be found in the DW, or are available through the schedulers of the different
machines in the Grid. An ISS-Simulator has been designed to simulate the real-
life scheduling of existent clusters and to virtually include new parallel machines.
It is used to validate the cost model and to tune the different free parameters.

Acknowledgement

The development of ISS is a joint project between LIN-EPFL, EIF (Ecole d’in-
génieurs et d’architectes de Fribourg) and CSCS (Swiss National Computing
Centre), and is part of the Swiss Grid Initiative. Some of the work reported in
this paper is funded by the German Federal Ministry of Education and Research
through the VIOLA project under grant #01AK605L. This paper also includes
work carried out jointly within the CoreGRID Network of Excellence funded by
the European Commission’s IST program under grant #004265.

References

1. Keller, V., Cristiano, K., Gruber, R., Spada, M., Tran, T.-M., Kuonen, P., Wieder,
P., Ziegler, W., Maffioletti, S., Nellari, N., Sawley, M.-C.: Integration of ISS into
the VIOLA Meta-Scheduler environment. Pisa, 28-30 November 2005.

2. Gruber, R., Volgers, P., De Vita, A., Stengel, M., Tran, T.-M.: Parameterisation to
tailor commodity clusters to applications. Future Generation Computer Systems,
19:111–120, 2003.

224 R. Gruber et al.

3. Gruber, R., Keller, V., Kuonen, P., Sawley, M.-C., Schaeli, B., Tolou, A., Torruella,
M., and Tran, T.-M., Towards an Intelligent Grid Scheduling System, Proc. of 6th
Int. Conf. PPAM 2005, Poznan, Poland, Lecture Notes in Computer Science 3911
(Springer, 2006) 751-757

4. Erwin, D.,UNICORE plus final report – uniform interface to computing re-
source,Forschungszentrum Jülich,2003,ISBN 3-00-011592-7

5. Wäldrich, O., Wieder, P., and Ziegler, W., A Meta-Scheduling Service for Co-
allocating Arbitrary Types of Resource, In Proc. of Conference on Parallel Pro-
cessing and Applied Mathematics PPAM 2005, Poznan, Poland, 2005, to appear.

6. Gruber, R. and Keller,V. ,Towards an Eco-Grid architecture, submitted to Future
Generation Computer Systems

7. Gruber, R. and Tran, T.-M. Scalability aspects on commodity clusters, EPFL
Supercomputing Review, 14, 12-17 (2004)

8. Gruber, R., Keller, V., Leriche, E., and Habisreutinger, M.A., Can a Helmholtz
solver run on a cluster?, accepted to appear in Procs. of Cluster 2006

9. Manneback, P., Bergére, G., Emad, N., Gruber, R., Keller, V., Kuonen, P., Noël,
S., and Petiton, S., Proposal of a scheduling policy for hybrid methods on compu-
tationsl Grids, CoreGRID workshop (Pisa, 2005)

10. Dongarra, J., London, K., Moore, S., Mucci, P., and Terpstra, D.,
Using PAPI for hardware performance monitoring on Linux systems,
www.netlib.org/utk/people/JackDongarra/PAPERS/papi-linux.pdf

11. http://ganglia.sourceforge.net/

A One-Stop, Fire-and-(Almost)Forget,

Dropping-Off and Rendezvous Point�

R. Menday1, B. Hagemeier1, B. Schuller1, D. Snelling2, S. van den Berghe2,
C. Cacciari3, and M. Melato4

1 Central Institute for Applied Mathematics,
Forschungszentrum Jülich, D-52425 Jülich, Germany

2 Fujitsu Laboratories of Europe Ltd, Hayes Park Central,
Hayes End Road, Hayes, Middlesex, UB4 8FE, UK

3 CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy
4 NICE, via Marchesi di Roero 1, 14020 Cortanze, Italy

r.menday@fz-juelich.de

Abstract. In order to foster uptake by scientific and business users we
need an easy way to access Grid resources. This is the motivation for
the A-WARE project. We build upon a fabric layer of Grid and other re-
sources, by providing a higher-layer service for managing the interaction
with these resources - A One-Stop, Fire-and-(almost)Forget, Dropping-
off and Rendezvous Point. Work assignments can be formulated using
domain specific dialects, allowing users to express themselves in their
domain of expertise. Both Web service and REST bindings are provided,
as well as allowing the component to be embedded into other presentation
technologies (such as portals). In addition common desktop notification
mechanisms such as Email, RSS/Atom feeds and instant messaging keep
users informed and in control. We propose using the Java Business In-
tegration specification as the framework for building such a higher-level
component, delivering unprecedented opportunities for the integration
of Grid technologies with the enterprise computing infrastructures com-
monly found in businesses.

1 Introduction

UNICORE[23],[18] has gained a reputation as a vertically integrated architecture.
Sometimes referred to as a ‘stovepipe’ architecture, it offers a complete ‘ready to
run’ solution. From a user and administrative perspective this is clearly attractive.

Recently, in the Grip[11] and then the UniGrids[9] projects, UNICORE has
been prominent in promoting interoperable Grid middleware. Indeed, UNICORE
emerged as an early adopter of Service Oriented (SOA)[20] approaches to build-
ing distributed systems[21]. The consequence of a good SOA design is that
there is a loose-coupling between the components, thus loosening the links in
the UNICORE stovepipe. Emerging from the current activity in the UNICORE
� This work is partially funded through the European A-WARE project under grant

FP6-2005-IST-034545.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 225–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

226 R. Menday et al.

community will be a best-of-breed packaging of select components. In essence,
the next-generation of UNICORE will become a stovepipe construction toolkit.
Furthermore, there now exists the possibility for others to take individual com-
ponents and use them for something else.

Fig. 1. Deployment possibilities of the work engine

Referring to Figure 1 we assume a cloud of services consisting at the lowest
level of fabric services. These are services associated with particular computa-
tional or data resources. The UNICORE Atomic Services (UAS) developed in the
UniGrids project provide us with a Web services based interface to such atomic
grid functionality. Services which are not fabric services - i.e. not coupled to a
particular computational or data resource - are termed higher-level services. In-
dividual fabric services are not normally used in isolation. A set of resources and
services are orchestrated into a complex workflow, business process, or service
chain. This paper deals with such a ‘work engine’, acting on behalf of multifar-
ious users that manages the multiple invocations of contributing services. This
work will be carried out within the A-WARE project[1]. Examples of such func-
tionality include atomic Grid jobs, other higher-level services, databases, legacy
applications, etc. In short our work engine component can be described as a

one-stop, fire-and-(almost)forget, dropping-off and rendezvous point.

A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 227

One-stop, because it presents a façade of the Grid to the user1. Fire-and-
forget implies that the work engine manages the orchestration of the users’ tasks
over the Grid infrastructure. In many cases, after assigning work to the engine,
the next contact the client makes is when the assignment is complete - the
rendezvous. The ‘almost’ proviso implies that the client may wish to be notified
during the execution of the assignment, either for purely informational purposes,
or to participate in its execution, approving resource selection choices, or adding
additional information not available at the time of submission.

Whilst the use-cases driving the development of the Grid lead to some special
requirements, it has also become increasingly evident that businesses face similar
issues related to internet-scale communication, cross-organisational interactions,
and the accessing of services over the internet. This has resulted in the blurring of
the lines between Grid computing in the scientific community, and the kind of the
enterprise computing seen within business. Through the seamless integration of
Grid resources and local (non-Grid) resources, using a very powerful and flexible
orchestration environment, leading to the disappearing grid.

The further integration of a Grid portal component, such as EnginFrame[8],
would allow organizations to provide application oriented computing and data
services to users in a simplified Web browsing experience. Grid portal technol-
ogy hides the complexity of the underlying Grid infrastructure and provides an
additional user-oriented abstraction layer on the Grid.

This paper proposes using the Java Business Integration (JBI)[14] specifica-
tion for building higher-level services for the Grid. We suggest that this will
increase the ease of integration of Grid technologies into standard procedures
and systems, bringing considerable advantage through extending the reach of
Grid technologies. JBI provides the environment for the orchestration of re-
sources. The JBI based work engine supports a wide variety of work description
documents, external bindings, swappable and co-existing orchestration strategies

Domain Specific Languages (DSL) are used throughout the architecture. These
can be used to expose a legacy application or process, or to provide core support
for pre-designed ‘canned’ workflows which can be used as a top-level work descrip-
tion, or as embedded fragment in a larger orchestration language. As such, the use
of DSLs can be seen as a logical progression of the software resource concept of
UNICORE.

The design encourages an ecosystem of multiple clients all using the services
offered by the work engine. These are supported through multiple external bind-
ings. So, for example, it will offer a Web services interface as well as HTTP in-
terface following the REST [19] architectural guidelines. Alternatively, the work
engine can be deployed as an embedded component in other publishing frame-
works, supporting the established portal technology EnginFrame[8], as well as
opensource portlet[17] containers such as GridSphere[12]. Finally, there are fur-
ther opportunities for building domain specific workbench applications leverag-
ing the DSL support.

1 For performance reasons data transfers occur in a point-to-point nature (bypassing
the work engine).

228 R. Menday et al.

This paper begins in section 2 by reviewing the status of UNICORE develop-
ment highlighting the UNICORE Atomic Services (UAS) developed in the Uni-
Grids project. We follow with high-level view of functionality targets in section 3.
The JBI-based framework is introduced in section 4. In section 5 we outline some
future strategies for workflow execution, including the use of rule technologies in
section 5.3. Furthermore, we outline in section 5.1 how Domain Specific Languages
are a core concept in the architecture. Finally, we conclude with a summary.

2 Atomic Services and Interoperation

Our primary interface for Grid tasks is the UNICORE Atomic Services (UAS)
as developed in the UniGrids [9] project. The UAS covers the basic use-cases
for ‘atomic’ Grid usage, e.g. submit and manage a job, elementary data man-
agement, at a single target system (a VSite in UNICORE terminology). This is
done by defining a contract for Target System and related services.

At the time of writing, nothing exists as a standard - from the GGF (or
elsewhere) - with the same level of usability and maturity as the UAS, although
the Global Grid Forum has a number of initiatives in this area. Thus, for now, we
support the UAS interface as the ‘native’ interface to atomic Grid functionality,
until a concrete standard emerges. Indeed the UAS has provided an excellent
input to the standardisation process

We introduce the term willingness to categorise levels of support. We see
gradients of willingness. For example, a fabric service may use JSDL[10] for
describing jobs, although alternative mechanisms for conveying this message are
possible. Often a partial willingness to comply is due to the very nature of the
standard. For example, JSDL has an extensible nature whereby open-content
can appear at some points within the document.

What emerges is that some form of mediation strategy is necessary in almost
every case. Sometimes this involves some simple protocol translation steps, but
in other cases it may mean using ontological techniques to cope with different
information models.

3 Functionality

This section contains an incomplete presentation of possible fields where the
higher-level service discussed here may prove useful.

– Workflowing
High-level, abstract workflows described by DSLs broken down into low-level,
concrete workflows for execution by fabric services. Basic orchestration of
concrete workflows.

– Scheduling
Different approaches to scheduling can be enumerated as static, dynamic
and hybrid scheduling. Static tasks are completely predefined or directly

A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 229

authorised by the client. Dynamic tasks consist of a description of work to be
done with no particular resources assigned to them. Dynamic scheduling in-
volves lookup of appropriate resources with respect to an associated require-
ments description. We can combine both approaches in hybrid scheduling
strategies.

– Brokering
Grids are subject to constant change. A dynamic broker supports the se-
lection of resources according to the user’s policies and currently offered
resources. Reaction on changes of resources during execution of workflows
closely links brokers and schedulers.

– Negotiating
Most real-life Grid applications involving multiple resources require schedul-
ing and reservation steps. Coordinated time-dependant synchronised starting
provides co-scheduling support.

– Integrating
With the Grid mainstream clearly moving towards web services based tech-
nologies, solutions supporting clean integration of ‘legacy’ business systems
or processes are necessary.

– Mediating
In an environment dominated by open, extensible messaging formats, often
collaboration between services entails some form of mediation. For example,
various dialects of WS-Addressing or JSDL might coexist in a Grid.

– Transforming
In a similar vein, data might need transformation steps between services, for
example in a multi-step workflow with data transfers.

– Managing
Specific services might expose administrative interfaces, for example security
services might offer the possibility to add users or modify user permissions.

– Informing
The massive amount of both static and dynamic information available in
next-generation Grids needs to be filtered for various needs - both end user
and software agents. Web users are accustomed to using a wide variety of
communication tools, such as e-mail, RSS feeds, SMS or instant messaging.
These can be profitably leveraged for Grid users. A common use case is noti-
fying users about an interesting status change of some resource, for example
when jobs have finished, or results are available.

– Interacting
A particular work assignment may require input from the user during the
course of its execution. Such interaction could be used to approve a dy-
namic resource selection, or could be used to adjust the rules governing the
execution.

– Securing
In heterogeneous, truly service oriented Grids, the ability to use and mediate
between various trust and security approaches may well become vital. Our
work engine will use appropriate security services to achieve this.

230 R. Menday et al.

4 Java Business Integration

In order to cover the wide-range of possibilities covered by the functional require-
ments, we selected the Java Business Integration[14] specification as a framework
technology. JBI promotes the idea of a loosely-coupled collection of components
interacting with each other via the bus. It is an event-driven, component ar-
chitecture. The specification defines a standard means to assemble integration
components which are plugged into a JBI environment and can provide or con-
sume services through it, in a loosely-coupled way. The JBI environment routes
the exchanges between these components and offers a set of technical services.

JBI distils SOA concepts into the design of the internal interfaces collected
around the bus. As such, JBI encourages the programmer to design and code in
a loosely-coupled manner - e.g. between each module of code contributing to the
system, there is a cleanly defined contract for the interactions.

JBI offers a lot of potential integration possibilities into existing enterprise
Java deployments. Many businesses will find this a particularly compelling as-
pect of JBI. Furthermore, as a standard Java specification there exists a number
of JBI implementations, and lots of opportunity to re-use existing components. A
deployment is declaratively configurable and manageable using standard mech-
anisms. It is easy to ‘customise’ a particular JBI deployment, for example to
support local processes using a DSL (see section 5.1).

Furthermore, JBI is an excellent framework for supporting multiple protocols
and transports, through various binding components, such as

– REST
A well designed HTTP interface following the guidelines of the REST archi-
tectural style, offers an extremely attractive interface with an extremely low
barrier to entry. Through interaction with a REST interface, browsers can
construct Web applications using client-side scripting and using AJAX[2]
approaches. It is clear that a number of other interesting Web techniques
can also be applied here too.

– WS-*
Tool support for Web services is excellent. A good toolkit automates a sub-
stantial amount of the process of building client tooling for web services.
Businesses with commitment and expertise with Web services will find this
channel for interaction appealing.

– Embedded
This allows the work engine to be embedded into portals, and other presen-
tation layer technologies.

The goal of each of the binding components above is to ultimately deliver
a work assignment to the JBI bus for execution. The user submitting this can
configure their work engine with notification preferences, such that they are
contactable during and after the execution of their work. We propose using
ServiceMix[3] as the implementation of JBI, and this comes with a number of
notification mechanisms (such as Email, Jabber[13] messaging, RSS/Atom feeds)
‘out of the box’.

A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 231

5 Orchestration

The JBI-based core is a suitably powerful and generic framework to host the
execution of scientific and business processes. Based on interacting with, and
learning from, the computing world surrounding it, semi-autonomous agents
form the conduit between the bus and the external world, through monitoring
of the outside world, and reacting by sending events onto the bus. For example,
agents could check and arrange QoS guarantees. Further agents could be respon-
sible for negotiating trust relationships including security token exchange via a
security token service. Co-allocated, time-dependent, synchronised start is also
possible given an appropriate co-allocation agent.

Fig. 2. The bus and some sample components

5.1 Domain Specific Languages

When dealing with workflows on the Grid, one inevitably has to deal with
bridging the gap between the low-level, technical workflow (execution of small,
”atomic” activities) and the high-level view taken by the end users, where max-
imising the impact application developers can make in their domain of exper-
tise is important. One approach towards bridging the above-mentioned gap
is the combination of orchestration engines and high-level DSLs. The idea is
that higher level ‘work assignments’ use the underlying orchestration services to

232 R. Menday et al.

execute. Work assignments are, if necessary, mapped to a description understood
by the core orchestration components. The work engine can advertise which DSLs
it supports.

DSLs allow work assignments to be expressed in the level of abstraction of
the problem domain. Consequently, domain experts themselves can understand,
validate, modify, and often even develop DSL descriptions. There is some debate
whether XML documents are in fact DSLs[22]. We argue that they are, and
that it is the level of abstraction which allows classification as a DSL, although
clearly it is nothing more than some XML conforming to a particular schema!
We propose supporting both XML and non-XML DSLs as work assignments to
be fed into the work engine. However, there is some merit to XML based DSLs2

as it is then easier to embed inside other XML documents. It is also simple to
use XML schema to validate XML-based DSLs.

Regardless of the means by which it was conveyed, at some point a work as-
signment exists as a message on the JBI bus. Some messages are said to be in a
‘native’ format, i.e. can be directly executed by one of the orchestration engines
which are responsible for managing the workflow and persisting the state of the
orchestration. Therefore, a process of transformation and mediation interprets
the incoming work assignment. The JBI bus is the controlled environment re-
sponsible for managing this break-down. Intermediate steps may themselves be
expressed in some DSL formulation. Eventually this process produces an execu-
tion plan that can be directly executed in the native format of the underlying
orchestration engine.

5.2 BPEL

The Grid community seems to be somewhat split regarding the use of BPEL
in conjunction with WSRF. Part of the problem is that the WSRF interactions
between a service consumer and provider are quite verbose and fine-grained.
While it is possible to describe this conversation as a BPEL workflow the result
is somewhat long-winded.

The key is to use the bus for the invocation of services from BPEL. Each
invocation breaks down to a series of WSRF-based invocations, but crucially
the contract to the BPEL consumer on the bus is coarse-grained and service-
oriented, and avoids the verboseness. Thus the usage of JBI as a mediating
technology between BPEL and WSRF-based Grid services looks very promising
to successfully use BPEL to orchestrate Grid (WSRF-based) services.

Furthermore throughJBI multiple orchestration strategies can co-exist. Indeed,
runtime selection of orchestration strategy may be based on the type of assign-
ment passed to it. Other orchestration technologies which also look interesting in-
clude Business Process Management (BPM) workflow solutions (OSWorkflow[16],
jBPM[15], etc), petri-net based solutions (Bossa [4]), continuation-based
approaches (bpmscript[5], dalma[6]). As emphasised previously, these orchestra-
tion strategies can be swapped in and out much easier using the JBI infrastructure.

2 Even if its just a trivial wrapping.

A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 233

5.3 Rules

A rule engine is an example of another useful component that can be hosted by
JBI. Prototype work to date has concentrated on the Java rules engine, drools
[7]. This is based on the facts supplied from the computing environments, and a
dynamically evolving rule base.

This provides an alternative approach to routing messages on the JBI bus, or
initiating the delivery of new messages. This can be leveraged to reason on the
state of a executing work assignment, using the rule base to make decisions, for
example to assist with brokering decisions.

Potentially, a rule engine could be used to orchestrate an entire work assign-
ment. This enables a declarative approach to workflow description. The rules can
be changed during runtime opening up some very interesting runtime possibili-
ties such as ‘workflow rewriting’. Alternatively, the rule engine could be used at
particular points within the course of a workflow execution, such as evaluations
at decision points. This hybrid approach using multiple strategies is likely to be
the most commonly used.

6 Summary

This paper has reported on some architectural approaches under consideration
at the start of the A-WARE project. Clearly, the new breed of grid infrastructure
is based on the SOA paradigm. Functional requirements pose a strong need for
dynamic message exchanges between all components, which can be added to and
removed from the infrastructure in dynamic ways.

A flexible architecture supporting the stated functional requirements is JBI,
offering normalized message exchange between components plugged into a mes-
sage bus. JBI offers general purpose components which will be useful in imple-
mentation of A-WARE infrastructure. Very importantly, we envisage re-using
many existing opensource libraries for the implementation, writing code to inte-
grate these using JBI. Finally, as a integration framework, JBI offers excellent
support for the integration of existing systems and processes.

Work assignments may be described in terms of DSLs, allowing specialists to
work in their domain. DSL work descriptions are abstract and will be broken
down to concrete submissions of contributing resources. DSLs can be nested
and provide a notion of ‘canned’ workflow. Furthermore, JBI allows for the
integration of several orchestration strategies. They can be selected on the basis
of particular work assignment. JBI comes with a component supporting BPEL,
which can be used as a start, and support for other orchestration engines will
be added. A rule engine hosted by JBI declaratively describes consequences
of certain states of workflows or events in the environment. Rule engines can
potentially be used to orchestrate entire work assignments.

An early prototype of the JBI based framework looks very promising. The
great advantage of this approach is the possibility of rapid and flexible devel-
opment. Development is incremental and highly modular, such that extensions
can be added without interfering with the existing components.

234 R. Menday et al.

References

1. A-WARE Project. http://www.a-ware.org/.
2. AJAX. http://adaptivepath.com/publications/essays/archives/000385.php.
3. Apache ServiceMix. http://incubator.apache.org/servicemix/.
4. Bossa. http://www.bigbross.com/bossa/.
5. Bpmscript. http://www.bpmscript.org/.
6. Dalma. https://dalma.dev.java.net/.
7. Drools. http://drools.codehaus.org/.
8. EnginFrame. http://www.enginframe.com/.
9. European UniGrids Project. http://www.unigrids.org.

10. GGF JSDL. https://forge.gridforum.org/projects/jsdl-wg/.
11. Grid Interoperability Project. http://www.grid-interoperability.org.
12. GridSphere. http://www.gridsphere.org/.
13. Jabber. http://www.jabber.org.
14. Java Business Integration. http://www.jcp.org/en/jsr/detail?id=208 .
15. jBPM. http://www.jboss.com/products/jbpm.
16. OSWorkflow. http://www.opensymphony.com/osworkflow/.
17. Portlet Specification. http://www.jcp.org/en/jsr/detail?id=168 .
18. D. Erwin, editor. UNICORE Plus Final Report – Uniform Interface to Computing

Resources. UNICORE Forum e.V., 2003. ISBN 3-00-011592-7.
19. Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, 2000. Chair-Richard N. Taylor.
20. Ian Foster. Service-oriented science. Science, 308(5723):814–817, May 2005.
21. R. Menday and Ph. Wieder. GRIP: The Evolution of UNICORE towards a Service-

Oriented Grid. In Proc. of the 3rd Cracow Grid Workshop (CGW’03), Oct. 27–29
2003.

22. M.Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?
2005. http://www.martinfowler.com/articles/languageWorkbench.html.

23. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. Unicore - From Project
Results to Production Grids, 2005. Elsevier, L. Grandinetti (Edt.), Grid Comput-
ing and New Frontiers of High Performance Processing.

http://www.a-ware.org/
http://adaptivepath.com/publications/essays/archives/000385.php
http://incubator.apache.org/servicemix/
http://www.bigbross.com/bossa/
http://www.bpmscript.org/
https://dalma.dev.java.net/
http://drools.codehaus.org/
http://www.enginframe.com/
http://www.unigrids.org
https://forge.gridforum.org/projects/jsdl-wg/
http://www.grid-interoperability.org
http://www.gridsphere.org/
http://www.jabber.org
http://www.jcp.org/en/jsr/detail?id=208
http://www.jboss.com/products/jbpm
http://www.opensymphony.com/osworkflow/
http://www.jcp.org/en/jsr/detail?id=168
http://www.martinfowler.com/articles/languageWorkbench.html

Grid-Based Processing of High-Volume

Meteorological Data Sets

Guido Scherp1, Jan Ploski1, and Wilhelm Hasselbring1,2

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
{guido.scherp,jan.ploski}@offis.de

2 University of Oldenburg, Software Engineering Group, 26111 Oldenburg, Germany
Hasselbring@informatik.uni-oldenburg.de

Abstract. Our energy production increasingly depends on regenerative
energy sources, which impose new challenges. One problem is the avail-
ability of regenerative energy sources like wind and solar radiation that
is influenced by fluctuating meteorological conditions. Thus the develop-
ment of forecast methods capable of determining the level of power gen-
eration (e.g., through wind or solar power) in near real-time is needed.
Another scenario is the determination of optimal locations for power
plants. These aspects are considered in the domain of energy meteorol-
ogy. For that purpose large data repositories from many heterogeneous
sources (e.g., satellites, earth stations, and data archives) are the base
for complex computations. The idea is to parallelize these computations
in order to obtain significant speed-ups. This paper reports on employing
Grid technologies within an ongoing project, which aims to set up a Grid
infrastructure among several geographically distributed project partners.
An approach to transfer large data sets from many heterogenous data
sources and a means of utilizing parallelization are presented. For this
purpose we are evaluating various Grid middleware platforms. In this
paper we report on our experience with Globus Toolkit 4, Condor, and
our first experiments with UNICORE.

1 Introduction

Regenerative energy sources are becoming more and more important for our en-
ergy supply. It is assumed that in the future the dependency on these sources will
increase. However, the availability of these sources is highly influenced by mete-
orological factors which impose new challenges. Forecast models for simulations
are needed to provide a near real-time estimation of the power generation (e.g.,
through wind power). Another scenario is the determination of appropriate lo-
cations for building power plants. For example, an analysis based on (archived)
solar irradiation data combined with further geographical and commercial in-
formation (lakes, rivers, costs, etc.) can be used to find optimal spots for solar
power plants. Each simulation or analysis is based on large heterogeneous data
sets, which come from satellites, earth stations, data archives, or other sources.
Due to the large amount of data, the computational power of a single computer

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 235–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

236 G. Scherp, J. Ploski, and W. Hasselbring

is insufficient. Next generation satellites with higher resolution will further in-
crease that amount of data. Today, approximately one terabyte of new data per
month is received and continuously archived that are relevant for our project
WISENT, which is introduced in the following.

A solution for speeding up the simulations and analyses lies in utilizing paral-
lel computation. Therefore, the challenges of transferring large amounts of data
as well as the parallelization of simulations and analyses have to be addressed.
In the context of parallel execution and transfer of large data amounts, the
term Grid [1,2] has become more and more familiar in the last years. In the
project WISENT (wisent.d-grid.de) Grid technologies are employed to focus on
these challenges in the domain of energy meteorology. The University of Olden-
burg (ehf.uni-oldenburg.de), three departments of the German Aerospace Center
(DLR DFD, DLR TT, DLR IPA, www.dlr.de) and the company meteocontrol
(www.meteocontrol.de) are collaborating on WISENT with the institute OFFIS
(www.offis.de) as project coordinator. The project started in October 2005 and
is funded by the German Federal Ministry of Education and Research (BMBF,
www.bmbf.de) over three years. One aim of the project is to set up a Grid
infrastructure to support large data transfers and distributed processing.

Each project partner has different resources that are to be shared within the
Grid infrastructure. The different types of resources and their utilization are
shown in Figure 1. Firstly, data are received from many heterogeneous sources
such as satellites and earth stations. Based on this data, various complex compu-
tations are performed utilizing resources such as desktop PCs, multi-processor
servers or a dedicated cluster. Because of the planned integration into the Ger-
man Grid initiative D-Grid (www.d-grid.de), we also intend to utilize D-Grid
resources, for example high-performance computing (HPC) centers. The results
of these computations are used for multiple purposes, for example to monitor
the energy output of photovoltaic modules. To gather experience, we examined
several Grid middleware platforms such as Globus Toolkit 4, Condor, and we
are currently evaluating UNICORE.

The challenges of transferring large data sets and parallelization in energy me-
teorology are described in Section 2. In Section 3, we report on possible solution
paths we have examined or intend to examine, and experiments with Globus
Toolkit, Condor, and UNICORE we have already performed or planned. We
conclude with an overview of future work in Section 4.

2 Challenges to Be Addressed

In WISENT, we are faced with various challenges. In the present paper we focus
on the transfer of large data sets and the utilization of parallelism to run complex
computations on these data sets. To fulfill the requirements associated with it, we
intend to examine appropriate Grid technologies. The challenges are described
in more detail in the following subsections.

Grid-Based Processing of High-Volume Meteorological Data Sets 237

Fig. 1. Overview of the application scenario in WISENT

2.1 Transfer of Large Data Sets

One characteristic of the collaboration of our project partners is the exchange
of data. Those data mostly consist of data products that are the results of
computations on raw satellite data or previously processed data products. Data
transfers are executed periodically (weekly, daily, hourly) or on demand. The
number of daily data transfers at DLR-DFD concerning WISENT, for example,
is up to 100, some of which are performed between the project partners and
others which involve external facilities. The size of one transfer ranges from a
few kilobytes up to several hundred megabytes. In the future, the number and
size of data transfers will increase.

Today, a data transfer often relies on simple transfer protocols such as FTP
or HTTP. Manual execution and monitoring are not uncommon. One goal is
to execute these transfers reliably and automatically, which should result in less
manual work and thus in a cost reduction. Each project partner intends to be able
to easily share own data as well as access the data offered by any project partner
within the Grid infrastructure. Furthermore, some transfers are used to deliver
commercial data products. Thus, security for authentication and authorization
as well as monitoring for accounting and billing are also required.

2.2 Parallelization

Our project partners use applications in the context of energy meteorology that
can benefit from parallelization. The potential for parallel execution can be ex-
ploited in different ways, for example at data or program level. At data level, it
means that the input data is first separated into several parts. The computation
is next executed on distributed computing nodes, whereat the same program
is running on each node without any network communication among the nodes.

238 G. Scherp, J. Ploski, and W. Hasselbring

Finally, after the parallel execution is completed, the corresponding output data
parts are merged into the final result. In contrast, the parallelization at program
level is used if a clear subdivision of input data for independent computation
is not possible. Thus, parts of the programs are distributed and a frequent ex-
change of intermediate data is needed, for example via an implementation of the
Message Passing Interface (MPI) [3]. The implementation of parallelization at
data level is often much easier than parallelization at program level. Fortunately,
we found out that most applications considered within our project can use par-
allelization at data level. No program sources have to be modified, which is an
advantage because the source code of some programs concerned and libraries is
not available. Our project partners already use parallelization at program level
in a few applications. Thus, this parallelization technique will become relevant
and has to be considered in the future.

3 Solution Approaches Employing Grid Technologies

Today, several Grid technologies and respective Grid middleware platforms are
available. We gained initial experience with Globus Toolkit 4 and Condor and we
are currently evaluating UNICORE, which we describe in the following sections.
Our evaluation of each software considers the challenges mentioned in Section 2.

A typical classification of Grid infrastructures distinguishes Intra-, Extra-,
and Inter-Grids (Figure 2). The term Intra-Grid refers to a Grid set up within a
single organization. Several Intra-Grids of different organizations are connected
to an Extra-Grid, which requires stronger security policies, such as virtual private
networks (VPN). An Extra-Grid often provides access to a Grid infrastructure for
a certain user group with established working relationships, thus it is typical for
community grids. The final extension is Inter-Grid, a global Grid infrastructure
for a wide range of independent users. The planned Grid infrastructure for our
project conforms to the Extra-Grid definition. Grid technologies can be employed
at Intra-Grid level, Extra-Grid level, or both levels, which is taken into account
by our evaluation.

3.1 Globus Toolkit 4

As a start, we have chosen to evaluate the Grid middleware platform Globus
Toolkit 4 [4]. This decision was made because of the comprehensive available
documentation [5,6], the long development history since Globus Toolkit 1 (re-
leased in 1996), and the implementation of the Grid standard Web Services Re-
source Framework (WSRF) [7]. Globus Toolkit 4 offers comprehensive services
for data transfers which motivates, due to the requirements of data transfers
described in Section 2.1, the examination of these services. In this section we
report on our first experiences.

Application Scenario. Our project partner DLR DFD is involved in most
data transfers exchanging data products, which may be performed in two ways.

Grid-Based Processing of High-Volume Meteorological Data Sets 239

Fig. 2. Intra-, Extra-, and Inter-Grid (Source: IBM)

Either DLR DFD offers the desired data product for download on their “public”
FTP server or the data product is transferred directly to an FTP server of
a project partner or another external facility. This FTP-based approach has
some disadvantages because errors are handled manually. For example, a transfer
initiated by a cronjob might fail due to a temporary network timeout.

The manual error handling of failed FTP transfers gives rise to potential
problems. The required data products are stored together with raw satellite data
in an archive called Digital Information and Management System (DIMS), which
is secured behind a firewall. Thus, a data product is periodically transferred
to the “public” FTP server, which is located in a demilitarized zone (DMZ).
The recipient is also periodically looking for changes on this FTP server and
downloading the desired data products. This procedure does not include checks
whether the required data products are completely available. If the series of
uploads to the “public” FTP server was interrupted, an incomplete product
might be downloaded, which might be discovered too late.

We have chosen five data transfers and their corresponding data products
as an initial test scenario. Our approach is an incremental migration of each
transfer toward Grid technologies in multiple steps. First, test data transfers are
to be executed internally between DLR DFD and the OFFIS institute. Based on
this experience, these transfers will be extended step-wise to cover the real-world
scenarios.

Data Transfers with Globus Toolkit 4. Globus Toolkit 4 offers a layered
architecture of services for data transfers. The GridFTP service belongs to the
lowest layer. It is an enhanced FTP protocol with features such as the support
of encryption and authentication based on X.509-certificates and several options
to increase the data troughput, e.g. using several parallel data channels. The use
of certificates allows Singe Sign-On (SSO), which is an important advantage. By
default, GridFTP does not encrypt the data channel, but activation of encryp-
tion reduces the data throughput significantly. Globus Toolkit 4 comes with a

240 G. Scherp, J. Ploski, and W. Hasselbring

standalone GridFTP server, which supports so-called Third Party Transfers be-
tween two hosts, whereby the initiator of the transfer can be located anywhere.
With globus-url-copy,Globus Toolkit 4 offers a command-line GridFTP client.

GridFTP provides only the basic service for transferring files from a source
to a destination. Higher-level services are supposed to build upon this capabil-
ity. One practical application of this idea is the WSRF-compliant Grid service
named Reliable File Transfer (RFT). Besides several configurable properties, the
RFT service accepts a list of files that are to be transported. The data trans-
fer is processed in a reliable manner. That means that the RFT-Service retries
interrupted transports up to a limited number of times before reporting an er-
ror. For this purpose, the state of each transport is recorded in a database with
transactional control (such as PostgreSQL). Unfortunately, the RFT service in
the actual version of GT4 is not utilizing the support of data channel encryption
in GridFTP, but this feature is proposed in the coming versions.

In our test scenario, we installed Globus Toolkit 4 on a host at DLR DFD
and configured it to provide the RFT service. For testing purposes our institute
assumed the role of a Certificate Authority (CA) to support authentication with
signed X.509-certificates. For the future we plan to use D-Grid certificates. The
first data transfers from DLR to Offis failed due to the strong firewall policies
at DLR. Based on the FTP-based protocol GridFTP uses a new dynamic port
for each data channel it creates. Typically, these ports are in a higher range
and blocked by the firewall. However, the port range used by both client and
server can be restricted by environmental variables. Because of the strong firewall
policies DLR develops an Application Level Gateway (ALG), a proxy placed in
the DMZ to support transparent communication for using (Grid) software such
as GridFTP. These experiences are the basis for the incremental extension of data
transfers based on GridFTP and RFT. Also planned is the full integration of
the DIMS archive into the Grid infrastructure. Finally, a detour via the “public“
FTP server should be avoided.

Currently, we are investigating the Monitoring and Discovery System (MDS)
of Globus Toolkit 4. Each Grid service has properties which can be exploited with
MDS, for example the RFT service reports the number of active transfers and
transferred bytes as properties. This information can be used for live monitoring,
accounting and billing.

Globus Toolkit 4 also supports distributed computing. However, in the con-
text of connecting desktop PCs and PCs within clusters, the features of Globus
Toolkit 4 do not appeal to us. The main reason is the apparent lack of a good
scheduling mechanism available out-of-the-box. However, we have not fully evalu-
ated the Community Scheduler Framework (CSF) it offers yet. Moreover, Globus
Toolkit 4 does not specifically support pooling resources of desktop PCs. For
example, some useful features such as the discovery of mouse and keyboard
activities and job migration are not available. Consequently, we are currently
considering using Globus Toolkit 4 only at the Extra-Grid level to improve the
execution of data transfers within the Grid infrastructure.

Grid-Based Processing of High-Volume Meteorological Data Sets 241

3.2 Condor

Several work packages in WISENT focus on improving computational perfor-
mance through data parallelization. One promising approach in that context is
provided by Condor [8], a freely available software package developed at the
University of Wisconsin-Madison. In this section, we briefly describe a paral-
lelization scenario for which Condor appears to be one likely solution based on
the insights gathered so far.

Application Scenario. Two- and three-dimensional computational models of
radiative transfers are currently employed by our project partners to determine
the amount of irradiation reaching the Earth’s surface based on satellite observa-
tion. Apart from images, the algorithms rely on input data consisting of various
atmospheric parameters, such as cloud profiles and water vapor distribution.

The three-dimensional radiative transport solver MYSTIC [9] developed by
DLR utilizes a compute-intensive Monte Carlo simulation to track individual
photons through multiple layers of the atmosphere. The simulation time varies
depending on the covered geographic area and the number of simulated photons,
which affects the precision of the results. For example, a modestly sized simula-
tion for a 100x100 km area with 10,000 photons consumes more than 5 hours of
CPU time on a 1 GHz PC.

From the parallel programming point of view, an attractive feature of both
the 2D and 3D radiative transfer models is the ability to compute results for
multiple distinct columns of the atmosphere separately, with a certain amount
of input data overlap. The results can be combined into one large output image.

Our project partner DLR IPA intends to reduce the computation time of
radiative transfer models by harnessing the power of a Linux cluster consisting of
sixteen 2,4 GHz Pentium Xeon nodes, several servers and 10 to 15 Linux desktop
workstations. Based on experiences gathered in the project, the network will be
expanded to support other resource-intensive scientific computations. The initial
experiments will process only several gigabytes of locally available input data and
produce a fraction of that as output, meaning that large-scale data transports
will not be of primary concern.

While parallel 3D computation models are being implemented by our col-
leagues with background in physics and meteorology, our task is to assist them
with the technology to improve their existing parallel computing solution for
2D radiative transfer. The currently deployed solution, used to drive the Linux
cluster mentioned above, distributes libRadtran [10] solver processes to multi-
ple cluster nodes through a combination of shell scripts implemented in-house,
the Parallel Virtual Machine (PVM) package [11] and a third-party PVM-based
extension of the Unix make tool called ppmake. This solution does not scale to
utilizing desktop resources nor does it permit unsupervised execution. Problems
such as difficult-to-explain non-termination of PVM processes are common and
call for manual interventions. Finally, the present solution does not stand soft-
ware engineering scrutiny. For example, the ppmake tool, which is suspected to
cause the encountered problems, is no longer actively maintained.

242 G. Scherp, J. Ploski, and W. Hasselbring

The Condor Approach. Condor is a software package that has been designed
with the aim to support “cycle scavenging”, that is, taking advantage of com-
putational resources during idle periods without interfering with their primary
users. A typical Condor installation consists of a central coordinator machine
and one or more machines acting as compute and/or job submission nodes.
Both classes of nodes communicate with the coordinator to announce the type
and availability of resources or the availability of jobs to be computed. On each
compute node, a Condor process monitors and regularly reports to a coordinator
static attributes such as the operating system and processor architecture, as well
as dynamic information such as the current CPU load, amount of disk space and
keyboard and mouse activity.

A job submission node announces resource requirements for user-submitted
batch jobs, which consist of binary executables along with a specification of
input/output files. When an available resource has been matched with a job
request by the coordinator, it arranges direct communication between the sub-
mitting and computing node. A shadow process is started on the submitting
node in order to monitor and report the execution status of the job process on
the computing node; both processes communicate using a proprietary protocol.

A job may be interrupted if its current computing node becomes unavailable
or at its owner’s discretion. If the executable program was linked with the Condor
library and adheres to some restrictions, Condor is able to migrate a snapshot
of the job process to another compatible compute node and continues its execu-
tion there. Furthermore, I/O system calls made by executable programs can be
automatically re-routed to the original submission machine, which may be used
to eliminate the need for explicit data transfer operations before and after job
execution. Alternatively, Condor offers built-in file transport mechanisms.

Our tests with Condor consisted of migrating the current PVM-based scripts
to utilize the Condor submission client instead of ppmake. They performed to
our satisfaction on a network of several different Linux PCs. The small amounts
of data we utilized for the tests helped us understand Condor’s opportunistic
approach to scheduling. In fact, because individual fragments of computations
were very short, the measured clock time for the Condor run exceeded that of
a sequential execution. We were able to influence the loss factor by modify-
ing the Condor configuration, particularly the communication intervals between
individual processes. Further improvements are expected by adjusting the job
granularity, as we have already discovered in experiments on behalf of another
project partner.

Based on our experience so far, the main weaknesses of Condor appears to
be the platform dependence, caused in part by the restricted availability of its
source code and in part by its operating-system dependencies, the complexity
reflected in a daunting number of (well-documented) configuration settings, and
the demands it places on the network connectivity. Condor’s main advantages
are the flexibility, long product history, solid documentation, wide user base
and built-in features which facilitate the construction of “desktop Grids”, which
we intend to utilize at the Intra-Grid level. Those “desktop Grids” are very

Grid-Based Processing of High-Volume Meteorological Data Sets 243

suitable for running our applications using parallelization at data level. Condor
also supports parallelization at program level through MPI, but in this scenario
the network bandwidth could quickly become a major bottleneck. Thus, the
access to HPC centers is planned as well in order to support future demands for
executing those applications within the Grid infrastructure.

3.3 UNICORE

Our evaluation of UNICORE has just begun. So far, we have successfully con-
nected two UNICORE hosts and performed first tests using the UNICORE
client. Thus, an assessment of whether we will use UNICORE at the Intra-
Grid or Extra-Grid level is not yet possible. As UNICORE was originally used
to connect distributed computing centers, its classification into the Extra-Grid
category seems reasonable. One great advantage of UNICORE is that the com-
munication between the client and the gateway is encrypted and uses only one
fixed port for both job submissions and data transfers. This is very compliant
with stronger firewall policies. Each connection of a GridFTP client in contrast
needs at least one exclusive port for the data channel (c.f. Section 3.1). But a
data transfer through the UNICORE Protocol Layer (UPL) has a noticeably less
data throughput than GridFTP and thus it seems only suitable for small data
transfers.

Another benefit of UNICORE is the possibility to model jobs and subjobs in
a workflow-style. As mentioned in Section 3.1, the DIMS archive of DLR DFD
stores both raw and post-processed satellite data. Some data products are com-
puted regularly and stored in the archive for further purposes while others are
computed on demand without persistent storage. The computation of each data
product consists of several steps that form so-called process chains. However,
as of today, each process chain is implemented individually and no consistent
description format exists. We intend to assess the UNICORE client’s utility
for modeling and executing such process chains in WISENT. With the growing
complexity of the process chains and their automation requirements, more so-
phisticated workflow elements supported by UNICORE’s workflow description
language may become useful. One disadvantage of the workflow model is that
each workflow element must be bound to one specific resource (Virtual Site). For
our scenario a dynamic resource selection with an optional limitation to specific
resources ought to be possible as well.

4 Conclusions and Future Work

This paper has shown how the use of Grid technologies at different levels can
address the challenges in the context of energy meteorology, including trans-
fers of large data sets and parallelization of programs at data level. We are
still in an evaluation phase, thus beside further tests with Globus Toolkit 4 and
Condor we have to gain more experience with UNICORE for a more comprehen-
sive comparison. Currently, we are also considering evaluating gLite [12] and the

244 G. Scherp, J. Ploski, and W. Hasselbring

commercial platform Sun N1 Grid Engine [13]. Another task is to investigate
the interoperability between these Grid middleware platforms. It is very likely
that we will use different Grid middleware platforms for the Intra-Grid and
Extra-Grid levels, thus interoperability is important.

In the view of the considerable data heterogeneity, one of our next steps will
be to support a uniform access method. To this end, we plan to examine the
OGSA-DAI (Data Access and Integration) [14], which provides a Grid-related
standardized access to different data resources using Web Services technologies.

Moreover, we plan to further examine security issues. A critical success fac-
tor for a Grid infrastructure lies in achieving trustworthiness [15]. The project
partners need to be sure that the Grid infrastructure is secure, and they intend
to control their own participating systems. Therefore, services for monitoring,
access control and logging are required. Finally, easy access to the Grid infras-
tructure as well as fast installation and deployment of new Grid nodes are also
important concerns.

References

1. Foster, I.: What is the Grid? A Three Point Checklist. Grid Today VOL. 1 NO.
6 (2002)

2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. Lecture Notes in Computer Science 2150 (2001) 2–13

3. MPI: Message Passing Interface.
(http://www-unix.mcs.anl.gov/mpi/standard.html) Retrieved: 2006-06-11.

4. Globus: The Globus Alliance. (http://www.globus.org/) Retrieved: 2006-06-11.
5. Globus: Globus Toolkit 4.0 Release Manuals. (http://www.globus.org/toolkit/

docs/4.0/) Retrieved: 2006-06-11.
6. Jacob, B., Brown, M., Fukui, K., Trivedi, N.: Introduction to Grid Computing.

(http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf) Retrieved: 2006-
06-11.

7. WSRF: Web Services Resource Framework. (http://www.globus.org/wsrf/) Re-
trieved: 2006-06-11.

8. University of Wisconsin: Condor High Throughput Computing. (http://
www.cs.wisc.edu/condor/) Retrieved: 2006-06-11.

9. Mayer, B.: I3RC phase 1 results from the MYSTIC Monte Carlo model. (I3RC
(Intercomparison of 3D Radiation Codes) workshop, Tucson, Arizona, 1999)

10. Mayer, B., Kylling, A., Hamann, U.: libRadtran – library for radiative transfer.
(http://www.libradtran.org) Retrieved: 2006-06-11.

11. Geist, A.: PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Network
Parallel Computing. MIT Press (Scientific and Engineering Computation) (1994)

12. EGEE: gLite Lightweight Middleware for Grid Computing. (http://
glite.web.cern.ch/glite/) Retrieved: 2006-06-11.

13. Sun: Sun N1 Grid Engine. (http://www.sun.com/software/gridware/) Retrieved:
2006-06-11.

14. OGSA-DAI: Open Grid Services Architecture - Data Access and integration.
(http://www.ogsadai.org.uk/) Retrieved: 2006-06-11.

15. Hasselbring, W., Reussner, R.: Toward trustworthy software systems. IEEE Com-
puter 39(4) (2006) 91–92

http://www-unix.mcs.anl.gov/mpi/standard.html
http://www.globus.org/
http://www.globus.org/toolkit/docs/4.0/
http://www.globus.org/toolkit/docs/4.0/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://www.globus.org/wsrf/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.libradtran.org
http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.sun.com/software/gridware/
http://www.ogsadai.org.uk/

BLAST Application on the GPE/UnicoreGS

Grid

Marcelina Borcz, Rafa�l Kluszczyński, and Piotr Ba�la

Nicolaus Copernicus University,
Faculty of Mathematics and Computer Science,

ul. Chopina 12/18, 87-100 Toruń, Poland
{marbor,klusi,bala}@mat.uni.torun.pl

Abstract. Sequence analysis is one of the most fundamental tasks in
molecular biology. Because of the increasing number of sequences we still
need more computing power. One of the solutions are grid environments,
which make use of computing centers. In this paper we present plug-in
which enables the use of BLAST software for sequence analysis within
Grid environments such as UNICORE (Uniform Interface to Computing
Resources) and GPE (Grid Programming Environment).

1 Introduction

Grid technology is becoming very popular nowadays. Watching weather forecast
we usually do not even realize how much computing power has been used to
prepare it. Scientific research and technology development implies an increasing
demand for distributed resources. We still need more precise weather forecast,
longer molecular simulations and we want to determine genome structure and
its functions. In other words, we need computing power which could easily be
made available to the user by means of Grid middleware like UNICORE [16] or
Globus [9].

The concept of Grid computing was first introduced in 1999 [7]. Its main
idea is the use of multiple distributed resources combined together on a single
application to work cooperatively. Definition of Grid computing have evolved
during the time [8]. Ian Foster in [6] suggested simple checklist definition of the
Grid technology composed of 3 points:

– The resources it uses should be distributed without any centralized control.
– All protocols used for authorization, resource discovery etc. should be open

and standard.
– The use of distributed resources in combined form should be much more

worthwhile than using them separately.

Grid middlewares find the use in much of scientific research. They have been
successfully used in 3D graphics, quantum chemistry and molecular modeling.
Since it became possible to determine the structure and sequence of DNA, many
scientists have been trying to indicate the role of specific DNA motifs in human

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 245–253, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 M. Borcz, R. Kluszczyński, and P. Ba�la

organism. This gives the opportunity to model many biological processes in
our body. It may also help us to cure many diseases, for example by blocking
expressions of specific genes. Since Basic Local Alignment Search Tool (BLAST)
appeared [1], it has become one of the fundamental and widely used tools in
molecular biology for sequence analysis. Prediction of human metabolic pathways
can serve as an example of using BLAST to find human enzymes taking part in
metabolic process (see [15]). Since 1990 we can observe an increasing need for
the use of the BLAST application by molecular biology scientists. That is why
there have been many attempts to optimize and speed up this biological tool.
For example in 1998 in [5] there were presented modifications which produce a
better suited code for comparing large numbers of sequence to several different
databases. Grid middleware brings another way of comparing a large number of
sequences. In a simple way comparisons of different sequences can be distributed
within different computing centers where original BLAST code can be used. This
eliminates errors which could occur during applying proposed modifications to
the code. The purpose of this paper is to show Grid technology solution by
presenting plug-in for BLAST application designed for UNICORE and GPE
middleware.

2 BLAST Software

The Central Dogma of Molecular Biology states, that two-stranded helix of DNA
composed of four types of nucleotides, is duplicated during replication process.
Next, DNA is transcribed into one-stranded structure of RNA. Finally protein,
i.e. polymers built from 20 different types of amino-acids, is synthesized from
RNA by translation. Sequences can change over time due to mutation, natural
selection and genetic drift. By means of BLAST biologists are able to com-
pare DNA or protein sequences from the same or different organisms. In this
way evolutionary relationship between organisms can be explored and biological
functions of new sequences can be predicted.

BLAST (Basic Local Alignment Search Tool) became an important and the
most widely used tool in the field of bioinformatics. It finds statistically signifi-
cant local similarities between pairs: user-defined (protein or DNA) sequence and
sequences from databases. As an output it gives gapped or gap-free alignments.
Each alignment is a high-scoring segment pair with final score and estimation of
statistical significance, called E-value (see [2] for details). During DNA sequences
comparison, results contain also information about DNA strand direction where
the similarity has been found.

The popularity of the program, apart from its functionality, is based on the
programs following qualities: reliability, speed and flexibility. BLAST is the name
of a package of software containing, among other things, blastp and blastn pro-
grams (see [3] for detailed description). Each of these components realizes algo-
rithms for different types of sequences (blastp for proteins, blastn for nucleotides).
BLAST uses a heuristic algorithm. First it takes subsequences of query sentence
of fixed length and all words with the same length which alignment score is at

BLAST Application on the GPE/UnicoreGS Grid 247

least the pre-defined threshold value. Next, database is scanned for these words
called “hot spots”, which are extended in both directions until some threshold or
cut-off value is reached. In this way BLAST finds similarities without exploring
the entire search space which could take a lot of time.

There are also several variants of BLAST, such as PSI-BLAST (Position-
Specific Iterated BLAST) or PHI-BLAST (Pattern-Hit Initiated BLAST), which
run specialized version of BLAST programs. First of them uses PSSMs (Position-
Specific Scoring Matrices) to improve sensitivity of searching. In the second
program, there can be put a motif next to the query sequence, which is the most
significant and is used to scan the database for, instead for the “hot spots”.

BLAST software is being developed by many institutes. The most popular
versions of the programs are NCBI-BLAST and WU-BLAST. The first of them
originated from the National Center for Biotechnology Information, while the
other is being developed at Washington University in St. Louis. Each version
has plenty of options which makes BLAST a very flexible tool used by biologists
all over the world.

3 Grid Programming Environment (GPE)

Grid environments are rapidly changing because of the new standards and appli-
cation areas which are still emerging and are being discovered. That is why Grid
Programming Environment (GPE) is being currently developed. The goal is to
implement new grid middleware based on the experience gained during the im-
plementation of UNICORE. Because the success of the Grid technology depends
among others on interoperability between different Grid implementations, there
is an idea to establish a stable interface between them. It is also important to
build a more flexible and user-friendly client framework for heterogeneous Grid
infrastructures with easy and secure access.

With the concept of GPE project (see [14] for more details) comes different
client applications designed for three category of users:

– Expert Users – with the ability to construct complex workflows of their jobs
(it is the successor of the UNICORE Client). This type of client is dedicated
to users with some knowledge about the functionality of the Grid. Besides
the workflow editor, the user has the ability to use different identities on
different target systems.

– Application Users – it is sufficient for them to use only one application, so
they do not need all of the tools available in order to build workflows. This
client interface doesn’t have all the functionality offered by the Grid. Instead
of that it is very easy and intuitive to use. Application Client depicted in
Fig. 1 is dedicated to scientists who usually run only one application at the
time.

– Unaware Users who manage their tasks and Grid resources through portals
in web browsers. Such users do not even have to install client application.

248 M. Borcz, R. Kluszczyński, and P. Ba�la

Fig. 1. GPE client interface dedicated for application users. It can be seen response
from GridBean service presenting list of available plug-ins on specified target system.

Everything they need on the computer is just an Internet browser. Such a
solution is also very attractive for mobile users who could manage their tasks
from any Internet cafe.

GridBean approach is one of the major advantages of the GPE framework.
Usually, when user wants to use specific application on the grid, he has to down-
load corresponding plug-in and integrate it with the client program. Sometimes
specific knowledge about the structure of the software is needed, like directory
name where the plug-in files should be placed. However, not every user has
some knowledge about computer science, even the basic one. That is why the
concept of GridBeans is very promising. Instead of downloading and manually
integrating the needed plug-in, GPE client software has the ability to check what
applications are available on the remote system. In the case the list contains the
application the user wants to work with, it is enough to select it by clicking
resulting in the corresponding plug-in being automatically downloaded into the
client’s job managing interface and made ready to use.

In other words, GridBeans are plug-ins which can be loaded dynamically
into any of the three different client applications. There is no need to have any
detailed knowledge about the physical structure of the software in order to use

BLAST Application on the GPE/UnicoreGS Grid 249

available application. Ratering in [14] described four major advantages standing
for presented GridBean approach:

– Easy distribution and update of plug-ins – updating plug-ins takes place in
the same way like downloading. User has to ask GridBean service for avail-
able gridbeans and then downloads new version of plug-in he is interested
in.

– Overview of supported applications – once the user asks the GridBean service
for plug-ins available on the target system, he gets clearly presented list of
actually supported applications.

– Flexibility of GridBeans – once the plug-in has been implemented, there is
no need to create different copies for different types of client applications dis-
cussed above. Special care may be only needed for graphical layout depends
on the type of client.

– Easy implementation of GridBeans – this is especially important for devel-
opers bringing applications on the Grid. The main effort to design plug-in
is implementation of the graphical interface and construction of the job de-
scription. Thanks to recipe guide [11], even non-professional programmer
will be able to design plug-in in reasonable time.

As it was mentioned, these points make the GridBean approach very promising.
Thanks to inter-operating GridBean service and client programs, manipulating
with plug-ins for different applications has become very easy for the user, even
one without any computer science background.

Grid Programming Environment was designed based on the experience of
UNICORE implementation. To keep track of all resources available on all target
systems Target System Registry has been created. Every target system dur-
ing start-up registers its resources properties as installed software, workload or
running jobs. This information is being dynamically updated during runtime
by Target System Service. Presented solution assures that when client asks for
available resources he gets always up-to-date information. Target System Reg-
istry, besides managing the list of available target systems with their resources,
plays another crucial role. In similar way to the classical UNICORE Gateway,
it performs authentication to prevent any access to the services from unsafe
Internet.

The GPE Clients can contact to the Target Systems Services available in
the different hosting environments such as Globus or UnicoreGS. In result, it is
possible to develop interface which can be used with the different middleware
without any modifications.

4 BLAST GridBean for GPE

In this section we present GridBean designed for BLAST application. User inter-
face is organized in a similar way to the one on NCBI-BLAST website [12]. The
main reason of such design is to keep it easy to use, specially by scientists who
are used to NCBI website and could have some troubles to migrate on the GPE

250 M. Borcz, R. Kluszczyński, and P. Ba�la

Fig. 2. Main graphical user interface panel. It grants a choice of the type of BLAST
program and a possibility to enter the sequence and to specify a database which is to
be browsed.

framework. In the main panel, besides the job name, a particular sequence can be
entered so that it may be compared with the sequences from a chosen database.
There can be typed either a whole sequence or the definition line only (Fig. 2).
There also should be chosen the type of BLAST program and the database that
the sequence will be search in.

The second panel provides optional choices which affect the presentation of the
search results. In the case of using blastp program user should determine which
scoring matrix he wants to use. Accuracy of matching can be controlled by chang-
ing appropriately expect and word size values (Fig. 3). There is also a possibility
to determine gap penalties for protein comparison. Flexibility of searching simi-
larities can be increased by using filters while readability of output by choosing
alignment view and convenient number of descriptions and alignments to be dis-
played. In the last field of the panel advanced user can enter more sophisticated
and more rarely used options, like “-i t” which show GenInfo Identifier number
in definition lines.

Presented panels (Input Panels) are extensions of the GridBean panel de-
signed for inputing the data by the user. Input Panel provides a visual area to
display needed parameter controls, and also a technique enabling the correla-
tion of values gained from those controls with the job description. Depending

BLAST Application on the GPE/UnicoreGS Grid 251

Fig. 3. Second panel of client’s GUI. Here the user specifies more detailed data in-
cluding the number of similar sequences or alignments to be show. It is also possible
to enter some specific options for BLAST package expert users.

on the application and its complexity, which is usually determined by a large
number of parameters, there is a possibility of using more than one input panel
for grouping the varied options respectively. Another advantage determining the
flexibility of the Gridbean approach is, that the plug-in can also have Output
Panels. Their main purpose is to display the job results downloaded from the
Grid, but the way of presenting the data can be made much more attractive and
more intuitive than the raw text. It could for instance show some precomputed
graphics, charts or tables with statistics. Of course, designing such panels would
strictly be connected with the application the GridBean is meant to be used
with. It is therefore recommended for the developers to have a good knowledge
of the software or a good specialist nearby to address any questions. It is also
important to mention that thanks to Grid Services the configuration of available
databases for BLAST can be made on the Target System. Such solution en-
sures that there is no need to upgrade the GridBean after changing the database
list on the server. BLAST plug-in simply checks the list before the user starts
preparing the task. This means that the user can see only those databases which
are currently available in the system.

252 M. Borcz, R. Kluszczyński, and P. Ba�la

The authors have successfully designed and implemented an interface for
BLAST application to run on the Grids. This plug-in, without any modifica-
tions, can be also used as an element of more sophisticated workflow tasks.
Building that kind of tasks will be possible with Expert Client application. The
GridBean implementation was developed under the GPE4GTK project [10] and
has been tested with the binary distribution, called GPE-Lite (release 1.0.0),
available at SourceForge website [13]. For testing the BLAST application has
also been used (version 2.2.13) available at the NCBI website [12].

5 Conclusions and Future Work

In this paper we have presented plug-in designed for being currently developed
GPE framework. BLAST GridBean will allow many bioinformatic scientists to
use Grid technology instead of usually overloaded NCBI servers. Another advan-
tage of Grid middleware, that we have mentioned above, is easy implementation
of plug-ins. All the developers have to worry about is the graphic interface dis-
played to the user and job specification to run on computing center’s side. More-
over it is easy to extend standard results presentation which usually is in text
format. Based on this output data we can extract information to present it in
specific graphical way. Indeed, it is the object of our current work to add graph-
ical presentation of BLAST application results (i.e. alignments) using BioJava
package [4].

References

1. Altschul, S., Gish, W., Miller, W., Myers, E.W., Lipman, D.: A Basic Local Align-
ment Search Tool. Journal of Molecular Biology 215:403–410 (1990).

2. Altschul, S., Karlin, S.: Applications and Statistics for Multiple High-Scoring Seg-
ments in Molecular Sequences. Proceedings of the National Academy of Sciences
90:5873–5877 (1993).

3. Bedell, J., Korf, I., Yandell, M.: BLAST. O’Reilly & Associates (2003).
4. BioJava project website: http://www.biojava.org/wiki/Main Page.
5. Camp, N., Cofer, H., Gomperts, R.: High-Throughput BLAST. SGI White Paper

(1998).
6. Foster, I.: What is the Grid? A Three Point Checklist. Grid Today, Vol. 1(6),

Argonne National Laboratory & University of Chicago (2002). Available at:
http://www.gridtoday.com/02/0722/100136.html.

7. Foster, I., Kesselman, C. (Eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers (1999).

8. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid, Enabling Scal-
able Virtual Organizations. International Journal of Supercomputer Applications,
15(3):200–222 (2001).

9. Globus project website: http://www.globus.org.
10. GPE4GTK project website: http://gpe4gtk.sourceforge.net.

BLAST Application on the GPE/UnicoreGS Grid 253

11. GridBean Cookbook. UniGrids project documentation (2005).
12. NCBI BLAST website: http://www.ncbi.nih.gov/BLAST.
13. Open Source projects website: http://sourceforge.net.
14. Ratering, R.: Grid Programming Environment (GPE) Concepts. Intel Corporation,

GPE documentation (2005).
15. Romero, P., Wagg, J., Green, M.L., Kaiser, D., Krummenacker M., Karp, P.D.:

Computational prediction of human metabolic pathways from the complete human
genome. Genome Biology 6:R2 (2004).

16. UNICORE project website: http://unicore.sourceforge.net.

Job Management Enterprise Application

Thomas Soddemann

Rechenzentrum der MPG (RZG), Institut für Plasmaphysik, Boltzmann-Str. 2,
85748 Garching, Germany
soddemann@rzg.mpg.de

Abstract. This paper describes the development of a Job Management
Enterprise Application (JMEA) which was developed by the DEISA ma-
terial science and plasma physics joint research activities. It is capable
of submitting jobs to a UNICORE server infrastructure and managing
them. Since it is a Java EE application, it can be used by multiple users
concurrently. Furthermore, it prefetches and caches request results in
order to able of responding as quick as possible to client requests. In
addition to normal user credentials it also supports the use of proxy
credentials and explicit trust delegation.

1 Introduction

The Distributed European Infrastructure for Supercomputing Applications
(DEISA) [1] is a consortium of leading national supercomputing centers that cur-
rently deploys and operates a persistent, production quality, distributed super-
computing environment with continental scope. The purpose of this FP6 funded
research infrastructure is to enable scientific discovery across a broad spectrum
of science and technology, by enhancing and reinforcing European capabilities
in the area of high performance computing. This becomes possible through a
deep integration of existing national high-end platforms, tightly coupled by a
dedicated network and supported by innovative system and grid software.

The DEISA supercomputing grid is a European research infrastructure result-
ing from the integration of national High Performance Computing (HPC) infras-
tructures. This integration of national resources – using modern grid technologies
such as UNICORE [6] – is expected to contribute to a significant enhancement
of HPC capability and capacity in Europe.

DEISA is structured as a layer on top of the national supercomputing ser-
vices, and coexists with them. This infrastructure addresses the computational
challenges that require the coordinated action of the different national supercom-
puting environments and services for both efficiency and performance. DEISA
provides scientific users with transparent access to a European pool of computing
resources. The coordinated operation of this environment is tailored to enable
new, ground breaking applications in computational sciences.

Eleven partners contribute currently to the DEISA infrastructure with their
top level supercomputers: BSC, Spain; CINECA, Italy; CSC, Finland; ECMWF,
UK; EPCC, UK; HLRS, Germany, IDRIS, France; FZJ, Germany, LRZ, Germany;

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 254–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Job Management Enterprise Application 255

RZG ,Germany; SARA, Netherlands This heterogeneous grid of super-computers
includes of the most recent systems from leading vendors (IBM – PowerPC970,
Power 4, 4+, 5, SGI – ALTIX, NEC – SX8).

Science Gateways, Portals and Web Service interfaces, are crucial for enhanc-
ing the user’s adoption of sophisticated supercomputing infrastructures, by hid-
ing from them the complexities of the computational environment. This extends
up to the point that users make in their view direct use of an application. The
choice of resource utilization is completely left to the infrastructure providing
access to this application. So the portal solutions play the role of an application
service provider (ASP).

The DEISA joint research activities in material sciences and plasma physics
were faced with the development of comfortable means of access to the DEISA
resources for standard applications in their fields like CPMD [2] and CP2K [3] for
material sciences, and TORB [4] for plasma physics, a so-called science gateway.

Within DEISA several options for job submission across Cluster boundaries
exist, e.g., the Multi Cluster Load Leveler (MC-LL) allows submitting jobs from
the command line to any of the connected Load Leveler clusters (but naturally
not to non MC-LL sites). The middle ware service activity within the DEISA
project chose to employ the UNICORE suite as the default job submission inter-
face to all heterogeneous compute resources within DEISA. Hence any DEISA
job submission portal solution should be able to interface the UNICORE infras-
tructure deployed in DEISA in order to submit jobs in behalf of its users.

The UNICORE suite consists essentially of three components and one local
batch scheduling system interface implementation establishing the connection
to resource management systems like MC-LL and others. On the server side
the central component is the Network Job Scheduler (NJS). It takes care of job
submission, job management as well as file transfers and work flow execution. A
gateway is the central entry point from the client perspective and several NJSs
can be connected to it. A grid infrastructure relying on UNICORE can have
more than one gateway e.g. for an increased fault tolerance. A user typically
employs a rich client application (the UNICORE Client) to connect to several
NJSs via a single gateway (see Fig. 1).

In the case of a portal application the job submission and management part
needs to be implemented by an appropriate interface component. This compo-
nents has to be able to carry out all tasks usually performed by the UNICORE
client. Ideally, this interface is as general as possible in order to be able to
deal with resource management systems besides UNICORE. The next section
describes the requirements for such general job submission and management
interface component.

The UNICORE suite offers a client library, the Arcon library, implementing an
API which offers most of the desired functionality in dealing with the UNICORE
server side. Unfortunately, this client library suffers from some minor deficiencies
which mainly affect its use in a multi user multi threaded environment. This will
be discussed in section 3.1.

256 T. Soddemann

Fig. 1. Multiple gateways and NJSes deployed in a more sophisticated UNICORE
infrastructure such as DEISA. Each NJS connects to all gateways. A user sees all
NJSes regardless of the choice of the gateway.

Fig. 2. Access to UNICORE within DEISA (without DESHL command line tooling).
The Job Management Enterprise Application sits on top of the UNICORE server side
infrastructure. A user accessing DEISA resources via the material science and plasma
physics portal application makes direct use if JMEA for submission and handling. Fur-
thermore, he is able to make use of other non-UNICORE related features like file system
access. The UNICORE rich client application offers essentially the same functionality
with respect to UNICORE. It speaks directly with the UNICORE server side. Pros
and Cons of these approaches are discussed in detail in [5].

Job Management Enterprise Application 257

Section 3.2 describes a implementation of the Job Submission and Manage-
ment interface described in section 2. It is implemented in form of a J2EE [10]
version 1.4 compliant Job Management enterprise application developed within
the DEISA project. It circumvents most of the problems described in section 3.1
and provides in addition functionality well beyond those of an ordinary client
library. It is being used in the DEISA material science and plasma physics portal
application.

The last sections provides conclusion and outlook of future developments.

2 Requirements for a Job Management Application

Ideally, a job management component for a portal application is able to connect
to all grid job managers and local batch scheduling system. Adhering to this
design principle, an API has to be used which is independent of any underlying
job management component specifics. E.g. it should be able to work with a
Globus [11] GRAM as well as with UNICORE NJS.

Hence, we identified a set of operation which we think are applicable to all
kinds of resource management systems. This particular choice was motivated by
the APIs of several different resource management systems [7,8] and the job man-
agement API of GGF’s SAGA research group specified in their strawman API
document [9]. It contains: submit (submitting the job request, cancel (canceling
a job request which is not being executed), delete (delete a finished job request),
kill (kill a running job request), halt (halt a job which is being executed), resume
(resume a previously halted job). In addition it should be possible to retrieve
information about the available resources, information about the status of jobs
owned by a particular user, and results from a finished job such as console out-
put. It is evident that the implementation of the job manager has to be able to
deal with the identity management of the underlying resource management sys-
tem. Fig. 3 shows the JobManager interface definition. All previously mentioned
methods have been integrated into the definition. Additionally the client can se-
lect the gateway machine (if necessary as in the case of UNICORE) and retrieve
a list of all known virtual site, which are part of the resource infrastructure.

Furthermore, the application should be able to cope with different instances
of the same or different job management implementation at the same time,
e.g. UNICORE and Globus. Hence, in addition to the JobManager Interface, a
Factory for the JobManager is needed.

In the following we motivate two further requirements based on our expe-
riences with UNICORE. But they should also hold for other Grid and cluster
middle ware such as the Globus Tool Kit. The the requirements are derived from
the design principle of giving best user satisfaction by having shortest request
to response times and letting the user/client select the level of sophistication.

The UNICORE NJS requires a considerable amount of time to process many
of its requests, e.g. request for a job status. Since it is undesirable to have
users wait for anything, the application should answer right away. It should even
answer if the targeted NJS should be unavailable for whatever reason.

258 T. Soddemann

Fig. 3. JobManager Interface definition

Ideally, the application should find out about available resources and cache
those information without user interaction.

3 Architecture and Implementation of the Job
Management Enterprise Application (JMEA)

The Job Management Enterprise Application (JMEA) is as its designed as a
multi-component application. It offers interface components such as the Job-
Manager for synchronous interaction and a similar component for asynchronous
interaction. Furthermore, persistent classes store jobs, job results, and job stati.
Service components take care of the things like the periodic querying of job stati
and automatic retrieval of results.

In the following we discuss why we choose to develop a new UNICORE client
library as a replacement for the current Arcon release. The second subsection
deals with the details of the implementation of JMEA.

3.1 The Arcon Client Library

In the case of UNICORE a client library exists which could be used to implement
the UNICORE job manager: the Arcon library.

The Arcon library is client library which allows application to interact with
the UNICORE server side (gateway and NJS). Although it works perfectly well
for a single user application with a single thread interacting with the UNICORE
server side, it has some limitations when employed in a multi user – multi thread
environment.

In order to avoid race conditions in multi threaded applications, one should
omit static variables, unless they are used for communication between the threads

Job Management Enterprise Application 259

and their access is synchronized. In the latter case, one has to make sure that syn-
chronized access does not lead to a performance bottleneck.

In the case of the JobManager class of the Arcon library three static vari-
ables can be identified which can have an impact on the use in a multi user
environment:

– outcome dir which specifies the directory, streamed files will be stored
– buffer size which reflects the buffer size for connections
– always poll which tells if request are always asynchronous or not.

The static nature of those variables make it difficult to have per user settings
which are desirable at least for the outcome dir.

The abstract class Connection implements three static variables:

– keep open which defines if the next connection is kept open after use.
– compression which tells if the transmission should be compressed or not.
– encrypt which defines whether the next retrieved connection should be en-

crypted communication or not.

While encryption may never been turned off, it is trivial to see that compres-
sion and keep open will definitely affect a multi user multi thread environment.
Setting keep open to true in one thread in order to retrieve a connection which
stays open may result in an error, if that connection has been closed after first
use, if a concurrent thread acquired a keep open=false connection.

There are other classes which implement static variables such as VsiteMan-
ager. In our opinion, those do not limit the Arcon libraries use in a multi user
environment.

The Arcon library implements its own proprietary logging mechanism which
is not compatible with any of the existing logging mechanisms as log4j and
the java.logging API. This makes it difficult to route logging messages to the
applications or container logging files and impossible to influence the logging in
the standard way.

Furthermore, in the implementation of some classes, e.g. in Connection, ex-
ceptions are used for flow control (bad style).

The main disadvantage at the time of the decision not to use the the original
Arcon library was the missing support for Explicit Trust Delegation (ETD) [12]
which allows a special user (agent) to formulate job request on behalf of a user
by using his own set of credentials. In the mean time an EDT supporting Arcon
library can be found at [13], which has not officially been released yet.

Furthermore, the Arcon library does not directly support Proxy Certificates
which are favored in some environments over the use of ETD.

Based on these facts the decision was made to re-implement a client li-
brary, the new JobManager Library. Parts of the Arcon library’s code base have
been reused and those parts which were identified to be problematic have been
replaced.

The new JobManager library now supports ETD, Proxy Certificates and is
usable in a multi-user/multi threaded environment without limitations.

260 T. Soddemann

3.2 The Components

Fig. 4 sketches themain components of the jobmanagement enterprise application.

Fig. 4. Main components of the Job Management Enterprise Application

The JobManager Enterprise Java Bean (EJB) is the workhorse of the appli-
cation. Its main purpose is to wrap calls to the JobManager library and han-
dle persistent objects (see below). This EJB is implemented as a stateless EJB
which allows the Application container to pool instances. The size of the pool
can adjusted to optimize the balance the number of concurrent requests and
responsiveness of the application.

The JobManager Message Driven Bean wraps the job update methods Job-
Manager EJB and allows each of them to be executed asynchronously. These
beans receive messages containing the AJO id of the job whose status is to be
updated or performs a bulk update on all jobs for a particular user.

The JobManager Service Management Bean performs service tasks such as
the periodic initiation of status update requests for running jobs. It employs
the JobManager Message driven beans and the RunningJobs persistent object
in order to achieve its goal.

Resources such as available software etc. are published in UNICORE on a per
site basis. Hence the enterprise application queries the resources in configurable
intervals and makes the result available to all of its users. The JobManager Re-
source Service Management Bean is responsible for querying the various NJS
server instances and caching the query result. Furthermore, it provides informa-
tion about the status of an NJS (available/not available). Since it has cached
information, a temporarly unavailability does not mean that a client does not
get information from it.

Job Management Enterprise Application 261

Several persistent classes have been used in order to store job requests, job
stati, job results, and running jobs. Hibernate [14] is used for object relational
(O/R) mapping purposes. Among the persistent classes are the JobStatus class,
JobResult class and the RunningJobs class. JobStatus contains all status infor-
mation available from UNICORE. In a similar way the results of finished jobs
including stdout and stderr are stored in objects of the JobResult class. Ob-
jects of the RunningJobs class contains information about all running jobs for a
particular user who is known to the enterprise application.

As mentioned in sec. 2, especially the UNICORE NJS requires some time to
process certain requests. To circumvent this behavior and give an answer to the
client side as quick as possible, information such as the job status, which obvi-
ously can change (e.g. from queued to running to finished), is polled periodically
and cached by the application. The JobManagerService MBean operates a timer
service which periodically initiates the polling by sending messages to the Job-
Manager Message Driven Beans. These utilize instances of the JobManager EJB
in order to retrieve and cache the required information from the NJS. When a
client asks the JobManager EJB about such information it answers by query-
ing the cache. A similar conecept is applied for the caching of a site’s resource
information.

Generally, requests should be grouped, if possible. Refreshes should be per-
formed at suitable intervals. This shortens the time to a response on client re-
quests for information using the application. Only information which need a
special user authorization have to be retrieved separately, e.g. asynchronously
after the user/client has authenticated himself to the application and provided
the necessary credentials so that the application is able to act on the user’s
behalf. If the concept of explicit trust delegation (ETD) is enabled in the tar-
geted UNICORE deployment, this task is trivial, since the NJS checks the
authorization.

3.3 Security

In the current version of the enterprise application different security models
are in place. The enterprise application itself can be protected by employing the
container’s security mechanisms. Once authenticated and authorized, a client can
access all methods of all EJBs deployed in this application. There are currently no
priviledged methods which need role based access restrictions. Access to the NJS
via the enterprise application can be achieved in three ways of authentication
by either employing
– the concept of Explicit Trust Delegation [12],
– Proxy credentials [15], or
– using the user credentials,

UNICORE is able to deal with one level of proxy certificates if the NJS
check signers property has been switched on. In that case the client needs to
provide a Signature object for most of the operations which result in an interac-
tion with a NJS. The JobManager library act in this case as a mediating NJS.

262 T. Soddemann

In the case of Explicit Trust delegation, it is not necessary for the client to
provide a Signature object. The JobManger library here is used in the Agent
mode, and signs all request with as a agent while setting the user attribute
fields in the AJOs accordingly. The only thing needed in both cases is the X509
certificate.

In the case of ETD it should in principle suffice to provide a X500 DN of
the user. This would simplify things, if the certificate is not available to the
JobManager application. In discussions with the NJS authors it became clear
that the certificate is used to identify users in cases where different users have
the same DN. Nevertheless, in our opinion, only certificate authorities should be
used which do not reuse their DNs or have overlapping name spaces. E.g. CAs,
which are members of the EUGridPMA, qualify for that.

4 Conclusion and Outlook

The Job Management is currently in production use for the materials science
and plasma physics portal of the according DEISA activities. In the mean time
extension plans towards an integration of WS-GRAM are made. Furthermore,
JMEA will be used in the implementation of the UNICORE connector for Grid-
SAM [16]. This will allow users of the OMII [16] and hence users of the AHE
[17] to submit jobs to the DEISA infrastructure. The reader might have missed a
treatment of file transfer. Currently, file transfers are not implemented in JMEA
itself (apart from the fact, that files can be embedded in job objects). An ad-
ditional file management application is used to transfer file with appropriate
mechanisms. Since JMEA will primarily be used in connection with web appli-
cations and web services, transfers of large volume data using HTTP/HTTPS
as the transport layer in form of a multi-part HTTP request or embedded in an
XML document is for performance reasons not advisable.

The Arcon library could easily be extended to integrate seamlessly into a
multi threaded – multi user environment and a part of this work has already
been incorporated in the unreleased version [13]. This would certainly help to
build third party applications on top of UNICORE which do not rely on the
UNICORE rich client.

A few ideas came into the authors’ minds when working on JMEA. These
could also enhance the integrability of UNICORE into third party applications.
In some applications connectors to UNICORE have easy access to the Princi-
pal class of the user, but often accessing the user/client certificate or even the
whole certificate chain is everything else than trivial. Hence, X500Principal ob-
ject should be used rather than the whole certificate in the class UserAttributes.

Furthermore, there are requests which do not necessarily need to be performed
by a user. E.g. requests for resource information could be performed by an ETD
agent as well. Result could then be handled by the agent itself and e.g. delivered
to all users. This would reduce the number of request to make to an NJS. But
currently an agent is not allowed to make such a request. This should be changed
in our opinion.

Job Management Enterprise Application 263

References

1. DEISA, Distributed European Infrastructure for Supercomputing Applications,
http://www.deisa.eu

2. CPMD, http://www.cpmd.org
3. CP2K, http://cp2k.berlios.de
4. Hatzky R, Tran TM, Knies A, Kleiber R, Allfrey SJ. Phys.Plasmas 2002; 9: 898.
5. Thomas Soddemann, Concurrency Computat.: Pract. Exper., DOI 10.1002/cpe
6. UNICORE, http://unicore.sf.net/
7. http://www-03.ibm.com/servers/eserver/clusters/software/loadleveler.html
8. http://gridengine.sunsource.net
9. A. Merzky, et al., https://forge.gridforum.org/sf/docman/do/downloadDocument/

projects.saga-rg/docman.root/doc12183
10. Java 2 Enterprise Edition
11. The Globus Toolkit, http://www.globus.org/
12. D. Snelling, et al., http://www.fujitsu.com/downloads/MAG/vol40-2/paper12.pdf
13. Unreleased EDT version of the arcon library,

http://fisheye1.cenqua.com/browse/unicore/unicore/optional/arconclient
14. Hibernate http://www.hibernate.org/
15. Proxy Certificate RCF3820
16. Open Middleware Infrastructure Institute, http://www.omii.ac.uk/
17. Application Hosting Environment, http://www.realitygrid.org/AHE/

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 264–273, 2007.
© Springer-Verlag Berlin Heidelberg 2007

UNICORE Deployment Within the DEISA
Supercomputing Grid Infrastructure

Luca Clementi1, Michael Rambadt2, Roger Menday2, and Johannes Reetz3

1 CINECA
Via Magnanelli 6/3,

40033 Casalecchio di Reno, Italy
l.clementi@cineca.it

2 Central Institute for Applied Mathematics
Forschungszentrum Jülich GmbH

D-52425 Jülich, Germany
{m.rambadt,r.menday}@fz-juelich.de

3 Garching Computing Centre of the Max Planck Society
Max-Planck-Institute for Plasma Physics

D-85748 Garching, Germany
johannes.reetz@rzg.mpg.de

Abstract. DEISA is a consortium of leading national supercomputing centers
that is building and operating a persistent distributed supercomputing
environment with continental scope in Europe. To integrate their resources, the
DEISA partners have adopted the most advanced middleware and applications
currently available. The consortium decided to embrace UNICORE as a job
submission interface for the DEISA grid infrastructure. UNICORE is the
foremost European grid technology able to hide the complexity of the
underlying resources providing a user-friendly graphical user interface for job
submission. This paper presents the deployment solution and strategies
implemented by DEISA in order to adapt UNICORE for their infrastructure.

Keywords: UNICORE, computational grid, middleware deployment,
interoperability.

1 Introduction

The DEISA project [1] started in May 2004 with the goal of providing a persistent
and production quality, distributed supercomputing environment. The members of the
consortium want to improve the level of exploitation of their systems and, at the same
time, to provide a higher Quality of Service to the users, being able to offer a larger
joint resource pool [9]. When building such an infrastructure, the DEISA partners
considered several applications and middleware technologies that are providing the
functionalities necessary to integrate their high-performance computing systems.

The DEISA consortium decided to use UNICORE to establish a grid infrastructure.
UNICORE is one of the leading grid middleware used in production in several
supercomputing centers. It hides the complexity of the underlying systems and

 UNICORE Deployment Within the DEISA Supercomputing Grid Infrastructure 265

architectures and it provides a single sign-on mechanism based on X.509 certificates
from a Public Key Infrastructure (PKI).

The DEISA partners adapted and customized the UNICORE architecture according
to the specific DEISA requirements. This paper presents the deployment strategies
adopted to incorporate UNICORE into the DEISA grid. The second and the third
chapters describe the DEISA infrastructure and the UNICORE architecture. The
fourth chapter presents a detailed analysis of the solutions and the adaptations put in
place by the partners in order to deploy UNICORE without interference with their
local policies. To conclude, the fifth chapter presents a summary and considerations
regarding our experience with UNICORE.

2 DEISA

DEISA (Distributed European Infrastructure for Supercomputing Applications) is a
consortium of leading national supercomputing centers that is funded by the 6th
European Framework Program. It deploys a production-quality supercomputing
environment by exploiting the grid paradigm.

The DEISA infrastructure has two levels of integration. The inner level comprises
strongly coupled clusters running IBM AIX on IBM POWER systems located at
CINECA, CSC, FZJ, IDRIS, and RZG. Due to the same operating system and batch
scheduler in common, these coupled clusters establish a homogenous super-cluster.
An outer level of heterogeneous supercomputer clusters comprises by the SGI ALTIX
Linux cluster located at SARA, the IBM PowerPC Linux system at BSC, the SGI
ALTIX Linux at LRZ [1, 2], plus other resources provided by EPCC and ECMWF.

All the DEISA sites are linked together via a dedicated network provided by
GEANT and National Research and Education Network providers (NREN). Beside
the provision of high-performance compute facilities, the DEISA consortium offers
also services such as help desk, documentation, technical and scientific workshops.

2.1 Infrastructure Overview

To achieve a higher level of interoperability between the different resources, the
partners decided to harmonize their user management systems and to establish a
DEISA user administration system by deploying a distributed set of LDAP servers [3]
used to propagate information about DEISA users from the user’s home site to all the
partner sites. A standardization of the naming schema for DEISA users, and the
assignment of site-specific ranges of UIDs and GIDs, ensures that DEISA user
accounts are replicable on every system belonging to the DEISA infrastructure.

A user who wants to use DEISA resources needs to apply for an account only at his
home site. The user record information (user name, UID, GID, the subject of his
certificate, etc.) propagates via LDAP from his home site to all the other DEISA sites.

It is possible to identify three types of users for every DEISA site:

1. Internal users: they have an account only on a single resource and their user
records are not published via the DEISA LDAP servers.

2. Local DEISA users: as home site users, they belong to the DEISA site locally, and
their user records are published via the DEISA LDAP server at their site. Hence,
their user accounts are automatically replicated on all the other DEISA resources.

266 L. Clementi et al.

3. External DEISA users: they belong to other DEISA sites, but their user records
have to be imported from the DEISA LDAP servers at their home site in order to
replicate their accounts on the local systems.

All the resources belonging to the inner level of the DEISA infrastructure have been
integrated also by means of a shared file system. The consortium has decided to use
GPFS-MC (General Parallel File System-Multi Cluster) [4] to achieve a transparent
high-performance data access over the Wide Area Network. All the shared instances
of the GPFS-MC are mounted on specific paths beginning with /deisa/<site
acronym>, and so they are accessible from all the DEISA sites in the same manner.

Finally, a grid-enabled version of the LoadLeveler Batch Scheduling System [5]
from IBM has been adopted for the intra-cluster scheduling of jobs. This product
allows that a job submitted, e.g., by a CINECA user to CINECA’s IBM P5 cluster can
be routed to another DEISA site, depending on the resource requirements of the job
and the availability of appropriate resources at the other DEISA sites.

Thank to the shared file system and to the distributed user administration system,
migrated jobs can be executed under the same UID used on the user’s home site
cluster; the ownership of files on the shared file system needs not to be translated.

Users can access DEISA resources via UNIX shell, UNICORE, or Web Portals.
DEISA partners decided to adopt the shell access because it is still the most common
user interfaces for UNIX systems, and because it is useful for debugging applications
during the development phase. On the other side, UNICORE provides an abstract
view of the underlying system with its powerful Graphical User Interface, and
the single sign-on mechanism simplifies the access to the distributed DEISA
resources.

In the next chapters, the integration of UNICORE with the other components of the
DEISA infrastructure is explained in more detail.

3 UNICORE

UNICORE (UNiform Interface to Computing REsources) provides a seamless
interface for preparing and submitting jobs to a wide variety of heterogeneous
distributed computing resources and data storages. It supports users for running
scientific and engineering applications in a heterogeneous Grid environment.

The UNICORE software has been developed in the UNICORE and UNICORE
Plus [6, 12] projects funded by the German Ministry of Education and Science
(BMBF) until the end of 2002. After that, its functionalities and its robustness were
enhanced within the EU-funded projects EUROGRID [7], OpenmolGrid [8]. Since
2004, several supercomputing centers are employing UNICORE in production.

In UNICORE every job represented by Java based abstract job formulation, the so
called Abstract Job Object (AJO). This gives the user the possibility to prepare jobs
on an abstract level without having to know deep details of the target system. With
the abstract formulation, the job can be submitted to different target architectures
running different batch schedulers without significant changes.

 UNICORE Deployment Within the DEISA Supercomputing Grid Infrastructure 267

3.1 UNICORE Components

UNICORE is designed as vertically integrated three-tier architecture. It provides
client and server components. The server-side consists of the Gateway, Network Job
Supervisor (NJS) including an Incarnation Database (IDB), a UNICORE User
Database (UUDB), and the Target System Interface (TSI). All components (except
the TSI) are written in Java allowing to install UNICORE on a large variety of
operating systems.

3.1.1 UNICORE Client
The UNICORE client GUI is used for preparation, submission, monitoring, and
administration of complex multi-site and multi-step jobs. It provides the user with an
extensible application support, resource management of the target system and an
integrated security mechanism.

Every submitted request (AJO) is signed using the personal X.509 certificate of the
user. Thus, other UNICORE server components can perform authentication and
authorization relying on the PKI in use. The client allows also performing data
management and transfer provided by an intuitive GUI.

3.1.2 Gateway
The Gateway is the site’s point of contact for all connections relative to a UNICORE
site (Usite). It accepts SSL connections from clients and one or more NJSs, but only if
the incoming certificate is signed by a trusted Certification Authority (CA).
Moreover, it verifies if received AJOs have been signed with trusted and valid
certificates. If the authentication is successful, the AJO is redirected to the
corresponding NJS, otherwise it is rejected.

3.1.3 Network Job Supervisor (NJS)
The Network Job Supervisor (NJS) operates as a UNICORE scheduler and is
responsible for the virtualization of the underlying resources. It receives/sends AJOs
from/to the Gateway, translates them into concrete instances and sends them to the
target system component, called Target System Interface (TSI) (see next paragraph).
The NJS dispatches jobs to a dedicated target machine or cluster (Virtual site, Vsite),
and handles dependencies and data transfers for complex workflows. It transfers the
results of executed jobs from the target machine and forwards them via the Gateway
to the UNICORE client.

The abstract definition of the Job is translated to a concrete job in the NJS with the
help of the Incarnation Database (IDB). The IDB contains all target system specific
information regarding computing resources typology and availability of applications.
Therefore, each NJS has a dedicated IDB that describes its specific target system.

Finally, the NJS implements the UNICORE security model for user authorization.
All public user certificates are stored in the UNICORE User Database (UUDB) and
they are mapped with an account existing on the target system. Every time the NJS
receives an AJO, it checks if the signer’s certificate is present in the UUDB, and on
success, the job is forwarded to the target system and assigned to the corresponding
user account.

268 L. Clementi et al.

3.1.4 Target System Interface (TSI)
The TSI running on the target machine is the interface to the batch scheduler. It
comprises a set of Perl libraries that implements the specific target system commands
for job submission, status query, file handling, etc. A variety of TSI implementations
are available for different batch schedulers and operating systems, e.g., LoadLeveler
under AIX, LSF, PBS-Pro, and CCS.

4 UNICORE and DEISA Infrastructure Integration

The main design guidelines for the DEISA grid can be summarized as follows:

• The grid middleware has to present the different target architectures and resources
with a seamless view hiding all the underlying complexity

• Users need to be able to address the various DEISA resources without perceiving
the complexity behind them

• Grid middleware needs to provide reliability to software and hardware failures
• As far as possible, the deployment of the DEISA grid infrastructure should not

interfere with the local site policies and security requirements. The middleware
must be easily adaptable to the local site procedures and policies.

The following paragraphs demonstrate how UNICORE respects these principles.

4.1 UNICORE Deployment for DEISA

According to the conventional UNICORE deployment pattern, every site represents a
separate Usite: every NJS, located at one site, connects only to its site Gateway. A
virtual organization (VO) could provide several Gateways, whereas each represents
the entry point to a separate site. The advantage of this pattern is a better scaling due
to the decoupling of the UNICORE deployment at the VO member sites. On the other
hand, the composition of the VO is not pervasive in this case, and has to be defined on
the client-side using a list of references to all the member gateways.

Due to the limited amount of DEISA members and an efficient cooperation of all
the DEISA sites, the consortium decided that all the UNICORE Gateways are to be
connected to all NJSs and vice versa. Exploiting the UNICORE dynamic Vsite
registrations feature a fully meshed UNICORE infrastructure was built up to allow for
the job submission via all Gateways to all target systems. Figure 1 depicts the DEISA
UNICORE infrastructure showing five DEISA sites as an example. As a result the
DEISA UNICORE infrastructure provides a distributed set of DEISA access points.
Each represents an entry point to the whole infrastructure. Preferentially, DEISA
users shall use the Gateway at their home site for submitting jobs to any DEISA target
system.

The benefits of the deployment pattern shown, where all the NJSs are jointly
connected to one or more gateways are:

• Pervasive visibility of all the available NJSs in DEISA at every single Gateway
• As an expression of corporate identity, all the DEISA sites are committing to

maintain the persistent availability and accessibility of their DEISA resources via
any Gateway of the DEISA partner sites.

 UNICORE Deployment Within the DEISA Supercomputing Grid Infrastructure 269

Fig. 1. Schema of the UNICORE deployment at DEISA for the homogeneous infrastructure

• On the client-side, DEISA users need only to validate the issuer of the server
certificate of their home site Gateway. It is usually not necessary to import
certificates of trusted CAs from other countries to authenticate other Gateways.

• The DEISA NJSs can be enabled to communicate with each other allowing to
employ implementations of an alternative file transfers mechanism (AFT). This is
useful particularly if the file system of a site does not share GPFS-MC.

The benefits of the fully meshed deployment pattern with multiple gateways are:

• Reliability of service: if the DEISA gateway of the user’s home site is down or
heavily loaded, other DEISA gateways can substitute it completely. In order to
access another Gateway, the user must of course import the certificate of the
trusted issuer of the Gateway’s certificate into his client’s truststore.

• Load balancing on the multiple Gateways: provided an appropriate information
system is available, it is possible to select a gateway according to the actual load or
number of the available DEISA gateways.

Additional UNICORE gateways can be added to the infrastructure in cooperation
with the DEISA partners. As a proof of concept, the DEISA UNICORE infrastructure
is now composed of 10 sites, and every site is allowing access to its resources through
a UNICORE Gateway and NJS, configured as explained in this paragraph.

270 L. Clementi et al.

This fully meshed infrastructure remains firewall friendly and flexible in terms of
deployment. Each site has to open only two ports in the site firewall (DMZ or intranet
firewall); one is the Gateway port that has to be opened for the whole outside world
for inbound connections. While the NJS port needs to be opened only for inbound
connections coming from the other DEISA Gateways.

4.1.1 UNICORE User Management for DEISA
In order to get the user and server certificates needed for UNICORE a set of root
Certification Authorities (CA) are required. DEISA decided to use only CAs
accredited at the EUGridPMA [10]. These CAs issue user and server certificates in
compliance with the minimal requirements of the EUGridPMA [11]. Users who want
to submit jobs via UNICORE need to obtain a DEISA user account and a
EUGridPMA compliant personal certificate signed by their national EUGridPMA
member CA.

As an improvement of the UNICORE authorization system the DEISA consortium
requested to implement a modification in the UUDB internal management. The
standard UUDB implementation maps the complete public part of the user’s
certificate to a user’s account, while the modified DEISA UUDB checks only whether
the Distinguished Name (DN) of the certificate used to sign the AJO is present in the
UUDB. With support of the UNICORE developers, the implementation of the UUDB
authorization mechanism has be adapted accordingly.

4.1.1.1 Security implications. For the DEISA infrastructure, checking only for the
DN it is not a security risk since DEISA relies on the joint PKIs of the EUGridPMA
member CAs that ensure the uniqueness of the DN within their joint domain.
Therefore, a DEISA UNICORE Gateway will never authenticate a certificate issued
by a suspected CA.

The benefits of the modified implementation of the UUDB are that

• the DEISA user management system needs to store and exchange only the DN
• there is no need to update the content of the UUDB when a user certificate has

been reissued, because the DN of the reissued certificate remains unchanged.

Furthermore the DEISA consortium is considering the adoption of some Globus
components (GRAM and GridFTP) [15] for its infrastructure which are based on the
Grid Security Infrastructure (GSI) security protocol [16]. GSI authentication is based
on PKI and the credentials needed for the authentication are the DN of the user’s
certificate with the corresponding user name. Hence, the integration of the GSI
authentication system with the DEISA infrastructure will be straightforward due to
the similarities with the current UNICORE UUDB.

Users can also access DEISA resources using an interactive shell where the
authentication is performed by means of username and password. In order to avoid
the distribution of users password hash, the DEISA partner decided not to publish this
information on the DEISA LDAP servers. Therefore, DEISA users are allowed for
interactive access only on the home site system. By this approach, no security sensible
user information is published on the DEISA LDAP servers.

 UNICORE Deployment Within the DEISA Supercomputing Grid Infrastructure 271

4.2 Integration of UNICORE with DEISA Batch Scheduling Systems and GPFS
Multi Cluster

A key feature of the DEISA infrastructure is the capability of migrating submitted job
to other clusters using LoadLeveler (LL). Migrated jobs can use the DEISA wide
shared file system to access data, or write output and debugging information to the
user directory allowing a user to monitor the execution status of his application. In
order to keep this functionality several modifications have been performed to its
standard configuration.

4.2.1 Adaptations Regarding LoadLeveler
To accomplish this goal all the LL instances running on the homogeneous
POWER/AIX clusters needed to be configured in a coherent way. This was achieved
defining a set of mandatory parameters that have to be specified by a user to describe
the resource requirements of his job to be executable on DEISA resources. These
parameters are total tasks, threads per task, wall clock limit, data memory limit, stack
memory limit, and a keyword notifying that the job has to be handled by the
underlying queuing system as an explicit DEISA job.

The DEISA partners agreed that this set of parameters is adequate for all the cluster
configurations and Batch Scheduling Systems currently employed at all the DEISA
sites (LL, PBSPro, LSF, and Torque).

The standard version of UNICORE allows for specifying mainly up to six, partly
different parameters of an abstract job. Since these parameters can not be mapped
directly to those identified to be relevant for DEISA, it was decided to use only four
of the original parameters (total tasks, threads per task, wall clock limit, data memory
limit) and to specify the remaining two parameters as environment variables in an
adequate way. UNICORE allows specifying additional environment variables for
each submitted job. To take the additional environment variables into account, the
TSI, in particular the script that creates the submission command for the LL, has been
easily adapted.

4.2.2 Adaptations Regarding GPFS-MC
When submitting a job, UNICORE creates a temporary working directory (called
USPACE) at the target system where, among others, batch scripts, input, output and
error files are placed. At first, DEISA partners did not require a common path for
USPACE. The USPACE was simply located on a site local file system. However,
when submitted UNICORE jobs are to be migrated to other clusters by the Multi-
Cluster LoadLeveler, the USPACE at the originating cluster needs to be transparent.

As a solution, the different partners have decided to configure UNICORE in order
to use a common USPACE path on the GPFS-MC. In this way, UNICORE jobs
submitted to the homogeneous super-cluster have always a consistent reference to the
USPACE and thus to the files needed by the NJS at the originating site for monitoring
the job status and fetching the output. The implementation of this solution required
the modification of some TSI scripts.

272 L. Clementi et al.

4.3 The Final Picture

The figure 2 shows how the various components of the DEISA Grid interact. GPFS-
MC provides a common shared storage resource available for the different DEISA
resources. The Multi-Cluster LoadLeveler enables to address local and remote
computational resources. The interactive usage of a Shell provides access to the local
instance of LL while UNICORE allows additionally to access remote instances of LL.

Shared GPFS

Cineca FZJ….

LoadLeveler

Computational
Resources

Shell

Unicore

Cineca User
SSH

SSL-AJO

LoadLeveler

Computational
Resources

Shell

Unicore

…

FZJ

…

Cineca

Fig. 2. A general schema of the DEISA Infrastructure representing only two sites

5 Conclusions

UNICORE has proven to be a suitable solution for a complex environment like the
DEISA infrastructure. Its high customization level has been shown to be essential for
its deployment in accordance with DEISA requirements. Its open source characteristic
allows the DEISA partners to modify the default behaviors. Its wide adoption and its
long-standing production usage guarantee the Quality of Service that is required for
the DEISA infrastructure.

The functionalities of UNICORE within the DEISA consortium have been
demonstrated at the IST conference of 2004 where a demonstration showed the
seamless usage of the homogeneous resources by means of UNICORE. The number
of DEISA users is rising constantly and the commitment to serve their aims with

 UNICORE Deployment Within the DEISA Supercomputing Grid Infrastructure 273

UNICORE will remain part of the consortium goal. Moreover, UNICORE will play a
central role for the integration of the heterogeneous clusters considering its capability
to support various system platforms and batch schedulers.

Finally, GRIP [13] and UniGrids [14], two EU funded research projects have
developed UNICORE extensions for interoperability with Globus [15]. These
enhancements allow DEISA to integrate Globus components, such as GridFTP and
GRAM, into the DEISA UNICORE infrastructure.

Acknowledgments. A special thank to all the DEISA partners that contributed their
solutions and ideas to the current deployments and configurations.

References

1. http://www.deisa.org - Distributed European Infrastructure for Supercomputing Appications
2. DEISA Primer. DEISA Consortium, Version 1.2 (02/2006)
3. K. Zeilenga, and OpenLDAP foundation: Lightweight Directory Access Protocol (LDAP):

Technical Specification Road Map. RFC 4510, (06/2006)
4. Frank Schmuck, Roger Haskin: GPFS: A Shared-Disk File System for Large Computing

Clusters. Proceedings of the FAST, Monterey, (01/2002)
5. LoadLeveler for AIX 5L and Linux V3.3.1 Using and Administering. IBM (11/2005)
6. D. Erwin (Ed.): UNICORE Plus Final Report - Uniform Interface to Computing

Resources. Forschungszentrum, Julich, (2003)
7. K. Nowinski, B. Lesyng, M. Niezgódka, P. Bala: Project EUROGRID. Proceeding of the

PIONIER 2001, Poznan (2001)
8. S. Sild, U. Maran, M. Romberg, B. Schuller, E. Benfenati: OpenMolGRID: Using

Automated Workflows in GRID Computing Environment. Proceedings of the European
Grid Conference 2005, Amsterdam, (02/2005)

9. I. Foster, C. Kesselman (Eds.). The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc. San Fransisco (2004)

10. www.eugridpma.org
11. Profile for Traditional X.509 Public Key Certification Authorities with secured

infrastructure. EUGridPMAa, Version 4.0 (10/2005)
12. D. W. Erwin, D. F. Snelling: UNICORE: A grid computing environment. Proceedings of

Euro-Par 2001, Springer, Machester (08/2001)
13. Michael Rambadt, Philipp Wieder. UNICORE - Globus: Interoperability of Grid

Infrastructures. Proceedings of the Cray User Group 2002, Manchester (05/2002)
14. http://www.unigrids.org/ - Uniform Interface to Grid Services
15. I. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems. International

Conference on Network and Parallel Computing, Springer LNCS, (2005)
16. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V. Welch: A

National-Scale Authentication Infrastructure. IEEE Computer, 33(12):60-66, (2000)

Petascale Computational
Biology and Bioinformatics

Introduction

Craig A. Stewart

Workshop Chair

Multiple plans to create petascale computing environments have been announced.
This workshop addressed what bioinformatics or computational biology applica-
tions can or should accomplish with such facilities, and what obstacles must be
overcome in order to implement and use effective and important problems in the
life sciences (biology, biochemistry, environmental sciences, etc.).

Five papers were presented at this workshop:

Progress Towards Petascale Applications in Biology: Status in 2006 by Craig
A. Stewart, Matthias Mueller, and Malinda Lingwall examines current trends
in computing power and explains the need for petascale computing in the life
sciences.

Progress in Scaling Biomolecular Simulations to Petaflop Scale Platforms by
Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T.J. Christopher
Ward, Mark Giampapa, Michael C. Pitman, and Robert S. Germain describes
some issues involved with scaling biomolecular simulations onto massively par-
allel machines, and examines what it will take to overcome the challenges of
petascale computing.

Toward a Solution of the Reverse Engineering Problem Using FPGAs by
Edgar Ferrer, Dorothy Bollman, and Oscar Moreno looks at the reverse en-
gineering problem for genetic networks and proposes an efficient approach to
finding a solution.

Two Challenges in Genomics That Can Benefit from Petascale Platforms by
Catherine Putonti, Meizhuo Zhang, Lennart Johnsson, and Yuriy Fofanov ad-
dresses the computational challenges necessary to successfully examine the ever-
increasing amount of biological data available, including the number of genomic
sequences made publicly available.

High-Throughput Image Analysis on Petaflop Systems by Robert Henschel,
Yannis Kalaizidis, and Matthias Mueller describes software developed to assist
biologists with image analysis work, integrating high-performance computing
systems into their workflow.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, p. 277, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Progress in Scaling Biomolecular Simulations to
Petaflop Scale Platforms

Blake G. Fitch1, Aleksandr Rayshubskiy1, Maria Eleftheriou1, T.J. Christopher Ward2,
Mark Giampapa1, Michael C. Pitman1, and Robert S. Germain1

1 IBM Thomas J. Watson Research Center, 1101 Kitchawan Road/Route 134, Yorktown
Heights, NY 10598, USA

2 IBM Hursley Park, Hursley, Hursley SO212JN, United Kingdom

Abstract. This paper describes some of the issues involved with scaling biomo-
lecular simulations onto massively parallel machines drawing on the Blue Mat-
ter application team’s experiences with Blue Gene/L. Our experiences in scaling
biomolecular simulation to one atom/node on BG/L should be relevant to scal-
ing biomolecular simulations onto larger peta-scale platforms because the path
to increased performance is through the exploitation of increased concurrency
so that even larger systems will have to operate in the extreme strong scaling
regime. Petascale platforms also present challenges with regard to the correctness
of biomolecular simulations since longer time-scale simulations are more likely
to encounter significant energy drift. Total energy drift data for a microsecond-
scale simulation is presented along with the measured scalability of various com-
ponents of a molecular dynamics time-step.

1 Introduction

IBM’s Blue Gene project was announced in December 1999 with the twin goals of ad-
vancing the state of the art in all aspects of computer systems while building a petaflop-
scale machine and of using the computational power enabled by this work to explore
important issues in the life sciences. This paper describes some of the challenges and
issues encountered by the Blue Gene application and science team in the course of cre-
ating a molecular simulation environment to both support our scientific goals and to
facilitate the exploration of parallel algorithms and programming models suitable for
massively parallel machines. The largest installation of the first member of the Blue
Gene family, Blue Gene/L[13], is a 65,536 node system at Lawrence Livermore Na-
tional Laboratory with a theoretical peak performance of 360 TFlop/second. Our appli-
cation development efforts and simulation science within the Blue Gene project target
the 20,480 node, 112 TFlop/s peak performance Blue Gene/L installation at the IBM
Thomas J. Watson Research Center (BGW) which is currently the largest unclassified
supercomputing facility in the world.

Of all the subfields of computational biology, molecular simulation is almost cer-
tainly the most mature in its ability to exploit high performance computing. Most of the
biology-related work on the Blue Gene/L facility at Watson (BGW) has thus far been
in that area, with projects targeting studies of protein folding mechanisms[5] and struc-
tural and dynamical studies of membrane proteins[18,16]. All of these projects share

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 279–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

280 B.G. Fitch et al.

a requirement for very long time-scale simulations (microseconds) of modestly sized
molecular systems (10,000-100,000 atoms). The need for long time-scale simulations
drives requirements for both (strong) scalability and correctness that will be discussed
below.

The original target architecture for the Blue Gene project[1] had characteristics (very
small amount of memory per node, millions of processing elements) that drove a spe-
cific set of design goals for the Blue Matter application framework that we have devel-
oped as part of the Blue Gene project[8]. The design goals included:

– Running only the computationally intensive molecular dynamics core on the mas-
sively parallel Blue Gene platform to reduce the memory footprint of the code.

– Leveraging existing applications as much as possible for problem set-up and other
non-performance-critical functionality.

– Separating the complexity of domain-specific aspects of molecular dynamics from
the complexity of the parallel communications required. The goal was to allow
exploration of parallel decompositions without requiring the involvement of the
domain experts.

2 Experiences with Blue Gene/L

We believe that our experiences in developing the Blue Matter simulation code and in
running simulations on BGW are relevant to discussions about biomolecular simula-
tions on future peta-scale systems since the BGW facility already has a peak capability
of over 0.1 PFlop/s. BGW is typically operated in partitioned fashion where most of
the partitions comprise 4096 or 8192 nodes. The allocation and usage patterns of the
BGW facility reflect the usual tradeoffs between supporting a range of projects, carry-
ing out the ensembles of simulations required for scientific validity, maximizing overall
throughput, and the drive to reduce the total time to solution for a single researcher
or simulation. Using this resource, we have been able to run a number of large scale
simulation experiments including

– 26 separate 100 nanosecond simulations of Rhodopsin in a membrane environment
(44K atoms)[16].

– several microsecond-scale simulations of the same membrane protein system in-
cluding a pair of simulations totaling 3.5 microseconds.

– several 700 nanosecond simulations of Lysozyme (41K atoms)[5].

and additional long time-scale simulations of a fast folding Lambda Repressor protein
are currently underway. Although Blue Matter continues to speed up through 16,384
nodes on the systems being studied[11,10,9], these microsecond scale simulations typ-
ically use 4096 node partitions since this currently represents the best tradeoff between
throughput and total time to solution. Large Replica Exchange[22] simulations running
as a single MPI job on up to 8192 nodes[6] have also been run to obtain temperature
dependent thermodynamic information about protein systems.

While the I/O bandwidth requirements of molecular dynamics are quite modest since
the entire state of the system is represented by the positions and velocities of the parti-
cles in the system, the aggregate storage requirement is potentially quite large. Archival

Progress in Scaling Biomolecular Simulations to Petaflop Scale Platforms 281

storage for the molecular simulation work is provided by a 500 TB capacity tape library
which backs approximately 8 TB of disk storage being managed with TivoliTM Space
Manager (hierarchical storage management).

3 Peta-scale Challenges

3.1 Molecular Simulation Validity

As the target time-scale for typical molecular simulations increases from tens of nanosec-
onds to microseconds or more, the stringency of the requirements on simulations will
also increase. In particular, the permissible rate of total energy drift in constant energy,
volume, and particle number (NVE) simulations will have to decrease as the length of
the NVE simulations increases. An increase in total energy of the system will cause a
rise in the instantaneous temperature of the system (defined by the kinetic energy) of the
same order. It is useful to measure the energy drift relative to the average kinetic energy
in the system (and actually to do so in units of temperature) to make the scale of the effect
clear. For example, an energy drift of 7 × 10−2 K/nanosecond results in a an increase
in total energy equivalent to 0.7 K over a 10 nanosecond simulation. This is quite small
in comparison with biological temperatures on the order of 310 K, but the same energy
drift in a 1 microsecond simulation would result in an increase of 70 K in the total energy
which is no longer negligible.

One of the principal rationales for believing in the relevance of long term simula-
tions is that for a symplectic integrator such as velocity Verlet[23], used to numerically
integrate Hamiltonian systems, there exists a “modified” Hamiltonian whose exact (con-
tinuous time) dynamics at integer multiples of the numerical integration time-step co-
incides with the discrete dynamics generated by the symplectic integrator[17,2,24,19].
This modified Hamiltonian may be “close” to the original in the sense that it can be ex-
pressed as a formal expansion in powers of the time-step size about the original Hamil-
tonian. The existence of this modified Hamiltonian means that the trajectory computed
by the numerical integrator should exactly conserve the total energy as computed by
the modified Hamiltonian (up to numerical roundoff) and hence should approximately
conserve the energy as computed by the original Hamiltonian. The popularity of vari-
ous forms of Verlet integrators for molecular dynamics simulation is largely due to their
simplicity and long term energy stability which stems from the symplectic property that
these integrators possess[12].

In general, a computational scientist will want to use the largest time-step size possi-
ble consistent with “correctness” in order to maximize throughput. Other performance-
critical simulation parameters affecting simulation accuracy and stability include the
FFT mesh spacing for Particle-Particle-Particle-Mesh (P3ME) methods[3] and the force-
splitting scheme and time-step ratios chosen for symplectic multiple time-stepping
methods[21,25,26]. Determining the optimal parameters for simulations enabled by
multi-teraflop and larger machines that involve billions or tens of billions of time-steps
provides a considerable challenge. Figure 1 shows a plot of the change in the total energy
in a simulation of a 43,222 atom system containing Rhodopsin running with a velocity
Verlet integrator using a 2 femtosecond time-step where all heavy-atom to hydrogen
bonds are constrained (eliminating the highest frequency vibrations from the system).

282 B.G. Fitch et al.

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0 200 400 600 800 1000 1200 1400 1600 1800
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
(
E

to
ta

l(
t)

−
E

to
ta

l)
/

E
ki

ne
ti

c

(
E

to
ta

l(
t)

−
E

to
ta

l)
/
(N

d
o

f
k B

/
2)

(K
)

Simulation Time (nanoseconds)

Rhodopsin (NVE)
Fit

(a) Change in Total Energy vs. Time with Linear Fit

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 200 400 600 800 1000 1200 1400 1600 1800
-6

-4

-2

0

2

4

6

(
E

(t
)
−

E
)/

E
ki

ne
ti

c

(
E

(t
)
−

E
)/

(N
d

o
f

k B
/
2)

(K
)

Simulation Time (nanoseconds)

Rhodopsin (NVE) Etotal
Rhodopsin (NVE) Ekinetic

(b) Changes in Total and Kinetic Energies vs. Time

Fig. 1. Energy drift of NVE molecular dynamics simulation of Rhodopsin in a solvated membrane
environment over a 1.6 microsecond run using a 2 femtosecond time-step

The energy drift measured by a linear fit to the data is about 6 × 10−4 K/ns where the
left-hand axis shows the energy change as a fraction of the average kinetic energy and the
right-hand axis expresses the change in energy as the change in instantaneous tempera-
ture that would result if all of the change were in the kinetic energy. For the parameters
used in this production simulation, the total change in energy over 1.6 microseconds

Progress in Scaling Biomolecular Simulations to Petaflop Scale Platforms 283

was slightly larger than 1 K. This is smaller than the fluctuations observed in the kinetic
energy during the simulation as shown in Figure 1b and uncertainty of the temperature
in the experimental data that we compare with. This time-step size was chosen based
on experiences with shorter (10-100ns) simulations, but it is entirely possible that those
estimates could have been too low. It should also be noted that the execution time re-
quired for a time-step is essentially independent of the choice of integration time-step
size while the energy drift is a very strong function of time-step size. Therefore, longer
simulations could be carried out with acceptably small energy drift simply by reducing
the integration time-step size somewhat and our benchmarking data for the amount of
wall clock time required per time-step would still be valid.

Using the normal system Hamiltonian makes it difficult to estimate the long term
energy drift without very long simulation runs because of the short term energy fluc-
tuations observed when using a discrete time integrator. Because of the computational
expense involved, it has been impractical to carry out a systematic exploration of the
tradeoffs between parameter choices such as time-step size and magnitude of the energy
drift. In principle, such a study might have to be carried out for each new molecular
system. In practice, a choice of parameters is made based on experience with shorter
simulations, the drift is monitored as the simulation progresses, and the simulation
would have to be rerun with a less aggressive choice of parameters if excessive en-
ergy drift were observed. Recently there have been results reported on the numerical
estimation of the modified Hamiltonian from the simulation data[7] and this may allow
more extensive explorations of the parameter space affecting tradeoffs between simula-
tion quality and computational throughput without prohibitively large expenditures of
computational time.

3.2 Performance and Scalability

It is likely that future peta-scale architectures will achieve their performance through
massive concurrency (large numbers of CPUs per chip, massive parallelism). Given
that this is the case, the application challenge for biomolecular simulations that require
strong scaling will be considerable. Within Blue Matter, we have had to be very care-
ful to root out any non-scalable operations from our implementation. As the scale of
hardware available to us grew from a single 512-node prototype to the current 20 rack
system we repeatedly went through cycles of identifying previously insignificant non-
scalable operations that had to be eliminated.

Our current algorithms as implemented on Blue Gene/L can execute a time-step in
fewer than 600,000 processor clock cycles (at 700MHz), including the processing asso-
ciated with the global data dependency necessitated by the FFTs in the P3ME module.
We have found that the velocity Verlet integrator which requires the P3ME operation
to be carried out on every time-step enables us to run with very small amounts of en-
ergy drift in NVE simulations. If no significant increases in processor clock speeds are
anticipated, then each order of magnitude decrease in time to solution will require each
time-step to execute in a correspondingly smaller number of cycles. Since our scalabil-
ity is now limited by the execution speed of the FFTs required for the P3ME method as
shown in Figure 2, it is likely that investigations of alternative methods for treatment of

284 B.G. Fitch et al.

the long range electrostatics and/or coarse-graining methods will be required to realize
additional improvements to the current strong scaling results.

While the BG/L architecture is a relatively “pure” message-passing machine with
two identical processing elements per node, each of which can participate in either
communication-related activities or computation, there are other ways to deploy addi-
tional processing elements. For example, the use of additional specialized processors for
DMA operations or communications could enable more overlap of communications and
computation, but it isn’t clear that this would increase the limits of scalability where data
dependencies prevent further computation until communication operations complete.

4 Algorithmic Explorations

One way to place bounds on the potential scalability of an algorithm is to determine
the amount of concurrency available in principle for that algorithm. As a concrete ex-
ample, Table 1 enumerates the concurrency available in various portions of the molec-
ular dynamics time-step iteration for a 43,222 atom simulation of Rhodopsin using
the Particle-Particle-Particle-Mesh Ewald (P3ME) technique. The P3ME technique re-
quires the evaluation of at least two three-dimensional FFTs on each time-step and
development of a highly scalable distributed memory 3D-FFT[4] has been one of the
key enablers of Blue Matter’s current scalability. As shown in Figure 2, it appears that
the three-dimensional FFT is the limiting factor of performance in the extreme strong
scaling limit.

The other major component of the computational load in a typical molecular dy-
namics simulation comes from the finite-ranged pair interactions between particles. We
have explored several different algorithms for parallelizing these operations, from sim-
ple replicated data decompositions[8,15], to a geometrically-based interaction decom-
position with a minimal communication radius[11,14], and most recently, a set-based

Table 1. Degree of concurrency in computational modules within a single molecular dynamics
time-step for a 43,222 atom membrane/protein system (Rhodopsin) using a 128 × 128 × 128
mesh for P3ME. The system parameters were those used in production simulations[18,16]. The
last column is the concurrency possible for that computational module based on the number of
independent calculations required (assuming a “reasonable” level of granularity). The number
of real-space pair interactions to be computed will actually fluctuate somewhat during the course
of the simulation because of particle diffusion.

Stage Major Computational Kernel Independent Com-
putation Count

Real-space Non-bond (9/1 Å
cutoff/switch)

Pairwise forces (L-J and Ewald real-
space)

9,113,514

Bonded bond stretches, angle bends, torsions,
Urey-Bradley

126,730

P3ME Meshing/Un-meshing 4 × 4 × 4 stencil 43,222
P3ME Convolution 3D Fast Fourier Transform (FFT) 16,384
Propagation of Dynamics Verlet integration 43,222

Progress in Scaling Biomolecular Simulations to Petaflop Scale Platforms 285

104

105

106

107

108

100 1000 10,000 100,000

T
im

e/
T

im
e-

st
ep

(n
s)

Nodes

Total Time-step
Total K-space
K-space Broadcast
K-space Reduction
K-space Forward FFT
K-space Reverse FFT
K-space Mesh Charges

K-space Unmesh Forces
Real Space Non-bond Computation
Real Space Non-bond Broadcast
Real Space Non-bond Reduction
Bonded Force Broadcast
Bonded Force Reduction
Bonded Force Computation

Fig. 2. This is a plot of the scalability of various components of the molecular dynamics time-
step as a function of node count. The system is the same Rhodopsin membrane/protein system
described in Table 1. There are data dependencies between some of these components and since
we schedule modules on both CPUs of the BG/L node, some of the components are executing
concurrently.

optimization technique that uses a geometrically derived heuristic as a starting point[9].
The most recent performance results demonstrate time-step execution times below one
millisecond for a β-hairpin system and continued speedups through approximately one
atom per node[9].

5 Conclusions

Experiences with scaling the Blue Matter biomolecular simulation application to run
effectively on the 112 TFlop/s BGW system should be relevant to any efforts to run
such codes on future petaflop-scale platforms because the design philosophy of Blue
Gene/L required the kind of massive parallelism that is likely to be needed for such
platforms. As the development of novel algorithmic techniques was required to realize
improved time-to-solution for biomolecular simulations on Blue Gene/L, it is likely
that significant additional innovation will be needed in order to continue to increase
the time scales accessible via simulation. These innovations will almost certainly be

286 B.G. Fitch et al.

related to the parallelization of the long range electrostatic interactions and may involve
the adoption of alternative algorithms for the computation of those interactions such as
multi-grid[20].

Even without additional algorithmic improvements, it is likely that increasing the
system size studied (weak scaling) will enable effective use of peta-scale platforms to
extend the accessible time-scales for those systems into the microsecond regime that
Blue Gene/L has opened up for smaller systems (< 100, 000 atoms). Also, the avail-
ability of peta-scale platforms will enable studies involving larger ensembles of long
trajectories that can give improved sampling and allow the generation of statistical er-
ror estimates[16].

Acknowledgements. We would like to thank the members of the Blue Gene systems
team including P. Heidelberger, A. Gara, M. Blumrich, J. Sexton as well as others who
have made use of and contributions to the Blue Matter code over the course of its devel-
opment, particularly Y. Zhestkov, Y. Sham, F. Suits, W. Swope, J. Pitera, A. Grossfield,
and R. Zhou.

References

1. F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A. Bright, J. Brunheroto, C. Cas-
caval, J. Castanos, P. Coteus, P. Crumley, A. Curioni, M. Denneau, W. Donath, M. Elefthe-
riou, B. Fitch, B. Fleischer, C. J. Georgiou, R. Germain, M. Giampapa, D. Gresh, M. Gupta,
R. Haring, H. Ho, P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu,
J. Moreira, D. Newns, M. Newton, R. Philhower, T. Picunko, J. Pitera, M. Pitman, R. Rand,
A. Royyuru, V. Salapura, A. Sanomiya, R. Shah, Y. Sham, S. Singh, M. Snir, F. Suits,
R. Swetz, W. C. Swope, N. Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou. Blue
Gene: a vision for protein science using a petaflop supercomputer. IBM Journal of Research
and Development, 40(2):310–327, 2001.

2. Giancarlo Benettin and Antonio Giorgilli. On the hamiltonian interpolation of near-to-the-
identity symplectic mappings with application to symplectic integration algorithms. J. Statist.
Phys., 74:1117–43, 1994.

3. Markus Deserno and Christian Holm. How to mesh up Ewald sums. ii. an accurate er-
ror estimate for the particle-particle-particle-mesh algorithm. J. Chem. Phys., 109(18):
7694–7701, 1998.

4. M. Eleftheriou, B. Fitch, A. Rayshubskiy, T.J.C. Ward, and R.S. Germain. Performance
measurements of the 3d FFT on the Blue Gene/L supercomputer. In J.C. Cunha and P.D.
Medeiros, editors, Euro-Par 2005 Parallel Processing: 11th International Euro-Par Con-
ference, Lisbon, Portugal, August 30-September2, 2005, volume 3648 of Lecture Notes in
Computer Science, pages 795–803. Springer-Verlag, 2005.

5. M Eleftheriou, R Germain, A Royyuru, and R Zhou. Thermal denaturing of mutant lysozyme
with both oplsaa and charmm force fields. to appear in J. Am. Chem. Soc., 2006.

6. M. Eleftheriou, A. Rayshubskiy, J. W. Pitera, B. G. Fitch, R. Zhou, and R. S. Germain. Par-
allel implementation of the replica exchange molecular dynamics algorithm on Blue Gene/L.
In Fifth IEEE International Workshop on High Performance Computational Biology, April
2006.

7. Robert D. Engle, Robert D. Skeel, and Matthew Drees. Monitoring energy drift with shadow
hamiltonians. Journal of Computational Physics, 206(2):432–452, 2005.

Progress in Scaling Biomolecular Simulations to Petaflop Scale Platforms 287

8. B.G. Fitch, R.S. Germain, M. Mendell, J. Pitera, M. Pitman, A. Rayshubskiy, Y. Sham,
F. Suits, W. Swope, T.J.C. Ward, Y. Zhestkov, and R. Zhou. Blue Matter, an application
framework for molecular simulation on Blue Gene. Journal of Parallel and Distributed
Computing, 63:759–773, 2003.

9. Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T.J. Christopher Ward, Mark Gi-
ampapa, Michael C. Pitman, and Robert S. Germain. Blue matter: Approaching the limits of
concurrency for molecular dynamics. Research Report RC23956, IBM Research Division,
April 2006. To appear in the Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting.

10. Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T.J. Christopher Ward, Mark Gi-
ampapa, Yuri Zhestkov, Michael C. Pitman, Frank Suits, Alan Grossfield, Jed Pitera, William
Swope, Ruhong Zhou, Scott Feller, and Robert S. Germain. Blue Matter: Strong scaling of
molecular dynamics on Blue Gene/L. In V. Alexandrov, D. van Albada, P. Sloot, and J. Don-
garra, editors, International Conference on Computational Science (ICCS 2006), volume
3992 of LNCS, pages 846–854. Springer-Verlag, 2006.

11. Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T.J. Christopher Ward, Mark Gi-
ampapa, Yuri Zhestkov, Michael C. Pitman, Frank Suits, Alan Grossfield, Jed Pitera, William
Swope, Ruhong Zhou, Robert S. Germain, and Scott Feller. Blue matter: Strong scaling of
molecular dynamics on Blue Gene/L. Research Report RC23688, IBM Research Division,
August 2005.

12. D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, San Diego,
CA, 1996.

13. A. Gara et al. Overview of the Blue Gene/L system architecture. IBM Journal of Research
and Development, 49(2/3):195–212, 2005.

14. Robert S. Germain, Blake Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, Michael C.
Pitman, Frank Suits, Mark Giampapa, and T.J. Christopher T.J. Christopher Ward. Blue
Matter on Blue Gene/L: massively parallel computation for biomolecular simulation. In
CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 207–212, New York, NY, USA,
2005. ACM Press.

15. R.S. Germain, Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy, F. Suits, T.J.C. Ward, and B.G.
Fitch. Early performance data on the Blue Matter molecular simulation framework. IBM
Journal of Research and Development, 49(2/3):447–456, 2005.

16. Alan Grossfield, Scott E. Feller, and Michael C. Pitman. A role for direct interactions in
the modulation of rhodopsin by omega-3 polyunsaturated lipids. PNAS, 103(13):4888–4893,
2006.

17. Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics, volume 14 of
Cambridge Monographs in Applied and Computational Mathematics. Cambridge University
Press, 2004.

18. Michael C. Pitman, Alan Grossfield, Frank Suits, and Scott E. Feller. Role of cholesterol
and polyunsaturated chains in lipid-protein interactions: Molecular dynamics simulation of
rhodopsin in a realistic membrane environment. Journal of the American Chemical Society,
127(13):4576–4577, 2005.

19. Sebastian Reich. Backward error analysis for numerical integrators. SIAM Journal on Nu-
merical Analysis, 36(5):1549–1570, 1999.

20. C. Sagui and T. Darden. Multigrid methods for classical molecular dynamics simulations of
biomolecules. Journal of Chemical Physics, 114(15):6578–6591, April 2001.

21. J.C. Sexton and D.H. Weingarten. Hamiltonian evolution for the hybrid Monte Carlo algo-
rithm. Nuclear Physics B, 380:665–677, 1992.

288 B.G. Fitch et al.

22. Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for protein fold-
ing. Chem. Phys. Lett., 314:141–151, 1999.

23. W.C Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson. A computer simulation
method for the calculation of equilibrium constants for the formation of physical clusters of
molecules: Application to small water clusters. Journal of Chemical Physics, 76:637–649,
1982.

24. Søren Toxvaerd. Hamiltonians for discrete dynamics. Phys. Rev. E, 50(3):2271–2274, Sep
1994.

25. M. Tuckerman, B.J. Berne, and G.J. Martyna. Reversible multiple time scale molecular
dynamics. J. Chem. Phys., 97(3):1990–2001, August 1992.

26. R. Zhou, E. Harder, H. Xu, and B.J. Berne. Efficient multiple time step method for use
with Ewald and particle mesh Ewald for large biomolecular systems. Journal of Chemical
Physics, 115(5):2348–2358, August 2001.

Progress Towards Petascale Applications in

Biology: Status in 2006

Craig A. Stewart1, Matthias Müller2, and Malinda Lingwall3

1 Office of the Vice President for Information Technology, Indiana University,
Bloomington, IN

2 Center for Information Services and High Performance Computing, Technische
Universitaet Dresden

3 University Information Technology Services, Indiana University, Bloomington, IN
stewart@iu.edu, matthias.mueller@tu-dresden.de, mlingwal@indiana.edu

Abstract. Petascale computing is currently a common topic of discus-
sion in the high performance computing community. Biological appli-
cations, particularly protein folding, are often given as examples of the
need for petascale computing. There are at present biological applica-
tions that scale to execution rates of approximately 55 teraflops on a
special-purpose supercomputer and 2.2 teraflops on a general-purpose
supercomputer. In comparison, Qbox, a molecular dynamics code used
to model metals, has an achieved performance of 207.3 teraflops. It may
be useful to increase the extent to which operation rates and total cal-
culations are reported in discussion of biological applications, and use
total operations (integer and floating point combined) rather than (or in
addition to) floating point operations as the unit of measure. Increased
reporting of such metrics will enable better tracking of progress as the
research community strives for the insights that will be enabled by petas-
cale computing.

Keywords: Computational biology, grand challenge problem, high per-
formance computing, life sciences, peak theoretical capacity, petabytes,
petaflops, petascale computing.

1 Introduction

The worldwide high performance computing (HPC) community is at present
highly focused on petascale computing – a common topic of discussion in press
releases, grant solicitations, conferences, and technical papers. Biology in general
and protein structure in particular are often important themes in discussion of
petascale computer applications. The government of Japan and the Institute of
Physical and Chemical Research (RIKEN) announced in 2003 plans to create a
high performance computing system with 1 petaflops peak theoretical capability
to model protein folding [1]. In the United States, the National Science Foun-
dation (NSF) and the US Department of Energy (DOE) have each announced
programs designed to develop and implement petaflops supercomputers, in both
cases with biology among the driving applications. The DOE has announced

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 289–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

290 C.A. Stewart, M. Müller, and M. Lingwall

plans to install a supercomputer with 1 petaflops peak theoretical capability in
2008 [2], while the NSF’s target is 1 petaflops sustained performance achieved
by 2010–2011 [3]. Most recently, the RIKEN Institute announced that their
Protein Explorer system has been clocked at a peak theoretical capability of 1
petaflops [4]. The era of petascale computing in biology is here – at least by one
measure.

The purpose of this paper is to assess the current state of progress toward
petascale computing in biology. Petascale is used here to indicate applications
that use petaflops of computing power, petabytes of data, or both. We present
data combed from the literature on execution rates of applications in biology
and other sciences, as well as information on the size of publicly available data
sets. Based on examination of the currently available data, we make recommen-
dations about ways in which performance of applications and size of databases
could be reported so that the research community could better track progress in
capabilities of biological applications.

2 Methods and Materials

There are several ways to measure computational speed: peak theoretical ca-
pability (the maximum number of operations that could possibly be completed
by a computer given the number of instructions per clock cycle and number of
clock cycles per second); peak achieved performance on benchmark applications
(especially the Linpack benchmark program, which is used in rankings for the
Top500 List of the fastest supercomputers in the world [5]); and peak achieved
performance on a “real” applications that solve some current scientific problem.

To assess progress in scale of applications in biology and other disciplines,
we combed the literature and the World Wide Web for examples of particularly
large computations in biology and, for purposes of comparison, other scientific
disciplines. Because there is little consistency in how the performance of large
biological applications is reported, we also solicited information directly from
leading supercomputing centers. The progress of application performance can
be understood only in the context of the progress in the capabilities of hardware
systems. For comparisons of hardware capabilities we compiled information on
the peak theoretical capability of general and special-purpose supercomputers.
Key sources of information included papers about Gordon Bell prizes from the
ACM/IEEE SCxy supercomputing conferences [6, 7, 8, 9] and the Top500 List
[5]. To assess progress toward petascale data used in biology, we examined the
current sizes of major public biological data sources.

3 Results

Figure 1 demonstrates the well-understood progress of the peak theoretical ca-
pability of the top-ranked system on the Top500 List. In terms of systems that
run the Linpack benchmark, statistical extrapolation from all previous Top500
Lists suggests that the top system on that list will reach a peak theoretical

Progress Towards Petascale Applications in Biology: Status in 2006 291

capability of 1 petaflops in November 2009 and achieved Linpack performance
of 1 petaflops in June 2012.

Figure 1 also shows peak theoretical capability of several special-purpose sys-
tems of note. The MD-GRAPE and GRAPE systems are not included on the
Top500 list since they perform molecular dynamics and astrophysical N-body cal-
culations, respectively, and cannot run the Linpack benchmark suite. Figure 1
also shows current aggregate TFLOPS for the combined BOINC project [10],
and two subcomponents of that system – SETI@Home [11], the largest BOINC
project overall, and ROSETTA@Home [12], the largest biological application
within the BOINC system for which aggregate performance data are available.
Table 1 details the systems shown in Figure 1.

Fig. 1. Peak theoretical capacity of high performance computing systems over time.
Shown are the peak theoretical capacity of the #1 ranked system on the Top500 List since
its inception, along with the peak theoretical capability of selected special-purpose com-
puting systems. Special-purpose systems represented include the Numerical Wind Tun-
nel, GRAPE family, MD-GRAPEs, specialized QCD systems, and distributed BOINC
applications [4], [5], [8], [10,11,12,13,14,15,16,17,18,19].

Figure 2 shows progress in sustained performance on several applications since
the inception of the Top500 List. Included are the top achieved Linpack perfor-
mance from the Top500 List and the top performance achieved on several heroic
applications. Table 2 details the applications shown in Figure 2.

292 C.A. Stewart, M. Müller, and M. Lingwall

Table 1. Data about systems in Figure 1

Peak theoretical
System Classification capacity Year Reference
MDGRAPE-3 MD-GRAPE 1 PF 2006 [4]
BOINC combined statistics BOINC aggregate 400.85 TF 2006 [10]
SETI@Home SETI@Home 191.233 TF 2006 [11]
GRAPE-6 GRAPE(2n) 63.4 TF 2002 [13]
Rosetta@Home Rosetta@Home 35.654 TF 2006 [12]
MDGRAPE-2 MD-GRAPE 24.6 TF 2001 [14]
MDGRAPE-2 MD-GRAPE 1 TF 2000 [15]
GRAPE-4 GRAPE(2n) 0.66 TF 1996 [8]
QCDOC QCD 0.512 TF 2004 [16]
QCDSP QCD 0.4 TF 1997 [17]
Numerical Wind Tunnel NWT 0.2 TF 1995 [18]
GRAPE-5 GRAPE(2n+1) 0.11 TF 1999 [19]

Fig. 2. Achieved floating point computation rates for applications in several disciplines.
Included are the Linpack performance data of the #1 system on the Top500 List since
its inception, and other applications that have reported high floating point operation
rates. [5,6,7,8,9], [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44].

We collected information about the size of data sets used in several fields
of research in order to study progress in data-centric life sciences research as
compared to other disciplines. Table 3 shows the sizes of several important data
sets. In many cases these databases tend to report their size in terms of numbers

Progress Towards Petascale Applications in Biology: Status in 2006 293

Table 2. Data about applications in Figure 2

Peak achieved
Application Discipline rate Year Reference
Qbox Physics 207.3 TF 2006 [20]
Solidification simulations Physics 103 TF 2005 [21]
Peptide simulation Biology/Molecular dynamics 55 TF 2006 [22]
Qbox Physics 22.02 TF 2005 [23]
Corona simulation Geology/Weather 15.6 TF 2006 [24]
Earth Simulator Geology/Weather 15.2 TF 2004 [25]
LSMS Physics 8 TF 2006 [26]
Weather forecast (NWS) Geology/Weather 7.3 TF 2003 [27]
Earth Simulator Geology/Weather 5 TF 2003 [28]
Lattice Boltzmann model Fluid dynamics 4.7 TF 2005 [29]
Weather forecast (NOAA) Geology/Weather 4 TF 2005 [30]
Blue Matter Biology/Molecular dynamics 2.2 TF 2006 [31]
NAMD Biology/Molecular dynamics 2.08 TF 2006 [32]
VASP Physics 2 TF 2006 [33]
CPMD Biology/Molecular dynamics 1.7 TF 2006 [33]
Wave propagation solver Geology/Weather 1.21 TF 2003 [34]
Turbulence simulation Fluid dynamics 1.18 TF 1999 [35]
DOWSER Fluid dynamics 1 TF 2002 [36]
First principles calculation Engineering 0.657 TF 1998 [37]
NAMD Biology/Molecular dynamics 0.65 TF 2003 [38]
Parallel Eigensolver Engineering 0.605 TF 1998 [39]
Turbulence simulation Fluid dynamics 0.6 TF 1999 [35]
NAMD Biology/Molecular dynamics 0.5 TF 2006 [32]
Finite element analyses Physics 0.5 TF 2004 [40]
Tree-code method Physics 0.43 TF 1997 [9]
Hairpin vortices simulation Geology/Weather 0.319 TF 1999 [41]
Cactus Physics 0.292 TF 2001 [42]
MP-QUEST Engineering 0.256 TF 1997 [9]
Cactus Physics 0.249 TF 2001 [42]
Quark modeling Physics 0.246 TF 1997 [9]
Pronto Fluid dynamics 0.225 TF 1997 [9]
MPSalsa Fluid dynamics 0.212 TF 1997 [9]
Tree-code method Physics 0.17 TF 1997 [9]
Bunyip Physics 0.163 TF 2000 [43]
Unstructured mesh CFD Fluid dynamics 0.156 TF 1999 [44]
Sound wave computation Physics 0.143 TF 1994 [7]
Numerical Wind Tunnel Fluid dynamics 0.12 TF 1994 [7]
Numerical Wind Tunnel Fluid dynamics 0.111 TF 1996 [8]
Composite modeling Engineering 0.1 TF 1994 [7]
Radar scattering Physics 0.1 TF 1994 [7]
Boltzmann equation Fluid dynamics 0.06 TF 1993 [6]
Crack modeling on CM-5 Physics 0.05 TF 1993 [6]

of records (or in the case of sequence databases number of sequences). Indiana
University maintains a repository of copies of many of these data sets, and we
determined the size in petabytes of these data sets from those copies.

294 C.A. Stewart, M. Müller, and M. Lingwall

Table 3. Current size of some exemplars of databases used in the life sciences as
of summer 2006, compared with key exemplars from other disciplines. The size of
datasets marked with an * were determined from copies of data downloaded to Indiana
University from the original resources.

Database name Discipline Current estimated size
BaBar High-energy physics 2 PB [45]
National Virtual Observatory Astronomy ∼ 0.5 PB [46]
NCBI* Biology 0.005 PB
Regenstrief Medical Records System Medicine 0.004 PB [47]
Protein Data Bank Biology 0.0007 PB [48]
EarthScope Geology 0.0004 PB [49]
PubChem* Chemistry 0.0001 PB
Swiss-Prot* Biology 0.00000087 PB

4 Discussion

There are notable accomplishments in terms of peak performance of biological
applications. The top performance in terms of floating point execution rate that
we have been able to find for a biological application is 55 teraflops on a special-
purpose MDGRAPE-3 system with a peak theoretical capability of 415 teraflops
(an efficiency of 13.25%) [22]. This application simulated the formation of amy-
loid fibrils including 14 million atoms. The top performance in terms of floating
point execution rates on a general-purpose supercomputer is approximately 2.2
teraflops with Blue Matter software on 80% of an 11.5 teraflops Blue Gene/L
supercomputer (an efficiency of approximately 24%) [31], using the 92,000 atom
ApoA1 benchmark. (The Blue Matter software is discussed in this volume in the
paper by Fitch et al, “Progress in Scaling Biomolecular Simulations to Petaflop
Scale Platforms.”) Another application of note in terms of instruction rate is
NAMD, which can operate at 2.08 teraflops in a 2.7 million atom simulation
on a system with a peak theoretical capacity of 9.83 teraflops (an efficiency of
approximately 21%) [32]. Based on the data we have been able to obtain, these
seem to be the top biologically-oriented applications in terms of rates of floating
point executions. There is a fairly strong contrast between the achieved rate of
floating point operations on biological codes, the peak theoretical performance
of systems available today, and the peak achieved performance on other scientific
applications.

The progress of the peak theoretical capability of HPC systems, and of Lin-
pack performance on these systems, is progressing steadily toward petascale
computing. Special-purpose systems based on GRAPE and MD-GRAPE boards
have on several occasions managed faster peak theoretical capability than the
top system on the Top500 List. This trend is in evidence at present, as the
MDGRAPE-3 is the basis for the RIKEN Institute’s Protein Explorer, the first
system with a reported peak theoretical capability of 1 petaflops. The fastest su-
percomputer in the world according to the June 2006 Top500 List (among those
capable of running the Linpack Benchmark) is the 367 teraflops IBM BlueGene/L

Progress Towards Petascale Applications in Biology: Status in 2006 295

system at Lawrence Livermore National Laboratory, larger than but otherwise
similar to the system used for the Blue Matter software calculations mentioned
above. Plans announced by the US Department of Energy and National Science
Foundation will thus result in implementation of systems of 1 petaflops peak
theoretical capability (2008) and 1 petaflops achieved performance (2010–2011)
more quickly than would be predicted on the basis of extrapolation from the
existing Top500 list data.

In terms of performance of applications other than Linpack, the highest rate of
floating point executions reported to date are from simulation of crack formation
in 1,000 Molybdenum atoms with the Qbox application [20], [23]. Qbox on the
367 teraflops LLNL BlueGene/L system has achieved a peak execution rate of
207.3 teraflops – 56.5% of peak theoretical capability (as compared to 73.8% of
peak achieved on the Linpack benchmark). Another notable physics application
is LSMS [26], which ran on Pittsburgh Supercomputer Center’s Cray XT3 at
just over 8 teraflops – 82% of peak theoretical capability (as compared to 80.2%
of peak achieved on the Linpack benchmark.) This LSMS run performed an ab
initio quantum calculation of an iron nanoparticle of more than 4,400 atoms.

There seem to be fewer data available at present regarding high rates of float-
ing point executions for heroic biological applications – and fewer than seem
available for other disciplines. This is at least in part because HPC applications
in biology have been in existence for less time (and are still less prevalent) than
disciplines such as material science, physics, and computational fluid dynamics.
In addition, performance results for biological codes are most often reported
in ways that are directly meaningful to the time to solution of the particular
problem at hand. Wall clock times, and decreases thereof, to solve a particular
problem are perhaps the most common metric overall; total CPU hours used is
also a common metric. In the case of protein folding, wall clock time per time
step (or simulated time steps per unit wall clock time) is often used. In the case
of genome sequence comparisons, number of sequences compared per unit time
is a common metric. In the case of phylogenetic inference, the number of evolu-
tionary trees analyzed per wall clock hour is commonly used. Researchers in the
life sciences often do not collect and report the performance of their applications
in terms of floating point operations. For example, two of the authors of this
paper participated in an HPC Challenge project at SC2003, in which many col-
laborators created a global computational grid to run fastDNAml, a program for
inferring evolutionary relationships [50]. We reported our results in terms of rate
of analysis of trees, total number of processors used, etc. but did not instrument
the code to measure actual floating point executions. Had we tried to do so, we
would not have managed to get the application running during the time period
of the HPC Challenge at SC2003. Similarly, high throughput applications such
as Folding@home [51] and fightAIDS@home [52] involve thousands of computers
working simultaneously on particular parts of a large-scale biological problem,
but the rate at which work is done is not reported in terms of floating point
calculation rates.

296 C.A. Stewart, M. Müller, and M. Lingwall

Floating point operation rates are mentioned specifically in major grant solici-
tations, and are thus of some practical import to the high performance computing
community [53]. However, rates of floating point operations have two limitations
as a measure of biological applications. One is that improving time to solution
may involve decreasing execution rates. For example, the floating point rates
for NAMD today are roughly 30% lower than in the code version in 2002 [38]
because the underlying algorithms are more efficient [32].

A second limitation, perhaps more specific to biological operations, is the
relative importance of integer operations in biological applications. The perfor-
mance of the DOTTER program [54] was carefully analyzed in terms of total
operations because of the predominance of integer mathematics in that appli-
cation [55]. Understanding the application performance was possible only by
including integer operations in the analysis. BLAST and other important bioin-
formatics applications also use integer operations extensively. Roughly two thirds
of the mathematical operations in NAMD are integer operations [32]. To the ex-
tent that execution rates provide a means to compare the behavior of diverse
biological applications, total operation rates (integer and floating point) would
likely be a better basis for comparison than floating point operation rates alone.
This poses the question of how to factor in the importance of operand length.
Double precision reals are the basis for the standard Linpack benchmark, and
there seems little reason at present to deviate from that approach in general (al-
though there may be interesting exceptions [56]). As regards integer operations,
when reporting rates it is probably best to specify the integer length – but it may
make sense in the context of biological applications to count operations without
regard to operand length. To do otherwise and somehow correct for length would
likely penalize clever coding schemes that take advantage, for example, of the
four letter alphabet of nucleotides (A,C,G,T).

In addition to measuring rates of operation execution, it will likely be useful
to measure the total amount of computation that contributed to a particular
analysis or simulation. For example, some of the largest biological computa-
tions performed to date in terms of total computer operations involve NAMD
simulations of an entire ribosome in 2005 [57] and the tobacco mosaic satellite
virus [58]. The former seems to be the largest simulation of a biological struc-
ture (in terms of CPU hours) ever published; the latter is the first ever molecular
simulation of an entire life form. A useful measure of total calculation effort com-
parable across applications and systems might be simply total operations, or a
measure analogous to the kilowatt-hour – that is, the PetaOPS-hour. Given the
diversity of biologically oriented applications, it simply may not be possible to
capture the performance of applications with a single metric. However, reporting
total operation rates (integer and floating point) and total operation counts or
PetaOPS-hours, in addition to other measures, will enable better comparisons
among biological applications. Such comparisons are only a means, and the ends
desired are biological insights rather than high operation rates. Still, tracking
the progress of operation rates as a means will enable us to better determine

Progress Towards Petascale Applications in Biology: Status in 2006 297

if the oft-discussed ends (new insights and knowledge) are in evidence as the
capabilities of our means progress.

The sizes of public biological data sets are growing rapidly, but life sciences
data sets are still well away from the petabytes range and well smaller than the
size of data sets found in other disciplines. Data sets in the range of 2 petabytes
are available now in high energy physics research with 20 petabytes planned by
2008 [45]. The Terashake earthquake simulation run at the San Diego Supercom-
puter Center generated a data set of 45 TB [59]. In contrast, the largest publicly
available biological data set is at present approximately 5 TB. Graphs of the
amount of data contained in NCBI’s Genbank data set show dramatic rates of
growth [60], and that dramatic rate of growth creates an impression that may
obscure the size of the actual data set: in 2006, the actual aggregate size of the
data set is still well under a terabyte. Likewise, a recent demonstration at Indi-
ana University included an analysis of some of the chemical properties of all of
the compounds in PubChem [61] in less than 10 minutes – a significant accom-
plishment from the standpoint of obtaining information from a comparatively
large data set (more than 19 million records), yet the input data amounted to
less than 100GB. Other very large and notable data-centric initiatives in the life
sciences include BIRN [62], eDiaMoND [63], and NEON [64]. Aggregated sets
of data in clinical practice and held by pharmaceutical companies may be much
larger. For example, the Regenstrief Institute [47] holds an aggregate of 4 TB of
clinical data. While reporting of biological database size in number of records,
or number of sequences, or number of compounds is common, more routine re-
porting of database size in terms of actual disk storage space would be useful in
comparability across disciplines in discussing the size of data sets.

Sterling et al [65] produced the first careful analysis of the opportunities and
challenges in achieving petascale computing. In their 1994 workshop, they iden-
tified several candidates for petaflops applications, including protein folding,
modeling of circulation in the human body, and data-intensive applications us-
ing petabytes or exabytes of data. Stevens [66], CIBIO [67], and Atkins [68]
provide more recent analyses of opportunities for petascale biological applica-
tions. Stevens [66] outlined eight categories of potential petascale applications; of
these, five categories were related to molecular structure, function, and dynam-
ics; other categories included sequence analysis, whole genome metabolic mod-
eling, and population modeling. A recent NSF-sponsored workshop on petascale
applications in biology reinforced many of these ideas, and added novel ideas
such as ecological simulations linked to climate models and real-time patient
profiling [69].

Based on data currently available, molecular dynamics codes clearly scale to
the highest operation rates achieved on monolithic supercomputers and are likely
candidates to be the first applications to achieve petaops calculation rates. One
model of circulatory function in the human body – ATREE – creates large-scale
models of biological function by employing computational physics codes (includ-
ing turbulence) to solve biological problems. These codes have been implemented

298 C.A. Stewart, M. Müller, and M. Lingwall

on the NSF-funded TeraGrid [70], linking simulation of many components of
the human arterial system. By linking many HPC systems ATREE is a likely
candidate to achieve extremely high mathematical operation rates in a grid en-
vironment. In terms of data-intensive applications, several examples given by
Stevens [66] involve coarse-grained (and often very complex) parallel analyses
of large data sets; such data-parallel applications are also good candidates for
achieving very high operation rates. All in all, the current state of affairs is con-
sistent with many of the predictions made by Sterling et al. more than a decade
ago.

5 Conclusion

There are many ways to count what are petascale applications in biology; by one
measure at least the era of petascale biology begins in 2006 with the successful
operation of the Protein Explorer at a peak theoretical capability of 1 petaflops.
Many obstacles remain between the state of the art in 2006 and biological appli-
cations that achieve petaops calculation rates and process petabytes of data. In
tracking the progress toward petascale biological applications it will be helpful
to report application characteristics in ways that will enable better comparisons
across applications. For applications, routine reporting of calculation rates in
terms of total petaoperations per second, and total computing power in peta-
operations or PetaOPS-hours for particular simulations, would be helpful. For
data-intensive applications, more routine reporting of data set size in tera- or
petabytes would be helpful. Petascale applications are only a means to an end;
the ends are new insights about the function of biological systems and better
human health. Still, tracking progress of the means will enable some insight as
to whether the ends anticipated are being achieved.

Acknowledgements. This research was supported in part by the Indiana Ge-
nomics Initiative and the Indiana Metabolomics and Cytomics Initiative. The
Indiana Genomics Initiative of Indiana University and the Indiana Metabolomics
and Cytomics Initiative of Indiana University are supported in part by Lilly En-
dowment, Inc. The authors also wish to thank IBM, Inc. for support via Shared
University Research Grants and partnerships via IU’s relationship as an IBM
Life Sciences Institute of Innovation. Indiana University also thanks the Tera-
Grid partners; IU’s participation in the TeraGrid is funded by National Science
Foundation grant numbers 0338618, 0504075, and 0451237. The early develop-
ment of this paper was supported by a Fulbright Senior Scholars award from the
Council for International Exchange of Scholars (CIES) and the United States
Department of State to Dr. Craig A. Stewart; Matthias Mueller and the Tech-
nische Universität Dresden were hosts. Many reviewers contributed to the im-
provement of the ideas expressed in this paper and are gratefully appreciated;
Thom Dunning, Robert Germain, Chris Mueller, Jim Phillips, Richard Repasky,
Ralph Roskies, and Allan Snavely are thanked particularly for their insights.

Progress Towards Petascale Applications in Biology: Status in 2006 299

References

1. Taiji M., Narumi T., Ohno Y., Futatsugi N., Suenaga A., Takada N., Konagaya A.
“Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular
Dynamics Simulations,” sc, p. 15, ACM/IEEE SC 2003 Conference (SC’03), 2003.
http://csdl.computer.org/dl/proceedings/sc/2003/2113/00/21130015.pdf

2. “Vendor Spotlight: Cray to Deliver Petaflop Supercomputer to ORNL in 2008.”
HPCwire. 16 June 2006. Accessed 30 August 2006. http://www.hpcwire.com/
hpc/694425.html

3. NSF Cyberinfrastructure Council. “NSF’s Cyberinfrastructure Vision for 21st Cen-
tury Discovery.” 20 July 2006. Accessed 31 August 2006. http://www.nsf.gov/
od/oci/ci-v7.pdf

4. Taiji M., Yamashita Y., Nakanishi T. “Completion of a one-petaflops computer
system for simulation of molecular dynamics.” 2006. Press release. Accessed 17 Au-
gust 2006. http://www.riken.go.jp/engn/r-world/info/release/press/2006/060619/
index.html

5. Top500 Supercomputer Sites. Accessed 1 September 2006. http://top500.org/lists
6. Karp A.H., Heller D., Simon H. “1993 Gordon Bell Prize Winners.” IEEE

Computer, January 1994, pp. 69–75. http://csdl.computer.org/dl/mags/co/1994/
01/r1069.pdf

7. Karp A.H., Heath M., Heller D., Simon H. “1994 Gordon Bell Prize Winners.”
IEEE Computer, January 1995, pp. 68–74. http://csdl.computer.org/dl/mags/
co/1995/01/r1068.htm

8. Karp A.H., Geist A., Bailey D. “1996 Gordon Bell Prize Winners.” IEEE
Computer, January 1997, pp. 80–85. http://csdl.computer.org/dl/mags/co/1997/
01/r1080.htm

9. Karp A.H., Lusk E., Bailey D.H. “1997 Gordon Bell Prize Winners.” IEEE
Computer, January 1998, pp. 86–92. http://csdl.computer.org/dl/mags/co/
1998/01/r1086.htm

10. BOINC combined statistics (BOINCstats). Accessed 20 September 2006. http://
www.boincstats.com/stats/project graph.php?pr=bo

11. SETI@Home (BOINCstats). Accessed 20 September 2006. http://
www.boincstats.com/stats/project graph.php?pr=sah

12. Rosetta@Home (BOINCstats). Accessed 20 September 2006. http://
www.boincstats.com/stats/project graph.php?pr=rosetta

13. Makino J., Kokubo E., Fukushige T., Daisaka H. “A 29.5 Tflops simulation of
planetesimals in Uranus-Neptune region on GRAPE-6.” sc, p. 34, ACM/IEEE SC
2002 Conference (SC’02), 2002. http://csdl.computer.org/dl/proceedings/sc/2002/
1524/00/15240034.pdf

14. Narumi T., Kawai A., Koishi T. “An 8.61 Tflop/s Molecular Dynamics
Simulation for NaCl with a Special-Purpose Computer: MDM.” sc, p. 11,
ACM/IEEE SC 2001 Conference (SC’01), 2001. http://csdl.computer.org/dl/
proceedings/sc/2001/1990/00/19900011.pdf

15. Narumi T., Susukita R., Koishi T., Yasuoka K., Furusawa H., Kawai A., Ebisuzaki
T. “1.34 Tflops Molecular Dynamics Simulation for NaCl with a Special-Purpose
Computer: MDM.” sc, p. 54, ACM/IEEE SC 2000 Conference (SC’00), 2000.
http://csdl.computer.org/dl/proceedings/sc/2000/9802/00/98020054.pdf

300 C.A. Stewart, M. Müller, and M. Lingwall

16. Boyle P.A., Chen D., Christ N.H., Clark M., Cohen S., Dong Z., Gara A., Joo B.,
Jung C., Levkova L., Liao X., Liu G., Mawhinney R.D., Ohta S., Petrov K., Wettig
T., Yamaguchi A., Cristian C. “QCDOC: A 10 Teraflops Computer for Tightly-
Coupled Calculations.” sc, p. 40, ACM/IEEE SC 2004 Conference (SC’04), 2004.
http://csdl.computer.org/dl/proceedings/sc/2004/2153/00/21530040.pdf

17. Chen D., Chen P., Christ N.H., Edwards R.G., Fleming G., Gara A., Hansen
S., Jung C., Kahler A., Kasow S., Kennedy A.D., Kilcup G., Luo Y.B., Malure-
anu C., Mawhinney R.D., Parsons J., Sexton J., Sui C., Vranas P. “QCDSP:
A Teraflop Scale Massively Parallel Supercomputer.” sc, p. 52, ACM/IEEE
SC 1997 Conference (SC’97), 1997. http://csdl.computer.org/dl/proceedings/
sc/1997/1982/00/19820052.pdf

18. Yoshida M., Nakamura A., Fukuda M., Nakamura T., Hioki S. “Quan-
tum Chromodynamics Simulation on NWT.” sc, p. 65, ACM/IEEE SC
1995 Conference (SC’95), 1995. http://csdl.computer.org/dl/proceedings/sc/1995/
2568/00/25680065.pdf

19. Kawai A., Fukushige T., Makino J. “$7.0/Mflops Astrophysical N-Body Simulation
with Treecode on GRAPE-5.” sc, p. 67, ACM/IEEE SC 1999 Conference (SC’99),
1999. http://csdl.computer.org/dl/proceedings/sc/1999/1966/00/19660067.pdf

20. Johnston D., Smith J., Acocella K. “NNSA announces new mark for world’s
fastest supercomputer.” Press release. 22 June 2006. Accessed 12 September 2006.
http://www.llnl.gov/pao/news/news releases/2006/NR-06-06-07.html

21. Streitz F.H., Glosli J.N., Patel M.V., Chan B., Yates R.K., deSupinski B.R., Sex-
ton J., Gunnels J.A. “100+ TFlop Solidification Simulations on BlueGene/L.”
November 2005. SC 2005. 14 August 2006. http://sc05.supercomputing.org/
schedule/pdf/pap307.pdf

22. Narumi T., Ohno Y., Okimoto N., Koishi T., Suenaga A., Futatsugi N., Yanai R.,
Himeno R., Fujikara S., Taiji M., Ikei M. “A 55 TFLOPS Simulation of Amyloid-
forming Peptides from Yeast Prion Sup35 with the Special-purpose Computer Sys-
tem MDGRAPE-3.” To appear in sc, ACM/IEEE SC 2006 Conference (SC’06),
2006.

23. Gygi F., Yates R.K., Lorenz J., Draeger E.W., Franchetti F., Ueberhuber C.W.,
de Supinski B.R., Kral S., Gunnels J.A., Sexton J.C.. “Large-Scale First-Principles
Molecular Dynamics simulations on the BlueGene/L Platform using the Qbox
code,” sc, p. 24, ACM/IEEE SC 2005 Conference (SC’05), 2005.

24. “SDSC Helps Scientists Accurately Simulate Sun’s Corona.” 3 August 2006. Ac-
cessed 11 October 2006. http://www.sdsc.edu/Press/2006/08/080306 corona.html

25. Kageyama A., Kameyama M., Fujihara S., Yoshida M., Hyodo M., Tsuda Y.
“A 15.2 TFlops Simulation of Geodynamo on the Earth Simulator,” sc, p. 35,
ACM/IEEE SC 2004 Conference (SC’04), 2004. http://csdl.computer.org/dl/ pro-
ceedings/sc/2004/2153/00/21530035.pdf

26. “Science, the XT3 and TeraGrid: An Interview with PSC Scientific Directors
Michael Levine and Ralph Roskies.” Pittsburgh Supercomputing Center. June
2006. Accessed 13 September 2006. http://www.psc.edu/publicinfo/news/2006/
2006-06-09-xt3.php

27. Handwerk, B. “Faster Supercomputers Aiding Weather Forecasts.” National
Geographic News. 29 August 2005. Accessed 11 October 2006. http://
news.nationalgeographic.com/news/2005/08/0829 050829 supercomputer.html

28. Komatitsch D., Tsuboi S., Ji C., Tromp J., “A 14.6 billion degrees of freedom,
5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator,” sc, p.
4, ACM/IEEE SC 2003 Conference (SC’03), 2003. http://csdl.computer.org/dl/
proceedings/sc/2003/2113/00/21130004.pdf

Progress Towards Petascale Applications in Biology: Status in 2006 301

29. Lammers P., Wellein G., Zeiser T., Hager G. “Have the Vectors the Continuing
Ability to Parry the Attack of the Killer Micros.” In: Resch M., Bnisch T., Benkert
K., Furui T., Seo Y., Bez W. (eds) High Performance Computing on Vector Sys-
tems, Volume 1, 25–37. Springer: 2006.

30. Curns, T. “WEATHER FORECASTING ON A ‘REMOTE’ SUPER-
COMPUTER?” HPCwire. 13 August 2004. Accessed 11 October 2006.
http://www.hpcwire.com/hpcwire/hpcwireWWW/04/0813/108178.html

31. Germain, Robert. “Re: Two requests.” Personal correspondence. 29 August 2006.
32. Phillips, Jim. “Re: Fwd: NAMD performance in FLOPS?” Personal correspon-

dence. 29 August 2006.
33. Tiyyagura S.R. et al. “TERAFLOPS Sustained Performance with Real World

Applications.” Accepted for publication in: “Performance Characterization of the
World’s Most Powerful Supercomputers,” special issue of the International Jour-
nal of High Performance Computing Applications (IJHPCA). Guest-edited by L.
Oliker and R. Biswas. To appear 2007.

34. Akcelik V., Bielak J., Biros G., Epanomeritakis I., Fernandez A., Ghattas
O., Kim E.J., Lopez J., O’Hallaron D., Tu G. Urbanic J. “High Resolution
Forward And Inverse Earthquake Modeling on Terascale Computers,” sc, p.
52, ACM/IEEE SC 2003 Conference (SC’03), 2003. http://csdl.computer.org/
dl/proceedings/sc/2003/2113/00/21130052.pdf

35. Mirin A.A., Cohen R.H., Curtis B.C., Dannevik W.P., Dimits A.M., Duchauneau
M.A., Eliason D.E., Schikore D.R., Anderson S.E., Porter D.H., Woodward P.R.,
Shieh L.J., White S.W. “Very High Resolution Simulation of Compressible Turbu-
lence on the IBM-SP System.” sc, p. 70, ACM/IEEE SC 1999 Conference (SC’99),
1999. http://csdl.computer.org/dl/proceedings/sc/1999/1966/00/19660070.pdf

36. Tajkhorshid, E., Nollert, P., Jensen, M. O., Miercke, L. J., O’Connell, J., Stroud, R.
M., and Schulten, K. “Control of the Selectivity of the Aquaporin Water Channel
Family by Global Orientational Tuning.” (2002) Science 296, 525–530

37. “Gordon Bell Prize Winners.” June 2000. SC2000. 14 August 2006.
http://www.sc2000.org/bell/pastawrd.htm

38. Tajkhorshid E., Aksimentiev A., Balabin I., Gao M., Isralewitz B., Phillips J.C.,
Zhu F., Schulten K. “Large scale simulation of protein mechanics and function.” In:
Frederic M. Richards, David S. Eisenberg, and John Kuriyan, editors, Advances in
Protein Chemistry, volume 66, pp. 195–247. Elsevier Academic Press, New York,
2003.

39. Sears M.P., Stanley K., Henry G. “Application of a High Performance Par-
allel Eigensolver to Electronic Structure Calculations.” sc, p. 54, ACM/IEEE
SC 1998 Conference (SC’98), 1998. http://csdl.computer.org/comp/proceedings/
sc/1998/8707/00/87070054.pdf

40. Adams M.F., Bayraktar H.H., Keaveny T.M., Papadopoulos, P. “Ultrascalable
Implicit Finite Element Analyses In Solid Mechanics With Over A Half a Billion
Degrees of Freedom.” sc, p. 34, ACM/IEEE SC 2004 Conference (SC’04), 2004.
http://csdl.computer.org/dl/proceedings/sc/2004/2153/00/21530034.pdf

41. Tufo H.M., Fischer P.F., Papka M.E., Blom K. “Numerical Simulation and
Immersive Visualization of Hairpin Vortices.” sc, p. 62, ACM/IEEE SC
1999 Conference (SC’99), 1999. http://csdl.computer.org/dl/proceedings/sc/1999/
1966/00/19660062.pdf

302 C.A. Stewart, M. Müller, and M. Lingwall

42. Allen G., Dramlitsch T., Foster I., Karonis N.T., Ripeanu M., Seidel E., Too-
nen B. “Supporting Efficient Execution in Heterogeneous Distributed Computing
Environments with Cactus and Globus.” sc, p. 52, ACM/IEEE SC 2001 Con-
ference (SC’01), 2001. http://csdl.computer.org/dl/proceedings/sc/2001/1990/00/
19900052.pdf

43. “ANU DCS Technical Services Group.” 2000. Australian National University. Ac-
cessed 14 August 2006. http://tsg.anu.edu.au/Projects/Beowulf/

44. Anderson W.K., Gropp W.D., Kaushik D.K., Keyes D.E., Smith B.F.,
“Achieving High Sustained Performance in an Unstructured Mesh CFD
Application,” sc, p. 69, ACM/IEEE SC 1999 Conference (SC’99), 1999.
http://csdl.computer.org/dl/proceedings/sc/1999/1966/00/19660069.pdf

45. Teige, Scott. “Re: Question about HEP databases.” Personal correspondence. 31
August 2006.

46. Hanisch, Robert. “Re: [nvo-feedback] Amount of data currently accessible through
NVO?” Personal correspondence. 31 August 2006.

47. Miller, Theda. “Re: [Fwd: Size of RMRS database(s)?]” Personal correspondence.
31 August 2006.

48. Research Collaboratory for Structural Bioinformatics. “Protein Data Bank
Annual Report for July 2004 – June 2005.” Accessed 15 September
2006. http://www.rcsb.org/pdbstatic/general information/news publications/
annual reports/annual report year 2005.pdf

49. “EarthScope Distribution Statistics from the IRIS DMC.” Accessed 15 September
2006. http://www.iris.edu/earthscope/stats/

50. Stewart C.A., Hart D., Aumller M., Keller R., Mller M., Li H., Repasky
R., Sheppard R., Berry D.K., Hess M., Wssner U., Colbourne J. “A
Global Grid for Analysis of Arthropod Evolution.” grid, pp. 328–337, Fifth
IEEE/ACM International Workshop on Grid Computing (GRID’04), 2004.
http://csdl.computer.org/dl/proceedings/grid/2004/2256/00/22560328.pdf

51. “Folding@Home Stats.” Folding@home distributed computing. 2006. Accessed 14
August 2006. http://folding.stanford.edu/stats.html

52. fightAIDS@home. Accessed 31 August 2006. http://fightaidsathome.scripps.edu/
53. NSF Solicitation 06-573. “Leadership-Class System Acquisition - Creating a Petas-

cale Computing Environment for Science and Engineering.” 5 June 2006. Accessed
31 August 2006. http://nsf.gov/funding/pgm summ.jsp?pims id=13649

54. Dotter: A dot-matrix program with interactive greyscale rendering for ge-
nomic DNA and Protein sequence analysis. Accessed 1 September 2006.
http://www.cgb.ki.se/cgb/groups/sonnhammer/Dotter.html

55. Mueller C., Dalkilic M., Lumsdaine A. “High-Performance Direct Pairwise Com-
parison of Large Genomic Sequences,” ipdps, p. 199a, 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 7, 2005.
http://csdl.computer.org/dl/proceedings/ipdps/2005/2312/08/23120199a.pdf

56. Feldman, M. “Less is More: Exploiting Single Precision Math in HPC.”
HPCwire. 16 June 2006. Accessed 21 September 2006. http://www.hpcwire.com/
hpc/692906.html

57. Sanbonmatsu K.Y., Joseph S., Tung C.S. “Simulating movement of tRNA into the
ribosome during decoding.” Proc Natl Acad Sci U S A. 2005 Oct 25.

58. Freddolino, P.L. et al. “Molecular dynamics simulations of the complete satellite
tobacco mosaic virus.” Structure 14, 437–449 (2006).

59. Tooby P. “TeraShake: Simulating the BIG ONE on the San Andreas Fault.”
EnVision Volume 20, Number 1, 2004. pp 4–7. http://www.npaci.edu/envision/
v20.1/Envision-2004.pdf

Progress Towards Petascale Applications in Biology: Status in 2006 303

60. Genbank Statistics. Accessed 1 September 2006. http://www.ncbi.nlm.nih.gov/
Genbank/genbankstats.html

61. PubChem. Accessed 1 September 2006. http://pubchem.ncbi.nlm.nih.gov/
62. Biomedical Informatics Research Network (BIRN). Accessed 1 September 2006.

http://www.nbirn.net/
63. eDiaMoND grid computing project. Accessed 1 September 2006.

http://www.ediamond.ox.ac.uk/index.html
64. “NEON: National Ecological Observatory Network.” Accessed 15 September 2006.

http://www.neoninc.org/
65. Sterling T., Messina P., and Smith P.H. Enabling Technologies for Petaflops Com-

puting. Cambridge, Massachusetts: MIT Press, 1995.
66. Stevens R. “Trends in Cyberinfrastructure for Bioinformatics and Computational

Biology.” CTWatch QUARTERLY Volume 2, Number 3, August 2006. http://
www.ctwatch.org/ quarterly/ articles/ 2006/ 08/ trends-in-cyberinfrastructure-for-
bioinformatics-and-computational-biology/

67. “Building a Cyberinfrastructure for the Biological Sciences (CIBIO): A
BIO Advisory Committee Workshop.” July 2003. Accessed 31 August 2006.
http://research.calit2.net/cibio/archived/CIBIO Overview Report.pdf

68. Atkins D.E., Droegemeier K.K., Feldman S.I., Garcia-Molina H., Klein M.L.,
Messerschmitt D.G., Messina P., Ostriker J.P., Wright M.H. “Revolutionizing Sci-
ence and Engineering Through Cyberinfrastructure: Report of the National Science
Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure.” January 2003.
Accessed 1 September 2006. http://www.nsf.gov/od/oci/reports/atkins.pdf

69. Petascale Computing in the Biological Sciences. NSF-funded workshop held
August 29–30, 2006. Accessed 11 October 2006. http://www.sdsc.edu/PMaC/
BioScience Workshop/biosciences.html

70. Dong S., Insley J., Karonis N.T., Papka M., Binns J. and Karniadakis G.E. ‘Simu-
lating and visualizing the human arterial system on the TeraGrid.” Future Gener-
ation Computer Systems, The International Journal of Grid Computing: Theory,
Methods and Applications, to appear, 2006.

Toward a Solution of the Reverse Engineering

Problem Using FPGAs�

Edgar Ferrer1, Dorothy Bollman2, and Oscar Moreno3

1 PhD. CISE Program, University of Puerto Rico, Mayagüez, PR 00681
eferrer@cs.uprm.edu

2 Department of Mathematics, University of Puerto Rico, Mayagüez, PR 00681
bollman@cs.uprm.edu

3 Department of Computer Science, University of Puerto Rico, Rio Piedras, PR 00931
moreno@uprr.pr

Abstract. An important issue in computational biology is the reverse
engineering problem for genetic networks. In this ongoing work we con-
sider reverse engineering in the context of univariate finite fields models.
A solution to the reverse engineering problem using multipoint inter-
polation relies on intensive arithmetic computations over finite fields,
where multiplication is the dominant operation. In this work, we de-
velop an efficient multiplier for fields GF (2m) generated by irreducible
trinomials of the form αm + αn + 1. We propose a design described by a
parallel/serial architecture that computes a multiplication in m clock cy-
cles. This approach exploits symmetries in Mastrovito matrices in order
to improve time complexities of an FPGA (Field Programmable Gate
Array) implementation. According to preliminary performance results,
our approach performs efficiently for large fields and has potential for
an efficient solution of the reverse engineering problem for large genetic
networks, as well as other finite fields applications such as cryptography
and Reed-Solomon decoders.

1 Introduction

An important problem in computational biology is modeling gene regulatory
networks in order to determine gene behavior in biological systems and how they
interact with each other. The reverse engineering problem for genetic networks
is the problem of determining the network that describes functional relations
between genes, given a set of experimental data.

In this ongoing work we consider the reverse engineering problem in the con-
text of univariate finite fields models [1,12]. The reverse engineering problem can
then be stated more precisely as follows:

Given a time series s0, s1, . . . , sk−1 of measurements of gene expression data
representing the states of m genes at times t0, t1, . . . tk−2, and a set of conditions
χ, the reverse engineering problem is the problem of finding a function f such
� This research is supported by grants NSF-CISE EIA-0080926 and NIH-MBRS

(SCORE) S06-GM08102.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 304–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Toward a Solution of the Reverse Engineering Problem Using FPGAs 305

that f : GF (q) → GF (q) has the property that f(sj) = sj+1, where sj =
(a0, a1, . . . , am−1), and f satisfies the conditions in χ.

Our solution f(x) to the reverse engineering problem then involves the de-
termination of a polynomial P (x), such that f(x) = P (x) + g(x), and P (si) =
P (si+1), and g(x) is a polynomial such that g(si) = 0, for i = 0, 1, . . . , k − 2.
The polynomial P (x) can be determined interpolating over the points si. Once
having determined P (x), the polynomial g(x) can be used to adjust the model
in order to satisfy the conditions in χ.

A classical method such as Lagrange interpolation formula can be used, but
it has computational complexity O(n2), where n is the number of points to be
interpolated. In contrast, Lipson’s algorithm has complexity O(n log2 n). Boll-
man et al [1] have shown that a parallel version of this algorithm is efficient for
reverse engineering univariate genetic networks.

2 Dealing with Large Genetic Networks

Various approaches have been taken for modeling gene regulatory networks, in-
cluding linear models, Bayesian networks, neural networks, nonlinear ordinary
differential equations, stochastic models and Boolean models. One model that
has received considerable attention is the Boolean model e.g., [6]. Recently, sev-
eral researchers have pointed out advantages in generalizing the Boolean model
to finite fields. Two types of finite field models have emerged, a multivariate
model as described by Laubenbacher [8] et al and a univariate model as de-
scribed by Moreno et al [12], [1]. The multivariate model gives local information
at each gene, whereas the univariate model gives global information about the
network.

In a finite field model for genetic networks we assume that gene expression is
discretized so that there are a prime number p of levels. There are several ways to
discretize the real-valued microarray data. One way is by thresholding. Another
way is to normalize gene expressions and use the deviation from the mean to
discretize the data. Inconsistencies due to either noise or biological variance can
be resolved by using information theoretic error correction [13].

If there are m genes and p levels of expression, then there are pm states and
we model such a network by the elements of GF (pm). In this work we consider
univariate finite field models with p = 2, so that each gene assumes just two
states, either on or off. Thus we restrict interpolation to fields GF (2m).

In practice, m can be quite large. For example, [10] outlines a study of gene
regulatory networks in yeast. Yeast has 6000+ genes. This study includes a
subset of 106 transcription factors and 2343 genes for which strong empirical
evidence of interaction was found using the experimental technique outlined in
the paper. Advances in techniques should yield data on all 6270 genes in yeast,
and eventually similar data will be available for all 20,000+ human genes. It
is thus of vital interest to develop algorithms to reverse engineering very large
networks.

306 E. Ferrer, D. Bollman, and O. Moreno

A solution to the reverse engineering problem for large values of m using
multipoint interpolation relies on intensive arithmetic computations over finite
fields. Addition and multiplication are two basic operations. Addition is easily
realized at very low computational cost, but multiplication is costly in terms of
computation time and circuit complexity. Other arithmetic operations on finite
fields used for reverse engineering such as inversion, squaring, exponentiation and
divisions are performed by repeated multiplications. Thus, in order to solve the
reverse engineering problem for the very large genetic networks that biologists
would like to consider, it is essential to develop capacity for performing fast and
efficient arithmetic over very large finite fields, especially multiplication.

One very fast method for performing arithmetic on GF (2m) involves the use
of Zech logarithm tables. By using lookup tables we can perform arithmetic op-
erations at “almost no cost”, but the memory space becomes a great limitation.
For instance, a 32-bit word length for storing the elements of GF (230) in a table,
requires 22 ·230 bytes = 4 GB in main memory. This method is efficient for small
finite fields, but it is not practical for the large fields that arise in real reverse
engineering problems.

A natural approach for multiplication in GF (2m) is to multiply two elements
in the field as polynomial multiplication modulo a m-degree irreducible poly-
nomial over GF (2). This operation is accomplished by simply using left-shifts
and exclusive or’s. In this simple procedure (also known as the direct or clas-
sical method) the memory space is not a limitation, but in a basic CPU based
implementation the field size is limited by the architecture word-length.

One approach to addressing large finite fields is to use composite fields
GF ((2r)s), combining lookup tables with direct multiplication. The accelera-
tion of finite fields multiplication using FPGAs is determined mainly by access
time between FPGAs and memory, since a composite field multiplication requires
multiple accesses to lookup tables stored in memory.

In this work, we present an FPGA-based implementation of a multiplication
algorithm over GF (2m) that exploits the symmetries in the Mastrovito matrix
[11]. The proposed approach performs efficiently for large fields and has poten-
tial for efficient solutions of the reverse engineering problem for large genetic
networks, as well as other finite fields applications such as cryptography and
Reed-Solomon decoders.

3 Finite Field Multiplication

An element in the finite field GF (2m) can be represented as a sequence of m
bits in GF (2) describing the coefficients of a binary polynomial. This representa-
tion is useful for manipulating finite field elements via bitwise operations, so we
can exploit the hardware architecture of computers by carrying out finite field
arithmetic by means of bit-level operations. In essence the arithmetic computa-
tion over GF (2m) is suitable for FPGAs implementations. We take advantage
of reconfigurable hardware resources with the aim of accelerating computations
considerably.

Toward a Solution of the Reverse Engineering Problem Using FPGAs 307

Multiplication is the dominant operation in the interpolation phase of the
solution of the reverse engineering problem for genetic networks. Many solutions
have been proposed for efficient multiplication over finite fields. Solutions are
based on purely software approaches, purely hardware approaches, and more
recently, on hardware/software using reconfigurable computing.

The representation of the field elements distinguishes the particular features
of a finite field multiplier. The most common representations are dual basis,
normal basis, and standard basis. In this work we deal with finite field elements
represented in standard (or polynomial or canonical) basis, such that the finite
field GF (2m) consists of a finite set of all binary polynomials of degree less than
m. For example GF (22) = {0, 1, α, α + 1}, where α is a root in GF (22) of the
irreducible polynomial α2 + α + 1.

A very natural approach for standard basis multiplication in GF (2m) is to
multiply two elements in the field as polynomial multiplication modulo an ir-
reducible polynomial. This operation is typically accomplished in two stages:
polynomial multiplication and modular reduction.

Let A(α), B(α), C(α) elements in GF (2m) and f(α) the irreducible polyno-
mial generating GF (2m). Then the finite field multiplication C(α) = A(α)B(α)
is accomplished by calculating

C(α) = A(α) ∗ B(α) mod f(α) (1)

where ∗ denotes polynomial multiplication. In a first stage the product A(α) ∗
B(α) is calculated, resulting in a polynomial Q(α) of degree at most 2m − 2.

Q(α) = A(α) ∗ B(α) =

(
m−1∑

i=0

aiα
i

)(
m−1∑

i=0

biα
i

)
(2)

In a second stage the modular reduction is performed on Q(α), that is, C(α) =
Q(α) mod f(α), resulting in the polynomial C(α) of degree at most m − 1.

It is easy to show that the expansion of equation (2) can be expressed as a
matrix-vector product Q = MB, where Q is a vector of dimension 2m−1, which
consists of the coefficients of Q(α). In the same way B is a m dimensional vector
which consists of the coefficients of B(α), while the (2m − 1) × m matrix M
involves coefficients of A(α) (see for example [14]).

Notice that the last m − 1 components of the vector Q (i.e. [qm, . . . , q2m−2])
contain terms with degree greater than m − 1. These terms must be reduced
modulo the irreducible polynomial f(α) = αm + g(α) in order to express them
as polynomials in the field GF (2m). This reduction is obtained by using the
reducing identity αm = g(α), so all the terms with degree greater than m − 1
will be reduced to terms with degree in the proper range [0, m−1]. Each reduced
term is added to the respective terms in [q0, . . . , qm−1], and so we get C(α). A
particular term may need to be reduced several times. The maximum number
of reductions is determined by:

N [m, n] =
⌈

m − 1
Δ

⌉

where Δ = m − n [5].

308 E. Ferrer, D. Bollman, and O. Moreno

For example, let m = 3 and f(α) = α3+α2+1, thus α3 = α2+1 and α4 = α3+
α. Using these identities the term q3α

3 is reduced only once: q3α
3 = q3α

2 + q3,
while q4α

4 is reduced twice: q4α
4 = q4α

3 + q4α = q4α
2 + q4α+ q4, and so we get

C(α) = q4α
4+q3α

3+q2α
2+q1α+q0 = (q4+q3+q2)α2+(q4+q1)α+(q4+q3+q0).

Notice that the maximum number of reductions is N [3, 2] = 2.
An alternative to the two-stage method, described above, for computing C

is to perform the reduction directly over the matrix M , obtaining an already
reduced m × m dimensional matrix Z, such that C = ZB. Z is called the
Mastrovito matrix [11].

4 A New FPGA-Based Approach

A common approach to the design of multipliers that is based on the Mastrovito
matrix Z is to compute Z and then do the multiplication in GF (2m) by means
of matrix-vector multiplication. In our approach, we exploit the symmetry of Z
without actually computing Z.

A method for constructing the Mastrovito matrix is proposed in [5]. According
to this method if GF (2m) is defined by the trinomial αm + αn + 1 then Z is
given by

Z =
[

U
L

]

where U and L are Toeplitz matrices defined as follows:
Let F = [0 am−1 am−2 . . . a1] and for each i = 0, 1, . . . , m − 1, let F [i →] be

the result of shifting F i positions to the right (vacated positions on the left are
filled with zeros). Also let G = [an an−1 . . . a1 a0 am . . . an+1]

U is n × m, its first column is [a0 a1 . . . an−1]T , and its first row is

[a0]||
N−1∑

i=0

F [iΔ →]

where Δ = m − n, || represents concatenation, and N is a short notation for
N [m, n].

L is Δ × m, its first column is [an an+1 . . . am−1]T , and its first row is

G +
N−1∑

i=0

F [iΔ →]

Although the previously described method is used for constructing the en-
tire Mastrovito matrix Z, in this work we construct only one row of Z which is
sufficient in our approach for carrying out multiplications in GF (2m). By con-
structing the n-th row Zn (where rows are numbered 0, 1, . . .), the remaining
rows of Z can be obtained by means of right-shifts and concatenations over Zn.

Example: If GF (27) is defined by α7 + α4 + 1, then Δ = 3, N = 2, and

G = [a4 a3 a2 a1 a0 a6 a5]

Toward a Solution of the Reverse Engineering Problem Using FPGAs 309

N−1∑

i=0

F [iΔ →] = F + F [Δ →] = [0 a6 a5 a4 a3 a2 a1] + [0 0 0 0 a6 a5 a4]

and so L0 is

Z4 = [a4 a3 + a6 a2 + a5 a1 + a4 a0 + a3 + a6 a6 + a2 + a5 a5 + a1 + a4]

The proposed multiplier is implemented in a parallel/serial architecture which
computes a multiplication in m clock cycles. One output bit of C is obtained in
each cycle by multiplying (inner product) the current row Zi by B, the current
row is obtained by right-shifting the previous row and filling the vacated position
on the left with ai. Algorithm 1 shows this process.

Algorithm 1

Input: A(α), B(α), Zn; A(α), B(α) ∈ GF (2m)
Output: C(α) = A(α)B(α); C(α) ∈ GF (2m)

S ← Zn

for i = 0 to m − 1
c(i+n) mod m ← S · B
S ← right-shift(S)
s0 ← ai+n

end for
return(C)

5 Experimental Results

This research is focused on accelerating finite field arithmetic using FPGAs
for efficient solution to the reverse engineering problem in a hardware/software
environment. Our target platform is a Cray XD1 system which includes six
FPGAs units tightly integrated to 12 2.2 GHz Opteron AMD processors through
a high bandwidth interconnection system. FPGA units are Xilinx Virtex II-Pro
xc2vp50-7.

We have done an initial test to determine the acceleration gained by using FP-
GAs versus a high performance processor. A performance evaluation of FPGA
and CPU implementation for the direct multiplier in GF (263) was made on the
Cray XD1 platform; the field size was chosen to fit the 64-bit word-length of the
target CPU architecture. A performance comparison between these multipliers
and our approach is presented in Table 1. Times are measured for stand alone
designs, in order to avoid the high overhead times arising from communication
between the FPGA and the processor. Notice that the direct multiplier imple-
mentation on CPU is faster than the FPGA version of this method, a fact that
is attributable to differences in clock speed: The clock rate for the Virtex-2P
FPGA is about one-tenth that of on Opteron processor. However, when imple-
mented on the same FPGA, our approach is about 65 % faster than the direct
multiplier method.

310 E. Ferrer, D. Bollman, and O. Moreno

Table 1. Multipliers comparison for the field GF (263) on Cray XD1: FPGA Virtex-2P
xc2vp50-7, CPU 2.2 GHz AMD-Opteron

Multiplier Time
Clock-period
(Frequency)

Our approach
0.62 μs

9.838 ns
on FPGA 101.6 MHz

Direct multiplier
1.02 μs

16.168 ns
on FPGA 61.9 MHz

Direct multiplier
0.78 μs

on CPU

In Table 2 we compare our approach with other efficient multipliers reported
in [3,4]. The field sizes used in this experiment are the same as those used in the
cited references, the only suitable benchmarks for comparisons that are known
to us. However, our approach can be implemented for larger finite fields. Finite
fields elements are represented as bit-arrays in our implementation. These arrays
are a part of the entire logic design, which uses a small number of slices. For
instance, the multiplier for GF (2239) uses 1.53 % of slices in the Cray XD1
FPGA (see Table 3). Therefore there are many slices available for implementing
larger finite field multipliers.

The times in Table 2 have been measured using FPGA synthesis results re-
ported by Xilinx tool XST (Xilinx Synthesize Technology) included in the pack-
age ISE Foundation 7.1. Our implementations are synthesized without area and
timing constraints.

Table 2. Multipliers comparison

Field Target FPGA Implementation
Time Space
(μs) (slices)

GF (2210)
Xilinx Virtex Reference [7] 12.30 343
xcv-300-6T This work 2.21 334

GF (2233)
Xilinx Reference [4] 2.58 not reported

xc2v-6000-4 This work 2.42 415

GF (2239)
Xilinx Virtex Reference [3] 3.10 359

xcv-300-6 This work 2.47 385

According to the given results, our implementation exhibits the best time
performance, whereas the area is not the most favorable for some cases. However
our main goal is to achieve very fast computation using reasonably the physical
devices.

Higher acceleration rates are obtained using the Cray XD1 FPGA (see Table 3).
According to our results, there are significant opportunities for speeding up re-
verse engineering for large genetic networks on the Cray XD1 using reasonably
the FPGA’s physical space, however the communication time between CPU and

Toward a Solution of the Reverse Engineering Problem Using FPGAs 311

Table 3. Multipliers comparison on the Cray XD1 FPGA

Field
Time Space Space
(μs) (slices) Utilization

GF (2210) 1.85 305 1.29%

GF (2233) 2.02 369 1.56%

GF (2239) 2.04 363 1.53%

FPGA becomes an obstacle. The communication model that we have used is a
simple push-model in which the CPU pushes the input data to the FPGA’s reg-
isters, and reads the output data from a destination register on the FPGA. Our
experimental results indicate that this is a costly communication model, for exam-
ple the direct multiplier for GF (263) spent 2.77 μs for communications and 0.62
μs for computations. Other works such as [2] have reported similar comunication
problems with the Cray XD1.

6 Conclusions and Future Work

Finite field multiplication is the dominant operation in the interpolation phase of
reverse engineering genetic networks. Traditionally CPU-based implementations
of large finite field multiplication have implied challenging efforts in order to deal
with common limitations such as architecture word-size, and storage space. Our
approach overcomes these traditional obstacles and at the same time contributes
to improved performance, achieving better times than other efficient FPGAs
finite field multipliers.

Although our approach has shown to be efficient for the finite fields reported
in the previous section, it promises more efficient results for multipliers on larger
fields. In order to efficiently solve the reverse engineering problem for large
genetic networks, our FPGA implementation could be used as a co-processor
for accelerating a CPU-based interpolation algorithm, provided that we can re-
solve the problem of high communication costs. An alternative would be to shift
more of the computational burden to FPGAs by embedding our multiplier in an
FPGA-based interpolation algorithm.

Future work includes extending our implementation of multiplication to finite
fields generated by irreducible pentanomials. We also would like to extend the
field size in order to deal with genetic networks with m ≥ 500 genes. The multi-
point interpolation for solving reverse engineering problem for very large genetic
networks using high performance reconfigurable computing requires a judicious
partitioning of the problem between high performance CPUs and FPGAs. Here
the communication overhead is an important issue and we have to consider al-
ternative ways of communication in order to improve the overall performance.
A potential solution is to take advantage of FPGA Transfer Region of Memory
using the I/O subsystem developed by OSC [2].

Finally, we could extend our ideas for doing multiplication over finite fields
GF (2m) to doing the algebra of polynomials over GF (2m). This would enable

312 E. Ferrer, D. Bollman, and O. Moreno

us to carry out the whole interpolation algorithm needed for the reverse engi-
neering problem in FPGAs, thus allowing better optimization of the ration of
computation time to communication time.

References

1. D. Bollman, E. Orozco, O. Moreno, “A Parallel Solution to Reverse Engineering
Genetic Networks”, in Gavrilova et al (eds), Lecture Notes in Computer Science,
Springer-Verlag, Part III, 3045, pp. 490-497, 2004.

2. J.Fernando, D. Dalessandro, A. Devulapalli, and A. Krishnamurthy, “Enhancing
FPGA Based Encryption”, Ninth Workshop on High Performance Embedded Com-
puting (HPEC). Sept. 2005.

3. M.A. Garcia-Martinez, R. Posada-Gomez, G. Morales-Luna, F. Rodriguez-
Henriquez. “FPGA implementation of an efficient multiplier over finite fields
GF (2m)”, Proceedings of International Conference on Reconfigurable Computing
and FPGAs, 2005 (ReConFig’05), September 2005.

4. C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich and J. Von Zur Gathen, “FPGA
Designs of parallel high performance Multipliers”, Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems (ISCAS-03), volume II, 268-271.
Bangkok, Thailand.

5. A. Halbutogullari, Ç. Koç, “Mastrovito Multiplier for General Irreducible Poly-
nomials”, IEEE Transactions on Computers, volume 49, number 5, pp. 503-518,
2000

6. T.E. Ideker, V. Thorsson, and R.M. Karp, “Discovery of regulatory interactions
through perturbation: Inference and experimental design,” Pacific Symposium on
Biocomputing, No. 5 pp 302-313, 2000.

7. P. Kitsos, G. Theodoridis, and O. Koufopavlou, “An efficient Reconfigurable Mul-
tiplier Architecture for Galois Field GF (2m)”, Microelectronics Journal, volume
34, pp.975-980, 2003.

8. Laubenbacher and B. Stigler, “Dynamic networks,” Adv. in Appl. Math Vol.26,
pp. 237-251, 2001.

9. R. Laubenbacher, J. Shah, and B. Stigler, “A Computational Algebra Approach
to the Identification of Gene Regulatory Networks”, Proc. Third International
Congress on Systems Biology, Stockholm, 2002.

10. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K.,
Hannett, N.M., Harbison, C.R., Thompson, C.M., Simon I., Zeitlinger J., Jennings,
E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J., Volkert T.L.,
Fraenkel, E., Gifford D.K., and Young, R.A. Transcriptional Regulatory Networks
in Saccharomyces cerevisiae. Science 298: 799-804 (2002).

11. E.D. Mastrovito, “VLSI Architectures for Computation in Galois Fields”, PhD
thesis, Dept. of Electrical Eng., Linkvping Univ., Linkvping, Sweden, 1991.

12. O. Moreno, D. Bollman, and M. Aviñó,“Finite dynamical systems, linear automata,
and finite fields”, 2002 WSEAS Int. Conf. on System Science, Applied Mathematics
& Computer Science and Power Engineering Systems, pp 1481-1483.

13. H. Ortiz, “Analysis of Gene Regulatory Networks Using Finite-Field models”, PhD.
Thesis Proposal, University of Puerto Rico, 2005.

14. B. Sunar and Ç. K. Koç “Mastrovito Multiplier for All Trinomials”, IEEE Trans-
actions on Computers”, volume 48, number 5, pp. 522-527, May 1999.

Two Challenges in Genomics That Can Benefit

from Petascale Platforms

Catherine Putonti1,2, Meizhuo Zhang1, Lennart Johnsson1,
and Yuriy Fofanov1,2

1 University of Houston, Department of Computer Science, 218 Philip G. Hoffman
Hall, Houston, Texas 77204-3058 USA

2 University of Houston, Department of Biology and Biochemistry, Houston, Texas
77204-5001 USA

putonti@bioinfo.uh.edu, mzhang@bioinfo.uh.edu, johnsson@cs.uh.edu,
yfofanov@uh.edu

Abstract. Supercomputing andnewsequencing techniques havedramat-
ically increased the number of genomic sequences now publicly available.
The rate in which new data is becoming available, however, far exceeds
the rate in which one can perform analysis. Examining the wealth of in-
formation contained within genomic sequences presents numerous addi-
tional computational challenges necessitatinghigh-performancemachines.
While there are many challenges in genomics that can greatly benefit from
the development of more expedient machines, herein we will focus on just
two projects which have direct clinical applications.

1 Introduction

Recent advances in sequencing techniques have lead to an explosion in the
amount of biological data available. The number of sequences made publicly
available is increasing exponentially. The whole genome sequencing strategy
fragments the genomic sequence into many overlapping sequences, sequences
these smaller segments, and then assembles these shotguns into contiguous se-
quences. Assembling the shotgun sequences produced necessitates high-perfor-
mance machines. It was estimated that the assembly of the human genome took
approximately 20,000 hours of CPU time [1]. In addition to the human genome,
one must mention the ongoing sequencing efforts of several other organisms
such as chimpanzee, chicken, rat, mouse, cow, and dog, just to name a few.
With the advent of the recently developed 454 sequencing technique by 454
Life Sciences (Branford, CT), one may expect the availability of sequence data
to proceed even more rapidly. Sequencing of the corn genome, considered the
most complex sequencing project attempted to date, is possible thanks to IBMs
Blue Gene/L supercomputer, capable of a peak performance of 5.7 teraflops
(http://www.iastate.edu/%7enscentral/news/2006/jan/supercomputer.shtml).

In addition to sequencing projects, identification of single nucleotide poly-
morphisms (SNPs), which appear throughout the genomic sequence, is still un-
derway. SNPs are responsible for the variations among individuals and have

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 313–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

314 C. Putonti et al.

been shown to be directly correlated with an individuals susceptibility to dis-
ease, response to vaccines and medications, as well as the success of blood,
tissue, and organ transplantations. To date 11,961,761 SNPs, 5,646,244 of which
have been validated, have been identified in the human genome and are pub-
licly available from the National Center for Biotechnology Information (NCBI).
The International HapMap Consortium was formed specifically to catalog ge-
netic these variations in order to determine the similarities and differences in
human beings [2]. All of the data from the HapMap project is publicly avail-
able from http://www.hapmap.org and includes the genotypes available from
the Affymetrix (Santa Clara, CA) GeneChip R© Human Mapping 500K Array
Set which is comprised of two arrays, each of which is capable of genotyping
250,000 SNPs.

These genomic sequences and identified SNPs contain a wealth of information
including indicators for an individuals immunity and susceptibility to disease.
Mining such data is not a trivial task. Translating the information found to
real applications in the medical and clinical arena is of great importance. In
recent years, various diagnostic assays have been developed using nucleic acid-
based technologies including the polymerase chain reaction (PCR), microarrays
of cDNA and oligonucleotides, and nucleic acid sequence-based amplification
(NASBA) assays, amongst others. Nucleic acid-based methods are founded on
the principles of hybridization and include primer and/or probe sequences which
are complementary to a region of the genomic material of the target region, e.g.
a particular gene, mRNA, etc., such that in its presence, the primer/probe will
hybridize to the targets DNA/RNA. The results of such assays also contribute
to the overwhelming amount of data presently available.

The high-throughput nucleic acid-based microarray format was originally uti-
lized exclusively for the monitoring of gene expression. As is evidenced by the
Affymetrix GeneChip R©, this is no longer the case. Microarrays, commercially
produced as well as those produced in-house, are now being employed for gene ex-
pression profiling, sequencing and resequencing efforts, genotyping, DNA-protein
interactions, pathogen–host interactions, diagnostics, etc. Countless publications
have been dedicated to discussing the applications of microarrays, e.g. [3,4,5,6].
Commercially available arrays can contain thousands to hundreds of thousands of
probe sequences, each of which contains information specific to the experimental
design. Through gene expression experiments, one can gather information about
an organisms cellular functions, regulatory mechanisms as well as biochemical
pathways. Microarrays used in such experiments, however, produce only an im-
age representing the hybridization of the microarray probe sequences and the
target mRNA. The task of translating this hybridization image into the actual
gene regulatory and proteomic networks is far from simple and computationally
intensive. Numerous approaches and applications have been developed for infer-
ring these networks. The power of the computational resources available is of
primary concern for all such techniques. As the cost of microarrays continues to
decrease and the number of probes which can be accommodated increases, the

Two Challenges in Genomics That Can Benefit from Petascale Platforms 315

number of assays produced and thus information generated will most certainly
continue to increase.

While there are many challenges in genomics that can greatly benefit from
the development of more expedient machines, herein we will focus on just two
projects having direct clinical applications. Both are based on the analysis of
genomic sequences for the design of probe sequences for the identification of
single somatic base mutations and SNPs.

2 Genomic Signatures for Monitoring the Rate of
Accumulation of Somatic Mutations

In the living cell, DNA undergoes frequent chemical changes, most of which are
quickly repaired. Those that are not result in a mutation. Evolution absolutely
depends on mutations because this is the only way that new alleles can be created.
At the same time, however,most of the mutations observed are harmful or, at best,
neutral. Mutations are relatively rare events. Humans inherit about 3 × 109 base
pairs of DNA from each parent. Just considering single-base substitutions, this
means that each cell has approximately 6×109 different base pairs that can be the
target of a substitution. Single-base substitutions are most likely to occur when
DNA is being copied. It has been estimated that in humans and other mammals,
uncorrected errors occur at the rate of 1 in every 5 × 107 nucleotides [7].

The ability to evaluate the rate at which these mutations are accumulating is
advantageous for many facets of research. Firstly, it would be possible to estimate
a tissues specific biological age as well as predict the risk of somatic mutation-
related disorders such as those that cause certain types of cancer. For instance,
retinoblastoma, cancer of the retina, typically affects children. The development
of a tumor occurs as a result of somatic mutations in both copies of the RB1
gene or through the inheritance of a mutation in a single copy of the RB1 gene
and a somatic mutation in the other. Thus, by monitoring the mutation rate
within the RB locus of children having a hereditary predisposition could provide
a means of early detection. Another important application for the estimation of
the mutation accumulation rate is for monitoring the deviation of cell lines from
their ancestors. Because at the present time cell lines are less expensive than
laboratory animals, human (and other organisms, e.g., mouse, rat, etc.) cell
lines are commonly used in cancer research, drug design, and drug screening.
Because mammalian cells usually cannot perform more than 50–60 divisions,
many cell lines are artificially immortalized. Technically, human cells growing in
a culture are different from normal human cells in their natural environment,
and this difference becomes more and more significant in time because of the
mutation accumulation process. Therefore, research as well as drug development
and testing would greatly benefit from early detection of the genetic drift of cell
lines. The current method to estimate the mutation rate is based on analysis
of a particular part, usually within the coding region, of a genome. Such an
approach requires PCR amplification of the genomic region of interest followed
by sequencing, which can be both time consuming and expensive.

316 C. Putonti et al.

Recently, utilizing our computational abilities we have performed analysis of
subsequences of length n (n-mers) located in the area of “one mismatch distance
for several microbial genomes. The one mismatch distance corresponds to se-
quences that are not present in the genome but given any one base change or
mismatch are present in the genomic sequence. Such sequences have a higher
probability of appearing as a result of a single point mutation than, for exam-
ple, sequences 2, 3, etc. mismatches away. For each n-mer located in the one
mismatch distance area, we were able to compute the exact number ancestor
sequences in the genome which can “mutate to this n-mer. As a result of these
calculations, we observed a large variation in the number of ancestors for differ-
ent sequences: from 1 or 2 (expected) to thousands for microbes and presumably
dozens of thousands for humans. This new observation leads us to the idea of
using a set of sequences having a high number of ancestors as an indicator of
the accumulations of mutations. This approach is based on the assumption that
sequences with a higher number of ancestors have a much higher probability to
appear as the result of random mutations.

For microbial genomes, identifying the n-mers within the areas of 1, 2, and
3+ mismatch(s) is computationally feasible due to the fact that these genomic

Fig. 1. Those n-mers that are located in the “one mismatch distance area have different
probabilities of appearing as result of random mutation

Two Challenges in Genomics That Can Benefit from Petascale Platforms 317

sequences are relatively short. For instance, the Escherichia coli K12 genome
(NCBI: NC 000913) is 4,639,675 bp. Considering both strands of this genome,
all n-mers are expected to appear only once at most for n ≤ 12. Thus, for 12-mers
one may expect that some sequences are absent from the genomic sequence which
may have ancestors present. This prediction is made under the assumption that
the appearance of n-mers is independent which is known not to be completely
true; it does, however, provide a reasonable estimation. There are in fact several
10- and 11-mers which are absent from the E. coli K12 genome. For a single n-
mer S of length n, there are 3n possible n-mers which can be created by changing
only one base, 3n ∗ 3(n − 1) possible n-mers by changing any two bases, etc. For
each of the n-mers absent from the genome, there are

c∏

0

3(n − c) (1)

possible ancestors which can be present given c base changes. For the human
genome (≈ 3 Gbp), much longer n-mers must be examined. As a result, many
more possible combinations of mutations must be considered. It is important to
mention that rather than looking exclusively at the human genome sequence,
SNP information must also be included as the appearance of such a variation
would be the result of the individuals particular genotype rather than the oc-
currence of a mutation.

Using such sequences in an assay, e.g. as microarray probes, would provide
a means to rapidly and conclusively examine the rate of the accumulation of
mutations in microbial and eukaryotic organisms, including microbial cultures,
strains of model organisms, and human cell lines. We expect that the same ap-
proach will also be useful in distinguishing individual humans, as well as other
eukaryotes (including organisms of economic importance, e.g., pigs, cows, chick-
ens, etc.) based on small DNA samples. Furthermore, we anticipate that the
sensitivity of this technique will be sufficient to monitor the rate of somatic
mutations accumulating in different tissues during the lifetime of an organism.
Such an opportunity is likely to be of great benefit to cancer related research. In
contrast to existing methods of mutation rate monitoring, our approach takes
into account entire genomes, including noncoding sequences which in the case
of human cover 97% of genome. A calculation of such sequences and their an-
cestors becomes exponentially more difficult as the n-mer size being considered
increases. Due to the large number of calculations that are required, petascale
computing provides a solution in which such computations can be conducted in
an acceptable amount of time.

3 Optimal Combinations of Genomic Signatures for
Human HLA Typing

The HLA (human leukocyte antigen) system, the group of genes in the human
MHC (major histocompatibility complex) located on chromosome VI, encodes

318 C. Putonti et al.

the cell-surface antigen-presenting proteins. HLA antigens are the major deter-
minants used by the body’s immune system for recognition and differentiation
of self from nonself (foreign) substances. This system consists of numerous SNPs
encoding 2435 known alleles according to the latest statistics available from the
IMGT/HLA Database as of August 3, 2006 [8]. Since the previous release (2.13) a
month earlier, 125 new alleles were added [8]. The allelic composition in the HLA
loci, or the HLA type, varies significantly within the population. A direct corre-
lation has been observed between the variation present in the HLA system and
ones genetic susceptibility to diseases [9,10,11,12], response to infection [13], re-
sponse to drugs and vaccines [14,15], as well as the success of blood and tissue
transplants [16]. Significant research has been devoted to the development of HLA
typing techniques for determining the combination of alleles responsible for par-
ticular responses. Numerous nucleic acid-based approaches have been employed
for genotyping the HLA loci by designing primer/probe sequences complementary
to the SNPs present in particular alleles. The design of an assay which can type all
of the known alleles as well as be used for the discovery of new HLA alleles would
dramatically improve current typing methods. The high-throughput microarray
format is ideal, offering the convenience of miniaturization and the ability to per-
form thousands of hybridizations in a single experiment. Previously documented
microarray-based typing methods were intended to provide a low resolution typ-
ing and are therefore able to identify only 6% to 33% of the allelic variations in the
loci of interest [17,18,19,20,21]. In order to achieve higher resolution typing, more
alleles must be targeted. At the same time, however, one most consider the com-
plexity of the assay design as it may impact the expediency in which a diagnosis
can be made as well as the cost and the level of expertise required for technicians
to correctly interpret the results. Thus, a simplistic design is preferable. Minimiz-
ing the number of probes in the assay, while maintaining or improving the assays
resolution and reliability, further complicates the task of designing typing tests
thus necessitating rigorous computations.

Fig. 2. Determining the optimal probe set. Each allele is expected to hybridize with
a subset of the probes {P1, P2, P3, P4}. Not all probes, however, may be necessary
in order to maintain the same resolution. Thus, the optimal set {P1, P3, P4} provides
the same resolution while reducing the complexity and cost of the assay.

Two Challenges in Genomics That Can Benefit from Petascale Platforms 319

Different probe sets for HLA typing can be created providing variable resolu-
tions. Given a set of alleles, all of the sequences containing the polymorphisms
can be selected as candidate probes. While all of the candidate probes can be
included in the design of the assay, it is likely that some of the probes do not
contribute to the informativity or increase the resolution of the typing. To illus-
trate such an instance, Figure 2 shows four probes (P1, P2, P3, and P4) which
can be used to distinguish between five different alleles (A1, A2, A3, A4, and
A5). In order to be able to distinguish one allele from another, the set of probes
which hybridizes to each allele must be unique resulting in a unique hybridiza-
tion pattern on the array. The inclusion of P2, however, is not necessary as all
five alleles will still be expected to hybridize with a unique set of probes. By
removing any of the other probes, it will no longer be possible to distinguish
between the alleles and thus the resolution of typing is decreased. Therefore, an
“optimal set containing only three probes can be used to distinguish between the
alleles. Although a rather simple example, the optimal assay provides the same
resolution at a reduced cost and complexity. As one can imagine, identifying the
minimum number of probes necessary for distinguishing between 2000+ HLA
alleles is a significantly more complex problem.

To optimize an assay, one can either search for the maximum coverage of the
targets using: (1) a predetermined number of probes or (2) the minimum number
of probes. If there are only a few candidate probes, it is feasible that one can it-
erate through each possible combination in order to identify the combination of
probes with the maximum coverage. However, as the number of candidate probes
increases so too does the number of possible combinations. For instance, to identify
the set of probes having the maximum coverage for an assay of the predetermined
size of 60 probes from 100 candidate probes, 1.37 × 1028 different combinations
must be examined. Approximately 1.27×1030 combinations exist for the same set
of 100 candidate probes for all possible probe set sizes. If analysis of each combi-
nation requires 1 millisecond, iterating through all of the combinations to find the
optimal set using the minimum number of probes will take 4.02 × 1019 years!

Computing the minimum number of probes in a realistic time is nontrivial
(an instance of the minimum set cover problem which is NP-complete). Opti-
mization of the probe set design problem was first discussed in 2000 by Herwig
et al. [22] in which a greedy heuristic was introduced based on clustering and
entropy. Formulation of the problem was further refined by Borneman et al. [23]
to the Minimum Cost Probe Set (MCPS) and Maximum Distinguishing Probe
Set (MDPS); MCPS searches for the minimum number of probes necessary to
distinguish all target sequences while MDPS maximizes the number of distin-
guished pairs of target sequences for a set of k probes. Here Borneman et al.
[23] developed a Lagrangian relaxation algorithm to approximate the MCPS
problem and a simulated annealing algorithm for the MDPS problem. While
successful in designing a smaller probe set, certain sacrifices were made for ef-
ficiency by considering only one length of probes (n = 8) and predetermining
the set size. Two approaches were also developed based on the Integer Linear
Program (ILP) formulation. The method of Rash et al. [24] uses suffix trees to

320 C. Putonti et al.

solve the minimization problem. Their solution is based upon the concept of a
unique barcode. This barcode is a binary vector consisting of 0s and 1s where 0
means that the probe sequence will not hybridize with the sequence of interest
and 1 means that the probe sequence will hybridize with the sequence of interest.
In this ILP implementation, each sequence (genome) being considered must be
uniquely identified by at least one probe under the assumption that only one
target sequence is present in the sample [24]. The second approach of Klau et
al. [25] consists of three steps: (1) computing the target–probe incidence matrix,
(2) computing a design matrix, and (3) decoding the result for identification
of the sequence(s) present in the sample [26]. The design is computed using
a branch-and-cut algorithm (http://www.inf.fu-berlin.de/inst/ag-bio). This al-
gorithm proves more robust than that proposed by Rash et al. [24] by taking
into consideration during design the set size, the probability of hybridization
errors, and the case in which multiple targets are simultaneously present in the
sample (d-separability) [25]. All of these approaches [22,23,24,25,26], can only
approximate the best solution within the space and time allotted to the probe
set design process. Therefore, the optimal set identified by any such approach
may not in fact be the true optimal set having the minimum number of probes
for the maximum coverage. With respect to designing the optimal probe set for
high resolution HLA typing, certain alleles may occur with very low probability.
If it is possible to identify all alleles except this rare allele with a higher level of
resolution and a smaller probe set, such a solution may be preferred, thus adding
another dimension to the optimization problem.

4 Conclusions

The rate in which new data is becoming available far exceeds the rate in which
one can perform analysis. Sequence data as well as the results of microarray ex-
periments of gene expression profiling, genotyping, and diagnostics further con-
tribute to amount of data to be examined. Analysis of large, complex genomic
sequences such as the human genome necessitates high-performance computing
resources. The projects discussed here are just two of many that are currently
underway in research laboratories throughout the world. Due to the limitations
of current systems, it has only been possible to analyze a fraction of the vast
amount of biological data currently available. The development of cutting edge
computational resources, both in terms of the memory available and the preci-
sion and speed in which calculations can be performed, is likely to dramatically
impact biotechnology, human health as well as our general understanding of
mechanisms of disease development, vaccine development, aging, and evolution.

References

1. Walgate, R.: Weapons lab to develop Celeras new supercomputer. Genome Biol.
(2001)

2. The International HapMap Consortium: A haplotype map of the human genome.
Nature 437 (2005) 1299–1320

Two Challenges in Genomics That Can Benefit from Petascale Platforms 321

3. Jares, P.: DNA microarray applications in functional genomics. Ultrastruct. Pathol.
30 (2006) 209–219

4. Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Na-
ture 405 (2000) 827–836

5. Peeters, J.K., Van der Spek, P.J.: Growing applications and advancements in mi-
croarray technology and analysis tools. Cell Biochem. Biophys. 43 (2005) 149–166

6. Geschwind, D.H.: DNA microarrays: translation of the genome from laboratory to
clinic. Lancet Neurol. 2 (2003) 275–282

7. Kimball, J.W.: Biology. 6th edn. Wm. C. Brown, Iowa (1994)
8. Robinson, J., Waller, M.J., Parham, P., de Groot, N., Bontrop, R., Kennedy, L.J.,

Stoehr, P., Marsh, S.G.E.: IMGT/HLA and IMGT/MHC: sequence databases for
the study of the major histocompatibility complex. Nucleic Acids Res. 31 (2003)
311–314

9. Diepstra, A., Niens, M., Te Meerman, G.J., Poppema, S., van den Berg, A.: Genetic
susceptibility to Hodgkins lymphoma associated with the human leukocyte antigen
region. Eur. J. Haematol. Suppl. 75 (2005) 34–41

10. Saftlas, A.F., Beydoun, H., Triche, E.: Immunogenetic determinants of preeclamp-
sia and related pregnancy disorders: A systematic review. Obstet. Gynecol. 106
(2005) 162–167

11. Ahmedov, G., Ahmedova, L., Sedlakova, P., Cinek, O.: Genetic association of type
1 diabetes in an Azerbaijanian population: the HLA-DQ, -DRB1*04, the insulin
gene, and CTLA4. Pediatr. Diabetes 7 (2006) 88–93

12. Listi, F., Candore, G., Balistreri, C.R., Grimaldi, M.P., Orlando, V., Vasto, S.,
Colonna-Romano, G., Lio, D., Licastro, F., Franceschi, C., Caruso, C.: Association
between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res. 9 (2006)
99–101

13. Keet, I.P., Tang, J., Klein, M.R., LeBlanc, S., Enger, C., Rivers, C., Apple, R.J.,
Mann, D., Goedert, J.J., Miedema, F., Kaslow, R.A.: Consistent associations of
HLA class I and II and transporter gene products with progression of human
immunodeficiency virus type 1 infection in homosexual men. J. Infect. Dis. 180
(1999) 299–309

14. Ovsyannikova, I.G., Vierkant, R.A., Poland, G.A.: Importance of HLA-DQ and
HLA-DP polymorphisms in cytokine responses to naturally processed HLA-DR-
derived measles virus peptides. Vaccine 24 (2006) 5381–5389

15. Ovsyannikova, I.G., Pankratz, V.S., Vierkant, R.A., Jacobson, R.M., Poland, G.A.:
Human leukocyte antigen haplotypes in the genetic control of immune response to
measles–mumps–rubella vaccine. J. Infect. Dis. 193 (2006) 655–663

16. Morishima, Y., Sasazuki, T., Inoko, H., Juji, T., Akaza, T., Yamanoto, K., Ishikawa,
Y., Kato, S., Sao, H., Sakamaki, H., Kawa, K., Hamajima, N., Asano, S., Kodera,
Y.: The clinical significance of human leukocyte antigen allele compatibility in
patients receiving a marrow transplant from serologically HLA-A, HLA-B, and
HLA-DR matched unrelated donors. Blood 99 (2002) 4200–4206

17. Haddock, S.H., Quartararo, C., Cooley, P., Dao, D.D.: Low-resolution typing of
HLA-DQA1 using DNA microarray. Methods Mol. Biol. 170 (2001) 201–210

18. Consolandi, C., Frosini, A., Pera, C., Ferrara, G.B., Bordoni, R., Castiglioni, B.,
Rizzi, E., Mezzelani, A., Bernardi, L.R., De Bellis, G., Battaglia, C.: Polymorphism
analysis within the HLA-A locus by universal oligonucleotide array. Hum. Mutat.
24 (2004) 428–434

19. Palmisano, G.L., Delfino, L., Fiore, M., Longo, A., Ferrara, G.B.: Single nucleotide
polymorphisms detection based on DNA microarray technology: HLA as a model.
Autoimmun. Rev. 4 (2005) 510–514

322 C. Putonti et al.

20. Bang-Ce, Y., Xiaohe, C., Ye, F., Songyang, L., Bincheng, Y., Peng, Z.: Simultane-
ous genotyping of DRB1/3/4/5 loci by oligonucleotide microarray. J. Mol. Diagn.
7 (2005) 592–599

21. Wells, D.: Advances in preimplantation genetic diagnosis. Eur. J. Obstet. Gynecol.
Reprod. Biol. 115 (2004) S97-S101

22. Herwig, R., Schmidt, A., Steinfath, M., OBrian, J., Seidel, H., Meier-Ewert, S.,
Lehrach, H., Radelof, U.: Information theoretical probe selection for hybridization
experiments. Bioinformatics 16 (2000) 890–898

23. Borneman, J., Chrobak, M., Vedova, C.D., Figueroa, A., Jiang, T.: Probe selection
algorithms with applications in the analysis of microbial communities. Bioinfor-
matics 17 (2001) S39–S48

24. Rash, S., Gusfield, D.: String barcoding: uncovering optimal virus signatures. In:
Myers, G., Hannenballi, S., Istrail, S., Perzner, P., Waterman, M. (eds): RECOMB
’02: Proceedings of the Sixth Annual International Conference on Computational
Biology. ACM Press, New York (2002) 254–261

25. Klau, G.W., Rahmann, S., Schliep, A., Vingron, M., Reinert, K.: Optimal robust
nonunique probe selection using integer linear programming. Bioinformatics 20
(2004) I186–I193

26. Schliep, A., Torney, D.C., Rahmann, S.: Group testing with DNA chips: generating
designs and decoding experiments. Proc. IEEE Comput. Soc. Bioinform. Conf. 2
(2003) 84–91

High Throughput Image Analysis on

PetaFLOPS Systems

Robert Henschel, Matthias Müller1, and Yannis Kalaidzidis2

1 Technische Universität Dresden,
Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH),

01062 Dresden, Germany
Robert.Henschel@zih.tu-dresden.de

http://www.tu-dresden.de/zih
2 Max Planck Institute of Molecular Cell Biology and Genetics,

Pfotenhauerstr. 108,
01307 Dresden, Germany

Abstract. Today’s state of the art high-throughput screening facilities
can produce tens of thousands of images of cells per day. Analyzing im-
ages from high-throughput screening experiments is very time consuming
and computationally demanding. Researchers are currently limited not
by the availability of experimental data, but by the computing resources
for the image analysis. The Max Planck Institute of Molecular Cell Biol-
ogy and Genetics Dresden, Germany, (MPI-CBG) and the Center for In-
formation Services and High Performance Computing at the Technische
Universität Dresden (ZIH) are working together to integrate high perfor-
mance computing systems into the workflow of biologists. The MPI-CBG
has developed software that biologists use for their image analysis work.
The software can utilize local workstations and remote HPC systems
for image analysis. Currently the software is used successfully on small
clusters and PC-Farms. Most parts of the image analysis workflow of
screening experiments can be performed in parallel and is ideal for dis-
tribution on large systems. With a few modifications and a new approach
to data management, the software should be able to scale to PetaFLOPS
systems.

1 High Throughput Image Analysis

Determining the DNA sequence and the genes of an organism is an automated
process. The DNA of a number of organisms has been successfully sequenced
and is now available for further research. In contrast, assigning a function to a
gene is far more complicated and involves a lot of human interaction.

High-Throughput screening experiments are used to search for gene functions.
These experiments do also include a large number of control experiments to cope
with off-target effects and other side-effects that occur in complex screening ex-
periments. Because of the large number of images that high-throughput screening
experiments produce, automated image analysis software is used to analyze the
images and detect phenotypes.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 323–329, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

324 R. Henschel, M. Müller, and Y. Kalaidzidis

The research group of Professor Dr. Marino Zerial at the MPI-CBG devel-
ops its own image analysis software called Motion Tracking. The project was
started because there was no standard software package available on the market
that would suit the needs of the biologists, in terms of ease of use, feature set
and scalability. The application that is developed at the MPI-CBG is used for
the whole image analysis process and despite its name, is not limited to just
motion tracking. It is capable of performing image analysis on a large number
of images in batch mode. It can also visualize the input and the result data as
well as perform statistical calculations. To decrease the overall runtime of image
analysis tasks, the application can distribute the calculation on small clusters
of workstations running Microsoft Windows or on IA32/AMD64 HPC systems
running Linux. Motion Tracking is successfully used in the analysis of current
experiments such as research in endocytosis and endosomes [4].

The general image analysis workflow for screening experiments at the MPI-
CBG is show in fig. 1. It consists of six distinct phases. At first, the biological
experiment is prepared in plates with, for example, 96 or 384 wells. Each of those
wells contains a slightly different experiment, for example different knocked down
genes or a control experiment. Depending on the objective of the experiment, the
number of required wells can vary quite a lot. In a small screening experiment
that is only concerned with 120 genes, 12 96-well plates are required. For a
genome wide screening experiment, more than 200 384-well plates would be
required. In the next step, confocal images of the cell cultures or single cells
are taken with an automated microscope. The microscope acquires images at
different positions in each well and stores them in image packages.

In the preprocessing phase the images are extracted from the image packages,
separate images for the red, green and blue color channel are combined into
one image, out of focus images are removed and images that show no or only
very few cells are filtered out. This phase is done in parallel for all images on
a small cluster of eight dual XEON workstations at the MPI-CBG. The small
cluster is used because the actual compute phase is very small and a lot of I/O
operations are performed. Since the small cluster can be accessed faster than the
HPC system at the ZIH and a more efficient communication protocol is used for

Fig. 1. Image Analysis Workflow at the MPI-CBG

High Throughput Image Analysis on PetaFLOPS Systems 325

communication to the small cluster, this phase is performed fastest on the small
cluster.

In the next phase, the parameters for the structure identification algorithm
are adjusted. Since the optimal parameter values vary between individual image
sets, for example depending on the characteristics of the microscope that was
used for the screening, this step requires human interaction.

With the parameter file created in the previous phase, all images are searched.
Since most analysis tasks have no dependency on images besides the one that
is analyzed, this process can be performed in parallel. The image files and the
parameter file are transferred to the HPC system and analyzed. This phase is
the most computational intensive. The analysis time for a single image can range
from a few minutes to one or two hours depending on the analysis that is per-
formed. The structure information is transferred back to the main workstation
after the analysis.

The statistics calculation represents the final analysis step that provides an-
swers to the underlying biological question of the screening experiment. It is
done on the MPI-CBG cluster again since the calculation time is very small
compared to the overhead that is incurred by transferring input files and results
to the HPC system at the ZIH and back.

2 Performance and Limitations

Motion Tracking is written using a combination of the programing languages
C++ and PLUK. The performance critical parts of the application as well as
the PLUK interpreter are written in C++ while large parts of the application,
the graphical user interface and utility functions are written in PLUK. PLUK
is an interpreted programing language that was developed in the mid to late
1990s at the Lomonosov Moscow State University [3]. It was created as a fourth
generation programing language, designed to make prototyping of algorithms
easy and aid rapid application development. PLUK is not meant as a high per-
formance computing tool, but is targeted at users that need to test algorithms
and develop small to medium applications for example to process and analyze
data of experiments.

Motion Tracking was developed as a tool for biologists to work with images
from screening experiments. When the experiments got larger, it was enhanced
to distribute calculation tasks among workstation to shorten the overall analy-
sis time. At that time, the front-end of the application and the underlying PLUK
library were only available for Microsoft Windows 2000 and later versions. This
meant that the calculation tasks could only be distributed to workstations run-
ning a compatible version of Microsoft Windows. For the communication between
the calculation workstations and the master workstation, a custom protocol was
developed that is implemented using the Winsock library. One communication
channel per workstation is used to dispatch tasks and to send and receive data.
This channel is kept open for the entire runtime of a task. The solution works

326 R. Henschel, M. Müller, and Y. Kalaidzidis

nicely for a limited number of workstations. The MPI-CBG uses this on a local
cluster of 8 dual XEON workstations.

As the experiments got larger, the need for more compute resources arose. The
ZIH provided access to its HPC systems, a PC-Farm with 64 dual Opteron nodes
and an SGI Altix 3700 system with 192 Itanium 2 CPUs. For Motion Tracking to
utilize those systems, the PLUK interpreter and associated libraries were ported
to Linux. The graphical user interface that controls the calculation remained on
the Microsoft Windows platform. The communication channel was replaced with
an implementation that uses the OpenSSH binaries on the Windows platform
to perform file transfer and remote job submission. The current version works
satisfactory on the PC-Farm with Opteron CPUs. To use the Altix HPC system,
the PLUK interpreter must be adapted to the memory alignment requirements
of the Itanium 2 CPU which is still an open issue.

The PC-Farm at the ZIH was added to the image analysis workflow with as
little modifications to existing software as possible. This means that the existing
communication pattern was adapted to work over SSH connections but not really
changed to reflect the properties of the new connection. The communication
speed to the PC-Farm at the ZIH is slower than to the local workstations at
the MPI-CBG. The latency and the startup time for a file transfer are a lot
higher as well. To start a job on the PC-Farm, all input data has to be moved
to the PC-Farm and a job has to be submitted to the batch system. At the
end, the results of the calculation have to be moved back to the MPI-CBG for
visualization in Motion Tracking. The input data and the results for each job are
in the order of a few megabytes. All this contributes to a very high startup time
for a calculation that can only be compensated by running large calculations.

Equation 1 can be used to calculate the number of processors (n) that can
be used in parallel on the PC-Farm. If not enough jobs can be submitted from
the master workstation at the MPI-CBG to the HPC system at the ZIH, not all
available processors can be utilized. The maximum number of processors that
can be utilized depends on the average runtime (TR) of an image analysis job,
the number of communication channels (c) that are available to send data and
the transfer time per image (TI) using such a channel. Every communication
channel is used on the master workstation by a thread. Every thread prepares
the input data, sends it to the HPC system and submits a job to the batch
system. Currently, the number of threads is set to 7. It is limited by the number
of concurrent open SSH connection to the HPC system and the load that those
connections induce on the master workstation.

The transfer time per image varies between 4,5 and 5 seconds. It can be
calculated using (2). The preparation time (TP) is required to transfer the image
to the master workstations memory and repackage it for sending it to the HPC
system. The actual transfer time is comprised of the time to open the connection
(TO) and the time to transfer the image, which can be calculated by dividing
the image size (IS) by the transfer rate (R) of the channel. The time to submit
a task to the batch system is denoted with TS . Values for the individual times
can be found in table 1.

High Throughput Image Analysis on PetaFLOPS Systems 327

Table 1. Key parameters of image Analysis jobs

Item Value
Average runtime of image analysis jobs ≈1800 seconds

Number of channels 7

Transfer time of one image ≈4.75 seconds

Preparation time ≈2 seconds

Time to open a connection ≈0.5 seconds

Image size 2 MiB

Transfer rate ≈1.6 MiB/seconds

Submission Time ≈0.5 seconds

n = TR ∗ c

TI
(1)

TI = TP + (TO +
IS

R
) + TS (2)

To utilize the full PC-Farm with 128 CPUs, the average runtime of an image
analysis job must be at around 90 seconds. If the runtime is shorter the entire
PC-Farm will not be filled with jobs before the first job has finished and makes
the CPU available again. If the runtime is longer, jobs will pile up in the batch
queue and are ready to be dispatched as soon as a CPU becomes available. Fig. 2
shows that the workflow software is able to utilize basically all available CPUs
of the 128 CPU cluster.

Image analysis jobs are always longer than 90 seconds, so the overhead of the
network transfer is no problem. The runtime of jobs in the preprocessing phase
is largely determined by I/O operations of reading image packages and writing
single images. This phase is not done on the PC-Farm. The runtime of jobs in
the statistical calculation phase depends on how many statistical calculations
are performed per image and how complex they are. The more calculations are
performed, the better is the chance that such a job can be run efficiently on the
PC-Farm.

Overall, the current solution works nicely for the current size of the PC-Farm.
However, when the PC-Farm is upgraded to 2500 Opteron cores the submission
rate has to be increased to be able to utilize the whole PC-Farm. If the submission
rate stays at 1.5 jobs per second, the average job length would have to be more
than 1300 seconds to utilize the whole PC-Farm.

3 Suggested Changes to Scale Up to PetaFLOPS Systems

None of the limitations outlined above are due to the underlying image analysis
workflow, they exist because of the current implementation. The current version
of Motion Tracking has grown over time and was successfully adapted to new
requirements. With the growing number of images that screening experiments
produce, not only Motion Tracking must be adapted, but also the underlying
storage concept must be changed to better fit the workflow.

328 R. Henschel, M. Müller, and Y. Kalaidzidis

Fig. 2. Available and used CPUs during one day

In the structure identification phase, all images could be analyzed in parallel
as there are no dependencies between images. The degree of parallelism is only
limited by number of available CPUs and the ability to move the required input
data to those CPUs. The same is true for the statistical calculation phase only
that the computing time is generally shorter in that phase. To achieve such a
high degree of parallelism, a number of changes would have to be implemented.

3.1 Introduce Distributed Storage of Data

In the current version, all data is stored at a central location and is only trans-
ferred to the HPC system for the period of the analysis. When the structure
identification phase needs to be repeated, because different parameters are se-
lected, the raw images have to be transfered again from the MPI-CBG to the
ZIH. This can be avoided by introducing a resource broker or a global database
that can be queried for the location of particular image files.

Also, the results that are created in the structure identification phase are
the input data for the statistical calculation phase. Currently the results are
transferred back to the MPI-CBG because they are needed for further analysis
that can either be performed in parallel on a cluster or by the master workstation
alone. Also, for exporting results they have to be available locally at the MPI-
CBG.

High Throughput Image Analysis on PetaFLOPS Systems 329

Raw images and the result files could be replicated between both locations.
That would guarantee fast access and availability on both locations. For this
approach to be successful, a layer that takes care of data management, such as
tracking and replicating images, must be added.

3.2 Improve Communication and Job Control

Currently, the communication with the HPC systems is built around the OpenSSH
binaries for transferring files and executing remote commands. This implementa-
tion was choosen to support as many Linux based HPC systems as possible. The
solution is very flexible and can be adapted quickly to different environments.

The disadvantages are limited transfer rates and only basic job control and
status information about running jobs on HPC systems. When using Windows
workstations as compute resources, Motion Tracking uses a custom communi-
cation protocol that allows for example to query jobs status information. This
communication protocol is not yet ported to Linux.

To increase the transfer rates ssh/scp can be replaced with mechanism like
GridFTP[1], that provide higher utilization of the available network bandwidth.
To improve job submission and control on large HPC systems, the use of grid
middle-ware such as UNICORE[5] or Globus[2] as alternative to the proprietary
protocol of Motion Tracking will be examined.

With the above mentioned changes in place, Motion Tracking should be pre-
pared to benefit from large HPC systems.

References

1. W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. The globus striped gridftp
framework and server. In SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, 2005.

2. Ian Foster. Globus toolkit version 4: Software for service-oriented systems. J.
Comput. Sci & Technol., 21(4):513–520, July 2006.

3. Y.L. Kalaidzidis, A.V. Gavrilov, P.V. Zaitsev, A.L. Kalaidzidis, and E.V. Korolev.
PLUK - an environment for software development. Programming and Computer
Software, 23(4):206–212, 1997.

4. J. Rink, E. Ghigo, Y. Kalaidzidis, and M. Zerial. Rab conversion as a mechanism
of progression from early to late endosomes. Cell, 122(5):735–749, 2005.

5. A. Streit, D. Erwin, Th Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel,
M. Romberg, B. Schuller, and Ph Wieder. Unicore - from project results to produc-
tion grids, 2005.

Author Index

Abdennadher, Nabil 126
Amar, A. 150
Arenas, Alvaro 49

Ba�la, Piotr 245
Bilas, Angelos 15
Boesch, Régis 126
Bollman, Dorothy 304
Bolze, R. 150
Borcz, Marcelina 245
Bouteiller, A. 150
Bustos-Jiménez, Javier 61

Cacciari, C. 225
Caniou, Y. 150
Caromel, Denis 61
Caron, E. 150
Chis, A. 150
Chouhan, P.K. 150
Ciuffoletti, Augusto 5
Clementi, Luca 264
Coppola, Massimo 171
Cozza, Pasquale 116

Dail, H. 150
Danelutto, Marco 171
Delannoy, Olivier 87
Denemark, Jǐŕı 101
Depardon, B. 150
Desprez, F. 150
Dikaiakos, Marios D. 186

Eleftheriou, Maria 279
Emad, Nahid 87

Ferrer, Edgar 304
Fitch, Blake G. 279
Flouris, Michail D. 15
Fofanov, Yuriy 313

Gay, J.-S. 150
Germain, Robert S. 279
Ghiselli, Antonia 34
Giampapa, Mark 279
Gruber, Ralf 215

Hagemeier, B. 225
Hasselbring, Wilhelm 235
Henschel, Robert 323

Jankowski, Micha�l 101
Johnsson, Lennart 313

Kacsuk, Péter 112, 138
Kalaidzidis, Yannis 323
Keller, Vincent 215
Kertész, Attila 112, 138
Kluszczyński, Rafa�l 245

Lachaize, Renaud 15
Le Mahec, G. 150
Leyton, Mario 61
Lingwall, Malinda 289

Manneback, Pierre 87, 215
Massonet, Philippe 49
Mastroianni, Carlo 116
Matyska, Luděk 101
Melato, M. 225
Menday, Roger 195, 225, 264
Meyer, Norbert 3, 101
Moreno, Oscar 304
Mukherjee, Arijit 22
Müller, Matthias 289, 323

Naqvi, Syed 49
Németh, Zsolt 15
Noël, Sébastien 87

Petiton, Serge 87
Piquer, José 61
Pitman, Michael C. 279
Ploski, Jan 235
Poitou, Olivier 49
Polychronakis, Michalis 5
Putonti, Catherine 313

Rambadt, Michael 264
Ranaldo, Nadia 74
Rayshubskiy, Aleksandr 279
Reetz, Johannes 264

332 Author Index

Sakellariou, Rizos 186
Scherp, Guido 235
Schuller, Bernd 195, 225
Sipos, Gergely 138
Snelling, D. 225
Soddemann, Thomas 254
Stagni, Federico 34
Stewart, Craig A. 277, 289
Streit, Achim 193, 195
Su, A. 150

Talia, Domenico 3, 116
Taylor, Ian 116
Thiémard, Michela 215
Tonellotto, Nicola 171

van den Berghe, S. 225
Vanneschi, Marco 171

Wäldrich, Oliver 215

Ward, T.J. Christopher 279

Watson, Paul 22

Weisz, Willy 205

Wieder, Philipp 215

Wolniewicz, Pawe�l 101

Xing, Wei 186

Yahyapour, Ramin 3

Zappi, Riccardo 34

Zhang, Meizhuo 313

Ziegler, Wolfgang 193, 215

Zimeo, Eugenio 74

Zoccolo, Corrado 171

