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Preface

The field of molecular biophysics is introduced in the following pages.
The presentation focuses on the simple underlying concepts and demon-
strates them using a series of up to date applications. It is hoped that the
approach will appeal to physical scientists who are confronted with
biological questions for the first time as they become involved in the
current biotechnological revolution.

The field of biochemistry is vast and it is not the aim of this textbook
to encompass the whole area. The book functions on a reductionist,
nuts and bolts approach to the subject matter. It aims to explain the
constructions and machinery of biological molecules very much as a
civil engineer would examine the construction of a building or a
mechanical engineer examine the dynamics of a turbine. Little or no
recourse is taken to the chemical side of the subject, instead modern
physical ideas are introduced to explain aspects of the phenomena that
are confronted. These ideas provide an alternative, complementary set
of tools to solve biophysical problems. It is thus hoped that the book
will equip the reader with these new tools to approach the subject of
biological physics.

A few rudimentary aspects of medical molecular biophysics are con-
sidered. In terms of the statistics of the cause of death, heart disease,
cancer and Alzheimer’s are some of the biggest issues that confront
modern society. An introduction is made to the action of striated muscle
(heart disease), DNA delivery for gene therapy (cancers and genetic
diseases), and self-assembling protein aggregates (amyloid diseases
such as Alzheimer’s). These diseases are some of the major areas of
medical research, and combined with food (agrochemical) and pharma-
ceutics, provide the major industrial motivation encouraging the devel-
opment of molecular biophysics.



Please try to read some of the highlighted books, they will prove
invaluable to bridge the gap between undergraduate studies and active
areas of research science.

Tom Waigh

Manchester, UK
February 2007
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1
The Building Blocks

It is impossible to pack a complete biochemistry course into a single
introductory chapter. Some of the basic properties of the structure of
simple biological macromolecules, lipids and micro organisms are cov-
ered. The aim is to give a basic grounding in the rich variety of molecules
that life presents, and some respect for the extreme complexity of the
chemistry of biological molecules that operates in a wide range of cellular
processes.

1.1 PROTEINS

Polymers consist of a large number of sub-units (monomers) connected
together with covalent bonds. A protein is a special type of polymer. In a
protein there are up to twenty different amino acids (Figure 1.1) that can
function as monomers, and all the monomers are connected together
with identical peptide linkages (C–N bonds, Figure 1.2). The twenty
amino acids can be placed in different families dependent on the chem-
istry of their different side groups. Five of the amino acids form a group
with lipophilic (fat-liking) side-chains: glycine, alanine, valine, leucine,
and isoleucine. Proline is a unique circular amino acid that is given its
own separate classification. There are three amino acids with aromatic
side-chains: phenylalanine, tryptophan, and tyrosine. Sulfur is in the
side-chains of two amino acids: cysteine and methionine. Two amino
acids have hydroxyl (neutral) groups that make them water loving: serine
and threonine. Three amino acids have very polar positive side-chains:
lysine, arginine and histidine. Two amino acids form a family with acidic
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Figure 1.1 The chemical structure of the twenty amino acids found in nature
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Figure 1.1 (Continued )
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side-groups and they are joined by two corresponding neutral counter-
parts that have a similar chemistry: aspartate, glutamate, asparagine, and
glutamine.

The linkages between amino acids all have the same chemistry and
basic geometry (Figure 1.2). The peptide linkage that connects all amino
acids together consists of a carbon atom attached to a nitrogen atom
through a single covalent bond. Although the chemistry of peptide
linkages is fairly simple, to relate the primary sequence of amino acids
to the resultant three dimensional structure in a protein is a daunting task
and predominantly remains an unsolved problem. To describe protein
structure in more detail it is useful to consider the motifs of secondary
structure that occur in their morphology. The motifs include alpha
helices, beta sheets and beta barrels (Figure 1.3). The full three dimen-
sional tertiary structure of a protein typically takes the form of a compact
globular morphology (the globular proteins) or a long extended confor-
mation (fibrous proteins, Figures 1.4 and 1.5). Globular morphologies
usually consist of a number of secondary motifs combined with more
disordered regions of peptide.

Charge interactions are very important in determining of the conforma-
tion of biological polymers. The degree of charge on a polyacid or polybase
(e.g. proteins, nucleic acids etc) is determined by the pH of a solution, i.e.
the concentration of hydrogen ions. Water has the ability to dissociate into
oppositely charged ions; this process depends on temperature

H2O @ Hþ þ OH� ð1:1Þ

C

N

C

C

ORH

C

O

N

H

C

H

ψ
φ

Figure 1.2 All amino acids have the same primitive structure and are connected with
the same peptide linkage through C–C–N bonds
(O, N, C, H indicate oxygen, nitrogen, carbon and hydrogen atoms respectively. R is a
pendant side-group which provides the aminoacid with its identity, i.e. proline, glycine
etc.)
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The product of the hydrogen and hydroxyl ion concentrations formed
from the dissociation of water is a constant at equilibrium and at a fixed
temperature (37 �C)

cHþcOH� ¼ 1 � 10�14M2 ¼ Kw ð1:2Þ

where cHþ and cOH� are the concentrations of hydrogen and hydroxyl
ions respectively. Addition of acids and bases to a solution perturbs the
equilibrium dissociation process of water, and the acid/base equilibrium

Hydrogen 
bond

O C

O N

H

C

O

H

N
C

N

C H

H

O
N

C

N

N
C

O
N

O

C

H

O
N

C

O
C

N

H

C
N

N

H

O

(a)

Figure 1.3 Simplified secondary structures of (a) an a-helix and (b) a b-sheet that
commonly occur in proteins
(Hydrogen bonds are indicated by dotted lines.)
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phenomena involved are a corner stone of the physical chemistry
of solutions. Due to the vast range of possible hydrogen ion (Hþ)
concentrations typically encountered in aqueous solutions, it is normal
to use a logarithmic scale (pH) to quantify them. The pH is defined as the
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Figure 1.3 (Continued )

α-helix 
protofibril 

microfibril
macrofibril cell 

hair

Figure 1.4 The complex hierarchical structures found in the keratins of hair
(a-helices are combined in to protofibrils, then into microfibrils, macrofibrils, cells and
finally in to a single hair fibre [Reprinted with permission from J.Vincent, Structural
Biomaterial, Copyright (1990) Princeton University Press])
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negative logarithm (base 10!) of the hydrogen ion concentration

pH ¼ � log cHþ ð1:3Þ

Typical values of pH range from 6.5 to 8 in physiological cellular
conditions. Strong acids have a pH in the range 1–2 and strong bases
have a pH in the range 12–13.

When an acid (HA) dissociates in solution it is possible to define an
equilibrium constant (Ka) for the dissociation of its hydrogen ions (Hþ)

HA@Hþ þ A� Ka ¼
cHþcA�

cHA
ð1:4Þ

where cHþ , cA� and cHA are the concentrations of the hydrogen ions, acid
ions, and acid molecules respectively. Since the hydrogen ion concentra-
tion follows a logarithmic scale, it is natural to also define the dissocia-
tion constant on a logarithmic scale ðpKaÞ

pKa ¼ � log Ka ð1:5Þ

The logarithm of both sides of equation (1.4) can be taken to give a
relationship between the pH and the pKa value:

pH ¼ pKa þ log
cconjugate base

cacid

� �
ð1:6Þ

Figure 1.5 The packing of anti-parallel beta sheets found in silk proteins
(Distances between the adjacent sheets are shown.)
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where cconjugate_base and cacid are the concentrations of the conjugate base
(e.g. A�) and acid (e.g. HA) respectively. This equation enables the degree
of dissociation of an acid (or base) to be calculated, and it is named after
its inventors Henderson and Hasselbalch. Thus a knowledge of the pH of
a solution and the pKa value of an acidic or basic group allows the charge
fraction on the molecular group to be calculated to a first approximation.
The propensity of the amino acids to dissociate in water is illustrated in
Table 1.1. In contradiction to what their name might imply, only amino
acids with acidic or basic side groups are charged when incorporated into
proteins. These charged amino acids are arginine, aspartic acid, cysteine,
glutamic acid, histidine, lysine and tyrosine.

Another important interaction between amino acids, in addition to
charge interactions, is their ability to form hydrogen bonds with sur-
rounding water molecules; the degree to which this occurs varies. This
amino acid hydrophobicity (the amount they dislike water) is an impor-
tant driving force for the conformation of proteins. Crucially it leads to
the compact conformation of globular proteins (most enzymes) as the
hydrophobic groups are buried in the centre of the globules to avoid
contact with the surrounding water.

Table 1.1 Fundamental physical properties of amino acids found in protein
[Ref.: Data adapted from C.K. Mathews and K.E. Van Holde, Biochemistry, 137].

Occurrence
pKa value of Mass of in natural

Name side chain residue proteins (%mol)

Alanine — 71 9.0
Arginine 12.5 156 4.7
Asparagine — 114 4.4
Apartic acid 3.9 115 5.5
Cysteine 8.3 103 2.8
Glutamine — 128 3.9
Glutamic acid 4.2 129 6.2
Glycine — 57 7.5
Histidine 6.0 137 2.1
Isoleucine — 113 4.6
Leucine — 113 7.5
Lysine 10.0 128 7.0
Methionine — 131 1.7
Phenylalanine — 147 3.5
Proline — 97 4.6
Serine — 87 7.1
Threonine — 101 6.0
Tyrptophan — 186 1.1
Tyrosine 10.1 163 3.5
Valine — 99 6.9
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Covalent interactions are possible between adjacent amino acids and
can produce solid protein aggregates (Figures 1.4 and 1.6). For example,
disulfide linkages are possible in proteins that contain cysteine, and these
form the strong inter-protein linkages found in many fibrous proteins e.g.
keratins in hair.

The internal secondary structures of protein chains (a helices and
b sheets) are stabilised by hydrogen bonds between adjacent atoms in
the peptide groups along the main chain. The important structural
proteins such as keratins (Figure 1.4), collagens (Figure 1.6), silks
(Figure 1.5), anthropod cuticle matrices, elastins (Figure 1.7), resilin

Microfibril
Sub- 
fibril 

Fibril
Fascicle

Tendon

Collagen 
triple helix

Figure 1.6 Hierarchical structure for the collagen triple helices in tendons
(Collagen helices are combined into microfibrils, then into sub-fibrils, fibrils, fascicles
and finally into tendons.)

1.7nm 

7.2nm

2.4nm 

5.5nm
(a) (b)

Figure 1.7 The b turns in elastin (a) form a secondary elastic helix which is sub-
sequently assembled into a superhelical fibrous structure (b)
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and abductin are formed from a combination of intermolecular disulfide
and hydrogen bonds.

Some examples of the globular structures adopted by proteins are
shown in Figure 1.8. Globular proteins can be denatured in a folding/
unfolding transition through a number of mechanisms, e.g. an increase
in the temperature, a change of pH, and the introduction of hydrogen
bond breaking chaotropic solvents. Typically the complete denatura-
tion transition is a first order thermodynamic phase change with an
associated latent heat (the thermal energy absorbed during the transi-
tion). The unfolding process involves an extremely complex sequence
of molecular origami transitions. There are a vast number of possible
molecular configurations (�10N for an N residue protein) that occur
in the reverse process of protein folding, when the globular protein is
constructed from its primary sequence by the cell, and thus frustrated
structures could easily be formed during this process. Indeed, at first
sight it appears a certainty that protein molecules will become
trapped in an intermediate state and never reach their correctly folded
form. This is called Levinthal’s paradox, the process by which natural
globular proteins manage to find their native state among the
billions of possibilities in a finite time. The current explanation of
protein folding that provides a resolution to this paradox, is that
there is a funnel of energy states that guide the kinetics of folding
across the complex energy landscape to the perfectly folded state
(Figure 1.9).

There are two main types of inter-chain interaction between different
proteins in solution; those in which the native state remains largely

Figure 1.8 Two typical structures of globular proteins calculated using X-ray
crystallography data
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unperturbed in processes such as protein crystallisation and the forma-
tion of filaments in sheets and tapes, and those interactions that lead to a
loss of conformation e.g. heat set gels (e.g. table jelly and boiled eggs)
and amyloid fibres (e.g. Alzheimer’s disease and Bovine Spongiform
Encephalopathy).

1.2 LIPIDS

Cells are divided into a series of subsections or compartments by mem-
branes which are formed predominantly from lipids. The other main role
of lipids is as energy storage compounds, although the molecules play a
role in countless other physiological processes. Lipids are amphiphilic,
the head groups like water (and hate fat) and the tails like fat (and hate
water). This amphiphilicity drives the spontaneous self-assembly of the
molecules into membranous morphologies.

There are four principle families of lipids: fatty acids with one or
two tails (including carboxylic acids of the form RCOOH where R is
a long hydrocarbon chain), and steroids and phospholipids where two
fatty acids are linked to a glycerol backbone (Figure 1.10). The type
of polar head group differentiates the particular species of natu-
rally occurring lipid. Cholesterol is a member of the steroid family
and these compounds are often found in membrane structures. Glyco-
lipids also occur in membranes and in these molecules the phosphate
group on a phospholipid is replaced by a sugar residue. Glycolipids
have important roles in cell signalling and the immune system. For
example, these molecules are an important factor in determining the
compatibility of blood cells after a blood transfusion, i.e. blood types
A, B, O, etc.

Direction of 
funnel 

Free
energy

Configuration

Free
energy

Configuration

Figure 1.9 Schematic diagram indicating the funnel that guides the process of protein
folding through the complex configuration space that contains many local minima.
The funnel avoids the frustrated misfolded protein structures described in Levinthal’s
paradox

LIPIDS 11



1.3 NUCLEIC ACIDS

The ‘central dogma of biochemistry’ according to F.C.Crick is illustrated
in Figure 1.11. DNA contains the basic blueprint for life that guides the
construction of the vast majority of living organisms. To implement this
blue print cells need to transcribe DNA to RNA, and this structural
information is subsequently translated into proteins using specialised
protein factories (the ribosomes). The resultant proteins can then be
used to catalyse specific chemical reactions or be used as building mate-
rials to construct new cells.

This simple biochemical scheme for transferring information has
powerful implications. DNA can now be altered systematically using
recombinant DNA technology and then placed inside a living cell. The
foreign DNA hijacks the cell’s mechanisms for translation and the
proteins that are subsequently formed can be tailor-made by the genetic
engineer to fulfil a specific function, e.g. bacteria can be used to form
biodegradable plastics from the fibrous proteins that are expressed.

Sterate Ion 

O

O

O
O

PO4
Head
Group

(a) (b) (c)

Figure 1.10 Range of lipid molecules typically encountered in biology
(a) fatty acids with one tail; (b) steroids and fatty acids with two tails; (c) phospholipids

Duplication
Transcription

RNA
TranslationDNA Protein

Figure 1.11 The central dogma of molecular biology considers the duplication and
translation of DNA. DNA is duplicated from a DNA template. DNA is transcribed to
form a RNA chain, and this information is translated into a protein sequence
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The monomers of DNA are made of a sugar, an organic base and a
phosphate group (Figure 1.12). There are only four organic bases that
naturally occur in DNA, and these are thymine, cytosine, adenine and
guanine (T,C,A,G). The sequence of bases in each strand along the
backbone contains the genetic code. The base pairs in each strand of
the double helical DNA are complementary, A has an afinity for T (they
form two hydrogen bonds) and G for C (they form three hydrogen
bonds). The interaction between the base pairs is driven by the geometry
of the hydrogen bonding sites. Thus each strand of the DNA helix
contains an identical copy of the genetic information to its complemen-
tary strand, and replication can occur by separation of the double helix
and resynthesis of two additional chains on each of the two original
double helical strands. The formation of helical secondary structures in
DNA drastically increases the persistence length of each separate chain
and is called a helix-coil transition.

There is a major groove and a minor groove on the biologically active
A and B forms of the DNA double helix. The individual polynucleotide
DNA chains have a sense of direction, in addition to their individuality
(a complex nucleotide sequence). DNA replication in vivo is conducted
by a combination of the DNA polymerases (I, II and III).

DNA in its double helical form can store torsional energy, since the
monomers are not free to rotate (like a telephone cable). The ends of a
DNA molecule can be joined together to form a compact supercoiled
structure that often occurs in vivo in bacteria; this type of molecule
presents a series of fascinating questions with regard to its statistical
mechanics and topological analysis.

DNA has a wide variety of structural possibilities (Table 1.2,
Figure 1.13). There are 3 standard types of averaged double helical
structure labelled A, B and Z, which occur ex vivo in the solid fibres
used for X-ray structural determination. Typically DNA in solution has a
structure that is intermediate between A and B, dependent on the chain
sequence and the aqueous environment. An increase in the level of
hydration tends to increase the number of B type base pairs in a double

Phos

Sugar

Base

Figure 1.12 The chemical structure of the base of a nucleic acid consists of a
phosphate group, a sugar and a base

NUCLEIC ACIDS 13



Table 1.2 Structural parameters of polynucleotide helices

Property A form B form Z-form

Direction of helix rotation Right Right Left
Number of residues per turn 11 10 12
Rotation per residue 33� 36� 30�

Rise in helix per residue 0.255 nm 0.34 nm 0.37 nm
Pitch of helix 2.8 nm 3.4 nm 4.5 nm

Figure 1.13 Molecular models of A, B and Z type double helical structures of DNA
(A and B type helical structures, and their intermediates typically occur in biological
systems. Z-DNA helical structures crystallise under extreme non-physiological
conditions.)
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helix. Z-type DNA is favoured in some extreme non-physiological
conditions.

There are a number of local structural modifications to the helical
structure that are dependent on the specific chemistry of the individual
DNA strands, and are in addition to the globally averaged A, B and Z
classifications. The kink is a sudden bend in the axis of the double helix
which is important for complexation in the nucleosome. The loop con-
tains a rupture of hydrogen bonds over several base pairs, and the
separation of two nucleotide chains produces loops of various sizes. In
the process of DNA transcription RNA polymerase is bound to DNA to
form a loop structure. In the process of breathing of a double helix,
hydrogen bonds are temporarily broken by a rapid partial rotation of one
base pair. The hydrogen atoms in the NH groups are therefore accessible
and can be exchanged with neighbouring protons in the presence of a
catalyst. The cruciform structure is formed in the presence of self-
complementary palindromic sequences separated by several base pairs.
Hydrophobic molecules (e.g. DNA active drugs) can be intercalated into
the DNA structure, i.e. slipped between two base pairs. Helices that
contain three or four nucleic acid strands are also possible with DNA,
but do not occur naturally.

DNA has a number of interesting features with respect to its polymer
physics. The persistence length (lp) of DNA is in the order of 50 nm for
E. coli (which depends on ionic strength), it can have millions of mono-
mers in its sequence and a correspondingly gigantic contour length (L)
(for humans L is � 1.5 m!). The large size of DNA has a number of
important consequences; single fluorescently labelled DNA molecules
are visible under an optical microscope, which proves very useful for
high resolution experiments, and the cell has to solve a tricky packaging
problem in vivo of how to fit the DNA inside the nucleus of a cell which
is, at most, a few microns in diameter (it uses chromosomes).

1.4 CARBOHYDRATES

Historically, advances in carbohydrate research have been oversha-
dowed by developments in protein science. This has in part been due
to the difficulty of analysing of the structure of carbohydrates, and the
extremely large variety of chemical structures that occur naturally.
Carbohydrates play a vital role in a vast range of cellular processes
that are still only partly understood.
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There are two important glucose polymers which occur in plants that
are differentiated by the linkage between the monomers: cellulose and
amylopectin. Cellulose is a very rigid polymer, and has both nematic and
semi-crystalline phases. It is used widely in plants as a structural mate-
rial. The straight chain formed by the bð1 ! 4Þ linkage between glucose
molecules is optimal for the construction of fibres, since it gives them a
high tensile strength in the chain direction (Figures 1.14 and 1.15), and
reasonable strength perpendicular to the chain due to the substantial
intrachain hydrogen bonding in sheet-like structures. Amylose and its
branched form, amylopectin (starch), are used in plants to store
energy, and often amylopectin adopts smectic liquid crystalline phases

Figure 1.14 Sheet-like structures formed in cellulosic materials
(The bð1 ! 4Þ linkages between glucose monomers induce extended structures, and
the cellulose chains are linked together with hydrogen bonds.)

 

Polymer chains 

Microfibril 

Cell Wall 
 

Cellulose 
chain  

Figure 1.15 The hierarchical structure of cellulose found in plant cell walls
(Cellulose chains are combined into microfibrils that form the walls of plant cells
[Ref.: adapted from C.K. Mathews and K.E. Van Holde, Biochemistry, Benjamin
Cummings])
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(Figure 1.16). Starch, an amylose/amylopectin composite, forms the
principle component of mankind’s food sources. In amylose the glucose
molecules are connected together with an a ð1 ! 4Þ linkage. a-linkages
between the glucose molecules are well suited to the formation of an
accessible sugar store, since they are flexible and can be easily degraded
by enzymes. Amylopectins are formed from amyloses with additional
branched a ð1 ! 6Þ flexible linkages between glucose molecules
(Figure 1.17). Glycogen is an amorphous hyperbranched glucose poly-
mer analogous to amylopectin, and is used inside animal cells as an
energy store.

Chitin is another structural polysaccharide; it forms the exoskeleton of
crustaceans and insects. It is similar in its functionality to cellulose, it is a
very rigid polymer and has a cholesteric liquid crystalline phase.

It must be emphasised that the increased complexity of linkages
between sugar molecules, compared with nucleic acids or proteins,
provides a high density mechanism for encoding information. A sugar
molecule can be polymerised in a large number of ways, e.g. the six
corners of a glucose molecule can each be polymerised to provide an
additional N6 arrangements for a carbohydrate compared with a protein

Figure 1.16 Four length scales are important in the hierarchical structure of starch;
(a) the whole granule morphology (� mm), (b) the growth rings (� 100 nms), (c) the
crystalline and amorphous lamellae (�9 nm), and (d) the molecular structure of the
amylopectin (�Å). [Ref.: T.A.Waigh, PhD thesis, University of Cambridge, 1996]
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of equivalent length (N). In proteins there is only one possible mechan-
ism to connect amino acids, the peptide linkage. These additional pos-
sibilities for information storage with carbohydrates are used naturally in
a range of immune response mechanisms.
Pectins are extra cellular plant polysaccharides forming gums (used in

jams), and similarly algins can be extracted from sea weed. Both are
widely used in the food industry. Hyaluronic acid is a long negatively
charged semi-flexible polyelectrolyte and occurs in a number of roles in
animals. For example it is found as a component of cartilage (a biological
shock absorber) and as a lubricant in synovial joints.

1.5 WATER

Water is a unique polar solvent and its properties have a vast impact on
the behaviour of biological molecules (Figure 1.18). Water has a high

104.5°

+ q +q

–2q

0.957Å

Figure 1.18 The geometry of a single water molecule
(The molecule tends to form a tetrahedral structure once hydrogen bonded in ice
crystals (Figure 2.2).)
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Figure 1.17 The branched primary structure found for amylopectin in starch
(Both a(1!4) and a(1!6) flexible linkages occur between adjacent glucose
monomers.)
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dipole moment (P) of 6:11 � 10�30 Cm, a quadrupole moment of
1:87 � 10�39 Cm2 and a mean polarisability of 1:44 � 10�30 m3.

Water exists in a series of crystalline states at sub zero temperature or
elevated pressures. The structure of ice formed in ambient conditions has
unusual cavities in its structure due to the directional nature of hydrogen
bonds, and it is consequently less dense than liquid water at its freezing
point. The polarity of the O–H bonds formed in water allows it to
associate into dimers, trimers etc (Figure 1.19), and produces a complex
many body problem for the statistical description of water in both liquid
and solid condensed phases.

Antifreeze proteins have been designed through evolution to impair
the ability of the water that surrounds them in solution to crystallise at
low temperatures. They have an alpha helical dipole moment that
disrupts the hydrogen bonded network structure of water. These anti-
freeze molecules have a wide range of applications for organisms that
exist in sub zero temperatures e.g. arctic fish and plants.

The imaging of biological processes is possible in vivo using the
technique of nuclear magnetic resonance, which depends on the mobility
of water to create the image. This powerful non-invasive method allows
water to be viewed in a range of biological processes, e.g. cerebral
activity.

Even at very low volume fractions water can act as a plasticiser that
can switch solid biopolymers between glassy and non glassy states. The
ingress of water can act as a switch that will trigger cellular activity in
plant seeds, and such dehydrated cellular organisms can remain dormant
for many thousands of years before being reactivated by the addition of
water.

A wide range of time scales (10�18–103 s) of water are important to
understand its biological function (Figure 1.20). The range of time scales
includes such features as the elastic collisions of water at ultra fast times
(�10�15 seconds) to the macroscopic hydrodynamic processes observed
in blood flow at much slower times (�seconds).

H

HO

H

HO

H

HO

Figure 1.19 Schematic diagram of the network structure formed by water molecules
(Dashed lines indicate hydrogen bonds. Such chains of hydrogen bonded water
molecules occur over a wide range of angles for liquid water.)
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1.6 PROTEOGLYCANS AND GLYCOPROTEINS

Proteoglycans (long carbohydrate molecules attached to short
proteins) and glycoproteins (short carbohydrate molecules attached to
relatively long proteins) are constructed from a mixture of protein and
carbohydrate molecules (the glycosoaminoglycans). In common with
carbohydrates, proteoglycans/glycoproteins exhibit extreme structural
and chemical heterogeneity. Furthermore, the challenges presented to
crystallography by their non-crystallinity means that a full picture of the
biological function of these molecules is still not complete.

Many proteoglycans and glycoproteins used in the extracellular
matrix have a bottle brush morphology (Figures 1.21 and 1.22). An
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Figure 1.20 The range of time scales that determine the physical properties of water,
shown on a logarithmic scale

Carbohydrate 

Peptide

Hyaluronic acid 

Figure 1.21 A schematic diagram of the aggrecan aggregate
(The aggrecan monomers (side brushes) consist of a core protein with highly charged
carbohydrate side-chains. The bottle brushes are physically bound to the linear
hyaluronic acid backbone chain to form a super bottle brush structure [Ref.: A.
Papagiannopoulos, T.A.Waigh, T. Hardingham and M. Heinrich, Biomacromole-
cules, 2006, 7, 2162–2172])
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example of a sophisticated proteoglycan is aggrecan, a giant polymeric
molecule that consists of a bottle-brush of bottle-brushes (Figure 1.21).
These materials have a very large viscosity in solution, and are used to
dissipate energy in collageneous cartilage composites and to reduce
friction in synovial joints as boundary lubricants. An example of an
extracellular glycoprotein is the mucins found in the stomach of mam-
mals. These molecules experience telechelic (either end) associations to
form thick viscoelastic gels that protect the stomach lining from auto-
digestion (Figure 1.22).

Other examples of glycoproteins occur in enzymes (Ribonuclease B),
storage protein (egg white), blood clots (fibrin) and antibodies (Human
IgG).

1.7 CELLS (COMPLEX CONSTRUCTS
OF BIOMOLECULES)

Cells act co-operatively in multicellular organisms and are hierarchically
arranged into tissues, organs and organ systems. Tissues contain both
cells and other materials such as the extracellular matrix.

There are four distinct forms of mammalian muscle cells: skeletal and
cardiac (which both form striated musclar tissues), smooth muscle
(found in blood vessels and intestines) and myoepithlial cells (again
present in intestines).

Nerve cells are used to send and receive signals. They are highly
branched and this structure allows them to react to up to one

Peptide 
backbone 

Carbohydrate
side-chain 

Disulfide
bonds  

Figure 1.22 Porcine stomach mucin molecules contain a series of carbohydrate brush
sections that are connected to a peptide backbone. The ends of the peptide are sticky,
and these telechelic bottle brushes form thick viscoelastic gels at low pHs.
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hundred thousand inputs from other cells. The electrochemistry
of nerve cells is a fascinating area; the efficiency and time
response of these electrical circuits has been carefully optimised by
evolution.
Blood cells have a squashed donut shape (Figure 1.23) which is

related to the differential geometry of their cytoskeleton. Red blood
cells carry oxygen and carbon dioxide, towards and away from the
lungs. White blood cells play a role in the fight to remove infections
from an organism.
Fibroblast cells are largely responsible for the secretion and regula-

tion of the extracellular matrix, e.g. the production of molecules
such as the collagens. Epithelial cells control the passage of material
across the boundary of organs, e.g. in the interior of the intestinal
tract.

1.8 VIRUSES (COMPLEX CONSTRUCTS
OF BIOMOLECULES)

Viruses are intra-cellular parasites, biological entities that multiply
through the invasion of cellular organisms. In addition to aspects related
to their biological role in disease, viruses have attracted a great deal of
attention from biophysicists for their physical properties. Viruses self-
assemble into well defined monodisperse geometrical shapes (rods and
polyhedra) (Figure 1.24) from their constituent components. Such mate-
rials have proven ideal model systems for the examination of the phase
behaviour of charged colloids and lyotropic liquid crystals (Chapter 4),
and allow the processes involved in their self-assembly to be investigated
in detail (Chapter 6).

Spectrin
network

Figure 1.23 The cross-section through a squashed donut shaped blood cell
(The spectrin network in the cell wall is a dominant factor for the determination of the
morphology of the cell.)
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1.9 BACTERIA (COMPLEX CONSTRUCTS
OF BIOMOLECULES)

Bacteria are small structurally simple cellular organisms. Only a minority
of bacterial species have developed the ability to cause disease in
humans. Bacteria take the form of spheres, rods and spirals. They will
be encountered in terms of their mechanisms of molecular motility in
Chapter 5 and Chapter 14.

1.10 OTHER MOLECULES

ADP and ATP are the ‘currency of energy’ in many biochemical pro-
cesses. Energy is stored by the addition of the extra strongly charged
phosphate group in the ATP molecule and can be released when it is
metabolised into ADP. There are a vast range of other biomolecules that
commonly occur in biology, and the reader should refer to a specialised
biochemistry textbook for details.

FURTHER READING

For more exposure to the exquisite detail contained in molecular bio-
physics the student is directed to:

L. Stryer, Biochemistry, Freeman, 1995. Comprehensive coverage of
basic biochemical processes.

100 nm 

TMV
Bacteriophage 

Picorna 
virus 

Figure 1.24 Schematic diagram of a range of virus structures
(rod-like (TMV), asymmetric (bacteriophage), and icosohedral (picorna))
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B. Alberts, A. Johnson, J. Lewis et al., TheMolecular Biology of the Cell,
Garland Science, 2002. A good introductory text to cellular biochem-
istry that is useful once the contents of Stryer have been fully digested.

D. Goodsell, The machinery of life, Springer, 1992. A simple discursive
introduction to biochemistry with some attractive illustrations.

TUTORIAL QUESTIONS

1.1) A DNA chain has a molecular weight of 4 � 108 and the
average monomer molecular weight of a nucleic acid subunit is
660 Da. For an A type helix there are 11 residues per helical
pitch, and the translation per residue is 2.6 Å. For a B type helix
there are 10 residues per helical pitch and the translation per
residue is 3.4 Å. For a Z-type helix there are 12 residues per
helical pitch and the translation per residue is 3.7 Å. What is the
length in cm of a duplex DNA chain if it is in the A, B and Z
helical forms? What is the average size of the nucleus of a
mammalian cell? How does the cell manage to accommodate
the DNA in its nucleus?

1.2) Suppose that you isolate a lipid micelle that contains a single
protein that normally exists as a transmembrane molecule. How
would you expect the lipid and protein to be arranged on the
surface of the micelle?

1.3) Calculate the pH of a 0.2 M solution of the amino acid arginine
if its pKa value is 12.5.

1.4) Metals occur in a range of biological processes and form a key
component of the structures of a number of biological molecules.
Make a list of the biological molecules in which metal atoms
occur.
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2
Mesoscopic Forces

The reader should be familiar with some simple manifestations of the
fundamental forces that drive the interactions between matter, such as
electrostatics, gravity and magnetism. However, nature has used a subtle
mixture of these forces in combination with geometric and dynamic
effects to determine the interactions of biological molecules. These
mesoscopic forces are not fundamental, but separation into the different
contributions of the elementary components would be very time con-
suming and require extensive molecular dynamic simulations. Therefore,
in this chapter a whole series of simple models for mesoscopic forces is
studied and some generic methods to measure the forces experimentally
reviewed. There is a rich variety of mesoscopic forces that have been
identified. These include Van der Waals, hydrogen bonding, screened
electrostatics, steric forces, fluctuation forces, depletion forces and
hydrodynamic interactions.

2.1 COHESIVE FORCES

The predominant force of cohesion between matter is the Van der Waals
interaction. Objects made of the same material always attract each other
due to induced dipoles. The strength of Van der Waals bonds is relatively
weak, with energies of the order of � 1 kJmol�1, but the forces act
between all types of atom and molecule (even neutral ones).

A fundamental definition of the Van der Waals interaction is an
attractive force of quantum mechanical origin that operates between

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



any two molecules, and arises from the interaction between oscillating
dipoles. Without overburdening the description with the detailed quan-
tum mechanics, the potential ðV12ðrÞÞ which gives rise to the dispersive
Van der Waals force between molecules 1 and 2 can be defined as:

V12ðrÞ ¼ � 1

24ðpe0Þ2
1

r6

X
n;k

jhnjm!j0i1j
2jhkjm!j0i2j

2

ðEn
1 � E0

1Þ þ ðEk
2 � E0

2Þ
� �A12

r6
ð2:1Þ

where hnjm!j0i1 is the transition dipole moment from the quantised state
n to 0 for molecule 1, r is the distance between the two molecules, and
A12 is a constant. E

n
1 and Ek

1 are the quantum energies of state n and k for
molecules 1 and 2 respectively. There is thus a characteristic 1=r6 decay
of the potential between point-like molecules, with a single characteristic
constant of proportionality (A12, the Hamaker constant) that is depen-
dent on the variety of molecule considered. Van der Waals forces are
sometimes called a dispersion interaction, because the same quantities
determine both the optical properties of the molecules (dispersion of
light) and the forces between them. It is therefore possible to observe the
effects of Van der Waals forces optically with micron sized colloidal
particles in solution. If a material contains permanent dipoles, they can
induce temporary dipoles in another material giving rise to further Van
der Waals type interactions (Keesom or Debye forces).
The analysis of Van der Waals forces tends to be more complicated in

practice than many of the fundamental interactions that may have been
encountered previously in foundation physics courses. Van der Waals
forces are long range and can be effective from large distances (> 10 nm)
down to interatomic spacings (< 0.1 nm). The forces may be repulsive or
attractive, and crucially in general, they do not follow a simple power
law, as is illustrated in Figure 2.1 for four separate possible geometries.
Van derWaals forces tend to both bring molecules together andmutually
align or orientate them. Unlike gravitational and Coulomb forces, Van
der Waals forces are not generally additive. At larger separations
(> 10 nm) the effect of the finite speed of propagation (the speed of
light, c) of the interaction also becomes important. This is the retardation
effect and is observed experimentally in a r�7 dependence on separation
(r) for point objects rather than r�6 at close distances, and for semi-
infinite sheets it is r�3 rather than r�2 at close distances. The force laws
illustrated in Figure 2.1 can be proved by careful summation of the
contributions in equation (2.1) over an extended body.
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Question: Consider the strength of the Van derWaals forces on a fly stuck
to the ceiling. There are three thousand hairs per foot and six feet per fly.
What is the maximum mass (m) of the fly to maintain contact with the
ceiling? Model the interaction as that due to two plane surfaces. The
Hamaker constant (A) for the interaction is 10�19 J, the radius of cur-
vature (d) of each of the fly’s hairs is 200 nm and the separation distance
(r) between the hair and the surface is 1 nm. The Van der Waals force is
given by:

Fvw ¼ �Ad

6r2
ð2:2Þ

Answer: In equilibrium the fly’s weight (mg) is balanced by the adhesive
Van der Waals force (Fvw). The forces can thus be balanced:

mg ¼ 6� 3000� 3:33� 10�9 N ð2:3Þ

Therefore the maximum mass of the fly is 1.02 mg.
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Figure 2.1 The leading term in the energy (w) of the Van der Waals interaction
between surfaces depends on the geometry
(Four geometries are shown: (a) point atoms, (b) two spheres, (c) atom/plane, and (d)
two plane surfaces.)
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In molecular dynamics simulations the energy of interactions ðEðrÞÞ
between biomolecules are often captured using the Lennard–Jones
potential:

EðrÞ ¼ e
r0
r

� �12
�2

r0
r

� �6� �
ð2:4Þ

where r0 is the equilibrium separation between the particles, r is the
distance between the molecules and e is a characteristic energetic con-
stant. The attractive (negative) term corresponds to the Van der Waals
force for a point particle and the repulsive positive term is the hard
sphere force (it originates from the Pauli exclusion principle – there is a
large energy penalty when filled electronic orbitals overlap during the
close approach of atoms).

2.2 HYDROGEN BONDING

Water exhibits an unusually strong interaction between adjacent mole-
cules, which persists into the solid state (Figure 2.2). This unusual
interaction is given a special name, hydrogen bonding, and is an impor-
tant effect in a wide range of hydrogenated polar molecules and deter-
mines their different molecular geometries (Figure 2.3), e.g. chain
structures, crystals, bifurcated associations and intramolecular bonds.
Hydrogen bonds are typically stronger than Van der Waals forces and

have energies in the range 10–40 kJmol�1, but are still weaker than ionic
or covalent interactions by an order of magnitude. Hydrogen bonding

Hydrogen 

Oxygen

Figure 2.2 The molecular structure of crystalline water (ice I)
(The hydrogen bonds are indicated by dotted lines, and the covalent bonds by
continuous lines [Reprinted with permission from L. Pauling, Nature of Chemical
Bond, Copyright (1960), Cornell University Press])
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plays a central role in molecular self-assembly processes such as micelle
formation, biological membrane structure and the determination of
protein conformation. Hydrogen bonds occur between a proton donor
group (D), which is the strongly polar group in a molecule such as F��H,
O��H, N��H, S��H, and a proton acceptor atom (A), which is a slightly
electronegative atom such as fluorine, oxygen, nitrogen and sulfur.

Hydrogen bonding also has important consequences for apolar (non-
polar) biomolecules in aqueous solutions. Water molecules arrange
themselves in clathrate structures around hydrophobic compounds, e.g.
the hydrophobic tails of lipids (Figure 2.4). The clathrates are labile (the
water molecules can exchange position with their neighbours), but the

R

O
H H

O

R
(a) (b)

(c) 

H

R R

C C

OO

(d)

NH

O=C

O=C

n

Hydrogen 
bond

Hydrogen 
bond

Hydrogen 
bond

Hydrogen 
bond

Figure 2.3 Examples of the range of possible geometries of hydrogen bonds encoun-
tered in organic molecules
((a) chain structure, (b) three dimensional structure, (c) bifurcated structure and (d)
intramolecular bond)
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Figure 2.4 Schematic diagram of a clathrate of water molecules around a hydro-
phobic compound
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water molecules are more ordered in the cages. Thus for apolar biomo-
lecules (e.g. hydrocarbons) the free energy of transfer into an aqueous
environment is proportional to the surface area of the molecules, since
the entropy change is proportional to the area of the clathrate. This
hydrophobic interaction is sometimes given the status of a separate
mesoscopic force, since the reduction in free energy causes hydrophobic
molecules to be driven together in aqueous solutions. The entropy of the
associated water molecules plays a critical role in this case. However, to
model such interactions care must be taken not to double count aqueous
mesoscopic forces under both the ‘hydrogen bonding’ and ‘hydrophobic’
banners. Surface force apparatus experiments have provided evidence on
the long range nature of the hydrophobic effect. It is still an active area of
study, but the energy of repulsion (W) is thought to have the basic form:

W ¼ W0e
�r=l ð2:5Þ

where l is the decay length and is typically in the order of nanometers,W0

is a constant (with units of energy) and r is the distance between the
surfaces.
Ab initio computational methods to quantify the strength of hydrogen

bonds remain at a rudimentary level. One stumbling block to the analysis
is the ability of hydrogen bonds to bifurcate (e.g. a single oxygen atom
can interact with two hydrogen molecules simultaneously); this leaves a
would be modeller with a tricky multi-body problem. Another challenge
is the wide spectrum of dynamic phenomena possible in hydrogen
bonded solutions and care must be taken to determine the critical time
window for the biological phenomena that need to be modelled
(Section 1.5). A series of important experimental advances in the
dynamics of hydrogen bonds have been recently made using pulsed
femtosecond lasers. The lifetime of water molecules around solution
state ions has been directly measured to be of the order of 10 picose-
conds. It is hoped that such detailed experiments on the structure and
dynamics of hydrogen bonds will allow tractable potentials to be refined.

2.3 ELECTROSTATICS

2.3.1 Unscreened Electrostatic Interactions

In principle, the electrostatic interaction between biomolecules can be
calculated explicitly in a molecular dynamics simulation. Coulombs law,
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ion–dipole and dipole–dipole interactions need to be treated, but rigor-
ous quantitative potentials exist that can be calculated if the number of
charged entities is sufficiently small (rarely the case with biological
molecules, Figure 2.5). The direction of the interaction is paramount in
the calculation of dipolar interactions, and also becomes important when
Coulombic forces are experienced by extended objects, e.g. the parallel
alignment of charged rods.

Coulomb’s law for the interaction energy (Ec) between two point
charges is given by:

EC ¼ q1q2
4pee0r

ð2:6Þ

where e is the relative dielectric permittivity, e0 is the permittivity of free
space, q1 and q2 are the magnitude of the two charges, and r is the
distance between the charges. The next most important electrostatic
interactions experienced by charged molecules are those between ions
and dipoles. The energy of interaction (Ep) between a dipole (p) and a
point charge (q) is given by:

Ep ¼ � p2q2

ð4pe0Þ23kTr2
ð2:7Þ

where kT is the thermal energy. Similarly there is an interaction energy
between two separate electric dipoles ðEpp) which is given by:

Epp ¼
p1p2K

4pe0r3
ð2:8Þ

where K is a constant. Higher order electrostatic interactions (quadru-
polar etc) are also possible, but provide progressively smaller contribu-
tions to the force of interaction in most biological scenarios.
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Figure 2.5 Geometry for the interaction between electrostatically charged ions and
dipoles
(a) ion–ion (q1, q2), (b) ion–dipole (q, p), and (c) dipole–dipole (p1, p2))
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Ionic bonds between molecules typically have a strength of the order of
� 500 kJmol�1. For a large range of biological molecules, electrostatic
forces are vitally important for their correct functioning (Figure 2.6) and
provide the dominant long range interaction.

2.3.2 Screened Electrostatic Interactions

An electric ‘double layer’ forms around charged groups in aqueous solu-
tion (Figure 2.7) and the process by which the double layer screens the

-

-
--

-

-
-

-
-

-
-

-
-

--

-
-

--

--
-

-
-

-
-

(a) DNA chains 

+ +

+
+

+

+

+ +

(b) Protein/DNA
interaction 

+

+

+

+
+

+

+

+

+

+

- -

-

-

-

-

-

--

(c) Protein/Protein
interaction 

-
--

--
-

-

-

-
--

--
-

-

-

-
--

--
-

-

-

(d) Proteoglycans 

Figure 2.6 Schematic diagram of some molecular systems in which electrostatic
interaction dominates the intermolecular forces
((a) nucleic acids, (b) nucleic acids and proteins, (c) the aggregation of proteins and
(d) proteoglycans)
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Figure 2.7 The distribution of counterions in an electric double layer around a
negatively charged surface
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Coulombic interaction is important in determining the resultant electro-
static forces. The concept of screening allows a complex many body
problem involving two strongly charged objects immersed in an electrolyte
ofmany billions of simple ions to be reduced to a simple two body problem
with a modified potential between the two strongly interacting objects.
The charging of a surface in a liquid can happen in two ways: by the
dissociation of surface groups or by the adsorption of ions onto the surface.
For example, surface carboxylic groups can be charged by dissociation:

�COOH ! �COO� þ Hþ

which leaves behind a negatively charged surface and liberates approxi-
mately 14 kT of energy. The adsorption of an ion from solution onto a
previously uncharged or oppositely charged surface (e.g. binding Ca2þ

onto a negatively charged protein) could charge the surface positively.
The chemical potential (m, total free energy per molecule) for the

electric double layer that surrounds a charged aqueous system is the
sum of two terms:

m ¼ zecþ kT log r ð2:9Þ

where c is the electric potential, r is the number density of counterions,
kT is the thermal energy, z is the valence of the charged groups on the
molecule, and e is the electronic charge. The first term is due to the
electrostatic energy and the second is the contribution of the entropy of
the counterions. The form of the chemical potential (equation 2.9) is
consistent with the Boltzmann distribution for the density of the counter-
ions (r) and can be reexpressed as:

r ¼ r0e
�zec=kT ð2:10Þ

where r0 is related to the chemical potential:

r0 ¼ em=kT ð2:11Þ

A fundamental formula from electromagnetic theory is the Poisson
equation for electrostatics. It relates the potential (c) to the free ion
concentration (rfreeion) immersed in a dielectric at a distance x from a
charged surface:

ere0
d2c

dx2
¼ �rfreeion ð2:12Þ
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where e0 is the permittivity of free space and er is the relative permittivity
of the dielectic (e.g. water) in which the ions are embedded. The one
dimensional version of the Poisson equation, dependent only on the
perpendicular distance from the surface (x), is quoted for simplicity.
The Poisson equation for electrostatics can be combined with the Boltz-
mann distribution for the thermal distribution of ion energies and gives
the Poisson–Boltzmann (PB) equation:

d2c

dx2
¼ � zer

ere0
e�zec=kT ð2:13Þ

The PB equation can be solved to give the potential (c), the electric field
(E ¼ @c=@x) and the counterion density (r) at any point in the gap
between two planar surfaces. The density of counterions and coions
from a planar surface can therefore be calculated as shown schematically
in Figure 2.8.
There are some limitations on the validity of the PB equation at short

separations which include: ion correlation effects (electronic orbitals
become correlated), finite ion effects (ions are not point-like), image
forces (sharp boundaries between dielectrics affect the solutions of
the electromagnetism equations), discreteness of surface charges (the
surface charge is not smeared out smoothly), and solvation forces (inter-
action of water molecules with the charges). Some of these important
questions will be analysed in more detail in Chapter 9.
The pressure (P) between two charged surfaces in water can often be

calculated using the contact value theorem. It relates the force between
two surfaces to the density of contacts (or ions in this case) at the
midpoint (rsðrÞ):

PðrÞ ¼ kT½rsðrÞ � rsð1Þ� ð2:14Þ

Counterions 

Coions

Ion 
concentration 

Distance 

Figure 2.8 The concentration of counterions and coions as a function of distance
from a charged planar surface in water
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where rsð1Þ is the ion concentration at infinity (e.g. bulk salt concentra-
tion), kT is the thermal energy and r is the separation between the
surfaces. The force between charged surfaces is discussed in more detail
with respect to the physics of cartilage in Chapter 15.

With screened electrostatic interactions the intersurface pressure is
given by the increase in the ion concentration at the surfaces as they
approach each other. The theorem is valid as long as there is no
specific interaction between the counterions and the surfaces. The
contact value theorem also functions well in other calculations of
mesoscopic forces such as those of solvation interactions, polymer
associated steric and depletion interactions, undulation and protrusion
forces.

Example: The solution to the PB equation at a distance x from a charged
membrane surface is:

c ¼ kT

ze

� �
logðcos 2kxÞ ð2:15Þ

and the characteristic length scale (k�1) that defines the screening
(Section 9.2) is given by:

k2 ¼ ðzeÞ2r0
2ere0kT

ð2:16Þ

where r0 is the charge on the surfaces, z is the valence of the counterions,
kT is the thermal energy, er is the relative dielectric and e0 is the dielectric
of free space.

If two surfaces with charge density (s) of 0.4 Cm�2 are placed at a
separation (D) of 2 nm and the inverse Debye screening length (K) is
1:34� 109 m�1 what is the repulsive pressure (P) between them?

Answer: From the contact value theorem the pressure (P) can be calcu-
lated directly using equation (2.16):

P ¼ kTr0 ¼ 2ere0
kT

ze

� �2

K2 ¼ 1:68� 106 Nm�2 ð2:17Þ

There is thus a large pressure between the surfaces equivalent to 16.6
atmospheres.
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2.3.3 The Force Between Charged Spheres in Solution

A surprisingly successful theory for forces between colloidal particles is
that due to Derjaguin, Landau, Verwey and Overbeek (DLVO). It has
received confirmation from a wide range of experimental techniques
such as optical tweezers, light scattering, neutron/X-ray scattering, coa-
gulation studies and surface force apparatus. The theory described the
competition between attractive van der Waals and repulsive double layer
forces, which is thought to determine the stability of many colloidal
systems. The DLVO potential includes both Van der Waals and electro-
static terms for spherical particles, and assumes they are additive
(Figure 2.9). Algebraically the potential ðVðrÞ as a function of particle
separation (r)) is given by

VðrÞ
B

¼ � A121

12pr2
þ 64kTc�0G

2
0

k
e�kr ð2:18Þ

where A121 is the Hamaker constant for the Van der Waals force, k�1 is
the Debye screening length, c�0 is the bulk salt concentration, G0 is defined
as tan (zqc=4kT), z is the valence of the particles, q is the electronic
charge, kT is the thermal energy, B is the surface area of the particle, and
c is the surface potential. The first component on the right hand side of
equation (2.18) is due to the Van der Waals interaction and the second is
from the screened electrostatic potential. The agreement between the
DLVO model and experiment is excellent in a wide range of systems
(Figure 2.10).

Interaction 
energy 

Distance 

Electrostatic 
repulsion 

Van der 
Waals force 

Energy 
barrier 

Secondary 
Minimum

Figure 2.9 Schematic diagramof theDLVOpotential between two colloidal particles
(The interaction energy is shown as a function of the distance of separation. The
secondary minimum is due to an interplay between electrostatic and Van der Waals
forces.)
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For a number of colloidal materials it is found that the critical coagu-
lation concentration (r1) varies as the inverse sixth power of the valency
(z) of the electrolyte counterions i.e. r1 / 1=z6. The total DLVO inter-
action potential between two spherical particles that interact at constant
surface potential is:

WðrÞ ¼ 64pkTRr1g2

k2

� �
e�kr � AR

6r
ð2:19Þ

where r is the interparticle distance, A is the Hamaker constant, kT is the
thermal energy, k�1 is the Debye screening length, g is the surface
potential and R is the radius of the colloid. The critical coagulation
concentration occurs when both the potential (W ¼ 0) and the force
(dW=dr ¼ 0) are equal to zero. The condition of zero potential (W ¼ 0)
upon substitution in equation (2.19) leads to:

k2

r1
¼ 384pkTrg2 e

�kr

A
ð2:20Þ

The second condition on dW=dr leads to the result that kr ¼ 1, which
shows that the potential maximum occurs at r ¼ k�1. This expression
can be inserted into equation (2.20) to provide the relationship:

k3

r1
¼ 768pkTg2

eA
ð2:21Þ
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Figure 2.10 The agreement between the predictions of the DLVO theory with SFA
experiments for themesoscopic forces between two planar sapphire surfaces is almost
perfect. Lines of best fit are shown
[Reprinted with permission from R.G. Horn, D.R. Clarke and M.T. Clarkson,
J. Materials Res., 3, 413–416, Copyright (1998) Materials Research Society]
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From the definition of the Debye screening length, equation (2.16), it is
known that:

k2 / r1z2

eT
ð2:22Þ

The surface potential (g) is known to be constant at high surface poten-
tials (¼ 1) and equation (2.21) can be squared and substituted in the cube
of equation (2.22). This provides an expression for the dependence of the
critical concentration on the valence:

z6r1 / e3T5 g
4

A2
ð2:23Þ

Therefore the critical coagulation concentration follows the expression
r1 / 1=z6 which proves the experimentally observed relationship. The
origin of this macroscopic coagulation phenomena can be found in the
interparticle DLVO forces.

2.4 STERIC AND FLUCTUATION FORCES

The packing constraints on solvents in confined geometries produces
oscillatory force/distance curves with a period determined by the solvent
size. These forces are most readily measured experimentally between two
smooth hard surfaces (Figure 2.11). For example the packing force
(Fpack) due to identical hard sphere solvent molecules confined between

a b c
a

b

c

Distance between 
surfaces (D)

Pressure

Figure 2.11 The pressure between two planar surfaces as a function of the distance of
separation (D). The force is mediated by the excluded volume of the spherical mole-
cules trapped between the surfaces – a depletion potential
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two hard surfaces is given by:

FpackðrÞ ¼ A cos
2pr

l

� �
e�rl ð2:24Þ

where r is the separation of the surfaces, A is a constant and l is the
diameter of the confined molecules.

Polymers at surfaces can also give rise to steric entropic forces due to
the conformational entropy of the chains. Biological realisations of this
phenomena of entropic stabilisation include flexible proteins on the
surface of interacting membranes, friction reducing polymers in synovial
joints, and DNA chains absorbed on to histones. For a polymer to be
effective at colloidal stabilisation due to a steric mechanism the polymer
must adopt an extended conformation, i.e. good solvent conditions must
apply for its configurational statistics. The range of interaction of steric
forces is governed by the distance from the surface that the polymer
chains extend (Figure 2.12). Typically in biophysical examples,
the polymer chains that provide the steric stabilisation for a surface are
attached by absorption from solution or are grafted on to the surface by
specialist enzymes.

For polymerically stabilised systems the repulsive energy per unit area
between the surfaces is roughly exponential:

WðrÞ � 36kTe�r=Rg ð2:25Þ

where Rg is the unperturbed radius of gyration of the polymer chains and
r is the separation between the surfaces. The steric force as a function of
the distance between two mica surfaces with surface grafted polymer
chains in a good solvent is shown in Figure 2.13.

Interacting membranes experience a repulsive steric force due to the
fluctuations of membrane structures which are called membrane forces

D

Solid surface 

Flexible
polymer

Figure 2.12 The steric forces between two surfaces are produced by the entropic
contribution of the grafted flexible polymer chains to the free energy
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(Figure 2.14). The entropic force per unit area (the pressure PðrÞ)
between two surfaces is given by the contact value theorem:

PðrÞ ¼ kT½rðrÞ � rð1Þ� ð2:26Þ

where rðrÞ is the volume density of molecular contacts, kT is the
thermal energy and r(1) is the number of molecular contacts at infinity
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Figure 2.13 The force between two surfaces with surface adsorbed polymers in a
good or poor solvent
(The length of the interaction increases with the molecular weight (Mw) of
the adsorbed polymer. This experimental data is from SFA measurements [Reprinted
with permission from G.Hadzioannu, G. Patel, S. Granick and M. Tirrell, J. Am.
Chem. Soc, 108, 2869–2876, Copyright (1986) American Chemical Society])

Figure 2.14 Repulsive undulation forces occur between flexible membranes due to
the thermally driven collisions
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(Figure 2.15). A simple scaling calculation can be made for the magni-
tude of the steric undulation forces between two membranes. The
density of contacts ðrðrÞÞ at a certain height (r) above a single mem-
brane is equal to the inverse volume of a single mode:

rðrÞ ¼ 1=ðvolume of modeÞ ¼ 1=px2r ð2:27Þ

where x is equal to the radius of the contacts. The density of the contacts
at infinite separation (r(1)) of the membranes must be zero:

rð1Þ ¼ 0 ð2:28Þ

From a simple continuum elasticity model the energy of a bending mode
(Eb per unit area) is:

Eb ¼
2kb
R2

ð2:29Þ

where kb is the bending rigidity and R is the curvature of a membrane.
Each bending mode occupies an area that depends on its wavelength
(px2). The bending energy can be equated with the thermal energy (kT)
in thermal equilibrium and gives:

kT � 2px2kb
R2

ð2:30Þ

The ‘Chord theorem’ for the geometry of the membrane is:

x2 � 2Rr ð2:31Þ

D

x

R Undulating
membrane 

Figure 2.15 Geometry for calculating the magnitude of undulation forces experi-
enced by a membrane
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This allows equation (2.30) to be reexpressed as:

kT � 4prkb
R

ð2:32Þ

The entropic force per unit area ðPðrÞÞ between the membranes can
now be constructed from the contact value theorem (equation (2.26))
and is:

PðrÞ ¼ kT

px2r
� kT

2pRr2
¼ ðkTÞ2

kbr3
ð2:33Þ

This r3 dependence of the pressure between membranes has been verified
experimentally.
Membranes also experience peristaltic forces (hydrodynamics causes

the membranes to be pulled together at close separations – a similar
effect can occur at the macroscopic level between the hulls of boats that is
driven by surface water waves) and protrusion forces (the detailed nature
of the excluded volume of the membranes is important for very close
molecular overlap). These intermembrane forces are normally weaker
than the undulation forces, but can still be significant.

2.5 DEPLETION FORCES

Depletion forces are another mesoscopic interaction that are formed
by a subtle range of more fundamental forces. An illustrative example
is when colloidal spheres and polymers are mixed in aqueous solution.
The colloids can experience an effective attractive interaction when
the polymers are excluded from the volume between the approaching
colloidal spheres (Figure 2.16). Such phenomena were originally verified
through macroscopic measurements on the phase separation of polymer/
colloid mixtures. Recent experiments with dual trap optical tweezers
have provided direct evidence for the depletion potential between two
colloidal probes in DNA solutions (Figure 2.17).
The depletion force can be understood from an analysis of the thermo-

dynamics. The addition of the polymer lowers the solvent’s chemical
potential, and creates a depletion force that drives the colloidal surfaces
together. This is a trick often used to promote protein crystallisation for
structural studies (Section 3.4).
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Figure 2.16 Depletion forces between two colloids in a solution of water soluble
polymer chains, e.g. polyethylene glycol
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Figure 2.17 Depletion potential between two 1.25 mm silica spheres as a function of
DNA concentration in (a) dilute and (b) semi-dilute DNA solutions measured with
dual trap optical tweezers
[Reprinted with permission from R. Verma, J.C. Crocker, T. C. Lubensky and A.G.
Yodh, Macromolecules, 33, 177–186, Copyright (2000) American Chemical Society]
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For a dilute concentration of polymers in a colloidal solution the
osmotic pressure (P) is proportional to the number density of
polymer chains (N=V), with each chain contributing kT to the osmotic
pressure:

P ¼ N

V
kT ð2:34Þ

This pressure is analogous to that of an ideal gas, that gives rise to the
Van der Waals equation (P ¼ NRT=V, where R is the ideal gas con-
stant). The depletion force (Fdep) is approximately the product of the
osmotic pressure with the volume from which the chains are depleted
(Vdep):

Fdep ¼ �PVdep ¼ �P 4
3pR

3
g ð2:35Þ

where Rg is the radius of gyration of the polymer molecules. Thus a high
molecular weight (large Rg) and a high polymer concentration (large P)
are required for a strong depletion force. Equation (2.35) was first
verified experimentally by the measurement of the force between two
interacting bilayer surfaces in a concentrated dextran solution. In a
general biological context the naturally occurring intracellular environ-
ment is extremely crowded and an intricate hierarchy of excluded
volume depletion interactions can occur.

2.6 HYDRODYNAMIC INTERACTIONS

Each of the mesoscopic forces discussed in the previous section have a
time scale associated with their action, since they can not occur instan-
taneously. Therefore the dynamics of the components of each system
(e.g. solvents, counterion clouds and tethered polymers) needs to be
understood to realistically gauge the strength of the interaction poten-
tials. More advanced treatments of mesoscopic forces often consider how
to evaluate the dependence of the forces on time.

2.7 DIRECT EXPERIMENTAL MEASUREMENTS OF
INTERMOLECULAR AND SURFACE FORCES

There are a large number of experimental probes for intermolecular
forces, which operate using a small range of physical principles
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(Figure 2.18). Some of the most important principles are briefly reviewed
here (see also Chapter 13).

The thermodynamic properties of gases, liquids and solids (pressure–
volume–temperature phase diagrams, boiling points, latent heats of
vaporisation and lattice energies) provide important information on
short range interparticle forces. Similarly, adsorption isotherms provide
information on the interactions of molecules with surfaces.

A range of direct physical techniques on gases, liquids and solids (e.g.
molecular beam scattering, viscosity, diffusion, compressibility, NMR,
x-ray and neutron scattering experiments) can provide information on
short range interactions of molecules, with particular emphasis on their

Figure 2.18 Range of techniques for the measurement of intermolecular forces
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repulsive forces. A sensitive method for the characterisation of hydrated
molecules is to measure the separation of the molecules (using X-ray
scattering) in parallel with osmotic pressure measurements. This pro-
vides a non-invasive piconewton measurement of intermolecular forces.

Thermodynamic data on solutions (phase diagrams, solubility, parti-
tioning, miscibility and osmotic pressure) provide information on short
range solute–solvent and solute–solute interactions. With colloidal dis-
persions coagulation studies as a function of the salt concentration, pH
or temperature yield useful information on interparticle forces.

Adhesion experiments provide information on particle/surface adhe-
sion forces and the adhesion energies of solid surfaces in contact.

Direct force measurement between two macroscopic/microscopic sur-
faces as a function of surface separation can characterise forces of
interaction in great detail, e.g. surface force apparatus (SFA), optical/
magnetic tweezers and atomic force microscopes (AFM).

Surface studies such as surface tension and contact angle measure-
ments can elucidate liquid–liquid and solid–liquid adhesion energies.
Similarly the reflectivity of radiation (neutrons, X-rays and light) from
surfaces can provide invaluable information on surface energies. With
film balances, the thicknesses of free soap films and liquid films absorbed
on surfaces can be measured using optical interferometry as a function of
salt concentration or vapour pressure, and this again provides a direct
measurement of intersurface potentials.

Hydrodynamic studies of liquids can be made using nuclear magnetic
resonance spectroscopy (NMR), and elastic/inelastic scattering of light,
X-rays and neutrons. These methods are particularly useful for the
measurement of hydrodynamic effects that lead to time dependent
mesoscale forces.

FURTHER READING

J. Israelachvili, Intermolecular and Surface Forces, Academic Press,
1992. A classic text on mesoscopic forces.

S.F. Evans and H. Wennerstrom, The colloidal domain, John Wiley &
Sons Ltd, 1994. Useful account of forces in colloidal systems.

D. Tabor, Solids, liquids and gases, Cambridge University Press, 1991.
Simple refined presentation of the basic phenomena in condensed
matter.

J.L. Barrat and J.P. Hansen, Basic concepts for simple and complex
fluids, Cambridge University Press, 2003. Clear mathematical
approach to soft matter physics.

DIRECT EXPERIMENTAL MEASUREMENTS 47



TUTORIAL QUESTIONS

2.1) Two adjacent atoms experience a Lennard–Jones potential that
determines their atomic spacing:

jðrÞ ¼ e
r0
r

� �12
�2

r0
r

� �6� �

The energy constant for the interaction (e) is 0:8� 10�18 J and the
equilibrium distance (r0) is 0.33 nm. What force would the
atoms experience if they were compressed to half of the equili-
brium distance?

2.2) What is the Debye screening length for solutions of sodium
chloride at concentrations of 0, 0.001, 0.01, 0.1 and 1M?Water
has an intrinsic dissociation constant of around 10�14. What is
the Debye screening length for a divalent salt solution (e.g.
magnesium chloride (MgCl2)) at the same concentration?
What is the Debye screening length in standard physiological
conditions (0.1M salt)?

2.3) A charged polymer can adopt both globular and extended linear
conformations. It is assumed that the charge is conserved during
the change in conformation and there is a negligible amount
of salt in the solution and no charge screening. With which
geometry does the potential decrease most rapidly with the
distance from the chain? If the charge is smeared out on a planar
surface how does the form of the potential compare with the
linear and globular morphologies?

2.4) Charged spherical viruses have polymer chains attached to their
surfaces, e.g. they are ‘PEGelated’ in the language of a synthetic
chemist. At what distance of separation does the entropic force
due to the chains become significant compared with that due to
the intervirus electrostatic repulsion?
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3
Phase Transitions

Everyone has experience of a range of phase transitions in everyday life.
These could be boiling a kettle (a liquid–gas phase transition) or melting
a wax candle (a solid–liquid phase transition). In terms of the molecular
arrangement, phase transitions almost always involve a change from a
more ordered state to a less well ordered state. They can be in stable
equilibrium or non-equilibrium if their form evolves with time.

3.1 THE BASICS

A material can adopt a number of phases simultaneously at equilibrium.
Thus phase diagrams are required to calculate the relative importance of
the coexisting substates. The standard everyday states of matter are the
crystalline (a regular incompressible lattice), liquid (an irregular incom-
pressible lattice) and gas (an irregular compressible lattice) phases. How-
ever, there are also other less conventional phases that occur in nature,
such as amorphous solids, rubbers and glasses, and our intuition con-
cerning their mechanical behaviour and microstructure needs careful
consideration. Liquid crystals and gels also commonly occur in biology,
and present additional possibilities for the thermodynamic state of a
material. Other more exotic examples of phase changes studied in this
book include wetting (e.g. water drops rolling off the ultra hydrophobic
surfaces of lotus leaves) and complexation (e.g. DNA compaction in to
chromosomes); the range of possible thermodynamic phases of a biolo-
gical molecule is vast.

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



Some of the basic phenomena associated with phase transitions are
recapped here before they are applied to a range of biophysical problems.
Hopefully many of these concepts will be familiar from introductory
thermodynamics studies. The two states between which a first order
phase transition occurs are distinct, and occur at separate regions of
the thermodynamic configuration space. First order phase transforma-
tions experience a discontinuous change in all the dependent thermo-
dynamic variables except the free energy. In contrast, the states between
which a second order phase transition occur are contiguous in the
thermodynamic configuration space. In these continuous phase transi-
tions (2nd, 3rd, 4th etc), the dependent variables such as the heat
capacity, compressibility and surface tension, diverge or vanish as the
independent variables approach a critical value, e.g. a critical tempera-
ture ðTcÞ. This divergence occurs in a characteristic manner around the
critical point for continuous phase transitions; for example if the heat
capacity (CV , the ability of the material to store thermal energy) diverges
as a function of temperature near to the critical temperature for a phase
transition ðTcÞ, its functional form is Cv � ðT � TcÞ�a. The exponent a is
found to be universal, dependent on the class and symmetry of the phase
transition, but not on the exact details of the molecular components of
the system.

The differences between first and second order phase transitions, can
be illustrated through the consideration of the heat capacity ðCvÞ and the
enthalpy ðHÞ as a function of temperature (Figure 3.1). The discontin-
uous nature of the first order phase transition is clearly evident in this
example.

The Gibbs phase rule provides the number of parameters that can be
varied independently in a system that is in phase equilibrium. Consider
an ideal gas whose properties depend on the volume ðVÞ, the number of
particles ðnÞ, the pressure ðPÞ and the temperature ðTÞ. The equation of
state ðFÞ, is a unique function dependent on the four variables that
describe the system, and is given mathematically by:

FðV; n;P;TÞ ¼ 0 ð3:1Þ

And with an ideal gas it is well known that the equation of state takes the
form of the Van der Waals law:

PV

nRT
� 1 ¼ 0 ð3:2Þ

50 PHASE TRANSITIONS



where R is the ideal gas constant. Only three independent variables are
thus needed to define the system, the fourth variable is dependent. In the
general case the Gibbs phase rule states that the number of degrees of
freedom in a system (f , the number of independent intensive variables
that remain after all the possible constraints have been taken into
account), the number of simultaneously existing phases ðpÞ, and the
number of components ðcÞ are related by:

f þ p ¼ cþ 2 ð3:3Þ

This rule is very useful to predict the phase behaviour for multicompo-
nent colloidal systems, and can be proved from general thermodynamic
principles.

To describe a phase transition in more detail it is useful to define an
order parameter. This order parameter takes a zero value in the dis-
ordered phase, and a finite value in the ordered phase. How the order
parameter varies with temperature (or other independent variable such
as pressure, volume etc.) describes the nature of the transition. Accep-
table order parameters for biological phase transitions include the den-
sity of a sample, the sample volume and the degree of molecular
orientation. Orientational order parameters are crucially important for

Cv

TT c

H

1st Order

∆Htransition

Tc
T

H

Tc T

Continuous

Tc
T

Cv

Figure 3.1 Comparison of the enthalpy ðHÞ and heat capacity ðCvÞ for first order and
continuous phase transitions (2nd etc)
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an understanding of liquid crystalline phases and will be examined in
Chapter 4.

The behaviour of continuous phase transitions was extensively devel-
oped during the second half of the twentieth century. Universal beha-
viour was found for materials that experience continuous phase
transitions near to the critical point, dependent on only the symmetry
of the constituent phases. Continuous phase transitions are thus char-
acterised by the values of critical exponents needed to describe the
divergence of the order parameters at the phase transition temperature.

For a continuous phase transition a limited number of thermodynamic
variables diverge or become zero at the critical point. For example the heat
capacity ðCvÞ near the critical temperature (TC, Figure 3.1) is given by:

CV ¼
AðT � TcÞ�a T > Tc

AðTc � TÞ�a T < Tc

�
ð3:4Þ

where A is a constant, T is the temperature and a is the critical exponent.
The same critical exponent ðaÞ applies to either side of the transition
point.

For a gas–liquid system that approaches the critical temperature (TC)
the density (r) also diverges with a characteristic exponent (b):

rðliquidÞ � rðgasÞ ¼ BðTc � TÞb ð3:5Þ

where B is a constant and T is the temperature. This can be pictured
experimentally with a transparent kettle full of a subcritical boiling
liquid close to a second order gas–liquid transition. It is assumed that
all the dissolved gas is removed (which obscures the effect), and the
liquid will become milky at the transition temperature. The milkiness is
due to large fluctuations in the density (order parameter) that occur at the
critical point (the boiling point of the fluid). The density fluctuations can
be quantified and are related to the compressibility (k) of the fluid (how
much the volume ðVÞ of a material changes in response to a change in
pressure ðPÞ), which diverges at the critical point:

k ¼ � 1

V

@V

@P

� �
¼ EðT � TcÞ�n ð3:6Þ

where E is a constant and n is the critical exponent. The expression
for the compressibility is valid for temperatures above the critical
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temperature ðT > TcÞ. As explained previously these large density fluc-
tuations can be viewed experimentally in the form of critical opalescence;
liquids become cloudy due to large fluctuations of density, which scatter
incident light as the material approachs a phase transition. The correla-
tion length for the physical size of the density fluctuations also diverges at
the critical point.

Another example of a continuous phase transition relates to the
thermodynamics of surfaces. The surface tension (g) between two liquid
phases approaches zero at the critical point temperature ðTcÞ, although
the width of the interface diverges:

g ¼ g0 1 � T

Tc

� �m

ð3:7Þ

where m is another critical exponent and g0 is the average surface
tension. Thus phase transitions are not limited to bulk three dimensional
systems.

Other sources of continuous phase transitions include: systems
in which finite size effects play a dominant role (the formation of
small lipid micelles leads to a broad critical micelle concentration),
systems that contains impurities or inhomogeneities which broadens
the phase transition, and systems in which equilibrium times are long
compared to observation times, e.g. glass transition of polymers (Sec-
tion 12.3). In this chapter a range of phase transitions that are impor-
tant for molecular biophysics are considered in detail: the helix–coil
transition, globule–coil transition, crystallisation and liquid–liquid
phase separation.

3.2 HELIX–COIL TRANSITION

Helix–coil transitions occur in a wide variety of biological situations
with an immense range of biological molecules, e.g. carbohydrates,
proteins and nucleic acids. Reversible thermodynamic double and single
helix–coil transitions both commonly occur in nature (Figure 3.2). The
chains can be transferred from the helix to the coil state when a series of
parameters such as the temperature, the quality of the solvent or the pH
of the solution are changed.

The Zipper model is the simplest method for a quantitative description
of the thermodynamics of the helix–coil transition (Figure 3.3). Let s be
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defined as the equilibrium constant for making a new helical unit at the
end of a helical sequence. This can be written as:

s ¼ . . . cchhhhcc . . .

. . . cchhhccc . . .
ð3:8Þ

where h is the helical state of a polymer chain, c is the coil state of a
polymer chain and the underlining corresponds to the chain link con-
sidered. The equilibrium constant ðsÞ is called the propagation step and
provides the statistical weight for the growth of a helical section of a
polymer chain provided the nucleation step has occurred. s is defined as
the equilibrium constant for the nucleation step ðs � 1Þ; the formation
of a helical unit on a coil from the flexible chain state:

s ¼ ð. . . cchcc . . .Þ
ð. . . ccccc . . .Þ ð3:9Þ

For a chain of n units the partition function ðZÞ for the helix–coil
transition can be constructed (see the Box):

Z ¼ 1 þ
Xn
k¼1

Vkss
k ð3:10Þ

Single
helix

Single coil

(a)

Double
helix 

Two coils 

(b)

Figure 3.2 Schematic diagram of the helix–coil transition in single (a) and double (b)
helices

k units 

n units

Figure 3.3 The Zipper model for an alpha helix consists of a stretch of k helical units
arranged along a chain of n units. ðn� kÞ units are in the coil state
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where Vk is the number of ways that k helical units can be put on a chain
of n units. The number of distinct permutations for Vk can be counted
and is equal to:

Vk ¼ ðn� kþ 1Þ ð3:13Þ

The partition function ðZÞ is of paramount importance in equilibrium
statistical mechanics.

There are a number of useful relationships using this partition
function:

1) The partition function can be directly related to the free energy
ðFÞ and the thermal energy �F=kT ¼ lnZ, where kT is the
thermal energy.

2) To find the probability pðEiÞ that an energy state Ei is occupied
the partition function can be used:

pðEiÞ ¼
e�Ei=kT

Z
ð3:11Þ

3) Average quantities can then be constructed from the probabil-
ities, e.g.:

hEii ¼
X

pðEiÞEi ¼
P

e�Ei=kTEi

Z
ð3:12Þ

The fractional helicity ðuÞ of a sample is a parameter that can be easily
measured experimentally by such means as polarimetry, X-ray diffrac-
tion or NMR. The helicity (u) is simply defined as the number of
monomers in the helical state ðkÞ divided by the total number of mono-
mers ðnÞ:

u ¼ k

n
ð3:14Þ

The helicity predicted by the Zipper model can be calculated from the
partition function defined in equation (3.10) using:

u ¼ 1

n

@ lnZ

@ ln s
ð3:15Þ
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The zipper model is found to be in good agreement with experimental
data for the behaviour of short alpha helical chains (Figure 3.4). How-
ever, the zipper model breaks down for long chains, since thermody-
namic fluctuations can lead to sections of helix interspersed with parts of
random coil. The possibility of such fluctuations is not included in the
zipper partition function and is thus badly described by the model.

The Zimm–Bragg (Ising) model provides a more sophisticated descrip-
tion of the helix–coil transition that includes fluctuations of the helicity
along the chain. As before, due to the co-operative nature of the helical
conformations, links are assumed to exist in either of two discrete states:
the helix and the coil. The junction between the helical and coil sections
carries a large positive free energy ðDf Þ penalty that encourages long
lengths of helix. There are two Zimm–Bragg parameters introduced for
the model, the statistical weights of the states s and s:

s � expð�Df=TÞ s � expð�2Dfs=TÞ ð3:16Þ

where Df is the free energy change upon the addition of an extra
helical section, Dfs is the free energy change for nucleation of a new
section of helix, and T is the temperature. For naturally occurring
biopolymers the statistical weight for nucleation ðsÞ is typically very
small, of the order of � 10�3–10�4. The Zimm–Bragg model consti-
tutes a simple method for coarse graining the complex network of
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Figure 3.4 Agreement of the Zipper model with data for the helicity of a polypeptide
of two separate lengths N ¼ 1500 and N ¼ 26
(The polypeptide forms an alpha helical structure at high temperatures. [Reprinted
with permission from B.H. Zimm and J.K. Bragg, J. Chem. Phys, 31, 526, Copyright
(1959) American Institute of Physics])
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hydrogen bonds required for helix formation (including their three
dimensional geometry), and describes the thermodynamic behaviour
of the phase transition very well.

The partition function for the Zimm–Bragg model becomes more
complicated than with the zipper model and only numerical solutions
to the behaviour are examined (Figures 3.5 and 3.6). It is found that the
helix–coil transition in a single stranded homopolymer occurs over a very
narrow temperature interval, which becomes narrower as the co-oper-
ativity parameter decreases (s). The mean lengths of helical and coil
sections are finite and independent of the total chain length even as the
polymer length ðNÞ tends to infinity.

The helicity (u) defined in equation (3.14) can be calculated for the
Zimm–Bragg model as a function of the degree of co-operativity (s ¼ 1,
no co-operativity and s � 1, strong co-operativity), and is shown in
Figure 3.5. Curve 1 indicates a small degree of co-operativity and curve 2
shows strong co-operativity. Biological helices normally demonstrate a
high degree of co-operativity.

The complete phase diagram predicted by the Zimm–Bragg model for
a helical chain with regions of disorder is shown in Figure 3.6. A range of
distinct phases are possible; these include random chains, chains with
alternating random and helical sections, coexisting random chains and
chains with single helices, and single helices with occasional disorder at
the ends. The phase diagram is very rich, even for such a simple idealised
system. Single molecule experiments are able to investigate each of these
scenarios on a molecule by molecule basis (Chapter 13) and are in
reasonable agreement with the theory.

Helicity
(θ) ∆ s2

∆ s1

s

1

1

2

Propagation 
probability 

0

Figure 3.5 Dependence of the helicity (u) on the strength of the propagation step ðsÞ
for the Zimm–Bragg model of the helix–coil transition
ðDs1 and Ds2 are the width of the transitions for low and high cooperativities
respectively)
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Although frequently regarded as a melting of helices (the process is
accompanied by an endotherm that can be quantified by differential
scanning calorimetry, which is a sensitive technique for measuring the
amount of heat required to change a samples temperature), the single
helix–coil transformation should not be considered a true thermody-
namic phase transition. In a one dimensional system the equilibrium
coexistence of macroscopic phases is prohibited due to a theorem by
Landau. The Landau theorem is deduced from the exceedingly small
energy associated with phase separation in one-dimensional systems; it is
impossible for a true phase transition to occur in one dimension. For a
short chain the width of the helix–coil transition is thus anomalously
large due to the dominance of end effects.

A helix–coil transition in charged polymers can be initiated by a
change in the pH of the medium, e.g. nucleic acids. In this case the
transition is accompanied by a sharp change in the average charge of the
helical molecule, which provides another experimental method to study
the phase behaviour. However, there are a number of subtleties for the
analysis of counterion condensation with charged polymers (the inter-
action of the polymers with their counterion clouds) that will be returned
to in Chapter 9, which need to be considered in detail to quantitatively
understand the phenomena involved.
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Figure 3.6 Phase diagram for the states of a helical Zimm–Bragg chain with s ¼ 10�4

(n is the length of the chain and s is the propagation step. [Reprinted with permission
fromB.H. Zimm and J.K. Bragg, J. Chem. Phys, 31, 526, Copyright (1959) American
Institute of Physics])
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The analysis of phase transitions with double helices is slightly differ-
ent to the case of single helices. With the double helix–coil transition,
internal coil sections of the double chain are loops. The strong entropic
disadvantage of long loops results in increased co-operativity of the
phase transition when compared to that for single helices. The loop
factor leads to an abrupt sharpening of the helix–coil transition, and
calculation shows that it can be considered a true phase transition.

Other rearrangements of secondary structure can be described using
modified Zimm–Bragg type models. The formation of beta sheets can be
satisfactory described with such a model, but again charge effects need to
be carefully considered.

In heteropolymers the helicity constants that correspond to the mono-
mers of each separate chemistry are different, and the character of the
helix–coil transition therefore depends on the primary structure. Such a
model is thus more realistic for naturally occurring nucleic acids (there
are four varieties of monomer for the DNA heteropolymer) and proteins
(twenty amino acids could be involved). In a real heteropolymer, the
helix–coil transition proceeds by consecutive melting of definite helical
sections, whose primary structures possess a higher than average con-
centration of low-melting temperature links. More sophisticated Zimm–
Bragg models describe this behaviour and again there is good agreement
with experiment. The statistical description of the helix–coil and beta
sheet–coil transition are thus a success story of molecular biophysics.

3.3 GLOBULE–COIL TRANSITION

There is a wide range of experimental evidence for the globule–coil
transition for polymeric chain molecules. For example, the temperature
can be reduced for a variety of extended polymers in good solvents. This
changes the quality of the solvent for the chains and causes them to
shrink into dense spherical globules (Figure 3.7). Some of the most

Coil

Reduction in
temperature/
solvent quality
or increase in
pressure  

Globule 

Figure 3.7 Schematic diagram of the coil to globule transition for a single chain
induced by a reduction in temperature/solvent quality or an increase in pressure
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illustrative data on the globule–coil transition have been measured using
fluorescence microscopy with DNA molecules. Under an optical micro-
scope fluorescently tagged DNA can be clearly seen to expand or con-
tract in an abrupt transition when an attractive interaction is introduced
between the monomers, e.g. through the introduction of positive multi-
valent counterions. Furthermore, neutron, X-ray and light scattering,
dynamic light scattering, differential scanning calorimetry, electron
microscopy and atomic force microscopy all clearly point to the existence
of a globularisation phase transition with macromolecules. The globule–
coil transition is closely associated with the phenomena involved during
both the folding of proteins and the compaction of nuclear DNA, which
make it of large biological significance.

A swelling coefficient (a) is often used as the order parameter for the
globule–coil transition and is defined as the ratio of the radius of gyration
ðRÞ of the chain to the unperturbed radius of gyration ðR0Þ of the coil,
a ¼ R=R0. The radius of gyration will be discussed in detail in Chapter 8.
When the molecule shrinks a is less than one (a < 1, a bad solvent) and
when it swells a is greater than one (a > 1, a good solvent). The globule–
coil transition is found to be a first order phase transition; there is a sharp
change in a as a function of temperature, solvent quality or pressure.

The entropic contribution to the free energy ðFentÞ when a polymer coil
is stretched by a factor a is given by:

Fent ¼ �TSðaÞ ð3:17Þ

where T is the temperature, and SðaÞ is the entropy associated with the
swelling of the chain. Remember that the total free energy ðFÞ for a
system is related to the internal energy ðUÞ, temperature ðTÞ and entropy
ðSÞ by the expression F ¼ U � TS, a result from elementary thermody-
namics. The energy of self-interactions as a function of the degree of
expansion can be defined as UðaÞ. The standard form of the free energy
of a globule–coil transition is the sum of the entropy ðFentÞ and the self-
interaction terms ðUÞ:

FðaÞ ¼ FentðaÞ þUðaÞ ð3:18Þ

The internal energy ðUÞ can be expanded in powers of the monomer
density n (similar to the approximation for a Van der Waals gas leading
to PV ¼ nRT):

U ¼ VkT½n2Bþ n3Cþ ::� ð3:19Þ
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where V is the volume of the coil and kT is the thermal energy. B and
C are the second (two body collision) and third (three body collision)
virial coefficients respectively, which describe the strength of the inter-
segment attraction. Negative B implies an attractive intrachain poten-
tial, positive B implies a repulsive intrachain potential, and a negligible
B (B � 0 in a theta solvent) causes C to dominate the behaviour. The
monomer density ðnÞ is of the order of the degree of polymerisation of
a chain ðNÞ divided by the chain size ðRÞ, N=R3, so equation (3.19) can
be written:

U � R3kT B
N

R3

� �2

þC
N

R3

� �3
" #

ð3:20Þ

By definition a ¼ R=R0, and the unperturbed radius is R0 ¼ l N
1
2 (Section

8.1), where l is the size of a monomer. The internal energy can therefore
be reexpressed as:

UðaÞ ¼ kT
BN

1
2

a3l3
þ C

a6l6

" #
ð3:21Þ

Where N is the number of monomers in the chains, B and C are the virial
constants, and kT is the thermal energy.

The entropic contribution to the free energy can also be calculated
using a simple statistical model and is given by:

FentðaÞ � kTða2 þ a�2Þ ð3:22Þ

Through minimisation of the total free energy (equation 3.18) of the
globule–coil transition using equations (3.22) and (3.20) for the entropic
and internal free energies respectively, it is possible to construct a phase
diagram for the polymer chain (Figure 3.8). The coil condenses onto
itself when the second virial coefficient is sufficiently negative. There is a
jump in the molecular size (parameterised by a) as this process of chain
condensation proceeds and the polymer chain experiences a first order
phase transition.

Quasielastic light scattering studies show clear non-invasive evidence
for the globule–coil transition in biopolymers as the temperature is
reduced. However, such experiments with large numbers of polymer
chains are very sensitive to the total polymer concentration. Low
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concentrations of biopolymer are necessary to avoid aggregation of
neighbouring globules in poor solvent conditions due to the strong
chain–chain attraction, since this would confuse the interpretation of
the results. The use of highly charged biopolymers can circumvent the
experimental problems with aggregation, but additional terms must be
added to the free energy (equation (3.18)) to describe both the Coulom-
bic repulsion between monomers and the entropy of the counterions
associated with the chains, which significantly complicates the theore-
tical analysis.

Detailed theoretical studies show that large neutral globules consist of
a dense homogeneous nucleus and a relatively thin surface layer, a fringe
of less dense material. In equilibrium the size of the globule adjusts itself
so that the osmotic pressure of the polymer in the globule’s nucleus
equals zero. As the u point (where B, the second virial coefficient, is
zero) of a polymer/solvent mixture is approached from poor solvent
conditions, a globule gradually swells and its size becomes closer to
that of a coil. The transition becomes continuous, a second-order phase
transition, as the second virial coefficient approaches zero. The width of
the globule–coil transition in a chain with N monomers is proportional
to N�1=2 and becomes infinitely sharp as N tends to infinity.

The character of a globule–coil transition also sensitively depends on
the stiffness of the polymeric chains considered. For stiff chains (e.g.
DNA, helical proteins and highly charged biomacromolecules), the tran-
sition is very sharp and closely resembles a first order phase transition.

α

Free energy 

0 1

Compact
globule 

Expanded
coil

Figure 3.8 Schematic diagram of the free energy of a flexible polymeric globule as a
function of the degree of chain extension (a)
(Minima for the expanded coil and compact globule states are shown. At low tem-
peratures the chain adopts a globular conformation whereas at high temperature it
expands up into a flexible extended chain conformation.)
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For flexible chains it is much smoother and is a second order phase
transition (Figure 3.9).

The globule-coil condensation of a macromolecule of moderate length
and significant stiffness can result in the creation of distinctive small
globule morphologies. When the size of a small globule is comparable
with the persistence length of the chain, the structure of the globule
sensitively depends on the flexibility mechanism. Experimentally for a
semi-flexible chain (e.g. DNA), a small globule is found to take the shape
of a donut (a torus, Figure 3.10). Furthermore these torroidal shapes
often have a liquid crystalline internal structure. DNA chains are rigid

Reduced
temperature

Stiff
chain

Flexible
chain 

Swelling
Parameter
(α)

Figure 3.9 Dependence of the swelling parameter (a) on the reduced temperature for
flexible and rigid polymers

Well oriented
nematic
chains

Cross section
through a
DNA chain 

Torus

Figure 3.10 Schematic diagram of a DNA donut (torus) that shows the liquid crystal-
line internal structure
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and charged, but compaction can be induced by the addition of a flexible
polymer to change the chemical potential of the surrounding water
molecules (osmotically stressing the solution) or the addition of multi-
valent counterions e.g. Mg2þ or spermidine to induce an attractive
electrostatic intrachain force.

Giant DNA molecules naturally exist in a very complex compacted
state, often combined with proteins. The structure and phase transitions
of these chromosomes will be covered in more detail in Chapter 16.

The native structure of a globular protein is characterised by a precise
series of amino acids which possess the property of self-assembly. The
compactness of a protein globule is maintained primarily by the hydro-
phobic effect. Hydrophobic groups are predominantly located inside the
globule and hydrophilic ones on the surface. The protein globule is a
system of rigid blocks of secondary structure and their surfaces bristle
with the side groups of amino acids; van der Waals interactions between
side groups of neighbouring blocks fix the details of the tertiary structure.
Electrostatic interactions typically play an essential role in the folding of
globular proteins only far from the isoelectric point, and charged links
are often only located on the surface of the globule. The charged links
provide electrostatic stabilisation of the globule against aggregation with
other globules. Together with coil and native globular states, the phase
diagram of a protein molecule also includes a molten globular state, and
it is this state which is qualitatively explained by simple globule–coil
theories such as those described by the Flory equations (3.17)–(3.22).

The self-assembly of the tertiary structure of a globular protein is
found to proceed in two stages: a rapid globule–coil transition driven
by hydrophobicity and electrostatics, which is followed by the slow
formation of the native structure inside the globule. This complicated
molecular origami is exceedingly subtle and reference should be made to
the literature of a specific protein for exact details. Often additional
proteins (chaperones) are required along the folding pathway to produce
the biologically active native structure.

3.4 CRYSTALLISATION

Protein crystallisation in three dimensions is of small relevance to the
functioning of living organisms (except for a few unusual examples in
seed storage proteins and extracellular proteins), but it is of central
importance to structural biology. Only through the production of large
high-quality defect-free crystals can the structure of proteins be obtained
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using diffraction techniques (Figure 3.11). A billion pound question is
thus posed by the biotechnology industry; how to form large high quality
protein crystals for structure determination to understand structure/
function relationships.

The liquid–solid transition is much more complicated than the liquid–
liquid transition (Section 3.5), since an infinite number of order para-
meters are required to completely describe the resultant crystalline
structure; typically the Fourier components of the density are chosen
for this role. The liquid–solid transition is invariably a first order phase
transition.

The process of crystallisation is often induced by reducing the tem-
perature of an aqueous suspension of particles. At the melting tempera-
ture ðTmÞ, a liquid material never freezes, because it costs energy to form
an interface. Without impurities the sample must be undercooled to
initiate crystallisation (homogeneous nucleation conditions). The free
energy change ðDGðrÞÞ upon crystallisation can be constructed as the

Figure 3.11 Optical photograph of a crystal of a globular protein prepared for
crystallographic studies
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sum of the energy to form the crystalline nuclei and the energy to form
the surfaces:

DGðrÞ ¼ 4
3pr

3DGb þ 4pr2gsl ð3:23Þ

where r is the radius, DGb is the bulk energy, and gSL is the surface free
energy of the crystal/liquid interface. A schematic diagram of the free
energy is plotted as a function of temperature in Figure 3.12.

The change in entropy ðDSmÞ in a liquid–solid transition at constant
pressure ðPÞ can be related to the latent heat released ðDHÞ using a
standard thermodynamic expression:

DSm ¼ @Gs

@T

� �
p

� @G1

@T

� �
p

¼ DH

Tm
ð3:24Þ

where Gs and Gl are the free energy of the solid and liquid phases
respectively. The subscript P indicates that the partial differential is at
constant pressure. The bulk contribution to the Gibbs energy associated
with a temperature change ðDTÞ is:

DGb � �DHm

Tm
DT ð3:25Þ

Gibbs
Free energy ∆ Gb

∆ T

Solid

Liquid

Tm Temperature

Figure 3.12 Schematic diagram of the Gibbs free energy for the solid and liquid
phases of a material as a function of the temperature
(Tm is the melting temperature. DGb is the difference in free energy between the solid
and liquid phases.)
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Thus the total energy from equation (3.23) to form a crystal is:

DGðrÞ ¼ �4
3pr

3 DH

Tm
DT þ 4pr2gsl ð3:26Þ

GðrÞ can be differentiated with respect to the crystal radius, and this
analysis shows that the free energy has a maximum at a critical radius
ðr�Þ given by:

r� ¼ 2gslTm

DHmDT
ð3:27Þ

A free energy barrier is thus associated with the formation of stable
nuclei due to the surface energy and is given by:

DG� ¼ 16p

3
g3
sl

Tm

DHm

� �2 1

DT2
ð3:28Þ

The functional form of the free energy with respect to the crystallite
radius is shown in Figure 3.13. Thus crystallites must spontaneously
nucleate into crystallites with radii above this critical size in order for
crystallisation to take place.

Dynamic effects are also important in understanding crystallite growth.
Arrhenius dynamics are often used to model the kinetics of crystallisation
with an activation energy given by DG�, and the probability that a crystal
is nucleated is found to be proportional (Section 5.3) to:

expð�DG�=kTÞ ð3:29Þ

Gibbs
Free energy
Change
(∆G)

radiusr*

surface

total

bulk

Figure 3.13 The Gibbs free energy for the crystallisation of a solid as a function of the
crystallite radius
(The crystals have a critical radius ðr�Þdependent of the interplay between the bulk and
surface energies for the creation of stable crystallites.)
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Equations (3.28) and (3.29) can be combined and it is observed that the
surface energy (gSL) governs the growth kinetics of the crystals. For
colloidal crystals the rate of nucleation ðGÞ can be written as a product
of two factors:

G ¼ e�DG�=kTn ð3:30Þ

where n is a measure of the rate at which critical nuclei, once formed,
transform into larger crystallites. A current challenge is to relate the
phase behaviour (e.g. through the activation energy DG and the rate
constant v) to the inter-protein potential and this is still a hot area of
research. Advances have been made that map the behaviour of globular
protein crystallisation on to that observed for spherical colloids that
contain a number of sticky adhesive patches on their surfaces. The
electrostatic and Van der Waals forces must also be considered in
combination with these adhesive forces.

Once small protein crystals are formed, the surface free energy con-
tinues to play a role in the development of crystalline morphologies as
described by equation (3.23). Small crystals are absorbed by large crys-
tals as their surface free energy is minimised in a process called Ostwald
ripening. It is found to be an important effect in the production of ice
cream, as anyone who has eaten melted and subsequently refrozen ice
cream will testify.

Naturally occurring solid proteins often adopt fibrous semi-crystalline
morphologies, and the kinetics and morphologies produced by the crys-
tallisation of such materials are much more complicated than those
found with globular proteins. Furthermore many of these materials
adopt intermediate liquid crystalline mesophases due to their extended
molecular structures; this behaviour will be examined in Chapter 4.

3.5 LIQUID–LIQUID DEMIXING
(PHASE SEPARATION)

Another common process in biological systems is liquid–liquid phase
separation (Figure 3.14). Examples include the production of food gels,
aggregation of ocular proteins in the eye and the partitioning of intra-
cellular ionic species. Liquid–liquid phase separation can also happen in
lower dimensional systems, e.g. lipid rafts on the surface of cell mem-
branes can experience a process of two dimensional liquid–liquid phase
separation that determine their morphology.
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A useful simple reference system, before more complicated biological
molecules are considered, is a model for the free energy of mixing of simple
molecular liquids. It is an important reference model that needs to be
understood, before the more sophisticated phenomena involved in the
phase separation of colloids, surfactants and polymers can be approached.

The change in free energy upon mixing (Fmix, Figure 3.15) of two
simple fluids of type A and B is the difference in free energies before
ðFAþBÞ and after ðFA þ FBÞ phase separation:

Fmix ¼ FAþB � ðFA þ FBÞ ð3:31Þ

The Boltzmann formula for the entropy of mixing (S) of the fluids on a
lattice is given by:

S ¼ �kB
X
i

pi lnpi ð3:32Þ

A B A+B

Figure 3.14 Two phase separated systemsA andB are involved in a reversible mixing
transition

Free energy
of mixing per
lattice site
/kT

Volume fraction

χ  = 2.5

χ = 0

χ = 1.0

Figure 3.15 The free energy of mixing of liquids A and B as a function of the volume
fraction
(x is the interaction parameter. For x ¼ 0, x ¼ 1 the phases are mixed, whereas for
x ¼ 2:5 phase separation occurs.)
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where pi is the probability of occupation of state i of the system by a
liquid molecule of type A, and kB is the Boltzmann constant. The internal
degrees of freedom of the two fluids are neglected in this model. The
molecules (As and Bs) are assumed to interact in a pairwise additive
manner, i.e. only the energies of the nearest neighbours are added. fA

and fB are the volume fractions of the A and B molecules respectively.
The mean field assumption (i.e. when concentration fluctuations are
neglected) is that a given site has zfA A neighbours and zfB B neigh-
bours. The interaction energy per site is:

z

2
f2
AeAA þ f2

BeBB þ 2fAfBeAB
� �

ð3:33Þ

where eAA, eBB, and eAB are the binary interaction energies between AA,
BB and AB molecules respectively. The energy of the unmixed state is:

z

2
fAeAA þ fBeBBð Þ ð3:34Þ

The difference in the two interaction energies ðUmixÞ associated with the
process of mixing is therefore:

Umix ¼
z

2

�
ðf2

A � fAÞeAA þ ðf2
B � fBÞeBB þ 2fAfBeAB

�
ð3:35Þ

If every site is occupied there is a further condition on the sum of the two
volume fractions:

fA þ fB ¼ 1 ð3:36Þ

The mathematics are simplified through the definition of an interaction
parameter (x):

x ¼ z

2kT
ð2eAB � eAA � eBBÞ ð3:37Þ

The mixing energy, equation (3.35), can therefore be expressed as:

Umix ¼ xfAfB ð3:38Þ

70 PHASE TRANSITIONS



The standard thermodynamic equation for the free energy is F ¼ U � TS,
and the total free energy of the phase separating mixture (Fmix) can
therefore be constructed as:

Fmix

kT
¼ fA lnfA þ fB lnfB þ xfAfB ð3:39Þ

If the mixed phase separates into two distinct coexisting phases, the total
free energy of the separated mixture is:

Fsep ¼ f0 � f2

f1 � f2

Fmixðf1Þ þ
f1 � f0

f1 � f2

Fmixðf2Þ ð3:40Þ

Coexisting compositions f1 and f2 are formed, since the separated free
energy is smaller than the homogeneous mixture ðFsep < F0Þ and the
system seeks to minimise its free energy in thermal equilibrium
(Figure 3.16). Whether the system is stable to fluctuations also helps
determine the phase behaviour (Figure 3.17). The stability of the system
depends on the second derivative of the free energy ðd2F=df2Þ, which
defines the spinoidal line for the process of phase separation. It is inter-
esting that purely repulsive interactions can promote the formation of an
ordered phase in this model, and this behaviour has been demonstrated
experimentally with model hard sphere colloidal systems.

A good example of phase separation in biocolloids is demonstrated by
proteins from the eye, e.g. the simple gamma crystalline protein/water
system. The compressibility and correlation length for the phase separa-
tion of the gamma crystallins are shown in Figure 3.18. At the point of
phase separation the compressibility and correlation length measured

Free energy 

F0

Fsep

Volume
fraction

φ1 φ0 φ2

Figure 3.16 Graphical construction for the free energy of separation of liquidAandB
(The separated free energy ðFsepÞ is lower that the mixed free energy ðF0Þwhich causes
the mixture to separate into two volume fractions f1 and f2.)
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with light scattering diverges with a power scaling law, with a character-
istic exponent for this continuous phase transition as described in
Section 3.1. Such phenomena are thought to be associated with the
formation of cataracts.

Chemically different neutral polymers mix very poorly in solution and
the slight repulsion between the monomeric links is often sufficient to
separate the mixture into two virtually pure phases. A small degree of
monomeric repulsion is magnified by a high degree of chain polymerisa-
tion and can lead to macroscopically observable effects. The separation of

Interaction
parameter 

Composition 

Unstable 

Stable Spinodal 

Metastable 

Figure 3.17 The composition (i.e. volume fraction) of a binary mixture of liquids as a
function of the interaction parameter (x). Both the spinoidal line and the metastable
region are shown
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Figure 3.18 Both the compressibility (a) and correlation length (b) measured with
light scattering diverge for ocular proteins as the critical temperature for phase
separation ðTcÞ is approached. The line is a best fit from linear regression

[Reprinted with permission from P. Schurtenberger, R.A. Chamberlin, G.M. Thur-
ston, et al., Physical Review Letters, 63, 19, 2064–2067, Copyright (1989) American
Physical Society]
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the two polymers is a process of phase transition, and it can be realised by
either spinoidal decomposition or nucleation and growth (as with the
model of the liquid–liquid transition discussed previously). Mixtures of
polymers occur in countless biological systems, so it is an important effect
to study for its impact in vivo, e.g. aggrecan/collagen mixtures in cartilage.
Furthermore, the morphologies formed upon phase separation are sensi-
tively dependent on the dynamics of the constituent molecules. Large
degrees of dynamic asymmetry (e.g. long slow-moving polymers mixed
with fast moving colloidal particles) lead to a range of novel time depen-
dent morphologies. The phase separated morphology that can occur in
biopolymer food gels during their preparation is shown in Figure 3.19.

Network like 

structure 

Frozen state

Elastic regime

Solvent-rich
droplet 

(a) (b)

Relaxation
regime 

(e) 

Hydrodynamic
regime 

Droplet
regime

(f)

Elastic regime

Volume
shrinking 

(c) 

Elastic regime

(d)

Figure 3.19 The viscoelastic phase separation of food biopolymers has a complex
series of evolutionary steps
(A frozen state (a) is followed by an elastic regime (b, c and d), followed by a relaxation
regime (e), followed by a hydrodynamic regime (f). The unusual morphologies
are driven by the dynamic asymmetry of the phase separating components
[Reprinted with permission from H. Tanaka, J. Phys: Condensed Matter, 12, R207–
264, Copyright (2000) IOP Publishing])
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The compatibility of two polymers improves substantially if one of the
components becomes weakly charged. This is due to the contribution of
the entropy of the counterions to the free energy. Thus polyelectrolyte
mixtures tend to resist liquid–liquid phase separation to some degree due
to this mechanism.

During the early stages of tissue differentiation and morphogenesis
cells undergo a sorting process that resembles liquid–liquid phase separa-
tion. Here the Flory interaction parameter (x) is equivalent to the energy
of adhesion between the cells. Such phenomena are vitally important to
life in multicellular organisms, and a coherent picture of this extremely
complicated process is only slowly starting to evolve.

FURTHER READING

A.Y. Grosberg and A.R. Khoklov, Statistical physics of macromolecules,
Academic Press, 1994. A good pedagogic account of polymer physics.

M. Rubinstein and R.H. Colby, Polymer physics, Oxford University
Press, 2004. Similar in level to Grosberg’s book and includes a great
range of tutorial exercises.

T. Lubensky and P. Chaikin, Principles of condensed matter physics,
Cambridge University Press, 1995. Mathematically sophisticated cov-
erage of soft matter physics.

M. Kleman and O. P. Lavrentovich, Soft matter physics, Springer, 2003.
Similar in level and scope to Chaikin and Lubensky.

R.A.L. Jones, Soft condensed matter, Oxford University Press, 2002.
Reasonably simple introductory treatment of soft condensed matter
physics.

H.B. Callen, Thermodynamics and an introduction to thermostatics,
John Wiley & Sons Ltd, 1985. Classic text on thermodynamics.

TUTORIAL QUESTIONS

3.1) The DSC endotherm for a helix–coil transition for an a helical
polypeptide becomes narrower as the length of the peptide is
increased. Can you explain the phenomena in terms of the
thermodynamics of the transition?

3.2) Peptides in low water conditions are only partially plasticised
and can demonstrate glassy (non-ergodic) behaviour at room
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temperature. How might this alter the behaviour of the globule–
coil transition of a long peptide chain?

3.3) What is the free energy barrier for the nucleation of a lysozyme
crystal if the critical crystallite size is 50 nm, the surface free
energy is 1.2 mJm�2, the melting temperature is 50 �C, and the
temperature is reduced by 1 �C below the melting temperature.
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4
Liquid Crystallinity

Rod-like molecules can spontaneously align in solution to form aniso-
tropic fluids of reduced viscosity if the concentration of the molecules is
increased beyond a critical value (lyotropic liquid crystals) or if the
correct temperature range is chosen (thermotropic liquid crystals). Man-
kind has recently developed synthetic examples of such materials in a
wide range of roles, such as the displays in television screens, bullet proof
jackets and soap powders, but nature has already been using the rich
variety of phenomena associated with liquid crystals in a range of
biological processes over millions of years.

4.1 THE BASICS

Liquid crystals are an intermediate state of matter (a mesophase)
between a liquid and a solid. They are characterised by the orientational
ordering of the molecules (solid-like behaviour), which maintain an
ability to flow (liquid-like behaviour).

Small angle neutron scattering data from a novel example of a biolo-
gical liquid-crystal, purified mucin from the stomach of a pig, is shown in
Figure 4.1. Above a critical concentration the long axes of the molecules
spontaneously align themselves at the � 10 nm length scale. This is
observed experimentally in the ellipsoidal scattering patterns determined
by small-angle neutron scattering, endotherms from calorimetry experi-
ments, and birefringence under an optical microscope. The long axes of
the molecules are aligned perpendicular to the major axis of the ellipsoid

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



observed in the neutron scattering experiment (Figure 4.1). This align-
ment of the mucin molecules radically changes their viscoelasticity, and
has important implications for their role in the stomach as a barrier
against autodigestion.
There are a wide range of biological molecules which form liquid

crystalline phases. These include lipids, nucleic acids, proteins, carbohy-
drates and proteoglycans. There is therefore a correspondingly wide
range of liquid crystalline phenomena that are biologically important.
For example, cell membranes are maintained in liquid crystalline phases
that are used to compartmentalise the cell while still allowing the transfer
of important molecules (Figure 4.2(a)), slugs move on nematic trails of
proteoglycan molecules whose viscoelasticity is intimately connected
with their chosen form of locomotion (Figure 4.2(b)), starch assembles
in to smectic structures as a high density energy store in plant storage
organs (see Question 4.1), spider silk has a low viscosity liquid crystalline
phase as it is extruded from the spider’s spinneret to form the super tough
materials used to make its web (Figure 15.14), protocollagen forms
nematic phases during the construction of the tough viscoelastic collagen
networks in skin, and cellulose microfibrils form chiral nematic phases in

Figure 4.1 Small-angle neutron scattering patterns from (a) isotropic (low concen-
tration) and (b) nematic (high concentration) phases of mucin molecules. (c) and (d)
show schematic diagrams of the orientation of combmucin molecules in the isotropic
and nematic phases respectively deduced from (a) and (b)
[Ref.: T.A. Waigh, A.P. Papagiannopoulos, A. Voice et al., Langmuir, 2002, 18,
7188–7195]
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plant cell walls that provide trees with their strength and resilience
(Figure 4.2(c)).

The principle phases formed by soft condensed matter are due to an
interplay between positional, orientational and conformational disorder
(Figure 4.3). There are a wide variety of different mesophases that can be
further refined within the broad category of liquid crystalline materials,
i.e. materials with orientational and conformational ordering (Table 4.1,
Figure 4.4). In addition to liquid crystalline phases, the possibility for
internal conformational ordering of molecules combined with positional
ordering (with a related lattice) leads to the phases of condis crystals and
plastic crystals. A further mesophase sub-classification is possible upon
the inclusion of molecular chirality, i.e. the molecules have a well defined
handedness. Many biological molecules are chiral (e.g. DNA is normally
left handed) and their mesophase structure reflects the chiral interaction
between subunits. The principal chiral liquid crystalline mesophases are
the cholesterics (chiral nematics) and tilted smectics (chiral smectics).
Chirality also has a large impact on the defect textures that liquid
crystalline molecules adopt, and thus on their macroscopic properties.

To detect liquid crystalline phase transitions a wide selection of
experimental techniques is typically used. These include differential
scanning calorimetry to study the latent heat absorbed, polarising micro-
scopy to view the strength and variety of defect textures, X-ray and

(b) Slug slime
(a) Cell membranes 

Wood cell  
20 µm in width

(c) Cellular microfibrils

Aligned cellulose 
microfibril 

Figure 4.2 Schematic diagrams of naturally occurring examples of liquid crystalline
materials
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neutron scattering to measure orientational and lattice order parameters,
and atomic force microscopy and ellipsometry to measure terraces on the
surfaces of the samples.
Liquid crystals are often first detected through their optical textures

using crossed polars under an optical microscope, since it is a cheap

Orientation Position 

Conformation 

Plastic

Crystal

Liquid

Crystal

Liquid

Liquid 

Liquid 

Crystal

Plastic 

Crystal

Condis

Crystal

Crystal 

Figure 4.3 Types of phase found in condensed matter from a mixture of confor-
mational, positional and orientational ordering
[Reprinted with permission from C.Viney in Protein Based Materials, Eds K. McGrath
and D. Kaplan, Birkhauser, 281–311, Copyright (1997) Birkhauser Boston Inc.]

Table 4.1 The range of mesophases commonly encountered with biological mole-
cules is primarily determined by a combination of the positional and orientational
order parameters

Positional Orientational Possible Mesophase
Phase Order Order Order Parameter

Liquid None None None
Figure Aa

Nematic None Yes Legendre polynomials
Figure Ab

Smectic One dimensional Yes Fourier components in
Figure B one dimension

Columnar Two dimensional Yes Fourier components in
Figure C two dimensions

Crystalline Three dimensional Yes Infinite number of
Figure D Fourier components

in three dimensions

80 LIQUID CRYSTALLINITY



readily available technique. These defect textures can often enable the
exact liquid crystalline phase to be categorised. The quantitative evalua-
tion of these defect textures in biological liquid crystals will be consid-
ered in Section 4.2.

Differential scanning calorimetry reveals the presence of liquid crystal-
line phase transitions in a material through the detection of the asso-
ciated enthalpy changes. The isotropic–nematic phase transition is
clearly demonstrated to be a true thermodynamic event with an asso-
ciated endotherm in such experiments (Figure 4.5). Usually a liquid
crystalline material will experience a sequence of thermodynamic phase
transitions as a function of temperature e.g. a crystal transforms into a
smectic liquid crystal, then into a nematic liquid crystal, and finally it is

(a) (b)

n

(e) n

d

n

n

n(c) (d)

Figure 4.4 (a) Perfect crystalline solid formed from spherical colloidal particles, (b)
nematic phase formed from rod-like mesogens, (c) smectic A (perpendicular) phase
formed from rod-like mesogens, (d) smectic C (tilted) phase formed from chiral rod-
like mesogens and (e) hexatic phases are a rarer liquid crystalline phase in biology
formed fromdisk-likemesogens.Hexatic phases have been observedwith nucleosome
particles
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converted into an isotropic liquid as a function of increasing tempera-
ture.
Following the discussion of phase changes in Chapter 3 it is useful to

consider the relevant order parameters for a liquid crystalline phase
transition. The three most primitive phases of liquid crystals are nematics
(a single direction of preferred orientation), cholesterics (nematics with
the orientational direction twisting along a helix) and smectics (with long
range order in one or two dimensions).
With nematic liquid crystals it is conventional to use the second order

Legendre polynomial (P2), which is based on a spherical coordinate
system (u, f, r), to quantify the degree of orientational alignment of
the molecules:

S ¼ hP2ðcos uÞi ¼
3

2
cos
2

u � 1

2

� �
ð4:1Þ

Enthalpy 
(H)

Temperature (T) 

Isotropic

Nematic

Endotherm

(a)

n
Increasing
order

n

Isotropic liquid 

(b)

Nematic liquid crystal

Figure 4.5 (a) Differential scanning calorimetry can measure the enthalpy as a
function of temperature for a liquid crystalline material, and shows the endotherm
due to an isotropic-nematic phase change. (b) Schematic diagram that indicates the
increased orientational ordering upon an isotropic-nematic phase transition for small
rigid molecules
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where u is the angle that the long axes of the molecules make with the
nematic director and h i implies that the mean value is to be calculated
(Figure 4.6). The director is a unit vector that indicates the average
direction of alignment of the molecules. The calculation for the nematic
order parameter can be pictured by the calculation of a 3

2 cos
2 u � 1

2 term
for each molecule in the solution, and then to average them over all the
molecules. This nematic order parameter (S) is equal to one for a
perfectly aligned nematic parallel to the director, � 1

2 for a perfect
perpendicular alignment and zero for an isotropic liquid. A typical plot
for the variation of S as a function of temperature during the isotropic–
nematic phase change is shown in Figure 4.7. The nematic order para-
meter (S) decreases with increasing temperature and is lost abruptly at
Tc, the temperature of the first order phase transition.

n

θ

Figure 4.6 The long axes of the mesogens in a nematic phase of biological molecules
become ordered along a single axis
(n is the direction of the average value of the director field. u is the angle the rods make
with the director.)

0.5

10.92 

S

T/TC

Figure 4.7 Temperature dependence of the nematic order parameter (S)
(AboveTc thematerial forms an isotropic phasewhereas belowTc it is a nematic liquid
crystal.)
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An additional order parameter in combination with that for nematicity
is required to describe the lamellar ordering found with smectic liquid
crystals, i.e. the one dimensional lattice structure needs to be described. A
lamellar order parameter is defined through the expansion of the electron
density of the periodic smectic stack as a Fourier series in the direction
perpendicular to the stack (z). The first cosine term is then kept as a good
first approximation for the stack density. The order parameter (c) is
defined as the amplitude of this cosine function:

rðzÞ ¼ r0 1þ c cos
2pz

d

� �� �
ð4:2Þ

where d is the spacing of the layers, r0 is a constant electron density and
r(z) is the electron density of the stack as a function of z. The lamellar
order parameter ðc) can be measured using X-ray, atomic force micro-
scopy (AFM), neutron and light scattering techniques (Figure 4.8). It is
possible to theoretically predict the behaviour of the smectic and nematic
order parameter described by equations (4.1) and (4.2) near to a critical
point of a phase transition using a model due to Landau (Section 4.2). A
further chiral order parameter is needed for a discussion of the phase
behaviour of cholesterics and is introduced with an analysis of the
elasticity of these twisted nematic phases.
The isotropic–nematic phase transition for small rigid biological mole-

cules in solution is now fairly well understood. Both analytic models and
simulations quantitatively predict the onset of a nematic phase and are in
good agreement with experimental systems in which intermolecular
potentials approximate to a hard sphere interaction. For short rigid
rods in solution, Lars Onsager analytically determined the phase diagram

Electron 
density cosine

ρ(z) 

z

n

Mesogen

Figure 4.8 The smectic order parameter is typically defined as the amplitude of a
sinuisoidal expansion of the electron density of the lamellar stack
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for nematic liquid crystals and found that it could be simply predicted as
a function of the aspect ratio of the molecules (L=D, length (L) and
diameter (D)) and the volume fraction (f) (Figure 4.9). Below a critical
value of the product fL=D, the solution adopts an isotropic liquid
structure:

Isotropic ordering
fL

D
< 3:34 ð4:3Þ

whereas above an upper bound the rods adopt a perfect nematic
ordering:

Nematic ordering
fL

D
> 4:49 ð4:4Þ

There is coexistence of the isotropic and nematic phases between the
two critical values (Figure 4.10) described by equations (4.3) and (4.4).
This process of liquid crystalline ordering is a first order phase
transition.

Liquid crystalline phases can also be adopted by long semi-flexible
polymeric molecules such as DNA, collagen and carrageenan. The beha-
viour is more complicated than that displayed with simple rod-like
molecules, because the internal degrees of freedom (conformations) of
the polymer must be considered. The adoption of liquid-crystalline
phases in polymers is therefore related to their persistence lengths

0 1Order parameter (S)

Free 
energy 

φL/D = 4.5

φL/D = 3.3

Nematic

 Nematic/isotropic 

Isotropic 

Figure 4.9 The free energy diagram of a solution of hard rods as a function of the
nematic order parameter (S) shows the stable regions of nematic, nematic/isotropic,
and isotropic phases. The critical parameter that determines the phase behaviour is the
volume fraction (f) multiplied by the aspect ratio (L=D)
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(Section 8.1). The isotropic/nematic phase diagram is qualitatively simi-
lar to that with small molecules (Figure 4.10) when the chains are semi-
flexible, with the phase boundaries renormalised by the magnitude of the
persistence length. As the orientational ordering grows in a solution of
semi-flexible chains so does the mean size of the chains along the order-
ing axis. The phase diagram of fD virus solutions in shown in
Figure 4.11. These virus molecules are an ideal experimental system to
examine semi-flexible liquid crystals. fD viruses form an optically obser-
vable microscope smectic phase (Figure 4.12) and are perfectly mono-
disperse, since their protein sequence is genetically determined.

Nematic

 Isotropic

Two phase

0.20

250

0

Aspect 
ratio (L/D) 

Volume 
fraction

Figure 4.10 Phase diagram for a solution of hard rods as a function of the aspect ratio
(L=D) and the volume fraction
(The phase behaviour is determined from the free energy shown in Figure 4.9.)
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Figure 4.11 Experimentally determined phase diagram for fD virus solutions (chiral
semi-flexible molecules) as a function of density (r) and ionic strength (I)
[Reprinted with permission from S. Fraden in ‘Observation, Prediction and Simulation
of Phase Transitions in Complex Fluids’, Eds M. Baus, L.F. Rull and J.P. Ryckaert,
Kluwer Acdaemic Press, NATO ASI Series C, Vol. 460, Copyright (1995) Springer
Science and Business Media]
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For an elastic Hookean spring in one dimension the energy (E) stored
in the system as it is extended beyond its equilibrium length is given by
the familiar expression:

E ¼ 1
2 Kx2 ð4:5Þ

where x is the extension and K is the spring constant (Figure 4.13).
The factor of a half is included so that upon differentiation the restoring
force on the spring is given by Kx (Hooke’s Law). In three dimensions
(Chapter 11) the elasticity of an arbitrarily chosen material is much more
complicated and a compliance tensor (a matrix of 81 numbers) is needed
in place of K. Fortunately, liquid crystalline materials have an elasticity
which is dependent on only the orientation of the director and the
distortion of the director field. Thus simple nematic liquid crystals in
three dimensions only require three elastic constants K1 (splay), K2

(twist) and K3 (bend) for a complete description of their elasticity. The
elastic energy (or free energy) of a nematic is constructed using symmetry
relations. A fair amount of mathematical effort is required for the

Figure 4.12 Differential interference contrastmicroscopy image from smectic phases
of fD viruses whose phase diagram is shown in Figure 4.11
(The white scale bar is 10 mm and the smectic periodicity is 0.92 mm [Reprinted with
permission from Z. Dogic and S. Fraden, Physical Review Letters, 78, 12, 2417–2420,
Copyright (1997) American Physical Society])
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derivation, but the free energy per unit volume (Fv) of a non-chiral
nematic liquid crystal is found to be:

Fv ¼ 1
2 K1½r:n�2 þ 1

2 K2½n:ðr � nÞ�2 þ 1
2 K3½n � ðr � nÞ�2 ð4:6Þ

where K1, K2, and K3 are the spring constants with units Joules m�3, and
n is the unit vector describing the direction of the orientation of the rod-
like molecules (the director). This nematic free energy (equation (4.6))
has the same form as that of a single elastic spring (equation (4.5)),
except three elastic constants are now required to describe the material.
A typical value of K3 for a short molecular liquid crystal is 10�11 Nm�2

and it is normally two to three times bigger than K1 and K2.
To physically understand the formula for the free energy (Fv) it is

useful to simplify the vector calculus of equation (4.6). If the director (n)
is along the z direction all of the derivatives of the z component of the
director (nz) are equal to zero:

@nz

@x
¼ @nz

@y
¼ @nz

@z
¼ 0 ð4:7Þ

The individual terms in equation (4.6) can then be calculated using
equation (4.7)

½r:n�2 ¼ @nx

@x

� �
y;z

þ @ny

@y

� �
x;z

" #2
ð4:8Þ

½n � ðr � nÞ�2 ¼ @ny
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� �2

x;y

þ @ny

@z

� �2

x;y

ð4:9Þ

½n:ðr � nÞ�2 ¼ @ny
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� �
y;z
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x;z

" #2
ð4:10Þ

x

Figure 4.13 Schematic diagram of the extension of a spring in one dimension
(The spring is extended by a distance x and it stores elastic energy.)
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The director field when only the first term on the right hand side of
equations (4.8), (4.9) and (4.10) is not zero is shown in Figure 4.14. This
figure allows a useful intuitive picture to be developed for the meaning of
splay, twist and bend distortions.

The Frank’s free energy (equation (4.6)) can be extended to describe a
cholesteric liquid crystal. To model a chiral nematic (cholesteric) phase
aligned perpendicular to the x-axis the director needs to follow a helical
path (Figure 4.15) given by:

nx ¼ 0 ð4:11Þ

ny ¼ � sin
2px

P

� �
ð4:12Þ

nz ¼ cos
2px

P

� �
ð4:13Þ

The cholesteric director thus twists around the x-axis with a character-
istic length scale that describes the axial repeat called the pitch (P). The
div and curl of the director are required to construct the free energy in
equation (4.6) and they are:

r:v ¼ 0 ð4:14Þ

ðr � nÞy ¼
2p

P
sin

2px

P
ð4:15Þ

ðr � nÞz ¼ �2p

P
cos

2px

P
ð4:16Þ

z

x

Splay
(K1)

Twist
(K2)

Bend
(K3)

n n n

x

zz

x

Figure 4.14 Visualisation of the splay, twist, and bend constants for the director field
of a nematic liquid crystal aligned along the z-axis
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Therefore, each of the three terms on the right hand side of equation (4.6)
are:

½r:n�2 ¼ 0 ð4:17Þ

½n:ðr � nÞ�2 ¼ 2p

P

� �2

ð4:18Þ

½n � ðr � nÞ�2 ¼ 0 ð4:19Þ

and the total free energy only has a contribution from the twist term:

Fv ¼ 1

2
K2

2p

P

� �2

¼ 1

2
K2a

2 ð4:20Þ

where a ¼ 2p=P. Twist is the only distortion present in this simple
example of a cholesteric liquid crystal. In a nematic liquid crystal (with
no chirality) a helical distortion is therefore unstable and a twisted
nematic will relax the twist distortion to minimise its free energy.
Upon minimisation of equation (4.20), a is zero and the pitch becomes
infinite. The free energy for a chiral nematic thus needs a linear term to be
added to equation (4.20) to stabilise its free energy:

K4½n:ðr � nÞ� ð4:21Þ

Figure 4.15 (a) The helical pitch (q0) of a cholesteric liquid crystal. It is the separation
distance over which the directors are aligned. (b) The free energy density (Fv) for non-
chiral (k2¼0) and chiral liquid crystals (k2>0) as a function of the helical pitch (q0)
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where K4 is a new elastic constant, which measures the degree of chirality
of the system. K4 corresponds to an intrinsic chirality of the mesogens
which is common facet of biological molecules (e.g. DNA, helices in
proteins and carbohydrates, beta sheets in proteins, and lipids can all
have an intrinsic chirality) and in principle can be calculated from the
molecular details of the mesogens. The helical director field equations
(4.11–4.13) can be substituted into the Frank’s free energy with the
additional term (equation (4.21)) to give:

P ¼ 2pK2

K4
ð4:22Þ

a0 ¼
K4

K2
ð4:23Þ

The pitch (P) is related to the ratio of the two elastic constants (a0), the
chiral term divided by the twist term. The free energy per unit volume is
given by:

Fv ¼ � K2
4

2K2
ð4:24Þ

The free energy as a function of cholesteric pitch is shown in
Figure 4.15(b). The pitch relaxes to zero if there is no molecular chirality
and the corresponding elastic constant (K4) will be zero.

The Franks free energy equation (4.6) can be used to calculate the free
energy of a nematic liquid crystal around a defect. Let the director field
parallel to the z-axis be:

nx ¼ cos½uðx; yÞ� ð4:25Þ

ny ¼ sin½uðx; yÞ� ð4:26Þ

nz ¼ 0 ð4:27Þ

where u(x; y) is the radial director of the mesogens. It is assumed that all
the elastic constants are equal (K ¼ K1 ¼ K2 ¼ K3), and the free energy
for an axial disclination can be calculated as:

Fv ¼ 1
2 K m2

r2
ð4:28Þ
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where m is the strength of the disclination (m ¼ � 1
2 ;�1;� 3

2 . . .Þ and r is
the radius of the core of isotropic material at the centre of the defect. The
free energy diverges as the radius of the disclination reduces to zero
(r ! 0) (Figure 4.16), and thus the nematic ordering becomes frustrated
at the centre of such an axial orientational defect.

4.2 LIQUID–NEMATIC–SMECTIC TRANSITIONS

The Onsager theory allows the shape of the phase diagram for an
isotropic–nematic transition to be calculated as a function of the aspect
ratio of the molecules and the volume fraction of the solution. The theory
allows both the form of the isotropic–nematic–smectic phase
diagram to be motivated and provides quantitative predictions for the
value of the order parameters near to the critical point of the phase
transition.
The Landau theory for the isotropic–nematic phase transition devel-

ops on the ideas introduced by Onsager (Figure 4.17). The theory gives
accurate information on the scaling of the phase behaviour near the
critical points. The Landau theory assumes that the nematic order para-
meter (S) is small for the nematic phase in the vicinity of the isotropic–
nematic transition and the difference between the free energy per unit
volume of the two phases ðGðS;TÞÞ can be expanded in powers of the
nematic order parameter ðSÞ:

GðS;TÞ ¼ Giso þ 1
2 AðTÞS2 þ 1

3 BS3 þ 1
4 CS4þ ð4:29Þ

where Giso is the free energy change for the isotropic material and A,
B and C are the expansion coefficients. AðTÞ is the most important

m = 1/2 

C = 0 C = 0 

m = 1 m = 1 
C = π/2

Figure 4.16 Schematic diagram of some of the defect textures encountered with
nematic liquid crystals
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parameter for the determination of the free energy change during the
phase transition and can be given a simple form (Figure 4.18) to a first
(good) approximation:

AðTÞ ¼ A0ðT � T�Þ ð4:30Þ

where T� is the critical temperature for the transition and A0 is
a constant. It is then possible to study the stability of the free energy
using this functional form. The solutions of equation (4.29) are given
by:

S ¼ 0 ðisotropicÞ ð4:31Þ

n

Isotropic   Nematic Smectic 

n

Figure 4.17 Schematic diagram of the isotropic–nematic and nematic–smectic phase
transitions in a molecular liquid crystal, e.g. these could be induced by an increase in
temperature

S

   G(S,T)–G ISO

0 0.7

>T** TC
T*

<T*

Figure 4.18 Schematic diagram of the free energy change (G�Giso) for a nematic
phase as a function of the order parameter (S) for the Landau model
(The temperatures shown areT� for a isotropic phase, andT�� for a nematic phase.Tc

is the critical temperature for the nematic phase transition.)
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And when the free energy change is minimised as a function of the
orientation:

@G

@S
¼ AðTÞS þ BS2 þ CS3 ¼ 0 ð4:32Þ

with the solution:

S ¼ �B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2C
ð4:33Þ

for the local maximum and minimum of G as a function of S. Such
theories for the behaviour of the orientational parameter as a function of
temperature are in reasonable agreement with experiment (Figure 4.19).
For the nematic–smectic transition it is also possible to construct a

similar theory for the free energy change during the process
(Figure 4.17). The order parameter (c) is now the amplitude of the
density of the layered structure (equation (4.2)). From the translational
symmetry of the layered stack the Landau free energy change can be
constructed as:

Gðjcj;TÞ ¼ Gnem þ 1
2aðTÞjcj2 þ 1

4bjcj
4 þ 1

6 gjcj
6 ð4:34Þ

where Gnem is the free energy change per unit volume of the nematic
phase, and a, b, and g are characteristic constants. Using this free energy
a phase diagram for the nematic–smectic transition of a material can be
motivated and is in reasonable agreement with experiment.

Nematic order 
parameter (S) 

0.6

0.55

0.5

0.45

0.4

0.35
–10 –8 –6 –4 –2 0

T–Tc (K)

Figure 4.19 Experimental order parameter determined near the isotropic–nematic
phase transition as a function of temperature compared with a fit of the Landau de
Gennes theory
[Reprinted with permission from P.J. Collings and M.J. Hird, Introduction to Liquid
Crystals, Copyright (1997) Taylor and Francis]
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4.3 DEFECTS

Defects are an important facet of the structure of both solid and liquid
crystalline biological materials. Theory and experiment aim to explain a
whole series of complex phenomena, e.g. how helices pack together in
soft solids, the dynamics of phase transitions and how chromosomes are
constructed.

In solid materials which exhibit lamellar (a one dimensional lattice)
and columnar (a two dimensional lattice) ordering, defect structures
always occur. The Landau–Pierels theorem states that the geometry of
one and two dimensional lattices is unable to constrain fluctuations in
the positions of the molecules and they must display defect structures on
large length scales, e.g. lamellar and columnar solids must be semi-
crystalline or liquid crystalline. Another important biological example
of solid defect structures is the ordering of helical molecules on a
hexagonal lattice, which is commonly the case with solid biopolymers.
Each helix often has six identical neighbours and it is not possible for the
helices to align with all of their neighbours simultaneously unless the
helices have a perfect intrinsic sixfold symmetry, which is rarely the case.
There must be frustration in these helical crystals and they must contain
helical screw defects (Figure 4.20).

Defects in solids consist of two main categories. Point imperfections
are vacancy interstitial defects that involve an atom or molecule taken
from a surface and inserted in an interior site not normally occupied.
Line imperfections are defects localised along a continuous curve that

Cross section 
through a 
helix 

Figure 4.20 Defect structures in the packing of helices on a hexagonal lattice
(The arrows indicate the orientation of the inter-helix potential in the horizontal cross
section. The inter-helix potential is frustrated by the symmetry of the lattice.)
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passes through the ordered medium. The Volterra process is a geome-
trical method for the creation of dislocations in solids and is shown in
Figure 4.21. This process is useful for classifying dislocation structures.
There are two distinct categories of line defects; dislocation line

defects, which involve translation of one part of a crystal with respect
to another part, and disclination line defects that involve rotation of one
point of the material relative to another part (Figure 4.21). The energy of
disclinations is provided by the elastic energy associated with long range
distortions of the director field and can be calculated using generalised
theories of elasticity, such as those discussed earlier (equation (4.26)).
The strength of a disclination is determined by tracing a closed path that
surrounds the disclination core, which tracks the orientation of the
director field (Figure 4.22). The disclination strength (m) is defined as
the normalised total angle or director reorientation in a complete circuit
around the defect:

m ¼ 1

2p
o

ð
df

du
du ¼ ftotal

2p
ð4:35Þ

θ

z

x r

b

b

b

Ω

Ω

(a) (b) (c)

(d)
(e)

Figure 4.21 Dislocations and disclinations in a cylindrical section of an elastic media
((a) Screw dislocations, (b) and (c) edge dislocations, (d) wedge disclination, and
(e) twist disclinations can occur.)
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where fðrÞ is the angle of the director at a position r, ftotal is the total
angle in a complete circuit and u is the angle that r makes with the
positive horizontal axis.

H
is the line integral around a complete circuit.

An illustration of a hedgehog disclination of strength one found in a
polymeric biological liquid crystal is shown in Figure 4.23. The diffrac-
tion patterns from small micron sized elements in the biopolymer indi-
cate the direction of the helical mesogens and are mapped across a single
starch granule (� 60 mm) using a scanning X-ray microdiffraction tech-
nique. This diffraction technique is a direct molecular probe of the
structure of micron sized disclinations in the material. Another method
to characterise disclinations in a liquid crystalline material is with
polarised optical microscopy (Figure 4.24). The number of brushes
that emanate from a defect (N) allows the strength of the defect to be

m = +1 
C = 0 

Path of line 
integral 

Ordering of 
meso g  ens

Figure 4.22 To calculate the strength (m) of a defect a line integral is used to add up
the changes in direction. A hedgehog disclination is shown

Figure 4.23 Single hedgehog defects naturally occur for the orientation of helical
mesogens in carbohydrate granules
[Ref.: T.A. Waigh, K.L. Kato, A.M. Donald et al., Starch, 2000, 52, 12, 2000]
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calculated (m ¼ N=2). The sign of the defect (�) can be determined from
the direction of rotation of the brushes when one of the polarisers in the
microscope is rotated.
From the generalised theory of elasticity the elastic energy per unit

length (E) of a solid disclination located along the central line of a
cylinder of radius R can be calculated as:

E ¼ 2pKm2 ln
R

rc

� �
þ Ecore ð4:36Þ

where K is the average elastic constant of the material, m is the strength
of the defect, rc is the radius of the core and Ecore is the core energy. The
core of the line defect is in the order of the molecular size and it is
assumed to contain isotropic randomly oriented material. The force (f12)
between a pair of straight parallel disclinations with strength m1 and m2

separated by a distance r12 is:

f12 ¼ �2pKm1m2
r12

ðr12Þ2
ð4:37Þ

When the strength of the two defects is equal, but of opposite sign, f12 is
attractive and the defects can combine and cancel each other out.
For smectic materials step-like terraced defects are observed under

optical and atomic force microscopes (Grandjean terraces). Optical
polarising microscopy indicates that there are large scale defect patterns
specific to smectic liquid crystals, such as Duplin cyclides and focal conic
domains (Figure 4.25).

m = +1/2 
C = 0 

m =  –1
C = 0 

m = +1 
C = 0 

m = –1/2
C = 0 

m = +1 
C =  π/4

m = +1 
C = π/2 

(a) 

Orientation of
crossed polars 

(b)

Figure 4.24 (a) Examples of the orientationof the disclinationfields of liquid crystals.
(b) The defect textures that correspond to (a) when the liquid crystals are observed
under a polarising microscope with crossed polars
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X-ray scattering is a standard technique for characterising smectic
liquid crystalline materials (Figure 4.26). Owing to the Landau–Peierls
instability the Bragg peaks that normally occur with crystalline materials
are broadened into power law cusps with X-ray scattering from smectics.
Measurement of the functional form of these cusps allows the bending
rigidity of smectic stacks to be accurately calculated, which is intimately
connected with the defect texture demonstrated by the material.

Smectic 
layers 

(a)  duplin cyclides (b)  focal conics

Figure 4.25 Defect textures observed with smectic liquid crystals

103(qz /q –1) 0

–1 0 1 2 3 4 5

0.01

0.1 

1

Intensity
(I(qz))

η = 0.38

η = 0.17

Figure 4.26 Bragg peaks are broadened into power law cusps by the thermal fluctua-
tions of the smectic layers
(The intensity is shown as a function of the reducedmomentum transfer perpendicular
to the smectic stack. The dashed line is a fit to I � jqz � q0j�2þh that can provide the
bending rigidity of the layers.)
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Twisted grain boundary defects in smectic–cholesteric materials such
as DNA (Figure 4.27) have recently experienced a large amount of
theoretical research, since there is an analogy with the phase behaviour
of superconductors using the Landau equation (4.33) for the nematic-
smectic transition. Many other liquid crystalline defect textures have
been observed in naturally occurring ‘soft solid’ biological materials
(Figure 4.28). Another sophisticated example of a biological defect
structure is the blue phase in collagen (Figure 4.29), where the
chirality of the collagen molecules is again closely related to the texture
observed.

4.4 MORE EXOTIC POSSIBILITIES FOR LIQUID
CRYSTALLINE PHASES

Biological polymeric liquid crystals are often induced by the increased
persistence length produced by a helix–coil transition (e.g. DNA, and

d

lb

ld 2πα

dislocation 

Grain boundary 

Figure 4.27 Schematic diagram of a twisted grain boundary phase in a smectic liquid
crystalline material. The chirality of the mesogens causes this unusual defect phase
[Reprinted with permission from J. Goodby, M.A. Waugh, S.M. Stein et al., Nature,
337, 449, Copyright (1988) Macmillan Publishers Ltd]
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collagen), and conversely liquid crystalline phases can induce increased
persistence lengths in polymers due to steric constraints. Thus helicity is
seen to be intimately involved with the appearance of liquid crystalline
phases.

Starch, a storage polysaccharide, and many proteoglycans are natu-
rally occurring examples of side-chain liquid crystalline polymers
(Figure 4.30). In these materials additional order parameters are required
to simultaneously describe the nematic, cholesteric and smectic phases of
both the backbone and the side-chains. A wide range of distinct meso-
phases are conceivable due to all the possible permutations of the values

Figure 4.28 Awide range of defect textures are observed naturally in fibrous biopo-
lymers. These include (a) cylindrical helicoidal defects, e.g. bone, (b) orthogonal
defects, e.g. basement lamellar in vertebrates, (c) twisted orthogonal defects, e.g.
vertebrate cornea, (d) parallel defects, e.g. tendons, and (e) pseudo orthogonal defects,
e.g. endocuticle of beetles
[Reprinted with permission from A.C. Neville, Biology of Fibrous Composites, Copy-
right (1993) Cambridge University Press]

Figure 4.29 (a) The solid cholesteric liquid crystalline blue phase observed in the skin
of fish is very similar inmorphology to (b) the liquid cholesteric liquid crystalline phase
in synthetic small molecule mesogens
[Ref.: M.M. Giraud, J. Castanet and F.J. Meunier, Tissue and Cell, 1978, 10, 671–686]
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of the order parameters. The intricate inter-relationships of the order
parameters for the backbone and side-chains directly relates to the
macroscopically observed physical behaviour of these materials.

It is possible for the orientational order of liquid crystals to persist into
the solid state without forming a fully crystalline lattice, in so called
‘solid liquid crystals’. ‘Liquid’ in this case describes the highly disordered
(amorphous) static distribution of the molecules in their liquid crystalline
lattice. Solid nematic elastomer phases are formed by cross-linking
mesogens with flexible (rubbery) polymeric chains. Liquid crystalline
elastomers models have been proposed for solid biopolymer elasticity
(Figure 4.31), e.g. the unusual soft anisotropic elasticity observed in
collagen networks and spider silks.

FURTHER READING

H.M. Schey, Div, Grad, Curl and All That, W.W.Norton, 2005. A
booster course in vector calculus.

P.J. Collings and M. Hird, Introduction to Liquid Crystals, Taylor and
Francis, 1997. Provides a good introduction to the physics and physi-
cal chemistry of small molecule liquid crystals.

A.C. Neville, Fibrous Composites, Cambridge University Press, 1993.
Provides a large range of examples of biological liquid crystals.

P. Chaikin and T. Lubensky, Condensed Matter Physics, Cambridge
University Press, 1995. Mathematically advanced treatment of liquid
crystals.

M. Kleman and O.D. Lavrentovich, Soft Matter Physics, Springer, 2003.
Similar in level to Chaikin and Lubensky’s treatment.

S.M. Allen and E.L. Thomas, The Structure of Materials, John Wiley &
Sons Ltd, 1999. An introduction to materials science that includes a
good description of defect morphology.

n

Figure 4.31 Liquid crystalline elastomers where n is the director for the nematic
ordering. The mesogens are cross-linked in a rubbery network

FURTHER READING 103



TUTORIAL QUESTIONS

4.1) Hydrated potato starch consists of a smectic ordering of the
double helical crystallites (Figures 1.16 and 4.32). If the starch
sample is heated to create a chip there are three different order
parameters that determine the manner in which it cooks: the
helicity (h), the nematic order parameter (P2) and the smectic
order parameter (c). What sequence of phase transitions is
possible as the chip is cooked (a possible scenario is shown in
Figure 4.32)? What physical processes cause coupling between
the three order parameters?

4.2) Calculate the nematic order parameter P2(cosu) for a sample of
mucin molecules in the trail of a slug if their orientation follows a
top hat function given by:

PðuÞ ¼ 2

p

p

4
< u <

3p

4

PðuÞ ¼ 0 Otherwise

In a particular trail of slime the mucin molecules have defects of
strength two. How many brushes (black lines in the image)
would emanate from the defects under a polarising microscope?

Helix–Coil 
Transition 

Smectic Nematic Gel (a chip) 
(P2 > 0, ψ > 0, h > 0) (P2 > 0,ψ = 0, h > 0) (P2 = 0, ψ = 0, h = 0) 

Double 
helix 

Figure 4.32 A possible sequence of phase transitions that occurs during the break
down in structure of a hydrated potato starch granule when heated
[Ref.: T.A. Waigh, M.J. Gidley, B.U. Komanshek and A.M. Donald, Carbohydrate
Research, 2000, 328, 165–176]
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4.3) A cylindrical virus is 200 nm in length and 10 nm in diameter.
What is the critical volume fraction of virus particles to observe
a nematic liquid crystalline phase according to the Onsager
theory?

4.4) The addition of flexible side-chains to a flexible protein back-
bone induces the protein backbone to becomemore rigid and can
result in the creation of a nematic phase. Can you suggest a
reason for the induced rigidity?
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5
Motility

Both living and inanimate microscopic objects are subject to thermal
fluctuations that cause them to jiggle about incessantly when viewed
under an optical microscope. Many biological organisms modify these
thermal fluctuations to facilitate transport of molecules and to move
through their environment. Motility in biological systems is crucially
important in a wide range of biological processes including the transcrip-
tion of DNA, the packaging of DNA in viruses, the propulsion of
bacteria as they search for food and the exercise of striated muscle
(when a dumb bell is lifted). Initially, an understanding of the undriven
process of passive diffusion due to thermal energy is developed, and this
is then extended to the analysis of the motions produced by molecular
motors (see also Chapter 14).

Owing to the importance of motility in determining biological pro-
cesses, a series of non-invasive methods have been developed to measure
molecular mobility (Chapter 13); these include fluorescence correlation
spectroscopy, pulsed laser techniques, dynamic light scattering, neutron/
X-ray inelastic scattering, video particle tracking and nuclear magnetic
resonance spectroscopy. Due to this impressive range of dynamic experi-
mental techniques, the field of biological motility has been provided with
firm foundations. The time scales that can now be probed experimentally
in biomolecular liquids span from femtoseconds (10�15 s), all the way up
to the aging processes of biopolymer glasses, which can be on the order
of many years.

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



5.1 DIFFUSION

Diffusion is the process by which molecules jiggle around over small
distances due to thermal collisions with their neighbours, and equiva-
lently, diffusion can be used to explain how macroscopic concentration
gradients in materials evolve with time. Thus a food dye injected into
water eventually colours the whole vessel as the dye diffuses throughout
the specimen; the jiggling motion at the nanometre level produces a
global redistribution of the dye molecules at the macroscale. To obtain
a quantitative understanding of the process of diffusion, the phenom-
enon is first described in a statistical way relevant to short distances. At
the macroscopic level an equivalent description is provided by Fick’s law
for the concentration of a diffusing species.
As a first step it is useful to examine the statistical form of translational

diffusion in one dimension, which considerably simplifies the analysis. In
one dimension the displacement ðxiðnÞÞ of a particle as a function of the
position of the previous random displacement ðxiðn� 1ÞÞ after n steps is:

xiðnÞ ¼ xiðn� 1Þ � e ð5:1Þ

where e is the random step size and n is the number of steps. The
probability that a particle moves to the right (þe) is assumed to be equal
to that with which it moves to the left (�e). The average of the displace-
ments ðxiÞ is zero ðhxiðnÞiÞ, so the square of this quantity needs to be used
to create a meaningful measure of the particle’s motion:

x2i ðnÞ ¼ x2i ðn� 1Þ � 2exiðn� 1Þ þ e2 ð5:2Þ

Next the mean square value of the displacement is constructed, the second
term in equation (5.2) is seen average to zero, since hxiðn� 1Þi ¼ 0.
Therefore the mean square displacement ðhx2ðnÞiÞ is given by:

hx2ðnÞi ¼ 1

N

Xn
i¼1

x2i ðnÞ ¼ hx2ðn� 1Þi þ e2 ð5:3Þ

This expression for the mean square displacement is an iterative equation
that relates the mean square displacement at step n ðhx2i ðnÞiÞ to that of
the previous step ðhx2i ðn� 1ÞiÞ. Equation (5.3) can be iteratively applied
all the way down to the first step of the motion ðn ¼ 1Þ and it is seen that
the mean square displacement scales as the number of time steps:

hx2ðnÞi ¼ ne2 ð5:4Þ
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where n is proportional to the number of time steps. This linear scaling of
the mean square displacement with the time is a basic characteristic of
diffusive motion. It can be compared with familiar ballistic motion (e.g. a
bullet from a gun) where hx2i scales as n2.

The number of time steps over which the particle diffusion is consid-
ered is related to the time (t) and the step size (t). Thus the number of
steps is given by n ¼ t=t and this expression can be substituted in
equation (5.4) to give:

hx2ðtÞi ¼ e2

t

� �
t ð5:5Þ

The diffusion coefficient (D) is then defined to quantify the magnitude of
the mean square fluctuations during this one dimensional statistical
process:

D ¼ e2

2t
ð5:6Þ

Particles with large diffusion coefficients fluctuate a considerable amount
and vice versa. The factor of a 1=2 is used to tidy up Fick’s equation that
results from the continuum description of the macroscopic behaviour
(equation 5.16). The combination of equations (5.5) and (5.6) gives an
expression that relates the diffusion coefficient to the mean square
fluctuations of displacement in one dimension:

hx2ðtÞi ¼ 2Dt ð5:7Þ

Diffusion in one dimension statistically corresponds to the probability
distribution of the particle positions broadening with time (Figure 5.1). A
sharp point-like distribution of particles at the first time step ðt ¼ 1Þ
evolves into a broad distribution ðt ¼ 15Þ as diffusive motion takes place.

For a small molecule in water at room temperature a typical diffusion
coefficient (D) is 10�5 cm2 s�1. The characteristic time ðtcÞ for this
molecule to diffuse the length of a bacterium (10�4 cm) is then
tc � x2=2D ¼ 5� 10�4 seconds.

For two or three dimensions the extension of the definition of the
diffusion coefficient is fairly straightforward:

hr2i ¼ 2NDt ð5:8Þ
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where r is the displacement in N dimensions, t is the time and D is the
diffusion coefficient. An example of a two dimensional random walk is
shown in Figure 5.2 for a polystyrene sphere moving in both water and a
more viscous glycerol solution. Clearly an increase in the viscosity of the

t=1 

t=5 

t=15 

Displacement (x) 

Particle 
concentration 

0

t=0

Figure 5.1 The evolution of the Gaussian probability distribution of freely diffusing
particles with time (All of the particles start at x ¼ 0, when t ¼ 0.)
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Figure 5.2 Translational diffusion of a 0.5 mm colloidal sphere in (a) water and (b)
glycerol for two different periods (1 and 10 seconds)
[Ref.: PhD A. Papagiannopoulos, University of Leeds, 2005]
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solution decreases the amplitude of the fluctuations of the displacement
of the polystyrene spheres. The decrease in the spheres’ fluctuations is
explained by the increased friction experienced by the particle. The
diffusion coefficient is related to the dissipating force using the Einstein
relationship (the fluctuation–dissipation theory):

D ¼ kT

f
ð5:9Þ

where kT is the thermal energy, D is the diffusion coefficient and f is the
frictional coefficient. The generalisation of this expression to viscoelastic
materials is considered in Chapter 13.

For a sphere in a fluid, with the assumption of non-slip boundary
conditions, the frictional coefficient (f) can be calculated from the
Navier–Stokes equations and is given by the Stoke’s relationship:

f ¼ 6pha ð5:10Þ

where h is the viscosity of the solution and a is the particle radius.
Friction coefficients are known (or can be numerically calculated) for a
wide range of rigid microscopic objects in solution. The Stokes–Einstein
equation for a sphere combines equations (5.9) and (5.10):

D ¼ kT

6pha
ð5:11Þ

Thus measuring the fluctuations in a particle’s position as a function of
time (or equivalently the diffusion coefficient) the size of the particle can
be calculated.

It is important to note that there is a difference between mutual and
self-diffusion for the motion of an array of particles. With mutual
diffusion the fluctuating rearrangement of particles with respect to their
neighbours is considered, whereas with self-diffusion it is the rearrange-
ment of individual particles relative to the laboratory frame of reference
that is important. Experimental techniques are often sensitive to one or
other of the two types of diffusion. The previous discussion was centred
on translational self-diffusion. Quasi-elastic scattering techniques often
provide information on translational mutual diffusion.

Particles in solution experience fluctuations in their rotational motion
in much the same way as with translational motion. The particles are
constantly being buffeted by the surrounding solvent molecules, which
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impart angular momentum to them. A similar statistical analysis is
possible for their angular motion as that for translational motion. The
mean square angular rotation ðhu2iÞ is related to the time (t) through the
rotational diffusion coefficient ðDuÞ:

hu2i ¼ 2NDut ð5:12Þ

whereN is the number of angular degrees of freedom (the Euler angles in
three dimensions). The fluctuation dissipation theory can again be used
and relates the rotational diffusion coefficient to the thermal energy ðkTÞ
and the fricitional coefficient ðfuÞ for rotational motion:

Du ¼
kT

fu
ð5:13Þ

For a sphere the frictional coefficient for rotational motion is given by:

fu ¼ 8pha3 ð5:14Þ

where a is the radius of the sphere and h is the solvent viscosity.
Equations (5.12) and (5.13) can be combined to provide an expression
for the rotational diffusion coefficient of a sphere:

Du ¼
kT

8pha3
ð5:15Þ

The rotational frictional coefficient is strongly dependent on the particle
radius (a) and thus large particles rotate very slowly.
There is a macroscopic description of translational diffusion which

uses Fick’s laws, and is equivalent to the microscopic approach on small
distances. Fick’s first equation relates the flux of particles ðJxÞ that are
diffusing to the gradient of the particle concentration ð@c=@xÞ:

Jx ¼ �D
@c

@x
ð5:16Þ

where the particle concentration ðcÞ is in moles per cm3 and the flux is in
moles per cm2 s. The net flux (at position (x) and time (t)) is proportional
to the gradient of the concentration function (at x and t). The constant of
proportionality is the negative of the diffusion coefficient ð�DÞ.
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Fick’s second equation is:

@c

@t
¼ D

@2c

@x2
ð5:17Þ

The time rate of change in concentration (at x and t) is proportional to
the curvature of the concentration function (at x and t), and the constant
of proportionality is again the diffusion coefficient ðDÞ.

A non-uniform distribution of particles redistributes itself in time
according to Fick’s two laws. This is pictured in Figure 5.3 where a
sharp concentration gradient in dye molecules is reduced during time by
inter-diffusion of the dye/solvent system.

In three dimensions Fick’s two laws can be written in vector notation
as:

J ¼ �Drc ð5:18Þ

@c

@t
¼ Dr2c ð5:19Þ

For a quick solution to Fick’s law partial differential equations in a
particular geometry, the most efficient strategy is to look them up in a
specialist applied mathematics text book. Solution of such diffusion
problems often requires sophisticated mathematical methods. A few
results for the diffusive behaviour in some specific geometries are out-
lined in the following to give a flavour of the basic principles involved.

(a) Diffusion from a point source. Consider the injection of some
fluorescent dye molecules from a micropipette in a water bath.

Displacement of boundary (x) 

0
0

Bulk 
concentration 
(C0)

1
5        15 

0

Concentration 
of diffusing 
particles 

Figure 5.3 The development of the concentration gradient of a step profile as a
function of time (at t ¼ 0, 1, 5 and 15 seconds)
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The diffusion of the dye is found to be well described by the
Gaussian equation:

cðr; tÞ ¼ N

ð4pDtÞ3=2
exp

�r2

4Dt

� �
ð5:20Þ

where cðr; tÞ is the concentration of the dye molecules as a func-
tion of time (t) and position, r is the distance from the point of
injection, and N is the total number of dye molecules. The flux of
dye molecules can then be calculated from Ficks first law, equation
(5.15), using this concentration profile. Experimentally the dye
molecules under a microscope will first appear as a bright spot
upon injection that spreads rapidly outwards and then fades
away as the concentration becomes homogenised at a constant
low value (Figure 5.1). How the concentration at a single
spatial position from a point source evolves with time is shown
in Figure 5.4.

(b) Diffusion to a spherical adsorber. It is assumed that every diffusing
particle that reachs the surface of a sphere is gobbled up
(Figure 5.5(a)). These boundary conditions are slightly artificial
(perhaps a good model for a stationary feeding bacterium), but
mathematically the concentration at the surface of the sphere
ðr ¼ aÞ is assumed to be zero and at a long distance from the
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Figure 5.4 Development of the concentration profile with time (t) at a fixed position
from a point source as a function of the diffusion coefficient ðDÞ
[Reprinted with permission from H.C. Berg, Random Walks in Biology, Copyright
(1993) Princeton University Press]
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sphere ðr ¼ 1Þ it is c0. The solution for the concentration of
diffusing particles is found to be:

cðrÞ ¼ c0 1� a

r

� �
ð5:21Þ

where a is the radius of the sphere. The flux of diffusing particles
can then be calculated from Fick’s first law (equation (5.15)):

Jr ¼ �D
@c

@r
¼ �Dc0

a

r2
ð5:22Þ

The particles are adsorbed by the sphere at a rate equal to the area
4pa2 multiplied by the inward flux �JrðaÞ:

I ¼ 4pDac0 ð5:23Þ

The adsorption rate (I) is the diffusion current of particles per
second, and c0 is the particle concentration per cm

3. Similar results
with the current proportional to the size of the particles ðI � aÞ are
found for a wide range of different absorbing geometries and
thus the rate of capture from a reservoir of particles is relatively
independent of the geometry. This implies a wide range of
efficient mechanisms are possible in nature for the absorption of
biomolecules, and this is indeed observed experimentally. Such

Figure 5.5 Morphologies of different absorbers for diffusing particles
((a) sphere, (b) disk, (c) circular aperture and (d) ellipsoid. Arrows indicate themotion
of the diffusing species.)
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considerations are important for a range of reaction diffusion
problems and three more results will be quoted for completeness.

(c) For diffusion to a disk-like adsorber the adsorption rate (Figure
5(b)) is:

I ¼ 4Dsc0 ð5:24Þ

where s is the diameter of the aperture.
(d) For diffusion through a circular aperture (Figure 5(c)) from a

particle concentration of c1 to c2 the current is:

I2;1 ¼ 2Dsðc2 � c1Þ ð5:25Þ

The currents are not proportional to the area of the disk, but to its
radius (s).

(e) For diffusion to an ellipsoidal adsorber (Figure 5(d)) the concen-
tration at the surface of the ellipsoid is zero and the concentration
at large distances of separation ðr ¼ 1Þ is c0. The length of the
ellipsoid is a and its width is b. If the length is much bigger that the
width a � b the diffusive current is:

I ¼ 4pDac0
lnð2a=bÞ ð5:26Þ

Again the current is roughly proportional to the length (a).

5.2 LOW REYNOLD’S NUMBER DYNAMICS

In molecular biophysics diffusion predominantly occurs under low
Reynolds number conditions. This provides some counterintuitive
results, since viscous effects dominate the motion and particle inertia is
negligible, but the good news is that low Reynold’s number conditions
greatly simplify the mathematics required to understand the motion of
biological molecules.
The Reynold’s number (R, a dimensionless ratio i.e. it has no units) of

a particle moving at a velocity (v) in a fluid is defined by:

R ¼ 2nLr

h
ð5:27Þ
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where L is the size of a particle, r is the specific gravity of the fluid and h is
the viscosity. The utility of the Reynold’s number is found through an
analysis of Navier–Stokes ‘equations, the equations that predict the gen-
eral motion of fluids. It is found that when R < 1 inertial forces (mdv/dt
the product of mass and acceleration) can be neglected at reasonably long
time scales (>ms) and furthermore there is no turbulent flow. For a
salmon that travels at a velocity (v) of 102 cms�1, with a length ðLÞ of
10 cm, specific gravity (r) of 1 gcm�3, and through water of viscosity (h)
of 10�2 gcm�1s�1, the Reynold’s number is 105 (large Reynold’s number
dynamics). However, for a bacterium that travels at v � 10�3 cms�1,
where L ¼ 10�4 cm; r � 1 gcm�3 and h � 10�2 gcm�1 s�1, the Reynold’s
number is very small R � 10�5 (small Reynolds number dynamics). Due
to the relative importance of the inertial terms the fish and the bacterium
have different strategies for swimming. The salmon propels itself by
accelerating the water that surrounds it. A bacterium uses viscous shear
to propel itself.

A useful example that emphasises the counterintuitive behaviour in
low Reynold’s number motility is to calculate the length a bacterium can
coast in water before it comes to a stop (Figure 5.6). The mathematical
analysis is very simple. Without any external forces in a purely viscous
material, Newton’s second law relates the acceleration ðdv=dtÞ to the
frictional force created by the surrounding water:

�m
dv

dt
¼ 6phav ð5:28Þ

where m is the mass of the particle, v is the velocity, h is the viscosity of
water and a is the particle radius. There is a velocity on both sides of this
equation and it can be integrated by parts:

dv

v
¼ � 6pha

m
dt ð5:29Þ

6πηav

Drag 
force 

a
Velocity 

Figure 5.6 The bacterium, which approximates to a spherical colloid (radius a),
experiences a drag force ð6phavÞ from the viscosity of the surrounding water which
rapidly decelerates its motion
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This equation is solved and it is found that the velocity relaxes to zero
with a characteristic time constant (t):

vðtÞ ¼ vð0Þe�t=t ð5:30Þ

t ¼ 2a2rs
9h

ð5:31Þ

where rs is the density of the particles. This result can be integrated once
more and provides the distance coasted ðdÞ by the bacterium before it
comes to a halt:

d ¼
ð1

0

vðtÞdt ¼ vð0Þt ð5:32Þ

Typical values can be substituted for v, a, rs and h, and the coasting
distance of a bacterium is found to be very small, it is in the order of 0.04 Å.
A range of microfluidic experiments depend on the low Reynolds

number approximation to interpret the resultant data, e.g. microrheol-
ogy apparatus and optical/magnetic tweezers at low frequencies (Chap-
ter 13). The full Langevin equation is a useful method for understanding
the effects of thermally driven motion in the case of higher Reynold’s
numbers. Practically it is encountered in situations such as the fluctua-
tions in the position of the atomic force microscope (AFM) tip or the
high frequency fluctuations of the bead position with optical tweezers.
The equation for a fluctuating particle’s motion can be written using
Newton’s second law as:

m
d2xðtÞ
dt2

þ g
dxðtÞ
dt

þ kxðtÞ ¼ FðtÞ ð5:33Þ

where xðtÞ is the particle displacement as a function of time,md2x=dt2 is
the inertial force that acts on the particle, gdx=dt is the drag force, kx
is the elastic force and FðtÞ is the random force that causes the motion of
the particle, e.g. driven by thermal energy.
The autocorrelation function of the displacement ðRxðtÞÞ of the par-

ticle displacement with respect to time is very useful practically in a range
of spectral applications. The autocorrelation function is defined as:

RxðtÞ ¼ hxðtÞxðt � tÞi ¼ lim
T ! 1

1

T

ðT=2

�T=2

xðtÞxðt � tÞdt

8><
>:

9>=
>; ð5:34Þ
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where h i indicates the process is averaged over time (t) and t is the delay
time. This autocorrelation function satisfies the equation of motion
(5.33) with the simplification that the right hand side is zero, since x
and F are uncorrelated by definition. SubstitutingRx into equation (5.32)
gives:

m
d2RxðtÞ
dt2

þ g
dRxðtÞ
dt

þ kRxðtÞ ¼ 0 ð5:35Þ

Such a second order ordinary differential equation can be solved in a
standard manner and the resultant autocorrelation function (also its
fourier transform, the power spectral density) can be used to interpret
experimental data.

5.3 MOTILITY

The absence of inertial forces could at first sight appear to present an
insurmountable barrier for a biological organism to propel itself at the
micron length scale. Reciprocal motion (e.g. waggling a paddle too and
fro) does not lead to motility for micron sized organisms. It is similar to
the case of a human trying to do the breast stroke in a swimming pool
filled with syrup – they move nowhere. How has evolution overcome this
problem?

Flagellated bacteria swim in a manner characteristic of the size and
shape of the cells and the number and distribution of the flagella
attached to their surface, e.g. an E. Coli 10�4 cm in diameter and
2� 10�4 cm in length has six flagellar filaments for propulsion. The
flagella are driven by a particularly elegant device for propulsion: the
rotatory motor (Chapter 14). The motion of the bacteria is determined
by the simultaneous action of the six flagellar filaments. When the
flagella turn counter clockwise they form a synchronous bundle that
pushes the body steadily forward; the cell ‘runs’. When the filaments
turn independently the cell moves erratically and the cell ‘tumbles’. The
cells switch back and forth between the run and tumble modes at
random. The distribution of run (or tumble) intervals is exponential
and the length of a given interval does not depend on the length of the
intervals that precede it. This mechanism enables the bacteria to search
for nutrients in its aqueous environment (Figure 5.7). This active
swimming motion has completely different statistics to the Brownian
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process depicted in Figure 5.2 for non-motile colloidal particles; its
statistics are Poisson (see box).
Bacterial locomotion is thus achieved by the action of flagellar fila-

ments. The thrust is produced from the component of viscous shear of
the helical filament on the surrounding water in the direction of motion
(Figure 5.8).

0.005 cm 

Figure 5.7 Schematic diagram of the trajectory of a Poisson motility process of a
bacterial cell in water
[Reprinted with permission fromH.C. Berg andD.A. Brown, Nature, 239, 500–504,
Copyright (1972) Macmillan Publishers Ltd]
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Figure 5.8 Schematic diagram of the process of bacterial locomotion
((a) the bacterium travels at velocity (v), and the forces that propel the filament result
from the component ðFvÞ of the viscous shear
[Ref.: H.C. Berg, RandomWalks in Biology, Princeton, 1993])
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Consider the probability distribution (P) for a Poisson statistical process. The
probability that a particle changes direction once in a time period between t and
t þ dt is:

Pðt; lÞ ¼ le�ltdt ð5:36Þ

where the probability that there is a change in direction per unit time is l. The
expectation time for the particle to change direction is:

hti ¼ 1

l
ð5:37Þ

The mean squared time interval to change direction is:

ht2i ¼ 2

l2
¼ 2hti2 ð5:38Þ

And the standard deviation (s) of the time interval to change direction is equal to
the mean:

s ¼ ðht2i � hti2Þ1=2 ¼ hti ð5:39Þ

It is found for the Poisson distribution of a process such as that which
describes bacterial motion, that the apparent diffusion coefficient ðDÞ is
given by:

D ¼ v2t

3ð1� aÞ ð5:40Þ

where a is the mean value of the cosine between successive runs, v is the
velocity at which the bacterium propels itself and t is the mean duration
of the straight runs. If the mean angle between successive runs is zero
ða ¼ 0Þ the apparent diffusion coefficient is D ¼ v2t=3, which is iden-
tical to the result for unbiased translational diffusion. Other examples of
motility are provided in Chapter 14.

5.4 FIRST PASSAGE PROBLEM

The first passage problem is a basic question in the statistical physics
of biological processes. It asks, ‘how long does it take for a particle to
travel a certain distance?’ The diffusion limited rate of the first passage
process is thus the reciprocal of the first passage time. For example,
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this could be the time for a particle released at the origin ðx ¼ 0Þ to be
absorbed at x ¼ x0 (Figure 5.9). The mean time to capture ðt0Þ is there-
fore given by:

t0 ¼
1

jðx0Þ
¼ 1

jðxÞ ð5:41Þ

where jðxÞ is the concentration flux as described in Section 5.1. The
solution to the reflecting wall and absorbing wall problem is plotted in
Figure 5.10. In the absence of an external force the first passage time is
the time to diffuse in one dimension (from equation (5.7)):

t ¼ x20
2D

ð5:42Þ

A 500 nm diameter protein diffuses near a fibrin fibre in a blood clot. The
first passage time to diffuse the distance between adjacent fibrin mono-
mers (45 nm) is calculated to be 2.33 ms, if an estimated diffusion
coefficient from the Stoke’s–Einstein equation is used (equation (5.10),
D � 4:35� 10�13 m2 s�1Þ. A similar calculation can be used to

Reflecting 
wall 

Absorbing 
wall

x = 0 x = x0

Figure 5.9 Schematic diagramof the first passage time for a freely diffusingparticle to
travel from x ¼ 0 to an absorbing wall at x ¼ x0

Probability 
(p)

2/x0

x0Displacement 
(x)

Figure 5.10 Solution of the first passage problem
(The probability is shown as a function of displacement (x) for the situation illustrated
in Figure 5.9. A freely diffusing particle in one dimension is placed between a reflecting
and an absorbing wall.)
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understand the mechanism of motion in the lac repressor, e.g. the time to
explore the one dimensional length of a DNA chain by a specialist
enzyme (Chapter 16).

Amore sophisticated problem is how long amolecule that is initially at
the origin ðx ¼ 0Þ takes to diffuse over an energy barrier that is placed a
certain distance away ðx0Þ. For a constant force (F) that acts on the
molecule, the potential (U) as a function of distance (x) is given by:

UðxÞ ¼ �Fx ð5:43Þ

The first passage time (t) for the motion is found to be:

t ¼ 2
x20
2D

� �
kT

Fx0

� �2

e�Fx0=kT � 1þ Fx0
kT

� �
ð5:44Þ

This functional form shows that when the diffusion is steeply downhill,
the force is large and positive, and the first passage time approaches the
distance divided by the average velocity ðx0=vÞ. When the diffusion is
uphill the first passage time increases approximately exponentially as the
opposing force is increased (Figure 5.11).

For the diffusion of a particle in a parabolic potential well, the first
passage time (called the Kramer’s time, tk) now becomes:

tk ¼ t

ffiffiffi
p

4

r ffiffiffiffiffiffiffi
kT

U0

s
eU0=kT ð5:45Þ

Time to 
diffuse 

Force 0

Figure 5.11 First passage time for the diffusion of a particle in one dimension as a
function of the applied force, if the particle is attached to an elastic element
UðxÞ ¼ 1

2

� 	
kx20 (a harmonic potential)
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where t ¼ g=k is the drag coefficient divided by the spring constant
(Figure 5.12) and U0 is the height of the parabolic potential. The shape
of the potential in which a particle is diffusing thus sensitively affects the
functional form of the first passage time.
An important example of the first passage problem considers the rate

at which a protein changes its conformation. A first possible solution is
provided by the Arrhenius equation (Figure 5.13), which describes the
transition of a protein between two states of free energy, e.g. unfolded
and folded states. The probability of the protein being in an activated
state is given by a Boltzmann distribution. The rate constant ðk1Þ is
therefore:

k1 ¼ Ae�DG12=kT ð5:46Þ

Energy (U) 

Reflecting 
Wall 
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Absorbing 
wall 

U0

0 x0

Particle 

Figure 5.12 Schematic diagram that depicts the energy of a diffusing particle in one
dimension out of a parabolic potential well of height U0 as a function of position (x)

Free 
energy 

Reaction 
coordinate 

State 1 State 2 

activated state

G1

G2

Figure 5.13 The free energy as a function of the reaction co-ordinate for the
conformational change of a molecule from a state 1 (free energy G1) to a state 2
(free energyG2)
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where DG12 ¼ G1 �G2 is the difference in energy between the two
transition states (1 and 2). The Arrhenius equation gives no information
on the constant prefactor (A) and additional assumptions are required to
calculate this coefficient. In the Eyring rate theory the reaction constant
(A) corresponds to the breakage of a single quantum mechanical vibra-
tional bond and is typically of the order of kT=h ffi 6� 1012 s�1. This
approximation applies equally well to the breakage of covalent bonds,
but it is not useful for global conformational changes of protein chains.

For global protein conformational changes Kramers rate theory is a
more realistic calculation of the prefactor A in equation (5.46). This
includes the effects of diffusive fluctuations that determine the reaction
rate in this case:

k1 ¼
e
pt

ffiffiffiffiffiffiffiffiffiffiffi
DGal

kT

r
e�DGal=kT ð5:47Þ

DGal ¼ Ga �Gl ð5:48Þ

Proteins diffuse into the transition state with a rate equal to the recipro-
cal of the diffusion time. The efficiency factor (e) for the transition rate is
equal to the probability that the conformational transition is made when
the protein is in the transition state. t is the time over which the protein’s
shape becomes uncorrelated. According to the Kramer’s theory the
frequency factor (t�1) is approximately equal to the inverse of
the relaxation time ðt�1 ¼ k=g, where k is the elastic constant and g is
the dissipative constant for the protein).

5.5 RATE THEORIES OF CHEMICAL REACTIONS

The rates of many biochemical processes are determined by the com-
bined diffusion of the reactants. It is assumed that the only interaction
which occurs between biomolecules A and B in a mixture is when they
collide (Figure 5.14). The flux of matter due to moleculeA, assuming B is

A B 

Figure 5.14 Schematic diagramof two biochemical species (A andB) that experience
a collisional diffusive reaction
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at rest, is given by JA. Fick’s first equation (5.16) can be written for the
flux A:

JA ¼ �DA
@cA
@r

ð5:49Þ

where DA is the diffusion coefficient of species A and r is the radial
position of species A.
There is an excluded region around the two particles equal to the sum

of their two radii ðr0 ¼ rA þ rBÞ. Therefore for separation distances less
than the combined radii of the two particles ðr < r0Þ the concentration of
A is equal to zero ðcA ¼ 0Þ. For large separation distances ðr ! 1Þ the
concentration of A approaches the bulk concentration ðcA ! c0AÞ.
The total current of A that flows towards B is the flux multiplied by the

area of the surface around B that is considered. dqA=dt is the current of
particles of typeA over the surface area of a sphere of radius (r) centred onB:

dqA
dt

¼ �4pr2JA ¼ 4pr2DA
@cA
@r

ð5:50Þ

where equation (5.49) has been used for the flux of A particles. This
expression can be simplified further by adding up all the contributions
over space to the current:

dqA
dt

ð1

r0

dr

r2
¼ 4pDA

ðc0A
0

dcA ð5:51Þ

where r0 is the excluded region between the particles. Integration of this
variables separable equation gives:

dqA
dt

¼ 4pDAr0c
0
A ð5:52Þ

To calculate the total amount of complex formed per second an addi-
tional term for B is required for the total current ðdqA=dtÞ:

dqAB
dt

¼ 4pr0ðDA þDBÞc0Ac0B ð5:53Þ

The rate constant (k) for the reaction rate of molecules A and B that is
purely due to diffusion is therefore:

k ¼ 4pf ðDA þDBÞNr0 ð5:54Þ
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where N is Avogadro’s number and f is of the order of 1 for hard sphere
collisions. This expression will be used in Chapter 16 to understand the
interaction of the lac repressor with DNA.

FURTHER READING

J. Howard,Mechanics of Motor Proteins and the Cytoskeleton, Sinauer,
2001. Very clear modern account of the motility.

H. Berg, RandomWalks in Biology, Princeton University Press, 1993. A
classic text on biomolecular motion from an expert in the field. Much
of the current chapter draws heavily on this clear exposition.

TUTORIAL QUESTIONS

5.1) Amosquito of length 10�3 m flies at a speed of 10�1 ms�1.What is
its Reynolds number, given that the density and dynamical visc-
osity of air are 1.3 kgm�3 and 1:8� 10�5 Nsm�2 respectively?

5.2) The flow of sodium ions in a cell is assumed to satisfy Fick’s law
and the diffusion equation (the diffusion coefficient is
1:35� 10�9 m2 s�1). The flux of sodium is used for signalling
inside an organism. How long would it take for the sodium to
diffuse the length of a neuron (2.7 mm)? Can you comment on
the practicality of such a mechanism of signalling?

5.3) Consider the rotational diffusion of a spherical virus. How does
the mean square fluctuation ðhu2iÞ of the virus’s angle of rotation
relate to the rotational diffusion coefficient? Estimate the time for
the virus to fluctuate by 90� if the thermal energy (kT) is
4:1� 10�21 J, the viscosity is 0.001 Pa.s and the virus can be
approximated by a sphere of radius 2 mm. How does the time
for a point on the circumference of the virus to rotate by diffusion
through a distance 2pa compare with the time to translate by 2pa?

5.4) A Poisson distribution can be used to describe the motion of a
bacterium. The apparent diffusion coefficient of the bacterium is
4� 10�6 cm2 s�1. If the cell swims at a constant speed of
1� 10�3 cm s�1 and the mean duration of the straight runs is
one second, what is the average value of the cosine between
consecutive runs?
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6
Aggregating Self-Assembly

Biological complexes are often extremely complicated and it was an
important advance when many were found to self-assemble on a mole-
cular level from their ‘raw ingredients’. The molecules arrange them-
selves spontaneously into aggregates without any outside assistance. If
the components, the solvent, the pH and the temperature are correctly
chosen, the system will minimise its free energy and organise itself in the
correct manner. Such strategies for self-assembly have been invented
countless times during biological evolution and appear intimately con-
nected with life itself.

There are a diverse range of examples of self-assembling biological
systems. In the construction of the tobacco mosaic virus, RNA attaches
itself onto ‘pie-shaped’ coat proteins to produce a rod-like helical virus
which is pathogenic to tobacco plants. Similarly, many globular enzymes
can self-assemble from their primary structure into fully functioning
chemical factories. This is the extremely complicated Levinthal problem
referred to in the discussion of the globule-coil transition in Section 3.3.
Actin, tubulin and flagellin can self-assemble to provide a force for
cellular locomotion. The gelation of haemoglobin in the interior of red
blood cells can disrupt the functioning of the cells and gives them a
characteristic sickle shape (Figure 6.1); a first example of a self-assem-
bling disease, sickle cell anaemia. A further medical condition which is
currently the subject of intense research is amyloidosis in prion diseases.
Self-assembled beta-sheet amyloid plaques are implicated in a large range
of diseases including Alzheimer’s, bovine spongiform encephalopathy
(mad cow disease) and Parkinson’s disease (Figure 6.2).

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



Cell membranes are found to self-assemble from their raw compo-
nents. Bilayers are easily created synthetically from a range of lipid
molecules and spontaneously arrange themselves into vesicles. Naturally
occurring cell membranes follow more complicated schemes of construc-
tion (their structures include intramembrane proteins and scaffolding,
Figure 6.3); however, the underlying scheme of amphiphilic self-
assembly is still thought to hold. Carbohydrates also experience a pro-
cess of self-assembly; the double helices of starch in plant storage organs
are expelled into smectic-layered structures when the carbohydrate is
hydrated. An important consideration for the next time the reader cooks
a chip.

A distinction is made between examples of aggregating self-assembly
(e.g. micellisation of lipids) and non-aggregating self-assembly (e.g.
folding of globular proteins). Aggregating self-assembly has some con-
ceptually sophisticated universal thermodynamic features (e.g. a critical

Normal red 
blood cell 

Sickled cell 

Haemoglobin 
aggregates 

Figure 6.1 Sickle shaped cells are formed when fibrous aggregates of misfolded
haemoglobin molecules self-assemble within cells and produce elongated structures
on the membrane surfaces. The flow of sickled cells is impaired in the circulation
system and this reduces the transport of oxygen in the body (an anaemia)

Figure 6.2 Giant self-assembled beta sheet aggregates are thought to be responsible
for a range of prion diseases. A hierarchy of structures are found with model peptide
systems as a function of peptide concentration. The diameters of the resultant fibres are
controlled by the chirality of the peptide monomers. h is the pitch of the self-assembled
fibre and w is the width of a fibre
[Reprinted withpermission from A.Aggeli, I.A. Nyrkova,M. Bell et al., Proceedings of
the National Academy of Sciences, 98, 21, 11857–11862, Copyright (2001) National
Academy of Sciences]
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micelle concentration) which are considered in detail in this chapter.
Non-aggregating self-assembly usually describes the behaviour of a system
that moves between some hidden free energy minima, e.g. the subtle
molecular origami involved in the folding of globular proteins. Examples
of such phase transitions were covered in Chapter 3.

Other more general examples of self-assembly exist in soft-condensed
matter physics, such as the morphologies produced in the phase separa-
tion of liquids, liquid-crystals, polymers and block copolymers. All of
these have analogues in molecular biophysics. Self-organisation is
another closely related field of pattern formation in molecular biology
and typically is used to describe the results of non-equilibrium thermo-
dynamic processes, e.g. morphogenesis during cell division (how the
leopard got its spots). The only examples of driven non-equilibrium
self-assembly that will be considered in the current book are the self-
assembly of motor proteins described in Chapter 14.

To use thermodynamics to describe processes of aggregating self-
assembly, the change in free energy (G) of a system due to the exchange
of one of its components needs to be considered. The partial molar Gibbs
free energy of a biomolecular system with a number of components is

Ion channel 

Phospholipid 

Cholesterol 

Integral protein 

Ligand

Cytoplasm 
Extracellular 
matrix 

Cell 
membrane 

Figure 6.3 Schematic diagram of a cell membrane showing phospholipids, ligands,
proteins, cholesterol and ion channels. The cell membrane separates the cytoplasm
from the extracellular matrix
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given by the symbol m (the chemical potential). The chemical potential
ðmiÞ with respect to one of the species is defined as:

mi ¼
@G

@ni

� �
T;P;ni 6¼j

ð6:1Þ

where ni is the number of species of type i in the system. The subscripts
T;P and ni 6¼j on the differential indicate that the temperature, pressure
and number of other species are held constant. The total Gibbs free
energy (G) of a biomolecular system is the sum of the partial free energies
of each of its components:

G ¼
XN
i¼1

nimi ð6:2Þ

where mi are the potentials that drive chemical reactions or diffusion in
which changes in the amounts of chemical substances occur.

Generally the processes of aggregating self-assembly in molecular
biophysics have a number of common themes; there exists a critical
micellar concentration – a value of the concentration of subunits above
which self-assembly occurs (the free monomer concentration is pinned at
a single value above this concentration), the entropy change is positive on
assembly as the aggregate becomes more ordered (globally the entropy is
still maximised due to the increased randomisation of associated solvent
molecules), hydrogen bonding and hydrophobicity are often an impor-
tant driving factor, and the surface free energy is minimised as the self-
assembly proceeds.

The general features of self-assembly also depend on the dimension-
ality of the system. Self-assembly in one dimension produces highly
polydisperse polymeric aggregates. In two dimensions self-assembly
tends to form an aggregate consisting of a single raft and in three
dimensions the aggregate is a single micelle or crystal. Self-assembly is
driven by the minimisation of the surface free energy. In one dimension
the reduction in free energy is independent of polymer length, and thus
polydisperse aggregates are formed in the self-assembly of single-
stranded fibrous proteins and linear surfactant aggregates. Fusion of
two surface rafts in two dimensions reduces the surface area and drives
the process of coarsening of raft morphologies, eventually leading to the
formation of a single giant raft. Similarly, in three dimensions the process
of Ostwald ripening causes a gradual increase in aggregate size as small
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micelles are subsumed by their larger neighbours as they minimise their
surface free energy, eventually forming a single giant crystal.

6.1 SURFACTANTS

The essential framework of biological membranes in cells is provided by
lipid amphiphiles that spontaneously aggregate to form bilayer vesicles
(Figure 6.3). The bilayer encapsulates an internal cavity in which the
environment for a living cell is maintained (its osmotic pressure, salt
concentration and pH). Amphiphilic molecules such as surfactants,
lipids, copolymers and proteins can spontaneously associate into a
wide variety of structures in aqueous solutions. With naturally occurring
lipids the critical micelle concentrations (CMCs) occur at extremely low
concentrations and allows stable bilayers to be formed from globally low
concentrations of sub-units. Critical micelle concentrations are typically
in the range 10�2 � 10�5 M and 10�2 � 10�9 M for single and double
chained phospholipids respectively.

A graphical illustration of surfactant self-assembly is shown in
Figure 6.4. Surfactants are partitioned between micelles and unasso-
ciated sub-units above the CMC (Figure 6.5). The unusual phenomenon
above the CMC is that the monomers are pinned at a fixed concentration
due to the thermodynamics of the assembly process and this process will
be motivated theoretically in the following section.

Normally surfactants are in dynamic equilibrium with their aggregates
during the process of micellar assembly. There is a constant interchange
between lipids in micelles and those free in solution (Figure 6.4). The

.

k1

kN

Figure 6.4 Schematic diagram of the self-assembly of surfactants into micellar
structures
(Monomers on the left assemble into multimer aggregates (on the right) above the
critical micelle concentration. The process is one of dynamic equilibrium.)
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morphology of the aggregates is determined by the geometry of the amphi-
philic molecules (the head group area and the length of the tails etc), and
the hydrophobicity/hydrophilicity of both the head and tail groups.

There is a strong similarity between Figure 6.5, which indicates the
CMC for lipid amphiphiles, and that for the assembly of proteins covered
in a following section (Section 6.4, Figure 6.13). This indicates that a
universal thermodynamic process is in action. In equilibrium, thermo-
dynamics requires that the chemical potential of all identical molecules in
the different sized self-assembled aggregates are equal. The chemical
potential for monomers, dimers, and trimers can thus be equated:

m ¼ m1 þ kT log c1 ¼ m2 þ 1
2kT log c2 ¼ . . . . . . :: ð6:3Þ

and more generally for a N-mer aggregate:

m ¼ m0
N þ kT

N
log

cN

N

� �
¼ const ð6:4Þ

where N is the aggregation number, kT is the thermal energy, cN is the
concentration of the micellar species of aggregation number N and m0

N is
the standard part of the chemical potential. The rate of association is
k1cN

1 and the rate of dissociation is kNðcN=NÞ: kN is the reaction rate for
the Nth order association process, and K is the dissociation constant for
the equilibrium process. By definition the dissociation constant is given
by:

K ¼ k1

kN
¼ exp½�Nðm0

N � m0
1Þ=kT� ð6:5Þ

Total concentration of 
lipids (c) 

Concentration of 
lipids

Aggregates 

Monomers 

CMC

Figure 6.5 Monomer and aggregate concentrations as a function of the total con-
centration of lipids
(Above the CMC the concentration of lipid monomers is held fixed by the thermo-
dynamics, whereas the concentration of lipids in aggregates increases exponentially.)
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Solute molecules self-assemble in solution to form clusters of aggregation
number (N) per cluster. The chemical equation for the association of
monomers (A) into aggregates (B) in solution can be expressed as:

A þ A þ A þ . . . : ¼ B ð6:6Þ

cA and cB are defined to concentrations of A and B in mole fraction units
respectively, and c is the total concentration of the solute molecules. A
general relationship can be obtained between K, N, c and cA. For large
values of the dissociation constant (K � 1) and large micellar aggregates
(N � 1) it can be shown that the concentration of monomers cA can
never exceed ðNKÞ�1=N. By definition the equilibrium dissociation con-
stant is:

K ¼ cB

cN
A

ð6:7Þ

The total concentration of species equals the sum of the concentration of
the components:

c ¼ cA þ NcB ð6:8Þ

This allows equation (6.7) to be reexpressed as:

K ¼ ðc � cAÞ
NcN

A

¼ const ð6:9Þ

Equation (6.9) can be rearranged to give:

cA ¼ c � cA

NK

h i1=N
ð6:10Þ

The maximum possible value of c � cA is 1, since the calculation is in
fractional molar units, e.g. when cA � 0; c � cA � 1. Therefore cA cannot
exceed ðNKÞ�1=N. This was shown graphically on Figure 6.5. If a large
value is taken for the dissociation constant ðK ¼ 1080Þ and a reasonable
value for the aggregation number ðN ¼ 20Þ is chosen the critical con-
centration (cA) is 0:86 � 10�4. Substitution in equation (6.10) gives:

cA ¼ 10�4 ðc � cAÞ
20

� �1=20

ð6:11Þ
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Detailed analysis of this equation shows that for c � 10�4 cA ffi c,
whereas for c ffi 10�4cA ffi NcB, and there is an equal partition between
micelles and unimers. Thus ðNKÞ�1=N is the critical micelle concentration
for this process of self-assembly.

The process of one dimesional aggregation can now be considered in
detail. akT is defined to be the monomer–monomer ‘bond’ energy of the
linear aggregate relative to isolated monomers in solution. The total
interaction free energy (NmN) of an aggregate of N monomers is there-
fore (terminal monomers are unbonded):

NmN ¼ �ðN � 1ÞakT ð6:12Þ

This can be rearranged as:

mN ¼ � 1 � 1

N

� �
akT ð6:13Þ

and can be written in the equivalent form:

mN ¼ m1 þ akT

N
ð6:14Þ

Thus mN decreases asymptotically towards m1 the bulk energy of an
extremely large aggregate ðN ! 1Þ.

In two dimensional aggregation the number N of molecules per disc-
like aggregate is proportional to the area pR2. The number of unbonded
molecules in the rim of the disc is proportional to the circumference 2pR
and hence N

1
2. This implies that the free energy of an aggregate is

therefore:

NmN ¼ �ðN � N
1
2ÞakT ð6:15Þ

and the free energy per molecule in an aggregate is:

mN ¼ m1 þ akT

N
1
2

ð6:16Þ

where m1ð¼ �akT) is again the free energy per particle of an infinitely
large aggregate.

For spherical, three dimensional aggregates, N is proportional to
the volume ðð4=3ÞpR3Þ and the number of unbonded molecules is
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proportional to the area ð4pR2Þ, and hence N
2
3. Therefore the total free

energy of an aggregate is:

NmN ¼ �ðN � N
2
3ÞakT ð6:17Þ

This can be rearranged and the free energy per particle is:

mN ¼ m1 þ akT

N
1
3

ð6:18Þ

where m1ð¼ �akTÞ is the free energy per particle of an infinitely large
aggregate. It can be shown that for a spherical micelle the proportionality
constant (a) is related to the surface tension (g) and the size of the
aggregate (R):

a ¼ 4pR2g

kT
ð6:19Þ

In general the CMC for the aggregation of surfactants is given by the
exponential of the difference in chemical potentials for a monomer and
an aggregate:

CMC � e�ðm1�mNÞ=kT ð6:20Þ

Therefore, for three dimensional aggregates the CMC is:

CMC � e�a=N
1
3 ð6:21Þ

where a is given by equation (6.19).

6.2 VIRUSES

The self-assembled geometrical structure of heptatitis B determined by
X-ray crystallography measurements is shown in Figure 6.6. This virus is
pathogenic to humans, and the self-assembly (reproduction) of such para-
sites is of vital importance to medical science. The general process of self-
assembly in viruses is thought to originate from an interplay between
shorter range hydrophobic and longer range electrostatic forces. However,
the details of the mechanism of self-assembly can be very complicated and
are specific to the particular variety of virus that is considered.
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Tobacco mosaic virus (TMV, Figure 6.7) is one of the simplest helical
viruses known and consists of a single strand of RNA surrounded by
�2000 identical pie shaped protein subunits. TMV has been a favourite
topic of research for physicists, since it is not pathogenic to man and

Figure 6.6 Graphical representation of a hepatitis B virus based on X-ray crystal-
lography data

Figure 6.7 (a) Tobacco mosaic virus self-assembles from ‘lock washer’ units that
become attached to a central RNA core. (b) The ionic strength and pH can switch the
process of assembly on and off. The self-assembly of a complete TMV virus is favoured
at low pH values
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presents an ideal monodisperse rod-like system for studying liquid crys-
talline phases. Assembly of TMV in vitro can occur with and without a
chain of RNA. Without RNA molecules, the protein monomers of TMV
first form double disks of 17 monomer units. The disks contain holes at
their centres. If the pH is changed appropriately, it modulates the
electrostatic interactions of the disks and they slip with respect to each
other and aggregate. The protein disk like sub-aggregate units have a
‘lock washer’ morphology and slowly stack upon each other to form rods
with a high polydispersity in their length. With RNA molecules the
nucleic acid chain directs the growth of disk aggregation, a monodisperse
virus is formed, since the RNA dictates a well defined length for the
helical virus.

Many other viruses consist of a nucleic acid core surrounded by a
symmetrical shell that is assembled from identical protein molecules
(icosohedral viruses such as hepatitis B, Figure 6.6). There are geome-
trical selection rules for the symmetry of the arrangement of the identical
coat proteins. The process of self-assembly in these cases is often much
more complicated than with TMV. The self-assembly is sometimes
directed by chaperone proteins that guide the process. The complexity
of the steps involved in the self-assembly and life cycle of the P4 icoso-
hedral virus is illustrated in Figure 6.8.

The T4 bacteriophage is one of several DNA containing viruses that
can infect E. Coli bacteria (Figure 6.9) and the process of self-assembly is
again slightly more sophisticated than TMV. Separate sections of this
virus have been observed to self-assemble from their constituent compo-
nents. The tail tube forms spontaneously from the core proteins and
purified base plates (Figure 6.10). Starting only with purified base plates
and core protein monomers the tail tube self-assembles in vitro to a
length of �100 nm.

6.3 SELF-ASSEMBLY OF PROTEINS

Two important examples of aggregating protein self-assembly in medical
conditions are the aggregation of proteins in amyloid diseases (Alzhei-
mer’s, Bovine Spongiform Encephalopathy etc, Figure 6.2) and the
aggregation of haemoglobin molecules in sickle cell anaemia (Figure
6.1). There are a series of unusual features found during the aggregation
of filamentous proteins in vitro which are indicative of a process of self-
assembly as opposed to a conventional chemical reaction. The tempera-
ture dependence of the process of polymerisation is very different to that
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of small inorganic species. At low temperatures there is no polymerisa-
tion and at high temperatures polymerisation occurs; normally with
synthetic polymerisation reactions the reverse is true. A rise in pressure
causes depolymerisation; behaviour opposite to that normally found
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Figure 6.8 Schematic diagram of the sophisticated process of self-assembly found in
the P4 virus
[Ref.: D.H. Bamford, Phil. Trans. R. Soc. Lond. A, 2003, 361, 1187–1203]
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with covalent bonds, e.g. polymerisation of polyethylene. Polymerisation
of self-assembling proteins only occurs above a critical initial monomer
concentration, the CMC of the self-assembly process, as in the case of
surfactant self-assembly. The kinetics of protein polymerisation are
characterised by a long lag period followed by rapid formation of poly-
mers. This is of particular concern in prion diseases, since the resultant
self-assembled amyloid aggregates are implicated in these fatal
conditions.

The change in Gibbs free energy ðDGÞ during polymerisation is given
by the standard thermodynamic equation:

DG ¼ DU þ PDV � TDS ð6:22Þ

where DU is the change in free energy, P is the pressure, DV is the change
in volume, T is the temperature and DS is the change in entropy. The
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Figure 6.9 Schematic diagram of the self-assembled structure of T4 bacteriophage
(The tail tube is found to spontaneously self-assemble in vitro (Figure 6.10).)
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Coat protein 
Tail tube 

Figure 6.10 Self assembly of the coat proteins of T4 bacteriophage on a single RNA
chain template
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polymerisation reaction is found to proceed move favourably at high
temperatures. From equation (6.22) this signifies that the entropy
changes that occur upon polymerisation is positive. This is allowed
thermodynamically since the entropy of the associated solvent molecules
increases to compensate for the entropy of the protein aggregates which
decreases as they self-assemble into ordered structures.

The mechanism of non-aggregating self-assembly that forms the inter-
nal structure of globular proteins has been covered in Chapter 3. It is
intimately associated with the globule–coil, helix–coil and beta sheet–
coil phase transitions. With natural proteins there is the additional
complication of frustration during folding which exists due to the large
number of closely spaced local minima explored by the protein on its free
energy landscape (Levinthal’s paradox). This frustration can lead to
misfolded proteins if they are improperly chaperoned to their final active
states or unfolded by chemical/physical denaturants. The misfolding of a
range of proteins is thought to be the nucleation step in a number of
amyloid diseases and constitutes a rate limiting step in the development
of such conditions.

6.4 POLYMERISATION OF CYTOSKELETAL
FILAMENTS (MOTILITY)

The polymerisation of cytoskeletal polymers is an important example of
self-assembly, since it can lead to motility with actin polymerisation and
has thus been intensively researched. Single stranded polymerisation is
found to be an unlikely mechanism for the construction of long fibres due
to the surface free energy effects described in the introduction to this
chapter (Figure 6.11, 1-D aggregates are short and polydisperse). Actin
circumvents this problem by using two interacting (double helical)
strands. Similar schemes hold for a range of other helical cytoskeletal
filaments, e.g. tubulins.

The addition of a monomer unit to an actin fibre is a process of self-
assembly and the equilibrium morphology adopted is a balance between

+
←
→

Figure 6.11 Self-assembly of filamentous proteins
(The equilibrium constant is the same for each unit added to the polymer for a single
filament that consists of symmetric subunits.)
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the rate of addition ðkonÞ and dissociation (koff) of a globular protein
subunit:

An þ A1

kon

$
koff

Anþ1 ð6:23Þ

where An is an n-mer aggregate and A1 is a monomer. There is a
dissociation constant (K) attributed to this process of monomer addition
on to a n-mer aggregate:

cnc1

cnþ1
¼ K ¼ koff

kon
n 	 1 ð6:24Þ

where c1, cn, and cnþ1 are the molar concentrations of monomer, n-mer
and n þ 1-mer aggregates respectively. It is assumed that all the indivi-
dual subunit addition reactions for a length of n-mer have the same
dissociation constant (K), dissociation rate constant (koff) and second
order association constant ðkonÞ. However, the dissociation constants (K)
are not held fixed and change with the length of the polymeric aggregate.
The equilibrium dissociation constant is given by the standard thermo-
dynamic relationship:

K ¼ expðDG0=kTÞ ð6:25Þ

The dissociation constant (K) is thus associated with the standard free
energy change ðDG0Þ of the reaction. DG0 is the sum of the potential
energy (negative) associated with the formation of a monomer–protein
bond and an entropy change (positive) associated with the loss of transla-
tional and rotational entropy as the subunits are transferred from the
standard 1 M concentration in solution to a bound state in a polymeric
aggregate (equation (6.22)), at constant volume and pressure, DV ¼ 0).

As argued qualitatively in the introduction it is found that single
stranded self-assembled filaments are polydisperse and short. This result
can be deduced more formally by calculating the dependence of the
average length of the filamentous aggregates on the total concentration
of subunits. The dissociation constant for the reaction is given by equa-
tion (6.24). The concentration of different lengths of polymers (cN) are
assumed to follow an exponential distribution given by:

cn ¼ K exp � n

n0

� �
ð6:26Þ
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where K is the equilibrium constant as defined by equation (6.25), n is the
length of the polymer and n0 is defined as:

n0 ¼ � 1

ln a1
ð6:27Þ

where a1 is given by:

a1 ¼ c1

K
ð6:28Þ

The exponential distribution can be proven by substitution in equation
(6.24), but to calculate the average number of monomers in a filament
ðnavÞ requires more effort. It is:

nav �
ffiffiffiffi
ct

K

r
ð6:29Þ

where ct is the total concentration of monomers and K is the equilibrium
constant. This result can be derived from the exponential distribution of
the n-mer aggregate concentration. The contribution from the monomer
lengths is discounted and the definition of an independent probabilistic
average gives:

nav ¼
X1

2

npn ¼
X1

2

n
anX1

2

an

¼ 1 þ 1

1 � a1
ð6:30Þ

where an are the statistical weights given by an ¼ cn=K, and from equa-
tion (6.26) these are given by:

an ¼ an
1 ¼ e�n=n0 ð6:31Þ

The total number of subunits ðatÞ is the algebraic sum:

at ¼
X1

1

nan ¼ a1

ð1 � a1Þ2
ð6:32Þ

a1 ¼ 1 þ 1

2at
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

at
þ 1

4a2
t

s
ð6:33Þ
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When at � 1, the expression for a1 simplifies to:

a1 � 1 � a
� 1

2
t

From equation (6.27) and using the Taylor expansion lnð1 þ xÞ ¼
x � x2=2 þ x3=3 . . . : gives:

n0 �
ffiffiffiffi
at

p
ð6:34Þ

Finally, using equation (6.30) gives the expression:

nav � 1 þ
ffiffiffiffi
at

p
ð6:35Þ

which is equivalent to equation (6.29).
A similar type of analysis shows that multi-stranded filaments tend to

be very long. The problem is slightly more complicated because the
geometry of the fibre imposes three separate dissociation constants
K;K1 and K2 on the process of assembly (Figure 6.12). The average
length of multi-stranded filaments is found to be given by:

nav �
ffiffiffiffiffiffi
K1

K

r ffiffiffiffiffiffi
ct

K2

r
ð6:36Þ

where ct is the total monomer concentration. This average length is
typically much bigger than found with single stranded filaments.

Filaments of actin and microtubules can polymerise and are suffi-
ciently long for their roles in motility because they are multi-stranded.
Calculations show that the lengths of the polymeric aggregates are again
distributed exponentially, but the average filament length is much greater
than predicted by equation (6.36). This is due to the active nature of the

+ K1

+ K2

+ K

Figure 6.12 Three association constants are required to describe the self-assembly of
a two stranded filament formed from symmetric subunits ðK1;K2 and K3)
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motility process with actin, i.e. ATP (fuel) drives the reaction and the
process is not in thermodynamic equilibrium.

The rate of elongation ðdn=dtÞ for filamentous self-assembly is given
by the Oosawa equation:

dn

dt
¼ konc1 � koff ð6:37Þ

The graphical solution is shown in Figure 6.13(a) and the equation is
examined in detail in Section 14.1. The partitioning of the monomers
between those free in solution and those in the filamentous state that
defines the CMC for one dimensional self-assembly of the cytoskeletal
fibres is shown in Figure 6.13(b). There is a close resemblance to the
equivalent diagram for surfactant self-assembly (Figure 16.5) and this
emphasises the general features involved in both processes.

Extensive theoretical development of the assembly of multi-stranded
fibres shows that multi-stranded filaments grow and shrink at both their

(a)

(b)

Growth  
Rate of
Fibres 
  

Monomer
µM

Subunits (µM)

Sub units 
(µM) 

Polymeric 
aggregates 

Monomer 

Critical 
Concentration 

Total subunits 
(µM) 

Figure 6.13 The generic self-assembly of filamentous protein aggregates
((a) shows the growth rate of aggregates as a function of the monomer concentration
and (b) indicates how the concentration of subunits is partitioned between monomers
free in solution and those in fibrous aggregates (note the similarity with Figure 6.5 for
surfactant assembly).)
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ends, and there again exists a critical concentration for self-assembly.
Multi-stranded filaments are stable to breakage whereas single stranded
filaments continually break and reform (Figure 6.14). Other biological
examples which follow the same trends in their self-assembly as actin
(Figure 6.13) are sickle cell haemoglobin aggregates (double helical fibres)
and amyloid aggregates (they often are twisted chiral multi-tape fibres).

The critical concentration ðccÞ for self-assembly is given by the mini-
mum in the rate of addition ðdn=dt ¼ 0Þ and substitution in the Oosawa
equation (6.37) gives:

cc ¼
koff

kon
¼ K ð6:38Þ

This equation provides a method of determining the dissociation con-
stant experimentally from a plot of the monomer concentration against
the total concentration of sub-units.

It is found that the concentration of nuclei are very small during the
self-assembly of multistranded fibres, the ends of the filaments are blunt
due to the extra stability of a snug geometrical fit in these systems, and
the mean lengths of the filaments increase very steeply above the critical
concentration. Thus slight changes in free monomer concentration give a
large change in polymer length for multi-stranded filaments in equili-
brium (Figure 6.15).

Many fibrous biopolymers are self-assembled through the intermedi-
ate step of protofilaments, in contrast to the mechanism of the direct
addition of globular protein sub-units to the end of a fibrous aggregate
seen with actin and microtubules. Examples of protofilament assembly
are shown in Figure 6.16. Such mechanisms are found to be important in
a range of proteins, including the collagens and the intermediate fila-
ments such as the keratins and desmins. Protofilament assembly provides
another mechanism for these systems to circumvent the problems with

(a)

(b)

Possible point 
of breakage 

Figure 6.14 Multistanded filaments (a) are stable against breakage whereas single
stranded filaments (b) continually break and reform along their length
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one dimensional self-assembly, such as single filament polydispersity and
low size, and enables the construction of giant fibrous networks.

FURTHER READING

J. Israelivichi, Intermolecular and Surface Forces, Academic Press, 1992. A
classic text with a useful account of the self-assembly of lipid molecules.

(a) Collagen

protofilament 

(b) Lamin

(c) Vimentin

protofilament 

Extra cellular 
assembly

Triple helices 

procollagen 

Triple helical 
protofilament 

Figure 6.16 Collagen, lamin and vimentin fibres form from extended protofilament
units, in contrast to actin and tubulin fibres that self-assemble directly from small
spherical subunits
[Ref.: H. Herrmann, U. Aebi, Annu. Rev. Biochem., 2004, 73, 749–789]

Mean
Polymer
Length
(subunits)

Total Subunits
(µM)

Figure 6.15 The mean length of a self-assembled two stranded filamentous aggregate
chains is an S-shaped function of the number of subunits
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J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer,
2001. The self-assembly of motor proteins (actin and microtubules) is
well covered in this book.

TUTORIAL QUESTIONS

6.1) What is the critical micelle concentration for spherical lipid
micelles if the number of lipid molecules in a micelle is 1000,
the surface tension is 20 mJm�2 and the micellar radius is 2 nm?

6.2) What is the critical subunit concentration for self-assembly ðccÞ
of a linear fibrous protein aggregate if the free energy change on
the addition of a subunit ðDGÞ is –4.6 kT? What is the average
filament length if the monomer size is 5 nm and the total mono-
mer concentration is 1 M?
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7
Surface Phenomena

The physical phenomena associated with surfaces is a large emerging
area of interest in molecular biophysics. A wide range of biophysical
problems are currently being examined in relation to surfaces, which
could have important industrial applications. Examples include the
adhesive hairs on insect legs that allow them to hang upside down (Figure
7.1), the self-cleaning ability of lotus leaves (hydrophobic surface coat-
ings, Figure 7.2), how slugs travel over razor blades (they slide on trails
of liquid crystalline polyelectrolytes), how the skin of sharks suppresses
short wavelength turbulence (riblet patterned surfaces, Figure 7.3) for
efficient locomotion, how molluscs attach themselves to rocks (protein
cements that act in a highly hydrated environment) and how dental
fillings are glued to hydroxyapatite (the physics of composite materials,
their adhesion and fracture).

7.1 SURFACE TENSION

The work done in creating a new surface (w) in a material is proportional
to the number of molecules transported to the surface and thus to the
area of the new surface:

w ¼ gDA ð7:1Þ

where g is a constant of proportionality (the surface tension) and DA is
the change in surface area. g has two equivalent definitions as the free
energy per unit area (units of [energy]/[length]2) or as a surface tension
(units of [force]/[length]).

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



Figure 7.1 Schematic diagram of the hairy appendages found on a range of insects
(The hairs encourage adhesion due to Van der Waals attractive forces)

Figure7.2 Schematic diagramof the texturedhydrophobic surfaces that are foundon
a range of plants and animals
(The wax crystalloids on a plant leaf are shown (mm sized))

Figure 7.3 Riblets patterns (mm grooves) along the shark’s skin are thought to
decrease the amount of frictional dissipation due to small wavelength turbulence.
The arrows indicate the direction the riblets follow on the skin of the shark
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To understand the concept of surface free energy in more detail,
consider a wire loop that encloses a suspended liquid film (Figure 7.4).
The force operates along the entire edge of the film and varies linearly
with the length (x) of the slide wire. For static equilibrium from New-
ton’s laws the forces on the slide wire must balance:

g ¼ F

2x
ð7:2Þ

The factor of two is included because the force acts on the two sides of
the film (front and back).

The work (dw) associated with the expansion of the interfacial energy
due to a movement of the slide wire by a small distance (dx) is therefore
given by:

dw ¼ Fdx ¼ g2xdx ¼ gdA ð7:3Þ

This work is equal to the change in Gibbs free energy (dG) at constant
temperature and pressure. The change in Gibbs free energy is given by:

dG ¼ gdA ð7:4Þ

And thus at constant temperature and pressure an expression for the
surface free energy is:

g ¼ @G

@A

� �
T;P

ð7:5Þ

z

dx

F

Free surface

Liquid film

Divider

Figure 7.4 The increase in surface area and consequently the surface free energy, is
directly related to the amount of force (F) placedon the divider (and thus the amount of
work it does on the liquid surface as it moves through a distance dx). z is the length of
the divider
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The surface tension is therefore the increase in Gibbs free energy per unit
increment in area and is thus equivalent to the force per unit length.

7.2 ADHESION

Adhesion describes the phenomena involved in the cohesion of biolo-
gical materials. It is useful to estimate the interfacial fracture energy
(G) (Figure 7.5) of a simple isotropic material to motivate a quanti-
tative analysis of adhesion. Consider an interface between two surfaces
A and B with an interfacial tension, gAB. If these two surfaces (with
free energies gA and gB respectively in a vacuum) are separated in a
thermodynamically reversible manner, the total work of adhesion
(WAB) is the difference in surface energies before and after they are
separated:

WAB ¼ gA þ gB � gAB ð7:6Þ

However, experimentally it is found that fracture energies can be orders
of magnitude greater than the value predicted by equation (7.6). The
reason for this shortfall is that materials possess the ability to dissipate
energy by a number of mechanisms not accounted for in the equation,
e.g. plastic deformation at the surface. Indeed, this is the function of the
soft filler in many biological composite structures: to maximise the

1

2

W12

1

2

Figure 7.5 The interfacial fracture energy during the separation of two phases (1 and
2) defines the total work of adhesion between the two phases
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dissipation of energy during impacts through a mechanism of plastic
deformation (Section 11.2).

In molecular biophysics adhesion is often carefully controlled by
biomolecular structures. For example, organised adhesive links form
as cells mature and arrange themselves into tissues, a key mechanism
during the process of morphogenesis. The adhesive links can act as both
junctions and switch yards for cytoskeletal components. To bind mem-
branes, there are homophilic, heterophilic and extracellular proteins that
are used to create linkages (Figure 7.6). The proteins used in cell adhesion
include the cadherins, integrins and selectins, and their binding energies
are typically in the range 5–30 kT. Experiments to study the interaction
of cellular adhesive proteins have been made using atomic force micro-
scopy (AFM), optical tweezers and surface force apparatus. Many
experiments also consider the adhesion of pure bilayers by measuring
the contact angle when two bilayers are pressed together. Micromani-
pulation techniques have proven particularly successful in this area. An
experiment based on the compression of two spherical bilayers is illus-
trated in Figure 7.7. The contact angle (f) can be related to the force of
adhesion between the cells.

(a) (b)

(c) (d) 

Membrane

Figure 7.6 A range of organised adhesive links can occur between cellular structures
(Non-junctional adhesions are possible such as (a) homophilic, (b) heterophilic and
(c) extracellular protein linked to four ligands. Junctional adhesions are also impor-
tant, such as the (d) gap junction [Reprintedwith permission fromG. Forgacs and S.A.
Newman,Biological Physics of theDevelopingEmbryo,Copyright (2005)Cambridge
University Press])
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7.3 WETTING

Consider a liquid droplet that is sat (sessile) on a solid surface. Young’s
equation for the contact angle (u) on the solid surface (Figure 7.8) is
given by:

gsg ¼ gsl þ g lg cos u ð7:7Þ

where gsg, gsl, and g lg are the surface tensions of the solid–gas, solid–
liquid and liquid–gas interfaces respectively. Young’s equation is
deduced from the force balance at the three phase contact line (Newton’s
law), when the components of the forces are taken in the direction
parallel to the surface.
Similarly it is possible to perform a force balance to deduce the

structure of liquid–liquid–gas interfaces (Figure 7.9), e.g. water, oil
and air. However, all of the components can be deformed in this case
and three angles must be introduced to calculate the static conformation:

gwa cos u1 ¼ goa cos u2 þ gwo cos u3 ð7:8Þ

Figure 7.8 A liquid drop sat on a solid surface. In equilibrium the components of the
surface tension parallel to the surface of the solid balance to give Young’s equation

φ

Controlled 
pressure

Micropipette

Vesicle

Figure 7.7 Adhesive forces between two vesicles can be measured using micropip-
ettes. The contact angle (f) is related to the pressure exerted on the vesicles
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where the subscripts w, a and o refer to water, air and oil interfaces
respectively.

Using Young’s equations the subject of wetting can be approached. At
equilibrium in a phase separated system of a surface immersed in a
solution of biomolecules (say oil and water), the surface is expected to
be coated by a macroscopic thick layer of the phase of lower surface
energy which is called a ‘wetting layer’, e.g. the oil completely covers
the solid surface. The layer is macroscopically thick and the interface
between the surface layer and the bulk fluid is identical to that between
the two bulk coexisting phases. It is therefore possible to write down an
inequality for the surface tension of the two phases and the interfacial
tension between the phases. This inequality can be used to understand
the spreading of molecules on a surface in terms of a phase transition
(a ‘wetting’ transition). The wetting transition has a range of practical
applications, including an understanding of biofouling on the mem-
branes used in kidney dialysis machines and how agrochemicals adhere
to waxy plant leaves.

To have perfect wetting the Young equation (7.7) must not have a
solution that corresponds to a finite contact angle (Figure 7.8). Without
a finite contact angle, a liquid will completely coat a solid surface with a
macroscopically thick layer. When a liquid (l) only partially wets a
surface (s) a finite contact angle occurs. Writing the surface energies of
the two phases as in equation (7.7), the following equation must hold for
stable equilibrium of the forces at a point of three phase coexistence
(otherwise the triple point will move):

gsg > g lg þ gsl ð7:9Þ

Young’s equation can be rewritten in the form:

g lg cosðucÞ þ gsg ¼ gsl ð7:10Þ

Air

Water 

Oil 
θ1 θ2

θ3

Figure 7.9 An oil (liquid) drop placed on a liquid–air interface requires three contact
angles (u1, u2 and u3) to describe the position of the triple line of contact
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This can be rearranged to form the wetting coefficient (k):

k ¼
gsg � gsl

g lg

¼ cos u ð7:11Þ

When the wetting coefficient equals one, the contact angle of the drop is
zero and the solid is completely wetted as in Figure 7.10. In the inter-
mediate regime the wetting coefficient is between zero and one
(0 < k < 1) and the contact angle (u) lies between 0 and p/2; the solid
is partially wetted by the liquid (Figure 7.11). Again, when the wetting
coefficient is minus one, the contact angle is p and the solid is completely
wetted. In the range of wetting coefficients between minus one and zero
(�1 < k < 0) the solid is unwetted by the liquid (experimentally the
liquid would form a tight ball with a high contact angle and roll off
the surface).
Once the stability of the equilibrium situation has been examined, it is

possible to understand the dynamic development of surface morpholo-
gies. No equilibrium position of the contact line exists when the spread-
ing coefficient (s) is greater than zero from inequality (7.9):

s ¼ gsg � gsl � g lg > 0 ð7:12Þ

β

γ

Figure 7.10 Complete wetting of the liquid (b) on the solid surface (g) is observed
with a uniform macroscopically thick film of b

β

γ

Figure 7.11 Partial wetting of the liquid (b) on the solid surface (g) causes the solid
surface (g) to be inhomogeneously wet
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Thus the angle of contact will change dynamically when the spreading
coefficient is greater than zero, a measure of the driving force for this
non-equilibrium phenomenon. The spreading coefficient (s) is related to
the wetting coefficient (k):

k ¼ 1þ s

glv
¼ cos u ð7:13Þ

If the spreading coefficient is greater than zero (s > 0) then the wetting
coefficient is greater than one (k > þ1). The larger the positive value of
the spreading coefficient (s) the better the spreading over the solid sur-
face. The transformation from a partially to a totally wet condition has
the form of a phase transition (Section 3.1). This is normally a first order
process, but can become continuous with the correct choice of interac-
tion potential and state variable.

Consider the wetting of a protein on a water/air interface. Initially
the spreading coefficient is found to be positive (sinital ¼ 13mJm�2)
and at equilibrium it is negative (sfinal ¼ �2mJm�2). This protein is
therefore strongly surface active and leads to an important reduction
of the surface tension. Trace impurities on a surface reduce its free
energy and can cause a dramatic change in the spreading behaviour,
e.g. surface active proteins will spread on a clean water surface but
not on a contaminated one. The process of wetting can also be
considered in terms of the form of the energy of the protein/surface
interaction (P) on the thickness of the film (t) (Figure 7.12). A positive
curvature for the functional form of the energy on the film’s thickness
(PðtÞ) gives unstable films, whereas a negative curvature gives a stable
film.

P(t)

t

Unstable 
film

a) 

P(t)

t

Stable film 

b) ( (

Figure 7.12 The stability of surface absorbed films depends on the formof the surface
potentialPðtÞon the thickness of the film (t). (a) A positive curvature ofPðtÞ leads to an
unstable film, whereas (b) a negative curvature provides film stability
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7.4 CAPILLARITY

The Young–Laplace equation can be used to relate the pressure differ-
ence across a surface to its curvature. For an isolated particle the surface
tension is balanced by the stresses within the particle.
Consider a spherical gas bubble suspended in a liquid as shown in

Figure 7.13. The bubble is expanded infinitesimally by a radial distance
dR and the change in surface area (dA) is given by:

dA ¼ 4pfðRþ dRÞ2 � R2g ¼ 8pRdR ð7:14Þ

The corresponding change in volume (dV) is:

dV ¼ 4p

3
fðRþ dRÞ3 � R3g ¼ 4pR2dR ð7:15Þ

The free energy change by the pressure/volume variation is dw ¼ DpdV,
simply the force multiplied by the distance moved. The corresponding
free energy (dG) due to the surface tension from equation (7.4) is:

dG ¼ g8pRdR ð7:16Þ

where the geometric relationship for the change in surface area has been
substituted. The work done to increase the surface area is balanced by the
pressure volume work to give:

g8pRdR ¼ Dp4pR2dR ð7:17Þ

P+∆P

Gas 

R dR

Figure 7.13 The expansion of a spherical gas bubble in a liquid is controlled by its
surface tension. A change in pressure (DP) causes the bubble to increase its radius (dR)
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Therefore the pressure difference across the bubble is given by:

Dp ¼ g
2

R
ð7:18Þ

For cylindrical bubbles the physical behaviour is very similar. The bubble
has the morphology of a cylinder of length L (Figure 7.14). The area
change (dA) for a small variation in the radius is given by:

dA ¼ 2pLðRþ dr� RÞ ¼ 2pLdR ð7:19Þ

And the volume change (dV) is:

dV ¼ pLfðRþ dRÞ2 � R2g ¼ 2pLRdR ð7:20Þ

A balance between the surface and pressure volume work now gives the
pressure drop to be:

Dp ¼ g

R
ð7:21Þ

This expression is almost identical to that of a sphere (equation (7.18))
with the inclusion of an extra factor of two.

Liquid 

P+ ∆P

L

R dR 

Gas

Figure 7.14 The expansion of a cylindrical gas bubble is controlled by its
surface tension. A change in pressure (DP) causes the radius of the bubble to
increase (dR)
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For interfaces of arbitrary shape a general expression is found that
relates the pressure drop across the surface to its curvature:

Dp ¼ g
1

R1
þ 1

R2

� �
¼ g2H ð7:22Þ

where R1 and R2 are the radii of curvature and H is the mean curvature
given by:

H ¼ 1
2

1

R1
þ 1

R2

� �
ð7:23Þ

Equations (7.21) and (7.18) for spherical and cylindrical bubbles are
both then special cases of equation (7.22).
For simple liquids such as cyclohexane the macroscopic approach to

surface tension has been shown to be accurate down to distances of
seven times the molecular diameter with surface force apparatus experi-
ments. This is exceedingly good agreement for such a simple continuum
theory. The good agreement with experiment lends confidence for the
utility of equation (7.22) to gauge the strength of capillary forces on the
nanoscale.
Surface tension can govern the rise of a liquid in a capillary tube. The

capillary forces that drive this motion are important in a number of
biological processes, such as the rise of sap in plants, mucin in the
trachea of the lungs and urine in the kidneys. However, although it is
a classic example, it needs to be stressed that the main driving force for
the motion of sap in plants is a reduction in pressure due to the
evaporation through the leaves, i.e. a liquid–gas phase transition. Capil-
lary forces alone are unable to drive a fluid up the hundred metres of
trunk in a giant redwood tree.
A simple relation exists between the surface tension (g), the height of

capillary rise (h), the capillary radius (r) and the contact angle (u) on the
surface of a capillary. This expression can be used to measure the surface
tension of simple liquids (Figure 7.15). To perform these experiments
all that is required is a capillary tube with a well defined clean surface.
From the capillary geometry the radius of curvature of the meniscus (R)
is related to the contact angle and the radius of the capillary tube:

R cos u ¼ r ð7:24Þ
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There is a Laplace pressure (Dp) across the interface of the cylindrical
tube due to the curvature of the liquid’s surface and it is given by
equation (7.18):

Dp ¼ � 2g

R
¼ � 2g cos u

r
ð7:25Þ

In equilibrium the Laplace pressure is balanced by the hydrostatic pres-
sure due to the height of the fluid (h) above the height of the reservoir.
This hydrostatic pressure is linearly related to the height of the fluid:

Dp ¼ rgh ð7:26Þ

where r is the density of the fluid and g is the acceleration due to gravity.
Equations (7.25) and (7.26) can be combined to provide an expression
for the surface tension:

g ¼ rghr

2 cos u
ð7:27Þ

The equation is particularly simple to apply when the fluid wets the
surface of the capillary, since cos u ¼ 1.

Figure 7.15 The geometry used to describe the phenomena of capillary rise in
cylindrical tubes
(h is the height of capillary rise, R is the radius of curvature of the meniscus, r is the
radius of the tube and u is the contact angle of the liquid on the wall of the capillary
tube.)
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7.5 EXPERIMENTAL TECHNIQUES

TheWilhemy plate method is a simple robust technique for the measure-
ment of the surface tension of liquid films (Figure 7.16). The apparatus
uses the balance of the torques on a pivoted beam to measure the force
due to a liquid surface. The apparatus is balanced before it is brought
into contact with the liquid and the increase in weight is measured as a
result of the entrained meniscus. The weight (w) is therefore given by:

w ¼ gP cos u ð7:28Þ

where P is the perimeter of the plate and g is the surface free energy. A
range of methods that can be used for the measurement of surface
tensions is listed in Table 7.1.

Table 7.1 Methods for measuring the surface tension of liquids

Method Principle

Capillary height Capillary rise
Wilhemy plate Capillary force on a plate
Drop profile Digital analysis of drop geometry
DuNouy ring Capillary forces on a wire ring
Spinning drop tensiometer Digital analysis of drop geometry
Oscillatory bubble Capillary forces on an air bubble

Plate

Balance 

Weight

θ

Liquid

Meniscus 

Figure 7.16 Schematic diagram of a Wilhemy plate used to measure the surface
tension of a liquid. The weight required to balance the surface tension is measured
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7.6 FRICTION

The coefficient of friction (m) between two solids is defined as the ratio of
the frictional force (F) to the normal force to the surface (W;m ¼ F=W).
Amontons’ law states that the coefficient of friction is independent of the
apparent area of contact (a surprising counterintuitive result). Amon-
tons’ law is an empirical result that has been shown to hold for a wide
variety of materials. A corollary is that the coefficient of friction is
independent of load. Furthermore, if two objects of equal weight
(W1 ¼ W2) are made of the same material then their frictional forces
are equal (F1 ¼ F2) (Figure 7.17). To illustrate the bizarre nature of this
law consider a rectangular block of wood that is initially balanced on an
end with a small surface area (Figure 7.18). The block is then toppled
onto its side, which results in a large increase in the area of contact.
However, this does not change the horizontal frictional force that
opposes motion, since the normal reaction to the block’s weight is
unchanged.

A qualitative microscopic explanation can be made for Amonton’s
law. As the two surfaces are brought together the pressure is initially

W1

F1
F2

W2

Figure 7.17 The frictional forces on twoobjectsmade from the samematerial, placed
on the same surface, are equal if they have the same weights, i.e. if W1 ¼ W2 then
F1 ¼ F2

N

N

W W

F2F1

Figure 7.18 Topple a solid block on its side and Amonton’s law gives the same
frictional force opposing the motion, F1 ¼ F2
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extremely large at the first few points of contact that develop, and plastic
deformation immediately occurs to allow more and more contacts to
form (Figure 7.19). This plastic flow continues until the total area of
contact is such that the local pressure has fallen to a characteristic yield
pressure (Pm) of the softer material. The actual contact area (A) is
determined by the characteristic yield pressure of the material:

A ¼ W

Pm
ð7:29Þ

whereW is the weight of the upper solid object. By definition the force to
shear the junctions at the point of contact is:

F ¼ Asm ð7:30Þ

where sm is the shear strength per unit area. As an approximation the
contact area (A) can be eliminated, giving the result:

F ¼ W
sm
Pm

ð7:31Þ

Or m ¼ sm
Pm

¼ const ð7:32Þ

Amonton’s law is a useful starting point for the study of friction. How-
ever, many non-Amonton’s law materials have evolved in nature to
provide carefully optimised frictional properties.
Dynamic frictional effects are also an important but extremely

complicated area. From detailed studies of lubrication in automotive

Solid surface

Solid surface

Weight (W)

Air Deformation 

Asperity

Figure 7.19 Schematic diagram of themicroscopic contacts (asperities) between two
solid surfaces that give rise to the frictional force that opposes lateral motion
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applications (a billion pound industry that has invested considerably into
research in the field) the form of the frictional force as a function of shear
rate is well known (Figure 7.20). These Stribeck curves have two impor-
tant regimes: hydrodynamic lubrication at high shear rates, in which the
details of the lubricant are not critically important, and boundary lubri-
cation at low shear rates, which is very sensitive to the molecular proper-
ties of the lubricant. Engine oils are specifically designed to modify the
region of low shear rate lubrication and it is believed that proteoglycans
and glycoproteins have evolved naturally to reduce frictional effects in
this regime in a wide variety of biological processes, e.g. ocular mucins in
the eye.

An important example of lubrication is the ultra low friction exhibited
by cartilage on cartilage contacts in synovial joints. Cartilage has an
extremely low friction coefficient, lower than Teflon on Teflon, and
there are large deviations from Amonton’s law for cartilage surfaces
(Section 15.1). Anisotropic frictional behaviour has evolved in the tex-
tured skin of snakes. This provides low frictional resistance to forward
motion, but allows the skin of the snake to grip the surface upon
muscular retraction to produce the explosive reactive force needed to
strike the snake’s prey. The frictional losses of fibres (actin and myosin)
in striated muscle are minimised as they slide past one another (Section
14.2). Non-Amonton’s law friction occurs again in this system and

Boundary 
lubrication 

Hydrodynamic 
lubrication 

Friction 
coefficient

Shear rate (cms–1)
10–2

10–4

10–3

10–2

10–1

10–1 1 10 100

Mixed 
lubrication 

Figure 7.20 Schematic diagram of a Stribeck curve that illustrates the regions of
hydrodynamic, mixed and boundary lubrication for liquid films held between two
solid surfaces. The frictional coefficient is shown as a function of the relative shear rate
of the two identical solid surfaces
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frictional losses are reduced by a combination of the electrostatic stabi-
lisation of the fibrillar array and hydrodynamic lubrication of fluids held
within the sacromere.

7.7 OTHER SURFACE PHENOMENA

When two surfaces approach one another surface energy effects can
cause a liquid to condense on a surface prior to its saturation in the
bulk phase. This effect can cause a large change in the adhesive energies
and is termed capillary condensation.
Ostwald ripening is the process by which surface free energies govern

the growth of colloidal particles. Small crystals are subsumed by larger
ones during their growth in order to globally minimise the surface free
energy. Such behaviour is important with the production of ice cream
(large crystals are considered unpalatable), and in the creation of large
defect free protein crystals for crystallographic structural determination
(Section 3.5).
During the nucleation of a new phase of material the surface free

energies oppose the nucleation of a new droplet or microcrystal. Thus
the surface forces are the critical factor determining the dynamics of
phase separation (Section 3.5).
Gradients in surface tension can drive diffusion in mixed liquids and

this process is called the Marangoni effect. The effect can be easily
observed in the production of tear drops of brandy if a thin meniscus
of this alcohol/water mixture is deposited on the side of a glass and the
alcohol begins to evaporate.
There are a range of surface effects relating to liquid crystallinity.

Phase transitions can be induced by the interaction of liquid crystalline
order parameters with a surface, e.g. smectic terraces often form at solid/
nematic interfaces from a bulk nematic phase.
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TUTORIAL QUESTION

7.1) A water droplet sits on a lotus leaf. If the surface free energy of
the leaf/air, leaf/water and air/water interfaces are 18mJm�2,
73:2mJm�2 and 72mJm�2 respectively what is the equilibrium
contact angle of the drop? What is the wetting coefficient for the
system? Is the surface unwetted, partially wetted or completely
wetted by the droplet?
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8
Biomacromolecules

Macromolecules (polymers) are long chain molecules built of repeating
sub-units (monomers). All proteins, nucleic acids and many carbohy-
drates are polymeric, and polymers are therefore given a thorough
discussion in this chapter. Synthetic polymers have been extensively
investigated for their diverse range of industrial applications over
many years. This provides the field of biomacromolecules with a rich
variety of quantitative models that can be readily transported from their
original synthetic origins into the analysis of biological problems.

8.1 FLEXIBILITY OF MACROMOLECULES

The persistence length of a polymer is a quantity commonly used to
measure its flexibility. There are three standard classifications for the
persistence length of isolated polymer chains: flexible, semi-flexible, and
rod-like. Each of these different classes of polymers requires a separate
theoretical model to develop an understanding of their structure and
dynamics in solution. Rigid polymeric rods form liquid–crystalline
phases and have no internal dynamic modes. At the opposite extreme
flexible polymers are adequately described by blob models, and the chain
conformations are dominated by thermal fluctuations inside the blobs at
small length scale and the solvent quality (chain–solvent interaction) at
large length scales. The internal dynamic modes of flexible polymers
are well described in terms of the Zimm model. The intermediate
semi-flexible class of polymers has been subject to a series of recent
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developments. The role of both transverse and longitudinal fluctuations
of the filaments is highlighted in these developments, since these fluctua-
tions determine the unusual structures and hydrodynamic modes of the
chains. It is possible for a long polymeric chain to exhibit dynamics from
all three regimes as a function of increasing length scale, e.g. rod-like
(� Å), semi-flexible (nms) and flexible (100 nms).
The persistence length of a macromolecule can be measured using a

host of techniques, such as dynamic light scattering, electron microscopy,
optical microscopy (optical tweezers), small-angle X-ray scattering, static
light scattering, small-angle neutron scattering, atomic force microscopy
and fluorescence microscopy. The effect of the persistence length on the
conformation of giant protein molecules (titin) in small-angle neutron
scattering experiments is shown in Figure 8.1. The cross-over of the
dependence of the scattered intensity on the momentum transfer ðqÞ from
q�1 to q�2 (Section 13.1) corresponds to the change in chain conforma-
tion of rigid rod over small lengths scales (< 10 nm) to flexible Gaussian
conformations over larger length scales (> 10 nm).
The geometrical construction of the persistence length of a macromole-

cule is shown in Figure 8.2. The persistence length ðlpÞ is the decay length of
the cosines between the tangent vectors ðtðsÞÞ along the monomers of the
chain.Mathematically it is found that the correlation decays exponentially:

htð0Þ:tðsÞi � e�s=lp ð8:1Þ

where s is the distance along the contour of the polymer.
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Figure 8.1 Small angle neutron scattering experiment to study the elasticity of titin
(The scattered intensity is shown as a function of the momentum transfer ðqÞ. q�
corresponds to the persistence length of the chains [Reprintedwith permission fromE.
DiCola, T.A.Waigh, J. Trinick et al., Biophysical Journal, 88, 4095–4106, Copyright
(2005) Biophysical Society])
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For a rigid rod the persistence length is infinite ðlp ! 1Þ, a flexible chain
has a small persistence length ðlp ! 0Þ, and with a real semi-flexible
chain the persistence length takes intermediate values between the two
extremes. The global conformations of polymer chains can be classified
by comparison of the persistence length ðlpÞ with the contour length ðLÞ.
Thus:

lp � L Flexible chain

lp � L Semi-flexible chain

lp � L Rigid chain

:

It is useful to connect the persistence length with the global size of the
macromolecule. The average end-to-end distance ðhRiÞ of a semi-flexible
chain is the sum of the cosine components along the chain:

hRi ¼ a
XN
k¼0

xk ¼ að1� xNÞ
1� x

ð8:2Þ

x ¼ cos u ð8:3Þ

where a is the monomer length and N segments make an angle u with
adjacent segments. The persistence length ðlpÞ can be defined as the
limiting value of hRi as the chain becomes infinitely long ðN ! 1Þ:

lp ¼
a

1� x
ð8:4Þ

R

Semi-flexible
polymer

Figure 8.2 Schematic diagramof the conformation of a semi-flexible polymeric chain
(R is the end-to-end distance. The dashed arrows indicate the direction cosines along
the chain.)
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Since u is small for semi-flexible rods, the small angle expansion can be
used for the cosine, only the first two terms are kept:

cos u � 1� u2

2
ð8:5Þ

Substitution of equation (8.5) in (8.4) gives:

lp ¼
2a

u2
ð8:6Þ

It is possible to write xN in the form of an exponential if the following
mathematical identity is noted:

xN ¼
�
1� u2

2

�N

� e�Nu2=2 ð8:7Þ

The contour length is equal to the number of segments ðNÞmultiplied by
the segment length (a):

L ¼ Na ð8:8Þ

Using equations (8.6) and (8.8) allows equation (8.7) to be reexpressed
as:

xN ¼ e�L=lp ð8:8Þ

From equations (8.2) and (8.3) it follows that:

hRi ¼ lpð1� e�L=lpÞ ð8:9Þ

As the length of the chain becomes very large ðL ! 1Þ the persistence
length becomes equal to the end-to-end distance ðhRi ! lPÞ. Further-
more, if the persistence length is very large ðL � LPÞ the end-to-end
distance becomes equal to the contour length ðhRi ffi L for a rigid rod).
The radius of gyration is another useful quantity for sizing chains,

since the average chain size is zero ðhRi ¼ 0Þ for completely flexible
chains. The radius of gyration is the expected value of R2ðhR2iÞ, and
can be calculated using integral calculus:

dhR2i ¼ dhR:Ri ¼ 2hR:dRi ¼ 2hRidL ð8:10Þ
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Therefore, integration of all the infinitesimal components of hR2i com-
bined with equation (8.9) gives:

hR2i ¼ 2lp

ðL

0

½1� expð�L=lpÞ�dL ð8:11Þ

The integral can be evaluated and gives the expression:

hR2i ¼ 2lpðL� lpð1� e�L=lpÞÞ ð8:12Þ

In the limit of very long chains the radius of gyration of a semi-flexible
chain is given by:

hR2i ¼ 2Llp ð8:13Þ

where 2lp is the length of the rigid subunits in a equivalent flexible chain.
Equation (8.13) provides a useful method for estimating the size of
biopolymers in solution. For example, with a B-type variety of DNA
the persistence length ðlpÞ is 450 Å, and the contour length is 800 Å. The
radius of gyration of the chain can therefore be calculated to be 600 Å.
The radius of gyration is fairly compact and highlights the significant
impact of the flexibility on the conformation of the DNA chain.

Using the Kratky–Porod model it is possible to connect the persistence
length of a polymeric material with its bending rigidity (an intrinsic
property of the material). The elementary change in free energy ðdGÞ
of a semi-flexible chain for small values of the curvature ðdsÞ is:

dG

ds
¼ dG

du

du

ds
þ 1

2

d2G

du2

� �
du

ds

� �2

ð8:14Þ

In the absence of a permanent bending moment for the chain:

dG

du
¼ 0 ð8:15Þ

And therefore:

dG

ds
¼ k

2

du

ds

� �2

ð8:16Þ
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where the bending rigidity (k) is defined as:

k ¼ d2G

du2
ð8:17Þ

The total energy ðDGÞ to bend a finite chain is therefore the integral of
equation (8.16) over the length of the chain ðLÞ:

DG ¼ k

2

ðL

0

du

ds

� �2

ds ð8:18Þ

For small displacements of the chain the angle of deviation is propor-
tional to the size of a step along the contour length (u ¼ ks when k is a
constant) and substitution in equation (8.18) gives:

DG ¼ kk2
ðL

0

ds

2
ð8:19Þ

k ¼ du

ds
ð8:20Þ

If uL is the total angle between the ends of the chains it can be found by
integraton of equation (8.20):

uL ¼
ðL

0

kds ¼ kL ð8:21Þ

where L is the total contour length. And therefore the bending energy of
the chain is given by:

DG ¼ ku2L
2L

ð8:22Þ

The bending coefficient (k) is equal to twice the energy required to bend a
unit length of polymer chain through one radian. The average mean
square value of the angle of deviation is given by a Boltzmann average if
the system is assumed to be in thermodynamic equilibrium:

hu2Li ¼

Ðp
0

e�DG=kTu2LduL

Ðp
0

e�DG=kTduL

¼ LkT

k
ð8:23Þ
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There are two transverse modes for bending the semi-flexible chain
(Figure 8.3), so an additional factor of 2 is included in equation (8.23)
to account for them both:

hu2Li ¼
2LkT

k
ð8:24Þ

It is then possible by comparison with equation (8.6) to relate the
persistence length to the bending rigidity and this gives a final expression:

lP ¼ k

kT
ð8:25Þ

This is a successful theory for the conformation of semi-flexible chains
that only requires a single elasticity constant (k) and remains a good first
approximation for the conformational statistics of a wide variety of
biopolymers. The theory predicts the size of the chains and the effect
of temperature on the persistence length and modulus. More modern
theories often include chirality (spontaneous torsional twisting of the
chains) and even twist-bend coupling, but they continue to be based on
the Kratky–Porod model.

8.2 GOOD/BAD SOLVENTS AND THE SIZE
OF POLYMERS

Excluded volume is an important parameter which determines the
configuration of flexible polymer chains. Steric interactions cause an
expansion of a chain in solution when compared with a phantom
equivalent (a random walk of monomers with no excluded volume).
The quality of a solvent for a polymer also affects its degree of expan-
sion. There are typically three regimes of solvent quality that are
defined: good (the conformation of a polymer chain expands as it tries

z

y

Semi-flexible
polymer

x

Figure 8.3 Two modes of transverse fluctuations (z and y) are possible with semi-
flexible polymers
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to increase the number of contacts with the solvent), bad (the chain
forms a compact globular conformation as it decreases the number of
contacts with the solvent) and theta (the excluded volume is balanced
by the intermonomer attractive potential) conditions. Varying the sol-
vent quality from good to bad can induce phase transitions as described
in Chapter 3, such as the globule–coil transition and liquid–liquid phase
separation. In most cases chirality has a secondary impact on the size of
flexible polymer chains.
The end-to-end distance ðhR2i

1
2 ¼ ReeÞ for flexible polymer chains is a

useful measure of the expansion of a chain. With ideal flexible chains,
that neglect excluded volume interactions, accurate models for chain
statistics have been known to synthetic polymer physicists for over fifty
years. Flexible chains have random walk statistics in three dimensions
which lead to a characteristic scaling exponent ð12Þ on the number of
monomers (identical to that for diffusion in Section 5.1):

Ree � aN
1
2 flexible ð8:26Þ

where a is the monomer length and N is the number of monomers in a
chain. For a rigid rod the interpretation of the chain size is also straight-
forward, its length is simply the number ðNÞ of monomers multiplied by
their size ðaÞ:

Ree � aN rigid rod ð8:27Þ

For self-avoiding walks (with excluded volume and good solvent statis-
tics) the calculation for the end-to-end distance is more complicated. The
problem requires the renormalisation group technique, a sophisticated
mathematical method from the theory of phase transitions. An inter-
mediate result between that of flexible and rigid rod statistics is obtained
for the size of the chains in a good solvent:

Ree � aN
3
5 good solvent ð8:28Þ

At the theta point the attractive interchain forces induced by the solvent
and the repulsive forces due to the excluded volume of the chains
balance. Phantom gaussian statistics occur (as in equation 8.27), but
this time in a real experimentally realisable system:

Ree � aN
1
2 theta solvent ð8:29Þ
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For a globule (a chain in a bad solvent) the chain forms a compact hard
sphere whose radius is equivalent to a sphere constructed fromN smaller
spheres of volume 4=ð3pa3Þ:

Ree � aN
1
3 bad solvent ð8:30Þ

The range of scaling laws of the end to end distance that occur with
polymeric chains is summarised in Figure 8.4.

A better understanding of the factors that affect chain conformation as
a function of solvent quality can be developed using the Flory calculation
for the radius of a chain. This is not a completely accurate calculation,
but is a useful starting point to understand the interplay between entropic
forces and the monomer–monomer interaction that determines the con-
formation of a chain. In this model, swelling of a polymer chain is due to
a balance between the repulsion of the segments inside the coil (binary
collisions) and the elastic forces that arise from the monomer entropy.
The internal energy ðUÞ due to monomer–monomer collisions in the
chain is given by:

UðaÞ � kTBN
1
2

a3a3
ð8:31Þ

where a is the expansion coefficient (a ¼ R=R0, radius of the chain/initial
radius),N is the number of monomers, a is the monomer length and B is

R ~ aN

Good solvent

Flexible

Theta solvent

R ~ aN Poor solvent

R ~ aN

Semi-flexible (polyelectrolyte
or neutral) 

Rigid (polyelectrolyte or 
neutral) 

R ~ aN

Flexible polyelectrolyte

R ~ aN/b 

R ~ (2lp)(aN/lp)

3_
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1_
2

1_
2

1_
3

Figure 8.4 The typical range of polymer chain conformations as a function of solvent
quality, charge and backbone rigidity. The end-to-end distance (R) is shown for each
class of conformation and b is a solvent quality dependent parameter.
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the second virial coefficient. The entropy of a chain is related to the
expansion coefficient and is given by:

SðaÞ ¼ S1 � 3
2ka

2 ð8:32Þ

where k is Boltzmann’s constant and S1 is a constant. The total free
energy ðFÞ of the chain can then be calculated as a function of the
expansion coefficient by the addition of the two terms, equations
(8.31) and (8.32):

FðaÞ ¼ UðaÞ � TSðaÞ ¼ constþ kT
BN

1
2

l3a3
þ 3

2kTa
2 ð8:33Þ

This can be solved graphically, as shown in Figure 8.5. The minimum on
the figure corresponds to the equilibrium conformation of the polymer
chain. However, the renormalisation group technique is required for
exact quantitative results on the size of a polymer chain, since the
excluded volume effect has not been accurately incorporated into the
Flory model.
Blob models are very useful for determining the physical properties of

flexible polymers. Also, they are a useful vehicle for learning scaling ideas,
which often present the first best guess for a biophysical model, before a
complete quantitative solution can be developed. A blob is a small section
of a flexible polymeric chain that has somewell defined statistical properties

Figure 8.5 Free energy of a single Flory chain as a function of the degree of expansion
(a in reduced units)
(The single minimum corresponds to the equilibrium conformation of the chain
[Reprintedwithpermission fromA.Y.Grosberg andA.R.Khokhlov,GiantMolecules,
Copyright (1997) Elsevier])
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(Figure 8.6). There are three varieties of blob that are typically used in
polymer physics: thermal blobs, electrostatic blobs and tension blobs.

A thermal blob (the simplest that will be encountered) is defined as a
region of polymer chain in which the chain conformation is unperturbed
from its thermal statistics. For example, consider a polymer chain in a
capillary of diameter D (Figure 8.7). The chain is the same over a range
of lengths, so the size of a small chain segment ðRsÞ scales in the same
manner as the whole chain:

Rs � agv ð8:34Þ

where g is the number of monomers in a blob, a is the Kuhn segment
length and v is an exponent, which depends on the quality of the solvent
(compare with equation (8.28)). When a polymer chain is confined to a
cylindrical pore the size of the chain segment ðRsÞ must be equal to the
diameter of the pore ðDÞ and from equation (8.34):

agv � D ð8:35Þ

This equation can be rearranged to give the number of monomers in a
thermal blob:

g � D

a

� �1=v

ð8:36Þ

D

Figure 8.6 Ablob (diameterD) is a small section of a flexible polymer chain that has a
well defined statistical property

D

Capillary tube

Thermal blob 

Figure 8.7 A flexible polymer chain inserted into a capillary, e.g. a titin molecule
inserted in an actin cage in striated muscle. The blob size ðDÞ is equal to the size of the
capillary
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Thus with very little mathematical effort the size of the chain in the
capillary ðRcÞ can be calculated, the chain is decomposed into a string of
equally sized blobs, i.e. Rc ¼ ðN=gÞD.
The idea of thermal blobs can be extended into semi-dilute solutions

(Figure 8.8); calculations can thus be performed when chains overlap. A
semi-dilute solution of flexible polymer chains can be pictured as a close
packed array of blobs. The number of contacts that a blob has with other
chain sections is approximately one and the free energy of the solution has
by definition thermal energy ðkTÞ per blob. Through a dimensional scaling
argument it is possible to show that the semi-dilute correlation length (j),
the mesh size of the polymer solution, scales with concentration ðcÞ as:

j ¼ acv ð8:37Þ

The exponent (v) again depends on the quality of the solvent for the
polymer chains. The exponent is a 1

2 for the extreme limit of completely
extended chains (found with polyelectrolytes and liquid crystalline poly-
mers) and 3

4 for flexible chains in a good solvent. The predictions are in
good agreement with scattering and atomic force microscopy (AFM)
experiments for a wide range of polymeric systems.
The concept of a charged blob is very useful for calculating chain

statistics with weakly charged flexible polymeric chains (Figure 8.9). The

ξ Thermal 
blobs 

Overlapping 
polymer 
chains

Figure 8.8 Schematic diagram of a close packed array of polymeric blobs in a semi-
dilute solution with an average correlation length j
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Figure 8.9 Schematic diagram showing the rigid bayonet conformation of a flexible
polyelectrolytewhose subsections are arranged in a series of electrostatic blobs (sizeD)
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electrostatic repulsion of two neighbouring blobs in the chain is of the
order of the thermal energy ðkTÞ. Consider the electrostatic energy of
repulsion between charged monomers along a chain. The dominant
Coulombic term is equal to g2e2=eD, where g is the number of monomers
in a blob, e is the charge, e is the dielectric constant and D is the
electrostatic blob size. The electrostatic energy can be equated to the
thermal energy (kT) and gives:

g2e2

eD
� kT ð8:38Þ

This equation can be rearranged and the size of an electrostatic blob is
therefore:

D � g2e2

ekT
ð8:39Þ

Tension blobs are defined for a chain with an applied force (consider a
single molecular elastic spring). The applied force reduces the size of the
lateral entropic fluctuations of the flexible chain and consequently the
blob size (Figure 8.10).

8.3 ELASTICITY

An analysis of the elasticity of rubbery networks is useful to understand
both the static and dynamic properties of biopolymers (Figure 8.11). Ideal
rubbers (elastomers) consist of flexible chains connected together at a series
of junction sites to form a solid network. The elasticity of such networks is
crucial to the functioning of a range of biological materials, e.g. resilin in
the hinges of dragonfly wings and abductin in the hinges of clams. The
behaviour of cross-linked flexible polymer chains is relatively simple and

FF D

Tension blob 

Polymer chain 

Figure 8.10 Tensions blobs (size D) are determined by the size of the external force
ðFÞ and the quality of the solvent
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will be covered here, whereas semi-flexible polymer chains exhibit more
subtle phenomena related to the anisotropy of the network (Section 12.3).
To calculate the elasticity of a network of completely flexible chains

the Flory approach will be followed. An expression for the change in
entropy of the polymer network when it is stretched is required. The
conformation entropy of a single polymer chain has been introduced
previously (equation (8.32)) and the chain expansion factor is a ¼ R=R0.
The entropy of a flexible Gaussian chain (unperturbed radius R0 ¼ N

1
2b)

is therefore:

SðRÞ ¼ �k
3R2

2Nb2

 !
þ const ð8:40Þ

where b is the monomer length,N is the number of monomers in a chain
and k is Boltzmann’s constant. The change in entropy ðDSðRÞÞ upon
extension of a single chain in three dimensions is the difference of two
entropies before and after it is stretched:

DSðRÞ ¼ SðRÞ � SðR0Þ ð8:41Þ

In three dimensions this entropy difference can be calculated as:

DSðRÞ ¼ � 3k

2Nb2
��
R2

x � R2
0x

�
þ
�
R2

y � R2
0y

�
þ
�
R2

z � R2
0z

��
ð8:42Þ

It is useful to define the draw ratios (lx ¼ Rx=R0x etc), the ratio of the
radius of the chain ðRxÞ to the unperturbed radius ðR0Þ, to give

FF

Flexible 
polymeric 
chain Cross-link 

Figure 8.11 Schematic diagram of a rubber network under a tension ðFÞ
(The extending force is resisted by the entropy of the flexible chains of the polymeric
network.)
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another equation equivalent to equation (8.42) for the entropy dif-
ference:

DSðRÞ ¼ � 3k

2Nb2
��
l2x � 1

�
R2

0x þ
�
l2y � 1

�
R2

0y þ
�
l2z � 1

�
R2

0z

�
ð8:43Þ

The elasticity of a polymer network is mainly entropic in nature and the
agreement of the prediction of this type of purely entropic model with
experiment is very good with simple synthetic polymers, e.g. the con-
traction of a synthetic rubber band when heated. The change in entropy
can be summed over all the subchains to give the total entropy when the
network is stretched:

DS¼�3kvV

2Nb2
��
l2x � 1

��
R2

0x

�
þ
�
l2y � 1

��
R2

0y

�
þ
�
l2z � 1

��
R2

0z

��
ð8:44Þ

where V is the volume of the sample and n is the concentration of
subchains per unit volume. For a rubber network of ideal Gaussian
chains the radius of gyration ðhR2

0i
1
2Þ is proportional to the square of

the number of monomers (equation (8.26)) and therefore:

�
R2

0

�
¼
�
R2

0x

�
þ
�
R2

0y

�
þ
�
R2

0z

�
¼ Nb2 ð8:45Þ

where b is the size of a monomer in the chain. For isotropic Gaussian
statistics of the chains, the size of the unperturbed chains in each of the
draw directions are equal and therefore:

�
R2

0x

�
¼
�
R2

0y

�
¼
�
R2

0z

�
¼ Nb2

3
ð8:46Þ

The chain entropy from equation (8.43) is:

DS ¼ �
knV

�
l2x þ l2y þ l2z � 3

�
2

ð8:47Þ

The condition of uniaxial deformation along the x axis for an incom-
pressible material (volume conservation) introduces an additional con-
dition on the draw ratios:

ly ¼ lz ¼ l
�1

2
x ¼ l ð8:48Þ
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Therefore the change of entropy can be simplified:

DS ¼ �knV
ðl2 þ 2Þ
2ðl� 3Þ ð8:49Þ

The free energy ðf Þ is proportional to the rate of change of entropy with
extension ð@S=@lÞ and therefore:

f ¼ �T
DS

Dax
¼ � T

a0x

@S

@l
ð8:50Þ

The stress (s) experienced by the elastic network is the force per unit
area:

s ¼ f

a0xa0y
¼ � T@S=@l

a0xa0ya0z
¼ �T@S=@l

V
ð8:51Þ

where a0x, a0y and a0z, are the length, breadth and height of the
unstretched sample respectively. A final expression for the stress of an
isotropic elastic network of flexible polymer chains in terms of the draw
ratio is:

s ¼ kTv
�
l� 1

l2
�

ð8:52Þ

There is no dependence on the number of monomers ðNÞ or on the size of
the monomers ðbÞ in this expression for the stress. The only parameters
that are important for the determination of the response of the rubbery
network to a stress are the extension ratio (l) and the density of cross-
links (n). For small amounts of extension the draw ratio is approximately
one ðl ffi 1Þ and therefore:

l� 1

l2
� 3ðl� 1Þ ð8:53Þ

By definition the Young’s modulus ðEÞ is given by the ratio of the stress
(s) to the strain ðDl=lÞ (Section 13.1) and therefore:

s ¼ E
Dl

l
ð8:54Þ
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The draw ratio is simply related to the strain:

l� 1 ¼ Dl

l
ð8:55Þ

Thus it is found that the Young’s modulus is directly proportional to the
number of cross links:

E ¼ 3kTv ð8:56Þ

where v is the density of cross-links and kT is the thermal energy. This
expression for the modulus is compact, simple and very useful for
estimating the elasticity of polymer networks. It can also be used to
calculate the plateau of the shear modulus in viscoelastic networks of
entangled polymer chains in which the cross-links are topological in
nature (no interchain chemical bonds are involved). A complication for
a detailed description of most biological systems is that polymeric net-
works often include rigid rod and semi-flexible sections (nematic elasto-
mers). The materials act as composites of their molecular components
with unique strain hardening mechanisms that need to be considered
separately (Chapter 12).

8.4 DAMPED MOTION OF SOFT MOLECULES

A first step in understanding the dynamics of polymers can be developed
through an inspection of the decay of the forced vibrations of a rigid rod.
This could be a fibre rigidly attached at one end (Figure 8.12), e.g. a hair
in the cochlea of the ear. The equation of motion for the rod’s damped
spring-like motion (Section 5.2) is given by:

m
d2x

dt2
þ g

dx

dt
þ kx ¼ F ð8:57Þ

where x is the displacement of the end of the rod, g is the viscous
coefficient, k is the elastic modulus and F is the external force.
Through analysis of equation (8.57) it is found there are two distinctly
different forms of motion that occur for the fibre. When the damping is
small:

g2 < 4mk ð8:58Þ
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The motion is oscillatory and underdamped (Figure 8.13(b)). However,
for large damping:

g2 > 4mk ð8:59Þ

The motion is overdamped (Figure 8.13(c)). There are two time con-
stants associated with the damped oscillatory motion. A fast time con-
stant occurs for the mass to accelerate to the maximum velocity of F=g,
and a slow time constant is introduced for the relaxation time of the
spring and dashpot, i.e. the elastic and dissipative components of the
rigid rods motion.
Global motions of small comparatively soft objects such as proteins,

polysaccharides and nucleic acids in aqueous solutions are overdamped.
This can be shown using a crude mechanical model of a globular protein.
The protein is pictured as a homogeneous isotropic cube of material with
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Figure 8.12 The fluctuations in the displacement of a cantilevered glass fibre as a
function of time (a) the resultant power spectrumas a function of frequency (b) and the
experimental arrangement for themeasurement of the displacement fluctuations of the
glass fibre (c)
[Ref.: E. Meyhofer and J. Howard, Proc. Nat. Acad. Sci. USA, 1995, 92, 574–578]
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a given side length ðLÞ, density (r), Young’s modulus ðEÞ and viscosity
(h). The mass of the cube is:

m ¼ rV ¼ rL3 ð8:60Þ

where r is the density and V is the volume. The stiffness (k) of the cube
is related in the standard way to the length ðLÞ and the Young’s modulus
ðEÞ:

k ¼ EL ð8:61Þ

The drag coefficient on the cube (g) is given by Stoke’s law as:

g ¼ 3phL ð8:62Þ

From the previous analysis, it is known that the motion of the cube is
overdamped if the ratio 4mk=g2 is less than one, and this can now be

10 pN
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100 ps

Displacement 

20 ns

Underdamped

τ = 2m/γ

τ = γ/κ

(a) 

(b)

(c)

Time

Displacement 

Time

Time
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Figure 8.13 (a)Amass ðmÞ attached to an elastic spring (elastic constant k) embedded
in a liquidwith viscous dissipation (g) is subjected to a force of 10 pNat time t ¼ 0.The
resultant motion of the mass can be (b) underdamped or (c) overdamped. The time
constant for the decay of the underdamped motion is 2 ;m=g and for the overdamped
case it is g/k
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related to the material properties of the protein:

4mk

g2
¼ 4rL3EL

ð3phLÞ2
¼ 2

3p

� �2
rE

h2
L2 ð8:63Þ

How the characteristic ratio scales with the dimension L is particularly
important. The smaller the physical dimension of the protein the higher
the tendency for its motion to be overdamped. The motions of protein
domains of diameter less than the characteristic length Lc can be ana-
lysed. Using equation (8.63) this characteristic length can be calculated,
h � 1mPa:s, r � 103 kg=m3, E � 1GPa:

Lc �
3p

2

h2

rE

� �1
2

� 5nm ð8:64Þ

Small motions of globular proteins such as the ribosome (1 nm) are thus
overdamped. Internal friction of the proteins will tend to accentuate the
degree of damping over and above the previous analysis. Elongated
proteins are more highly damped than globular proteins because the
increase in aspect ratio causes the damping to increase (increased L) and
the stiffness to decrease ðEÞ. Thus the motion of the cytoskeleton is
overdamped. Similarly the motions of most biological polymers are
overdamped.
A useful calculation is to solve the expression for an oscillatory

damped fibre using a power spectrum of its displacement. Consider the
motion of a glass fibre undergoing stochastic fluctuations, e.g. the glass
fibre is attached to a DNA chain which is undergoing a helix–coil
transition (Figure 8.12). The autocorrelation function of the displace-
ment of the end of the fibre ðRðtÞÞ is introduced to help solve the
equation of motion and it is the time dependent quantity often measured
electronically in experiments (equation (5.34)). The autocorrelation
function is defined as:

RðtÞ ¼ hxðtÞxðt � tÞi ¼ lim
T!1

1

T

ðT=2

�T=2

xðtÞxðt � tÞdt

8><
>:

9>=
>; ð8:65Þ

where T is the time over which the motion of the rod is sampled. Using
the autocorrelation function the Langevin equation (8.57) can be
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accurately solved and it is found that the fibre fluctuates around its
average position with a characteristic spectra:

RðtÞ ¼ kT

k
e�jtj=t0 ð8:66Þ

and the characteristic time constant is given by:

t0 ¼
g

k
ð8:67Þ

Typically a power spectrum ðGðf ÞÞ is experimentally used to analyse the
fluctuations in displacement of a probe, and it is defined as the Fourier
transform of the autocorrelation function ððRðtÞÞ. The power spectrum of
the position of the glass fibre as a function of frequency ðf Þ is found to be:

Gðf Þ ¼ 4kTg

k2
1

1þ ð2pf t0Þ2
ð8:68Þ

This theoretical power spectrum can then be compared with that calcu-
lated using a numerical fourier transform of the raw experimental data.
The mean square displacement of the fibre end at long times is given by
hx2i ¼ kT=k and the correlation time ðt0Þ can be related to the cut off
frequency of the power spectrum, f0 ¼ 1

2pt0, (Section 5.3). The elastic (k)
and dissipative (g) constants for a biological molecule can thus be
directly calculated from the experimental data.

8.5 DYNAMICS OF POLYMER CHAINS

The Stokes–Einstein equation for the diffusion coefficient ðDÞ for the
motion of a spherical test particle in solution (Section 5.1) can be used if
all the surrounding molecules (radius a) are treated as a continuum of
constant viscosity ðh0Þ:

D ¼ kT

6ph0a
ð8:69Þ

where kT is the thermal energy. The structural relaxation time (t) of a
liquid that consists of these spherical particles is defined as the time for
the particles to diffuse their molecular size (a):

t ¼ a2

D
¼ 6ph0a

3

kT
ð8:70Þ
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However, polymer chains can have internal relaxation modes due to
their flexibility, and they can have topological entanglements with their
neighbours. These two effects significantly complicate the relaxation
spectrum at short times with polymeric solutions compared with the
case of simple rigid spherical colloids.
The Rouse model describes the spectrum of relaxation times of a

flexible phantom chain in an immobile solvent (Figure 8.14). It is the
simplest successful theory of polymer chain dynamics, formulated for a
chain with a Gaussian conformation. The Rouse model assumes the
chain statistics are ideal and the solvent is immobile. The mathematical
description of the Rouse model is based on coupled equations of motion
of the links (beads connected with idealised elastic springs), which
include the effects of the random thermalised forces that act upon them.
The Fourier transform of the basic equations of the Rouse model

shows that the motion of a polymer chain can be represented as a
superposition of independent Rouse modes, much like the harmonic
spectrum used to describe the motion of a plucked guitar string. In the
Rouse model, the maximum relaxation time of the polymer coil and the
diffusion coefficient of the coil as a whole vary with the number of chain
links ðNÞ as N�2 and N�1 respectively. The slowest intramolecular
relaxation and the diffusive motion of the coil as a whole conform to
the first and fundamental Rouse modes respectively. The root mean

square displacement of a link on a Rouse chain varies as � t
1
4 over time

intervals ðtÞ less than the maximum relaxation time of the chain ðt1Þ, and
only for times greater than the maximum relaxation time ðt > t1Þ does it
become proportional to t

1
2 as in the case of ordinary diffusion of a

Brownian particle (Section 5.1). This behaviour has been well demon-
strated experimentally with fluorescent microscopy and incoherent
quasi-elastic neutron scattering experiments.
The Rouse model is found to be useful for dense polymeric melts in

which the hydrodynamic interactions are screened. Similarly, in semi-
dilute solutions Rouse dynamics describe the motion of the polymer

Spring

Bead

Figure 8.14 Schematic diagram of a Rouse chain, a bead spring model for the
dynamics of flexible chains with no hydrodynamic interactions
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chains beyond the mesh size of the network, i.e. the long length-scale
dynamics (screened hydrodynamics) are well described.

The Rouse model yields results that differ from experimental observa-
tion for chains in dilute solution; one problem is the neglect of the
hydrodynamic interaction caused by solvent entrainment between dif-
ferent sections of the polymer chain. The Zimm model includes a coarse
grained hydrodynamic interaction and is often in reasonable agreement
with experimental data for isolated flexible chains in solution. The root
mean square displacement of a link of a Zimm chain varies with time as

� t
1
3 and only for times greater than the longest relaxation time ðt > t1Þ

does it become proportional to t
1
2 as expected for diffusion (equation

(5.8)).
The Rouse and Zimm models are useful for very flexible chains. For

semi-flexible chains the hydrodynamic beammodel is required to explain
their dynamics. Such a model can be used to describe relatively rigid
polymers such as actin filaments, cochlea, keratin filaments, and micro-
tubules (Figure 8.15). The drag force per unit length ðf?ðxÞÞ on the
transverse fluctuations of a semi-flexible filament is given by:

f?ðxÞ ¼ �c?v?ðxÞ ¼ �c?
@yðxÞ
@t

ð8:71Þ

where c? is the mass density of the filament, v? is the transverse velocity
and y is the transverse displacement. The drag force can be balanced with
the elastic restoring force of the filament and leads to the hydrodynamic
beam equation:

@4y

@x4
¼ � c?

EI

@y

@t
ð8:72Þ
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xvcFdrag ∆−=∆
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⊥ ⊥

Figure 8.15 The lateral drag force on a semi-flexible fibre is a function of the
perpendicular velocity (v?), size of the element ðxÞ, and the mass density ðc?Þ
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where E is Young’s modulus and I is the moment of inertia of the fibre.
The relaxation time of a semi-flexible chain can then be calculated as the
time for a bent rod to relax back to it straight conformation. The ampli-
tude of the bend is found to decrease exponentially with time, with a time
constant ðtnÞ that depends on the mode number ðnÞ (Figure 8.16):

tn �
c?
EI

L

pðnþ 1=2Þ

� �4

ð8:73Þ

n ¼ 1;2; 3; . . ., and L is the length of the rod. Such predictions for the
dynamic modes of semi-flexible chains are in reasonable agreement with
experiment.
The dynamics of both flexible and semi-flexible polymers in concen-

trated solutions have a simple explanation in terms of the one dimen-
sional diffusion of each chain in a tube created by its neighbours. This
type of model is called ‘reptation’ and the name refers to the snake-like
motion of the chains in their tubes (Figure 8.17). The utility of the
reptation model can be shown with a scaling calculation of the dynamics
of a flexible polymer in an entangled solution of other similar chains.
Consider the longest relaxation time of the concentrated polymer solu-
tion. Initially (time, t ¼ 0) a constant elongating stress (s) is applied and
the resultant relative deformation ðDl=lÞ is measured. If the stress (s) is
small the compliance ðJðtÞ ¼ strain=stressÞ by definition is given by:

DlðtÞ
l

¼ sJðtÞ ð8:74Þ

n = 2

n = 3

n = 4

n = 1

Figure 8.16 The hydrodynamics modes ðn ¼ 1; 2; 3; 4Þ of a semi-flexible rod in
solution. The free ends act as anti-nodes for the chain motion
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For a typical polymer solution the compliance resembles that shown in
Figure 8.18. After a sharp rise the compliance reaches a plateau value
(J0). For times greater than the longest relaxation time ðt�Þ of the solution
the stress is no longer proportional to the strain, but to the rate at which
the strain increases, i.e. the material becomes liquid-like and Newton’s
law of viscosity holds:

s ¼ J�1
1

dðDl=lÞ
dt

ð8:75Þ

where Dl=l is the strain. It is therefore possible to relate the viscosity to
the compliance ðJ1Þ on Figure 8.18:

J�1
1 ¼ h ð8:76Þ

Tube

Chain 

Obstruction due 
to other chains 

Figure 8.17 Schematic diagram of a polymer chain that reptates in a concentrated
solution. The chain diffuses in a tube formed by the steric constraints of its neighbours

Gradient J1

LnJ(t)

lntτ*

J0

Figure 8.18 Schematic diagram of the compliance of a concentrated solution of
entangled polymers as a function of time. There is a plateau ðJ0Þ at intermediate times
ðt�Þ and at long times the gradient is J1
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In the microscopic picture the longest relaxation time of the system ðt�Þ
is the time for entangled cross-links to decay as the chains slither out of
their tubes, i.e. the time for tube renewal. The Youngs modulus ðEÞ for
the entangled solution is given by the same equation as was derived for
the rubber network (equation (8.56)):

E � kT

Nea3
ð8:77Þ

where Ne is the average number of monomer units along a chain
between two effective cross links, a is the Kuhn segment length and
kT is the thermal energy. For the snake-like motion, the chain moves
through a cylindrical tube (Figure 8.19) and for Gaussian chain statis-
tics the tube diameter ðdÞ is equal to the blob size (Section 8.2) given
by:

d � aN
1
2
e ð8:78Þ

where Ne is the number of monomers in a blob and a is the step size.
Similar to the calculation of the size of a chain in a capillary, the total
contour length ðLÞ of a tube is just the number of blobs in a chain ðN=NeÞ
multiplied by the size of a blob:

L � N

Ne
d ð8:79Þ

Therefore, since d � aN
1
2
e the contour length can be expressed as:

L � aNN
�1

2
e ð8:80Þ

DΛ

Tube

Polymer chain 

Blob

Figure8.19 Schematic diagramof the conformationofblobsof aflexible polymer ina
tubeused in the scaling formof the reptationmodel.L is the length of the tube, andD is
the blob diameter
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For one dimensional diffusion the mean square fluctuations in the one
dimensional displacement of the chain along the tube are related to the
diffusion coefficient ðDÞ from the standard relationship (Section 5.1):

hx2i ¼ 2Dt ð8:81Þ

where x is the distance along the tube. As before, the diffusion coefficient
can be calculated for the chain from the fluctuation dissipation theory as:

D ¼ kT

mt

ð8:82Þ

where kT is the thermal energy and mt is the total friction coefficient of a
complete chain. The total friction coefficient experienced by the chain
can be approximated by addition of the friction due to each subunit (m)
surrounded by its neighbours:

mt ¼ Nm ð8:83Þ

where N is the number of chain subunits in a single chain. The longest
relaxation time ðt�Þ of the chain from the definition of the diffusion
coefficient is:

t� � L
2

Dt
� N3a

3
2

m

NerkT
ð8:84Þ

The microscopic relaxation time ðtmÞ of a molecular liquid is defined as
tm � l2=D (equation (8.70)), to give a slightly simpler form for the
longest relaxation time:

t� � N3

Ne
tm ð8:85Þ

Two quantities can then be calculated from this reptation model that
characterise the dynamics of entangled polymer solutions and are in
good agreement with experiment, the viscosity and the diffusion coeffi-
cient. The viscosity ðhÞ of the solution is approximately equal to the
modulus ðEÞ multiplied by the longest relaxation time of the fluid (a
standard trick from rheology):

h � Et� � mN3

aN2
e

ð8:86Þ
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The self-diffusion coefficient ðDsÞ of the polymer chains is the rate at
which the chain fluctuates at a distance equal to the square of its size ðRÞ:

Ds �
R2

t�
� NeT

N2m
ð8:87Þ

Experimental evidence for reptation is now very good.More sophisticated
elaboration of the model provides a quantitative theory for the forced
electrophoretic motion of DNA through polyacrylamide gels (Section
13.5). Quasi-elastic neutron scattering can explore the motion of labelled
sections of polymers in a melt and is in agreement with the reptation
model. Fluorescent recovery after photobleaching measurements of con-
centrated solutions provides data in agreement with the predicted self-
diffusion coefficients. Reptation theories for the rheological response of
polymer melts allow quantitative predictions for a range of mechanical
spectroscopy experiments (Chapter 13). However, perhaps the strongest
evidence to date is the microscopy images of a fluorescent DNA molecule
in a concentrated solution of other untaggedDNA chains. The DNA chain
is shown to experience forced reptation when pulledwith optical tweezers.
The chain clearly has a memory of the position of its tube as it moves
(Figure 8.20), it has experienced a process of reptation.

DNA 

Gel 

Optically trapped
 bead 

Figure 8.20 Reptation in entangled polymer chains can be clearly visualised using
fluorescencemicroscopy and optical tweezers. A time sequence of images is shown for
a DNA chain that moves in a polyacrylamide gel
[Reprinted with permission from T.T. Perkins, D.E. Smith and S. Chu, Science, 264,
819, Copyright (1994) AAAS]
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8.6 TOPOLOGY OF POLYMER CHAINS – SUPER
COILING

Many biologically important properties of duplex DNA and semi-
flexible polymer chains are of a topological origin. The important
characteristic of these chains is that they resist torsional distortion
and can thus have a memory of their torsional state. The DNA of
bacteria is circular and typically occurs in a compact supercoiled state
in nature and this provides an important motivation for the study of
super coiling (Figure 8.21).

It was discovered that DNA chains with the same molecular weight,
but different values of the number of super twists (t), separate in a well
defined manner during agarose gel electrophoresis experiments. The
superhelical state moves across a gel faster due to its more compact
conformation. The state of a closed ring DNA chain is now known to
be characterised by two topological invariants: the type of knot formed
by the double helix as a whole and the linking number ðLÞ of one strand
with the other. The minimum of the energy of a closed ring DNA
corresponds to the superhelical state; the number of twists in a superhelix
depends on the degree of strand linking ðLÞ. Naturally occurring circular
DNA chains are always negatively superspiralised. The axial twisting of
strands around each other can differ from the magnitude of their linking
number by the amount ofwrithing, which depends on the spatial form of
the axis of the double helix. Viruses and bacteria can change the topology

Figure 8.21 Molecular dynamics simulation of a super-helical circular DNA chain
[S. Harris, University of Leeds]
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of their DNA during replication using toposiomerases. Topoisomerase I
changes the linking number by þ1 and topoisomerase II changes it by
þ2. Further enzymes introduce supercoils in DNA and are called the
gyrases. Negative supercoils favour the unwinding of DNA and the
subsequent processes of replication, transcription and recombination.
Therefore, bacterial DNA is stored in a highly supercoiled, plectonomic
structure (compact cylinders of DNA). The free energy of the super-
helical state is proportional to the square of the density of superturns and
the effective modulus of elasticity of a superhelical chain depends on
both the bending and torsional stiffness of the polymer.
To be mathematically more precise, consider the topology of closed

ribbons. Three numbers (topological invariants) characterise the closed
ribbon formed by circular DNA: the linking number ðLÞ, the twist number
ðTÞ and the writhing number (W). The linking number ðLÞ is the number
of times the two edges are linked in space, and it is an integer. To find the
linking number ðLÞ a projection of the ribbon on to a plane is required and
all points where a segment of one of the curves passes above the other need
to be counted. This process is demonstrated in Figure 8.22. The twist ðTÞ
is the extent to which the normal vector ðuÞ rotates around the ribbon
direction ðsÞ. It can be calculated from the line integral along the path that
describes a complete circuit around the chain (Figure 8.23):

T ¼ 1

2p

þ
vds ð8:88Þ

L = +1 
T = +1 

Figure 8.22 The linking number ðLÞ is equal to the number of times one topologically
connected chain passes over the other. The diagram illustrates the process bywhich the
topology of the chain can be clearly identified by inspection

u

s

Figure 8.23 The twist number can be calculated from the extent that the normal
vector to the ribbon ðuÞ, rotates around the tangent vector ðsÞ that defines the ribbon
direction
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where v is the angular rate per unit length, ds is the increment in
arc length and T is the line integral. The writhing number is defined
as:

W ¼ L� T ð8:89Þ

It is a measure of the extent to which the axis coils and folds in three
dimensions. Figure 8.24 shows two possible configurations of a circular
duplex DNA chain with the values of the twist and linking numbers.
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Figure 8.24 A rich variety of topological states are possible with duplex DNA and
two alternatives are shown
[Ref.: C.R. Cantor and P.R. Schimmel, Biophysical Chemistry III, Freeman, 1980]
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TUTORIAL QUESTION

8.1) The Young’s moduli of elastin* and collagen are 1MPa and
1.5 GPa respectively. What is the density of cross-links that
would give rise to these moduli in a random Gaussian network?
Assume that the sections of chain are completely random
between cross-links. If the actual cross-linking density is on the
order of 8	 1025 m�3 in the two samples, can you explain the
lack of agreement for the collagen data?
*Note that there is more ordering in the structure of elastin
chains than this calculation might imply. The good agreement
of the model with experiment is therefore to some extent for-
tuitous.

8.2) Consider the thermal fluctuation of a polymeric sickle cell hae-
moglobin aggregate observed with a fluorescence microscope. u
is the angle of the change in direction of a tangent to a filament
along its length, s is the length of the particle and kf is the
bending rigidity. The relationship between the bending
energy and hu2i, the average square fluctuation of the angle is
given by:

Ebend ¼
kf hu2i
2 s

For a virus of contour length 300 nm. Determine the value of
hu2i12 that arises from thermal fluctuations, if the persistence
length of the fibrous aggregate is 10�3 m.

8.3) A flexible titin molecule occurs in an approximately cylindrical
hole inside striated muscle (Figure 8.25). If the molecule is
unattached at either end what is the equilibrium length of the
polymer ðRkÞ, assuming a Kuhn segment length of 30 nm, con-
tour length of 750 nm, and a capillary diameter of 40 nm? The
molecule is then attached to the sacromere at either end at a fixed

R//

D F

Actin 
molecules 

Titin
molecule

 F 

Side
view

Figure 8.25 Schematic diagram of a titin chain compressed inside an action cage
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distance of 0.6 mm. Will the loss in entropy of the chain due to it
being confined in a capillary contribute to the elasticity of the
chain?

8.4) A polymer chain in a good solvent is held between two optical
traps. What would the force/extension curve look like? If the
chain was gradually placed in a ‘bad solvent’ at constant separa-
tion how would the force exerted on the traps change?

8.5) Calculate the radius of gyration hr2i
1
2 for phage DNA that has a

persistence length of 450 Å and a contour length of 60 mm using
a Kratky–Porod model.
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9
Charged Ions and Polymers

Charged ions exist in biological systems in a wide range of forms. The
ions can be small molecules (�2 Å), protein nano-composites (10 nm) or
giant linear aggregates (many centimetres for DNA with millions of
charged groups). Examples of small ions found in biology include the
carboxylic acid (COO�) groups in aspartic and glutamic acid in proteins,
the polar heads of fatty acids (COO�–(CH2)n–CH3), the positively
charged amine groups in lysine, arginine and histdine, and the phosphate
group (PO4

�) in nucleic acid and phospholipids (Figures 9.1, 9.2, 9.3).
All these ions are typically surrounded by a shell of associated water
molecules and their interaction with this hydration shell has a dramatic
effect on their physical properties.

Partial charges due to polarisation of covalent bonds also can exist and
provide substantial interaction energies between neighbouring atoms. A
particularly strong form of this polar interaction is observed in hydrogen
bonded molecules.

There are a wide range of physiological uses for small ionised mole-
cules. For example, charged molecules are used in signalling. Minute
quantities of calcium (Ca2þ) ions regulate the control of molecular
motors in striated muscle (mM) and a cocktail of sodium (Naþ), potas-
sium (Kþ) and calcium (Ca2þ) ions is required for the action of electrical
impulses in nerve cells. There are therefore a large number of enzymes
(ion pumps) designed to move and regulate the population of small ionic
species in cells.

Many of the processes that involve charged ions in biological systems
involve the process of acid–base equilibria (Section 1.1). A molecule
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Figure 9.3 Charged lipidmolecules in bilayers can produce one of the highest surface
charge densities in nature with up to one electronic charge per 0.6 nm2
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(AH) is acidic if it can dissociate in water to provide a supply of hydrogen
(Hþ) ions, and conversely a molecule is basic if it can accept hydrogen
ions. For an acid the process of dissociation can be described as:

AH $ A� þHþ ð9:1Þ

The study of acid–base equilibria is of central importance to aqueous
physical chemistry and reference should be made to specialised texts for
more details.

The behaviour of charged macromolecules, such as DNA, actin, car-
rageenan (a carbohydrate derived from seaweed) and chrondroitin sul-
fate (a glycosoaminoglycan found in the articulated joints of mammals),
are highlighted here. The charged groups in the polymer are vitally
important for both their solubility and correct biological functioning
in a range of architectural, catalytic and information storage roles.

Simple electrostatic forces are a dominant factor that determines the
structure of a large range of charged biological molecules and these
forces are examined using some simple physical calculations. For exam-
ple, the dipole moments of the constituent amino acids in a protein tend
to line up in an alpha helix. These dipoles give the secondary structure a
large cumulative dipole moment (Figure 9.2) and the forces between the
dipoles help to determine the resultant morphology.

Although many useful theories exist for strongly charged biological
systems it is necessary to emphasise some of their shortfalls. Electrostatic
interactions between biomolecules are often long range and this can lead
to an intractable many body problem. Thus a series of ingenious schemes
and approximations need to be invoked to avoid some of the problems
involved with long range interactions to allow tractable calculations to
be completed in a variety of different biological scenarios.

9.1 ELECTROSTATICS

Some basic electrostatic phenomena are reviewed first. Coulomb’s law
gives the force (f ) between two point charges of magnitude q and q’:

f ¼ qq0u

4per2
ð9:2Þ

where u is the unit vector directed between the two charges, e is the
dielectric constant of the material and r is the distance between the
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charges. This electrostatic force is thus directed along the line that joins
the two point charges, and takes the direction in which a positive test
charge would be translated. The local force (f ) on a charge (q) is related
to the electric field strength (E) it experiences due to the surrounding
charge distribution:

f ¼ qE ð9:3Þ

The energy (W) of an electric dipole (p) in an electric field (E) is the scalar
product of the two vectors:

W ¼ �p:E ¼ �pE cos u ð9:4Þ

where u is the angle between the vectors p and E. A torque (G) thus tends
to orientate dipoles in an applied electric field. The torque tends to
minimise the electric dipolar energy (W) and is equal to the vector
product of the electric dipole and the electric field:

G ¼ p � E ð9:5Þ

Gauss’ theorem is a general relationship which relates the electric flux
that crosses a closed surface to the amount of charge (q) contained within
the surface. The electric flux (f) is defined as the integral of the compo-
nent of the electric field perpendicular to a surface, over the complete
surface:

f ¼
þ

E:ndS ð9:6Þ

where n is the unit vector normal to the surface (dS) and the integral (
Þ
)

is taken over the complete closed surface. Gauss’s theorem for an arbi-
trary charge distribution in a vacuum has the simple form:

f ¼ q

e0
ð9:7Þ

where e0 is the permittivity of free space and q is the charge contained
within the surface. The total electric flux through a surface is propor-
tional to the charge enclosed.
Gauss’s theorem can be applied to a sphere that encloses a charge

distribution (total charge q) of surface area 4pr2 which has a constant
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normal component of the electric field (Er). It is thus easy to calculate the
electric field around any spherically symmetrical charge distribution, e.g.
a charged colloid, once the effect of the relative permittivity of water is
understood. Equation (9.7) applied to the geometry of a sphere gives:

4pr2Er ¼
q

e0
ð9:8Þ

Therefore, the radial electric field (Er) around a point charge is:

Er ¼
q

4pe0r2
ð9:9Þ

Similarly, Gauss’s theorem can be applied to a cylindrically symmetrical
charge distribution, which will later be used to model a polyelectrolyte.
Consider a cylinder of known radius (r), length (L), with an electric field
(E) normal to its surface, that contains a line of charge (charge per unit
length l), and e0 is the permittivity of free space. The electric flux cross-
ing the cylinder’s surface can be equated to the charge contained inside
and Gauss’s theorem gives:

2prLE ¼ lL

e0
ð9:10Þ

The electric field from a line charge (or cylindrically symmetrical object)
is therefore:

E ¼ l

2pe0r
ð9:11Þ

Comparison with the expression for the electrical field around a sphere
(equation (9.9)) shows that the electric field for a cylinder is radically
different to that of a sphere (E � 1=r2 for a sphere compared with
E � 1=r for a cylinder). These results have direct relevance to the relative
electrostatic strength of the forces experienced by spherical colloids (e.g.
globular proteins) and cylindrical polyelectrolytes (e.g. DNA).

For charge distributions with more complicated geometries vector
calculus needs to be used to calculate the electric field. The equivalent
vector calculus expression of Gauss’s law relates the potential (c) to the
charge density (r):

r:ðrcÞ ¼ r

e0
ð9:12Þ
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By definition the gradient of the potential is equal to the electric field (E):

E ¼ �rc ð9:13Þ

A combination of equations (9.12) and (9.13) provides the Poisson
equation for the potential around an arbitrary charge distribution.
This was solved in Chapter 2 to find the charge density near a plane.
When a material is placed in an electric field the mobile dipole

moments line up due to the torque that they experience (equation
(9.5)). It is found experimentally that for a polarised material in a
vacuum the induced electric moment per unit volume (P) is proportional
to the applied electric field (E):

P ¼ e0xE ð9:14Þ

where x is a constant of proportionality called the electric susceptibility
of the material (Figure 9.4).
It is observed that the effect of a dielectric placed in an electric field is

to reduce the electric field in proportion to the relative dielectric constant
(e). This observation explains why water is such a good solvent of ionic
crystals such as sodium chloride (NaþCl�). The relative permittivity of
water (e) is 80 at 20 �C and the electrostatic energy of the salt ions is
reduced by this factor. However, the treatment of water as a dielectric
can be complicated, since the dielectric constant varies from point to
point that depends on the exact state of molecular polarisation. The
polarisation is affected by the orientation of the water molecules in an
electric field and the extent to which this is disturbed by their thermal
agitation. Water is such an important solvent that a number of models
have been developed to calculate its dielectric constant. One of the most
successful of these is due to Lars Onsager, and the effective dielectric (e)
of the water molecules can be approximated (2–3% error) as:

e ¼ p02gn

2e0kT
ð9:18Þ

+ + + + + + + + + + + + +

+ + + + + + + + + + + + +

- - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -

E

P

Insulating 
material 

Induced charge 
distribution 

Figure 9.4 Schematic diagram that shows the polarisation (P) induced in an insulat-
ing material placed in an electric field (E)
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where g is the correlation parameter that describes the relative orienta-
tion of the water molecules, p0 is the mean dipole moment per molecule,
n is the number of molecules per unit volume and kT is the thermal
energy. Typical values of the correlation parameter and the mean dipole
moment are 2.6 and 8:2� 10�30 cm respectively.

An increase of the temperature of an aqueous system increases the
rotational Brownian motion of the water molecules and shortens the
lifetime of the tetrahedral hydrogen bonds that connect them together.
The dielectric of water (e) is therefore a function of both the temperature
and the time scale at which an aqueous system is examined. On the
assumption that the dielectric of water has a single dominant time scale,
the dielectric as a function of frequency (v) is given by:

e ¼ e1 þ e0 � e1
½1þ ðvtÞ2�

ð9:19Þ

where t is a dielectric relaxation lifetime of the water dipoles and is in the
order of 10�11 seconds. e0 and e1 are two characteristic dielectric
constants. It is found that the effective dipole moment (hpi) of a dielectric
induced by an electric field is inversely proportional to the temperature
and this leads to the useful relationship:

hpi ¼ p2E

3kT
ð9:20Þ

where E is the applied electric field and p is the dipole moment of the
constituent molecules. In dielectric spectroscopy experiments with
larger charged molecules (e.g. DNA) a series of additional dynamic
modes are measured that are shifted to longer time scales. These
dynamic modes include both internal blob relaxations and whole chain
motions.

Another useful electrostatic calculation is provided by a dielectric
sphere placed in a uniform electric field. The relative magnitude of the
dielectric of the sphere (e2) and the surrounding material are important
(e1) (Figure 9.5) for the determination of the electric field that the
sphere experiences. When the dielectric of the sphere is much bigger
than the surrounding material (e2 � e1Þ the electric field inside the
sphere is:

E2 �
3e1E0

e2
ð9:21Þ
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whereas when the dielectric of the sphere is much less that the surround-
ing material (e2 � e1) the electric field in the sphere is now:

E � 3E0

2
ð9:22Þ

A practical example of this situation is the electrophoresis of a globular
protein in water that typically occurs with e2 < e1; the second of the two
equations (9.22) must be used. An electric dipole (c1) at the centre of a
sphere is also affected by the ratio of the dielectric of the sphere to that of
the surrounding material. The electric dipole moment of a sphere in this
case is given by:

c1 ¼ 3c0

e2
2e1 þ e2

� �
ð9:23Þ

where c0 is the value of a dipole in a vacuum. With an alpha helix in a
protein, this dipolar energy may have a role in specific internal interac-
tions that affects the conformation of the protein.
It is also interesting to calculate the energy needed to move an ion

between two different dielectric environments, e.g. from an oil (e1) to
water (e2). It is given by:

DW ¼ q2

8pe0r
1

e1
� 1

e2

� �
ð9:24Þ

This is, however, only a crude approximation for the solvation energy of
an aqueous ion, since it does not include the effects of the hydration shell
(Section 9.3).

ε2 ε1

Figure 9.5 Schematic diagram of a globular particle (dielectric e2) immersed in a
continuous material with a different dielectric constant (e1)
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9.2 DEBYE–HUCKEL THEORY

A useful mean field theory (where fluctuations are neglected) of charge
interactions is that due to Debye and Huckel. The starting point for the
development of the Debye–Huckel theory for an ion in solution is the
Poisson equation, which relates the potential (c) to the charge density
(r). Equation (9.13) is taken and adapted for a material of relative
permittivity (e):

r2c ¼ � r

ee0
ð9:26Þ

The condition of electrical neutrality is imposed on the solution; the
quantity of charge in the system on the positively and negatively charged
ions must balance:

X
i

zini ¼ 0 ð9:27Þ

where zi is the valence (size) of the charges and ni is the number of
charges. It is then assumed that around any ion the charge distribution is
spherically symmetric (the arrangement of the charge depends only on
the radius r) and the variation in charge follows the Boltzmann distribu-
tion, since it is in thermal equilibrium:

riðrÞ ¼
X

i

nizie ¼
X

i

n0
i zi exp½�wijðrÞ=kT� ð9:28Þ

where wijðrÞ is the potential energy corresponding to the mean electro-
static force exerted between ion i and j, and n0

i is the charge density at the
origin of ion i.

The electrostatic environment of the ions that provides the interaction
energy (wijðrÞÞ is considered to a good approximation to be equal to the
radially averaged Coulombic potential (cjðrÞÞ multiplied by the size of
the charge on the ions (zie):

wijðrÞ � ziecjðrÞ ð9:29Þ

The spherical coordinates equation (9.26), combined with (9.28) and
(9.29) gives the radially averaged Poisson–Boltzmann equation:

r�2 d

dr
r2

dc

dr

� �
¼ ðee0Þ�1

X
i

ezin
0
i e�ziecðrÞ=kT ð9:30Þ
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This equation is difficult to solve due to the exponential function on the
right hand side, which stops analytic integration of the expression to
solve for the potential (c). To make progress with the calculation the
argument of the exponential is assumed to be small, i.e.:

ziec

kT
� 1 ð9:31Þ

the electrostatic potential energy is assumed to be much smaller than the
thermal energy. The Poisson–Boltzmann equation (9.30) can then be
expanded in the rescaled potential and only the first order terms are used
to a first approximation:

r�2 d

dr
r2

dc

dr

� �
¼ k2c ð9:32Þ

Here an important constant has been introduced, the Debye screening
length (k�1), defined to be:

k2 ¼ e2
X

i

n0
i z2i =ee0kT ð9:33Þ

Equations (9.32) and (9.33) constitute the crucial components of the
Debye–Huckel theory for simple ions. The Debye screening length (k�1)
is the length over which the electrostatic forces decay when screened by
salt ions in solution (Section 2.3). To find the exact potential and
counterion profile, equation (9.32) has to be solved for a particular set
of boundary conditions, but the Debye screening length can be used as an
order of magnitude estimate for the range of the electrostatic interaction
in many biological problems.

9.3 IONIC RADIUS

Stoke’s law for the hydrodynamics of small spheres (Section 5.1) is not
valid when their size is similar to that of the surrounding water mole-
cules. Indeed ultrafast femtosecond laser experiments point to the impor-
tance of the viscoelasticity of water molecules in the determination of ion
dynamics at small time scales, which is mirrored in the frequency depen-
dence of the dielectric constant of water (equation (9.19)). The Stoke’s
radius (rc) of an ion is found in a number of mobility studies (including
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laser and pulsed NMR) to be much larger than that expected from X-ray
scattering experiments in the liquid state. This mismatch is interpreted as
being due to a hydration shell that surrounds each of the ions in solution.
Recent femtosecond laser experiments combined with molecular
dynamics simulations demonstrate the lifetime of these cages of water
is on the order of � 10 ps (Figures 9.6 and 9.7 for the hydration shell
surrounding the aqueous iodine ions).

Bjerrum proposed a model in which the distance between ions in a
concentrated solution can be small enough that transient associations are
created between ions of opposite charge. An ion pair is formed when the
distance between two elementary charges (e.g. þe and �e) is such that
the electrostatic energy of attraction is greater or equal to the thermal
energy (kT). The thermal energy thus tends to disrupt these temporary
ion pairs, which constantly associate and dissociate in solution in a

(a) (b) 

Iodine ion

Water molecule
Ordered shell

Disordered 
shell 

Figure 9.6 Schematic diagrams that show the results of molecular dynamics simula-
tions of water molecules around an iodine ion at (a) 1 ps and (b) 30 ps
(The blurring in (b) indicates the time evolution of the water molecules and the more
ordered shell of water close to the iodine molecule [Reprinted with permission from
Femtosecond Chemistry, Eds J. Manz and L. Woste, Copyright (1994) Wiley-VCH])
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Figure 9.7 Pulsed laser experiments (a) canprobe the rotationalmotionof halide ions in
aqueous solution. The measured orientational diffusion time constants (tor) of the solva-
tion shells of chlorine, bromine and iodine are shown as a function of temperature (b)
[Reprinted with permission from Femtosecond Chemistry, Eds J. Manz and L. Woste,
Copyright (1994) Wiley-VCH]
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process of dynamic equilibrium. The thermal and electrostatic energies
can be equated and this defines the Bjerrum length (lB) at which stable
ion pairs are formed. The Bjerrum length is therefore mathematically
defined to be:

lB ¼ e2

4pee0kT
ð9:34Þ

The dielectric constant of water (e) is 80 at 20 �C and lB is thus 7.12 Å at
this temperature (these are useful numbers to remember). The ion pairs
are short lived in normal simple electrolyte solutions due to the small
Bjerrum length. However, ion pairs are an important effect in polyelec-
trolyte solutions and the Bjerrum length is a useful quantity to gauge the
range of electrostatic interactions as a function of the dielectric of a
solvent.
To understand the behaviour of charged ions in solution in more detail

consider equation (9.4) for the orientational energy (W) of a dipole (p) in
an electric field (E). The energy associated with the dipole moment of
water is quite strong (10–20 kT) and charged ions are thus surrounded by
layers of oriented water, which are not completely randomised by the
thermal energies (Figure 9.6). Data from pulsed femtosecond laser
experiments on the rotational motion of water molecules that surround
halogen ions in aqueous solution are shown in Figure 9.7. The simula-
tions are in good agreement with these experiments and show a restricted
shell of water molecules around the ions in solution.
Detailed time averaged X-ray and neutron diffraction studies of liquid

water indicate two regions of ordering around charged ions. In the first
hydration shell there is ordered ice-like water and in the surrounding
layer there is a second hydration shell of more disordered water.
The free energy of hydration (DGH) for an ion is the work required to

move an ion from a vacuum (e1 ¼ 1) to a medium of relative dielectric e2.
The free energy of hydration for an ion of charge q (a simplification of
equation (9.24)) is given by:

DGH ¼ q2

8pe0r
1� 1

e2

� �
ð9:35Þ

It is assumed in this calculation that the ion is initially in a vacuum, the
uncharged ion is transferred from a vacuum to the water and the ion is
then recharged in the water. The ionic radii found from such calculations
need some analysis. Values for the radii calculated are consistently bigger
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than those measured in crystallography experiments (Figure 9.8). More
sophisticated approaches that take into account the change in entropy
due to the structure breaking properties of the ion on the dipole moments
of the surrounding water molecules are therefore needed.

It is also possible to quantify the effects of ions on a solution from the
change in viscosity (h) of a solution to which the ions are added. The
reduced viscosity of the ionic solution is found to take a characteristic
form:

h

h0
¼ 1þ Ac

1
2 þ Bc ð9:36Þ

where A is a constant related to the electrostatics, B is a constant related
to the degree of structural rearrangement of water, c is the ion concen-
tration, and h0 is the viscosity of the pure unperturbed water. Salty water
(1MNaCl� 5%) thus has a distinct increase in viscosity compared with
a pure dialysed sample; the hydration shells that surround the water ions
contribute to this increase.

The ability of an ion to restructure the water that surrounds it is
related to its exact chemical nature. Hoffmeister classified salts in terms
of their ability to precipitate proteins. The order of his series is explained
by the effective charge density of ions in aqueous solutions when they are
surrounded by their hydration shells and is a useful predictor in a wide
range of hydrated biological reactions. Some typical anions and cations
in solution are listed in equations (9.37) and (9.38):

r 1(Å
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Figure 9.8 Trend of the variation of the hydration enthalpy (DH)with ionic radius (r)
for small ions in solution
[Reprinted with permission from A.A. Rashin and B. Honig, Journal of Physical
Chemistry, 89, 5588–5593, Copyright (1985) American Chemical Society]

IONIC RADIUS 217



Anions

Strongly hydrated Weakly hydrated
–stabilises protein solutions –destabilises protein solutions

SO2�
4 < CH3COO� < F� < Cl� < Br� < NO�

3 < ClO�
4 < I� < CNS�

ð9:37Þ

Cations

Weakly hydrated Strongly hydrated

ðCH3Þ4N
þ<NHþ

4 <Csþ<Rbþ<Kþ<Naþ<Hþ<Ca2þ<Mg2þ<Al3þ

ð9:38Þ

This is an approximate series and the specific chemistry of competing
reaction schemes can sometimes reverse the order of close neighbours in
the list.
The process of salting out that was used by Hoffmeister to classify ions

often occurs practically in the purification and crystallisation of biolo-
gical molecules (Section 3.4). Salt ions in a solution can cause a rearran-
gement of the water molecules, competing with the biological molecules
for their hydration shell and hence can reduce their solubility. Thus the
higher charge density ions in the Hoffmeister series are more effective for
salting out proteins. For a specific protein empirical laws exist for the
solubility as a function of the ionic strength of the form:

log S ¼ log S0 � KI ð9:39Þ

Where S is the solubility, S0 is the value of the solubility at zero ionic
strength (I ¼ 0) and K is a constant proportional to the size of the
protein. A fundamental derivation of such a formula in terms of a sticky
protein–protein interaction potential is a current challenge for colloidal
science. Salting in can also occur during the dissolution of proteins as
electrostatic attractive forces between protein aggregates are disrupted
by the addition of salt.

9.4 THE BEHAVIOUR OF POLYELECTROLYTES

The volume that surrounds a polyelectrolyte molecule in solution contains
small ions of the opposite sign to the polyelectrolyte that have dissociated
from the polymeric chain and that maintain global charge neutrality, e.g.
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Naþ, Kþ and Mg2þ for nucleic acids or acidic polysaccharides and OH�,
Cl� anions for polyamines. Thus polyelectrolytes are surrounded by a
cloud of counterions and the dissociation of the charged groups along
the chain backbone is often the dominant contribution to the solubility
of themolecules in water. Fluctuations can occur in the spatial distribution
of the counterions, consistent with the requirements of thermal
equilibrium, but globally charge neutrality must be maintained.

Polyampholytes (e.g. proteins) contain positive and negative charged
groups bound to the same polymer chain. These charges can lead to
anisotropic charge distributions within the protein. Hydrogen (Hþ) and
hydroxye (OH�) are ‘special’ ions associated with polyacids and polybases
in polyampholytes and polyelectrolytes, and make the charge fraction on
these polymers particularly sensitive to changes in pH (Section 1.1). The
neutralisation of the acidic or basic units with a corresponding alkali or
acid removes this effect, i.e. a variation in the polymer concentration does
not change the charge fraction on each polyelectrolyte chain; this is a
useful simplification in many experiments on charged polyions.

The conformation of polyelectrolytes is strongly affected by the repul-
sion of charges along the backbone. Charge repulsion encourages
extended conformations of chains at low ionic strengths. For example,
the charged groups are important for the rigidity of semi-flexible poly-
mers such as DNA and are a dominant factor with flexible polyelectro-
lytes such as alginates (a constituent of seaweed). Once polyelectrolytes
overlap in more concentrated solutions the charge interaction becomes
screened and the end-to-end distance of the molecules reduces.

The physics of charged macromolecules in solution is very rich. The
chain conformation depends on the fraction of monomers that are
charged, the concentration of monomers in the solution, the concentra-
tion of low molecular weight salt, the intrinsic rigidity of the polymer
backbone and the quality of the solvent for the backbone chemistry (e.g.
‘good’, ‘bad’ and ‘theta’; Section 8.2). Polyelectrolytes can be classified in
terms of strongly and weakly charged behaviour. In strongly charged
polyelectrolytes every monomer carries a charge. Therefore Coulomb
monomer–monomer interactions are the dominant forces that determine
the conformation of the chain if the chain backbone is flexible. If e is the
charge held on a monomer and e is the dielectric, the potential energy of
the screened Coulomb interaction (potential VðrijÞÞ between charged
links i and j separated by distance rij is given by:

VðrijÞ ¼
e2

erij
e�rijk ð9:40Þ
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where k�1 defines the Debye radius that determines the screening of the
electrostatic interaction by other ions in solution (equation (9.33)).
The size of strongly charged polyelectrolyte macromolecules (L) in a

dilute salt free solution is proportional to the number (N) of charged
links, since a charged macromolecule is fully stretched (L � Na, where a
is the monomer length). A weakly charged flexible polyelectrolyte
macromolecule in dilute solution can be visualised as an extended chain
of blobs (Figure 9.17). The length of the chain is again proportional to
the number of monomers, but the chain size needs to be rescaled by the
number of monomers in an electrostatic blob (L � ND=g; g is the
number of monomers in a blob and D is the blob size).
In a polyelectrolyte solution of finite monomer concentration, the

Coulomb interaction is screened by counterions, so that the chains
become coiled on large length scales. The distance between the neigh-
bouring chains in solution is of the order of the Debye screening radius.
For flexible polyelectrolytes this charge screening causes a large contrac-
tion of the end-to-end distance upon coil overlap in semi-dilute solutions.
The transport phenomena involved with charged chains is an impor-

tant but complicated subject. The counterion clouds associated with a
polyelectrolyte must be dragged around when the polyelectrolyte moves
and this process dissipates energy. The field of polyelectrolyte dynamics
relates to the subject of electrophoresis, the driven motion of a charged
molecule in an electric field, which will be investigated in Section 13.5
due to its importance in DNA sequencing.
The addition of charged groups to a polymeric molecule has a dra-

matic effect on its osmotic pressure in solution. The osmotic pressure of
the solution is dominated by the contribution of the counterions. Con-
sider a negatively charged polyelectrolyte in solution. The number of
cations (nþ) in the solution is provided by both any additional small
molecule salts in the mixture and the counterions associated with the
polyelectrolytes. However, the number of negatively charged anions (n�)
is predominantly due to the salt, since the number of polyelectrolyte
chains is negligibly small compared with the number of small salt ions.
The number of positive (nþ) and negative (n�) charged units in the
solution can therefore be written as:

nþ ¼ ns þ npv ð9:41Þ
n� ¼ ns þ np � ns ð9:42Þ

where ns is the number of cations and anions per unit volume and np is
the number of molecules of a polyion per unit volume when negatively
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charged polyions of valence v are dissolved. Each independent unit in the
solution contributes kT per unit volume to the osmotic pressure, much
like the molecular contribution to the pressure of an ideal gas as the
molecules bounce off the walls of their container. The total osmotic
pressure of the solution is thus:

p ¼ kTfðnþ þ n�Þ ¼ kTfðnpv þ 2nsÞ ð9:43Þ

where f is the fraction of polyelectrolyte ions that are dissociated per unit
volume. Thus the osmotic pressure of charged polymers is much larger
than their neutral counterparts, by a factor of fnpv, and this has a range
of associated phenomena, e.g. the swelling behaviour of nappies and the
shape of the cornea in the eye.

The calculation that gives equation (9.43) does not assume that all the
counterions are dissociated. To decide on the nature of counterion binding
in polyelectrolytes the osmotic coefficient (f) is introduced. The osmotic
coefficient is determined experimentally as the ratio of the osmotic pres-
sure (p) to a reference value p0ðf ¼ p=p0Þ defined for full dissociation:

p0 ¼ ð2ns þ npvÞkT ð9:44Þ

Thermodynamically the osmotic pressure can be shown to be the nega-
tive rate of change of free energy with the volume (V) of the solution. The
difference between the osmotic pressure and the reference value for full
dissociation (p� p0) is due to the additional electric free energy in the
system that causes the counterions to bind to the polyions (charge
condensation).

9.5 DONNAN EQUILIBRIA

The process by which the osmotic pressure of a system is regulated by the
affinity of molecules for their counterions is called Donnan equilibrium
which is an important phenomenon in a wide range of biological sys-
tems. Striated muscle fibres (actin and myosin assemblies) are held apart
by a Donnan pressure. The cornea in the eye is osmotically stressed and
the Donnan pressure is important to maintain the interfibrillar spacing
(Figure 9.9). In mammalian cells ion pumps are required to regulate the
Donnan pressure to provide the correct working environment of the cell.
Malfunctioning of the Donnan equilibrium in any of these examples
would be catastrophic for the organism involved.
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Donnan equilibrium describes the extent to which small counterions
travel through a partition between two ionic environments and this is a
useful simple scenario with which to approach the subject. Consider two
compartments, A and B, separated by a membrane through which only
small molecules such as water and ions can pass (Figure 9.10). Compart-
ment B contains polyions and salt whereas compartment A only has
small salt molecules. The chemical potentials of the salt are identical on
the two sides of the membrane (mA

s andm
B
s ), since there is no change in the
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Figure 9.9 Donnan equilibrium controls the swelling of the human eye and can effect
the cornea, aqueous humor, lens and vitreous humor
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B (ions and 
polyelectrolytes) 

Figure 9.10 Schematic diagram of Donnan equilibrium of the concentration of ions
and polyions maintained between two compartments (A and B) separated by a semi-
permeable membrane
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free energy of each salt molecule as it passes through the membrane when
in thermal equilibrium:

mA
s ¼ mB

s ð9:45Þ

Electrical neutrality must be maintained in each compartment to avoid
an excessive electrostatic energy penalty. n is the molar concentration of
a particular particle species. The salt is assumed monovalent and the
polyions each carry y charges. The number of positive (nþ) and negative
(n�) charges in each compartment must balance

InA: nA
þ ¼ nA

� ð9:46Þ
InB: nB

� þ fvnp ¼ nB
þ ð9:47Þ

where np is the molar concentration of the polyelectrolyte and f is the
fraction of charges that dissociate from the polyelectrolytes (the osmotic
coefficient). When the system is in full equilibrium the cation concentra-
tion is lower in A than B whereas the anion concentration is higher. This
process of Donnan equilibirum is characterised by a coefficient (G)
defined as:

G ¼ lim
np ! 0

ðnB
þ � nA

þÞ
vnp

¼ f

2
ð9:48Þ

For the case where no counterions are bound to the polyion (f ¼ 1) the
Donnan coefficient (G) is 1

2. For DNA in a low ionic strength medium a
typical value of the Donnan coefficient (G) is�0:1. This implies that 80%
of the counterions behave as bound to the polyelectrolyte, in agreement
with that expected from the discussion of counterion condensation in
Section 9.8. In the intracellular environment there is a complex process
of Donnan equilibrium due to the interchange of ions between the mixed
cocktail of polyionic species.

9.6 TITRATION CURVES

There is an important difference between the two possible mechanisms
through which charges can be placed on a polyion, denoted the annealed
and quenched mechanisms. When a weakly charged polyelectrolyte is
obtained by copolymerisation of neutral and chargedmonomers the total
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number of charges and their position is fixed. This is called a quenched
polyelectrolyte.
Polyacids or polybases are polymers in which the monomers can

dissociate and acquire a charge that depends on the pH of the solution.
The dissociation of a hydrogen ion (Hþ) ion from an oppositely charged
polymer (e.g. in a COOH group) gives a negative charge (COO�. This
is an annealed polyelectrolyte, the total number of charges on a given
chain is not fixed, but the chemical potential of the hydrogen ion and
the chemical potential of the charges is imposed by the pH of the
solution.
Acid–base equilibria apply to biological polyelectrolyte molecules

(Section 1.1), which predominantly fall within the annealed category.
For example, hydrogen ions (protons) can bind to a basic unit on a
polyelectrolyte (A�) to give an acid AH, as described in equation
(9.1). The association constant (Ka) for the acid–base equilibria is defined
as:

Ka ¼ cAH

cA�cHþ
ð9:49Þ

where c indicates the concentration of the species in moles. u is defined as
the fraction of acid monomers (A�) with a bound proton:

u ¼ cAH

cA� þ cAH
ð9:50Þ

This can be rearranged to give:

u

1� u
¼ KacHþ ð9:51Þ

Titration is the experimental process in which a well characterised acid
or base is added to a solution of polyions to determine their degree of
dissociation. The progress of a titration reaction can be determined using
the conductivity of the solution or by the use of pH sensitive dyes. A
titration curve is shown in Figure 9.11. n is defined as the mean number
of bound protons and n is the total number of ions, so the fraction
of dissociated ions is u ¼ y=n. Therefore equation (9.51) can be reex-
pressed as:

n

n � n
¼ KacHþ ð9:52Þ
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The degree of dissociation (a) is one minus the degree of association:

a ¼ cA�
cA� þ cAH

¼ 1� u ð9:53Þ

The dissociation constant (Kd) is equal to the inverse of the association
constant:

Kd ¼ K�1
a ð9:54Þ

Equation (9.52) can therefore be rewritten:

ð1� aÞ
a

¼ K�1
a cHþ ð9:55Þ

It is useful to define two important parameters that relate to the strength
of the hydrogen ion concentration (pH) and the degree to which a
polyacid can associate (pKa):

pH ¼ � log cHþ ð9:56Þ
pKa ¼ � logKa ð9:57Þ

The logarithm is introduced to facilitate calculations with concentrations that
can vary by many orders of magnitude. The exponential nature of the
electrostatic interaction makes solutions sensitive to a vast range of hydrogen
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Figure 9.11 Titration of a polyacid
(The concentration of hydrogen ions dissociated permolecule is shownas a function of
the solution pH [Reprinted with permission from C. Tanford and J.D. Hauenstein,
J. Am. Chem. Soc, 77, 5287–5291, Copyright (1956) American Chemical Society])
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ion concentrations from nM toM, and there are a correspondingly vast range
of hydrogen ion concentrations and equilibrium constants.
The logarithm of equation (9.55) can be taken to give the Henderson–

Hasslebach equation. The equation is an extremely useful relationship
which relates the pH of a solution and the intrinsic pKa value of an
ionisable group to the charge fraction (a) of ionisable groups in the
solution (Section 1.1):

pH ¼ pKa þ log
a

1� a

� �
ð9:58Þ

The Henderson–Hasslebach equation requires the assumption that
values of the association constant (Ka) are independent of the charge
on the polyion. This is not a completely reasonable assumption as will be
seen. The change in free energy (DG0 upon the association of the poly-
ions with their counterions) can be related to the association (Ka) and
dissociation (Kd) equilibrium constants:

DG0 ¼ �RT lnKa ¼ RT lnKd ð9:59Þ

From the definition of the pKa value and equation (9.57) this gives:

DG0 ¼ �2:3RTpKd ð9:60Þ

The factor of 2.3 occurs due to the change in base from 10 to e, i.e. the log
becomes a ln. pKd is defined in an analogous fashion to equation (9.57).
Wel is defined as the work required to bind hydrogen ions onto a polyion
and is the work done against the polyion potential provided by all the
charged groups. Therefore an expression for the work of binding is:

Wel ¼ ecðaÞ ð9:61Þ

where c(a) is the potential at the surface of the polyion and e is the
electronic charge. The total change in free energy of a polyion with N
groups is therefore:

DG ¼ DG0 þ NWel ð9:62Þ

Thus there is an effective pKa value (pK0
a) measured in an experiment

given by:

pK
0

a ¼ pKa þ 0:43
ec

kBT
ð9:63Þ
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This expression allows the effect of neighbouring charged groups on the
pKa value of a polyion to be quantified to a first approximation.

9.7 POISSON–BOLTZMANN THEORY FOR
CYLINDRICAL CHARGE DISTRIBUTIONS

The Poisson equation for the potential (c) as a function of the charge
density is given by equation (9.26). Substitution of a Boltzmann distribu-
tion for the energies of the counterions in equation (9.26) for a mono-
valent salt gives the Poisson–Boltzmann equation:

r2c ¼ 2nse
sinhðec=kTÞ

ee0
ð9:64Þ

where ns is the density of salt ions. Through a similar process to that with
which the Poisson–Boltzmann equation was solved in spherical geometry
in Section (9.2), numerical solutions of the Poisson–Boltzmann equation
for a line charge with cylindrical symmetry are shown in Figure 9.12.

There are three separate charged regions that surround a polyion and
they can be classified in terms of their distance from the surface of the
polymer. At long distances, in the Debye–Huckel region, the ions are
treated as point charges and form a double layer around the polymer
screening its electrostatic force. The Poisson–Boltzmann equation (9.64)
can be linearised for the polyion in a similar spirit to that of a simple ion
in equation (9.32). At intermediate distances, in the Gouy region, the
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Figure 9.12 Density of ions as a function of the distance from the surface of the
polyion showing Stern, Guoy and Debye regions
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cylindrical symmetry can be used with the point charge model, but the
Poisson–Boltzmann equation must be solved without any approximation
since the potential is large and this is computationally more intensive.
Numerical solutions show that a condensed phase of counterions occurs
near the polyelectrolyte. At short distances, in the Stern region, the
cylindrical symmetry of the chain disappears at very close distances to
the charged groups along the polyion, and the structural and geometrical
factors of the specific chain chemistry have to be considered.

9.8 CHARGE CONDENSATION

In a solution of a sufficiently strongly charged polyelectrolyte, a fraction
of counterions stays in the immediate vicinity of the polymer chain,
effectively neutralising some of the chains’ charge. This phenomenon is
referred to as counterion condensation and was encountered already in
the discussions of Donnan equilibrium and osmotic pressure. Manning
devised a simple model for understanding charge condensation with
polyelectrolytes and the model is a useful starting point for developing
an explanation of the interactions between charged biological polymers.
The effective potential that determines the forces between polyions is
regulated by the condensation of the counterions that surround the
chains; the effective charge fraction of a chain is often much smaller
than expected from the chain chemistry.
The assumptions required in the Manning continuous model are that

the solvent is a continuum with a uniform dielectric constant (e), the ions
are represented by a continuous charge density (rðrÞ) and the polyion is
modelled by a line charge of infinite length characterised by a charge
density parameter (j). Using Gauss’ theorem for a line charge, the electric
field (E) can be calculated around a polyelectrolyte chain in water
(compare with equation (9.11)):

E ¼ e

2pee0br
ð9:65Þ

where b is the linear charge density (units of Coulomb m�1), e is the
electronic charge and r is the equipotential radius for a cylinder around
the line of charge (Figure 9.13). The radial electric field (E) is related to
the potential (c) by the spatial derivative:

E ¼ � dc

dr
ð9:66Þ
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Equation (9.66) can be integrated to provide the potential as a function
of radius:

c ¼ A � 2e ln
r

4pee0b

� �
ð9:67Þ

A monovalent counterion with a unit charge (e) at a certain radial
distance (r) away from the polyion acquires a potential energy EpðrÞ
(Figure 9.14):

EpðrÞ ¼ ecðrÞ ð9:68Þ

A Boltzmann distribution for the thermalised energies of the counterions
is assumed and this can be written in terms of a charge parameter (j):

e�Ep=kT ¼ W0r
�2j ð9:69Þ

where W0 ¼ eeA=kT and the charge parameter (j) is defined as the ratio
between the Bjerrum length (lb) and the linear charge density (b):

j ¼ lB
b

ð9:70Þ

e e

b=l         /N
a

eeee e e

Figure 9.13 Geometry of a cylindrical polyelectrolyte used in the calculation of
Manning charge condensation
(b is the distance between two adjacent charged groups (charge e) along the backbone
equal to the length of the chain (l) divided by the total number of charged units (N). a is
the radius of a cylinder surrounding the charged groups along the chain backbone.)
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Figure 9.14 Radial distribution of the concentration of counterions and co-ions that
surround a polyelectrolyte
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The number of counterions inside a cylinder (radius r0) of unit length is
proportional to the integral:

ðr0
0

W0r
�2j2prdr ¼ 2pW0

ðr0
0

r1�2jdr ð9:71Þ

It is important to note that this integral diverges at the origin (r ¼ 0) if the
charge density parameter is greater than one (j> 1), which is an unphy-
sical result. A condensed layer of counterions is invoked to avoid this
problem, which maintains the charge parameter at a value of one and a
finite energy for the system. The fraction of charge neutralised is simply
expressed in terms of the charge density parameter:

ðj� 1Þ
j

¼ 1� 1

j
ð9:72Þ

This analysis can be extended to the case of multivalent counterions. For
an ion of charge ze the neutralised charge fraction is:

1� 1

zj
ð9:73Þ

The condensation process is explained physically in terms of the forma-
tion of ion pairs (Bjerrum pairs) on the surface of the polymer. The effect
ofManning condensation above a critical charge fraction on the effective
charge fraction of the polyelectrolyte chain is illustrated in Figure 9.15.
The effective charge fraction reaches a constant value above theManning
threshold.
For example, consider a double stranded chain of DNA at 20 �C. The

distance between phosphate groups (b ¼ 1:7 Å) is taken for the B form of

Charge fraction (f) 
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Figure 9.15 The effective charge fraction (u) on a polymer chain as a function of the
charge fraction expected from the number of chargeable groups (f ). At high charge
fractions the effective charge fraction saturates at the Manning value (1/j)
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DNA and hence the charge parameter (j) is 4.2. The fraction of charge
neutralised is given by equation (9.73) and on average three quarters of
the phosphate groups are neutralized!

The Osmotic coefficient (f, equation (9.43)) can be measured experi-
mentally. The osmotic pressure (pexp) found using osmometry on a
polyelectrolyte in distilled water is proportional to the concentration
of counterions (ce), since this is the dominant contributing species, so:

pexp ¼ kTfce ð9:74Þ

and the osmotic coefficient can be identified with the fraction of neu-
tralised charge:

f ¼ 1� j

2
ð9:75Þ

Such a theory is in reasonable agreement with experiment. Manning
condensation can also be used to explain association phenomena in
highly charged biological molecules, e.g. drug binding on to DNA.

In summary, the continuumManning model predicts there is an excess
of counterions in the vicinity of a polyion and the charge density variable
(j) is important for describing the effective charge fraction of such a
linear polyelectrolyte. However, there are two limits on the validity of
this type of Manning model. The polyelectrolytes are required to be of
infinite length and there is assumed to be a vanishingly small free ion
concentration. A more satisfactory approach is to solve the full Poisson–
Boltzmann (PB) equation numerically for the cylindrical geometry (equa-
tion (9.64)), and use this to determine the degree of counterion associa-
tion. The PB equation is valid at physiological salt concentrations
(0.15M), which is not true for the Manning approach. The Manning
model is, however, conceptually much simpler to use than the Poisson–
Boltzmann equation and provides a useful starting point for learning
about charge condensation.

Recent anomalous X-ray scattering experiments provide direct struc-
tural information on the morphology of counterion clouds around poly-
ions. The concentration of rubidium counterions on the surface of a
DNA chain as a function of the amount of divalent magnesium in the
solution is shown in Figure 9.16. Such data are found to be in reasonable
agreement with a Poisson–Boltzmann model.

Charge condensation is also foundwith spherical colloids. Solution of the
Poisson–Boltzmann equation in dilute solutions with spherical symmetry
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(equation (9.32)) can provide an effective charge to renormalise the inter-
action strength in a DLVO treatment (equation (2.18)) for the interparticle
potential. Charge renormalisation due to counterion condensation is
required for highly charged colloids (large values of the unscreened struc-
tural charge Qstre) that have small radii of curvature (R), when the follow-
ing inequality for monovalent counterions is obeyed:

QstrlB
4R

	 1 ð9:76Þ

And for these highly charged and curved colloids the charge is pinned at a
value (the effective colloidal charge, Qeff) given by:

Qeff ¼
4Reff

lB
ð9:77Þ

Where Reff is the radius of an effective smaller colloid.

9.9 OTHER POLYELECTROLYTE PHENOMENA

For weakly charged polyelectrolytes pronounced counterion condensa-
tion only occurs in a poor solvent (where the blobs are globular) and in
this case it constitutes an avalanche-like process that results in the
condensation of nearly all the counterions on the macromolecule. This
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Figure 9.16 Anomalous small angle X-ray scattering data for DNA molecules asso-
ciated with rubidium (Rbþ) and strontium (Sr2þ) counterions
(Rubidium ions are displaced from the surface of the DNA as the bulk divalent
counterion concentration is increased in accord with Poisson–Boltzmann theory
[Reprinted with permission from K. Andresen, R. Das, H.Y. Park et al, Physical
Reviews Letters, 93, 248103, Copyright (2004) American Physical Society]
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can provide an important contribution to the folding process in highly
charged globular proteins.

The Coulombic interactions of a strongly charged polyelectrolyte tend
to stiffen the chain and lead to an increase in its persistence length (lp). The
contribution to the total persistence length due to the electrostatics (le) is
called the electrostatic persistence length. A useful theory that predicts the
persistence length of charged semi-flexible chains is due to Odjik, Skolnick
and Fixman. The OSF theory is applicable to semi-flexible biopolymer
chains such as actin and DNA. The electrostatic component (le) is added
on to the intrinsic rigidity due to the backbone chemistry:

lT ¼ lp þ ð4lbk
2Þ�1 ¼ lp þ le ð9:78Þ

where lb is the Bjerrum length, k�1 is the Debye screening length and lp
is the intrinsic persistence length. A similar behaviour (separation of
the persistence length into two components) is expected for flexible
polyelectrolytes whose conformation consists of a bayonet of blobs,
but there continues to be some dispute as to how the blob size renor-
malises the effective length of the charged chains (Figure 9.17). Both
k�1 and k�2 dependences of the electrostatic persistence length (le) are
predicted theoretically for flexible polyelectrolytes. Some caution is
therefore required when applying equation (9.78) to chains with flex-
ible architectures.

When a small fraction of the links of a cross-linked polymer network are
charged its collapse in a poor solvent proceeds (as the solvent quality
deteriorates) as a discrete first order phase transition. The abrupt change in
the size of the network is associated with the additional osmotic pressure
of the gas of counterions in the charged network (Figure 9.18). This
process of collapse is analogous to the globule-coil transition of a single
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Figure 9.17 The OSF type approach for the calculation of the electrostatic contribu-
tion to the persistence length is possible in both semi-flexible (a) and flexible polyelec-
trolyte solutions (b)
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polyelectrolyte chain (Section 3.3) and has been used to produce biomi-
metic muscular contraction of synthetic polyelectrolyte gels.
The compatibility of a mixture of two polymers improves substantially

after one of the components is weakly charged. Many of the extreme
phase separation phenomena observed in Section 3.5 are thus avoided in
vivo in the intracellular environment due to this mechanism.
An area of hot debate over many years is that of an attractive force

between like-charged polyelectrolytes. The current consensus is that an
attractive force does exist due to shared counterion effects between
adjacent polyions, but an accurate quantitative prediction of the asso-
ciated experimental phenomena is yet to be made.

FURTHER READING

A.Y. Grosberg and A.R. Khoklov, Statistical physics of macromolecules,
Academic Press, 1994. Clear compact account of the properties of
polyelectrolytes.

M. Daune, Molecular Biophysics, Oxford University Press, 1999. Useful
introduction to the physical properties of ions and polyions.

G.B. Benedek and F. Villars, Physics with illustrative examples from
Medicine and Biology, Springer, 2000.Well written expansive account
of biophysical applications of electromagnetism.
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Figure 9.18 Charged cross-linked network contracts into a cross-linked globulewith
a first order transition as the quality of the solvent for the polymer chains deteriorates
(The positively charged counterions are not shown for simplicity.)
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TUTORIAL QUESTIONS

9.1) The dissociation pKa value for lysine is 10 and the pKa value for
polylysine is 9.5. Can you account for the shift?

9.2) What is the effective charge fraction on a polymer of hyaluronic
acid according to the Manning model, given that the distance
between charged groups along the polymer backbone is 5 Å?
Each charged group is assumed to have a single unscreened
electronic charge before condensation.

9.3) An amyloid fibre associated with a pathogenic misfolded protein
has a charge fraction (f ) of 0.5, and a repeat unit of 1 nm. Using
the Odjik, Skolnick and Fixman calculation estimate the electro-
static contribution to the persistence length of the fibre in a
buffer solution with a Debye screening length (k�1) of 4 nm.

9.4) A very big industrial application for polyelectrolytes is in the gels
that fill disposable nappies (or diapers in the USA). What phy-
sical properties of polyelectrolytes do you think make them
especially suitable for this critical technology? The osmotic
pressure of a charged polymer is dominated by the counterions.
Compare the osmotic pressure of a charged PAMPS gel (poly
acryl amides methyl propane sulfonic acid) with that of its
neutral counterpart at a polymeric monomer concentration of
1 mM. State any assumptions used.

9.5) How big is a statistical blob of uncharged polylysine (a polypep-
tide)? If you charge up the polylysine by a change in pH how big
is the charged blob? What happens to the conformation of the
chain during the process of charging?
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10
Membranes

Every living cell is surrounded by an outer membrane (Figure 10.1). The
membrane acts as a partition that divides the cell between its interior and
extracellular environment. It is the interface through which a cell com-
municates with the external world. Biological membranes are involved in
a wide range of cellular activities. The membrane participates in simple
mechanical functions such as motility, food entrapment and transport.
Also, highly specific biochemical processes are made possible by the
membrane’s structure, including energy transduction, nerve conduction
and biosynthesis. Adhesion between cellular membranes is thought to be
a critical factor in the determination of the morphology and development
of organisms (morphogenesis) from the initial ball of dividing cells (the
blastula).

Biological lipids in solution self-assemble into thin bilayer membranes
that can compartmentalise different regions within a cell and protect the
inside of the cell from the external environment. The membrane remains
intact even when the bathing medium is extremely depleted of lipids due
to the lipids’ extremely low critical micelle concentration (Section 6.1).
As a result of unsaturation or branching of the constituent lipids, mem-
branes are in a fluid state at physiological temperatures, with rapid two
dimensional rearrangements possible of the neighbouring lipids.

Long-chained polypeptide polymers are often embedded in mem-
branes and consist of long strings of amino acid residues (�500 000).
The polypeptides are relatively rigid when compared with the lipids in
the surrounding cell membrane and they are amphiphilic with their
surface exposed to both hydrophobic and hydrophilic regions of the
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membrane. The membrane proteins induce stress in the surrounding
lipids and take part in a range of physiological functions including
adhesion and signalling.
The basic structure of all cells is the same. Fluid sheets surround the

cell and its internal compartments, while semi-flexible filaments form a
more rigid internal scaffolding within the cell and contribute to its
mechanical integrity. Deformations of the cell boundary are due to a
number of processes; both compositional inhomogeneity of the bilayers
(phase separation) and anisotropic structuration of the cell walls under
lateral stress and pressure from structural elements, e.g. microtubules.

10.1 UNDULATIONS

Membranes are two dimensional objects. Fluctuations in their shape
(undulations) are specific to their dimensionality and are of primary
importance to their physical properties. There is an important difference
in the undulations of fluid bilayers in which there is no shear resistance
(Figure 10.2) and those that can sustain an in-plane shear stress due to
ionic or covalent bonds between neighbouring atoms or molecules. Both
varieties of membrane can occur naturally.
From standard continuum mechanics, the compression modulus (kV)

in three dimensions is related to the change in volume (V) with pressure
(P) (Section 11.1) via:

k�1
V ¼ � 1

V

@V

@P

� �
T

¼ bhðDVÞ2i
V0

ð10:1Þ

Figure 10.1 Schematic diagrams of an animal and a plant cell that show the
compartmentalised structures, and some individual pieces of intracellular machinery
[Ref.: adapted from B. Alberts, A. Johnson, J. Lewis et al., The Cell, Garland Science,
2002]
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where @V=@P is calculated at constant temperature, DV is the fluctua-
tions in the volume, V0 is the volume at zero temperature and b ¼ 1/kT
(k is Boltzmann’s constant and T is the temperature). For membranes an
analogous two dimensional compressibility can be related to the fluctua-
tions in the area of the membrane (DA):

1

bkV2D
¼ hðDAÞ2i

A0
ð10:2Þ

where A0 is the area at zero temperature. A membrane with a large areal
compressibility (kv2D) only experiences small fluctuations in its area at
fixed pressure (Figure 10.3).

The mechanism through which undulations affect the size of mem-
branes is still an open area of research. In a similar manner to that in
which the size of a polymer is dependent on the quality of the solvent
(Section 8.2), the average size and area of a membrane is related to the
interplay between the solvent–membrane interaction and the excluded
volume of the two dimensional surface. The scaling behaviour of the
radius of gyration and the surface area of a range of model closed bag

Oil

Water

Water

Lipid

Figure 10.2 The structure of a fluid lipid bilayer at the oil/water interface

Time 

Small κv2d

Large κv2d

Volume 

Figure 10.3 Schematic diagram that shows the fluctuations in volume as a function of
time for a membrane. A large compressibility suppresses volume fluctuations and vice
versa
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morphologies are described in Table 10.1. The different scenarios for
membrane–solvent interactions are shown in Figure 10.4.

10.2 BENDING RESISTANCE

At zero temperature a membrane minimises its bending energy and
adopts a shape that is flat or uniformly curved. At finite temperature,
the spatial decorrelation of the normals to the membrane surface, intro-
duces a finite roughness to the surface and provides a measure of its
elasticity in response to thermal fluctuations. This spatial decorrelation
of the normals is characterised by a persistence length (jP, Figure 10.5);
the two dimensional analogue of that found for a semi-flexible polymer
(Section 8.1).
The normal to a membrane surface at a point in space (r) is defined as

nðrÞ and the correlation of the normals at an average separation (Dr) is
found to decay exponentially:

hnðr1Þ:nðr2Þi ¼ e�Dr=jp ð10:3Þ
Dr � r1 � r2 ð10:4Þ

Table 10.1 Scaling behaviour of closed bags in three dimensions

Scaling law

Configuration hR2
gi / L2v

c hAi / L2h
c

Inflated (good solvent) v ¼ 1 h ¼ 3=2
Flory-type (theta solvent) v ¼ 4

5
Branched polymer v ¼ 1 h ¼ 1
Dense (poor solvent) v ¼ 2

3 h ¼ 1

Pressure

Inflated 

Attraction

Dense

Self-avoiding
walk 

Branched 

Expansion

Compression

Membrane-
solvent 
interaction

polymer

Figure10.4 Phasediagram formembranes as a functionof pressure and the attractive
membrane–solvent interaction
[Ref.: D.H. Boal, Phys. Rev. A, 1991, 43, 6771–6777]
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where r1 and r2 are two points on the membrane. In contrast to the case
of a polymer, where the persistence length (lp) was found to be propor-
tional to the bending modulus (lp � k/kT, Section 8.1), the persistence
length of a membrane (jp) depends exponentially on the bending mod-
ulus and the temperature:

jp � b expð2pkb=kTÞ ð10:5Þ

where b is a characteristic step length (in metres) along the membrane.
The membrane persistence length is thus a much more sensitive function
of the modulus and temperature than the case with a polymer. A flat zero
temperature membrane obeys R2

g � L2; the area (R2
g) of a membrane in

three dimensions is approximately equal to its contour area (L2, where L
is the contour length of the sides of the membrane). When the membrane
is subject to thermal fluctuations, the size of the membrane without self-
avoidance grows very slowly with a contour areaR2

g � lnL, which can be
shown both by simulation and analytical calculation using Fourier
decomposition of the surface profile.

The scattering of X-rays and light from a stack of membranes can be
used as a sensitive measure of their undulations (Figure 10.6). The stack
of membranes are used to reinforce the scattering signal through the
process of constructive interference of the scattered waves from the
periodic structure. Typically elastic scattering experiments measure the
structure factor (SðqÞ) as a function of momentum transfer (q, the inverse
length scale, Section 13.1):

SðqÞ ¼ N�2

�X
m;n

eiq:ðrm�rnÞ
�

ð10:6Þ

where N is the number of membranes in a stack and the summation is
carried out over all the separate pairs of molecules in the stack. There are
no true Bragg peaks at finite temperature in such scattering experiments

n1

n2

n3

(a) (b)

t1
t2

t3

Figure 10.5 The correlation of the normals (ni) to a membrane (a) provides a defini-
tion for the persistence length of amembrane and the correlation of tangent vectors (ti)
to a polymer (b) is related to the persistence length of a polymer
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due to the undulations of the membrane stack, and the scattering profiles
exhibit power law singularities (Figure 10.7) in a similar manner to that
observed with smectic liquid crystals. In the direction perpendicular to
the surface (z) the scattered intensity (Ið0;0; qz)) takes the form:

Ið0; 0; qzÞ / ðqz � qmÞ�2þhm ð10:7Þ

where qm is the value of the momentum transfer centred on the mth order
peak of the constructive interference of the scattered waves (qm ¼ 2p/md
and d is the membrane spacing). Parallel to the surface the scattered
intensity has the form:

Iðqk; 0; qmÞ / q�4þ2hm
k ð10:8Þ

1.0

0.05 0.1

Scattered
intensity I(q)/I(qo)

Momentum 
transfer q(Å–1)

Cusp like
peak

Figure 10.7 Cusp like peaks are found in X-ray experiments due to the constructive
interference of X-rays scattered from stacks of lipid membranes. The scattered inten-
sity is shown as a function of the momentum transfer of the X-rays

qz

qx

Figure 10.6 Schematic diagram of the scattering geometry of radiation from a stack
of membranes
(qz is the momentum transfer perpendicular to the membrane and qx is that lateral to
the membrane)
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where qk is the momentum transfer parallel to the surface. There are no
peaks in the data in this case and a characteristic continuous decrease
from a singularity at zero q is measured. The exponent hm found in
equations (10.7) and (10.8) is related to the elastic modulus of the
membrane:

hm ¼ m2h21kT

8p
ffiffiffiffiffiffiffi
BK

p ð10:9Þ

where K ¼ Kc/d, d is the interlamellar spacing, Kc is the elasticity
modulus, h1 has different forms that depend on the dominant force
of interaction between the layers (e.g. undulation forces or electrostatics),
B is the bulk modulus and kT is the thermal energy. It is also possible to
examine single membranes using a reflectivity geometry by means of the
total internal reflection of X-rays, neutrons and light radiation. The
calculation of the reflectivity equivalent of the structure factor given
in equations (10.6) and (10.7) for transmission experiments is slightly
more complicated, but quantitative measurements of single membrane
fluctuations can be made from the profile of the reflected radiation. Image
analysis of the curvature of membranes aspirated with a micropipette also
provides a useful method for calculating membrane bending elasticity
(Figure 10.8).

10.3 ELASTICITY

The Possion ratio (y) is a measure of how a material contracts in the
transverse direction when it is stretched longitudinally (Section 11.1). It
is defined in two dimensions as the ratio of the strains parallel (uxx) and
perpendicular (uyy) to the direction of extension:

n ¼ � uyy
uxx

ð10:10Þ

Figure10.8 Micropipette apparatus canbeused to examine the elasticity of redblood
cells using digital analysis of the resultant membrane profile
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when the stress is applied along the x-axis. The negative sign is included
so that most ‘normal’ materials have positive values of the Poisson ratio.
However, unusually, crumpled membranes have negative Poisson
ratios. This can be simply demonstrated by crumpling a piece of paper
into a ball. Extending the paper between your hands then causes it to
expand laterally, it has a negative Poisson ratio. Another unusual
example of a negative Poisson ratio is found in the Section 11.3 on
foams in three dimensions, which have openly connected membraneous
structures.
The shear modulus (m) for a two dimensional elastic fibrous network is

given by the expression:

m � rkT ð10:11Þ

where r is the density of cross-links and kT is the thermal energy. This is
a very similar result to the three dimensional case of cross-linked poly-
mers (equation (8.56)), and has a similar derivation. The exact prefactor
in equation (10.11) depends on the co-ordination number of the network
(Section 8.3).
The stress and internal pressure in an elastic spherical membrane are

related to its curvature (Figure 10.9). The resultant tensile force due to
the wall stress is equal to the average area of the wall times the average
stress (hsi):

pðr2o � r2i Þhsi ð10:12Þ

where r0 is the external radius and ri is the internal radius. In equilibrium,
the stresses in the wall of the membrane are balanced by the internal
pressure (pi):

pðr2o � r2i Þhsi ¼ pr2i pi ð10:13Þ

rh

Figure 10.9 The geometry of a spherical membrane of thickness (h) and internal
radius (r)
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Equation (10.13) is rearranged and the shell thickness (h) is defined as
r0 � ri to give:

hsi ¼ pi
r2i

r2o � r2i
¼ pi

r2i
hðro þ riÞ

ð10:14Þ

If the elastic membrane on the sphere is thin the internal radius is
approximately equal to the external radius (r0 � ri ¼ r) and equation
(10.14) can be further simplified:

hsi ¼ force

area
¼ rp

2h
ð10:15Þ

where p is the interior pressure, h is the shell thickness and r is the radius
of the sphere. This explains why balloons are initially difficult to expand,
since the applied shear stress is small for balloons with small radii (r).

The stresses in the cell wall of a cylindrical membrane (e.g. a cylind-
rical bacterium) are a little different to those of a sphere and have
important medical applications (Figure 10.10), e.g. the mechanical prop-
erties of a range of tubular organs. For a cylinder, hsuiðr0 � riÞL is the
resultant force on the cross section and is balanced by the pressure that
acts on the inside of the cylinder 2riLpi:

2hsuiðro � riÞL ¼ 2riLpi ð10:16Þ

where hsui is the average value of the stress (su) as a function of the angle
u over the cross section and L is the length of the cylinder. Therefore,
defining the thickness of the membrane as h (h ¼ r0 � ri), the stress in the
hoop direction is:

hsui ¼
rP

h
ð10:17Þ

L
h 2r

Figure 10.10 The geometry of a cylindrical membrane, length (L), thickness (h) and
end cap radius of curvature (r)
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The stress in the axial direction (sz) is similar to the case of a sphere:

hszi ¼
rP

2h
ð10:18Þ

where P is the pressure and r is the cylinder radius. The hoop stress is thus
twice that in the axial direction. This explains why sausages and internal
organs burst in the direction of the hoop, i.e. the break runs parallel to
the long axis of the cylinder.
More generally it can be shown that for two principal curvatures

(1=R1 and 1=R2), pressure (P) and two line tensions t1 and t2:

t1

R1
þ t2

R2
¼ P ð10:19Þ

For fluid sheets the tension is isotropic and equation (10.19) becomes the
Young–Laplace equation that was encountered earlier (Section 7.4):

t
1

R1
þ 1

R2

� �
¼ P ð10:20Þ

Mathematically a unit tangent vector (t) to the membrane can be defined:

t ¼ @r

@s
ð10:21Þ

where r is a point on the membrane and s is a distance along the
membrane surface. The curvature (c) can be defined:

c ¼ n:
@t

@s
¼ n:

@2r

@s2

� �
ð10:22Þ

where n is the normal to the curvature at position r. The simplest model
for the free energy density (F) of a membrane is:

F ¼ kb
2
ðc1 þ c2 � c0Þ2 þ kGc1c2 ð10:23Þ

where c0 represents the spontaneous curvature, c1 and c2 are quadratic
terms in the Taylor expansion of the surface around a point (the principal
curvatures), kb is the bending modulus introduced earlier and kG is the
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saddle-splay modulus. For a stable film kb in the free energy density
(equation (10.23)) must be positive. The product c1c2 is called the
Gaussian curvature and has a large impact on the morphology that a
membrane adopts (Figure 10.11). The integral of the Gaussian curvature
over a closed surface is an invariant:

þ
c1c2dA ¼ 4pðnc � nhÞ ð10:24Þ

where (nc � nh) is the difference between the number of connected
components and the number of saddles, and

H
is an integral over the

complete surface. For a bilayer membrane with no spontaneous curvature
and topology conserving fluctuations, the bending energy is simpler than
equation (10.23)

Eel ¼
þ

kb
2
ðc1 þ c2Þ2

h i
dA ð10:25Þ

where kb is the bending modulus.
Biologically, biochemical products must be transported from their

point of manufacture to the sites of usage. The products must be pack-
aged to prevent their loss during transport and this process involves small
membrane-bound entities (vesicles). The packages are labelled so they
can be recognised at their point of destination and they need to be
shipped along efficient transportation routes (Figure 10.12). Equation
(10.25) for the bending energy of a membrane can be used to calculate
the sizes observed experimentally for simple spherical vesicles (they are
normally less complicated in their construction than a complete cell) and
their mechanism of formation.

positive

(a) (b)

c1 and c2 c1 positive
c2 negative

Figure 10.11 Schematic diagram of surfaces with curvature (C1 and C2) of the same
sign (a) and opposite sign (b)
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10.4 INTERMEMBRANE FORCES

A range of mesoscopic forces are important in the interactions of mem-
branes. At small distances the membranes attract due to the interaction of
the induced electric dipole moments (Van der Waals force). The balance
between van der Waals and electrostatic forces occurs at intermediate
lengths and often defines an average inter-membrane distance
(Figure 10.13). Futhermore, there is often a furry coat of polymers
attached to the exterior of the plasma membrane that impedes cell adhe-
sion (Figure 10.14) due to the induced steric repulsive force (Section 2.4).
Water also interacts with the structure ofmembranes and can give rise to a
long range hydrophobic interactionwhich sensitively depends on the ionic
environment. Non-covalent binding is possible between specific mole-
cules attached to membranes at very close distances of approach. There
are a range of proteins that are designed to connect cells together with
ionic bonds and are a major determining factor in the cohesion of cells
into tissues.
The measurement of line tensions is possible by measuring the size of

disk-like vesicles (an indirect method of measurement), by osmotic
swelling measurements, or through the production of holes in mem-
branes (Figure 10.15) and the observation of the critical hole radius.

1 10

100

10

1

0.1

Pressure
(10 3J/m2

)

Electrostatic

Van der 
Waals 

Separation 
distance, Ds (nm)

Figure 10.13 Pressure between two rigid charged plates as a function of their degree
of separation
[Reprinted with permission from D. Boal, Mechanics of the Cell, Copyright (2002)
Cambridge University Press]

Endocytosis

Bilayer

Budding

Vesicle
Addition 
of coat 
protein

(production 
of vesicles) 

Figure 10.12 The formation of a vesicle used for transportation occurs through a
process called endocytosis
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At zero temperature a membraneous system in which a hole has been
introduced (energy U) acts to minimise its enthalpy (H):

H ¼ U � tA ð10:26Þ

where t is the tension of the membrane in two dimensions and A is
the area. The energy of a circular hole (U) formed in a bilayer is given by:

U ¼ 2pRl ð10:27Þ

where l is the line tension and R is the hole radius. The difference in area
between the sheet and the hole system with respect to the intact sheet is
pR2. From equation (10.26) the change in enthalpy (DH) on the produc-
tion of a hole is therefore given by:

DH ¼ 2pRl� tpR2 ð10:28Þ

Suction Electrodes

Micropipette

Vesicle
under
pressure

Figure 10.15 A technique for the study of the surface tension of cells. Holes are
formed by the action of an electric field

Brush

Branched 

Mushroom

Figure 10.14 The possible conformations of the polysaccharides in the glycopro-
teins of cell membranes can include branched, parallel brush and mushroom
morphologies
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The extrema of this expression can be calculated and the maximum value
of the enthalpy (DH) occurs at a critical hole radius (R�) of:

R� ¼ t

l
ð10:29Þ

The line tension (l) can then be calculated experimentally using this
expression.
Proteins embedded in a cell membrane can provide it with electroche-

mical activity. Patch clamps are used to measure electrical properties of
membranes that are induced by such proteins. A very narrow clean capil-
lary pipette is takenand a small degree of suction is applied to amembrane.
The tiny electrical potentials typically formed by cells are measured with
respect to a reference voltage (Figure 10.16). A very high degree of ampli-
fication is needed tomeasure the voltage produced by amembrane protein;
the trick is to separate the current due to the cellular events from the
background thermal noise. Such electrical data provides information on
the conduction of membranes and has even enabled the kinetics of indivi-
dual channel opening and closing events to be followed.
Anomalous X-ray experiments have recently provided detailed

information on the distribution of counterion clouds near membranes
(Figure 10.17). These clouds determine the electrostatic potential experi-
enced by the membranes.

FURTHER READING

D. Boal, Mechanics of the cell, Cambridge University Press, 2002.
Thorough, well explained account of the physics of membranes.

G. Forgar, S.A. Newman, The biological physics of developing embryos,
Cambridge University Press, 2005. Interesting discussion of the role of
membrane adhesion in cellular morphogenesis.
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Figure 10.16 The patch clamp method can be used to examine the electrical proper-
ties ofmembrane proteins. Apipette is attached to a cell and the electrical activity from
an ion channel is detected with a differential amplifier
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TUTORIAL QUESTIONS

10.1) What is the line tension of a membrane if the critical hole radius
in it surface is 2.6 nm and its surface tension is 0:03 Jm�2?

10–3 M CsCl 

E = 16.2 keV

E = 5.012 keV

10–4

10–3

10–2

10–1
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Reflectivity
(R/Rf)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

(a)

(b)
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surface, Z (Å)  
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Figure 10.17 Anomalous X-ray reflectivity data from phospolipid bilayers
(a) Reflectivity curve that shows the reflected intensity as a function of momentum
transfer (qz); (b) is the calculated Poission–Boltzmann counterion profile that shows
the density of cesium counterions as a function of the perpendicular distance from the
bilayer surface [Reprinted with permission fromW. Bu, D. Vaknin, and A. Travesset,
Physical Rev. E, 72, 060501, Copyright (2005)American Physical Society]
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10.2) What are the axial and hoop stresses on a cylindrical bacterium
if its internal pressure is 1� 105 Pa, the membrane thickness is
1 nm and the radius is 1 mm?

10.3) By what factor does the persistence length of a membrane
(k=kT ¼ 5) change if its bending modulus is doubled? By
what factor would the exponent change, measured in an ideal
X-ray scattering experiment, for the power law cusp from a
stack of such membranes? Assume all the other parameters of
the membrane remain unchanged.

10.4) A membrane is moved from a good solvent to a poor solvent,
and its contour length is Lc. According to the scaling laws for
closed bags, by what factor does its radius of gyration and area
change? Assume the prefactors are the same in both cases.
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11
Continuum Mechanics

Two architectural themes occur again and again in the continuum
mechanics of naturally occurring biomaterials: fibrous composites and
cellular solids (and combinations of the two). Fibrous composites consist
of stiff rigid rods (e.g. collagen or cellulose) combined with a highly
viscous dissipative filler (e.g. proteoglycans or lignins). The stiff rods
resist extension and compression providing the composite with its
strength, whereas the dissipative filler increases the material’s toughness
by many orders of magnitude. Composite materials are now widely used
in a range of synthetic products (e.g. skis, the fuselage of aircraft etc) but
biological composites continue to out perform many of their synthetic
counterparts due to their well optimised structures on the nanometre
length scale.

Cellular materials are widespread in biology. Cellular solids have
reasonable strengthes and toughnesses, but they only use a fraction of
the structural component to achieve these properties. Thus cellular
materials provide a mechanical solution with greatly improved stiff-
ness/weight ratios and consequently occur in a wide range of biological
tissues that include bones and woods.

A list of some characteristic properties commonly encountered in the
mechanics of materials is shown in Table 11.1. All of these properties are
important in biological situations and their extension to anisotropic
nanostructured materials needs to be carefully considered.

One of the simplest experiments that can be performed on a bioma-
terial concerns the application of a force (stress) that causes it to extend
(become strained). A wide range of stress–strain properties available
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with elastic proteins is shown in Figure 11.1. Typically, the stress–strain
curves are linear for small deformations and Hooke’s law is obeyed, with
the force (and corresponding stress) proportional to the extension (and
corresponding strain). Numerical values of the material properties of
some proteins and standard synthetic materials are tabulated in
Table 11.2.

11.1 STRUCTURAL MECHANICS

For an isotropic material there is a simple relationship between the stress
(s ¼ F=A, the force (F) divided by the area (A)) and the strain (e ¼ Dl=l,

Table 11.1 Important material properties found in the solid mechanics
of biomaterials

Functional attribute Material property Units

Stiffness Modulus of elasticity, Einit Nm�2

Strength Stress at fracture, smax Nm�2

Toughness Energy to break at fracture Jm�3

Extensibility Strain at failure, emax No units
Spring efficiency Resilience %
Durability Fatigue lifetime s to failure
Spring capacity Energy storage capacity, Wout Jkg�1

10,000 

1000

100

10

1

0.1 

0.01 
0.01 0.1 1.0 10.0 

Strain 

Stress (MPa) 

Dragline silk 

Viscid silk 
Collagen 

Byssus, distal 

Byssus, proximal 

Resilin 

Elastin 

Figure 11.1 Stress–strain curves for a range of structural proteins
Hooke’s law, with stress proportional to strain, is observed with all these materials at
small degrees of strain [Ref.: adapted from J. Gosline, M. Lillie, E. Carrington et al.,
Phil. Trans. R. Soc. Lond. B, 2002, 357, 121–132]
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the change in length (Dl) divided by the original length (l)). For a linear
material the stress/strain relationship is:

s ¼ Ee ð11:1Þ

where the constant of proportionality is Young’s modulus (E, units:
Pascals).

The Poisson ratio (y) for an isotropic material is a dimensionless
number given by the ratio of the perpendicular strain (eperp) to the
longitudinal strain (e) (Figure 11.2):

v ¼ � eperp
e

ð11:2Þ

Table 11.2 Mechanical properties of a range of structural proteins commonly
encountered in biophysics and some synthetic equivalents
[Ref.: Adapted from J. Gosline, M. Lillie, E. Carrington et al., Phil. Trans. R. Soc.
Lond. B, 2002, 357, 121–132]

Modulus Strength Toughness Resilience
Material (GPa) (GPa) Extensibility (MJm�3) (%)

Elastin 0.0011 0.002 1.5 1.6 90
Resilin 0.002 0.004 1.9 4 92
Collagen 1.2 0.12 0.13 6 90
Synthetic rubber 0.0016 0.0021 5 10 90
Mussel byssus
proximal 0.016 0.035 2.0 35 53

Dragline silk 10 1.1 0.3 160 35
Viscid silk 0.003 0.5 2.7 150 35%
Kevlar(e.g. in bullet
proof jackets) 130 3.6 0.027 50 —

Carbon fibre 300 4 0.013 25 —
High tensile steel 200 1.5 0.008 6 —

1

1

1

σ

1+e
1-ve

1-ve σ

(a) (b)

Figure 11.2 The geometry of a stressed cube is used to illustrate the Poisson ratio (v),
which quantifies the reduction in size perpendicular to the direction of the applied
stress. (a) Unstressed cube of material and (b) the material with an extension (e) in the
direction of the uniaxial stress (s)
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It describes how the change in morphology of a material under stress is
coupled in the directions parallel and perpendicular to the direction of
the stress. The Poisson ratio is a half for an incompressible material in
uniaxial extension.
The shear modulus (G) describes the resistance of a material to a

shearing motion, e.g. the motion of two parallel faces of a material
relative to one another (Figure 11.3). For small angles of deformation
the shear modulus is equal to the stress (s) divided by the angle of
deformation (u) and it therefore is measured in Pascals:

G ¼ s

u
ð11:3Þ

The bulk modulus (K, units: Pascals) quantifies the variation in volume
(dV) of a material when the pressure is changed (dp) (Figure 11.4). It is
defined through the equation:

1

K
¼ � 1

V

� �
dV

dp
ð11:4Þ

θ

σ

σ

Figure 11.3 Geometry used to define the shear modulus (G) of a material in terms of
the shear stress (s) and the angle of deformation (u)

P-dP

P

V

V+dV 

Figure 11.4 The bulk modulus of a solid (K) defines the change in volume (dV) of a
material in response to a change in pressure (dP)

256 CONTINUUM MECHANICS



The factor 1
V makes the bulk modulus independent of the volume of

material considered; and the negative sign allows positive compressibil-
ities to be used to describe the typical case in which an increase in
pressure causes a decrease in volume.

For an isotropic elastic material the bulk modulus (K), Young’s mod-
ulus (E), shear modulus (G) and Poisson ratio (y) are interrelated by two
simple relationships:

K ¼ E

3ð1� 2vÞ ð11:5Þ

G ¼ E

2 1þ vð Þ ð11:6Þ

Thus knowing two of the characteristic constants (from E;K; v and G)
for an isotropic elastic material allows the other two to be calculated.

For anisotropic materials (the predominant moiety among biological
structures) a full tensorial analysis is required to describe the stress and
strain of a material (Figure 11.5). In three dimensions the stress tensor
(sij) simultaneously desribes the extensive, compressive, dilatational and
shear forces on a small volume element. In Cartesian coordinates (x; y; z)
the stress tensor is given by:

sij ¼
sxx sxy sxz

sxy syy syz

sxz syz szz

2
64

3
75 ð11:7Þ

Similarly, there are nine constants that describe the strain (eij) of
the material in response to the stress in three dimensional Cartesian

σzz

σzy
σzx

σyz
σyy

σyx

σxz

σxy

σxx

z

yx

Figure11.5 Tensorial natureof the stress (sij) ona cubic volumeelement of amaterial
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coordinates. For linear elastic materials the stress is related to the strain
by a tensorial equation:

eij ¼ sijklskl ð11:8Þ

where sijkl are the compliance constants that characterize the elastic
response of a particular material. Thus eighty one (34 ¼ 81) compliance
constants are required to describe an anisotropic material that exhibits
no symmetry in its morphology. Fortunately, in most practical situations
the number of independent constants is reduced due to the symmetry
both in the molecular structure of the sample and the morphology of the
particular specimen chosen.

11.2 COMPOSITES

Composite materials are constructed from a mixture of discrete rigid
units combined with a dissipative matrix. A range of composite morphol-
ogies commonly occur in nature. These include two dimensional lami-
nates (the rigid units are planar) and one dimensional fibres (the rigid
units are one dimensional, Figure 11.6 and Figure 11.7). Furthermore, a
wide range of tessellations are possible for the rigid embedded units and
these provide important consequences for the mechanical properties. For
fibrous composites the length of the rigid units embedded is a critically
important parameter for the resultant mechanical properties, and
separate models have been developed to describe the stresses that are

σ

σ

σ

σ

(b)

Crystalline  
layer 

(a)

Dissipative
matrix 

Figure 11.6 The modulus of laminated composites depends on the direction of the
applied stress (s), which is shown parallel to the layers (a) and perpendicular to the
layers (b)
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experienced by short and long composites. Examples of biocomposites
include elastin/collagen in heart walls (fibrous composites) and nacre/
protein in sea shells (laminar composites, Section 15.6). There is a direct
link between the physical properties of fibrous composites and solid
liquid crystals (Section 4.4); often the two descriptions are used inter-
changeably. For example, with polymeric liquid crystals the amorphous
material in the flexible linkers can act as a dissipative filler, and the
nematic inserts provide resistance to extension (a fibrous composite).

Inorganic/organic biocomposites such as dentine, the hard surface
layer in teeth, often have only small amounts of organic material
(�1%), but this dissipative filler has an extremely large impact on the
resultant physical properties. In particular, the toughness of the material
(e.g. a combination of hydroxyapatite and protein in dentine) is many
orders of magnitude larger than the toughness of a single crystal.

To a reasonably good first approximation it is possible to calculate the
effective Young’s modulus for a layered composite material. For a force
applied parallel to the composite (Figure 11.6(a)) the force applied to this
mixed material (Fm) is equal to the sum of the forces on the crystal (Fc)
and that on the amorphous phase (Fa), e.g. an adhesive protein:

Fm ¼ Fc þ Fa ð11:9Þ

These forces can be reexpressed in terms of average stresses and areas:

smAm ¼ scAc þ saAa ð11:10Þ

where sm, sc and sa are the stresses on the mixture, the crystal and the
protein respectively. Am, Ac and Aa are the corresponding areas. Equa-
tion (11.10) can be divided by the total volume of the mixture. This
allows the effective Young’s modulus of the mixture (Em) to be calcu-
lated in terms of the Young’s modulus of the two constituent phases (Ec

and Ea) and the volume fraction of the crystalline phase (fc):

Em ¼ Ecfc þ Eað1� fcÞ ð11:11Þ

For a force applied perpendicular to a layered composite (Figure 11.6(b))
the total extension (dlm) is the sum of the extension of each individual
phase (dlc and dla for the crystal and amorphous phases respectively):

dlm ¼ dlc þ dla ð11:12Þ
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The extension can be converted into strains (e) using the definition:

e ¼ dl

l
ð11:13Þ

where dl is the change in length and l is the initial length. If lm, lc and la
are the lengths of the mixture, crystal, and amorphous components
respectively, em, ep and ec are the corresponding strains. Therefore,
equation (11.12) can be reexpressed as:

emlm ¼ eclc þ eala ð11:14Þ

The strains can be calculated in terms of the Young’s modulus of the
individual components if it is noted that the stresses (s) on each compo-
nent are identical:

slm
Em

¼ slc
Ec

þ sla
Ea

ð11:15Þ

The stresses cancel out from this expression and the lengths can be
reexpressed in terms of the volume fraction of the components. The final
result for the Young’s modulus of a layered composite strained in a
direction perpendicular to the layers is:

Em ¼ EaEc

Ea 1� fð Þ þ Ecf
ð11:16Þ

For a fibre composite the modulus parallel to the direction of stress is:

E ¼ hEfff þ Eað1� ff Þ ð11:17Þ

Anomalous X-ray experiments have recently provided detailed informa-
tion on the distribution of counterion clouds near membranes (Figure
10.17). These clouds determine the electrostatic potential experienced by
the membranes.
where Ef and Ea are the Young’s modulus of the fibres and amorphous
matrix respectively (Figure 11.7). ff is the volume fraction of the fibres.
This expression looks similar to that for a layered composite (equation
(11.18)) with the inclusion of the scale factor (h). The scale factor is given
by:

h ¼ 1� tanh ax

ax
ð11:18Þ
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where a is the aspect ratio (length (l) of the fibres divided by the diameter
(2r), l=2r) and x is given by the expression

x ¼ 2Ga

Ef lnðR=rÞ

� �
ð11:19Þ

where Ga is the shear modulus of the matrix in which the fibres are
embedded, Ef is Young’s modulus of the fibres, R is the distance of
separation between the fibres and r is the fibre radius.

Anisotropic composites also occur in nature. For example, helicoidal
materials are often observed in biological materials (elastin/collagen in
heart walls) and the orientation of the fibres provides additional resis-
tance against torsional rotation and tearing.

11.3 FOAMS

Foams (or equivalently cellular solids) are a morphology optimised for
strength and weight. A range of mechanical properties for some standard
biological cellular solids are included in Table 11.3.

Fibre 

Dissipative 
matrix 

Figure 11.7 The arrangement of fibres in a composite material with uniaxial
orientation

Table 11.3 Mechanical properties of some biological cellular solids

Volume
Youngs Fracture fraction Density
Modulus stress sf of solid (r) Poisson

(E) (MPa) (%) (kgm
�3Þ ratio (v) Toughness

Soft
wood 10 GPa 180 0.96 102–103 0.3–0.68 12 kJm�2

Hard
wood � 17.5 GPa 240 0.73 102–103 0.01–0.78 11 kJm�2

Cork �20MPa 15 0.15 170 0–0.1 60–130 Jm�2

Bone 12 GPa 105 0.05–0.7 102–103 0.36 600–3000 Jm�2

Carrot 7MPa 1 0.03–0.38 103 0.21–0.49 200 Jm�2
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It is possible to motivate the elasticity of foams using a simple scaling
theory. For the compression of a foam, the stress is resisted by strut-like
sections of the foam morphology (Figure 11.8). The deformation of a
single strut (d) at its midpoint by a force (F) is related to the Young’s
modulus of the strut (E), the length of the strut (a) and the thickness (t):

d � Fa3

Et4
ð11:20Þ

The force required to deform the strut (F) is related to the compressive
stress (s) on the strut (F � sa2), so:

s � dt4E

a5
ð11:21Þ

The Young’s modulus of an unfilled foam (Ef ) is approximately the stress
(s) divided by the strain (g). The strain (g) for a given displacement is
inversely proportional to the length of a fibre (g � a�1) and therefore
equation (11.21) can be rewritten as:

Ef �
s

g
� t

a

� �4
E ð11:22Þ

This Young’s modulus of an unfilled foam can be rewritten in terms of
the relative density of the material:

Ef

E
¼ C1

r�
rs

� �2

ð11:23Þ

F

δ σ σ

Cross-section
through a 
cellular solid 

Load bearing strut in the 
foam 

Figure 11.8 Themechanical strength of a foam is related to the elasticity of the struts
in the material
(The average force on the struts is F and their deformation is d. s is the average stress
applied to the foam.)
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where C1 is a constant of proportionality, r� is the density of the foam
and rs is the density of the material in the struts. The formulation is in
reasonable agreement with experiment for a wide range of unfilled foam
morphologies. The behaviour described in this calculation is also close to
that expected with cross-linked semi-flexible polymers such as actin and
fibrin, and there are many mechanical features held in common between
these types of polymers and open celled foams.

Filled foams such as biological tissues predominantly contain water.
They cannot be compressed and have markedly different mechanical
properties to unfilled foams. Mechanical failure in this case corresponds
to the filled cells bursting, and the strain is experienced by the stretching
of the cellular walls, not bending of the materials. The theoretical pre-
diction for filled foams is a lower dependence of the Young’s modulus of
the foam on the thickness and the length of the struts, Ef � ðt=aÞ2E
compared with ðt=aÞ4E for the unfilled case.

A schematic diagram of the compressional behaviour expected for an
open celled foam, e.g. cork or bone, is shown in Figure 11.9. The
compaction of the foam under compressive stress and its densification
at medium and high strains is characteristic of a cellular solid. An Euler
buckling transition is associated with the collapse of struts at high strain.

The Poisson ratio for unfilled cellular solids can have an unusual
behaviour. It can be negative, with the classic example of cork stoppers
used to seal wine bottles. Cork stoppers expand as they are stretched in
the opening of a bottle and seal the contents.

11.4 FRACTURE

The mechanism through which biological materials break and fracture is
of vital concern in the lives of many organisms. Mechanical materials are

Stress  

Strain 

Linear
elasticity 

Plateau 
(buckling) 

Densification 

Figure 11.9 Compressional behaviour of an open celled foam
(The stress is shown as a function of strain. As the strain increases there is a linear
Hookean region, followed by a plateau due to buckling of the struts, and finally the
structure densifies before failure.)
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often nanostructured in order to terminate cracks as they form; this
greatly increases the energy they can absorb before failure. Such termi-
nation of cracks in soft viscoelastic fillers contributes to the toughness of
nacre and bone.
The energy released by the propagation of a crack in a one component

solid has two competing terms, the energy released by the advance of the
crack and the energy absorbed to make the crack surface (Figure 11.10).
There is thus a critical length (Lc) above which a crack begins to
propagate. The critical crack length is related to the work of failure
per unit area (Wf ) and the strain energy stored per unit volume (Ws):

Lc ¼
Wf

pWs
ð11:24Þ

Typically, for Hookean materials, the strain energy stored (Ws) by an
elastic material is half the stress (s) times the strain (e i.e. se/2):

Lc ¼
2Wf

pse
ð11:25Þ

To avoid the propagation of cracks biological materials use a series of
different mechanisms; a high work of fracture (the work done during the
fracture process), a low strain energy at fracture extension, limitation of
the material to low values of stress and strain, division of the material

Energy
Energy
released by 
crack 

Total energy 
to propagate
crack

Energy
needed to 
make crack 

Crack length

Critical 
crack length 

Figure 11.10 The energy released by the propagation of a crack in a one component
solid is a function of its length. There is a critical crack length due to the interplay
between the energy needed to nucleate the crack and the energy released by the crack
growth
[Reprinted with permission from S. Vogel, Comparative Biomechanics, Copyright
(2003) Princeton University Press]
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transversely to the direction of load and the use of materials that develop
blunt cracks so stresses are minimised at their tips. Cellular solids profit
from their ability to terminate cracks in voids in this respect, and the
effect greatly increases their toughness.

11.5 MORPHOLOGY

As any architect of a macroscopic building will testify, the geometry of a
structure has a significant impact on its mechanical properties. Tubes,
struts, braces and helicoids are standard motifs that occur in biology and
optimise the performance of biological structures for their required roles,
e.g. the modification of the flexural stiffness to provide additional tor-
sional stiffnesses. Tubes have high flexural and torsional stiffness with a
minimum of structural material. Struts and braces have the same bending
resistance as a single continous piece of material, with a large reduction
in weight (foams have a random array of struts and braces). Active truces
(arrays of motile struts) occur in the spines of many vertebrates, with soft
ligaments providing active modification of the bending rigidity. Helicoi-
dal structures in materials can improve fracture and tear energies by an
order of magnitude, as linear fractures must occur across the strong fibre
axis for at least part of their path length.
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TUTORIAL QUESTIONS

11.1) What is the ratio of the Young’s modulus parallel and perpen-
dicular to a layered biocomposite if the volume fraction of the
crystalline material is 0.9 and the Young’s modulus of the
crystalline and amorphous fractions are 50MPa and 50 GPa
respectively?

11.2) Estimate the Young’s modulus of a dried cellular solid if
the Young’s modulus of the walls is 9 GPa, the diameter of
the struts is 1 mm and the length of the struts is 20 mm. Estimate
the change in the Young’s modulus if water now fills the pores.
Assume that the mechanical properties of the struts are
unchanged in the hydrated environment.
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12
Biorheology

Traditionally experimental rheology has consisted of placing a sample in
the scientific equivalent of a food blender (a rheometer). The response of
the material in the blender provides a probe of the materials viscoelas-
ticity. Rheology thus considers the measurement of the viscoelasticity of
materials. A classic example of a viscoelastic substance is the childs toy,
silly putty. This material can flow when it is drawn in the hand and
bounces when subjected to a rapid collision with the floor. Silly putty
therefore acts as a viscous fluid (a liquid) at long times and an elastic solid
at short times; thus the viscoelasticity of the material is seen to be a time
dependent phenomenon. All materials are viscoelastic to some degree,
but many biological materials have very carefully tailored mechanical
behaviour that simultaneously exhibit finely tuned viscosities and elasti-
cities over physiologically important time windows.

In terms of a fundamental understanding of condensed matter, the
field of rheology introduces the key concept of irreversible dissipative
behaviour. Dissipative behaviour needs to be included in the develop-
ment of realistic statistical models of biological processes. Thus experi-
mental rheology allows a quantitative method of testing models from
theories of irreversible thermodynamics.

The mechanisms by which biological materials store and dissipate
energy are of prime importance in many biological functions, e.g. shock
absorbers formed from cartilage (Section 15.1), the contraction of
striated muscle (Section 14.1), the resilience of skin to impacts and
how bloods cells are pumped through arteries (Figure 12.1). Rheological

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



measurements are thus of key importance in the determination of the
behaviour of biomaterials in such bioengineering problems.
The rheological behaviour of biological materials can be exceedingly

complicated. However, as a first step, two dimensionless numbers are
introduced to qualitatively understand the flow behaviour: the Peclet
number and the Deborah number.

Figure 12.1 Examples of biological materials in which the viscoelasticity is vital to
their function
((a) blood pumped through veins (microrheology, thixotropy etc), (b) the action of
striated muscle (active stresses) and (c) the complex viscoelastic composite that is skin
(the viscoelasticity of mixtures).)
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The Peclet number determines when the stress applied to a material
substantially deforms the microstructure. For example, consider a
colloidal solution that consists of spherical particles (radius, a). The
Stoke’s–Einstein relationship (equation (5.11)) gives an expression for
the diffusion coefficient (D) of the constituent particles as:

D ¼ kT

6pha
ð12:1Þ

where h is the viscosity of the solvent and kT is the thermal energy. From
equation (5.39), the relaxation time associated with the diffusive motion
(ta) of the particles (the time for the colloids to diffuse their own radius) is
then:

ta ¼
a2

D
¼ 6pha3

kT
ð12:2Þ

These spherical particles experience the applied stress (s) and the char-
acteristic time for shear flow (ts) is the reciprocal of the shear rate
(ts ¼ _g�1). The Peclet number (Pe) is simply the ratio of the time for
diffusive rearrangement (ta) to the time associated with the rate of shear
flow (ts):

Pe ¼ ta
ts
¼ 6pha3 _g

kT
< 1 ð12:3Þ

where the inequality follows from the requirement that the microstruc-
ture is undisturbed.

For a predominantly viscous liquid the stress is directly proportional to
the shear rate (Newton’s law of viscosity):

s ¼ h _g ð12:4Þ

Therefore, the expression for the Peclet number (equation (12.3)) for a
colloidal solution can be reexpressed as:

Pe ¼ 6pa3s

kT
< 1 ð12:5Þ

where kT=6pa3 is the thermal stress and s is the mechanical or rheolo-
gical stress. The inequality follows from the requirement that the
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convective motion due to the applied stress must be less than that due to
Brownian motion or the microstructure will be significantly disturbed.
A further condition in order for an experiment to measure the linear

viscoelasticity of a sample is that the structural relaxation by diffusion
must occur on a time scale (t) comparable to the measurement time (t).
The Deborah number must be less than one (De < 1) for linear experi-
ments and by definition:

De ¼ t

t
ð12:6Þ

WhenDe � 1 the material is solid-like; when De is of the order of one or
below the material is liquid-like. Both the conditions on the Peclet
number and the Deborah number need to be satisfied in order to observe
linear viscoelasticity experimentally.
Rheometers can normally function in both oscillatory and unidirec-

tional shear modes. Steady state shear experiments typically measure
non-linear rheology, whereas oscillatory measurements are sensitive to
the linear viscoelasticity in the limit of small amplitude oscillations.

12.1 STORAGE AND LOSS MODULI

A fundamental aim of models developed for the rheology of a material is
to relate the applied force (stress) to the resultant deformation (strain);
this is provided by a constitutive equation. A simple general constitutive
equation for a viscoelastic material will first be constructed to illustrate
the key concepts involved.
For an elastic Hookean solid the stress (s) is proportional to the strain

(g) with an elastic constant (m):

s ¼ mg ð12:6Þ

This expression can then be extended into three dimensions using ten-
sorial notation for an isotropic (with a single elastic constant, m) material
as:

sxy ¼ mgxy ð12:7Þ

For a viscoelastic solid the mathematical expression that relates the stress
to the strain is more complicated, with the stress slowly reducing to zero
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with time as the material relaxes. The solid will be modelled in one
dimension for simplicity and it is assumed that the viscoelastic response
of the system is additive in time. The stress can then be expressed as an
integral over the relaxation modulus:

s ¼
ðt

�1

Gðt � t0Þ dg

dt0

� �
dt0 ð12:8Þ

where Gðt � t0Þ is the relaxation modulus (the stress per unit applied
strain) and dg=dt0 is the shear rate.

Now consider the system subject to an oscillatory strain (e.g. gðtÞ due
to mechanical vibration of the sample) of the form:

gðtÞ ¼ g0 sinvt ð12:9Þ

where g0 is the amplitude of displacement, t is the time and v is the
frequency of the oscillation. The corresponding strain rate is simply the
differential with respect to time of equation (12.9) and is therefore:

dg

dt
¼ vg0 cosvt ð12:10Þ

Through substitution of this expression for the strain rate in equation
(12.8) it can be shown that an alternative functional form for the stress as
a function of time (t) is:

sðtÞ ¼ G0ðvÞgðtÞ þG00ðvÞ
v

dgðtÞ
dt

ð12:11Þ

where G0ðvÞ is a frequency dependent shear modulus, a measure of the
elastic energy stored in the network (the elastic storage modulus), andG00

is the component of the shear modulus that corresponds to the energy
dissipated in the material (the dissipative or loss modulus).G00ðvÞ=v can
be defined as the frequency dependent dynamic viscosity. Newton’s law
of viscosity relates the shear stress (s) to the rate of shear ( _g) and is:

s ¼ h
dg

dt
ð12:12Þ

Therefore, it can be seen that the conventional viscosity of the material
is given by the limit of the dynamic viscosity (h ¼ G00=v) as the
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frequency tends to zero (v ! 0) for a material with no elasticity
(G0 ¼ 0).
As an example of the response of a viscoelastic material to an oscilla-

tory strain the storage modulus of some polymer solutions is shown as a
function of frequency in Figure 12.2. Obviously the modulus of a
viscoelastic polymer solution is expected to increase with the polymer
concentration, since there are more large structure forming molecules
that resist the shear. However, the expectation for the frequency depen-
dence of the storage modulus needs much more careful thought and it
will be considered in detail in Section 12.3.
A useful function that characterises the linear viscoelasticity of a

material is the ratio of the elastic modulus to the dissipative modulus;
it is defined to be equal to the tangent of the phase angle (d):

tan d ¼ G0

G00 ð12:13Þ

It is then found that the resultant stress on a linear viscoelastic material
for an applied sinuisoidal strain (equation (12.9)) is also sinuisoidal, but
has a phase lag (d):

s ¼ s0 sinðvt þ dÞ ð12:14Þ

This phase lag helps quantify the linear viscoelasticity of the material.
Evidently a material that is predominantly elastic will have a large value
for tand from equation (12.13) (e.g. elastin) whereas a predominantly
fluid material (e.g. blood plasma) will have a very low value.
To begin to understand the time response of biological materials

simple mechanical models can be useful. The simplest models are those

LogG’

logω

Concentrated

Semi-dilute

Dilute

Figure 12.2 Schematic diagram of the elastic shear modulus (G0) as a function of
frequency (v) for solutions of flexible polymers. The frequency dependenceof the three
dominant regimes of polymer concentration is illustrated
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due to Kelvin andMaxwell, which are constructed from a dashpot and a
spring in parallel and series respectively (Figure 12.3). The solution of
these models provides some simple constitutive equations that can then
be used to model the viscoelastic response of real biological materials.
Ideally the connection between the viscoelasticity and dynamics of the
constituent biological molecules is required (what is the molecular origin
of the spring and dashpot?), but simple constitutive equations are a
useful first step towards this goal.

For an elastic spring (an ideal elastic solid) the shear modulus (G) is
given by:

s ¼ Gg ð12:15Þ

and the stress is proportional to the strain. In contrast, for a viscous
dashpot (an ideal viscous fluid), a totally dissipative structure, the stress
is proportional to the rate of shear as per Newton’s law, equation
(12.12):

s ¼ h _g ð12:16Þ

where h is the viscosity.
For the Kelvin model (a dashpot and an elastic spring in parallel,

Figure 12.3(a)) the stresses in both elements can be added, since they
resist the imposed stress in concert:

s ¼ Gg þ h _g ð12:17Þ

For the Maxwell model (a dashpot and an elastic spring in series,
Figure 12.3(b)) the strain rates in both elements add linearly, since the

Spring

Spring 
Dashpot (a)

(b)

(c)

Figure 12.3 Standard mechanical constitutive equations can be derived for (a) the
Maxwell model, (b) the Kelvin model and (c) the standard linear solid

STORAGE AND LOSS MODULI 273



total strain is just the sum of that in each component. Equation (12.15)
can be differentiated and the result added to equation (12.16) to give:

_g ¼ _s

G
þ s

h
ð12:18Þ

The decay of stress with time after a rapid step increase in strain can be
calculated in theMaxwell model from a solution to equation (12.18) and
is given by:

sðtÞ ¼ s0e
�t=tm ð12:19Þ

where the time constant is given by tm ¼ h=G and s0 is the initial stress.
The time dependent relaxation modulus is given by GðtÞ ¼ sðtÞ=g and a
simple expression for it can then be calculated for a Maxwell material:

GðtÞ ¼ s0

g
e�t=tm ð12:20Þ

Similarly, the decay of strain (g) with time after a constant stress (s0) has
been applied can be found using the Kelvin model through the solution of
equation (12.17). It is:

g ¼ s0

G
½1� e�Gt=h� ð12:21Þ

More sophisticated mechanical models can be created that capture both
the stress and strain relaxation simultaneously such as the standard
linear solid (Figure 12.3(c)). However, these models are still very much
the domain of bioengineering, a molecular biophysicist hopes to make
the connection between the viscoelasticity and the molecular structure
to develop a detailed reductionist understanding of the phenomena
(Section 12.3).

12.2 RHEOLOGICAL FUNCTIONS

Experiments that study linear viscoelasticity are a form of mechanical
spectroscopy. The sample is struck with a mechanical perturbation
(either a stress or a strain) and its response is measured as a function
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of time. A series of equivalent rheological measures can be used to
quantify the experiments (Figure 12.4); these include the complex com-
pliance (J� ¼ J0 þ iJ00), complex modulus (G� ¼ G0 þ iG00), creep func-
tion (JðtÞ), relaxation function (GðtÞ), retardation spectrum (L) and
relaxation spectrum (H). This range of measures is convenient for a
number of reasons. Often an experimentalist needs to impose a low
stress or strain to obtain a linear response, and this is facilitated with
the measurement of a particular rheological function. The data can then
be mathematically translated to a different function for comparison with
an actual process at a larger stress or strain. The use of linear transfor-
mations can also allow the prediction of viscoelastic behaviour over a
wide range of time scales, e.g. outside the experimental time window for
a single rheological function.

A flavour of some of the mathematical inter-relationships between
the rheological functions is shown in equations (12.22–12.25). All of
these transformations are linear and well determined. The data can be

Complex 
Compliance 

Complex
Modulus

Creep 
Function 

Relaxation 
Function 

Retardation 
Spectrum 

Relaxation 
Spectrum 

J(t) G(t) 

 H L

J* = J
, 
+ iJ

,, G* = G
, 
+ iG

,,

Figure 12.4 Interrelationship between linear rheological measures
(complex compliance (J�), complex modulus (G�), creep function ðJðtÞÞ, relaxation
function (GðtÞ), retardation spectrum (L) and the relaxation spectrum (H)
[Reprinted with permission from J.W. Goodwin and R.W. Hughes, Rheology for
Chemists, Copyright (2000) Royal Society of Chemistry])
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transformed back and forth between these functions with no loss of
information:

GðtÞ ¼
ð1

�1

He�t=td ln t ¼ 2

p

ð1

�1

G00ðvÞ
v

cosvtdv ð12:22Þ

GðtÞ ¼ 2

p

ð1

�1

G0ðvÞ
v

sinvtdv G0ðvÞ ¼ J0ðvÞ
J0ðvÞ2 þ J00ðvÞ2

ð12:23Þ

G00ðvÞ ¼ J00ðvÞ
J0ðvÞ2 þ J00ðvÞ2

J0ðvÞ ¼ v

ð1

0

JðtÞ sinvtdt ð12:24Þ

J00ðvÞ ¼ �v

ð1

0

JðtÞ cosvtdt JðtÞ ¼
ð1

�1

L½1� e�t=t�d ln t ð12:25Þ

These numerical transformations are very standard and a number of
software packages are available that provide robustly implemented algo-
rithms for their calculation.

12.3 EXAMPLES FROM BIOLOGY

12.3.1 Neutral Polymer Solutions

Many polymeric solutions exist in biological systems. Even solid poly-
mers such as collagen and spider silk pass through a concentrated
lyotropic phase during their synthesis. The dynamics of flexible neutral
polymers is much simpler than the scenario with charged polymers
(polyelectrolytes), and this is the initial focus of the discussion. There
are three basic concentration regimes that affect the dynamics of neutral
flexible polymeric molecules: dilute (the chains do not overlap), semi-
dilute (the chains form an overlapping mesh) and concentrated (the
thermal blob size is equal to the correlation length and the chains are
Gaussian on all length scales). The range of dynamic behaviour exhibited
by a neutral flexible polymer chain as a function of the number of
monomers in a chain (N) and the concentration of monomers (c) is
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shown in Figure 12.5. In the dilute regime polymer solutions are pre-
dominantly viscous. Above the overlap concentration (c�) the chain
dynamics are strongly coupled with an interplay of Zimm and Rouse
modes due to screening of the hydrodynamics of one chain by another.
The elastic component of the viscoelasticity becomes important at lower
and lower frequencies as the polymer concentration is increased and its
absolute value increases. Polymers can reptate above a critical polymer
length and monomer concentration (Section 8.5), which has a dramatic
effect on their viscoelasticity; they demonstrate entangled rheology. The
concentration at which the dynamic transition to reptation occurs is
called the entanglement concentration (ce).

The overlap concentration (c�) is defined for the transition between the
dilute and semi-dilute regimes (Figure 12.5). This concentration is given
by:

c� ¼ 1

4pR3
g=3

ð12:26Þ

where Rg is the radius of gyration of a chain and c� has units of the
number of chains per unit volume. In the case of rigid molecules the
radius of gyration is equal to the long axis of the molecular rod
(the contour length, L).
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unentangled
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Concentrated 
entangled 
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Semi-dilute 

Concentrated

unentangled

Figure 12.5 The phase diagram for the dynamics of flexible polymer solutions
(The number of monomers in the polymer chains (N) is shown versus the polymer
concentration (c).)
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The Rouse and Zimmmodels for polymer dynamics were encountered
previously (Section 8.5) and can be used to describe the viscoelasticity of
flexible polymer solutions (Figures 12.6 and 12.7). At low frequencies
both models predict power laws of one and two for the frequency (v)
dependence of G0 and G00 respectively, equivalent to a Maxwell model.
At high frequencies a v

2
3 dependence of the shear moduli on frequency is

observed for the Zimm model (G0 � G00=1:73), whereas there is a v
1
2

dependence for Rouse modes (G0 � G00). A detailed analysis of the linear
viscoelastic spectrum of flexible polymers that uses the whole spectrum
of dynamic modes can become quite involved, so only a few key results
are quoted here. The relaxation modulus ðGðtÞÞ of semi-dilute polymer
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Figure 12.6 The complex shear moduli (G0;G00) for polymer chains that obey the
Zimm model for their dynamics (dilute polymer solutions and semi-dilute chains at
length scales below the mesh size). Shear moduli follow G00 � v1, G00 � v2 at low

frequencies (identical to the prediction of a Maxwell model) andG0 � G00=1:73 � v
2
3

at high frequencies
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Figure 12.7 The complex shear modulus for polymer chains that obey the Rouse
model for their dynamics (concentrated polymer solutions and semi-dilute solutions
at lengths above the mesh size). The shear moduli follow G00 � v1, G0 � v2 at low
frequencies (identical to the prediction of aMaxwellmodel) andG0 � G00 � v

1
2 at high

frequencies
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solutions of relatively short chains can be calculated with the Rouse
model. For long chains the reptation concept is also required. Stresses in
the Rouse model are determined by the orientation of the chains under
the influence of an external force. The steady state shear viscosity (h) and
steady state compliance ðJðtÞÞ of Rouse macromolecules are proportional
to the number of links (N) in the chain. Solutions of long polymer chains
exhibit unusual viscoelastic properties due to their reptative motion. The
reptation model presented in Section 8.5 provides a calculation of the
viscosity (h) of polymeric solutions and the viscosity is found to be a
strong function of the degree of polymerisation (h � N3). However,
experiments indicate that the viscosity follows a 3.4 power law depen-
dence on the degree of polymerisation ðh � N3:4) in real polymeric
solutions (Figure 12.8). This deviation from the prediction of the repta-
tion model is thought to be associated with fluctuations of the contour
length of the tubes and the tube renewal process. The simple picture of a
stationary tube of constraints provided in Section 8.5 thus needs to be
modified. Reptative dynamics in polymeric solutions can be induced by a
range of factors: an increase in the degree of polymerisation of the chains
(the viscosity varies from a N1 to N3:4 dependence as the material starts
to reptate), an increase in the persistence length of the chains, the
addition of bulky side groups to the polymeric molecules and an increase
in the polymer concentration (Figure 12.8).

When the persistence length of a polymer chain is significant compared
to its contour length, semi-flexible models are required to describe the
contributions of the internal modes of the polymer chain to the viscoe-
lasticity. There is a wide range of biological materials that consist of
networks of such rods and ropes. These materials conform to the
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Figure 12.8 The dependence of the viscosity of a neutral flexible polymer solution
on (a) the degree of polymerisation of the chains (N) and (b) the monomer
concentration (c)
[Ref.: R. Colby and M. Rubinstein, Macromolecules, 1990, 23, 2753–2757]
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predictions of relatively new theoretical models for semi-flexible chain
dynamics, e.g. intermediate filaments, actin, peptide fibrils and micro-
tubule solutions. Two experimental effects that are well predicted by the
semi-flexible models are the high frequency viscoelasticity and the poly-
mer concentration dependence of the shear modulus. A schematic dia-
gram of the shear storage moduli of semi-dilute solutions of semi-flexible
actin filaments determined using high frequency microrheology techni-
ques such as diffusing wave spectroscopy, are shown in Figure 12.9. At
very high frequencies the elastic modulus for semi-flexible chains differs
from the Rousse and Zimm models. The shear modulus follows a power
law dependence on the frequency with an exponent of 0.75 (v

3
4), which is

thought to be characteristic of the transverse fluctuations of the semi-
flexible chains.

12.3.2 Polyelectrolytes

The viscoelasticity of polyelectrolytes is a tricky field to approach both
experimentally and theoretically, and is still under development. Exam-
ples of biological polyelectrolytes include nucleic acids, seaweed
extracts, hyaluronic acid, proteoglycans and muscle proteins. Hyaluro-
nic acid is contained in articulated joints and the rheology of this poly-
electrolyte in synovial fluid is important for the mobility of the joint.
Proteoglycans (comb polyelectrolytes) are used in a wide range of roles,
as shock absorbers, for the reduction of friction and as barrier materials,
e.g. protecting the stomach from self-digestion and minimising the adhe-
sion of eye balls to eyelids. The rheology of DNA has a range of
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Figure 12.9 The elastic shear modulus (G0) of long semi-flexible polymer networks
has a number of unique experimental signatures. (a) The high frequency viscoelasticity

followsG0 � v
3
4 and (b) themodulus as a function of polymer concentration follows a

G0 � c1:4 scaling above the overlap concentration [Ref.: D. Morse, Macromolecules,
1998, 31, 7044–7067]
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biotechnological applications, e.g. to provide a detailed understanding of
the results of electrophoresis experiments. Due to the relatively large size
of DNA molecules they can be examined on a single molecule basis and
this allows a range of single biomolecular polyelectrolyte rheology
experiments to be performed.

Polyelectrolytes can be subdivided into flexible, semi-flexible and rigid
classifications that depend on the persistence length of the backbone, in a
similar manner to neutral polymers. However, the inclusion of charges
along the backbone of a polyelectrolyte tends to increase the chains’
persistence length when compared with their neutral counterparts
(Section 9.9). Semi-flexible and rigid polyelectrolyte chains can be mod-
elled by direct adaptation of the neutral results. Indeed, the predictions
are identical to those of neutral polymers in the case of high salt concen-
trations where most of the charge interactions are screened. To predict the
viscoelasticity of flexible polyelectrolytes current models adjust the results
for neutral flexible polymers through the inclusion of the statistics of
charged blob chain conformations. Examples of the predictions of scaling
models are shown in Figure 12.10 for the viscosity on the concentration
and degree of polymerisation. The entangled regime is highlighted by a
change of the power law dependence on the concentration of the viscosity

from 1
2 to

3
2 (c

1
2 to c

3
2) (Figure 12.10) and the unentangled semi-dilute regime

(with a c
1
2 of the viscosity) is anomalously large. This behaviour is clearly

observed experimentally for flexible polyelectrolytes. Polyelectrolytes also
shear thin at very low shear rates which makes the measurement of
intrinsic viscosities more challenging with these materials. This shear
thinning property is useful practically in articulated joints, since the
resistive forces decrease as the shear rate is increased (Figure 12.11).
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Figure 12.10 The scaling dependence of the viscosity of a solution of flexible poly-
electrolytes on (a) the polymer concentration and (b) degree of polymerisation (N)
[Ref.: A.V. Dobrynin, R.H. Colby and M. Rubinstein, Macromolecules, 1995, 28,
1859–1871]
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A complete understanding of the linear viscoelasticity of flexible
polyelectrolytes is still being developed. An example of an entangled
flexible polyelectrolyte solution is shown in Figure 12.12, synovial fluids
from umbilical cords and articulated joints.
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Figure 12.11 Non-linear shear thinning rheology of synovial fluids (flexible poly-
electrolytes) from the ankle and knee joints as a function of shear rate
[Reprinted with permission fromR.G. King, Rheol. Acta, 5, 41–44, Copyright (1966)
Springer Science and Business Media]

G’’

G’

Shear 
Moduli (Pa) 

Frequency 
(rads/s–1)

1

10

100

0.1 
0.1 1 10

Human 
umbilical
cord

Human 
synovial fluid

Figure 12.12 The shearmoduli of fluids from the human umbilical cord and synovial
fluid (both materials contain large quantities of hyaluronic acid, a flexible polyelec-
trolyte) as a function of frequency.G00 is indictaed by the continuous lines andG0 the
dashed lines
[Reprinted with permission from D.A. Gibbs, Biopolymers, 6, 777–791, Copyright
(1968) John Wiley& Sons, Inc.]
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12.3.3 Gels

A gel is a material in which the polymeric components are cross-linked
to form a network (Figure 12.13). The crucial difference between an
elastomer (Section 8.3) and a gel is that there is a large amount of solvent
associated with the components of a gel, swelling its microstructure and
altering the mobility of the chains. Gelled phases of matter are realised
by a range of biological molecules, e.g. many foods are gelled biopoly-
mers such as starches (custard and Turkish delight), pectins (jams) and
denatured collagen (table jelly).

Cross-links in biopolymers are separately categorised as physical (of a
weak nature, e.g. electrostatic or hydrogen bonds) or chemical (strong in
nature, e.g. covalent/ionic bonds). With physical gels the moduli become
low when the cross-links (e.g. helical, or egg box connections between
chains) are melted at high temperatures. Chemical gels in contrast cannot
be reformed, since permanent chemical cross-links exist between the
subunits (often disulfide links in collagenous systems). The heat treat-
ment of chemical gels at high temperatures results in a complete irrever-
sible breakdown of the chemical structure.

In many biopolymer networks the degree of cross-linking can be
switched on or off by varying the temperature, solvent quality, electro-
statics or number of specialised biomolecular cross-linkers. At the point
where the degree of cross-linking is sufficiently large for one complete
aggregate to span the sample volume (called the percolation or the gel

Polymer 
chains

Cross-link

Figure 12.13 Schematic diagramof a polymeric gel showing the chemical cross-links
(The solventmolecules that swell the network and help determine the chain conforma-
tions are not shown for simplicity.)
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point), the relaxation modulus ðGðtÞÞ is described by a simple power law
(the gel equation):

GðtÞ ¼ St�n ð12:27Þ

where S is the strength of the gel and t is the time. Using equations (12.22–
12.25) to transform between the different measures of linear viscoelasti-
city, the complex shear moduli ðG�Þ can be constructed from this simple
power law for the relaxation function (GðtÞ), and then compared with the
results of an oscillatory experiment. Above the percolation threshold and
at low frequencies where the internal modes cannot be observed, the shear
moduli of a gel has a weak frequency dependence (Figure 12.14). Char-
acteristic rubbery type behaviour occurs for gels with the elastic modulus
much higher than the dissipative modulus (G0 � G00). To a first approx-
imation the elastic modulus of flexible polymer gels is proportional to the
density of cross-links, in a similar manner to that seen with the behaviour
of elastomers (Section 8.3).
The model of sticky reptation has been developed to describe the

rheology of associating physical gels (Figure 12.15). The stickers that

G’

G’’

Shear 
modulus 

Frequency

Figure 12.14 Schematic diagram of the complex shear moduli of a gelled flexible
polymeric network at low frequencies;G0 > G00 and the frequency dependence is fairly
weak
(Note the similarity with Figure 12.9(a) for a semi-flexible network at low frequencies
forG0.)

Polymer 
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Figure 12.15 The entangled rheology of associatingphysical gels canbe describedusing
the theory of sticky reptation. An additional time scale is introduced into the chain
dynamics due to the sticker life time, that radically slows down the motion of the chains
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form the cross-links between the polymer chains introduce a second time
scale to the dynamics of the chain motion. Above the entanglement
concentration the chains move like centipedes through their reptation
tubes with stickers for legs. The viscosity therefore becomes a very strong
function of the polymer concentration (Figure 12.16) compared with
unassociating polymer solutions, due to the dramatic slowing down of
the chain motion with the introduction of more stickers. Other unusual
phenomena can also occur with sticky polymers such as shear thickening
(polymers normally shear thin), with the resistance of the network (the
shear modulus) increasing with increasing shear rate.

Many naturally occurring gels are formed from polyelectrolytes. The
osmotic pressure of the counterions associated with the polymer chains
in these materials has a series of dramatic consequences for the physical
properties of charged gels. The free counterions increase the swelling of
the gel by a large degree and modify the elastic moduli. The mechanical
properties of charged gels are an important consideration in a range of
biological problems, e.g. for the viscoelasticity of cartilage, the cornea
and striated muscle.

Many common biological polymers are semi-flexible and their cross-
linked networks have a range of unique properties related to the rigidity
of the chains (Figure 12.17). One interesting phenomena is that of strain
hardening, the elastic modulus increases as the samples are strained. The
semi-flexible networks of fibrin in blood clots have a virtually perfect
signature of elasticity in the linear shear moduli over a wide range of
frequencies (seven orders of magnitude, Figure 12.18). However, the
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Figure 12.16 The viscosity of an associating polymeric solution is a very strong
function of the polymer concentration at high concentrations, witha a large exponent.
The dynamic behaviour can be very rich. A simplified phase diagram is shown and the
sticker life timesmodify the dynamics in both the semi-dilute (Rouse, c� < c < ce) and
concentrated (Reptation, c > ce) regimes
[Ref.: M. Rubinstein and A.N. Semenov, Macromolecules, 1998, 31, 1386–1397]
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semi-flexibility of the fibrin chains is clearly observed in the strain hard-
ening phenomena at high strains (the shear modulus increase with
strain). Perfect flexible chain elastomeric gels (e.g. polyacrylamide) do
not show such behaviour (Figure 12.19).
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Figure12.17 Trends foundexperimentally in the linear viscoelasticity of cross-linked
actin, a well defined semi-flexible polymeric gel
((a) Elasticmodulus as a function of cross-linking density; (b)maximum strain resisted
by the gels as a function of cross-linking density; (c) elastic modulus as a function of
actin concentration (cross-linkingdensity¼ 0:13); (d)maximumstrain as a functionof
actin concentration at fixed cross-linking density (cross-linking density¼ 0:13)
[Reprinted with permission from M.L. Gardel, J.H. Shin, F.C. MacKintosh et al.,
Science, 304, 1301–1305, Copyright (2004) AAAS])
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Figure12.18 Linear viscoelasticity of the fibrin clots responsible for the clotting process
in blood. Semi-flexible fibres occur in the clots that contain a large number of cross-links
and demonstrate almost perfect elasticity over six orders of magnitude in frequency
[Reprinted with permission from W.W. Roberts, O. Kramer, R.W. Rosser et al.,
Biophy. Chemist, 152–160, Copyright (1974) Elsevier]
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12.3.4 Colloids

Colloidal science encompasses the large field of research that relates to
particulate dispersions. One of the simplest examples of a colloidal
system is a monodisperse suspension of identical particles; important
biological examples of this scenario are provided by globular proteins
and icosohedral viruses in solution.

For dilute dispersions of spheres the flow field is shown in Figure 12.20.
Einstein solved the Navier–Stokes equations at low Reynold’s number
and found a surprisingly simple expression that relates to the dispersion’s
viscosity (h) to the volume fraction (w) of colloids:

h ¼ h0 1þ 5w

2
þOðw2Þ

� �
ð12:28Þ
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Figure 12.19 Strainhardeningofsemi-flexiblenetworks is shownbythe increase in the
storage modulus with strain for a range of semi-flexible polymers
(The polyacrlamide gel is shown for comparison as it is a synthetic flexible polymer
network that does not strain harden [Reprinted with permission from C. Storm, J.J.
Pastore, F.C. MacKintosh et al., Nature, 435, 191–194, Copyright (2005) Macmillan
Publishing Ltd])
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Figure 12.20 The relative viscosity (viscosity/viscosity of solvent) of colloidal sus-
pensions as a function of (a) shear rate and (b) concentration of the colloids
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where Oðw2Þ is a term of order w
2 and h0 is the viscosity of the

solvent. This Einstein equation can only model the behaviour of fairly
dilute solutions of colloids (Figure 12.21) at low shear rates. At
higher shear rates dilute colloidal solutions typically shear thin and
the effects of a number of competing hydrodynamic effects need to be
calculated.
The phase behaviour of a colloidal dispersion has a strong effect on the

viscosity of a solution. Increasing the volume fraction of colloids above
2–3% also can cause a break down in equation (12.28) due to the change
in the colloidal microstructure and a wide range of gel, fluid, or jammed
phases are possible. Novel phenomena occur when high density colloidal
solutions are sheared. The shear thinning phenomena that occur in
suspensions of blood cells is illustrated in Figure 12.22. At low shear
rates the blood cells aggregate into ‘rouleaux’ structures. Further
increases in the shear rate cause a break up of these structures and a
decrease in the viscosity. At even higher shear rates, there is a further
reduction in viscosity associated with the formation of strings of blood
cells, as these regular structures slide more easily past one another in the
shear field.

12.3.5 Liquid Crystalline Polymers

Many biological polymers are liquid crystalline, e.g. DNA, cellulose,
carrageenan and a helical peptides. These liquid crystalline polymers
strongly shear thin in ways that depend on their defect structures
(Section 4.3). It is thus important to measure the orientation of the
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Figure 12.21 Steady flow field in a fluid around a spherical colloidal particle. The
shear field has a vorticity and the colloidal particle rotates with a constant angular
velocity
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nematic director (with additional chiral and smectic order parameters if
necessary) with respect to the direction of shear to understand the
viscoelastic properties of these materials. An example of the non-linear
flow properties of nematic liquid crystalline polymers is shown in
Figure 12.23. Different degrees of shear thinning occur with shear rate.
Often three power law behaviours are observed experimentally, a type I
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Figure 12.22 The non-linear rheology of blood cells and colloidal gels can demon-
strate shear thinning (and the related phenomenon of thixotropy due to transients in
the structural rearrangement of the colloids)
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Figure 12.23 The flowbehaviour of liquid crystalline polymers as a function of shear
rate often has three characteristic regimes; Type I shear thinning, the Type II New-
tonian plateau and Type III shear thinning (data from a cellulose derivative)
[Ref.: S. Onogi and T. Asada, in Rheology, Proceedings of the Eighth International
Congress on Rheology, Naples, Italy, 1980, Plenum]
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shear thinning h � _g�
1
2 regime, followed by a type II Newtonian plateau

and, finally, a further type III shear thinning regime.

12.3.6 Glassy Materials

Many amorphous biological materials exhibit glassy phenomena (e.g.
resilin at 10 Hz). Ergodicity (the exploration of all the molecules’ energy
states) is lost in these materials. Glasses result from, in the simplest
picture, undercooled liquids in which the viscosity increases so rapidly
that it prevents the formation of a crystalline phase. Everyday examples
of biological glasses are boiled sweet (sugars) and a wide range of
biopolymers in lowly plasticized states, e.g. starches in dehydrated foods.
Glasses are further categorised as strong and weak. In strong glasses

the short range order tends to persist above the glass transition, whereas
fragile glasses have no such memory. The viscosity of glasses has a
characteristic dependence on the temperature, with the viscosity chan-
ging by up to sixteen orders of magnitude during the transition
(Figure 12.24).
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Figure 12.24 The viscoelasticity of glasses (fragile/strong) can be characterised by
plots of the viscosity as a function of the reciprocal of the temperature (rescaled by the
glass transition temperature, Tg)
[Ref.: J. Angell, J. Non-Cryst. Sol, 1988, 102, 205]
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12.3.7 Microfluidics in Channels

There is a large current research effort in the area of microfluidics and
microrheology. These studies consider the rheology of viscoelastic fluids
as a function of length scale. Examples include how blood cells squeeze
through the micron sized capillaries in arteries (the effective viscosity is
much smaller than expected from a simple Pouseille flow calculation,
Figure 12.1(a)), the interaction between mucins and cilia in the lungs and
the motion of DNA on templated surfaces.

FURTHER READING

R.G.Larson, The Structure and Rheology of Complex Fluids, Oxford
University Press, 1999. Advanced level text, an extensive range of
materials is covered.

J.W.Goodwin and R.W.Hughes, Rheology for Chemists, Royal Society
of Chemisty, 2000. A very useful simple introduction to the key
concepts of rheology.

TUTORIAL QUESTIONS

12.1) In a running synovial joint the cartilage surfaces move relative
to one another at a velocity of 1 cm s�1. The distance between
the surfaces in the cartilage can be on the order of 10 mm.What
is the shear rate experienced by the synovial fluid? What is
the approximate Peclet number of a hyaluronic acid chain in
the fluid if its radius of gyration is 1 mm and the viscosity of the
surrounding fluid is 0.001 Pa.s?

12.2) The longest time scale important in the viscoelasticity of a
boiled sweet (glassy sugar molecules) can be described using a
Maxwell model. What is the time scale for stress relaxation if
the viscosity is 1MPa.s and the elastic modulus is 10�3 Pa?

12.3) It is assumed that there is no interaction between blood parti-
cles in a suspension. Estimate the viscosity of a dilute blood
suspension. The viscosity of the surrounding buffer is
10�3 Pa.s, and the volume fraction of the blood cells is 2%.
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13
Experimental Techniques

A vast range of experimental techniques is used to analyse the structure
and dynamics of biomolecules. A subset of methods that emphasise the
physical behaviour of biological molecules is examined here and refer-
ence should be made to more specialised texts for detailed descriptions of
analytical biochemical methods. The discussion of nuclear magnetic
resonance, terahertz, ultraviolet, infra-red, mass and Raman spectro-
scopies is avoided, since they require too much space to be covered
satisfactorily. Only the mechanical form of spectroscopy (rheology)–
where the sample is hit with a mechanical perturbation and its response
in time is observed–is examined in detail here.

Historically, the primary methods for structural determination of
biological molecules have been high resolution probes such as scattering
(neutrons, X-ray, light, elastic/inelastic) and microscopy (light and elec-
tron). There are many good accounts of standard scattering techniques in
the biophysical literature and microscopy is well described in under-
graduate optics textbooks. It is hard to beat the discussion in Cantor and
Schimmel for detail on the process of scattering from biomolecules, so
instead, after a brief introduction, some modern developments in the
field of scattering, such as quasi-elastic scattering, microfocus scattering
and coherent diffraction microscopy, are covered. In addition, methods
of single molecule force measurement, osmometry, sedimentation, tribo-
logy, solid mechanics and electrophoresis are explained to give a modern
emphasis to the subject.

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



13.1 STATIC SCATTERING TECHNIQUES

The field of scattering encompasses a vast range of fundamental physical
processes and techniques. The basic geometry of a scattering experiment
is shown in Figure 13.1. Incident radiation or particles interact with the
sample and are deflected through an angle (u). The momentum transfer
(q) of the scattering process is simply related to the reciprocal of the
length scale (d) probed:

q ¼ 2p

d
ð13:1Þ

For a particular form of radiation the momentum transfer for an elastic
(energy is conserved) scattering process can be calculated from:

q ¼ 4p

l
sin

u

2

� �
ð13:2Þ

where l is the wavelength. The use of momentum transfers rather than
scattering angles allows the results of experiments with a range of
different forms of radiation (X-rays, light, neutrons etc.) to be compared
easily. The varieties of radiation typically used in biological scattering
experiments are shown in Table 13.1, which includes the wavelength of
the radiation and the length scales in the sample that can be typically

Figure 13.1 (a) The elastic scattering processes involved with a wide range of radia-
tion (X-rays, light, neutrons and electrons) can all be understood using the same
schematic diagram. (b) The momentum transfer can be calculated from the wavelength
and scattering angle using a simple geometrical construction
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probed. Specialised detectors and optics are required for each different
form of radiation.

There are a number of novel techniques that utilise the coherence of
electromagnetic radiation and in particular that of X-rays. Two promis-
ing new coherent methods are X-ray diffraction imaging and quasi-
elastic x-ray scattering. Images of completely aperiodic magnese stained
bacteria have now been reconstructed using coherent X-ray diffraction
with 100 nm resolution and quasi-elastic X-ray scattering offers dynamic
measurements from soft matter systems with unprecedented sensitivity
to length scale.

A further modern advance with X-ray and neutron scattering is the
introduction of effective focusing techniques. Focusing of X-rays is
routinely made to submicron levels at third generation synchrotron
sources and micron sized beams can be made with laboratory based
microfocus sources. Such beams can be rastered across heterogeneous
biological materials and the molecular structure probed as a function of
position on the sample (Figure 13.2). New focusing devices have now
been made to create micron sized beams that include capillaries, fresnel
lens, mirrors and even simple compound lens (e.g. lenticular holes in a
block of aluminium). Such scanning X-ray microdiffraction techniques

∆P b

Corresponding Diffraction
Patterns on the Sample

Fibrous 
sample, e.g. 
a silk fibre 

Position of Beam
on the Sample

Figure 13.2 Scanning X-ray microdiffraction across a semi-crystalline anisotropic
material
(b is the diameter of the X-ray beam. Two dimensional diffraction images are recorded
at micron spaced steps (DP) across the sample and provide detailed information on the
molecular structure of the fibres (see Figure 4.23).)
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are helping to revolutionise the field of fibrous carbohydrates and
proteins.

The contrast that is measured during a scattering process can be varied
in both neutron and X-ray scattering experiments. With neutrons isotopic
substitution can be used to label biomolecules through the replacement of
hydrogen atoms with chemically equivalent deuterium atoms. This label-
ling scheme is particularly attractive when electronically light atoms need
to be located in a crystalline structure, e.g. the elucidation of the structure
of hydrogen bonds. With X-rays the wavelength of the radiation can be
matched to the absorption edge of a heavy atom that exists in a biological
structure, and the contrast can be varied to elucidate both the crystalline
and solution state structures with much improved resolution, e.g. through
the method of anomalous small-angle X-ray diffraction.

13.2 DYNAMIC SCATTERING TECHNIQUES

Once the structure of a biological sample is well understood, quantifying
the dynamics of the components of the material poses some important
questions. A challenge is to examine the dynamics of the material with-
out perturbing the sample morphology. With soft biological materials
the dynamics can be studied quantitatively with scattering methods by
observing the time decay of stimulated emission (fluorescence techni-
ques) or by measuring the change in energy of the scattered particles
(quasi elastically or inelastically scattered).

Fluorescence intensity correlation spectroscopy is a modern example
of a scattering technique that has been adapted to single molecule
experiments. Fluorescent probes are added to the biological molecules
whose dynamics are of interest (there is a vast range of possible ways to
do this and large commercial catalogues exist of the available fluorescent
probe molecules) and made to fluoresce using a tightly focused laser
beam under an optical microscope (Figure 13.3). The intensity of the
fluorescently emitted radiation (If ðtÞ) is proportional to the concentra-
tion of fluorescent molecules in the scattering volume (cðr; tÞ), the fluor-
escent yield (Q) and the intensity of the incident laser beam (I):

If ðtÞ ¼ Qe
ð
IðrÞcðr; tÞd3r ð13:3Þ

where e is the extinction coefficient of the molecular species and the
integral over d3r is over the complete scattering volume. The dynamic

DYNAMIC SCATTERING TECHNIQUES 297



information is contained in the fluctuations of the emitted fluorescent
intensity with time, which are directly related to the fluctuations of the
concentration of the fluorescent molecules (hdcðr; tÞdcðr0; 0Þi):

hdIf ðtÞdIf ð0Þi ¼ ðeQÞ2

ð ð
IðrÞIðr0Þhdcðr; tÞdcðr0; 0Þid3rd3r0 ð13:4Þ

where hi denotes a time average and d is a small fluctuation in a quantity.
For translational diffusion of the fluorescent probes the intensity auto-
correlation function has a simple exponential form. Thus, an exponential
can be fitted to the autocorrelated fluorescent signal from a fluorescently
tagged biomolecule, which gives the characteristic time constant (t) to
diffuse out of the scattering volume (e.g. a cube of side b), and hence the
diffusion coefficient (D) of the molecules (D ¼ 6b2t). Fluctuations in
the intensity of the fluorescent light emitted as particles move across the
irradiated volume can thus be related to the diffusion coefficients of
the fluorescent species. Unfortunately, the information that relates to
the momentum transfer (equation (13.2)) is lost in this inelastic scatter-
ing method and, for larger scattering volumes of biological materials,
data from quasi-elastic scattering are much more rich in information.
Fluorescence depolarisation experiments are a further powerful tool. A

pulsed laser excites fluorescent probes attached to biological molecules,
whose motion can be detected by the change in polarisation of the
reemitted photon. If the molecule reorientates a considerable amount

Correlator 

Fluorescently 
tagged
molecules 

Coherent 
radiation 

Fluorescent
incoherent 
radiation

Excitation 
volume 

Figure 13.3 Schematic diagram of a fluorescence intensity correlation spectroscopy
experiment (FICS)
(Incident coherent light excites fluorescence in a small volume of the sample. Fluctua-
tions in the emitted fluorescence are measured with a correlator and can be related to
the dynamics of biomolecules to which the fluorescent tags are attached.)
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over the picosecond time scale of fluorescent emission, the polarisation
state of the emitted photon is changed. The utility of fluorescence depolar-
isation stems from the fact that the technique can probe dynamics in the
ultra fast picosecond time regime due to the availability of intense ultra-fast
pulsed laser sources (Figure 13.4). Furthermore, the high yield of fluores-
cent reemission makes the experimental measurement of correlation func-
tions over ultra-fast time scales and with single molecules feasible.

Quasi-elastic scattering experiments cover a wide range of techniques
that monitor small energy changes in scattered radiation due to the
motion of a sample, i.e. a Doppler shift of the energy of the scattered
particle. Typically, it is the normalised intermediate scattering function
(Fðq; tÞ) that is measured in a quasi-elastic scattering experiment
(Figure 13.5). The intermediate scattering function is a useful general

1.0 

0.5 

0.0

50 100 150 200

Hydration 
Correlation 
Function 
(C(t)) 

Time Delay 
(ps) 

Figure 13.4 Ultra fast dynamics were probed using fluorescence depolarisation
pulsed laser experiments with the protein subtilisin Carlsberg
[Reprinted with permission from S.K. Pal, J. Peon, B. Bagchi and A.H. Zewail,
J. Phys.Chem. B, 106, 12376–12395, Copyright (2002) American Chemical Society]

Coherent 
radiation 

Correlator 
θ

Scattering
volume 

Cuvette 

Biomolecule 

Figure 13.5 Schematic arrangement of a dynamic light scattering experiment
(Coherent light is Doppler shifted by the motion of the biomolecules in the illuminated
scattering volume and this shift is subsequently detected using a correlator.)
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tool, which is amenable to accurate quantitative theoretical analysis. For
the scattering of coherent light (called equivalently quasi-elastic light
scattering, photon correlation spectroscopy or dynamic light scattering)
the quantity examined experimentally (g1ðtÞ, the field correlation
function) relates to the correlation function of the scattered electric field.
In terms of the scattered electric field (E) at time (t) the field correlation
function measured at a certain angle is defined as:

g1ðtÞ ¼
hE�ð0ÞEðtÞi

hIi ð13:5Þ

where h i is the ensemble averaged quantity over the array of scatterers, and
I is the intensity measured on the detector. The electric field strength (E)
scattered by the collection of diffusing particles in the sample is given by:

E ¼
XN
j¼1

Aje
iq:rjE0e

�iv0t ð13:6Þ

where E0 is the magnitude of the incident wave, Aj is the scattered wave
amplitude of the jth particle, rj is the position of the jth particle, q is the
momentum transfer, t is the time and v0 is the frequency of the incident
radiation. The sum from j ¼ 1; . . . ;N is over all the particles that scatter
radiation in the sample. The form of the electric field can be substituted
in equation (13.5) and the correlation function can therefore be written:

g1ðtÞ ¼ heiq:½rlðtÞ�rlð0Þ�ie�iv0t ð13:7Þ

Fick’s second law of diffusion (equation (5.19)) in three dimensions is:

@cðr; tÞ
@t

¼ Dr2cðr; tÞ ð13:8Þ

where cðr; tÞ is the concentration of molecules in the scattering volume
and D is the translational diffusion coefficient. Let PðO=r; tÞ be the
conditional probability that a particle can be found in volume element
d3r at time t. For low particle concentrations the conditional probability
PðO=r; tÞ also obeys the diffusion equation:

@PðOjr; tÞ
@t

¼ Dr2PðOjr; tÞ ð13:9Þ
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A Fourier transform can be taken of either side of (13.9) and allows the
equation to be solved:

ð1

0

eiq:r
@PðOjr; tÞ

@t
d3r ¼ D

ð1

0

eiq:rr2PðOjr; tÞd3r ð13:10Þ

A general property of Fourier transforms is that the Fourier transform of
a nth order differential is equal to ð�iqÞn times the Fourier transform of
the argument of the differential:

ð1

�1

eiqy
@n

@yn
PðyÞdy ¼ ð�iqÞn

ð1

�1

eiqyPðyÞdy ð13:11Þ

The intermediate scattering function (Fðq; tÞ) is equal to the Fourier
transform of the probability distribution (PðOjr; tÞ):

Fsðq; tÞ ¼
ð1

0

PðOjr; tÞeiq:rd3r ð13:12Þ

This definition and the Fourier transform identity (equation (13.11))
allows equation (13.10) to be simplified in terms of the intermediate
scattering function:

@Fsðq; tÞ
@t

¼ �Dq2Fsðq; tÞ ð13:13Þ

This is a simple variables separable differential equation which has the
solution:

Fsðq; tÞ ¼ Fsðq; 0Þe�Dq2t ð13:14Þ

where the initial condition is given by Fsðq; 0Þ ¼ 1. From equation (13.7)
the field correlation function can therefore be written as:

g1ðtÞ ¼ Fsðq; tÞe�iv0t ¼ e�Dq2te�iv0t ð13:15Þ

The intensity correlation function (g2ðtÞ) is measured by time correla-
tion of the signal on a photomultiplier tube due to the scattered
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radiation and is related to the electric field correlation function (g1ðtÞ)
by:

g2ðtÞ ¼ 1 þ jg1ðtÞj2 ð13:16Þ

By substitution of equation (13.15) in (13.16) it is seen that diffusional
process introduces a exp(�Dq2t) term in the intensity correlation func-
tion, g2ðtÞ. A typical correlation function for a fibrous protein that
experiences translational diffusion is shown in Figure 13.6.

A qualitative understanding of the form of a correlation function can
be achieved. At short times the particles have insufficient time to move
anywhere, they do not dephase the scattered light (equivalently the
scattered speckle pattern does not move), and the correlation is nearly
perfect g1ðtÞ � 1. At longer times the motion of the particles decorrelates
the phase of the scattered radiation and reduces the value of g1ðtÞ.
Eventually at very long times the correlation function reduces to zero
due to a complete random phasing of the scattered photons.
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Figure 13.6 Intermediate scattering (intensity correlation, g2ðq; tÞ) functions from a
quasi-elastic light scattering experiment on titin, a giant protein from skeletal muscle
(The dynamics slow down as the protein unfolds with increasing temperature (T) due
to the increase in protein length [Reprinted with permission from E. Di Cola, T.A.
Waigh, J. Trinick, et al., Biophysical Journal, 88, 4095–4106, Copyright (2005)
Biophysical Society])
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A wide range of other radiation can be used to probe dynamic pro-
cesses in mesoscopic biological materials with quasi-elastic scattering
experiments that includes X-rays (time scales 10�7�1000 s)) and neu-
trons (time scales 0:1�100 ns). X-ray quasi-elastic techniques are similar
in conception to dynamic light scattering, whereas neutron spin echo
measurements use the spin of scattered neutrons to clock the dynamics of
the scattering process.

13.3 OSMOTIC PRESSURE

The phenomena associated with osmotic pressure are important in a
series of biological processes: how cell metabolism is regulated (animal
cells walls are ruptured if the external osmotic pressure is too high or
low), how intermolecular forces are mediated by solvent molecules and
the molecular crowding of the intracellular environment. Consider an
idealised experiment with a semi-permeable membrane that separates
two polymer solutions (Figure 13.7). This apparatus is an example of a
membrane osmometer, a device for the measurement of osmotic pres-
sure. From standard thermodynamic theory the partial differential of the
Gibbs free energy (G ¼ F � TSþ PV) with respect to the pressure (P) is
equal to the volume (V) at constant temperature (T):

@G

@P

� �
T

¼ V ð13:17Þ

Figure13.7 A membrane osmometer can be used to measure the difference in osmotic
pressure between two solutions, a and b, which have Pa and Pb external applied
pressures respectively. The difference in fluid heights (the capillary rise h) provides
the osmotic pressure (p ¼ hrg), wherer is the fluid density andg is the acceleration due
to gravity
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The chemical potential (m, the Gibbs free energy per particle) with
respect to one of the components in the solution (m1) is:

@m1

@P

� �
T

¼ V1 ð13:18Þ

where V1 is the partial molar volume of the particles. Consider the
chemical potentials on either side of the membrane in sections a and b
(Figure 13.7). Compartment b only contains solvent molecules and the
chemical potential is that of the solvent (m0

1):

mb
1 ¼ m0

1 ð13:19Þ

In compartment a the chemical potential has two additional effects, that
due to the solute and that due to the reservoir used to measure the
pressure:

ma
1 ¼ m0

1 � ðsolute effectÞ þ ðpressure effectÞ ð13:20Þ

The effect of the solute on the chemical potential is given by a van der
Waals type expansion in the component concentration:

ma
1 ¼ m0

1 � RTV0
1

c

M
þ Bc3 þ ::

� �
þ

ðP0þp

P0

V1dP ð13:21Þ

where c is the concentration of the species too large to permeate the
membrane (the solute), M is the molecular weight of the solute and B is
the second virial coefficient of the solute. V0

1 ¼ V1 is the molecular
volume of solvent at one atmosphere pressure, which allows the last
term in equation (13.21) to be evaluated. In thermal equilibrium the
chemical potentials on each side of the membrane are equal (mb

1 ¼ ma
1):

m0
1 ¼ m0

1 � RTV0
1

c

M
þ Bcþ . . .

� �
þ V0

1p ð13:22Þ

This expression can be solved for the osmotic pressure (p) of the solu-
tion:

p ¼ RT
c

M
þ Bc2 þ . . .

� �
ð13:23Þ
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For a dilute solution the second virial coefficient is very small (B ¼ 0), so
to a good approximation:

p ¼ RTc

M
¼ nkT ð13:24Þ

The osmotic pressure of a solution of non-interacting particles is
directly proportional to the number of solute molecules (n ¼ c=NAM,
where NA is Avogadro’s number) and, if the concentration is known,
an accurate determination of the molecular weight of the particles can
be made. An example of the osmotic pressure of a protein solution
is shown in Figure 13.8. With the simple osmometer shown in
Figure 13.6, the osmotic pressure (p) is given by:

p ¼ hgr ð13:25Þ

where h is the difference in fluid height, g is the acceleration due to
gravity and r is the fluid density. Thus a simple measurement of the
height of the fluid in the capillary leads to a direct calculation of the
solution’s osmotic pressure.

The effects of osmotic pressure are extremely important in determining
the physical state and morphology of a biological material. For example, a
charged polyelectrolyte gel placed in a dilute solution expands many times
in volume due to the pressure exerted by the counterions associated with the
polyelectrolyte chains. Polyelectrolyte gels can exhibit significant elasticity
at very low volume fractions, e.g. ‘wobbly solid’ gelatine gels are 2–3%

ππ/c(cml/g) 

0 5 10
c (mg/ml) 

0

0.1
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0.4

0.5
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Subunits of 
aldolase
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aldolase 

Figure 13.8 The osmotic pressure of a solution of globular proteins
(A number of aldolase subunits assemble into the native structure which causes a
decrease in the osmotic pressure of the solution. The osmotic pressure per gram of
protein (p=c) is plotted as a function of protein concentration [Reprinted with permis-
sion from F.J. Castellino and O.R. Baker, Biochemistry, 7, 2207–2217, Copyright
(1968) American Chemical Society])
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polymer and 97–98% water. Simple macroscopic measurements of gel sizes
and concentrations thus provide an important tool to understand their
molecular structuring (Figure 13.9).

There are a number of other methods typically used to measure
osmotic pressure. These include the vapour pressure osmometer (it
examines the depression of the boiling point by the osmotic effect) and
optical tweezers (a direct measurement of the piconewton pressures on
colloidal particles is made).

13.4 FORCE MEASUREMENT

There is a wide range of techniques for the measurement of mesoscopic
forces; the general principles were briefly examined in Chapter 2. Some
of the more modern developments in the field of force measurement
include atomic force microscopy (AFM), glass fibers, surface force
apparatus (SFA) and magnetic/optical tweezers. The range of forces
that can typically be measured with each of the techniques is compared
in Figure 13.10. In general terms AFM and SFA offer the largest forces,
and magnetic/optical tweezers offer the greatest sensitivity.

Swollen 
gel

Concentrated 
gel

Figure 13.9 The swelling of polymer gels is intimately related to the osmotic pressure
of the network and the swelling is resisted by the elasticity of the polymer chains

Forces 
Applied

mN 

nN

pN

µ N

Atomic force
microscopy

Surface force
apparatus

Optical
tweezers

Magnetic
tweezers 

Glass 
fibers 

Figure 13.10 The range of forces that can typically be applied to biomolecular
systems with a range of modern force apparatus
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Optical and magnetic tweezers are both similar in application, a feed-
back mechanism is used to clamp the position of a colloidal particle in three
dimensions under an optical microscope, and this force is subsequently
used to manipulate biological molecules. However, the physical processes
which control the mode of action of the two types of tweezer are radically
different. Optical tweezers focus laser light to trap a dielectric particle using
the pressure of photons in the incident laser beam (Figure 13.11). Magnetic
tweezers use the magnetic force on superparamagnetic or ferromagnetic
beads exerted by gradients in an applied magnetic field (Figure 13.12).

For optical tweezers, the electric dipole (p) induced in a trapped
particle is given by:

p ¼ a:E ð13:26Þ

where a is the polarisability of the irradiated material and E is the electric
field of the incident laser. The induction of the optical dipole moment in

Figure 13.12 Two pole piece magnetic tweezers for single molecule extension
experiments. Multiple pole piece tweezers can provide particle manipulation in three
dimensions

Momentum 
change 

InOut

Incident light

Dielectric 
sphere 

Light Out 

Figure 13.11 A focused laser beam can be used to provide an optical trap for a
dielectic sphere. The momentum transfer due to the change in direction of the refracted
beam induces a force on the sphere
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the trapped particle by the laser beam provides a force (Flight), propor-
tional to the laplacian of the electric field, or equivalently the gradient of
the intensity of the incident light (rI):

Flight ¼ ar2E ¼ arI ð13:27Þ

A single well focused laser beam can trap dielectric particles (� 0:5mm)
in three dimensions using the pN forces induced from the optical dipolar
force. For a specific laser, microscope and optical set up, the tweezer
force (Flight) is related to the incident laser power by the equation:

Flight ¼
QnmP

c
ð13:28Þ

where Q is the efficiency of the trap, nm is the index of refraction of the
particle, c is the speed of light and P is the incident laser power. Double
optical traps can be used to extend single molecules that are attached at
either end to colloidal probes. The correct choice of the laser in a
trapping experiment is important to reduce the damage on fragile
biological molecules. Often, with delicate biological materials, infra
red lasers are used to minimise this damage.

In contrast to optical tweezers, with magnetic tweezers the potential
energy (U) of a magnetic dipole (m) placed in a magnetic field (B) is given
by the scalar product:

U ¼ �m:B ð13:29Þ

Thus a free permanent magnetic dipole experiences a torque as it mini-
mises its energy through the alignment of the dipole with the applied
magnetic field. The magnetic forces experienced by a probe particle
depend sensitively on its type of magnetism. The colloidal probes used
in magnetic tweezer experiments are typically either ferromagnetic or
superparamagnetic. The corresponding magnetic force (Fmag) is the
gradient of the potential (rU):

Fmag ¼ �rðm:BÞ ð13:30Þ

For superparamagnetic spheres the magnetisation is approximately equal
to the saturated value (Mmax), m ffi Mmax, and the magnetic field gradient
occurs parallel to the x-axis, so:

Fmag � MmaxV
dB

dx
ð13:31Þ
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where V is the particle volume. With superparamagnetic particles the
application of a magnetic field gradient can provide forces on the order of
100 pN. The torque on a large ferromagnetic particle (4 mm) can be quite
considerable (� 1000 pNmm) and magnetic tweezer cytometry has found
applications for determining the elasticity of cells adhered to magnetic
beads. Hysteresis effects in the magnetism curves of the probe particles
and pole pieces pose a number of technical challenges for accurate
quantitative analysis of magnetic forces, particularly with ferromagnetic
beads.

The hydrodynamic drag force (Fdrag) experienced by a trapped particle
moved (velocity, v) through its surrounding solvent with optical or
magnetic tweezers is given by Stoke’s law:

Fdrag ¼ 6phav ð13:32Þ

This equation provides a method for calibrating both optical and
magnetic traps. The trapped colloidal probe is held at rest with respect
to the laboratory and the solvent is given a constant velocity using a flow
cell. The critical velocity at which the trapped bead becomes dislodged is
measured, which allows the force applied to the tweezers to be calculated
using equation (13.32).

A more accurate method for calibrating traps uses an analysis of the
thermal fluctuations of the trapped particle and is based on Langevin’s
equation for the particle’s motion:

m
dv

dt
¼ FthermalðtÞ � gv� kx ð13:33Þ

This is just Newton’s second law, a balance of the inertial force
(mdv=dt), the thermal force FthermalðtÞ, the drag force gv and the elastic
trap force (the effective lateral trap spring constant is k and x is the
particle displacement). To solve equation (13.33), the thermal force
(Fthermal) is assumed to be completely random over time (t); mathemati-
cally this is equivalent to:

hFthermalðtÞFthermalðt � tÞi ¼ 2kTgdðtÞ ð13:34Þ

where dðtÞ is the dirac delta function, kT is the thermal energy and g is
the frictional coefficient. In the low Reynolds number regime the inertial
term can be neglected (mdv=dt ¼ 0); this greatly simplifies equation
(13.33) and is typically the case in most tweezer experiments at low
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frequencies. The Laplace transform of the Langevin equation (13.33) can
be taken to provide an expression of the power spectrum (SxðvÞ,
Section 5.2) of the fluctuations of the bead displacement:

SxðvÞ ¼
kT

p2gðv2
c � v2Þ ð13:35Þ

where kT is the thermal energy, g is the drag coefficient, vc is the
cornering frequency and v is the frequency. The power spectrum of
bead fluctuations can be easily determined experimentally using a
numerical fast fourier transform of the bead square displacement as a
function of time (Figure 13.13). Equation (13.35) then allows the corner-
ing frequency (vc) to be calculated and the spring constant (k) of the trap
can be subsequently found using the equation:

vc ¼
k

2pg
ð13:36Þ

The technique of atomic force microscopy (AFM) allows the force
between the tip of a cantilever (with a small radius of curvature) and
virtually any kind of surface to be measured (Figure 13.14). The AFM
technique also has the significant advantage that the tip can be used to
form an image of the surface. In a typical AFM experiment a small
pyramid shaped tip is mounted on a cantilever which acts as a spring,
with a spring constant � 0:1 Nm�1. The cantilever is arranged on a piezo
electric driver that moves the tip in the vertical direction whilst the
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Figure 13.13 Power spectral density (< r2ðf Þ >¼ Sxðv)) of the position of a particle
trapped in the laser of an optical tweezer set up as a function of frequency (f)
[Reprinted with permission from K. Svoboda and S.M. Block, Ann. Rev. Biophys.
Biomol. Struct. 23, 247–285, Copyright (1994) Annual Reviews]
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resulting displacement is measured by reflecting a laser beam from the
back of the cantilever onto a split photodiode. A range of feedback
methods is used to control the position of the cantilever, for example,
that holds the cantilever at a constant force. The detailed construction of
an AFM is shown in the Figure 13.15.

AFM allows much larger forces to be applied to a sample than with
optical/magnetic tweezers and imaging is also possible (Figure 13.16).
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the tip in three dimension 
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Biological 
sample 

Figure 13.14 Schematic diagram of an Atomic Force Microscopy (AFM) experiment
to study the surface of a biological material
(The laser reflects off the back of the cantilever and is then detected by a quadrant
diode. A piezo electric device moves the tip over the surface to produce a three
dimensional map of the surface topography.)
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Figure 13.15 Detailed schematic diagram of an AFM apparatus. The feedback scheme
can be used to hold the cantilever at a constant force on the sample.
[Ref.: J.Yang,L.K.Tamm,A.P.SomlyoandZ.Shao, JournalofMicroscopy, 1993,171,
183–198]
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However, it is much more difficult to model the viscoelastic response of
materials close to surfaces with AFM due to the effects of lubrication
hydrodynamics, and the cantilever geometry causes the sensitivity to be
reduced compared to the tweezer techniques (important for single mole-
cule applications). Soft surfaces can be perturbed (indented) during the
process of image collection due to the contact with the cantilever and
sensitive feedback systems have been implemented to reduce this damage
(the so called ‘non contact mode’). Generally, the magnitude of the
cantilever displacement in response to a force (F) at the surface is given
by:

F ¼ KcantileverDx ð13:37Þ

where Dx is the displacement of the tip and Kcantilever is the spring
constant of the cantilever.

A typical value for Kcantilever is 10�3 Nm�1 and a typical tip radius is
3 � 10�8 m.

Figure 13.16 Atomic force microscopy image of circular DNA (a; b) and amyloid
fibrils (c; d)
[Ref.: Neil Thomson, University of Leeds, 2005]
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Surface force apparatus (SFA) examine the forces between surfaces on
macroscopic dimensions. The technique involves the measurement of the
distance of separation as a function of the applied force of crossed
cylinders coated with molecularly cleaved mica sheets (Figure 13.17).
The separation between the surfaces is measured interferometrically to a
precision of 0.1 nm and the surfaces are driven together with piezo
electric transducers with a resolution of 10�8 N. Much of the most
accurate fundamental information on mesoscopic forces has been estab-
lished using SFA.

The split photodiode detector is a critical piece of technology for a
series of force probe techniques that include AFM, glass fibres and
optical tweezers. The detector allows fast accurate measurement of light
intensities. It can provide sub-nanometer resolution of probe positions
on the time scale of 100 ms–100 s through comparison of the scattered
light intensity projected onto the two sections of the split photodetector.

Figure 13.17 A schematic diagram of the arrangement of a surface force apparatus to
measure mesoscopic forces
(The distance between the two mica cylinders is measured using an interferometric
technique and the force is measured with a finely calibrated spring [Ref.: J.N.
Israelachvili, Chemtracts-Analy. Phys. Chem, 1989, 1, 1–12])
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The mean photocurrent (hii) at time t measured by a section of the split
detector is:

hii ¼ n

ð1

0

gðtÞdt ¼ nze ð13:38Þ

where gðtÞ is the photo current detected at a time (t) given by:

gðtÞ ¼ ze

t0
exp � t

t0

� �
ð13:39Þ

where z is the total number of charges displaced upon absorption of a
photon on the detector, e is the electronic charge, t0 is the time constant of
the detector and n is the total number of photons collected. The position of
a probe (e.g. the cantilever with an AFM or the colloidal probe with
optical tweezers) measured using a split photodiode is found by comparing
the difference in current signals (Di) between the two photodiodes. The
displacement noise on the determination of the probe position (with
standard deviation sxðf Þ, where f is the frequency) quantifies the accuracy
of the split diode in a particular geometry and can be calculated as:

s2
xðf Þ ¼

d2

2qn
ð13:40Þ

The resolution of a split diode experiment thus depends on the total
number of photons collected by the detector (n), the efficiency of the
detector for absorbing photons (q) and the spatial width of the detector
(d). It does not depend on the electronic charge (e), the instrument
amplification (z), or the magnification.

13.5 ELECTROPHORESIS

Electrophoresis is a cheap, powerful tool for the analysis and separation
of charged biological molecules such as proteins and nucleic acids.
Electrophoresis can be used to measure the size of biopolymer molecules
and also to deduce the chemical sequence of the chains.

The force experienced by a particle (F) in an electric field (E) is given by
Coulomb’s law:

F ¼ ZeE ð13:41Þ
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where Z is the number of charges on the particle and e is the electronic
charge. The mobility of a charged particle in an electric field is propor-
tional to the ratio of the net charge on the particle (which provides
the Coulombic force) to its frictional coefficient (f). Electrophoresis
can be used to obtain information about either the relative charge or
the relative size of charged molecules. For steady state electrophoretic
motion the frictional force (the frictional coefficient (f) multiplied by the
velocity (v), fv) is balanced by the force due to the electric field. The
electrophoretic mobility (U) with colloids is defined as:

U ¼ v

E
¼ Ze

f
ð13:42Þ

Combined with Stokes law for the frictional force, this equation
becomes:

U ¼ Ze

6phR
ð13:43Þ

Thus the mobility of the colloids measured in an electrophoresis experi-
ment can be related to the charge fraction (Z) and the radius of the
particles (R).

Conceptually the simplest method of measuring the mobility of a
colloidal particle in an electric field is by using moving boundary (free)
electrophoresis (Figure 13.18). Particle velocities are measured directly
with an optical microscope as they move in the electric field. However,
this technique suffers from artefacts such as convection and multicom-
ponent interactions. It is possible to circumvent these problems using gels
and ion exchange papers, and these are the electrophoresis methods that
are predominently used today.

Microscope 
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Charged molecular 
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Figure 13.18 A moving boundary apparatus for the examination of free solution
electrophoresis. The motion of the colloids that experience electrophoresis is measured
with an optical microscope
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The charge on a protein depends on the pH of the buffer (Section 1.1).
Electrophoretic motion can be studied as a function of pH to calculate
the isoelectric point. The isoelectric point is the pH at which the average
net charge on a macromolecule is zero. Isoelectric focusing (the pH is
adjusted until there is no particle motility) can provide quantitative
molecular information on charged macromolecules using simple table
top apparatus.

The standard method of examining DNA chains is with gel electro-
phoresis (Figure 13.19). The use of the gel removes the problems with
convection inherent in free boundary electrophoresis. The gel is placed
across a constant applied voltage in a salt solution and the DNA chains
are loaded onto the gel near the negative electrode. The gel is ‘run’ for a
fixed period and the mobility of the chains (the time taken to travel a
certain distance) can be simply related to their size. Surprisingly, detailed
information on the complex topological nature of the gel is not required
for quantitative predictions to be made on the molecular weight of DNA
chains as they move across the gel.

There are two common ways to locate DNA on a gel to measure the
distance it has travelled. Ethidium bromide can be used to label the
chains and fluoresces strongly under ultra violet light. Alternatively, it
is possible to incorporate radiative phosphorus atoms that will darken a
photographic film into DNA at one of its ends.

An example is provided by electrophoresis with super coiled DNA
molecules. Gel electrophoresis is a relatively easy method to separate
closed super coiled DNA from the relaxed (cut) molecules. There is a
large increase in the mobility of the super coiled DNA due to its compact
form and it therefore experiences a reduced frictional coefficient (f)
compared with the extended relaxed form.

20 cm
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solution

Power source

+

+-

-

Figure 13.19 Arrangement of a gel used in a simple electrophoresis experiment to
measure the mobility of polyions loaded on the gel, e.g. DNA
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For detailed sequencing of DNA chains restriction enzymes are used.
These enzymes cut the DNA chains whenever they find the GAATTC
sequence. If there are n such sequences there are nþ 1 bands that occur.
Other specific enzyme/DNA reactions allow individual DNA molecules
to be cut in different places and the resultant information can be com-
bined to sequence chains of up to 400 base pairs.

Isoelectric focusing is also possible with gel electrophoresis and can be
used as an effective separation technique if the bands that contain the
required charged molecules are cut out of the gel.

The theory of reptation is used to explain the ability of gel electro-
phoresis to separate DNA chains of different lengths (Figure 13.20,
Section 8.5). The components of the electric force perpendicular to the
axis of the tube are cancelled by the tube reaction force and the long-
itudinal components induce an electrophoretic motion of the chain along
the tube (forced reptation).

In the limit of very strong electric fields the front end of the DNA chain
moves forward and creates new parts of the tube (Figure 13.21(a)). The
stretching force is proportional to the number of monomers (N), since the
total electric charge on the chain is also proportional to N. Furthermore,
the coefficient of friction (m) for the whole chain is proportional to N (as
for reptation, m / N). Thus the speed of motion (v) in a strong electric
field is independent of N (v ¼ f=m). The method of strong field electro-
phoresis is therefore not useful for the separation of DNA fragments.

However, weak electric field gel electrophoresis (Figure 13.21(b)) is
much more successful, since the DNA molecules remain Gaussian coils.

Electric
Field (E) 

Cross links 

Synthetic 
polymer 
chains 

DNA 
chains 

Figure 13.20 The electrophoresis of DNA fragments across a cross-linked gel is
driven by an electric field. Smaller chain fragments migrate more quickly. A process
of driven reptation occurs
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The force that the electric field exerts on the DNA molecules is propor-
tional to the displacement of the chain parallel to the electric field (N�1

2),
since only the motion of segments of the chain parallel to the electric field
are not restricted by the cross-links of the gel. The speed of reptation (vr)
is:

vr ¼
f

m
� N�1

2

N
� N�1

2 ð13:44Þ

where N is the number of monomers in the chain. The speed of the centre
of mass motion (v) is a factor of N

1
2 slower than the speed of reptation

and the speed of centre of mass reptation is therefore inversely propor-
tional to the chain length (n � 1=N) in a weak field. Weak field electro-
phoresis thus provides a practical method for the separation of DNA
chains. A more accurate calculation of the velocity of the DNA fragments
in a weak field gives:

v ¼ q

3h

1

N
þw

EqL

kT

� �2
 !

E ð13:45Þ

where E is the electric field vector, q is the charge per unit length of the
DNA, N is the number of Kuhn segments in the DNA chain, L is the
length of a Kuhn segment, h is the viscosity of the medium and w is a
constant of the order of unity. The technique is, therefore, not very
sensitive at separating long DNA chains (Figure 13.22), which is a big
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Figure 13.21 Schematic diagram indicating the difference in conformation of
charged macromolecules during electrophoresis in a gel
((a) In a strong electric field the chains are completely stretched and electrophoresis is
not a sensitive measure of the mobility; (b) in a weak field the chains adopt a Gaussian
conformation and mobility measurements are much more successful. eE is the electro-
static force on a section of a chain.)
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problem if micron long pieces of genomic DNA require sequencing. A
trick to increase the sensitivity of electrophoresis for the separation of
long DNA chains is to periodically switch off or rotate by 90�, the
applied external field at the typical time for the renewal of the reptation
tube (t� � N3, Section 8.5). In this case, electrophoretic motion only
occurs for chains of the length (N) defined by the periodicity of the
rotating electric field and the method can be used to select the longer
chains. This technique of pulsed electrophoresis works very well.

The polymerase chain reaction (PCR) is a biochemical technique for
amplifying short (10 000 base pairs) stretches of nucleic acid. It is often
used in conjunction with electrophoresis methods in the process of
genetic fingerprinting. Thus a single DNA molecule can be amplified to
provide sufficient quantities of DNA to be sequenced using electrophor-
esis by means of the PCR technique.

SDS electrophoresis can be used to calculate the molecular weights of
proteins. SDS is a surfactant that is an effective protein denaturant. It
binds to all proteins qualitatively to the same degree and causes them to
adopt extended conformations. The apparent electrophoretic mobility
(uðcÞ) of a protein denatured with SDS at a particular gel concentration
(c) is phenomenologically given by:

lnuðcÞ ¼ �kxcþ lnuð0Þ ð13:46Þ

where kx depends on the extent of cross-linking of the gel and uð0Þ is a
constant for a particular protein. The mobility (uð0Þ) is related to the
molecular weight (M) of the protein through a simple relationship:

uð0Þ ¼ b� a logM ð13:47Þ

Number of 
monomers (N)

Mobility 
(v)

Figure 13.22 Dependence of the mobility of DNA fragments (v) on the number of
monomers in a chain (N) during a gel electrophoresis experiment. The mobility
becomes a less sensitive function of N as the chains increase in length
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where b and a are standard constants. The molecular weight of a
denatured protein can therefore be calculated from the measurement
of its mobility on a gel at a series of different gel concentrations.

There have been a number of modern developments in electrophore-
tic techniques. Problems with convection in free boundary electrophor-
esis can be reduced by using a very fine bored capillary in capillary
electrophoresis (Figure 13.23). This is a useful microanalytical separa-
tion technique. The importance of convection in a fluidic system is
described by a dimensionless group, the Rayleigh number (Ra), which
is defined as:

Ra ¼ R4g

ha

Dr

Dr

� �
ð13:48Þ

where R is the radius of the channel, g is gravity, h is the viscosity, a is the
thermal diffusivity of the medium and (Dr=Dr) is the density change per
unit radial distance caused by heating. For small Rayleigh number
(Ra < 1) convection is suppressed in an electrophoresis tube and this
corresponds to a small capillary bore (R). Typically, capillary diameters
for electrophoresis experiments are in the order of a few microns to
provide low Rayleigh number dynamics for the charged molecules
examined.
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Figure13.23 Typical data from a capillary electrophoresis experiment that shows the
separation of two samples of short double stranded DNA
((1) is AAATTATATTAT/ATAATATAATTT and (2) is GGGCCGCGCCGC/
GCGGCGCGGCCC. Sample (1) travels down the column faster than sample (2)
[Ref.: I.I. Hamden, G.G. Skellern, R.D. Waigh, Journal of Chromatography, A, 806
(1), 165–168, 1998])
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Etched obstacle arrays on silicon chips can also be used for electro-
phoresis (Figure 13.24). Silicon microarrays offer a number of advan-
tages over standard gel techniques: smaller samples can be explored and
the microstructure of the etched silicon can be better defined than with
gels and, consequently, so too can the microfluidics.

13.6 SEDIMENTATION

Sedimentation is a key separation technique used to extract the particular
biomolecule of interest from the complex soup of species found in the
cell. Separation by sedimentation is a standard first step in a molecular
biophysics experiment. An external force acting on a mixture of sus-
pended particles is used to separate them by means of their varying
buoyancies with respect to the background solvent. In an analytical
ultracentrifuge the radial acceleration provides the external force and
causes the molecules to be separated as a function of both their density
and shape (Figure 13.25).

From simple Newtonian mechanics the radial force (F) on a suspended
particle that is rotating in an ultracentrifuge is given by:

F ¼ m�v2r ð13:49Þ

Figure 13.24 Etched microarrays used for electrophoresis experiments
(An electric field moves the DNA molecules vertically downwards with a velocity v.
Due to the anisotropic nature of the obstacle orientation there is a larger probability for
the molecules to change channels to the right (Pþ) than to the left (P�), and this
probability is a function of the size of the chains [Ref.: C.F.Chou, R.H.Austin,
O.Bakajin et al., Electrophoresis, 2000, 21, 81–90]

SEDIMENTATION 321



where m� is the effective mass, v is the angular velocity and r is the radial
distance of the particle from its centre of motion. From Archmides
principle, the mass of a particle (m) suspended in a solvent needs to be
corrected by the density of the surrounding solvent and the effective mass
of the particle (m�) in the solvent is given by:

m� ¼ mð1 � vr0Þ ð13:50Þ

where v is the partial specific volume of the molecule and r0 is the solvent
density. The velocity at which the particles move due to the
centripetal force is given by equation (13.49) divided by the frictional
resistance:

v ¼ dr

dt
¼ m�v2 r

fh0

ð13:51Þ

where f is a frictional coefficient and h0 is the solution viscosity. The
variation of sedimentation velocity (v) with particle size and density
forms the basis of a method to separate particles using sedimentation.
When a centrifugal field is applied to a solution of molecules a moving
boundary is formed between the solvent and the solute. This boundary
travels down the sample cell with a velocity determined by the sedimen-
tation velocity of the macromolecules. Concentration gradients can be
accurately measured using ultra violet absorption (Figure 13.26) and
therefore the sedimentation velocities can be calculated.

The velocity of sedimentation (drb=dt) is equal to the rate of motion of
the boundary:

drb
dt

¼ rbv
2s ð13:52Þ

ω
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Figure 13.25 Schematic diagram of a sedimentation experiment
(The sample is rotated about an axis at an angular velocity of v and macromolecules
adjust their position with respect to the solution due to their relative densities.)
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where s is the sedimentation coefficient, equal to the velocity of
sedimentation divided by the centrifugal strength (v2rb) at the radius
at which the boundary occurs (rb). Integration of equation (13.52)
provides an expression for the position of the boundary as a function
of time:

ln
rbðtÞ
rbðt0Þ

� �
¼ v2sðt � t0Þ ð13:53Þ

where t0 is a reference time at which the boundary is found at rbðt0Þ.
Diffusion broadens the boundary as it progresses down the column
(Figure 13.27) and the rate of motion allows the sedimentation
coefficient to be calculated from equation (13.53). The sedimentation
coefficient depends on the size, shape and degree of hydration of a
macromolecule. Fortunately, for globular proteins there is a well defined
relationship between the sedimentation coefficient and the molecular
weight due to their spherical geometry.

It is also possible to make focusing measurements with sedimentation
experiments if the particles are suspended in a dense salt, e.g. a solution
of caesium chloride (CsCl) or caesium sulfate (CsSO4). Particles collect
together in a narrow band at the point of matching buoyancy. The
calculation of the sedimentation profile during a centrifugation experi-
ment is an elegant illustration of the predictive power of equilibrium
statistical mechanics. The work required (EðrÞ � Eðr0Þ) to lift a particle
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Figure 13.26 Experimental arrangement of a modern analytic centrifuge. UV
absorption with a Xenon lamp is used to measure particle concentrations
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from a radius r0 to a radius r in a centrifugal force field is equal to the
work done against the centrifugal force:

EðrÞ � Eðr0Þ ¼ �
ðr

r0

m0rv2dr ¼ m0v2 ðr2
0 � r2Þ

2
ð13:54Þ

where m0 is the effective mass of the particles adjusted for the solvent
density. In thermal equilibrium the range of concentrations (cðrÞ) as a
function of the radius is given by a simple Boltzmann distribution
(e�E0=kT) and therefore:

cðrÞ
cðr0Þ

¼ exp �m0v2 ½r2
0 � r2�
2kT

� �
ð13:55Þ

The density near the radius of a particular band (rb) can be expressed as a
Taylor expansion:

rðrÞ ¼ rðrbÞ þ
@r

@r

����
r¼rb

ðr� rbÞ þ . . . ð13:56Þ
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Figure 13.27 Schematic diagram showing the progress of a moving boundary sedi-
mentation experiment at two different time steps (t1 and t2). The boundary moves
towards the centre of rotation (the cell bottom) as a function of time
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Substitution of the density expansion in equation (13.50) allows equa-
tion (13.55) to be expressed as:

cðrÞ
cðrbÞ

¼ exp �mrbv
2vr0ðrbÞ

ðr� rbÞ2

2kT

" #
ð13:57Þ

where r0ðrbÞ is the density gradient defined by:

r0ðrbÞ ¼
@r

@r

����
r¼rb

ð13:58Þ

and m is the true mass of the particles. The concentration profile at radius
(rb) at which the band of particles occurs is therefore a Gaussian
distribution with standard deviation (sr) and is given by:

sr ¼
kT

mrbv2vr0ðrbÞ½ �
1
2

ð13:59Þ

The band of particles is narrow and well focused for particles of large
mass (m), in high centrifugal fields (large rbv

2) and in steep density
gradients (large r0ðrbÞ). Sedimentation focusing is thus another extremely
useful technique for particle separation.

13.7 RHEOLOGY

All real materials demonstrate behaviour intermediate between the
idealised cases of solids and liquids (Chapter 12). Rheology is the study
of this phenomenon of viscoelasticity and rheometers are instruments for
measuring the rheology of materials.

There are two broad categories of techniques for measuring the
viscoelasticity of a material. Firstly, there are bulk methods where the
response of a macroscopic amount of a material to an externally applied
stress or strain is recorded. These bulk methods have traditionally been
used to examine the viscoelasticity of biological samples. Secondly, there
is the measurement of the viscoelasticity of a sample as a function of
length scale using microrheology techniques. Here probes are typically
injected into the system of interest; the probes can be passive (e.g. marker
colloids) or active (e.g. magnetic colloids). The motion of the probes is
recorded with a video camera or measured with light scattering and the
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resultant fluctuation spectrum of the particle displacements is related to
the viscoelasticity of the material in which they are embedded.

In bulk rheology experiments a series of different geometries can be
used and each tends to have different advantages in terms of the mechan-
ism of sample loading, the time window that can be explored and the
sensitivity of the measurements (Figure 13.28). Different geometries for
rheometers require different corrections to analyse the dependence of the
stress on the strain. How the geometry grips the sample is also important
and, combined with the type of force or displacement transducers, this
determines the sensitivity of the measurements. Bulk rheometers measure
the large scale viscoelastic properties of assemblies of biological mole-
cules. Rheometers can function in linear (Chapter 12) or non-linear
modes. Non-linear rheology corresponds to large deformations and
deformation rates, in which both Deborah and Peclet numbers are
appreciable.

In drag flow rheometry the velocity or displacement of a moving
surface is measured simultaneously with the force on another surface
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Figure 13.28 Schematic diagram of the flow geometries commonly encountered in
rheological experiments
(The geometries are separated between drag flows where the surfaces move relative to
one another, and pressure flows in which the flow rate is determined by the pressure
drop across the pipe [Adapted with permission from C.W.Macosko, Rheology, Prin-
ciples, Measurements and Applications, Copyright (1994) Wiley-VCH])
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that moves in response to its motion. Couette’s original concentric
cylinder drag flow rheometer was a controlled strain apparatus. The
angular velocity of the outer cup was fixed and the torque on the inner
cylinder was measured from the deflection of a suspended wire. The
measured variable in a controlled strain rheometer is the torque. Couette
measured the twist in a torsion bar whereas modern electronic rhe-
ometers use a linear variable differential transducer to do the same job
(Figure 13.29).

More sophisticated modern rotary rheometers measure normal stres-
ses (the stresses normal to the direction of shear). It is an experimental
challenge to find steady state behaviour with normal stresses, as they are
easily disturbed by fluctuations in the temperature and axis of rotation.
Rheometers thus need to be machined to high precision. Often commer-
cial rheometers are mechanically accurate to within 2 mm over the 25 mm
cup diameter. The control of the torque and the subsequent measurement
of the angular motion in a controlled stress rheometer is also a standard
technique in rotational rheometry. Furthermore, it is important to

Figure 13.29 Schematic diagram of a modern shear rheometer
[Ref.: L. Bohlin, in Progress in Trends in Rheology, II, Eds H. Gieseku and M.F.
Hibberd, Steinkopf, 1988, 151]
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control the temperature, pressure and humidity to make accurate
rheological measurements with biological specimens.

The most commonly measured linear viscoelastic material function is
the complex shear modulus, G�ðvÞ (Section 12.2). There are three
standard techniques used to measure G�: in the shear wave propagation
method the time for a pulsed deformation to travel through a sample is
measured; the sample can be made to oscillate at its resonant frequency,
and the response at this single frequency observed; and the forced
response to a sinuisoidal oscillation in stress/strain can be measured in
terms of the resultant strain/stress (Figure 13.30). Forced resonance
devices are better suited to low elasticity materials such as polymer
solutions and soft biomaterials.

There are two basic design types of pressure driven rheometers. One
features control of the pressure and measures the flow rate (e.g. capillary

Figure 13.30 Methods for the measurement of the shear modulus
(a) wave speed, (b) resonance and (c) forced oscillations [Adapted with permission
from C.W. Macosoko, Rheology, Principles, Measurements and Appications, Copy-
right (1994) Wiley-VCH])
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rheometers) and the other uses a controlled flow rate and measures the
pressure drop. Such capillary type geometries have direct analogues in
biological circulatory systems (e.g. blood flow) which motivate the
analysis.

Microrheology has experienced a number of important recent devel-
opments. Often biological samples, which are homogeneous on the
macro scale, are inhomogeneous on the micron scale (e.g. inside living
cells); a range of microrheology techniques have been developed to
measure this behaviour. The range of frequencies and moduli that can
typically be accessed using the different microrheology techniques are
shown in Figure 13.31. In particular, the measurable frequency range can
be increased by many orders of magnitude using microrheology when
compared with standard bulk rheology methods.

Particle tracking microrheology is, practically, the simplest micro-
rheology technique to implement. It requires a video camera, optical
microscope, oil immersion objective and digital recording apparatus.
The fluctuation–dissipation theory is used to relate the fluctuations in
the displacements of tracer particles embedded in a material to its
viscoelastic response. The fluctuation spectrum of the mean square dis-
placements of colloidal particles embedded in a viscoelastic material is
calculated as a function of time (Figure 13.32). For simple viscous liquids
one would expect (Section 5.1) a linear dependence of the mean square
displacement in two dimensions of the embedded probes (hr2i) under the
microscope on time (t):

hr2i ¼ 4Dt ð13:60Þ

A viscoelastic component is introduced as a sub-linear diffusive process
at short times modifying equation (13.60) (hr2i � ta, a < 1) and includes
the information on the viscoelasticity of the material. The linear viscoe-
lastic shear moduli (G�) of the material can subsequently be calculated
from the mean square displacement using the Generalised Stokes–
Einstein equation (compare with equation (5.10)):

GðsÞ ¼ kT

pa2shr2ðsÞi ð13:61Þ

where r2ðsÞ is the Laplace transform of hr2ðtÞi, GðsÞ is the Laplace
transform of the relaxation modulus (GðtÞ) and a is radius of the probe
particle. The Laplace frequency (s) has been introduced to provide a
compact solution of the fluctuation dissipation theorem. G0ðvÞ and
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Figure 13.31 Comparision of the range of frequencies (a) and moduli (b) that can
typically be measured using different microrheology techniques
[Reprinted with permission from T.A. Waigh, Reports on Progress in Physics, 68,
685–742, Copyright (2005) IOP Publishing]
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G
00 ðvÞ can be determined mathematically by Fourier transform of the

relaxation modulus as a function of time (GðtÞ). It is also possible to
determine the linear viscoelastic spectrum by the analysis of the mean
square fluctuations in angular displacement of a probe as a function of
time, and again a generalised Stokes–Einstein equation for rotational
motion is used to calculate the complex shear modulus.

Laser deflection techniques allow the high frequency viscoelastic beha-
viour of materials to be probed. Back focal plane interferometry is a
particularly sensitive laser deflection method for measuring the small
fluctuations (nanometres) of probe spheres that occur at high frequencies
(Figure 13.33). Multiply-scattered laser light from colloidal spheres also
can be used to yield the fluctuation spectrum of colloidal spheres
embedded in biological specimens through the technique of diffusing
wave spectroscopy (DWS, Figure 13.34). The intensity correlation func-
tion is measured as the autocorrelation of the scattered intensity
(Section 13.2) and is used to construct the mean square displacement
(hr2ðtÞi) of the probe spheres. The viscoelastic moduli can then be
calculated in a similar manner to the particle tracking technique. DWS
microrheology is useful for ultra high frequency viscoelastic measure-
ments, since the process of multiple-scattering amplifies the sensitivity of
the measurements to small particle displacements (Å) and allows particle
motions to be detected at high frequencies (MHz). Single scattering
photon correlation spectroscopy techniques can also be used at lower

Particle 
trajectory 

x

y

Find  the 
fluctuation 
spectrum
<r2> as a 
function of 
time

Track particles 
using image 
analysis 
software 

t

<r2>

ω

G’, 
G’’

Calculate linear 
viscoelasticity 
G’,G’’ as a 
function of 
frequency (ω)

Probe 
particle

(a) (b) (c)

Figure 13.32 The strategy used in passive particle tracking micorheology experi-
ments
((a) The trajectory of a fluctuating colloidal sphere is recorded, (b) the mean square
displacement (hr2ðtÞi) fluctuations are calculated and (c) the shear moduli (G0,G

00
) are

found using the generalised Stokes–Einstein equation.)
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colloidal concentrations and provide information on particle motion at
slightly lower frequencies. DWS microrheology methods enable a very
wide range of frequencies for the linear rheology of solution state
biological materials to be accessed (Figure 13.35). Both transmission
and back scattering geometries are possible for DWS experiments
(Figure 13.34). Optical tweezers also find many applications in micro-
rheology studies and are particularly well suited for measuring the
elasticity of membranes due to their low moduli.

Further reduction in sample volumes for nano and pico rheology are
possible, but data analysis often becomes more difficult and can reduce
the sensitivity of the methods. Examples of submicrolitre rheometers that

Laser
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Mirror 

Condenser 

Specimen 

Objective

Quadrant 
diode 

Computer 
Differential 
amplifier 

Figure 13.33 The fluctuations of the displacement of a single bead embedded in a
biological specimen can be followed with scattered laser light projected onto a
quadrant diode. This provides a sensitive laser scattering microrheology technique
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correlator 
(backscattering) 
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correlator
(transmission) 

Viscoelastic 
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Rectangular 
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Polarisers 

Figure 13.34 Schematic diagram of a diffusing wave spectroscopy experiment
(Coherent laser light is multiply-scattered from a dense suspension of colloidal parti-
cles. Analysis of the resultant correlation functions can provide the high frequency
visoelasticity of a biological specimen.)
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are currently being investigated are backscattered DWS with optical
fibres (sensitive to picolitre volumes), fluorescent correlation spectro-
scopy (sensitive to picolitre volumes) and oscillatory AFM (sensitive to
nanolitre volumes).

Other micromechanical techniques specialise solely in the measure-
ment of the elasticity of biological systems and neglect the behaviour of
the viscosity. These include micropipette aspiration, steady state defor-
mation using AFM and the use of internal markers to drive or record the
deformation of the cytoplasm, e.g. magnetic beads or fluorescent
markers.

13.8 TRIBOLOGY

A range of tribometers have been developed to quantify frictional beha-
viour at surfaces. In a typical modern device adapted for the measure-
ment of solid–solid friction mediated by a thin viscoelastic film, forces
are obtained in a direct manner through the measurement of the deflec-
tion of a spring with nanometre resolution (Figure 13.36). The stiffness
of the employed bending beam is known exactly. The instrument is
calibrated both in the normal and tangential direction. The force
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Figure 13.35 High frequency linear viscoelasticity from aggrecan solutions
(The slope of G0 � G

00 � v
1
2 indicates that Rouse modes are present in these flexible

polyelectrolyte solutions at high concentrations. Two separate concentrations are
shown 2 mg/ml and 12 mg/ml [Ref.: A.P.Papagiannopoulos T.A.Waigh, T.Harding-
ham and M.Heinrich, Biomacromolecules, 2006, 7, 2162–2172])
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measurement has a resolution of nN in the range nN to mN in both
directions. The springs for force measurement are often made of photo-
structurable glass and the spherical ball probes are made of silicon or
steel with a well defined diameter. Interferometers can be used to
measure the deflection of the spring. With biological specimens chal-
lenges are presented by their non-planarity and the requirement for
hydrated environments, e.g. the cartilage in articulated joints. AFMs
are sometimes used to measure frictional forces, since they are not
confined to planar specimens. However, quantitative measurements of
frictional coefficients with AFM continue to be challenging, since it is
difficult to infer both the normal and frictional forces simultaneously
using light scattered from the back of a cantilever. Drag flow rheometers
can also be adapted to provide high precision frictional measurements
(e.g. a plate–plate rheometer with a section of material attached to either
plate), but the utility of the technique is dependent on the geometry of the
specimens matching that of the cell.

13.9 SOLID PROPERTIES

Solid materials with high elasticity and minimal flow behaviour require a
separate set of techniques for their measurement, since extremely large
forces must be applied to provide significant sample displacements

Mini traction 
machine 

Steel ball 

Silicone
elastomer 

Lubricant spread on 
the surface  

Weight

Figure 13.36 Modern ball on plate tribometer used to measure the friction coefficient
of thin viscoelastic films as a function of shear rate (Stribeck curves)
[Ref.: J. de Vicente, J.R. Stokes and H.A. Spikes, Tribology International, 2005, 38,
515–526]
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(Figure 13.37). Dynamic mechanical testing apparatus (DMTA) are
compressional analogues of oscillatory shear rheology that are often
used on solid biomaterials. DMTA can provide the complex Young’s
modulus (E�) of a material in compression or extension as a function of
frequency.

Highly anisotropic biomaterials provide a challenge for the experimen-
talist, since a large number of parameters need to be measured to fully
characterise the stress response of the oriented material (Section 11.1).
The relative orientation of the applied stress and resultant strain needs to
be carefully monitored. Other material properties are also important for
the mechanical properties of biomaterials such as how samples buckle
under compressive stress (measured using three point Euler buckling
apparatus) and indentation tests for fracture mechanics.
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Figure 13.37 Methods for the measurement of the linear viscoelasticity of solid
materials over different frequency ranges
[Ref.: Becker, Mater. Plast. Elast., 1969, 35, 1387]
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TUTORIAL QUESTIONS

13.1) How would you calibrate the force of a single optical laser
trap? The power spectral density of an optical trap is shown in
the figure below. What is the trap stiffness for a spherical
particle of radius 1 mm in water (h ¼ 0:001 Pas)? Could you
use the same method of calibration for a magnetic trap?

13.2) The mean square displacements (MSD) of the probe particles in
a video particle tracking experiment embedded in two different
fluids are shown in the figure below. Which of the fluids (A or
B) could be viscoelastic over the time scale probed? What
would the effect of a static error in the measurement of the
particle positions be on the resultant mean square displace-
ments?

13.3) Estimate the velocity of a DNA chain that contains one million
base pairs in a polyacrylamide gel if the electric field is 2 Vcm�1.
By what factor would this velocity increase if DNA fragments
of one tenth the size were chosen for the electrophoresis
experiment? Assume the DNA chain is in the B form with
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1.7 Å spacing between phosphate groups, there are no charge
condensation effects, the solution viscosity is 0.002 Pas, and
there is 300 monomers in a Kuhn segment.

13.4) What is the power spectral density of a colloidal sphere diffus-
ing in a purely viscous material? How would the power spectral
density change if a colloidal sphere was placed in a viscoelastic
fluid that has a power law mean square displacement i.e.
hr2ðtÞi � ta?
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14
Motors

A current challenge for the nanotechnology industry is how to transport
chemical cargoes at the molecular scale in order to construct new
materials, remove waste products and catalyse reactions. Nature has
already evolved a wide range of efficient nanomotors that are used in a
vast number of biological processes. Cells actively change their shape
and move with respect to their environment, e.g. the contraction of
muscle cells in the arm, movement of macrophages to capture and
remove hostile cells, division of cells during mitosis and the rotation
of flagella to propel bacteria. As a common theme chemical energy
derived from the hydrolysis of ATP (or GTP with microtubules) or
stored in a proton gradient is transformed into mechanical work to
drive the cell motility. There are currently thought to be five separate
mechanisms for molecular motility that occur naturally: self-assembling
motors, linear stepper motors, rotatory motors, extrusion nozzles and
prestressed springs (Figure 14.1).

Adenosine triphosphate (ATP) is the central currency in energy trans-
duction in biological systems and it is useful to examine the chemical
reaction of the molecules in more detail. The dissociation of ATP into
ADP and a free phosphate ion liberates a reasonable amount of energy
and is used to power a wide range of biochemical reactions:

ATP $ ADPþ Pi ð14:1Þ

where ATP signifies a range of species with different degrees of
ionisation, e.g. MgATP2�, ATP4� etc, Pi is the free phosphate ion

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



and ADP is adenosine diphosphate. The equilibrium constant ðKÞ for
energy transduction from ATP has the same units as concentration
(moles):

K ¼ cADPcPi
cATP

¼ 4:9� 105 M ð14:2Þ

where cADP, cPi and cATP are the concentrations of ADP, Pi and ATP
respectively. The value of the equilibrium constant depends on a number
of factors, including the free magnesium concentration, the pH and the
ionic strength. The value given for the equilibrium constant in equation
(14.2) corresponds to the standard conditions found in the cytoplasm of
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Figure 14.1 Examples of the five separate categories of biological motors
((a) rotatory motors – bacterial locomotion, (b) linear stepper motors – cilia, (c) self-
assembling motors – actin filaments in lamellipodium, (d) extrusion nozzles–
cyanobacterium, and (e) prestressed springs – bacterial locomotion.)
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the vertebrate cell. The amount of energy liberated ðDGÞ by the ATP
reaction can be calculated with:

DG ¼ DG0 � kT ln
cATP

cADPcPi
ð14:3Þ

where DG is the standard free energy and DG0 ¼ �54� 10�21 J. The free
energy of the hydrolysis reaction depends on both the standard free
energy and the concentrations of ATP, ADP and Pi. Motor protein
enzymes can thus liberate energy from ATP to drive conformational
(mechanical) changes in their low Reynolds number aqueous environ-
ments that give rise to motility.

The standard speed for many biological processes driven by simple
molecular motors is on the order of 1 mm/s. The growth of actin
filaments occurs at rates of 10�2�1mms�1 and is dependant on the
concentration of the actin filaments. Actin based cell crawling is in
the range 10�2�1mms�1, and this involves the growth and disas-
sembly of actin filaments at the leading edge of a lamellipodium
(Figure 14.1(c)). Myosin interacts with actin and leads to motility
with a range of rates, 10�2�1mm=s. Striated muscle parallelises the
myosin/actin interactions and provides much larger forces than
available from individual molecules, but with a similar time response
to that of the individual molecules. Microtubule growth and shrink-
age is on the order of 0:1�0:6mms�1, which is similar to the rate of
motion of self-assembling actin. Fast and slow axonal transport
occurs at rates in the range 10�3�10�1 mms�1 as the motor proteins
kinesin and dynenin walk towards the plus and minus ends of micro-
tubules.

14.1 SELF-ASSEMBLING MOTILITY –
POLYMERISATION OF ACTIN AND TUBULIN

The polymerisation of actin and tubulin are examples of one dimensional
aggregating self-assembly (Section 6.4). An additional complication in
this process is that chemical energy is used to drive the self-assembly
process and this permits non-equilibrium dynamic structures to evolve.
In the simplest models of this behaviour the rate of addition of subunits is
found to be proportional to the concentration of free monomers in
solution ðcmÞ and there is a constant of proportionality for the addition
of monomers ðkonÞ. The number of monomers captured per unit time
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ðdn=dtÞ is proportional to the number of monomers available for
capture:

dn

dt
¼ koncm ð14:4Þ

In contrast, it is found that the release rate does not depend upon the free
monomer concentration. koff is a constant for the subtraction of mono-
mers and is independent of the monomer concentration:

dn

dt
¼ �koff ð14:5Þ

The total elongation rate of the filament is the sum of the processes for
addition (equation (14.4)) and release (equation (14.5)) of the monomers
provided a nucleation site for filament growth is available:

dn

dt
¼ kon cm � koff ð14:6Þ

The critical concentration ðcmcritÞ for self-assembly occurs when the
elongation rate ðdn=dtÞ vanishes, i.e. placing dn/dt equal to zero in
equation (14.6) gives:

cmcrit ¼
koff
kon

ð14:7Þ

A graphical solution of equation (14.6) for this process of one dimen-
sional aggregating self-assembly is shown in Figure 14.2. Above the

filament
shrinks 

filament 
grows Slope = k on

dn/dt 

cmcrit cm

Intercept = –koff

Figure 14.2 The rate of polymerisation of actin filaments ðdn=dtÞ as a function of
monomer concentration ðcmÞ
(cmcrit is the critical monomer concentration for self-assembly. Below cmcrit the fila-
ments shrink andabove cmcrit they grow.Thegradient of thefigure gives the association
rate constant ðkonÞ, and the dn/dt intercept gives the dissociation rate constant (�koff ))
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critical monomer concentration the fibres expand, whereas below this
concentration they shrink.

Similar processes of self-assembly are observed experimentally for
both actin and tubulin filaments. In principle it is easy to extract the
rate constants for addition and subtraction of the monomer subunits (kon
and koff ) from an in vitro experiment by plotting the elongation rate as a
function of the monomer concentration (as in Figure 14.2). There are,
however, some additional complications with real self-assembling bio-
logical motors. Subunits are often asymmetrical and assemble side-by-
side with a preferred orientation that gives rise to orientated filaments
(Figure 14.3). The two ends of the polymer are not chemically equiva-
lent. The faster growing end is referred to as the plus end ðþÞ, and the
slow growing end is labelled with a minus sign ð�Þ. Thus experimentally
the two ends (þ and �) of the self-assembling filaments need to be
considered separately to extract the two sets of rate constants required
to describe the separate processes of addition and subtraction. It is found
that the rate constants depend on both the solvent and salt concentration,
so the aqueous environment that surrounds the filaments needs to be
carefully controlled.

This situation of anisotropic self-assembly can be analysed through an
extension of the Oosawa model described by equation (14.6) (Figures
14.4 and 14.5). Since the two ends of the filament are not equivalent, two

Tubulin heterodimer 

Plus end (+) 
rapid addition

Minus end (–) 
slow addition

Figure 14.3 Actin and tublin self-assembly is anisotropic, due to the anisotropyof the
constituent subunits. Fast addition occurs at the positive end ðþÞ and slow addition on
the negative end ð�Þ

dn/dt 

cm

Both ends 
grow 

+end

–end 

Both ends 
shrink

Figure14.4 Model for thedynamicsof actin self-assembly that considers thedifferent
rate constants for both ends of the anisotropic filament
(The rate of assembly ðdn=dtÞ is shown as a function of the monomer concentration
ðcmÞ. In the case illustrated cmþcrit ¼ cm�crit.)
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equations are needed for the rate of elongation of the two ends
(þ and �):

dnþ

dt
¼ kþoncm � kþoff ð14:8Þ

dn�

dt
¼ k�oncm � k�off ð14:9Þ

Each of the equations has a separate critical monomer concentration for
the process of self-assembly:

cmþcrit ¼
kþoff
kþon

ð14:10Þ

cm�crit ¼
k�off
k�on

ð14:11Þ

In the special case that the critical concentration of both ends are equal
ðcmþcrit ¼ cm�critÞ both ends grow or shrink simultaneously, although the
rates of assembly may be different. For steady state conditions (‘tread-
milling’) the rate of growth and shrinkage of the two ends must be equal.
This can be expressed mathematically as:

dnþ

dt
¼ � dn�

dt
ð14:12Þ

And there is therefore a single critical concentration ðctmÞ for this process
of treadmilling self-assembly:

ctm ¼
ðkþoff þ k�off Þ
kþon þ k�on

ð14:13Þ

Both filament 
ends grow 

Filament ends
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shrink at 
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dn/dt 

+end 
cm

–end 

cm-crit

cm+crit

Figure 14.5 Model for the dynamics of actin self-assembly in which cmþcrit 6¼ cm�crit

during theassemblyof theanisotropic filaments.The rate of assembly ðdn=dtÞ is shown
as a function of the monomer concentration ðcmÞ
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The process of treadmilling is schematically shown in Figure 14.6, the
length of the filament is invariant during the process, but its centre of
mass is displaced. Typical values for the rate constants and critical
concentrations that occur during the self-assembly of actin and micro-
tubules are given in Table 14.1. Treadmilling is often the dominant
process in vivo, since it is highly efficient in the reuse of subunits.

The interaction and pattern formation in active self-assembling motor
protein networks can be very complex. An example of a dynamic mor-
phology created during cell division is shown in Figure 14.7. Here an
animal cell is shown in the final stages of cell division (cytokinesis) with
an actin-myosin ring contracting to pinch off the two divided cells. Also
shown in the figure are the remains of the mitotic spindle formed from
microtubules that drive the movement of the dividing chromosome
during the initial stages of cell division.

Monomers 
added

Monomers 
leave 

+end –end 

Filament 

L

L

Figure 14.6 The treadmilling process involved in actin self-assembly
(Monomers leave from thenegative end andare added to the positive end.Thefilament
length ðLÞ is conserved during the process, as the centre of mass of the filament moves
to the right.)

Table 14.1 Rate constants for actin and microtubule self-assembly
[Ref.: T.D. Pollard, J. Cell. Biol., 1986, 103, 2747–2754]

Monomer in kon
þ koff

þ kon
� koff

� s�1 cmþcrit cm�crit

solution (mMs)�1 s�1 (mMs)�1 mM mM

Actin
ATP-actin 11.6 1.4 1.3 0.8 0.12 0.6
ADP-actin 3.8 7.2 0.16 0.27 1.9 1.7
Microtubules
Growing (GTP) 8.9 44 4.3 23 4.9 5.3
Rapid disassembly 0 733 0 915 n/a n/a
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14.2 PARALLELISED LINEAR STEPPER MOTORS –
STRIATED MUSCLE

The basic constituents of striated muscle are actin and myosin which are
arranged in a parallel array (Figure 14.8). These motors are perhaps the
most important for human health, since heart disease provides the largest
contribution to annual human mortality rates and heart muscle is
striated.
A scheme for the chemomechanical transduction process of ATP to

provide motility in striated muscle is provided by the rotating cross-
bridge model (Figure 14.9). This involves two key ideas: the myosin
motor cycles between attached and detached states, and the motor
undergoes a conformational change (working stroke) that moves the
load bearing region of the motor in a specific direction along the filament.
The rotating cross-bridge model incorporates the Lymn–Taylor scheme,
which describes chemically how nucleotides regulate the attachment and
detachment of myosin from the filament, the swinging lever arm hypoth-
esis, which provides a mechanism for amplifying small structural

Actin–myosin 
contractile 
ring

Cell nucleus 

Microtubule 
spindle

DNA 

Figure 14.7 Motor proteins involved during the cytokinesis of cell division
(The actin–myosin ring pinches off the cell in the final stages of replication. The
microtubule spindle is used in a prior step in the process of chromosomal division.)

Z-disc Z-disc
Actin

Myosin bundle 

2.2 µm
+ +– –

Figure 14.8 The arrangement of actin andmyosin that are parallelised into arrays in
striated muscle. The distance between the Z-discs decreases during muscular contrac-
tion as the myosin molecules walk along the actin filaments

346 MOTORS



changes around the nucleotide-binding pocket into the much larger
conformational changes of the cross-bridge, and the powerstroke model,
which accounts for how the motor generates force through the use of an
elastic element within the cross-bridge that is strained during the power
stroke.

During the action of striated muscle there is a sequence of transitions
between different chemical states of the myosin molecules; ATP binding,
hydrolysis and ADP release. These transitions alter the association
between the motor domain and the filament, which leads to the alter-
nating between attached and detached states.

There are three distances required to understand the inch worm
motion of myosin along actin filaments. The working distance (d) is
the distance a cross-bridge moves during the attached phase of its
hydrolysis cycle. The distance per ATP (D), is the distance that each
motor domain moves during the time it takes to complete a cycle, which
is also equal to the speed of movement divided by the ATPase rate per
head. The path distance is the distance between consecutive myosin
binding sites (or stepping stones) (Figure 14.10) along the actin fibre.

A series of single molecule techniques have been used to measure the
force and characteristic distances used by myosins associated with single
fibres of actin. Force transducers that are typically used are the cantilev-
ered glass rod, atomic force microscope (AFM) and dual trap optical
tweezers (Section 13.4). A particularly elegant variety of experiment uses

Load
Lever

Converter
Motor

+end –end 

Binding

Recovery 
distance 

Recovery 
stroke 

Unbinding 

Working
distance Working

stroke 

Strained 
state

(a) (b)

(c)(d)

Figure 14.9 The rotating cross-bridgemodel formyosin–actin association consists of
four distinct steps
((a) The myosin attachs to the actin filament, (b) the myosin molecule does work as it
stresses the binding site, (c) the myosin unbinds from the actin filament and (d) the
stress in themyosinmolecule is dissipatedas itmovesone step along the actin filament.)
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an actin filament attached at either end to two optically trapped spheres,
and the filament is allowed to interact with single myosin II molecules
(Figure 14.11). Individual working strokes of the myosin molecules are
resolvable with this method. Single molecule fluorescence is another
powerful technique for following the pathway of single motor protein
motility and, similarly, microrheology techniques can resolve the
changes in viscoelasticity due to the motion of molecular motors which
provides important dynamic information.
It is useful to consider the exact nature of the molecular steps of

myosin II travelling along the actin filament. The myosin has five struc-
tural configurations during its interaction with actin in muscular motion
(Figure 14.12) (compare with Figure 14.9). Initially there is tight binding
of the myosin head to the actin filament, called the rigor position (Figure
4.12(b), as in rigor mortis where the additional cross-links account for
the rigidity of dead muscle). Next, the myosin filament is released on
capturing ATP (Figure 14.12(c)), which provides the energy for the force

Working 
distance 

Distance/ATP

Path distance

Figure 14.10 Three distances associated with the inch worm motion of myosin
molecules along actin
(The working distance is the length moved by a myosin molecule in each cycle of the
rotating cross-bridge model, the path distance is the lateral distance between binding
sites and the distance/ATP is the length moved by a myosin molecule that uses one
molecule of ATP [Reprinted with permission from J. Howard, Mechanics of Motor
Proteins and the Cytoskeleton, Copyright (2001) Sinauer Associates])

Figure 14.11 Double trap optical tweezers can be used to measure the step size of
myosin II interactingwith actin filaments.The actin filament is attachedat either end to
optically trapped polystyrene beads
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on the actin fibre. There is then a configurational change of the cocked
position during hydrolysis of ATP (Figure 14.12(d)). Subsequently, there
is weak binding of the head to the myosin filament in a new position and,
finally, a phosphate group is released (Figure 14.12(a)).

The speed and processivity of the cross-bridge motion can be under-
stood using the concept of the duty ratio, which is the fraction of time
each motor domain spends attached to its filament. There is a cyclic
process (Figure 14.13) in which the motor repeatedly binds to and
unbinds from the filament. During each cross-bridge cycle, a motor
domain spends an average time attached to the filament ðtonÞ when it
makes its working stroke, and an average time detached from the fila-
ment ðtoffÞ when it makes its recovery stroke. The duty ratio (r) is the
fraction of time that each head spends in its attached phase:

r ¼ ton

ton þ toff
ð14:14Þ

The minimum number of heads ðNminÞ that associate with a filament and
are required for continuous movement ðNminÞ is thus related to the duty
ratio:

r � 1

Nmin
ð14:19Þ

Figure14.12 Chemical steps in the cyclic attachmentofmyosin toactinfilaments that
corresponds to the rotating cross-bridge model (Figure 14.9)

Cross-bridge cycle

Attached 
τon

Detached
τoff

Figure 14.13 Cross-bridge cycle with myosin binding to actin filaments
(ton is the attached time and toff is the detached time. The cycle rotates through
alternating periods of attachment and detachment.)
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14.3 ROTATORY MOTORS

Following on from the discussion of Poisson motility processes in Section
5.3, the molecular biophysics of the rotatory flagellar motor for the
propulsion of bacteria is considered (Figure 14.14). A curved segment
separates the motor from the main length of the filament. The filament is
bent away perpendicularly from the surface of the membrane for several
nanometres. This filament executes a helical motion as it is rotated by the
motor and acts like a propeller, which provides a source of motility for
the bacteria.
A series of proteins form the flagellum and each has a specific function;

the bushings seal the cell membrane, the circular stator is attached to the
cell and the rotor attached to the flagellum (Figure 14.1(a)). The flagellar
propellor is not run directly by ATP. Instead, protons run down a pH
gradient across the membrane and produce an electric potential. Sodium
ions can also fulfil the same function in marine bacteria. As bacteria
move through a solution their flagella can rotate at 100 revolutions per
second, which is comparable to the rate at which an automobile engine
(30 Hz) functions. The flagellar motor works equally well in both clock-
wise and counterclockwise modes. These bacterial motors are relatively
complicated devices and over twenty separate protein components are
required to provide motility. The evolutionary history of such a finely
orchestrated engine is a fascinating story. The rate of rotatory motion is
found to be proportional to the potential difference across the motor
under physiological conditions.

14.4 RATCHET MODELS

An interesting, but inefficient (and thus inaccurate) model of molecular
motility is provided by the thermal ratchet. The model indicates how
directed motility of a muscle protein can be derived from rectified
Brownian motion (Figure 14.15), i.e. a constant bias on the probability
of motion is superposed on the thermal fluctuations of displacement of a

Bacterial
Cell

Flagella

Direction of motility

Figure 14.14 Helical flagellar filaments provide bacteria with motility in its low
Reynold’s number environment
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particle in a particular direction. Widely differing processes of motility,
such as the self-assembly of actin and the action of rotatory motors, can
be described in terms of rectified Brownian motion and ratchet models
have therefore been used to analyse the motion of these systems.

The thermal ratchet is a simple means for producing motion in a low
Reynold’s number environment. It uses a spatially asymmetric potential
that oscillates with time (Figure 14.16). The probability distribution of
motor proteins (P(x)) evolves in the standard manner due to thermal
diffusive motion when the potential is switched off (Section 5.1). The
asymmetry of the oscillating potential, when superposed on the thermal
fluctuating force, causes a net motion of the proteins in a given direction.
The net probability of directed motion ðPnetÞ is the difference between
the probability to move right ðPRÞ and that to move left ðPLÞ:

Pnet ¼ PR � PL ð14:16Þ

Motor 
Filament+

----
V(x) 

x

Figure 14.15 The interaction of motor proteins (e.g. myosin) with actin can be
modelled with a single one dimensional potential. The monomers of the biofilament
have a dipolar charge distribution and the myosin motors experience a saw tooth
interaction potential ðVðxÞÞ as they interact with the filament
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x
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Figure 14.16 Anoscillating saw toothpotential ðVðxÞÞ canbeused tomove a series of
particles (probability density PðxÞ). Within this realisation of the ratchet model
particles are moved to the right by the asymmetry of the saw tooth potential
[Ref.: J. Prost, J.F. Chauwin, L. Peliti andA.Ajdari, Physical ReviewLetters, 1994, 72,
16, 2652–2655 and R.D. Astumian and M. Bier, Physical Review Letters, 1994, 72,
11, 1766–1769]
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A simple mathematical form for the probability distribution of the motor
proteins results from the action of a saw tooth potential. If the proteins
do not diffuse a sufficient distance there is no net flux:

Pnet ¼ 0 0 < s < al ð14:17Þ

where l is the wavelength of the sawtooth potential, s is a measure of the
spread of the particle distribution and al is the peak-to-trough separa-
tion of the potential. If the probability distribution created by the
thermal motion is sufficiently broad, a net flux occurs:

Pnet ¼ ð1� al=sÞ2=2 al < s < ð1� aÞl ð14:18Þ

The probability distribution initially broadens when the potential is not
applied due to thermal diffusion of the motor proteins. When the poten-
tial is switched on again there is a higher probability of the particles being
drawn to the right than to the left due to the asymmetric nature of the
potential. This allows the dipolar nature of the motion of the monomers
along a biofilament to be modelled.
The major problem with such a simple Brownian ratchet model is its

efficiency. A thermal ratchet can take the hydrolysis of up to 10 ATP
molecules for one step ðPnet ¼ 0:1Þ of the ratchet. In real biological
systems the efficiency is typically five times better than that found for
the model (Figure 14.8). More sophisticated extensions of such models
have recently been proposed that aim to resolve this shortfall.
Ratchet models have also been applied to rotatory motors (Figure

14.1(a)). An elastic link is invoked between the stator unit and the cell
wall that rectifies the angular thermal fluctuations in a certain sense
(anticlockwise or clockwise) that provides a mechanism for rotational
motion.

14.5 OTHER SYSTEMS

Other less common mechanisms for biological motility have been dis-
covered. Extrusion nozzles are present in the myxobacteria, cyanobac-
teria and flexibacteria. Slow uniform gliding motion is achieved for these
organisms by a continuous secretion of a glycoprotein slime (Figure
14.1(d)).
Supramolecular springs store conformational energy in chemical

bonds that act as latches for the release of the energy, which provides
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a one shot mechanism of motility (Figure 14.1(e)). The specific power of
such motors can be very high. One example is the scruin–actin system in
which scruin captures actin in a slightly overtwisted state. Calcium
dependent changes in the scruin are then used to release the conforma-
tional energy of the actin and provide a force for motility.

FURTHER READING

D. Boal, Mechanics of the Cell, Cambridge University Press, 2002.
Contains a useful section on active molecular networks.

J. Howard,Mechanics of Motor Proteins and the Cytoskeleton, Sinauer,
2001. Very good introductory text on motor proteins.

TUTORIAL QUESTION

14.1) From Table 14.1 check that the relationship between the cri-
tical monomer concentration and the dissociation constants
holds (equations (14.10) and (14.11)). What do you predict
are the critical concentrations for treadmilling of actin and
microtubules?
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15
Structural Biomaterials

A wide range of biomaterials that are optimally matched to their struc-
tural roles have evolved naturally. Examples include cartilage in synovial
joints, spider silk for web building, resilin in the hinges of dragon fly
wings, mollusc glue for adhesion and cancellous bone in the skeletons of
a range of animals. These examples are chosen to illustrate the rich
variety of physical phenomena involved and the exquisite nature of the
design principles that evolution has used in solving structural biomaterial
problems.

15.1 CARTILAGE – TOUGH SHOCK ABSORBER
IN HUMAN JOINTS

Normal healthy human joints have friction coefficients (m) in the range
0.001-0.03, which is lower than that found with the materials that coat
non-stick frying pans (m � 0:01 for teflon on teflon). These values are
also remarkably low when compared with hydrodynamically-lubricated
bearings that are constructed in efficient mechanical engines, such as
those in cars. However, hydrodynamic lubrication is not in effect (it
occurs in car engines, aircraft turbines etc. at high speeds), since the bone
surfaces in synovial joints never move relative to one another at more
than a few cms�1 (Section 7.6). Synovial joints function in the boundary
lubrication regime (Figure 7.20).

A schematic diagram of an articulated joint is shown in Figure 15.1. It
consists of three main mechanical components: bone (a living mineral
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foam composite), a viscoelastic fluid (a semi-dilute solution predomi-
nantly composed of the polyelectrolyte hyaluronic acid and water) and
cartilage (an elastic protein/proteoglycan composite).
Cartilage acts as a shock absorber in a series of applications through-

out the body, including articulated joints. It is a living tissue and specia-
lised cells (chondrocytes) contained within the tissue play a role in
repairing damage fromwear of the moving surfaces and protect it against
bacterial attack (Figure 15.2).
In human knee joints the average pore size of the cartilage between

collagen fibres is approximately 60 Å. The surface of cartilage has ripples
(amplitude 3 mm andwavelength 40 mm) superimposed on a microrough-
ness (amplitude 0.3 mm and wavelength 0.5 mm). The synovial fluid
contained between the sections of cartilage is a non-Newtonian liquid
having the property of shear thinning; its viscosity decreases almost
linearly with shear rate. This rheological behaviour is typical of non-
associating polyelectrolyte solutions (Section 12.3).
Cartilage presents one of the biggest challenges in tissue engineering, the

creation of replacement materials to treat arthritic conditions. The sections

Figure 15.1 Schematic diagram of an articulated joint that shows the two sections of
bone, the synovial fluid and the two cartilage shock absorbers

Articular 
surface 

Calcified 
zone 

Bone 

Chondrocytes

Figure 15.2 Cartilage is a living shock absorber, chondrocytes are arranged through-
out its structure. The condrocytes replenish the extracellular material that constitutes
the cartilage
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of bone in articulated joints can be successfully replaced with synthetic
materials such as polyethylene, and new hyaluronic acid can be injected in
to the knee cavity to replace damaged boundary lubricants. However,
osteoarthritis involves the break down of cartilage on the bones surface,
as cracks form in the material due to a number of wear mechanisms, and
currently no effective replacement exists for these low friction shock
absorbers. The lifetime of polyethylene replacement joints is seriously
compromised by the high friction wear mechanism that results from the
absence of a cartilage covering and they often need to be replaced after ten
to fifteen years. New alternatives for replacement materials are required
and this necessitates an improved physical understanding of synovial joints.

The collagen in cartilage exists with an anisotropic distribution of fibre
orientation (Figure 15.3) and thus it has anisotropic mechanical proper-
ties. The shearmodulus of thematerial is higher perpendicular to the chain
orientation than in the parallel direction (the load bearing direction).

In general, the function of articular cartilage in articulated joints is to
increase the area of load distribution and to provide a smooth wear
resistant surface optimised for low friction. Biomechanically articular
cartilage can be viewed as a two phase (solid-fluid) material; the col-
lagen/proteoglycan solid matrix (25% contribution to the wet weight) is
surrounded by freely moving interstitial fluid (75% by wet weight). The
important biomechanical properties of articular cartilage are the resis-
tance of the solid matrix to deformation and the frictional resistance to
the flow of the interstitial fluid through the porous permeable solid
matrix. Articular cartilage has the ability to provide joints with a self-
lubrication behaviour that operates under normal physiological condi-
tions. Pressure on the surface of the cartilage forces water through the
porous matrix, moving out through the surface, which provides a lubri-
cating fluid film on the surface of the cartilage (Figure 15.4). Damage to

Figure 15.3 Cartilage has an anisotropic fibrous structure that leads to anisotropic
mechanical properties. Collagen fibres are attached perpendicularly to the surface of
the bone and the arrangement shifts to a parallel alignment at the surface of the
articular cartilage
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articular cartilage can disrupt the normal load carrying ability of the
tissue and the lubrication process that operates in the joint. Insufficient
boundary lubrication is thought to be a primary factor in the develop-
ment of osteoarthritis, which causes acute damage to the cartilageneous
surfaces and extreme pain for the sufferers.
Cartilage is a charged cross-linked elastomeric composite material and

can be compared with resilin and elastin, two uncharged bioelastomers
examined in Section 15.3. Although cartilage is reasonably elastic, it is
not resilient; energy dissipation is maximised. The cross-links forming
the elastic matrix are provided by the collagen in cartilage and the
dissipative properties are provided by giant polyelectrolyte combs
(the aggrecan, Figure 15.5).
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Figure 15.4 The friction coefficient as a function of normal stress between two
cartilage surfaces
(Synovial fluid is seen to cause an important reduction in the friction coefficients of
both static and dynamic tests compared with the saline control [Ref.: L.L. Malcom,
1976, University of California San Diego])

Collagen

Aggrecan

Figure 15.5 Cartilage is a composite mixture of collagen and aggrecan molecules.
The collagen molecules provide strength and elasticity to the network whereas aggre-
can is used to dissipate energy
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The physical phenomena that contribute to the behaviour of carti-
lage are very rich. Principle questions include the repulsive forces
between the two charged cartilaginous plates, the friction coefficient
of the polymeric cartilage gels, the modulus of the cartilage gels with
their rigid molecular nematic inserts (collagen) and the time effects
observed with longitudinal stress relaxation after the cartilage has
been mechanically loaded. A simple model for the extremely low
friction coefficients found in articular cartilage is examined first. The
model still requires development and is only at a qualitative level of
understanding. However, it does demonstrate the bottom up approach
of molecular biophysics to explain some sophisticated material
properties.

First of all consider the forces between two charged plates. The
Poisson–Boltzmann equation can be used for the potential (c) due to
the surface charges at a perpendicular distance ðrÞ from the plates
(Section 2.3):

r2c ¼ � er0
e

� �
e�ecðrÞ=kT ð15:1Þ

where r0 is the ion density profile at the point of zero potential ðc ¼ 0Þ,
i.e. the mid-point between the planar plates. e is the electronic charge, e is
the dielectric constant, and kT is the thermal energy. The charge density
as a function of the distance from a single charged surface is shown
schematically in Figure 15.6. For a charged homopolymer gel carrying
one charge on each monomer unit, the solution for the surface charge
density (s, units of electrons per m3) is:

s ¼ ð1000 cNAÞ
2
3 ¼ 106NA

qMw

� �2
3

ð15:2Þ
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Figure 15.6 Schematic diagram of the charge density near a charged plate
((a) the arrangement of the counterions, (b) the counterion density (r) and (c) the poten-
tial (c) near the surface as a function of the perpendicular distance from the plate ðzÞ)
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where NA is Avogadro’s number, c is the molar polymer concentration,
Mw is the molecular weight and q is the degree of swelling of the gel
(q¼ swollen sample volume/dry sample volume). For positively charged
counterions in one dimension the Poisson–Boltzmann equation (15.1)
can be written:

d2c

dz2
¼ � er0

e
e�ec=kT ð15:3Þ

where z is the distance from the plates. The Poisson–Boltzmann equation
is subject to two boundary conditions on the cartilage gel surfaces and on
the symmetric plane between the two sections of cartilage. From the
Poisson equation of electrostatics the boundary conditions can be written
mathematically. On the gel surface the gradient of the potential equals
the surface charge density:

dc

dz

� �
z¼�l

¼ � es

e
ð15:4Þ

where l is the solvent layer thickness on the gels’ surface. On the sym-
metric plane the gradient of the potential is zero:

dc

dz

� �
z¼0

¼ 0 ð15:5Þ

Electrical neutrality requires that the surface charge density (s) is equal
to the total charge of the oppositely charged counterions associated with
the polyelectrolyte chains:

s ¼ r0

ðl

0

e�ec=kTdz ð15:6Þ

Solution of the Poisson–Boltzmann equation subject to the three require-
ments of equations (15.4), (15.5) and (15.6) gives:

s ¼

ffiffiffiffiffiffiffiffi
2r0
lb

s
tan l

ffiffiffiffiffiffiffiffiffi
r0lb
2

r !
ð15:7Þ

Here lb ¼ e2=ekT is the Bjerrum length (a constant). The repulsive
osmotic pressure (p) between two charged surfaces is determined by
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the ion charge distribution (density r0) at the symmetry plane from the
contact value theorem (Section 2.4):

p ¼ r0kT ð15:8Þ

where kT is the thermal energy. In the equilibrium state with a constant
pressure on the cartilage, the osmotic pressure (p), predominantly due to
the counterions in a charged gel (Section 9.4), is counter balanced by the
applied pressure ðPÞ, e.g. the weight of a person’s upper body distributed
across the area of their knees:

P ¼ p ð15:9Þ

The solvent layer thickness ð2lÞ that remains between the two sections of
cartilaginous gels can then be calculated. Equation (15.7) is rearranged in
terms of the solvent layer thickness and the results of equations (15.8)
and (15.9) are used:

2l ¼ 2

ffiffiffiffiffiffiffiffiffi
2kT

Plb

s
tan�1 s

ffiffiffiffiffiffiffiffiffiffi
kTlb
2P

r !
ð15:10Þ

It is concluded that highly charged surfaces are able to sustain more
pressure (at fixed pressure the equilibrium distance is larger) than the
equivalent neutral surface (Figure 15.7). Cartilage has a relatively rigid
cross-linked network, so swelling of the chains by the osmotic pressure at
equilibrium is neglected in this model.
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Figure 15.7 Thickness of water between two charged plates as a function of the
normal pressure. As the swelling of the gels ðqÞ increases theymove closer together due
to the corresponding decrease in surface charge density
[Reprinted with permission from J. Gong, Y. Iwasaki, Y.Osada, et al., J. Phys. Chem.
B, 103, 6001–6006, Copyright (1999) American Chemical Society]
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The friction coefficient of a polymer gel can also be motivated using a
scaling approach (Section 8.2). Amonton’s law for the friction of ‘con-
ventional’ materials states that the frictional coefficient is independent of
load (Section 7.6). The frictional force ðFÞ of many solids on solids is
therefore related to the normal force ðWÞ by the universal law:

F ¼ mW ð15:11Þ

Where m is the frictional coefficient. Experimentally in the case of solids
with repulsive interfacial interactions (e.g. like-charged polyelectrolyte
gels) it is found that the velocity dependence of the friction is strongly
dependent on the normal compressive strain. The smaller the strain, the
weaker the velocity dependence of the friction. Indeed, with gels it is
found that the frictional force is no longer linearly proportional to the
normal force and equation (15.11) needs to be replaced by:

F / APa ð15:12Þ

where P is the average normal pressure, equal to the weight ðWÞ divided
by the contact area ðAÞ and a is a constant in the range 0 to 1. Further-
more, when two pieces of negatively charged gels are allowed to slide
past each other the frictional force is found to be proportional to a power
law of the velocity ðvÞ with a constant exponent (b):

F / vb ð15:13Þ

where b depends on the normal compressive strain. This power law
dependence on the velocity indicates that not only hydrodynamic lubri-
cation, but also the viscoelasticity of the polymer networks play an
important role in the resultant frictional properties.
A qualitative molecular theory for polymer friction at the surface of a

neutral gel can be motivated. For an uncharged semi-dilute polymer
solution the mesh size (j) (equation (8.37)) depends only on the polymer
concentration ðcÞ:

j � ac�
3
4 ð15:14Þ

where a is the effective monomer length and j can be considered a
measure of the size of the pores in the polymer mesh. It is found
experimentally that polymer gels have the same scaling with regard to
their correlation length (j) and osmotic pressure (p) as the equivalent
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semi-dilute solution prepared at the same polymer concentration (this is
called the c* theorem). The change in interfacial energy ðA� A0Þ
between a polymer gel and a solid surface is:

A� A0 � p0j ð15:15Þ

where p0 is the osmotic pressure of the bulk solution, A is the interfacial
energy between the solid and the gel and A0 is the interfacial energy
between the substrate and the pure solvent. From polymer scaling theory
the osmotic pressure of the polymer gel is known to be related to its
correlation length:

p0 � Tj�3 ð15:16Þ

where T is the temperature. The work done by the solid surface to repel
the polymer from the surface a distance jg against the osmotic pressure is
equal to the increase in surface free energy:

Pjg � A� A0 � p0j ð15:17Þ

where P is the average normal pressure. When no surface adsorption of
the polymer occurs the frictional force is due to the viscous flow of the
solvent at the interface. Viscous solvent flow obeys Newton’s second law
and hydrodynamic lubrication theory can be applied between two par-
ticles separated by a solvent layer to obtain the frictional force ðf Þ using
non-slip boundary conditions:

f ¼ hv

jg þD
ð15:18Þ

where jg is the thickness of the solvent layer, D is the thickness of the
polymer film (the thickness that is sheared), h is the viscosity of the
solvent and v is the relative velocity of the surfaces. A combination of
these results can be used to show that the frictional coefficient of a
neutral gel depends on the temperature ðTÞ, Young’s modulus of the
gel ðEÞ and applied pressure ðPÞ:

f ¼ hvP

E
2
3T

1
3

ð15:19Þ
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A similar calculation for a charged gel surface gives:

f ¼ hv

2ðDþ
ffiffiffiffiffiffiffiffi
kgel

p
Þ

ð15:20Þ

where kgel is the hydraulic permeability of the gel (see equation (15.23)).
The frictional coefficient (m) can be shown to depend on the pressure ðPÞ
in a non-linear manner with charged gels:

m � P�3
5 ð15:21Þ

This is in agreement with experiment (Figure 15.8).
Simply put, the higher the charge on the two like-charged polyelec-

trolyte gels in a frictional experiment (assuming constant swelling), the
lower the resultant frictional coefficient (Figure 15.9). However, charge
effects are only one important factor in determining the frictional proper-
ties. Practically the situation is often more complicated in synovial joints.
Elastohydrodynamic fluid films of both the sliding and squeeze type
could play an important role in lubricating synovial joints. There is
thus a mixed method of reducing friction in cartilage, with contributions
from both the repulsion of charged polymers at the surface and the water
exuded from inside the cartilage. Microcontacts (asperities) between the
surfaces would also be expected to play a role in determining frictional
coefficients in regions where the double layer forces are insufficient to
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Figure15.8 Experimental dependenceof the frictional force ðf Þon thenormalpressure
ðPÞ for a flexible neutral polymer (PVA) gel and a flexible polyelectrolyte (PNaAMPs)
gel. The frictional force and pressure are renormalised by the Young’s modulus for
comparison. The frictional force is much lower for the charged gels in water
[Reprinted with permission from J. Gong and Y. Osada, J. Chem. Phys., 109, 8062,
Copyright (1998) American Institute of Physics]
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withstand the local pressure increases (Figure 15.10). Highly charged
biomolecules occur in a series of motility mechanisms (e.g. actin and
myosin in striated muscle) and it is expected that double layer repulsive
forces contribute to a reduction in friction in these processes.

The time dependence of the relaxationmodulus of cartilage can also be
considered. When cartilage is sheared or longitudinally compressed/
extended the material properties become time dependent due to the
motion of fluid through the pores of the gel. Fluid motion through porous
materials occurs in a range of biological situations, e.g. when blood
plasma moves through blood clots. The problem has been solved by
D’arcy in the case of a Newtonian fluid moving through an ideally
porous material. Cartilage is a composite material (Figure 15.5); a rigid
collagen scaffold combined with a dissipative proteoglycan matrix. The
modulus of the composite is 105 times that of the concentrated
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Figure 15.9 (a) Dependence of the frictional coefficient on the normal pressure (q is
the swelling of the gel). The frictional coefficient decreases as the gel swelling increases.
(b) Dependence of the frictional coefficient on the charge density for a polyelectrolyte
gel. The friction coefficient of the charged gel decreases with increasing charge density
of the gel
[Reprinted with permission from J. Gong, Y. Iwasaki, Y.Osada, et al., J. Phys. Chem.
B, 103, 6001–6006, Copyright (1999) American Chemical Society]
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Figure 15.10 Microscopic contacts (asperities) could provide an important contribu-
tion to the frictional properties of cartilage
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proteoglycan solutions that can be extracted from it, which implies the
proteoglycans do not contribute to the shear stiffness of articular carti-
lage (Figure 15.11). The two major contributions to the shear stiffness
are thus the cross-linked anisotropic collagen molecules and the flow of
fluid through the network.
The stress relaxation curve as a function of time after a step change in

shear strain is shown in Figure 15.12. Thus shearing the cartilage in the
knee (for example picking up a heavy object) has a long time effect on
the elasticity of the material. It can be shown that the relaxation time
for a cross-linked gel is proportional to the mutual diffusion coefficient
of the polymer gel, and using D’Arcy’s law (equation (15.23)) it is
possible to show that the slowest relaxation time (t1) in a polymer gel is
given by:

t1 ¼
ddeq

p2Ek
ð15:22Þ

Pure shear 

Collagen

Aggrecan 

Figure 15.11 Schematic diagram of collagen and proteoglycans (aggrecan) in carti-
lage that experience a shear deformation
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Time (s)

Figure 15.12 The relaxation function ðGðtÞÞ is time dependent with a typical relaxa-
tion time of the order of 30 minutes for human cartilage. This relaxation time is
thought to be due to the dynamics of the water that moves through the pores of the gel
[Ref.: V.C. Mow, C.S. Proctor andM.A. Kelly, Biomechanics of articular cartilage in
‘Basic Biomechanics of Musculoskeletal System’, Eds M. Nordin and V.H. Frenkel,
1989, Lippincott, Williams and Wilkins]

366 STRUCTURAL BIOMATERIALS



where k is the hydraulic permeability, d is the compressed sample thick-
ness, deq free swelling sample thickness and E is Young’s modulus. The
relaxation time is thus inversely proportional to the ease with which
water can move through the pores of the gel ðkÞ.

D’Arcy’s law

The average fluid velocity ðUÞ through a porous system is linearly
related to the pressure gradient ð@P=@xÞ:

U ¼ �k
@P

@x
ð15:23Þ

where k is the hydraulic permeability and x is the position in the
system.

In tension the mechanical properties of cartilage are strongly aniso-
tropic. Cartilage is stiffer and stronger in the standard direction of load,
i.e. perpendicular to the surface. It exhibits viscoelastic behaviour in
tension, which is attributed to both the internal friction associated
with polymer motion and the flow of the interstitial fluid. A typical
equilibrium tensile stress/strain curve for articular cartilage is shown in
Figure 15.13. For small amounts of strain the collagen molecules are
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Figure 15.13 Typical stress/strain curve for the tensile properties of cartilage
(The schematic behaviour of the collagen fibres under extension is also shown on the
right. The toe region corresponds to the hookean elasticity of the collagen fibres. The
linear region is due to straightening of the fibres which causes the Young’s modulus to
be increased. At high stresses/strains the cartilage fails and the collagen network is
broken.)
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slowly extended and reoriented in the toe region. Further extension
straightens the collagen molecules, and finally the molecules break and
fail at high strains.

15.2 SPIDER SILK

Spider silk is a classic example of a nanostructured polymer composite.
Evolution has designed the silk to provide the spider with a structural
material that is both super tough and strong. The silk can be rapidly
produced by the spider to an external stimulus (e.g. to escape a predator)
and is fabricated inside the spinneret (Figure 15.14). The silk protein is
produced in a nematic liquid crystalline state inside the spider and is
extruded into an orientated solid polymer with remarkable structural
properties. The orientation of polymers is directly related to their tensile
strength, as observedwith synthetic analogues such as Kevlar, which is used
in bullet proof jackets (a synthetic liquid crystalline polymer). The extreme
toughness of spider silk can be observed in the large area contained under
the stress/strain curve (Figure 15.15). This toughness is a key feature of the
silk. It is five times greater than that of Kevlar. The spider can produce a
wide range of silk materials (up to eight) whose mechanical properties are
optimised for their different roles. The different mechanical properties
found for two different types of spider silk are shown in Figure 15.16.
Dragline silk is optimised for the maximum stress before fracture and
catching silk has a high strain before fracture. The range of mechanical
properties offered by spider silks encompasses both rubber-like and extre-
mely rigid behaviour. Viscous silk is used in the glue covered spiral of the
orbweb, and rigid silk is used as a safety linewhen the spidermoves around.

Duct

Extruded
fibre 

Molecular orientation 

Secreted 
protein

Spinneret 

Figure 15.14 Schematic diagram of the structure of spider silk inside the spinneret.
The proteins adopt a nematic liquid crystalline phase as they are extruded through the
spinneret and solidify to form spider silk
[Reprinted with permission from D.P. Knight and F. Vollrath, Phil. Trans. R. Soc.
Lond. B, 357, 155–163, Copyright (2002) Royal Society of London]
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15.3 ELASTIN AND RESILIN

The key function of elastin and resilin is to provide a low stiffness,
highly extensible, efficient elastic energy storage mechanism in ani-
mals. Elastin is a major component of arteries and allows them to
adjust to pressure differences in blood flow. Elastin is frequently used
as a shock absorbing material, e.g. in the necks of cows to cushion the
motions of their heads. Resilin is also used for elastic energy storage in
a series of roles in different animals such as the jumping mechanism in
fleas and the hinges in the wings of dragon flies. In such mechanical
roles a predominantly elastic response is required over a wide range of
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Figure 15.15 Stress/strain curve from a fibre of spider silk. The high toughness of the
spider silk is indicated by the large area under the stress/strain curve
[Reprinted with permission from Gosline, DeMont and Denny, Endeavour, 10, 1,
37–43, Copyright (1986) Elsevier]
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Figure 15.16 Comparison of the mechanical properties of dragline and catching
spiral silk
(Dragline silk has a high stiffness, but is relatively inextensible. The opposite is true
with the catching spiral silk. [Reprinted with permission from J. Gosline, M. Lillie, E.
Carrington et al., Phil. Trans. R. Soc. Lond. B, 357, 121–132,Copyright (2002)Royal
Society of London])
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frequencies and both elastin and resilin are extremely well optimised
elastomers. Structurally this implies flexible proteins strands are held
between cross-links to provide entropic elasticity in these rubbery
proteins (Section 8.3).
The stress–strain curves for elastin and resilin are shown in Figure 15.17.

The resilence ðRÞ is the fraction of work that is stored in a mechanically
stressed system and can be calculated as:

R ¼ e�2pd ð15:24Þ

where d is the damping factor equal to the ratio, d ¼ E0=E00, where E0 is
the storage Young’s modulus and E00 is the dissipative Young’s modulus.
Both resilin and elastin are extremely resilient materials according to this
measure.
A number of structural proteins such as resilin and spider silk can now

be expressed using recombinant DNA technology and these materials
could have a range of biomedical applications, e.g. replacement arteries.
The synthetic processing of the genetically expressed proteins presents a
number of challenges to provide well defined material properties, and
this is currently a bottle neck that restricts the application of the
technology.
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Figure 15.17 Complex Young’s modulus for elastin and resilin as a function of
frequency
(Both samples are predominantly elastic with E0 > E00. Addition of water to elastin
causes a decrease in its moduli. [Reprintedwith permission from J.Gosline,M. Lillie,
E. Carrington et al., Phil. Trans. R. Soc. Lond. B, 357, 121–132, Copyright (2002)
Royal Society of London])
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15.4 BONE

Bone is a protein/inorganic crystalline composite material (Figure 15.18).
Compact bone is similar in structure to nacre and is discussed in
Section 15.6. Cancellous bone has a more porous structure. It is a cellular
solid and is well optimised for strength and weight. At small strains the
linear elastic response of isotropic cancellous bone is due to the elastic
bending of the cell walls (Figure 15.19). At higher strains the cell walls
fail by elastic buckling. This buckling plateau continues until the cell
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Figure 15.18 Schematic diagram of the morphology of bone. Tropocollagen forms a
composite fibrous material with hydroxyapatite, which is incorporated into osteons
and then into bone
[Reprinted with permission from J. Vincent, Structural Biomaterials, Copyright
(1990) Princeton University Press]
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Figure 15.19 Compressive stress-strain curves for cancellous bone at a series of
relative densities ðrrÞ of the open-celled foams
(Compare with Figure 11.9 [Reprinted with permission from L.J. Gibson and M.F.
Ashby, Cellular Solids, Copyright (1997) Cambridge University Press])
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walls meet and touch, which causes a large increase in the stress the
material experiences as the strain increases. The modulus of the material
is very sensitive to its degree of hydration, since the plasticisation of the
adhesive proteins attached to the hydroxyapatite crystallites radically
alters their mechanical properties.

15.5 ADHESIVE PROTEINS

Surface coatings of proteins play a crucial role in a number of biological
scenarios. The proteins that attach molluscs onto rocks are important in
the ship building industry, since molluscs adhere equally well to the hulls
of boats as to the rocks (Figure 15.20). Nature has produced a well

Figure 15.20 Schematic diagram of the process of adhesion of a mussel onto a
surface, e.g. a rock or the hull of a boat
(Adhesive proteins displace water on the surface plaques and are attached to rigid
fibres (distal threads) which connect the mussel securely to the surface [Reprinted
with permission from S.W. Taylor and J.H.Waite in Protein BasedMaterials, Eds K.
McGrath and D. Kaplan, Copyright (1997) Birkhauser Boston Inc.])
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optimised adhesive that acts in a harsh hydrated environment. Often the
primary function of the protein is to act as a sealant so the muscular foot
of the organism can hold itself on to the rock with suction. Moluscs
appear to adhere preferentially to high energy surfaces and the adhesive
proteins are optimised to displace water at these surfaces. Glues are also
thought to occur with the feet of starfish, but with most organisms that
attach to surfaces mixed adhesive mechanisms are in effect. Van der
Waals forces (e.g. Geckos), capillary forces (e.g. frogs) and micro hooks
(e.g. plant burrs) are all thought to be important.

15.6 NACRE AND MINERAL COMPOSITES

Nacre and bone are both fibrous composite materials with hard nano-
crystallites embedded in a compliant protein matrix (Figure 15.21). The
stress distribution along the length of mineral crystals is assumed linear,
so the maximum ðsmÞ and average (sm) tensile stress in the mineral
component can be written as:

sm ¼ rtp ð15:25Þ

and:

sm ¼ rtp=2 ð15:26Þ

Figure 15.21 Schematic diagram of a generic biocomposite that occurs in materials
such as cortical bone and nacre
((a) The mineral/protein composite is placed under stress. (b) The tensile stress is
predominantly experiencedby themineral component and theprotein shearsunder the
stress. [Ref.: B. Ji and H. Gao, Journal of Mechanics and Physics of Solids, 2004, 52,
1963–1990])
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where r ¼ L=h is the aspect ratio of mineral platelets (length L and width
h) and tp is the shear stress of the proteins. It is assumed that the protein
does not carry a tensile load and the effective tensile stress (s) in the
nanocrystalline composite is given by:

s ¼ fsm ð15:27Þ

where f is the volume fraction of the mineral and sm is the average stress
in the mineral component. The effective strain (e) in the composite when
the mixture is stressed is the sum of that due to both the protein and
mineral components:

e ¼ Dm þ 2ephð1� fÞ=f
L

ð15:28Þ

where h is the thickness and L is the length of the platelets. Dm and ep are
the elongation of the mineral platelets and the shear strain of the proteins
respectively. The elongation of the mineral platelets (Dm) is given by:

Dm ¼ smL

2Em
ð15:29Þ

where Em is the Young’s modulus of the mineral component. The shear
strain in the protein ðepÞ is related to the shear modulus of the protein
ðGpÞ and the shear stress ðtpÞ that the protein experiences:

ep ¼
tp

Gp
ð15:30Þ

The total effective Young’s modulus ðEÞ of the biocomposite is therefore:

1

E
¼ 4ð1� fÞ

Gpf
2r2

þ 1

fEm
ð15:31Þ

and it is concluded that reasonably high Young’s moduli are possible
with such biocomposites.
In addition to the rigidity, the toughness of biocomposites is very well

optimised in nacres. Nanoscale mineral inclusions have less flaws than
the macroscopic equivalents and their strength approachs that of the
atomic bonds between the crystalline atoms. The viscoelasticity of the
proteins that adhere to the crystallites helps the material to dissipate
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fracture energy, which ensures that large cracks do not occur in their
mineral composites. Biocomposites achieve a high stiffness due to the
large aspect ratio of their crystallite inclusions and the nanotextured
staggered alignment of the nanocrystallites.
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TUTORIAL QUESTIONS

15.1) Estimate the shear modulus of an adhesive protein in nacre if
the Young’s modulus of a shell is 12.4MPa, the crystalline
volume fraction is 0.95, the aspect ratio of the crystallites is
10 and the shear modulus of the crystallites is 3 GPa.

15.2) Aman picks up a piano and the sections of cartilage in his knees
are compressed from 1 cm to 0.95 cm. What is the relaxation
time of the cartilage gels once the weight is removed if the
Young’s modulus of cartilage is 0:78� 106 Pa and the hydraulic
permeability is 6� 10�13m4N�1s�1?
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16
Phase Behaviour of DNA

The in vivo behaviour of DNA presents a wide range of fascinating
phenomena with respect to the molecule’s structure, dynamics, and
phase transitions.

16.1 CHROMATIN – NATURALLY PACKAGED
DNA CHAINS

The method through which DNA is packaged into the nucleus of a cell
has posed evolution an interesting problem. In a human cell the DNA is a
long narrow thread 1.5 m in length and 2 nm in diameter which needs to
be accommodated into a box whose volume is only a few microns cubed.
The solution that nature has evolved is to have the DNA stored in a
compacted form with the chains wrapped around proteins spools (his-
tones); much like cotton is wound around bobbins in needle work. The
DNA spools are then assembled into fibrous aggregates which are called
chromosomes.

The first strong experimental evidence for histones was presented by
Hewish and Burgoyne in 1973. They found that the majority of chro-
mosomal DNA, when digested by a DNA cutting enzyme, formed small
fragments of regular size 200, 400 and 600 base pairs (using gel electro-
phoresis). The explanation for this phenomenon was that the DNA
binding proteins (histones) are arranged in a regular manner and only
DNA between the histones could be cut by the enzymes which sets the
fundamental length of the fragments.

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh
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The method by which the nucleosomes associate with DNA chains
poses many questions and the physicochemical processes driving the self-
assembly of the histones on to a specific sequence of base pairs are still
incompletely understood. A constant length of � 150 base pairs of DNA
is thought to be associated with a single histone (Figure 16.1).

Wide angle X-ray and neutron diffraction experiments have examined
the specific interactions at the molecular level between small fragments of
DNA and histone proteins (eight histone protein subunits are required to
form a single histone bobbin). Accurate molecular models have thus been
made of small crystalline sections of DNA with histone octamers
(Figure 16.2). Unfortunately, these techniques are not feasible with non-
crystalline samples such as complete chromosomal fibres. Larger lengths
of DNA chain could have markedly different conformations with the
histones due to their altered elasticity, torsional resistance and counterion
condensation effects. Separate experimental evidence is therefore required.

Figure16.1 Schematic diagram of the specific association of the histone octamer with
sections of DNA with well defined lengths

Figure 16.2 Complexation of a histone octamer (eight subunits) with a small DNA
chain fragment. The structure is basedon both wideangle X-ray and neutron scattering
experiments on crystalline chromosomal fragments
[Reprinted with permission from G. Arents and E.N. Moudrianakis, Proc. Nat. Acad.
Sci. USA, 90, 10489–10493, Copyright (1993) National Academy of Sciences]
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Molecular models of small-angle X-ray and neutron scattering data
have extended the resolution of histone structures when combined with
longer DNA chains in solution to much larger length scales (nm)
(Figure 16.3) Careful modelling of the liquid state scattering data is
required, but good evidence for compact and extended forms of the
complexes has been found, dependent on the amount of salt in the
solutions. This indicates that there is a process of electrostatic binding
between the negatively charged DNA and the positively charged protein
spools. However, these scattering techniques only provide general features
of the chromosomal structure and little detailed information is available.

There still exist a number of questions relating to the ambient large scale
structure (10 nm) of chromatin and the self-assembly of this morphology,
due to the non-crystallinity and aperiodicity of the samples. Valuable
information has been produced by electron microscopy, a technique that
under suitable conditions can provide Angstrom level resolution of aper-
iodic materials. Tomographic reconstruction of transmission electron
micrographs led Aron Klug and co-workers to propose the ‘beads on a
string model’ in 1977 (Figure 16.4). This model is the result of tomographic
reconstruction of a stack of transmission electron microscopy images of
freeze fractured chromosomal fibres that contain a staining agent, which
provides strong contrast for electron scattering. The mathematical recon-
struction technique implemented to analyse the images requires careful
handling to produce dependable results; the inclusion of a staining agent
and the process of freeze fracture during sample preparation could both
have radically affected the morphology of the chromosomal fibres. Thus
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Figure 16.3 (a) Small-angle neutron scattering data (scattering intensity versus
momentum transfer) from histone/DNA complexes allows (b) the solution state
structure of histone/DNA complexes to be modelled with and without salt. The radial
distribution function ðPðrÞÞ is calculated for the DNA/histone complex at two salt
concentrations. A much more expanded structure is observed at high salt concentra-
tions as the DNA chains start to unbind from the histone octamers (the electrostatic
binding force decreases due to the increased screening)
[Ref.: S. Mangenot, A. Leforestier, P. Vachette et al., Biophysical Journal, 2002, 82,
345–356]
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there continues to be a degree of controversy in the field of chromosomal
structural analysis with respect to the orientation of the histones along the
axis of the chromosomal fibre, but all the current evidence points to the
existence of tightly bundled fibres formed from beads on a string and that
these fibres occur in vivo in the nucleus.

In contrast to human DNA, the length of bacterial DNA is much smaller
and is not associated with histones. However, to make the chains fit inside
the cell nucleus compaction is still required. Over twists are introduced
into the circular DNA chains and the chains form compact plectonomic
structures (Chapter 8). Circular DNA associated with topology preserving
proteins are said to be ‘restrained’. Nicks in ‘restrained’ DNA do not cause
the super coil to unwind into the relaxed state and can be repaired with no
loss in the degree of winding. The torsional energy stored in a restrained
duplex DNA chain is therefore conserved.

16.2 DNA COMPACTION – AN EXAMPLE OF
POLYELECTROLYTE COMPLEXATION

Many diseases have a genetic origin, the most important example being
cancer in its many different forms. A possible strategy for treating these
conditions is to replace the malfunctioning DNA in malignant cells with
a benign substitute. An obstacle to this strategy of gene therapy is how to
transfer the material to the nucleus of a cell without it being destroyed by

Histone 
octamer 

DNA chain 

Figure 16.4 Model for chromosomal fibres based on the tomographic reconstruction
of transmission electron microscopy images from freeze fractured fibres
(The chromosomes consist of histone octamers assembled onto a long thread of DNA,
in a beads on a string manner [Ref.: F. Thoma, T. Koller and A. Klug, Journal of Cell
Biology, 1979, 83, 403–427])
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the cell’s defence mechanisms. One reasonably successful method of
transferring the DNA is to combine it with an oppositely charged poly-
electrolyte or a virus (the drawback is the virus can itself prove to be
pathogenic) to allow transfer through the cell wall. These questions on
DNA transvection, combined with more fundamental problems concern-
ing the natural functioning of chromosomes, provide motivation for the
understanding of DNA compaction with oppositely charged colloidal
spheres.

The persistence length of a DNA chain is about 500 Å under standard
physiological conditions. The persistence length of the uncomplexed
DNA can be calculated theoretically and is thought to be a combination
of the effects of counterion condensation, the electrostatic repulsion of
liked charged segments and the intrinsic rigidity of the polymer back-
bone (the helix acts as an elastic rod). From Section 9.9 the total per-
sistence length ðlTÞ of a charged polymer is given by equation (9.88). The
charge density (Q) along the chain is limited by charge condensation. The
distance between the charged phosphate groups along the backbone of a
DNA chain is 1.7 Å, the Bjerrum length is 7 Å at 20�C and the effective
charge fraction (j) in the Manning charge condensation model (equation
(9.83)) is therefore 1.7/7 ¼ 0.24. The OSF (Odjik, Skolnick and Fixman)
calculation given by equation (9.88) provides the correct order of mag-
nitude for the persistence length when compared with experiment. The
total persistence length can be separated into the contribution of the
intrinsic persistence length (LP ¼ 30 nm) and the charge repulsion of
the phosphate groups. The charged contribution to the persistence length
is therefore 20 nm at a 0.1 M monovalent salt concentration.

The effect of chirality on the resultant chromosomal morphology is a
further question that should be considered with twist storing polymers
such as DNA. An additional term can be introduced into the free energy
of semi-flexible chains (equation (8.19)) that corresponds to the propen-
sity for torsional rotation. Theoretical studies imply that the chirality of
nucleosome fibres is due to the specific histone/DNA potential and not
due to the intrinsic twist/bend interaction of the DNA fibres, although
chirality does provide a small contribution to the fluctuations and elas-
ticity of the naked uncomplexed DNA chains.

Chromosomal DNA is wrapped around the cylindrical histone core on
a helical path of a diameter (D) of 110 Å (Figure 16.2). This is smaller
than the intrinsic persistence length of the DNA chain, so substantial
elastic energy is stored upon complexation. The origin of the attraction
between DNA and the histone is electrostatic but can be considered short
range at physiological salt concentrations. The Debye screening length
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for the electrostatic interaction at physiological salt concentration is
around 10 Å and is a first approximation for the length of the DNA/
histone electrostatic interaction. The binding energy per unit length of
the histone can be estimated through the assumption that the wrapped
state represents a dynamic equilibrium in which wrapped portions of the
DNA strand spend part of their time in the dissociated state. With this
assumption, the binding energy (l) of a DNA duplex to a histone is found
to be 1–2 kT per 10 base pairs. Association experiments between DNA
and histones find an a thermal first order phase transition as a function of
the DNA histone interaction strength from a wrapped state to a disso-
ciated state consistent with the idea of an all-or-none wrapping transi-
tion, e.g. changing the salt concentration induces a first order
unwrapping transition. This implies that the powerful thermodynamics
ideas that determine the behaviour of phase transitions (Chapter 3) can
be applied to the complexation of DNA.

A phase diagram for the complexation between an idealised posi-
tively charged sphere and a DNA chain in aqueous solution is shown in
Figure 16.5. DNA chains can be touching, have point contacts, or be
wrapped onto the charged spheres. The particular phase adopted
depends on the electrostatic screening length and the amount of charge
on the sphere. Molecular dynamics simulations observe similar phe-
nomena and the effect of the curvature of the spheres can be probed. A
wrapping transition is predicted as the diameter of the positive sphere is
increased using both analytic theory and Monte Carlo simulation.

Figure 16.5 Theoretical phase diagram for the statistics of single DNA chains in
contact with oppositely charged spheres
(The diagram shows the state of the DNA/sphere complexes as a function of the charge
per sphere ðZÞ and the Debye screening length (k�1) of the solution. It is assumed that
the process of binding is purely electrostatic and there is no chemical specificity. First
order phase transitions are predicted between point contact, touching, and wrapped
states. D is the diameter of the colloid [Reprinted with permission from R.R. Netz, J.F.
Joanny, Macromolecules, 32, 9026–9040, Copyright (1999) American Chemical
Society])
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A novel counter intuitive physical phenomenon that occurs in poly-
electrolyte complexation is that of overcharging. It can occur with both
the complexation of colloids (e.g. histones, amine derivatised spheres
etc.) with oppositely charged polymers (e.g. DNA, polystyrene sul-
phonate etc.) and polyelectrolytes with oppositely charged planar sur-
faces. More polyelectrolyte is adsorbed than required for simple charge
neutralisation and the charge on the adsorbing surface is reversed. With
DNA–histone complexes the charge on the DNA greatly out weighs that
of the histone. This results in chromosmal complexes being strongly
negatively charged. The thermodynamic origin of the effect is thought to
be related to counterion condensation. The additional contribution to
the electrostatic energy of the overcharged complex to the free energy of
the system is compensated for by the additional entropy of the released
counterions.

16.3 FACILITATED DIFFUSION

There are a range of enzymes that bind to DNA. These include enzymes
that initiate transcription, RNA polymerase and endonucleases that
chemically modify the DNA sequence. The rates of reaction for the
DNA binding proteins are significantly faster than would be expected
from calculations that assume three dimensional diffusion to reaction
(Section 5.5). Indeed, with the classic example of the lac repressor the
degree of association of the repressor protein for the DNA chain is
underestimated by a factor of a hundred. A number of models of
facilitated diffusion have been proposed to account for this shortfall.
The three primary scenarios for the interaction between the DNA and the
lac protein are thought to be sliding of the protein along the DNA,
hopping of the protein from site to site along the DNA chain and
intersegmental transfer of the proteins between multiple binding sites
(Figure 16.6). An important clue in accounting for the increased binding
rates is that the efficiency of a collision as a result of diffusion is increased
when the number of dimensions in which the diffusion occurs is reduced.
The protein can be compelled to execute a one dimensional random walk
along a DNA chain and this greatly decreases the time taken to search the
whole sequence for the correct binding site. Furthermore, the probability
of a collision between the protein and the DNA is much higher when the
protein is confined inside the DNA coil.

From the Stoke’s–Einstein equation (5.11) the diffusion coefficient
for a small globular enzyme (diameter 5 nm) in three dimensions is
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approximately 108 nm2s�1. It is assumed that the enzyme diffuses in
three dimensions before the reaction and the DNA chain moves much
more slowly that the associating protein due to its size. The association
rate constant (k, equation (5.54)) is given by:

k ¼ 4pDa ð16:1Þ

where a is the size of the binding site on the protein and D is the
diffusion coefficient for the protein. Typically the size of the binding
site (a) is much smaller than the size of the protein, a=d � 0:1, where d
is the diameter of the protein. Using equation (16.1) the value of the
rate constant ðkÞ is found to be 108 Ms�1. However experimentally the
Lac repressor is found to have a rate constant greater than
1 � 1010 Ms�1; the mechanism of facilitated diffusion is invoked to
explain the shortfall.

Both sliding of the protein along the DNA and ‘hopping’ through three
dimensions would increase the association rate in models for facilitated
diffusion. The combined effect of the two processes is used for a quanti-
tative explanation of the shortfall in association constants. The prob-
ability that a protein sliding on a DNA chain stays on the chain after N
steps is:

ð1 � PÞN ¼ eN lnð1�PÞ ð16:2Þ

where P is the probability of dissociation and the equality is from a
simple mathematical manipulation. The process of protein dissociation is

(a) Sliding

(b) Hopping (c) Intersegmental transfer

Figure 16.6 Schematic diagram of the three principle models for facilitated diffusion
of a protein with respect to a DNA chain
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another example of a Poisson decay process (Section 5.3) where the
probability is proportional to e�m and m is the mean. The expectation
value of one decay event is the probability of the Poisson process when
the mean equals one ðm ¼ 1Þ and the number of steps over which sliding
ðNÞ can occur is therefore given by:

N ¼ �1

lnð1 � PÞ ð16:3Þ

In the case of a very low probability of dissociation:

P � 1 lnð1 � PÞ � �P ð16:4Þ

And, therefore:

N ¼ 1=P ð16:5Þ

The characteristic sliding length ðlslÞ explored by one dimensional diffu-
sive sliding ðhl2sli ¼ 2 h2N, equation (5.7)) is then:

lsl ¼
ffiffiffi
2

p
hffiffiffi

P
p ð16:6Þ

where h is the base pair step sliding length (Figure 16.7). From the
definition of diffusion in one dimension (equation (5.42)) the characteristic

DNA chain 
Sliding length (lsl)

Non-
specific
binding

Dissociation 

Figure 16.7 The definition of the sliding length ðlslÞ used in the process of
facilitated diffusion. The protein associates with the DNA chain by non-specific
binding, it moves the sliding length along the chain and then dissociates from the
chain
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time ðtslÞ for exploring the sliding length ðlslÞ is:

tsl ¼
l2sl
D1

ð16:7Þ

Therefore, it is concluded that very small dissociation constants ðPÞ are
required for long sliding lengths (lsl, equation (16.6)), which conse-
quently allow significant increases to occur in the reaction rates (equa-
tion (16.7)). The combined effect of both hopping and sliding motions
(Figure 16.8) on the reaction rates can be included in a model and the
prediction for the total reaction rate per unit length ðkÞ is given by:

k ¼ Da
a

lsl
þ D

D1
aLlslc

� ��1

ð16:8Þ

where L is the total contour length of the DNA chain, a is the size of
the binding site, D is the diffusion coefficient in three dimensions of the
binding proteins, D1 is the diffusion coefficient related to sliding of the
proteins along the DNA chain and c is the concentration of the target
DNA. The non-monotonic behaviour of the rate constant on the ionic
strength predicted theoretically by such models has been observed
experimentally and is a major success of the theory.
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Figure 16.8 The predicted association constants of a protein ðk=DaÞ with a DNA
chain as a function of the sliding length ðlslÞ
(Three possible solutions are shown corresponding to low target concentrations and
high target concentrations. The optimal sliding length depends on the target con-
centration. The sliding length is rescaled by the diameter of the binding site (a) in
the plot [Ref.: S.E. Halford and J.F. Marko, Nucleic Acids Research, 2004, 32, 10,
3040–3052])
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C.R. Calladine and H.R. Drew, Understanding DNA: The Molecules
and How it Works, Academic Press, 1997. Extremely useful introduc-
tory account of the behaviour of DNA from a structural engineering
point of view. Requires a minimum of mathematical ability.

S.E. Halford and J.F. Marko, How do site specific DNA binding proteins
find their targets?, Nucleic Acid Research, 32, 10, 3040–3052. A clear
explanation of the processes involved in DNA binding.
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Appendix

PHYSICAL CONSTANTS

Boltzmann’s constant kB ¼ 1:38 � 10�23 JK�1

Ideal gas constant R ¼ NAkB ¼ 8:314 J=molK
Thermal energy at 295 K is 4:1 pNnm ¼ 4:1 � 10�21 J
Electronic charge e ¼ 1:6 � 10�19 Coul
Permittivity of free space e0 ¼ 8:9 � 10�12 Coul2N�1m2

Permittivity of water e � 80 e0

Avogadro’s number NA ¼ 6 � 1023

Bjerrum length (room temperature) 7 Å
Debye screening length
1:1 electrolytes e.g. NaCl k�1 ¼ 0:304 nmffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½NaCl�
p

2:1 electrolytes e.g. CaCl2 k�1 ¼ 0:176 nmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½CaCl2�

p
Viscosity of water h ¼ 10�3 Pa:s
Planck’s constant h ¼ 6:626 � 10�34 Js
Speed of light c ¼ 2:998 � 108 ms�1

Units of pressure 1 atmosphere ¼ 1:01 � 105 Pa

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd





Answers to Tutorial Questions

CHAPTER 1

1.1)
The length of the different forms of helix are as follows

lengthA ¼ 4� 108

660
� 2:6 Å ¼ 158mm

lengthB ¼ 4� 108

660
� 3:4 Å ¼ 206mm

lengthZ ¼ 4� 108

660
� 3:7 Å ¼ 224mm

1.2)
The membrane has a fluid-like bilayer structure. The protein will arrange
itself through the membrane, so that its hydrophobic and hydrophilic
regions are correctly positioned. See Figure 6.3.

Applied Biophysics: A Molecular Approach for Physical Scientists Tom A. Waigh

# 2007 John Wiley & Sons, Ltd



1.3)
The pH can be calculated using the definition of the equilibrium con-
stant (Ka)

Ka ¼
Hþ� �

Arg�½ �
HArg½ �

Hþ� �
� Arg�½ �

Ka �
Hþ� �2
HArg½ �

Hþ� �
¼ Ka

1
2 HArg½ �12

pH ¼ 1
2 pKa � 1

2 log HArg½ � ¼ 6:60

1.4)
The reader is referred to a good biochemistry textbook. Metals occur in
small quantities in a wide range of biological molecules, e.g.:

� Iron in haemoglobin (oxygen transport) and ferritin (storage)
� Magnesium – hexokinases (ATP production) and chlorophyll
(green plant photosynthesis)

� Calcium – prothrombin (blood clots) and troponin (muscular
contraction)

CHAPTER 2

2.1)
Need to differentiate the potential with respect to the displacement to
give the force:

F rð Þ ¼ e
r0
r

� ��13
�12ð Þr0 � 2er0

r0
r

� �7
�6ð Þ

F rð Þ ¼ �12er0
r0
r

� ��13
þ12er0

r0
r

� �7

The attractive component of the force is negligible when r ¼ r0=2

Fðr0=2Þ ¼ 4:06� 10�25 N
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2.2)
Formulae for the quick calculation of the Debye screening length are
included in the Appendix.

For monovalent salts 0:001M k�1 ¼ 0:304ffiffiffiffiffiffiffiffiffiffiffiffi
0:001

p ¼ 9:6 nm

Similarly 0:01M k�1 ¼ 3 nm
0:1M k�1 ¼ 1 nm
1M k�1 ¼ 0:3 nm

The concentration of ions from spontaneous dissociation in pure
water is:

½Hþ� ¼ ½OH�� ¼ 1� 10�7 M

k�1 ¼ 0:304=½Hþ�
Thus the screening length of pure water is 3� 106 nm, i.e. 3 mm, due

to spontaneous dissociation! The length scale of the electrostatic inter-
action between molecules in water can thus be a million times bigger
than their diameter.

For divalent salts 0:001M k�1 ¼ 0:176ffiffiffiffiffiffiffiffiffiffiffiffi
0:001

p ¼ 5:6nm

Similarly 0:01M k�1 ¼ 1:76 nm
0:1M k�1 ¼ 0:56 nm
1M k�1 ¼ 0:176nm

A rough estimate for the equivalent salt concentration for physiologi-
cal conditions is 0.1M monovalent salt, and thus k�1 � 1nm.

2.3)
For a sphere the potential follows the form c rð Þ � 1=r whereas for a
cylinder c rð Þ � lnðrÞ. The electrostatic potential thus decreases more
quickly with distance (r) from a sphere. Close to a plane surface
c rð Þ � r. The laws for the potential can all be derived from Gauss’s law.

2.4)
For the steric interaction the potential takes the form:

w rð Þ � e�r=Rg

for the screened electrostatic interaction the potential takes the form:

v rð Þ � e�kr

Assuming the prefactors are of a similar order of magnitude the steric
forces become significant when k�1 < Rg and rsep < Rg, where rsep is the
separation distance
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CHAPTER 3

3.1)
The cooperativity of the phase transition increases with the length of the
helix and thus tends to sharpen the DSC endotherm, i.e. the helix–coil
transition occurs over a narrower range of temperatures.

3.2)
Hysteresis behaviour has been observed for long polymeric chains as
the quality of the solvent is reduced and the chain size is increased, e.g.
the size of the globular chains depends on the route by which they are
globularised.

3.3)
The enthalpy change is:

DHm ¼ 2gslTm

r� DT
¼ 2� 1:2� 10�3 � 323

50� 10�9 � 1
¼ 15MJkg

CHAPTER 4

4.1)
P2 is the orientational order parameter, c is the lamellar order parameter
and h is the helical order parameter. During heating it is possible that:

(Wet self-assembled) P2 >0 c >0 h>0 ! (Gelatinised) P2 ¼ 0
c ¼ 0 h ¼ 0

(Wet self-assembled) P2 >0 c >0 h >0 ! P2 >0 c ¼ 0
h >0 ! (Gelatinised) P2 ¼ 0 c ¼ 0 h ¼ 0 as shown in the figure

Also the state of self-assembly can be modified through the addition of
water:

(Dry unassembled) P2 > 0 c ¼ 0 h > 0 ! (Wet self-assembled)
P2 > 0 c > 0 h > 0

Therefore there is a third possibility for heat treatment:

(Dry unassembled) P2 > 0 c ¼ 0 h > 0! (Gelatinised) P2 ¼ 0
c ¼ 0 h ¼ 0
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The process of staling can also be parameterised in a similar manner:
(Gelatinised)P2 ¼ 0 c ¼ 0 h ¼ 0 ! (Stale) P2 ¼ 0 c ¼ 0 h > 0

Steric constraints introduce a strong coupling between the orientation
of the mesogens and the degree of mesogen helicity.

4.2)
The orientational order parameter can be calculated as:

cos 2u
� �

¼

Ðp
0

cos2 uP uð Þdu

Ðp
0

P uð Þdu

¼ 2

p

ð3p=4

p=4

cos 2udu ¼ 1

p

ð3p=4

p=4

1þ cos 2udu ¼ 1

2

P2 cos uð Þ ¼ 3
2 cos

2u � 1
2 ¼

1
4

4.3)
The Onsager calculation for the nematic/isotropic transition gives:

f < 3:34
D

L
¼ 0:167 i:e: 16:7% volume fraction

4.4)
The entropy of the side-chains is antagonistic to the entropy of the
backbone. This increases the rigidity of the back bone chain and can
induce a nematic order parameter in the backbone.

CHAPTER 5

5.1)

Re ¼ 2vLr

h
¼ 2� 10�1 � 10�3 � 1:3

1:8� 10�5
¼ 14:4

The Reynold’s number is not small, so inertial forces could be quite
considerable.
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5.2)
From the definition of 1-dimensional diffusion:

x2
� �

¼ 2Dt

Rearranging for the characteristic time gives:

t ¼
x2
� �
2D

¼
2:7� 10�3
� 	2
2� 1:35� 10�9

¼ 2:7� 103 s

This mechanism is far too slow.

5.3)
The rotational diffusion coefficient ðDuÞ is:

Du ¼
kT

8pha3
¼ 4:1� 10�21

8� 3:142� 0:001� 2� 10�6ð Þ2
¼ 2:04� 10�2 rad s�1

u2
� �

¼ 2Dut

So the characteristic time for fluctuations of 90�ðp=2Þ is t ¼ 60 seconds

In 3 dimensions:

hr2i ¼ 6Dt

hu2i ¼ 6Dutu

And:

ð2pÞ2 ¼ 6Dutu

ð2paÞ2 ¼ 6Dt

Therefore substituting expressions for Du and D we have:

tu ¼ t 43

tu is the characteristic time for rotation through 2pa, and t is the time for
translation by 2pa.
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5.4)
For the motile particle the diffusion coefficient ðDÞ is:

D ¼ v2t

3 1� að Þ

The average value of the cosine (a) is 11
12, i.e. there is 23.6� between

successive runs.

CHAPTER 6

6.1)

a ¼ 4pR2g

kT
¼

4� 3:142� 2� 10�9
� 	2�20� 10�3

4:1� 10�21
¼ 245

CMC � e�a=N
1
3 ¼ e�245= 10000ð Þ

1
3 ¼ 1:15� 10�5 M

6.2)
The critical concentration (cc) for self-assembly is:

cc ¼ K ¼ eDG0=kT ¼ 0:01M

The average degree of filament polymerisation ðnavÞ is:

nav ¼
ffiffiffiffi
ct
K

r
¼ 10

The average filament length ðlav ¼ nav �monomer lengthÞ is:

lav ¼ 10� 5 ¼ 50nm

Fairly short filaments are formed even at high monomer concentrations.
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CHAPTER 7

7.1)
The contact angle can be calculated from the Young–Laplace equation:

gsg ¼ gsl þ g lg cos u

18 ¼ 73:2þ 72 cos u

u ¼ 140�

The wetting coefficient

k ¼ 18� 73:2

72
¼ �0:77

The surface is unwetted which provides a useful self-cleaning mechan-
ism for the lotus leaf.

CHAPTER 8

8.1)
The cross-linking density ðvÞ is linearly related to the Young’s modulus
ðEÞ for flexible rubbery networks:

E ¼ 3kTv

For elastin n ¼ 1� 106

3� 4:1� 10�21
¼ 8:13� 1025 m�3

For collagen n ¼ 1� 109

3� 4:1� 10�21
¼ 8:13� 1028 m�3

The collagen chains are semi-flexible and are thus not well described by a
purely flexible model for the elasticity.

8.2)

Ethermal ¼ kT

Ebend ¼ Ethermal
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therefore

kT ¼
kTlp u2

� �
2 s

u2
� �

¼ 2:3� 10�4 rads

u2
� �1

2 ¼ 2:7�

The mean square angular displacement of the filament is therefore 2.7�.

8.3)
The length of the titin molecule trapped in the pore is:

Rk � Na
Db

a


 �� 2
3
¼ 600nm

When stretched to 750 nm the tension blob size is smaller than the size
of the pore and the conformation (and elasticity) of the chain is unaltered
by the size of the pore.

8.4)
The free energy of an ideal chain is:

FðRÞ ¼ �T lnZNðRÞ ¼ constþ 3TR2

2Nl2

If the chain now experiences an extending force ðf Þ on both ends then:

f ¼ @FðRÞ
@R

¼ 3T

Ll
R

The polymer in a good solvent obeys Hooke’s law.

In bad solvent there is a strong increase in the force measured by the
traps (DNA � 0.3 kT/bp). An unwinding globule coil transition is now
possible and will be observed in the force/distance curves.

FF
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8.5)
The size of the DNA chain according to the worm-like chain model is:

R2
� �1

2¼
ffiffiffiffiffiffiffiffiffiffi
2Llp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 60� 10�6 � 450� 10�10ð Þ

q
¼ 2:32mm

CHAPTER 9

9.1)
The ability of the amine group to dissociate is reduced due to the
interaction between neighbouring groups along the polylysine chain
(there is an energetic penalty).

9.2)

j ¼ lb
b
¼ 7

5

The effective charge fraction of the polylysine chain predicted by the
Manning model is therefore 1=j ¼ 5=7.

9.3)
The total persistence length ðlpÞ in the OSF model is equal to the intrinsic
component added to the electrostatic component.

lT ¼ lp þ
lB

4k2A2

The second term is the electrostatic contribution:

A ¼ a=f ¼ 1=0:5 ¼ 2 nm

lb ¼ 0:7nm

Thus le ¼ 0:7nm

9.4)
Critical properties of the material are:
Samples are extremely hydrophilic and swell many times their dry size
(polyelectrolyte gels can be less than 1% polymer).
The materials are charged (reduces adhesion) and biocompatible.
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Assuming all the charges on the polymer chain dissociate the osmotic
pressure ðpÞ is proportional to the number of charges per unit volume
ðnÞ:

p ¼ nkT

The number of charged units is n ¼ 0:001� 6� 1023 ¼ 6� 1020=dm3.
Thus the osmotic pressure is 0.404 J dm3.
The neutral polymer contribution is kT per blob or, more naively, kT

per chain.
It is much smaller than the contribution of the counterions.

9.5)
The charged blob size ðDÞ is given as:

D � as
2
3u�

1
3

where a is the monomer length, s is the number of monomers between
charged units (¼ 1 fully charged) and u is Bjerrum length.

u ¼ 7=3:6 Å
a ¼ peptide step length ¼ 3:6 Å
D ¼ 2:9 Å for fully charged blobs (fully elongated)
D ¼ 13:4 Å for weakly charged blobs ðs ¼ 10Þ

The chain forms a semi-flexible rod of blobs:

where N is the number of monomers in the chain, g is the number of
monomers in a blob and D is the size of a blob.

CHAPTER 10

10.1)
The line tension is given by:

l ¼ tR� ¼ 2:6� 10�9 � 0:03 ¼ 8� 10�11 Jm�1
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10.2)
The axial and hoop stresses are given by:

saxial ¼
rP

2h
¼ 1� 105 � 1� 10�6

2� 10�9
¼ 0:5� 108 Pa

shoop ¼
rP

h
¼ 1� 108 Pa

10.3)
For the persistence length:

jp1 � be10p

jp2 � be20p

The ratio of the two persistence lengths is therefore:

jp1

jp2
¼ e10p

For the exponent measured with X-rays:

hm1 � BKð Þ�
1
2

hm2 � B2Kð Þ�
1
2

The ratio of the two exponents is therefore:

hm1=hm2 ¼
ffiffiffi
2

p

10.4)

R2
g2

R2
g1

¼ L2
c

L
4
3
c

¼ L
2
3
c

Rg2

Rg1
¼ L

1
3
c

A1

A2
¼ L3

c

L2
c

A1

A2
¼ Lc
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CHAPTER 11

11.1)
In the parallel arrangement the Young’s modulus of the mixture ðEmÞ is
given by:

Em ¼ Ecfc þ Ea 1� fcð Þ ¼ 50� 109 � 0:9þ 50� 106 � 0:1

Em � 45GPa

In the perpendicular arrangement, Em is given by:

Em ¼ EcEa

Ea 1� fð Þ þ Ecf
¼ 55MPa

Ratio of the Young’s moduli is 818:1 parallel:perpendicular

11.2)
For the unfilled foam:

Ef �
t

a

� �4
E

E ¼ 9GPa, a ¼ 20mm, t ¼ 1mm

Therefore:

Ef �
1

20


 �4

9GPa ¼ 0:56MPa

For the filled foam:

Ef �
1

20


 �2

9GPa ¼ 22:5MPa
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CHAPTER 12

12.1)

Shear Rate ¼ 1� 10�2=10� 10�6 ¼ 103 s�1

Pe ¼ 6pha3 _g

kT
¼ 6p� 0:001� 10�6

� 	3 103

4:1� 10�21
¼ 4:6� 103

The experiment is in the regime of high Peclet number dynamics
The shear rate could therefore be substantially affecting the micro-

structure.

12.2)
For the Maxwell model:

h ¼ tG

The characteristic relaxation time is therefore:

t ¼ 106 s � 11:6days

12.3)
The viscosity is given by the Einstein relationship:

h ¼ hb 1þ 5

2
w


 �
¼ 10�3 1þ 5

2
0:02


 �
¼ 1:05� 10�3 Pas

CHAPTER 13

13.1)
Use the Stokes force or stochastic Langevin analysis to calibrate the
apparatus.
From the figure the cornering frequency ðfcÞ is given by:

fc � 500Hz

g ¼ 6phr ¼ 1:88� 10�8
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The trap stiffness ðkxÞ is therefore:

kx ¼ 2pfcg ¼ 5:91� 10�5 Nm�1

13.2)
A corresponds to a predominantly viscous material MSD� t1.
B corresponds to a viscoelastic material, with a characteristic sub-

diffusive behaviour for the MSDs of the probe particles hDr2ðtÞi � ta,
a < 1. Static errors tend to induce a plateau in the MSDs when the value
of the MSD is comparable with the square of the static displacement
error. Normally that corresponds to the short time limit. Thus fluid B
could be a purely viscous fluid if the static errors have not been properly
accounted for.

13.3)
Using equation (13.45) the velocity of electrophoresis is:

v � qE

3hN

There are 1.7 Å between phosphate groups on the DNA:

q ¼ 1=1:7 e Å
�1

N ¼ 106=300

v ¼ ð1=1:7Þ � 1:6� 10�19 � 1010 � 2� 100

3� 0:002� 106=300
¼ 9:4� 10�9 m=s

Decreasing the size of the chains by a factor of 10, should increase the
velocity by a factor of 10.

13.4)
From equation (13.35) with vc ¼ 0 we have the required expression for
the power spectral density with no trapping force:

Dr2 vð Þ
� �

¼ kT

pgv2
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For a power law fluid, the frequency response is modified:

Dr2 vð Þ
� �

� 1

v2�a

where a is a positive constant and the MSD � ta.

CHAPTER 14

14.1)
The two critical micelle concentrations are defined as:

cmþcrit ¼
kþoff
kþon

cm�crit ¼
k�off
k�on

(Check the table using these equations.)

The treadmilling concentration is given by:

cmtm ¼
kþoff þ k�off
kþon þ k�on

ATP actin cmtm ¼ 0:13mM
ADP actin cmtm ¼ 1:88mM

CHAPTER 15

15.1)
Using equation (15.31) gives Eprotein ¼ 1MPa.

15.2)
The characteristic time for stress relaxation dependent on the motion of
interstitial water is:

t1 ¼
ddeq

p2Ek
¼ 10�3 � 0:95� 10�3

3:142ð Þ2�0:78� 106 � 6� 10�13
¼ 2 seconds
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amyloids 139, 142, 147
amylopectins 16, 17, 18, 102
amylose 16, 17
anisotropic materials 257–8, 335,

343–6
cartilage, in tension 367
collagen in joints 357
see also composites

antifreeze proteins 19
aqueous ions, solvation energy of 212
aqueous solutions 32–5, 42–4
see also solutions

arginine 1, 3, 8, 205
aromatic amino acids 1, 2
Arrhenius equation 67, 124–5
arteries, elastin in 369
arthritic conditions 356–7, 358
asparagine 3, 4
aspartate/aspartic acid 3, 4, 8,

205
asperities in joints 364–5
association 224, 225, 226, 231
atomic force microscopy 306,

310–13
for frictional forces 334
microrheology with 330, 333
for myosin motion 347
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ATP (adenosine triphosphate) 23,
206, 339–41

and linear stepper motors 346,
347, 348–9

autocorrelation function 118–19,
190

B-DNA 13–15, 175, 230–1
bacteria 23, 199–200, 380

movement 117–18, 119–21, 340,
350, 352

bacteriophages 23, 139, 141
base pairs, DNA 13–15, 378
bases 4–5, 7–8, 207, 219
beads on a string model 379–80
bending membranes 240–3, 247
bending rigidity/modulus 175–7, 241
beta sheets 4, 6, 59
bilayers 155, 156, 206

self-assembly 130, 133, 237
biorheology 267–91
blob models 171, 180–3
blood 11, 22

in blood vessels 267, 268, 291
shear thinning 288, 289
sickle cells 129, 130

blood clots 285–6, 365
bone 371–2, 373

in joints 355–6, 357
mechanical properties 261, 263,

264
bottle brush morphology 20–1
boundary lubrication 167, 355, 358
bovine spongiform

encephalopathy 129, 139
branched morphology 249
brush morphology 20–1, 249
bulk moduli 256–7
bulk rheology 325, 326

capillarity 160–3, 373
capillary condensation 168
capillary electrophoresis 320
capillary rheometers 328–9
carbohydrates 15–18, 20, 171

helix-coil transition 53
self-assembly 130
see also polysaccharides

carboxylic acid groups 205
carboxylic acids 11
carrageenan 85–6, 207, 288
cartilage 21, 167, 267, 355–68
cell division (cytokinesis) 131, 345–6
cell membranes see membranes
cell walls, plant 16, 79
cells 21–2, 237–8, 339

DNA packing in 377–80
morphogenesis 74, 155

cellular solids/foams 253, 261–3
cellulose 16, 78–9, 253, 288
charge

and DNA packaging in cells 379
point charges, forces between 207–8
and polyelectrolyte

conformation 219
and polymer mixtures 74, 234

charge condensation 228–32, 381
charge fraction, polymer chain 228,

230–1
charged gels 285, 364
charged links, protein 64
charged polymers

cross-linked elastomeric 358
and helix-coil transition 58
persistence length 233, 381
see also polyelectrolytes

charged spheres, forces between 36–8
charged surfaces

forces between 34–5, 359–61
gels, friction force 364
in liquids 33

chemical gels 283
chemical reactions, rate theories

of 125–7
chirality 100, 101

and chromosomal morphology 381
and elastic/spring constants 91
and liquid crystallinity 79, 81,

89–91
cholesterics 79, 82, 89–91, 101
cholesterol 11
chondrocytes 356
Chord theorem 41
chromatin 377–80
chromosomes 15, 377, 378, 379–80,

381
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clathrate structures 29–30
cohesive forces 25–8
collagen 9, 253, 259

in cartilage 358, 365–6
denatured, as gelled biopolymer 283
helix-coil transition 100–1
liquid crystal phases in 78, 85–6,

100–1, 103
self-assembly 147, 148

colloids 39, 287–8
coagulation 37–8, 46, 47
counterion clouds around 231–2
electrophoresis for 315
forces in 36–8, 42–4, 209
and Ostwald ripening 168
and Peclet number 269

columnar phases 80
compliance 194–5, 258, 275
composites 154–5, 253, 258–61

bone 371, 373–4
cartilage 358, 365–6
spider silk 368
see also fibrous composites

compression
of foams 262–3
of membranes 238–9
and phase transitions 52–3

concentrated regimes 276, 277, 278
concentration

and diffusion 110, 112–13
and self-assembly 133–7, 141,

147
actin and tubulin 341–6
lipids 237

condis crystals 79, 80
conformation 8, 79, 80, 219–20

and solvent quality 177–83
constitutive equation 270
contact angles 156, 157, 158

measurements 46, 47
contact value theorem 34–5, 40, 42

application to cartilage 361
continuous phase transitions 52–3
continuum mechanics 253–65
contour length 15, 196
cork, mechanical properties 261, 263
cornea, Donnan equilibria and 221,

222

Coulombic interactions 219–20, 233
see also electrostatics

Coulomb’s law 31, 207–8
counterions 33, 34

condensation 221, 228–33, 383
osmotic pressure 220, 221–3, 361
and polyelectrolytes 218–19, 220,

221, 285
covalent bonds, polarisation

around 205
covalent interactions, amino acid 9
cracks, termination of 264–5
cross-bridge model 346–9
cross-linked polymer networks, collapse

of 233–4
cross-links 184

and elastomers 103, 186–7, 358
elastin and resilin 369–70

in gels 283–5, 286
cruciform structure (DNA) 15
crystalline phases 80
crystallisation 64–8, 218
see also liquid crystallinity

crystals 64–8, 168
in nacre and bone 373
self-assembly produces 132–3

cylindrical charge distributions 227–8,
231

cylindrical membranes, stress on
245–6

cysteine 1, 2, 8, 9
cytosine (DNA base) 13
cytoskeletal filament

polymerisation 142–8

damped motion 187–91
D’Arcy’s law 366, 367
dashpot and spring models 273–4
Deborah number 270, 326
Debye screening radius 214, 220
Debye-Huckel theory 213–14, 227
defect textures 81, 100, 101
defects, liquid crystal 91–2, 95–100
denaturation 10
density

and foams/cellular solids 261
and phase transitions 52–3

dentine as a composite 259
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depletion forces 42, 43, 44
depletion potential 38, 42, 43
dielectric constant of water 210–11
differential scanning calorimetry 81–2
diffusing wave spectroscopy

(DWS) 330, 331–2, 333
diffusion 108–16

facilitated, protein 383–6
and rate of reaction 125–7
surface tension, Marangoni

effect 168
and viscoelasticity 269

diffusion coefficients 109–10, 112,
113, 191

colloidal solutions 269
flexible polymer chains 192, 197
and friction 111, 112
Poisson motility process 121
small globular enzyme 383–5

dilute regimes 276–7
dipole moments 19, 211–12

from alpha helices 206, 207
dipoles 25, 26, 31, 208, 248
direct force measurements 46, 47
disclinations 96–8
disk-like adsorbers, diffusion to 115,

116
dislocations 96
disorder 79, 80
dissipation 267, 271, 273, 358
dissipative/loss moduli 270–2, 278
dissociation 7–8, 224–5
dissociation constants 225, 226
disulfide linkages 9, 10, 283
DLVO treatment 36–7, 38, 232
DNA 12–15, 377–86

of bacteria 199, 200
charge on 207, 219
counterion clouds around 231, 232,

233
electrophoresis 198, 316–19
and electrostatic interaction 32
globule-coil transition 59–60, 63–4
helix-coil transition 59, 100–1
liquid crystalline phases 85–6,

100–1, 288
rheology 280–1
sequencing DNA chains 317, 319

topology of 199–201
torus structure 63

DNA technology, recombinant
12, 370

Donnan equilibria 221–3
double helix-coil transition 59
drag flow rheometry 326–7, 334
dragline silk 255, 368, 369
durability 254
dynamic frictional effects 166–7
dynamic mechanical testing 335
dynamic scattering techniques

297–303
dynamic viscosity 271–2
dynamics

low Reynold’s number 116–19
polyelectrolytes 220
polymer chains 191–8, 276–80

Einstein relationship 111
elastic energy

of disclinations 98
storage of 271, 369, 381

elastic moduli
of membranes 243
semi-flexible polymer gels 285–6
see also Young’s moduli

elastic shear moduli 272, 280
elastic/spring constants 87, 270

liquid crystals 87–9, 90–1
elasticity 183–7

of elastin and resilin 369–70
and liquid crystalline phases 87–92
of membranes 243–8

elastin 9, 255, 259, 272, 369–70
elastohydrodynamic fluid films 364
elastomers 103, 183–7, 255, 283

natural 358, 369–70
electric double layer 32–3
electric fields 208–12, 228
electric flux, Gauss’ theorem and

208–9
electron microscopy of DNA 379
electron scattering 295
electrophoresis 314–21

of DNA 198, 316–19
of globular proteins 212

electrostatic forces 207–8, 214
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electrostatic interactions
between DNA and histones 379,

381–2
and protein globule structure 64

electrostatic persistence length 233
electrostatic/charged blobs 181,

182–3
electrostatics 30–8, 207–12
see also Coulombic interactions

ellipsoidal adsorbers, diffusion to 115,
116

end-to-end distance 178–9
endocytosis 248
energy

ATP hydrolysis gives 339–41
and bending bilayer membranes 247
cracks absorb 264
and crystallisation/freezing 65–8
of dipoles in electric fields 208
of disclinations 96, 98
dissipation 267, 271, 273, 358
free see free energy
interfacial fracture energy 154
of ion pairs in solution 215–16
and myosin/actin interactions 348–9
and partition function 55
and polymerically stabilised

systems 39
and protein folding 10, 11
of solvation, aqueous ions 212
and superhelical DNA 199
torsional, DNA stores 13
and viscoelastic materials 267, 271
of wetting 159

energy barriers, diffusion over 123
energy storage 11, 16, 17, 23, 78

in DNA complexation 381
elastin and resilin for 369
and viscoelastic materials 271

entangled regime 194–8, 277
flexible polyelectrolytes 281, 282

enthalpy
of hydration 216, 217
and phase transitions 50, 51

entropy
and globule-coil transitions 60–2
and hydration 217
of mixing 69–70

of polymer chains 180, 184–6
and self-assembly 132, 142

enzymes 8, 317, 383–6
epithelial cells 22
etched microarrays 321
excluded volume 177
exoskeletons, chitin forms 17
experimental techniques 293–335

for diffusion 111
intermolecular forces 44–7
for liquid crystalline phase

transitions 79–82
motility 107
for myosin steps 347–8

extensibility 254, 255
extrusion nozzles 339, 340, 352
eyes 71–2, 221, 222
Eyring rate theory 125

facilitated diffusion, protein 383–6
fatty acids 11, 12, 205
fibrin elasticity 285–6
fibroblast cells 22
fibrous composites 4, 253, 258

defect textures 100, 101
elastin/collagen, in heart walls 259
nacre and bone as 373–4
shear modulus 244

Fick’s laws 109, 112–13
filaments, polymerisation of 142–8
filled foams, mechanical behaviour

of 263
film balances 47
first order phase transitions 50, 51

DNA histone interaction 382
first passage problem 121–5
flagellated bacteria, motility 119–21,

350
flagellin, self-assembly 129
flexible polyelectrolytes 233, 281–2
flexible polymer chains 171, 172

conformations 179
dynamics of 192–8, 276–80
elasticity of 183–7
expansion of 178
persistence length 173
Rouse and Zimm models 278
thermal blob model 182
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Flory approach 64, 179, 180, 184
fluctuation-dissipation theory 111,

112, 197
and microrheology 329

fluorescence depolarisation 298–9
fluorescence intensity correlation

spectroscopy 297–8
fluorescence techniques 297–9, 348
foams/cellular solids 253, 261–3
focusing techniques 296–7
folding 10, 11, 64, 131, 142, 232–3
force measurement 306–14, 347
forced resonance devices 328
forces

and charge 34–8, 207–8, 359
direct force measurements 46, 47
electrostatic 207–8, 214
and friction 165–7, 362, 363,

364
intermembrane 248–50
intermolecular 44–7
mesoscopic 25–47
steric 38–42, 248
and surface tension 151, 153–4
and Young’s modulus 254–5

fracture 263–5
fracture stress 261
free energy 71

in aqueous environments 30
and association/dissociation 226
and crystallisation/freezing 65–8
and globule-coil transitions 60–2
of hydration 216
and isotropic-nematic

transitions 85, 92–4
of liquid crystals 87–92
and mixing of liquids 69–71
and partition function 55
and polyelectrolyte solutions 221
of polymer chain expansion 180
of polymer chains, and

elasticity 186
and protein conformation 124–5
and protein crystallisation 66–8
and self-assembly 131–2, 136–7,

141–2
of the superhelical state 199
surface 66, 67, 68, 132, 168

and surface tension 151, 153–4
and transition between states 124–5

freezing 65–8
frequency dependence

shear modulus 271, 278, 280
viscoelasticity 271–2, 277, 280

gels 284
polyelectrolytes 282

friction 165–8, 280, 333–4
and diffusion 111, 112
in joints 167, 355, 357, 362–5

Gauss’ theorem 208–9
Gaussian curvature 247
gel point/percolation threshold 283–4
gelation, haemoglobin 129
gels 283–7

cartilage as 359–61
friction and joints 362–5
polyelectrolyte 285, 305–6

gene therapy 380–1
genetics 12, 319, 380
Gibbs phase rule 50–1
glass fibres, measurements with 306
glassy materials 290
globular enzymes, self-assembly 129
globular proteins 4, 8, 10, 65

as colloidal systems 287
electrophoresis of 212
folding 64, 131, 142, 232–3
overdamped motions of 188–90
sedimentation 323

globule-coil transition 59–64, 129,
142

glucose, polymers of 16–17
glutamate/glutamic acid 3, 4, 8, 205
glutamine 3, 4
glycine 1, 2
glycogen, energy stored in 17
glycolipids 11
glycoproteins 20–1, 167, 249
glycosoaminoglycans 20
Gouy region, cylindrical charge

and 227–8
guanine (DNA base) 13

haemoglobin 129, 130, 139, 147
hairs, adhesion of 151, 152
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heart disease 346
heat capacity 50, 51, 52
helices 4, 5, 6, 9, 95

dipole moments 206, 207
DNA 13–15, 53–9, 199

helicity 55, 57, 59
helix-coil transition 13, 53–9, 100–1
Henderson-Hasselbalch equation 7–8,

226
hepatitis B virus 137, 138
hexatic phases 81
histidine 1, 3, 8, 205
histones 377–80, 381
Hooke’s law 87, 254
hopping (diffusion) 383, 384, 386
hyaluronic acid 18, 20, 280, 282, 357
hydration 216, 217–18
hydration shells 205, 215, 216, 217
hydrodynamic beam model 193–4
hydrodynamic interactions 44, 47,

192, 193
hydrodynamic lubrication 167, 362,

363
hydrodynamics, screened 192–3
hydrogen bonds 8, 19, 28–30

in DNA 13, 15
and secondary structures 5–6,

9–10
and self-assembly 132

hydrogen ions 4–8, 207
and polyelectrolytes 224, 225–6

hydrolysis, ATP 339–41, 349
hydrophobicity 8, 64, 132

surfaces on plants 151, 152
and water clathrates 29–30

hydroxyl groups, amino acid 1, 2
hydroxyl ions, water gives 4–5

ice, structure of 19, 28
inch worm motion, myosin 347, 348
induced dipoles 25, 248
information storage 17–18
intermediate scattering function

299–302
intermembrane forces 248–50
intermolecular forces, measurements

of 44–7
intersegmental transfer 383, 384

ion pairs 215–16, 230
ion pumps 205, 221
ion-dipole interactions 31
ion-ion interactions 31
see also electrostatics

ionic bonds 32, 248
ionic radius 214–18
ions 205–34
see also polyelectrolytes

irreversible thermodynamics 267
isoelectric focusing 316, 317
isoelectric point 316
isoleucine 1, 2
isotropic-nematic transitions 81–2,

84–5
free energy of 92–4

isotropic-nematic-smectic
transitions 93

joints 167, 355–68
hyaluronic acid in 280, 357
and shear thinning 281, 282, 356

Kelvin model 273, 274
keratins 6, 9, 147, 193
Kramers rate theory 125
Kratky-Porod model 175, 177

lac repressor 123, 127, 383–4
lamellar ordering, defects in 95
lamin, self-assembly of 148
laminates 258, 259–60
Landau theory 58, 92, 93, 100
Landau-Pierels theorem 95, 99
Langevin equation 118, 190–1
laser deflection microrheology 330,

331–2
Legendre polynomials 80, 82–3
length, polymer chain 173–4
see also persistence length

Lennard-Jones potential 28
leucine 1, 2
Levinthal’s paradox 10, 129, 142
light scattering 295
lignins in fibrous composites 253
line imperfections/defects 95–6
line tension, measuring 248–50
linear stepper motors 339, 340, 346–9
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linkages
between carbohydrates 16, 17, 18
disulfide 9, 10, 283

linking number 199, 200, 201
lipids 11–12, 130, 131, 133, 237

surface charge densities 206
liquid crystallinity 77–103

comparison with composites 259
and defects 95–100
DNA torus internal structure 63
and elasticity 87–92
and phases of condensed matter

79, 80
polymer rheology 288–90
rod-like polymer chains contain 171
and surface effects 168

liquid-liquid demixing 68–74
liquid-nematic-smectic transitions

92–4
liquid-solid transition 65–8
see also crystallisation

lock washer morphology, TMV
uses 138, 139

loss modulus see dissipative/loss moduli
low Reynold’s number dynamics

116–19
lubrication 167, 362, 363

in joints 355, 357–8, 364
Lymn-Taylor scheme 346
lyotropic liquid crystals 77
lysine 1, 3, 8, 205

macromolecules 171–201, 207
see also polymers

magnetic microrheology 330
magnetic tweezers 306, 307, 308–10
Manning charge condensation 228–32
Marangoni effect 168
Maxwell model 273–4, 278
mechanical spectroscopy 274–5
mechanics 253–65
see also dynamics

membrane osmometers 303
membrane proteins 237–8
membranes 11, 39–42, 237–51

and liquid crystallinity 78, 79
self-assembly 130, 131, 133, 237

meniscus 162

mesoscopic forces 25–47
methionine 1, 2
micelles, self-assembly produces

132–7
microfibrils 6, 9, 16, 78–9
microfluidics 291
micromanipulators 155, 156
microrheology 325–6, 329–33, 348
microscopy 97–8, 379
see also atomic force microscopy

microtubules 193, 339, 341
self-assembly 145, 345, 346

mixing of liquids 69–71
mobility, electrophoresis for 315, 316,

318, 319
moduli 255, 256–7, 275

bending, polymer chains 175–7,
241

dissipative/loss 270–2, 278
of membranes 243
microrheology for 330, 331
of semi-flexible polymer gels 285–6
storage moduli 270–4, 278, 280
see also shear moduli; Young’s moduli

molecular dynamics simulations 28,
30–1

molecular weights 44, 319–20
molluscs

adhesion by 372–3
slugs 78, 79, 151

monomers 1, 13, 15, 171
morphogenesis 74, 131, 155
morphology 20–1, 249

foams 262
and mechanics 265

motility 107–27
and actin 142, 145, 341–6
bacteria 117–18, 119–21, 350
energy for 339, 341
Poisson processes 120, 121, 350
and Reynold’s number 117, 350

motor proteins 341, 346, 348
and ratchet models 351–2
self-assembly 131, 345

motors 339–53
moving boundary

electrophoresis 315–16
mucins 21, 77–8
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multi-stranded filaments 145,
146–7

muscle 221, 341, 346–9
energy dissipation in 267,

268
low frictional losses 167
and viscoelasticity 280

muscle cells 21
mushroom morphology 249
myosin 167, 341, 345–9

and Donnan equilibria 221
ratchet models 351

nacre 259, 264, 373–5
nanotechnology 339
neighbouring groups 226–7
nematic liquid crystals 80, 81–3

free energy 87–9, 90, 91–2
spider silk 368
transitions 93

nematic-smectic transition 94
nerve cells 21–2
networks

collagen 103
fibrous, shear modulus 244
gels as 283
polymer, collapse of 233–4
rubbery, elasticity 183–4,

186–7
neutron scattering 295, 297, 303

for DNA structure 378, 379
for persistence length 172

neutron spin echo measurements 303
NMR nuclear magnetic resonance

19, 47
non-aggregating self-assembly 130–1,

142
nuclear magnetic resonance

(NMR) 19, 47
nucleation 73, 168
nucleic acids 12–15, 171, 319

and electrostatic interaction 32
helix-coil transition 53, 58, 59
phosphate groups in 205
in viruses 139
viscoelasticity 280
see also DNA

nucleus, cell, DNA in 377, 380

Oosawa model 343
optical microscopy, defects seen in

97–8
optical tweezers 46, 47, 306–8,

347–8
order parameters 51–2

for globule-coil transitions 60
for liquid crystalline phases 80,

82–4
isotropic-nematic 92, 93, 94
nematic-smectic 94
side-chain polymers 101, 103

for liquid-solid transitions 65
organs/organ systems 21
OSF theory 233, 381
osmometers 303, 306
osmotic pressure 220–1, 231, 361

measurements with 303–6
Ostwald ripening 68, 168
overcharging 383
overdamped motion 188, 189
overlap concentration 277

packing forces, solvent molecules
and 38–9

parallelised linear stepper
motors 346–9

particle diffusion 108–11, 112–13
first passage problem 121–2

particle tracking microrheology 329,
330, 331

partition function 55
patch clamp method 250
Peclet number 269–70, 326
pectins 18, 283
peptide linkages 1, 4
peptides 130, 206, 237–8
percolation threshold/gel point 283–4
peristaltic forces between

membranes 42
permanent dipoles 26
persistence length 171–7

DNA 15, 381
and liquid crystalline phases 86,

100–1
membranes 240–1
of polyelectrolytes 233, 281
and viscoelasticity 279
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pH 6–8, 219, 225–6
and helix-coil transition 58
and isoelectric point 316

phase behaviour of DNA 377–86
phase diagrams 45, 47, 49

DNA complexation 382
globule-coil transitions 61, 62
helical chain 57
isotropic-nematic transition 86, 92
protein molecules 64

phase lag, viscoelastic 272
phase separation, liquid-liquid 68–74

charge reduces 234
phase transitions 49–74

of colloids 288
crystallisation 64–8
globule-coil transition 59–64, 129,

142
helix-coil transition 13, 53–9,

100–1
liquid-liquid demixing 68–74
and solvent quality 178
and surface tension 53, 168
and wetting 157, 159

phases of condensed matter 79, 80
phenylalanine 1, 2
phosphate groups 13, 205

in ADP/ATP 23, 339–41, 349
phospholipids 11, 12, 131, 205
photon correlation spectroscopy 300
physical gels 283, 284–5
pitch, liquid crystal 89, 90, 91
plastic crystals 79, 80
plastic deformation, composites

and 154–5
plectonomic structure 200, 380
point imperfections 95
Poisson equation 33–4, 210, 213
Poisson processes 120, 121, 350,

384–5
Poisson ratio 243–4, 255–6, 257

cellular solids 261, 263
Poisson-Boltzmann equation 34, 35,

213–14
charged plates 359–60
cylindrical charge

distributions 227–8, 231
polarisability, water 19

polarisation, induced 210
polarising optical microscopy

97–8
polyacids 219, 224, 225
polybases 219, 224
polydisperse aggregates 132
polyelectrolytes 218–21,

228–34
complexation, DNA

compaction 380–3
gels 285, 305–6, 364
viscoelasticity of 280–2
see also charged polymers; ions

polymer chains 171–87
dynamics of 191–8, 276–80
elasticity 183–7
flexibility 171–7
globule-coil transition 59–64
polyelectrolytes 228–32
solvent effects 177–83
topology, and super coiling

199–201
polymer networks, collapse of

233–4
polymerase chain reaction 319
polymerisation 139–48, 341–6

and viscosity 279
polymers 1, 171

and charged ions 205–34
of glucose 16
liquid crystalline phases in 85–6,

101–3
in membranes 237–8
separation of, phase transition 72–3
in solution 42–4, 191–8, 276–80
spider silk 368
at surfaces 39, 40
see also macromolecules;

polyelectrolytes; polymer chains;
proteins

polypeptides see proteins
polysaccharides 17, 18, 249
see also carbohydrates

porous material, fluid motion
through 365–7

potential, van der Waals forces and 26
potential wells, diffusion over 123–4
power spectra 190, 191
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powerstroke model 347
pressure

between membranes 42
between surfaces 34–5, 38
and bulk modulus 256–7
in protein self-assembly 140–1
and surface curvature 160–2

pressure driven rheometers 328–9
pressure flow rheometry 326
prion diseases 129, 130, 141
proline 1, 3
proteins 1–11, 12, 20, 171

adhesive proteins 372–3
antifreeze proteins 19
in cell adhesion 155
conformation, rate of change 124–5
crystallisation 42, 64–8
electrostatic interactions 32
facilitated diffusion of 383–6
and helix-coil transition 53, 56, 59
ionic bonds, intermembrane 248
membrane proteins 237–8, 250
molecular weights 319–20
in nacre and bone 373
phase diagrams of 64
as polyampholytes 219
precipitation, by salts 217–18
ratchet models for 350–1
self-assembly of 139–42
spider silk 368
stress-strain properties 253–4
structure 4, 5–7, 8, 9–10, 64
surface active 159

proteoglycans 20–1, 32, 280
in cartilage 365–6
in fibrous composites 253
and friction 167
in joints 357
and liquid crystallinity 78, 79,

101
viscoelasticity 280

protocollagen, nematic phases and 78
protofilaments 147, 148
pulsed electrophoresis 319

quasi-elastic scattering 296,
299–303

quenched polyelectrolytes 223–4

radius of gyration 60, 174–5
rafts, self-assembly produces 132
ratchet models 350–2
rate theories of reactions 125–7
recombinant DNA technology 12,

370
red blood cells 129, 130
reflectivity 46, 47, 243
relaxation moduli 271, 274,

278–9
cartilage 365–7
gels 284

relaxation times 191, 192
cross-linked gel 366–7
diffusion of colloid particles 269
entangled solutions 196, 197
semi-flexible chains 194

replication, DNA 13
reptation 194–8, 277, 279

and DNA electrophoresis 317–19
sticky, and physical gels 284–5

resilience 255, 370
resilin 9–10, 255, 290,

369–70
resonance rheometers 328
restrained DNA 380
retardation effect 26
Reynold’s number 116–19
rheological functions 274–6
rheology 325–33
see also biorheology; viscoelasticity

rheometers 270, 326–9
ribosomes 12
rigid polyelectrolytes 281
rigid polymer chains 171, 172,

173
conformations 179
expansion of 178

RNA 12
RNA polymerase 15
rod-like polymer chains see rigid

polymer chains
rotating cross-bridge model 346–9
rotational motion, diffusion and

111–12
rotatory motors 339, 340, 350,

351, 352
rouleaux structures 288, 289
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Rouse model 192–3, 277, 278–9
rubbery materials see elastomers

salts, protein precipitation by 217–18
sap, rise of 162
scaling approach 92, 179, 180,

362
flexible polyelectrolytes 281

scanning X-ray microdiffraction
296–7

for disclinations 97
scattering techniques 294–303
screened electrostatic interactions

32–5
screened hydrodynamics 192–3
seaweed extracts 280
second order phase transitions 50
secondary structure 4, 5–6, 9–10, 64
sedimentation 321–5
self-assembly 129–48, 341–6

of histones 378, 379
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of viruses 22, 137–9, 140

self-diffusion 111
self-organisation 131
semi-dilute regimes 276, 277,

278–9
semi-flexible polyelectrolytes 233,

281
semi-flexible polymer chains 171–2

bending 177
conformations 179
dynamics of 193–5, 279–80
persistence length 173
topology of 199

semi-flexible polymer gels 285–7
separation distance,

intermembrane 248
sequencing DNA chains 317, 319
serine 1, 2
shear flow, colloidal solutions 269
shear moduli 256, 257, 328, 329

cartilage 357
elastic fibrous networks 244
gels 284
viscoelastic materials 187, 270–2,

278, 280

shear rate 271, 273
of colloidal solutions 288
and frictional forces 167
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shear rheometers 327
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shear wave propagation 328
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slugs 78, 79, 151
small angle neutron scattering 295

for DNA structure 379
for persistence length 172

small angle X-ray scattering 295
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defects in 98–100
order parameters 84
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side-chain liquid crystalline

polymer 101
smectic structures in 78
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foam compression 262–3
membranes 244–6
rubbery networks 186
viscoelasticity 269–72, 274
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stress tensors 257
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Stribeck curves 167
strongly charged polyelectrolytes
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structural mechanics 254–8
structure 207
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surfaces 151–68
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surfactants 133–7
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synovial joints 21, 167, 364
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temperature
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thermal blobs 181–2
thermal energy 55, 215–16
thermotropic liquid crystals 77
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transcription 12, 15
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velocity dependence of friction 362
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in gene therapy 381
liquid crystalline phases in 86, 87
self-assembly 22, 137–9, 140
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viscoelastic materials 267–74
networks, shear modulus 187

viscoelasticity 267, 278, 325–35
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of gels 285–6
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of polyelectrolytes 280–2
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water 4–5, 18–20, 28
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clathrate structures 29–30
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weakly charged polyelectrolytes 219,
220

and counterion condensation 232–3
wetting 156–9
wide angle neutron scattering 295
wide angle X-ray scattering 295, 378
Wilhemy plates 164
wood, mechanical properties 261
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X-ray diffraction 97, 296–7
X-ray scattering 295, 296, 297, 303
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for defects 99
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