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Preface

This is the fourth edition of Fundamentals of Ecological Modelling, and we have
given it a longer title: Fundamentals of Ecological Modelling: Application in Envi-
ronmental Management and Research. This was done to emphasize that models,
applied in environmental management and ecological research, are particularly
considered in the model illustrations included in this book.

Giuseppe Bendoricchio, co-author of the third edition published in 2001,
passed away in 2005. We would therefore like to dedicate this book to his memory
and his considerable contributions in the 1980s and 1990s to the development of
ecological modelling.

The first two editions of this book (published in 1986 and 1994) focused on
the roots of the discipline — the four main model types that dominated the field
30-40 years ago: (1) dynamic biogeochemical models, (2) population dynamic
models, (3) ecotoxicological models, and (4) steady-state biogeochemical and
energy models. Those editions offered the first comprehensive textbook on the
topic of ecological modelling. The third edition, with substantial input from
Bendoricchio, focused on the mathematical formulations of ecological processes
that are included in ecological models. In the third edition, the chapter called
Ecological Processes encompasses 118 pages. The same coverage of this topic today
would probably require 200 pages, and is better covered in the Encyclopedia of
Ecology, which was published in the fall of 2008.

This fourth edition uses the four model types previously listed as the founda-
tion and expands the latest model developments in spatial models, structural
dynamic models, and individual-based models. As these seven types of models
are very different and require different considerations in the model development
phase, we found it important for an up-to-date textbook to devote a chapter to
the development of each of the seven model types. Throughout the text, the exam-
ples given from the literature emphasize the application of models for environmen-
tal management and research. Therefore the book is laid out as follows:

Chapter 1: Introduction to Ecological Modelling provides an overview of the
topic and sets the stage for the rest of the book.
Chapter 2: Concepts of Modelling covers the main modelling elements of
compartments (state variables), connections (flows and the mathematical
equations used to represent biological, chemical, and physical processes),
controls (parameters, constants), and forcing functions that drive the systems. It

xiii



 

also describes the modelling procedure from conceptual diagram to verification,
calibration, validation, and sensitivity analysis.
Chapter 3: An Overview of Different Model Types critiques when each type
should or could be applied.
Chapter 4: Mediated or Institutionalized Modelling presents a short
introduction to using the modelling process to guide research questions and
facilitate stakeholder participation in integrated and interdisciplinary projects.
Chapter 5: Modelling Population Dynamics covers the growth of a population
and the interaction of two or more populations using the Lotka-Volterra model,
as well as other more realistic predator–prey and parasitism models. Examples
include fishery and harvest models, metapopulation dynamics, and infection
models.
Chapter 6: Steady-State Models discusses chemostat models, Ecopath software,
and ecological network analysis.
Chapter 7: Dynamic Biogeochemical Models are used for many applications
starting with the original Streeter-Phelps model up to the current complex
eutrophication models.
Chapter 8: Ecotoxicological Models provides a thorough investigation of the
various ecotoxicological models and their use in risk assessment and
environmental management.
Chapter 9: Individual-based Models discusses the history and rise of individual-
based models as a tool to capture the self-motivated and individualistic
characteristics individuals have on their environment.
Chapter 10: Structurally Dynamic Models presents 21 examples of where model
parameters are variable and adjustable to a higher order goal function (typically
thermodynamic).
Chapter 11: Spatial Modelling covers the models that include spatial
characteristics that are important to understanding and managing the system.

This fourth edition is maintained as a textbook with many concrete model
illustrations and exercises included in each chapter. The previous editions have
been widely used as textbooks for past courses in ecological modelling, and it is
the hope of the authors that this edition will be an excellent basis for today’s eco-
logical modelling courses.

Sven Erik J�rgensen
Copenhagen, Denmark

Brian D. Fath
Laxenburg, Austria

July 2010
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1.5. The Ecosystem as an Object for Research .............................................................11

1.6. The Development of Ecological and Environmental Models...............................13

1.7. State of the Art in the Application of Models......................................................16

1.1. Physical and Mathematical Models

Humans have always used models — defined as a simplified picture of

reality — as tools to solve problems. The model will never be able to

contain all the features of the real system, because then it would be the

real system itself, but it is important that the model contains the charac-

teristic features essential in the context of the problem to be solved or

described.

The philosophy behind the use of a model is best illustrated by an

example. For many years we have used physical models of ships to

determine the profile that gives a ship the smallest resistance in water.

Such a model has the shape and the relative main dimensions of the

real ship, but does not contain all the details such as the instrumenta-

tion, the layout of the cabins, and so forth. Such details are irrelevant

to the objectives of that model. Other models of the ship serve other

purposes: blueprints of the electrical wiring, layout of the various

cabins, drawings of pipes, and so forth.

Correspondingly, the ecological model we wish to use must contain

the features that will help us solve the management or scientific prob-

lem at hand. An ecosystem is a much more complex system than a ship;

it is a far more complicated matter to ascertain the main features of

importance for an ecological problem. However, intense research during

the last three decades has made it possible to set up many workable and

applicable ecological models.

Fundamentals of Ecological Modelling. DOI: 10.1016/B978-0-444-53567-2.00001-6
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Ecological models may also be compared with geographical maps

(which aremodels, too). Different types of maps serve different purposes.

There are maps for airplanes, ships, cars, railways, geologists, archaeolo-

gists, and so on. They are all different because they focus on different

objects. Maps are also available in different scales according to applica-

tion and underlying knowledge. Furthermore, a map never contains all

of the details for a considered geographical area, because it would be

irrelevant and distract from the main purpose of the map. If a map

contained every detail, for instance, the positions of all cars at a given

moment, then it would be rapidly invalidated as the cars move to new

positions. Therefore, a map contains only the knowledge relevant for

the user of the map, so there are different maps for different purposes.

An ecological model focuses similarly on the objects of interest for a

considered well-defined problem. It would disturb the main objectives

of a model to include too many irrelevant details. There are many differ-

ent ecological models of the same ecosystem, as the model version is

selected according to the model goals.

The model might be physical, such as the ship model used for the

resistance measurements, which may be called microcosm, or it might

be a mathematical model, which describes the main characteristics of

the ecosystem and the related problems in mathematical terms.

Physical models will be touched on only briefly in this book, which

will instead focus entirely on the construction of mathematical ecologi-

cal models. The field of ecological modelling has developed rapidly dur-

ing the last 30 years due essentially to three factors:

1. The development of computer technology, which has enabled us to

handle very complex mathematical systems.

2. A general understanding of environmental problems, including that

a complete elimination of pollution is not feasible (denoted zero

discharge). Instead, a proper pollution control with limited

economical resources requires serious consideration of the influence

of pollution impacts on ecosystems.

3. Our knowledge of environmental and ecological systems has

increased significantly; in particular we have gained more knowledge

of the quantitative relations in the ecosystems and between the

ecological properties and the environmental factors.
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Models may be considered a synthesis of what we know about the

ecosystem with reference to the considered problem in contrast to a

statistical analysis, which only reveals the relationships between the

data. A model is able to include our entire knowledge about the system

such as:

1. Which components interact with which other components, for

instance, that zooplankton grazes on phytoplankton

2. Our knowledge about the processes often formulated as

mathematical equations, which have been shown to be generally

valid

3. The importance of the processes with reference to the problem

This is a list of a few examples of knowledge that may often be

incorporated in an ecological model. It implies that a model can offer

a deeper understanding of the system than a statistical analysis. There-

fore, it is a stronger research tool that can result in a better management

plan for solving an environmental problem. This does not mean that sta-

tistical analytical results are not applied in the development of models.

On the contrary, models are built on all available knowledge, including

that gained by statistical analyses of data, physical-chemical-ecological

knowledge, the laws of nature, common sense, and so on. That is the

advantage of modelling.

1.2. Models as a Management Tool

The idea behind the use of ecological management models is demon-

strated in Figure 1.1. Urbanization and technological development have

had an increasing impact on the environment. Energy and pollutants

are released into ecosystems where they can cause more rapid growth

of algae or bacteria, damage species, or alter the entire ecological struc-

ture. An ecosystem is extremely complex, therefore it is an overwhelming

task to predict the environmental effects that such emissions may have. It

is here that the model is introduced into the picture. With sound ecologi-

cal knowledge, it is possible to extract the components and processes of

the ecosystem involved in a specific pollution problem to form the basis

of the ecological model (see also the discussion in Chapter 2, Section 2.3).

As indicated in Figure 1.1, the resulting model can be used to select the

environmental technology eliminating the emission most effectively.
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Figure 1.1 represents the idea behind the introduction of ecological

modelling, which has been a management tool since about 1970. Now

environmental management is more complex and is applied to a wider

spectrum of tools. Today we have alternatives and supplements to

environmental technology such as cleaner technology, ecotechnology,

environmental legislation, international agreements, and sustainable

management plans. Ecotechnology is mainly applied to solve the pro-

blems of nonpoint or diffuse pollution often originated from agriculture.

The significance of nonpoint pollution was hardly acknowledged before

1980. Furthermore, the global environmental problems play a more

important role today than 20 or 30 years ago; for instance, the reduction

of the ozone layer and the climatic changes due to the greenhouse

effect. The global problems cannot be solved without international

agreements and plans. Figure 1.2 attempts to illustrate the current

complex picture of environmental management.

1.3. Models as a Research Tool

Models are widely used instruments in science. Scientists often use

physical models to carry out experiments in situ or in the laboratory

to eliminate disturbance from processes irrelevant to an investigation:

Thermostatic chambers are used to measure algal growth as a function

of nutrient concentrations, sediment cores are examined in the labora-

tory to investigate sediment-water interactions without disturbance

from other ecosystems components, reaction chambers are used to find

reaction rates for chemical processes, and so on.

Industrialization and
urbanisation

Emission
Ecosystems

Ecological
modelling

Environmental
technology

FIGURE 1.1 The environmental problems are rooted in the emissions resulting from industrialization

and urbanization. Sound ecological knowledge is used to extract the components and processes of the

ecosystem that are particularly involved in a specific pollution problem to form the ecological model

applied in environmental management.
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Mathematical models are widely applied in science as well. For

example, Newton’s laws are just relatively simple mathematical models

of the influence of gravity on bodies, but they do not account for fric-

tional forces, influence of wind, and so forth. Ecological models do

not differ essentially from other scientific models except in their com-

plexity, as many models used in nuclear physics may be even more

complex than ecological models. The application of models in ecology

is almost compulsory if we want to understand the function of such a

complex system as an ecosystem. It is simply not possible to survey

the many components and their reactions in an ecosystem without

the use of a model as holistic tool. The reactions of the system might

not necessarily be the sum of all the individual reactions, which implies

that the properties of the ecosystem cannot be revealed without the use

of a model of the entire system.

It is therefore not surprising that ecological models have been used

increasingly in ecology as an instrument to understand the properties

of ecosystems as systems. This application has clearly revealed the

Environmental
technology

Ecological
modelling

Ecosystems

Ecological
engineering/

ecotechnology
Global problems:
Green house effect
Ozone layer
Rain forest
(acid rain)

Cleaner
technology,
sustainable

development

Humans

Environmental
legislation

FIGURE 1.2 The idea behind the use of environmental models in environmental management.

Environmental management today is very complex and must apply environmental technology,

alternative technology, and ecological engineering or ecotechnology. In addition, the global

environmental problems play an increasing role. Environmental models are used to select

environmental technology, environmental legislation, and ecological engineering.
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advantages of models as a useful tool in ecology, which may be sum-

marized in the following:

1. Models are useful instruments in survey of complex systems.

2. Models can be used to reveal system properties.

3. Models reveal the weakness in our knowledge and can therefore be

used to set up research priorities.

4. Models are useful in tests of scientific hypotheses, as the model can

simulate ecosystem reactions that can be compared with observations.

As it will be illustrated several times throughout this volume, models

can used to test the hypothesis of ecosystem behavior such as the princi-

ple of maximum power presented by H.T. Odum (1983), the ascendency

propositions presented by Ulanowicz (1986), the various proposed

thermodynamic principles of ecosystems, and the many hypothesis of

ecosystem stability.

The certainty of the hypothesis test by usingmodels is, however, not on

the same level as the tests used in the more reductionistic disciplines of

science. If a relationship is found between two or more variables by the

use of statistics on available data, then the relationship is tested on several

additional cases to increase the scientific certainty. If the results are

accepted, then the relationship is ready to be used to make predictions,

and it is again examined to prove whether the predictions are right or

wrong in a new context. If the relationship still holds, thenwe are satisfied

and a wider scientific use of the relationship is made possible.

When we are using models as scientific tools to test hypotheses, we

have a “double doubt.” We anticipate that the model is correct in the

problem context, but the model is a hypothesis of its own. We therefore

have four cases instead of two (acceptance/nonacceptance):

1. The model is correct in the problem context, and the hypothesis is

correct.

2. The model is not correct, but the hypothesis is correct.

3. The model is correct, but the hypothesis is not correct.

4. The model is not correct and the hypothesis is not correct.

To omit cases 2 and 4, only very well-examined and well-accepted

models should be used to test hypotheses on system properties, but,

unfortunately, our experience in modelling ecosystems is limited.

We do have some well-examined models, but we are not completely
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certain they are correct in the problemcontext and awider range ofmodels

is needed. Awider experience in modelling may therefore be the prerequi-

site for further development in ecosystem research.

The use of models as a scientific tool as described earlier is not only

known from ecology; other sciences use the same technique when com-

plex problems and complex systems are under investigation. There are

simply no other possibilities when dealing with irreducible systems

(Wolfram l984a,b). Nuclear physics has used this procedure to find sev-

eral new nuclear particles. The behavior of protons and neutrons has

inspired models of smaller particles, the so-called quarks. These models

have been used to predict the results of planned cyclotron experiments,

which have inspired further changes of the model.

The idea behind the use of models as scientific tools may be

described as an iterative development of a pattern. Each time we can

conclude that case 1 (see the earlier list for the four cases) is valid,

that is, both the model and the hypothesis are correct, we can add

another “piece to the pattern.” That provokes the question: Does the

piece fit into the general pattern? This signifies an additional test of the

hypothesis. If not, we can go back and change the model and/or

the hypothesis, or we may be forced to change the pattern, which will

require more comprehensive investigations. If the answer is “yes,” then

we can use the piece at least temporarily in the pattern — which is then

used to explain other observations, improve our models, and make

other predictions — for further testing. This procedure is used repeat-

edly to proceed stepwise toward a better understanding of nature on

the system level. Figure 1.3 is a conceptual diagram of the procedure

applied to test hypotheses by using models.

The application of this procedure in ecosystem theory is still relatively

new. We need, as already mentioned, much more modelling experience.

We also need amore comprehensive application of our ecological models

in this direction and context.

1.4. Models and Holism

Biology (ecology) and physics developed in different directions until

about 30 to 50 years ago, when there was more parallel development,

which has its roots in the more general trends in science that have been

observed in the last 20 years.
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The basic philosophy or thinking regarding science is currently

changing with other facets of our culture such as the arts and fashion.

The driving forces behind such developments are often very complex

and are very difficult to explain in detail, but we will attempt to show

at least some of tendencies in the development.

1. The sciences have realized that the world is more complex than

previously thought. In nuclear physics several new particles have

been found. In ecology we have seen new environmental problems.

Now we realize how complex nature is and how much more difficult

it is to cope with problems occurring in nature than in laboratories.

Computations in sciences were often based on the assumption of so

many simplifications that they became unrealistic.

A developed model with accept-
able results in several case

studies

Improved model Hypothesis

Confirmation

Further confirmation

Element in the theoretical
pattern

Test against the general
theoretical pattern

More tests of the hypothesis
by the model

The model is used to test
the hypothesis in a few cases

The model is tested
in more case
studies

FIGURE 1.3 This diagram shows how it is required to use several test steps, if a model is used to test a

hypothesis about ecosystems, as a model may be considered a hypothesis of its own.
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2. Ecosystem ecology — we call it the science of (the very complex)

ecosystems or systems ecology — has developed very rapidly and

has evidently shown the need for systems sciences as well as

interpretations, understandings, and implications of the results

obtained in other sciences.

3. In the sciences, many systems are so complex that it is impossible to

know all the details of every system. In nuclear physics there is

always an uncertainty in our observations as expressed by

Heisenberg’s uncertainty relations. This uncertainty is caused by the

influence of our observations on the nuclear particles. We have a

similar uncertainty relation in ecology and environmental sciences

caused by the complexity of the systems (J�rgensen & Fath, 2006). A

further presentation of these ideas is given in Chapter 2, Section 2.6,

where the complexity of ecosystems is discussed in more detail.

In addition, many relatively simple physical systems such as the

atmosphere show chaotic behavior, which makes long-term

predictions impossible. The conclusion is unambiguous: We cannot

and will not be able to know the world with complete accuracy and

in complete detail. We have to acknowledge that these are the

conditions for modern sciences.

4. Many systems in nature are irreducible systems (Wolfram 1984a,b);

that is, it is impossible to reduce observations on system behavior to

a law of nature, because the system has so many interacting

elements that the reaction of the system cannot be surveyed without

using models. For such systems other experimental methods must

be applied. It is necessary to construct a model and compare the

reactions of the model with our observations to test its reliability and

get ideas for model improvements, construct an improved model,

compare its reactions with the observations again to get new ideas

for further improvements, and so forth. By such an iterative

method we may be able to develop a satisfactory model that can

describe our observation properly. These observations have not

resulted in a new law of nature but in a new model of a piece of

nature. As seen by the description of the details in the model

development, the model should be constructed based on causalities,

which inherit basic laws.
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5. As a result of previous tendencies 1–4, modelling as a tool in

science and research has developed and expanded. Ecological or

environmental modelling has become a scientific discipline of its

own — a discipline that has experienced rapid growth during the

last decades. The core scientific journal in ecological modelling,

Ecological Modelling, now publishes more than 4000 pages per

year, while it published 320 pages in 1975. Developments in

computer science and ecology have also favored this rapid growth

in modelling, as they are the components on which modelling is

founded.

6. The scientific analytical method has always been a very powerful

tool in research. Yet, there has been an increasing need for scientific

synthesis, that is, for combining the analytical results to form a

holistic picture of natural systems. Due to the extremely high

complexity of natural systems, it is impossible to obtain a complete

and comprehensive picture of natural systems by analysis alone; it is

necessary to synthesize important analytical results to get system

properties. Synthesis and analysis must work hand-in-hand. The

synthesis (e.g., in the form of a model) will show that further

analytical results are needed to improve the synthesis and new

analytical results may be used as components in better syntheses.

The recent tendency in sciences is to give synthesis a higher priority

than previously, but this does not imply that the analyses should be

given a lower priority. Analytical results are needed to provide

components for the synthesis, and the synthesis must be used to

give priorities for the needed analytical results. No science exists

without observations, but no science can be developed without the

digestions of the observations to form a “picture” or “pattern” of

nature either. Analyses and syntheses should be considered as two

sides of the same coin.

7. A few decades ago, the sciences were more optimistic than they are

today, because it was expected that a complete description of nature

would soon be a reality. Einstein even talked about a “world

equation” as the basis for all physics of nature. Today, we realize that

nature is far more complex than a single world equation, and complex

systems are nonlinear and sometimes chaotic. The sciences have a
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long way to go and it is not expected that the secret of nature can be

revealed by a few equations. It may work in controlled laboratory

conditions where the results usually can be described by using simple

equations, but when we turn to natural systems, it will be necessary

to apply many and complex models to describe our observations.

1.5. The Ecosystem as an Object for Research

Ecologists generally recognize ecosystems as a specific level of organiza-

tion, but what is the appropriate selection of time and space scales? Any

size area could be selected, but in the context of ecological modelling,

the following definition presented by Morowitz (1968) will be used:

“An ecosystem sustains life under present-day conditions, which is con-

sidered a property of ecosystems rather than a single organism or spe-

cies.” This means that a few square meters may seem adequate for

microbiologists, while 100 km2 may be insufficient if large carnivores

are considered (Hutchinson, 1970, 1978). Population-community ecolo-

gists tend to view ecosystems as networks of interacting organisms and

populations. Tansley (1935) claimed that an ecosystem includes both

organisms and chemical-physical components. It inspired Lindeman

(1942) to use the following definition: “An ecosystem is composed of

physical-chemical-biological processes active within a space-time unit.”

E.P. Odum (1953, 1959, 1969, 1971) followed these lines and is largely

responsible for developing the process-functional approach, which has

dominated ecosystem ecology for the last 50 years.

This does not mean that different views cannot be a point of entry.

Hutchinson (1978) used a cyclic causal approach, which is often invisi-

ble in population-community problems. Measurement of inputs and

outputs of total landscape units was the emphasis in the functional

approaches by Bormann and Likens (1967). O’ Neill (1976) emphasized

energy capture, nutrient retention, and rate regulations. H.T. Odum

(1957) underlined the importance of energy transfer rates. Quilin

(1975) argued that cybernetic views of ecosystems are appropriate,

and Prigogine (1947), Mauersberger (1983), and J�rgensen (1981, 1982,

1986) all emphasized the need for a thermodynamic approach for a

proper holistic description of ecosystems.
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For some ecologists ecosystems are either biotic assemblages or func-

tional systems; the two views are separate. It is, however, important in the

context of ecosystem theory to adopt both views and integrate them.

Because an ecosystem cannot be described in detail, it cannot be defined

according to Morowitz’s (1968) definition before the objectives of our

study are presented. Therefore, the definition of an ecosystem used in

the context of system ecology and ecological modelling, becomes:

An ecosystem is a biotic and functional system or unit, which is

able to sustain life and includes all biotic and abiotic variables

in that unit. Spatial and temporal scales are not specified a priori,

but are entirely based upon the objectives of the ecosystem

study.

Currently there are several approaches (Likens, 1985) used to study

ecosystems:

1. Empirical studies — Bits of information are collected, and an

attempt is made to integrate and assemble these into a complete

picture.

2. Comparative studies — Structural and functional components are

compared for a range of ecosystem types.

3. Experimental studies — Manipulation of a whole ecosystem is used

to identify and elucidate mechanisms.

4. Modelling or computer simulation studies.

The motivation (Likens, 1985) in all of these approaches is to achieve an

understanding of the entire ecosystem, giving more insight than the

sum of knowledge about its parts relative to the structure, metabolism,

and biogeochemistry of the landscape.

Likens (1985) presented an excellent ecosystem approach to Mirror

Lake and its environment. The research contains all the previously men-

tioned studies, although the modelling part is less developed than the

others. The study clearly demonstrates that it is necessary to use all four

approaches simultaneously to achieve a good representation of the sys-

tem properties of an ecosystem. An ecosystem is so complex that you

cannot capture all the system properties by one approach.
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Ecosystem studies widely use the notions of order, complexity,

randomness, and organization. They are often interchangeably applied

in the literature, which causes much confusion. As the terms are used

in relation to ecosystems throughout the volume, it is necessary to give

a clear definition of these concepts in this introductory chapter.

According to the Third Law of Thermodynamics about entropy at

0 K (J�rgensen, 2008a), randomness and order are the antithesis of

each other and may be considered as relative terms. Randomness

measures the amount of information required to describe a system.

The more information required to describe the system, the more ran-

dom it is.

Organized systems are to be carefully distinguished from ordered

systems. Neither kind of system is random; whereas ordered systems

are generated according to simple algorithms and may therefore lack

complexity, an organized system must be assembled element by

element according to an external wiring diagram with a high level of

information. Organization is a functional complexity and carries func-

tional information. It is nonrandom by design or by selection, rather

than by a priori necessity. Complexity is a relative concept dependent

on the observer (J�rgensen & Svirezhev, 2004). We may distinguish

between structural complexity, which is defined as the number of inter-

connections between components in the system and functional

complexity and defined as the number of distinct functions carried

out by the system.

1.6. The Development of Ecological and
Environmental Models

This section attempts to present briefly the history of ecological and

environmental modelling. From the history we can learn why it is

essential to draw upon the previously gained experience and what

goes wrong when we do not follow the recommendations set up to

avoid previous flaws.

Figure 1.4 gives an overview of the development in ecological model-

ling. The nonlinear time axis gives approximate information on the year
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when the various development steps took place. The first models of the

oxygen balance in a stream (the Streeter-Phelps model, presented in

Chapter 7) and of the prey–predator relationship (the Lotka-Volterra

model, presented in Chapter 5) were developed back in the early

1920s. In the 1950s and 1960s, further development of population

dynamic models took place. More complex river models were also

developed in the 1960s. These developments could be named the sec-

ond generation of models.

Streeter-Phelps
Lotka-Volterra

Population dynamics
River models

Eutrophication models
Complex river models

Fixed modelling procedure
Balanced complexity

More ecology

Ecotoxicological models
More case studies

Validation of prognoses

Structurally dynamic models
Ecological constraints

New mathematical tools, including
machine learning

1920

1950

1970

1975

1980

1990

2000

2010

Individual-based models
Spatial models

Socio-ecological models

FIGURE 1.4 The development of ecological and environmental models is shown schematically.
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The wide use of ecological models in environmental management

started around 1970, when the first eutrophication models emerged

and very complex river models were developed. These models could

be named the third generation of models. They are characterized by

often being too complex, because it was so easy to write computer pro-

grams that could handle rather complex models. To a certain extent it

was the revolution in computer technology that created this model gen-

eration. However, it became clear in the mid-1970s that the limitations

in modelling were not from the computer and the mathematics, but

from the available data and our knowledge about ecosystems and eco-

logical processes. So, the modellers became more critical in their accep-

tance of models. They realized that a profound knowledge of the

ecosystem — the problems and the ecological components — was the

basis for development of sound ecological models. This period resulted

in recommendations that are given in the Chapter 2:

• Strictly follow all steps of the procedure, such as conceptualization,

selection of parameters, verification, calibration, examination of

sensitivity, validation, and so forth.
• Find a balance between data, problem, ecosystem, and knowledge.
• A wide use of sensitivity analyses is recommended in the selection of

model components and model complexity.
• Make parameter estimations by using all the methods, such as

literature review, determination by measurement in laboratory or in

situ, use of intensive measurements, calibration of submodels and

the entire model, theoretical system ecological considerations, and

various estimation methods based on allometric principles and

chemical structure of the considered chemical compounds.

Parallel to this development, ecologists became more quantitative in

their approach to environmental and ecological problems, probably

because of the needs formulated by environmental management. The

quantitative research results from the late 1960s onward have been of

enormous importance for the quality of ecological models. They are

probably just as important as the developments in computer technology.

The models from this period, going from the mid-1970s to the mid-

1980s, could be called the fourth generation of models. The models

from this period are characterized by a relatively sound ecological basis,
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along with an emphasis on realism and simplicity. Many models were

validated in this period with an acceptable result and for some (few) it

was even possible to validate the prognosis.

The conclusions from this period may be summarized in the follow-

ing three points:

1. Provided that the previously listed recommendations are followed

and the underlying database is of good quality, it is possible to

develop models used as prognostic tools.

2. Models based upon a database of less than acceptable quality should

not be used as a prognostic tool, but they could give an insight into

the mechanisms behind the environmental management problem,

which is valuable in most cases. Simple models are often of

particular value in this context.

3. Ecologically sound models, that is, models based upon ecological

knowledge, are powerful tools in understanding ecosystem behavior

and as tools for setting up research priorities. The understanding

may be qualitative or semiquantitative, but has in any case proved to

be of importance for ecosystem theories and a better environmental

management.

1.7. State of the Art in the Application
of Models

The shortcomings of modelling have also been revealed. It became clear

that the models were rigid in comparison with the enormous flexibility,

which is characteristic of ecosystems. The hierarchy of feedback

mechanisms that ecosystems possess was not accounted for in the

models, which made them incapable of predicting adaptation and struc-

tural dynamic changes. Since the mid-1980s, modellers have proposed

manynewapproaches such as (1) fuzzymodelling, (2) examinations of cat-

astrophic and chaotic behavior ofmodels, and (3) application of goal func-

tions to account for adaptation and structural changes. Application of

objective and individualmodelling, expert knowledge, and artificial intelli-

gence offers some new additional advantages in modelling. This will dis-

cussed in Chapter 3 of this volume as well as when it is advantageous to

apply these approaches and what can be gained by their application.
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All these recent developments could be named the fifth generation of

modelling, which is covered in Chapters 3, 9, 10 and 11.

Table 1.1 reviews types of ecosystems, which have been modelled

by biogeochemical models up to the year 2000. An attempt has been

made to indicate the modelling effort by using a scale from 0–5

where 5 means very intense modelling effort, more than 50 different

modelling approaches can be found in the literature; 4 means intense

modelling effort with 20 to 50 different modelling approaches found in

the literature; 4–5 may be translated to class 4 but on the edge of an

upgrading to class 5; 3 means some modelling effort with 6 to 19 different

modelling approaches published; 2, few (2 to 5) different models have

been well studied and published; 1, one good study and/or a few insuffi-

ciently well-calibrated and validated models; and 0, almost no modelling

efforts have been published with no well-studied models. Notice that the

classification is based on the number of different models, not on the

Table 1.1 Biogeochemical Models of Ecosystems

Ecosystem Modelling Effort

Rivers 5

Lakes, reservoirs, ponds 5

Estuaries 5

Coastal zone 4

Open sea 3

Wetlands 5

Grassland 4

Desert 1

Forests 5

Agriculture land 5

Savanna 2

Mountain lands (above timberline) 1

Arctic ecosystems 2

Coral reef 3

Waste water systems 5
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number of case studies where these models have been applied. In most

cases, the same models have been used in several case studies.

Table 1.2 similarly reviews environmental problems that have been

modelled through the years. The same scale is applied to show the mod-

elling effort seen in Table 1.1. Table 1.2 covers biogeochemical models,

as well as models used for management of population dynamics in

national parks and steady-state models applied as ecological indicators.

It is advantageous to apply goal functions in conjunction with a steady-

state model to obtain good ecological indication, as proposed by

Christensen (1991, 1992).

Table 1.2 Models of Environmental Problems

Problem
Modelling
Effort

Oxygen balance 5

Eutrophication 5

Heavy metal pollution, all types of ecosystems 4

Pesticide pollution of terrestrial ecosystems 4–5

Other toxic compounds include ecological risk assessment (ERA) 5

Regional distribution of toxic compounds 5

Protection of national parks 3

Management of populations in national parks 3

Endangered species (includes population dynamic models) 3

Groundwater pollution 5

Carbon dioxide/greenhouse effect 5

Acid rain 5

Total or regional distribution of air pollutants 5

Change in microclimate 3

As ecological indicator 4

Decomposition of the ozone layer 4

Relationships health-pollution 3

Consequences of climate changes 4
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2.1. Introduction

This chapter covers the topic of modelling theory and its application in

the development of models. After the definitions of model components

and modelling steps are presented, a tentative modelling procedure is

given. The steps in the modelling procedure are discussed in detail

and they include: model conceptualization, mathematical formulation,

parameter estimation and calibration, sensitivity analysis, and valida-

tion. This chapter focuses on model selection or the selection of model

components, processes, equations, and in particular, model complexity.

Various methods to select “close to the right” complexity of the model

are presented. Several model formulations are always available, and to

choose among these will require that sound scientific constraints are

imposed on the model. Many different model types with different

advantages and disadvantages are available. The selection of the best

model type for a well-defined ecological or environmental management

problem will be discussed in Chapter 3, where an overview of the avail-

able model types will be presented. A mathematical model usually

requires the use of a computer and a computer language. The selection
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of a computer language is not discussed here, because there are many

possibilities and new languages emerge from time to time. In the mod-

els used as illustrative examples, STELLA (c) (High Performance Sys-

tems) software is applied.

2.2. Modelling Elements

In its mathematical formulation, an ecological model has five

components:

1. Forcing functions or external variables: Functions or variables of an

external nature that influence the state of the ecosystem. In a

management context, the problem to be solved can often be

reformulated. If certain forcing functions are varied, then howwill this

influence the state of the ecosystem?Themodel is used to predict what

will change in the ecosystem when forcing functions are varied with

time. The forcing functions, due to the human impact on ecosystems,

are called control functions, because it is in our hands to change them.

The control function in ecotoxicological models is, for instance, the

discharge of toxic substances to the ecosystems; in eutrophication

models it is discharge of nutrients. Other forcing functions of interest

could be climatic and natural external variables, which influence the

biotic and abiotic components and the process rates. In contrast to the

control functions, they are not controllable by humans. By using

models we will be able to address the crucial question: Which changes

in the control functions are needed to obtain well-defined conditions

for a considered ecosystem?

2. State variables: Describe, as the name indicates, the state or the

conditions of the ecosystem. The selection of state variables is crucial

to themodel structure, but often the choice is obvious. If, for instance,

we want to model the bioaccumulation of a toxic substance, then the

state variables should be the organisms in the most important food

chains and concentrations of the toxic substance in the organisms. In

eutrophication models, the state variables are the concentrations of

nutrients and phytoplankton. When the model is used in a

management context, the values of the state variables simulated by

changing the controllable forcing functions providemodel results that

contain the direct and indirect relations between the forcing functions

and the state variables.
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3. Mathematical equations: Used to represent the biological, chemical,

and physical processes. They describe the relationship between the

forcing functions and state variables. The same type of process may

be found in many different environmental contexts, which implies

that the same equations can be used in different models. However,

this does not imply that the same process is always formulated using

the same equation. First, the considered process may be better

described by another equation because of the influence of other

factors. Second, the number of details needed or desired to be

included in the model may be different from case-to-case due to a

difference in complexity of the system and/or the problem. Some

modellers refer to the description and mathematical formulation of

processes as submodels. The most applied process formulations are

presented by a short overview in Section 2.3.

4. Parameters: Coefficients in the mathematical representation of

processes. They may be considered constant for a specific ecosystem

or part of an ecosystem for a certain time, but they may also be a

function of time or vary spatially. In causal models, the parameter

will have a scientific definition and a well-defined unit, for instance,

the excretion rate of cadmium from a fish — the unit could be

mgCd/(24h * kg of fish). Many parameters are indicated in the

literature as ranges not constants, but even that is of great value in

the parameter estimation as will be discussed further in the following

text. In J�rgensen et al. (2000), a comprehensive collection of

parameters in environmental sciences and ecology can be found.

Our limited knowledge of parameters is one of the weakest points in

modelling, a point that will be touched on often throughout this

book. Furthermore, the applications of parameters as constants in

our models are unrealistic due to the many feedback systems in real

ecosystems. The flexibility and adaptability of ecosystems is

inconsistent with the application of constant parameters in the

models. A new generation of models that attempts to use varying

parameters according to ecological principles seems a possible

solution to the problem, but further development in this direction is

absolutely necessary before we can achieve an improved modelling

procedure that reflects the processes in real ecosystems. This topic

will be further discussed in Chapter 10.
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5. Universal constants: Such as the gas constant and atomic weights

are also used in most models.

Models can be defined as formal expressions of the essential ele-

ments of a problem in mathematical terms. The first recognition of

the problem is often verbal. This may be recognized as an essential pre-

liminary step in the modelling procedure, which will be treated in more

detail in the next section. The verbal model is, however, difficult to

visualize so it is translated into a more convenient conceptual diagram,

which contains the state variables, the forcing functions, and how these

components are interrelated by mathematical formulations of processes.

The conceptual diagram shows how the previous modelling elements 1

through 3 are related and connected.

Figure 2.1 illustrates a conceptual diagram of the nitrogen cycle in a

lake. The state variables are nitrate, ammonium (which is toxic to fish in

the un-ionized form of ammonia), nitrogen in phytoplankton, nitrogen

in zooplankton, nitrogen in fish, nitrogen in sediment, and nitrogen in

detritus. The state variables in this conceptual diagram are indicated

as boxes connected by processes (indicated as arrows).

The forcing functions are outflows and inflows, concentrations of

nitrogen components in the inflows and outflows, solar radiation, and

the temperature (not shown in the diagram), which influence all of the

process rates. The processes are formulated using quantitative expres-

sions in the mathematical part of the model. Three significant steps in

the modelling procedure need to be defined in this section before we

go into the modelling procedure in detail. These are verification, calibra-

tion, and validation.

1. Verification is a test of the internal logic of the model. Typical

questions in the verification phase include: Does the model

behave as expected and intended? Is the model long-term stable,

as one should expect in an ecosystem? Does the model follow

the law of mass conservation, which is often used as the basis

for the differential equations of the model (as discussed in the

next section)? Is the use of units consistent? Verification is, to

some extent, a subjective assessment of the model behavior

and will continue during the model use before the calibration

phase.
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2. Calibration is an attempt to find the best agreement between the

computed and observed data by variation of some selected

parameters. It may be carried out by trial and error or by using

software developed to find the parameters that best fit between

observed and computed values. In some static and simple models,

which contain only a few well-defined or directly measured

parameters, calibration may not be required, but it is generally

recommended to calibrate the model if observations of a proper

quality and quantity are available.

3. Validation must be distinguished from verification. Validation

consists of an objective test to show how well the model output fits

the data. We distinguish between a structural (qualitative) validity

and a predictive (quantitative) validity. A model is said to be

structurally valid if the model structure reasonably and accurately
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FIGURE 2.1 The conceptual diagram of a nitrogen cycle in an aquatic ecosystem. The processes are

(1) uptake of nitrate and ammonium by algae; (2) photosynthesis; (3) nitrogen fixation; (4) grazing with

loss of undigested matter; (5), (6), and (7) predation and loss of undigested matter; (8) settling of algae;

(9) mineralization; (10) fishery; (11) settling of detritus; (12) excretion of ammonium from zooplankton;

(13) release of nitrogen from the sediment; (14) nitrification; (15), (16), (17), and (18) inputs/outputs;

(19) denitrification; and (20), (21), and (22) mortality of phytoplankton, zooplankton, and fish.
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represents the cause-effect relationship of the real system. The

model exhibits predictive validity if its predictions of the system

behavior reasonably align with observations of the real system. The

selection of possible objective tests will be dependent on the

purposes of the model, but the standard deviations between model

predictions and observations and a comparison of observed and

predicted minimum or maximum values of a particularly important

state variable are frequently used. If several state variables are

included in the validation, then they may be given different weights.

Further detail on these three important steps in modelling will be

given in the next section where the entire modelling procedure is pre-

sented as well as additional information given in Sections 2.4–2.7.

2.3. The Modelling Procedure

A tentative modelling procedure is presented in this section. The authors

have successfully used this procedure numerous times and strongly rec-

ommend that all steps of the procedure are used very carefully. To make

shortcuts in modelling is not recommended. Other scientists in the field

have published other slightly different procedures, but detailed examina-

tion reveals that the differences are only minor. The most important steps

of modelling are included in all the recommended modelling procedures.

Always, the initial focus of research is the definition of the problem.

This is the only way in which the limited research resources can be cor-

rectly allocated.

The first modelling step is therefore a definition of the problem. This

will need to be bound by the constituents of space, time, and subsystems.

The bounding of the problem in space and time is usually easy, and con-

sequently more explicit, than the identification of the subsystems to be

incorporated in the model.

Systems thinking is important in this phase. You must try to grasp the

big picture. The focal system behavior must be interpreted as a product

of dynamic processes, preferably described by causal relationships.

Figure 2.2 shows the procedure proposed by the authors, but it is

important to emphasize that this procedure is unlikely to be correct in

the first attempt, so there is no need to aim for perfection in one step.

The procedure should be considered as an iterative process and the

main requirement is to get started (Jeffers, 1978).
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It is difficult, at least in the first instance, to determine the optimum

number of subsystems to be included in the model for an acceptable level

of accuracy defined by the scope of the model. Due to lack of data, it will

often become necessary at a later stage to accept a lower number than

intended at the start or to provide additional data for improvement of the

Definition of problem
and system

Adjacency matrix

Conceptual diagram

Mathematical formulation 
of processes

Transfer to computer
and verification

1. Sensitivity analysis

2. Senstivity analysis

Calibration, followed
by validation

Application of the model
 in management and to

formulate prognoses

Validation of
prognoses

Measurements with a
very high frequency

Examinations of
submodels

Additional data
collection

Available observations

Management

Modelling

Observations

Brain storming

FIGURE 2.2 A tentative

modelling procedure is

shown. Ideally, as

mentioned in the text, one

should determine the data

collection based on the

model, not the other way

around. Both possibilities

are shown because models

in practice have often been

developed from available

data, supplemented by

additional observations. This

diagram shows that

examinations of submodels

and intensive measurements

should follow the first

sensitivity analysis.

Unfortunately, many

modellers do not have the

resources to do so and

instead have bypassed these

two steps and even the

second sensitivity analysis. It

is strongly recommended to

follow the sequence of first

sensitivity analysis,

examinations of submodels

and intensive

measurements, and second

sensitivity analysis. Notice

that there are feedback

arrows from calibration and

validation to the conceptual

diagram. The diagram

shows that modelling

should be considered an

iterative process.
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model. It has oftenbeenargued that amore complexmodel should account

more accurately for the behavior of a real system, but this is not necessarily

true. Additional factors are involved, but a more complex model has more

parameters and increases the level of uncertainty because parameters have

to be estimated either by field observations, laboratory experiments, or

calibrations, which again are based on field measurements. Parameter

estimations are never completely without errors, and the errors are carried

through into the model contributing to its uncertainty. The problem of

selecting the right model complexity will be further discussed in Section

2.8. This is a problemofparticular interest formodelling in ecology because

ecosystems are very complex, but it does not imply that an ecological

model to be used in research or environmental management should be

very complex. It depends on the ecosystem and the problem.

A first approach to the data requirement can be made at this stage, but

it is most likely to be changed later once experience with the verification,

calibration, sensitivity analysis, and validation has been gained. Develop-

ment of an ecological model should be considered an iterative process.

In principle, data for all the selected state variables should be avail-

able; in only a few cases would it be acceptable to omit measurements

of selected state variables, as the success of the calibration and valida-

tion is closely linked to the data quality and quantity.

It is helpful at this stage to list the state variables and attempt to get

an overview of the most relevant processes by setting up an adjacency

matrix. The state variables are listed vertically and horizontally. A 1 is

used to indicate that a direct link exists between the two state variables,

while 0 indicates that there is no link between the two components. The

conceptual diagram in Figure 2.1 can be used to illustrate the applica-

tion of an adjacency matrix in modelling:

Adjacency matrix for the model in Figure 2.1

From Nitrate Ammonium Phyt-N Zoopl-N Fish N Detritus-N Sediment-N

To

Nitrate – 1 0 0 0 0 0

Ammonium 0 – 0 1 0 1 1

Phyt-N 1 1 – 0 0 0 0

Zoopl-N 0 0 1 – 0 0 0

Fish N 0 0 0 1 – 0 0

Detritus-N 0 0 1 1 1 – 0

Sediment-N 0 0 1 0 0 1 –
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In this example, the adjacency matrix is made from the conceptual

diagram for illustrative purposes, but in practice it is recommended to

set up the adjacency matrix before the conceptual diagram. The mod-

eller should ask for each of the possible links: Is this link possible? If

yes, is it sufficiently significant to be included in the model? If yes

write 1, if no write 0. The adjacency matrix shown above may not be

correct for all lakes. If resuspension is important, then there should

be a link between sediment-N and detritus-N. If the lake is shallow,

then resuspension may be significant, while the process is without

any effect in deep lakes. This example clearly illustrates the idea

behind the application of an adjacency matrix, which is to get the

very first overview of the state variables and their interactions. The

adjacency matrix can be considered as a checklist to assess which pro-

cesses of all the possible linkages actually realized should be included

in the model.

Once the model complexity, at least at the first attempt, has been

selected, it is possible to conceptualize the model, for instance, in the

form of a diagram as shown from Figure 2.1. This diagram will provide

information on which state variables, forcing functions, and processes

are required in the model.

Ideally, one should determine which data are needed to develop a

model according to a conceptual diagram; that is, to let the conceptual

model or even some first more primitive mathematical models deter-

mine the data at least within some given economic limitation. In real

life, most models have been developed after the data collection as a

compromise between model scope and available data. There are devel-

oped methods to determine the ideal data set needed for a given model

to minimize the uncertainty of the model, but unfortunately the appli-

cation of these methods is limited.

The conceptual diagram in Figure 2.1 indicates the state variables as

boxes; for instance, nitrate, and the processes as arrows between boxes.

The forcing functions are symbolized by arrows to or from a state vari-

able like 15 and 16. It is possible to use other symbols for the modelling

components.

The STELLA software will be used to illustrate the development ofmod-

els throughout this book. It uses boxes for state variables (compartments),

thick arrows with a symbol of a valve for the processes (connections), thick

arrows coming or going to a cloud for the forcing functions (which require
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a constant, an equation, a table, or a graph), and a thin arrow to indicate

the transfer of information or variables (controls such as forcing function,

parameter, and/or a state variable calculated by an algebraic expression

from another state variable and so on). See Figure 2.3.

There are other symbolic languages for development of conceptual dia-

grams, for instance, Odum’s energy circuit language. It has more symbols

than STELLA, so it is more informative but also more time-consuming to

develop. For an overview of the most used symbolic languages including

Odum’s energy circuit language, see J�rgensen and Bendoricchio (2001).

For each state variable, a differential equation is constructed: accumu-

lation ¼ inputs � outputs. For detritus-N in Figure 2.1, the inputs are the

processes 20 þ 5 þ21 þ 7 þ 22 þ18 (in) and the outputs are the processes

11 þ 9 þ 18 (out). The differential equations are solved analytically in

mathematics, but it is rarely possible withmost ecological models because

they are too complex. The differential equations are therefore solved

State variable

N2

Forcing function

Variable
Graph 1 Table 1

Information transfer by a thin arrow. STELLA
requires that the variable is used in the
mathematical formulation of the forcing
function

N1

Process between
two state variables

FIGURE 2.3 The symbols applied to erect a conceptual diagram using STELLA. State variables are boxes

for which differential equations are erected as accumulation ¼ inputs � outputs. Processes are thick

arrows with the valve symbol. Forcing functions are thick arrows starting or ending as a cloud. Circles are

variables in general. Graph 1 and Table 1 indicate that the results can be presented as graphs or as tables.
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numerically within the computer software. A time step is selected for the

model calculations. The shorter the time step, the closer the computer cal-

culations come to the real-time variations of inputs and outputs, but the

shorter the time step, the longer the simulation takes to run. It is recom-

mended to test different time steps and use the longest time step that does

not significantly change the model results by decreasing the time step

further. The term “significant changes” is evaluated relative to the accu-

racy of the observations used as basis for the development of the model.

The STELLA software develops the differential equations directly

from the conceptual diagram, which is input on the main user interface.

The time derivative of the state variables will be equal to all the inputs ¼
all process arrows going into the state variables minus all outputs ¼ all

process arrows going out from the state variables. The processes must,

however, be formulated as an algebraic equation.

The next step is formulating the processes as mathematical equations.

Many processes may be described by more than one equation, and it

may be of great importance for the results of the final model that the

right one is selected for the case under consideration. The ecological liter-

ature contains mathematical formulations of most ecological processes,

but a short overview of the most applied mathematical equations is pre-

sented here. More than 95% of all ecologically relevant processes can be

formulated mathematically by one of the following six equations:

1. A constant flow rate, also denoted zero order expression:

dC

dt
¼ k1 ð2:1Þ

2. A first-order rate expression, where the rate is proportional to a

variable such as a concentration of a state variable:

dC

dt
¼ k1C ð2:2aÞ

This expression corresponds to exponential growth and the following

solution can be obtained by integration:

CðtÞ ¼ C0e
k1t ð2:2bÞ

This is often used to for modelling population growth (see Chapter 5).

Decomposition processes and radioactive decay can also be approxi-

mated as first order reactions, in which the rate is negative.
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3. A second-order rate expression occurs when the rate is proportional

to two state variables simultaneously, for instance:

dC1

dt
¼ k2C1C2 ð2:3Þ

4. This is a first-order rate expression with a regulation due to

environmental constraints, for instance, space or resources.

dC

dt
¼ k4C 1� C

K

� �
ð2:4Þ

where K is the carrying capacity. When the concentration reaches the

carrying capacity the factor becomes zero and the growth stops. This

process rate expression is denoted logistic growth and it is illustrated

in more detail in Chapter 5. These two growth expressions are both

extensively applied in population dynamic models.

5. A Michaelis-Menten expression or Monod kinetics known from

enzymatic processes in biochemistry is given by:

dC

dt
¼ k3C

ðC þ kmÞ ð2:5Þ

Where k3 is the maximum reaction rate and km is the Michaelis con-

stant. At small concentrations of the substrate, this process rate is pro-

portional to the substrate concentration, while the process rate is at

maximum and constant at high substrate concentrations where the

enzymes are fully utilized. The same expression is used when the

growth rate of plants is determined by a limiting nutrient according to

Liebig’s minimum law. The Michaelis-Menten’s constant, km, or the half

saturation constant, corresponds to the concentration that gives half the

maximum rate. At small concentrations of substrate or nutrients, the

rate is very close to a first-order rate expression, whereas it is close to

a zero order rate expression at high concentrations. Notice, that the rate

is regulated from a first-order to a zero order expression more and more

as the concentration increases.

6. A rate governed by diffusion often uses a concentration gradient to

determine the rate as it is expressed in Fick’s First Law:

dC

dt
¼ k5

dC

dx
ð2:6Þ
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There are several modifications of these six expressions. For instance,

a threshold concentration tr, is often used in the Michaelis-Menten

expression. The concentration (state variable) is replaced by the

concentration –tr. The concentration therefore has to exceed tr to generate

any rate. For grazing and predation processes, the Michaelis-Menten’s

expression is often multiplied by (1 � concentration/carrying capacity)

similar to what is used in the logistic growth expression. It implies that

when food is abundant (concentration is high) another factor determines

and limits the growth such as space or nesting area. These modifications

will be used in Chapter 7 for development of a eutrophication model.

Once the system of mathematical equations is available, model veri-

fication can be carried out. As pointed out in Section 2.2, this is an

important step, which unfortunately is omitted by some modellers.

The next section presents the details of this modelling step.

2.4. Verification

The next step of the modelling procedure includes verification, which is

a test of the internal model logic. Crucial questions about the model are

asked and answered by the modeller. Verification is to some extent a

subjective assessment of the behavior of the model.

Findeisen et al. (1978) gave the following definition of verification:

“A model is said to be verified if it behaves in the way the model

builder wanted it to behave.” This definition implies that there is a

model to be verified, which means that not only the model equations

have been set up, but also that the parameters have been given reason-

able realistic values. Consequently, the sequence verification, sensitiv-

ity analysis, and calibration must not be considered a rigid step-by-

step procedure, but rather as an iterative operation, which must be

repeated a few times. The model is first given realistic parameters from

the literature, then it is calibrated coarsely, and finally the model can

be verified followed by a sensitivity analysis and a finer calibration.

The model builder will have to go through this procedure several times

before the verification and the model output in the calibration phase

will be satisfactory.

It is recommended at this step that answers to the following ques-

tions are provided:
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1. Is the model stable in the long term? The model is run for a long

period with the same annual variations in the forcing functions to

observe whether the state variable values remain at approximately the

same levels. During the first period, state variables are dependent on

the initial values for these, and it is recommended that themodel is also

run with initial values corresponding to the long-term values of the

state variables. The procedure also can be recommended for finding

the initial values if they are not measured or known by other means.

This question presumes that real ecosystems are long-term stable,

which is not necessarily the case.The model is run for a long period

using a certain pattern in the fluctuations of the forcing functions. It

should then be expected that the state variables, too, show a certain

pattern in their fluctuations. The simulation period should be long

enough to allow the model to demonstrate any possible instability.

2. Does the model react as expected? For example, if the input of toxic

substances is increased, then we should expect a higher

concentration of the toxic substance in the top carnivores. If this is

not so, then it shows that some formulations may be wrong and

these should be corrected. This question assumes that we actually

know at least some behavior of the ecosystem, which is not always

the case. In general, playing with the model is recommended at this

phase. Through such exercises the modeller gets acquainted with

the model and its reactions to perturbations. Models should

generally be considered an experimental tool. The experiments are

carried out to compare model results with observations, and changes

of the model are made according to the modeller’s intuition and

knowledge of the model’s behavior. If the modeller is satisfied with

the accordance between model and observations, then the model is

accepted as a useful description of the real ecosystem — at least

within the framework of the observations. This part of the

verification is based upon more subjective criteria. Typically, the

model builder formulates several questions about the model

behavior and tests the model response by provoking changes in

forcing functions or initial conditions. If the responses are not as

expected, then the model structure or equations will have to be

changed, provided that the parameter space is approved. Examples
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of typical questions will illustrate this operation: Will increased

BOD5-loading in a stream model imply decreased oxygen

concentration? Will increased temperature in the same model imply

decreased oxygen concentration? Will the oxygen concentration be at

a minimum at sunrise when photosynthesis is included in the

model? Will decreased predator concentration in a prey-predator

model imply increased prey concentration? Will increased nutrient

loadings in a eutrophication model give increased concentration of

phytoplankton? Numerous other questions can be asked.

3. It is also recommended to check all the units at this phase of

model development. Check all equations for consistency of units.

Are the units the same on both sides of the equation sign? Are the

parameters used in the model consistent for the type of equations

used and do the units match with the available data?

4. Investigate the statistical properties of the noise in the model. To

conform to the properties of white noise, any error sequence should

broadly satisfy the following constraints: that its mean value is zero,

that it is not correlated with any other error sequence, and that it is

not correlated with the sequences of measured input forcing

functions. Evaluation of the error sequences in this fashion can

therefore essentially provide a check on whether the final model

invalidates some of the assumptions inherent in the model. If the

error sequences do not conform to their desired properties, then this

suggests that the model does not adequately characterize all of the

more deterministic features of the observed dynamic behavior.

Consequently, the model structure should be modified to

accommodate additional relationships. To summarize this part of the

verification the errors:

1. (Comparison model output/observations) must have mean values

of approximately zero

2. Are not mutually cross-related

3. Are not correlated with the measured input forcing functions

Results of this kind of analysis are illustrated in detail in Beck (1987).

Notice that this analysis requires good estimates of standard deviations

in sampling and analysis (observations).
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Notice finally that during verification it is possible to perform

multiple scenario analyses or “Gedanken Experiments.” For example,

we can test a eutrophication model by its response to the following

test. We rent a helicopter and buy 100,000 kg of phosphorus fertilizer

and drop it instantly to the lake. The experiment could be made at

no cost using the model, while it would be very expensive to rent a

helicopter and buy 100,000 kg of fertilizer. A major advantage of mod-

els is how easy it is to assess the system behavior under a wide array of

scenarios.

Model verification may seem very cumbersome, but it is a very nec-

essary step for the model development process. Through the verifica-

tion one learns the model through its behavior, and the verification

becomes an important checkpoint in the construction of a workable

model. This also emphasizes the importance of good ecological knowl-

edge of the ecosystem without which the right questions as to the inter-

nal logic of the model cannot be posed.

Unfortunately, many models have not been verified properly due to

lack of time, but the experience shows that what might seem to be a

shortcut will lead to an unreliable model, which at a later stage might

require more time to compensate for the lack of verification. It must

therefore be strongly recommended to invest enough time in the verifi-

cation and to plan for the necessary allocation of resources in this

important phase of the modelling procedure.

2.5. Sensitivity Analysis

Sensitivity analysis follows verification. Through this analysis the model-

ler gets a good overview of the most sensitive components of the model.

Thus, sensitivity analysis attempts to provide a measure of the sensitiv-

ity of parameters, forcing functions, or submodels to the state variables

of greatest interest in the model. If a modeller wants to simulate a toxic

substance concentration in carnivorous insects as a result of the use of

insecticides, then one will choose this state variable as the most impor-

tant one for a sensitivity analysis along with the concentration of the

toxic substance concentration in plants and herbivorous insects.

In practical modelling, the sensitivity analysis is carried out by

changing the parameters, the forcing functions, or the submodels.
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The corresponding response on the selected state variables is observed.

Thus, the sensitivity, S, of a parameter, P, is defined as follows:

S ¼ ½@x=x�=½@P=P� ð2:7Þ
where x is the state variable under consideration.

The relative change in the parameter value is chosen based on our

knowledge of the certainty of the parameters. If the modeller estimates

the uncertainty to be about 50%, then a change in the parameters at

�10% and �50% is chosen and the corresponding change in the state

variable(s) recorded. It is often necessary to find the sensitivity at two or

more levels of parameter changes as the relationship between a parameter

and a state variable is rarely linear.

A sensitivity analysis makes it possible to distinguish between high-

leverage variables, whose values have a significant impact on the system

behavior and low-leverage variables, whose values have minimal impact

on the system. Obviously, the modeller must concentrate the effort on

improvements of the parameters and the submodels associated with

the high-leverage variables. The result of a sensitivity analysis of a eutro-

phication model with 18 state variables, presented in Chapter 7, is shown

in Table 2.1. The sensitivity of the examined parameters by a 10% increase

to phytoplankton, s-phyt; to zooplankton, s-zoo; to soluble nitrogen, s-nit;

and to soluble phosphorus, s-phos, is shown. These results clearly indicate

that the parameters “maximum growth rate of phytoplankton and zoo-

plankton,” “mortality of zooplankton,” and the “settling rate of

Table 2.1 Results of a �10% Sensitivity Analysis of the 18 State Variable
Model in Chapter 7

Parameter s-phyt s-zoo s-nit s-phos

Maximum growth rate of phytoplankton 0.488 0.620 -0.356 -0.392

Maximum growth rate of zooplankton -2.088 -4.002 2.749 4.052

Denitrification rate -0.19 -0.010 -0.579 0.013

Fish concentration 0.008 0.012 -0.011 -0.014

Rate of mineralization 0.003 0.010 0.038 0.001

Mortality zooplankton 2.063 1.949 -3.479 -3.350

Settling rate -1.042 -0.0823 0.321 0.388

Chapter 2 • Concepts of Modelling 35



 

phytoplankton,” are very important parameters to determine accurately

because they all have a sensitivity to the most important state variable,

the phytoplankton, which is more than 0.5 or 50%, meaning that a change

of the parameters by 10% would make a change of the phytoplankton con-

centration of more than 50%. On the other hand, the parameters “maxi-

mum denitrification rate,” the “mortality of fish,” and the “rate of

mineralization” are significantly less important parameters. They all have

a sensitivity of less than 0.1 or 10%. Therefore, they would change the phy-

toplankton less than 1% if the parameters are changed 10%.

The interaction between the sensitivity analysis and the calibration

could consequently work along the following lines:

1. A sensitivity analysis is carried out at two or more levels of parameter

changes. Relatively large changes are applied at this stage.

2. The most sensitive parameters are determined more accurately

either by a calibration or by other means (see Section 2.9).

3. Under all circumstances, great efforts are made to obtain a relatively

well calibrated model.

4. A second sensitivity analysis is then carried out using more narrow

intervals for the parameter changes.

5. Still further improvements of the parameter certainty are attempted.

6. A second or third calibration is then carried out focusing mainly on

the most sensitive parameters.

A sensitivity analysis on submodels (process equations) can also be

carried out. Then the change in a state variable is recorded when the

equation of a submodel is deleted from themodel or changed to an alter-

native expression, for instance, with more details built into the submo-

del. Such results may be used to make structural changes in the model.

For example, if the sensitivity shows that it is crucial for themodel results

to use a more detailed submodel, then this result should be used to

change the model correspondingly.

If it is found that the state variable in focus is very sensitive to a cer-

tain submodel, then it should be considered which alternative submo-

dels could be used and they should be tested and/or examined in

further detail either in vitro or in the laboratory.

It can generally be stated that those submodels, which contain sensitive

parameters, are also submodels that are sensitive to the important state var-

iable. On the other hand, it is not necessary to have a sensitive parameter
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included in a submodel to obtain a sensitive submodel. A modeller with a

certain experience will find that these statements agree with intuition, but

it is also possible to show that they are correct by analytical methods.

A sensitivity analysis of forcing functions gives an impression of the

importance of the various forcing functions and tells us what accuracy

is required of the forcing functions.

2.6. Calibration

The goal of calibration is to improve the parameter estimation. Some

parameters in causal ecological models can be found in the literature,

not necessarily as constants but as approximate values or intervals. To

cover all possible parameters for all possible ecological models includ-

ing ecotoxicological models, we need to know more than one billion

parameters. Therefore, in modelling there is a particular need for

parameter estimation methods. This will be discussed later in this chap-

ter and further in Chapter 8, where methods to estimate ecotoxicologi-

cal parameters based upon the chemical structure of the toxic

compound are presented. In all circumstances, it is a great advantage

to give even approximate values of the parameters before the calibration

gets started as previously mentioned. It is, of course, much easier to

search for a value between 1 and 10 than to search between 0 and þ 1.

Even where all parameters are known within intervals either from the

literature or from estimation methods, it is usually necessary to cali-

brate the model. Several sets of parameters are tested by the calibration

and the various model outputs of state variables are compared with

measured values of the same state variables. The parameter set that

gives the best agreement between model output and measured values

is chosen.

The need for the calibration can be explained by using the following

characteristics of ecological models and their parameters:

1. Most parameters in environmental science and ecology are not

known as exact values. Therefore, all literature values for

parameters (J�rgensen et al., 1991, 2000). Parameter estimation

methods must be used when no literature value can be found,

particularly ecotoxicological models. See, J�rgensen (1991, 1992a)

and Chapter 8. In addition, we must accept that unlike many
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physical parameters, ecological ones are not constant but change in

time or situation (J�rgensen, 1986, 1992b, 2002). This point will be

discussed further in Chapter 10.

2. All models in ecology and environmental sciences are simplifications

of nature. The most important components and processes may

be included, but the model structure does not account for every

detail. To a certain extent the influence of some unimportant

components and processes can be taken into account by the

calibration. This will give slightly different values for the

parameters from the real, but unknown, values in nature, but

the difference may partly account for the influence from the

omitted details.

3. Most models in environmental sciences and ecology are “lumped

models,” which means that one parameter represents the average

values of several species. As each species has its own characteristic

parameter value, the variation in the species composition with time

will inevitably give a corresponding variation in the average

parameter used in the model. Adaptation and shifts in species

composition will require other approaches. This will be discussed in

more detail in Chapter 10.

A calibration cannot be carried out randomly if more than a couple

of parameters have been selected for calibration. If, for instance, 10

parameters have to be calibrated and the uncertainties justify the test-

ing of 10 values for each parameter, the model has to be run 1010 times,

which is an impossible task. Therefore, the modeller must learn the

behavior of the model by varying one or two parameters at a time and

observing the response of the most crucial state variables. In some

(few) cases it is possible to separate the model into several submodels,

which can be calibrated approximately independently. Although the cal-

ibration described is based to some extent on a systematic approach, it

is still a trial-and-error procedure.

However, procedures for automatic calibration are available. This

does not mean that the trial-and-error calibration described earlier is

redundant. If the automatic calibration should give satisfactory results

within a certain frame of time, then it is necessary to calibrate only

6–9 parameters simultaneously. In any circumstances, the narrower
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the ranges of the parameters before the calibration gets started, the eas-

ier it is to find the optimum parameter set.

In the trial-and-error calibration, the modeller has to set up, some-

what intuitively, some calibration criteria. For instance, you may want

to simulate accurately the minimum oxygen concentration for a stream

model and/or the time at which the minimum occurs. When you are

satisfied with these model results, you may then want to simulate the

shape of the oxygen concentration versus time curve properly, and so

on. The model must be calibrated step-by-step to achieve these objec-

tives step-by-step.

If an automatic calibration procedure is applied, then it is necessary

to formulate objective criteria for the calibration. A possible function

could be based on an equation similar to the calculation of the standard

deviation:

Y ¼ ½ðSððXc � XmÞ2=Xm;aÞ=n�1=2 ð2:8Þ
where Xc is the computed value of a state variable, Xm is the

corresponding measured value, Xm,a is the average measured value of

a state variable, and n is the number of measured or computed values.

Y is computed during an automatic calibration with the goal to obtain

the lowest Y value possible.

Often, the modeller is more interested in a good agreement between

model output and observations for one or two state variables and less

interested in a good agreement with other state variables. Therefore,

weights are chosen for the various state variables to account for the

emphasis put on each state variable in the model. For a model of the

fate and effect of an insecticide, emphasis may be put on the toxic sub-

stance concentration of the carnivorous insects while considering the

toxic substance concentrations in plants, herbivorous insects, and soil

to be of less importance. Therefore, a weight of ten is applied for the

first state variable and only one for the subsequent three.

If it is impossible to calibrate a model properly, then it is not neces-

sarily due to an incorrect model. Instead, it may be due to the poor data

quality, which is crucial for calibration. It is also of great importance

that the observations reflect the system dynamics. If the objective of the

model is to give a good description of one or a few state variables, then

it is essential that the data show the dynamics of just these internal
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variables. The frequency of the data collection should therefore reflect

the dynamics of the state variables in focus. This rule has unfortunately

often been violated in modelling.

It is strongly recommended that the dynamics of all state variables

are considered before the data collection program is determined in

detail. Frequently, some state variables have particularly pronounced

dynamics in specific periods — often in spring — and it may be of great

advantage to have a dense data collection in this period in particular.

J�rgensen et al. (1981) showed how a dense data collection program in

a certain period can be applied to provide additional certainty for the

determination of some important parameters. This question will be fur-

ther discussed in Section 2.9.

From these considerations, recommendations can now be drawn

about the feasibility of carrying out a calibration of a model in ecology:

1. Find as many parameters as possible from the literature (see

J�rgensen et al., 1991, 2000). Even a wide range for the parameters

should be considered very valuable, as approximate initial guesses

for all parameters are urgently needed.

2. If some parameters cannot be found in the literature, which is often

the case, then the estimation methods mentioned later in this Section

2.9 and in Chapter 8 may be used. For some crucial parameters it

may be recommended to determine them by experiments in situ or

in the laboratory.

3. A sensitivity analysis should be carried out to determine which

parameters are most important to be known with high certainty. The

estimation methods and the determination of the parameters by

experiments should focus mainly on the most sensitive parameters.

4. An intensive data collection program for the most important state

variables should be used to provide a better estimation for the most

crucial parameters. For further details see Section 2.9.

5. First, at this stage, the calibration should be carried out using the

data not yet applied. The most important parameters are selected

and the calibration is limited to these, or, at the most, to eight to ten

parameters. In the first instance, the calibration is carried out by

using the trial-and-error method to get acquainted with the model
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reaction to changes in the parameters. An automatic calibration

procedure is used subsequently to polish the parameter estimation.

6. These results are used in a second sensitivity analysis, which may give

results different from the first sensitivity analysis.

7. A second calibration is now used on the parameters that are most

important according to the second sensitivity analysis. In this case,

too, both the previous calibration methods may be used. In some

cases, the modeller would repeat steps 6 and 7 one time more and

make a third calibration. After this final calibration the model can be

considered calibrated and we can go to the next step — validation.

2.7. Validation and Assessment of the Model
Uncertainty

The calibration should always be followed by a validation. During this

step the modeller tests the model against an independent data set to

observe how well the model simulations fit these data. It may be possi-

ble, even in a data-rich situation, to force a wrong model by the param-

eter selection to give outputs that fit well with the data. It must,

however, be emphasized that the validation only confirms the model

behavior under the range of conditions represented by the available

data. So, it is preferable to validate the model using data obtained from

a period in which conditions other than those of the period of data col-

lection for the calibration prevail. For instance, when a eutrophication

model is tested, it should preferably have data sets for the calibration

and the validation that differ by the level of eutrophication. This is often

impossible or at least very difficult as it may correspond to a complete

validation of the model predictions, which at best takes place at a later

stage of the model development. However, it may be possible and useful

to obtain data from a certain range of nutrient loadings, for instance,

from a humid and a dry summer. Alternatively, it may be possible to

get data from a similar ecosystem with approximately the same morphol-

ogy, geology, and water chemistry as the modelled ecosystem. Similarly, a

BOD/DO model should be validated under a wide range of BOD-

loadings, a toxic substance model under a wide range of concentrations
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of the considered toxic substances, and a population model by different

levels of the populations, and so forth.

If an ideal validation cannot be obtained, then it is still important to

validate the model as best as possible. The method of validation is

dependent on the model objectives. A comparison between measured

and computed data using an objective function Eq. (2) is an obvious

test. This is, however, often not sufficient, as it may not focus on all

the main objectives of the model, but only on the general ability of

the model to describe correctly the state variables of the ecosystem. It

is necessary, therefore, to translate the main objectives of the model into

a few validation criteria. They cannot be formulated generally, but are

individual for the model and the modeller. For instance, if we are

concerned with the eutrophication in an aquatic ecosystem, it would

be useful to compare the measured and computed maximum concen-

trations of phytoplankton. The validation discussion can be summar-

ized by the following issues:

1. Validation is always required to get a picture of the model reliability.

2. Attempts should be made to get data for the validation that are

entirely different from those used in the calibration. It is important

to have data from a wide range of forcing functions that are defined

by the model objectives.

3. The validation criteria are formulated based on the model objectives

and the quality of the available data. The main purpose of the model

may, however, be an exploratory analysis to understand how the

system responds to the dominating forcing functions. In this case, a

structural validation is probably sufficient.

Validation is a very important modelling step because it gives the

uncertainty of the model results. It attempts to answer the question:

Which model uncertainty should we consider when using the model

to develop strategies for environmental management? If we use the

model as research tool, then the validation will tell us whether the

model results can be used to support or reject a hypothesis. The uncer-

tainty determined by the validation relative to the difference between

the hypothesis and the model results will be decisive. In Chapter 7, a

eutrophication model with 18 state variables will be applied as a case
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study to demonstrate how the validation results can be used to assess

the expected uncertainty of the prognoses developed by the model.

The validation result can also be used to consider the model revisions

that would be needed to reduce the uncertainty. In our effort to improve

the model, we should ask the following pertinent questions:

1. What is the uncertainty of the observations (measurements)? If the

uncertainty of the model is not very different from the uncertainty of

the observations, then it will probably be beneficial to get more

reliable observations with less uncertainty.

2. Do the observations represent the system dynamics? If not, then

more frequent monitoring should be considered for some period to

capture the system dynamics. See the discussion of this question in

Section 2.9.

3. Are some important processes or components missing or described

wrongly in the model? In this context, as previously mentioned, it is

important to set up a mass and/or energy balance to reveal the most

important processes and sources.

It is recommended to give a sufficiently comprehensive answer to

question 3 and eventually use the model experimentally to find the best

answer. It is quite easy in most cases to replace important equations by

other expressions or add new components or processes and so on. Such

experiments are very elucidating for the importance of formulations

and inclusion of processes. Small changes in process equations that

make big changes in the model results uncover the soft points of the

model and may inspire additional experiments or observations in situ

or in the laboratory, and eventually to further changes of the model.

It should be emphasized that the “ideal” model can never be

achieved, but step-by-step by steadily questioning the model and using

these three points again and again, we can improve the model quality

moving asymptotically toward the ideal model. An ideal model is, how-

ever, not necessary to have a useful and powerful tool in environmental

management and ecosystem research. A satisfactory calibration and val-

idation with sufficiently low uncertainties to allow application in a

defined context would be the general requirement for the pragmatic

modeller.
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2.8. Model Classes

It is useful to distinguish between various model classes and briefly dis-

cuss the selection of model classes.

Pairs of models are shown in Table 2.2. The first division of models is

based on the application scientific and management models. This initial

Table 2.2 Classification of Models (Pairs of Model Types)

Type of Models Characterization

Research models Used as a research tool

Management

models

Used as a management tool

Deterministic

models

The predicted values are computed exactly

Stochastic models The predicted values depend on probability distribution

Compartment

models

The variables defining the system are quantified by means of time-dependent

differential equations

Matrix models Uses matrices in the mathematical formulation

Reductionistic

models

Include as many relevant details as possible

Holistic models Uses general principles

Static models The variables defining the system are not dependent on time

Dynamic models The variables defining the system are a function of time (or perhaps of space)

Distributed models The parameters are considered functions of time and space

Lumped models The parameters are within certain prescribed spatial locations and time,

considered as constants

Linear models First-degree equations are used consecutively

Nonlinear models One or more of the equations are not first degree

Causal models The inputs, states, and the outputs are interrelated by using causal relations

Black-box models The input disturbances effect only the output responses, no causality is required

Autonomous

models

The derivatives are not explicitly dependent on the independent variable (time)

Non-autonomous

models

The derivatives are explicitly dependent on the independent variable (time)
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distinction guides the objectives of the model development toward

either research or application orientation and influences the choice of

which processes and state variables to emphasize.

The next pair is stochastic and deterministic models. A stochastic

model contains stochastic input disturbances and random measure-

ment errors, as shown in Figure 2.4. If they are both assumed to be zero,

then the stochastic model will reduce to a deterministic model provided

the parameters are not estimated in terms of statistical distributions.

A deterministic model assumes that the future response of the system

is completely determined by knowledge of the present state and future

measured inputs. Stochastic models are not frequently applied in

ecology.

The third pair in Table 2.2 is compartment and matrix models. Some

modellers refer to compartment models as models based on the use of

compartments in the conceptual diagram, while other modellers distin-

guish between the two model classes entirely by the mathematical for-

mulation as indicated in Table 2.2. Both model types are applied in

ecological modelling, although the use of compartment models is far

more pronounced.

The classification of reductionistic and holistic models is based upon

a difference in the scientific ideas behind the model. The reductionistic

modeller will attempt to incorporate as many details of the system as

possible to capture its behavior, believing that the properties of the sys-

tem are the sum of the details. A holistic modeller will abstract some

detail to capture broader scale patterns. The bridge between these

bottom-up and top-down approaches is spanned by the use of hierarchi-

cal models that include lower level micro-scale interactions constrained

by higher level macro-scale processes.

(2) stochastic
disturbances

(3) random
measurement errors

System state
(1) measured 
input

(4) measured 
output 

FIGURE 2.4 A stochastic

model considers (1), (2),

and (3), while a

deterministic model

assumes that (2) and (3)

are zero.

Chapter 2 • Concepts of Modelling 45



 

Most problems in environmental sciences and ecology may be

described by dynamic models, which use differential or difference equa-

tions to describe the system response to external factors. Differential

equations are used to represent continuous changes of state with time,

while difference equations use discrete time steps. The steady state cor-

responds to the situation when all derivatives equal zero. The oscilla-

tions around the steady state are described by use of a dynamic

model, while the steady state can be described by use of a static model

(see Figure 2.5), which can be reduced to algebraic equations.

Some dynamic systems have no steady state; for instance, systems

that show limit cycles. This situation obviously requires a dynamic

model to describe the system behavior. In this case, the system is always

nonlinear, although there are nonlinear systems that have steady states.

A static model assumes, consequently, that all variables and para-

meters are time independent. The advantage of the static model is its

potential for simplifying subsequent computational effort through the

elimination of one of the independent variables in the model relation-

ship, but static models may give unrealistic results because oscillations

caused by seasonal and diurnal variations may be utilized by the state

variables to obtain higher average values.

A distributed model accounts for variations of variables in time and

space. A typical example would be an advection-diffusion model for

transport of a dissolved substance along a stream. It might include

A

B

B

B

B

C

Time

FIGURE 2.5 Y is a state variable

expressed as a function of time. A is

the initial state and B the transient

states. C oscillates around a steady

state. The dotted line corresponds to

the steady state that can be described

by a static model. The transient state

requires the use of a dynamic model.
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variations in the three orthogonal directions. The analyst might decide,

based on prior observations, that gradients of dissolved material along

one or two directions are not sufficiently large to merit inclusion in

the model. The model would then be reduced by that assumption to a

lumped parameter model. Whereas the lumped model is frequently

based upon ordinary differential equations, the distributed model is

usually defined by partial differential equations.

The causal, or internally descriptive, model characterizes the manner

in which inputs are connected to states and how the states are

connected to each other and to the outputs of the system, whereas

the black-box model reflects only what changes in the input will affect

the output response. In other words, the causal model describes the

internal mechanisms of process behavior. The black-box model deals

only with what is measurable at the boundary: the input and the output.

The relationship may be found by a statistical analysis. If, on the other

hand, the processes are described by model equations that represent

the relationships, then the model will be causal.

The modeller may prefer to use black-box descriptions in the cases

where knowledge about the processes is limited. The disadvantage of

the black-box model is that it has limited application to the ecosystem

under consideration or at least to a similar ecosystem, and that it can-

not consider changes of the system.

If general applicability is needed, then it is necessary to set up a

causal model. The latter type is more widely used in environmental

sciences than the black-box model, mainly because the causal model

gives the user deeper understanding about the function of the system,

including the many chemical, physical, and biological reactions.

Autonomous models are not explicitly dependent on time (the inde-

pendent variable):

dy=dt ¼ a�yb þ c�yd þ e ð2:9Þ
Non-autonomous models contain terms, g(t), that make the derivatives

dependent on time, exemplified by the following equation:

dy=dt ¼ a�yb þ c�yd þ eþ gðtÞ ð2:10Þ
The pairs in Table 2.2 may be used to define the type of model that is

most applicable to solve a given problem. It will be further discussed
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in the next section, where a practical model classification will also be

presented.

Table 2.3 shows another way to classify models. The differences

among the three model types are the choice of components used as

state variables. If the model describes a number of individuals, species,

or classes of species, then it is called biodemographic. A model that

describes the energy flows is bioenergetic and the state variables will

typically be expressed in kJ or kJ per unit of volume or area. Biogeo-

chemical models consider the flow of material and the state variables

are indicated as kg or kg per unit of volume or area. This model type

is mainly used in ecology.

The problem, the ecosystem characteristics, and the available data-

base should be reflected in the choice of model class. The two model

classifications presented earlier are useful for defining the modelling

problem. Is the problem related to a description of populations, energy

flows, or mass flows? The answer determines whether we should develop

a biodemographic, bioenergetic, or biogeochemical model. Biodemo-

graphic models that include a description of age structure can be ele-

gantly developed by a matrix model, provided that first-order processes

can be assumed. This will be demonstrated in Chapter 5, Section 5.4.

If the model is developed on the basis of a database that has limited

quality and/or quantity, then the model should have relatively low com-

plexity. A dynamic model is generally more demanding to calibrate and

validate than a static model. Therefore, the latter type would often be

selected in a data-poor situation, provided that a description of the

steady state is sufficient to solve the problem. Steady-state descriptions

imply that an equation input ¼ output for each state variable can be

applied to find (estimate) one (otherwise unknown) parameter. Chapter

6 shows how a steady-state model can be developed and used to get a

Table 2.3 Model Identification

Model Types Organization Pattern Measurements

Biodemographic Conservation of genetic

information

Life cycles of

species

Number of species or

individual

Bioenergetic Conservation of energy Energy flow Energy

Biogeochemical Conservation of mass Element cycles Mass of concentrations
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good overview of an ecological situation, even in a relatively data-poor

situation.

Dynamic models are able to make predictions about the variations of

state variables in time and/or space. Differential equations are used to

express the variation. With reference to Figure 2.6, the following differ-

ential equations are valid:

dPS=dt ¼ PINþ Processð2Þ � Processð1Þ � PS �Q=V ð2:11Þ
dPA=dt ¼ Processð1Þ � PA �Q=V ð2:12Þ

where PIN represents the input (a forcing function), Q the flow rate out

of the system, V the volume of the system and (1) and (2) processes that

can be formulated as mathematical equations with PS and PA as vari-

ables; for instance (1) ¼ kPS/(0.5 þ PS) (a Michaelis-Menten expression)

and (2) ¼ k0*PA, where k and k0 are two parameters.

The corresponding steady-state model gives us two equations:

PINþ k0PA ¼ PSðQ=V þ k=ð0:5þ PSÞÞ and PA �Q=V ¼ kPS=ð0:5þ PSÞ
that can be used to find k and k’, presuming that we know the two state

variables at steady state and the forcing functions.

Many population dynamic, biogeochemical, and ecotoxicological

models apply differential equations because the time variations are

important.

It is known that ecosystems are adaptable. Over time, species can

change their properties to meet changing conditions (i.e., change of

forcing functions or disturbances). If the changes are major, then there

PSout

PIN

PS PA

Process 1

Process 2

PAout FIGURE 2.6 A conceptual

diagram of a simple

model with two state

variables, PS and PA, is

shown. PIN is a forcing

function. (1) and (2) are

processes.
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may even be a shift to other species with properties better fitted to the

emerging conditions. Models that account for the change of properties

of the biological components have variable parameters and are

described by nonstationary, time-varying differential equations. They

are often called structurally dynamic models (SDMs; see J�rgensen,

1986, 1997, 2002), because they are able to predict the changes in prop-

erties of the biological components. Chapter 10 covers this model type

and its application. Structurally dynamic models are distributed models,

because the parameters are considered functions of time and space.

While distributed models in most cases are based on mathematical for-

mulations of these functions when the model is developed, we will only

use the term structurally dynamic models for models that can simulate

change in the structure (shifts in parameter values). Structurally

dynamic models are an important recent development in ecological

modelling because the parameters found on the basis of the observa-

tions in the ecosystem under the present prevailing conditions cannot

be valid when the conditions are changed due to adaptation. Therefore,

models without dynamic structure often give unreliable results, particu-

larly if the forcing functions are significantly changed.

In Chapter 3, an overview of the model types that are available for

the development of ecological models is presented. The choice of

model type for development in a particular situation depends on the

different mathematical methods, different goals, and different applica-

tions and may also use different types of databases. While the model

classes are characterized by a difference in one property only (e.g.,

steady state vs. dynamic state and mass flows vs. energy flows), the

different model types are significantly different. They have been devel-

oped to solve some fundamental modelling problems in ecology dur-

ing the last couple of decades, including: (1) How do we account for

the individuality of organisms? (2) How do we account for adaptation

and shifts in species composition? (3) What model approach is best

when our data set is uncertain (i.e., fuzzy)? (4) How can we make an

effective model from a very heterogeneous database? (5) How can we

improve model parameter estimation? We have solved these problems

by development of several different model types that have expanded

the range and application of ecological models in many different

directions.
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2.9. Selection of Model Complexity and Structure

The literature of environmental modelling contains several methods that

are applicable to the selection of model complexity. References can be

given to the following papers devoted to this question: Halfon (1983,

1984, 1986), Halfon, Unbehauen, and Schmid (1979), Costanza and Sklar

(1985), Bosserman (1980, 1982) and J�rgensen and Mejer (1977).

It is clear from the previous discussions in this chapter that selection of

the model complexity is a matter of balance. On one hand, it is necessary

to include the state variables and the processes essential for the problem

in focus. On the other hand, it is important not to make the model more

complex than appropriate for the available data set. As Einstein once

quipped, “A scientific theory should be as simple as possible, but no sim-

pler.” The same applies to models. Our knowledge of processes and state

variables together with our data set determine the selection of model

complexity. If our knowledge is poor, then the model will include few

details and will have a relatively high uncertainty. If we have a profound

knowledge of the problem we want to model, then we can construct a

more detailed model with a relatively low uncertainty. Many researchers

claim that a model cannot be developed before one has a certain level

of knowledge, and that it is a flaw to attempt to construct a model in a

data poor situation. This is wrong because a model can always assist

the researcher by synthesizing the present knowledge and by visualizing

the system. But the researcher must always present the shortcomings

and the uncertainties of the model and not try to pretend that the model

is a complete and detailed picture of reality. A model will often be a fruit-

ful instrument to test hypotheses in the hands of the researcher, but only

if the incompleteness of the model is fully acknowledged.

It should not be forgotten in this context that models have always

been applied in science. The difference between present and previous

models is only that today, with modern computer technology, we are able

to work with very complex models. However, it has been a temptation to

construct models that are too complex — it is easy to add more equations

and more state variables to the computer program, but much harder to

get the data needed for calibration and validation of the model.

Even if we have very detailed knowledge about a problem, we will

never be able to develop a model capable of accounting for the com-

plete input-output behavior of a real ecosystem and valid for all frames
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(Zeigler, 1976). This ideal model is named “the base model” by Zeigler,

and it would be very complex and require such a great number of

computational resources that it would be almost impossible to simulate.

The base model of a problem in ecology will never be fully known

because of the complexity of the system and the impossibility to

observe all states. However, given an experimental frame of current

interest, a modeller is likely to find it possible to construct a relatively

simple model that is workable in that frame.

According to this discussion, a model may be made more realistic by

adding more connections. Additions of new parameters up to a point do

not contribute further to improve the simulation; on the contrary, more

parameters imply more uncertainty because of the possible lack of

information about the flows the parameters can quantify. Given a cer-

tain amount of data, the addition of new state variables or parameters

beyond a certain model complexity does not add to our ability to model

the ecosystem; it only adds to unaccountable uncertainty. These ideas

are visualized in Figure 2.7. The relationship between knowledge gained

through a model and its complexity is shown for two levels of data qual-

ity and quantity. The question under discussion can be formulated with
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FIGURE 2.7 Knowledge plotted versus model complexity measured by the number of state variables. The

knowledge increases up to a certain level. Increased complexity beyond this level will not add to the

knowledge gained about the modelled system. At a certain level, the knowledgemight even be decreased

due to uncertainty caused by too high a number of unknown parameters. (2) corresponds to an available

data set, which is more comprehensive or has a better quality than (1). Therefore the knowledge gained

and the optimum complexity is higher for data set (2) than for (1). (Reproduced from J�rgensen, 1988.)
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relation to this figure: How can we select the optimum model complex-

ity and structure for the given understanding for the question at hand?

We will discuss in the following section the methods available to

select a good model structure. If a rather complex model is developed,

then the use of one of the methods presented in the previous references

is recommended, but for simpler models it is often sufficient to select a

model of balanced complexity, as discussed earlier.

Costanza and Sklar (1985) have examined 88 different models, and

showed that more theoretical discussion behind Figure 2.7 is valid in

practice. Their results are summarized in Figure 2.8, where effectiveness

is plotted versus articulation (¼ expression for model complexity).

Effectiveness is understood as a product of model results and confi-

dence (i.e., certainty), while articulation is a measure of the complexity

of the model with respect to number of components, time, and space.

The measures of articulation or complexity and effectiveness are rela-

tive. Some other authors may have applied other measures, but it is

Almost 50% of the examined
models are in this area

Articulation

E
ffe

ct
iv

en
es

s

0 20 40

16

12

8

4

0

FIGURE 2.8 Plot of articulation index versus effectiveness ¼ articulation*certainty for the 88 models

reviewed by Costanza and Sklar (1985). As almost 50% of the models were not validated, they had

an effectiveness of 0. These models are not included in the figure, but are represented by the line

effectiveness ¼ 0. Notice that nearly 50% of the models have a relatively low effectiveness due to too

little articulation, and that only one model had an articulation that was too high, which implies that

the uncertainty by drawing the effectiveness frontier as shown in the figure is high at articulations

above 25. (This figure is partly reproduced from Costanza and Sklar, 1985.)
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clearly seen by comparison of Figures 2.7 and 2.8 that they show the

same type of relationship.

Selection of the right complexity is of great importance in environ-

mental and ecological models as already stated. The methods presented

and discussed in the following section provide an objective procedure to

select the correct level of model complexity. However, the model selec-

tion always requires that the application of these methods is combined

with a good knowledge of the system being modelled. The methods

must work hand-in-hand with an intelligent answer to the question:

Which components and processes are most important for the problem

in focus? The conclusion is therefore: Know your system and your prob-

lem before you select your model, including the complexity of the

model. It should not be forgotten that the model will always be an

extreme simplification of nature. This implies that we cannot make a

model of an ecosystem, but we can develop a model of some aspects

of that ecosystem.

A parallel to the application of geographical maps (see Section 1.1)

can be made again: We cannot make a map (model) of a state with all

its details, instead we show some geographic aspects on a certain scale.

Therein lays our limitations, which are due to the immense complexity

of nature. We have to accept these limitations since we cannot produce

a complete model or get a total picture of a natural system. Some kind

of map is always more useful than no map, so some kind of model of an

ecosystem is better than no model at all. As the map quality improves

due to better techniques and knowledge, so does the model of an

ecosystem as we gain more experience in modelling and improve our

ecological knowledge. We do not need a complete set of details to get

a proper overview and a holistic picture; we need some details and we

need to understand how the system works on the system level.

Therefore, the conclusion is that although we can never know all of the

details needed to make a complete model, we can produce good work-

able models that expand our knowledge of ecosystems, particularly of

their properties as systems. This is completely consistent with Ulanowicz

(1979) who points out that the biological world is a sloppy place. Very

precise predictive models will inevitably be wrong. It would be more

fruitful to build a model that indicates the general trends and take into

account the probabilistic nature of the environment.
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Furthermore, it seems possible in most situations to apply models as

a management tool (J�rgensen et al., 1995). Models should be consid-

ered as tools — tools to overview complex systems, and tools to obtain

a picture of the systems properties on the system level. Already, a few

interactive state variables make it impossible to overview how the sys-

tem reacts to perturbations or other changes. There are only two possi-

bilities to get around this dilemma: Either limit the number of state

variables in the model, or describe the system by use of holistic meth-

ods and models, preferably by using higher level scientific laws. See also

the discussion about holistic and reductionistic approaches in Sections

2.3 and 2.5. The trade-off for the modeller is between knowing a lot

about a little or a little about a lot.

Through a good knowledge of the system, it is possible to set up mass

or energy flow diagrams. This might be considered a conceptual model of

its own, but the idea is to use the diagram to recognize the most impor-

tant flows for the model in question. Let us use an energy flow diagram

for Silver Springs (Figure 2.9). If the goal of the model is to predict the

net primary production for various conditions of temperature and input
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FIGURE 2.9 Energy flow diagram for Silver Springs, Florida. Figures in cal/m2/year. (Adapted from H. T.

Odum, 1957.)
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of fertilizers, then it is important to include plants, herbivores, carnivores,

and decomposers (as they mineralize the organic matter). A model

consisting of these four state variables might be sufficient and the top

carnivores, import, and export can be excluded.

As energy flows are different from ecosystem to ecosystem, the

selected model should also be different. A general model for one type

of ecosystem, for example, a lake, does not exist; on the contrary, it is

necessary to adopt the model to the characteristic features of the eco-

system. Figures 2.10 and 2.11 show the phosphorus flows of two eutro-

phication models for two different lakes: a shallow lake in Denmark and

Lake Victoria in East Africa. From time to time the latter has a thermo-

cline, which implies that the lake should be divided into at least two

horizontal layers, (J�rgensen et al. 1982). The food web is also different
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FIGURE 2.10 The phosphorus cycle in an aquatic ecosystem. The processes are (1) uptake of phosphorus

by algae; (2) photosynthesis; (3) grazing with loss of undigested matter; (4), (5) predation with loss of

undigested material; (6), (7), and (9) settling of phytoplankton; (8) mineralization; (10) fishery; (11)

mineralization of phosphorous organic compounds in the sediment; (12) diffusion of pore water P;

(13), (14), and (15) inputs/outputs; (16), (17), and (18) represent mortalities; and (19) is settling of

detritus.

56 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

in the two lakes: Lake Victoria herbivorous fish graze on phytoplankton,

while in the Danish lake the grazing is entirely by zooplankton. These

differences were also reflected in the models set up for the two

ecosystems.

In many shallow lakes, the physical processes caused by wind play an

important role. In Lake Balaton, the wind stirs up the sediment, which
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FIGURE 2.11 Eutrophication model of an aquatic ecosystem illustrated by use of P-cycling. Arrows

indicate processes. A thermocline is considered. Explanation of numbers are as follows: (1) uptake of

phosphorus by algae; (2) grazing by herbivorous fish; (3) grazing by zooplankton; (4), (5) predation on

fish and zooplankton, respectively, by carnivorous fish; (6) mineralization; (7) mortality of algae; (8),

(9), (10), (11) grazing and predation loss; (12) exchange of P between epilimnion and hypolimnion; (13)

settling of algae (epilimnion-hypolimnion); (14) settling of detritus (epilimnion-hypolimnion); (15)

diffusion of P from interstitial to lake water; settling of detritus (16) and algae (17) (hypolimnion-

sediment, a part goes to the non-exchangeable fraction); (18) mineralization of P in exchangeable

fraction; (19), (20) fishery; (21) precipitation; (22) outflows; and (23) inflows (tributaries).
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consists almost entirely of calcium compounds with a high adsorption

capacity for phosphorous compounds. Consequently, studies on Lake

Balaton have shown that themass flows of phosphorous compounds from

the water column to the sediment due to this effect are significant. There-

fore, an adequate description of the sediment stirring, the adsorption of

phosphorous compounds on the suspended matter, and sedimentation

must be included in a eutrophication model for this lake.

J�rgensen and Mejer (1977, 1979) examined the inverse sensitivity,

called the ecological buffer capacity, to select the number of state vari-

ables. The concept of ecological buffer capacity is illustrated in Figure 2.12

and is defined as:

b ¼ 1

ð@ðStÞ=@FÞ ð2:13Þ

where St is a state variable and F a forcing function. It is possible to

define many different buffer capacities corresponding to all possible

combinations of state variables and forcing functions. However, the

model scope will often point out which buffer capacity should be in

focus. For a eutrophication model, the most sensitive factor would be

the change in input of phosphorus (or nitrogen) to the concentration

of phytoplankton. Now the modeller examines the relationship between

the buffer capacity in focus and the number of state variables.

S
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e
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3

FIGURE 2.12 A relation between a state variable and a forcing function is shown. At points 1 and 3 the

buffer capacity is high; at point 2 it is low.
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As long as the buffer capacity is changed significantly by adding an

extra state variable, the model complexity should be increased. But if

additional state variables only change the buffer capacity insignificantly,

an increased model complexity will only augment the number of para-

meters, adding to the uncertainty without contributing to a more accu-

rate model.

Figure 2.13 illustrates the buffer capacity for a eutrophication model

of a shallow Danish lake. In this case, a model with six state variables for

each of the important nutrients — carbon, nitrogen, and phosphorus —

was selected. Inclusion of a seventh state variable created only a minor

change to the buffer capacity.

Flather (1992, 1996) recommended using Akaike’s Information Crite-

rion (AIC), to select a best model from the a priori best candidate models:

AIC ¼ n logðRSS=nÞ2 þ 2K, ð2:14Þ
where n is the number of observations, RSS is the residual sum of squares

(model outputs-observations), and K is the number of parameters þ1.
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FIGURE 2.13 Illustrates the buffer capacity for a eutrophication model of a shallow Danish lake. In this

case, a model with six state variables for each of the important nutrients (C, P, and N) was selected.

Adding a seventh state variable representing an additional zooplankton species and an additional

phytoplankton species produced only minor changes to the buffer capacity. Other possibilities could

also have been tested. In this context it must be pointed out that the buffer capacity does not

necessarily increase with the number of state variables as in Figure 2.12. The change in buffer capacity

only decreases with the number of state variables when their sequence is selected according to

decreasing importance.
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The model with the lowest AIC is preferable. The application of this equa-

tion is recommended to select submodels. This equation can also be

applied in principle to large models, but not in practice where a compar-

ison of several large models would be too time-consuming.

For other applicable methods used to select the model complexity,

see Halfon (1983) and Bosserman (1980, 1982) where the use of the con-

nectivity is presented. Experience shows some model corrections at a

later stage will be unnecessary if the model has been calibrated and

the validation phase indicates that improvements might be needed.

This does not, however, imply that corrections of the model structure

at a later stage can be omitted. The methods presented for the selection

of model structure are not so rigorous that the very best model is always

selected at the first instance. The methods presented earlier assist the

modeller to exclude some unworkable models, but not necessarily to

choose the very best model. Remember, there is no one right model.

2.10. Parameter Estimation

Many parameters in causal ecological models can be found in the liter-

ature, not necessarily as constants but as approximate values or

FIGURE 2.14 J�rgensen et al.,

(2000) contains about 120,000

parameters of interest for

ecological modellers.
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intervals. J�rgensen et al. (2000) contains about 120,000 parameters of

interest for ecological modellers (see Figure 2.14).

However, even if all parameters are known in a model from the litera-

ture, calibrating the model is usually required because the biological

parameters are only known within ranges. Several sets of parameters

are tested by calibration and the various model outputs of state variables

are compared with measured or observed values of the same state vari-

ables. The parameter set that gives the best agreement between model

outputs and measured state variables is chosen.

A eutrophication model is generally calibrated based on an annual

measurement series with a sampling frequency of once or twice per

month. This sampling frequency is not sufficient to describe the lake

dynamics. If it is the scope of the model to predict maximum values

and related data for phytoplankton concentrations and primary produc-

tion, then it is necessary to have a sampling frequency that gives an esti-

mate of the maximum value in phytoplankton concentration and the

primary production.

Figure. 2.15 shows characteristic algae concentrations plotted versus

time (April 1–May 15) in a hypertrophic lake with a sampling frequency

of (1) twice per month and (2) three times per week (denoted as the

“intensive” measuring program). The two plots are significantly differ-

ent and an attempt to get a realistic calibration based on (1) will fail,

provided it is the aim to model the day-to-day variation in phytoplank-

ton concentration according to (2). This example illustrates that it is
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FIGURE 2.15 Algae concentration

plotted versus time: (1) ¼ sampling

frequency twice a month (þ) and

(2)¼ sampling frequency three times

a week (*). Note the difference of

d(PHYT)/dt between the two curves.
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important not only to have data with low uncertainty, but also data

sampled with a frequency corresponding to the dynamics of the system.

The rule to match appropriate sampling frequency has often been

neglected in modelling eutrophication, probably because limnological

lake data, which are not sampled for modelling purposes, are often col-

lected with a relatively low frequency. On the other hand, the model

then attempts to simulate the annual cycle, and an annual sampling

program with a frequency of three samples per week requires too

many resources. A combination of an annual sampling program with a

frequency of one to three samples per month and an intensive measur-

ing program placed in periods, where different subsystems show maxi-

mum changes, is a good basis for parameter estimations.

The intensive measuring program can, as presented next, be used to

estimate state variables’ derivatives. For comparison of these estima-

tions by low and high sampling frequency, see the slopes of curves

(1) and (2) in Figure 2.15. These estimates can be used to set up an over-

determined set of algebraic equations, making the model parameters

the sole unknown. An outline of the method runs as follows (see

Figure 2.16; for further details, see J�rgensen et al., 1981):

Step 1. Find cubic spline coefficients, Si(tj), that is, second-order time

derivatives at time of observation tj, of the spline function si(tj)

approximating the observed variable ci(t), according to the

cubic spline method. Alternatively, it is possible to find an nth

order polynomium (4th–8th order is most often used)

approximating the observations by an nth order regression

analysis. Several statistical software packages are available to

perform such regression analyses very rapidly.

Step 2. Find @ci(tj)/@t ¼ f(t) by differentiation of the function found in

step 1: c ¼ (c,t,a), where a is a parameter.

Step 3. Solve the model equation of the form:

@cðtjÞ=dt ¼ fðc, @c=@r, @2c=@r2, t, aÞ ð2:15Þ
with the average value of a, regarded as unknown.

Step 4. Evaluate the feasibility of the solution a0 found in step 3. If not

feasible, then modify the part of the model influenced by a0 and

go to step 1.

62 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

Computer flow chart

Computer cubic spline 
coefficients, i.e., state 

variable = f(t) and
derivate = f(t)

Solve equation for a,
find average of a, result ao

No

No

No

Yes

Yes

Yes

Is ao feasible?

Is a constant,? Find
standeviation of ao

Acceptable?

Use ao as initial guess in
model calibration

Is new a-variable feasible?

Stop

Adjust 
submodels,

where
a is involved

Start

FIGURE 2.16 Computer flow chart of the method applied to estimate parameters by using “intensive

measurements.”
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Step 5. Choose a significance level, and perform a statistical test on

constancy of a0. If the test fails, then modify appropriate

submodels and go to step 1.

Step 6. Use a0 as an initial guess in a computerized parameter search

algorithm, such as Marquardt, Powell, or steepest descent

algorithms, to minimize a performance index such as the one

proposed in Eq. (2.2).

Although the model in hand may be highly nonlinear regarding the

state variables, it usually turns out that this is not the case regarding

the parameter set a, or the subset of a that is tuned by calibration. Since

the number of differential equations is greater than the number of esti-

mable parameters, Eq. (2.15) is overdetermined. It is easy to smooth the

solution, but it is more important to evaluate the constancy of a0, for

example, by variance analysis, test of normality of white noise, and so

forth. Information on standard deviation of a0 around its average value

may eventually be used as a point of departure for introducing stochas-

ticity into the model, admitting the fact that parameters in real life may

not be as constant as the modellers assume.

As a certain parameter, ak, seldom appears at more than one or two

places in the model equations, an unacceptable value of ak found as

solution to Eq. (2.15) quite accurately locates the inappropriate terms

and constructs in the model. Experience with this method shows it to

be a valuable diagnostic tool to single out unfitted model terms.

Since the method is based on cubic spline approximation, it is essen-

tial that observations are dense, for example, tjþ1 � tj should be small in

the sense that local third-degree polynomials should approximate

observed values well. It is difficult, in general, to test whether this is ful-

filled as the “true” ci(t) function might have microscopic curls that gener-

ate oscillating derivates (ci/dt). However, if the method yields basically

the same result on a random subset of observations, then it may be safe

to assume that {si(tj)/dt} represents the true rates on a daily basis. After

appropriate adjustment of model equations, an acceptable parameter

set ao may eventually be obtained.

With a0 as an initial guess, a better parameter set may be found by

systematic perturbation of the set until some norm (performance index)

has reached a (local) minimum. At each perturbation, the model
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equations are solved. Gradients {dci/dak} are hardly ever known analyti-

cally. All numerical methods currently in use to solve this kind of prob-

lem fail when the number of parameters surpasses four or five unless

the initial guess is very close to a value that minimizes the performance

index. This is why steps 1 and 2 mentioned previously are so important.

The result of the application of intensive measurements to calibrate

the eutrophication model is summarized in Table 2.4, where the differ-

ence in parameter estimation is pronounced. It is important to use the

parameters determined by intensive measurements before the final

calibration.

The illustrated use of intensive measurements for parameter estima-

tion prior to the calibration was based upon determinations of the actual

growth of phytoplankton. By determination of the derivatives, it was pos-

sible to fit the parameters to the unknown in the model equations.

Intensive measurements were used for the 18 state variable eutrophi-

cation model presented in Chapter 7. It was possible to determine the

maximum phytoplankton growth rate by the previous method to be

1.6 day-1 �10% relative. It was also possible to choose between possible

expressions for the temperature influence on the phytoplankton growth.

Measurements and observations in vitro were used in the referred

case to find the derivates. In principle, the same basic idea can be used

either in the laboratory or by construction of a microcosm. In both

cases, the measurements are facilitated by a smaller unit, where disturb-

ing factors or processes might be kept constant. Current record of

important state variables is often possible and provides a high number

of data, which decreases the standard deviation.

As an example fish growth can be described by use of the following

equation:

dW=dt ¼ a�Wb ð2:16Þ
where W is the weight, and a and b are constants. In an aquarium or an

aquaculture farm it is possible to measure the fish weight over time. If

enough data are available, then it is easy by statistical methods to deter-

mine a and b in Eq. (2.16). In this case, the feeding is known to be at the

optimum level, no predator is present, and the water quality, which

influences growth, is maintained constant to assure the very best

growth conditions for the fish. By varying these factors, it is even
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Table 2.4 Comparison of Parameter Values

Parameter
Parameter
(Symbol) Unit

Application of
Intensive
Measurements

Glumsø
Lake*

Lyngby
Lake*

Literature
ranges

Settling rate SVS ¼ D � SA m d-1 0.30 þ 0.05 0.2 0.05 0.1–0.6

Max. growth

rate**

CDRmax

(reduced)

d-1 1.33 þ 0.51 2.3 1.8 1–3

Max. growth

rate**

CDRmax

(model)

d-1 4.71 þ 1.8 4.11 3.21 2–6

Max. uptake

rate P**

UPmax d-1 0.0072 þ 0.0007 0.003 0.008 0.003–0.01

Min. C:biomass

Ratio**

FCAmin 0.4 0.15 0.15 0.3–0.7

Min. P: biomass

Ratio**

FPAmin 0.03 0.013 0.013 0.013 0.013l–0.035

Min. N: biomass

ratio

FNAmin 0.120.10 0.10 0.10 0.08–0.12

Max.uptake

rate N**

UNmax d-1 0.023 þ 0.005 0.015 0.012 0.0l–0.035

Michaelis-

Menten**

constant N

KN mg l�1 0.34 þ 0.07 0.2 0.2 0.1–0.5

Denitrification

rate

DENITX g m-3

d-1
0.83 þ l.05

Respiration

rate**

RC d-1 0.088 0.13 0.2 0.05–0.25

Mineralization

rate P

KDPl0 d-1 0.80 þ 0.47 0.40 0.25 0.2–0.8

Mineralization

rate N

KDNl0 d-1 0.21 þ 0.11 0.05 0.15 O.OS–0.3

Max. uptake

rate c**

UCmax d-1 1.21 þ 0.97 0.65 0.40 0.2–1.4

Notes:

*Lyngby and Glums� lakes have approximately the same biogeochemical characteristics and morphology;
**all parameters related to phytoplankton.
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possible to find the influence of the water quality, and the available food

on the growth parameters. The results of such experiments can often be

found in the literature. Still, the modeller might not find the parameter

for the species of interest, nor find the parameters in the literature

under the specific conditions in the ecosystem being modelled. In such

cases, it may be necessary to use experiments to determine important

model parameters. The use of laboratory experiments is advisable also

when the literature values for the crucial parameters are too wide for

the most sensitive parameters.

However, parameters taken from the literature or resulting from such

experiments should be applied with precaution because the discrep-

ancy between the values in the laboratory or even the microcosms

and those in nature is much greater for biological parameters than for

chemical or physical parameters. The reasons for this can be summar-

ized in the following points:

1. Biological parameters are generally more sensitive to environmental

factors than chemical or physical parameters. An illustrative example

would be: A small concentration of a toxic substance could change

growth rates significantly.

2. Biological parameters are influenced by many environmental factors,

of which some are quite variable. For instance, phytoplankton

growth rate is dependent on the nutrient concentration, but the local

nutrient concentration is again very dependent on the water

turbulence, which is dependent on the wind stress, and so forth.

3. The example in point 2 shows that the environmental factors

influencing biological parameters are interactive, which makes it

almost impossible to predict an exact value for a parameter in nature

from measurements in the laboratory where the environmental

factors are all kept constant. On the other hand, if the measurements

are carried out in situ, then it is not possible to interpret under which

circumstances the measurement is valid, because that would require

the simultaneous determination of too many interactive

environmental factors.

4. Often, determinations of biological parameters or variables cannot

be carried out directly, but it is necessary to measure another

quantity that cannot be exactly related to the biological quantity in
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focus. For instance, the phytoplankton biomass cannot be

determined by any direct measurement, but it is possible to obtain

an indirect measurement by using the chlorophyll concentration, the

ATP concentration, the dry matter 1–70m, and so forth. Still, none of

these indirect measurements give an exact value of the

phytoplankton concentration, as the ratio of chlorophyll or ATP to

the biomass is not constant, and the dry matter 1–70m might include

other particles (e.g., clay particles). So, it is recommended in practice

to apply several of these indirect determinations simultaneously to

assure a reasonable estimate. Correspondingly, the phytoplankton

growth rate might be determined by the oxygen method or the C-14-

method. Neither method determines the photosynthesis; instead

they determine the net production of oxygen and the net uptake of

carbon, respectively; that is, the result of the photosynthesis and the

respiration. The results of the two methods are therefore corrected to

account for the respiration, but obviously the correction should be

different in each individual case, which is difficult to do accurately.

5. Biological parameters are influenced by several feedback mechanisms

of a biochemical nature. The past will determine the parameters in

the future. For instance, the phytoplankton growth rate is dependent

on the temperature — a relationship that can easily be included in

ecological models. The maximum growth rate is obtained by the

optimum temperature, but the past temperature pattern determines

the optimum temperature. A cold period will decrease the optimum

temperature. To a certain extent, this can be taken into account by

the introduction of variable parameters (Straskraba, 1980). In other

words, it is an approximation to consider parameters as constants.

An ecosystem is a soft, flexible system, described with

approximations as a rigid system with constant parameters

(J�rgensen, 1981, 1992a,b).

The estimation of the settling velocity as a parameter in ecological

models may be crucial whether the component is suspended matter

or phytoplankton, as it determines the removal rate for a considered

component. The sensitivity of this parameter to the phytoplankton

concentration in a eutrophication model has been determined to be

about -1.0 (see Table 2.3). It means that if the parameter is increased
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1%, the phytoplankton concentration will decrease 1% (J�rgensen et al.,

1978). Let us therefore use the estimation of the settling rate as another

illustration of the needed considerations in our effort to obtain a proper

determination of parameters.

Settling velocity may be determined in three ways:

1. Values from previous models found in the literature can be used to

give a first estimation of the parameter. Tables 2.5 and 2.6 summarize

values found in the literature. As can be seen, these values are

indicated as ranges, therefore, it is necessary to calibrate the

parameters using measured values for the stated variables.

Table 2.5 Phytoplankton Settling Velocities

Algal Type
Settling Velocity
(m/day) References

Total phytoplankton 0.05–0.5 J�rgensen et al. (1991, 2000);Tetra Tech (1980)

0.05– 0.2 Di Toro & Connolly (1980); O’Connor et al. (1981);

Thomann et al. (1974); Thomann & Fitzpatrick (1982)

0.02– 0.05 J�rgensen et al. (1991, 2000)

0.4 Lombardo (1972)

0.03– 0.05 Scavia (1980)

0.05 Bierman (1976)

0.2–0.25 Youngberg (1977)

0.04– 0.6 * J�rgensen et al. (2000)

0.01–4.0 *J�rgensen et al. (2000)

0.1–2.0 * Snape et al. (1995)

0.15–2.0 * J�rgensen et al. (2000)

0.1–0.2 * Brandes (1976)

Diatoms 0.05– 0.4 Bierman (1976); Brandes et al. (1974)

0.1– 0.2 J�rgensen et al. (2000)

0.1– 0.25 Tetra Tech (1980)

0.03– 0.05 Snape et al. (1995)

Diatoms 0.3– 0.5 J�rgensen et al. (2000)

2.5 Lehman et al. (1975)

0.02–14.7 * J�rgensen et al. (2000)

Green algae 0.05– 0.19 J�rgensen et al. (2000)

0.05– 0.4 Bierman (1976)

Green algae 0.02 Snape et al. (1995)

0.8 Lehman et al. (1975)

0.1– 0.25 Tetra Tech (1980)

0.08– 0.18 * J�rgensen et al. (2000)

0.27– 0.89 * J�rgensen et al. (2000)

Continued
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Table 2.5 Phytoplankton Settling Velocities—cont’d

Algal Type
Settling Velocity
(m/day) References

Blue-green algae 0.05– 0.15 Bierman (1976)

0.08 Snape et al. (1995)

0.2 Lehman et al. (1975)

0.1 J�rgensen et al. (2000)

0.08–0.2 Tetra Tech (1980)

Flagellates 0.5 Lehman et al. (1975)

0.05 Bierman (1976)

0.09– 0.2 Tetra Tech (1980)

0.07–0.39 ** J�rgensen et al. (2000)

Dinoflagellates 2.8–6.0 ** J�regensen et al. (2000)

Asterionella formosa 0.25– 0.76 ** J�rgensen et al. (2000)

Chaetoceros lauderi 0.46– 1.56 ** J�rgensen et al. (2000)

Chrysophytes 0.5 Lehman et al. (1975)

Coccolithophores 0.25– 13.6 J�rgensen et al. (2000)

0.3– 1.5 ** J�rgensen et al. (2000)

Coscinodiscus lineatus 1.9– 6.8 ** J�rgensen et al. (2000)

Cyclotella

meneghimiana

0.08– 0.31 ** J�rgensen et al. (2000)

Ditylum brightwellii 0.5– 3.1 ** J�rgensen et al. (2000)

Melosira agassizii 0.67– 1.87 ** J�rgensen et al. (2000)

Nitzschia seriata 0.26– 0.50 ** J�rgensen et al. (2000)

Rhizosolenia robusta 1.1– 4.7 ** J�rgensen et al. (2000)

R. setigera 0.22– 1.94 ** J�rgensen et al. (2000)

Scenedesmus

quadracauda

0.04– 0.89 ** J�rgensen et al. (2000)

Skeletonema costatum 0.31– 1.35 ** J�rgensen et al. (2000)

Tabellaria flocculosa 0.22– 1.11 ** J�rgensen et al. (2000)

Thalassiosira nana 0.10– 0.28 ** J�rgensen et al. (2000)

T. pseudonana 0.15– 0.85 ** J�rgensen et al. (2000)

T. rotula 0.39– 17.1 J�rgensen et al. (2000)

Notes: Other values used in models.

*Model documentation values;
**literature values.

Table 2.6 Detritus, Settling Rate

Item Settling Velocity (m/day) References

Detritus 0.1–2.0 J�rgensen et al. (2000)

Nitrogen detritus 0.05– 0.1 J�rgensen et al. (2000)

Fecal pellets (fish) 23– 666 J�rgensen et al. (2000)
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2. Values from calculations based upon knowledge of the size can be

used as first estimations. Due to the influence of the many factors

previously mentioned, a calibration is also required in this case. This

method is hardly applicable for phytoplankton because of their ability

to change the specific gravity, but it may be useful for other particles.

3. Measurements in situ by use of sedimentation traps. It is possible to

determine the distribution of the material in inorganic and organic

matter and partly also in phytoplankton and detritus by analysis of

chlorophyll (fresh material), phosphorus, nitrogen, and ash.

Measurements of phytoplankton settling velocities in the laboratory

will unlikely give a reliable value, as they do not consider the various

factors in situ.

It has been previously pointed out that the calibration is facilitated

significantly if we have good initial estimates of the parameters. Some

estimates might be found in the literature, but it is often only a few

compared with the number of parameters needed if we want to model

all interesting mass flows in all relevant ecosystems. For the nutrient

flows, the parameters known from the literature are the most common

species only. If we turn to flows of toxic substances in ecosystems, then

the number of known parameters is even more limited. The Earth has

millions of species and the number of substances of environmental

interest is about 100,000. If we want to know 10 parameters for each

interaction between substances and species, then the number of para-

meters needed is enormous. For example, if we need the interactions

of only 10,000 species with the 100,000 substances of environmental

interest, the number of needed parameters is 10 � 10,000 � 100,000 ¼
1010 parameters. In J�rgensen et al. (2000; see Figure 2.14) 120,000 para-

meters can be found, and if we estimate that this Handbook covers

about 10% of the parameters, which can be found in the entire litera-

ture, then we know only about 0.012% of the needed parameters. Phys-

ics and chemistry have attempted to solve this problem by setting up

some general relationships between the properties of the chemical

compounds and their composition and structure. This approach is

widely used in ecotoxicological modelling, and will be discussed in

Chapter 8. If needed data cannot be found in the literature, then such

relationships are widely used as the second-best approach to the

problem.
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If we draw a parallel to ecology, then we need some general relation-

ships that give us good first estimations of the needed parameters. In

many ecological models used in an environmental context, the required

accuracy is not very high. In many toxic substance models, we need only

to know whether we are far from or close to the toxic levels. Still, more

experience with the application of general relationships is needed before

a more general use can be recommended. It should be emphasized that

in chemistry such general relationships are used very carefully.

Modern molecular theory provides a sound basis for predicting reli-

able quantitative data on the chemical, physical, and thermodynamic

properties of pure substances and mixtures. The biological sciences

are not based upon a similar comprehensive theory, but it is possible,

to a certain extent, to apply basic biochemical mechanisms laws to ecol-

ogy. Furthermore, the very basic biochemical mechanisms are the same

for all plants and all animals. The spectrum of biochemical compounds

is wide, but considering the number of species and the number of pos-

sible chemical compounds it is very limited. The number of different

protein molecules is significant, but they are all constructed from only

24 different amino acids.

This explains why the elementary composition of all species is quite

similar. All species need, for their fundamental biochemical function, a

certain amount of carbohydrates, proteins, fats, and other compounds,

and as these groups of biochemical substances are constructed from

relatively few simple organic compounds, it is not surprising that the

composition of living organisms varies only a little, (see tables in

J�rgensen et al., 1991, 2000). For example, if we know the uptake rate

of nitrogen for phytoplankton, then we can find the approximate uptake

rate of phosphorus because the uptake rates must result in a nitrogen-

to-phosphorus ratio between 5:1 and 12:1, an average 1:7.

The biochemical reaction pathways are also general, which is

demonstrated in all textbooks on biochemistry. The utilization of the

chemical energy in the food components is basically the same for

microorganisms and mammals. It is, therefore, possible to calculate

approximately the energy, E1, released by digestion of food, when the

composition is known:

E1 ¼ 9 fat%100þ 4ðCarbohydratesþ proteinsÞ%100 ð2:17Þ
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The law of energy conservation is also valid for a biological system (see

Figure 2.17). The chemical energy of the food components is used to

cover the energy needs for respiration, assimilation, growth (increase

of biomass included reproduction), and losses. As it is possible to set

up relations between these needs on the one side with some fundamen-

tal properties of the species on the other, it is possible to put a number

on the items in Figure 2.17 for different species. This is a general but

valid approach to parameter estimation in ecological modelling.

Species surface area is a fundamental property indicating quantita-

tively the size of the boundary to the environment. Loss of heat to the

environment must be proportional to this area and to the temperature

difference, according to the law of heat transfer. The rate of digestion,

the lungs, and hunting ground, are all dependent on the size of the ani-

mal and are determinant for a number of parameters.

Therefore, it is not surprising that many parameters for plants and

animals are highly related to the size of the organism, which implies

that it is possible to get very good first estimates for most parameters

based only upon the size. Naturally, the parameters are also dependent

on several characteristic features of the species, but their influence

is minor compared with the organism size, and the good estimates

provide at least a starting value in the calibration phase.

The conclusion of these considerations is that many parameters are

related to simple properties, such as size of the organisms, and that

Feed Intake

Utilized feed

Non utilized feed

Digested feed

Assimilated feed

Non digested feed: feces

Growth

ExcretionRespiration

FIGURE 2.17 The principle

of a fish growth model. The

feed is either utilized or not

utilized. The utilized food ¼
the intake is either digested

or assimilate and at steady-

state intake ¼ nondigested

feed (feces) þ the assimilated

feed. The assimilated feed is

used for either growth,

excretion, or respiration

and at steady state

assimilated feed ¼ growth þ
respiration þ excretion (see

J�rgensen, 2000).
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such relations are based upon fundamental biochemistry and thermo-

dynamics. Above all, there is a strong positive correlation between size

and generation time, Tg, ranging from bacteria to the biggest mammals

and trees (Bonner, 1965). This relationship is illustrated in Figure 2.18.

This relationship can be explained using the relationship between size

(surface) and total metabolic action per unit of body weight. It implies

that the smaller the organism, the greater the specific metabolic activity

(¼ activity/weight). The per capita rate of increase, r, defined by the

exponential or logistic growth equations:

dN=dt ¼ rN ð2:18Þ
respectively,

dN=dt ¼ rNð1�N=KÞ ð2:19Þ
is inversely proportional to the generation time.

This implies that r is related to the organism size, but, as shown

by Fenchel (1974), it actually falls into three groups of organisms:

unicellular, poikilotherms, and homeotherms (see Figure 2.19). Thus,

the metabolic rate per unit of weight is related to the size. The same

basis is expressed in the following equations, giving the respiration,

feed consumption, and ammonia excretion for fish when the weight,

W, is known:
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FIGURE 2.18 Length

and generation time

plotted on log-log

scale: (a) pseudomonas,

(b) daphnia, (c) bee,

(d) house fly, (e) snail,

(f) mouse, (g) rat,

(h) fox, (i) elk, (j) rhino,

(k) whale, (l) birch,

(m) fir. See also Peters

(1983).
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Respiration ¼ constant �W0:80 ð2:20Þ
Feed Consumption ¼ constant �W0:65 ð2:21Þ
Ammonia Excretion ¼ constant �W0:72 ð2:22Þ

This is also expressed in Odum’s equation (E. P. Odum, 1969, 1971):

m ¼ kW�1=3 ð2:23Þ
where k is roughly a constant for all species, equal to about 5.6 kJ/g2/3

day, and m is the metabolic rate per weight unit.

Similar relationships exist for other animals. The constants in these

equations might be slightly different due to differences in shape, but

the equations are otherwise the same.

All of these examples illustrate the fundamental relationship in

organisms between size (surface) and the biochemical activity. The sur-

face determines the contact with the environment quantitatively along

with the possibility of taking up food and excreting waste substances.

The same relationships are shown in Figures 2.20–2.22, where rates of

biochemical processes involving toxic substances are plotted versus

size. They are reproduced from J�rgensen (1997, 2002). In these figures,

the excretion rate, uptake rate, and concentration factor (for aquatic

organisms) follow the same trends as the growth rate. This is not

surprising, as excretion is strongly dependent on metabolism and the

direct uptake dependent on the surface.
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FIGURE 2.19 Intrinsic rate of natural increase against weight for various animals. See also Peters (1983).
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FIGURE 2.20 Excretion of Cd (24h)-1 plotted versus the length of various animals: (1) Homosapiens,

(2) mice, (3) dogs, (4) oysters, (5) clams, and (6) phytoplankton.
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FIGURE 2.21 Uptake rate (mg Cd/g 24 h) plotted against the length of various animals’ phytoplankton,

clams, and oysters.
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In spite of all these methods to estimate parameters, it may still be

necessary to accept that a parameter is only known within some unac-

ceptable large range. In such cases, applying a Monte Carlo simulation

of the parameter within the known range should be considered. The

concentration factor indicating concentration in the organism vis-á-vis

concentration in themedium also follows the same lines (see Figure 2.20).

By equilibrium, the concentration factor can be expressed as the ratio

between the uptake rate and the excretion rate, as shown in J�rgensen

(1979). As most concentration factors are determined by the equilibrium,

the relationship found in Figure. 2.20 seems reasonable. Intervals for-

concentration factors are indicated here for some species according to

the literature (J�rgensen et al., 1991, 2000).

The allometric principles, illustrated in Figures2.18–2.22, can be gener-

ally applied to find process rates, provided these parameters are available

for the element or compound under consideration (because the slope is

known). However, it is preferable to know several species to control the

validity of the graph. When plots similar to Figures 2.18–2.22 are con-

structed, it is possible to read unknown parameters when the size of

the organism is known.

It was mentioned earlier that model constraints could be used to esti-

mate unknown parameters. The chemical composition of an organism

100,000

10,000

1000

100

10

1mm 10mm 100mm 1 mm 1 cm 10 cm 100 cm

Length

C
F

5

4

3
2

1

FIGURE 2.22 CF (concentration factor >¼ to the ratio concentration in organism to the concentration in

water>) for Cd versus size: (1) goldfish, (2) mussels, (3) shrimps, (4) zooplankton, (5) algae (brown-green).
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was applied to illustrate this principal method. The topic model con-

straints are covered further in Section 2.12. The Darwinian survival of

the fittest is used in thermodynamic translation as a goal function to

find the change in properties resulting from adaptation and a shift in

species composition presented. This constraint has also been applied

to estimate unknown parameters, as shown in Chapter 10, after the

more basic theory has been presented.

This presentation of parameter estimation methods can be summar-

ized in the following overview and recommendations:

A. Examine the literature to find the range of as many model

parameters as possible. It is recommended to use J�rgensen et al.

(2000), which contains about 120,000 parameters.

B. Examine processes in situ or in the laboratory to assess unknown

parameters.

C. Apply an intensive observation period to reveal the dynamic processes

in themodel. Use themethod described in Figures 2.15 and 2.16 to find

unknown parameters. This method often makes it possible to indicate

parameters within relatively narrow ranges.

D. Apply allometric principles to find unknown parameters for the

organisms included in the model as well as for other organisms. The

allometric principles may also be used as a control of a parameter

that is found by estimations or calibration.

E. Ecotoxicological parameters can be estimated by a network ofmethods

based on a translation of the chemical structure to the properties of the

compound. This method will be presented in detail in Chapter 10,

Section 10.6.

F. Use the model constraints to estimate an unknown parameter or to

control an uncertain parameter (e.g., how exergy can be used to

determine parameters in Chapter 10, Section 10.3).

G. Apply calibration of submodels and/or the entiremodel. The better the

data, the more certain and reliable results the calibration will offer.

2.11. Ecological Modelling and Quantum Theory

How can we describe such complex systems as ecosystems in detail?

The answer is that it is impossible if the description must include all

details, including all interactions between all the components in the
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entire hierarchy, as well all feedbacks, adaptations, regulations, and the

entire evolutionary process.

J�rgensen (1997, 2002) introduced the application of the uncertainty

principle of quantum physics in ecology. In nuclear physics, uncertainty

is caused by the observer of the incredibly small nuclear particles, while

uncertainty in ecology is caused by the enormous complexity of

ecosystems.

For instance, if we take two components and want to know the rela-

tionship between them, we would need at least three observations to

show whether the relation is linear or nonlinear. Correspondingly, the

relations among three components will require 3*3 observations for

the shape of the plane. If we have 18 components we would corre-

spondingly need 317 or approximately 108 observations. At present, this

is probably an approximate practical upper limit to the number of

observations that can be invested in one project aimed at one ecosys-

tem. This could be used to formulate a practical uncertainty relation

in ecology (J�rgensen, 1990):

105 � Dx=
ffiffiffiffiffiffiffiffiffiffi
3n�1

p
� 1 ð2:24Þ

where Dx is the relative accuracy of one relation, and n is the number of

components examined or included in the model.

The 100 million observations could also be used to give a very

exact picture of one relation. Costanza and Sklar (1985) talked about

the choice between the two extremes: knowing “everything” about

“nothing” or “nothing” about “everything” (see Section 2.9). The former

refers to the use of all the observations on one relation to obtain a high

accuracy and certainty, while the latter refers to the use of all observa-

tions on as many relations as possible in an ecosystem. How we can

obtain a balanced complexity in the description will be further

discussed in the next section.

Equation (2.18) formulates a practical uncertainty relation, but, the

possibility that the practical number of observations may be increased

in the future cannot be excluded. More and more automatic analytical

equipment is emerging on the market. This means that the number of

observations invested in one project may be one, two, three, or even

several magnitudes larger in the future. Yet, a theoretical uncertainty

relation can be developed. If we go to the limits given by quantum
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mechanics, then the number of variables will still be low compared to

the number of components in an ecosystem.

One of Heisenberg’s uncertainty relations is formulated as follows:

Ds � Dp � h=2p ð2:25Þ
where Ds is the uncertainty in determining the position, and Dp is the

uncertainty of momentum. According to this relation, Dx of Eq. (2.24)

should be in the order of 10�17 if Ds and Dp are about the same. Another

of Heisenberg’s uncertainty relations may now be used to give the upper

limit of the number of observations:

Dt � DE � h=2p ð2:26Þ
where Dt is the uncertainty in time and DE in energy.

If we use all the energy that Earth has received during its existence of

4.5 billion years, then we get:

173 � 1015 � 4:5 � 109 � 365:3 � 24 � 3600 ¼ 2:5 � 1034J, ð2:27Þ
where 173 *1015 W is the energy flow of solar radiation. Dt would, therefore,

be in the order of 10-69 seconds. Thus, an observation will take 10�69 sec-

onds, even if we use all the energy that has been available on Earth as DE,
whichmust be considered themost extreme case. The hypothetical number

of observations possible during the lifetime of the Earth would therefore be:

4:5 � 109 � 365:3 � 3600=10�69 	 of1085: ð2:28Þ
This implies that we can replace 105 in Eq. (2.24) with 1060 since

10�17=
ffiffiffiffiffiffiffiffiffi
1085

p
	 10�60

If we use Dx ¼ 1 in Eq. (2.28) we get:
ffiffiffiffiffiffiffiffiffiffi
3n�1

p
� 1060 ð2:29Þ

or n � 253.

From these very theoretical considerations, we can clearly conclude

that we will never have enough observations to describe even one ecosys-

tem in complete detail. An ecosystem is a middle number system, which

means that the number of components are not as high as the number of

gas molecules in a room, but that it may be as high as 1015–1020. Unlike

the gas molecules in a room, all of these components are different, while

there may be only 10 to 20 different types of gas molecules in a room.
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These results agree with Niels Bohr’s complementarity theory, which

he expressed as follows: “It is not possible to make one unambiguous

picture (model) of reality, as uncertainty limits our knowledge.” The

uncertainty in nuclear physics is caused by the inevitable influence of

the observer on the nuclear particles; in ecology it is caused by the enor-

mous complexity and variability.

No map of reality is completely correct. There are many maps (mod-

els) of the same area of nature, and the various maps or models reflect

different viewpoints. Accordingly, one model (map) does not give all the

information and far from all the details of an ecosystem. Applying the

theory of complementarity in ecology, we see that it is important to view

the ecosystem from different, complementary angles.

As stated previously, the use of maps in geography is a good parallel to

the use of models in ecology. As we have road maps, airplane maps, geo-

logical maps, maps in different scales for different purposes, we have

many models in ecology of the same ecosystems. We need them all if

we want to get a comprehensive view of ecosystems (see Sections 1.1

and 2.9). Furthermore, a map can give an incomplete picture. We can

always make the scale larger and larger and include more details, but

we cannot get all the details. An ecosystem also has too many dynamic

components to enable us to model all the components simultaneously,

and even if we could, the model would be invalid a few seconds later after

the dynamics of the system have changed the “picture.”

Another good example comes from physics, in which we need a plu-

ralistic view to consider light as waves as well as particles. The situation

in ecology is similar. Because of the immense complexity, we need a

pluralistic view to describe an ecosystem. We need many models cover-

ing different viewpoints. This is consistent with Gödel’s Theorem from

1931 (Gödel, 1986) that the infinite truth can never be condensed in a

finite theory. There are limits to our insight; we cannot produce a map

of the world with every possible detail because that would be the world

itself.

Ecosystems must be considered irreducible systems, because it is not

possible to make observations and then reduce the observations to

more or less complex laws of nature; for instance mechanics. Too many

interacting components force us to consider ecosystems as irreducible
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systems. It is necessary to use what is called experimental mathematics

or modelling to cope with irreducible systems.

Quantum theory may have an even wider application in ecology.

Schrödinger (1944) suggested, that the “jump like changes” you observe

in the properties of species are comparable to the jump-like changes in

energy by nuclear particles. Schrödinger was inclined to call De Vries’

mutation theory (published in 1902) the quantum theory of biology

because the mutations are due to quantum jumps in the gene molecule.

Patten (1982a, 1985) defined an elementary “particle” of the environ-

ment, called an environ — previously Koestler (1967) used the word

holon — as a unit that can transfer an input to an output. Patten sug-

gested that a characteristic feature of ecosystems is the network of con-

nections. Input signals go into the ecosystem components and they are

translated into output signals. Such a “translator unit” is an environmen-

tal quantum according to Patten. The term comes from the Greek “holos”

¼ whole, with the suffix “on” as in proton, electron, and neutron to sug-

gest a particle or part.

Stonier (1990) introduced the term infon for the elementary particle of

information. He envisaged an infon as a photon whose wavelength has

been stretched to infinity. At velocities other than c, its wavelength appears

infinite, its frequency zero. Once an infon is accelerated to the speed of

light, it crosses a threshold, which allows it to be perceived as having

energy. When that happens, the energy becomes a function of its fre-

quency. Conversely at velocities other than c, the particle exhibits neither

energy normomentum, yet it could retain at least two information proper-

ties: its speed and its direction. In other words, at velocities other than c, a

quantum of energy becomes converted into a quantum of information.

This concept has still not found any application in ecological modelling.

2.12. Modelling Constraints

A modeller is very concerned about the application of the right descrip-

tion of the components and processes in his models. The model equa-

tions and their parameters should reflect the properties of the model

components and processes as correctly as possible. The modeller must,

however, also be concerned with the right description of the system
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properties, and too little research has been done in this direction. A con-

tinuous development of models as scientific tools will need to consider

how to apply constraints on models according to the system properties.

Several possible modelling constraints are mentioned next. The

sequence reflects decreasing relations to physical properties and

increasing relations to biological properties of the ecosystems. The eco-

logical modelling constraints will only be mentioned briefly in this con-

text. A further discussion will take place in Chapter 10 where the

application of these constraints is the basis for development of what

may be called next generation models.

The conservation principles are often used as modelling constraints.

Biogeochemical models must follow the conservation of mass, and

bioenergic models must equally obey the laws of energy and momen-

tum conservation.

Energy and matter are conserved according to basic physical con-

cepts that are also valid for ecosystems. This requires that energy and

matter are neither created nor destroyed.

The expression “energy and matter” is used, as energy can be trans-

formed into matter and matter into energy. The unification of the two

concepts is possible by Einstein’s law:

E ¼ mc2ðML2T�2Þ, ð2:30Þ
where E is energy, m is mass, and c is the velocity of electromagnetic

radiation in vacuum (¼ 3 *108 m sec-1). The transformation from matter

into energy and vice versa is only of interest for nuclear processes and

does not need to be applied to ecosystems; therefore, we might break

the proposition down to two more useful propositions, when applied

in ecology:

1. Ecosystems conserve matter.

2. Ecosystems conserve energy.

The conservation of matter may mathematically be expressed as

follows:

dm=dt ¼ input� output ðMT�1Þ ð2:31Þ
where m is the total mass of a given system. The increase in mass is

equal to the input minus the output. The practical application of the
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statement requires that a system is defined, which implies that the

boundaries of the system must be indicated.

Concentration, c, is used instead ofmass inmostmodels of ecosystems:

Vdc=dt ¼ input� output ðMT�1Þ ð2:32Þ
where V is the volume of the system under consideration and assumed

constant.

If the law of mass conservation is used for chemical compounds that

can be transformed to other chemical compounds, then Eq. (2.32) must

be changed to:

V � dc=dt ¼ input� output þ formation� transformation ðMT�1Þ ð2:33Þ
The principle of mass conservation is widely used in the class of ecolog-

ical models called biogeochemical models. Equation (2.26) is set up for

the relevant elements, for example, for eutrophication models for C, P, N,

and perhaps Si (see J�rgensen, 1976a,b, 1982; J�rgensen et al., 1978).

For terrestrial ecosystems, mass per unit of area is often applied in

the mass conservation equation:

A � dma=dt ¼ input� output þ formation� transformation ðMT�1Þ ð2:34Þ
here A ¼ area and ma ¼ mass per unit of area.

The Streeter-Phelps model (see Chapter 7) is a classical model of an

aquatic ecosystem that is based upon conservation of matter and first-

order kinetics. The model uses the following central equation:

dD=dtþ Ka �D ¼ Lo � K1 � KTðT� 20Þ � e�K1�tðML�3T�1Þ ð2:35Þ
where D ¼ Cs � C(t)Cs ¼ concentration of oxygen at saturation; C(t)¼
actual concentration of oxygen; t ¼ time; Ka ¼ reaeration coefficient

(dependent on the temperature); Lo ¼ BOD5 at time ¼ 0; K1 ¼ rate con-

stant for decomposition of biodegradable matter; and KT ¼ constant of

temperature dependence.

Equation (2.29) states that change (decrease) in oxygen concentration

þ input from reaeration is equal to the oxygen consumed by decomposi-

tion of biodegradable organic matter according to a first-order reaction

scheme.

Equations according to (2.27) are also used in models describing the

fate of toxic substances in the ecosystem. Examples can be found in

Thomann (1984) and J�rgensen (1991, 2000).
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The mass flow through a food chain is mapped using the mass con-

servation principle. The food taken in by one level in the food chain is

used in respiration, waste food, undigested food, excretion, and growth,

including reproduction (see Figure 2.17). If the growth and reproduction

are considered as the net production, then it can be stated that:

net production ¼ intake of food� respiration� excretion�waste food ð2:36Þ
The ratio of the net production to the intake of food is called the net effi-

ciency; it is dependent on several factors, but is often as low as 10–20%.

Any toxic matter in the food is unlikely to be lost through respiration

and excretions because it is much less biodegradable than the normal

components in the food. Because of this, the net efficiency of toxic matter

is often higher than for normal food components, and as a result some

chemicals, such as chlorinated hydrocarbons including DDT and PCB,

will be magnified in the food chain.

This phenomenon is called biological magnification and is illustrated

for DDT in Table 2.7. DDT and other chlorinated hydrocarbons have an

especially high biological magnification because they have a very low

biodegradability and are excreted from the body very slowly, due to dis-

solution in fatty tissue. These considerations also explain why pesticide

residues observed in fish increase with the increasing weight of the fish

(see Figure 2.23). As humans are the last link of the food chain, relatively

high DDT concentrations have been observed in the human body fat

(see Table 2.8).

Table 2.7 Biological Magnification

Trophic Level Concentration of DDT (mg/kg dry matter) Magnification

Water 0.000003 1

Phytoplankton 0.0005 160

Zooplankton 0.04 
13,000

Small fish 0.5 
167,000

Large fish 2 
667,000

Fish-eating birds2 5 
8,500,000

Source: Data after Woodwell et al., 1967.
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Understanding the principle of conservation of energy, called the first

law of thermodynamics, was initiated in 1778 by Rumford. He observed a

large quantity of heat appeared when a hole is bored in metal. Rumford

assumed that the mechanical work was converted to heat by friction.

He proposed that heat was a type of energy transformed at the expense

of another form of energy; in his case mechanical energy. It was left to

J.P. Joule in 1843 to develop a mathematical relationship between the

quantity of heat developed and the mechanical energy dissipated.

Two German physicists, Mayer and Helmholtz, working separately,

showed that when a gas expands the internal energy of the gas

decreases in proportion to the amount of work performed. These obser-

vations led to the first law of thermodynamics: energy can neither be

created nor destroyed.

If the concept internal energy, then dU, is introduced:

dQ ¼ dUþ dWðML2T�2Þ ð2:37Þ
where dQ ¼ thermal energy added to the system, dU ¼ increase in inter-

nal energy of the system, and dW¼mechanical work done by the system

on its environment.

Then the principle of energy conservation can be expressed in math-

ematical terms as follows: U is a state variable which means that
R
dU is

independent on the pathway 1 to 2. The internal energy, U, includes

several forms of energy: mechanical, electrical, chemical, magnetic
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FIGURE 2.23 Increase in pesticide residues in fish as weight of the fish increases. Top line ¼ total

residues; bottom line ¼ DDE only. (After Cox, 1970).
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 energy, and so forth. The transformation of solar energy to chemical

energy by plants conforms to the first law of thermodynamics (see

Figure 2.24):

Solar energy assimilated by plants ¼ chemical energy of plant tissue growth
þ heat energy of respiration ð2:38Þ

For the next level in the food chains, the herbivorous animals, the

energy balance also can be set up as:

F ¼ A þUD ¼ GþHþUD, ðML2T�2Þ ð2:39Þ

Table 2.8 Concentration of DDT (mg per kg dry
matter)

Atmosphere 0.000004

Rain water 0.0002

Atmospheric dust 0.04

Cultivated soil 2.0

Fresh water 0.00001

Sea water 0.000001

Grass 0.05

Aquatic macrophytes 0.01

Phytoplankton 0.0003

Invertebrates on land 4.1

Invertebrates in sea 0.001

Fresh-water fish 2.0

Sea fish 0.5

Eagles, falcons 10.0

Swallows 2.0

Herbivorous mammals 0.5

Carnivorous mammals 1.0

Human food, plants 0.02

Human food, meat 0.2

Man 6.0
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where F ¼ the food intake converted to energy (Joule), A ¼ the energy

assimilated by the animals, UD ¼ undigested food or the chemical

energy of feces, G ¼ chemical energy of animal growth, and H ¼ the

heat energy of respiration.

These considerations pursue the same lines as those mentioned in

context with Eq. (2.36) and Figure 2.17, where the mass conservation

principle is applied. The conversion of biomass to chemical energy is

illustrated in Table 2.9. The energy content per g ash-free organic mate-

rial is surprisingly uniform, as is illustrated in Table 2.9. Table 2.9, part D

shows DH, which symbolizes the increase in enthalpy, defined as H¼Uþ
p*V. Biomass can be translated into energy, and this is also true of trans-

formations through food chains. Ecological energy flows are of consider-

able environmental interest as calculations of biological magnifications

are based on energy flows.

Many biogeochemical models are within narrow bands of the chemi-

cal composition of the biomass. Eutrophication models are either based

on a constant stoichiometric ratio of elements in phytoplankton or on

an independent cycling of the nutrients, where the phosphorus content

may vary from 0.4 to 2.5%, the nitrogen content from 4 to 12%, and the

carbon content from 35 to 55%.

Some modellers have used the second law of thermodynamics and the

concept of entropy to impose thermodynamic constraints on models; see

Mauersberger (1985), who has used this constraint to assess process equa-

tions, too. Since the second law of thermodynamics is also valid for ecosys-

tems, it raises the question: How does it apply to ecological processes?

Reflection and evaporation
1.95

Sunlight
1.97

Gross prodution (0.024)
= net prodution (0.020) +
respiration (0.004)

FIGURE 2.24 Fate of solar energy incident upon the perennial grass-herb vegetation of an old field

community in Michigan. All values in GJ m-2 y-1.
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Table 2.9*

A. Combustion Heat of Animal Material

Organism Species Heat of Combustion (kcal/ash-free gm)

Ciliate Tetrahymena pyriformis -5.938

Hydra Hydra littoralis -6.034

Green hydra Chlorohydra viridissima -5.729

Flatworm Dugesia tigrina -6.286

Terrestrial flatworm Bipalium kewense -5.684

Aquatic snail Succinea ovalis -5.415

Brachiipode Gottidia pyramidata -4.397

Brine shrimp Artemia sp.(nauplii) -6.737

Cladocera Leptodora kindtii -5.605

Copepode Calanus helgolandicus -5.400

Copepode Trigriopus californicus -5.515

Caddis fly Pycnopsyche lepido -5.687

P. guttifer -5.706

Spit bug Philenus leucopthalmus -6.962

Mite Tyroglyphus lintneri -5.808

Beetle Tenebrio molitor -6.314

Guppie Lebistes reticulates -5.823

B. Energy Values in an Andropogus virginicus, Old-Field Community in Georgia

Component Energy Value (kcal/ash-free gm)

Green grass -4.373

Standing dead vegetation -4.290

Litter -4.139

Roots -4.167

Green herbs -4.288

Average -4.251

C. Combustion Heat of Migratory and Non-migratory Birds

Sample Ash-Free Material (kcal/gm) Fat Ratio (% dry weight as fat)

Fall birds -8.08 71.7

Spring birds -7.04 44.1

Non-migrants -6.26 21.2

Extracted bird fat -9.03 100.0

Fat extracted: fall birds -5.47 0.0

Fat extracted: spring birds -5.41 0.0

Fat extracted: non-migrants -5.44 0.0.

D. Combustion Heat of Components of Biomass

Material DH Protein (kcal/gm) DH Fat (kcal/gm) DH Carbohydrate (kcal/gm)

Eggs -5.75 -9.50 -3.75

Gelatin -5.27 -9.50

Continued
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Ecological models contain many parameters and process descrip-

tions and at least some interacting components, but the parameters

and processes can hardly be given unambiguous values and equations,

even by using the previously mentioned model constraints. It means

that an ecological model in the initial phase of development has many

degrees of freedom. It is necessary to limit the degrees of freedom to

develop a workable model.

Many modellers use a comprehensive data set and calibration to

limit the number of possible models. Nonetheless, this is a cumbersome

method if it is not accompanied by some realistic constraints on the

model. Calibration is therefore often limited to give the parameters real-

istic and literature-based intervals, within which the calibration is car-

ried out, as mentioned in Section 2.10.

But far more would be gained if it were possible to give the models

more ecological properties and/or test the model from an ecological

point of view to exclude those versions of the model that are not ecolo-

gically possible. For example: How could the hierarchy of regulation

mechanisms be accounted for in the models? Straskraba (1979, 1980)

classified models according to the number of levels that the model

includes from this hierarchy. He concluded that we need experience

with the models of the higher levels to develop structural dynamic mod-

els. This is the topic for Chapter 10.

We know that evolution has created very complex ecosystems with

many feedback mechanisms, regulations, and interactions. The coordi-

nated co-evolution means that rules and principles for the cooperation

D. Combustion Heat of Components of Biomass

Material DH Protein (kcal/gm) DH Fat (kcal/gm) DH Carbohydrate (kcal/gm)

Glycogen -4.19

Meat, fish -5.65 -9.50

Milk -5.65 -9.25 -3.95

Fruits -5.20 -9.30 -4.00

Grain -5.80 -9.30 -4.20

Sucrose -3.95

Glucose -375

Mushroom -5.00 -9.30 -4.10

Yeast -5.00 -9.30 -4.20

*Source: Morowitz, 1968.

Table 2.9*—cont’d
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Continue the model development

Does the model in compliance with
the goal function (the orientor)?

Does the model comply with 
ecological principles?

Are the rates and concentrations
at steady state feasible?

Are the biochemical
compositions feasible?

Does the model comply with
the laws of conservation?

Are the parameters feasible
according to literature?

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

C
hange m

odel structure, subm
odels, equations, or param

eters

FIGURE 2.25 Considerations on using various constraints by development of models. The range of

parameter values is particularly limited by the procedure shown.
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among the biological components have been imposed. These rules and

principles are the governing laws of ecosystems, and our models should

follow these principles and laws.

It also seems possible to limit the number of parameter combina-

tions by using what could be named “ecological” tests. The maximum

growth rates of phytoplankton and zooplankton may have realistic

values in a eutrophication model, but when the two parameters do

not fit to each other because they will create chaos in the ecosystem,

it is inconsistent with the actual or general observations. Such combina-

tions should be excluded at an early stage of the model development.

Figure 2.25 summarizes the considerations of using various con-

straints to limit the number of possible values for parameters, possible

descriptions of processes, and possible submodels to facilitate the

development of a feasible and workable model. The two last steps of

the procedure will be presented in Chapter 10, where the next genera-

tion models are developed.

It requires the introduction of variable parameters, governed by a goal

function (an orientor). Several possible goal functions have to be intro-

duced before a presentation of structural dynamic models can take place.

Problems

1. Which class of models would you select for the following

problems:

a. Protection of a lion population in a national park?

b. Optimization of fishery in marine environment?

c. Construction of a wetland for denitrification of nitrate input

from agriculture?

2. Explain the importance of verification, calibration, and validation.

Can models without these three steps be developed at all?

3. Find the concentration factor of cadmium for a whale, estimated

to have a length of 20 m.

4. The ammonia excretion for a fish of 500 g is 200 mg/24h. Estimate

the ammonia excretion for a fish of 4 kg. What is the excretion rate

of a shark of 2000 kg?

5. Set up an adjacency matrix for the models shown in Figure 2.10

and 2.11.
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6. Improve the model in Figure 2.5 by adding two more state

variables. Which two state variables would probably be most

important to add to the present model focused on

eutrophication?

7. How often would you determine the phytoplankton

concentration, if a model for the diurnal variations of primary

production during a month was supposed to be modelled? Would

the number of observations be dependent on the season? If yes,

why?

8. Set up the equations for a model explaining the accumulation of

DDT in fish according to Figure 2.23.

9. How many state variables could a model have, if all the

relationships are based entirely on 10,000,000 observations?

10. Develop a model for the biomagnification of a toxic substance

through a food chain with primary producers, primary

consumers, and secondary consumers.
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3.1. Introduction

In Chapter 2, a modelling procedure was presented and how to select

close to optimum complexity was discussed. In the 1970s, when ecologi-

cal models started to be applied in environmental management and as a

scientific tool in systems ecology, most of the applied models were of

three types: population dynamic, bioenergetic, and biogeochemical. For

the first type, conservation of the number of individuals in a population

was applied to set up the equations. For the second and third types, the

conservation of energy and/or mass was the key principle applied for

the development of the equations (see Table 2.3). For all three types,

there can be both a dynamic version using the differential equations

and a steady-state version using algebraic equations. The steady-state

versions are used when the problem can be solved by presentation of

an average situation or a worst-case situation, presuming both situations

are steady state. In data-poor situations, it is often beneficial to apply the

steady-state versions, because the quality and the quantity of the data are

not sufficient to develop a dynamic model. For all three types, the devel-

opment of a conceptual model is the first step to visualizing how the state

variables are connected by processes. Sometimes the conceptual model is

considered an independent model type when it is developed only to get
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an overview of the model components and how they are connected

through processes such as transfer of mass, energy, and/or information.

This does not prevent the conceptual model from being used to further

develop the model. Section 3.3 presents conceptual models that can be

visualized by several different methods.

In the last 20 to 30 years, several new types of models have emerged

to solve a wide spectrum of problems that cannot be solved by the

application of bioenergetic models, biogeochemical models, population

dynamic models, or even conceptual models. This makes the selection

of model type even more complicated. It is therefore crucial to have a

good overview of all the available model types and their characteristics

to be able to choose the model type that best meets the model objec-

tives. In this chapter, the information needed to be able to make the

best selection of model type will be presented.

3.2. Model Types — An Overview

The new model types, developed during the last couple of decades, have

been created to answer a number of relevant modelling problems or

questions that arose as a result of the increasing use of ecological mod-

els in the 1970s. Seven relevant modelling questions formulated around

1980 as a result of this model experience are listed below:

1. How can we describe the spatial distribution that is often crucial to

understand ecosystem reactions and to select the best

environmental strategy?

2. Ecosystems are middle number systems (J�rgensen, 2002). Since all

of the components are different, what is the proper description of the

ecosystem reactions when considering the differences in properties

among individuals?

3. The species are adaptable and may change their properties to meet

the changes in the prevailing conditions, which means forcing

functions. Furthermore, the initial species may be replaced by other

species better fitted to the combinations of forcing functions. How

should we account for these changes? Even the networks may

change if more biological components with very different properties

are replaced by other species. How should we account for these

structural changes?
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4. Can we model a system that has a poor database — a few data of

only low quality?

5. The forcing functions and several ecological processes are in reality

stochastic. How do we account for the stochasticity?

6. Can we develop a model when our knowledge is mainly based on a

number of rules, properties, and propositions?

7. Can we develop a model based on data from a wide spectrum of

different ecosystems, which means that we have only a very

heterogeneous database?

These problems could not be solved by the three “old” model types

mentioned in Section 3.1, but they have all found a solution with the

new model types.

Spatial models often based on the use of Geographical Information

System (GIS) have been developed to answer question 1. Individual-

based models (IBMs) are able to answer question 2. Software that can

be used to develop IBMs is even available to facilitate IBM development.

This software can also be utilized to cover spatial distribution (see ques-

tion 1). Structurally dynamic models (SDM) have been developed to

solve the problem expressed in question 3. Fuzzy models can be used

to make models based on a poor or semiquantitative database. Stochas-

tic models were not often applied in the 1970s, but they are still used

today. The application remains infrequent, probably because an urgent

need to include stochastic processes in ecological models does not hap-

pen often. IBMs can often meet the demands expressed in question 6.

Artificial neural networks (ANN) are a good solution to the problem

formulated in question 7.

Ecotoxicological models, discussed in Chapter 8, are sometimes con-

sidered a special model type. They are developed similar to other

biogeochemical models, and have been widely used, particularly the last

10–15 years, because they are needed for environmental risk assessment

of chemicals. It is therefore relevant to devote a special chapter to eco-

toxicological models.

This book presents the development of biogeochemical models (both

dynamic and steady-state types are discussed), population dynamic

models, spatial models, ecotoxicological models, structurally dynamic

models, IBMs, fuzzy models, and application of ANN. These types are
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the most common types (see J�rgensen, 2008b; J�rgensen, Chon, &

Recknagel, 2009). Different methods used to present conceptual models

considered as the first model step for any of the nine types of models

will be presented in the next section.

Table 3.1 gives a summary of model statistics based on the number of

publications in the journal Ecological Modelling. The percentage applica-

tion of most general model types from the 1975 to 1980 are compared to

the period from 2001 to 2006. Ecotoxicological models are included as a

model type, although they are constructed similar to biogeochemical

models. In Table 3.1, we have distinguished between nine types of models:

1. Dynamic biogeochemical

2. Steady-state biogeochemical

3. Population dynamics

4. Spatial

5. Structurally dynamic

6. Individual-based

7. Ecotoxicological

8. Fuzzy

9. Artificial Neural Networks

Table 3.1 Application of the Most General Model Types From 1975 to 1980
with the Model Types from 2001 to 2006

% Application
1975–1980

% Application
2001–2006

Dynamic biogeochemical models 62.5 32.0

Steady state biogeochemical models 0 1.8

Population dynamic models 31.0 24.9

Spatial models 0 19.1

Structurally dynamic models 1.5 8.0

Individual-based and cellular

automata

0 5.2

Artificial Neural Networks and use of

artificial intelligence

0 4.9

Fuzzy models 0.5 1.8

Ecotoxicological models 0 2.2
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The data in Table 3.1 are shown graphically in Figures 3.1 and 3.2 and

are reproduced from J�rgensen (2008b).

The number of papers published from 2001 to 2006 is about nine

times the number of papers published from 1975 to 1980. This means

that the number of dynamic biogeochemical model papers published

recently is more than 4.5 times the number published during the late

1970s, and that the number of papers on structurally dynamic model-

ling has increased by a factor of almost 50 during the last 35 years.

A comparison of Figures 3.1 and 3.2 also shows that the spectrum of

model types applied today is much wider than applied about 30 years

ago. This is not surprising as the new types of models were developed

because there was an urgent need to answer the seven modelling pro-

blems previously listed.
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With the present spectrum of model types, it is possible to address the

major modelling problems from the 1970s. This development has

increased the application of ecological models in general, particularly the

use of the new model types. However, it is also clear that all the problems

cannot be solved completely. We still have a number of problems that may

not be possible to solve by use of a singlemodel type. The very complicated

problems require the use of hybrid models — a combination of the model

types presented in this chapter.

New model types may be developed in the future to solve the com-

plicated problems that today require the use of hybrid models. It is,

however, agreed among ecological modellers that we currently have a

sufficient toolbox of model types to address many ecological modelling

problems we now face, although some modelling case studies are still

need to guarantee their feasibility in real situations.

3.3. Conceptual Models

A conceptualmodel has a function of its own. If flows and storage are given

by numbers, then the diagram gives an excellent survey of a steady-state

situation. It can give a picture of the changes in flows and storages if one

or more forcing functions are changed and another steady-state situation

emerges. If first-order reactions are assumed, then it is even easy to com-

pute other steady-state situations whichmight prevail under other combi-

nations of forcing functions (see Chapter 6). Conceptualization is one of

the early steps in the modelling procedure (see Chapter 2), but it can also

have a function of its own, as will be illustrated in this section.

A conceptual model can be considered as a list of state variables and

forcing functions of importance to the ecosystem and the problem in

focus, but it also shows how these components are connected by

processes. It is employed as a tool to create abstractions of reality in

ecosystems and to delineate the level of organization that best meets

the objectives of the model. A wide spectrum of conceptualization

approaches is available and will be presented in this chapter. Some con-

ceptual models give only the components and the connections; others

imply the first steps toward a mathematical description.

It is almost impossible to model without a conceptual diagram to

visualize the modeller’s concepts and the system. The modeller usually

plays with the idea of constructing various models of different

100 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

complexity at this stage in the modelling procedure, making the first

assumptions and selecting the complexity of the initial model or alter-

native models. It requires intuition to extract the applicable parts of

the knowledge about the ecosystem and the problem involved. Models

attempt to make a synthesis of what we know, and the conceptual dia-

gram is the first step of this synthesis.

Construction of a conceptual diagram is system and developer

dependent, but it is often better at this stage to use a slightly too com-

plex model rather than an approach that is too simple. In the later stage

of modelling, it is easy to exclude redundant components and pro-

cesses. On the other hand, it makes the modelling too cumbersome if

an overly complex model is used even at this initial stage. Generally,

good knowledge about the system and the problem facilitates the con-

ceptualization step and increases the chance to get closer to the right

complexity for the initial model. The questions to be answered include:

What components and processes of the real system are essential to the

model and the problem? Why? How? In this process a suitable balance is

sought between elegant simplicity and realistic detail.

Identification of the level of organization and selection of the needed

complexity of the model are not trivial problems. Miller (1978) indicated

19 hierarchical levels in living systems. To include all of them in an eco-

logical model is impossible, mainly due to lack of data and a general

understanding of nature. Usually, it is not difficult to select the focal

level — where the problem is or where the components of interest oper-

ate. The step below the focal level is often relevant for a good descrip-

tion of the processes; for instance, photosynthesis is determined by

the processes occurring in the individual plants. One step higher than

the focal level determines many of the constraints. These considerations

are visualized in Figure 3.3.

In most cases it is not necessary to include more than a few or even

only one hierarchical level to understand a particular behavior of an

ecosystem at a particular level (see Patten, 1971, 1976; Wilson, 2000;

Miller, 1978; Allen, 1976; Allen & Starr, 1982). Figure 3.4 illustrates a

model with three hierarchical levels, which might be needed if a

multi-goals model is constructed. The first level could be a hydrological

model, the next level a eutrophication model, and the third level a

model of phytoplankton growth considering the intracellular nutrients

concentrations.
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FIGURE 3.3 The focal level has constraints from both lower and upper levels. The lower level determines

to a large extent the processes, and the upper level determines many of the constraints on the ecosystem.
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FIGURE 3.4 Conceptualization of a model with three levels of hierarchical organization.
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Each submodel has its own conceptual diagram; for example, the

conceptual diagram of the phosphorus flows in a eutrophication model

(see Chapter 7). In the latter submodel there may be a sub-submodel

considering the growth of phytoplankton by use of intracellular

nutrients concentrations which is shown as a conceptual diagram in

Figure 3.5. The nutrients are taken up by phytoplankton at a rate

determined by the temperature and nutrient concentration in the cells

and in the water. The closer the nutrient concentrations in the cells

are to the minimum, the faster the uptake. The growth, on the other

hand, is determined by solar radiation, temperature, and the concentra-

tion of nutrients in the cell. The closer the nutrient concentration is

to the maximum concentration, the faster the growth. This description

is according to phytoplankton physiology and will be presented in

Chapter 7.

The modeller can choose among several conceptualization methods

for the development of the conceptual diagram. Six of the most applied

methods are presented next. Which one to choose depends on how

much information the modeller wants to include in the conceptual dia-

gram. The more information the modeller includes, the more informa-

tive the diagram is, but it becomes more difficult to interpret and

manage.

Picture conceptual models use components seen in nature and place

them within a framework of spatial relationships. Figure 3.6 is a simple

example.
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FIGURE 3.5 A phytoplankton

growth model with two

hierarchical levels: the cells that

determine the uptake of

nutrients and the phytoplankton

population production (growth)

determined by the intracellular

nutrient concentrations. This

model is applied in Chapter 7.
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Box conceptual models are simple and commonly used conceptual

designs for ecosystem models. Each box represents a component in

the model and arrows between boxes indicate processes. Figures 2.1,

2.10, and 2.11 show examples of this model type. The conceptual dia-

grams show the nutrient flows (nitrogen and phosphorus) in a lake.

The arrows indicate mass flows caused by processes. Some modellers

prefer other geometric shapes, for example, Wheeler et al. (1978) pre-

ferred circles to boxes in their conceptualization of a lead model. This

results in no principal difference in the construction and use of the dia-

gram. A box model for predicting the carbon dioxide concentration in

the atmosphere and the consequences for the climatic changes will be

presented in Chapter 7, Section 7.7.

The term black-box model is used when the equations are set up

based on an analysis of input and output relations, for example, by sta-

tistical methods. The modeller is not concerned with the causality of

these relations, and such a model might be very useful provided the

input and output data are of sufficient quality. Yet, the model can only

be applied to the case study for which it has been developed. New case

studies will require new data, a new analysis of the data, and, conse-

quently, new relations. White-box models are constructed based on

Toxic compounds (incl. pesticides)

Concentration
in water

Uptake by fish

FIGURE 3.6 Example of a picture model: pesticides are coming from the littoral zone, resulting in

a certain concentration in the water. Fish take up the toxic compounds directly from the water.

The model attempts to answer the crucial question: What is the concentration of the toxic substance

in the fish?
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causality for all processes. This does not imply that these models can be

applied to all similar case studies, because, as previously discussed, a

model inevitably reflects ecosystem characteristics. In general, a

white-box model will be applicable to other case studies with some

minor or major modifications. In practice, most models are gray, as they

contain some causalities but also often apply empirical expressions to

account for some of the processes.

Input/output models differ only slightly from box models; they can

be considered as box models with numerical indications of inputs

and outputs. An example of this type of model is shown in Figure 3.7,

which is an oyster community model developed by Dame and

Patten (1981).

The feedback dynamics diagrams use a symbolic language introduced

by Forrester (1961) (Figure 3.8). Rectangles represent state variables,

parameters or constants are small circles, sinks and sources are cloud-

like symbols, flows are arrows, and rate equations are the pyramids that

connect state variables to the flows. Several modifications have been

developed and they differ from the Forrester diagrams by giving more
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FIGURE 3.7 Input/output model for energy flow (cal m�2 d�1) and storage (kcal m�2) in an oyster reef

community. Matrix representation: 1. filter feeders, 2. deposited detritus, 3. microbiota, 4. meiofauna,

5. deposit feeders, and 6. predators
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information about the processes. The conceptualization used in the

model development software STELLA (see Figure 2.3) uses symbols sim-

ilar to the Forrester diagram (compare Figures 2.3 and 3.8).

Energy circuit diagrams, developed by H. T. Odum (1983), are

designed to give information on thermodynamic constraints, feedback

mechanisms, and energy flows. The most commonly used symbols in

this language are shown Figure 3.9. As the symbols have an implicit

mathematical meaning, it gives an abundance of information about

the mathematics of the model. Furthermore, it is rich in conceptual

information and hierarchical levels can easily be displayed. Numerous

other examples can be found in the literature (Odum, 1983; Odum &

Odum, 2000). A review of these examples reveals that energy circuit

diagrams are very informative, but they are difficult to read and survey

when the models become a little more complicated. On the other hand,

it is easy to set up energy models from energy circuit diagrams.

Sometimes it is even sufficient to use the energy circuit diagrams

A

B

C

D

E

F

G
FIGURE 3.8 Symbolic

language introduced by

Forrester (Jeffers, 1978). (A)

state variable, (B) auxiliary

variable, (C) rate equations,

(D) mass flow, (E) information,

(F) parameter, and (G) sink.
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directly as energy models. These diagrams have found a wide applica-

tion for development of ecological/economic models, where the energy

is used as the translation from economy to ecology and vice versa.

H.T. Odum has used the approach for developing models for entire

countries.

Source

Interaction

Consumer Switch
Cycling
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Miscellaneous
sumbol for
subsystems

Amplifier

Producer

Transaction

Sink StorageA

D

F

I J

K

G H

E
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FIGURE 3.9 Diagrammatic

energy circuit language of

Odum (1983) developed

for ecological

conceptualization and

simulation applications.
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3.4. Advantages and Disadvantages of the Most
Applied Model Types

The characteristics, advantages, and disadvantages (mostly expressed as

a limitation of the application) for all of the available main model types

are given in this section. The applicability of the various model types is

discussed in the next section. The application of catastrophe theory and

chaos theory are not included in the overview, because they can be con-

sidered mathematical tools that, in principle, can be applied as mathe-

matical tools in the development of several different model types.

Furthermore, statistical models in this textbook are not considered as

a particular model type, but as a tool that can be applied in ecological

modelling to give a better process description. If a model is based

entirely on application of statistics, then it is denoted as a black-box

model, because it has no causality. Black-box models are not used to

uncover new ecological knowledge where the focus is on causality. A

short review of the most applied model types based on J�rgensen

(2008b) is given in the following list.

1. Biogeochemical and bioenergetic dynamic models. This model type

is widely used, as can be seen in Table 1.1. It applies differential

equations to express the dynamics. Change in state variables are

expressed as the results of the ingoing minus the outgoing

processes and the model is therefore based on conservation

principles. The process equations are usually based on causality.

The model type has some clear advantages that make it attractive to

use for the development of many models.

Advantages:
• Most often based on causality
• Based on mass or energy conservation principles
• Easy to understand, interpret, and develop
• Software is available (e.g., STELLA)
• Easy to use for predictions

Disadvantages:
• Not used for heterogeneous data
• A relatively good database is required
• Difficult to calibrate when they are complex and contain many

parameters
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• Do not account for adaptation and changes in species

composition

The advantages and disadvantages define the area of application

such as the description of the state of an ecosystem when a

good data set is available. This model type has been extensively

applied in environmental management as a powerful tool to

understand the reactions of ecosystems to pollutants and to set

up prognoses.

2. Steady-state biogeochemical models. Due to the limitations of this

model type, it has not been used in more than 1.8% of the

publications in Ecological Modelling from 2001 to 2006. This

model type is a biogeochemical or bioenergetic dynamic model

where the differential equations all are set to zero to obtain the

values of the state variables corresponding to the static situation.

Advantages:
• Require generally smaller databases than most other types
• Excellent for worst-case or average situations
• Results are easily validated (and verified)

Disadvantages:
• Do not give any information about dynamics and changes over

time
• Prediction with time as independent variable is not possible
• Only give average or worst-case situations

This model type is often used when a static situation is sufficient to

give a proper description of an ecological system or to make

environmental management decisions.

3. Population dynamic models. This model type is rooted in the

Lotka-Volterra model developed in the 1920s. Numerous papers

have been published about the mathematics behind this model and

a number of deviated models developed. The mathematics of these

equation systems are not very interesting from an ecological

modelling point of view, where the focus is a realistic description of

ecological populations. Population dynamic models may include

age structure, which in most cases is based on matrix calculations.

The number of population dynamic papers is 5 times as much

today as in the late 1970s, which illustrates that ecological

modelling has developed significantly over the past 30 years. The
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minor reduction in percentage is due to the application of a much

wider spectrum of different model types.

Advantages:
• Able to follow the development of a population
• Age structure and impact factors can easily be considered
• Easy to understand, interpret, and develop
• Most often based on causality

Disadvantages:
• Conservation principles are sometimes not applied, although it

is easy in most cases
• Application is limited to population dynamics
• Require a relatively good and homogenous database
• Difficult to calibrate in some situations

This model type is typically applied to keep track of the development

of a population. The number of individuals is the most applied unit,

but it can easily be translated into biomass or bioenergy. Effects of

toxic substances on the development of populations can easily be

covered by increasing the mortality and decreasing the growth

corresponding to the effect of the toxic substance. This model type is

extensively used in the management of fisheries and other natural

resources and national parks.

4. Structurally Dynamic Models. This model type can change the

parameters, corresponding to the properties of the biological

modelling components to account for adaptation and changes in

species composition. It is possible either to use knowledge or

artificial intelligence to describe the changes in the parameters.

Most often a goal function is used to find the parameter changes.

The thermodynamic variable, eco-exergy, is a commonly used goal

functions in structurally dynamic models. Minor changes of the

parameters may be due to adaptation to the changed conditions,

but for major changes, it is most probably due to a change in the

state variables — that is, a shift in the species composition — that

causes the changed parameters. This approach can be used for a

major change in the ecological network, although no reference to

this application of the structurally dynamic modelling approach is

yet available. SDMs are applied much more today than 25 to

30 years ago.
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Advantages:
• Able to account for adaptation
• Able to account for shift in species composition
• Can be used to model biodiversity and ecological niches
• Parameters determined by the goal functions do not need to be

calibrated
• Relatively easy to develop and interpret

Disadvantages:
• Selection of a goal function or use of artificial intelligence is

needed
• Computer use is time-consuming
• Information about structural changes is needed for a proper

calibration and validation
• No available software; programming needed (in most cases Cþþ

has been used)

This model type should be applied whenever it is known that

structural changes take place. It is also recommended for

models that are used in environmental management to make

prognoses resulting from major changes in the forcing functions

(impacts).

5. Fuzzy models. This type of model may either be knowledge-based

(the Mamdani type) or data-based (the Sugeno type). Mamdani-

type models are based on a set of linguistic expert formulations,

and they are applied when no data are available. The Sugeno-type

model applies an optimization procedure and is applied when only

uncertain data are available.

Advantages:
• Can be applied on a fuzzy data set
• Can be applied on semiquantitative (linguistic formulations)

information
• Can be applied for development of models where a

semiquantitative assessment is sufficient

Disadvantages:
• Not usable for more complex model formulations
• Cannot be used where numeric indications are needed
• No software available to run this type of model, although there

are facilities in Matlab to run fuzzy models
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This model type is applied when the data set is fuzzy or only

semiquantitative expert knowledge is available, provided that the

semiquantitative results are sufficient for the ecological description

or the environmental management.

6. Artificial Neural Networks. This model type is able to show

relationships between state variables and forcing functions based

on a heterogeneous database. In principle, it is a black-box model

and therefore not based on causality. It is very useful when applied

for prognoses, provided that the model has been based on a

sufficiently large database that allows the discovery of relationships

and to test these discoveries on an independent data set. This

model type was not applied in ecological modelling before 1982. It

can be developed by using available software or Matlab.

Advantages:
• May be used where other methods fail
• Easy to apply
• Give a good indication of the certainty due to the application of a

test set
• Can be used on a heterogeneous data set
• Give a close to optimum use of the data set

Disadvantages:
• No causality unless algorithms are introduced or a hybrid

between ANN and another model type is applied
• Cannot replace biogeochemical models based on the

conservation principles
• Accuracy of predictions is sometimes limited, although

validation is almost always used.

The advantages and disadvantages of this model type indicate where

it would be advantageous to apply ANN; namely where ecological

descriptions and understandings are required on the basis of a

heterogeneous database, such as data from several different

ecosystems of the same type. It is also often applied beneficially when

the database is more homogeneous; for instance, when the focus is

on a specific ecosystem. Themodeller should seriously consider using

biogeochemical dynamic models due to their causality. ANN is,

however, faster to use and the time-consuming calibration that is part

of the biogeochemical models is not necessary.
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7. Spatial models. Spatial differences of the forcing functions and the

nonbiological and biological state variables may be decisive for

model results, and are often required to obtain model results that

reveal spatial differences. They are often urgently needed to

understand the ecological reactions or to make a proper

environmental management strategy. Models that produce spatial

differences must also consider the spatial differences in the

processes, forcing functions, and state variables. Due to the urgent

need for a proper description of the spatial differences, it is not

surprising that the journal Ecological Modelling has published almost

250 papers about spatial modelling from 2001 to 2006 and that the

number of models that focus on spatial distribution is increasing

rapidly. There are a number of ways to cover the spatial differences

in the development of an ecological model. It is not possible to

review them all here, but this important model type is presented in

more detail in Chapter 11. For aquatic ecosystems, the ultimate

spatial model is a 3D description of the processes, forcing functions,

and state variables. When studying this ecosystem, there are often

questions regarding a good description of hydrodynamics. There has

been an increasing use of models that couple 3D hydrodynamic

models and ecological models.

Advantages:
• Cover spatial distribution, which is often important in ecology
• Results can be presented in many informative ways, for instance,

GIS

Disadvantages:
• Require a huge database
• Calibration and validation are difficult and time-consuming
• A very complex model is usually needed to properly describe the

spatial patterns

Spatial models are applied whenever it is required that the results

include the spatial distribution, because it is decisive or the spatial

distribution is crucial to the model results. Landscape models

covering the exchange of matter among several different ecosystems

in a landscape have been developed.

8. Individual Based Models. This model type was developed because

all the biological components in ecosystems have different
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properties, which is not considered in biogeochemical or population

dynamic models. Within the same species the differences are minor

and are therefore often neglected in biogeochemical models, but the

differences among individuals of the same species may sometimes

be important for ecological behavior. For instance, individuals may

have different sizes, which gives a different combinations of

properties from the allometric principles (see Chapter 2, Section 2.9).

The right property may be decisive for growth and/or survival in

certain situations. Consequently, a model that ignores the differences

among individual species could produce a completely wrong result.

Advantages:
• Able to account for individuality
• Able to account for adaptation within the spectrum of

properties
• Software is available; although the choice is more limited than

software used by biogeochemical dynamic models
• Spatial distribution can be covered

Disadvantages:
• When a number of properties are considered, the models get very

complex
• Cannot always cover mass and energy transfer based on the

conservation principle
• Require a large amount of data to calibrate and validate the

models

As mentioned earlier, we know that the individuals have different

properties that may sometimes be crucial for model results. In such

cases, IBMs are absolutely needed.

9. Ecotoxicological models. Ecotoxicological models, in principle, do

not represent a separate model type. Biogeochemical models or

population dynamic models are applied widely in ecotoxicology. It is,

however, preferable to treat ecotoxicological models as a separate

model type, because they are characterized by the following:
• Our knowledge of the parameters is limited so estimation

methods are needed to a much larger extent than for other model

types. Fortunately, many estimation methods are available in

ecotoxicology to estimate process rates.
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• Due to the use of safety factors and the limited knowledge of the

parameters, ecotoxicological models are often quite simple;

particularly, the so-called fugacity models.
• They should often include an effect component.

Advantages:

• Tailored to ecotoxicological problems

• Usually simple to use

• Often includes an effect component or can easily be interpreted

to quantify the effect

Disadvantages:

• The number of parameters needed to develop models for all toxic

substances is very high and we know approximately 1% of these

parameters

• It implies that we need estimation methods that inevitably

have a high uncertainty; model results therefore have a high

uncertainty

• Inclusion of an effect component requires knowledge of the

effect, which is also limited

The area of application for this model is to solve ecotoxicological

research and management problems and perform environmental

risk assessment for the application of chemicals.

10. Stochastic models. This model type is characterized by an element

of randomness. The randomness could be in the forcing functions,

particularly the climatic forcing functions, or it could be in the

model parameters. In both cases, it is caused by a limitation in

our knowledge. For instance, we may not know the temperature on

May 15 next year at a given location, but we know the normal

distribution of the temperature over the last hundred years and can

use it to represent the temperature on this date. Similarly, many of the

parameters in ourmodels are dependent on random forcing functions

or on factors that we cannot include in our model without making

it too complex. Using Monte Carlo simulations based on

this knowledge, it is possible to consider the randomness. By running

the model many times, it becomes possible to obtain the uncertainty

of the model results. A stochastic model may be a biogeochemical/

bioenergetic model, a spatial model, a structural dynamic model,
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an IBM, or a population dynamic model. In principle, a model can

become a stochastic model regardless of its type.

Advantages:
• Able to consider the randomness of forcing functions or processes
• Uncertainty of the model results are easily obtained by running

the model many times

Disadvantages:
• Must know the distribution of the random model elements
• High complexity and requires many hours of computer time

It is recommended to apply stochastic models whenever the

randomness of forcing functions or processes are significant.

11. Hybrid models. In principle, hybrid models are any combination

of two of the previously listed ten model types; but only few hybrid

models have been developed. It is expected that many more will be

developed in the future to combine some of the advantages and

eliminate some of the disadvantages of the existingmodels. Ecological

Modelling has published several hybrid models that combine a

biogeochemical/bioenergetic dynamicmodel with othermodel types.

The result of combining a biogeochemical dynamic model and an

ANN is a hybrid model that may have causality and is able to squeeze

as much information out of the database as an ANN.

3.5. Applicability of the Different Model Types

Which model types are recommended to solve which problems? What

are the data requirements of the different model types? These are ques-

tions answered in the first step ofmodelling development (see Figure 2.2).

As mentioned in the introduction to this chapter, new model types were

needed to solve specific problems that emerged during the late 1970s,

when ecological modelling started to be applied more extensively as a

tool in ecological research and environmental management. Biogeo-

chemical/bioenergetic dynamicmodels and population dynamicmodels

have shortcomings that ecological modellers have tried to solve for the

last 30 years by developing new model types. Today, the shortcomings

have at least been partially eliminated by the development of new model

types, particularly spatial models, IBMs, and SDMs. It is possible with the

available model types to make the best choice in a given model situation,
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which is defined by the available data and the combination of problem

and system. It is possible to recommend a particular model type from

the eleven model types presented in Section 3.4 based on (1) available

data sets and the (2) combination of problem and system.

The core question, “Which model type should be applied in which

context?”, is answered in Tables 3.2 and 3.3, which cover, respectively,

different data sets and different problem/system combinations.

Now we have a wide spectrum of model types available to solve a

wide spectrum of relevant ecological problems, which include a

description of shifts in species compositions, ecotoxicological effects

and spatial distributions, and the use of heterogeneous data sets and

uncertain data sets. This wide spectrum of models is richly represented

in the ecological modelling literature (Table 3.4).

Table 3.2 Selection of Model Type Based on the Available Data Set

Data Set Recommended Model Type

High quality, homogeneous Biogeochemical dynamic models and

population dynamic models

Medium-high quality, heterogeneous ANN

Low quality, homogeneous Steady-state model

Uncertain data Fuzzy models

No data only rules Fuzzy models

Table 3.3 Selection of Model Type Based on Problem/System

Problem/System Recommended Model Type

Exchange of matter and/or energy Biogeochemical dynamic model

Population dynamics Population dynamic model

Toxic substances, distribution and effect Ecotoxicological model

Individuality important for the results IBM

Structural changes occur SDM

Adaptation significant SDM

Spatial differences Spatial model

Stochasticity important for the results Stochastic model
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Problems

1. Which type of model would you select for the following problems?

a. Protection of a lion population in a national park

b. Optimization of a fishery in a marine ecosystem like the North

Sea

c. Construction of a wetland for removal of nitrate mainly by

denitrification

d. Adaptation (change in the rate of evapotranspiration) of plants to

a dry climate

Table 3.4 Case Studies Illustrating the Application of the Various
Model Types

Model Type Description of Case Study

Dynamic biogeochemical models Eutrophication of a lake; a relatively good database available

Steady-state biogeochemical models Eutrophication of a lake; only three annual average values

available

Population dynamic models Management of deer in a national park; a relatively good

database available

Spatial models Distribution of nutrients in a landscape; a relatively good

database available

Structurally dynamic models Oxygen deficiency in a stream; significant changes of control

functions are expected, and knowledge about shifts in

species composition available

IBMs Growth of trees in a forest; the trees have very different

conditions (sun, exposure to wind, soil, etc.) and a good

database with different growth pattern under different

conditions available

ANN and use of artificial intelligence The presence of different fish species in a wide spectrum of

different streams; a huge but heterogeneous database

available

Fuzzy models Presence or absence of 5 species of songbirds in 20 different

wetlands

Ecotoxicological models The fate of an insecticide used in agriculture; an agricultural

area, a wetland, and a stream are considered
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e. Interpretation of a database with 12 stations in drainage areas,

rivers, and many observations as function of time for the stations

of (i) water quality, (ii) fish diversity, (iii) dominant fish species,

and (iv) the use and composition of the land adjacent to the rivers

2. Consider a shallow lake with a surface of 100 ha and a depth of 2 m

has an initial phosphorus concentration of 0.1 mg/L. The loading is

100 kg/year. The water retention time is 4 months. No input of

phosphorus from the sediment is considered.

a. What would be the concentration of phosphorus in the lake by

steady state if no settling of phytoplankton or suspended matter

takes place?

b. What would be the concentration of phosphorus in the lake at

steady state if it is considered that phosphorus is settled by a rate

of 10 m/24h?

c. What would be the phytoplankton concentration in the two cases

if phytoplankton contains 1% phosphorus?

The differential equation needed to answer question (a) and (b)

should be indicated and the steady-state solution should be found.

3. Draw a Forrester and energy circuit diagram for Figure 2.9.

4. Develop a STELLA diagram of the picture model in Figure 3.6. Set up

an adjacency matrix for the model.

5. Set up an adjacency matrix for the model in Figure 3.7.

6. Give an example of a case study that is best solved by use of the nine

model types listed in Table 3.1. Describe the case study by the

problem, the ecosystem, and the data needed. Present the answer by

use of a table.
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4
Mediated or Institutionalized

Modelling

CHAPTER OUTLINE

4.1. Introduction: Why Do We Need Mediated Modelling? .....................................121
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4.1. Introduction: Why Do We Need Mediated
Modelling?

The following questions arise as result of the proposed modelling proce-

dure (Figure 2.2):

• How is it possible to consider the many different aspects of an

environmental problem including natural science aspects such as

geology, zoology, botany, and chemistry as well as the economic and

social aspects?
• The answer to this question is to implement a very wide spectrum

of expertise in the modelling team, but it gives rise to the next

question: How do you ensure good cooperation from team members

when they represent many different disciplines and have many

different opinions and “languages”?
• How is it possible to consider all relevant ecosystem properties at the

same time?
• How is it possible to integrate these insights?
• How can we ensure that all important stakeholders are included in

the modelling process?
• How is it possible to integrate impacts and knowledge at different

scales?
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• How is it possible to understand the very root of the problems and

their sources and have this understanding reflected in the modelling

and the final model result?
• How is it possible to build the best consensus among the different

opinions and disciplines?

Institutionalized or mediated modelling (IMM) can address these

questions. The main idea of IMM is to represent without exception all

stakeholders, policymakers, managers, and scientists with knowledge

and ideas about the problem, the system, and possible solutions for

the modelling procedure. The model is developed as a result of

integrated brainstorming where all ideas, opinions, disciplines, and

knowledge are represented. For the development of most mediated

models, depending on the complexity of the problem and the system,

several days of intense interaction among participants are required to

reach a satisfactory basis for model development. The advantages of

IMM (partly taken from van den Belt, 2004) are that the:

1. Level of shared understanding increases;

2. Consensus is built about the structure of a complex problem for a

complex system, because all interests are represented in the stepwise

model development;

3. Result of the modelling process, the model, serves as a tool to

disseminate the insights gained by the modelling procedure;

4. Effectiveness of the decision making is increased, because the

mediated model makes it possible for policymakers and the

stakeholders to see the consequences of the action plans over longer

time scales;

5. Team building is developed parallel to the model development;

6. Process is emphasized over the product;

7. State-of-the-art knowledge is captured, organized, and synthesized.

When a team develops a mediated model “groupiness” is increased

because:

1. Individual members perceive clearly that they are a part of the group.

2. Members become oriented toward a common goal.

3. Interaction between group members takes place.

4. Interdependence is realized and acknowledged.

5. A structure of roles/status and norms is built.
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4.2. The Institutionalized Modelling Process

The first step in the development of an institutionalized model is to

invite representatives for all possible groups and stakeholders that have

an interest in the focal problem to a brainstorming workshop focused

on model development. This could include green organizations, social

organizations, policymakers, managers, ecologists, engineers, econo-

mists, sociologists, and so on. It is crucial that all groups with a well-

founded interest in the problem or in the (eco)system are represented.

All scientific disciplines associated with the problem and all knowledge

bases must also have a voice.

The first stage of the workshop is to introduce the objectives; namely

to develop a model that can be used as a common reference for all the

participating groups, and to understand and hopefully, on a long-term

basis, to solve a well-defined problem of common interest. The advan-

tages and disadvantages of modelling, particularly mediated modelling,

are presented at this stage, together with the basic ideas behind the sys-

tem. The various teams participating in the brainstorming must

introduce themselves and clearly present their interest in solving the

problem, as well as give an overview of their knowledge about the

problem.

An IMM is coordinated by the following individuals:

• Facilitator that prepares the meeting and guides the discussion;
• Mediator that plays the role of the facilitator during group

meetings;
• Modeller that tries stepwise to conclude the discussion in the form

of a model; the model is changed currently to follow stepwise the

conclusions made as a result of the discussion and group meetings.

The second stage of the workshop focuses on a clear definition of

the problem and the scale in terms of spatial system boundaries, time

horizon, and time step. The problem can eventually be defined by an eco-

logical risk assessment (ERA), but under all circumstances it will include

these crucial questions:

• What has caused the problem or problem complex?
• What are the impacts of the problem?
• If the problem complex consists of several problems, then how are

these problems interrelated?
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The geographical boundaries are usually already determined by the

stakeholders. The time horizon and time step will inevitably lead the par-

ticipants to focus on some questions, while other aspects are ignored.

The focus can be designed to be narrow or wider in its inclusiveness

of economic and social problems, often determined by the roots of the

problems. The focus will be very clear as a result of the three crucial

questions listed above.

An envisioning exercise attempts to describe the future the partici-

pants want and the future that they would settle for. This vision should

not be considered a static picture; it has to be redefined over time.

Finally, a survey of what we know about the system and the problem

is presented, including a list of data and observations.

During the third stage of the workshop, a qualitative model is built.

The modeller is translating the discussion into state variables, pro-

cesses, and forcing functions. Simultaneously, he is explaining the

meaning of these modelling components, and what it means when the

model presents a relationship between forcing functions and state vari-

ables. The possibilities for changing the forcing functions and making

simulations accordingly will inevitably become a part of the debate in

this phase of the model development. It may be beneficial to break up

into smaller groups to discuss submodels. Causalities, interacting pro-

cesses, or possible change of forcing functions should be discussed as

well.

The fourth stage of the workshop focuses on the quantitative model.

The quantitative process description requires an extensive discussion

among the participants. It is crucial that the quantitative description

of processes adheres to the known ecosystem dynamics. Another topic,

open for the discussion at this stage, is the use of indicators. Which indi-

cators best express the system quality and can be used in the follow-up

phase when the model results are implemented to pursue the best pos-

sible environmental strategy? J�rgensen et al. (2005, 2010) provided a

good overview of possible indicators.

When the quantitative model is prepared, the observations are com-

pared to the model simulations and the possibilities for calibrations are

discussed. In some cases, it may be beneficial to close the workshop and

leave the calibration and validation to a modelling team and re-open

the workshop when the calibration and validation are ready. This is
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recommended when the calibration and validation are very time-

consuming because the model is very complex or because the number

of observations is high.

The fifth stage of the workshop encompasses the testing of various

selected scenarios and their conclusions. The simulated scenarios are

made after the calibration and validation and may be carried out after

the workshop has been reconvened. The model is foreseen to be adaptive,

because if the basic conditions for the model have been changed (we are

living in a dynamic world), themodel should be changed correspondingly.

A follow-up workshop should be agreed upon during this stage.

The follow-upworkshop, perhaps one to three years after the first work-

shop, should adjust themodel according to the observed “mistakes” by the

model and the changing basic conditions. To what extent the previous

conclusions should be changed also needs to be discussed.

During the follow-up workshop it is recommended to examine

whether the IMM has been a success or failure. This can be determined

by answering the following questions (see van den Belt, 2004):

1. Did the participants establish or reach common goals?

2. Did the participants contribute their knowledge and creative

thinking toward innovative solutions?

3. Is the model considered a common reference for the participants?

4. Does the model use a common language when the different aspects

are discussed?

5. Is the model expressing all the different opinions and knowledge of

the stakeholders?

6. Has a cooperative climate emerged?

7. Have all participants accepted the model as an acceptable

learning tool?

8. Is there an increased sense of interdependence among the participants?

4.3. When Do You Apply Institutionalized or
Mediated Modelling (IMM)?

All of the models presented in this book could, in principle, be devel-

oped as non-institutionalized models, but they still require a workshop

as a part of the modelling procedure. Not all models need to be
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developed as IMMs; for example, if they focus on a less complex prob-

lem that only touches on a few aspects. When the problem is complex

and many different interests, interactions, and aspects are integrated

within the problem, it is strongly recommended to use an IMM. Exam-

ples where institutionalized modelling is almost mandatory include:

water quality or ecosystem models of important lakes, rivers, coastal

areas, lagoons, bays, landscapes, wetlands, recreational areas (national

parks, sanctuaries) and so on, where many problems have many sources

and there are many conflicting interests. The previously listed ecosys-

tems all have different applications that may be in conflict; for instance,

a lake, which is often used simultaneously for recreation, production of

drinking water, fisheries, and to ensure recycling of important elements.

The cost of wastewater treatment is increasing with increasing water

quality of the treated water, but the required water quality is not neces-

sarily the same for each application. The willingness to pay for a better

water quality is therefore dependent on the use of the lake, which could

lead to conflicts.

Institutionalized models applied to ecosystem management can con-

clude in an environmental management policy and cost strategies. The

model conclusions should be accepted by the population and all inter-

est groups, because they have participated in the process, the simula-

tions, and the conclusions and understand the details and basis for

the conclusions.

There are many examples of noninstitutionalized models that have

failed without a workshop. It is difficult to collect all the knowledge

about the problem and the system, the roots of the problems, and all

of the different interests in solving the problems without representation

from the different groups. It can also be difficult to understand all of the

different aspects of the core problem without a brainstorming session.

Complex problems are like icebergs, only 10% is visible.

Most of the crucial problems humans face are very complex. Con-

sider the difference between the problem of climate changes due to

global warming and the problem of putting the first human on the

moon. The global warming problem interferes with an enormously wide

spectrum of other problems involving agriculture, industries, develop-

ing versus developed countries, sufficient drinking water of an accept-

able quality to all citizens, poverty, and so on. The realization of
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human lunar exploration was entirely a question about very advanced

technology with a much narrower spectrum of interdisciplinary issues.

Using IMM is recommended for all complex problems and modellers

are encouraged to use this method for their environmental planning

problems, which may often be the most complex problem they have.

van den Belt (2004) gave several examples where IMM actually resulted

in a good planning strategy for a complex problem. The most illustrative

case studies are typical environmental management problems such as:

• Watershed management in Wisconsin
• Planning of Banff National Park
• Coastal zone management

Problems

1. Give examples of problems where the development of IMM would be

a good solution.

List the stakeholders interested in the problem. Which group would

you invite to a brainstorming meeting? Which type of model do you

expect will be developed?

2. Who would be interested in an IMM focusing on the wildlife in a

national park, which has enormous income value for a district due to

tourism? The wildlife is damaging the surrounding agriculture and

negatively impacting the quality of the drinking water in a lake close

to the national park.
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5.1. Introduction

This chapter covers population dynamic models where state variables

are the number or biomass of individuals or species. The growth of

one population is used — see Sections 5.2 and 5.3 — to present the

basic concepts. Afterward, the interactions between two or more popu-

lations are presented. The famous Lotka-Volterra model and several

more realistic predator-prey and parasitism models, are shown. Age dis-

tribution is introduced and computations with matrix models are illu-

strated, including the relations to biological growth. Finally, the last

three sections illustrate the use of fishery/harvest models, metapopula-

tion dynamics, and infection models.

5.2. Basic Concepts

This chapter deals with biodemographic models, which are population

models characterized by numbers of individuals or kilograms of biomass

of individuals or species as typical units for state variables. As early as the
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1920s, Lotka and Volterra developed the first population model, which

is still widely used (Lotka, 1956; Volterra, 1926). So many population

models have been developed, tested, and analyzed since that it would

not be possible to give a comprehensive review of these models here. This

chapter mainly focuses on models of age distribution, growth, and spe-

cies interactions. Only deterministic models will be mentioned. Those

interested in stochastic models can refer to Pielou (1966, 1977), which

gives a very comprehensive treatment of this type of population dynamic

model.

A population is defined as a collective group of organisms of the same

species. Each population has several characteristic properties, such as

population density (population size relative to available space), natality

(birth rate), mortality (death rate), age distribution, dispersion, growth

forms, and so forth.

A population changes over time, and we are interested in its size

and dynamics as it grows or shrinks. If N represents the number of

organisms and t the time, then dN/dt ¼ the rate of change in the

number of organisms per unit time at a particular instant (t), and

dN/(Ndt) ¼ the rate of change in the number of organisms per unit

time per individual at a particular instant (t). If the population is plot-

ted against time, then a straight line tangential to the curve at any

point represents the growth rate.

Natality is the number of new individuals appearing per unit of time

and per unit of population.

We have to distinguish between absolute natality and relative natal-

ity, denoted B and Br, respectively:

B ¼ DN=Dt ð5:1Þ
Br ¼ B=N ð5:2Þ

where △N ¼ production of new individuals in the population.

Mortality refers to the death of individuals in the population. The

absolute mortality rate, M, is defined as:

M ¼ DM=Dt ð5:3Þ

where △M ¼ number of organisms in the population that died during

the time interval, △t, and the relative mortality rate, Ms, is defined as:

Ms ¼ M=N ð5:4Þ
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5.3. Growth Models in Population Dynamics

The simplest growth models consider only one population. Its interac-

tions with other populations are taken into consideration by the specific

growth rate and the mortality, which might be dependent on the magni-

tude of the considered population but independent of other populations.

In other words, we consider only one population as a state variable. The

simplest growth model assumes unlimited resources and exponential

population growth. A simple differential equation can be applied:

dN=dt ¼ BsN�MsN ¼ rN ð5:5Þ
where Bs is the instantaneous birth rate per individual, Ms is the instan-

taneous death rate, r ¼ Bs � Ms, N is population density, and t is time.

Equation (5.5) represents first-order kinetics (see exponential growth

in Chapter 2, Section 2.3, equation 2.2a). If r is constant, then we get

after integration:

Nt ¼ N0e
rt, ð5:6Þ

where Nt is the population density at time t and N0 is the population

density at time 0. A logarithmic presentation of Eq. (5.6) is given in

Figure 5.1.

The net reproductive rate, R0, is defined as the average number of age

class zero offspring produced by an average newborn organism during

its entire lifetime. Survivorship, lx, is the fraction surviving at age x. It

is the probability that an average newborn will survive to that age,

designated x. The number of offspring produced by an average

Slope = r

1

In Nt

Time, t

FIGURE 5.1 ln Nt is plotted versus time, t.
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organism of age x during the age period is designated mx. This is termed

fecundity, while the product of lx and mx is called the realized fecundity.

According to its definition, R0 can be found as:

1
R0 ¼

Ð
lxmxdx
0

ð5:7Þ

A curve that shows lx as function of age is called a survivorship curve.

Such curves differ significantly for various species, as illustrated in

Figure 5.2.

The so-called intrinsic rate of natural increase, r, is like lx and mx,

dependent on the age distribution, and it is only constant when the

age distribution is stable. When Ro is as high as possible, that is, under

optimal conditions and with a stable age distribution, the maximal rate

of natural increase is realized and designated rmax. Among various ani-

mals it ranges over several orders of magnitude (Table 5.1).

Exponential growth is a simplification, which is only valid over a

certain time interval. Sooner or later every population must encounter

the limitation of food, water, air, or space, as the world is finite. To

account for this we introduce the concept of density dependence; that

is, vital rates, like r, depend on population size, N (while we now ignore
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FIGURE 5.2 Survivorships of (1) the

lizard Uta (the lower x axis) and

(2) the lizard Xantusia (the upper

x axis). (After Tinkle, 1967).
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Table 5.1 Estimated Maximal Instantaneous Rate of Increase (rmax, per
Capita per Day) and Mean Generation Times (in Days) for a Variety of
Organisms

Taxon Species rmax Generation Time

Bacterium Escherichia coli ca. 60.0 0.014

Algae Scenedesmus 1.5 0.3

Protozoa Paramecium aurelia 1.24 0.33–0.50

Protozoa Paramecium caudatum 0.94 0.10–0.50

Zooplankton Daphnia pulex 0.25 0.8– 2.5

Insect Tribolium confusum 0.120 ca. 80

Insect Calandra oryzae 0.110(0.09–.011) 58

Insect Rhizopertha Dominica 0.085(0.07–0.10) ca. 100

Insect Ptinus tectus 0.057 102

Insect Gibbium psylloides 0.034 129

Insect Trigonogenius globules 0.032 119

Insect Stethomezium squamosum 0.025 147

Insect Mezium affine 0.022 183

Insect Ptinus fur 0.014 179

Insect Eurostus hilleri 0.010 110

Insect Ptinus sexpunctatus 0.006 215

Insect Niptus hololeucus 0.006 154

Octopus — 0.01 150

Mammal Rattus norwegicus 0.015 150

Mammal Microtus aggrestis 0.013 171

Mammal Canis domesticus 0.009 ca. 1000

Insect Magicicada septendecim 0.001 6050

Mammal Homosapiens 0.0003 ca. 7000
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differences caused by age). Let the carrying capacity, K, be defined as

the density of organisms at which r is zero. At zero density, Ro is maxi-

mal and r becomes rmax. The logistic growth equation has already

been mentioned in Section 2.3, equation 2.4. The application of the

logistic growth equation requires three assumptions:

1. All individuals are equivalent.

2. K and r are immutable constants independent of time, age

distribution, and so forth.

3. There is no time lag in the response of the actual rate of increase per

individual to changes in N.

All three assumptions are unrealistic and can be strongly criticized.

Nevertheless, several population phenomena can be nicely illustrated

by using the logistic growth equation.

Illustration 5.1

An algal culture shows a carrying capacity due to a self-shading effect. In

spite of "unlimited" nutrients, the maximum concentration of algae in a

chemostat experiment was measured to be 120 g/m3. At time 0, 0.1 g/m3

of algae was introduced and 2 days after a concentration of 1 g/m3 was

observed. Set up a logistic growth equation for these observations.

Solution

During the first 5 days, we are far from the carrying capacity and we

have with good approximations:

ln10 ¼ rmax2

rmax ¼ 1:2day�1

and since the carrying capacity is 120 g/m3 (C ¼ algae concentration),

we have:

dC=dt ¼ 1:2Cð120� C=120Þ
Integration and use of the initial condition C(0)¼ 0.1 yield

C ¼ 120=ð1þ eða�1:2tÞÞ
where

a ¼ lnðð120� 0:1Þ=0:1Þ ¼ 7:09:
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This simple situation in which there is a linear increase in the envi-

ronmental resistance with density, that is, logistic growth is valid, seems

to hold well only for organisms that have a very simple life history.

In populations of higher plants and animals that have more compli-

cated life histories, there is likely to be a delayed response. Wangersky

and Cunningham (1956, 1957) have suggested a modification of the

logistic equation to include two kinds of time lag: (1) the time needed

for an organism to start increasing, when conditions are favorable,

and (2) the time required for organisms to react to unfavorable crowding

by altering birth and death rates. If these time lags are t � t1 and t � t2,

respectively, then we get:

dN=dt ¼ rNt�t1ðK �Nt�t2Þ=K ð5:8Þ
Population density tends to fluctuate as a result of seasonal changes in

environmental factors or due to factors within the populations them-

selves (so-called intrinsic factors). We will not go into details here, but

will just mention that the growth coefficient is often temperature depen-

dent and since temperature shows seasonal fluctuations, it is possible to

explain some seasonal population fluctuations in density in that way.

5.4. Interaction Between Populations

The growth models presented in Section 5.3 might have a constant

influence from other populations reflected in the selection of para-

meters. It is, however, unrealistic to assume that interactions between

populations are constant. A more realistic model must therefore contain

the interacting populations (species) as state variables. For example, in

the case of two competing populations, we can modify the logistic

model and use the following equations, often termed the Lotka-

Volterra equation:

dN1=dt ¼ r1N1ðK1 �N1 � a12N2Þ=K1 ð5:9Þ
dN2=dt ¼ r2N2ðK2 �N2 � a21N1Þ=K2 ð5:10Þ

where a12 and a21 are competition coefficients. K1 and K2 are carrying

capacities for species 1 and 2. N1 and N2 are numbers of species 1

and 2, while r1 and r2 are the corresponding maximum intrinsic rate

of natural increase.
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The steady-state situation is found by setting Eqs. (5.9) and (5.10)

equal to zero. We get:

N1 ¼ K1 � a12:N2

N2 ¼ K2 � a21:N1,
ð5:11Þ

These two linear equations are plotted in Figure 5.3 giving dN/dt iso-

clines for each species. Below the isoclines, populations will increase,

above them, they decrease. So, four cases result, as illustrated in Figure 5.3

and summarized in Table 5.2.

Lotka-Volterra also wrote a simple pair of predation equations:

dN1

dt
¼ r1:N1 � p1N1:N2 ð5:12Þ

dN2

dt
¼ p2:N1:N2 � d2:N2 ð5:13Þ

Table 5.2 Summary of the Four Possible Cases of Lotka-Volterra
Competition Equations

Species 1 Can Contain
Species 2 (K2/a21<Kl)

Species 2 Cannot Contain
Species 2 (K2/a21<Kl)

(K1/a12 <K2) Either species may win (Case 3) Species 2 always wins (Case 2)

(K1/a12 >K2) Species 1 always wins (Case 1) Stable coexistence (Case 4)

Population density N1 Population density N1

Population density N1Population density N1

Case 3: unstable
equilibrium

Case 4: stable equilibrium
and coexistence

Case 2: species 2 wins
Case 1: species 1 wins

A B

C D

1

1

1

1

1

12

2

2

2

2

2
FIGURE 5.3 The four cases

of Lotka-Volterra

competition equations;

see Table 5.2.
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where N1 is prey population density, N2 is predator population density,

r1 is the intrinsic (maximal) rate of increase of the prey population (per

head), d2 is the mortality of the predator (per head), and p1 and p2 are

predation coefficients. Each population is limited by the other and in

absence of the predator, the prey population increases exponentially.

By setting the two right-hand sides equal to zero, we find, respectively,

N2 ¼ r1
p1

ð5:14Þ

N1 ¼ d2

p2
ð5:15Þ

Thus each isocline of the two species corresponds to a particular den-

sity of the other species. Below the threshold prey density, the predator

population will always decrease, whereas above that threshold, it will

increase. Similarly, the prey population will increase below a particular

predator density but decrease above it (Figure 5.4). A joint equilibrium

exists where the two isoclines cross, but prey and predator densities

do not generally converge to this point; instead any given pair of initial

densities results in oscillations of a certain magnitude. The amplitude

of fluctuations depends on the initial conditions. These equations are

unrealistic since most populations encounter either self-regulations,

density-dependent feedbacks, or both. The addition of a simple self-

damping term to the prey equation results either in a rapid approach

to equilibrium or in damped oscillations. Perhaps a more realistic pair

of simple equations for modelling the prey-predator relationship is

N2

N1

r1/p1

d1/p2

A B

C D

FIGURE 5.4 Prey-predator isoclines for Lotka-Volterra prey-predator equation. (A) both species decrease;

(B) predators increase, prey decrease; (C) prey increase, predators decrease; (D) both species increase.
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dN1

dt
¼ r1:N1 � z1:N

2
1 � b12:N1:N2 ð5:16Þ

dN2

dt
¼ g21:N1:N2 � b2:

N2
2

N1
ð5:17Þ

where r1, z1 and so on are coefficients.

The prey equation is a logistic expression combined with the effect of

the predator, while the predator expression considers a carrying capac-

ity dependent on the prey concentration.

The literature of ecological modelling contains many papers focusing

on modified Lotka-Volterra equations, but the equations can also be cri-

ticized for not following the conservation principle. The increase in the

biomass of the predator is less than the decrease in the biomass of the

prey. Kooijman (2000) developed many population dynamic models

based on the energy conservation principles; they give new and

emerging properties of the energy flow in ecosystems. His approach is

recommended when energy is in focus or if a more complex food web

is considered.

However, Eqs. (5.16) and (5.17) can also easily be criticized. The

growth term for the predator is a linear function of the prey concentra-

tion of density. Other possible relations are shown in Figure 5.5.

The first relation (a) corresponds to a Michaelis-Menten expression (see

Section 2.3, equation 2.5), while the second relation (b) only approxi-

mates a Michaelis-Menten expression by using a first-order expression

in one interval and a zero order expression in another. The third relation

(c) shown in Figure 5.5 corresponds to a logistic expression: With increas-

ing prey density the predator density first grows exponentially and after-

ward a damping takes place. This relation is observed in nature and

might be explained as follows: The energy and time used by the predator

to capture a prey is decreasing with increasing density of the prey. This

implies that the predator can capture more prey due to increasing den-

sity, and less of the energy consumed is used to capture the next prey.

Thus, the density of the predator increases more than proportionally

to the prey density in this phase. Yet, there is a limit to the food (energy)

that the predator can consume and at a certain density of the prey, a

further decrease in the energy used to capture the prey cannot be

obtained. So the increase in predator density slows down as it reaches

a saturation point at a certain prey density.
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The fourth relationship (d) is similar to the relation between growth

and pH or temperature. It is characteristic here that the predator density

decreases above a certain prey density. This response might be

explained by the effect of the waste produced by the prey on the preda-

tor. At a certain prey density the concentration of waste is sufficiently

high to have a pronounced negative effect on predator growth.

Holling (1959, 1966) developed more elaborate models of prey-

predator relationships. He incorporated time lags and hunger levels to

attempt to describe the situation in nature. These models are more real-

istic, but they are also more complex and require knowledge of more

parameters. Besides these complications, we have coevolution of preda-

tors and prey. The prey will develop better and better techniques to

escape the predator and the predator will develop better and better

techniques to capture the prey. To account for the convolution, it is nec-

essary to have a current change of the parameters according to the

selection taking place. The effect of parasitism is similar to that of pre-

dation, but is different because members of the host species affected are

seldom killed, but may live for some time after becoming parasitized.

y

A B

C D

y y

y

x

x x

x

FIGURE 5.5 Four functional

responses (Holling, 1959) where

y is number of prey taken per

predator per day and x is the

prey density.
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This is accounted for by relating the growth and the mortality of the

prey, N1, to the density of the parasites, N2. Furthermore, the carrying

capacity for the parasites is dependent on the prey density.

The following equations account for these relations and include a

carrying capacity of the prey:

dN1

dt
¼ r1

N2
N1

K1 �N1

K1

� �
ð5:18Þ

dN2

dt
¼ r2:N2

K2:N1 �N2

K2:N1

� �
ð5:19Þ

Symbiotic relationships are modelled with expressions similar to the

Lotka-Volterra competition equations simply by changing the signs for

the interaction terms:

dN1

dt
¼ r1:N1

K1 �N1 þ a12N2

K1

� �
ð5:20Þ

dN2

dt
¼ r2:N2

K2 �N2 þ a21N1

K2

� �
ð5:21Þ

Another criticism of the Lotka-Volterra prey-predator model is that it

isolates two entities out of their larger contextual web of interactions. In

reality, a complex food web both provides and constrains the behavior

of species comprising it. The control is much more distributed and

decentralized than is evident from the Lotka-Volterra model, which

packs all causation into lumped parameters of natality, mortality, and

interference.

In nature, interactions among populations often become intricate.

The expressions (5.20) and (5.21) might be of great help in understand-

ing population reactions in nature, but when it comes to the problem of

modelling entire ecosystems, they are in most cases insufficient. Inves-

tigations of stability criteria for Lotka-Volterra equations are an interest-

ing mathematical exercise, but can hardly be used to understand the

stability properties of real ecosystems or even of populations in nature.

The experience from investigations of population stability in nature

shows that it is necessary to account for many interactions with the

environment to explain observations in real systems (e.g., J�rgensen &

Fath, 2007).

The stability concept was widely discussed during the 1970s, but

today almost all ecologists agree that the stability of an ecosystem is a

very complex problem that cannot be solved by simple methods and
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at least not by examinations of the stability of two coupled differential

equations. It is also acknowledged that there is no simple relationship

between stability and diversity (May, 1974, 1975, 1977). Stability must

be considered a multidimensional concept because the stability is

dependent on the particular changes we are concerned with. Some

changes the ecosystem might easily adsorb, some other changes can

cause drastic reorganization in the ecosystem by minor changes in the

forcing function. The buffer capacity introduced in Section 2.6 (see

Figure 2.12) may be a relevant concept to use, because it is multidimen-

sional. There is a buffer capacity for each combination of state variable

and forcing function.

Illustration 5.2

This illustration concerns an anaerobic cultivation of two species of

yeast first described by Gause (1934). The two species are Saccharomy-

ces cerevisiae (Sc) and Schizosaccharomyces pombe (Kephir; K). Gause

cultivated both species in mono-cultures and in mixture, and the results

suggest that the two species have a mutual effect upon each other. His

hypothesis was that a production of harmful waste products (alcohols)

was the only cause of interactions.

A conceptual diagram for this model is shown Figure 5.6. The model

has three state variables: the two yeast species and the waste products.

The amount of waste products depends on the growth of yeast. The

growth of the yeast species depends on the amount of yeast and the

growth rate of the yeast, which is again dependent on the species and

a reduction factor. This accounts for the influence of the waste products

on the growth. The observed and computed values for growth of the two

yeast species are shown in Table 5.3. The fit between observed and

Sc K

Waste

Growth Growth

FIGURE 5.6 Conceptual diagram of the model presented in Illustration 5.2. Waste is alcohol that affects

the growth of two yeast species Sc and K.
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calculated values is acceptable for the mono-culture experiments, but

it is completely unacceptable for the mixed culture experiments. It

can be concluded that the two species do not interfere solely through

the production of alcohol. Additional biological knowledge about the

interference between the two species must be introduced to the model

to explain the observations.

Illustration 5.3

This illustration is a summary of an example presented by Starfield and

Bleloch (1986) in their book on population dynamics titled Building

Table 5.3 Observed and Calculated Values for the Growth of Two Species of
Yeasts in Mono-Cultures and Mixtures

Schizosaccharomyces “Kephir”

Volume of Yeast (arbitrary units)

Mono-culture Mixed
Hours Observed Calculated Observed Calculated

0 0.45 0.45 0.45 0.45

6 — 0.60 0.291 0.59

16 1.00 0.95 0.98 0.81

24 — 1.34 1.47 0.88

29 170 1.64 1.46 0.89

48 2.73 3.04 1.71 0.89

53 — 3.44 1.84 0.89

72 4.87 4.72 — —

93 5.67 5.51 — —

117 5.80 5.86 — —

141 5.83 5.96 — —

Saccharomyces cerevisiae

Hours Observed Calculated Observed Calculated

0 0.45 0.45 0.45 0.45

6 0.37 1.72 0.375 1.70

16 8.87 8.18 3.99 7.56

24 10.66 11.83 4.69 10.86

29 12.50 12.46 6.15 11.47

40 13.27 12.73 — 11.75

48 12.87 12.74 7.27 11.77

53 12.70 12.74 8.30 11.77
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Models for Conservation and Wildlife Management. The example illus-

trates a very common and generally applicable approach to use popula-

tion dynamic models in wildlife management. This illustration also

demonstrates how an analysis of the focal problem can be used to con-

struct a model. The equations are all based on semiquantitative to

quantitative known relationships between determining factors on the

one side and the influence on the state variables on the other. It is a

clear illustration of how “down to earth” considerations might be used

to construct models. As many interacting species are involved, the

model is rather complex by including many different relationships

between the different state variables of the model. The illustration is

concerned with a spectrum of herbivores, while no significant predators

are present. The principal grazers are warthog, wildebeest, zebra, and

the white rhinoceros. The principal browsers are giraffe, kudu, and the

black rhinoceros. Impala and nyala are the two most important mixed

feeders.

Herbivory

Herbivore population
dynamics and competition

Rainfall

Vegetation growth and
vegetation competition

FIGURE 5.7 Conceptualization of the problem in Illustration 5.3. The influence of rainfall on the

vegetation, the competition among the different forms of vegetation, the food availability for the

herbivorous state variables, and the competition among the herbivores should all be considered in

the model.
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The problem is illustrated in Figure 5.7. It implies that the model

should consider the interactions between rainfall and vegetation,

between vegetation and herbivores, and the competition among the

herbivores for food.

The first question to consider is How many classes of species do we

need? Clearly the giraffe should be a class of its own, as only this animal

can browse on tall trees. The black rhinoceros and the kudu browse on

shrubs and short trees. Both the white rhinoceros and zebra are grazers

that can use relatively tall, coarse grass, while wildebeest and warthog

are grazers that require short grass. Finally, impala and nyala are mixed

feeders, utilizing short grass, shrubs, and short trees. By this short anal-

ysis we have suggested how to reduce the number of state variables of

herbivores from nine to five. Converting one variable to another is made

by using the concept of equivalent animal units (EAU), defined as the

daily food intake of a domestic cow. The black rhinoceros is about

2 EAU, while a kudu is only about 0.4. When we lump the two animals

in one group, each black rhinoceros is equivalent to 5 kudu. The same

considerations are made for the other species.

The next problem concerns the food preferences. Here Starfield and

Bleloch (1986) have suggested setting up the preferences in table form

(see Table 5.4). This implies that we have to increase the number of her-

bivore types from five to six, as shown in the table. For example, Impala

will first choose palatable grass, then palatable shrubs, and as last resort,

less palatable grass. Kudu, on the other hand, have only two preferences:

fist palatable shrubs, then unpalatable shrubs. The effect of switching to a

Table 5.4 Food Preferences of the Herbivores

Species Preference 1 Preference 2 Preference 3

Giraffe Palatable tall trees Palatable shrubs Unpalatable trees

Impala Grass, palatability > 0.8 Palatable shrubs Less palatable grass

Kudu Palatable shrubs Unpalatable shrubs

Warthog Grass, palatability > 0.8 Less palatable grass

Wildebeest Grass, palatability > 0.8 Less palatable grass

Zebra Grass, palatability > 0.6 Less palatable grass
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second or third preference is accounted for by a condition index with an

arbitrarily chosen scale from 1 to 6. A value of 1 corresponds to the peak

condition, while a 6 means extremely poor condition. It is important

whether an animal class has an inadequate diet for just one month or

for a number of consecutive months. The scale is therefore used to con-

sider the cumulative effect and it is used stepwise. The condition index

influences the mortality, particularly the juvenile mortality, which will

increase sharply as the condition index approaches 6.

For each of the five classes, we consider two subclasses: adults and

juveniles. We estimate, for example, that an adult kudu requires B kg

and a juvenile b kg of food per month, which is selected as the time step

of the model. If there are K adult kudu and k juveniles, then the kudu

population in that park will potentially eat KB þ kb kg of leaves in the

next month. The model calculates a demand for food, first assuming

that every species eats only its first preference. If there is sufficient for

all, then the food is shared accordingly, but if there is a shortage, the

model allocates a share of each animal’s second preference, which

determines a possible change of the condition index.

Except for zebra, all births take place during the first months of the

summer. It is assumed that zebra produce their young throughout the

year. The annual birthrate varies from 0.2 for giraffe to 0.95 for warthog.

Six types of vegetation are considered in the model: A grass, B

shrubs þ small trees, and C tall trees; each with a palatable and unpal-

atable subclass. The growth in leaf biomass for the two subclasses of

B and C are modelled by using the following equation:

dl=dt ¼ r � f � S � ½1� L=ðq � SÞ� � b ð5:22Þ
where L denotes the leaf biomass, r a growth parameter, f is a rainfall

correction factor, S the woody component, q the maximum leaf mass

that one unit of wood mass normally can support, and b is calculated

from the herbivore module as the food requirement. Equation (5.22) is

based on the following assumptions:

1. New leaf growth depends on how many bushes/trees, S, there are.

2. Rainfall will influence production.

3. Herbivores will consume some biomass each month.

4. There is an inhibitory effect of existing leaf biomass, which is

considered in the expression [1 � L/(q*S)].
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The application of Eq. (5.22) implies that we have to model the wood

mass, S. This is made by using:

dS=dt ¼ rs � fs � S � ½1� ðSSÞ=Tmax � C� ð5:23Þ
where rs is the growth parameter for woody biomass, fs is the rainfall

correction factor for the woody biomass of shrubs and trees, S is the

present total wood mass, Tmax is the saturation level for woody biomass,

and C is the competition from grass. C is found from:

C ¼ expð�½p � c � A � hþ SI�Þ=U ð5:24Þ
where p is a competition factor (must be calibrated), c is converting

grass volume to biomass, A is the grass area, h the height of the grass,

SI is the total leaf biomass, and U is the saturation level for green

production.

A and h are state variables, too. Equations for the grass area (m2), A,

and for the grass height (m), h, are included in the model:

dA=dt ¼ ra � fg � A � C ð5:25Þ
dh=dt ¼ rh � fg � h½1� h=hmax� � G=ðc � AÞ ð5:26Þ

where ra and rh are the growth parameters for A and h, fg is the rainfall

correction factor for grass area and grass height, hmax is the saturation

height for grass, and G is the grass biomass consumed by herbivores

(kg/month). All of these variables are obtained from the herbivore mod-

ule. Empirical tables are available for f. For instance, fg is dependent on

the rainfall, whether it is low, medium, and high, and it is dependent

on the season.

Figures 5.8 and 5.9 show some of the simulations carried out by the

model. The number of kudu versus the number of years is plotted in

Figure 5.8, while Figure 5.9 gives the palatable browse on shrubs in

the same period. The condition index will roughly be opposite this

curve. When the palatable browse is high, the condition index is low

and vice versa.

Rain is — not surprisingly — of very great importance for the herbiv-

orous populations, as is seen in Figure 5.7, where the indirect effect

from rain on herbivores is obvious. This effect is seen by the violent

fluctuations in palatable browse on shrubs, which can be explained by

fluctuations in rainfall.
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5.5. Matrix Models

Another important aspect of modelling population dynamics is the

influence of the age distribution, which shows the proportion of the

population belonging to each age class. If a population has unchanged
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FIGURE 5.8 The kudu population is plotted versus the number of years. A corresponds to cropping of

the impala, whenever their population exceeds 6000. B corresponds to no cropping of impala under

otherwise similar conditions.
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FIGURE 5.9 The amount of palatable browse on shrubs and short trees is plotted versus the time.

A corresponds to cropping of the impala, whenever their population exceeds 6000. B corresponds

to no cropping of impala under otherwise similar conditions.
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lx and mx schedules, then it will eventually reach a stable age distribu-

tion. This means that the percentage of organisms in each age class

remains the same. Recruitment into every age class is exactly balanced

by its loss due to mortality and aging.

The growth equations (5.6) and (5.8) assume that the population has a

stable age distribution. The intrinsic rate of increase, r, the generation

time, T, and the reproductive value, vx, is conceptually independent of

the age distribution, but might be different for populations of the same

species with different age distributions. Therefore, the models presented

in Sections 5.2 and 5.3 did not need to consider age distribution, although

the parameters in actual cases reflect the actual age distribution.

A model predicting the future age distribution was developed by

Lewis (1942), Leslie (1945), and Levine (1980). The population is divided

into n þ 1 equal age groups — group 0, 1, 2, 3, . . ., n. The model is then

presented by the following matrix equation:

f0 f1 f2 . . . fn�1 fn nt, 0 ntþ1, 0
p0 0 0 . . . 0 0 nt, 1 ntþ1, 1
0 p1 . . . . . . 0 0 nt, 2 ntþ1, 2
. . . . . . . . . . . . . . . . . . : :
. . . . . . . . . . . . . . . . . . : :
0 0 0 . . . pn�1 0 nt, n ntþ1, n

ð5:27Þ

The number of organisms in the various age classes at time t þ 1 is

obtained by multiplying the numbers of animals in these age classes

at time t by a matrix, which expresses the fecundity and survival rates

for each age class. t,o, f1, f2 . . . fn give the reproduction in the ith age

group and P0, P1, P2, P3, P4 . . . Pn represent the probability that an

organism in the ith age group will still be alive after promotion to the

(i þ 1)th group.

The model can be written in the following form:

A � at ¼ atþ1 ð5:28Þ
where A is the matrix, at is the column vector representing the popula-

tion age structure at time t, and atþ1 is a column vector representing the

age structure at time t þ 1. This equation can be extended to predict the

age distribution after k periods of time:

atþk ¼ Ak � at ð5:29Þ
Matrix A has n possible eigenvalues and eigenvectors. Both the larg-

est eigenvalues, l, and the corresponding eigenvectors are ecologically

meaningful. l gives the rate at which the population size is increased:
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A � v ¼ l � v ð5:30Þ
where v is the stable age structure. In l is the intrinsic rate of natural

increase. The corresponding eigenvector indicates the stable structure

of the population.

Illustration 5.4

Usher (1972) gave a very illustrative example on the use of matrix models.

This model is based upon data for the blue whale before its sharp

changes in survival rates.

The eigenvalue can be used to find the number of individuals that

can be removed from a population to maintain the same number in

each age class. It can be shown that the following equation is valid:

H ¼ 100ðl� 1Þ=l
where H is the percentage of the population that can be removed.

The blue whales reach maturity at between four and seven years of

age. They have a gestation period of about one year. A single calf is born

and is nursed for about seven months. On average, not more than one

calf is born to a female every two years. The male-to-female sex ratio

is approximately equal. Survival rates are about 0.7 each 2 years for

the first 10 years and 0.78 for whales above 12 years. We divide the pop-

ulation into 7 groups with a 2-year period for the first 6 groups and the

age of 12 years and above as the seventh group. The fecundity for the

first two groups is according to the information about zero. The third

group has a fecundity of 0.19, and the fourth group, 0.44. The maximum

fecundity of 0.50 is reached between ages of 8 and 11 years. The fecun-

dity of the last group is 0.45.

Find the intrinsic rate of natural increase, the stable structure of the

whale population, and the harvest, which can be taken to maintain a

stable population size.

Solution

The eigenvalue can be found either by an iterative method or by plot-

ting the number of whales (totally or for each age class separately) ver-

sus the period of time. The slope of this plot will, after a stabilization

period, correspond to r, the intrinsic rate of increase, or ins. We find that

r ¼ 0.0036 1/year or l or l ¼ antilog 0.0036 ¼ 1.0036 (for one year) or
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1.00362 ¼ 1.0072 for two years. Using Eq. (5.30), the corresponding

eigenvector is found to be a ¼ [1000, 764, 584, 447, 341, 261, 885] as

the Leslie matrix is

000:190:440:500:500:45

0:77000000

00:7700000

000:770000

00000:7700

000000:770

000000:770:78

The harvest that can be taken from the population is estimated to be

H ¼ 100ðl� 1Þ=l ¼ 0:71%

every two years or about 0.355% every year.

If the harvest exceeds this value, then the population will decline. Pop-

ulation models of r-strategies generally cause some difficulties when

developing models of K-strategies due to the high sensitivity of the fecun-

dity. The number of offspringmight be well known, but the number of sur-

vivors to be included in the first age class and the number of recruits is

difficult to predict. This is the central problem of fish population dynam-

ics, since it represents nature’s regulation of population size (Beyer, 1981).

5.6. Fishery Models

Figure 5.10 shows the growth rate dN/dt versus the biomass or the

number for the logistic growth equation. It is a parabolic shape in accor-

dance with the s-shape of the logistic growth equation. The slope has

maximum at an intermediate value of N, but is zero for N ¼ 0 and for

N ¼ K.

It is also possible to include harvest, H, which is of interest in fishery

and forest models. The following expression is used:

dN=dt ¼ rNð1�N=KÞ �H

The harvest H is proportional to N and to the fish effort E:

dN=dt ¼ rNð1�N=KÞ � fEN ð5:31Þ
where f is a proportional constant.
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This expression has two equilibriums corresponding to dN/dt¼ 0 N1 ¼
0 and N2 ¼ K (1 � fE/r).

N2 can be found graphically as shown in Figure 5.11.

If the specific fishing mortality fE is >r, then there is no equilibrium

value N2, only the equilibrium value N1 ¼ 0. For a sustainable harvest

N

dN
/d

t

FIGURE 5.10 dN/dt is plotted versus N for the logistic growth equation.

dN
/d

t

Stable equilibrium
N2 = K(1-fE/r)

fEN

N

FIGURE 5.11 The growth rate of the logistic growth as function of N and the fishing mortality as

function of N are both plotted. A stable equilibrium is obtained where the two functions are equal.

A sustainable fishery will therefore require that the fishing mortality is equal or less than the

increase of N due to the logistic growth.
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fE/r < 1.0. The sustainable yield ¼ fEN2 can be found as function of the

fishing effort by using the previously shown expression for N2:

Yield ¼ fEN2 ¼ fEKð1� fE=rÞ ð5:32Þ
This graph yield 0 f(E) is shown in Figure 5.12. The optimal effort is

found by:

dYield=dE ¼ fK � 2f2EK=r ¼ 0, ð5:33Þ
which leads to:

E ¼ r=ð2fÞ and the maximum yield ¼ rK=4: ð5:34Þ
In populations of higher plants and animals with more complicated

life histories, there is likely to be a delayed response. Wangersky and Cun-

ningham (1957) suggested a modification of the logistic equation to

include two kinds of time lag: (1) the time needed for an organism to start

increasing under favorable conditions, and (2) the time required for

organisms to react to unfavorable crowding by altering birth and death

rates. If these time lags are t � t1 and t � t2 respectively, then we get:

dN

dt
¼ rNt�t1 1�Nt�t2

K

� �
ð5:35Þ

Yield

Maximum yield
Kr/4

Optimal effort
r/2f

Effort (E)

FIGURE 5.12 Yield is plotted versus fishing effort E. The optimum yield ¼ Kr/4 is obtained by E ¼ r/2f.

A sustainable fishery will therefore require that E < r/2f.
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Population density tends to fluctuate as a result of seasonal changes

in environmental factors or due to factors within the actual populations

(so-called intrinsic factors). We will not go into details here, but will just

mention that the growth coefficient is often temperature dependent and

since temperature shows seasonal fluctuations, it is possible to explain

at least some seasonal population fluctuations in density as tempera-

ture changes.

The simple fishery model presented earlier focuses on one species

only, and it is insufficient for setting up an optimal fishery strategy. It

is necessary to include several species, because all species interact

and influence each other. A fishery policy based on one species will

inevitably fail. Consequently, the European fishery policy for the North

Sea is based on a multi-species fishery model used to assess the optimal

fishery strategy. The fishery is, however, not optimal because the politi-

cians are not following the recommendations given by the model.

5.7. Metapopulation Models

A regional set of local populations that occupy isolated habitat patches

but are interconnected by dispersal movements are denoted metapopu-

lations (see an example in Figure 5.13). All of the local populations have

a finite possibility of becoming extinct. Even if the local population

is fairly large, extinction may still occur through catastrophic events.

1 2

3

4

5

6

FIGURE 5.13 Conceptual model of metapopulation interactions. The populations occupy isolated patch

habitats (1-6) that are connected by dispersal corridors.
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The dispersal movements are essential to reestablish populations that

have faded or crashed. Species that are widely distributed in many local

populations have reduced likelihood to be extinct regionally.

Landscape fragmentation has increased due to human expansion.

Populations that were formerly continuously distributed have become

broken into separate localized groupings. Dispersal may even be inhib-

ited by hazards in traversing the human-transformed areas separating

suitable habitats. Metapopulation models assess the risks of species

extinctions as a consequence of such fragmentations and identify how

actions such as providing dispersal corridors can reduce the risks.

The metapopulation concept was formulated by Levins (1969) and

further modified by Hanski (1994, 1999). P is the proportion of sites

occupied by populations, E is the extinction rate of these populations,

and C is the colonization rate of vacant sites by migrants from occupied

patches. The change over time in the proportion of patches, dP/dt,

occupied is a matter of balance between colonization and extinction:

dN=dt ¼ CPð1� PÞ � EP ð5:36Þ
The equilibrium proportion Peq is given by

Peq ¼ 1� E=C ð5:37Þ
As seen from Eq. (5.36) the patch occupancy will become zero if the

extinction rate exceeds the colonization rate.

Figure 5.14 shows a STELLA diagram for a metapopulation model

based on Eq. (5.36) plus the introduction of temporal disturbances.

Disturbances
P

EC

P in %
Cvalue Evalue

Graph 1 Table 1

FIGURE 5.14 A STELLA diagram of

a metapopulation model with

disturbances (removal of patches).
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The model can be applied to give the consequences of disturbances

such as road construction that interrupts connections among popula-

tion sites. The populations in the threatened population sites may

become extinct due to unbalanced natality and mortality that require

immigration to be in balance. A simple simulation of the threatened

populations will be able to assess the E-value as a consequence of the

disturbances.

5.8. Infection Models

Population models of disease dynamics have the proportion of the host

population that is infected as the focal state variable. A simple infection

model is shown in Figure 5.15. Susceptible hosts, S, become infected at

rate b. After a period of time, the infected hosts either recover, maybe

with long-lasting immunity, or die. The number of infected hosts is

reduced at a rate corresponding to m þ r, where m is the mortality rate

and r is the recovery rate. The disease spreads as a result of contact

between infected and susceptible hosts. The following equation can be

used to express the number of infected hosts, I:

dI=dt ¼ bSI� vI ð5:38Þ

Imm eliminated
IM

Recovered

Mortality

r

e

m

IS

Increase

b

Climate

Graph 1 Table 1

Infection

FIGURE 5.15 A conceptual

STELLA diagram for an

infection model is shown.

The model has three state

variables: the number of

susceptible hosts, the

number of infected hosts,

and the number of

immune hosts. The

infection rate is b, the

mortality rate is m, the

recovery rate is r, and the

rate of immunity

elimination is e. IM is ....,

and Imm is ....
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The duration of recovery, D, is the inverse of the rate of recovery from

the infection:

D ¼ bN=v ð5:39Þ
where N is the susceptible hosts, which initially may be equal to the

total population, denoted N.

Notice that Eq. (5.38) implies that the infection will spread very fast

because it is at a rate that is S � I. Figure 5.15 shows a conceptual dia-

gram of an infection model with three state variables: susceptible hosts,

infected hosts, and immune hosts. The spreading of the infection follows

Eq. (5.38). The infected hosts either die at a rate m or recover at a rate r.

The immunity is eliminated at a rate e, which implies that immune hosts

are transferred to the susceptible hosts at a rate e. The state variables are

S, I, and IM. It is sometimes necessary to distinguish between recovered

hosts that still can transmit the infection and completely immune hosts.

In this case, a fourth state variable is introduced to represent the recov-

ered hosts that can still transmit the infection.

The influence of the climate is included in the model. The auxiliary

variable “climate” (see Figure 5.15) follows a sine-like curve with

higher values during the winter time (maximum in February with an

approximate value of 2.0) and lower during the summer time, with

an approximate value of 0.3. Both b and the recovery rate are influ-

enced by the climate. B is dependent on a number of factors. Vaccina-

tion or isolation of infected individuals will decrease b. For some

diseases, the transmission is dependent on the proportion of suscepti-

ble individuals within the population rather than on their absolute

number. This is the case for sexually transmitted diseases, where

spread is frequency dependent.

The equations of the model are shown in Table 5.5. The result of a

simulation with the duration of 1000 days is shown in Figure 5.16. As

expected, the number of infected hosts increased very rapidly, although

b is only 0.000001. The number of susceptible hosts is 1,000,000 at

time ¼ 0, and the number of infected hosts has as an initial value 1.0.

These numbers could be realistic for an influenza epidemic. Notice that

the number of infected hosts after the peak has been reached is decreas-

ing, but with fluctuations according to the auxiliary variable climate.

The fluctuations of the number of immune hosts and infected hosts

are opposite with maximum for infected hosts when the number of

immune hosts are in minimum.
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Problems

1. Set up a STELLA model representing Lotka-Volterra equations. How

is it possible to consider the conservation principles, which is a

prerequisite for the application of STELLA?

2. Express the model in Illustration 5.1 by STELLA.

3. Make a conceptual diagramof a four speciesmodel based on Eq. (5.10).

Table 5.5 Equations Using STELLA for the Model Shown in Figure 5.15

I(t) ¼ I(t - dt) þ (infection - mortality - recovered) * dt

INIT I ¼ 1
INFLOWS:
infection ¼ b*S*I
OUTFLOWS:
mortality ¼ m*I
recovered ¼ I*r*climate
IM(t) ¼ IM(t - dt) þ (recovered - imm_eliminated) * dt
INIT IM ¼ 0
INFLOWS:
recovered ¼ I*r*climate
OUTFLOWS:
imm_eliminated ¼ IM*e
S(t)¼S(t-dt)þ(imm_eliminatedþincrease-infection)*dt
INIT S ¼ 1000000
INFLOWS:
imm_eliminated ¼ IM*e
increase ¼ 200
OUTFLOWS:
infection ¼ b*S*I
b ¼ 0.000001*climate
e ¼ 0.025
m ¼ 0.002
r ¼ 0.05
climate ¼ GRAPH(TIME)
(0.00, 1.40), (20.4, 1.91), (40.8, 2.00), (61.2, 1.80),
(81.6, 1.35), (102, 0.85), (122, 0.61), (143, 0.4), (163,
0.32), (184, 0.29), (204, 0.36), (224, 0.43), (245, 0.81),
(265, 1.08), (286, 1.26), (306, 1.46), (327, 1.60), (347,
1.75), (367, 1.86), (388, 1.96), (408, 2.00), (429, 1.87),
(449, 1.53), (469, 0.86), (490, 0.62), (510, 0.44), (531,
0.35), (551, 0.3), (571, 0.34), (592, 0.5), (612, 0.73),
(633, 0.97), (653, 1.39), (673, 1.75), (694, 1.94), (714,
2.00), (735, 1.97), (755, 1.86), (776, 1.68), (796, 1.43),
(816, 1.18), (837, 0.9), (857, 0.6), (878, 0.42), (898,
0.3), (918, 0.35), (939, 0.55), (959, 1.01), (980, 1.28),
(1000, 1.45)
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4. Mention at least 3 reasons for the unrealistic nature of the Lotka-

Volterra model.

5. A fish culture has a carrying capacity of 50 g/L. Set up a logistic

growth equation for the fish culture when the initial concentration

at day 0 is 1 g/L and after 10 days the concentration 2 g/L is

obtained. How long does it take to increase the concentration from

24 g/L to 48 g/L? Find an equation that expresses the doubling time

as a function of the time.

6. Explain under which conditions the four functional responses may

occur.

7. Set up a matrix model for a bird population that has the following

characteristics:

a. Life span 7 years

b. 4 eggs from the second year per pair, increasing to 5 eggs the

third year, and 6 eggs the following years

c. The mortality is 30% the first year, 20% the following years,

except the last year where it is 100%. What is the steady-state age

distribution?

8. Give an overview of factors that may be able to limit the carrying

capacity of a population.

9. Make a conceptual diagram of a four-species model based on

population interactions representing prey-predator-top predators

and two competing top predators.

10. The following equation is valid for a fish population: dN/dt ¼ 0.025*

number of fish* (1� fish/1.5*107). The fishing effort, E, is 0.22 and f¼
0.66. By using dN/dt find the stable equilibrium. What is the

maximum yield? What is the optimal effort?

FIGURE 5.16 The simulation

results of the model shown in

Figure 5.15. The equation is

applied in Table 5.5. Notice

the rapid increase due to the

equation dI/dt ¼ bIS. The peak

of infection is after ten days.

The fluctuations of all three

state variables, particularly for

I and IM, are due to the

auxiliary variable “climate.”
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6.1. Introduction

Steady-state models presume a condition in which the values of themodel

state variables do not change over time. A steady-state model corresponds

to a dynamic model where all the derivates dx/dt, dy/dt, and so forth are

equal to zero. Observations, giving the time variations of the ecological

components, are therefore not needed. Instead, average values are suffi-

cient. Average values (e.g., annual average values) often correspond to

steady-state values because they are only changed on a longer time basis.

The model is only able to give information about average values of the

modelled components or about specific steady-state conditions.

This chapter presents three different approaches to develop steady-

state models:

1. Chemostat models, which are often used for aquatic ecosystems with

a moderate to long retention time such as ponds, lakes, estuaries,

lagoons, and the open sea

2. Using downloadable software Ecopath, which has been widely used

to develop steady-state models of aquatic ecosystems

3. Using steady-state models to analyze ecological networks

These three approaches illustrate the advantages and disadvantages of

steady-state models and how they can be used to obtain a good picture

of the interactions among ecological components in an ecosystem.

Fundamentals of Ecological Modelling. DOI: 10.1016/B978-0-444-53567-2.00006-5
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6.2. A Chemostat Model to Illustrate a Steady-
State Biogeochemical Model

A chemostat model is a mixed flow reactor, which implies that the

concentrations of all the components are the same in the entire reactor.

Physical, chemical, and biological processes take place in the reactor, but

the reactor is sufficiently well mixed to maintain the same concentration

throughout the entire reactor so there are no gradients. A well-mixed

aquatic ecosystem can be considered a mixed flow reactor or a chemostat

(Figure 6.1). The concentrations of the various components can be found

as a function of time using a developed system of equations. It is easy to

find the steady-state concentrations that adequately describe the condi-

tions in the aquatic ecosystem.

Let us consider one component in a chemostat with the concentra-

tion, C. The following differential equation is valid:

�dC=dt ¼ ðinput� output� decomposition� settling� evaporationÞ=V ð6:1Þ
where V is the volume (m3). The processes can be expressed by alge-

braic equations, which change the differential equation to:

�dC=dt ¼ ðI�Q � CÞ=V � k � C� sr � C� A � v � C=VÞ mg=ðm3=24hÞ ð6:2Þ
where I is the input in mg/24h, Q is the flow rate (m3/24h), k is the first-

order decomposition rate coefficient for the component, sr is the

settling rate (1/24h), A is the surface area (m2), and v is the evaporation

Input = Q*Cin

Q*C

Mixed flow reactor

or chemostat

Concentration, C = f(time) = Input 
– output

Output =
FIGURE 6.1 The principle

for a mixed flow reactor

or chemostat is shown.
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rate (m/24h) of the component. At steady state, the following equation

is valid:
�Steady state : dC=dt ¼ 0, which implies that

�I ¼ ðQ � Cþ V � k � Cþ V � sr � Cþ A � v � CÞ ð6:3Þ
If I, Q, V, A, k, sr, and v are known, C can be expressed as function of

time and the steady-state value can be found:

C ¼ ðI�Q � CÞ=V � k � C� sr � Cþ A � v � C=VÞ ð6:4Þ
The solution of Eq. (6.2) or (6.3) will give C as a function of time. The

steady state is, in principle, never reached, but C approaches asymptot-

ically the steady-state value. A typical and possible plot of C¼ f(time) is

shown in Figure 6.2.

It is possible to follow the concentration of a toxic substance in an

organism as a function of time by a similar simple model, which will

yield a similar result: The toxic substance concentration as f(time) is

approaching the steady state asymtotically as shown in Figure 6.2. The

applied equations are:
dtx=dt ¼ ðdailyÞintake� kTx ð6:5Þ

At steady state:
dTx=dt ¼ 0

kTx ¼ input or Tx ¼ input=k ð6:6Þ
Concentration ¼ Tx=biomass

where Tx is the total amount of toxic substance in the organism, k is the

excretion coefficient (units 1/24h), which is very dependent on the toxic

Time

C
on

ce
nt

ra
tio

n

Steady-state concentration

FIGURE 6.2 C as function of

time. C is approaching

asymptotically the steady-

state concentration.
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compounds and the organism. The daily intake may consist of uptake

from the medium (air or water) and uptake from the food.

Illustration 6.1

A pesticide, Pz, is discharged to a lake that can be considered a mixed

flow reactor. 400 m3 of wastewater with a Pz concentration of 4 mg/L

is discharged to the lake per 24 hours. The natural inflowing stream

has a rate of 1000 m3/24h. The pesticide has a biological half-life of

40 days. The settling and evaporation are negligible. The volume of

the lake is 200,000 m3. What is the steady state concentration of Pz?

Solution

The specific decomposition rate k can be found from the first-order dif-

ferential equation for the decomposition:

dPz/dt ¼ k* Pz, which means since the half-life is 40 days:

ln 2 ¼ 0.693 ¼ k*40 or k ¼ 0.0173 (1/24h)

The differential equation: dPz/dt ¼ (input � output �
decomposition)/V, which implies that:

dPz/dt ¼ (400*4 � Pz*1400)/200,000 � 0.0173*Pz ¼ (at steady state)

or

0.008 � 0.007*Pz � 0.0173Pz ¼ 0; or Pz ¼ 0.329 mg/m3

6.3. Ecopath Models

Ecopathwas designed tohelp theuser construct trophicnetworkmodels of

aquatic ecosystems. Ecopath is downloadable, public domain software (see

www.ecopath.org). Several hundred Ecopathmodels have beendeveloped,

and it has been extensively applied for marine ecosystems and fishery

models; see andChristensen andPauly (1992, 1993).ManyEcopathmodels

have been published in the journal EcologicalModelling. This software also

provides useful procedures for parameter estimation and for balancing the

system of equations formass and energy conservation. The latest versions,

which have been accessible for more than a decade, have introduced

accumulation and depletion of biomass by any organisms during the con-

sidered time period. This addition allows us to refrain from the restrictive

steady-state conditions.
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The required input data can be different types depending on the avail-

able data set. The software accepts as input biomass values (standing

stock at presence or means of the period considered) and flow values.

The latter should be given together with metabolic parameters (food

uptake, respiration, excretion rate, etc.). The eventually unknown para-

meters are automatically determined by means of energy balance equa-

tions. An estimation of the diet composition of the various organisms is

always asked for as input. The necessary input ratios of fundamental

metabolic parameters are:

• Production/biomass ratio (P/B)
• Consumption/biomass ratio (Q/B)
• Gross efficiency, GE ¼ production/consumption ¼ (P/B)*(Q/B)
• Unassimilated part of the food

It is sufficient to know two out of the three ratios (P/B), (Q/B), and GE.

Figure 6.3 shows an example of an Ecopath model. As seen from the

figure, the model provides the quantitative information about the trophic

network, including flows between compartments and storages within the

compartments. Note that all inflows are balanced by outflows so that the

model is at steady state.

6.4. Ecological Network Analysis

Ecological network analysis (ENA) is a methodology used to study

objects as part of a larger system. It starts with the assumption that a

system can be represented as a network of nodes (compartments,

components, etc.) and the connections between them (flows of energy

or matter). Network analysis, by design, provides a systems-oriented

perspective because it is based on uncovering patterns and influence

among all the objects in a system. Therefore, it illustrates how system

components are tied to a larger web of interactions. Ecological net-

work analysis is included in this chapter because the current meth-

odologies are developed for models in which input and output are

balanced for each compartment, but the approach is not conceptually

limited to steady-state models as time-varying methodologies are

being considered and developed (Hippe, 1983; Shevtsov et al., 2009).
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Ecological network analysis is based on economic input-output analy-

sis (Leontief, 1951) and was first introduced into ecology by Hannon

(1973). His models were linked by the energy flow through the food

web to determine interdependence of organisms in an ecosystem based

on their direct and indirect energy flows. In ecological systems, the con-

nections are often based on the flow of conservative units such as energy,

matter, or nutrients between the system compartments. If such a flow

exists, then there is a direct transaction between the two connected com-

partments. These direct transactions give rise to both direct and indirect

relations between all of the objects in the system. Several formulizations of

ENA have arisen including embodied energy analysis (Herendeen, 1981),

ascendency analysis (Ulanowicz, 1980, 1986, 1997, 2009), and network

264.1

162
77.4

Benthos 10.8

D = 111.7

D = 56.0

R = 172.2
2.7

R = 6.0
R = 3.9

R = 0.1
0.1

0.2
0.3

1.5

M curema 0.9
Shrimps 0.8

Anchovies 0.6
D. auratus 0.02

3.5

4.5 1.1

0.7

Detritus 10.0

Other decapodes 
0.8

0.8

R = 0.01
R = 0.1

O. saurus 0.01

1.31.70.03

S notata 0.05 B. chrysoura 0.5

R = 2.2

D = 2.9

D = 0.02

D = 0.1

D = 0.04

D = 1.4

D = 6.8

D = 1.4

D = 1.8

D = 0.8

2.6
2.70.9

1.9

1.8

2.3
7.24.6

0.9

Other fish 3.0

68.6

R = 48.5

R = 3.3

R = 6.2
R = 2.4 D = 13.8

Zooplankton 1.1

Phytoplankton 2.5

FIGURE 6.3 Example of a marine Ecopath model, taken from Christensen and Pauly (1993). R means

respiration and D the transfer to detritus. Notice that all the components are in steady state:

input ¼ output.
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environ analysis (Fath & Patten, 1999; Patten, 1978a, 1981, 1982a). There

are several available software packages that carry out the network analy-

sis, such as NETWRK (Ulanowicz, 1982), WAND (Allesina & Bondavalli,

2004), NEA (Fath & Borrett, 2006), EcoNet (Kazanci, 2007), and R.ENA

(Scotti & Bondavalli, 2010).

An ecological network flow model is essentially an ecological food web

(energy–matter flow of who eats whom), which also includes nonfeeding

pathways such as dissipative export out of the system and pathways to

detritus. The first step is to identify the system of interest and place a

boundary (real or conceptual) around it. Energy–matter transfers within

the system boundary comprise the network; transfers crossing the

boundary are either input or output to the network; and all transactions

starting and ending outside the boundary without crossing it are external

to the system and are not considered. Once the system boundary has

been established, it is necessary to compartmentalize the system into

the major groupings. The most aggregated model could have only two

compartments: producers and consumers (where decomposers are

included in consumers). A slightly more disaggregated model could have

the following functional groups: producers, herbivores, carnivores, omni-

vores, decomposers, and detritivores (Fath, 2004). Most ecological net-

work models will have many more compartments.

Mathematically, network analysis is built on the formalisms of graph

theory and matrix algebra. The most basic realization of network analy-

sis consists of a graph in which an edge or arc links two or more nodes

together. An isomorphic mapping allows for representation of the graph

as a matrix, which is called an adjacency matrix (Figure 6.4). When the

edges are directed, that is, flow in a particular direction, the model can

Graph:

A

0

0

0

1 1

1

11

1

x1

x2x3

Adjacency matrix:

FIGURE 6.4 Graph and adjacency matrix for simple network.
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be considered as a directed graph or digraph (Figure 6.5). A digraph-

based adjacency matrix can be used for investigating the structural

properties of the network such as number of pathways, connectivity,

and rate of path proliferation (Borrett et al., 2007). The next level of

analysis occurs when weighted flow values can be determined for each

arc including (since an ecosystem is an open environmental system) the

input and output boundary exchanges (Figure 6.6). This should also

include information regarding the storage values, in which case the full

suite of network analysis properties can be investigated and calculated.

Digraph:

x1

x2x3

Adjacency matrix:

A =

0 0

0 0

0

1

1

1 1

FIGURE 6.5 Digraph and adjacency matrix for simple network.

Weighted digraph:
Adjacency matrix:

Flow matrix:

x1

x2x3

f01= 80.89
f31= 10.11

f21= 10.11

f10= 100

f32= 1.01

f03= 10.01 f02= 9.10

f13= 1.11

Throughflow vector:

A =

F =

T =

0 0

0 0

0

1

1

1 1

0 0

0 0

0

1.11

10.11

10.11 1.01

101.11 10.11 11.12

FIGURE 6.6 Weighted digraph, adjacency, and flow matrix.
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Lastly, it is useful to normalize and nondimensionalize the flows

between compartments relative to a reference condition, typically, using

the component’s throughflow or storage values (Figure 6.7). These

values are used in the network environ analysis. This involves the power

series analysis and subsequent transitive closure matrix, which yield the

combined direct and indirect flows in the network.

An adjacency matrix element, aij ¼ 1 if a direct arc from j to i exists

and zero if no arc exists (note that some authors orient the adjacency

matrix from rows to columns aij ¼ 1 if there is a direct arc from i to j).

In other words, the A matrix gives the direct connectivity of a model.

A row sum would give the total number of arrows emanating out of

the compartment (called out degree), and a column sum gives the total

number of arrows entering the compartment (called in degree). In eco-

logical models, the interpretation is clear and relevant because the in

degree is the number of diet sources (prey items) and the out degree

is the number of predators or sinks for the compartment. Whereas the

adjacency matrix indicates the presence or absence of a direct connec-

tion, matrix A2 gives the number of pathways that take exactly two steps

between two compartments, and matrix A3 gives the number of path-

ways that take exactly two steps, and so forth. Therefore, Am gives the

x1

x3
x2

Normalized flow digraph:

g13= 0.1

g31= 0.1

g32= 0.1

g21= 0.1

Nondimensional direct flow matrix:
gij= fij/Tj

Integral flow matrix:

G =

N =

0

0.1

0.1 0.1

0.10

0 0

0

1.011

1.011

0.101

0.101

0.1010.111

0.010

1.001 0.010

N = (I – G)–1

FIGURE 6.7 Normalized flow digraph, nondimensional flow matrix, and integral flow matrix.
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number of pathways of length m. For example, A2, A3, and A4 for

Figure 6.7 are given as:

A2 ¼
1 1 0
0 0 1
1 0 1

2
4

3
5A3 ¼

1 0 1
1 1 0
1 1 1

2
4

3
5A4 ¼

1 1 1
1 0 1
2 1 1

2
4

3
5

The reachability matrix A[R] is given by:

A½R� ¼ Aþ A2 þ . . .þ An�1

Two nodes are reachable if and only if all elements of A[R]�1, and not

reachable if it is 0. In this example, all compartments are reachable to each

other. Furthermore, by A4 we see that there are multiple pathways from

compartment 1 to compartment 3 (a31 ¼ 2). These are: 1!2!3!1!3

and 1!3!1!2!3, which are distinct paths carrying energy through the

network. Note that in this case the elements will continue to increase

as the path length increases. In fact, the rate of increase in the limit for

each pairwise combination is equal to the magnitude of the maximum

eigenvalue:

a
ðmþ1Þ
ij

am
ij

¼ lmax

as m!1
Not all networks have this property of increasing pathways with

increasing path length, referred to as path proliferation, in which the

pathways increase without bound. It depends on the connectivity and

is an important feature for ecological systems that cycle material and

energy. Three classes of connectivity and therefore cycling, can be

defined using the eigenvalues as follows (Fath and Halnes, 2007):

lmax ¼ 0;no cycling

lmax ¼ 1;weak cycling

lmax > 1; strong cycling

As previously stated there are several ENA approaches applied. Here,

for illustrative purposes, we present an example using EcoNet software

for a common network model of an oyster reef community (Dame & Pat-

ten, 1981, see Fig. 3.7). EcoNet 2.1 is an online, user-friendly, interactive

domain that allows the easy calculation of many of the network proper-

ties (http://eco.engr.uga.edu/). The Web site provides sufficient back-

ground information for new users, including modelling information,

theoretical background, and preloaded examples. The user is prompted

to enter the model structure in the provided window, which will include

flows, flow types, coefficients, initial conditions, and comments. The
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model is currently set up to accept three types of flow: donor controlled,

donor-recipient controlled, and Michaelis-Menten taking the following

forms, respectively, for a flow from compartment A to compartment B:

Donor controlled : Flow A ! B ¼ c � A
Donor� recipient controlled : Flow A ! B ¼ r � A � B
Michaelis�Menten flow : Flow A ! B ¼ A � B=ðv þ AÞ

The symbols c, r, and v for the coefficient values indicate the type of flow

used in the model. Multiple flow types are permissible in this model.

The oyster reef is one of the examples preloaded in the EcoNet soft-

ware, and is formulated as follows:

# Intertidal Oyster Reef Ecosystem Model, by Dame and
Patten.
# Model flows are in kcal m○-2 day○-1; storage data is
# kcal m○-2.
# This model is based on the Matlab model written by Fath
# and Borrett (2004).
# Dame, R. F., and B. C. Patten. 1981. Analysis of energy
# flows in an intertidal oyster reef. Marine Ecology
Progress
# Series 5:115-124.
# Patten, B. C. 1985. Energy cycling, length of food
chains,
# and direct versus indirect effects in ecosystems. Can.
# Bull. Fish. Aqu. Sci. 213:119-138.
* -> Filter_Feeders c¼41.4697
Filter_Feeders -> Dep_Detritus c¼0.0079
Filter_Feeders -> Predators c¼0.0003
Dep_Detritus -> Microbiota c¼0.0082
Dep_Detritus -> Meiofauna c¼0.0073
Dep_Detritus -> Dep_Feeders c¼0.0006
Microbiota -> Meiofauna c¼0.5
Microbiota -> Dep_Feeders c¼0.5
Meiofauna -> Dep_Detritus c¼0.1758
Meiofauna -> Dep_Feeders c¼0.0274
Dep_Feeders -> Dep_Detritus c¼0.1172
Dep_Feeders -> Predators c¼0.0106
Predators -> Dep_Detritus c¼0.0047
Filter_Feeders -> * c¼0.0126

Chapter 6 • Steady-State Models 169



 

Dep_Detritus -> * c¼0.0062
Microbiota -> * c¼2.3880
Meiofauna -> * c¼0.1484
Dep_Feeders -> * c¼0.0264
Predators -> * c¼0.0052
Filter_Feeders ¼ 2000; Dep_Detritus ¼ 1000;
Microbiota ¼ 2.4121; Meiofauna ¼ 24.121;
Dep_Feeders ¼ 16.274; Predators ¼ 69.237
# Model flows are in kcal m○-2 day○-1; storage data is
# kcal m○-2.

The model diagram is given in Figure 6.8. This model can be run using

four numerical methods: (1) adaptive time-step, Runge-Kutta-Fehlberg is

the default, and also allows for (2) fixed time step, 4th order Runge-Kutta;

Created by EcoNet

Filter_Feeders

Dep_Detritus

Microbiota

Meiofauna

Dep_Feeders

Predators

FIGURE 6.8 Flow diagram for oyster reef model constructed from EcoNet software.
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(3) stochastic, fixed time step, Langevin equationwhich generates different

solutions at each run, and (4) stochastic, adaptive time step, Gillespie’s

method, which is a variety of a dynamic Monte Carlo method. The default

approach hasmaximum time and sensitivity as parameters. The sensitivity

is related to the amount of error between the actual and numerical solu-

tion,whichprovides a trade-off betweenaccuracy andcomputational time.

After the model is run, the results are presented, starting with the dia-

gram, followed by a plot of the state variables during the simulation

(called the time course figure). For the oyster reef example, which is bal-

anced, there is no change in any of the state variables during the dura-

tion of the simulation. Next, the compartmental properties are provided

including the initial and final storage values (essentially the same in this

case) as well as the boundary input and output from each compart-

ment. Also included in the compartmental properties are the input

throughflow (and equivalently the output throughflow) and the resi-

dence time for energy in each compartment. Input throughflow is the

amount of flow through each compartment that arrives from boundary

flow without cycling. This is also referred to as first passage flow in

the literature (Higashi et al., 1993; Fath et al., 2001). Values for input

throughflow and residence time are given in Table 6.1.

Next the analysis gives results for a suite of system-wide properties

that are described in Box 6.1 and the values given in Table 6.2.

Lastly, in the “short” version of the output, the software completes

the throughflow, storage, and utility analyses. As these are the key envi-

ron analysis results, they are presented here in full.

Table 6.1 Values for Input Throughflow and Residence Time

Input Throughflow Residence Time

X1- Filter_feeders 41.4697 48.0769

X2-Dep-Detritus 22.2257 44.843

X3-Microbiota 8.1779 0.2952

X4-Meiofauna 8.4872 2.8441

X5-Dep_Feeders 2.4667 6.4851

X6-Predators 0.7679 101.01

Notes: This is also referred to as first passage flow in the literature

Source: Fath et al., 2001; Higashi et al., 1993.
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Nondimensional, direct flow matrix:

G ¼

0 0 0 0 0 0
0:38 0 0 0:5 0:76 0:475
0 0:367 0 0 0 0
0 0:327 0:148 0 0 0
0 0:027 0:148 0:0779 0 0

0:014 0 0 0 0:0687 0

2
6666664

3
7777775

BOX 6.1 DESCRIPTION OF THE SYSTEM-WIDE PROPERTIES CALCULATED

IN ECONET SOFTWARE

1. Link Density: Number of intercompartmental links (d) per compartment:

d/(number of compartments).

2. Connectance: Ratio of the number of actual intercompartmental links (d) to the

number of possible intercompartmental links: d/(Number of compartments)2.

3. Total System Throughflow (TST): The sum of throughflows of all

compartments: TST ¼ T1 þ T1 þ . . . þ Tn.

4. Finn’s Cycling Index: Measures the amount of cycling in the system by

computing the fraction of total system throughflow that is recycled.

5. Indirect Effects Index: Measures the amount of flow that occurs over indirect

connections versus direct connections. When the ratio is greater than one,

indirect flows are greater than direct flows.

6. Ascendency: It quantifies both the level of system activity and the degree of

organization (constraint) with which thematerial is being processed in ecosystems.

7. Aggradation Index: Measures the average path length. In other words, it is

the average number of compartments a unit flow quantity (e.g., an N atom,

unit biomass, energy quanta, etc.) passes through before exiting the system:

TST/(z1 þ z2 þ . . . þ zn).

8. Synergism Index: Based on utility analysis, it provides a system-wide index for

pairwise compartment relations. Values larger than 1 indicate a shift toward

quantitative positive interactions (synergism). It is computed as the ratio of the

sum of positive entries over the sum of negative entries in the utility analysis

matrix U.

9. Mutualism Index: Similar to synergism index, mutualism index provides a

system-wide index for pairwise compartment relations. Values larger than 1

indicate a shift toward qualitative positive interactions (mutualism). It is

computed as the ratio of number of positive entries over the number of negative

entries in the mutual relations matrix.

10. Homogenization Index: Quantifies the action of the network making the flow

distribution more uniform. Higher values indicate that resources become well

mixed by cycling in the network, giving rise to a more homogeneous distribution

of flow.
Source: EcoNet Web site: http://eco.engr.uga.edu/DOC/econet4.html#scalar)
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Integral flow matrix:

N ¼

1:000 0 0 0 0 0
0:536 1:386 0:277 0:779 1:01 0:658
0:197 0:510 1:102 0:286 0:404 0:242
0:205 0:529 0:253 1:297 0:419 0:251
0:059 0:154 0:190 0:164 1:122 0:073
0:0185 0:0106 0:013 0:0113 0:077 1:005

2
6666664

3
7777775

Partial turnover rate matrix:

C ¼

�0:0208 0 0 0 0 0
0:0079 �0:0223 0 0:1758 0:1172 0:0047

0 0:0082 �3:388 0 0 0
0 0:0073 0:5 �0:3516 0 0
0 0:0006 0:5 0:0274 �0:1542 0

0:0003 0 0 0 0:0106 �0:0099

2
6666664

3
7777775

Integral storage matrix:

S ¼

48:0769 0 0 0 0 0
24:0392 62:172 12:423 34:929 49:283 29:516
0:0582 0:150 0:325 0:0845 0:119 0:071
0:582 1:505 0:721 3:690 1:193 0:714
0:386 0:997 1:231 1:066 7:276 0:473
1:870 1:068 1:318 1:141 7:790 101:517

2
6666664

3
7777775

Table 6.2 Analysis Gives Results for a Suite of System-wide
Properties Described in Box 6.1 and the Values Given in Table 6.2.

Link density 2

Connectance 0.3333

Total system throughflow 83.5959

Finn’s cycling index 0.1097

Indirect effects index 1.5297

Ascendency 115.329

Development capacity 188.573

Aggradation index 2.0158

Synergism index 6.5379

Mutualism index 2

Homogenization index 1.8905
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Mutualism relations:

sgnðUÞ ¼

þ � þ þ � �
þ þ � � þ �
þ þ þ � � þ
þ þ þ þ � þ
� þ þ þ þ �
þ � þ þ þ þ

2
6666664

3
7777775

Utility analysis:

U ¼

0:832 �0:221 0:0699 0:0126 �0:027 �0:014
0:424 0:599 �0:193 �0:0357 0:065 �0:0012
0:394 0:547 0:741 �0:200 �0:061 0:0071
0:208 0:287 0:0014 0:946 �0:056 0:0054

�0:0035 0:065 0:446 0:169 0:911 �0:0615
0:473 �0:449 0:251 0:066 0:156 0:975

2
6666664

3
7777775

The software does have extended results that include control analysis

and an eco-exergy calculator. The analysis data may be downloaded in

Matlab format (.m file) or in spreadsheet format (.csv file). Overall, the

EcoNet software provides a very easy to use application for researchers

or students interested in conducting network analysis.

Problems

1. Construct the adjacency matrix of the oyster reef model in Figure 6.8.

2. How can you determine if the compartments are at steady state in a

network model?

3. What are typical units of flow in a network model? Why is it

necessary to normalize the flow values by the throughflows before

taking the powers of the matrix?

4. How could one conduct a network analysis for time-varying data?

5. What is network mutualism? What role do indirect influences play in

determining it?
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7.1. Introduction

This chapter gives detailed examples of typical dynamic biogeochemi-

cal models and discusses the considerations that have to be made

when selecting the model complexity and equations. The past 30 years

have witnessed a pronounced development and application of bio-

geochemical models. The models are often formulated as a set of

differential equations combined with some algebraic equations and a

parameter list. The differential equations require the definition of an

initial state.

The following biogeochemical models are included in this chapter to

illustrate and demonstrate their wide applicability in ecological and

environmental modelling:

Fundamentals of Ecological Modelling. DOI: 10.1016/B978-0-444-53567-2.00007-7
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1. Classical Streeter-Phelps river BOD/DO model

2. Simple eutrophication models based on up to only 2–4 state

variables

3. Complex eutrophication model that has been applied to 25 case

studies with modifications from case-to-case

4. Wetland model used for design and construction of wetlands for the

treatment of drainage water or wastewater

5. Model for the prediction of global warming

The two eutrophication models (2 and 3) are used to show the

complexity spectrum of available models. The selection of model com-

plexity will be discussed with reference to Chapter 2, Section 2.6.

Furthermore, the generality of models and their ability to develop

predictions will be discussed using the eutrophication models as exam-

ples. All five of these models are discussed in detail; the reader will get

a good impression of how to develop and use biogeochemical models

and how to assess the advantages and disadvantages of eachmodel. Hope-

fully, the reader will learn to be critical and understand the considerations

involved in modelling, including the selection of balanced model

complexity.

Wetland models have been very much in focus recently due to an

increasing interest for these ecosystems as habitats for birds and

amphibians. Wetland restoration or wetland construction is an effective

method of abatement of nutrient pollution from nonpoint sources

(agricultural pollution). This has increased the demand for good

management models in this area. The presented wetland model has been

widely applied to design and construct wetlands.

Biogeochemical models are widely used to solve a number of

concrete management problems:

• Optimization of biological treatment
• Groundwater contamination
• Atmospheric acidification (see Rains model in Alcamo et al., 1990)
• Forest growth and yield (Vanclay, 1994)
• Air pollution problems (Gryning & Batchvarova, 2000)
• Agricultural production (France & Thornley, 1984)
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7.2. Application of Biogeochemical Dynamic
Models

Ecosystems are dynamic systems and biogeochemical models attempt to

capture the dynamics and cycling of biochemical and geochemical com-

pounds in the ecosystems. When models are used as an instrument in

environmental management, they must account for the fate and distribu-

tion of both pollutants and of nature’s own compounds. This requires the

application of biogeochemical models, since they focus on the processes

and transformation of various compounds in the ecosystem. As pointed

out in Chapter 2, Section 2.3, the construction of dynamicmodels requires

data, which can elucidate the dynamics of the processes included in the

model. Generally, a more comprehensive database is required to build a

dynamic model than a static model. Therefore, in a data-poor situation, it

might be better to draw up an average situation under different circum-

stances using a static model than to construct an unreliable dynamic

model, which contains uncertainty in the most crucial parameters

The first biogeochemical model constructed was the Streeter-Phelps

BOD/DOmodel in 1925. It has been used numerous times as an illustration

of biogeochemical models and of the practical use of ecological models in

environmental management (J�rgensen, 2009). As a seminal example, it

clearly illustrates the concepts of the biogeochemical models, and is pre-

sented in detail in the next section. The Streeter-Phelps model consists,

opposite frommost dynamic models, of only one differential equation that

can be solved analytically. Here we use STELLA to simulate and demon-

strate the applicability of the model solution.

Hydrodynamic models can be considered biogeochemical models,

since they describe the fate and distribution of the important compound

water in ecosystems. Output from hydrodynamic models is often used as

forcing function in ecological models. If only the hydrology is modelled,

then hydrodynamic models are not ecological models, as they do not

account for biological processes. However, they are often used in conjunc-

tion with ecological models, as the distribution of chemical compounds

and living organisms is dependent on the hydrodynamics. During the

1990s, 3-D hydrodynamic models were applied more frequently, and
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today, well-developed ecological models such as eutrophication models

are coupled with 3-D hydrodynamic models. It is important to emphasize

that coupling simple ecological models with 3-D models is not feasible

because the standard deviations of a validation and the reliability of

the predications are determined by the weakest link in the chain of cal-

culations. Hydrodynamic models are, however, beyond the scope of

this book and will not be discussed further.

The experience gained by developing many biogeochemical models

over time has shown that:

1. A good knowledge of the ecosystem is required to capture the

essential features, which should be reflected in the model.

2. The scope of the model determines the complexity, which again

determines the quality and quantity of the data needed for

calibration and validation.

3. If good data are not available, then it is better to go for a somewhat

oversimplified model instead of one that is too complex.

4. Simple models are more general than complex models. If the

database allows development of a more complex model, then it will

contain some processes and components specific for the considered

ecosystem.

During the 1970s and the early 1980s, a great deal of experience was

gained inmodelling many different types of ecosystems andmany differ-

ent aspects, including a number of problems relating to environmental

degradation. The modellers also learned which modifications were nec-

essary when amodel was applied for the same situation but on a different

ecosystem from which it was originally developed. It was seen that the

same model could not be applied to another ecosystem without some

changes, unless the model was very simple. More and more models

became well calibrated and validated. The models could often be used

as a practical management tool, but in most cases it was necessary to

combine the use of the model with a good knowledge of general environ-

mental issues. Also, in cases when the model could not be applied to set

up accurate predictions, it was useful for the manager to qualitatively

understand the ecosystem for various management strategies. Scientists

who appliedmodels found that they were very useful to indicate research

priorities and also to capture the system features of ecosystems.
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7.3. The Streeter-Phelps River BOD/DO Model,
Using STELLA

For rivers and streams, the main environmental problem is low oxygen

concentration that occurs in response to the discharge of organic

matter. The questions posed for the model are:

1. What is the concentration of organic matter, expressed frequently as

BOD5 mg/L, as a function of time? BOD5 mg/L is the amount of

oxygen that the decomposition of the organic matter will consume

during a period of 5 days.

2. What is the oxygen concentration as a function of the distance from

the discharge point of organic matter?

3. What is the minimum oxygen concentration?

A river model is presented in that next section that is able to answer

these questions. It is developed using the STELLA software, which was

introduced in Chapter 2, Section 2.3 and 5. After presentation of the

classical Streeter-Phelps model, a discussion about which processes

would probably be beneficial to include if the model is to be expanded

to include more components and interactions will be presented.

Organic matter decomposition can be approximated by a first-order

reaction. If L is the concentration of organic matter (mg/L) and k1 is the

rate coefficient for the decomposition, then the following differential

equation is valid:

dL=dt ¼ �k1L ð7:1Þ
Equation (7.1) has the following analytical solution:

Lt ¼ L0e
�k1t ð7:2Þ

where Lt is the concentration at time t and L0 is the initial concentration.

L is most often expressed as BOD5 mg/L oxygen consumption during

a period of 5 days. If it is expressed as mg/L (average) organic matter or

detritus, then the concentration, according to the processes, has to be

multiplied by 1.39. In other words, 1 g of detritus or organic matter

requires an average of 1.39 g oxygen to be decomposed as much as it

is possible during a period of 5 days (which is nearly 100%)

Nitrification of ammonium also causes oxygen depletion and should

be included in this process. If the ammonium concentration is denoted
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NC (mg N/L in the form of ammonium) and it is presumed that nitrifi-

cation follows a first-order reaction, then the following differential

equation is valid:

dNC=dt ¼ �kNNC ð7:3Þ
where kN is the rate coefficient for the nitrification. Equation (7.3) has

the following solution:

NCt ¼ NC0e
�kNt ð7:4Þ

where NCt is the concentration at time t and NC0 the initial

concentration.

Notice that NC is the concentration in mg ammonium-N/L and the

corresponding oxygen consumption is found from the chemical equa-

tion for the nitrification:

NH þ
4 þ 2O2 ! NO �

3 þH2OþHþ ð7:5Þ
It means that 1 g of ammonium-N requires 2*32/14 ¼ 4.6 g of oxygen,

which will be included in the model when the nitrification is “trans-

lated” to oxygen depletion. The factor is 4.3 not 4.6, due to the bacterial

assimilation of ammonium by the nitrifying microorganisms.

Instead of a first-order expression for Eq. (2.5), one could apply a

Michaelis-Menten equation (J�rgensen & Bendoricchio, 2001). Accord-

ing to the Michaelis-Menten expression used in eutrophication models

(see Chapter 2), Eq. (7.1) could be multiplied by:

½Ox�=ðkmo þ ½Ox�Þ ð7:6Þ
to account for the influence of oxygen as a limiting factor of the decom-

position rate. Similarly, Eq. (7.3) could be multiplied by:

min ð½NC�=ðkma þ ½NC�Þ, ½Ox�=ðkao þ ½Ox�Þ ð7:7Þ
to account for the influence of both ammonium and oxygen as possible

limiting factors of the decomposition. When the model has to be

erected, the Michaelis-Menten expressions will be applied, but it is also

possible to get reasonably good results using the first-order expressions,

which have the advantage that they can easily be solved analytically.

The decomposition of organic matter and nitrification are tempera-

ture dependent. A simple Arrhenius expression may be applied:

The rate coefficient at temperature ðCelsiusÞ T
¼ rate coefficient at 20 degree Celsius � KðT�20Þ ð7:8Þ
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K is, with good approximation, 1.05 for organic matter decomposition

while nitrification is more sensitive to temperature changes; therefore,

K is 1.07–1.08 for this process (J�rgensen, 2000).

Typical values for the rate coefficients and the initial concentrations for

various sources of organic matter and ammonium are shown in Table 7.1.

If the oxygen concentration is below the saturation concentration,

that is, the water is in equilibrium with the atmosphere, then reaeration

from the atmosphere takes place. The equilibrium concentration can be

found by Henry’s Law. The saturation concentration is dependent on

the water temperature and salinity. In Appendix 1, Table 1, the equilib-

rium concentration of oxygen can be found as a function of the temper-

ature and salinity.

Aeration is proportional to the difference between the oxygen concen-

tration at saturation, Oxsat, and the actual oxygen concentration, [Ox].

The driving force for the aeration is this difference. It is expressed by:

Reaeration ¼ d½Ox�=dt ¼ KaðOxsat � ½Ox�Þ ð7:9Þ
where Ka is the reaeration coefficient (1/24h).

Ka is dependent on the water temperature and flow rate. The aeration

is also proportional to the surface area relatively to the volume; it is

inversely proportional to the water depth. There are several hundred

empirical equations that can be used to estimate the reaeration or the

reaeration coefficient. One equation often applied is:

Ka ¼ 2:26 � v � expð0:024 � ðT� 20Þ=dÞ, ð7:10Þ

Table 7.1 Characteristic Values for k1, kN (1/24h) and Initial Concentrations
(mg/L) for Various Sources to Oxygen Depletion in Streams and Rivers

Source k1 kN L0 NCo

Municipal waste water 0.35–0.40 0.15–0.25 180–300 20–45

Mechanically treated waste water 0.32–0.36 0.10–0.15 100–200 18–35

Biologically treated waste water 0.10–0.25 0.05–0.20 10–40 15–32

Potable water 0.05–0.10 0.03–0.06 0–2 0–1

River water (average) 0.05–0.15 0.04–0.10 1–4 0–2

Agricultural drainage water 0.08–0.20 0.04–0.12 5–25 0–10

Waste water, food industry 0.4–0.5 0.1–0.25 200–5000 20–200
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where v is the water flow rate in m/s, T is the temperature in Celsius,

and d is the depth of the stream or river in m.

The oxygen concentration is determined by the difference between

the consumption and the reaeration. If we only consider decomposition

of organic matter and nitrification, then the oxygen concentration is

determined by the following differential equation:

d½Ox�=dt ¼ kaðOxsat � ½Ox�Þ � k1L� kNNC ð7:11Þ
The solution of the differential equations for L and NC can be used in

this differential equation to yield the following expression for the solu-

tion of [Ox] as function of time:

d½Ox�=dt ¼ kaðOxsat � ½Ox�Þ � k1L0 e�k1t � kNNC0 e�kNt ð7:12Þ
This equation can be solved analytically, but we will use STELLA to

determine [Ox], L, and NC as a function of time in accordance with the

previous Michaelis-Menten equation. It is possible to add many more

processes to the model, such as primary production by phytoplankton

and macrophytes producing oxygen, denitrification consuming organic

matter as a carbon source, the presence of organic matter with different

biodegradability, changed reaeration at turbulent flow, and so on. As

always, when we develop models, the problem, the available data, and

the system processes should determine the model complexity.

A diagram of the STELLA model (Figure 7.1) shows three state vari-

ables: (1) organic matter, L; (2) ammonium-nitrogen, NC; and (3) oxy-

gen, Ox. These are each covered by three different connected

submodels. The oxygen is consumed by the decomposition of organic

matter and nitrification. The oxygen concentration influences the

decomposition rate and nitrification as presented in Eqs. (7.6) and

(7.7). Time is considered the independent variable, but it could also be

the distance from the discharge of wastewater. For example, if the water

flow rate is 1 m/s, then the time in days will correspond to 1*3600*24 m

¼ 86400 m. The model has a constant discharge, which can be consid-

ered to be agricultural drainage water along the stream shoreline. The

point discharge of wastewater takes place at time 0 corresponding to

the initial value of L and NC. The dilution has to be considered when

the initial values are calculated. If 1000 m3 waste water/h with 30 mg/

L of BOD5 and 13 mg/L ammonium-N is discharged to a river with

5000 m3 of water flow/h, then the dilution factor is 6. If the river water

182 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

has 3 mg BOD5/L and 1 mg ammonium-N/L, then the mixture of river

water and wastewater will have (5*3 þ 30*1)/6 ¼ 7.5 mg BOD5/L and

(1*5 þ 13*1)/6 ¼ 3 mg ammonium-N/L, which are applied as the initial

concentrations. The model should be able to give information about

how these concentrations change over time. The concentration of

oxygen in treated wastewater will almost always be close to 0 mg/L.

If the river water has 8.6 mg/L oxygen, then the mixture of wastewater

and river water will have an oxygen concentration of about 7.2 mg/L

corresponding to a dilution of the wastewater by a factor 6.

The result of running themodel 90 days is shown in Figure 7.2, and the

equations are presented in Table 7.3. Notice the form of the differential

equation applied in STELLA. Time can be translated to distance from

the discharge point by the flow rate. If the cross-sectional area is 50m3,

then the water flow of 10,000 m3/h corresponds to 200 m/h. Twenty-four

hours therefore corresponds to 4800 m and 90 days to 432 km. The mini-

mum oxygen concentration occurs after 8 days or 38.2 km. Table 7.2

charts the model results in table form for every 5 days.

K1

Lww

NCww

Temp Temp

Reaeration

Oxsat Ka

Graph 1 Table 1

Consumption

Nitrification

Decomposition

L

NC

Ox

KN

FIGURE 7.1 Conceptual diagram of

the presented river model by

application of the STELLA

software.
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7.4. Eutrophication Models I: Simple
Eutrophication Models with 2–4 State Variables

Eutrophication is the main cause of environmental degradation in lakes

and reservoirs. It results from a nutrient concentration that is too high.

The core questions for this model are:

1. What is the concentration of the limiting nutrient (which is often

phosphorus)?

2. What is the primary production?

3. What are the transparency and the chlorophyll concentration when

the eutrophication is at maximum?

FIGURE 7.2 The result of using the following initial values: for BOD5, 7.5 mg/L; for ammonium-N,

3 mg/L; and for oxygen, 7.2 mg/L.
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 From a thermodynamic view, a lake can be considered an open sys-

tem, which exchanges material (wastewater, evaporation, precipitation)

and energy (evaporation, radiation) with the environment. However, in

some lakes (e.g., the Great Lakes) the material input per year does not

change the concentration measurably. In such cases, the system can

be considered nearly closed, which means that it exchanges energy

but not material with the environment.

The flow of energy through the lake system leads to at least one cycle

of material in the system (provided that the system is at a steady state,

Table 7.2 Model Results

Day BOD5 NC Oxygen Ox consumption Decomp. Nitrification

.0 7.50 3.00 7.20 1.01 0.67 0.08

5.0 5.64 3.11 6.21 0.83 0.49 0.08

10.0 4.47 3.21 6.24 0.74 0.39 0.08

15.0 3.70 3.30 6.45 0.69 0.32 0.08

20.0 3.19 3.37 6.64 0.66 0.28 0.09

25.0 2.86 3.43 6.78 0.64 0.25 0.09

30.0 2.64 3.48 6.88 0.63 0.24 0.09

35.0 2.50 3.52 6.94 0.62 0.22 0.09

40.0 2.40 3.56 6.98 0.62 0.21 0.09

45.0 2.34 3.59 7.00 0.61 0.21 0.09

50.0 2.30 3.62 7.00 0.61 0.21 0.09

55.0 2.28 3.64 7.01 0.61 0.20 0.10

60.0 2.26 3.66 7.01 0.62 0.20 0.10

65.0 2.25 3.68 7.00 0.62 0.20 0.10

70.0 2.24 3.70 7.00 0.62 0.20 0.10

75.0 2.24 3.71 6.99 0.62 0.20 0.10

80.0 2.24 3.73 6.99 0.62 0.20 0.10

85.0 2.24 3.74 6.98 0.62 0.20 0.10

Final 2.24 3.75 6.98

Notes: Concentrations (BOD5 or L, NC, or ammonium-N and oxygen) are all in mg/L and process rates are in mg/L per 24h
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see Morowitz, 1968). As illustrated in Figures 2.1 and 7.3, important ele-

ments participate in cycles that control eutrophication.

The word eutrophy is generally known as “nutrient rich.” In 1919,

Nauman introduced the concepts of oligotrophy and eutrophy, distin-

guishing between oligotrophic lakes containing little planktonic algae

and eutrophic lakes containing an abundance of phytoplankton.

The eutrophication of lakes all over the world has increased rapidly

during the last decades due to increased human population growth

and the consequent increase in the application of synthetic fertilizers

and urbanization (Vitousek et al., 1997; J�rgensen et al., 2004). The pro-

duction of fertilizers has grown exponentially in this century and the

concentration of phosphorus in many lakes reflects this.

Theword eutrophication is used increasingly to define an artificial addi-

tion of nutrients, mainly nitrogen and phosphorus, to waters. Eutrophica-

tion is generally considered to be undesirable, but this is not always true.

Table 7.3 Model Equations (STELLA Format)

L(t) ¼ L(t � dt) þ (Lww � Decomposition) * dt
INIT L ¼ 7.5
INFLOWS:
Lww ¼ 0.2
OUTFLOWS:
Decomposition ¼ (L*K1*Ox*1.05^(20-Temp)/(Oxþ2.5))
NC(t) ¼ NC(t � dt) þ (NCww - Nitrification) * dt
INIT NC ¼ 3
INFLOWS:
NCww ¼ 0.1
OUTFLOWS:
Nitrification ¼ NC*KN*MIN(Ox/(Oxþ3), NC/(NCþ1))*1.075^
(Temp-20)
Ox(t) ¼ Ox(t � dt) þ (Reaeration - Consumption) * dt
INIT Ox ¼ 7.2
INFLOWS:
Reaeration ¼ Ka*(Oxsat�Ox)*exp(0.024*(Temp�20))
OUTFLOWS:
Consumption ¼ Decompositionþ4.3*Nitrification
K1 ¼ 0.1
Ka ¼ 0.226
KN ¼ 0.05
Oxsat ¼ 10
Temp ¼ 16
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The green color of eutrophied lakes makes swimming and boating less

safe and pleasant due to the increased turbidity. From an aesthetic point

of view, the chlorophyll concentration should not exceed 100 mg m-3.

However, the most critical effect from an ecological point of view is the

reduced oxygen content of the hypolimnion caused by the decomposition

of dead algae. Eutrophic lakes sometimes show a high oxygen concentra-

tion at the surface during the summer, but a low concentration of oxygen

during the fall in the hypolimnion that is lethal to fish.

About 16–20 chemical elements are necessary for the growth of fresh-

water plants; Table 7.4 lists the relative quantities of essential elements

in plant tissue. The present concern about eutrophication relates to the

rapidly increasing amount of phosphorus and nitrogen, which are natu-

rally present at relatively low concentrations. Of the two, phosphorus is

considered the major cause of eutrophication in lakes, because it was for-

merly the growth-limiting factor for algae in the majority of lakes. But as

mentioned previously, its use has increased tremendously during the last

decades.

Nitrogen is a limiting factor in a number of East African lakes as a result

of soil nitrogen depletion by intensive erosion. However, today nitrogen
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FIGURE 7.3 The

phosphorus cycle. The

processes are: (1) uptake

of phosphorus by algae;

(2) photosynthesis;
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loss of undigested
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mineralization; (10)

fishery; (11)

mineralization of

phosphorous organic

compounds in the

sediment; (12) diffusion

of pore water P;

(13), (14), and (15)

inputs/outputs; (16), (17),

and (18) mortalities; and

(19) settling of detritus.

Chapter 7 • Dynamic Biogeochemical Models 187



 may become limiting in lakes as a result of the tremendous increase in the

phosphorus concentration caused by discharge of wastewater, which con-

tains relatively more phosphorus than nitrogen. While algae use 4 to 10

timesmore nitrogen than phosphorus, wastewater generally contains only

3 times as much nitrogen as phosphorus in lakes and a considerable

amount of nitrogen is lost by denitrification (nitrate!N2).

The growth of phytoplankton is the key process of eutrophication,

and it is important to understand the interacting processes that regulate

growth. Primary production has been measured in great detail in a

Table 7.4 Average Freshwater Plant Elementary
Composition on a Wet Weight Basis

Element Plant content%

Oxygen 80.5

Hydrogen 9.7

Carbon 6.5

Silicon 1.3

Nitrogen 0.7

Calcium 0.4

Potassium 0.3

Phosphorus 0.08

Magnesium 0.07

Sulfur 0.06

Chlorine 0.06

Sodium 0.04

Iron 0.02

Boron 0.001

Manganese 0.0007

Zinc 0.0003

Copper 0.0001

Molybdenum 0.00005

Cobalt 0.000002
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number of lakes. This process represents the synthesis of organic matter

and the overall process can be summarized as follows:

Lightþ 6CO2 þ 6H2O ! C6H12O6 þ 6O2

The composition of phytoplankton is not constant (note that Table 7.4

gives only an average concentration), but reflects the concentration of the

water. If the phosphorus concentration is high, then the phytoplankton

will take up relatively more phosphorus — this is called luxury uptake.

As seen in Table 7.4, phytoplankton consists mainly of carbon, oxy-

gen, hydrogen, nitrogen, and phosphorus: without these elements, no

algal growth takes place. This leads to the concept of limiting the nutri-

ents mentioned earlier in Section 2.3, which is known as the law of the

minimum developed by Liebig (1840). This states that the yield of any

organism is determined by the substance that in relation to the needs

of the organism is least abundant in the environment (Hutchinson, 1970,

1978). However, the concept has been considerably misused due to over-

simplification. First of all, growthmight be limited bymore than one nutri-

ent. The composition is not constant; it varies with the composition of the

environment. Furthermore, growth is not at its maximum rate until the

nutrients are used, and is then stopped. But the growth rate slows down

when the nutrients become depleted. Another side of the problem is the

consideration of the nutrient sources. It is important to set up mass bal-

ances for the most essential nutrients.

The sequences of events leading to eutrophication have often been

described as follows. Oligotrophic waters will have a ratio of N:P greater

than or equal to 10, which means that phosphorus is less abundant than

nitrogen for the needs of phytoplankton. If sewage is discharged into the

lake, then the ratio will decrease, since the N:P ratio for municipal

wastewater is 3:1; consequently, nitrogen will be less abundant than

phosphorus relative to the needs of phytoplankton. In this situation,

however, the best remedy for the excessive growth of algae is not the

removal of nitrogen from the sewage because the mass balance might

then show that nitrogen-fixing algae will release an uncontrollable input

of nitrogen into the lake. It is necessary to set up mass balances for each

of the nutrients as these will often reveal that the input of nitrogen from

nitrogen-fixing blue-green algae, precipitation, and tributaries contribute

too much to the mass balance for the removal of nitrogen from the
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sewage to have any effect. On the other hand, the mass balance may

reveal that the phosphorus input (often more than 95%) comes mainly

from sewage, which means that it is better management to remove phos-

phorus from the sewage than nitrogen. Thus, in environmental manage-

ment it is not always important which nutrient is the most limiting, but

which nutrient can most easily be made to limit algal growth.

7.4.1. Predictions of Eutrophication From Concentrations
of Nutrients

Dillon and Rigler (1974) developed a relationship for estimating the

average summer chlorophyll a concentration (chl.a) with the N:P ratio

of the water >12:

log10ðchl:aÞ ¼ 1:45 log10½ðPÞ�1000� � 1:14 ð7:13Þ
For the case where the N:P ratio is <4 the following equation, based

upon eight case studies was evolved:

log10ðchl:aÞ ¼ 1:4 log10½ðNÞ�1000� � 1:9 ð7:14Þ
(N) and (P) are expressed as mg/L while (chl.a) is found in mg/L-1. If the

N:P ratio is between 4 and 12, the smallest value of (chl.a) found on the

basis of the two equations is recommended.

Many correlations between phosphorus concentrations and chloro-

phyll concentrations have been developed. Dillon and Kirchner (1975)

set up a relationship between the Secchi disc transparency, SE, and phos-

phorus concentration. Kristensen et al. (1990) developed eight different

equations that related the total phosphorus concentration (Plake) with

the average transparency depth (zeu). The influence of the mean depth,

z, is included in three of the equations (see Table 7.5).

The simple model presented earlier will never be as good a predictive

tool as a model based on more accurate data and considering more pro-

cesses. However, the semiquantitative estimations, which can be

obtained by use of the simple model we have presented, are better than

none at all, and in a data-poor situation it may be the only model the

data can support. Furthermore, it is often an advantage to use simple

models to find first estimations before a more advanced model is devel-

oped. A model with the state variables PS, NS, Psed, and Nsed, and

the previously mentioned regression equations is available as a simple

190 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

one-layer model in the UNEP-software Pamolare. It is relatively quick

and easy to use this simple model, and it is often recommended that

it be used first as a modelling approach to gain insight into the most

crucial processes that determine the eutrophication, before a more

complex model is developed.

The differential equations for the model are:

dPS=dt ¼ Q � ðPin� PSÞ=V � sr � PS=Dþ rr � Psed � AL=D ð7:15aÞ
dPsed=dt ¼ k � sr � PS �D=AL� rr � Psed ð7:16aÞ

dNS=dt ¼ Q � ðNin�NSÞ=V � sr �NS=Dþ rr �Nsed � AL=D ð7:15bÞ
dNS=dt ¼ k0 � sr �NS �D=AL� rr �Nsed ð7:16bÞ

Q is the flow rate to and from the lake. It is presumed that precipita-

tion and evaporation are equal and that the inflows and outflows are in

balance.

PS is the total concentration of phosphorus in the water, including all

forms (soluble phosphorus, detritus-phosphorus, and phytoplankton

phosphorus).

NS is the total concentration of nitrogen in the water, including

all forms (soluble inorganic nitrogen [ammonium, nitrate, and nitrite],

soluble organic nitrogen, detritus-nitrogen and phytoplankton nitrogen).

Pin is the total phosphorus concentration in the inflowing water and

Nin is the total nitrogen concentration in the inflowing water; sr is the

Table 7.5 Relations Between Average Transparency Depth, zeu, Phosphorus
Concentration, Plake and Mean Depth, z

Number Equation

1 zeu ¼ 0.44 (þ/�0.038) P�0.54(þ/�0.031)

2 zeu ¼ 0.36(þ/�0.029) P�0.29(þ/�0.028)z0.51(þ/�0.042)

3 zeu ¼ 0.39(þ/�0.038) P�0.58(þ/�0.034)

4 zeu ¼ 0.34(þ/�0.028) P�0.29(þ/�0.028)z0.55(þ/�0.040)

5 zeu ¼ 0.52 (þ/�0.042) P�0.48(þ/�0.031)

6 zeu ¼ 0.43 (þ/�0.026) P�0.20(þ/�0.022)z0.55(þ/�0.030)

7 zeu ¼ 0.40 (þ/�0.055) P�0.69(þ/�0.064)

8 zeu ¼ 0.34 (þ/�0.0424 P�0.60(þ/�0.041)

After Kristensen et al., 1990.
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settling rate that could be in units of m/year based on the total amount

of phosphorus and nitrogen. If it is estimated that phytoplankton and

detritus in average is for instance 20% per year of total phosphorus

and nitrogen, then the settling rate should be calculated as settling in

(m/24 h)*365/5.

AL is the active layer of sediment, D is the water depth, and rr and rr’

are the release rate of phosphorus and nitrogen, respectively. They are

parameters that usually are determined by model calibration.

Notice that when sediment phosphorus and sediment nitrogen are

released, the sediment nutrients are diluted by the factor AL/D, and

when the settled nutrients are transferred from the water column to

the sediment, the concentration becomes D/AL times higher in the sed-

iment than in the water column.

k is the fraction of exchangeable phosphorus to total phosphorus for

the settled material. A part of the settled phosphorus is bound in the

sediment and cannot be released again. k accounts for exchangeable

phosphorus only. If, for instance, 25% of the phosphorus is bound in

the sediment, then k is 0.75.

k’ is the exchangeable nitrogen to total nitrogen. Usually k’ is higher

than k because phosphorus compounds can be bound to a higher extent

than nitrogen in the sediment by formation of calcium-hydroxo-phos-

phate or iron (III) phosphate.

This model has been successfully applied to Lake Washington, which

is close to Seattle. The model was able to approximately predict the devel-

opment of the observed phosphorus concentration (for further details see

the Pamolare Software, developed by United Nations Environmental

Program—International Environmental Technology Center (UNEP-IETC).

7.5. Eutrophication Models II: A Complex
Eutrophication Model

7.5.1. Eutrophication Models: An Overview

As expected, due to the importance of eutrophication in environmental

management, numerous eutrophicationmodels covering a wide spectrum

of complexity have been developed. As for other ecological models, the

right complexity of the model is dependent on the available data and the

ecosystem. Table 7.6 reviews various eutrophication models.
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Table 7.6 Various Eutrophication Models

Model
Name

Number of
St. Var. per
Layer or
Segment Nutrients Segments

Dimension
2L, 1D

CS
or
NC*

C
and/or
V**

Number
of Case
Studies

Vollenweider 1 P(N) 1 1L CS CþV many

Imboden 2 P 1 2L, ID CS CþV 3

O’Melia 2 P 1 1D CS C 1

Larsen 3 P 1 1L CS C 1

Lorenzen 2 P 1 1L CS CþV 1

Thomann 1 8 P,N,C 1 2L CS CþV 1

Thomann 2 10 P,N,C 1 2L CS C 1

Thomann 3 15 P,N,C 67 2L CS – 1

Chen&Orlob 15 P,N,C sev. 2L CS C min. 2

Patten 33 P,N,C 1 1L CS C 1

Di Toro 7 P,N 7 1L CS CþV 1

Biermann 14 P,N,Si 1 1L NC C 1

Canale 25 P,N,Si 1 2L CS C 1

J�rgensen 17–20 P,N,C, 1 1-2L NC CþV 26

Cleaner 40 P,N,C,Si sev. sev. L CS C many

Nyholm,

Lavsoe

7 P,N 1–3 1-2L NC CþV 25

Aster/

Melodia

10 P,N,Si 1 2L CS CþV 1

Baikal >16 P,N 10 3L CS CþV 1

Chemsee >14 P,N,C,S 1 profile CS CþV many

Minlake 9 P,N 1 1 CS CþV >10

Salmo 17 P,N 1 2L CS CþV 16

Notes:

*CS, constant stoichiometric; NC, independent nutrient cycle.
**C, calibrated; V, validated.
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Table 7.6 indicates the characteristic features of the models, the

number of case studies to which it has been applied (with some modi-

fication from case study-to-case study, as site-specific properties should

be reflected in the selected modification, unless the model is very sim-

ple), and whether the model has been calibrated and validated.

It is not possible to review all complex models in detail. Therefore,

one model among the more complex models has been selected and pre-

sented in detail here. Eutrophication models are illustrative examples

because they demonstrate quite clearly the ideas behind biogeochemi-

cal models. The calibration and validation of the selected model and

its use to develop scenarios will be discussed. The results demonstrate

what can be achieved by using ecological models, provided that suffi-

cient effort is expended to obtain good data and good ecological back-

ground knowledge about the modelled ecosystem.

The conceptual diagrams of the nutrient cycles are presented in

Figures 2.1 and 7.3. This model was developed for Lake Glums� —

a case study that has the following advantages:

1. The lake is shallow (mean depth 1.8 m) and no formation of a

thermocline takes place. The case study is thus relatively simple.

2. The lake is small (volume 420,000 m3) and well mixed, which implies

it is unnecessary for a model to consider hydrodynamics and it can

instead focus on ecological processes.

3. Retention time is short (<6 months), which means that any change

due to a management action can be observed fairly rapidly.

4. A radical change in nutrient input occurred in April 1981, and

subsequent water quality changes were observed (J�rgensen,

1986).

5. It is unique, in that a prediction of the water quality was published

before any changes actually took place (J�rgensen et al. 1978). It has

since been possible to validate this prediction.

6. The lake was intensely studied from 1973 to1984. The model is

therefore based on comprehensive data.

The success of this model has led to its application to at least 25 other

case studies — of course with the necessary modifications.

The Lake Glums� model is probably one of the most well-examined

eutrophication models. The results represent what is obtainable in
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relation to validation under almost unchanged loading, to accuracy in

predictions, and to general applicability. Therefore, these results are

emphasized in the following presentation.

The ecology of Lake Glums� was investigated before the model was

developed (J�rgensen et al. 1973). The phases in modelling develop-

ment presented in Chapter 2 were followed very carefully to obtain a

model with the predictive power needed for use as a management

instrument.

Figures 2.1 and 7.3 are the conceptual diagrams of the N- and P-flows

of the model. Many of the equations can be found in other eutrophication

models. It seems of little value to present all of the model’s equations, and

the following sections are devoted to the most characteristic features of

the model to illustrate typical modelling considerations. They are:

1. Independent cycling of N, P, and C, which is a result of the two-step

process description of phytoplankton growth.

2. A more detailed description of the water-sediment interactions is

extremely important for many lakes where a significant amount of

the nutrient is stored in the sediment.

3. The equation applied for the description of the grazing of

phytoplankton by zooplankton, which takes into account a threshold

concentration of phytoplankton and a carrying capacity of the lake.

The two steps describing the phytoplankton growth are (see also

Figure 7.4):

1. Uptake of nutrients according to Monod’s kinetics

2. Growth determined by the internal substrate concentration

In other words, independent nutrient cycles of phosphorus, nitrogen,

and carbon are considered. Phytoplankton biomass, as well as carbon,

phosphorus, and nitrogen in algal cellsmust be included as state variables,

all expressed in the units g/m3. This is more complex than the constant

stoichiometric approach, which is applied in most eutrophication models

(see Table 7.6). The most frequent equation applied for this approach is:

Growth of phytoplankton ¼ mmax min ðNS=ðkn þNSÞ, ðPS=ðPSþ kpÞ ð7:17Þ

where mmax is the maximum growth rate and kn and kp are Michaelis-

Menten half saturation constants. It presumes that phosphorus and
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nitrogen (and maybe also silica and carbon) are taken up in a given ratio.

J�rgensen (1976a) showed that it was impossible to obtain an accurate

time at which themaximumphytoplankton concentration and production

occurred using the simpler noncausal Monod’s kinetic for phytoplankton

growth. The proportions of nitrogen and phosphorus in both zooplankton

and fish should be included in the model to ensure element conservation.

The two-step phytoplankton growth (see Figure 7.4) is described using a

growth rate coefficient mmax, which is limited by four factors:

1. A temperature factor:

FT1 ¼ expðAðT� ToptÞÞ ðTmaxTÞ=ðTmax � ToptÞAðTmax � ToptÞ ð7:18Þ
where A, Topt, and Tmax are species dependent constants. T is

temperature.

2. A factor for intracellular nitrogen, NC:

FN3 ¼ I�NCmin=NC ð7:19Þ
3. A parallel factor for intracellular phosphorus:

FP3 ¼ I� PCmin=PC; and similarly ð7:20Þ
4. A factor for intracellular carbon:

FC3 ¼ 1� CCmin=CC ð7:21Þ

PS PA

NS NA

CS CA

Light

Phytoplankton

FIGURE 7.4 The two-steps model of phytoplankton growth. The first step is uptake of nutrients PS, NS,

and CS, followed by a growth of phytoplankton, which is dependent on the nutrient concentrations

in the phytoplankton cells, PA, NA, and CA. The carbon uptake is dependent on the light, while the

uptake of phosphorus and nitrogen can take place even in darkness. It is a more physiologically correct

description of phytoplankton growth than the equations (7.17)
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The phytoplankton growth is limited only by the minimum of the last

three factors. It means that we have:

dPhyt=dt ¼ mmaxFT1�minðFP3, FN3, FC3Þ ð7:22Þ
NC, PC, and CC are determined by nutrient uptake rates:

UC ¼ UCmaxFC1�FC2�FRAD ð7:23Þ
UN ¼ UNmaxFN1�FN2 ð7:24Þ
UP ¼ UPmax�FP1�FP2 ð7:25Þ

where UCmax, UNmax, and UPmax are species-dependent constants

(maximum uptake rates); generally, UCmax will be greater the smaller

the size of the considered phytoplankton. FCI, FNI, and FPI are expres-

sions that give the limitations in uptake:

FC1 ¼ ðFCmax � FCAÞ=ðFCAmax � FCAminÞ ð7:26Þ
FN1 ¼ ðFNmax � FNAÞ=ðFNAmax � FNAminÞ ð7:27Þ
FP1 ¼ ðFPmax � FPAÞ=ðFPAmax � FPAminÞ ð7:28Þ

where FCAmax, FCAmin, FNAmax, FNAmin, FPAmax, and FPAmin are con-

stants indicating the maximum and minimum contents, respectively,

of nutrients in phytoplankton. FCA, FNA, and FPA are determined as

CC/PHYT, NC/PHYT, and PC/PHYT. FC2, FN2, and FP2 give the limita-

tions in uptake caused by the nutrient level in the lake water:

FC2 ¼ C=ðKCþ CÞ ð7:29Þ
FN2 ¼ NS=ðNSþ KNÞ ð7:30Þ
FP2 ¼ PS=ðPSþ KPÞ ð7:31Þ

C, NS, and PS are the concentrations of soluble inorganic forms in the

water of carbon, nitrogen, and phosphorus. These expressions are in

accordance with the Michaelis-Menten formulation. KC, KN, and KP

are half-saturation constants. FRAD is a complex expression, covering

the influence of solar radiation. This influence is integrated over depth

and the self-shading effect is included.

The intracellular nitrogen, phosphorus, and carbon can now be

determined by differential equations:

dNC=dt ¼ UN�PHYT� ðSA þ GZ=FþQ=VÞNC ð7:32Þ
dPC=dt ¼ UP�PHYT� ðSA þ GZ=FþQ=VÞPC ð7:33Þ

dCC=dt ¼ UC�PHYT� ðSA þ RESPþ GZ=FþQ=VÞCC ð7:34Þ
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where PHYT is the phytoplankton concentration, GZ, is the grazing rate

corresponding to gross zooplankton growth, F is a yield factor (approxi-

mately 2/3, i.e., zooplankton utilizes 66.7% of the food), Q is the outflow

rate, SA is the settling rate (day-1), and V is the volume. RC is the respi-

ration rate, found as:

RC ¼ RCmaxðCC=CCmaxÞ2=3 ð7:35Þ
A more detailed sediment submodel is another characteristic feature

of the presented model. As the sediment accumulates nutrients, it is

important to describe quantitatively the processes determining the mass

flows from sediment to water, particularly in shallow lakes, where the

sedimentmay contain themajor part of nutrients. Towhat extent will accu-

mulated compounds in the sediment be redissolved in the lake water? The

exchange processes between mud and water of phosphorus and nitrogen

have been extensively studied, as these processes are important for the

eutrophication of lakes. Several of the very early developed models did

not consider the importance of these sediment water interactions and

ignored the exchange of nutrients between mud and water. As pointed

out by J�rgensen, Kamp-Nielsen, and Jacobsen (1975), this will inevitably

produce a poor result. Ahlgren (1973) applied a constant flow of nutrients

between sediment and water, and Dahl-Madsen and Strange-Nielsen

(1974) used a simple first-order kinetic to describe the exchange rate.

A more comprehensive submodel (Figure 7.5) for the exchange of

phosphorus has been developed by J�rgensen et al. (1975). The settled

Water

Sediment

Sdetritus
Sedimentation

Resuspension

Diffusion

Ps

Pi
PePne

Snet

S

FIGURE 7.5 Sedimentation, S, divided into Sdetritus and Snet. Pne, nonexchangeable phosphorus in

unstabilized sediment; Pe, exchangeable phosphorus in unstabilized sediment; Pi, phosphorus in

interstitial water; and Ps, dissolved phosphorus in water.
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material, S, is divided into Sdetritus and Snet, the first is mineralized by

microbiological activity in the water body, and the latter is material

actually transported to the sediment. Snet can also be divided into two

flows:

Snet ¼ Snet, s þ Snet, e ð7:36Þ
where Snet,s ¼ flow to the stable nonexchangeable sediment, and Snet,e ¼
mass flow to the exchangeable unstable sediment.

Correspondingly, Pne and Pe — nonexchangeable and exchangeable

phosphorus concentrations — both based on the total dry matter in

the sediment, can also be distinguished. An analysis of the phosphorus

profile in the sediment (Figure 7.6) produces the ratio, (f), of the

exchangeable to the total settled phosphorus:

f ¼ ðSnet � Snet, sÞ=Snet ¼ Snet, e=Snet ð7:37Þ

and dPe=dt ¼ a f Snet, e � K5�PeK6
ðT�20Þ ð7:38Þ

0
0 1 2 3 4 5 6

5

10

15

A B

C

LUL

g P/kg D:M:

FIGURE 7.6 Analysis of core from Lake Esrom. mg P/g dry matter is plotted against the depth. The area

C represents exchangeable phosphorus, f ¼ (B.A-1), and LUL is the unstabilized layer.
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where a ¼ factor for converting water concentration units to concentra-

tion units in the sediment (mg P kg-1 DM). Snet,e is found from sediment

profile studies. The increases of the stabilized sediment are found by

numerous methods — the application of lead isotopes, for example, is

a fast and reliable method. Exchangeable phosphorus is mineralized

similarly to detritus in a water body, and a first-order reaction as indi-

cated gives a reasonably good description of the conversion of Pe into

interstitial phosphorus, Pi: K5*PeK6
(T-20), where K5 ¼ a rate coefficient,

K6 ¼ a temperature coefficient, and T ¼ temperature.

Finally, the interstitial phosphorus, Pi, is transported by diffusion

from the pore water to the lake water. This process, which has been

studied by Kamp-Nielsen (1975), can be described following the empir-

ical equation (valid at 7oC):

Release of P ¼ 1:21 ðPi � PsÞ � 1:7 ðmg P m�2 24h�1Þ ð7:39Þ

where Ps is the dissolved phosphorus in the lake water.

It thus turns out that:

d Pi=dt ¼ K5�PeK6
ðT�20Þ � ð1:21ðPi � PsÞ � 1:7Þ � T=280 ð7:40Þ

T is the absolute temperature as the release rate was found to be pro-

portional to T. Notice that the phosphorus released from the sediment

is diluted in the lake water corresponding to the ratio between the active

sediment layer and the depth of the lake — see also the four state vari-

able eutrophication model presented in Section 7.3.

This submodel was validated in three case studies (J�rgensen et al.,

1975) examining sediment cores in the laboratory. Kamp-Nielsen

(1975) added an adsorption term to these equations.

A similar submodel for the nitrogen release has been set up by

Jacobsen and J�rgensen (1975). The nitrogen release from sediment is

expressed as a function of the nitrogen concentration in the sediment

and the temperature, considering both aerobic and anaerobic conditions.

The grazing on phytoplankton by zooplankton, Z, and the predation

on zooplankton by fish, F, are both expressed by a modified Monod

expression:

mZ ¼ mZmaxðPHYT� GLÞ=ðPHYT� KAÞ ð7:41Þ
mF ¼ mFmaxðZOO� KSÞ=ðZOO� KZÞ ð7:42Þ
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where GL, KA, KS, and KZ are constants. These expressions are accord-

ing to Steele (1974). GL and KS express the very low concentrations at

which grazing and predation do not take place. The time to find the

food and the energy spent on searching after food is simply too high

at low concentration.

The following points in the model were changed from 1979 to 1983

and this gave a better validation:

1. FC3, FN3, and FP3 were changed to:

ðCC� CCminÞ=ðCCmax � CCminÞ ð7:43Þ

and similarly for FN3 and FP3.

2. The Topt in the temperature factor was changed to the actual

temperature in the lake water during the summer months to allow

for temperature adaptation.

3. The temperature dependence of phytoplankton respiration was

changed to an exponential expression.

4. RC was changed to:

RC ¼ RCmax CC=CCmax ð7:44Þ

The exponent 2/3 in Eq. (7.35) is valid for individual cells as the

surface is approximately proportional to the weight or volume of

the cells, but since phytoplankton concentration is used here,

application of the exponent 2/3 is irrelevant.

5. As previously mentioned, only part of the settled phosphorus is

exchangeable. In the Lake Glums� study it was found that 15%

of the settled phosphorus was nonexchangeable to account for

the observed phosphorus profile in the sediment. In the new

version, exchangeable and nonexchangeable nitrogen were

also distinguished. These changes gave a better correspondence

between the modelled and the observed nitrogen balance.

6. A carrying capacity of zooplankton was introduced to give a better

simulation of zooplankton and phytoplankton. Carrying capacities

are often observed in ecosystems (see Eq. 2.4), but their necessity in

this case may be because of a simulation of the grazing process that

is too simple. Phytoplankton might not be grazed by all

zooplankton species present, and some species might use detritus
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as a food source. The zooplankton growth rate, mZ, is computed in

accordance with these modifications as:

mZ ¼ mZmax�FPH�FT2�F2CK ð7:45Þ

where FPH ¼ (PHYT � GL)/( PHYT � KA) — see the expression

Eq. (7.41) — FT2 is a temperature regulation expression, and F2CK

accounts for carrying capacity:

F2CK ¼ 1� ZOO=CK ð7:46Þ
where CK ¼ 26 mg=L ð7:47Þ

was chosen in this case.

An intensive measuring period was applied to improve parameter

estimation as described in Chapter 2. The results of this effort can be

summarized as follows:

(A) The previously applied expression for the influence of temperature on

phytoplankton growth — a simple Arrhenius expression 1.05(T -20) —

produced unacceptable parameters with standard deviations that

were too high. A better expression, Eq. (7.18), was introduced as a

result of the intensive measuring period.

(B) It was possible to improve the parameter estimation, which gives, for

some of the parameters, more realistic values. Whether this would give

an improved validation when observations from a period with drastic

changes in the nutrients loading are available could not be stated.

(C) Two zooplankton state variables based on phytoplankton grazing and

detritus feeding were tested but did not produce any advantages.

(D) The other expressions applied for process descriptions were

confirmed.

It is necessary to validate models against an independent set of mea-

surements. No general method of validation is available, but almost the

same method suggested by WMO (1975) for validation of hydrological

models was applied for this model. Table 7.7 provides results of the val-

idation improved as described previously. The following numerical vali-

dation criteria were applied:
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Table 7.7 Numerical Validation of the Described Model

Validation Criteria State Variable Value

Y All 0.31

R Ptotal (P4) 0.26

R Psoluble (PS) 0.16

R Ntotal (N4) 0.02

R Nsoluble (NS) 0.14

R Phytoplankton

(CA) 0.10

R Zooplankton (Z) 0.27

R Production 0.03

A Ptotal (P4) 0.12

A Psoluble (PS) 0.18

A Ntotal (N4) 0.07

A Nsoluble (NS) 0.03

A Phytoplankton (CA) 0.15

A Zooplankton (Z) 0.00

A Production 0.08

TE Ptotal (P4) 105 days

TE Psoluble (PS) 60 days

TE Ntotal (N4) 15 days

TE Nsoluble (NS) 15 days

TE Phytoplankton, (CA) 0 days*

120 days**

TE Zooplankton (Z) 60 days

TE Production 0 days

Notes:

*Based on measuring suspended matter 1–60 mm.
**Based on chlorophyll.
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1. Y, coefficient of variation of the residuals of errors for the state

variables for the validation period, defined as:

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�yc � ymÞ2

q
n Ya,m

ð7:48Þ

where yc ¼ calculated values of the state variables, ym ¼ measured

values of the state variables, n ¼ number of comparisons, and Ya,m ¼
average of measured values over the validation period.

(2) R, the relative error of mean values:

R ¼ ðYa, c � Ya,mÞ=Ya,m ð7:49Þ
where Ya,c is the average ofmeasured values over the validation period.

(3) A, the relative error of maximum values:

A ¼ ðYmax, c � Ymax,mÞ=Ymax,m ð7:50Þ
where Ymax,c is themaximumvalue of the calculated state variable in the

validation period, and Ymax,m is the maximum value of the measured

state variable in the validation period. A for the phytoplankton

concentration or the production (dPhyt/dt) are often considered the

most important validation criteria, as they describe the “worst-case”

situation. This is also often reflected in validations of prognoses.

(4) TE, timing error:
TE ¼ Date of Ymax, c � date of Ymax,m ð7:51Þ

Y, R, and A produce the errors in relative terms. By multiplying by

100, the errors are obtained as a percentage. The standard deviation,

Y, for all measured state variables, is 31%. It is the standard

deviation for one comparison of model value and measured value.

As the standard deviation for a comparison of n sets of model values

and measured values is
ffiffiffi
n

p
times smaller and n is in the order of

225, the overall average picture of the lake is given with a standard

deviation of about 2%, which is acceptable. Y is generally 5 times

larger for hydrodynamics models (WMO, 1975).

The relative errors of mean values, R, are 3% for production, 10% for

phytoplankton, and 2% for nitrogen — all acceptable values. The rela-

tive error for total phosphorus is 26% and for zooplankton 27%, which

must be considered too high. The relative errors of the maximum

values, A, are from 0 to 18%, which is acceptable. The ability of the

model to predict maximum production and maximum phytoplankton

concentration has special interest for a eutrophication model; the rela-

tive errors of 8 and 15%, respectively, are fully acceptable.
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The ability to predict the time whenmaximum values occur is expressed

by using TE. Production and phytoplankton (use for suspendedmatter 1–60

m) have good agreement between model values and measured values. TE

for total and soluble nitrogen is also acceptable, while the zooplankton

and phosphorus values are on the high side. All in all the validation has

demonstrated that the model should have value as a predictive tool,

although the dynamics of phosphorus and zooplankton could be improved.

The changes in the model made between 1979 and 1983 included the

six points mentioned earlier and improved the validation further, as Y

was reduced from 31 to 16%.

As mentioned in the introduction to this model, it has been applied

with modifications to 25 other case studies. The changes in the model

were all based on ecological observations. Table 7.8 reviews the modifi-

cations needed in the 25 case studies to get a workable model. By cali-

bration carried out according to Chapter 2, it was found that the most

crucial parameters were all in the range of values found in the literature.

Note that the parameters were all found by:

1. Using literature values as initial guesses (see J�rgensen, S.E., Nors

Nielsen and L.A. J�rgensen, 1991 and J�rgensen, L.A. Nors Nielsen

and S.E. J�rgensen, 2000)

2. Using frequent measuring periods to get good first estimations of

parameters

3. A first rough calibration of the model to improve parameter

estimations

4. Use of an automatic calibration procedure to allow a finer calibration

of 6–8 of the most important (most sensitive to the phytoplankton

concentration) parameters with ranges partly based on the frequent

measurements. This procedure was repeated at least twice and only

when the same parameter values were found was the calibration

considered satisfactory.

The presented model and other models of similar complexity are

widely applied as environmental management tools. They represent

what can be achieved by the use of ecological models, provided all steps

of the procedure shown in Section 2.3 are carefully included in the

model development. Eutrophication models represent the type of eco-

logical model that has received most attention and effort during the last
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Table 7.8 Survey of Eutrophication Studies Based Upon the Application of a
Modified Glums� Model

Ecosystem Modification Level*

Glums�, version A Basis version 7

Glums�, version B Nonexchangeable nitrogen 7

Ringk�bing Firth Boxes, nitrogen fixation 5

Lake Victoria Boxes, thermocline, other food chain 4

Lake Kyoga Other food chain 4

Lake Mobuto Sese Seko Boxes, thermocline, other food chain 4

Lake Fure Boxes, nitrogen fixation, thermocline 7

Lake Esrom Boxes, Si-cycle, thermocline 4

Lake Gyrstinge Level fluctuations, sediment exposed to air 4–5

Lake Lyngby Basis version 6

Lake Bergunda Nitrogen fixation 2

Broia Reservoir Macrophytes, 2 boxes 2

Lake Great Kattinge Resuspension 5

Lake Svogerslev Resuspension 5

Lake Bue Resuspension 5

Lake Kornerup Resuspension 5

Lake S�bygaard SDM 7

Lake Balaton Adsorption to suspended matter 2

Roskilde Fjord Complex hydrodynamics 4

Lagoon of Venice Ulva/Zostera competition 6

Lake Annone SDM 6

Lake Balaton SDM 6

Lake Mogan, Ankara Only P cycle, competition submerged vegetation/

phytoplankton þ SDM

6

Stadsgraven,

Copenhagen

4–6 interconnected basins 5 (level 6: 93)

Internal lakes of

Copenhagen

5–6 interconnected basins 5

SDM, Structurally Dynamic Model.

for*, see p. 207
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35 years. The results reflect what could be obtained for all ecosystem

models, if sufficient effort is used in their examination and

development.

Level 1: Conceptual diagram selected

Level 2: Verification carried out

Level 3: Calibration using intensive measurements

Level 4: Calibration of entire model

Level 5: Validation — object function and regression coefficient are

found

Level 6: Validation of a prognosis for significant changed loading or

development of structurally dynamic models (SDMs)

Level 7: Validation of a prognosis and development of SDMs

As the validation was acceptable, the model was applied to predict

the production, phytoplankton concentration, and transparency under

conditions in which the phosphorus input to the lake was reduced

90%. Such a reduction was easy to achieve by a well-controlled chemical

precipitation. Before the reduction of the phosphorus input, the lake

was very eutrophied, which can be seen by the following typical

observations:

Total P g/m3: 1.1

Phytoplankton concentration peak value: (mg chl. a/m3) 850

Production (g C/(m2 year)) 1050

Minimum transparency at spring bloom (m) 0.18

Fortunately, the water residence time of Lake Glums� is only 6

months, so it was possible to validate the simulation properly within a

few years. A comparison of the prediction and the actual observations

after 90% reduction of the phosphorus input is shown in Table 7.9.

The standard deviations indicated in the table are for the prediction

based on the validation results shown earlier and for the measurement

based on a general determination of the standard deviations for mea-

surement on 10%, relatively.

The prediction validation is fully acceptable except for the daily pro-

duction (g C/(m2 24h)) at spring bloom during the second year. In the

beginning of the second year, the phytoplankton species shifted from

Scenedesmus to various species of diatoms. It is always more difficult

Chapter 7 • Dynamic Biogeochemical Models 207



 

to predict accurately a rate, such as production, than a state variable,

such as phytoplankton.

The shift implied that the well-determined parameters for phyto-

plankton were no longer valid, which may explain the discrepancy

between the prediction and the observations, particularly the second

year after reducing the phosphorus loading. However, the shift

has clearly demonstrated the need for a structurally dynamic

modelling approach, as discussed in Chapter 10 (see also J�rgensen

et al., 2004).

7.6. Model of Subsurface Wetland

The model presented in this section very clearly illustrates the basic

ideas behind biogeochemical models. It was developed as a result of a

Danida project promoting the cooperation between Copenhagen and

Dar es Salaam University in Tanzania. Later, the UNEP-IETC developed

software based on this model that could be used by developing

Table 7.9 Validation of the Prognosis for Glums� Lake

Prediction Measurements

Comparison of: Time Value St. Dev. Value St. Dev.

Min. transparency 1 year 0.20 m 0.03 0.20 m 0.02

Min. transparency 2 year 0.30 m 0.05 0.25 m 0.025

Min. transparency 3 year 0.45m 0.07 0.50 m 0.05

Max. production 2 year 6.0 gC/24hm2 0.3 11.0 gC/24hm2 1.1

Max production 3 year 5.0 gC/24hm2 0.3 6.2 gC/24hm2 0.6

Max. chl.a. 1 year 750 mg/m3 112 800 mg/m3 80

Max. chl.a 2 year 520 mg/m3 78 550 mg/m3 55

Max. chl.a 3 year 320 mg/m3 48 380 mg/m3 38

Annual production 2 year 720 gC/y m2 15* 750 gC/y m3 19*

Annual production 3 year 650 gC/y m3 13* 670 gC/y m3 17*

Notes:

*A standard deviation of 8% is used for the prognosis divided by √15 and 10% divided by √15 for the measurements,

because the determination of the annual production is based on 15 measurements and 15 prognosis values.
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countries to design subsurface wetlands. The software was called Sub-

wet. Fleming College, the center for alternative waste water treatment,

wanted to use the software for wetland design in cold climates, so they

supported further development of the software to be applied both for

warm and cold climates. This version of the software is denoted Sub-

wet 2.0 and it is available for download from the home page of UNEP-

IETC (2009). See also J�rgensen, Chon, and Recknagel (2009). The model

presentation in the next section follows the Sub-wet 2.0 manual used as

the basis for the model information.

The scope of the model is to design and manage a subsurface wet-

land based on defined removal efficiencies of organic matter (expressed

in terms of BOD5), nitrate, ammonium, organic nitrogen, and phospho-

rus. Thus, it is necessary to know the:

1. Water flow

2. Concentrations of the previously mentioned constituents in the

water

3. Required removal efficiencies for these constituents (i.e., their

concentrations in the treated water).

The modelled subsurface wetland consists of a constructed or a nat-

ural wetland area. The constructed wetland has gravel soil, ensuring a

good water flow through the wetland. The core design parameter is

the area and the volume of the wetland (denoted V and A).

The conceptual diagram of the model is presented in Figures 7.7–7.9.

Figure 7.7 illustrates the organic matter sub-model, while Figure 7.8 illus-

trates the nitrogen submodel with three different nitrogen compounds

(organic nitrogen, ammonium and nitrate). Figure 7.9 illustrates the phos-

phorus submodel. The model state variables are: BOD5, nitrate (NIT),

ammonium (AMM), total phosphorus (TP), and organic nitrogen (ORN)

in 5 successive boxes, denoted A, B, C, D, and E. Totally, the model has

25 state variables, all using the units mg/L or g/m3:

BOD5-A, BOD5-B, BOD5-C, BOD5-D. BOD5-E (mg O2/L)

NIT-A, NIT-B, NIT-C, NIT-D, NIT-E (mg N/L)

AMM-A, AMM-B, AMM-C, AMM-D, AMM-E (mg N/L)

TPO-A, TPO-B, TPO-C, TPO-D, TPO-E (mg P/L)

ORN-A, ORN-B, ORN-C, ORN-D, ORN-E (mg N/L)
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The model variables are expressed by three letters (e.g., NIT for

nitrate), followed by IN, OUT, or A,B,C,D,E, with the parameters using

two letters.

The model has the following forcing functions, which the user must

specify for a given model run:

Volume of wetland (m3; possible range 10–10,000,000)

Flow of water (QIN, expressed as m3/24 h; possible range 1–

1,000,000)

Porosity (as fraction of POR; no unit; range 0�–1; default value 0.46)

Input concentration of BOD5 (BOD-IN; mg O2/L; range 0–1000)

Input concentration of ammonium (AMM-IN; mg N/L; range 0–100)

Input concentration of nitrate (NIT-IN; mg N/L; range 0–100)

Input concentration of total phosphorus (TPO-IN; mg P/L; range

0–50)

Concentration in of organic nitrogen (ORN-IN; mg N/L

(range 0–200)

Fraction of BOD5 as suspended matter (POM; no unit; range 0–1)

Fraction of organic-N matter as suspended matter (PON; no unit)

Fraction of phosphorus as suspended matter (POP; no unit)

Average oxygen concentration in Box A (AOX; mg/L; range 0–20)

Average oxygen concentration in Box B (BOX; mg/L; range 0–20)

Average oxygen concentration in Box C (COX; mg/L; range 0–20)

Average oxygen concentration in Box D (DOX; mg/L; range 0–20)

Average oxygen concentration in Box E (EOX; mg/L; range 0–20)

Default value for AOX, BOX, COX, DOX, EOX ¼ 0.4 mg/L

Average Temperature (TEMP; as function of time; daily average

temperature is listed for the number of days to be simulated with the

model)

The length of model simulations must be indicated as number

of days.

The following forcing functions are calculated, and included in the

forcing function table, along with the forcing functions:

Retention time, RTT (¼ VOL*POR/Q; 24h)

Retention time per box, RTB (¼ RTT/5; 24h)

Box volume, BOV (¼ VOL*POR/5)
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7.6.1. Process Equations

A continuous transfer takes place from one state variable to another in the

model simulations. This section identifies the processes that take place in

the subsurface wetland. It is noted that the same processes take place in

each box, although the concentrations are different in each box. Thus, the

equations are repeated in themodel programwith an indicationof the con-

centrations in the five different model boxes — A,B,C,D, and E. All of the

processes are expressed by four letters, followed by A, B, C, D, or E,

corresponding to the five boxes. It is reiterated that the model expressions

are the same for each box, although the applied concentrations of the mod-

elledmaterials differ for each box. Exponent is expressed by the notation (^).

The following equations are repeated in each box with an indication

of the letters of the box (Figures 7.7–7.9):

BOD5-A

BOD5-B

BOD5-C

BOD5-D

BOD5-E

BOD5-out = BOD5-E-delay

BOD5-in

ORMD-A +
DENI-A*1.97

ORMD-B +
DENI-B*1.97

ORMD-C +
DENI-C*1.97

ORMD-D +
DENI-D*1.97

ORMD-E +
DENI-E*1.97

ORMD = decomposition of organic matter by oxidation
DENI* 1.97 = decomposition of organic matter by denitrification

FIGURE 7.7 The BOD5

submodel.
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Ammonification ¼ AMFI ¼ ORN*AC* TA^(TEMP-20)

Nitrification ¼ NIOX ¼ AMM*NC*INOX*TN ^(TEMP-20)/

(AMMþMA)

Oxidation of BOD5 ¼ ORMD ¼ BOD5*OC *INOO*TO ^(TEMP-20)

Denitrification ¼ DENI ¼ NIT*DC*TD ^(TEMP-20)/(NIT þ MN)

INOX-A ¼ AOX/(AOX þ KO), and so on for boxes B, C, D, and E, using

the notations BOX, COX, DOX, and EOX; however, KO is the same

parameter for all five boxes

INOO-A ¼ AOX/(AOX þ OO), and so on for boxes B, C, D, and E,

using the notations BOX, COX, DOX, and EOX; however, OO is the

same parameter for all five boxes.

Plant uptake of ammonium ¼ PUAM ¼ AMM*PA

ORN-A

ORN-B

ORN-C

ORN-D

ORN-E

AMM-A

AMM-B

AMM-C

AMM-D

AMM-E

NIT-A

NIT-B

NIT-C

NIT-D

NIT-E

ORN-in AMM-in NIT-in

AMFI-A

AMFI-B

AMFI-C

AMFI-D

AMFI-E

NIOX-A

NIOX-B

NIOX-C

NIOX-D

NIOX-E

DENI-B

DENI-C

DENI-D

DENI-E

DENI-A

ORN-out =
ORN-E-delay

AMM-out =
AMM-E-delay

NIT-out =
NIT-E-delay

AMFI = oxidation of organic N to ammonium.
NIOX = nitrification (ammonium-> nitrate.)
DENI = denitrification (nitrate -> dinitrogen<)

FIGURE 7.8 The nitrogen submodel illustrating the three nitrogen compounds (organic–N, ammonium,

and nitrate).
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Plant uptake of nitrate ¼ PUNI ¼ NIT*PN

Plant uptake of phosphorus ¼ PUPO-A ¼ TPO-A*PP*(1-POP) for box

A, while PUPO-B ¼ TPO-B*PP; PUPO-C ¼ TPO-C*PP; PUPO-D ¼
TPO-D*PP; and PUPO-E ¼ TPO-E*PP (note that the multiplication by

(1 � POP) only applied to box A)

Adsorption of phosphorus ¼ POAD-A ¼ TPO-A*(1-POP)*(POR) � AF*

(1-POR), if POAD>0; otherwise POAD ¼ 0 for box A, while the

following equation is applied for the other boxes: POAD ¼ TPO*POR –

AF*(1-POR).

The model uses delay values (i.e., the concentrations of the five con-

stituents in the five boxes during one box-retention time (RTB) earlier).

For example:

AMM-A-delay ¼ AMM-A at time t � RTB, when t>RTB; if t<RTB,

AMM-A-delay is 0.

TPO-in

TPO-out = TPO-E-delay

TPO = toal phosphorus PUPO = plant uptake of phopshorus
POAD = adsorption of phosphorus to the gravel.

TPO-A
POAD-A

POAD-B

POAD-C

POAD-D

POAD-E

PUPO-A

PUPO-B

PUPO-C

PUPO-D

PUPO-E

TPO-B

TPO-C

TPO-D

TPO-E

FIGURE 7.9 The phosphorus submodel.
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These equations are repeated for all five constituents in all five boxes,

and the delay concentrations are indicated with “-delay”.

Further, the simulated results also are used to determine the removal

efficiencies, which are also shown on graphs. They are found as func-

tion of time, as follows:

Efficiency of BOD5-removal (%) ¼ 100*(BOD5-in � BOD5-out)/

BOD5-in

Efficiency of Nitrate removal (%) ¼ 100*(NIT-in-NIT-out)/NIT-in

Efficiency of Ammonium removal (%) ¼ 100*(AMM-in-AMM-out)/

AMM-in

Efficiency of Organic-N removal (%) ¼ 100*(ORN-in � ORN-out) /

ORN-in

Efficiency of Nitrogen removal (%) ¼ 100* ((NIT-in þ AMM-in þ
ORN-in) � (NIT-out þAMM-out þ ORN-out))/(NIT-in þ AMM-in þ
ORN-in)

Efficiency of Phosphorus removal (%) ¼ 100*(TPO-in – TPO-out)/

TPO-in

7.6.2. Parameters

The model parameters are as follows: (The values correspond to the

parameters valid for warm climate conditions. Other parameters are

recommended for use in cold climate; see the software.

AC ¼ 0.05–0.8 [default value 0.5 (1/24h)]

NC ¼ 0.1–1.5 [default value 0.8 (1/24h)]

OC ¼ 0.05–0.8 [default value 0.5 (1/24h)]

DC ¼ 0.25–5 [default value 2.2 (1/24h)]

TA ¼ 1.02–1.06 [default value 1.04 (no unit)]

TN ¼ 1.02–1.07 [default value 1.047 (no unit)]

TO ¼ 1.02–1.06 [default value 1.04 (no unit)]

TD ¼ 1.05–1.12 [default value 1.09 (no unit)]

KO ¼ 0.1–2 [default value 1.3 (mg/L)]

OO ¼ 0.1–2 [default value 1.3 (mg/L)]

MA ¼ 0.05–2 [default value 1 (mg/L)]

MN ¼ 0.01–1 [default value 0.1 (mg/L)]

PA ¼ 0.00–1 [default value 0.01 (1/24h)]
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PN ¼ 0.00–1 [default value 0.01 (1/24h)]

PP ¼ 0.00–1 [default value 0.003 (1/24h)]

AF ¼ 0–100 [default value 1.0]

7.6.3. Differential Equations

The 25 differential equations in the model are as follows:

BOV*d BOD-5-A/dt ¼ QIN*BOD-IN � QIN*(1-POM)*BOD-A-delay �
BOV*ORMD-A-DENi-A*1.97

BOV*d BOD-5-B/dt¼QIN*(1-POM)*BOD-A-delay� BOV*ORMD-B�
QIN*BOD-B-delay � DENI-B*1.97

BOV*d BOD-5-C/dt ¼ QIN*BOD-B-delay � BOV*ORMD-C �
QIN*BOD-C-delay � DENI-C*1.97

B OV*d BOD-5-D/dt ¼ QIN*BOD-C-delay � BOV*ORMD-D �
QIN*BOD-D-delay � DENI-D*1.97

BOV*d BOD-5-E/dt ¼ QIN*BOD-D-delay � BOV*ORMD-E �
QIN*BOD-E-delay � DENI-E*1.97 (QIN*BOD-E-delay indicates

BOD5-OUT, which is eventually shown on a graph, together with

measured values of the BOD5-OUT, while BOD5-A, B, C, D, and E are

shown in a table as function of time)

BOV*dNIT-A/dt ¼ QIN*NIT-IN � QIN*NIT-A-delay � BOV*DENI-A þ
BOV*NIOX-A � BOV*PUNI-A;

BOV*dNIT-B/dt¼QIN*NIT-A-delay� BOV*DENI-Bþ BOV*NIOX-B�
BOV*PUNI-B � QIN*NIT-B-delay

BOV*dNIT-C/dt ¼ QIN*NIT-B-delay � BOV*DENI-C þ BOV*NIOX-C �
BOV*PUNI-C � QIN*NIT-C-delay

BOV*dNIT-D/dt¼QIN*NIT-C-delay� BOV*DENI-Dþ BOV*NIOX-D�
BOV*PUNI-D � QIN*NIT-D-delay

BOV*dNIT-E/dt¼QIN*NIT-D-delay� BOV*DENI-Eþ BOV*NIOX-E�
BOV*PUNI-E � QIN*NIT-E-delay (QIN*NIT-E-delay indicates NIT-

OUT, which is eventually shown on a graph, together with measured

values of NIT-OUT, while NIT-A, NIT-B, NIT-C, NIT-D, and NIT-E are

all shown in a table as a function of time)

BOV*dAMM-A/dt ¼ QIN*AMM-IN � QIN*AMM-A-delay �
BOV*NIOX-A þ BOV*AMFI-A � BOV*PUAM-A

BOV*dAMM-B/dt ¼ QIN*AMM-A-delay þ BOV*AMFI-B �
BOV*NIOX-B � BOV*PUAM-B � QIN*AMM-B-delay
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BOV*dAMM-C/dt ¼ QIN*AMM-B-delay þ BOV*AMFI-C �
BOV*NIOX-C � BOV*PUAM-C � QIN*AMM-C-delay

BOV*dAMM-D/dt ¼ QIN*AMM-C-delay þ BOV*AMFI-D �
BOV*NIOX-D � BOV*PUAM-D � QIN*AMM-D-delay

BOV*dAMM-E/dt ¼ QIN*NIT-D-delay þ BOV*AMFI-E �
BOV*NIOX-E � BOV*PUNI-E � QIN*AMM-E-delay (QIN*AMM-E-

delay indicates AMM-OUT, which is eventually shown on a graph,

together with measured values of AMM-OUT, while AMM-A, AMM-B,

AMM-C, AMM-D, and AMM-E are all shown in a table as a function

of time);

BOV*dORN-A/dt ¼ QIN*ORN-IN � QIN*(1-PON)*ORN-A-delay �
BOV*AMFI-A

BOV*dORN-B/dt ¼ QIN*ORN-A-delay � BOV*AMFI-B � QIN*ORN-

B-delay

BOV*dORN-C/dt ¼ QIN*ORN-B-delay � BOV*AMFI-C � QIN*ORN-

C-delay

BOV*dORN-D/dt ¼ QIN*ORN-C-delay � BOV*AMFI-D � QIN*ORN-

D-delay

BOV*dORN-E/dt ¼ QIN*ORN-D-delay � BOV*AMFI-E � QIN*ORN-

E-delay (IN*ORN-E-delay indicates ORN-OUT, which is eventually

shown on a graph, together with measured values of ORN-OUT,

while ORN-A, ORN-B, ORN-C, ORN-D, and ORN-E are all shown in a

table as a function of time)

BOV*dTPO-A/dt ¼ QIN-TPO-IN � QIN*(1-POP)*TPO-A-delay �
BOV*PUPO-A-BOV*POAD-A

BOV*dTPO-B/dt ¼ QIN*(1-POP)*TPO-A-delay � BOV*PUPO-B -

BOV*POAD-B � QIN*TPO-B-delay

BOV*dTPO-C/dt ¼ QIN*TPO-B-delay � BOV*PUPO-C � BOV*POAD-

C � QIN*TPO-C-delay

BOV*dTPO-D/dt ¼ QIN*TPO-C-delay � BOV*PUPO-D �
BOV*POAD-D � QIN*TPO-D-delay

BOV*dTPO-E/dt ¼ QIN*TPO-D-delay � BOV*PUPO-E � BOV*POAD-

E � QIN*TPO-E-delay (QIN*TPO-E-delay indicates TPO-OUT, which

is eventually shown on a graph, together with measured values of

TPO-OUT, while TPO-A, TPO-B, TPO-C, TPO-D. and TPO-E are all

shown in a table as a function of time).
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7.6.4. Model Results

As previously mentioned, the simulated values of BOD5-out, nitrate-out

(NIT-out), ammonium-out (AMM-out), total phosphorus-out (TPO-

out), and organic nitrogen-out (ORN-out) are shown in the form of

tables and graphs. If the measured values are available, then they are

shown on the same graphs to allow for a direct comparison.

The simulated results of the removal efficiencies also are shown on

graphs, including:

Efficiency of BOD5-removal (%)

Efficiency of nitrate removal (%)

Efficiency of ammonium removal (%)

Efficiency of organic-N removal (%)

Efficiency of nitrogen removal (%)

Efficiency of phosphorus removal (%)

It also may be useful to include the predicted concentrations of the

five constituents in the five boxes as a means of illustrating where the

removal processes are most effective in the wetland and where they

are less effective. It may be possible to apply such information to

improve the overall removal efficiencies by imposed changes in the

composition of the waste water, or by changes directly in the wetland

(e.g., addition of oxygen). The predicted concentrations in the boxes

obtained with the model simulations are listed in a table for each day

in the simulation period as follows: BOD5-A, BOD5-B, BOD5-C, BOD5-

D, BOD5-E, NIT-A, NIT-B, NIT-C, NIT-D, NIT-E, AMM-A, AMM-B,

AMM-C, AMM-D, AMM-E, TPO-A, TPO-B, TPO-C, TPO-D, TPO-E,

ORN-A, ORN-B, ORN-C, ORN-D, and ORN-E.

7.6.5. Practical Information About Forcing Functions and
Parameters

Usually, the model is applied to design a wetland that has not yet been

constructed. Thus, it is recommended that the following information is

obtained to indicate the forcing functions:

1. Measure the temperature every 6 hours, for example, in a shallow

aquatic ecosystem (i.e., before the wetland is constructed, and directly
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in the wetland after it has been constructed) to get an initial indication

of the temperature variations. Alternatively, use some other local

temperature measurements. Find the daily average temperature to be

listed on the forcing function screen image. Although the temperature

expression is not linear, using the average daily temperature for the

temperature expression applied herein is only a minor error.

2. Use the default values indicated when no information about the

forcing functions is available.

3. For the uptake rate coefficients of nutrients (nitrate, ammonium, and

phosphorus; PA, PN, and PP), use knowledge about the phosphorus

(P) and nitrogen (N) content and the growth rate of plants that will

be applied in the wetland.

7.6.6. Use of the Model for Wetland Design

If the model is used to design a wetland that has not yet been con-

structed, then the concentrations in the wetland, the water flow through

the wetland, and the expected concentrations after wetland treatment

should be known. The model is then used to predict the results for

simulating different volumes. The simulated results that meet the cri-

teria for the treated water are used, and the corresponding volume is

used for the design. It is recommended that a volume 10–15% greater

than that predicted with this method be used to take into account the

uncertainties of the model. Further, a depth of 0.6–1.00 m is used and

a maximum flow rate of about 1.25 m/h applied in order to determine

the width and length of the wetland.

7.7. Global Warming Model

Global climate change due to the emission of greenhouse gases such as

carbon dioxide, methane, and nitrogen oxides is probably the environ-

mental problem that has attracted most recent attention. It is therefore

not surprising that many models have been developed to predict the

temperature change as a result of the emission of greenhouse gases.

Some of the global warming models are extremely complex and detailed.

They consider not only the change of the average global temperature but

also how the temperature is distributed geographically. These models are

usually developed by climatologists and require an enormous computer
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capacity. It is, however, sufficient to reveal a relationship between the

emission of greenhouse gases and the global average temperature, which

can be done by much smaller models. A global warming model that can

predict the increase of the global average temperature is presented in this

section to illustrate an ecological modelling approach for this central

environmental problem. The model is developed using of STELLA and

the diagram is shown in Figure 7.10. The model equations using the

STELLA format are shown Table 7.10. The model has the following state

variables:

FIGURE 7.10 The global

warming model presented in

Section 7.6.
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Table 7.10 The Global Warming Model: Equations in the STELLA Format

CO2A(t) ¼ CO2A(t - dt) þ (FFC þ DEC þ RES - ASS - FLO) * dt
INIT CO2A ¼ 775
INFLOWS:
FFC ¼ 6*FTIME*1.02^TIME
DEC ¼ DETR*66*1.05^(TEMP-15.2)/1500
RES ¼ 0.5*ASS
OUTFLOWS:
ASS ¼ (120*13*CO2C)/(7*(CO2Cþ300))*(NLIT/865)*1.05^
(TEMP-15.2)
FLO ¼ 0.15*CO2M*(((CO2A-775)/CO2A)/(Keel))
CO2DS(t) ¼ CO2DS(t - dt) þ (DIF6) * dt
INIT CO2DS ¼ 92094
INFLOWS:
DIF6 ¼ 3987*((CO2M6/125-CO2DS/2800)/(2800))*(TEMP/
15.2)̂ 0.5
CO2M(t) ¼ CO2M(t - dt) þ (FLO þ REZ þ REM - GRO - DIF1) * dt
INIT CO2M ¼ 2466.8
INFLOWS:
FLO ¼ 0.15*CO2M*(((CO2A-775)/CO2A)/(Keel))
REZ ¼ ZOOP*10*1.05 (̂TEMP-15.2)
REM ¼ 0.02*DTEM*1.05^(TEMP-15.2)
OUTFLOWS:
GRO ¼ PHYT*(1-PHYT/20)*1.05^(TEMP-15.2)*15.3*MAX(NSEC/
(NSECþ2*10 (̂-7)),PSEC/(PSECþ3.5*10 (̂-8)))
DIF1 ¼ (3987*(CO2M/75-CO2M2/125)/75)*(TEMP/15.2)̂ 0.5
CO2M2(t) ¼ CO2M2(t - dt) þ (DIF1 - DIF2) * dt
INIT CO2M2 ¼ 4110
INFLOWS:
DIF1 ¼ (3987*(CO2M/75-CO2M2/125)/75)*(TEMP/15.2)̂ 0.5
OUTFLOWS:
DIF2 ¼ (3987*(CO2M2-CO2M3)/(125*125))*(TEMP/15.2)̂ 0.5
CO2M3(t) ¼ CO2M3(t - dt) þ (DIF2 - DIF3) * dt
INIT CO2M3 ¼ 4110
INFLOWS:
DIF2 ¼ (3987*(CO2M2-CO2M3)/(125*125))*(TEMP/15.2)̂ 0.5
OUTFLOWS:
DIF3 ¼ 3987*((CO2M3-CO2M4)/(125*125))*(TEMP/15.2)̂ 0.5
CO2M4(t) ¼ CO2M4(t - dt) þ (DIF3 - DIF4) * dt
INIT CO2M4 ¼ 4110
INFLOWS:
DIF3 ¼ 3987*((CO2M3-CO2M4)/(125*125))*(TEMP/15.2)̂ 0.5
OUTFLOWS:
DIF4 ¼ 3987*((CO2M4-CO2M5)/(125*125))*(TEMP/15.2)̂ 0.5
CO2M5(t) ¼ CO2M5(t - dt) þ (DIF4 - DIF5) * dt
INIT CO2M5 ¼ 4110
INFLOWS:
DIF4 ¼ 3987*((CO2M4-CO2M5)/(125*125))*(TEMP/15.2)̂ 0.5
OUTFLOWS:
DIF5 ¼ 3987*((CO2M5-CO2M6)/(125*125))*(TEMP/15.2)̂ 0.5
CO2M6(t) ¼ CO2M6(t - dt) þ (DIF5 - DIF6) * dt
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Table 7.10 The Global Warming Model: Equations in the STELLA
Format—cont’d

INIT CO2M6 ¼ 4110
INFLOWS:
DIF5 ¼ 3987*((CO2M5-CO2M6)/(125*125))*(TEMP/15.2)̂ 0.5
OUTFLOWS:
DIF6 ¼ 3987*((CO2M6/125-CO2DS/2800)/(2800))*(TEMP/
15.2)̂ 0.5
DETR(t) ¼ DETR(t - dt) þ (MOR - DEC) * dt
INIT DETR ¼ 1500
INFLOWS:
MOR ¼ 0.49*ASS
OUTFLOWS:
DEC ¼ DETR*66*1.05^(TEMP-15.2)/1500
DTEM(t) ¼ DTEM(t - dt) þ (MOP þ MOZ - REM) * dt
INIT DTEM ¼ 3000
INFLOWS:
MOP ¼ PHYT*4.5*1.05^(TEMP-15.2)
MOZ ¼ (4.8*ZOOPþ0.2222*ZOOP*PHYT)*1.05^(TEMP-15.2)
OUTFLOWS:
REM ¼ 0.02*DTEM*1.05 (̂TEMP-15.2)
NITA(t) ¼ NITA(t - dt) þ (DET - NIT) * dt
INIT NITA ¼ 3800000
INFLOWS:
DET ¼ 0.000063*DETR
OUTFLOWS:
NIT ¼ PLAL*0.00016
NLIT(t) ¼ NLIT(t - dt) þ (PFE þ NIT - DET - NRUN) * dt
INIT NLIT ¼ 852
INFLOWS:
PFE ¼ 0.03*PTIME^TIME
NIT ¼ PLAL*0.00016
OUTFLOWS:
DET ¼ 0.000063*DETR
NRUN ¼ NLIT*0.000214
NSEA(t) ¼ NSEA(t - dt) þ (NRUN) * dt
INIT NSEA ¼ 1904
INFLOWS:
NRUN ¼ NLIT*0.000214
PHYT(t) ¼ PHYT(t - dt) þ (GRO - GRZ - MOP) * dt
INIT PHYT ¼ 5
INFLOWS:
GRO ¼ PHYT*(1-PHYT/20)*1.05^(TEMP-15.2)*15.3*MAX(NSEC/
(NSECþ2*10^(-7)),PSEC/(PSECþ3.5*10 (̂-8)))
OUTFLOWS:
GRZ ¼
PHYT*16*TEMP*1.05 (̂TEMP-15.2)
MOP ¼ PHYT*4.5*1.05^(TEMP-15.2)
PLAL(t) ¼ PLAL(t - dt) þ (ASS - MOR - RES) * dt
INIT PLAL ¼ 560

Continued
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INFLOWS:
ASS ¼ (120*13*CO2C)/(7*(CO2Cþ300))*(NLIT/865)*1.05^
(TEMP-15.2)
OUTFLOWS:
MOR ¼ 0.49*ASS
RES ¼ 0.5*ASS
PLIT(t) ¼ PLIT(t - dt) þ (PPF - PRUB) * dt
INIT PLIT ¼ 60
INFLOWS:
PPF ¼ PFE*0.1
OUTFLOWS:
PRUB ¼ PLIT*0.00005
PSEA(t) ¼ PSEA(t - dt) þ (PRUB) * dt
INIT PSEA ¼ 129.5
INFLOWS:
PRUB ¼ PLIT*0.00005
WATV(t) ¼ WATV(t - dt) þ (FFU - WEP) * dt
INIT WATV ¼ 67580
INFLOWS:
FFU ¼ 0.63*FFCþRES
OUTFLOWS:
WEP ¼ 0.0547*(TEMP-15.2)
ZOOP(t) ¼ ZOOP(t - dt) þ (GRZ - REZ - MOZ) * dt
INIT ZOOP ¼ 1
INFLOWS:
GRZ ¼
PHYT*16*TEMP*1.05^(TEMP-15.2)
OUTFLOWS:
REZ ¼ ZOOP*10*1.05 (̂TEMP-15.2)
MOZ ¼ (4.8*ZOOPþ0.2222*ZOOP*PHYT)*1.05^(TEMP-15.2)
ALBE ¼ 0.301þ2.1*10^(-6)*(WATV-67580)þ1.0*(CLOD-0.5)
BETA ¼ 0.399þ118*10^(-6)*(CO2C-350)þ0.563*(CLOD-0.5)þ
2.73*10^(-6)*(WATV-67580)
CLOD ¼ WATV*0.5/(67580)
CO2C ¼ CO2A*29/(12*5.35)
COMC ¼ CO2M*3800/(75*1.36*10^3)
FTIME ¼ 1
Keel ¼ 10þ(8.4-pH)*0.7
NSEC ¼ NSEA/1.36*10^9
pH ¼ 8.4 -1.2* COMC/919
PSEC ¼ PSEA/1.36*10^9
PTIME ¼ 1.05
TEMP ¼ (WS*(1-ALBE)/(28840*(1-BETA)))^0.25-273.3
WS ¼ 1.73*10^14

Table 7.10 The Global Warming Model: Equations in the STELLA
Format—cont’d
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Water in the atmosphere, WATV

Nitrogen in the atmosphere, NITA

Nitrogen in the lithosphere, NLIT

Nitrogen in the hydrosphere, NSEA

Phosphorus in the lithosphere, PLIT

Phosphorus in the hydrosphere, PSEA

Carbon as carbon dioxide in the atmosphere, CO2A

Carbon in plant biomass in the lithosphere, PLAL

Carbon in detritus in the lithosphere, DETR

Carbon in the upper layer of the sea, CO2M

Carbon in phytoplankton in the sea, PHYT

Carbon in the zooplankton in the sea, ZOOP

Carbon in detritus in the sea, DTEM

Carbon in 6 deeper layers of the sea, CO2M2, CO2M3, . . . CO2M6,

CO2DS

The forcing functions are:

Use of fossil fuel, FFC

Use of nitrogen fertilizer, PFE

Use of phosphorus fertilizer, PPF

Figure 7.11 shows the model results corresponding to a 2% increase

in the use of fossil fuels since time ¼ 0, which represents 1990 as a ref-

erence year. The starting average global temperature is 15.71�C and the

model simulation shows the temperature increasing to 20.16�C,
corresponding to an increase of the global average temperature of about

4.5�C. The temperature in 2010 is 16.32 or 0.62 centigrade higher than in

1990. This value corresponds very closely to the recorded increase of the

global average temperature during the last 20 years. The carbon dioxide

concentration has increased from about 350 parts per million to about

390 parts per million in 2010, which also matches the measured carbon

dioxide concentration increase in the atmosphere. The model simula-

tion projects that carbon dioxide concentration is expected to be about

720 parts per million in 2100. If the temperature increase is to be held to

only two degrees Celsius during this century as recommended by the

climate panel of The United Nations, then it is necessary to phase out

fossil fuel use during the next 30 to 50 years. A prediction based on a
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continuous 2% annual increase of fossil fuel use during the next ten

years followed by a linear decrease to no fossil fuel use by 2070 shows

a temperature increase to 18.1�C, This scenario results in a 1.78�C
increase compared with today and 2.4�C higher than 1990.

The model has the following features and includes the following

processes:

1. The global cycling of N, P, and C are included as the nitrogen and

phosphorus cycles interact with the carbon cycle

2. The carbon dioxide diffusion in the sea is described by a multilayer

model

3. The ability of the ocean to take up carbon dioxide is a function of

pH, which is dependent on the carbon dioxide concentration

relative to the concentrations of hydrogen carbonate and carbonate

4. The ability of the oceans to take up carbon dioxide is a function of

the temperature

5. Increased photosynthesis by increased carbon dioxide

concentration according to a Michaelis-Menten expression; CO2C /

(CO00C þ 300); see ASS Table 7.10
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FIGURE 7.11 Model simulation showing atmospheric carbon dioxide concentration and the average

global temperature from 1990 to 2100.
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6. Water content in the atmosphere changed when the temperature

changed and atmospheric water is also a greenhouse gas

7. The cloudiness changed when the water content in the atmopshere

changed, which also changes the albedo;

8. Deforestration, 100,000 km2 per year according to the Food and

Agriculture Organization (FAO), is included

9. The change of albedo due to decreased ice coverage is estimated

10. The change in primary production in the sea, in wetlands,

and in forests due to changed temperature and due to the

increased carbon dioxide concentration (see also point 5) is

considered

11. Permafrost melting for tundra regions is considered; it will decrease

the albedo and increase the primary production

Problems

1. Two alternatives exist for improving the visual quality of Lake X: (1)

Increase the dilution (flushing) rate and (2) decrease the

concentration of nutrients in the inflow by waste water treatment.

The present detention time is 8 months and the average inflow of

phosphorus, which is considered the most limiting nutrient, is 120

mg L-1. The lake can be considered a completely mixed reactor.

Which alternative would you choose and why?

2. The average flow velocity of a stream is 0.7 m/s and the average

depth is 1.5 m. Estimate the rate of oxygen transfer from the

atmosphere to the water at 12, 15, and 20�C.
3. A stream has the following characteristics during a low flow period:

flow rate 70 m3 s-1 and 0.4 m s-1, temperature 24�C, depth 2 m,

dissolved oxygen 85%, and BOD5 2 mg/L at point X. How many kg

of BOD5 can be discharged into the stream at point X, if a minimum

of 5 mg/L is to be maintained in the stream? Average rate constants

can be assumed. Nitrification is negligible.

4. A steam receives wastewater at a rate of 7 m3 s-1. The wastewater

has BOD5 12 mg/L and the ammonium concentration is 23 mg/L.

The stream has a flow rate of 60 m3 s-1 and 0.5 m s-1, temperature

18�C, depth 2 m, dissolved oxygen 95%. Which minimum

oxygen concentration will be recorded in the stream at which
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distance from the discharge point? Use the constant presented in

the text.

5. Estimate the difference in the estimation of the reaeration

coefficient using all of the expressions in the text.

6. BOD5 at room temperature 20�C is found to be 14 mg/L in a

sample. What is BOD7 at 18�C?
7. Determine the BOD5 and the oxygen concentration in a completely

mixed lake with an inflow of 40 L/s, a depth of 3 m and an area of

15 ha. The average wind speed is approximately 4.5 m/s, the oxygen

concentration in the inflow is 8 mg/L and contains no BOD. 120 kg

of BOD is discharged to the lake by waste water per day. The lake

has a sandy bottom. The photosynthesis corresponds to 3 mg

oxygen/(l day).

8. Set up a STELLA program for Lorenzen’s model.

9. Explain why the relationship between summer chlorophyll and

annual average phosphorus concentration is so different for the

various investigations of the relationship.

10. Find the transparency for a lake with an annual average

phosphorus concentration of 1 mg/L and a depth of 2 m using

Table 7.5. Use Eq. (7.13) to find the chl. a. concentration and

Figure 7.3. Explain the discrepancy.

11. Explain why any new lake model development inevitably requires

an examination of possible model modifications.

12. Why is validation of a model compulsory?

13. How will you describe the generality of eutrophication models?

14. Explain why it is expected that a structural dynamic model will be

able to offer a better validation.
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APPENDIX 1
TABLE 1 Dissolved oxygen (ppm, mg/l) in fresh, brackish and sea water at different temperatures and at
different chlorinities (%). Values are at saturation

Temp 0% 0.2% 0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%

1 14.24 13.87 13.54 13.22 12.91 12.58 12.29 11.99 11.70 11.42 11.15

2 13.74 13.50 13.18 12.88 12.56 12.26 11.98 11.69 11.40 11.13 10.86

3 13.45 13.14 12.84 12.55 12.25 11.96 11.68 11.39 11.12 10.85 10.59

4 13.09 12.79 12.51 12.22 11.93 11.65 11.38 11.10 10.83 10.59 10.34

5 12.75 12.45 12.17 11.91 11.63 11.36 11.09 10.83 10.57 10.33 10.10

6 12.44 12.15 11.86 11.60 11.33 11.07 10.82 10.56 10.32 10.09 9.86

7 12.13 11.85 11.58 11.32 11.06 10.82 10.56 10.32 10.07 9.84 9.63

8 11.85 11.56 11.29 11.05 10.80 10.56 10.32 10.07 9.84 9.61 9.40

9 11.56 11.29 11.02 10.77 10.54 10.30 10.08 9.84 9.61 9.40 9.20

10 11.29 11.03 10.77 10.53 10.30 10.07 9.84 9.61 9.40 9.20 9.00

11 11.05 10.77 10.53 10.29 10.06 9.84 9.63 9.41 9.20 9.00 8.80

12 10.80 10.53 10.29 10.06 9.84 9.63 9.41 9.21 9.00 8.80 8.61

13 10.56 10.30 10.07 9.84 9.63 9.41 9.21 9.01 8.81 8.61 8.42

14 10.33 10.07 9.86 9.63 9.41 9.21 9.01 8.81 8.62 8.44 8.25

15 10.10 9.86 9.64 9.43 9.23 9.03 8.83 8.64 8.44 8.27 8.09

16 9.89 9.66 9.44 9.24 9.03 8.84 8.64 8.47 8.28 8.11 7.94

17 9.67 9.46 9.26 9.05 8.85 8.65 8.47 8.30 8.11 7.94 7.78

18 9.47 9.27 9.07 8.87 8.67 8.48 8.31 8.14 7.97 7.79 7.64

19 9.28 9.08 8.88 8.68 8.50 8.31 8.15 7.98 7.80 7.65 7.49

20 9.11 8.90 8.70 8.51 8.32 8.15 7.99 7.84 7.66 7.51 7.36

21 8.93 8.72 8.54 8.35 8.17 7.99 7.84 7.69 7.52 7.38 7.23

22 8.75 8.55 8.38 8.19 8.02 7.85 7.69 7.54 7.39 7.25 7.11

23 8.60 8.40 8.22 8.04 7.87 7.71 7.55 7.41 7.26 7.12 6.99

24 8.44 8.25 8.07 7.89 7.72 7.56 7.42 7.28 7.13 6.99 6.86

25 8.27 8.09 7.92 7.75 7.58 7.44 7.29 7.15 7.01 6.88 6.85

26 8.12 7.94 7.78 7.62 7.45 7.31 7.16 7.03 6.89 6.86 6.63

27 7.98 7.79 7.64 7.49 7.32 7.18 7.03 6.91 6.78 6.65 6.52

28 7.84 7.65 7.51 7.36 7.19 7.06 6.92 6.79 6.66 6.53 6.40

29 7.69 7.52 7.38 7.23 7.08 6.95 6.82 6.68 6.55 6.42 6.29

30 7.56 7.39 7.25 7.12 6.96 6.83 6.70 6.58 6.45 6.32 6.19
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8.1. Classification and Application
of Ecotoxicological Models

Ecotoxicological models are increasingly applied to assess the environ-

mental risk of chemical emissions to the environment. We distinguish

between fate models and effect models. Fate models provide the concen-

tration of a chemical in one or more environmental compartments; for

instance, the concentration of a chemical compound in a fish or in a lake.

Effect models translate a concentration or body burden in a biological

compartment to an effect either on an organism, a population, a commu-

nity, an ecosystem, a landscape (consisting of two or more ecosystems),

or the entire ecosphere.

The results of a fate model can be used to find the ratio (RQ), between

the computed concentration, predicted environmental concentration

(PEC), and the nonobserved-effect concentration (NOEC), which is
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determined through literature values or laboratory experiments. Further

detail about the procedure for environmental risk assessment (ERA) and

how to account for the uncertainty of the assessment will be presented

in the next section.

The effect models presume that we know the concentration of a

chemical in a focal compartment, either by a model or by analytical

determinations. The effect models translate the found concentrations

into an effect on either the growth of an organism, the development

of a population or the community, the changes of an ecosystem or a

landscape, or on the entire ecosphere.

It is also possible to merge fate models with effect models, combining

the two approaches. We could call such models fate-transport-effect-

models (FTE-models).

Many fate models, fewer effect models, and only a few FTE-models

have been applied to solve ecotoxicological problems and perform

ERAs. However, the development is toward a wider application of effect

and FTE-models.

A. Fate models may be divided into three classes:

I. Models that map the fate and transport of a chemical in a region or

a country. Thesemodels are sometimes calledMackay-typemodels

after DonMackay, who first developed them. A detailed discussion

of the application of these models can be found in Mackay et al.,

(1991, 1992) and SETAC (1995). This type of fate model is rarely

calibrated and validated, although indicating the standard

deviation of the results has been attempted (see SETAC, 1995).

II. Models that consider a specific case of toxic substance pollution;

for instance, a discharge of a chemical to a coastal zone from a

chemical plant or a sewage treatment plant. This type of fate

model must always be calibrated and validated.

III. Models that focus on a chemical used locally. It implies that an

evaluation of the risk requires the determination of a typical

concentration (which is much higher than the regional

concentration that would be obtained from model type I) in a

typical locality. A typical example is the application of pesticides,

where the model has to look into a typical application on an

agriculture field close to a stream and with a ground water mirror

close to the surface. This model type can be considered a hybrid
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of model types I and II. The conceptual diagram and the

equations of the type III model are similar to model type II,

but the interpretation of the model results are similar to model

type I. This model type should always be calibrated and validated

by data obtained for a typical case study, but the prognosis is most

commonly applied for development of “a worst-case situation” or

“an average situation,” whichmay be different from the case study

applied for the calibration and validation.

Examples of all three model types are presented in this chapter. Chapter 6,

on steady-state models, has already presented an ecotoxicological

model type II. Only examples of dynamic models are included in this

chapter.

B. Effect models may be classified according to the hierarchical level of

concern:

I. Organism models. The core of the model is the influence of a

toxic substance on an organism, for example, a relationship

between the growth parameters and the concentration of a toxic

substance.

II. Population models. The population models presented in

Chapter 5, including individual-based models (IBMS), may

include relationships between toxic substance concentrations

and the model parameters.

III. Ecosystem models. The influences of a toxic substance on several

parameters are included. The result of these chemical impacts is

an ecosystem with a different structure and composition.

IV. Landscape models. As ecosystems are open systems, the effects

of chemicals may change several interrelated ecosystems.

Landscape models can be used in these cases.

V. Global models. The impacts of chemicals are the core of this

model. A typical global model represents the ozone layer and its

decomposition due to the discharge of chemicals (i.e., freon).

FTE-models can be any combination of fate and effect models,

although the combinations of AII and AIII fate models with BII and BIII

effect models will be practical for ecotoxicological management.

The applied effect models are mainly type I and II, although the effects

on ecosystem levels may be of particular importance due to their frequent
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irreversibility. Ecosystems may, in some cases, change their composition

and structure significantly due to a discharge of toxic substances. In such

cases, it is recommended to apply structurally dynamic models (SDMs),

which are also called variable parameter models (see Chapter 10).

Ecotoxicological models are applied for registration of chemicals, to

solve site-specific pollution problems, or to follow ecosystem recovery

after pollution abatement or remediation has taken place.

Type AI and AIII models are widely used for registration of chemicals.

About 100,000 chemicals are registered, but only about 20,000 chemicals

are used at a scale thatmay threaten the environment with high probability.

It is the long-term goal to perform an ERA for all 20,000 chemicals in use if

ER continue the present rate of evaluation prior to 1984,when an ecotoxico-

logical evaluation of all new chemicals became compulsory in the European

Union (EU). Among the 20,000 chemicals, 2500 have been selected as high

volume chemicals that are of most concern. Among the 2500 chemicals,

140 have been selected by the EU to be examined in detail including an

ERA, which requires the application of models. These are called highly

expected regulatory output chemicals (HERO-chemicals). A proper ecotox-

icological evaluationof the chemicals inuseprior to 1984 is important; itwill

take 100 years before we have a proper ecotoxicological evaluation of the

2500high volumechemicals and800 years beforewehave evaluated all che-

micals in use. Unfortunately, by this time therewill bemany new chemicals.

About 300–400 new chemicals are registered per year. These chemicals

have to be evaluated properly, although it may be possible in some cases

for the chemical manufacturers to postpone the evaluation and the final

decision a few years.

AII fate models and BII, BIII, and, in a few cases, BIV effect models are

applied, sometimes in combination as an FTE model to solve site-specific

pollution problems caused by toxic substances or to make predictions on

the recovery of ecosystems after the impacts have been removed. These

applications are mainly carried out by environmental protection agencies

and rarely by chemical manufacturers.

In conclusion, there is an urgent need for good ecotoxicological

models as well as for wider experience in the applicability of these models.

The application of ecotoxicologicalmodels up to now has beenminor com-

pared to the environmental management possibilities that these models

offer.
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Section 8.2 reviews the performance of an ERA. Section 8.3 presents the

characteristics and structure of ecotoxicological models. Section 8.4 gives

an overview of some of the most illustrative, ecotoxicological models

published during the last 20 years. The description of the chemical,

physical, and biological processes will generally be according to the

equations presented in Chapter 2. Section 8.5 is devoted to parameter

estimations methods, which are important to ecotoxicological models.

The following sections are used to present ecotoxicological models of

case studies. Section 8.6 presents a very simple ecotoxicological model

of chromium pollution in Fåborg Fjord, Denmark. This case study

clearly illustrates that a simple model can give an acceptable and

sufficiently accurate answer to an environmental management ques-

tion, provided the modeller knows the ecosystem and can select the pro-

cesses of importance for the management question in focus. The case

study in Section 8.7 covers an ecotoxicological model for relating con-

tamination of agricultural products by cadmium with the heavy metal

pollution of soil due to the content of cadmium in fertilizers, dry depo-

sition, and sludge. Section 8.8 presents the development of class 1 fate

model by use of equilibrium calculation and fugacity. It contains two

illustrative examples to show how to develop this type of models, which

is mostly applied for contamination of a region by a toxic substance.

8.2. Environmental Risk Assessment

8.2.1. Overview of Environmental Risk Assessment

A brief introduction to the concepts of ERA is given in this section to

introduce readers to the concepts and ideas behind the application of

ecotoxicological models to assess an environmental risk.

Treatment of industrial wastewater, solid waste, and smoke is very

expensive. Consequently, the industries attempt to change their pro-

ducts and production methods in a more environmentally friendly

direction to reduce the treatment costs. Therefore, industries need to

know how much the different chemicals, components, and processes

are polluting our environment. In other words: What is the environmen-

tal risk of using a specific material or chemical compared with other

alternatives? If industries can reduce their pollution just by switching to
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another chemical or process, then they will reduce their environmental

costs and improve their green image. An assessment of the environmen-

tal risk associated with the use of a specific chemical and a specific

process enables industries to make the right selection of materials, che-

micals, and processes to benefit the economy of the enterprise and the

quality of the environment.

Similarly, society needs to know the environmental risks of all chemi-

cals to phase out the most environmentally threatening chemicals and

set standards for the use of all other chemicals. The standards should

ensure there is no serious risk in using the chemicals, provided that

the standards are followed carefully. Modern abatement of pollution

includes ERA, which is defined as the process of assigning magnitudes

and probabilities to the adverse effects of human activities. This process

involves identification of hazards such as the release of toxic chemicals

to the environment by quantifying the relationship between an activity

associated with an emission to the environment and its effects. The entire

ecological hierarchy is considered in this context including the effects on

the cellular (biochemical) level, the organism level, the population level,

the ecosystem level, and the entire ecosphere.

The application of ERA is rooted in the recognition that:

1. The elimination cost of all environmental effects is impossibly high.

2. Practical environmental management decisions must always be

made on the basis of incomplete information.

We use about 100,000 chemicals in amounts that might threaten the

environment, but we know only about 1% of what is necessary to make

a proper and complete ERA of these chemicals. Section 8.5 is a short

introduction to available estimation methods to apply if information

about properties of chemical compounds is unavailable in the literature.

A list of relevant properties and how they impact the environment is

also given.

ERA is in the same family as environmental impact assessment (EIA),

which attempts to assess the impact of a human activity. EIA is predic-

tive, comparative, and concerned with all possible effects on the envi-

ronment, including secondary and tertiary (indirect) effects, whereas

ERA attempts to assess the probability of a given (defined) adverse

effect as a result of human activity.
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Both ERA and EIA use models to find the expected environmental

concentration (EEC), which is translated into impacts for EIA and to

risks of specific effects for ERA. Development of ecotoxicological models

for assessing environmental risks is detailed in the following section. An

overview of ecotoxicological models is given in J�rgensen et al. (1995).

Legislation and regulation of domestic and industrial chemicals

for the protection of the environment have been implemented in

Europe and North America for decades. Both regions distinguish

between existing chemicals and introduction of new substances. For

existing chemicals, the EU requires a risk assessment to humans and

the environment according to a priority setting. An informal priority

setting (IPS) is used for selecting chemicals among the 100,000 listed

in “The European Inventory of Existing Commercial Chemical Sub-

stances.” The purpose of the IPS is to select chemicals for detailed risk

assessment from among the EEC high production volume compounds,

that is, >1000 t/y (about 2500 chemicals). Data necessary for the IPS

and an initial hazard assessment are called Hedset and cover issues

such as environmental exposure, environmental effects, exposure to

humans, and human health effects.

At the UNCED meeting on the Environment and Sustainable Devel-

opment in Rio de Janeiro in 1992, it was decided to create an Intergov-

ernmental Forum on Chemical Safety (IGFCS, Chapter 19 of Agenda 21).

Its primary task is to stimulate and coordinate global harmonization in

the field of chemical safety and covers the following principal themes:

assessment of chemical risks, global harmonization of classification

and labeling, information exchange, risk reduction programs, and

capacity building in chemical management.

Uncertainty plays an important role in risk assessment (Suter, 1993).

Risk is the probability that a specified harmful effect will occur or, in the

case of a graded effect, the relationship between the magnitude of the

effect and its probability of occurrence.

Risk assessment has traditionally emphasized risks to human health

over the concerns of ecological effects. However, some chemicals such

as chlorine, ammonia, and certain pesticides — which have no risk or

only a small amount of risk to human health — cause severe effects

on ecosystems such as aquatic organisms. An up-to-date risk assess-

ment is comprised of considerations of the entire ecological hierarchy,
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which is the ecologist’s worldview in terms of levels of organization.

Organisms interact directly with the environment, so they can be

exposed to toxic chemicals. The species-sensitivity distribution is there-

fore more ecologically credible (Calow, 1998). A reproducing population

is the smallest meaningful level ecologically. However, populations do

not exist in a vacuum; they require a community of other organisms of

which the population is a part. The community occupies a physical envi-

ronment with which it forms an ecosystem.

Moreover, both the various adverse effects and the ecological hierar-

chy have different scales in time and space, which must be included in a

proper ERA (Figure 8.1). For example, oil spills occur at a spatial scale

similar to those of populations, but they are briefer than population

processes. Therefore, a risk assessment of an oil spill requires the con-

sideration of reproduction and recolonization on a longer time scale

to determine the magnitude of the population response and its signifi-

cance to natural population variance.
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FIGURE 8. 1 The spatial and

time scale for various hazards

(hexagons, italic) and for the

various levels of the ecological

hierarchy (circles, non-italic).
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8.2.2. Uncertainties in Risk Assessment

Uncertainties in risk assessment are taken into account by application

of safety factors. Uncertainties have three basic causes:

1. Inherent randomness of the world (stochasticity)

2. Errors in execution of assessment

3. Imperfect or incomplete knowledge

Inherent randomness refers to uncertainty that can be described and

estimated but not reduced because it is characteristic of the system.

Meteorological factors such as rainfall, temperature, and wind are effec-

tively stochastic at levels of interest for risk assessment. Many biological

processes such as colonization, reproduction, and mortality also need to

be described stochastically.

Human errors are inevitably attributes of all human activities. This

type of uncertainty includes incorrect measurements, data recording

errors, computational errors, and so on.

Uncertainty is addressed using an assessment (safety) factor from 10 to

1000. The choice of assessment factor depends on the quantity and quality

of toxicity data (Table 8.1). The assessment or safety factor is used in step

3 of the ERA procedure presented in the following section. Relationships

other than the uncertainties originating from randomness, errors, and lack

of knowledgemay be considered when the assessment factors are selected

(e.g., cost-benefit). This implies that the assessment factors for drugs and

pesticides may be given a lower value due to their possible benefits.

Table 8.1 Selection of Assessment Factors to Derive Predicted No Effect
Concentration

Data Quantity and Quality Assessment Factor

At least one short-term LC50 from each of the three trophic levels of the base

set (fish, zooplankton, and algae)

1000

One long-term NOEC, either for fish or daphnia 100

Two long-term NOECs from species representing two trophic levels 50

Long-term NOECs from at least three species (normally fish, daphnia, and

algae) representing three trophic levels

10

Field data or model ecosystems Case by case

PNEC, Predicted No Effect Concentration. Note: See also step 3 of the procedure presented below.
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Lack of knowledge results in an undefined uncertainty that cannot be

described or quantified. It is a result of practical constraints on our abil-

ity to describe, count, measure, or quantify accurately everything that

pertains to a risk estimate. Clear examples are the inability to test all

toxicological responses of all species exposed to a pollutant and the

simplifications needed in the model used to predict the EEC.

The most important feature distinguishing risk assessment from

impact assessment is the emphasis in risk assessment on characterizing

and quantifying uncertainty. Therefore, it is of particular interest in risk

assessment to estimate the analyzable uncertainties, such as natural

stochasticity, parameter errors, and model errors. Statistical methods

may provide direct estimates of uncertainties, and they are widely used

in model development.

The use of statistics to quantify uncertainty is complicated in prac-

tice by the need to consider errors in both the dependent and indepen-

dent variables and to combine errors when multiple extrapolations

should be made. Monte Carlo analysis is often used to overcome these

difficulties (Bartell et al. 1992).

Model errors include inappropriate selection or aggregation of

variables, incorrect functional forms, and incorrect boundaries. The

uncertainty associated with model errors is usually assessed by field

measurements utilized for calibration and validation of the model (see

Chapter 2). The modelling uncertainty for ecotoxicological models is

no different from what was previously discussed in Chapter 2.

8.2.3. Step-by-Step Guide for Ecological Risk Assessment

Chemical risk assessment is divided into nine steps shown in Figure 8.2.

The nine steps correspond to questions that the risk assessment

attempts to answer when quantifying the risk associated with the use

of a chemical.

Step 1: Which hazards are associated with the application of the

chemical? This involves gathering data on the types of hazards

such as possible environmental damage and human health

effects. The health effects include congenital, neurological,

mutagenic, endocrine disruption (e.g., estrogen), and

carcinogenic effects. It may also include characterization of the

behavior of the chemical within the body (interactions with
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 organs, cells, or genetic material). The possible environmental

damage including lethal effects and sub-lethal effects on growth

and reproduction of various populations is considered in this step.

As an attempt to quantify the potential danger posed by

chemicals, a variety of toxicity tests have been devised. Some of

the recommended tests involve experiments with subsets of

natural systems, such as microcosms, or with entire ecosystems.

The majority of testing new chemicals for possible effects has,

however, been confined to studies in the laboratory on a

limited number of test species. Results from these laboratory

9. Risk reduction

8. Risk-benefit analysis

7. Risk classification

6. Risk quotient
= PEC/PNEC

3. PNEL/PNEC

2. Effect assessment

1. Identification of hazard

4. Emission assessment

5. PEC

FIGURE 8.2 The presented

procedure in nine steps to

assess the risk of chemical

compounds. Steps 1–3

require extensive use of

ecotoxicological handbooks

and ecotoxicological

estimation methods to assess

the toxicological properties

of the chemical compounds

considered, while step 5

requires the selection of a

proper ecotoxicological

model.
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assays provide useful information for quantification of the

relative toxicity of different chemicals. They are used to forecast

effects in natural systems, although their justification has been

seriously questioned (Cairns et al. 1987).

Step 2: What is the relation between dose and responses of the type

defined in step 1? It implies knowledge of NEC and LDx values

(dose that is lethal to x% of the organisms considered), LCy

values (concentration lethal to y% of the organisms

considered), and ECz values (concentration giving the indicated

effect to z% of the considered organisms) where x, y, and z

express a probability of harm. The answer can be found by

laboratory examination or we may use estimation methods.

Based upon these answers, a most probable level of no effect

(NEL) is assessed. Data needed for steps 1 and 2 are obtained

directly from scientific libraries, but are increasingly found via

online data searches in bibliographic and factual databases.

Data gaps should be filled with estimated data. It is very

difficult to completely know about a chemical’s effect on all

levels from cells to ecosystem as some effects are associated

with very small concentrations (the estrogen effect). Therefore

it is far from sufficient to know NEC, LDx-, LCy-, and ECz-values.

Step 3: Which uncertainty (safety) factors reflect the amount of

uncertainty that must be taken into account when experimental

laboratory data or empirical estimationmethods are extrapolated

to real situations? Usually, safety factors of 10–1000 are used.

The choice was discussed earlier and is usually in accordance

with Table 8.1. If good knowledge about the chemical is available,

then a safety factor of 10 may be applied. If, on the other hand,

it is estimated that the available information has a very high

uncertainty, then a safety factor of 10,000 may be recommended.

Most frequently, safety factors of 50–100 are applied. NEL times

the safety factor is the predicted noneffect level (PNEL). The

complexity of ERA is often simplified by deriving the predicted

no-effect concentration (PNEC) for different environmental

components (water, soil, air, biotas, and sediment).

Step 4: What are the sources and quantities of emissions? The answer

requires thorough knowledge of the production and use of the
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considered chemical compounds, including an assessment of

how much of the chemical is wasted in the environment by

production and use. The chemical may also be a waste product,

which makes it very difficult to determine the amounts

involved; for instance, the very toxic dioxins are waste products

from incineration of organic waste.

Step 5: What is (are) the actual exposure concentration(s)? The answer

to this question is the PEC. Exposure can be assessed by

measuring environmental concentrations. It may also be

predicted by a model when the emissions are known. The use

of models is necessary in most cases either because we are

considering a new chemical, or because the assessment of

environmental concentrations requires a very large number of

measurements to determine the variations in concentrations.

Furthermore, it provides an additional certainty to compare

model results with measurements, which implies that it is always

recommended both to develop amodel and tomake at least a few

measurements of concentrations in the ecosystem components

when and where it is expected that the highest concentration will

occur. Most models demand an input of parameters, describing

the properties of the chemicals and the organisms, which also

requires extensive application of handbooks and a wide range of

estimation methods. The development of an environmental,

ecotoxicological model requires extensive knowledge of the

physical-chemical-biological properties of the chemical

compound(s) considered. The selection of a proper model is

discussed in this chapter and in Chapter 2.

Step 6: What is the ratio PEC/PNEC? This ratio is often called the risk

quotient. It should not be considered an absolute assessment of

risk but rather a relative ranking of risks. The ratio is usually

found for a wide range of ecosystems such as aquatic and

terrestrials well as ground water. Steps 1–6 shown in Figure 8.3

agree with Figure 8.2 and the information given in the previous

six steps.

Step 7: How will you classify the risk? Risk valuation decides on risk

reductions (step 9). Two risk levels are defined: (1) the upper

limit, that is, the maximum permissible level (MPL); and (2)

the lower limit, that is, the negligible level, NL. It may also be
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defined as a percentage of MPL, for instance, 1% or 10% of

MPL. The two risk limits create three zones: a black,

unacceptable, high risk zone >MPL; a gray, medium risk level;

and a white, low risk level <NL. The risk of chemicals in the

gray and black zones must be reduced. If the risk of the

chemicals in the black zone cannot be reduced sufficiently,

then phasing out the use of these chemicals should be

considered.

Step 8: What is the relation between risk and benefit? This analysis

involves examination of socioeconomic, political, and technical

factors, which are beyond the scope of this volume. The cost-

benefit analysis is difficult because the costs and benefits are

often of a different order and dimension.

Literature, QSAR or own determinations

Risk quotient

PEC PNEC

Determination of max.
emission

Distribution in the
environment

Properties of compound:
Water solubility, Kow, Kac,

H vap. pres. BCF etc.

Selection of safety
factor

Extrapolation to
ecosystems

Toxicity of compound:
dose-effect relationships.
NAEL, NEL, sublethal eff.

> 1.1 < but > 0.1, or < 0.1?

FIGURE 8.3 Steps

1–6 are shown

in more detail

for practical

applications. The

result of these steps

leads naturally to

the assessment of

the risk quotient.
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Step 9: How can the risk be reduced to an acceptable level? The answer

to this question requires deep technical, economic, and

legislative investigation. Assessment of alternatives is often an

important aspect in risk reduction.

Steps 1, 2, 3, and 5 require knowledge of the properties of the focal

chemical compounds, which again implies an extensive literature

search and/or selection of the best feasible estimation procedure. In

addition to “Beilstein,” (http://www.reaxys.com/info/) it is recom-

mended to have on hand the following handbooks of environmental

properties of chemicals and methods for estimation of these properties

in case literature values are not available:

J�rgensen, S. E., Nielsen, S. N., and J�rgensen, L. A. (1991). Handbook

of Ecological Parameters and Ecotoxicology, Elsevier, Amsterdam.

Year 2000 published as a CD called Ecotox. It contains three times

the amount of parameters then the 1991 book edition. See also

Chapter 2 for further details about Ecotox.

Howard, P. H. et al. (1991). Handbook of Environmental Degradation

Rates. Lewis Publishers, New York.

Verschueren, K. (2007). Several editions have been published, the

latest in 2007. Handbook of Environmental Data on Organic

Chemicals. Van Nostrand Reinhold, New York.

Mackay, D., Shiu, W. Y., and Ma, K. C. (1991, 1992). Illustrated

Handbook of Physical-Chemical Properties and Environmental Fate

for Organic Chemicals. Volume I. Mono-aromatic Hydrocarbons.

Chloro-benzenes and PCBs, 1991. Volume II. Polynuclear Aromatic

Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans, 1992.

Volume III. Volatile Organic Chemicals, 1992. Lewis Publishers,

New York.

J�rgensen, S. E., Halling-S�rensen, B., and Mahler, H. (1997).

Handbook of Estimation Methods in Environmental Chemistry and

Ecotoxicology. Lewis Publishers, Boca Raton, FL.

Steps 1–3 are sometimes denoted as effect assessment or effect analysis,

and steps 4–5 are exposure assessment or effect analysis. Steps 1–6 may

be called risk identification, while ERA encompasses all 9 steps presented

in Figure 8.2. Step 9 is very demanding, as several possible steps in
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reduction of the risk should be considered, including treatment methods,

cleaner technology, and substitutes to replace the examined chemical.

8.2.4. Risk Assessment of medicinal and veterinarian chemicals

In North America, Japan, and the EU, medicinal products are consid-

ered similar to other chemical products because there is no difference

between a medicinal product and other chemical products. In the EU,

technical directives for human medicinal products do not include any

reference to ecotoxicology and the assessment of their potential risk.

However, a detailed technical draft guideline issued in 1994 indicated

that the applied approach for veterinary medicine would also apply to

human medicinal products. Presumably, ERA will be applied to all

medicinal products in the near future when sufficient experience with

veterinary medicinal products has been achieved. Veterinary medicinal

products, on the other hand, are released in larger amounts to the envi-

ronment as manure. It is also possible to perform an ERA where the

human population is in focus. Ten steps corresponding to Figure 8.3

are shown in Figure 8.4, which is not significantly different from Fig-

ure 8.3. The principles for the two types of ERA are the same. Figure 8.4

uses the nonadverse effect level (NAEL) and nonobserved adverse effect

level (NOAEL) to replace the PNEC, and the PEC is replaced by the tol-

erable daily intake (TDI).

This type of ERA is of particular interest to veterinary medicine that

may contaminate food products for human consumption. For instance,

the use of antibiotics in pig feed has attracted a lot of attention, as they

may be found as residue in pig meat or may contaminate the environ-

ment though the application of manure as natural fertilizer.

Selection of a proper ecotoxicological model is the first step in the

development of an environmental exposure model, as required in step

5. It will be discussed in more detail in the next section.

8.3. Characteristics and Structure
of Ecotoxicological Models

Toxic substance models are most often biogeochemical models because

they attempt to describe the mass flows of the considered toxic sub-

stances. But there are effect models of the population dynamics that
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include the influence of toxic substances on the birth rate and/or the

mortality, and therefore should be considered toxic substance models.

Toxic substance models differ from other ecological models in that:

1. The need for parameters to cover all possible toxic substance models

is great, and general estimation methods are widely used. Section 8.5

is devoted to this question. It has also been discussed in Section 2.8.

2. The safety margin should be high; for instance, expressed as the ratio

between the predicted concentration and the concentration that

gives undesired effects. This is discussed in Section 8.2, where RQ ¼
PEC/NOEC is applied after an assessment factor (a safety margin)

has been applied. The selection of the assessment factor is presented

in Section 8.2.

3. They require possible inclusion of an effect component, which

relates the output concentration to its effect. It is easy to include an

Literature, QSAR or own determinations

Properties of compound:
Water solubility, Kow, Kac,

H, vap. pres. BCF etc.

Determination of max.
emission

Toxicity of compound:
dose-effect relationships.
NAEL, NEL, sublethal eff.

Prediction of conc. and
human intake by use of

models

Determination of NEAL in
lab. mammals

Extrapolation to human
beings

Estimation of TDI NOAEL

Margin of safety?

FIGURE 8.4 ERA

for human

exposure. It leads

to a margin of

safety that

corresponds to

the risk quotient

in Figures 8.2 and

8.3.
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effect component in the model; it is, however, often a problem to

find a well-examined relationship to base it on.

4. Toxic substance models need to be simple due to points 1 and 2, and

our limited knowledge of process details, parameters, sub-lethal

effects, and antagonistic and synergistic effects is limited.

Itmaybe an advantage to outline the approachbefore developing a toxic

substance model according to the procedure presented in Section 2.3.

1. Obtain the best knowledge about the possible processes of the toxic

substances in the ecosystem.

2. Attempt to get parameters from the literature and/or from your own

experiments (in situ or in the laboratory).

3. Estimate all parameters by the methods presented in Sections 2.10

and 8.5.

4. Compare the results from 2 and 3 and attempt to explain

discrepancies.

5. Estimate which processes and state variables are feasible and

relevant to include in the model. When in doubt, at this stage it is

better to include too many processes and state variables rather than

too few.

6. Use a sensitivity analysis to evaluate the significance of the

individual processes and state variables. This often may lead to

further simplification.

To summarize, ecotoxicological models differ from ecological models

by:

1. Often being simpler conceptually

2. Requiring more parameters

3. Using a wider range of parameter estimation methods

4. Including of an effect component

Ecotoxicological models may be divided into five classes according to

their structure. These classes illustrate the possibilities of simplification,

which are urgently needed:

1. Food chain or food web dynamic models

This class of models considers the flow of toxic substances through

the food chain or food web. It can also be described as an ecosystem
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model focusing on the transfer of a toxic substance to ecological

and nonecological components. Such models are relatively complex

and contain many state variables. The models contain many

parameters that often have to be estimated by one of the methods

presented in Section 8.5. This model type is typically used when

many organisms are affected by a toxic substance or the entire

structure of the ecosystem is threatened by the presence of a toxic

substance. Because of the complexity of these models, they have not

been widely used. They are similar to the more complex

eutrophication models that consider the nutrient flow through the

food chain or even through the food web. Sometimes they are even

constructed as submodels of a eutrophicationmodel (Thomann et al.,

1974). Figure 8.5 shows a conceptual diagram of an ecotoxicological

food chain model for lead. There is a flow of lead from atmospheric

fallout and wastewater to an aquatic ecosystem where it is

concentrated through the food chain by “bioaccumulation.”

A simplification is hardly possible for this model type because it is

the model’s purpose to describe and quantify the bioaccumulation

through the food chain.

2. Static models of toxic substance mass flows

If the seasonal changes are minor, or of minor importance, then a

static model of the mass flows will often be sufficient to describe the

situation and show the expected changes if the input of toxic

substances is reduced or increased. This model type is based upon a

mass balance as seen from the example in Figure 8.6. It will often

contain more trophic levels, but the modeller is frequently

concerned with the flow of the toxic substance through the food

chain. If there are some seasonal changes, then this type, which

usually is simpler than food chain or food web dynamic models, can

still be advantageous if the modeller is concerned with the worst

case or the average case and not with the changes.

3. Dynamic models of a toxic substance in one trophic level

It is often only the toxic substance concentration in one trophic level

that is studied. This includes the abiotic environment (sometimes

called the zeroth trophic level), — soil, water, or air. Figure 8.7

illustrates an example with a model of copper contamination in an

aquatic ecosystem. The main concern is the copper concentration in
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FIGURE 8.5 Conceptual diagram of the bioaccumulation of lead through a food chain in an aquatic

ecosystem.
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the water, as it may reach a toxic level for the phytoplankton.

Zooplankton and fish are much less sensitive to copper

contamination, so the alarm rings first at the concentration level

that is harmful to phytoplankton. However, only the ionic form is

toxic so it is necessary to model the partition of copper in ionic

form, complex bound form, and adsorbed form. The exchange

between copper in the water phase and in the sediment is also

included because the sediment can accumulate relatively large

amounts of heavy metals. The amount released from the sediment

may be significant under certain circumstances, such as low pH.

Figure 8.8 shows an example where the main concern is the

DDT (dichlorodiphenyltrichloroethane) concentration in fish. There

may be such a high concentration of DDT that, according to the

World Health Organization (WHO) standards, the fish are not

recommended for human consumption. This model can be

simplified to just the fish instead of the entire food chain.

Some physical-chemical reactions in the water phase are still

important and they are included as shown on the conceptual

diagram in Figure 8.8. As seen from these examples,

simplifications are often feasible when the problem is well defined,

including which component is most sensitive to toxic matter and

which processes are most important for concentration changes.

Input

Cu-ionsAbsorbed Cu

Labile Cu-
complexes

Very stabile Cu- 
complexes

Output

Cu in sediment
FIGURE 8.7 Conceptual

diagram of a simple

copper model.
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Figure 8.9 shows the processes of interest for modelling the

concentration of a toxic component at one trophic level. The inputs are

uptake from the medium (water or air) and from digested food ¼ total

food � nondigested food. The outputs are mortality (transfer to

detritus), excretion, and predation from the next level in the food chain.

4. Ecotoxicological models in population dynamics

Population models are biodemographic models and the number of

individuals or species are state variables. Simple population models

consider only one population. Population growth is a result of the

difference between natality and mortality:

dN=dt ¼ B �N�M �N ¼ r �N, ð8:1Þ

DDT in water

DDT through the
foodchain

DDT in sediment

DDT adsorbed

DDT in fish

Degradation

Input

OutputOutput

Photolysis and
dechlorination

FIGURE 8.8 Conceptual

diagram of a simple

DDT model.

Uptake from water or air:
Concentration factor

Food for next
trophic level

Excretion (respiration)Mortality

Non-digested
food

Uptake (food)
Organism
biomass

FIGURE 8.9 Processes of interest

for modelling the

concentration of a toxic

substance at one trophic level.
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where N is the number of individuals; B is the natality, that is, the

number of new individuals per unit of time and per unit of population;

M is the mortality, that is, the number of organisms that die per unit

of time and per unit of population; and r is the increase in the number

of organisms per unit of time and per unit of population and is equal to

B � M. B, N, and r are not necessarily constants as in the exponential

growth equation, but are dependent on N, the carrying capacity, and

other factors. The concentration of a toxic substance in the

environment or in the organisms may influence the natality and the

mortality, and if the relation between a toxic substance concentration

and these population dynamic parameters is included in the model, it

becomes an ecotoxicological model of population dynamics.

Population dynamic models may include two or more trophic levels,

and ecotoxicological models include the influence of the toxic

substance concentration on natality, mortality, and interactions

between these populations. In other words, an ecotoxicological

model of population dynamics is a general model of population

dynamics with the inclusion of relations between toxic substance

concentrations and some important model parameters.

5. Ecotoxicological models with effect components

Although class 4 models already may include relations between

concentrations of toxic substances and their effects, these are limited

to population dynamic parameters, not to a final assessment of the

overall effect. In comparison, class 5 models include more

comprehensive relations between toxic substance concentrations

and effects. These models may include lethal and/or sub-lethal

effects as well as effects on biochemical reactions or on the enzyme

system. These effects may be considered on various levels of the

biological hierarchy from the cells to the ecosystems.

In many problems, it may be necessary to go into more detail about

the effect to answer the following questions:

• Does the toxic substance accumulate in the organism?
• What is the long-term concentration in the organism when uptake

rate, excretion rate, and biochemical decomposition rate are

considered?
• What is the chronic effect of this concentration?
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• Does the toxic substance accumulate in one or more organs?
• What is the transfer between various parts of the organism?
• Will decomposition products eventually cause additional effects?

A detailed answer to these questions may require a model of the pro-

cesses that take place in the organism, and a translation of concentra-

tions in various parts of the organism into effects. This implies that

the intake ¼ (uptake by the organism)*(efficiency of uptake) is known.

Intake may either be from water or air, which also may be expressed

(at steady state) by concentration factors, such as the ratio between

the concentration in the organism and in the air or water.

But, if all the previously mentioned processes were taken into consid-

eration for just a few organisms, the model would easily become too

complex, contain too many parameters to calibrate, and require more

detailed knowledge than it is possible to provide. Often we do not even

have all the relations needed for a detailed model, as toxicology and

ecotoxicology are not completely well understood. Therefore, most

models in this class do not consider too many details of the partition

of the toxic substances in organisms and their corresponding effects,

but instead are limited to the simple accumulation in the organisms

and their effects. Usually, accumulation is rather easy to model and

the following simple equation is often sufficiently accurate:

dC=dt ¼ ðef � Cf � Fþ em � Cm � VÞ=W � Ex � C ¼ ðINTÞ=W � Ex � C ð8:2Þ
where C is the concentration of the toxic substance in the organism; ef

and em are the efficiencies for the uptake from the food and medium,

respectively, (water or air); Cf and Cm are the concentration of the toxic

substance in the food and medium, respectively; F is the amount of

food uptake per day; V is the volume of water or air taken up per day;

W is the body weight either as dry or wet matter; and Ex is the excretion

coefficient (1/day). From Eq. (8.2), INT covers the total intake of toxic

substance per day.

This equation has a numerical solution, and the corresponding plot

is shown in Figure 8.10:

C=CðmaxÞ ¼ ðINT � ð1� expðEx � tÞÞÞ=ðW � ExÞ ð8:3Þ
where C(max) is the steady-state value of C:

C maxð Þ ¼ INT= W � Exð Þ ð8:4Þ
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Synergistic and antagonistic effects have not been discussed so far.

They are rarely considered in this type of model for the simple reason

that we do not have much knowledge about these effects. If we have

to model combined effects of two or more toxic substances, then we

can only assume additive effects unless we can provide empirical rela-

tionships for the combined effect.

A complete solution of an ecotoxicological problem requires four sub-

models, of which the fate model may be considered the first model in the

chain (Figure 8.11). In Figure 8.11, the four components are (Morgan, 1984):

1. A fate or exposure model that should be as simple as possible and as

complex as needed

Steady state concentration
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FIGURE 8.10 (a) Concentration of a toxic substance in an organism versus time. (b) Relationship

between water solubility (unit: mmol/L) and octanol-water distribution coefficient.
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2. An effect model that translates the concentration into an effect; see

class type 5 and the different levels of effects presented in Section 8.1

3. A model for human perception

4. A model for human evaluation

The first two submodels are "objective," predictive models

corresponding to the structural model types 1–5 described previously,

or the classes described from an application point of view as described

in Section 8.1. They are based upon physical, chemical, and biological

processes. They are very similar to other environmental models and

Natural forcing functions

Emissions Concentrations
Fate models

Human evaluation
models

Effect models

Human perception
models
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FIGURE 8.11 (a) Four submodels of a total ecotoxicological model. (b) Two applicable relationships for

octanol-water distribution coefficient and the biological concentration factor for fish and mussels.
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are founded upon mass transfer and mass balances and physical, chem-

ical. and biological processes.

Submodels 3 and 4 are different from the generally applied environ-

mental management models and are briefly discussed in the following

section. A risk assessment component, associated with the fate model,

comprises human perception and evaluation processes (Figure 8.11).

These submodels are explicitly value laden, but must build on objective

information concerning concentrations and effects. They are often con-

sidered in the ERA procedure when deciding on the assessment factor.

Factors that may be important to consider in this context include:

1. Magnitude and time constant of exposure

2. Spatial and temporal distribution of concentration

3. Environmental conditions determining the process rates and effects

4. Translation of concentrations into magnitude and duration of effects

5. Spatial and temporal distribution of effects

6. Reversibility of effects

The uncertainties relating to the information on which the model is

based and the uncertainties related to the development of the model

are crucial in risk assessment. In addition to the discussion of the

assessment factor in Section 8.2 and partly in Section 8.3 where the

focus was on the effects on the trophic levels, the uncertainty of risk

assessment may be described by the following five categories:

1. Direct knowledge and statistical evidence on the important

components (state variables, processes, and interrelations of the

variables) of the model are available.

2. Knowledge and statistical evidence on the important submodels are

available, but the aggregation of the submodels is less certain.

3. Adequate knowledge of the model components for the considered

system is not available, but good data are available for the same

processes from a similar system, and it is estimated that these data

may be applied directly or with minor modifications to the model

development.

4. Some, but insufficient, knowledge is available from other systems.

Attempts are made to use these data without the necessary

transferability. Attempts are made to eliminate gaps in knowledge by
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using additional experimental data as far as it is possible within the

limited resources available for the project.

5. The model is to a large extent, or at least partly, based on the

subjective judgment of experts.

The acknowledgement of the uncertainty is of great importance and

may be taken into consideration either qualitatively or quantitatively.

Another problem is where to take the uncertainty into account. Should

the economy or the environment benefit from the uncertainty? The ERA

procedure presented in Section 8.2 has definitely facilitated the possibil-

ity of considering the environment more than the economy.

Until 10–15 years ago, researchers had developed very little under-

standing of the processes by which people actually perceive the expo-

sures and effects of toxic chemicals. These processes are just as

important for the risk assessment as the exposures and effects processes

themselves. The characteristics of risks and effects are important for the

perceptions of people. These characteristics may be summarized in the

following list.

Characteristics of risk:

Voluntary or involuntary?

Are the levels known to the exposed people or to science?

Is it novel or familiar?

Is it common or dreaded (e.g., does it involve cancer)?

Are mishaps controllable?

Are future generations threatened?

What scale: global, regional, or local?

Function of time? How (for instance, whether increasing or

decreasing)?

Can it easily be reduced?

Characteristics of effects:

Immediate or delayed?

On many or a few people?

Global, regional, or local?

Involve death?

Are effects of mishaps controllable?
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Observable immediately?

How are they a function of time?

A factor analysis was performed by Slovic et al. (1982), which showed,

among other results, an unsurprising correlation between people’s per-

ception of dreaded and unknown risks. Broadly speaking, there are two

methods of selecting the risks we will deal with.

The first is described as the “rational actor model,” involving people

that look systematically at all risks they face and make choices about

which they will live with and at what levels. For decision making, this

approach uses single, consistent, objective functions and a set of deci-

sion rules.

The second method is called the “political/cultural model.” It involves

interactions between culture, social institutions, and political processes for

the identification of risks and determination of those people will live with

and at what level.

Both methods are unrealistic, as they are both completely impracti-

cal in their pure form. Therefore, we must select a strategy for risk

abatement founded on a workable alternative based on the philosophy

behind both methods.

Several risk management systems are available, but no attempt is

made here to evaluate them. However, some recommendations should

be given for the development of risk management systems:

1. Consider as many of the previously listed characteristics as possible

and include the human perceptions of these characteristics in the

model.

2. Do not focus too narrowly on certain types of risks. This may lead to

suboptimal solutions. Attempt to approach the problem as broadly

as possible.

3. Choose strategies that are pluralistic and adaptive.

4. Benefit-cost analysis is an important element of the risk

management model, but it is far from the only important element

and the uncertainty in evaluation of benefit and cost should not be

forgotten. The variant of this analysis applicable to environmental

risk management may be formulated as follows:

net social benefit ¼ social benefits of the project
� }environmental}costs of the project ð8:5Þ
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5. Use multi-attribute utility functions, but remember that people have

trouble thinking about more than two or three and, at most, four

attributes in each outcome.

The application of the estimation methods, presented in Section 8.5,

renders it feasible to construct ecotoxicolgical models, even with limited

parameter knowledge. The estimation methods have a high uncertainty,

but a great safety factor (assessment factor) helps in accepting this

uncertainty. On the other hand, our knowledge about the effects of toxic

substances is very limited, particularly at the ecosystem, organism, and

organ level. Therefore, models with effect components are only able to

give a rough picture of what is currently known in this area.

8.4. An Overview: The Application of Models
in Ecotoxicology

A number of toxic substance models have been published in the last 35

years and several models are now available in ecotoxicology. During the

last ten years many of the models developed from 1975 to 2000 have

been applied in environmental management, while only a few new

models have been developed. This is probably because the spectrum

of available toxic substance models is sufficient to cover the relevant

ecotoxicological problems. Most models reflect the proposition that

good knowledge of the problem and ecosystem can be used to make

reasonable simplifications. Ecotoxicological modelling has been

approached from two sides: population dynamics and biogeochemical

flow analysis. As the second approach mostly focuses on environmental

management, it has been natural to also approach the toxic substance

problems from this angle. The most difficult part of modelling the effect

and distribution of toxic substances is to obtain the relevant knowledge

about the behavior of the toxic substances in the environment and to

use this knowledge to make the feasible simplifications. The modeller

of ecotoxicological problems is challenged to select the appropriate

and balanced complexity, and there are many examples of rather simple

ecotoxicological models that can solve the focal problem.

It can be seen from the overview in Table 8.2 that many ecotoxico-

logical models have been developed during 1970s and 1980s. Before
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Table 8.2 Examples of Toxic Substance Models

Toxic Substance
Model Class Model Characteristics Reference

Cadmium (1) Food chain similar to a eutrophication model Thomann et al. (1974)

Mercury (1) 6 state variables: water, sediment, suspended matter,

invertebrates, plant, and fish

Miller (1979)

Vinyl chloride (3) Chemical processes in water Gillett et al. (1974)

Methyl parathion (1) Chemical processes in water and benzothiophene

microbial degradation, adsorption, 2-4 trophic levels

Lassiter (1978)

Methyl mercury (4) A single trophic level: food intake, excretion,

metabolism growth

Fagerstr�m & Aasell

(1973)

Heavy metals (3) Concentration factor, excretion, bioaccumulation Aoyama et al. (1978)

Pesticides in fish DDT

& methoxy-chlor (5)

Ingestion, concentration factor, adsorption on body,

defecation, excretion, chemical decomposition,

natural mortality

Leung, (1978)

Zinc in algae (3) Concentration factor, secretion hydrodynamical

distribution

Seip (1978)

Copper in sea (5) Complex formation, adsorption sub-lethal effect of

ionic copper

Orlob et al. (1980)

Radionuclides in

sediment (3)

Photolysis, hydrolysis, oxidation, biolysis,

volatilization, and resuspension

Onishi and Wise (1982)

Metals (2) A thermodynamic equilibrium model Felmy et al. (1984)

Sulfur deposition (3) Box model to calculate deposition of sulfur McMahon et al. (1976)

Radionuclides (3) Distribution of radionuclides from a nuclear accident

release

ApSimon et al. (1980)

Sulfur transport (3) Long-range transmission of sulfur pollutants Prahm and Christensen

(1976)

Lead (5) Hydrodynamics, precipitation, toxic effects of free

ionic lead on algae, invertebrates, and fish

Lam and Simons (1976)

Radionuclides (3) Hydrodynamics, decay, uptake, and release by

various aquatic surfaces

Gromiec & Gloyna

(1973)

Radionuclides (2) Radionuclides in grass, grains, vegetables, milks,

eggs, beef, and poultry are state var.

Kirschner & Whicker

(1984)

SO2, NOx, and heavy

metals

Threshold model for accumulation effect of fire

pollutants on spruce in forests

Kohlmaier et al. (1984)

Toxic environmental

chemicals (5)

Hazard ranking and assessment from physic-chemical

data and a limited number of laboratory tests

Bro-Rasmussen &

Christiansen (1984)

Heavy metals (3) Adsorption, chemical reactions, ion exchange Several authors

Polycyclic aromatic

hydrocarbons (3)

Transport, degradation, bioaccumulation Bartell et al. (1984)

Persistent toxic

organic

substances (3)

Groundwater movement, transport, and

accumulation of pollutants in groundwater

Uchrin (1984)

Cadmium, PCB (2) Hydraulic overflow rate (settling), sediment

interactions, steady-state food chain submodel

Thomann (1984)

Continued
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Table 8.2 Examples of Toxic Substance Models—cont’d

Toxic Substance
Model Class Model Characteristics Reference

Mirex (3) Water-sediment exchange processes, adsorption,

volatilization, bioaccumulation

Halfon (1984)

Toxins (aromatic

hydrocarbons, Cd)

Hydrodynamics, deposition, resuspension,

volatilization, photooxidation, decomposition,

adsorption, complex formation, (humic acid)

Harris et al. (1984)

Heavy metals (2) Hydraulic submodel, adsorption Nyholm et al. (1984)

Oil Slicks Transport and spreading, influence of surface

tension, gravity, and weathering processes

Nihoul (1984)

Acid rain (soil) (3) Aerodynamic, deposition Kauppi et al. (1984)

Persistent organic

chemicals (5)

Fate, exposure, and human uptake Mackay (1991)

Chemicals,

general (5)

Fate, exposure, ecotoxicity for surface water and soil Matthies et al. (1987)

Toxicants, general (4) Effect on populations of toxicants de Luna and Hallam

(1987)

Chemical hazard (5) Basin-wide ecological fate Morioka and Chikami

(1986)

Pesticides (4) Effects on insect populations Longstaff (1989)

Insecticides (2) Resistance Schaalje et al. (1988)

Mirex and Lindane (1) Fate in Lake Ontario Halfon (1986)

Acid rain (5) Effects on forest soils Kauppi et al. (1986)

Acid rain (5) Cation depletion of soil J�rgensen et al. (1995)

pH, Calcium, and

aluminum (4)

Survival of fish populations Breck et al. (1988)

Photochemical

smog (5)

Fate and risk Wratt et al. (1992)

Nitrate (3) Leaching to groundwater Wuttke et al. (1991)

Oil spill (5) Fate J�rgensen et al. (1995)

Toxicants (4) Effects on populations Gard (1990)

Pesticides (3) Loss rates J�rgensen et al. (1995)

TCDD (3) Photodegradation J�rgensen et al. (1995)

Toxicants (4) Effects general on populations Gard (1990)

Pesticides and

surfactants (3)

Fate in rice fields J�rgensen et al. (1997)

Toxicants (3) Migration of dissolved toxicants Monte (1998)

Growth

promoters (3)

Fate, agriculture J�rgensen et al. (1998)

Toxicity (3) Effect on eutrophication Legovic (1997)

Pesticides (3) Mineralization Fomsgaard (1997)

Mecoprop (3) Mineralization in soil Fomsgaard and

Kristensen (1999)
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1975, toxic substances were hardly associated with environmental mod-

elling because the problems seemed straightforward. The many pollu-

tion problems associated with toxic substances could easily be solved

simply by eliminating the source of the toxic substance. During the

1970s, it was acknowledged that the environmental problems of toxic

substances were very complex due to the interaction of many sources

and many simultaneously, interacting processes and components. Sev-

eral accidental releases of toxic substances into the environment have

reinforced the need for models. The list given in Table 8.2 presents a

comprehensive survey of the available ecotoxicological models, but

the list should not be considered complete or even nearly complete as

the table is not a result of a complete literature review. This table is

meant to illustrate the spectrum of available models, to demonstrate

that all five types of models have been developed, and to help the reader

to find a reference to a specific toxic substance modelling problem.

8.5. Estimation of Ecotoxicological Parameters

Slightly more than 100,000 chemicals are produced in such an amount

that they threaten or may threaten the environment. They cover a wide

range of applications: household chemicals, detergents, cosmetics,

medicines, dye stuffs, pesticides, intermediate chemicals, auxiliary

chemicals in other industries, additives to a wide range of products,

chemicals for water treatment, and so on. They are viewed as mostly

indispensable in modern society, resulting in increased production of

chemicals about 40-fold during the last four decades. A proportion of

these chemicals reaches the environment through their production,

transport, application, or disposal. In addition, the production or use

of chemicals may cause unforeseen waste or byproducts, for example,

chloro-compounds from the use of chlorine as a disinfectant. Because

we would like to have the benefits of using the chemicals and not accept

the harm they may cause, several urgent questions have been raised

that have already been discussed in this chapter. These questions can-

not be answered without models, and we cannot develop models with-

out knowing the most important parameters, at least within some

ranges. The Organization for Economic Cooperation and Development

(OECD) has reviewed the common properties that we should know for
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all chemicals. These include the boiling point and melting point, which

are necessary to know the chemical form (solid, liquid, or gas) found in

the environment. We also must know the distribution of the chemicals

in the five spheres: hydrosphere, atmosphere, lithosphere, biosphere,

and technosphere (anthroposphere). This requires knowing the solubil-

ity in water; the partition coefficient water/lipids; Henry’s constant; the

vapor pressure; the rate of degradation by hydrolysis, photolysis, chem-

ical oxidation, and microbiological processes; and the adsorption equi-

librium between water and soil — all as a function of the temperature.

We need to discover the interactions between living organisms and the

chemicals, which implies that we should know the biological concentra-

tion factor (BCF), the magnification through the food chain, the uptake

rate, and the excretion rate by the organisms and where in the organ-

isms the chemicals will be concentrated. We must also know the effects

on a wide range of different organisms. This means we should be able to

find the LC50 and LD50 values, theMACandNECvalues (MAC¼maximum

allowable concentration and NEC ¼ non-effect concentration), the rela-

tionship between the various possible sub-lethal effects and concentra-

tions, the influence of the chemical on fecundity, and the carcinogenic

and teratogenic properties. We should also know the effect on the ecosys-

tem level. How do the chemicals affect populations and their development

and interactions, that is, the entire network of the ecosystem?

Table 8.3 presents an overview of the most relevant physical-chemi-

cal properties of organic compounds and their interpretation with

respect to the behavior in the environment, which should be reflected

in the model.

ERAs also require information about chemicals’ properties regarding

their interactions with living organisms. It might not be necessary to

know the properties with the high accuracy provided by measurements

in a laboratory, but it would be beneficial to know the properties with

sufficient accuracy to make it possible to utilize the models for manage-

ment and risk assessments. Therefore, estimation methods have been

developed as an urgently needed alternative to measurements. These

are based on the structure of the chemical compounds (the so-called

QSAR and SAR methods), but it may also be possible to use allometric

principles to transfer rates of interaction processes and concentration

factors between a chemical and one or a few organisms to other
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organisms. This section focuses on these methods and attempts to give

a brief overview on how these methods can be applied and what

approximate accuracy they can offer. A more detailed overview of the

methods can be found in J�rgensen et al. (1997).

It may be interesting here to discuss the obvious question: Why is it

sufficient to estimate a property of a chemical in an ecotoxicological

context with 20% or 50% or higher uncertainty? Ecotoxicological assess-

ment usually produces an uncertainty of the same order of magnitude,

which means that the indicated uncertainty may be sufficient from the

modelling viewpoint. But can a result with such an uncertainty be used?

The answer is often yes, because in most cases we want to assure that

we are (very) far from a harmful or very harmful level. We use (see also

Section 8.2) a safety factor of 10–1000 (most often 50–100). When we are

concerned with very harmful effects, such as the collapse of an ecosys-

tem or a health risk for a large human population, we will inevitably

select a safety factor that is very high. In addition, our lack of knowledge

about synergistic effects and the presence of many compounds in the

Table 8.3 Overview of the Most Relevant Environmental Properties of
Organic Compounds and Their Interpretation

Property Interpretation

Water solubility High water solubility corresponds to high mobility

Kow High Kow means that the compound is lipophilic. It implies that it has a high

tendency to bioaccumulate and be sorbed to soil, sludge, and sediment. BCF and

Koc are correlated with Kow.

Biodegradability This is a measure of how fast the compound is decomposed to simpler

molecules. A high biodegradation rate implies that the compound will not

accumulate in the environment, while a low biodegradation rate may

create environmental problems related to the increasing concentration in

the environment and the possibilities of a synergistic effect with other

compounds.

Volatilization, vapor High rate of volatilization (high vapor pressure) implies that the pressure

compound will cause an air pollution problem

Henry’s constant, He He determines the distribution between the atmosphere and the hydrosphere.

pK If the compound is an acid or a base, pH determines whether the acid or the

corresponding base is present. As the two forms have different properties, pH

becomes important for the properties of the compounds.
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environment at the same time force us to apply a very high safety factor.

In such a context, we usually go for a concentration in the environment

that is magnitudes lower than those corresponding to a slightly harmful

effect or considerably lower than the NEC. It is analogous to civil engi-

neers constructing bridges. They make very sophisticated calculations

(develop models) that account for wind, snow, temperature changes,

and so on, and afterwards they multiply the results by a safety factor

of 2 to 3 to ensure that the bridge will not collapse. They use safety fac-

tors because the consequences of a bridge collapse are unacceptable.

The collapse of an ecosystem or a health risk to a large human pop-

ulation is also completely unacceptable. So, we should use safety factors

in ecotoxicological modelling to account for the uncertainty. Due to the

complexity of the system, the simultaneous presence of many com-

pounds, and our present knowledge or rather lack of knowledge, we

should use 10–100, or even 1000, as a safety factor. If we use safety fac-

tors that are too high, then the risk is only that the environment will be

less contaminated at maybe a higher cost. Besides, there are no alterna-

tives to the use of safety factors. We can increase our ecotoxicological

knowledge step by step, but it will take decades before it may be

reflected in considerably lower safety factors. A measuring program of

all processes and components is impossible due to the high complexity

of the ecosystems. This does not imply that we should not use the infor-

mation of measured properties that are available. Measured data are

usually more accurate than estimated data. Furthermore, the use of

measured data within the network of estimation methods improves

the accuracy of estimation methods. Several handbooks on ecotoxico-

logical parameters are fortunately available. The most important refer-

ences were listed in Section 8.2. Estimation methods for the physical-

chemical properties of chemical compounds were already applied 40

to 60 years ago, as they were urgently needed in chemical engineering.

They are based on contributions to a focal property by molecular groups

and the molecular weight: the boiling point, the melting point, and the

vapor pressure as function of the temperature. These are examples of

properties that are frequently estimated in chemical engineering by

these methods. In addition, a number of auxiliary properties results

from these estimation methods, such as the critical data and the molec-

ular volume. These properties may not have a direct application as

264 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

ecotoxicological parameters in ERA, but they are used as intermediate

parameters as a basis for estimating other parameters.

The water solubility; the partition coefficient octanol-water, Kow; and

Henry’s constant are crucial parameters in our network of estimation

methods, because many other parameters are well correlated with these

two parameters. These three properties can be found for a number

of compounds or estimated with reasonably high accuracy using

knowledge of the chemical structure — the number of various elements,

the number of rings, and the number of functional groups. In addi-

tion, there is a good relationship between water solubility and Kow

(Figure 8.10). Recently, many good estimation methods for these three

core properties have been developed.

During the last 20 years, several correlation equations have been

developed based upon a relationship between the water solubility, Kow,

or Henry’s constant on the one hand, and physical, chemical, biological,

and ecotoxicological parameters for chemical compounds on the other.

The most important of these parameters are the adsorption isotherms

soil–water; the rate of the chemical degradation processes such as

hydrolysis, photolysis, and chemical oxidation; the BCF, the ecological

magnification factor (EMF); the uptake rate; excretion rate; and a num-

ber of ecotoxicological parameters. Both the ratio of concentrations in

the sorbed phase and in water at equilibrium, Ka, and BCF, — defined

as the ratio of the concentration in an organism and in the medium

(water for aquatic organisms) at steady state presuming that both the

medium and the food are contaminated — may often be estimated with

relatively good accuracy from expressions like Ka, Koc, or BCF ¼ a log

Kow þ b. Koc is the ratio between the concentration in soil consisting

of 100% organic carbon and in water at equilibrium between the two

phases. Numerous expressions with different a and b values have been

published (J�rgensen et al., 1991, 1997, 2000; J�rgensen, 2000). Some

of these relationships are shown in Table 8.4 and Figure 8.11.

The biodegradation in waste treatment plants is often of particular

interest, in which case the %BOD may be used. It is defined as the 5-day

BOD as a percentage of the theoretical BOD. It may also be indicated as

the BOD5-fraction; for instance, a BOD5-fraction of 0.7 means that BOD5

corresponds to 70% of the theoretical BOD. It is also possible to find an

indication of BOD5 percentage removal in an activated sludge plant.
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Biodegradation is, in some cases, very dependent on the concentra-

tion of microorganisms. Therefore, it may be beneficial to indicate it

as a rate coefficient relative to the biomass of the active microorganisms

in the units mg/(g dry wt 24h).

In the microbiological decomposition of xenobiotic compounds, an

acclimatization period from a few days to one to two months must pass

before the optimum biodegradation rate can be achieved. The two types

of biodegradation are primary and ultimate. Primary biodegradation is

any biologically induced transformation that changes the molecular

integrity. Ultimate biodegradation is the biologically mediated conver-

sion of an organic compound to inorganic compound and products

associated with complete and normal metabolic decomposition.

The biodegradation rate is expressed by a wide range of units:

1. First-order rate constant - (1/24h)

2. Half-life time - (days or hours)

3. mg per g sludge per 24h - (mg/(g 24h))

4. mg per g bacteria per 24 h - (mg/(g 24h))

5. ml of substrate per bacterial cell per 24h - (ml/(24h cells))

6. mg COD per g biomass per 24 h (mg/(g 24h))

7. ml of substrate per gram of volatile solids inclusive microorganisms -

(ml/(g 24h))

Table 8.4 Regression Equations for Estimation of the BCF

Indicator Relationship
Correlation
Coefficient Range (Indicator)

Kow log BCF ¼ -0.973 þ 0.767 log Kow 0.76 2.0*10-2 � 2.0*106

Kow log BCF ¼ 0.7504 þ 1.1587 log Kow 0.98 7.0 � 1.6*104

Kow log BCF ¼ 0.7285 þ 0.6335 log Kow 0.79 1.6* � 1.4*104

Kow log BCF ¼ 0.124 þ 0.542 log Kow 0.95 4.4 � 4.2*107

Kow log BCF ¼ -1.495 þ 0.935 log Kow 0.87 1.6 � 3.7*106

Kow log BCF ¼ -0.70 þ 0.85 log Kow 0.95 1.0 � 1.0*107

Kow log BCF ¼ 0.124 þ 0.542 log Kow 0.90 1.0 � 5.0*107

S (mg/L) log BCF ¼ 3.9950 � 0.3891 log S 0.92 1.2 � 3.7*107

S (mg/L) log BCF ¼ 4.4806 � 0.4732 log S 0.97 1.3 � 4.0*107

S (mmol/L) log BCF ¼ 3.41 � 0.508 log S 0.96 2.0*10-2 � 5.0*103

BCF - Biological Concentration Factor
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8. BODx/BOD8, that is, the biological oxygen demand in x days

compared with complete degradation (-), named the BODx-

coefficient.

9. BODx/COD, that is, the biological oxygen demand in x days compared

with complete degradation, expressed by means of COD(-)

The biodegradation rate in water or soil is difficult to estimate

because the number of microorganisms varies several orders of magni-

tude from one type of aquatic ecosystem to the next and from one type

of soil to the next.

Models enlisting artificial intelligence have been used as a promising tool

to estimate this important parameter. However, a (very) rough, first estima-

tion can bemade on the basis of themolecular structure and the biodegrad-

ability. The following rules can be used to set up these estimations:

1. Polymer compounds are generally less biodegradable than monomer

compounds. 1 point for a molecular weight > 500 and equal to 1000,

2 points for a molecular weight > 1000.

2. Aliphatic compounds are more biodegradable than aromatic

compounds. 1 point for each aromatic ring.

3. Substitutions, especially with halogens and nitro groups, will

decrease the biodegradability. 0.5 points for each substitution,

although 1 point if it is a halogen or a nitro group.

4. Introduction of a double or triple bond generally means an

increase in the biodegradability (double bonds in aromatic rings

are not included in this rule). 1 point for each double or triple bond.

5. Oxygen and nitrogen bridges (-O- and -N- (or ¼)) in a molecule will

decrease the biodegradability. 1 point for each oxygen or nitrogen

bridge.

6. Branches (secondary or tertiary compounds) are generally less

biodegradable than the corresponding primary compounds. 0.5

point for each branch.

Sum the total number of points and use the following classification:

¼ 1.5 points: The compound is readily biodegraded. More than 90%

will be biodegraded in a biological treatment plant.

2.0– 3.0 points: The compound is biodegradable. Probably about

10%– 90% will be removed in a biological treatment plant. BOD5 is

0.1–0.9 of the theoretical oxygen demand.
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3.5– 4.5 points: The compound is slowly biodegradable. Less than

10% will be removed in a biological treatment plant. BOD10 ¼ 0.1 of

the theoretical oxygen demand.

5.0–5.5 points: The compound is very slowly biodegradable. It will

hardly be removed in a biological treatment plant and a 90%

biodegradation in water or soil will take 6 months.

¼ 6.0 points: The compound is refractory. The half-life time in soil or

water is counted in years.

Several useful methods for estimating biological properties are based

upon the similarity of chemical structures. If we know the properties of

one compound, then theymaybeused to find theproperties of similar com-

pounds. For example, if we know the properties of phenol, which is named

the parent compound, then they may be used to more accurately estimate

the properties of monochloro-phenol, dichloro-phenol, trichloro-phenol,

and so on, as well as for the corresponding cresol compounds. Estimation

approaches based on chemical similarity generally produce a more accu-

rate estimation, but they are also more cumbersome to apply as they

cannot be used because each estimation has a different starting point;

namely the parent compound with its own particular properties.

Allometric estimation methods presume (Peters, 1983) there is a rela-

tionship between the value of a biological parameter and the size of the

affected organism. These estimation methods were presented in Section

2.9, as they are closely related to the energy balances of organisms. The

toxicological parameters LC50, LD50, MAC, EC, and NEC can be esti-

mated from a wide spectrum of physical and chemical parameters,

although these estimation equations generally are more inaccurate than

the estimation methods for physical, chemical, and biological para-

meters. Both molecular connectivity and chemical similarity usually

offer better accuracy for estimating toxicological parameters.

The various estimation methods may be classified into two groups:

A. General estimation methods based on an equation of general validity

for all types of compounds: Some of the constants may be dependent

on the type of chemical compound or calculated by adding

contributions (increments) based on chemical groups and bonds.

B. Estimation methods valid for a specific class of chemical compounds

such as aromatic amines, phenols, aliphatic hydrocarbons, and so
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on. The property of at least one key compound is known. Based

upon the structural differences between the key compounds and all

other compounds of the considered type — for instance, two

chlorine atoms have substituted hydrogen in phenol to get 2,3-

dichloro-phenol — and the correlation between the structural

differences and the differences in the considered property, the

properties for all compounds of the considered class can be found.

These methods are therefore based on chemical similarity.

Methods of class B are generally more accurate than methods of class

A, but they are more difficult to use because it is necessary to find the

right correlation for each chemical type. Furthermore, the requested

properties should be known for at least one key component, which

sometimes may be difficult when a series of properties are needed. If

estimation of the properties for a series of compounds belonging to

the same chemical class is required, then it is tempting to use a suitable

collection of class B methods.

.Methods of class A form a network that facilitates linking the estima-

tion methods together in a computer software system such as EEP (see

www.ecologicalmodel.net), which contains many estimation methods.

The relationship between the two properties is based on the average

result obtained from a number of different equations found in the litera-

ture. There is, however, a price for using such “easy-to-go” software. The

accuracy of the estimations is not as good as with the more sophisticated

methods based upon similarity in chemical structure, but in many con-

texts, particularly modelling, the results found by EEP can offer sufficient

accuracy. It is always useful to come up with a first intermediate guess.

With this software it is also possible to start the estimations from the

properties of the chemical compound already known. The accuracy of

the estimation from using the software can be improved considerably

by having knowledge about a few key parameters such as the boiling

point and Henry’s constant. Because it is possible to get software that

estimates Henry’s constant and Kow with higher accuracy than EEP, a

combination of separate estimations of these two parameters prior to

using EEP are recommended. Another possibility would be to estimate

a couple of key properties using chemical similarity methods and then

use these estimations as known values in EEP. These methods for
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improving estimation accuracy will be discussed in the next section. The

network of EEP as an example of these estimation networks is illustrated

in Figure 8.12. EEP is a network of class A methods, so the accuracy of

its estimations is not as high as those obtained by the more specific class

B methods. However, using EEP makes it possible to estimate the most

pertinent properties directly and relatively from the structural formula.

The latest version of EEP contains an estimation of the biodegradation

based on a further development of the system previously presented.

EEP is based on average values of results obtained by simultaneous

use of several estimation methods for most of the parameters. It implies

increased accuracy of the estimation, mainly because it gives a

LC, LD, EC,
MAC values

Molecular
connectivity

Other toxic
indices

BiodegradabilityEMFBCF

Solubility Kow
Kac

Vapor pressure
Critical pressure

and volume

Intermediate pro-
perties: Parachor,
exp. factor and RD

Critical
temperature

Boiling and melting
points

Henry’s constant

Chemical structure
molecular weight

FIGURE 8.12 The network of estimation methods in EEP. The arrow represents a relationship between

two or more properties. BCF - Biological Concentration Factor; EEP - Software denoted Estimation of

Environmental Parameters; MAC - maximum allowable concentration; EMF – ecological magnification

factor
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reasonable accuracy for a wider range of compounds. If several meth-

ods are used in parallel, then a simple average of the parallel results

have been used in some cases, while a weighted average is used in cases

where it is beneficial for the overall accuracy of the program. When par-

allel estimation methods give the highest accuracy for different classes

of compounds, use of weighting factors seems to offer a clear advan-

tage. It is generally recommended to apply as many estimation methods

as possible for a given case study to increase the overall accuracy. If the

estimation by EEP can be supported by other recommended estimation

methods, then it is strongly recommended to use those methods.

8.6. Ecotoxicological Case Study I: Modelling
the Distribution of Chromium in a Danish Fjord

This case study requires an FTE-model combining a fate model type AII

(a specific ecosystem is considered) with an effect model type BI (focus

on the organism level). The structure of the model is a class 2 (see Sec-

tion 8.3), as it focuses on a steady-state situation, although the spatial

distribution is also considered. Only one trophic level is considered. It

is an illustrative case study because:

1. The case study shows what can be achieved by a simple model.

2. It is possible to validate the results set up eight years previously.

Model validation is necessary for development of reliable models,

which was the case here. Since there are only a few cases of validated

predictions, it was considered significant to include this case study.

3. The model development clearly shows how important it is to know

the system and its processes if the right model with the right

simplifications is to be selected.

A tanning plant discharged wastewater with a high concentration of

chromium(III) into the fjord for decades. In 1958, production was

expanded significantly and there was a pronounced increase in the

chromium concentration of the sediment (Mogensen & J�rgensen,

1979). For further details see Mogensen, 1978.

It was the goal of this investigation to set up a model for the distribu-

tion of chromium in the fjord based on analysis of chromium in phyto-

plankton, zooplankton, fish, benthic fauna, water (dissolved as well as
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suspended), and sediment. Already, during the first phase of the investiga-

tion, it was clear that the phytoplankton, zooplankton, and fish were not

contaminated by chromium, while the sediment and the benthic fauna

clearly showed a raised concentration of chromium. This was easy to

explain: the chromium(III) precipitates as hydroxide by contact with the

seawater that has a pH of 8.1 compared with 6.5–7.0 for the wastewater.

The overall analysis showed that the important processes include:

1. Settling of the precipitated chromium(III) hydroxide and other

insoluble chromium compounds

2. Diffusion of the chromium, mainly as suspended matter, throughout

the fjord caused mainly by tides; this implies that an eddy diffusion

coefficient has to be found

3. Bioaccumulation from sediment to benthic fauna

Processes 1 and 2 can be combined in one submodel, while process 3

requires a separate submodel.

The distribution model is based on the equations of advection and

diffusion processes, which have been expanded to include settling:

@C=@t ¼ D � @2C=@X2 �Q � @C=@X � K � C� COð Þ=h ð8:6Þ
where C is the concentration of total chromium in water in mg/L; Co is

the solubility of chromium(III) in seawater at pH ¼ 8.1 in mg/L; Q is the

inflow to the fjord ¼ outflow by advection (m3/24h); D is the eddy diffu-

sion coefficient considering the tide (m2/24h); X is the distance from the

discharge point in m; K is the settling rate in m/24h; and h is the mean

depth in m.

For a tidal fjord such as Faaborg Fjord with only insignificant advec-

tion, Q may be set to 0. Since the tanning plant has discharged a near

constant amount of chromium(III) during the last 20 years, we can con-

sider the stationary situation:

@C=@t ¼ 0 ð8:7Þ

Equation (8.6) therefore takes the form:

D � @2C=@X2 ¼ K � C� COð Þ=h ð8:8Þ
This second-order differential equation has an analytical solution. Cu ¼
the total discharge of chromium in g per 24 h is known. This informa-

tion is used together with F ¼ cross-sectional area (m2) to state the
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boundary conditions. The following expression is obtained as an analyt-

ical solution:

C� CO ¼ ðCu=FÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=D � KÞ

p
� exp½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK=h �DÞ

p
� X� þ IK ð8:9Þ

F is known only approximately in this equation due to the nonuniform

geometry of the fjord. The total annual discharge of chromium is

22,400 kg. Both the consumption of chromium by the tanning factory

and the analytical determinations of the wastewater discharged by the

factory confirm this number. The depth, h, is about 8 m on average and

IK is an integration constant.

Equation (8.9) may be transformed to:

Y ¼ K � C� COð Þ ¼ Cu=Fð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � K=Dð Þ

p
� exp½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=h �DÞ

p
� X þ K � IK ð8:10Þ

Y is the amount of chromium (g) settled per 24h and per m2. Eq. (10)

gives Y as a function of X.

Y is, however, known from the sediment analysis. A typical chromium

profile for a sediment core is shown in Figure 8.13. We know that the

increase in the chromium concentration took place about 25 years

before the model was built, so it is possible to find the sediment rate

in mm or cm per year: 75mm/25 y ¼ 3 mm/y. Because we know the

concentration of chromium in the sediment, we can calculate the

amount of chromium settled per year, or 24 h, and per m2, and this is

Y. The Y values found by this method are plotted versus X in Figure 8.14.

A nonlinear regression analysis was used to fit the data to an equa-

tion of the following form:

Y ¼ a � exp �bX þ cð Þ ð8:11Þ
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FIGURE 8.13 Typical chromium

profile of sediment core.
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a, b, and c are constants, which are found by the regression analysis.

Table 8.5 shows Y ¼ f(X). Table 8.6 lists the estimations of a, b, and c

found by the statistical analysis. Table 8.7 illustrates the result of the sta-

tistical analysis, which shows that the model found with the values of a,
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FIGURE 8.14 Y, found by

sediment analysis, is plotted

versus X.

Table 8.5 Y versus X

Station Number g Cr/m2 year (Y) mg Cr/m2 day (X) Distance from discharge point (m)

1 2.55 7.0 500

2 2.39 6.5 500

3 1.47 4.0 1500

4 0.35 1.0 2750

5 0.78 2.1 2750

6 0.14 0.38 5250

7 0.03 0.082 8500

8 0.20 0.55 3250

9 0.06 0.16 3500

10 0.58 1.6 2000

Table 8.6 Estimations of a, b, and c

Estimate Asymptotic St. error

a 0.009909 0.00084

b 0.000723 0.00015

c þ0.000081 0.00045
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b, and c from Table 8.6 have a very high probability. The F value found is

114.5, while an F value with a probability of 0.9995 is only 30.4.

Table 8.8 translates the constants a, b, and c into parameters of the

model. D is found on the basis of an average value for K, 1.6 m/24h. This

value is found from the definition of Y. Y is known as shown in

Eq. (8.11). Furthermore, Co (the solubility of chromium(III) hydroxide)

is known from the solubility constant and pH ¼ 8.1 to be 0.2 mg/m3,

and as C is measured for all stations, K may be found from:

K ¼ Y= C� COð Þ ð8:12Þ
The settling rates found by this method are shown in Table 8.9.

As seen from Table 8.9, the settling rate is approximately the same at

three of the five stations. Stations 6 and 7 are given a lower value. It

should be expected that the settling rate decreases with increasing dis-

tance from the discharge point. Yet, it should not be forgotten that the

determination of the chromium concentration in the water is not very

accurate, as the concentration is low. K should be compared with

Table 8.7 Statistical Analysis

Degree of freedom Sum of squares Mean square

Model 3 0.00011337 0.00003779

Residual 6 0.00000233 0.00000033

Total 9

F ¼ 114.5

Table 8.8 Parameters

From the regression analysis we have:

Cu � ðhKÞ1=2
FD

¼ 0:00990 ¼ a

and ðKÞ1=2
h �D ¼ 0:000723 ¼ b

which gives
Cu � h=F ¼ a=b ¼ 13:7

F ¼ 35,800 m2, which seems a reasonable average value of the cross-sectional area. From analysis of C at

stations 2, 5, 6, 7, and 8, we get an estimation of K since

Y ¼ mgCr

m2day
¼ KðC� COÞðCOis found to be 0:2mg=m3Þ
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settling rates of phytoplankton and detritus, which are in the range of

0.1 to 0.5 m/24h. It is expected that the settling rate for chromium(III)

hydroxide is higher than the settling for phytoplankton and detritus,

which is confirmed by the results in Table 8.9.

The value for the diffusion coefficient found from the settling rate

corresponds to 4.4 m2/s — a reasonable value compared with other D

values from similar situations (estuaries). The value for F is based on a

width slightly more than the width of the inner fjord, but as a weighted

average for the inner and outer fjord, it seems a reasonable value.

Integration from 0 to infinity over a half circle area results in 22 t of

chromium(III); that is, almost all the chromium discharged may be

explained by the model assuming that the distribution takes place over

a half circle area.

All in all, it may be concluded that the distribution model produces

acceptable results, particularly of the high sediment chromium concen-

tration. The use of sediment analysis, as demonstrated, is recommended

for developing a distribution model for a component that settles readily.

The second submodel focuses on the chromium contamination of

the benthic fauna. It may be shown (J�rgensen, 1979) that under

steady-state conditions the relation between the concentration of a con-

taminant in the nth link in the food chain and the corresponding con-

centration in the (n � 1)th link can be expressed using the following

equation:

Cn ¼ MYðnð Þ � Cn�1 � YT nð ÞÞ= MY nð Þ � YF nð Þ � RESP nð Þ þ EXC nð Þð Þ ¼ K0 � Cn�1, ð8:13Þ
where MY(n) ¼ the maximum growth rate for nth link of the food chain

(1/day), Cn ¼ the chromium concentration in the nth link of the food

chain (mg/kg), and Cn-1 ¼ the chromium concentration in the (n � 1)th

Table 8.9 Settling rates

Station mg Cr/m2day C � C0 (mg m-3) K (m day-1)

2 6.5 2.5 2.6

5 2.1 0.9 2.3

6 0.4 0.6 0.7

7 0.1 0.2 0.5

8 0.6 0.3 2.0
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link of the food chain (mg/kg). YT(n) ¼ the utility factor of chromium

in the food for the nth link of the food chain (-), and YF(N) ¼ the utility

factor of the food in the nth link of the food chain (-). RESP(n) ¼ the

respiration rate of the nth link of the food chain (1/day) and EXC(n) ¼
the excretion rate of chromium for the nth link of the food chain (1/day).

For some species present in Faaborg Fjord these parameter values

can be found in the literature (J�rgensen et al., 1991, 2000). The mussel

Mytilus edulis was found at almost all the stations and the following

parameters are valid: YT(n) and YF(n) are found for other species:

MY(n) ¼ 0.03 1/day

YT(n) ¼ 0.07

YF(n) ¼ 0.66

RESP(n) ¼ 0.001 1/day

EXC(n) ¼ 0.04 1/day

Using these values gives K’ ¼ 0.036 for M. edulis. In other words, the

concentration of chromium in M. edulis should be expected to be 0.036

times the concentration in the sediment.

Twenty-one mussels from Faaborg Fjord were analyzed and by statis-

tical analysis it was found that the relation between the concentration in

the sediment and in the mussels is linear:

Cn ¼ Cn�1 � K0 ð8:14Þ
where K’ was found to be 0.015 � 0.002. The discrepancy from the the-

oretical value is fully acceptable, when it is considered that the para-

meters are found in the literature and they may not be exactly the

same values for all environments for all conditions. In general, bio-

logical parameters can only be considered approximate values. The

relatively low standard deviation of the observed K’ value confirms,

however, the relation used. It is recommended that the highest K’ value

¼ 0.036 is used when the model is used for environmental management,

because that way the uncertainty of the K’ value is "used to the benefit

of the environment."

The model was used as a management tool and the acceptable level

of the chromium concentration in the sediment of the most polluted

area was assessed to be 70 mg/kg dry matter. That corresponds to a

chromium concentration of 70*0.036 ¼ 2.5 mg/kg dry biomass in
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mussels, or about 2.5 times the concentration found in uncontaminated

areas of the open sea. This was considered the NOEC and accepted by

the environmental authorities of the district (council).

The distribution model is now used to assess the total allowable dis-

charge of chromium (kg/y) to see if the chromiumconcentration in the sed-

iment should be reduced to 70mg/kg drymatter in themost polluted areas

(stations 1 and 2). It was found that the total discharge of chromium should

be reduced to 2000 kg or less per year to achieve a reduction of about 92%.

Consequently, the environmental authorities required the tanning

plant to reduce its chromium discharge to �2000 kg per year. The

tanning plant has complied with the standards since 1980.

A few samples of sediment (4) and mussels (7) taken from 1987 to

1988 have been analyzed and used to validate the model results

(Table 8.10). Settled chromium in mg/m2/day was found on the basis

of the previously determined sedimentation rate. The model validation

was fully acceptable as the deviation between the prediction and

observed average values for chromium in mussels is approximately 12%.

8.7. Ecotoxicological Case Study II:
Contamination of Agricultural Products
by Cadmium and Lead

Agricultural products are contaminated by lead and cadmium originat-

ing from air pollution, the application of sludge from municipal waste-

water plants as a soil conditioner, and from the use of fertilizers.

The uptake of heavy metals from municipal sludge by plants has pre-

viously been modelled (see J�rgensen, 1976b). Depending on the soil

composition, it is possible to find a distribution coefficient for various

Table 8.10 Validation of the Prognosis

mg per kg dry matter

Item Observed Value Range Predicted Value

Cr in sediment 65 57–81 70

Cr in mussels 2.2 1.4–4.5 2.5

mg Cr/m2 day 0.59 0.44–0.830.67
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heavy metal ions, that is, the fraction of the heavy metal dissolved in the

soil–water relative to the total amount. The distribution coefficient was

found by examining the dissolved heavy metals relative to the total

amount for several different types of soil. The correlation between pH,

the concentration of humic substances, clay, and sand in the soil, as well

as the distribution coefficient were also determined. The uptake of heavy

metals was considered a first-order reaction of the dissolved heavymetal.

This model does not consider:

1. Direct uptake from atmospheric fallout onto the plants

2. Other contamination sources such as fertilizers and the long-term

release of heavy metal bound to the soil and the unharvested parts of

the plants

The objective of the model is to include these sources in a model for

lead and cadmium contamination of plants. This model is a fate type

A3 (see Section 8.1). Published data on lead and cadmium contamina-

tion in agriculture are used to calibrate and validate the model, which

is intended to be used for a more applicable risk assessment for the

use of fertilizers and sludge that contains cadmium and lead as con-

taminants. The structure of the model is type 3 (see Section 8.3).

The basis for the model is the lead and cadmium balance for average

Danish agricultural land. Figures 8.15 and 8.16 illustrate the balances, mod-

ified fromAndreasen (1985) and Knudsen and Kristensen (1987), to account

for the changes of the mass balances year 1999. The atmospheric fallout of

lead has gradually been reduced due to reduction of lead concentration in

gasoline, while the most important source of cadmium contamination is

fertilizer. The latter can only be reduced by using less contaminated sludge

and phosphorus ore for the production of phosphorus fertilizer. The

amounts of lead and cadmium coming from domestic animals and plant

residues after harvest are significant contributions.

8.7.1. The Model

Figure 8.17 shows a conceptual diagram of the Cd-model. STELLA soft-

ware was used to construct a model with four state variables: Cd-bound,

Cd-soil, Cd-detritus, and Cd-plant. An attempt was made to use one or

two state variables for cadmium in the soil, but to develop acceptable

agreement between data and model output, three state variables were
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needed. This can be explained by the presence of several soil compo-

nents that bind the heavy metal differently (Christensen, 1981, 1984;

EPA Denmark, 1979; Hansen & Tjell, 1981; Jensen & Tjell, 1981;

Chubin & Street, 1981). Cd-bound covers the cadmium bound to miner-

als and refractory material, Cd-soil covers the cadmium bound by
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FIGURE 8.15 Lead balance of average Danish agriculture land. All rates are g Pb/ha y.
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adsorption and ion exchange, and Cd-detritus is the cadmium bound to

organic material with a wide range of biodegradability. The forcing

functions are airpoll, Cd-air, Cd-input, yield, and loss.

The atmospheric fallout is known, and the allocation of this source to

the soil (airpoll) and the plants (Cd-air) follows Hansen and Tjell (1981)

and Jensen and Tjell (1981). Cd-input covers the heavy metal in the fer-

tilizer, which comes as a pulse at day 1 and afterward with a frequency

of every 180 days (Table 8.11). The yield corresponds to the harvested

part of the plants, which is also expressed as a pulse function at day

180, and afterward with an occurrence every 360 days. In this table it

is 40% of the plant biomass (Table 8.11).

Protein

X Air pollution

Harvest

Cd in plants

pH

Clay

Humus

CEC

Table 1Graph 1

Cd conc in plantsDecomp 2

Decomp 1

Cd loss

Cd release
Addition

Cd bound Cd in soil

Cduptake

Solubility

Distribution

Cd in detritus

Cd soil microg per kg

Atm fall out
Uptake rate

Withering of plants

FIGURE 8.17 Conceptual diagram of the model as developed in STELLA software.
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Table 8.11 Model Equations

Cd-detritus ¼ Cd-detritus þ dt * ( Cd-waste -
mineralization - minquick )

INIT(Cd-detritus) ¼ 0.27
Cd-plant ¼ Cd-plant þ dt * ( Cduptake - yield - Cd-waste þ
Cd-air )

INIT(Cd-plant) ¼ 0.0002
Cd-soil ¼ Cd-soil þ dt * ( -Cduptake - loss þ transfer þ
minquick þ airpoll )

INIT(Cd-soil) ¼ 0.08
Cdtotal ¼ Cdtotal þ dt * ( Cd-input - transfer þ
mineralization )

INIT(Cdtotal) ¼ 0.19
airpoll ¼0.0000014
Cd-air ¼ 0.0000028þSTEP(-0.0000028,180)þSTEP
(þ0.0000028,360)þSTEP(-0.0000028,540)þSTEP
(þ0.0000028,720)þSTEP(-0.0000028,900)

Cd-input ¼ PULSE(0.0014,1,180)
Cduptake ¼ distributioncoeff*Cd-soil*uptake rate
Cd-waste ¼ PULSE(0.6*Cd-plant,180,360)þPULSE(0.6*Cd-
plant,181,360)

CEC ¼ 33
clay ¼ 34.4
distributioncoeff ¼0.0001*(80.01-6.135*pH-
0.2603*clay-0.5189*humus-0.93*CEC)

humus ¼ 2.1
loss ¼ 0.01*Cd-soil*distributioncoeff
mineralization ¼ 0.012*Cd-detritus
minquick ¼ IF TIME_180 THEN 0.01*Cd-detritus ELSE
0.0001*Cd-detritus

pH ¼ 7.5
plantvalue ¼ 3000*Cd-plant/14
protein ¼ 47
solubility ¼ 10○(þ6.273-
1.505*pHþ0.00212*humusþ0.002414*CEC)*112.4*350

transfer ¼ IF Cd-soil<solubility THEN 0.00001*Cdtotal
ELSE 0.000001*Cdtotal

uptake rate ¼ x þSTEP(-x,180)þSTEP(x,360)þSTEP(-x,540)þ
STEP(x,720)þSTEP(-x,900)

x ¼ 0.002157*(-0.3771þ0.04544*protein)
yield ¼ PULSE(0.4*Cd-plant,180,360)þPULSE(0.4*Cd-
plant,181,360)
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The loss covers transfer to the soil and groundwater below the root zone.

It is expressed as a first-order reaction with a rate coefficient dependent on

the distribution coefficient found from the soil composition and pH,

according to the correlation found by J�rgensen (1976b). The rate constant

is dependent on the hydraulic conductivity of the soil. Here in Table 8.11,

the constant 0.01 reflects the dependence of the hydraulic conductivity.

The transfer from Cd-bound to Cd-soil indicates the slow release of

cadmium due to a slow decomposition of the refractory material to

which cadmium is bound. The cadmium uptake by plants is expressed

as a first-order reaction, where the rate is dependent on the distribution

coefficient, as only dissolved cadmium can be taken up. It is also depen-

dent on the plant species. It will be shown that the uptake is a step func-

tion where grass is 0.0005 during the growing season and zero after the

harvest until the next growing season starts. Cd-waste covers the transfer

of plant residues to detritus after harvest. It is a pulse function, which is

60% of the plant biomass, as the remaining 40% has been harvested.

Cd-detritus covers a wide range of biodegradable matter and the

mineralization is accounted for in the model by two mineralization pro-

cesses: one for Cd-soil and one for Cd-total.

8.7.2. Model Results

Data from Jensen and Tjell (1981) and Hansen and Tjell (1981) were

used for model calibration and validation. This phase of the modelling

procedure revealed that three state variables for heavy metal in soil were

needed to get acceptable results. It was particularly difficult to obtain

the right values for heavy metal concentrations the second and third

year after municipal sludge had been used as a soil conditioner. This

use of models may be called experimental mathematics or modelling,

where simulations with different models are used to deduce which

model structure should be preferred. The results of experimental math-

ematics must be explained by examining the processes involved and

can be referred to the references Jensen and Tjell.

The results of the validation demonstrate good agreement between

observations and model prediction (Figure 8.18), especially considering

the lowmodel complexity. Wider use of themodel requiresmore data from

experiments withmany plant species to test the model applicability. It can

Chapter 8 • Ecotoxicological Models 283



 

be concluded from these results that themodel structuremust account for

at least three state variables for the heavy metal in soil to cover the ability

of different soil components to bind the heavy metal by various processes.

The problem modelled is very complex and many processes are

involved. On the other hand, an ecotoxicological management model

should be somewhat simple and not involve too many parameters.

The model can obviously be improved, but it gives at least a first rough

picture of the important factors in the contamination of agricultural

crops. It is not possible to get accurate results with toxic substance

models, but as we want to use somewhat large safety factors, the need

for high accuracy is not pressing.

8.8. Fugacity Fate Models

This A1 type of fate model, seen in Section 8.1, is applied mainly to

compare two or more chemicals in order to select the least environmen-

tally harmful one or to point out particularly hazardous chemicals. This

model type, originally developed by Mackay (1991), has a wide applica-

tion in environmental chemistry with many different models developed

by different authors (SETAC, 1995).

FIGURE 8.18 Cadmium concentration in plants and soil in mg/kg dry matter. The harvest takes place at

day 180, 540, and 900. The cadmium concentration according to observations was found at the three

harvests to be, respectively, 1.7, 1.1, and 0.8mg/kg dry matter. The cadmium in soil is reduced over the

simulation period from about 80 mg/kg dry matter in soil to about 45 mg/kg dry matter in soil.
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These models are based on the concept of fugacity, f ¼ c/Z, where c is

the concentration in the considered phase and Z is the fugacity capacity

(measured in mol/m3 Pa or moles/L atm). Fugacity is defined as the

escaping tendency, and has the units of pressure (atmosphere or Pa)

and is identical to the partial pressure of ideal gases. By equilibrium

between two phases, the fugacity of the two phases is equal. If the two

Zs are known, then it is possible to calculate the concentrations in the

two phases. If there is no equilibrium, then the rate of transfer from

one phase to the other is proportional to the difference in fugacity.

If the equation for ideal gases can be applied, we have pV ¼ nRT,

where n is the number of moles, R the gas constant ¼ 8.314 Pa m3/mole

K, and T is the absolute temperature. This leads to p ¼ cRT, and:

c ¼ p=RT ¼ f= RTð Þ ð8:15Þ

By acceptable approximation (application of the equation for ideal

gases and the activity is equal to the concentration) the fugacity capac-

ity in air is:

Za ¼ 1=RT ð8:16Þ

At equilibrium between water and air, the fugacity is the same in the

two phases, as already mentioned:

caZa ¼ cwZw ð8:17Þ
where w is used as index for water.

Based uponHenry’s law: p¼ kH*y, where, kH is Henry’s constant and as

used above, p¼ caRTand y¼ cw/(cwþ [H2O]), we can find the distribution

between air and water. The concentration of water in water is with good

approximation 1000/18 >> cw, which means that we get p ¼ caRT ¼ kH
y ¼ kH cw/(cw þ [H2O]), ¼ kH cw 18/1000. Equation (8.17) yields:

ca=cw ¼ Za=Zw ¼ 18=1000RT ð8:18Þ

It implies, that Zw ¼ 1000/18kH.

Similarly, the distribution between water and soil (index s) can be

applied to find the fugacity capacity of soil:

cs=cw ¼ Zs=Zw ¼ Kac ð8:19Þ

Zs is found as Zw* Kac ¼ 1000 Kac/18kH. In a parallel manner Zo, the

fugacity capacity for octanol can be found as 1000 kH Kow/18 and the

fugacity capacity for biota, Zb as 1000 kH BCF/18. Table 8.12 presents
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an overview of the found fugacity capacities in mole/L atm. R ¼ 0.0820

atm L/(moles K), when these units are applied. If m3 is used as a volume

unit and Pa as a unit for pressure, then we get 1 atm ¼ 101 325 Pa and 1

¼ 1/1000 m3. It implies that R has the units J/mole K corresponding to

the value 0.082 � 101 325/1000 ¼ 8.3J/(moles K). Figure 8.19 shows a

conceptual diagram of the most simple fugacity model.

Multimedia models are applied on four levels. An equilibrium distri-

bution (level 1) is found from the known fugacity capacities and equal

fugacities in all spheres. If advection and chemical reactions must be

included in one or more phases, but the equilibrium is still valid, then

we have level 2. The fugacities are still the same in all phases. Level 3

presumes steady state but no equilibrium between the phases. Transfer

between the phases is therefore taking place. The transfer rate is pro-

portional to the fugacity difference between the two phases. Level 4 is

a dynamic version of level three, which implies that all concentrations

and possibly also the emissions change over time.

Table 8.12 Fugacity Capacity in moles/L atm

Phase In mol/L atm.

Atmosphere 1/RT (R¼0.0820)

Hydrosphere 1000/kH 18

Litosphere (soil) 1000 Koc/18 kH

Octanol 1000 Kow/18 kH

Biota 1000 BCF/18 kH

Note: If the unit moles/m3 Pa is required divide by 101.325.

Air:
Z = 1/RT

Water:
Z = 1000/kH18

Biota:
Z = 1000 BCF/kH18Soil:

Z = 1000 KOC/kH18

FIGURE 8.19 Conceptual diagram of the fugacity model at steady state with equal fugacities in the four

compartments. The concentration can easily be found as c ¼ fZ. The Z values are shown in the diagram.
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If the total emission in all phases is denoted M then:

M ¼ SciVi ¼ fSZiVi ð8:20Þ
where ci, Vi, and Zi are concentration, volume, and fugacity capacity of

sphere number i. Level 1 and 2 are usually sufficient to calculate the

environmental risk of a chemical. For level 1 calculations, the fugacity

capacities are found from Table 8.12, and Eq. (8.20) is applied to find

f, because the total emission and the volumes of the spheres are known.

The concentrations are then easily determined from ci ¼ f Zi. The

amounts in the spheres are found from the concentration x the volume

of the spheres. Illustration 8.1 presents these calculations.

ILLUSTRATION 8.1

A chemical compound has a molecular weight of 200g/mole and a water

solubility of 20 mg/L, which gives a vapor pressure of 1 Pa. The distribu-

tion coefficient octanol-water is 10,000 and the Kac ¼ 4000. How will an

emission of 1000 moles be distributed in a region with an atmosphere of

6 � 108 m3, a hydrosphere of 6 � 106m3, a lithosphere of 50.000 m3 with

a specific gravity of 1.5 kg/L, and an organic carbon content of 10%.

Biota (fish) is estimated to be 10 m3 (specific gravity 1.00 kg/L and a

lipid content of 5%). The temperature is presumed to be 20oC.

Solution

Fugacity capacities:

Za ¼ 1/RT ¼ 1/8.314*293 ¼ 0.00041 mol/m3 Pa

Zw ¼ (20/200)/1 ¼ 0.1 moles/m3 Pa

Zs ¼ 0.1 � 0.1 � 4000 ¼ 40 moles/m3 Pa

Zbiota ¼0.1 � 0.05 � 10,000 ¼ 50 moles/m3 Pa

Zi Vi ¼ 0.00041 � 6 � 108 þ 0.1 � 6 � 106 þ 40 � 50,000 þ 10 � 50 ¼
2846500 moles /Pa

f ¼ M/
P

Zi Vi ¼ 1000/2846500 ¼ 3.51 � 10-4

Concentrations:

ca ¼ f Za ¼ 3.51 � 10-4 � 0.00041 ¼ 1.44 � 10-7 moles/m3

cw ¼ f Zw ¼ 3.51 � 10-4 � 0.1 ¼ 3.51 � 10-5 moles/m3

cs ¼ f Zs ¼ 3.51 � 10-4 � 40 ¼ 1.404 � 10-2 moles/m3

cbiota ¼ f Zbiota ¼ 3.51 � 10-4 � 50 ¼ 1.755 � 10-2 moles/m3
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Amounts:

Ma ¼ caVa ¼ 1.44 � 10-7 mol/m3 � 6 � 108m3 ¼ 86 moles

Mw ¼ cwVw ¼ 3.51 � 10-5 mol/m3 x 6 � 106 m3 ¼ 211 moles

Ms ¼ csVs ¼ 1.404 � 10-2 mol/m3 � 50.000 m3 ¼ 702 moles

Mbiota ¼ cbiotaVbiota ¼ 1.755 � 10-2 mol/m3 � 10 m3 ¼ 0.2 moles

The sum of the four amounts is 999.2, which is in good accordance

with the total emission of 1000 moles.

Level 2 fugacity models presume a steady-state situation, but with a

continuous advection to and from the phases and a continuous reaction

(decomposition) of the considered chemical. Steady state implies that

input¼ outputþ decomposition. The following equation is therefore valid:

Eþ SGinixci ind ¼ SGoutixci þ SViciki ð8:21Þ
where E is the emission and Gini i the advection into the phase i, ci ind is

the concentration in the inflow, Gouti is the outflow by advection, ci þ is

the concentration in the phase, and Vici ki is the reaction of the consid-

ered component in phase i. As ci ¼ fZi, we get the following equation:

Eþ SGinici ind ¼ fðSGoutiZi þ SVicikiÞ ð8:22Þ
f is the total amount of the component going into phase i divided by

(SGouti Zi þ SViZi ki). We can often presume that Gini ¼ Gouti denoted

Gi. The concentration in the phase is usually f Zi. The amount is corre-

spondingly the concentrations in the phase multiplied by the volume.

The turnover rate of the compound in phase i is f(Gi Zi þ Vici ki). Illustra-

tion 8.2 presents these calculations.

ILLUSTRATION 8.2

In an area consisting of 10,000 m3 atmosphere, 1000 m3 of water, 100 m3

of soil, and 10 m3 of biota, the same chemical compound as mentioned

in Illustration 8.2 is emitted. This means that the same fugacity capaci-

ties can be applied:

Fugacity capacities:

Za ¼ 1/RT ¼ 1/8.314*293 ¼ 0.00041 moles/m3 Pa

Zw ¼ (20/200)/1 ¼ 0.1 moles/m3 Pa

Zs ¼ 0/1 � 0.1 � 4000 ¼ 40 moles/m3 Pa

Zbiota ¼ 0.1 � 0.05 � 10,000 ¼ 50 moles/m3 Pa
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10,000 m3/24h of air with a contamination corresponding to a con-

centration of 0.01 moles/m3 and 10m3/24h of water with a concentra-

tion of the chemical on 1 mole/m3 is flowing into the area by

advection. Within the area, an emission of 500 moles/24h takes place.

Decomposition of the chemical takes place with a rate coefficient for

air, water, soil, and biota of 0.001 1/24 h, 0.01 1/24h, and 0.1 1/24h for

soil and biota. What will the concentration of the chemical be as a result

of a steady-state situation in the various spheres?

Solution

The total amount of chemical entering the area is 500 þ 100 þ 10 ¼ 610

moles/24h.

The following table summarizes the calculations:

Phase

Rate

Volume Zi Gi Zi ViZi ki ci Mi conv.

Air 10,000 0.00041 4.1 0.0041 0.00055 5.5 5.48

Water 1000 0.1 1.0 1.0 0.134 134 2.67

Soil 100 40 0 400 53.5 5350 534.8

Biota 10 50 0 50 66.9 669 66.9

5.1 451 609.9

f is the total in-flowing amount of the chemical divided by (SGi Zi þ
SViZi ki) ¼ 610/456.1 ¼ 1.337. The concentrations are found as ci ¼ f Zi.

The total conversion/24h is 609.9 moles in good accordance with the

total input of 610 moles.

Transfer rates between two phases by diffusion are expressed by the

following equation (models per unit of area and time):

N ¼ D � Df, ð8:23Þ
where N is the rate of transfer, D is the diffusion coefficient, and Df is
the difference in fugacity. D is the total resistance for the transfer con-

sisting of the resistances of the two phases in series. Notice that D

may be found as K*Z, where K is the transfer coefficient and Z is the

fugacity capacity defined earlier.

The so-called “unit world model” consists of six compartments: air,

water, soil, sediment, suspended sediment, and biota. This simplified
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model attempts to identify the partition among these six compartments of

toxic substances emitted to the environment. The volumes and densities of

the unit world and the definition of fugacity capacities are given in Mackay

(1991) and in J�rgnesen and Bendoricchio (2001). The average residence

time, tr, due to reactions may be found by use of the following equation:

tr ¼ M=E ð8:24Þ
and the overall rate constant, K, is E/M or 1/tr.

The third level is devoted to a steady-state, nonequilibrium situation,

which implies that the fugacities are different in each phase. Equation

(8.24) is used to account for the transfer. The D values may be calcu-

lated from quantities such as interface areas, mass transfer coefficients

(as indicated above, D is the product of the transfer coefficient and

the fugacity capacity: D ¼ K * Z), release rate of chemicals into phases

such as biota or sediment, and Z values, or by use of the estimation

methods presented in Section 8.5.

Level 4 involves a dynamic version of level 3, where emissions and

thus concentrations, vary with time. This implies that differential equa-

tions must be applied for each compartment to calculate the change in

concentrations with time, for instance:

Vi � dci=dt ¼ Ei � Vi � Ci � ki � SDij � Dfij ð8:25Þ
Level 1 or 2 is usually sufficient, but if the environmental management

problem requires the prediction of the (1) time taken for a substance to

accumulate to a certain concentration in a phase after emission has

started or (2) length of time for the system to recover after the emission

has ceased, then the fourth level must be applied.

This approach has been widely used and a typical example is given

by Mackay (1991). It concerns the distribution of PCB between air and

water in the Great Lakes. Here kH is 49.1 and the distribution coefficient

for air/water (¼ kH/R*T) was 0.02. The unit for C is mole/m3. The fugac-

ity capacity for water ¼ 1/kH was 0.0204 and the fugacity capacity for air

¼ 1/ R*T ¼ 0.000404. The distribution coefficient between water and

suspended matter in the water was estimated to be 100,000. As the con-

centration of suspended matter in the Great Lakes was 2*10-6 on a vol-

ume basis (approximately 4 mg/L, with a density of 2000 g/L), the

fraction dissolved was 1/(l þ 0.2) ¼ 0.833.
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A useful approach for modelling ecological systems of interacting organ-

isms is through the use of individual-based models (IBMs). Individuals

differ from each other in distinct ways and also from themselves during

different stages of their life cycle. More important, they have self-directed

motivation, can adapt to changing conditions, and can modify their

environment through their actions. An IBM (also called agent-based

models, ABM) allows the capture of this feedback within a modelling

framework. Properties at higher levels — populations, communities, and

ecosystems — emerge from these individual interactions and the interac-

tions with their environment. Without self-direction and adaptation

ecological systems would be much easier to model and understand. Such

is the case with physical or chemical systems. Since individuals within

ecological systems do have self-direction and the ability to adapt, IBMs

are one way to capture this complexity.

9.1. History of Individual-Based Models

Early IBMs in ecology include a forest model (Botkin, Janak, & Wallis,

1972) and a fish cohort model (DeAngelis, Cox, & Coutant, 1980). The

forest model, JABOWA, has successfully predicted species composition

resulting from succession in a mixed-species forest, and has spawned
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a series of related models (Shugart, 1984; Liu & Ashton, 1995). The suc-

cess of the fish cohort model was due to the inclusion of feedback pro-

cesses such as cannibalism and competition, and it also precipitated a

plethora of off-shoot models (Grimm & Railsback, 2005). Other early

applications of ABMs originated in the artificial life literature, such as

ECHO, Tierra, and Avida (Parrott, 2008).

The IBM approach was first formalized as a discipline in the article

by Huston, DeAngelis, and Post (1988), and has developed consider-

ably since then. What makes an IBM different from a population

model? The first question to be addressed about this approach is what

makes it different from the standard approaches already being

employed in ecological modelling. For one thing, traditional popula-

tion models were not able to answer specific questions central to ecol-

ogy regarding mating, foraging, and dispersal because the models

treated all individuals within the population as homogeneous; there-

fore, the entire population acted accordingly without any individual

variation. Giving specific traits to each individual allowed for greater

variation in the behavior of the population. Furthermore, in traditional

models, the agents were unlikely to adapt their behavior throughout

the length of the simulation. In IBMs, the heuristics that determine

the individual behavior can be updated based on feedback from the

success of previous interactions and encounters. Lastly, the environment

can be altered by the actions of the individuals performing work on it to

survive. In this manner, there is another level of feedback in which the

organism influences the environment in which its future success is

determined, exerting some degree of self-control on overall higher level

system behavior. Such closed loop feedback is an important characteris-

tic of systems ecology as expressed in network environ analysis (Patten

1978a, 1981) or niche construction (Odling-Smee, Laland, & Feldman,

2003).

Uchmanski and Grimm (1996) proposed four criteria that represent

the core features of individuality, adaptability, and environmental

feedback to consider what distinguishes an IBM from classical models:

1. The degree to which the complexity of the individual’s life cycle is

reflected in the model

2. Extent to which variability among individuals of the same age is

considered
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3. Whether real or integer numbers are used to represent the

population size

4. Whether or not the dynamics of resources used by individuals are

explicitly represented

The implementation of IBMs can affect the paradigm one has about

ecology in general. This has led to a new approach called Individual-Based

Ecology (IBE) in which the understanding of macroscopic organizational

levels (populations, communities, ecosystems, and biosphere) arise from

the interactions of microscopic components (agents and individuals).

Characteristics of IBE have been proposed by Grimmand Railsback (2005):

• Systems are understood and modelled as collections of unique

individuals.
• System properties and dynamics arise from the interactions of

individuals with their environment and with each other.
• IBMs are a primary tool for IBE.
• IBE is based on theory.
• Observed patterns are a primary kind of information used to test

theories and design models.
• Instead of being framed in the concepts of differential calculus,

models are framed by complexity concepts such as emergence,

adaptation, and fitness.
• Models are implemented and solved using computer simulations.
• Field and laboratory studies are crucial for developing IBE theory.

9.2. Designing Individual-Based Models

There are three primary aspects to consider when developing an IBM:

(1) agent behavior, (2) agent-agent interactions, and (3) environment. The

key to IBMs is developing them in a manner in which the adaptive traits

canmodel behavior of real organisms. Anadaptive trait is a rule or heuristic

that allows the organism to make situation-specific decisions. The traits

may be programmed or learned. They determine the choices that the

organisms make during each encounter, and are often programmed using

a series of IF-THEN statements and loops corresponding to the individual’s

specific conditions. Following the heuristics does not necessarily lead to an

optimal behavior, since not all information is known to always make opti-

mal decisions, but the behaviors are context-dependent and goal directed
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(Grimm & Railsback, 2005). For example, rules describing foraging behav-

ior describe how the agent responds to the local conditions (is food avail-

able or not) and the agent’s internal goals (time since last feeding). The

movement patternmay be programmed from a simple randomwalk func-

tion to a more complex environmental assessment and deliberate moves

such as seeking a preferred food source, following subtle perceived differ-

ences in environmental gradients, or learning from previous encounters

with the landscape. A conceptual model used in this instance is called

beliefs-desires-intents (BDI), which models the hierarchical progression

leading to certain actions. The beliefs contain the background information

held by the agent (i.e., food is good, mating is necessary, run from preda-

tors, etc.), the desires are the goals, and the intents are the actions taken

to achieve these ends (Parrott, 2008).

Agent-agent interactions may be direct such as mating, communica-

tion, predation, or resource competition, or indirect throughmodifications

to the environment. An example of indirect interaction is the chemical or

physical marking of an area as signals to ensuing agents upon that area.

The end result is that group-level dynamics emerge from these agent-agent

interactions.

The environment represents the local landscape on which the organ-

isms move and interact. It is typical that the environment has variation

but is regular enough for agent learning and adaptation. The environ-

ment is commonly modelled as a lattice or network. A lattice approach

provides spatial variation such that each cell in the lattice may be hetero-

geneous and can include environmental variables as well as other agents.

Network models forego some spatial capability to focus on the flows or

interactions, such as trophic networks. An important, but not surprising,

conclusion from IBM work is that the environment can have a substantial

influence on the individual behavior and on the overall group dynamics

(Parrott, 2008). This is consistent with the perspective of systems ecology,

which also places high value on the role of environment, indirect interac-

tions, and holism.

9.3. Emergent versus Imposed Behaviors

As stated previously, one of the important outcomes of IBMs is the

unexpected macroscopic behavior that can be viewed from the results

of the simulation. This occurs because the agent-agent interactions with

294 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

adaptive traits and adaptive environmental variables allow for the emer-

gence of novel system behavior. In addition to being unexpected, emer-

gent behaviors can differ from the behavior of individuals and are

holistic in the sense that the whole is more than the sum of the parts.

Therefore, it is essential not to impose strict, unchanging attributes to

the individual’s choices. One way to view behavior is that if the attri-

butes are derived from an understanding of process then there is more

variability and freedom of option as the behavior unfolds. However, if

the attributes are derived from strict empirical observations, that is,

fixed parameters from field or laboratory experiments, then the out-

come will be predictable since there can be no variation. For example,

consider the case of egg production rate in fish in which temperature

dependence has been documented (Secor & Houde, 1995). In one

model, the rate is fixed based on empirically derived field studies and

each individual has this trait. In the second model, the rate is a function

of the temperature of the environment in which the individual inhabits

at that time. In this manner, the results of the first model are imposed

by the rigid constraint of the parameterization, whereas in the second

model, variation and adaptability can lead to new patterns, such as

clustering of high density populations around warmer pools. Another

possibility in model development is to have intermediary outcomes so

that the first stage might be imposed, such as egg production rate in

each grid cell, but a second choice, based on movement across the envi-

ronment, can allow for the same kind of clustering if there is a process

preference for certain temperature ranges. Overall, the goal for IBMs is

to develop rules that are process-based so that the organism can

respond accordingly to different situations with flexibility. Therefore, it

is important to know some factors that motivate, guide, and orient the

behavior of the agents.

9.4. Orientors

A key question in formulating an IBM is determining the characteristics

that comprise the individual’s decision set. There are a primary set of

survival and behavioral functions common to all agents (as modelled

as complex adaptive systems). There have been proposals to holistically

describe these tendencies in which these systems change over time.

One approach worth mentioning identifies six fundamental orientors,
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which are meant to apply for all complex adaptive agents (Bossel, 1998,

1999). These include:

1. Existence: Attention to existential conditions is necessary to ensure

the basic compatibility and immediate survival of the system in the

normal environmental state.

2. Effectiveness: In its efforts to secure scarce resources (energy, matter,

information) from, and to exert influence on, its environment, the

system should on balance be effective.

3. Freedom of action: Ability to cope in various ways with the challenges

posed by environmental variety.

4. Security: Ability to protect itself from the detrimental effects of

variable, fluctuating, unpredictable, and unreliable environmental

conditions.

5. Adaptability: Ability to change its parameters and/or structure in

order to generate more appropriate responses to challenges posed by

changing environmental conditions.

6. Coexistence: Ability to modify its behavior to account for behavior

and interests (orientors) of other systems.

Orientors are defined as dimensions of concern, not specific goals, as

they arise from the system interactions and are considered emergent

system properties. They function as attractors of the system develop-

ment and the six orientors are responsive to the six general properties

of the environment.

1. Normal environmental state: The actual environmental state can

vary around this state in a certain range.

2. Scarce resources: Resources (energy, matter, information) required for

a system’s survival are not immediately available when and where

needed.

3. Variety: Many qualitatively different processes and patterns occur in

the environment constantly or intermittently.

4. Reliability: Normal environmental state fluctuates in random ways,

and the fluctuations may occasionally take it far from the normal

state.

5. Change: In the course of time, the normal environmental state may

gradually or abruptly change to a permanently different normal

environmental state.

296 FUNDAMENTALS OF ECOLOGICAL MODELLING



 

6. Other systems: Behavior of other systems changes the environment of

a given system.

Bossel (1999) proposed a one-to-one relationship between the prop-

erties of the environment and the basic orientors of systems. Therefore,

the system equipped to secure better overall orientor satisfaction will

have better fitness, having a better chance for long-term survival and

sustainability. The orientor approach provides some guidance for deter-

mining individual attributes that shape the choices according to a basic

needs hierarchy.

9.5. Implementing Individual-Based Models

Many IBMs are created from scratch by the modelling team; however, it

can be quite difficult and time-consuming to gather and analyze a large

number of observations, equations, and parameters. Without a standard

toolbox, such as from object-oriented programming, the developed soft-

ware can be inefficient and not easily transparent. Alternatives for devel-

oping the model from scratch are using software libraries, such as Swarm

and Repast, which are maintained by active user communities, or estab-

lished modelling environments. These modelling environments, such as

CORMAS and NetLogo, are more general programming platforms from

which one can develop IBMs. They are also maintained by their develo-

pers and as teaching tools include tutorial support and examples, making

them a good choice for beginners in the field. In any case, the field

benefits from the extraordinary increase in computing power that every

personal computer (PC) now has, which is sufficient to run most IBMs,

although large models or sensitivity analyses may require PC clusters or

other advanced computing power (Grimm, 2008).

One effort to add standardization to the IBM model development was

the introduction of the ODD protocol by Grimm et al. (2006), which refers

to three primary blocks: Overview, Design concepts, and Details. Within

these three blocks there are seven elements. The overview block includes:

(1) purpose, (2) state variables and scales, and (3) process overview

and scheduling. This block lays out the model purpose and structure

from which the model skeleton is apparent including the definition

of the objects (state variables) and process scheduling. The second

block, design concepts, with only one element – design concepts – links
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the study to the broader framework of complex adaptive systems. It

should address issues of interaction types, adaptation, learning, emer-

gence, and the role of stochasticity. The third block, details, includes

three elements: (1) initialization, (2) input, and (3) submodels. This

section includes all the model detail, such as initial conditions, equations,

and parameters. The information should be sufficient for any reader to

reconstruct the model and achieve the baseline simulations. In their

paper, Grimm et al. (2006) referred to testing ODD on 19 different models

(with specific examples therein), and, since then, the approach has been

widely used in the IBM community.

An example following this protocol is given by Dur et al. (2009) to study

the reproduction of egg-bearing copepods. The model was parameterized

from laboratory and field experiments as well as data from the literature. It

is a good application for IBM because the authors were able to model the

detailed reproductive cycle of the organism (Figure 9.1). The IBM included

attributes: location, number, age, longevity, embryonic development time,
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FIGURE 9.1 Complicated reproductive cycle of Eurytemora affinis permission statement.
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latency time, spawning time, hatching time, ovigerous state of female,

clutch size, and four intermediate parameters regarding the individual

variability on longevity, latency, embryonic development time, and clutch

size. The environment is represented by one attribute, temperature.

Results showed that temperature effects are very important to daily egg

production (Figure 9.2). For example, females at 4�C were able to produce

only 16 clutches, whereas production reached a maximum of 30 clutches

at 23�C. In this model, the emphasis of detail is on the life history of the

reproducing individuals, not the environmental factors.

9.6. Pattern-Oriented Modelling

Due to the high complexity of IBMs, the results can be hard to under-

stand. A new general strategy, pattern-oriented modelling (POM), has

been developed to optimize model complexity and deal with uncer-

tainty in model structure and parameters. A pattern is the macroscopic

order that arises from the microscopic interactions from the system’s

internal organization and is an indicator that there is something more
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FIGURE 9.2 Results from an IBM developed using ODD shows that egg production is strongly affected

by temperature with a maximum production at approximately 20�C.
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going on than simple random variation. Because of the emergence of

higher order organization, it is necessary to develop approaches to rec-

ognize these patterns as different from the background. A pattern is a

clearly identifiable structure in nature or data that is distinguishable

from random variation indicating that underlying processes could be

generating it (Grimm et al., 1996). In other words, the macroscopic

pattern is generated by microscopic activity, such as the demographic

interactions (dispersal, foraging, mating, etc.) and environmental con-

straints (topography, landscape, resources, climate, etc.). These pat-

terns occur at a higher level than the processes that cause them.

Comparing the observed processes with the model simulations that

produced them, it is possible to restrict the parameter space available

for uncertain or key features to detect the underlying processes. For

example, Swannack et al. (2009) used POM to estimate life history

characteristics of amphibian populations. Specifically, they compared

simulation results to observations from four population-level patterns:

population size, adult sex ratio, proportion of toads returning to their

natal pond, and mean maximum distance moved. The models (11 of

16) that did not fit the observed patterns were rejected (Figure 9.3).

Table 3-summary of results from 650, 10-year, monte carlo simulations based on each of 16 versions of the model

Model version

Field
1
2
3e

5e

7e
6

9e
8

11e
10

13
14
15
16

12

4

?
0.005
0.005
0.0075

0.009

0.0095
0.009

0.01
0.0095

0.0105
0.01

0.015
0.015
0.02
0.02

a Swannack (2007).
b Swannack, Grant, and Forstner (2007).
c Breden (1987).
d Price (2003).
e Versions of the model that generate reasonable patterns in all 4 system attributes.

Results include mean (1) final population size, (2) final adult sex ratio, (3) percentage of toads at their natal pond at the time of their death or
at the end of a simulation, and (4) maximum distance moved (m) by an individual toad during a simulation. Different versions of the model
represent different combinations of annual survival estimates (probabilities) for juveniles and adult males. ? represents no field data available.
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225a
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3.32

45.35

86.52
63.22
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290.00
209.69
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42581.38
43335.67

365.29

7.69
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41.01
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6.67
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0.73c
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0.66

0.62
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0.59
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0.71
0.84
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0.57

0.65
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1461
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1308
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natal pond

Maximum
distance moved

FIGURE 9.3 Shows table from Swannack et al. (2009) in which the 16 model runs compare observations

with simulation results.
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The remaining models had a similar feature that population depends

heavily on juvenile survival and provided a narrow range for the juve-

nile survival parameter. Values of juvenile survival below 0.01 had

populations too small and those with values 0.015 and higher were

too high. The model was very sensitive to this parameter. This is a very

good application of using POM to identify key parameters and to pro-

vide a range for acceptable values.

9.7. Individual-Based Models for Parameterizing
Models

Whereas the previous example used POM to test the uncertainty of

certain parameters, a growing tendency is to supplement the paucity

of certain field data with simulated data to parameterize and evaluate

population models. One such approach is the use of a data set gener-

ated by IBMs. Two such examples are presented next.

Hilker,Hinsch, andPoethke (2006) usedan IBMtoparameterize apatch-

matrixmodel (PMM)andagrid-basedmodel (GBM). They first constructed

an IBM (in this specific case, agents represent three different grasshopper

species in varying landscapes with demographic and environmental

stochasticity). Fromthismodel, they generateda long-termset of simulated

data and extracted from this short-term “snapshot” data, which are used as

estimators within the PMMandGBM (Figure 9.4). Specifically, theywanted

parameter estimates for grasshopper movement regarding nest and mate

radius as well as patch and matrix distance over a range of three mobility

types. They used snapshot data from two or five years to correspond to

typical field studies (amount of years ended up not having a big impact

on themodel performance). Thebest resultwasobtainedwith the inclusion

independent migration data (such as from mark-recapture experiments).

Overall, the authors were able to demonstrate the IBM as a general model

that can be used to relate IBM-simulated parameters to emergent behavior

at the metapopulation level.

In another example, Gilioli and Pasquali (2007) also used an IBM for

estimating population parameters. In this case, the IBM is applied to

egg production of a fruit fly. Specifically, an IBM simulates the number

of eggs produced by the adults and a compartmental model simulates

stage-structured population dynamics. The IBM allows for a precise

description of the physiological age-structure (eggs, larvae, and pupae)
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and time distribution such as recruitment and emergence profiles. The

IBM also contributes to the estimation of age-structured mortality and

fecundity parameter values. The combination of a microscopic (IBM)

and macroscopic (compartmental) models provides a more detailed

prediction of population dynamics and good agreement with the

observed data. Overall, the use of IBMs for parameterizing models is

becoming a more common approach.

9.8. Individual-Based Models and Spatial Models

While there are many different examples of IBM applications to address

ecological questions, let us end this chapter with one further example

that combines the IBM approach with a spatially explicit model

(Chapter 11). Overall, we see there is a lot of synergy between the ability

to model individual agents and the spatially explicit landscape on which

Estimators ? ?“Real values” “Real values” Estimators

PMM GBM

Snapshot data Snapshot data

di,j

Long-term data

Species-specific process parameters

Metapopulation level
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FIGURE 9.4 Conceptual

diagram of using

snapshot data taken

from a long-term IBM

simulation for

estimating parameter

values in a patch-matrix

model (PMM) and the

grid-based model

(GBM). (Reprinted from

Hilker et al., 2006.)
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they interact. Wallentin, Tappeiner, Strobla, and Tasserd (2008) con-

structed an IBM to understand alpine tree line dynamics. This model

is used to test the effects of climate change on a forest community in

the Austrian Central Alps. Due to a warming climate, the leading edge

of the tree line from spontaneous forest regeneration is climbing to

higher elevations. Forest regeneration is influenced by seed dispersal

characteristics and land use changes (i.e., availability of migration into

abandoned alpine pastures). The model construction involves six steps:

(1) deriving landscape features from remote sensing data, (2) building

the model, (3) parameterization based on ecological processes, (4) sce-

nario runs, (5) validation, and (6) sensitivity analysis (Figure 9.5). The

model includes as main processes recruitment, growth, and mortality.

Recruitment is a function of distance to seed trees, land cover type,

and elevation. Growth follows a standard sigmoid curve and mortality

is impacted by age and density. The model iterates each year through

the processes of recruitment, growth, and mortality. Establishment of

new seedlings depends on distance to the nearest seed tree, ground

vegetation, and elevation. A tree dies if the survival probability based
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on tree age and tree density is smaller than random mortality values.

Results from the model show the upward movement in elevation of

the tree line, which is a good prediction of the observed forest regener-

ation trend during the study period from 1954 to 2006. Overall, the max-

imum elevation rose almost 150 m and the mean elevation about 90 m.

This is a good example of how a spatially explicit IBM can be used to

model population dynamics in response to changing environmental

conditions, such as climate change.

9.9. Example

To give the reader a clearer idea of how to construct an IBM, in this sec-

tion we present an IBM recently developed by Chon, J�rgensen, and Cho,

(2010) for studying how individual survival is dependent on the dynamic

relation between the gene-individual-population. At the lowest scale the

genes are under different constraints regarding the metabolic efficiency

and toxin susceptibility (Chon et al., 2010). In this model, the individuals

move around in 2D space and compete for food, such that the entire

population acquires the most adaptable genes (concerning combination

of metabolic efficiency and toxin resistance) over the long run. The indi-

vidual attributes are controlled by the gene information, which in turn

determines the gene levels of the entire population.

Individual attributes include age, health score, and location (x and y

coordinates). Food and toxins were present in the grid as environmental

factors. Individuals on the same location as food or toxins would con-

sume them and their health would be affected accordingly (positive

for food and negative for toxin). Food and toxins were both resupplied

regularly to the matrix. Variables in the model include total population

densities and densities in different types of gene information in the

population (Chon et al., 2010).

The model, programmed in Visual Basic, uses a lattice grid size of

800 � 800 units and was run for 7000 time steps. Each interior site (i, j)

(where i ¼ 2, . . ., n � 1 and j ¼ 2, . . ., n � 1) has 8 immediate neighbor

cells (i � 1, j � 1), (i � 1, j), (i � 1, j þ 1), (i, j � 1), (i, j þ 1), (i þ 1, j � 1),

(i þ 1, j), and (i þ 1, j þ 1). Individuals move across this landscape

according to a random walk (one unit per time step). If a nutrient is

located at one of the neighbor lattices, then the individual moves to that
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lattice. In the case of multiple food items in the individual’s nearest

neighbors, the movement selection is made randomly. If there are no

food items in the nearest neighbors, then the individuals move at ran-

dom. Toxin exposure occurs randomly (Chon et al., 2010).

Two different genes carry information regarding the metabolic effi-

ciency and toxin susceptibility, and both were determined at fixed rates

with low, medium, or high levels (e.g., 0.1, 0.25, and 0.5 for metabolic effi-

ciency). This information was converted to phenotypic properties

through health scores. The maximum score of metabolic efficiency and

toxin susceptibility was assumed to be 20 points. The health scores accu-

mulate according to the food uptake and toxin exposure. If the health

score drops below zero, then the individual dies. When the health score

is greater than a fixed threshold and the age is older than three time steps,

reproduction occurs. Reproduction can occur by asexual fission or con-

jugation if a neighboring cell is occupied. In each iteration, only gene

type is randomly selected for exchange (see Chon et al., 2010).

The model was initialized with food occupying 20% of the total lattice

and replenished at regular intervals in 10% of the empty spaces in each

100 time step. Toxin was also present initially in 20% of the total lattice

but was resupplied at a rate of 1% of the remaining empty space (after

resupply of nutrients) in each 100 time step. A range for the model para-

meters, metabolic efficiency (ME) and toxin susceptibility (TS), was

determined to obtain balanced population densities, which occurred

expectedly in the range of higher ME (i.e., efficiency in metabolism)

and lower TS (i.e., higher resistance to toxins). Two similar sets of con-

ditions (C1 and C2) for different genetic values were provided to ME

and TS as follows.

The first condition (C1):

Type A: ME; 0.5; TS; 0.4

Type B: ME; 0.4; TS; 0.3

Type C: ME; 0.3; TS; 0.2

The second condition (C2):

Type A: ME; 0.5; TS; 0.4

Type B: ME; 0.3; TS; 0.25

Type C: ME; 0.1; TS; 0.1
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Chon et al. (2010) found that the overall changes in population size

showed common patterns through simulation. Population densities

increased rapidly with consumption of initial nutrients, peaking at

around 100 iterations. The population size decreased as nutrients were

depleted, and reached the minimal size at around 200 iterations. After-

wards, population size periodically changed in the range of 400 to 800

individuals along with resupply of the nutrients at 100 iteration intervals

(Figure 9.6). The Determination of dominant types of gene information

appeared to be critical when the population size was minimized due to

nutrient depletion.

The overall change in fitness due to reproduction was also modelled.

The case without conjugation did not allow for gene recombination and

is not discussed here. It is noted that the case with the best initial

parameter values (type A-A) had the highest population and the one
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FIGURE 9.6 Changes in population size in different gene types in the gene-individual-population

relationships: (a) without conjugation and (b) with conjugation ¼ 25%.
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with the worst values (type C-C) had the lowest or went extinct. Greater

diversity was found in the species composition when conjugation was

allowed for gene exchange between individuals. The amount of mixing

depended on level of conjugation (which ranged from 0 to 100%). The

dominant types changed depending on the different simulation condi-

tions, C1 and C2. For condition C1, Type A-C, which is most suitable

for both ME and TS, appeared as the first dominant type, followed by

A-B and A-A at conjugation ¼ 25%. For condition C2, however, type

A-B was most dominant, followed by A-A and A-C. The overall diversity

changed with increasing conjugation (Figure 9.7). In conclusion, the

authors found by using an IBM that overall biomass and eco-exergy

(see Chapter 10) increased with conjugation.
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9.10. Conclusions

Individual-based models have filled a natural gap in the ecological mod-

elling toolbox. They allow more detail and flexibility for individual action

than the traditional compartmentmodelling approach. The key factors in

an IBMare: (1) the inclusion of individual variation including detail about

the life history and age classes, (2) the possibility for agents to adapt and

learn (i.e., update in real time the interaction rules) from experiences,

and (3) the modification of the environment by the behavior of the indi-

vidual. Libraries of data now exist for use in IBMs, development of a stan-

dard protocol for developing IBMs, and software platforms that are

available for IBMs. Many applications of this new approach have been

implemented and their use will continue to grow in the future.

Problems

1. What is an individual-based ecology? How does the interplay of

microscopic and macroscopic levels influence ecological

characteristics?

2. The three main features of an IBM are: (1) agent behavior, (2) agent-

agent interactions, and (3) the environment. Explain how each of

these could be modelled.

3. Explain the ODD protocol introduced to standardized IBM studies.

4. Develop a conceptual model for an IBM representing a forest

ecosystem. Include a description of the spatial variation in the

species distribution and how the different sized structures could be

modelled. What are some important traits that should be considered

in the model?

5. Adaptability is more likely to lead to emergent system properties.

Explain why and how this could be modelled.

6. Results from IBMs are often most useful when analyzed at a higher

scale of observation. Explain how POM is used to identify these

structures. Give an example of how it could lead to estimation of

model parameters.

7. What role do Geographical Information Systems (GISs) play in the

development and implementation of IBMs?

8. Explain the difference between a metapopulation model and an IBM.

Which circumstances would each one be best used?
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10.1. Introduction

Ecological models attempt to capture the characteristics of ecosystems.

However, ecosystems differ from most systems because they are

extremely adaptive, self-organized, and have a large number of feedback

mechanisms. The real challenge of modelling is to answer this question:

How can we construct models that are able to reflect these dynamic char-

acteristics? This chapter attempts to answer this question by the use of

structurally dynamic models. Section 10.2 focuses on the characteristics

of ecosystems and Section 10.3 is devoted to the development of structur-

ally dynamic models (SDMs) or variable parameter models, which are

sometimes called the fifth generation of models. The thermodynamic

variable eco-exergy (work capacity defined for ecosystems; the definition

and presentation are given in Section 10.3) has been applied to develop

SDMs in 21 cases (Zhang et al., 2010). The 21 case studies are:

1–8. Eight eutrophication models of six different lakes

9. A model to explain the success and failure of biomanipulation

based on removal of planktivorous fish

10. A model to explain under which circumstances submerged

vegetation and phytoplankton are dominant in shallow lakes

Fundamentals of Ecological Modelling. DOI: 10.1016/B978-0-444-53567-2.00010-7

© 2011 Elsevier B.V. All rights reserved.
309



 

11. A model of Lake Balaton, which was used to support the

intermediate disturbance hypothesis

12–15. Small population dynamic models

16. A eutrophication model of the Lagoon of Venice

17. A eutrophication model of the Mondego Estuary

18. An ecotoxicological model focusing on the influence of copper on

zooplankton growth rates

19. A model of Darwin’s finches

20. A model of the interaction between parasites and birds

21. A model of Lake Fure in Denmark

Sections 10.4–10.6 present three illustrative examples of SDMs;

namely 19, 9 and 18 from the previous list of case studies using eco-

exergy as a goal function to develop SDMs. The use of this model type

will most likely increase in the future in our endeavor to make more

adaptive models because reliable predictions can only be made by mod-

els with a correct description of ecosystem properties. If our models do

not properly describe adaptation and possible shifts in species compo-

sition, then the prognoses will inevitably be more incorrect.

10.2. Ecosystem Characteristics

Ecology deals with irreducible systems (Wolfram 1984a,b, J�rgensen,

1990, 1992a,b, 2002, J�rgensen & Fath, 2004b). We cannot design simple

experiments to reveal a relationship that can, in all detail, be transferred

from one ecological situation and one ecosystem to another situation in

another ecosystem. This may be possible with Newton’s laws of gravity,

because the relationship between forces and acceleration is reducible.

The relationship between force and acceleration is also linear, but

growth of living organisms is dependent on many interacting factors,

which again are functions of time. Feedback mechanisms simulta-

neously regulate all the factors and rates, interact, and are also functions

of time (Straskraba, 1979, 1980).

Table 10.1 shows the hierarchy of regulation mechanisms that are

operating at the same time. From this example the complexity alone

clearly prohibits the reduction to simple relationships that can be used

repeatedly. An ecosystem has so many interacting components that it

is impossible to examine all of these relationships. Even if we could,
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it would be impossible to separate one relationship and examine it

carefully to reveal its details because the relationship is different when

it works in nature with interactions from many other processes and

from when it is examined in a laboratory with the relationship sepa-

rated from the other ecosystem components. The observation that it

is impossible to separate and examine processes in real ecosystems

corresponds to the examinations of organs that are separated from

the organisms in which they are working. Their functions are

completely different when separated from their organisms and exam-

ined in a laboratory from when they are placed in their right context

and in “working” condition.

These observations are indeed expressed in ecosystem ecology —

“everything is linked to everything” or “the whole is greater than the

sum of the parts” (Pascal and repeated by Allen & Starr, 1982). These

expressions imply that it may be possible to examine the parts by

reduction to simple relationships, but when the parts are put together

they form a whole that behaves differently from the sum of the parts.

This statement requires a more detailed discussion of how an ecosys-

tem works. The latter statement is correct because of the evolutionary

potential that emerges from living systems. The ecosystem contains

the possibility of becoming something different, that is, adapting and

evolving. The evolutionary potential is linked to the existence of

microscopic freedom, represented by stochasticity and nonaverage

Table 10.1 The Hierarchy of Regulating Feedback Mechanisms

Level Explanation of Regulation Process Exemplified by Phytoplankton Growth

1. Rate by concentration in medium Uptake of phosphorus in accordance with

phosphorus concentration

2. Rate by needs Uptake of phosphorus in accordance with

intracellular concentration

3. Rate by other external factors Chlorophyll concentration in accordance with

previous solar radiation

4. Adaptation of properties Change of optimal temperature for growth

5. Selection of other species Shift to better fitted species

6. Selection of other food web Shift to better fitted food web

7. Mutations, new sexual recombinations, and

other shifts of genes

Emergence of new species or species properties

From J�rgensen, 1988.
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behavior, resulting from the diversity, complexity, and variability of its

elements.

Underlying the taxonomic classification is the microscopic diversity,

which only adds to the complexity to such an extent that it will be

completely impossible to cover all the possibilities and details of the

observed phenomena. We attempt to capture at least a part of the real-

ity using models. It is not possible to use one or a few simple relation-

ships, but a model seems the only useful tool when we are dealing with

irreducible systems. However, using one model is far from realistic.

Using many models simultaneously to capture a more complete image

of reality seems the only possible way to deal with complex living

systems.

This has been acknowledged by holistic ecology or systems ecology,

whereas the more reductionistic style of ecology attempts to understand

ecological behavior by analysis of one or a few processes, which are

related to one or two components. The results of analyses are expanded

to be used in the more reductionistic approaches as a basic explanation

of observations in real ecosystems, but such an extrapolation is often

invalid and leads to false conclusions. Both analyses and syntheses

are needed in ecology, and the analysis is a necessary foundation for

the synthesis, but it may lead to wrong scientific conclusions to stop

at the analysis. Analysis of several interacting processes may give a cor-

rect result of the processes under the analyzed conditions, but the con-

ditions in ecosystems are constantly changing and even if the processes

were unchanged (which they very rarely are), it is not possible to

oversee the analytical results of so many simultaneously working pro-

cesses. Our brain simply cannot calculate what will happen in a system

where, for example, six or more interacting processes are working

simultaneously.

So, reductionism does not consider that the:

1. Basic conditions determined by the external factors for our

analysis are constantly changing (one factor is typically varied by

an analysis, while all the others are assumed constant) in the real

world and the analytical results are not valid in the system context.

2. Interaction from all of the other processes and components may

change the processes and the properties of all biological components
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significantly in the real ecosystem so the analytical results are

invalid.

3. Direct overview of the many simultaneously working processes is not

possible and wrong conclusions may result if an overview is attempted.

Therefore, a tool is needed to oversee and synthesize themany interact-

ing processes in an ecosystem. The synthesis may just be “putting

together” the various analytical results, but afterward we need to make

changes to account for the fact that the processes are working together

and become more than the sum of the parts. In other words, there is a

synergistic effect or a symbiosis. In Chapter 6, Section 6.4, it was men-

tioned how important the indirect effects are compared to the direct

effects in an ecological network and the emergence of networkmutualism.

Modelling can be used as a synthesizing tool. It is our hope that a fur-

ther synthesis of knowledge will enable us to attain a system-wide

understanding of ecosystems and help us cope with the environmental

problems that are threatening human survival.

A massive scientific effort is needed to teach scientists how to cope

with ecological complexity or even with complex systems in general.

Which tools should we use to attack these problems? How do we use

the tools most efficiently? Which general laws are valid for complex sys-

tems with many feedbacks and particularly for living systems? Do all

hierarchically organized systems with many hierarchically organized

feedbacks and regulations have the same basic laws? What do we need

to add to these laws for living systems?

Many researchers have advocated a holistic approach to ecosystem

science (e.g., E. P. Odum, 1953; Ulanowicz, 1980, 1986, 1995). Holism

is the description of the system level properties of an ensemble, rather

than simply an exhaustive description of all the components. It is

thought that by adopting a holistic viewpoint, certain properties

become apparent and other behaviors that otherwise would be unde-

tected become visible.

It is, however, clear from this discussion that the complexity of eco-

systems has set the limitations for our understanding and for the possi-

bilities of proper management. We cannot capture the complexity and

all its details, but we can understand why ecosystems are complex

and set up a realistic strategy for gaining sufficient knowledge about
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the system — not knowing all the details, but still understanding and

knowing the mean behavior and the important reactions of the system,

particularly to specified impacts. It means that we can only try to reveal

the basic properties behind the complexity.

We have no other choice than to go holistic. The results from the more

reductionistic ecological tests are essential in our effort “to get to the root”

of the system properties of ecosystems, but we need systems ecology,

which consists of many new ideas, approaches, and concepts, to follow

the path to the root of the basic system properties of ecosystems. In other

words, we cannot find the properties of ecosystems by analyzing all the

details because there are simply toomany, butwe can try to reveal the sys-

tem properties of ecosystems by examining the entire system.

The number of feedbacks and regulations is extremely high, which

makes it possible for the living organisms and populations to survive

and reproduce in spite of changes in external conditions.

These regulations correspond to levels 3 and 4 in Table 10.1. Numer-

ous examples can be found in the literature. If the actual properties of

the species are changed, then the regulation is called adaptation. Phyto-

plankton, for instance, is able to regulate its chlorophyll concentration

according to available solar radiation. If more chlorophyll is needed

because the radiation is insufficient to guarantee growth, then more

chlorophyll is produced by the phytoplankton. The digestion efficiency

of the food for many animals depends on the abundance of food. The

same species may be a different size in different environments, depend-

ing on what is most beneficial for survival and growth. If nutrients are

scarce, then phytoplankton becomes smaller and vice versa. In this lat-

ter case, the change in size is a result of a selection process, which is

made possible because of the distribution in size.

The feedbacks are constantly changing, that is, the adaptation itself is

adaptable because if a regulation is insufficient, another regulation pro-

cess higher in the hierarchy of feedbacks (see Table 10.1) will take over.

The change in size within the same species is limited. When this limitation

has been reached, other species will take over. This implies that the

processes and the components, as well as the feedbacks, can be replaced,

if needed, to achieve better utilization of the available resources.

Three different concepts have been used to explain the functioning of

ecosystems:
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1. The individualistic or Gleasonian concept assumes populations

respond independently to an external environment.

2. The superorganism or Clementsian concept views ecosystems as

organisms of a higher order and defines succession as ontogenesis

of this superorganism (Margalef, 1968, 1991). Ecosystems and

organisms are different in one important aspect. Ecosystems can

be dismantled without destroying them; they are just replaced by

others, such as agroecosystems, human settlements, or other

succession states. Patten (1981) pointed out that the indirect

effects in ecosystems are significant compared to the direct ones,

while in organisms, the direct linkages are most dominant. An

ecosystem has more linkages than an organism, but most of them

are weaker. This makes the ecosystem less sensitive to the

presence of all the existing linkages. It does not imply that the

linkages in ecosystems are insignificant and do not play a role in

ecosystem behavior. The ecological network is of great importance

in an ecosystem, but the many and indirect effects give the

ecosystem buffer capacities to deal with minor changes.

The description of ecosystems as superorganisms therefore seems

insufficient.

3. The hierarchy theory (Allen & Star, 1982) insists that the higher level

systems have emergent properties that are independent of the

properties of their lower level components. This compromise

between the two other concepts seems consistent with our

observations in nature.

The hierarchical theory is a very useful tool to understand and

describe complex “medium number” systems, such as ecosystems

(O’ Neill et al., 1975).

During the last decades, there has been a debate over whether

“bottom-up” (limitation by resources) or “top-down” (control by preda-

tors) effects primarily control system dynamics. The conclusion of this

debate seems that both effects control the dynamics of the system. Some-

times the effect of the resources may be most dominant, sometimes the

higher levels control the dynamics of the system, and sometimes both

effects determine the dynamics of the system. This conclusion is nicely

presented in Plankton Ecology by Sommer (1989).
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The ecosystem and its properties emerge as a result of many simulta-

neous and parallel focal-level processes influenced by even more remote

environmental features. It means that the ecosystem will be seen by an

observer to be factorable into levels. Features of the immediate environ-

ment are enclosed in entities of yet a larger scale and so on. This implies

that the environment of a system includes historical factors, as well as

immediately cogent ones (Patten, 1981; J�rgensen & Fath, 2004b). The

history of the ecosystem and its components is important for the behav-

ior and further development of the ecosystem. This is one of the main

ideas behind Patten’s indirect effects; the indirect effects account for

the “history,” while the direct effects only reflect the immediate interac-

tions. The importance of the history of the ecosystem and its components

emphasizes the need for a dynamic approach and supports the idea that

we will never observe the same situation in an ecosystem twice. The

history will always be “between” two similar situations. Therefore, as pre-

viously mentioned, the equilibrium models may fail in their conclusions,

particularly when we want to look into reactions on the system level.

10.2.1. Ecosystems Show a High Degree of Heterogeneity
in Space and Time

An ecosystem is a very dynamic system. All of its components, particu-

larly the biological ones, are steadily changing and their properties are

steadily modified, which is why an ecosystem never returns to the same

situation. Every point is different from any other point, offering different

conditions for the various life forms. This enormous heterogeneity

explains why biodiversity is so plentiful on Earth. There is an ecological

niche for “everyone” and “everyone” may be able to find a niche where

he best fits to utilize the resources.

Ecotones, the transition zones between two ecosystems, offer a par-

ticular variability in life conditions, which often results in a particular

richness of species diversity. Studies of ecotones have recently drawn

much attention from ecologists because they have pronounced gradi-

ents in the external and internal variables. This gives a clearer picture

of the relation between external and internal variables.

Margalef (1991) claimed that ecosystems are anisotropic; they exhibit

properties with different values when measured along axes in different
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directions. This means that the ecosystem is not homogeneous in rela-

tion to properties concerning matter, energy, and information, and that

the entire dynamics of the ecosystem work toward increasing these

differences.

These variations in time and space make it particularly difficult to

model ecosystems and to capture their essential features. However

hierarchy theory applies these variations to develop a natural hierarchy

as a framework for ecosystem descriptions and theory. The strength

of hierarchy theory is that it facilitates the studies and modelling of

ecosystems.

10.2.2. Ecosystems and Their Biological Components Evolve
Steadily and Over the Long Term Toward Higher Complexity

Darwin’s theory describes the competition among species and states

that those species best fitted to the prevailing conditions in the ecosys-

tem will survive. Darwin’s theory can, in other words, describe the

changes in ecological structure and the species composition, but cannot

directly be applied quantitatively in ecological modelling (see the next

section).

All species in an ecosystem are confronted with the question: How is

it possible to survive or even grow under the prevailing conditions? The

prevailing conditions are considered as all factors that influence the

species, that is, all external and internal factors including those originat-

ing from other species. This explains coevolution, as any change in the

properties of one species will influence the evolution of the other

species. The environmental stage on which the selection plays out is

comprised of all the interacting species, each influencing another.

All natural external and internal factors of ecosystems are dynamic;

the conditions are steadily changing, and there are always many species

waiting in the wings ready to take over if they are better fitted to the

emerging conditions than the species dominating under the present

conditions. There is a wide spectrum of species representing different

combinations of properties available for the ecosystem. The question

remains: Which of these species are best able to survive and grow under

the present conditions and which species are best able to survive and

grow under the conditions one time step further, two time steps further,
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and so on? The necessity in Monod’s (1971) sense is given by the pre-

vailing conditions — species must have genes or phenotypes (proper-

ties) that match these conditions to be able to survive. But the natural

external factors and the genetic pool available for the test may change

randomly or by “chance.”

Steadily, new mutations (misprints are produced accidentally) and

sexual recombinations (genes are mixed and shuffled) emerge and

steadily produce new material to be tested by the question: Which

species are best fitted under the prevailing conditions?

These ideas are illustrated in Figure 10.1. The external factors are

steadily changed and some even relatively fast and partly at random,

such as the meteorological or climatic factors. The species within the

system are selected among the species available and represented by

the genetic pool, which again is slowly, but surely, changed randomly,

or by chance. The selection in Figure 10.1 includes level 4 of Table 10.1.

It is a selection of the organisms that possess the properties best fitted

to the prevailing organisms according to the frequency distribution.

Gene pool Selection

Ecosystem structure
at time t + 1

Ecosystem structure
at time t

New recombina-
tions of genes/

mutations

External factors
forcing functions

FIGURE 10.1 Conceptualization of how the external factors steadily change the species composition.

The possible shifts in species composition are determined by the gene pool, which is steadily changed

due to mutations and new sexual recombinations of genes. The development is, however, more

complex. This is indicated by arrows from “ structure” to “external factors” and “selection” to account

for the possibility that the species can modify their own environment and their own selection pressure

along with an arrow from “structure” to “gene pool” to account for the possibilities that species can,

to a certain extent, change their own gene pool.
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Ecological development includes the changes over time in nature

caused by the dynamics of the external factors, which gives the system

sufficient time to modify its structure and behavior.

Evolution, on the other hand, is related to the genetic pool. It is the

result of the relation between the dynamics of the external factors and

the dynamics of the genetic pool. The external factors steadily change

the conditions for survival, and the genetic pool steadily comes up with

new solutions to the problem of survival.

Species are continuously tested against the prevailing conditions

(external as well as internal factors) and the better they fit, the better

they are able to maintain and even increase their biomass. The specific

rate of population growth may even be used as a measure for fitness

(Stenseth, 1986). But the property of fitness must be heritable to have

any effect on the species composition and the ecological structure of

the ecosystem in the long run.

Natural selection has been criticized for being a tautology: Fitness is

measured by survival, therefore survival of the fittest means survival of

the survivors. However, the entire Darwinian theory including the previ-

ously listed three assumptions, cannot be conceived as a tautology, but

may be interpreted as follows: Species offer different solutions to survive

under prevailing conditions, and the species that have the best combi-

nations of properties to match the conditions also have the highest

probability of survival and growth.

Human changes in external factors, that is, anthropogenic pollution,

have created new problems because new genes, and hence organisms,

fitted to these changes do not develop overnight, while most natural

changes have occurred many times previously and the genetic pool is

therefore prepared and fitted to meet the natural changes. Life is able

to meet most natural changes, but not all of the human changes,

because they are new and untested in the ecosystem.

Evolution moves the system toward increasing complexity in the long

run. Fossil records have shown a steady increase of species diversity.

There may be destructive forces, such as pollution or natural cata-

strophes, for a short time, but the probability that (1) new and better

genes are developed and (2) new ecological niches are utilized will

increase with time. The probability will even (again excluding the short

time perspective) increase faster and faster, as the probability is roughly
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proportional to the amount of genetic material on which the mutations

and new sexual recombinations can be developed.

It is equally important to note that a biological structure is more than

an active nonlinear system. In the course of its evolution, the biological

structure is continuously changed so that its structural map is modified.

The overall structure thus becomes a representation of all the informa-

tion received. Through its complexity, biological structure represents a

synthesis of the information with which it has been in communication

(Schoffeniels, 1976).

Evolution is maybe the most discussed topic in biology and ecology

and millions of pages have been written about evolution and its ecolog-

ical implications. Today, the facts of evolution are taken for granted and

the interest has shifted to more subtle classes of fitness/selection; that

is, toward understanding the complexity of the evolutionary processes.

One of these classes concerns traits that influence not only the fitness

of the individuals possessing them, but also the entire population.

These traits overtly include social behaviors, such as aggression or

cooperation, and activities that, through some modification of the biotic

and abiotic environment feedback, affect the population at large, such

as pollution and resource depletion.

It can be shown that many observations support the various selection

models used to describe selection in nature. For example, kin selection

has been observed in bees, wasps, and ants (Wilson, 1978). Prairie dogs

endanger themselves (altruism) by conspicuously barking to warn fel-

low dogs of an approaching enemy (Wilson, 1978), and a parallel

behavior is observed for a number of species.

Coevolution explains the interactive processes among species. It is

difficult to observe coevolution, but it is easy to understand that it

plays a major role in the entire evolution process. For example, coevo-

lution of herbivorous animals and plants is an illustrative example.

The plants develop toward better seed dispersal and a better defense

toward herbivorous animals. In the latter case, selected herbivorous

animals are able to cope with the defense. Therefore, the plants and

the herbivorous animals will coevolve. Coevolution means that the

evolution process cannot be described as reductionistic, but that the

entire system is evolving. A holistic description of the system evolution

is needed.
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Having presented some main features of ecosystem development over

time, the next crucial question should be: How can we account for these

properties in modelling? Some preliminary results on how to consider

levels 4–6 of dynamics (see Table 10.1) will be presented in the next section.

10.3. How to Construct Structurally Dynamic
Models and Definitions of Exergy and Eco-exergy

If we follow the modelling procedure proposed in Figure 2.2, then a

model that describes the processes in the focal ecosystem will be

attained, but the parameters will represent the properties of the state

variables as they exist in the ecosystem during the examination period.

They are not necessarily valid for another period because we know that

an ecosystem can regulate, modify, and change them if needed as a

response to changes in the existing conditions determined by the forc-

ing functions and the interrelations between the state variables. Our

present models have rigid structures and a fixed set of parameters, so

no changes or replacements of the components are possible. We need

to introduce parameters (properties) that can change according to

changing forcing functions and general conditions for the state vari-

ables (components) to optimize continuously the ability of the system

to move away from thermodynamic equilibrium. So, we may hypothe-

size levels 5 and 6 in the regulation hierarchy shown in Table 10.1 that

can be accounted for in our model by a current change of parameters,

according to an ecological goal function. The idea is to test if a change

of the most crucial parameters produces a higher goal function of the

system and, if that is the case, to use that set of parameters.

The structurally dynamic model can account for the change in species

composition as well as the ability of the species (i.e., the biological com-

ponents of our models) to change their properties (i.e., to adapt to the

existing conditions imposed on the species). The SDM is able to capture

structural changes. They are called the next, or fifth, generation of ecolog-

ical models to underline that they are radically different from previous

modelling approaches and can do more; namely, describe changes in

species composition.

It could be argued that the ability of ecosystems to replace present

species with other (level 6 in Table 10.1), better fitted species, can be
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considered by constructing models that encompass all actual species

for the entire period that the model attempts to cover. This approach

has two essential disadvantages. First, the model becomes very com-

plex, because it will contain many state variables for each trophic level.

Therefore, the model will contain many more parameters that have

to be calibrated and validated and, as presented in Sections 2.5 and

2.6, this will introduce a high uncertainty to the model and render the

application of the model very case specific (Nielsen 1992a,b). In addi-

tion, the model will still be rigid and not allow continuously changing

parameters, even without changing the species composition (Fontaine,

1981).

Bossel (1992) used his six basic orientors, or requirements, to develop

a system model, which can describe the system performance properly.

The six orientors are:

1. Existence. The system environment must not exhibit any conditions

that may move the state variables out of its safe range.

2. Efficiency. The exergy gained from the environment should exceed

the exergy expenditure over time.

3. Freedom of action. The system reacts to the inputs (forcing

functions) with a certain variability.

4. Security. The system has to cope with the different threats to its

security requirement with appropriate but different measures. These

measures either aim at internal changes in the system or at

particular changes in the forcing functions (external environment).

5. Adaptability. If a system cannot escape the threatening influences of

its environment, then the one remaining possibility consists of

changing the system to cope better with the environmental impacts.

6. Consideration of other systems. A system must respond to the

behavior of other systems. The fact that these other systems may be

of importance to a particular system should be considered with this

requirement.

Bossel (1992) applied maximization of a benefit or satisfaction index

based upon balancing weighted surplus orientor satisfactions on a

common satisfaction scale. The approach is used to select the model

structure of continuous dynamic systems and is able to account for

the ecological structural properties as presented in Table 10.1. This
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approach seems very promising, but has unfortunately not been widely

applied to ecological systems.

Straskraba (1979) used biomass maximization as a governing princi-

ple. His model computes the biomass and adjusts one or more selected

parameters to achieve the maximum biomass at every instance. It has a

routine that computes the biomass for all possible combinations of

parameters within a given realistic range. The combination that gives

the maximum biomass is selected for the next time step and so on.

This is an example of an early structurally dynamic model.

Exergy has been used widely as a goal function in ecological models,

and a few of the available case studies will be presented and discussed

in this section. Exergy has two pronounced advantages as a goal function.

(1) Exergy is defined far from thermodynamic equilibrium, and (2) it

relates to the state variables, which are easily determined or measured,

as opposed to being derived from the flows. As exergy is not a generally

used thermodynamic function, we need to explain this concept before

we can go any further.

Exergy expresses energy with a built-in measure of quality like

energy. Exergy accounts for natural resources and can be considered

as fuel for any system that converts energy and matter in a metabolic

process (Schrödinger, 1944). Ecosystems consume energy, and an exergy

flow through the system is necessary to keep the system functioning

— living systems operate far-from-equlibrium. Exergy measures the dis-

tance from a reference condition in energy terms, as will be further

explained in this section.

Exergy, Ex, is defined by the following equation:

Ex ¼ To �NE ¼ To � I ¼ To � ðSeq � SÞ ð10:1Þ
where To is the temperature of the environment; I is the thermodynamic

information, defined as NE; and NE is the negentropy of the system,

that is, ¼ (Seq � S) ¼ the difference between the entropy for the system

at thermodynamic equilibrium and the entropy at the present state.

Exergy differences can be reduced to differences of other, better

known, thermodynamic potentials, which may facilitate the computa-

tions of exergy in some relevant cases.

As noted, the exergy of the system measures the contrast — it is the

difference in free energy if there is no difference in pressure, as may
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be assumed for an ecosystem — against the surrounding environment.

If the system is in equilibrium with the surrounding environment, then

the exergy is zero.

Since the only way to move systems away from equilibrium is to

perform work on them, and since the available work in a system is a

measure of the ability, we have to distinguish between the system and

its environment or thermodynamic equilibrium. For ecosystems, the

prebiotic “inorganic soup” has been used as the reference. Therefore it

is reasonable to use the available work, that is, the exergy, as a

measure of the distance from thermodynamic equilibrium.

Let us translate Darwin’s theory into thermodynamics (Section 10.2),

applying exergy as the basic concept. Survival implies biomass mainte-

nance, and growth means biomass increase. It costs exergy to construct

biomass and biomass therefore possesses exergy, which is transferable to

support other exergetic (energetic) processes. Survival and growth can

therefore be measured using the thermodynamic concept exergy, which

may be understood as the free energy relative to the environment (Eq. 10.1).

Darwin’s theory may therefore be reformulated in thermodynamic

terms as follows: The prevailing conditions of an ecosystem steadily

change and the system will continuously select the species and thereby

the processes that can contribute most to the maintenance or even growth

of the exergy of the system.

Ecosystems are open systems and receive an inflow of solar energy.

The solar energy carries low entropy, while the radiation away from

the ecosystem carries high entropy.

If the power of the solar radiation is W and the average temperature

of the system is T1, then the exergy gain per unit of time, DEx is:

DEx ¼ T1 �W 1

T0
� 1

T2

� �
, ð10:2Þ

where T0 is the temperature of the environment and T2 is the tempera-

ture of the sun. This exergy flow can be used to construct and maintain

structure far away from equilibrium.

Notice that the thermodynamic translation of Darwin’s theory

requires that populations have the properties of reproduction, inheri-

tance, and variation. The selection of the species that contributes most

to the exergy of the system under the existing conditions requires that

there are enough individuals with different properties that a selection
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can take place; it means that the reproduction and the variation must be

high and that once a change has taken place due to better fitness, it can

be conveyed to the next generation.

Notice also that the change in exergy is not necessarily �0, it depends

on the changes of the resources of the ecosystem. The proposition claims,

however, that the ecosystem tendency is to move toward the highest pos-

sible exergy level under the given circumstances and with the available

genetic and species pool (J�rgensen &Mejer, 1977, 1979). Compare Figure

10.2, where the nutrient concentrations of a lake ecosystem decrease and

the exergy increases. It is not possible to measure exergy directly, but it is

possible to compute it if the composition of the ecosystem is known.

J�rgensen and Mejer (1979) showed, by the use of thermodynamics, that

the following equation is valid for the components of an ecosystem:

Ex ¼ RT
Xi¼n

i¼1

Ci ln
Ci

Ceq;i
� ðCi � Ceq;iÞ

� �
ð10:3Þ

where R is the gas constant; T is the temperature of the environment

(Kelvin); and Ci represents the ith component expressed in a suitable

unit, (for phytoplankton in a lake, Ci could be milligrams of a focal nutri-

ent in the phytoplankton per liter of lake water); Ceq,i is the concentra-

tion of the ith component at thermodynamic equilibrium, which can

be found in Morowitz (1968); and n is the number of components. Ceq,i

is a very small concentration of organic components corresponding to

the probability of forming a complex organic compound in an inorganic

soup (at thermodynamic equilibrium). Morowitz (1968) calculated this

probability and found that for proteins, carbohydrates, and fats, the

Changes caused by a
sudden change in forcing
functions

Increase  caused by
structural changes

Minor oscillations
caused by oscillating
forcing functions

Time

E
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y 
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FIGURE 10.2 Exergy response

to increased and decreased

nutrient concentration.
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concentration is about 10-86 mg/L, which may be used as the concentra-

tion at thermodynamic equilibrium.

The idea of the new generation of models presented here is to contin-

uously locate a new set of parameters (limited for practical reasons to

the most crucial, i.e., sensitive parameters) better fitted for the prevail-

ing conditions of the ecosystem. “Fitted” is defined in the Darwinian

sense by the ability of the species to survive and grow, which may be

measured by the use of exergy (J�rgensen, 1982, 1986, 1988, 1990;

J�rgensen & Mejer, 1977, 1979). Figure 10.3 shows the proposed

Select parameters based upon literature
studies and according to species

composition

Select most crucial parameters,
symbolized by parameter vector P

Test after time step t all combinations of
all the selected parameters +/– x%, y% etc.
i.e. at least three levels for each parameter.

The total number of combinations to be 
examined is In, where I is the number of 

levels and n is the number of parameters in
the parameter vector P. The combination
giving the highest exergy is used for the

simulation during the considered time step

Test after time step n*t all combinations of
the selected parameters +/– x%, y% etc.

The combination giving the highest exergy
is used for the simulation duringe the 

considered time step

FIGURE 10.3 The procedure used for the development of SDMs.
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modelling procedure, which has been applied in the cases presented in

Sections 10.4–10.7.

Exergy has previously been tested as a “goal function” for ecosystem

development (i.e., J�rgensen, 1986; J�rgensen & Mejer, 1979). However,

in all these cases, the model applied did not include the “elasticity” of

the system obtained by use of variable parameters; therefore the models

did not reflect real ecosystem properties. A realistic test of the exergy

principle would require the application of variable parameters.

Exergy is defined as the work the system can perform when it is

brought into equilibrium with the environment or another well-defined

reference state. If we presume a reference environment for a system at

thermodynamic equilibrium — meaning that all the components are:

(1) inorganic, (2) at the highest possible oxidation state signifying that

all free energy has been utilized to do work, and (3) homogeneously

distributed in the system (meaning no gradients) — then the situation

illustrated in Figure 10.4 is valid. It is possible to distinguish between

chemical exergy and physical exergy. The chemical energy embodied

in organic compounds and biological structure contributes most to

the exergy content of ecological systems.

Temperature and pressure differences between systems and their ref-

erence environments are small in contribution to overall exergy and, for

present purposes, can be ignored. We will compute the exergy based

entirely on chemical energy: Si(mc � mc,o)Ni, where i is the number of

exergy-contributing compounds, and c and mc are the chemical poten-

tial relative to that at a reference inorganic state, mc,o. Our (chemical)

exergy index for a system will be taken with reference to the same

system at the same temperature and pressure, but in the form of a

prebiotic environment without life, biological structure, information,

or organic molecules — the so called inorganic soup.

As (mc � mco) can be found from the definition of the chemical poten-

tial, replacing activities by concentrations we obtain the following

expression for chemical exergy:

Ex ¼ RT
Xi¼n

i¼1

Ci ln
Ci

Ceq;i
� ML2T�2
� � ð10:4Þ

R is the gas constant, T is the temperature of the environment and system

(Figure 10.4), ci is the concentration of the ith component expressed in
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suitable units, ci,eq is the concentration of the ith component at thermo-

dynamic equilibrium, and n is the number of components. The quantity

ci,eq represents a very small, but nonzero, concentration (except for i ¼ 0,

which is considered to cover the inorganic compounds), corresponding

to the very low probability of forming complex organic compounds spon-

taneously in an inorganic soup at thermodynamic equilibrium. The

chemical exergy contributed by components in an open system is given

by (J�rgensen & Meyer, 1979; J�rgensen, 1982, 2002):

Ex ¼ RT
Xn
i¼0

ci ln
ci

ci, eq

� �
� ci � ci,eq
� �� 	

� ML2T�2
� � ð10:5Þ

The problem in applying these equations is related to the magnitude

of ci,eq. Contributions from inorganic components are usually very low

and can in most cases be neglected. Exergy can be calculated from the

elementary composition of the organisms. For our purposes, this is,

however, unsatisfactory because compositionally similar higher and

lower organisms would have the same exergy, which would not account

for the exergy embodied in information. The problem of assessing ci,eq
has been discussed and a possible solution proposed by J�rgensen

(1997, 2002) and J�rgensen et al. (2000). The essential arguments are

System at temperature T, pressure
p and the chemical potential m(1)

Reference environment at same tempera-
ture T and pressure p, but by a chemical
potential at thermodynamic equilibrium

(no free energy available, no gradients): m(0)

Exergy difference or gradient =
work produced by the gradient
in chemical potential

FIGURE 10.4 Illustration of the exergy concept used to compute the exergy index for an ecological

model. Temperature and pressure are the same for the both the system and the reference state, which

implies that only the difference in chemical potential can contribute to the exergy.
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repeated here. The chemical potential of dead organic matter, indexed

i ¼ 1, can be expressed from classical thermodynamics as:

m1 ¼ m1,eq þ RT ln
c1

c1, eq
, ½ML2T�2 moles�1� ð10:6Þ

where m1 is the chemical potential. The difference m1 � m1,eq is known for

detritus organic matter, which is a mixture of carbohydrates, fats, and

proteins.

By using this particular exergy based on the same system at

thermodynamic equilibrium as a reference, the eco-exergy becomes

dependent only on the chemical potential of the numerous biochemical

components.

It is possible to distinguish in Eq. (1) between the contribution to

the eco-exergy from the information and from the biomass. We define

pi as ci/A, where:

A ¼
Xn
i¼1

ci ð10:7Þ

is the total amount of matter density in the system. With introduction of

this new variable, we get:

Ex¼ART
Xn
i¼1

pi ln
pi

pio
þ A ln

A

Ao
ð10:8Þ

As A � Ao, eco-exergy becomes a product of the total biomass A (multi-

plied by RT) and Kullback measure:

K ¼
Xn
i¼1

pi ln
pi

pio

� �
ð10:9Þ

where pi and pio are probability distributions, a posteriori and a priori to

an observation of the molecular detail of the system. It means that K

expresses the amount of information that is gained as a result of the

observations. For different organisms that contribute to the eco-exergy

of the ecosystem, the eco-exergy density becomes c RT ln (pi/pio), where

c is the concentration of the considered organism. RT ln (pi/pio),

denoted b, is found by calculating the probability to form the consid-

ered organism at thermodynamic equilibrium, which would require that

organic matter is formed and that the proteins (enzymes) controlling

the life processes in the considered organism have the right amino
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acid sequence. These calculations can be seen in J�rgensen and

Svirezhev (2005). In the latter reference, the latest information about

the b values for various organisms is presented (see Table 10.2). For

humans, the b value is 2173, when the eco-exergy is expressed in detri-

tus equivalent or 18.7 times as much, or 40635 kJ/g if the eco-exergy

should be expressed as kJ and the concentration unit g/unit of volume

or area. One hypothesis, apparently confirmed by observation, is that

the b values increase as a result of evolution. To mention a few b values

from Table 10.2: bacteria 8.5, protozoa 39, flatworms 120, ants 167,

crustaceans 232, mollusks 232, fish 499, reptiles 833, birds 980, and

mammals 2127. Evolution has resulted in an increasingly more effective

transfer of what we could call the classical work capacity to the work

capacity of the information. A b value of 2.0 means that the eco-exergy

embodied in the organic matter and the information are equal. As the b
values become much bigger than 2.0 the information eco-exergy

becomes the most significant part of the eco-exergy of organisms.

In accordance with the previously presented interpretation of

Eqs. (10.8) and (10.9), it is now possible to find the eco-exergy density

for a model as:

Eco-exergy density ¼
Xi¼n

i¼1

bici ð10:10Þ

The eco-exergy due to the “fuel” value of organic matter (chemical

energy) is about 18.7 kJ/g (compared with coal: about 30 kJ/g and crude

oil: 42 kJ/g). It can be transferred to other energy forms, such asmechani-

cal work directly, and be measured by bomb calorimetry, which requires

destruction of the sample (organism). The information eco-exergy ¼
(b � 1) � biomass or density of information eco-exergy ¼ (b � 1) � con-

centration. The information eco-exergy controls the function of themany

biochemical processes. The ability of a living system to dowork is contin-

gent upon its functioning as a living dissipative system.Without the infor-

mation eco-exergy, the organic matter could only be used as fuel similar

to fossil fuel. Because of the information eco-exergy, organisms are able

to make a network of the sophisticated biochemical processes that char-

acterize life. The eco-exergy (of which the major part is embodied in the

information) is a measure of the organization (J�rgensen & Svirezhev,
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Table 10.2 ß values ¼ Exergy Content Relatively to the Exergy of Detritus

Early Organisms Plants Animals

Detritus 1.00

Virus 1.01

Minimal cell 5.8

Bacteria 8.5

Archaea 13.8

Protists Algae 20

Yeast 17.8

33 Mesozoa, Placozoa

39 Protozoa, amoebae

43 Phasmida (stick insects)

Fungi, molds 61

76 Nemertina

91 Cnidaria (corals, sea anemones, jelly fish)

Rhodophyta 92

97 Gatroticha

Porifera, sponges 98

109 Brachiopoda

120 Platyhelminthes (flatworms)

133 Nematoda (round worms)

133 Annelida (leeches)

143 Gnathostomulida

Mustard weed 143

165 Kinorhyncha

Seedless vascular plants 158

163 Rotifera (wheel animals)

164 Entoprocta

Moss 174

167 Insecta (beetles, fruit flies, bees, wasps, bugs,

ants)

191 Coleodiea (Sea squirt )

221 Lepidoptera (buffer flies)

232 Crustaceans, Mollusca, bivalvia, gastropodea

246 Chordata

Rice 275

Gynosperms (incl. pinus) 314

322 Mosquito

Flowering plants 393

499 Fish

688 Amphibia

833 Reptilia

980 Aves (birds)

2127 Mammalia

2138 Monkeys

2145 Anthropoid apes

2173 Homosapiens

J�rgensen, Ladegaard, Debeljak, and Marques, 2005.
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2005). This is the intimate relationship between energy and organization

that Schrödinger (1944) was struggling to find.

Eco-exergy is a result of copying again and again in a long chain of

copies where only minor changes are introduced for each new copy.

The energy required for the copying process is very small, but it

requires a lot of energy to come to the “mother” copy through evolu-

tion from prokaryotes to human cells. To cite Margalef (1969, 1991,

1995) in this context:

evolution provides for cheap — unfortunately often in exact —

copies of messages or pieces of information.

The information concerns the degree of uniqueness of entities that

exhibit one characteristic complexion that may be described.

Eco-exergy has successfully been used to develop structurally

dynamic models in 21 case studies so far. The eco-exergy goal function

is found using Eq. (10.10), while the b values are found using Table 10.2.

The application is based on what may be considered thermodynamic

translation of survival of the fittest. Biological systems have many possi-

bilities for moving away from thermodynamic equilibrium, and it is

important to know along which pathways among the possibilities a sys-

tem will develop. This leads to the following hypothesis, which is some-

times denoted the ecological law of thermodynamics (J�rgensen & Fath,

2004b). If a system receives an input of exergy, then it will utilize this

exergy to perform work. The work performed is first applied to maintain

the system (far) away from thermodynamic equilibrium where exergy is

lost by transformation into heat at the temperature of the environment.

If more exergy is available, then the system is moved further away from

thermodynamic equilibrium, which is reflected in growth of gradients.

If more than one pathway to depart from equilibrium is offered, then

the one yielding the highest eco-exergy storage (denoted Ex) will tend to

be selected. In other words, among the many ways for ecosystems to

move away from thermodynamic equilibrium, the one maximizing dEx/

dt under the prevailing conditions will have a propensity to be selected.

This hypothesis is supported by several ecological observations and

case studies (J�rgensen & Svirezhev, 2005; J�rgensen & Fath, 2004;

J�rgensen, 2008b). Survival implies maintenance of the biomass, and

growth means increase of biomass and information. It costs exergy to
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construct biomass and gain information and biomass and information

possess exergy. Survival and growth can therefore be measured using

the thermodynamic concept eco-exergy, which may be understood as

the work capacity the ecosystem possesses.

10.4. Development of Structurally Dynamic
Model for Darwin’s Finches

The development of an SDM for Darwin’s finches illustrates the advan-

tages of SDMs very clearly (see details in J�rgensen & Fath, 2004). The

model reflects the available knowledge, which in this case is compre-

hensive and sufficient to validate even the ability of the model to

describe the changes in the beak size as a result of climatic changes,

causing changes in the amount, availability, and quality of the seeds

that make up the main food item for the finches. The medium ground

finches, Geospiza fortis, on the island Daphne Major, were selected for

this modelling case due to very detailed case-specific information found

in Grant (1986). The model has three state variables: seed, Darwin’s

finches adult, and Darwin’s finches juvenile. The juvenile finches are

promoted to adult finches 120 days after birth. The mortality of the

adult finches is expressed as a normal mortality rate plus an additional

mortality rate due to food shortage and an additional mortality rate

caused by a disagreement between bill depth and the size and hardness

of seeds. Due to a particular low precipitation from 1977 to 1979, the

population of the medium ground finches declined significantly and

the beak size increased about 6% at the same time. An SDM was devel-

oped to describe this adaptation of the beak size due to bigger and

harder seeds as a result of the low precipitation.

The beak depth can vary between 3.5 and 10.3 cm according to Grant

(1986). The beak size is furthermore equal to the square root of D*H,

where D is the diameter and H is the hardness of the seeds. Both D

and H are dependent on the precipitation, particularly from January to

April. The coordination or fitness of the beak size with D and H is a

survival factor for the finches. The fitness function is based on the seed

handling time and it influences the mortality as stated above, but it

also impacts the number of eggs laid and the mortality of the juveniles.

The growth rate and mortality rate of the seeds is dependent on the

precipitation and the temperature, which are forcing functions known
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as f(time). The food shortage is calculated from the food required by the

finches (which is known according to Grant, 1986) and the actual avail-

able food according to the state function seed. How the food shortage

influences the mortality of the adults and juveniles can be found

in Grant (1986). The seed biomass and the number of finches are

known as a function of time for the period 1975–1982 (Grant, 1986).

The observations of the state variables from 1975 to 1977 were applied

for calibration of the model, focusing on the following parameters:

1. The influence of the fitness function on: (a) the mortality of adult

finches, (b) the mortality of juvenile finches, and (c) the number of

eggs laid.

2. The influence of food shortage on the mortality of adult and juvenile

finches is known (Grant, 1986). The influence is therefore calibrated

within a narrow range of values.

3. The influence of precipitation on the seed biomass (growth and

mortality).

All other parameters are known from the literature (Grant, 1986).

The eco-exergy density is calculated (estimated) as 275 � the con-

centration of seed þ 980 � the concentration of finches (see Table 10.2).

Every 15 days, it is decided if a feasible change in the beak size, taking

the generation time and the variations in the beak size into consider-

ation, will give a higher exergy. If it is feasible, then the beak size is

changed accordingly. The modelled changes in the beak size were

confirmed by the observations. The model results of the number of

Darwin’s finches are compared with the observations in Figure 10.5.

The standard deviation between modelled and observed values was

11.6 %. The validation and the correlation coefficient, r2, for modelled

versus observed values, is 0.977. The results of a nonstructural dynamic

model would not be able to predict the changes in the beak size, therefore

giving values that are too low for the number of Darwin’s finches because

their beak would not adapt to the lower precipitation yielding harder and

bigger seeds. The calibratedmodel not using the eco-exergy optimization

for the SDMs in the validation period 1977–1982 resulted in complete

extinction of the finches. A nonstructurally dynamic model — a normal

biogeochemical model — could not describe the impact of the low pre-

cipitation, while the SDM gave an approximately correct number of

finches and could describe the increase of the beak at the same time.
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10.5. Biomanipulation

The eutrophication and remediation of a lacustrine environment do not

proceed according to a linear relationship between nutrient load and

vegetative biomass, instead they display a sigmoid trend with delay (as

shown in Figure 10.6). The hysteresis reaction is completely in

1700

1500

1300

1100

900

700

500

300

100
73 74 75 76 77 78 79 80 81 82 83

Year

N
um

be
r 

G
. f

or
tis

Calibration
period
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the simulated result (shown with
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accordance with observations (Hosper, 1989; Van Donk et al., 1989) and

it can be explained by structural changes (De Bernardi, 1989; Hosper,

1989; Sas, 1989; De Bernardi & Giussani, 1995). A lake ecosystem shows

a marked buffering capacity to increasing nutrient level that can be

explained by an increasing removal rate of phytoplankton by grazing

and settling. Zooplankton and fish abundance are maintained at rela-

tively high levels under these circumstances. At a certain level of eutro-

phication, it is not possible for zooplankton to increase the grazing rate

further, and the phytoplankton concentration will increase very rapidly

by slightly increasing concentrations of nutrients. When the nutrient

input is decreased under these conditions, a similar buffering capacity

to variation is observed. The structure has now changed to a high con-

centration of phytoplankton and planktivorous fish, which causes a

resistance and delay to a change where the second and fourth trophic

levels become dominant again.

Willemsen (1980) distinguished two possible conditions:

1. A bream state characterized by turbid water, high eutrophication,

low zooplankton concentration, absent of submerged vegetation,

large amount of breams, while pike is hardly found at all.

2. A pike state, characterized by clear water and low eutrophication.

Pike and zooplankton are abundant and there are significantly fewer

bream.

The presence of two possible states in a certain range of nutrient concen-

trationsmay explain why biomanipulation has not always been used suc-

cessfully. According to the observations referred to in the literature,

success is associated with a total phosphorus concentration below

50 mg/L (Lammens, 1988) or at least below 100–200 mg/L (Jeppesen

et al., 1990), while disappointing results are often associated with phos-

phorus concentration above this level of more than approximately 120

mg/L (Benndorf, 1987, 1990) with a difficult control of the standing stocks

of planktivorous fish (Shapiro, 1990; Koschel et al., 1993).

Scheffer (1990) used a mathematical model based on catastrophe

theory to describe these shifts in structure. However, this model does

not consider the shifts in species composition, which is of particular

importance for biomanipulation. The zooplankton population under-

goes a structural change when we increase the concentration of
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nutrients; for example, from a dominance of calanoid copepods to

small caldocera and rotifers (according to De Bernardi & Giussani,

1995 and Giussani & Galanti, 1995). Hence, a test of SDMs could be

used to give a better understanding of the relationship between

concentrations of nutrients and the vegetative biomass and to explain

possible results of biomanipulation. This section refers to the results

achieved by an SDM that aims to understand the previously described

changes in structure and species compositions (J�rgensen & De

Bernardi, 1998). The applied model has 6 state variables: (1) dissolved

inorganic phosphorus; (2) phytoplankton, phyt.; (3) zooplankton,

zoopl.; (4) planktivorous fish, fish 1; (5) predatory fish, fish 2; and (6)

detritus. The forcing functions are the input of phosphorus, in P, and

the throughflow of water determining the retention time. The latter

forcing function also determines the outflow of detritus and phyto-

plankton. The conceptual diagram is similar to Figure 2.1, except that

only phosphorus is considered as nutrient, as it is presumed that phos-

phorus is the limiting nutrient.

Simulations have been carried out for phosphorus concentrations in

the inflowing water of 0.02, 0.04, 0.08, 0.12, 0.16, 0.20, 0.30, 0.40, 0.60,

and 0.80 mg/L. For each of these cases, the model was run for any com-

bination of a phosphorus uptake rate of 0.06, 0.05, 0.04, 0.03, 0.02, and

0.01 1/24h and a grazing rate of 0.125, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8,

and 1.0 1/24h. When these two parameters were changed, simultaneous

changes of phytoplankton and zooplankton mortalities were made

according to allometric principles (Peters, 1983). The parameters for

phytoplankton growth rate (uptake rate of phosphorus) and mortality

and for zooplankton growth rate and mortality are made variable to

account for the dynamics in structure.

The settling rate of phytoplankton was made proportional to the

(length)2. Half of the additional sedimentation when the size of phyto-

plankton increases corresponding to a decrease in the uptake rate

was allocated to detritus to account for resuspension or faster release

from the sediment. A sensitivity analysis revealed that exergy is most

sensitive to changes in these six selected parameters, which also repre-

sent the parameters that change significantly by size. The 6 levels

selected from the previous list represent an approximate range in size

for phytoplankton and zooplankton respectively.
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For each phosphorus concentration, 54 simulations were carried out

to account for all combinations of the two key parameters. Simulations

over 3 years (1100 days) were applied to ensure that steady state, limit

cycles, or chaotic behavior would be attained. This SDM approach pre-

sumed that the combination with the highest exergy should be selected

to represent the process rates in the ecosystem. If exergy oscillates dur-

ing the last 200 days of the simulation, then the average value for the

last 200 days was used to decide on which parameter combination

would give the highest exergy. The combinations of the two parameters,

the uptake rate of phosphorus for phytoplankton and the grazing rate of

zooplankton giving the highest exergy at different levels of phosphorus

inputs, are plotted in Figures 10.7 and 10.8. The uptake rate of phospho-

rus for phytoplankton is gradually decreasing when the phosphorus

concentration increases. As seen, the zooplankton grazing rate changes

at the phosphorus concentration 0.12 mg/l from 0.4 1/24h to 1.0 1/24h,

i.e. from larger species to smaller species, which is according to the

expectations.

Figure 10.9 shows the eco-exergy, named on the diagram informa-

tion, with an uptake rate according to the results in Figure 10.7 and a

grazing rate of 1.0 1/24h (called information 1) and 0.4 1/ 24h (called

information 2). Below a phosphorus concentration of 0.12 mg/L, infor-

mation 2 is slightly higher, while information 1 is significantly higher

above this concentration. The phytoplankton concentration increases
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for both parameter sets with increasing phosphorus input, as shown

Figure 10.10, while the planktivorous fish shows a significantly higher

level by a grazing rate of 1.0 1/24h when the phosphorus concentration

is �0.12 mg/L (¼ valid for the high exergy level). Below this concentra-

tion, the difference is minor. The concentration of fish 2 is higher for

case 2 corresponding to a grazing rate of 0.4 1/24h for phosphorus con-

centrations below 0.12 mg/L. Above this value, the differences are

minor, but at a phosphorus concentration of 0.12 mg/L the level is
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significantly higher for a grazing rate of 1.0 1/24h, particularly for the

lower exergy level, where the zooplankton level is also highest.

If it is presumed that eco-exergy can be used as a goal function in eco-

logical modelling, then the results seem to explain why we observe a shift

in grazing rate of zooplankton at a phosphorus concentration in the

range of 0.1–0.15 mg/L. The ecosystem selects the smaller species of zoo-

plankton above this level of phosphorus because it means a higher level

of the eco-exergy, which can be translated to a higher rate of survival

and growth. It is interesting that this shift in grazing rate produces only

a small rise in the level of zooplankton, while the exergy index level rises

significantly higher by this shift, which may be translated as survival and

growth for the entire ecosystem. Simultaneously, a shift from a zooplank-

ton, predatory fish dominated system to a system dominated by phyto-

plankton and particularly by planktivorous fish takes place.
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FIGURE 10.10 The phytoplankton concentration as a function of the phosphorus concentration for

parameters corresponding to “information 1” and “information 2”; see Figure 10.9. The plot named
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It is interesting that the levels of eco-exergy and the four biological

components of the model for phosphorus concentrations at or below

0.12 mg/L parameter combinations are only slightly different for the

two parameter combinations. This explains why biomanipulation is

more successful in this concentration range. Above 0.12 mg/L the differ-

ences are much more pronounced and the exergy index level is clearly

higher for a grazing rate of 1.0 1/24h. It should therefore be expected

that the ecosystem, after the use of biomanipulation, easily falls back

to the dominance of planktivorous fish and phytoplankton. These

observations are consistent with the general experience of success and

failure of biomanipulation.

An interpretation of the results points toward a shift at 0.12 mg/L,

where a grazing rate of 1.0 1/24h yields limit cycles. It indicates an

instability and probably an easy shift to a grazing rate of 0.4 1/24,

although the exergy level is on average highest for the higher grazing

rate. A preference for a grazing rate of 1.0 1/24h at this phosphorus con-

centration should therefore be expected, but a lower or higher level of

zooplankton is dependent on the initial conditions.

If the concentrations of zooplankton and fish 2 are low and high for

fish 1 and phytoplankton, that is, the system is coming from higher

phosphorus concentrations, then the simulation produces with high

probability a low concentration of zooplankton and fish 2. When the

system is coming from high concentrations of zooplankton and of fish 2,

the simulation illustrates with high probability a high concentration

of zooplankton and fish 2, which corresponds to an eco-exergy index

level slightly lower than obtained by a grazing rate of 0.4 1/24h. This

grazing rate will therefore still persist. As it also takes time to recover

the population of zooplankton and particularly of fish 2; and in the

other direction of fish 1, these observations explain the presence of hys-

teresis reactions.

This model is considered to have general applicability and has been

used to discuss the general relationship between nutrient level and veg-

etative biomass and the general experiences by application of biomani-

pulation. When the model is used in specific cases, it may be necessary

to include more details and change some of the process descriptions to

account for the site specific properties, which is according to general

modelling strategy. It could be considered to include two state variables
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to cover zooplankton, one for the bigger and one for the smaller

species. Both zooplankton state variables should have a current change

of the grazing rate according to the maximum value of the goal

function.

This model could probably also be improved by introducing size

preference for the grazing and the two predation processes, which is

in accordance with numerous observations. In spite of these shortcom-

ings of the applied model, it has been possible to give a qualitative

description of the response to changed nutrient level and biomanipula-

tion, and even to indicate an approximately correct phosphorus

concentration where the structural changes may occur. This may be

due to an increased robustness by the SDM approach.

Ecosystems are very different from physical systems mainly due to

their enormous adaptability. It is therefore crucial to develop models

that are able to account for this property, if we want reliable model

results. The use of goal functions such as eco-exergy to simulate fitness

offers a good way to develop a new generation of models, which are

able to consider the adaptability of ecosystems and to describe shifts

in species composition. The latter advantage is probably the most

important because a description of the dominant species in an ecosys-

tem is often more essential than assessing the level of the focal state

variables.

It is possible to model competition between a few species with very

different properties, but the SDM approach makes it feasible to include

more species even with only slightly different properties, which is

impossible by the usual modelling approach (see also the unsuccessful

attempt by Nielsen, 1992a,b). The rigid parameters of the various

species make it difficult for the species to survive under changing cir-

cumstances. After some time, only a few species will still be present

in the model, which is different in reality, where more species survive

because they are able to adapt to the changing circumstances. It is

important to capture this feature in our models. The SDMs seem

promising when applied in lake management, as this type of model

could explain our experiences with biomanipulation. It has the advan-

tage compared with catastrophe models, which can also be used to

explain success and failure of biomanipulation that it is able also to

describe the shifts in species composition expressed by the size.
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10.6. An Ecotoxicological Structurally Dynamic
Models Example

The conceptual diagram of the ecotoxicological model used to illus-

trate an SDM is shown in Figure 10.11. This model is presented by

J�rgensen (2009) in Devillers (2009). The model software STELLA was

used for the model simulation results. Copper is an algaecide causing

an increase in the mortality of phytoplankton (Kallqvist & Meadows,

1978) and a decrease in the phosphorus uptake and photosynthesis.

Copper also reduces the carbon assimilation of bacteria. The literature

changes these three model parameters: growth rate of phytoplankton,

Copper

Nutrients

Detritus

Uptake

Mineralization

Phytoplankton

Zooplankton

Eco-exergy

Carbon dioxide

Photosynthesis

GrazingMortality 1

Mortality 2

FIGURE 10.11 Conceptual diagram of an ecotoxicological model focusing on the influence of copper

on the photosynthetic rate, phytoplankton mortality rate, and the mineralization rate. The boxes are

the state variables, the thick gray arrows symbolize processes, and the thin black arrows indicate the

influence of copper on the processes and the calculation of eco-exergy from the state variables. Due to

the change in these three rates, it is advantageous for the zooplankton and the entire ecosystem to

decrease its size. The model is therefore made structurally dynamic by allowing zooplankton to change

their size and the specific grazing rate and the specific mortality rate according to allometric principles.

The size yielding the highest eco-exergy is currently found.
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mortality of phytoplankton, and mineralization rate of detritus with

increased copper concentration (Havens, 1999). As a result, the

zooplankton is reduced in size, which, according to allometric princi-

ples, means an increased specific grazing rate and specific mortality

rate. It has been observed that the size of zooplankton in a closed

system (e.g., a pond) is reduced to less than half the size at a copper

concentration of 140 mg/m3 compared with a copper concentration

less than 10 mg/m3 (Havens, 1999). In accordance with allometric

principles (Peters, 1983), it would result in amore than doubled grazing

and mortality rate.

The model shown in Figure 10.11 was made structurally dynamic by

varying the zooplankton size and using an allometric equation to deter-

mine the corresponding specific grazing and mortality rates. This equa-

tion expresses that the two specific rates are inversely proportional to

the linear size (Peters, 1983). Different copper concentrations from

10 mg to 140 mg/m3 are found by the model in which zooplankton

size yields the highest eco-exergy. In accordance to the presented

SDM approach, it is expected that the size yielding the highest eco-

exergy would be selected. The results of the model runs are shown in

Figures 10.12, 10.13, and 10.14. The specific grazing rate, the size

yielding the highest eco-exergy, and the eco-exergy are plotted versus

the copper concentration in these three figures.
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As expected, the eco-exergy, even at the zooplankton size, yields the

highest eco-exergy that decreases with increased copper concentration

due to the toxic effect on phytoplankton and bacteria.

From the literature, we see the selected size at 140 mg/m3 is less than

0.4 mm, which is less than one half the size (0.93 mm) at 10 mg/m3 (see
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Figure 10.13). The eco-exergy decreases from 198 kJ/L at 10 mg/m3 to

8 kJ/L at 140 mg/m3. The toxic effect of the copper, in other words,

results in an eco-exergy reduction to about 4% of the original eco-exergy

level, which is a very significant toxic effect. If the zooplankton was not

adaptable to the toxic effect by changing its size and the parameters,

then the reduction in eco-exergy would have been even more pro-

nounced already at a lower copper concentration. It is therefore impor-

tant for the model results that the model is made structurally dynamic

and accounts for the change of parameters when the copper concentra-

tion is changed.

Zooplankton is changing in size in the presented ecotoxicological

case. It is an advantage that SDMs can approximately predict the

changes in species’ properties, but it is an even more important advan-

tage that the state variables are predicted closer to the observations by

the SDMs than by biogeochemical models because the organisms are

able to adapt to the existing conditions. The toxic effect of copper would

have been more pronounced if a nonstructurally dynamic model was

applied, which would inevitably have illustrated concentrations of zoo-

plankton that were too small.

Problems

1. Discuss why it would be beneficial to apply an SDM to describe

the consequences of (a) global warming, (b) invading species, and

(c) an oil spill.

2. Explain why it would not be beneficial to apply an SDM for

construction of a subsurface wetland (e.g., the model of a subsurface

wetland presented in Chapter 7)

3. Explain why it would advantageous to develop new model types that

would be a hybrid of (a) IBM and SDMs, (b) ANN and SDMs, and

(c) spatial models and SDMs.

4. Which factors determine the interval between two optimizations of

eco-exergy? How could we quantify these factors?

5. Under what circumstances would it be sufficient to use optimization

of biomass for the description of the structural changes instead of

eco-exergy?
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11.1. Introduction

Ecology is a spatial science (Tilman & Kareiva, 1997). Therefore, it is

important to be able to model the distribution, movement, and dis-

persal of species and individuals across a varied and variable land-

scape. The methods and techniques introduced in Chapter 9 for

individual-based models (IBMs) are similar to those used in spatial

modelling. This chapter gives an overview, with examples from early

methods, for spatial modelling in ecology leading to the state-of-the-

art models with current applications.

Compartment models are zero-dimensional models, because all of the

processes occur in one place without distinguishing any spatial relations

between the compartments. This simplifies the system for ease of finding

mathematical solutions, but also obscures the complex reality of ecologi-

cal systems. The assumption is more reasonable in lake models where

one can assume the system represents a continuously stirred tank reactor

(CSTR), but even that has severe limitations, as lakes can have vertical

(stratification) and horizontal (spatial) variation. Approaches have been

developed to overcome this constraint by specifically adding spatial

dimensions to the interactions of the ecological components. The rise

of Geographical Information Systems (GIS) and remote sensing has
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contributed greatly to the tools available for explicitly representing ecolog-

ical space. Landscape ecology and spatial modelling are two of the most

common tools to benefit from this contribution (Turner and Gardner,

1991). As a general rule, these models are more complex because they

add the additional spatial dimensions and require additional knowledge

about how movement occurs on the landscape.

As with all models, their application to ecology helps formalize our

understanding and develop theory about how ecological processes

interact across spatial patterns. According to Turner, Gardner, and

O’Neill (2001), there are three general conditions for which spatial mod-

els are important:

1. When spatial pattern may be one of the independent variables in the

analysis

2. When predicting spatial variation of an attribute through time

3. When the question involves biotic interactions that generate patterns

The first condition refers to questions such as: How do species forage

differentially across a landscape of variable resources? How do nutrient

inputs respond to vegetation variation across a watershed? The second

condition deals specifically with the change in time of the landscape,

such as questions of succession or following disturbance. The third often

deals with homogeneous space and varying organism traits resulting in

the emergence of heterogeneous distributions across the landscape and

are generally modelled using cellular automata. Landscape models cover

a broad diversity of types and applications; the most frequent subject

includes single species metapopulation dynamics influenced by factors

such as fragmentation, corridors, dispersal, and invasion. Models that

represent disturbance and vegetation dynamics are also common. An

area that has seen recent attention and is still in need of more is the

integrated models of ecological and socioeconomic processes. The rap-

idly increasing availability of GIS tools and software has greatly aided

the development of spatial models, but one must not let the technologi-

cal advances outpace the ecological understanding or what is left will

be a technically advanced, but unreliable model. One key for successful

spatial models is that the model equations should include ecological pro-

cesses, rather than just correlations, so that the individuals can change

over time given different environmental conditions. In this manner, with
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a dynamic spatial model, the interactions of the ecological species can

lead to unexpected or emergent behavior as is often observed in nature.

In the next section, we review the early contributions to spatial models

in ecology.

11.1.1. Concepts and Terms

A key concept in the area of spatial modelling is scale, which refers to

the spatial extent of the ecological processes. It is important to choose

an appropriate scale related to the specific question at hand, because

the processes that affect the different organisms may influence them

differently depending on the scale. In fact, many processes operate at

multiple scales.

The presence of spatial patterns is a key feature of organisms

distributed on a landscape. The patterns arise as a result of the ecologi-

cal processes and the behavioral response of the organisms. Patterns

can be classified into three broad distribution categories: (1) gradients,

which show a smooth directional change over space; (2) patches, which

show clusters of homogeneous features separated by gaps; and (3) noise,

which are the random fluctuations not explained by the model. Identi-

fication of the pattern can be accomplished with two methods, point

pattern and surface pattern analyses. The first category describes the

type of distribution and what processes may have caused the pattern.

Nearest neighbor method is a common approach to implement this.

The second category deals with spatially continuous data and statistical

techniques such as correlograms or variograms, which can be used to

quantify the magnitude and intensity of the spatial correlation in the

data. Spatial autocorrelation is an important concept because it identi-

fies the likelihood that samples taken close to each other are more sim-

ilar than would have occurred by random chance. Positive spatial

autocorrelation occurs when the values of samples are more similar

than expected by chance and they are negatively spatially correlated

otherwise. Most ecological data show some spatial autocorrelation. This

tends to decrease with distance. Closer objects tend to have more posi-

tive autocorrelation than those further apart since the phenomena that

shape species behavior — environmental factors, communication, or

interactions — are more similar with proximity.
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Acquisition and handling of spatial data are necessary when dealing

with spatial models. The availability of spatial data has exploded, thanks

to the development of advanced satellite remote sensing. The first Earth

observation satellite, the Television and Infrared Observation Satellite

(TIROS), was launched in 1960 and used mainly for television signal

transmission and weather monitoring. Now, such satellites are used

for identifying land cover, crop management, forest management, water

management, ice cover analysis, national security, and so forth. Some of

the most common satellites are from the United States (Landsat),

France (SPOT), and India (IKONOS). Prior to the advent of this technol-

ogy, aerial photographs served as the source for spatial data, and is still

used today for gathering information about a specific time and place

when a specific resolution is needed, such as for ground truthing satel-

lite data.

In 1972, the U.S. government launched the first in a series of Landsat

satellites. The program began at National Aeronautics Space Adminis-

tration (NASA), but was transferred to the National Oceanic and Atmo-

spheric Association (NOAA) and is now managed by the United States

Geological Society (USGS). Since the first launch, there have been six

additional satellites (Table 11.1), although the latest was over a decade

ago and has had some technical problems. Only two remain active —

Landsat 5 and 7. Landsat 5, intended for a 3-year mission, has been

sending data for over 25 years at a maximum transmission bandwidth

of 85 Mbit/s. It was developed as a backup to Landsat 4 and carries a

Thematic Mapper (TM) and Multi-Spectral Scanner (MSS). It orbits at

Table 11.1 Satellite Chronology of the U.S. Landsat Program

Satellite Launch date Status

Landsat 1 July 23, 1972 Terminated January 6, 1978

Landsat 2 January 22, 1975 Terminated January 22, 1981

Landsat 3 March 5, 1978 Terminated March 31, 1983

Landsat 4 July 16, 1982 Terminated 1993

Landsat 5 March 1, 1984 Still functioning

Landsat 6 October 5, 1993 Failed to reach orbit

Landsat 7 April 15, 1999 Still functioning, but with faulty scan line corrector
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an altitude of 705 km and takes 16 days to scan the entire Earth. The

MSS has four bands (Table 11.2) and scans at a resolution of about

76 m. This scanner was placed on the first four Landsat satellites, but

has been phased out due to the improved TM sensor. TM sensors have

seven bands of image data (Table 11.3) with resolution of about 30 m. It

is a useful tool for identifying ground cover types as well as albedo and

its relation to global climate change. In Landsat 7, the TM was upgraded

to what was called an Enhanced Thematic Mapper Plus (ETMþ). Land-

sat 7 also orbits at 705 km and takes 16 days to scan the entire Earth’s

surface. Resolution of the ETMþ is 15 m in the panchromatic band

and 60 m in one thermal infrared channel. Images from the Landsat

satellites are in false color (e.g., Figures 11.1 and 11.2) and must be man-

aged and classified according to the user’s interest. Data from these

satellites are available from the USGS at http://landsat.gsfc.nasa.gov/

data/where.html. Much of the archived ETMþ, TM, and MSS data are

available for free. These data are used in applications such as Google

Earth and NASA World Wind.

Table 11.2 Spectral Bands of the MSS Sensor

Band Wavelength (mm)

1 0.45–0.52

2 0.52–0.60

3 0.63–0.69

4 0.76–0.90

Table 11.3 Thematic Mapper Bands

Band Wavelength (mm) Resolution (m)

1 0.45–0.52 30

2 0.52–0.60 30

3 0.63–0.69 30

4 0.76–0.90 30

5 1.55–1.75 30

6 10.4–12.5 120

7 2.08–2.35 30
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FIGURE 11.1 False infrared color image of Washington DC (15 m resolution) taken from Landsat 7.

(As a work of the United States Government, the image is in the public domain.)

Clouds

17 mi

Oil spillMississippi delta

FIGURE 11.2 False infrared color image from Landsat 7 of the Mississippi Delta showing the oil spill

following the explosion of the Deepwater Horizon Offshore drilling rigs taken on May 1, 2010.

(As a work of the United States Government, the image is in the public domain.)
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With such abundant data, it is necessary to have platforms in which to

import, store, manipulate, and present them. As stated previously, the rise

of GIS has met this challenge. Essentially, it is the computational merging

of cartography and database technology. A GIS is any tool that allows the

user to integrate, store, edit, analyze, share, and display spatial data. The

boundaries and specifics depend on the application, but in all cases it

provides for the analysis of the spatial information. There are many types

of image processing software, such as IDRISI, EASI/PACE, ENVI, LCCS,

ER Mapper, ERDAS Imagine, and GRASS GIS. One purpose of this soft-

ware is to convert the “raw” data from satellite images into specific land

use classifications. There has been a number of different land cover clas-

sification systems used, such as the “Global Land Cover Classification

Collection 1988.” This classification system distinguishes 14 land cover

classes: 0) water, 1) evergreen needleleaf forest, 2) evergreen broadleaf

forest, 3) deciduous needleleaf forest, 4) deciduous broadleaf forest,

5) mixed forest, 6) woodland, 7) wooded grassland, 8) closed shrubland,

9) open shrubland, 10) grassland, 11) cropland, 12) bare ground, and

13) urban and built. An unsupervised or supervised process can be used

to classify data. The unsupervised process group’s structure is based on

similar signals and is useful when previous knowledge of the area is not

available and it minimizes the opportunity for human error. The dis-

advantage is the lack of control over the classification process, which

may result in groups that do not correspond to physical real-world data.

A supervised process uses known samples to “train” the identification

process of unknown pixels. This approach is more time-consuming and

assumes a good working knowledge of the area, but gives greater control

over the classification process.

The combination of remote sense data and GIS has greatly contribu-

ted to the development and implementation of spatial models in ecol-

ogy. Next we discuss some of the early pioneer applications, as well as

the current state-of-the art technology.

11.2. Spatial Ecological Models: The Early Days

One of the main questions addressed through spatial models is the dis-

tribution and movement of material or energy across the landscape. To

model this movement, there must be a spatial grid over which the
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movement occurs, as well as a set of rules for the movement to follow.

In the absence of such rules, it is assumed that the movement is ran-

dom across the landscape. This approach is used to generate neutral

models for comparison (Caswell, 1976). The neutral model generates

random patterns, assuming that species do not interact or react differ-

ently to differences in abiotic factors. In reality, the movement is con-

strained by physical and biological processes as described in the

following section. Therefore, the utility of a neutral model is to compare

how far from this unrealistic situation is the actual system at hand. The

further from this baseline, the more articulated or organized the system,

which can then be used as a measure of distance from “equilibrium.”

One alternative to the zero-dimensional model was to apply reaction

diffusion theory to the distribution of movement along a spatial gradient.

This approach uses mathematical models to explain how species disperse

across a landscape based on the concentration gradient, which causes

the organisms to spread out across the landscape from areas of high pop-

ulation to areas of low population. This provided a mechanism for spatial

distribution, but did not capture relevant ecological processes in which

organisms more actively make choices about moving across the land-

scape. Therefore, it was unable to explain observed patchiness and ade-

quately represent the behavior of discrete individuals.

One of the first attempts to combine process-based compartmental

modelling with spatial considerations was by Sklar, Costanza, and Day

(1985), when they studied the habitat succession of the Atchafalaya

delta/Terrebonne marsh area in Louisiana. They divided the area in

fixed, equal-sized, square cells (today hexagonal grids are common).

The choice to use a finite element method with a fixed grid is appropri-

ate for systems with fixed hydrologic structure. Variable sized mesh grid

is used in some hydrodynamic modelling, whereas the grid approach is

used in global atmospheric circulation models. Within each cell was a

two-compartment, dynamic, nonlinear simulation model representing

suspended sediment and bottom sediments with exchanges between

them. Furthermore, to make it spatially dynamic, each cell was

connected to each adjacent cell by exchange of water and materials.

In this first version of the model, there was allowable exchange of salt,

sediment, and water across the grids, but not movement of organisms.

The spatial extent includes 1,162,641 grid cells representing 50 m2 each.

Initial conditions and parameter values were taken from data and high
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altitude photographs from 1956. They classified the habitat types into

five categories: upland, fresh marsh, brackish marsh, salt marsh, or

open water depending on the values of the three main variables

(Table 11.4). The model simulation was run until the model condition

was stable. Constant inputs and a series of IF-THEN statements were

used to determine if the cell had switched to a new habitat type based

on the water level, salinity, and depth of bottom sediments. The model

was validated using photographic data from 1978 (later 1983).

Building on this simple water exchange model, the authors added eco-

logical processes of primary production and decomposition (Costanza

et al., 1990). The improvedmodel, called CELSS (short for Coastal Ecologi-

cal Landscape Spatial Simulation), consisted of seven state variables: water

volume, salt, susseds, nitrogen, biomass, detritus, and elevation. The cell

size was adjusted to 1 km2 and themodel consisted of 2479 interconnected

cells. Simulation results showed a strong similarity to photographic data.

Themodel was then used to consider five different climate scenariosmod-

elled out to the year 2033. All runs showed amarked decrease in all classifi-

cation types except “open water,” which dominated the future landscape

due to the sea level rise as a result of increasing climate. This example

provided a powerful new approach to combining process-based ecological

models linked together across a landscape.

Table 11.4 Range of Values for Variable to Classify Habitat Types

Habitat Type Variable Range

Upland Water

Salt

Bottom sediments

0 –8000 m3

0– 30%
<510 cm3

Fresh marsh Water

Salt

Bottom sediments

20–10000 m3

0–5%
<480– 510 cm3

Brackish marsh Water

Salt

Bottom sediments

20–10000 m3

5–15%
<480–510 cm3

Salt marsh Water

Salt

Bottom sediments

20–10000 m3

10–30%
<480–510 cm3

Open water Water

Salt

Bottom sediments

<1000 m3

0–30%
<480 cm3
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11.3. Spatial Ecological Models: State-of-the-Art

The generalized grid approach introduced by Sklar and Costanza has

been adopted and modified for many other studies. The journal Ecolog-

ical Modelling recently published a special issue titled: Spatially Explicit

Landscape Modelling: Current Practices and Challenges (Volume 220,

Issue 24, 2009). It contained a review article and 17 research papers

describing the current state-of-the art methodologies, models, and

applications. Three examples from that issue, plus one additional one,

are provided in the following sections — forest succession, savanna

succession, agricultural succession, and fish habitat suitability along

a river corridor.

11.3.1. Example 1: Forest Succession After Blowdown

Rammig, Fahse, Bugmann, and Bebi (2006) developed a spatially explicit

model to simulate forest succession of Norway spruce in the Swiss Alps

following a windstorm blowdown that occurred in 1990. Significant dam-

age was done to the spruce, flattening an area of approximately 128 ha.

Following the blowdown, a monitoring program went into place to track

the changes in vegetation within the affected area. The spatially explicit

model was developed according to the ODD protocol (see Chapter 9).

The area within the model was divided into 100 � 100 grid cells each

with a cell size of 1 m2. Within each cell was an individual based tree-

regeneration model. Cells were classified according to 1 of 12 micro-site

types, depending on the site characteristics at time t ¼ 0. The sites were

defined by factors such as disturbed soil, fallen logs, decaying wood, and

different herbaceous vegetation layers. The condition of the micro-site

influences the ability for spruce establishment and growth. The model

state variables are the number and height of Norway spruce in each cell.

The model process overview and scheduling is given in Table 11.5. The

first step is to assess the change in the micro-site condition. This is fol-

lowed by the dispersal of seeds to new sites, and then the germination

and establishment of spruce on the new sites. Lastly, the growth and mor-

tality of the spruce is modelled using a vegetation growth model for indi-

vidual trees. The model parameters were taken from the literature and

from a 10-year observation record at the blowdown site. The model time

step was one year. The model was run for 50 years and repeated 100
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times to gain estimates for mean outputs values. This model was able to

adequately simulate the regeneration dynamics of the spruce forest. Of

particular interest were the management implications regarding actions

such as the clearing of fallen logs and the expectation for the length of

duration for recovery of the forest stands.

In a subsequent study, Rammig and Fahse (2009) modified the origi-

nal model to construct a nonspatial point model from the original one

in order to test and compare the predictions made by the spatial and

nonspatial models. The goal was to determine the added value of using a

spatial model compared to a nonspatial model. Is the extra complexity

worth the effort, or can a nonspatial model give comparable results?

Therefore, this second model can be considered an extended sensitivity

analysis to the firstmodel. Themodel was derived from the originalmodel,

allowing the use of the same parameter values, thus providing a more

direct comparison. The main modification to the model involved using a

randomdraw for determining the nearest neighbors. In the originalmodel,

the influence of each cell was felt from the eight nearest neighbors. In the

revised model, those eight neighbors are drawn randomly form the land-

scape, eliminating a direct role for spatial proximity (Figure 11.3).

Figure 11.3 illustrates that the selection of cells influencing the local

micro-site conditions are spatially selected in the original model and

randomly selected in the follow-up model. This allows the investigation

of the role of space without changing the overall model structure

(Rammig & Fahse, 2009).

The new model produced results that generally overestimated the

number of trees for all of the different height classes (Figure 11.4), in

Table 11.5 Process Overview and Scheduling of Spatial Model Following
the ODD Protocol

Processes (in Order)

1) Changes in micro-sites New micro-sites assigned according to transition probabilities and

neighborhood rules

2) Seed dispersal Random seed distribution, number depends on occurrence of mast years

3) Germination Norway spruce may establish in each cell depending on micro-site specific

germination probabilities

4) Growth Modified Bertalanffy growth equation

5) Mortality Intraspecific competition within spruce and interspecific competition

between spruce and herb layer
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which the total number of trees changed from just over 2600 stems in

the spatial model to almost 5000 stems of height 1 to 400 cm in the non-

spatial model. This difference is attributed to the role that favorable

regeneration sites have on the model; spruce recruitment takes place

on favorable sites, such as those dominated by rowan, that tended to

The state of the center
cell is determined by
the 8 next neighbours

The state of the center
cell is determined by 8
randomly drawn cells

FIGURE 11.3 Selection of cells

that influence the local micro-

site conditions are spatially

selected in the original model

and randomly selected in the

follow-up model. This allows

for the investigation of the

role of space without

changing the overall model

structure. (From Rammig &

Fahse, 2009.)
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FIGURE 11.4 Results from the nonspatial model overestimate the number of trees in each height class.

(From Rammig & Fahse, 2009.)
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be clustered together on the landscape and, hence, in the spatial model.

Thus, the spruce regeneration was clustered in these regions in the spa-

tial model, but not constrained by this distribution in the nonspatial

model since the rowan sites could be randomly influencing any cells

in the nonspatial model. The overall chance of selecting a rowan cell

as a neighbor increased and the Norway spruce establishment and

growth benefited from this unrealistic circumstance.

This approach shows the sensitivity of the model to the spatial con-

siderations and has important management implications, because the

non-forested areas in the high mountain regions pose a risk for

increased rockfalls and avalanches. Therefore, it is important to under-

stand the impact of clearing fallen vegetation from the blowdown zone

to maximize the regeneration and the ability of the forest to protect the

surrounding villages from natural disasters.

11.3.2. Example 2: Long-Term Savanna Succession

Savanna ecosystems are heterogeneous environments characterized by

the presence of trees, bushes, and grasses. Nutrient and soil moisture

availability are usually the limiting factors affecting the biomass growth

in savannas, and overall biomass is impacted by competition, fire,

grazing, and harvesting. There is a hypothesis that savannas are naturally

patchy environments due to these constraints. Moustakas et al. (2009)

developed a spatially explicit savanna succession model to better under-

stand long-term savanna dynamics as well as test the patchy landscape

hypothesis. This model is described in detail in the following section.

Similar to the previous example, the grid lattice is 100 � 100 cells, but

here each cell represents approximately 3 km2 for an overall coverage of

about 90,000 km2. The state variables of the model are the number of

individual trees, bushes, and grass biomass. The vegetation model on

each grid cell includes biotic and abiotic factors. The latter factors

include temperature and soil moisture characteristics. The former covers

the wide range of ecological processes controlling the vegetation biomass

dynamics, such as growth and germination factors, and competition

terms as well as mortality and grazing/harvesting values (Figure 11.5).

Overall, the model has more than 50 parameters initialized from the liter-

ature and from field observations. The authors selected a model with
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high complexity, but the well-known processes of the plant dynamics

make it possible to have high confidence in the model results. The initi-

alization of state variable values, such as size and age of each tree, was

randomly chosen from within reasonable ecological ranges. Because of

this random initialization, the model took some time to pass through a

transient phase and reach stable conditions. Therefore, while the model

is run for 2100 years, the first 100 years of the simulation were excluded

from the model results as this time period was used to bring the model

to stable conditions. The cells are updated on a daily time step and vege-

tation growth depends on the soil moisture and season.

The authors considered application of the model to two different

regions: an arid savanna (122 mm/year average precipitation and thin

soils) in western Namibia and a mesic savanna (780 mm/year average

precipitation and brown calcerous soils) located on the Serengeti Plains

of Tanzania. They were interested in improving savanna succession to

help with management of the ecosystem.

After the model is initialized, during each daily time step the cell site

characteristics are updated based on temperature and precipitation

RainTemperature

Soil depth
soil porosity

Germination

Fire

Size

AgeCompetition

Woodcutting
browsing

MortalityGrowth

Spatially explicit
population dynamics
(trees, bushes, grass)

Soil moisture

Grazing

Seasonality

FIGURE 11.5 Conceptual diagram of the vegetation dynamics model. Arrows show the influence of the

starting process to the one connected. (From Moustakas et al., 2009.)
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which in turn affects the soil moisture. The vegetation dynamics (growth,

germination, and mortality) then respond to these environmental condi-

tions. Competition, grazing, and fire further influence the overall change

in vegetation biomass (Figure 11.6).

Model results show that total biomass followed a cyclic behavior

with grass for about 3 years, bushes for about 50 years, and trees for

about 200 years. Tree biomass was similar under both precipitation

conditions, but bush biomass doubled in the mesic environment and

grass biomass increased sevenfold due to the greater precipitation

and soil moisture. Over time, the open savannas were encroached by

woody vegetation, which then eventually gave way to a transition back

to open areas again. The long-term period for this dynamic was �230

years for the mesic environment and �300 years for the arid environ-

ment (Figure 11.7). The patchiness of the landscape is affected by fire,

grazing, and harvesting, yet these actions did not prevent the observed

vegetation cycles. Typical management practice is to remove the

woody material through controlled burns or grazing that encroaches

on the open savannas, but these results show that this transition to a

Change in vegetation
biomass

Seedling
mortality

Germination Growth

Soil moisture on
each cell

Rain on each cell,
temperature

Initialize

Day = day + 1

Competition
Grazing, browsing,

woodcuttingFire

FIGURE 11.6 Flow chart showing the process for the spatially explicit model. (From Moustakas et al.,

2009.)
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woody dominated ecosystem is a naturally cyclic process and that

total eradication of the woody material should be avoided unless the

aim is to convert the savanna ecosystem solely into grasslands for pas-

toral reasons.

A model of this type, which incorporates general ecological knowl-

edge with site-specific parameterization, is useful in projecting the

landscape changes over time. The model could be applied to other

savannas, but would need to be reparameterized to local conditions.

More interestingly, this model could be applied to the current locations,

but under the conditions of climate change. In other words, human

changes to the concentration of greenhouse gases result in new tem-

perature and precipitation patterns. While this model was only looking

at the long-term dynamic under current conditions, it would be easy

enough to extend the analysis over a long time period for a changing

climatic regime. Better understanding of these important ecosystems

under the changed climate conditions is important information as the

global community grapples with the issue of reducing greenhouse gas
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FIGURE 11.7 Model results covering 2000 years showing the long-term cyclical trend in woody biomass

structure. (From Moustakas et al., 2009.)
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emissions. In fact, these models will be called upon to simulate the new

climatic conditions and assess the impacts of these changes on the

global biosphere.

11.3.3. Example 3: Ecosystem Indicators to Assess Agricultural
Landscape Succession

Müller, Schrautzer, Reiche, and Rinker (2006) introduced an ecosystem-

oriented indicator set and applied it to a landscape level to assess retro-

gressional succession in a wetland ecosystem. The model combines

field-based measurements linked with GIS for the Bornhöved Lakes Dis-

trict of Northern Germany. It runs 30 years to derive the indicator levels

and results of carbon and nitrogen compounds, which demonstrate a shift

of the landscape from a sink function to a source. Overall, the indicator

set is derived to assess ecosystem structure, such as biodiversity and

number of specialized species, as well as ecosystem function measured

in terms of energy balance, water balance, and matter balance. For the

classification, ecosystem types were characterized according to their soil

and vegetation structures. Model results were validated by measurements

in the main research area. The classification focused on ecosystems of

Histosols and mineral soils. The most common ecosystem type was

cultivated fields onmineral soils (64.4%) followed by grasslands and beech

forests on mineral soils (13.6 and 4.1%). Wet and drained alder carrs and

other alder carrs on Histosol accounted for 1.7% and 2.9% of the study

area, respectively, and weakly drained wet grasslands on Histosol made

up the remaining 1.2% of cover (Figure 11.8).

The functional variables were calculated using the Water and Sub-

stance Simulation Model (WAMOD). It describes processes of water

nitrogen and carbon at each location and for lateral transfers of water

and nutrients. Results indicate a decrease in species richness both in

the wetland ecosystems and on the mineral soils. The overall changes

represent a retrogressive succession in loss of specialization. The func-

tional characteristics also show signs of retrogressive succession by a

shift toward greater net primary production but less carbon storage.

Therefore, the system has switched from a carbon sink to a carbon

source as drainage and land use intensity increase (Müller et al.,

2006). Nitrogen leaking is also observed to be higher in the mineral soils
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than in the Histosol, which contributes to eutrophication of the aquatic

systems. Along the retrogressive successional gradient, the water budget

tendency of decreasing biotic water use with increasing land use inten-

sity is due to lower proportion of transpiration in evapotranspiration.

Results from the study are presented in the amoeba-shaped diagram

showing the differences in indicator values for four wetland types of

ecosystems (Figure 11.9). In the alder carrs, the consequences of eutro-

phication are greater than that of draining. In the wet grasslands,

the differences are higher, because the extensively drained area for

agricultural purposes shows the greater deviation.

11.3.4. Example 4: Fish Habitat Along a River Corridor

A final example in this chapter uses an aquatic model of fish habitat

suitability. The spatial scale of a river could be collapsed to one linear

dimension following the flow along the river, but here the river is wide

compared to cell size in order to better track the fish movement and

habitat preference. Therefore, it is quite common for such aquatic spa-

tial models to be three-dimensional to account for the water depth as

1 Forest (floristic differentiated)
1.1 Alder carr
1.1.1 Wet_mesotrophic
1.1.2 Wet_eutrophic
1.1.3 Drained_mesotrophic
1.1.4 Drained_eutrophic
1.2 Birch carr
1.3 Willow thicket
1.4 Alder-ash forest and hombeam-ash forest
1.5 Beech forest
1.5.1 Fresh-loamy soil
1.5.2 Fresh-sandy soil
1.5.3 Dry
2 Forest (other)
2.1 Forest with deciduous trees and mixed forest
2.2 Forest with coniferous trees
3 Reed swamps and tall sedge reeds
4 Ruderal edges
5 Grassland with groundwater contact
5.1 Weekly drained_mesotrophic
5.2 Weekly drained_eutrophic
5.3 Moderately drained
5.4 Highly drained

6.1 Sandy soil
6.2 Loamy soil
7 Agricultural fields
7.1 Sandy soil
7.2 Loamy soil

8 Lakes and pounds
9 Population and traffic areas

7.3 Peat

6 grassland without groundwater contact

FIGURE 11.8 Spatial distribution of the classified ecosystem types in the watershed of Lake Belau. (From

Müller et al., 2006.)
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well. Hatten and Parsley (2009) developed a spatial model for white

sturgeon habitat in the Columbia River. The river ecosystem is impacted

by heavy volumes of commerce shipping and the subsequent dredging

necessary to maintain open channels. In particular, there is concern

that white sturgeon — an important ecological, sport, and commercial

fish — mortality is impacted from the material deposition on the stur-

geon habitat. The authors developed a spatial model to test the impact

Alder carrs
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FIGURE 11.9 An amoeba diagram to compare four different stages of wetland retrogression. On the

top, alder carrs are depicted; the bottom shows two wet grassland ecosystems. The selected ecosystem

types represent the starting points of the retrogressions as well their end points. 100 (%) refers to the

average values of the whole data set. (From Müller et al., 2006).
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of dredging material on sturgeon rearing habitat. They (1) used GIS and

survey data to compile a river bathymetry database; (2) developed a

habitat model for sturgeon using fish location data from 2002; (3) con-

structed a habitat suitability map, verified with fish location data from

2003; and (4) simulated the effects of in-water dredge deposition on

sturgeon habitat by reducing water depths.

Knowledge about sturgeon ecology was taken from earlier studies

showing that the fish are constantly moving with diel migrations prefer-

ring deeper zones in the daytime and shallower during night. They are

benthic foragers and occupy a broad range of conditions as habitat gen-

eralists. However, they are impacted by water depth, bottom slope, and

roughness; all of which are affected by the presence of the dredge fill

material (Figure 11.10).

A 10 m resolution digital elevation map of the riverbed was created

based on a bathymetric survey of the region in 2003. Fish population

numbers were obtained from acoustic telemetry data gathered in 2002

and 2003. They tracked between 19 and 33 sturgeon, recording 74,000

locations in 2002 and 88,000 in 2003. From this, 5000 random values

from 2002 were used to develop the model and 5000 random locations

from 2003 were used to validate the model. The information was com-

piled in a GIS framework to determine the overall habitat suitability

for sturgeon populations under existing conditions and then scenarios

in which the fill increased by levels of 3 m increments (Figure 11.11).

The changes due to the increased fill measurements can be beneficial

or harmful to the habitat rating resulting in four change classes: (1) low

suitability, no change; (2) high suitability becomes low; (3) low suitability

Depth

Water surface

Bedforms

Slope

Simulated fill

FIGURE 11.10 Fill from

dredging affects the water

depth, bedform roughness,

and bottom slope, all of

which impact sturgeon

habitat. (From Hatten &

Parsley, 2009.)
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becomes high; and (4) high suitability, no change. Figure 11.12 shows that

many regions experienced no change, but the central channel transi-

tioned mostly from high suitability to low suitability. The model results

showed that there was little change in the area (<1%) of suitable sturgeon

habitat for fill levels up to 9 m. When this was increased to 12 m, there

was a 12% decrease in suitable area and for 15 m fill, sturgeon habitat

decreased by 44%.

This example provides another use for ecological models. Using this

model, researchers were able to get a good estimation of the impact of

fill without having to conduct a full-scale field trial to assess the

changes. This has clear management implications, because the model

indicates that the river has some absorptive buffer capacity to mitigate

against low amounts of fill material (<9 m), but as this value increases,

Habitat

Habitat

2003 fish
locations

2002
fish

locations

Legend

Data

Process

Decision

Roughness

Mahalanobis distance and
mean habitat vectorSlope

Depth

GIS
Bathymetric

survey
data

Simulated
fill

Model
validation

Conceptual
model

FIGURE 11.11 Conceptual model of steps and processes for the white sturgeon spatial model and the

impact of fill on sturgeon habitat. (From Hatten & Parsley, 2009.)
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the impact on sturgeon habitat increases noticeably, so a good policy

recommendation is to keep fill levels below the critical threshold.

Problems

1. Explain some ecological processes that make it necessary to use

spatially explicit models.

2. When would it be appropriate to use (a) 0-D model, (b) 1-D model

(c) 2-D model, and (d) 3-D model?

3. Management questions often drive the construction of the ecological

models. What are some pros and cons of this approach?

4. Explain how a nearest neighbor grid cell approach represents spatial

distribution on the landscape. What grid cell shape is most

appropriate and why?

5. Explain the difference between gradients, patches, and noise.

6. Does spatial autocorrelation typically increase or decrease with

distance? Why?

7. How are image data from Thematic Mapper Plus converted to

ecological classifications?

Fill boundary

0

N

S

EW
0.8 1.6 Kilometers

Project boundary
Change class

Low no change

High no change

High become low
Low become high

P

FIGURE 11.12 Estimated changes in sturgeon habitat under different dredge fill scenarios. The

largest change is seen in the habitat that transitions high suitability to low suitability. (From Hatten

& Parsley, 2009.)
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populations
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advantages/disadvantages, 109

algal culture illustration, 134–135

applicability of, 116–118, 117t, 118t

basic concepts, 129–130
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of, 149–150

conservation of energy and, 138

development of, 13–14, 14f

fishery models and, 150–153

growth models in, 131–134

herbivores population dynamics

illustration of, 142–146

infection models and, 131

interaction between populations in,

135–141

matrix models and, 147–149

metapopulation models and, 153–155

mortality defined, 130

natality defined, 130

percentage application of, 98–99, 98t,

99f

population defined, 130

yeast anaerobic cultivation illustration

of, 141–142

Population models, 231.

See also Metapopulation models;

Population dynamics models

IBMs vs., 292

Predation equations, 136–137

Prey-predator relationship, 137–138, 137f

Procedure, modeling, 24–31, 25f

adjacency matrix in, 25f, 26, 27t

calibration step of, 23, 25f, 37–41

complexity and, 25–26, 27

conceptual diagram and, 23f, 25f, 27

data and, 26

definition of problem step in, 24, 25f

mathematical equations step in, 25f,

29–31

SDMs, 326–327, 326f

sensitivity analysis step of, 25f, 34–37

STELLA and, 28, 28f

steps in, 22–24

validation step of, 23, 41–43

verification step of, 22, 25f, 31–34

Q

Quantum theory

complementarity theory and, 81

ecological modeling and, 78–82

environ and, 82

infon and, 82

irreducible systems and, 81–82

mutations and, 82

pluralistic view and, 81

practical number of observations and,

79–80

practical uncertainty relation and,

79

uncertainty principle, 79

R

rmax. See Maximal rate of natural

increase

Randomness, 13

Rate governed by diffusion, 30

Reachability matrix, 168

Reductionism, 6, 312–313

Reductionistic models, 44t, 45

Reliability, 296

Research models, 44–45, 44t

Risk assessment. See Environmental risk

assessment

River models, 13–14, 14f

S

Satellite remote sensing

GIS and, 353

image of Mississippi Delta, 352f

image of Washington D.C, 352f

Landsat program, US, 350–351, 350t

MSS and, 350–351, 351t

spatial models and, 350, 350t

TM and, 350–351, 351t
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conceptual diagram, 360f

model process flow chart, 360–361,

361f

overview of, 359–360

regions applied to, 360

of spatial model, 359–363

Scarce resources, 296

Science

analysis/synthesis and, 10

development of, 8–11

irreducible systems and, 9

uncertainty and, 9

world equation and, 10

Scientific models, 44–45, 44t

SDMs. See Structurally dynamic models

Second order rate expression, 30

Security, 296

Sediment submodel, 198

Sensitivity analysis

carrying out, 34–35

high- vs. low-leverage variables in,

35–36, 35t

step, 25f, 34–37

submodels and, 36

Settling rates, Danish fjord case study,

275–276, 276t

Settling velocity

detritus ranges of, 70t

phytoplankton concentration and,

68–69

phytoplankton ranges of, 69t

ways to determine, 69–71

Silver Spring example, 55–56, 55f

Spatial autocorrelation, 349

Spatial models

advantages/disadvantages, 113

agricultural landscape succession

example, 363–364

applicability of, 116–118, 117t, 118t

concepts/terms used with, 349–353

condition warranting use of, 348–349

early days of, 353–355, 355t

fish habitat along river corridor

example, 364–368

forest succession after blowdown

example, 356–359

GIS and, 353

IBMs and, 302–304, 303f

introduction, 347–353

patterns and, 349

percentage application of, 98–99, 98t,

99f

question answered by, 96, 97

satellite remote sensing and, 350, 350t

savanna succession example, 359–363

scale and, 349

spatial autocorrelation and, 349

state-of-the-art of, 356–368

Stability concept, 140–141

State variables, 20

global warming model, 223

subsurface wetland model, 209–210

Static models, 48–49

overview of, 44t, 46, 46f

of toxic substance mass flows, 247,

248f

Steady-state biogeochemical models

advantages/disadvantages, 109

applicability of, 116–118, 117t, 118t

chemo-state model to illustrate,

160–162

percentage application of, 98–99, 98t,

99f

pesticide in lake illustration of, 162

Steady-state models, 95–96.

See also Steady-state

biogeochemical models

applicability of, 116–118, 117t, 118t

chemo-state model and, 160–162

Ecopath models and, 162–163

ENA and, 163–174

environmental problems and, 18, 18t

pesticide in lake illustration of, 162

presumptions of, 159
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symbols used in, 27, 28f

Stochastic models, 97

advantages/disadvantages, 115

applicability of, 116–118, 117t, 118t

overview of, 44t, 45, 45f

Streeter-Phelps model

conceptual diagram, 182–183, 183f

conservation of matter and, 84

development of, 13–14, 14f

equation applied in, 183, 186t

results of running, 184f, 185t

using STELLA, 179–183

Structural complexity, 13

Structurally dynamic models (SDMs).

See also Copper ecotoxicological

model/SDM example; Exergy

advantages/disadvantages, 110, 321

applicability of, 116–118, 117t, 118t

b values for various organisms and,

329–330, 331t

biomanipulation and, 335–342

for Darwin’s finches, 333–334, 335f

as distributed models, 49–50

ecoexergy and, 330, 332–333

ecotoxicological example of, 343–346

how to construct, 321–333

maximization of biomass and, 323

percentage application of, 98–99, 98t,

99f

procedure development, 326–327, 326f

question answered by, 96, 97

six orientors and, 322

twenty-one case studies regarding,

309–310

Submodels

conceptual models and, 103, 103f

of ecotoxicological models, 253–255,

254f

nitrogen release, 200

phosphorus exchange, 198–199, 198f,

199f, 200

sediment, 198

sensitivity analysis and, 36

Subsurface wetland model

conceptual diagrams of, 209–210, 211f,

212f, 213f

delay values and, 213–214

differential equations, 215–216

as dynamic biogeochemical model,

208–218

forcing functions in, 210–211, 217–218

origins of, 208–209

parameters, 214–215

process equations, 211–214, 211f, 212f,

213f

removal efficiencies and, 214

results, 217

scope of, 209

state variables in, 209–210

wetland design using, 218

Superorganism concept, 9

Survivorship curve, 132, 132f

Symbiotic relationships, 140

Synthesis, 6, 10

T

Thematic Mapper (TM), 350–351, 351t

TM. See Thematic Mapper

Toxic substance in one trophic level

dynamic models, 247, 249f, 250f

Toxic substance mass flows static

models, 247, 248f

U

Uncertainty

ecology and, 9

ERA and, 237, 238

quantum theory and, 79

validation and, 42–43
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Universal constants, 22

Utility analysis, 174

V

Validation

criteria formulation, 42

Danish fjord case study, 278, 278t

data used for, 41–42

ideal model regarding, 43

Lake Glums� model, 202–204, 203t

requirement of, 41–42

revision questions for, 43

step, 23, 41–43

uncertainty and, 42–43

Variables. See also External variables;

State variables

biomanipulation and, 336–337

high- vs. low-leverage, 35–36, 35t

Variety, 296

Verification

defined, 31

model reaction and, 32

model stability and, 32

multiple scenario analysis for, 34

step, 22, 25f, 31–34

unit checking and, 33

W

WAMOD. See Water and Substance

Simulation Model

Washington D.C., satellite remote

sensing of, 352f

Water and Substance Simulation Model

(WAMOD), 363–364

Weighted digraph adjacency matrix,

165–167, 166f

White-box conceptual models,

104–105

Y

Yeast anaerobic cultivation illustration

conceptual diagram of, 141–142, 141f

observed/calculated values used in,

141–142, 142t

of population interaction, 141–142

Z

Zooplankton growth rate, 338, 339f
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