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Introduction  

Instrumentation:  
Where Knowledge and Reality Meet 

Instrumentation comprises scientific activities and technologies that are related 
to measurement. It is a link between physical, chemical and biological phenomena 
and their perception by humans. Constantly evolving, instrumentation changes how 
we live and plays a major role in industrial and life sciences; it is also indispensable 
to the fundamental sciences. In order to be credible, all new theories must undergo a 
series of experimental validations, of which instrumentation is the cornerstone. 

 
Is curiosity a distinguishing human trait? Certainly, this characteristic leads us to 

question, to understand, to explain, and finally to “know”. The more we explore, the 
broader our range of investigation becomes. Since the 18th century, scientific and 
technical knowledge have undergone an exponential expansion, an explosive growth 
of combined learning, but this kind of growth leaves us with unanswered questions. 
In this context, instrumentation serves to stimulate scientific knowledge in the 
junction between theory and experimental practice. 

 
Even before humanity developed a body of scientific knowledge, signs of 

technological progress had appeared in ancient civilizations. By 5,000 BC, humans 
had fashioned stone tools, and later began working in metal around 3,800 BC. 
Ancient Greeks, such as the philosopher Aristotle, who lived in the 4th century BC, 
were probably among the first thinkers to put forward logical explanations for 
observable natural phenomena. Democritus, a contemporary of Aristotle, already 
thought of matter as being formed of miniscule, indivisible particles. However, the 
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instrument of measurement most important to the Greeks was the gnomon, or needle 
of a sundial. The gnomon helped the Greek mathematician Euclid, living in the 3rd 
century BC, to measure the earth’s radius by simultaneously observing the shadow 
cast by the instrument on two points of the same parallel. After this discovery, 
developments in mathematics, numerical theory and geometry followed, with 
Euclid’s ideas dominating the world of science up until the Renaissance. From the 
16th century onwards, Galileo, Newton, and Descartes brought forward new 
approaches that were truly objective, which meant that all new scientific theories 
had to be verified by observation and experiment. It was in this era that scientific 
instruments began to be widely developed and used.  

 
The example we will discuss here will show, without forgetting Euclid’s 

contribution as cited above, how instrumentation helped to join knowledge and 
reality. In the 18th century, both maritime navigation security and the possibility of 
complete world exploration were limited by current imprecision in measuring the 
coordinates of a ship traveling anywhere on Earth. The problem of calculating 
latitude already had been resolved some time before, thanks to fairly simple 
geometric measurements and calculations. Determining longitude presented more 
problems. As soon as a relation was established between the idea of time and space, 
scientists, especially astronomers, proposed using the movement of the stars as a 
cosmic clock: one example was the rotation of Saturn’s satellites, discovered by the 
French astronomer Jean-Dominique Cassini in 1669. However, developing this idea 
further proved difficult and complicated. Determining longitude by relying on a 
measurement of time difference in relation to a given location required a precise 
measurement of time that was impossible to attain with the tools then available. To 
give an idea of the order of magnitude, let us recall that at the Equator, a nautical 
mile is defined as the length of a terrestrial curve intercepting an angle of a minute. 
The time zone being equivalent to 15 degrees, the lapse of time of a minute equals 
15 minutes of curve or 15 nautical miles. Thus a nautical mile is equal to 4 seconds. 

 
The problem was resolved in 1759 by the English clockmaker John Harrison, 

who invented a remarkable time-measuring instrument, a sea clock or chronometer 
that was only 5 seconds off after 6 weeks at sea, the equivalent of just 1.25 nautical 
miles. This revolutionary clock marked an important step in the search for precision 
begun in 1581 with Galileo’s discovery of the properties of regularity in a swaying 
pendulum, a principle taken up and developed further in 1657 by the Dutch 
physician Christiaan Huygens, inventor of the pendulum clock. John Harrison’s 
invention produced a number of other technological innovations such as ball 
bearings, which reduced friction that caused imprecision and errors. His 
chronometer stimulated progress in a number of other fields, among them 
cartography, leading to clearer, more geographically accurate maps. Today the 
Global Positioning System (GPS) stills depends on time measurement, but with a 
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margin of error of less than several centimeters, thanks to atomic clocks with a 
margin of error that never exceeds that of a second every 3 million years! 

 
These kinds of remarkable discoveries became more frequent over time in all 

scientific and technological fields, often resulting in new units of measurement 
named after their inventors. Instead of the inexact and often anthropomorphic 
systems then in use, it became necessary to create a coherent system of measurement 
that could be verified by specific instruments and methods from which reproducible 
and universal results could be obtained. An example of one older unit of 
measurement was the “rope of 13 knots” used by European cathedral builders to 
specify angles of 30, 60 and 90 degrees. Other measurements long in use such as the 
foot and the inch obviously could not meet the criterion of reproducibility but did 
allow for the emergence of standards and the development of somewhat more 
regular measurements. The usage of these often varied from region to region, 
becoming more widespread over time. The ell, for example, differed not only 
according to place but also according to usage. The first tentative step toward a 
coherent system was clearly the British Imperial System, adopted in 1824 by Great 
Britain and its colonies. The SI, an abbreviation for the International System of 
Measurements today in use throughout much of the world, dates from 1960 and 
allows scientists to join all measurements in use to a group of specific and carefully 
chosen basic measurements, thus giving birth to a new field of science that could not 
exist without modern measurement: metrology. 

 
As the development of the metrology shows, access to information, facts and 

measurements, all crucial to the interaction between knowledge and reality, also 
serve to stimulate technological innovation. Making use of the latest technology in 
the fields of sensors, measurement, communications, signal processing and 
information, modern instrumentation plays an unprecedented role in progress and 
science. An interdisciplinary field, instrumentation is itself present in almost all 
scientific disciplines, including the fundamental sciences, engineering science, 
medicine, economic and social sciences, promoting exchange of ideas and data 
between different scientific communities and researchers. The particle accelerator 
ring developed by CERN, the European Organization for Nuclear Research, is 
perhaps the newest instrument of measurement. With numerous subsets of specific 
measurements, this impressive instrument allows scientists to explore infinitely 
small things by studying and discovering new types of particles. As well, 
astrophysicists have attempted to validate certain elements of the big bang theory by 
more and more refined observations of the universe, making use of a vast array of 
extremely sophisticated technologies, among them the Hubble space telescope. 

 
Resolving instrumentation issues frequently involves a very broad spectrum of 

theoretical abilities, as well as mastery of experimental techniques. This means that 
research teams in business and university laboratories, on the individual level, must 
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have scientists who can invest time in multi-disciplinary research; the teams 
themselves must also serve as conduits between research teams belonging to 
complimentary disciplines. This form of interdisciplinary activity, in which research 
teams are able to imagine and work out applications of their work beyond their own 
fields, is an extremely attractive challenge. But will this necessarily lead to 
innovative concepts – and if so, according to which scientific principles? 

 
The reality is that of the vast range of solutions widely available to resolve any 

problem of measurement, very few are actually suitable. The emergence of an 
innovative and optimum system often appears as the result of an ingenious 
combination of a group of methods and technologies drawing on diverse disciplines. 
This approach does not necessarily mean a major development has occurred in each 
of the involved fields; it does, however, require in-depth knowledge of these fields. 
The innovation resulting from this mastery is not less rich, open and dynamic in 
terms of scientific, technological and economic terms, resulting as it does from 
interdisciplinary exchange. 

 
The objective of this work on measurement and instrumentation is to present and 

analyze all the issues inherent in conceiving and developing measurement, from the 
source of a signal (sensor) to conveying quantitative or qualitative information to a 
user or a system. Le Colloque Interdisciplinaire en Instrumentation or 
Interdisciplinary Conference on Instrumentation held in November 1998 in Cachan, 
France gives a general survey of the range of this field (see C2I’98). This book 
cannot claim to be exhaustive. However, throughout the chapters, we give examples of 
our main theme – the idea of a system that brings together technologies, methods and 
complex components relating to theoretical, experimental, and scientific skills. All of 
these draw on the essence of instrumentation. 

 
To give a well-known example of this theme, we look at the car, an object that 

has paradoxically retained the same function over decades even as it has never 
stopped changing and evolving. We are all aware of how new technologies, 
especially in the fields of micro-electronics and industrial computer science, have 
changed cars. We notice the continual appearance of new scientific concepts whose 
names and acronyms (such as the Antilock Braking System (ABS), the Enhanced 
Traction System (ETS) and controller area network (CAN) operating system) 
become familiar through widespread publicity and advertising of vehicles. In fact, 
the car as a symbol has become more interesting and inspiring than functions such as 
airbags or digital motor control which often make use of new, though hidden, 
technologies. These technologies usually develop within widely varying constraints 
such as safety, reliability, ease with which problems can be diagnosed and repairs 
can be made, and cost. Such technologies also are affected by marketing factors like 
style and comfort. The car is thus an illustration of an impressive technological 
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expansion that has taken place within the parameters of science and within the 
parameters of socio-economics.  

 
This book has been written for technicians, industrial engineers, undergraduate 

students in the fields of electronics, electrical engineering, automation, and more 
generally those in disciplines related to engineering science who require in-depth 
knowledge of how systems of measurement are developed and applied. The chapters 
follow a fairly linear progression. However, our text falls into two complementary 
but somewhat different halves. 

 
The first half of the book discusses fundamental ideas and issues of measurement 

and presents a range of physical phenomena that allow us to obtain measurable sizes 
and develop methods of pretreatment of signals. In these early chapters, our 
discussion of instrumentation focuses mainly on components. The second half of the 
book concentrates instead on the aspect of systems by looking at how data are 
processed and used. These two different emphases are linked in Chapter 6, which 
presents the carrying out of integrated functions, showing how microtechnologies 
have shown great promise in the fields of sensors and instrumentation.  

 
Using the example of the car, the first chapter defines the links between 

instrumentation, measurement and metrology, explaining how units and tools of 
measurement are developed. Chapter 2 presents the general principles of sensors, 
while Chapter 3 gives a detailed description of the general principles of optical, 
thermal and mechanical sensors, and how these may be used in developing 
measuring tools and sensors. Chapters 4 to 6 discuss a range of methods and 
technologies that allow for a complete measuring process, from the conception of an 
electronic conditioning of signals, passage through discrete time, data conversion 
and quantification, filtering and numerical pretreatment. 

 
Chapter 7 progresses from the idea of components to that of systems, 

concentrating on somewhat more technical aspects by discussing instrumentation in 
terms of microsystems, accelerometers, and pressure sensors. Chapters 8 to 11 
present information on how systems and measurement networks are created, how 
models of interaction between sensors and their environment are developed, as well 
as ideas concerning representational space, diagnostic methods and merging of data. 
Chapter 12 summarizes the previous chapters and discusses the idea of intelligent 
systems and sensors, to which signal processing imparts valuable qualities of 
rapidity, reliability and self-diagnosis, available to us thanks only to the 
miniaturization of complex mechanisms that integrate a number of complex 
functions. We have chosen several examples from a specific field: the production of 
cars. 
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Chapter 1  

Measurement Instrumentation 

The purpose of this chapter is to review the essential definitions and 
characteristics of measurement. We discuss measurement systems and the roles and 
classifications of instruments in a comprehensive and descriptive way, with more 
detailed discussions to follow later in the book. Throughout this book, we use the 
example of the car to illustrate the importance and relevance of instrumentation. 

1.1. General introduction and definitions 

 Whether exploring Mars, measuring the brain’s electrical signals for diagnostic 
purposes or setting up robots on an assembly line, measurement is everywhere. In all 
human activities, the idea of measurement establishes a relationship between a 
natural or artificial phenomenon and a group of symbols, usually numbers, in order 
to create the most reliable representation possible. This representation is classified 
according to an “orderly” scale of values. 
 
 Measurement is the basis of scientific and industrial research. It allows us to 
understand the phenomena we observe in our environment by means of 
experimental deduction and verification [ROM 89]; [HEW 90]; [PRI 95] and helps 
us keep records of the results of these observations. Established models and 
scientific laws are available for all of us, doing away with the need to begin each 
experiment with the most basic observations. This is why perpetuating knowledge is 
so important in the long term. 
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 In the short term, this perpetuation guarantees the quality of products and 
commercial trade by connecting them to legal standards. Achieved through 
instrumentation, measurement is thus the basis of progress in many forms of 
knowledge, as well as being essential to production and trade. In the world of 
science, it allows us to make discoveries and confirm them. In terms of technology, 
instrumentation helps us control, improve and develop production, and in the world 
of economics, it makes commercial exchange possible, helping us assign value to 
objects and transactions. 
 
 Measurement therefore brings together knowledge and technological progress. 
Universal and essential to many disciplines [PRI 95], it is, in fact, fundamental to 
most human activity. This universality explains the recent interest among some 
researchers in improving the forms of knowledge related to instrumentation [FIN 
82]. 

1.2. The historical aspects of measurement 

 We can look at the evolution of measurement by focusing on invented 
instruments or by using the instruments themselves. In this section, we will list the 
steps of progress in measurement, which we define somewhat arbitrarily, according 
to human needs as these emerged throughout history: 

– the need to master the environment (dimensional and geographical aspects); 

– the need to master means of production (mechanical and thermal aspects); 

– the need to create an economy (money and trade); 

– the need to master and control energy (electrical, thermal, mechanical, and 
hydraulic aspects); 

– the need to master information (electronic and optoelectronic aspects). 
 
 In addition to these is the mastery of knowledge which has existed throughout 
history and is intimately connected: 

– measurement of time; 

– measurement of physical phenomena; 

– measurement of chemical and biological phenomena. 
 

 Let us look at several examples from history regarding the measurement of time. 
The priest-astronomers of ancient Egypt were close observers of natural phenomena, 
especially the sky. Simply by observing the natural effects of solstices (including the 
floodings and harvests around the Nile coinciding with the rising of the star Sirius) 
they were able to invent a 365-day calendar. Their observations also enabled them to 
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develop a system of measurement based on a daily recording, made between 
summer solstices, of the shadows cast by a stick placed vertically in the ground. By 
about the year 2,500 BC, Egypt had three calendars: a civil calendar of 365 days, an 
equivalent lunar calendar, as well as one based on the earlier lunar year based on the 
heliacal rising of Sirius. Such progress was made by the Egyptian priest-astronomers 
that around the year 1,450 BC, during the reign of Thutmose III, they were able to 
measure days and hours, again only through observation. As can be seen on wall 
paintings of star clocks in tombs of that era, ancient Egyptians knew that the day 
consisted of 12 hours, compensating for the 12 dark hours of night. Their sundials – 
or, more accurately, “shadow clocks” – were very simple ancestors of the gnomons 
later used by the Greeks. These consisted of a rectilinear piece of wood in five 
sections, with a horizontal piece at one end. Through careful observations and 
corrections, the Egyptians of that era came very close to achieving our present level 
of knowledge of the duration and number of days in a year. 
 
 Throughout history, these kinds of advances in measurement have come about 
for specific motives. Economic motives drove the development of cartography and 
the growth of trade; militaristic motives spurred the creation of new armaments, 
with everything from cannon powder to the radiation levels emitted by nuclear 
weapons needing to be measured; strategic and expansionist motives prompted the 
need to control maritime routes and colonial territories; religious motives created a 
need to restrain and monopolize certain kinds of knowledge. Nowadays, these 
motives have developed with the disappearance of certain needs being replaced by 
new ones. An instance of this is how the need for sophisticated, three-dimensional 
maps of Earth that have become possible through the technology used by American 
space shuttles, has supplanted older colonial expansionist motives that gave birth to 
scientific bodies such as the Bureau des longitudes in France. 
 
 History is full of examples of the development of measurement to such an extent 

that no progress can be described or reported without a measurement being a result 
of completed experiences for the validation of theories [RON 82] [JAC 90], whether 
these are scientific, economic, technical, expansionist or even religious. Usually, the 
instrument used for such validation already exists but is used in a somewhat 
different way or is adapted for the new use. Instruments developed for a specific 
measurement are more rare. Religious motives have often brought about new ways 
and tools of measurement, especially in antiquity. As discussed above, ancient 
Egyptians used the sky to develop their calendar of 365 days and to measure days 
and hours. In our own time, some physicists confronting the mystery of particles and 
the Big Bang theory have turned to a spiritual explanation of these phenomena 
[HAW 89]. 
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1.3. Terminology: measurement, instrumentation and metrology 

 The expression of measurement needs or tests are an everyday occurrence in 
science and industry [MAS 90]; [COM 92]. All existing tools that help us carry out 
measurement are part of instrumentation. Rules for using and guaranteeing 
measurement created metrology. It is important to point out that definitions1 of these 
related terms are sometimes confused, as with “measure” and “metrology”. 
 

The word measurement has many meanings. The International Vocabulary of 
Basic and General Terms in Metrology (VIM), using International Organization for 
Standardization (ISO) norms, has defined measurement as “a set of operations 
having the object of determining the value of a quantity”.  

 
In other words, a measurement is the evaluation of a quantity made after 

comparing it to a quantity of the same type which we use as a unit. The concept of a 

measurable quantity goes beyond measurement. The VIM defines this as “an 
attribute of a phenomenon, body or substance, which can be distinguished 
qualitatively and determined quantitatively”.  

 
 Metrology, the science and “grammar” of measurement is defined as “the field of 
knowledge concerned with measurement”.  
 
 It guarantees the meaning and validity of measurement by strict accordance to 
established units [LAF 89]; [HIM 98]. These units are standardized on national and 
international levels [GIA 89]. Metrology plays a role in international agreements 
joining national systems of measurement to those used in other countries, making 
conversion between systems possible. Standardized measurement units mean that 
scientific and economic figures can be understood, reproduced, and converted with a 
high degree of certitude. The International Bureau of Weights and Measures based 
in France is one example of an international authority in charge of establishing 
international metrological rules. 

1.4. MIM interactions: measurement-instrumentation-metrology 

 Knowledge fields have always grown according to measurement systems. 
“Experience” and “theory” interact and link together the “real world” and the 
“mathematical world” [DRA 83]. These interactions lead to overall progress in  
 

                                   
1 All definitions found in the text in italics come from the International Vocabulary of Basic 
and General Terms in Metrology. 
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scientific knowledge, with attendant technological advances that in turn benefit 
many disciplines (see Figure 1.1). 
 
 In scientific research, interactions between experiments and theories are 
permanent. Therefore, establishing a comparative relation between a quantity to be 
evaluated and a reference quantity or standard by means of an instrument of 
measurement is an interaction between instrumentation and metrology that 
guarantees the reliability of obtained results. Both the concept of measurement and 
the means used to obtain it, whether metrologic or instrumental, are part of 
interdependent evolutions. Technological advances develop and contribute to 
progress in the three fields defined above: measurement, instrumentation and 
metrology [RON 88]; [TUR 90]. 
 

 

 
Figure 1.1. The MIM triangle: evolutions and permanent interactions 

of measurement, instrumentation, and metrology 

1.5. Instrumentation 

 The term instrumentation refers to a group of permanent systems which help us 
measure objects and maintain retroactive control of a process. In this sense, 
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instruments and systems of measurement constitute the “tools” of measurement and 
metrology. 
 
 For our purposes, the following terms can be singled out: 

– measurement systems: these are instruments used to establish the size of objects 
being scientifically tested. This kind of situation occurs in scientific experiments and 
industrial test trials to acquire information and data concerning the tested object. This 
data can be processed in real time or in batch mode (see Chapter 7); 

– control systems: in addition to measuring objects, these instruments are also 
used to exert control over the feedback process. Figure 1.2 shows the conventional 
diagram of a measurement and control system. 
 
 

 

Figure 1.2. Control and measurement system 

 The measurable quantity to be measured X(t) is transmitted by a signal M(t) at 
the input of the measurement chain. This, which is characterized by a transfer 
function T(t), creates an exit signal S(t) in the form of X(t). This can be completed 
by a feedback loop with a transfer function B that carries out the parameter control 
of the object being investigated according to preset or autoadaptive instructions. To 
simplify our explanation, we interchangeably use the terms measurement systems, 
instrumentation, and instruments. Physically, all measurement chains are based on a 
measuring transducer, which we define as “a measurement device which provides 
an output quantity having a given relationship to the input quantity”. 
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 When an exit signal of a transducer is electric, we speak of a sensor, defined as 

“the element of a measuring instrument or a measuring chain to which a measurand 
is directly applied”. 
 
 The requirements of making correct and sophisticated measurements have meant 
that sensors have been increasingly used for this purpose. As instruments of 
management made electronically, sensors are capable of combining series of 
measurement results in a single indicator. This intelligence can be numerical; a data 
acquisition system connected to a computer directs the calculations and displays the 
measurements. As well, this intelligence can be integrated into a measuring sensor 
head in the form of microelectronic components that carry information to a compact 
and portable sensor with the capability of processing information in real-time. 
Research on sensors and their development is a rapidly expanding field; a fuller 
discussion follows in Chapter 6. In the next pages of this chapter, we will present 
other elements of the measurement chain, going into more detail later in the text. 

1.6. Is a classification of instruments possible?  

 Does a taxonomy of instruments exist [WHI 87]? To the best of our knowledge, 
a universal classification of instruments has not yet been proposed.2 The difficulties 
of even proposing such a classification are obvious, given that such an attempt 
would come up against problems of criteria choice. Would criteria have to be chosen 
according to the technologies being used or application fields?3 
 
 One approach would involve deciding on detailed utilization of a given 
approach, and thus criteria, allowing for a functional reading in terms of the research 
objectives. Starting from a given application field, we would index all required 
instruments in the most detailed way possible in terms of measuring function and 
nature, the dimensions of the instruments being used, and the sensors being used, to 
cite some elements of the process. Another approach would concentrate on different 
application fields, such as pressure measurement in agriculture, in medicine and in 
industry, to name several examples. Table 1.1 is an example of this kind of 
classification. It is far from exhaustive but shows some possible criteria. 
 
 
 
 

                                   
2 Two excellent books [ASC 87]; [FRA 96] and an article [WHI 87] all dealing with sensors 
are exceptions. 
3 For the definition of this term, see section 1.7.1. 
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 Obviously, depending on the application field being used, it is generally difficult 
to carry out and validate reliable measurements. For example, the problems involved 
in measuring the pressure level of a submarine and of a machine tool are not the 
same. The constraints, consequences and precision demands are not comparable; 
neither are the environmental conditions.  
 
 However, other classification criteria are possible. Tables 1.4 and 1.5 (see also 
Appendix 1) give further examples of classification criteria in terms of the nature of 
the physical stimulus used and the physical quantity being measured. 
 
 

Example of size to be measured Application field 

Fluid pressure Industry 

Sugar level in a fruit Agriculture 

Blood glucose level Biology 

Beam resistance Civil engineering 

Stock, currency exchange Marketing, commerce, finance 

Oilfield flow, power station output Energy 

Epidemiological monitoring, ECG signals, 
home health care monitoring 

Health, medicine 

Radar detection and surveillance Military 

Life span of an elementary particle Scientific measurement 

Flight speed, length of flight, altitude Transportation 

Battery fluid level Automobile 

Heavy metal level in wastewater Environment 

Atmospheric pressure, hygrometry level Metrology  

Presence detection Home automation  

Software performance, fiber optic flow, 
channel pass bands 

Telecommunications 

Undersea pressure and depth Marine industry 

Distance, speed, transmission time Space 

Table 1.1. Examples of instrument classification criteria and related application fields 
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1.6.1. Classification of instruments used in cars 

 The concept of the systems approach [ROS 75] is generally used in industrial 
design. Looking at the example of the car, it is possible to use this comprehensive 
approach to create a subset of instruments in this field. For purposes of brevity, we 
can say that the instruments necessary for a vehicle are centered around the driver 
and his or her needs [EST 95]. Driving a vehicle through traffic involves 
cooperation – and a certain amount of tactical skill. Planning the details of even a 
short car trip involves planning an itinerary, departure time and other details, all 
requiring strategic skill. Moreover, learning how to drive a car and ensuring its 
optimal and safe performance involves operational skills. A useful definition of 
instruments in this context would involve a classification by groups of functions, 
one flexible enough to accommodate technological changes and cost reduction. 
 
 A car or automotive vehicle is above all a group of interacting systems. The 
starting point of today’s car designers is the idea that all components and modules 
must be planned, put together, and manufactured as integral parts of the same 
system. We can imagine the possible range of interactions within systems, a few 
being the smart sensor that activates an airbag and the data acquisition program that 
ensures a driver’s safety. To further illustrate such interactions, we provide a list of 
some of the systems classes of a car in Table 1.2. This presentation follows the logic 
used in planning and production from an economic point of view. 
 
 

Temperature 

function 
Chassis functions 

String system 

functions 

Passenger 

compartment and 

safety functions 

Temperature 
control functions 

Heating, 
ventilation, and air 
conditioning 
controls 

Motor cooling 
systems 

Motor cooling 
controls 

Chassis control 
systems 

Active suspension 
systems 

Chassis modules and 
systems 

Brake systems. 

Brake suspension 
components 

Steering systems 

Supporting 
columns and shafts 

Steering shaft 
systems 

Optimization, 
performance and 
fuel consumption 
systems 

Inflatable airbags 

Passenger 
compartment 
amenities 

Door control 
modules 

Electronic control 
systems 

Table 1.2a. Examples of classification in car instrumentation fields 
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Electronic functions 
Transmission and  

wiring functions 

Power and  

combustion functions 

Electronic antilock brakes 
(ABS) 

Electronic inflatable airbag 
unit 

Antenna systems 

Electronic passenger safety 
systems 

Audio components and 
systems 

Electronic engine monitoring 

Windshield projection 
system 

Collision protection systems 

Electronic dashboard (speed, 
gasoline levels, etc.) 

Integrated circuits 

Mechanical, 
electromagnetic, and 
electronic air conditioning 
regulators 

Energy sensors and controls 

Electronic steering and 
suspension 

VAN network 

Electric and electronic 
generators 

Connection system 
(wiring) 

Electronic fittings 

Advanced data 
transmission 

Fiber optic lighting 
systems 

Lighting wiring 

Sensors 

Commutators and switches 

Modular side panels 

Valve command 

Monitoring system 

Air and gasoline 
monitoring 

Exhaust system 

Sensors and thermostats 

Lighting 

Fuel supply and emission 
control 

Energy storage and 
conversion 

Advanced propulsion 
systems 

Table 1.2b. Examples of automotive instrumentation classifications 

1.7. Instrument modeling 

 From simple sensors and their conditioners to computer data acquisition systems, 
instruments must furnish reliable and accurate measurements. We can attempt to 
formalize data acquisition chains by using a global model to design an instrumental 
system to define different components and measures in use. Modeling an instrument 
of measurement depends on quantifiable and qualifiable knowledge of parameters – 
but these parameters cannot always be controlled. We can, however, attempt to 
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estimate these parameters quantitatively and qualitatively in order to evaluate their 
influence on acquisition and the representation of their real value. 

1.7.1. Model of a measurement instrument  

 An instrument of measurement may be described in terms of input and output, 
according to the functional design of Figure 1.3 [NAC 90]; [PAR 87]. Input and 
output quantities allow for overall formalization in any measurement system. The 
sizes for which the system has been conceived are called the measurands, defined as 
“quantities subjected to measurement”.  
 
 The output phase of a measurement system delivers an “image” value S(t) of the 
characteristic being measured. Ideally, this value would be a faithful representation 
of the quantity to be determined, with the input and output linked by a characteristic 
transfer function of the measurement system or instrument. 
 
 In reality, however, we must add to the measurand M(t) additional quantities 
called influence quantities, defined as “quantities which are not the subject of 
measurement but which influence the value of the measurand or the indication of a 
measuring instrument”. 
 

 So, we can distinguish between: 

– interfering quantities i(t) to which the system is unintentionally sensitive. The 
instrument takes their effects as disturbance that is taken into account as a 
supplementary transfer function that modifies output additively; 

– modifying quantities m(t) that are all quantities capable of reacting on partial 
transfer functions when a temporary or permanent change in the structure of the 
instrument occurs. 
 
 These definitions identify the difference between real value M(t) and measured 
value S(t). Metrology is a method used to rigorously analyze these differences. The 
role of the user is then to critically analyze the results using a thorough knowledge, 
by quantifying or qualifying influence quantities so as to estimate any possible 
errors they may cause [HOF 83]; [NEU 89]. 
 
 In concrete terms, these errors manifest physically by an unwanted 
supplementary information transfer, which we will describe in the following 
sections. 
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Figure 1.3. Modeling of a measurement system  

1.7.2. Load effects 

 Any measurement operation requires connection (in situ invasive, semi-invasive 
or contact measurement) or measurement of an object using an instrument without 
contact. This linking of an instrument to an object or site of investigation means that 
a transfer of energy and/or information termed “a load effect” takes place [PAR 87, 
NACH 90]. This transfer directly affects the measured value. 
 
 An example of this is shown by the insertion of a measuring probe into a 
solenoid which interferes with the electrical field, leading to a difference between 
the “true” value (the field by itself) and the value to be measured (the field disturbed 
by the probe). 
 
 We can, in certain cases, estimate and deduce errors that occur between 
measuring systems and the object to be measured. The measurand can then be 
achieved but may not be completely accurate; in such cases we must ensure that 
appropriate metrological procedures are followed. In other cases, measurement 
cannot be carried out, and being aware of this will help us find another solution to 
determining a quantity of interest. 

1.7.3. Estimating load effects 

 If X(t) is the “true” value of the quantity to be measured when the object of 
measurement is not related to the measurement device, then M(t) stands for the 
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value of the quantity after measurement. The information conveyed from the object 
to be measured to the instrument of measurement represents an image of a 
measurand X(t) upon which we superimpose information intrinsic to the energy of 
the connection, expressed as X*(t). This energy transfer is a characteristic of 
measurement and means that the measured object delivers not only quantity M(t) to 
the instrument of measurement but also a second quantity M*(t) (see Figure 1.4). 

 
Figure 1.4. Load effect from contact of the object to be measured  

with a measurement system 

 
 
 This load effect can be described in terms of energy, a concept fundamental to all 
elements of all physical interactions, no matter what the quantity may be. In 
engineering sciences, we describe these interactions in terms of pairs of 
complementary variables whose product is equal to the power. We will further 
discuss the definition and role of these pairs. 

1.7.4. Effort and flow variables  

 The pair of variables associated with energy transfers is characteristic of all 
measurement operations. In a measurement system, one of its features is an “effort 
variable” M(t) linked to a “flow variable” M*(t). The result of these two variables to 
the dimension of a power: 

P = M(t).M*(t) 

and its temporal integral: 

W = ∫M(t).M*(t).dt  

that of energy. 
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 From the point of view of physics, one of these two variables is extensive: the 
flow variable, for example, current, speed, density flow or angular speed. The other 
is intensive and is a potential or effort variable: for example, tension, force or 
pressure. Sources of flow variables (current or speed) operate in constant flow and 
have infinite impedance. Information transfer follows the pair of complementary 
variables producing power or the “energy flow” that comes from interaction between 
the variables. In all pairs of variables found in classical physics such as electricity, 
mechanics, hydraulics and optics, we can define a size as equal to a power or form 
of energy: 

P = intensive variable × extensive variable 

 Certain pairs of variables are already familiar to us: 

– power = tension × current; 

– energy = force × displacement; 

– power = pressure × flow. 

 
Less common examples are: 

– energy = load × tension; 

– power = absolute temperature × entropy. 

 
The energy used by a measurement system may be finite and is therefore an 

energy transfer system (the balance carried by a mass) or it may be indeterminate 
and thus is a power transfer system; this is the case with voltmeters and wattmeters. 
The first is an energy transfer system; the second, an example of a power transfer 
system. 

1.7.5. Features and operating points of a system 

 In both linear and non-linear examples, the course taken by a flow variable or 
effort variable expresses the energetic limits of the system and determines an 
optimal operating point.  
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Figure 1.5. Operating limits in an example of a linear load 

 In general, a loaded source cannot operate when simultaneously emitting a flow 
variable and a maximum effort (see Figure 1.5). For example, a battery cannot both 
supply a maximum current and a different maximal potential to a charge. 
 
 Both the source feature and the load feature share one or several points of 
intersection (see Figures 1.6 and 1.7). These are operating points, determining the 
variable values and the load that permits their connection. From an energetic point 
of view, two conditions must be met: 

– the continuity of shared flow variables; 

– the continuity of shared effort variables. 
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Figure 1.6. A source feature intersecting with different loads: 

 all the operating points (1, 2 and 3) are stable 

 These conditions characterize operating points that are stable (see Figure 1.6) if 
the source and load features are simple (that is, linear, quadratic, logarithmic and so 
on) or unstable (see Figure 1.7) if the features are complex (curved, convex).  

1.7.6. Generalized impedance 

 Determining the load effect (see Figure 1.4) makes use of the concepts of 
impedance and generalized admittance. In non-linear cases, the derivative in relation 
to the flow variable can be used but we will not discuss these cases here. We define 
the concept of impedance as a relation between intervening quantities in a power 
exchange. It is a specific transfer function of the system. The relation of the 
derivatives intersecting the associated variables is the determining factor: 

Z = d(Effort variable)/d(Flow variable) 
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Figure 1.7. Intersections of a source feature with a load.  

Operating points (1, 2 and 3) are unstable 

 We use this concept in cases when the measurand is an effort variable. Going 
beyond equations that fit the model given in Figure 1.4, we here define two forms of 
generalized impedance that apply to cases of a power transfer system and an energy 
transfer. These are generalized resistance and generalized rigidity4 shown in Table 1.3. 
 

 Power transfer X(t).X*(t) 
Energy transfer 

∫ X(t).X*(t)dt 

Input 
variable 

Associated 
variable 

Generalized 
impedance 

Z = Var.Ext/Var.Int 

Associated 
variable 

Generalized impedance 
Z = Var.Ext/∫Var.Int dt 

Stress 
variable 

X(t) 

Flow variable 
X*(t) 

Generalized resistance
R = X/X*(t) 

Flow variable 
X*(t) 

Generalized rigidity 
S = X/∫X*(t)dt 

Tension U 
[V] 

Electrical 
current 
I [A] 

U/I 
[Ω] 

Electrical charge
Q [C] 

U/∫Qdt 

Force f 
[N] 

Speed 
v [m/s] 

f/v 

[N/ms-1] 

Displacement d 
[m] 

f/∫d dt 

Pressure P 
[N/m2] 

Flow volume 

D [m3/s] 
P/D 

[Nm/rad/s] 
volume  

V [m3] 
P/∫D dt 

Table 1.3. Examples of interactions between effort variables, flow variables and 

corresponding generalized impedances in the case of the measuring object (X,X*) 

                                   
4 The terms resistance and rigidity come from electronics and mechanics terminologies. 
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1.7.7. Determining the load effect 

 We can formulate two possibilities for a measurement system when the 
measurand is an effort variable: 

– if the system is a power transfer {P = M(t).M*(t)}, the generalized impedances 
reduced to a generalized resistance R = M/M*(t) and the equation linking the 

measurement system and the object of measurement is: 

M(t) = X(t)-R.X*(t) 

– if the system is an energy transfer {W = ∫M(t).M*(t)dt}, the generalized 

impedance is reduced to a generalized rigidity S = M/ ∫M*(t)dt and the equation 

linking the measurement system to the measured object is: 

M(t) = X(t)-S. ∫X*(t)dt 

 This gives us four possible cases according to which we consider that the 
quantity to be measured X(t) can be an effort variable or a flow variable. When the 
measurement system is connected then X*(t) ≠ 0; if it is not, then X*(t) = 0. 
Generally, X(t) depends on X*(t) and the relation between them differs according to 
whether they are viewed as the object to be measured or the measurement 
instrument. This is most simply and most often expressed as a linear relation. 
 
 To estimate the load effect, we write the equation linking the exact value X(t) 
and M(t) as: 

X(t) = M(t) (1 + R/Rm) 

or X(t) = M(t) (1 + S/Sm) 

where R and Rm are the generalized resistances respectively of the measured object 
and of the measurement system, with S and Sm being both the generalized rigidity 
of the measured object and the measurement system, respectively. 
 
 If we want M(t) to tend towards X(t), then we have (Rm>>R) or (Sm>>S). 
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1.7.8. Measurement with a car battery 

 If we want to describe how the battery of a vehicle functions, we pay special 
attention to measuring its tension limits. Even in simple cases, this helps us describe 
certain aspects presented later in this chapter and, in particular, evaluate the load 
effect introduced by linking the measured object with the measurement system.  
 
 Modeling as a Thévenin source presents the measured object as made up of an 
electromotive force E (the measurand) and an internal resistance Rg. The voltmeter 
Rv is a measurement system or device allowing access to the measurand E. We 
model these according to Figure 1.7. 
 

 Analysis of the load effect: the pair of linked variables is made up of an effort 
variable X(t) that is the tension limit of the battery u(t) and an accompanying flow 
variable X*(t) that is the current i(t). The resulting measurement, made by a 
voltmeter, would ideally be M(t) = E. 
 
 If we express the given equations by the object of measurement, we derive: 

u(t) = E – Rg . i(t) 

 

 V

Measured object: 
Car battery 

System of measurement: 
Voltmeter 

X(t) = u(t)

M(t) = S(t)

X*(t) = i(t) = M*(t)

Rv

Rg 

E 

 
 

Figure 1.8. Contact of an instrument with a measured object and associated variables 
 
 
 The measurement system’s tension limit (here the system is a voltmeter) is 
expressed by M(t) = S(t) = Rv i(t) where i(t) is the shared flow variable for the 
instrument and the measured object: M*(t) = i(t) = M(t). From these we derive: 

E = u(t)(1 + Rg/Rv)  



20     Fundamentals of Instrumentation and Measurement 

 The load effect is thus represented by the term (Rg/Rv). If we want u(t) to be 
equal to E, voltmeter resistance must show high resistance to the internal resistance 
of the battery; this is in fact the usual result. 
 
 The load effect is thus intrinsic to all measurement operations and as such is 
inevitable. We might want to think that the load effect is unimportant in view of the 
fact that it is responsible for easily tolerated errors. However, this is not always the 
case, and practical solutions (such as experimental precautions) and theoretical 
solutions (data treatment) are necessary to properly understand and analyze results. 

1.7.9. Determining impedances  

 We deduce impedances independently, then combine them according to the usual 
rules for combining functions (as for series and parallels). The problem is in 
determining the partial impedances of every source in the involved subsystem. In 
linear examples, we determine the transfer function between the effort variable and 
the flow variable at the point under study. 

1.7.10. Generalized admittance 

 Generalized admittance is, in electricity to cite one instance, the inverse of 
impedance. The definitions given above help us infer cases of generalized 
admittance. We will use this concept in cases of a measurand being a flow variable, 
just as in electronics where we usually apply the concept to parallel circuits. 

1.8. Characteristics of an instrument 

 To determine the design or choice of an instrument, we must consider the 
following three aspects: 

– how we wish to use the instrument and for which purposes; 

– whether it is an isolated system or connected to other systems; 

– the features of the measurand and ease of accessibility. 



Measurement Instrumentation     21 

 
Figure 1.9. Principal characteristics of an instrument 

 Responses are conditioned and numerous. We define the response of an isolated 
instrument by its static and dynamic characteristics (see Figure 1.9). These are a 
good starting point from which we may put into play a strategy for developing a 
measurement chain. These characteristics must be present in each part of the chain 
(especially in the transducer) in order to be certain of all characteristics of the 
system. The load effect produced by different connections along the chain can 
present problems. Certain provisional solutions, such as the use of impedances or 
adjusting of the linked parts can help, but usually we must compensate for the 
introduced errors through quantification or consider these errors in data analyses. 
The performance of each element is expressed as a transfer characteristic, which is 
often a complex data collection linking the output parameters of a system to its input 
parameters. This allows us to predict how a measurement system will perform by 
correctly combining the transfer characteristics of each of its elements. This 
operation will be efficient if all the transfer characteristics are expressed according 
to the same rules. 

1.8.1. Components of static transfer functions 

 Static transfer function characteristics are usually expressed in terms of 
parameter groups; we give some of these principles in Table 1.6. The relative 
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importance of these parameters depends on the metrological situation. Some of these 
parameters have several different names, according to the manufacturer. The units in 
which they are given tell us which parameters are in use. 
 
 Static calibration summarizes measurement system performances when all the 
input variables are maintained constant, excepting one which is varied by step by 
step. Output variables are collected according to steady-state functioning. These 
static transfer characteristics only make sense if static calibration conditions are 
established. In particular, variable values must remain constant, clear and exact. 

1.8.2. Dynamic characteristics 

 Transfer characteristics do not easily combine when expressed in the form of 
transfer characteristics. One way of viewing an instrument is to see it as a black box 
with a known relation between the input (excitation) and the output (measured 
signal). This relationship is a transfer function S = f (s). It can be linear (S = a + ks) 
or non-linear (logarithmic, exponential, or polynomial). Often the gradient b is 
designated as sensitivity. In non-linear cases, sensitivity is not constant but is a 
variable that may be expressed at any point as xo by k = d(S in xo)/ds 

1.8.3. Instrument performance 

 As we know the static and dynamic transfer characteristics of all the elements of 
a system, we can then combine them to obtain a description of the entire system, 
inferring these characteristics from the partial characteristics of various components 
described by their transfer functions. 
 
 There is no absolute rule for combining static parameters; each case requires 
different procedures. Often, contributions of most parameters may be negligible 
except those corresponding to a specific element. For dynamic characteristics, we 
use transfer functions. 

1.8.4. Combining transfer functions 

 Combining transfer functions of constituent elements presupposes: 

– an absence of initial conditions for all the elements; 

– an absence of a load effect of one element on another. 
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 We can deduce conditions that existed prior to the combining of transfer 
functions. Actually, the output signal of the transfer function of an isolated element 
has neither power nor energy. In view of this limitation, the following rules provide 
ways of verifying the transfer function of an entire system: 

– the transfer function of n elements in a series must be equal to the product of 
the transfer functions of each element; 

– the transfer function in Laplace notation of a feedback loop (see Figure 1.2) is 
expressed by: 

T’(p) = T(p)/(1 + B T(p)) 

1.9. Implementing measurement acquisition 

 In a specific situation, choosing an appropriate measuring procedure requires 
adequate knowledge of measurement methods and implementing them with the 
means available. The ultimate functioning limit of a measurement system always 
depends on the level of noise present. Experimental research is based on the 
working-out of planning methods for experiments. However, most bench scientists 
avoid the preliminary planning stage. Rather than finding an appropriate method that 
would guarantee the best data with a minimum of measurement, they accumulate 
results as quickly as possible. Choosing the right strategy is essential for economic 
reasons; it saves time and money. In addition, it guarantees measurement reliability. 
The right strategy is important not only before beginning an experiment, but during 
each stage of it; the analyses carried out during experiments may lead to changes in 
strategies [BOI 89]. 
 
 The planning of an instrumentation chain may differ according to the application 
field. Many books discuss the main principles for the working-out of an 
instrumentation plan, depending on research objectives or the desired outcome. 
Certain principles useful to planning research experiments are important to 
instrumentation: measured factors, positioning of sensors, measurement frequency 
and data analysis [CER 90]. Selecting from these principles depends on several 
types of constraints, including minimization of measurement error; sensor size, 
reliability of some sensors, minimization of measurement noise and field constraints. 

1.9.1. Principles and methodology of measurement 

 In recent years, there has been much progress in improving techniques of 
measurement, instrumentation and data analysis [PRI 95]. Before going on to 
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describe the necessary elements for building the correct instrumental chain for a 
given situation, we will discuss ways to approach measurement and the 
methodology of measurement. 
 
 Many different situations may present themselves during a measurement 
operation. With the goal of measuring quantity, ascertaining this quantity begins 
with designing, choosing, defining and implementing: 

– a measurement principle that serves as a scientific base for a measurement 
method; 

– a measurement method or a group of theoretical and practical operations 
usually implemented during measurement according to a procedure; 

– an operating mode of measurement or a precise series of theoretical and 
practical operations implemented during measurement according to a procedure; 

– a measurement process or the sum of data, equipment and operations relating 
to a given measurement. 

 
A fundamental method of measurement. We define this as “a method of 

measurement by which the value of a measurand is determined by measurement of 
the base quantities”. All implemented measurement system strategies begin with the 
accessibility or lack of accessibility of a variable, as well as from the physical 
principles determining variable acquisition. Concerning variable acquisition, three 
results are possible:  

– accessible real parameters: these include the temperature of an oven, a current 
going through an element (resistance), or a person’s height; 

– inaccessible real parameters: some of these are dielectric permittivity and 
conductivity of the brain, the pH factor of Jupiter’s subsoil, real time thermal 
cartography of a plane taking off, and a person’s age; 

– inaccessible unreal parameters: some of these include negative time, ECG 
readings, temperatures below absolute zero and negative frequencies. 
 

 In practice, we can define two classes of measurement: 

– direct methods of measurement: with these methods, we directly obtain the 
value of measured variable rather than measuring other, functionally related 
variables; 

– indirect methods of measurement: with these methods, the value of a measured 
variable is obtained by measuring other, functionally related variables. 
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From these two classes, we deduce three measurement principles, one direct, two 
indirect: 

– the principle of direct measurement: here, the measured object serves as an 
energy vector, carrying information to the measuring system; 

– comparison method of measurement: in this indirect system, energy is carried 
by an external auxiliary system; 

– substitution method of measurement: this system has conditions of the two 
above systems. 
 
 The description of all the stages and operations leading to quantitative 
measurement and its analysis make up the methodology of measurement [BOIS 89]. 
We base method choice on constraint definitions and objectives according to 
whether or not an appropriate model exists or the measurement principle (defined or 
set). 
 
 All strategies devised to implement an instrumental chain depend on the range of 
knowledge, instruments and operations used during the measurement process. How 
these strategies are defined and implemented depends on many factors, among them 
the “physical” conditions of the measurement, field constraints, economic 
constraints, measurement objectives (direct or feedback acquisition) and the 
operator’s level of competence. 
 
 This diversity of situations (including methods, means, models, operating 
modes) means that instrumentation requires a rigorous analysis at each step of the 
process in order to determine a strategy for the measurement, leading to the best 
model for the given situation. 
 
 When such a model exists, several situations are possible: 

– a well-proven body of experimental data validated by mathematical analysis 
permits the development of a sufficiently representative model of the phenomenon 
being studied. If this model is robust (representative), we use it according to 
intermediary verifications; critical analyses then confirm the results; 

– if the model is not robust and therefore is perfectible, it is the result of an 
analysis of prior results. In this case, however, we cannot be certain that it is a 
reliable representation of the measurand. Its use will be limited and we should not 
extrapolate beyond the reliability limits of this kind of model. In such cases, 
measurements must be carried out with rigorous care, leading to a confirmation, an 
improvement or an extension of the model being used. 
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If no model exists, the need for rigor remains, with the operator experimenting 
until finding, identifying and naming a model. Measurement results can lead to 
finding a preliminary model that can be improved later by successive approaches. 

1.9.2. Field measurement constraints: instrumentation on the road 

 This section will analyze a measurement situation, again using the example of 
the car. Suppose we want to measure the axle load of heavy trucks and similar 
vehicles and lighter cars. Using a measurement instrument involves the following 
field constraints that may effect measurement acquisition: 

– road sensors that must set up and not be interrupted; 

– climatic conditions such as ice or heat, among others; 

– pressure resistance and other mechanical constraints; 

– influence quantities that may be hard to control, such as variations in the main 
sensors due to the heat of the road, for example. 
 
 There are other constraints on transmitting and analyzing measurement not 
mentioned above. A Danish firm has developed a measurement tool that reliably 
measures different axle loads as well as the number of axles. Two rows of sensors 
are mounted in each lane across the road. Since the distance between the two rows 
of sensors and the time lapse between the obtained signals is known, it is easy to 
determine the speed and, therefore, the distance between the axles, as well as the 
type of vehicle. This system takes into account field constraints in order to choose 
which sensors (these are made of quartz) to use. 
 
 This study, carried out on a highway under the control of the Danish National 
Road Association (DNRA), has shown conclusively reliable results. With older 
systems, the sensitivity of sensors to lateral pressure resulted in a “phantom” axle 
count, resulting in an overestimation of the number of vehicles. This example shows 
the role of technology and its influence in defining and implementing a 
measurement system. 

1.10. Analyzing measurements obtained by an instrument 

 How we analyze data depends on the range of principles used in measurement. 
Implementing any measurement chain requires a quantified or estimated definition 
of any errors that may occur; in this way, precautions in using materials and 
software can reduce errors, leading to the closest probable value of the measurand 
[PRI 89]. 
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1.10.1. Error reduction 

 There are two main approaches to error reduction. These are experimental 

solutions, such as the use of impedance matching and noise reduction, and statistical 

solutions or signal analyses such as error calculation, data analysis, spectral analysis 
and others. 

 
 Experimental solutions are physical in nature and are closely related to influence 
variables and load effects. They are implemented in design before measurement 
occurs. Statistical solutions are mathematical in nature. They are part of the analysis 
and correction of results and are carried out after measurement has taken place, since 
a measurement must be made before it can be corrected. In the section that follows, 
we discuss different bases for data analysis and their definitions. 

1.10.2. Base definitions 

 Once a measurement has been carried out, we obtain a result of the 

measurement, which we define as “the value of a measurand obtained by 
measurement”. 
 
 This is the uncorrected result, or “the result of a measurement before correction  
for assumed systematic errors” which is necessary to obtain the corrected result. 
The corrected result is “the result of a measurement obtained after having made 
corrections to the uncorrected result in order to take account of assumed systematic 
errors”. 
 
 Correction of measurement results mostly depend on resolving errors. One kind 
of error is an absolute error of measurement, defined as “the result of a measurand 
minus the (conventional) true value of the measurand”. 
 
 A systematic error is “the component of the error of measurement which, in the 
course of a number of measurements of the same measurand, remains constant or 
varies in a predictable way”. 
 
 Understanding these different types of errors helps us make a correction. This is 
“the value which, added algebraically to the uncorrected result of a measurement, 
compensates for an assumed systematic error”. We deduce from this the accuracy of 

measurement, or “the closeness of agreement between the result of a measurement 
and the (conventional) true value of the measurand” and the experimental standard 

deviation, defined as for a series of n measurements of the same measurand, the 
parameter s characterizing the dispersion of the results given by the formula: 
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xi being the result of the ith measurement and  x  being the arithmetic mean of the n 
results considered. 

Description of results  

 Displaying results in an equation must take into account measurement 

uncertainty. This is “an assessment characterizing the range of values in which is 
found the true value of a measured variable”. 
 
 These definitions help us display the results: 

X = Xo [S.I. unit] + ∆ X [S.I.unit] (probability %) 

 To be rigorous, a measurement result must contain the most probable value. The 
uncertainty range will include this probable value and the probability associated 
with both this uncertainty range and the unit being used. 

1.11. Partial conclusion 

 No matter which measurement method we use, there is always an energy transfer 
between the measured object, the measurement instrument, the influence variables, 
and physical disruptions such as connections and electromagnetism. This means that 
measurement systems must be validated by estimating disruptions that occur from 
contact of the measured object with the measurement instrument. This allows for 
corrections of introduced errors. 

1.12. Electronic instrumentation 

 The above definitions are applicable to all fields such as mechanics, hydraulics 
and biology. However, in this chapter, and in the rest of this book, we will discuss 
only measurement chains based on electronic technologies. In scientific 
measurement and industrial measurement, the observation, interpretation and control 
are increasingly carried out by electronic instrumentation. The very important 
development of microcomputers has meant that a range of separate devices 
dedicated to one or several functions became part of the instrumentation process. A 
few of these are the voltmeter, the frequency meter and the oscilloscope. This 
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development has also led to the creation of multi-component, interconnected 
systems that can be controlled and upgraded, with parameters that can be 
customized – all by a computer [NAD 98]. 
 
 We measure a signal to gain information. A signal is a physical variable with 
characteristics which vary in level or in time. Computer-driven interpretation 
requires that a sensor convert the signal by means of electric signal tension or an 
amplified current. With signals, we must find out what information it contains and in 
which form it is being transmitted. This information is taken by an instrument whose 
function is determined by the characteristics of the signal and the type of 
information it carries. 
 
 The normalization of measurement systems is based on the definition of electric 
signal classes. Since the variable to be measured is converted into the form of an 
electric signal, we must identify the nature of the signal. For this reason, the 
analyzed signal becomes an essential criterion in the implementation of method and 
acquisition systems (see Figure 1.11). There are numerical signals (carried by pulses 
and pulse paths) and analog signals that may be continuous, temporal or frequential. 
We deduce information from one of the following parameters: logical state, cadence, 
level, form, or frequency.  
 
 Below we present a simple classification, based on the type of fundamental 
signal information. 

Analog signals 

 Continuous signals are static or vary slowly. With these signals, the level or 
amplification of the signal at any instant constitutes the information. While sensors 
(such as the thermocouple) may be used for measurement of these signals, an 
analog-to-digital converter (ADC) converts the signal into digital data. The 
precision, resolution, reliable pass band, and good synchronization of the ADC 
ensure parameters essential to continuous analog signal acquisition.  
 
 There are many kinds of temporal signals, such as ECG waves and temperature. 
Here, information is carried in the form of waves (amplitude and variation in time). 
Temporal signal acquisition means using the largest pass band possible and a precise 
time base (to avoid sampling problems), ensuring transfer speed, as well as 
beginning and ending the measurement sequence correctly. 
 

 Frequential domain signals contain information in signal frequency variations. 
Analyzing this type of signal involves converting the measurement into frequential 
data. Increasingly, specialized processors carry out this analysis, which includes 
Fourier’s analysis functions. 
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Figure 1.10. The signal is a definition criterion of an instrumentation procedure 

Digital signals 

 Binary signals and pulse trains: to carry out accurate measurements of numerical 
signals, an instrument must generate binary signals (an example is the start-stop 
mechanism of machines) and pulse trains (as with sequencing clocks and 
synchronization). These measurements are carried out by means of a counting 
function. 
 
 These classes of signals are not mutually exclusive. A signal can contain more 
than one type of information. This is especially true with transient and permanent 
states of second order oscillatory systems that transmit signals through microwave 
lines. Instruments to measure these signals range from the simple (logic-state 
detectors for TOR signals) to the complex (frequency analyzers for spectrum 
analyses). 

1.13. Electronic instrumentation functionality  

 A simple classification of electronic instrumentation includes: 

– sensors associated with electronic conditioning. Groups of these make up an 
autonomous instrument. This kind of instrument gives a directly usable 
measurement; they can also be combined with other groups containing several more 
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sensors. This means a pressure sensor can act as a surveillance device that gives 
instructions to an actuator; it can also be part of a network of several sensors 
supervised by a main microcomputer; 

– instruments configured around a microcontroller. Another important field of 
electronic instrumentation includes measurement and control chains configured 
around an intelligent circuit. This pertains to many systems dedicated to a specific 
application characterized by reduced size, autonomy and reduced cost. In everyday 
living, this type of instrument plays a role in machines such as cars and household 
appliances, mostly because of their low cost, portability or small size; 

– programmable electronic instruments. These are groups of instruments that 
have been configured to carry out customized functions according to the operator’s 
needs. They are directed by computer instrumentation software. 
 
 The three types of instrumentation listed above depend on electronic 
measurement chains. There are two main classes of these: analog acquisition chains 
and digital acquisition chains. Usually, an analog chain can be represented by a 
functional block design which we show in Figure 1.11. 
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Figure 1.11. An analog measurement chain 

 Digital chains correspond to systems configured around a microprocessor or 
around programmable instruments [TRA 92]. We mention here the use of the 
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general functions of such chains in architecture; in later chapters, especially in 
Chapters 7 and 8, we will discuss digital chains in more detail. 

1.13.1. Programmable instrumentation 

 Many measurement systems currently in use are based on programmable 
microelectronic instruments that are configured around a microcomputer. This type 
of modern instrumentation uses four combinable approaches, described in Figure 
1.12 [STE 93]. 
 
 The growth of these systems since the end of the 1980s has occurred because 
instrument manufacturers, using SCPI norms, have developed standards to ensure 
product quality, and because personal computers have improved and become more 
economical. 
 

Software

I/O cards GPIB
instruments

Computer

Signal
conditioner

Stimulus
Control
Tension
Current
Level

Process
or

unit under test

Temperature
Pressure
Tension
Current
Periodic wave

VXI
instruments

RS 232
instruments

 

Figure 1.12. Programmable instrumentation 

 Modern instrumentation uses four methodologies to carry out signal acquisition. 
These are input/output cards, parallel type interfaces (IEEE488), series type 
interfaces (norm RS 232), interfaces using norm VXI (Versa Module Eurocard 

Extended to Instruments) and their derivatives. Depending on which methodology is 
chosen, signals are converted to data according to a normalized and programmable 
format of ASCII, binary or SCPI. Data are then analyzed and recorded. This data 
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processing treatment is important to correct instrumentation. “Virtual” instruments 
have become possible due to increasingly user-friendly software that aids in 
developing measurement chains; in addition, such software has meant there are more 
complex situations requiring analysis. The aesthetic aspect of screens and contours 
of computers is secondary to the need for careful analyses of results. 

1.13.2. Example of an electronic instrument: how a piezoelectric sensor detects 

rattle in an internal combustion engine 

 The growing use of electronics in the automotive industry has given rise to the 
need for operational monotension amplifiers that can function with a supply tension 
of +5 V. The example given here has been taken from an application note published 
by Texas Instruments. In this note, a piezoelectric pressure sensor interfaces with a 
circuit integrated with operational amplifiers to detect rattling in an internal 
combustion engine. 
 
 The piezoelectric sensor operating in alternating current. Its electric model 
consists of an electromotive source in series with a capacitor. It operates in two 
modes: in one the sensor produces an alternating tension, and in the other, the sensor 
produces a charge. 
 
 The conditioner is an interface circuit made of two operational monotension 
amplifiers. The first amplifier delivers an amplification signal (gain 5) in broadband 
(530 Hz to 28 Hz); the second is configurated in a pass band filter. 
 
 Limiting load effects: in order to limit the load effect between the sensor and the 
conditioner, a resistor with a high level of power is inserted between the two 
devices. The resistor ensures that polarization currents flow from the sensor. The 
operational amplifier must have a high driving point impedance to be adapted to the 
sensor and very weak polarization currents. These steps require a very precise signal 
conditioning.  
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Figure 1.13. Example of an electronic instrument in a car 

 Functioning principles (see Figure 1.13): when rattling begins, the sensor 
produces a series of signals with a frequency that does not occur when the motor is 
functioning properly. An operational amplifier (OA) amplifies these signals. The 
frequency of the rattling varies according to the size of the cylinders and block 
cinder material. A broadband sensor and a very flexible operational amplifier must 
be used to be adaptable to all vehicles. Most sensors have band pass of several tens 
of kHz, meaning that one type of sensor is suitable for many applications. 

1.14. The role of instrumentation in quality control 

 Throughout the world, the label “ISO 9000” has become a point of reference for 
companies wishing to maintain, guarantee and record the quality of their products 
through quality control [DEA 91]; [HOF 83]. These businesses need measurement 
instruments and standardized tests based on national norms. 
 
 Both the manufacturer of products to be standardized and certified and the client, 
who may have access to a laboratory with standardization capabilities, must conform 
to certain norms, depending on the quantities involved. 
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 Overall, instrumentation and measurement play a crucial role in commercial 
quality control. There are instruments ensuring product traceability at every step of 
the production process. Traceability is “the property of a measurement whereby it 
can be related to appropriate standards, generally international or national standards, 
through an  unbroken chain of comparisons”. 
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Figure 1.14. Role of instrumentation in quality control 

 To give an example, the sensors installed on a line can be calibrated with the 
supplier, but some must be calibrated in situ. Measurement is thus a key element in 
quality assurance. Figure 1.14 illustrates the positions occupied by the different 
levels of instruments of measurement and control in quality assessment processes in 
organizations.  

1.15. Conclusion 

 The objective of this first chapter has been to introduce, through a 
comprehensive review, many of the issues involved in carrying out implementation. 
As well as the definitions given throughout, we have looked at how measurement, in 
all its diverse aspects, is a multidisciplinary science, drawing on mathematics, 
technology, and physics – all necessary to design and careful implementation.  
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1.16. Appendix 

Transduction type 

Physical Chemical Biological 
Elastomagnetic Electrochemical process Test effect on an organism 
Electromagnetic Spectroscopy Spectroscopy 
Magnetoelectric Physicochemical transformation Biophysical transformation 
Photoelastic Chemical transformation  Biochemical transformation 
Photoelectric Photochemical transformation  
Photomagnetic   
Thermoelastic   
Thermoelectric   
Thermomagnetic   
Thermooptic   

Table 1.4. Examples of possible instrument classification according to transduction type 

Excitation Operating physical variables 

Acoustic Amplitude, phase 
Spectrum 
Wave speed 

Chemical Components (concentration, states, etc.) 
Biological Biomass (concentration, states, etc.) 
Electrical Charge, current 

Potential, potential difference 
Electric field (amplitude, phase, 
polarization, spectrum) 
Conductivity, permittivity 

Magnetic Magnetic field (amplitude, phase, 
polarization, spectrum) 
Magnetic flow, permeability 

Optic Wave: amplitude, phase, polarization, 
spectrum 
Speed, wave length 

Thermal Temperature, thermal flow 
Specific heat 
Thermal conductivity 

Mechanical Position (linear, angular) 
Speed, acceleration 
Force, pressure 
Constraints, density mass 
Time 
Flow speed 
Form, hardness, orientation 
Viscosity 

Radiation Nature or type 
Energy 
Intensity 

Table 1.5. Examples of possible classifications according to excitation type 



Measurement Instrumentation     37 

Characteristics Definitions 

Zero offset Zero offset is true relation of the zero output variable with 
the value of the measurand. 

Drift Temporal variations in system characteristics. 

Dynamic Admissible intervals of variation for input variables (in 
decibels).  

Hysteresis Maximum difference in output values, when the input 
variable is reached from minimum, then maximum 
admissible in algebraic value. 

Linearity Degree of concordance between the static state diagram and 
a straight line used as reference. (A straight line of the 
fewest squares calculated on calibration points, the line 
joining the farthest points throughout the measurement.) 

Relaxation Time lag between the cause and effect of a physical 
phenomenon, given in the form of a time constant. 

Repeatability Margin of fluctuation in output variable when the same input 
variable is applied several times under the same conditions. 

Resolution Smallest increase in the input variable leading to a change in 
the output variable. 

Sensitivity Ratio of change in output variables to the corresponding 
change in input variables. 

Threshold Threshold resolution is the smallest change of the input 
variable relative to zero value. 

Response time 

 

For a measurable excitation, this is the time required for an 
immediate value and a final value to be lower than a 
specified value (1%, for example). 

Table 1.6. Static characteristics  
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Chapter 2  

General Principles of Sensors 

Sensors are the first components of a measurement chain. They convert the 
physical and chemical variables of a process or an installation into electrical signals 
that almost always begin as analogical signals. This conversion must also mirror as 
closely as possible the involved variables. Only a thorough knowledge of sensor 
responses guarantees success; sometimes sensors produce faulty signals due to 
interference, the conditions of use, or often because of the processes themselves. 

 
We begin this chapter by discussing some of the basic principles of sensors and 

how they work [NOR 99]. These principles are based on calibration, evaluation of 
uncertainties, calculation of response time, and conditioning. Our aim is to provide 
the reader with a fairly general guide. Some relevant equations and formulae, as well 
as many issues relating to instrumentation and signal analysis, will be discussed in 
later chapters. 

2.1. General points 

2.1.1. Basic definitions 

The quantity to be measured being the measurand, which we call m, the sensor 
must convert m into an electrical variable called s. 

 

                              
Chapter written by François LEPOUTRE. 
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The measurement s can be an impedance, an electrical charge, a current, or a 
difference of potential. The relation that joins s to m can be called s = F(m) and 
depends on: 

– the physical law determining the sensor; 

– the structure and purpose of the sensor; 

– the sensor’s environment. 
 
The expression F(m) is established by calibration. By using a standard or unit of 

measurement, we discover for these values of m (m1, m2…mi…) electrical signals 
sent by the sensor (s1, s2… si…) and we trace the curve s(m), called the sensor 
calibration curve (see Figure 2.1). 

 
To use a sensor, we read the value of an electrical signal s when an unknown 

measurand m is applied. The calibration curve helps us to deduce m. 
 

 
 

Figure 2.1. Calibrating and reading a sensor 

 
 
We call sensitivity S the derivative dA/dm = F´(m). In order to make sensitivity 

independent of the value m, the sensor must be linear: 

s = S m + s0 [2.1] 

where s0 is the value of the signal s when m = 0. Finally we have: 

F’(m) = constant = S 

Of course, we can always define a range of values in which S is constant: that is, 
when the sensor is linear. 
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2.1.2. Secondary definitions 

It is important in what follows to remember some frequently used definitions 
given here that pertain to sensors in general: 

– active and passive sensors and conditioners: the delivered electrical signals of 
passive sensors are impedance variations because these sensors require an electrical 
energy source in order to read s. Passive sensors are part of a circuit called the 
conditioner. All other sensors are active; 

– measurement chains: in general, the signal cannot be used directly. We call a 
measurement chain the range of circuits or devices that amplify, adapt, convert, 
linearize or digitalize a signal before output readings; 

– test specimen: especially in mechanics, converting m into s is not a direct 
process. For example, measuring a force means applying it to a deformable solid 
monitored by a deforming sensor. This deformable solid usually consists of all 
bodies found between the sensor and the measurand. These are called the test 
specimen; 

– calibration: we distinguish between calibration carried out on the sensor itself 
and the global calibration carried out on all the test specimens, the sensor, the 
conditioner and the measurement chain; 

– influence variables: the function F(m) often depends on physical variables in 
the environment, such as temperature or humidity. These variables are called 
influence variables; 

– drift of sensor and response time: sometimes we find a specific instance of an 
influence variable that plays a role in measurement in one of two ways. It may cause 
long-term drifts that modify F(m). This influences the drift of a sensor. 
Alternatively, the influence variable may modify the sensor’s capacity to respond to 
measurement variations in time. This variable affects response time; 

– band passes: when the sensor measures a measurand whose temporal 
dependence is sinusoidal, the sensor’s sensitivity depends on the frequency of the 
measurand. The frequency range in which the sensor shows a constant sensitivity is 
called the band pass. Response time and the band pass are closely related. 

2.2. Metrological characteristics of sensors 

In this section we will not present methods measuring uncertainty. Here, we only 
discuss some general ideas to guide the reader through later chapters where 
uncertainty evaluation will be discussed on more detail, particularly in Chapter 10. 
Measurement uncertainty is the difference between the true value of the measurand 
and the measurement carried out by the sensor. The only known measurands are the 
standards with values that have been determined by convention. It is important to 
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distinguish between systematic errors and random uncertainties: they occur for 
different reasons and have very different consequences for measurement. 

2.2.1. Systematic errors 

Systematic errors are always due to faulty sensor knowledge or utilization. This 
kind of error is detected by comparing the mean values of the same measurand, 
given by two different sensors. The most frequent causes of systematic errors are:  

– incorrect or non-existent calibration due to an aging or altered sensor; 

– incorrect usage: some examples include failure to reach steady state, a defect 
or error of one of the conditioner parts, or a modification of the measurand by the 
sensor itself; 

– inadequate data processing: examples are error in linearization in the 
measurement chain or amplifier saturation in the measurement chain. 

 
Obviously, detecting systematic errors leads to their elimination. 

2.2.2. Random uncertainties 

We can know the cause of random uncertainties without being able to anticipate 
the measurement value. Their evaluation is always statistical. They are due to the 
presence of signals or interference; the amplitude of these is random and they are 
called, rather vaguely, “noise”. To cite a few examples: 

– fluctuating supply sources in the measurement chain or in the conditioner 
(such as fluctuation of the electromotive force in a bridge); 

– electromagnetic signals produced in an environment and picked up by a sensor 
element, conditioner or measurement chain; 

– thermal fluctuation, including thermal turbulence of current carriers; 

– fluctuation in influence variables, etc. 
 
There are many other causes of random uncertainties, such as reading errors, 

defects in sensor mobility and hysteresis. Unlike systematic errors, random errors 
can never be completely avoided. We can, however, reduce them by using protection 
methods, such as electrical regulations, temperature stabilization, mechanical 
isolation and electromagnetic shields. In addition, filtering, synchronous detection 
and signal processing can reduce random uncertainties, which must always be 
evaluated carefully. 
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2.2.3. Analyzing random errors and uncertainties 

Because, by definition, random errors cannot be anticipated, they become part of 
statistics and as such are labeled “uncertainties”. Because of this vagueness, 
statistics can prove a very useful tool. The British Prime Minister Benjamin Disraeli 
once said to Queen Victoria: “There are three kinds of lies: lies, damned lies, and 
statistics.” This witticism demonstrates why governments, for example, like using 
statistics. Statistics cannot anticipate a specific occurrence, such as a measurement 
result, but only give the probability of one value among many occurring. Statistics 
represent a crowd and not an individual; a forest, not a tree. That is why, Disraeli 
might have added, governments use statistics to direct and support as many actions 
as possible, without necessarily having to address or even be aware of specific 
problems. In the case of measurement, two statistical problems must be analyzed 
[DIE 92]: 

– the evaluation of uncertainties; 

– deciding how to analyze and treat these uncertainties. 

2.2.3.1. Evaluating random uncertainties. Standard deviations. Variances 

Suppose we make n measures s1… si… sn of the same mesurand m. We call the 
mean value of s the quantity S  so that: 
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The mean value of the difference  si − s  is used to statistically analyze the random 
measurement of m. The variance v and the standard deviation σ must be introduced: 
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Suppose that the result of 10 temperature measurements are (in °C): 60.1; 60.6; 
59.8; 58.7; 60.5; 59.9; 60.0; 61.2; 60.2; 60.2. 
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First of all, we present the results with one number after the decimal point. This 
shows that the uncertainty of these measurements is at best 0.1°C. We also find that 
the mean temperature is 60.11°C, and that the standard deviation σ equals 0.63°C. 
The mean value of 60.11°C does not mean that it is close to the true value of the 
measurand. A systematic error, perhaps in the form of defective measurement 
standards, could have produced it, possibly through a deviation of 1°C on all the 
values and therefore on the mean value. However, if only the systematic error is 
large in relation to the random uncertainty and the sensor is non-linear, the deviation 
type does not change after correcting the systematic error. The list of ten values will 
not be reproduced if we undertake another measurement, but this second list will 
still have something in common with the first. Looking again at the first list, we see 
that deviations between 0°C and 0.2°C occur seven times. There is one value that 
deviates more than 1°C from the mean value. Therefore, we can classify the 
obtained values by their occurrence probabilities. After many measurements have 
been carried out on the same measurand, if the uncertainty is truly random, we can 
demonstrate that this occurrence probability is a law called the Gaussian 
distribution. It expresses, according to the mean value and the deviation type, the 
probability density of finding the value s of a measurement. With the Gaussian 
distribution, the basic probability of finding the range of s through ds is given as dp 
= p(s) ds (where p(s) is called probability density) is given as: 

dp = p (s) =
2
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The probability of finding any value for s clearly is equal to 1: 
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Figure 2.2. Representation of deviation type by the Gaussian probability density 
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For s s 3σ− = ± , the integral of 
3
3

( ) 0.99+ σ
− σ ≥∫

s

s
P s ds  which means more than 

99% of all measurements lead to a value of s expressed as (s – s ) ≤  3σ. 

 
We return to our series of ten temperature measurements with an average reading 

of 60.11° and a deviation type of 0.63°C. With a second series of ten measurements, 
we have: 59.5; 60.2; 60.6; 60.1; 59.6; 58.9; 60.9; 59.2; 60.1; 60.3. The mean value is 
59.94°C and the deviation type is 0.62°C. These two values are slightly different 
from those of the first series; but if instead of taking ten measurements, we had 
taken an infinite series, we would have obtained the mean theoretical value of µ. We 
can see that as n becomes larger the closer s  is to µ. But the meaning of “close” is 
still not clear. To be more precise, we introduce ∆µ as a confidence interval. For 
example, we can demonstrate that the probability of finding µ in the interval 

[ ],s s− ∆µ + ∆µ  with 
1.65

n

σ∆µ =  ( s  having been calculated for the n 

measurements) is 90%. With our first series, we had ∆µ  = 0.33°C and with our 
second series ∆µ= 0.32°C. We obtain for the first series of measurements a 
confidence interval of 90%, close to: 

59.78 60.44T≤ ≤  

and for the second series  

59.63 60.26T≤ ≤   

Of course, we can define other confidence intervals in choosing probability 
values of finding µ different from 90%. 

2.2.3.2. Decisions about random uncertainties 

Sometimes, when carrying out a series of measurements on the same measurand, 
a result may occur that deviates significantly from the mean value obtained through 
prior measurements. In such a case, it is hard to know if this measurement was 
produced by a rare but important increase in the random uncertainty or by an 
unforeseen phenomenon that has causally modified the measurand. We must then 
decide if, in fact, the measurand has been modified. 

 
In this instance, we use statistical results to make our decision. For example, 

Chauvenet’s criteria specifies that a non-random phenomenon has modified the 
measurand if the probability of obtaining the measurand, calculated with the help of 
the Gaussian distribution, is less than 1/2 n, with n being the number of 
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measurements made up to the point when the anomaly appeared. We can tabulate 
the results of this criterion by giving the deviation limit dmax to the mean value; 
beyond this the criterion applies (see Table 2.1). 

 
A way to use this criterion is to look at the threshold settings of an alarm system. 

Suppose that a presence detection has an analogical output of 0 V without any 
environmental interference. We can carry out 500 measurements and find a 
deviation type of 265 mV. If one measurement has a value superior to  
265 × 3.29 = 872 mV, something has modified the measurand – there has been some 
interference. We must then set the threshold of the system to the value of 872 mV, 
or set a rule: V < 872 mV = no interference, V > 872 mV = interference. 

 
 

Number of measurements dmax/j 

10 1.96 

25 2.33 

50 2.57 

100 2.81 

500 3.29 

1,000 3.48 

Table 2.1. Chauvenet’s criteria for a Gaussian distribution. Deviation from the mean value 

beyond which the engineer must consider if a measurand has been modified 

2.2.3.3. Reliability, accuracy, precision 

These three properties characterize sensor and sensor calibration. A sensor is 
reliable if its deviation type is weak, accurate if it has no systematic errors, and 
precise if it is both reliable and accurate. Figure 2.3 shows the derivative of the 
probability density in the four possible instances [ASC 91]. 
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Figure 2.3. Reliability, accuracy, and precision. The dotted lines indicate the  

true value (µ). In a) the sensor is neither accurate nor reliable; in b) the sensor  

is reliable but not accurate; in c) the sensor is accurate but not reliable; 

 in d) the sensor is accurate and reliable (from G. Asch [ASC 91]) 

2.3. Sensor calibration 

Calibration is an operation that establishes the relation between the measurand 
and the electrical output variable. This relation depends not only on the measurand 
but also on influence variables. Where there are no influence variables, simple 
calibration is used. Multiple calibration is necessary with influence variables. 

2.3.1. Simple calibration 

There are two possible methods of simple calibration. These are: 

– direct calibration: the measurand values come from standards or reference 
objects through which we know the measurand, with a given uncertainty; 

– comparison calibration: with this method, we compare the measurements of 
the sensor to be calibrated with measurements made by another sensor that already 
has been calibrated and is being used as the reference. This means that its calibration 
is linked to standards and that the corresponding uncertainty is known. 
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2.3.2. Multiple calibration  

The existence of influence variables that may vary throughout measurement 
means we must set calibration parameters for different values of these variables. 
This is multiple calibration. Several specific situations that require multiple 
calibration should be mentioned: 

– for sensors that show hysteresis, calibration must be carried out in a series of 
specific steps of measurand values; 

– for sensors with dynamic variables, we determine the response as a function of 
frequency; 

– in certain cases, especially for many mechanical and thermal sensors, when the 
manufacturer has not given instructions for usage, calibration is often carried out on-
site and after installation. For instance, in this way, an accelerometer can be 
calibrated after being attached to the structure to be measured, even if the 
manufacturer has specified a different procedure in the calibration certificate. 

2.3.3. Linking international measurement systems 

All industrialized countries have sets of standards. This means they have 
laboratories organized for specific purposes, established over time, that link 
measurements to basic standards [ASC 91]. Standards and transfer instruments 
assure traceability and successive stages from laboratories to industry. In France, for 
example, the National Bureau of Metrology is in charge of insuring traceability 
according to national standards. Throughout this linking process, successive 
operations are carried out within a standardization process that not only joins 
measurements to measurands but defines uncertainty levels in sensor measurements. 
As far as the legal aspect of some of these operations is concerned, it is important to 
remember that processes certified by ISO 9000 standards also require the 
traceability of all functioning sensors. 

2.4. Band pass and response time  

2.4.1. Harmonic response 

The response of a sensor to a measurand that varies sinusoidally over time is 
particularly important: from it we deduce the response to all measurand variations in 
time. This is the sensor’s transitory response. If we call S(の) the sensor sensitivity 
exposed to a sinusoidal measurand at pulsation の, the response of a temporal pulse is 
given by its Fourier transform: 



General Principles of Sensors     51 

0
1

( ) ( )
2

j th t S e d
∞ ω= ω ω

π ∫
 [2.7] 

Lack of knowledge about this response can lead to systematic errors, even when 
carrying out stationary measurements. 

 
When using sensors, the idea of band pass can be introduced through a discussion 

of distortion phenomena observed during measurement. If the measurand has a 
periodic temporal evolution described by Figure 2.4 that can be represented by: 

m(t) = m0 +
  
Σ
i

mi cos(ωit + θi) [2.8] 

By introducing the concept of static sensitivity S0 and dynamic S(のi), the 
delivered electrical signal s(t) can be expressed as: 

s(t) = So m0 + 
  
Σ
i

S(ωi) mi cos(ωit + ψi) [2.9] 

m (t)

t t

s(t)

 

Figure 2.4. Example of distortion with low band pass filtering 

 

 

If the values S(の1) are different, or if ねi is related in some way to θi, a signal s(t) 
is obtained with a frequency content that changes in relation to the frequency 
content of the measurand. In such cases, we say the signal has undergone a 
distortion or that the system is dynamically non-linear. 

 
The band pass is the frequency interval with a value of S(の) that is constant and 

in which ねi differs from θi by a constant additive that can be written as のik, with k 
independent of のi. Such systems are dynamically non-linear. 

 
Generally, a sensor order is the order of the differential equation that governs its 

dynamic sensitivity. The simplest example is that in which an equation linking s to 
m in dynamic state is a first order differential equation: 

A ds/dt + Bs = m(t) [2.10] 
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In this instance A and B are time-independent. When we call s1 and m1 the 
periodic parts of s and m and write the cut-off frequency fc = B/2ヾA, the sensitivity 
s and the phase ね of the sensor as a function of frequency f is written as: 

1

2

1
s  

1
c

m

B
f

f

=
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 [2.11] 

ψ = – arctg 
c

f
f

⎛ ⎞⎜ ⎟
⎝ ⎠

 [2.12] 

The amplitude response is often given in the form of attenuations in decibels 
(dB) as δ = 20 1ogね10(s(の)/s0). Figure 2.5 shows the general response slope of these 
first-order sensors with a cut-off frequency above fc is 20 dB per decade. 
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Figure 2.5. Dynamic sensitivity of a first-order sensor 
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Figure 2.6. Phase lag of a first-order sensor 
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An example of a first-order sensor, analyzed in more detail in section 3.1, is the 
photodiode. The photodiode works through the generation of electron-hole pairs 
“freed” from crystal-like bonding structures by the energy of absorbed photons. This 
sensor is a current source, often proportional to the absorbed luminous flux f. No 
matter which utilization circuit is employed, the electrical signal delivered by the 
sensor can be given as the potential VL at the limits of the charge resistance RL. The 
differential equation of the sensor can be deduced from the equivalent diagram in 
Figure 2.7, where CL is the diode capacity and RL is a resistance, taking into account 
the charge resistance and the internal resistance of the photodiode. 

 

Φ

I=kΦ CL RL VL

IC IL

 

Figure 2.7. Equivalent design of a photodiode 

 

From this basic design, we can easily deduce: 

L L
C L L

L

dV V
I I I C k

dt R
= + = + = φ  [2.13] 

and also: 

1L L
L

L

C dV
 V

k dt kR
φ = +  [2.14] 

This is a first-order sensor equation. The cut-off frequency expressed by 
1

2C
L L

f
R C

=
π  directly depends on charge resistance, and not only on the sensor. 

This situation is actually very general. The response time of the sensors, whatever 
their order, is always influenced by the measurement chain (see Figure 2.8). 
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We can also establish that the sensitivity S0 is equal to kRL, which means the 
product (gain × band pass) is constant. Again, this result is quite general. We see 
that usually large band pass and strong gains do not exist together in most sensor 
measurement chains. 

 
When the measurand is a mechanical variable [HAN 99], we often find second-

order sensors. With these sensors, the equation joining the measure s to the 
measurand m is of this type: 

2

2

d s ds
A B C m

dtdt
+ + =  [2.15] 

where A, B and C are independent time constants. We introduce the cut-off 
frequency f0 and the damping factor つ as: 

0
1

2

C
f

A
=

π
 [2.16] 

and 

2

B

CA
ξ =

 
[2.17] 
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Figure 2.8. Example of variation in a photodiode band pass  

according to the charge resistance 
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Resolving this equation leads to responses in amplitude and phase, equal 
respectively to: 

21 2 2
2

1

1 4
o o

s

m
f f

C
f f

=
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− + ξ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 [2.18] 

and  

2

2

1o

o

arctg

f f

f f

⎡ ⎤
⎢ ⎥
⎢ ⎥− ξ⎢ ⎥Ψ =
⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟− ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦

 [2.19] 

Dynamic sensitivity can show a resonance with weak damping and damping 
beyond the frequency fo equals 40 dB per decade. The phase lags are doubled 
compared to those of first-order sensors. 

 

critical damping

ξ<√2

ξ=√2

ξ>√2

slope -2

102
10310110-110-2

10-1

1

10-2

f/f0

resonance

⏐s/m1⏐

 

Figure 2.9. Amplitude response of a second-order sensor  
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Figure 2.10. Phase of a second-order sensor 

2.4.2. Response time 

The response time of sensors can also be deduced from the differential equations 
presented above. For a first-order sensor, if m = 0 for t < 0 and m = m0 for t > 0, we 
get the solution: 

/(1 ) with t
o

A
s s e

B

− τ= − τ =
 [2.20] 

and 

0
0

m
s

B
=

 [2.21] 

Here 
1

B
is sometimes called static sensitivity. 
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Figure 2.11. First-order sensor response  

In order to reach 90% of the sensitivity s0 of the steady state, t = 3k must be 
achieved. If the measurand is of the type m0 = 0 at t < 0 and m = m0 (constant) for t > 
0, a second-order sensor gives a response that is highly dependent on damping (see 
Figure 2.12). These transient solutions follow from this: 

– if ξ>1/ 2 , 

    s = k1e
−r1t + k2e

−r2t   [2.22] 

with: 2 2
1,2 ( 1)o or = −ξ ω ± ω ξ −  

 

– if ξ<1/ 2 ,  

2 21 1
1 2

o oo oj t j t tt t
s k e e k e e

ω −ξ − ω −ξ−ξω −ξω= +   [2.23] 

– if ξ=1/ 2 , 

s = k1 (1+ ωot )e
−ω ot  [2.24] 
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If we take as initial conditions 0 and 0 with 0
ds

s t
dt

= = = , we get the following 
complete solutions: 
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 [2.25] 
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ω0t2 π  

Figure 2.12. Temporal response of a second-order sensor 

Second-order sensors are usually built with a damping つ = 0.6 (see Figure 2.12). 
With this the steady state m0/C to almost 10% is reached for a period equal to 
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2.4/の0. This value must be taken into account to be certain that the sensor conforms 
to the calibrations set by the manufacturer. 

2.5. Passive sensor conditioners 

Passive sensors convert the measurand into an impedance variable. They must 
always be used with a circuit that has a source current or tension and, generally, 
several additional impedances. The circuit is called the conditioner. There are two 
main groups of impedance conditioners [BAU 61]. In the first group, the sensor’s 
impedance variation is converted by a variation of potential difference. In the second 
group, the impedance variation is used to modify an oscillator frequency. In this 
case, the sensor reading is actually a frequency measurement. Here we will only 
discuss the first group. 

2.5.1. The effect of polarization instabilities 

When a sensor’s impedance variation is converted into a tension variation, the 
measured tension depends on the impedance of the sensor and the different 
conditioner elements that can be effected by influence variables and disturbances. 
Choosing the right conditioner can be critical for the signal to noise ratio [ANS 82]. 
With the simplest possible conditioner, which is often called potentiometric 
conditioner (see Figure 2.13), the signal Vm: 

c
m

c K

Z
V e

Z Z
=

+
 [2.26] 

is proportional to the impedance of sensor Zc, which makes it very sensitive to 
disturbances that could introduce random variations. If we take a source instability 
equal to ∆e, the result is a variation of the measurement, expressed by: 

#CO C CO
m

K CO C K CO

Z Z Z
V e e

Z Z Z Z Z

+ ∆
∆ = ∆ ∆

+ + ∆ +
 [2.27] 

This result can be found in the case of a simple polarization by a source current 
as well. 
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Figure 2.13. Potentiometric conditioner with voltage or current sources 

On the other hand, bridge conditioners help eliminate the noise very efficiently 
(see Figure 2.14). 
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Figure 2.14. Impedance bridge in which Zc=Zc0+∆Zc is the sensor 

It is easy to show that the tension Vm appearing with the measurand is increased 
by ∆Vm when e changes to e + ∆e following: 

1

1 1 1 1( )( )
CO C CO C
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CO C CO CO C CO

Z Z Z Z Z
V e e

Z Z Z Z Z Z Z Z Z Z
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 [2.28] 
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+
 [2.29] 
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For the same polarization instability, the noise generated by the measurement in 
the case of a bridge and a potentiometer are in the relation: 

1

m C

m CO

V  bridge Z

V potentiometer Z Z

∆ ∆
=

∆ +
 [2.30] 

that is, in the variation order relative to the impedance. For measurements in which 
impedance varies from the order of % to around Zco, the bridge is 100 times less 
sensitive to random variations of e than with potentiometric conditioners or the 
direct polarization by current source. 

2.5.2. Effects of influence variables 

It is important to remember that minimization influence variables follow a 
general rule that allows for optimalization of conditioners. Suppose the 
measurement tension delivered by the conditioner depends on impedances, which 
we assume are all resistive, is written as: 

    
Vm = f ( RK Rc )  [2.31] 

We take g as the influence variable that modifies all the conditioner’s 
resistances. A variation dg of the influence variable produces a variation dVm of the 
measurement tension: 

      m k m C
m

K k C

V R V R
dV dg

R g R g

⎡ ⎤∂ ∂ ∂ ∂
= +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∑  [2.32] 

If we get dVm= 0, we have: 

.  0m m CK

K k C

V V RR

R g R g

∂ ∂ ∂∂
+ =

∂ ∂ ∂ ∂
∑  [2.33] 

For example, in the case of a potentiometric conditioner (or when one of the 
assembly resistances is sensitive to the influence variable g) and when the 
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sensitivities to g of the two resistances Rc and Rk are the same, the condition dVm = 0 
is equivalent to: 

m m

k C

V V

R R

∂ ∂
= −

∂ ∂
 [2.34] 

In the case of a potentiometric conditioner, we get: 

( )2
m k

c c k

V R

R R R

∂
=

∂ +
 [2.35] 

and: 

( )2
m c

k c k

V R

R R R

∂ −
=

∂ +
 [2.36] 

Once again, this equals Rc and Rk (see Figure 2.15). 
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Figure 2.15. Elimination of the influence of the g variable  

in a potentiometric conditioner 

With resistive bridges (see Figure 2.14), we see that sensitivity to influence 
variables is also minimal when: 

    R1 = RCO = R3 = R4  [2.37] 

These results also apply to complex impedance bridges. 
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2.5.3. Conditioners of complex impedance sensors 

Conditioners of passive sensors with complex impedances are made with 
different bridges, for instance, Nernst’s bridge for capacitive sensors (see Figure 
2.16) and Maxwell’s bridge (see Figure 2.17) for inductive sensors. 

 
Nernst’s bridge is used for sensors with an impedance that can be represented by 

an impedance Zc: 

1
c

c
c

R
Z

jR C
=

+ ω
 [2.38] 

For the value m0 of the measurand we adjust the following impedances of the 
bridge: 

    Re = Rc = Rc0  [2.39] 

and 

    Ce = Cc = Cc0  [2.40] 

So, Vm0 = 0. If Zc changes from Zc0 to Zc0 + ∆Zc, we get: 

m
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Figure 2.16. Bridge conditioner for a capacitive sensor 
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Figure 2.17. Bridge conditioner for an inductive sensor 

For an inductive sensor, the impedance Zc is given as: 

c c cZ = R + jL の  [2.42] 

When the measurand equals m0, the bridge changes to: 

2

0c
e

R
R

R
=  [2.43] 

and: 

    Lc0 = R
2 .Ce  [2.44] 

so we then get:  

( )20
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V e

R Z

∆
≈

+
 [2.45] 

2.6. Conditioners for active sensors 

2.6.1. Direct reading 

Direct readings of active sensors are rarely satisfactory, whether or not these 
sensors are equivalent to tension, currents or charge sources. This is because this 
kind of reading presupposes a correction that is not always easy to evaluate. 
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When electrical information delivered by active sensors appears in the form of a 
tension source (ec) in series with an impedance Zc, the electrical signal can be read to 
the impedance limits of Zi and we get (see Figure 2.18): 

i
m c

i c

Z
V e

Z Z
=

+
 [2.46] 

Zc

ec

Zi Vm

 

Figure 2.18. Equivalence to a tension source 

For the measurement to be as close as possible to the tension delivered by the 
sensor, we must have vm ≈ ec, and this implies that zi >> zc , but this leads to a 
reduction of the band pass (see section 2.5.1). 

 
The sensor can also appear in a form equivalent to a current source (ic) in parallel 

with an impedance Zc. The electrical signal Vm is then given as in Figure 2.19. 
 

im

Vm
Zcic

 

Figure 2.19. Equivalence to a current source 
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m i mv Z  i=  with c
m c

i c

Z
i i

Z Z
=

+
 [2.47] 

For im to approximate ic, we need: 

Z i << Zc  [2.48] 

but in this instance, the signal will be very weak. 
 
Lastly, with sensors that are also charge sources, it is clear that a simple 

measurement by the difference potential to the resistance limits affects the signal, 
since the measurement discharges the sensor. 

2.6.2. Using operational amplifiers  

Here we will not discuss in any detail the many schema used for signal 
processing of active sensors that resolve the problems presented in this section (see 
the following chapters for a more detailed presentation of these). Instead, we explain 
the three basic assemblies that correspond to the three types of equivalencies found 
in active sensors. These are basic to using operational amplifiers [FRA 93]. 

 
First of all, let us suppose that the sensor is equivalent to a tension source ec in 

series with an impedance Zc. With the assembly shown in Figure 2.20, we can easily 
see that, if we are close to the operational ideal for the amplifier, we get: 

2

1
1s e e
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⎛ ⎞
= + =⎜ ⎟
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 [2.49] 
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Figure 2.20. Assembly type for a sensor equivalent to a tension source 



General Principles of Sensors     67 

We can see that the sensor does not produce any current (i+ = i- = 0 in an ideal 
amplifier) which means that it is connected to infinite impedance. The non-influence 
condition of the sensor’s internal impedance Zc is fulfilled when: 

– Vs, as output, is independent of the current transmitted in the charge RL. The 
tension Vs transmitted by the amplifier acts as a tension source of a zero internal 
impedance; 

– the choice of R1 and R2 help regulate the desired gain G.  
 
Remembering that choosing a gain is related to choosing a cut-off frequency, the 

product (G.のc) is a constant dependent on the type of operational amplifier chosen: 

o
c

o

G =
µω
τ

 [2.50] 

where µ0 is the open circuit gain and k0 is the response time of the operational 
amplifier. 

 
Suppose now that the sensor is equivalent to a current source placed in parallel 

with a resistance Rc. We can then use the assembly seen in Figure 2.21.  

E
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M
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i c R c 
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Ve
Vs

 
Figure 2.21. Assembly type for a sensor equivalent to a current source 

 
 
Since the input of an ideal amplifier would not transmit current, and since input 

differential tension is zero i ≈ 0, the potential difference between E and M is zero 
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and no current circulates in the resistance Rc of the sensor. The output tension VS is 
expressed as: 

  VS = −Ric  [2.51] 

As with amplifier tension, we will give a few basic descriptions of how basic 
assembly works: 

– the value chosen for the feedback resistance R does not influence a sensor 
equivalent to a current source; 

– input resistance is zero because source limits are maintained at the same 
potential to the input of an ideal amplifier; 

– output provides a source of tension whose resistance is zero (VS is independent 
of the charge resistance placed at output). 

 
In the case of a sensor equal to a charge generator, it is often best to use a 

charge-tension convertor to short-circuit electrodes (see Chapter 3 for more detail). 
The most basic assembly is shown in Figure 2.22. 
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Figure 2.22. Assembly type for a sensor equal to a charge source 

Because no current can come through amplifier inputs, all charge variations 
within the sensor’s limits are found within the limits of CR. Here we get: 

S
R

Q
V

C
= −  [2.52] 
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In reality we often have to take into account the resistance to leakage of capacity 
CR (RR in parallel with CR) especially always with low frequencies. It is easy to 
show that VS becomes: 

C

1
R R

S
R R R

j R  Q
V  .

C j R  C

ω
= −

+ ω
 [2.53] 

This is the expression of a high pass filter that shows a converter of this type 
does function properly at low frequencies and cannot transmit current. 

2.7. Bibliography 

[AFN] AFNOR, NF X07001 norm. 

[ANS 82] Standard, Temperature measurement, ISA/ANSI standard MC 96, International 
Society for measurement and control, 1982. 

[ASC 91] ASCH G. et al., Capteurs en instrumentation industrielle, Dunod, 1991. 

[BAU 61] BAURAND J., Mesures électriques, Masson, 1961. 

[DIE 92] DIECK R.H., Measurements uncertainty, ISA, Research Triangle Park, 1992. 

[FRA 93] FRADEN J., AIP handbook of modern sensors, AIP Press, 1993. 

[HAN 99] Measurement, instrumentation and sensors handbook, CRC Handbook, Springer, 
IEEE Press (1999). 

[NOR 99] NORTON H.N., Handbook of transducers, Prentice Hall, Englewood Cliffs, NJ, 
1999. 



This page intentionally left blank 



Chapter 3  

Physical Principles of Optical, Thermal  
and Mechanical Sensors 

There are now so many sensors available [NOR 89] that it would be impossible 
to discuss the principles of all of them in a single chapter. We have therefore limited 
ourselves to three classes of measurands: optical, thermal and mechanical. However, 
even with this restriction, we still must limit our scope, and will only present the 
most frequently used laws for these types of physical sensors. 

3.1. Optical sensors 

One important class of sensors detects electromagnetic beams. Within this group, 
we will restrict our discussion to those optic sensors that are sensitive only to beams 
with wavelengths of 10 nm – 1 mm, that is, frequencies of between 1016 and 1011 Hz. 
In the specific case of light sensors, for reasons relating to the sensitivity of the 
human eye, it is necessary to introduce specific concepts when discussing visibility 
(0.4 µm to 0.8 µm). After a brief recapitulation of the variables that act as 
measurands for optical sensors, we will define the reference light source used in 
making calibrations. We will then discuss the principles of sensors that are used in 
constructing semiconductors. 

                              
Chapter written by François LEPOUTRE.   
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3.1.1. Energetic flux 

An electromagnetic beam transmits energy. One way to see this is to place a 
thermometer with a darkened reservoir in an electromagnetic beam and check that 
the temperature increases. We know that the flux of Poynting’s vector,   

f 
P =

f 
E ∧

f 
H  

the vectorial product of electrical and magnetic fields, across a surface S 
surrounding a closed volume V, is equal to the quantity of electromagnetic energy 
W that comes from V by the surface S and by unity of time. This flux can be 
expressed by means of the divergence of  

f 
P  and the local electromagnetic energy 

density, as we see in Figure 3.1: 

( ) ( )2/ 2 / 22

s v
v

P dS  divP.dV =   E H  dV
t t

µ∂ ∂⎡ ⎤= ε +⎢ ⎥∂ ∂⎣ ⎦∫∫ ∫∫∫ ∫∫∫
if iif ij

 [3.1] 

P

V

 
  S

 

Figure 3.1. Flux coming from a volume V across a surface S 

In the specific case of a plane wave, it is known that H = E/µv where v is the 
speed of the wave in the middle of the index n (v = c/n with c the light speed in 
traveling in a vacuum). The flux is reduced to: 

( )2

s v
v

P dS  divP.dV =  E  dV
t

∂= ε
∂∫∫ ∫∫∫ ∫∫∫

if iif ij
 [3.2]  

From this we can deduce that the energetic flux is proportional to the square of 
the amplitude of the electric field. This relation is very commonly used by all 
sensors sensitive to energy and therefore to the square of the field, that is to say that 
any phase information is lost. The phase can only be retrieved by interference 
phenomena such as holography or speckle. 
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3.1.2. Luminous flux 

In optical sensors with at least one capacity of visual sensitivity, measurands can 
be either energetic or luminous variables. Energetic variables are measurements that 
are completely independent of the sensitivity of the human eye. With luminous 
variables, on the other hand, the effect of the eye is taken into account as a variable 
according to the radiation wavelengths. It is important to remember that when 
choosing between these two measurands, the practical application is very important. 
For example, when studying photomulitplicator sensors, within the framework of 
spectroscopy, it becomes clear that energetic variables are the only measurands we 
need to take into account. However, if we want to measure the flux coming into a 
camera producing images for the human eye, luminous variables are indispensable. 
As well, measuring the light in a room or road can only be expressed in units of 
luminous flux. 

 
We have seen how energetic flux is directly related to the square of the 

electromagnetic field. Luminous flux is defined with respect to retina sensations. 
This kind of flux is a measurand, that is, a measurable variable, because we can 
define the equality of these two fluxes (the same sensation produced by two adjacent 
zones of the same shield) and the sum of several fluxes that superimpose their action 
on the eye. These measurements can also be made with a photoelectric cell with a 
spectral sensitivity set as close as possible to that of the human eye. No matter which 
methods are used, the measurements must be carried out with monochromatic 
waves, which means that the measurements must be taken in the brief interval dそ 
around the wavelength そ of the measurement. These are spectral variables. 

3.1.3. The relative luminous efficiency curve V(そ) of the human eye 

“Normal” human eyesight is not the same for everyone across the spectrum of 
visual experience or for a single visual sensation. Even for one person, this sensation 
varies according to psychological and physical factors. Therefore, we define 
luminous efficiency of the eye by citing a large-scale statistical study carried out on 
people with “normal” eyesight. The results of this study have led to a definition of 
the average eye. The sensations of this standard eye, which we call the luminous 
flux Fそ, are at each wavelength そ proportional to the received spectral energetic flux 
fそ. The proportionality factor kそ of course depends on そ. If this average eye receives 
the spectral energetic fluxes fそ and fそ’ (to そ and そ’) so that the luminous spectral 
fluxes Fλ and Fλ’ are equal, we express them as: 

' ' '
1

F K
= 

F K

λ λ λ

λ λ λ

φ
φ

=  [3.3] 
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The experiment shows that Kそ is at its maximum at a wavelength そ = 0.555 µm. 
With Km = K0.555 we can define the relative luminous efficiency Vそ given in Figure 
3.2 with: 

1≤ 
m

K
V = 

K

λ
λ   [3.4] 

Using this definition, the luminous flux Fそ is given in the form: 

Fそ=Km Vそ fそ  [3.5] 

The numeric value attributed to Km leads to defining the relation between the 
unities of energetic flux and luminous flux. The unity of energetic flux, called the 
lumen (lm), has been set since 1979 as Km = 680 lm.W-1. 

 
Three other variables are important for optical sensors. These are intensity, 

luminance and illumination. Of these, intensity is certainly the most well known 
because it is the most frequently used. Its origin resides in the fact that most 
luminous sources transmit fluxes that depend not only on surface points but also on 
the emission angle in a normal relation to the surface. For this reason, it is necessary 
to evaluate the elemental flux transmitted by an element dS of the surface around the 
point 0 in a small solid angle dっ around a given direction x. This leads to the 
definition of transmitted intensity in this direction (see Figure 3.3). The unity of 
energetic intensity df/dっ is clearly the W.sr-1 and that of the luminous intensity is 
dF/dっ is the candela or lm.sr-1. 
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Figure 3.2. Luminous efficiency curve of a normal eye 
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Now, if we are within the range of a sensor transmitting waves in the direction x 
(see Figure 3.3), we see that the visible transmission surface is no longer dS but dぇ, 
which is the projection of dS on the plane usual to 0x. As long as dS stays small, the 
luminous flux perceived in this direction is proportional to dぇ. We then introduce 
the luminance L as: 

L  = 
 cos

=
Σ θ

dI dI

d dS
  [3.6]  

dS 

dΣ 
n

θ 

→ 

dΩ
x

0

 
Figure 3.3. Definition of intensity 

 
 
For many sources, luminance L is independent of the transmission angle し. These 

are called Lambertian sources. The flux df transmitted by the source of luminance 
L in the solid angle dっ and the direction し is written as: 

d2f = dIdっ = LdS cos しdっ 

L is expressed as Wm-2sr-1 or for the luminous variable as cd.m-2. 
 

Let us look at the flux d2f transmitted by the surface dS in the direction of a 
sensor, delimiting the solid angle dっ by the surface dS´ of the sensor. 

 

 
Figure 3.4. Definition of the geometric area 
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The solid angle dっ can be easily expressed according to dS´ and し´: 

( )2

cos
= 

00

dS' '
d

'

θΩ  [3.7] 

and d2f can be written: 

( )
2

2

cos cos '
= 

00

θ θLdS dS'
d

'
φ   [3.8] 

where 
( )2

cos

00

dS

'

θ
 is the solid angle dっ’ by which the sensor observes the source. We 

then get: 

d2φ = LdS´ cos し´dっ´ [3.9] 

The quantity dS cosし dっ = dS’ cosし’ dっ’ is called the geometric area (see Figure 
3.4). This quantity is conserved in stigmatic (that is, having to do with images) 
optical systems. 

 
For most sensors, and especially optical sensors, the important measurand is the 

flux received by the unity surface called E: 

2
= d

E
dS'

φ
 [3.10] 

It is expressed as W.m-2 or lm.m-2, also called lux. 

3.1.4. The black body: a reference for optical sensors 

Now that we have some knowledge of measurands, the next step is learning to 
calibrate optical sensors. To do this, we must be able to produce energetic and 
luminous fluxes whose properties are both completely known and reproducible. This 
can only be achieved through thermal radiation of black bodies. How these black 
bodies react depends on the temperature of the body and the universal constants. 
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3.1.4.1. Black body radiation 

Maxwell’s equations show that a continuous electrical current creates a magnetic 
field H

f
. If this current varies over time, this magnetic field H

f
 itself creates an 

electrical induction D
f

 that also varies over time. Thus, a current varying over time 
generates an electromagnetic wave ( D

f
, H
f

). In other words, for a current that varies 
over time, the electrical charges must vibrate around their position of equilibrium (a 
harmonic oscillator). These charges then accelerate, producing the couple ( D

f
, H
f

). 
In solid bodies, these vibrations can take many values. Because a harmonic 
oscillator only can take energies equal to p.hv with p integer and v the oscillator 
frequency [YAR 85], Planck shows that the spectral luminance Lそ of a solid, with 
the absolute temperature T, is expressed by: 

( ) ( )
2

01
  /5

C
T

e 1
λ λ λ λλ

⎡ ⎤
⎢ ⎥= =⎢ ⎥λ −⎢ ⎥⎣ ⎦

c T
L Lε ε  [3.11] 

where iそ, the transmissivity of the solid, depends on そ and is characteristic of the 
body (or sometimes only of its surface). ( )0L Tλ  is the specific luminance of the 
black body that is only a function of the temperature of the body. This is Planck’s 
law. The constants C1 and C2 are expressed by: 

16 2 1 8 2 1
1  = 1.19 10  = 1.19 10C W.m sr W. m srµ− − − − − −  

2 4
2  =  = 1.438 10  = 1.438 10

hc
C m.K m.K

k
µ−  [3.12] 

This function ( )0L Tλ  is maximum for a wavelength Mλ  obeying the relation 
( Mλ  in µm and T in K): 

2,898
 = Mそ

T
 [3.13] 

The spectral luminance of the black body, shown in Figure 3.5 for three adjacent 
temperatures of the surrounding ambient, shows that the total luminance (integrated 
with the そ variant of 0 to +∞) is a rapidly growing function of the temperature. We get: 

4
-8 2 4

0
 =  with  = 1.8 10  K

T
L L dそ W/mλ

σ σ
π π

∞° °= ∫  [3.14] 
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Figure 3.5. Spectral luminance of black body 

We note here that by explaining how energetic exchanges between matter and 
light occur in the form of photons, the discovery of the black body law marked the 
beginning of quantum physics. 

3.1.4.2. Realization of black bodies  

In the expression Lそ, the term iそ is independent of temperature and, in fact, is 
solely dependent on the radiation properties of the surface. Kirchhoff has shown that 
transmissivity is equal to absorptivity (iそ = gそ ). However, the conservation of 
energy at the interface between the two environments allows us to write a relation 
between gそ and the transmission coefficients kそ and the reflection とそ. We get: 

gそ + kそ + とそ = 1  [3.15] 

To analyze the black body, the first idea is to look at opaque materials. An 
opaque object does not transmit energy at any wavelength そ and for all incidences 
(kそ = 0), which means it is a black body (iそ = 1) if it does not reflect energy for all 
wavelengths and incidences (とそ = 0). To see how this works, we will look at opaque 
materials. 

 
Dielectrics are not helpful to realize black bodies because their behavior largely 

depends on the wavelength. For example, white paper has very weak remote infrared 
reflectance, which makes it close to being a black body beyond 6 µm (an 
transmissivity of the order of 0.92). Unfortunately, it becomes a much stronger 
reflector in the visible, with almost no emissions at all. 
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In the case of metals, kそ = 0 at any そ, but we know that the reflection factor, 
independent of incidence except when it becomes low-angled, is expressed by: 

( )2

4
= 

1 + 

n

n
λρ   [3.16] 

where the index is high for a metal. The transmissivity is written as: 

( )2

4
 = 1 = 

1 + 

n

n
λ λε − ρ   [3.17]  

and t is always weak.  
 

Figure 3.6 shows that the use of opaque metallic bodies or dielectric bodies does 
not give the transmissivity of black bodies. 

 

-45°

0

45°

90°

1.0 0.5 0 0.5 1.0

90°

45°

0°

-45°

-90°

1.0 0.5 0 0.5 1.0

A
B  

Figure 3.6. Transmissivity indicators of dielectric and metal bodies to a given wavelength 

 
 
Given these findings, it becomes necessary to look at transparent bodies and treat 

them as opaque artefacts. The transmission coefficient kそ is written as: 

kそ = exp( − くそx) [3.18] 

where くそ is the extinction coefficient and x is the distance light traveled in the 
material. If we choose a dielectric with the weak reflection coefficient, we get: 

iそ = 1 − kそ = 1 − exp( − くそx) [3.19] 
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This shows that augmenting x increases transmissivity. This can be done by 
creating an optical diffusion inside the material. The path traveled by the light 
becomes much longer than the simple thickness x; this increases transmissivity 
[HOD 71]. 

 
Now suppose we create a cavity whose interior is covered with diffusing 

dielectric material, with an transmissivity iそ necessarily inferior to 1. This cavity is 
closed everywhere except for a small opening. Each element of the internal surface 
dS transmits practically nothing in the direction of this opening and even this 
emission reaches other internal elements. The emission of the surface dS of the 
internal wall is written: 

4T= σemitted dS φ ε  [3.20] 

where T is the supposed uniform temperature of the cavity. This surface dS also 
receives, from another element of the surface dS of the cavity, a flux i jT4 dS, with 
one part shown as: 

( ) 41  Treflected dSφ ε ε= − σ  [3.21] 

When we consider only dS, the radiative flux that comes from this term is: 

( ) ( )4 4 41  T T 2 T  dSdS dS φ ε ε ε ε ε= − σ + σ = − σ  [3.22] 

Thus, we have a large transmissivity i (2-i) that, for i = 0.9, already improves 
transmittance by 10%. Taking into account successive n reflections, we see that 
transmissivity becomes 1-(1-i)n+1. Beyond three reflections, noticeable 
transmissivity is nearly that of the black body, having become independent of the 
wall transmissivity; that is, of its nature. 

 
In addition, a black body means the internal wall temperature will be uniform. 

This is realized with walls of excellent thermal conductivity (for instance, with 
copper), and in perfect thermal isolation from the exterior. The exact form of the 
internal cavity depends on the temperature at which the black body functions. For 
example, when a circulating liquid assures temperature uniformity, the cavity 
appears in the form of tubes that appear much longer than they do wide. Interior 
copper walls can be covered with a strongly diffusing dielectric (with layered 
painting, for example), to assure a transmissivity almost isotropic to the cavity’s 
interior. 



Physical Principles of Optical, Thermal and Mechanical Sensors     81 

3.1.5. Radiation exchanges between a source and a detector 

Radiation detectors are sensitive to the sum total of received radiative fluxes, that 
is, to the difference between entering fluxes and exiting fluxes. This leads to a 
measured variable which differs from the desired variable. Let us look at the 
example given in Figure 3.7, in which a light sensor is used to measure the 
transmitted flux by the object facing it. We call i the object’s transmissivity, is the 
detector’s transmissivity and φbo the flux transmitted by the object to be measured. 
When the detector receives φbo, part of φbr, the reflected flux is expressed as: 

( )1= − εbr S boφ φ  [3.23] 

Furthermore, the detector itself transmits φso and a part φsr that comes back to it 
after reflection on the object. The state of received and measured flux f is given as: 

bo br So SrΦ = φ − φ φ φ− −  [3.24] 

We can express this, by calling S the facing surfaces, as: 

( ) ( ) ( )4 4 4 4 4 41 1S S S S S S ST T T T S = T T SΦ εσ − ε ε σ ε  σ ε ε σ σεε⎡ ⎤= − − + − −⎣ ⎦
[3.25] 

We see that the measured flux f depends on the detector’s temperature Ts and 
on its transmissivity is. To find the flux φbo, that is, the measurand, the 
transmissivity is must be very close to 1 and that Ts << T. With light sensors, this 
condition is often not met. Not taking this fact into account can sometimes lead to 
significant systematic errors. 
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Figure 3.7. Measured flux and measurand 
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3.1.6. Definitions relating to optical sensors 

The measurement (output variable) of optical sensors is usually a current. We 
define sensor performance by looking at variations in currents according to different 
parameters. Manufacturers of sensors give performance specifications through 
variables such as darkness currents, spectral sensitivity and specific detectivity, 
which we will discuss in the following sections. It is important to understand these 
variables because they are essential guides for anyone using a sensor, giving 
relevant criteria in the areas of sensitivity, detection limits in power at each 
wavelength, band pass and noise level, to name a few. 

3.1.6.1. Darkness currents 

In the absence of any luminous flux, optical sensors almost always transmit a 
current called the darkness current I0. This current is the result of the effects of noise 
related to influence variables, especially temperature, which create current carriers. 
The obscurity current fluctuates around its mean value, creating a fundamental noise 
that limits the detectable minimum amplitude of the luminous flux. For example, 
with photodiodes, most manufacturers indicate an ultimate detectivity whose value 
is related only to the value of the darkness current. 

3.1.6.2. Spectral and total sensitivities 

When the sensor receives a flux f, it delivers a current I that is the sum of the 

darkness current I0 and the light current Ip, I = I0 + Ip. The sensitivity 
∂ ∂= =
∂ ∂

I Ip
S

Φ Φ
 

depends only on the light current. The spectral sensitivity is expressed with a 

monochromatic flux through the wavelength そ by .
Ip

S
Φ
λ

λ
λ

∂
=
∂

 The total sensitivity 

St is defined for a flux whose distribution in wavelength is known. For instance, for 
a radiation whose limits in そ are そ1 and そ2, we get: 
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∫

 [3.26] 

3.1.6.3. Sources of fundamental noise in optical sensors 

In addition to the sensor signal related to the measurement, there are always 
some random signals that come from sources internal or external to the sensor. 
These random signals perturb the measurement. 
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Figure 3.8. External noise 

 

We say that b(t) is of external origin when it has an origin coming from the near 
environment (see Figure 3.8). It is then captured, either directly (an example is 
radiation interference in the detector band) or indirectly by the entire electric circuit, 
as with antennae. It is always possible to reduce noise of an external origin by 
placing the sensor in interference-free areas, by putting them in Faraday cages or 
shields, and by limiting the sensor’s interference sensitivity. When these external 
noises are eliminated, we see that considerable noise levels still remain. These kinds 
of noise, called ultimate or fundamental, have their source in the corpuscular nature 
of electrical currents [BAU 61]. Every free charge is stimulated by random 
movements, resulting in an output current variation around a mean value. The 
following list gives two sources of these kinds of fundamental noises: 

– thermal or Johnson’s noise is the product of the collisions of the carriers with 
the lattice structure. The greater the number of these collisions, the more the mean 
quadratic current increases. It appears in the passive component and grows with 
their resistance. Related to thermal agitation, thermal noise increases with higher 
temperatures. The equivalent schema of this kind of noise is given in Figure 3.9 
where 〉f is the band pass of the sensor and of the sensor’s electronic system where 

we get 1 2e RKT f= ∆  or 1 2
KT f

I
R

∆= ; 

– shot noise or Schottky noise characterizes the discrete nature of the current and 
obeys Poisson’s law, which, unlike the case with Johnson’s noise, is present when 
there are few carriers – that is, in charge-free zones. Shot noise appears in junctions 
or in a vacuum. The mean quadratic current of this kind of noise is expressed by: 

2 2   fSI q I= ∆  [3.27] 



84     Fundamentals of Instrumentation and Measurement 

eI
I

R

or I R

 
 

Figure 3.9. Equivalent schemata for Johnson’s noise 

 
 
When the current delivered by the sensor is the sum of light and obscurity 

currents, (I = I0 + IL), the smallest Schottky quadratic current is: 

2 2 I fSI q ο=  ∆  [3.28] 

These first noise sources that do not usually depend on frequency are called 
“white” noises. The other sources of noise are dependent on frequency. They 
decrease very quickly with lowered frequencies and are often described as 1/f noise 
(which is a very rough approximation) or “pink” noise. Pink noises are products of 
material defects and random recombinations of carriers on the irregularities of the 
crystalline lattice structures. 

 
For all random uncertainties, the mean quadratic noise currents have to be added 

to give the total quadratic noise current 2
bI  and we call iB the spectral noise current 

(i.e. in a band pass of 1 Hz): 

2

( )b
B

I
i A/ Hz

f
=

∆
 [3.29] 

3.1.6.4. Specific detectivity 

The Noise Equivalent Power (NEP) is the energetic flux that produces, as sensor 
output, a photocurrent equal to the spectral current of noise iB to the wavelength そ: 

-1/2(in W Hz )BiNEP  
Sλ

=  [3.30] 
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where Sそ is the spectral sensitivity of the sensor (in A.W-1). Some manufacturers 
sometimes use detectivity D (the reverse of NEP), but because iB is generally 
proportional to the root of the sensitive surface A of the sensor, the specific 
detectivity D* is more often used and is expressed as: 

-1 1/2* in W Hz )
A

D  ( cm D A
NEP

= =  [3.31] 

For example, for a photodiode we find Sそ = 0.6 µA/µW, A = 1 mm2, Io = 150 pA, 
D* = 81012 cm Hz1/2 W-1. From this we can deduce the mean quadratic value of the 
total spectral noise current: 

2
2 -30 2 156 10 Ab

A S
i  Hz

D*

λ −⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

 [3.32] 

We can also obtain the mean quadratic value of the spectral current of Schottky’s 

noise as 2
o2q ISI   = = 4,810–30 A2Hz–1/2. From this formula we see that Schottky’s 

noise is predominant in this photodiode. Apart from this kind of calculation, the user 
can verify that the assembly is not adding too many complementary noise sources to 
the already existing fundamental noise; in other words, he can check that the 
assembly is not compromising the performance of the light sensor. 

3.1.7. Semiconductors: the bases of optical sensors 

3.1.7.1. Molecular and crystalline bands 

When bringing together two atoms, crossing barriers of potential sometimes 
produces an aggregate that is the seed of the molecule or crystal. These aggregates, 
obeying the laws of electrons farthest from the core, are able to retain some of their 
energy. In addition, this new grouping tends to impart a greater electronic stability to 
the final state. There are five types of interatomic bands. These are ionic, covalent, 
metallic, Van der Waals and hydrogen. Some of these bands set electrons free to 
move in the lattice, producing electrical conductors. The covalent band fixes 
peripheral electrons to the crystalline mesh so that a covalent lattice does not 
conduct electricity. It produces insulators and semiconductors (valence states). 

 
We know that the simple elements of the periodic table, peripheral electrons 

remain stable when the peripheral electronic strata called s (two electrons) and p 
(four electrons) are saturated. This means that the 2 + 6 electronic peripheral states 
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of the element must be occupied. This result is only obtained with rare gases (He, 
Ne, Ar, Kr, Xe and Ra). All other elements tend to group together, that is, they join 
with the peripheral electrons so that the strata s and p are complete, like those of the 
rare gases (eight electrons s and p). For example, with carbon (C, atomic number  
Z = 6), there are only four peripheral electrons s and p. Four electrons are lacking 
that are necessary to attain a chemical stability identical to neon (Z = 10). Carbon 
thus tends to combine with the atoms which are capable of “lending” it four 
electrons. This can occur through covalent band. 

 
Atom H, which has only one electron, therefore tends to gain a second and forms 

H2 to attain the stability of He. The molecule CH4 acquires the requisite structure in 
bringing the electron of each atom H to the central atom C. C itself takes each of its 
four peripheral electrons from H atoms placed around itself (see Figure 3.10). 

 
As a result of the formation of this kind of covalent molecule, the energy levels 

of the electrons reorganize themselves: we speak of orbital states or molecular 
states. 

 
In other cases, the grouping reaching chemical stability will release many atoms 

that regroup in the form of a solid. This happens with silicon when a monocrystal is 
created in a solution. Silicon (Z = 14) contains 14 electrons, of which four are 
valence electrons s and p (this situation is analogous to that of carbon). Silicon tends 
to group with atoms that give it the four electrons s and p it lacks to achieve valence 
saturation (argon stability). In preparing a monocrystal, the atoms of Si group 
together in a diamond configuration (the crystal of C of the face-centered cubic type) 
as shown in Figure 3.11. We notice that this structure has the same tetraedic 
arrangement of CH4, but in the monocrystal, this basic figure is reproduced to 
infinity (in practice, just to the surface where, in fact, chemical stability is no longer 
a given). 

 H

H  H

H

C

 

Figure 3.10. Covalent bands of CH4 
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Cubic crystalization system,
with centered faces allowing
each atom in the space to be
surrounded by four
identical atoms

 

Figure 3.11. Silicon crystal 

3.1.7.2. Band structures in solids 

Each electron pair found in an orbital shares two neighboring atoms Si (called 
sp3 with reference to states s and p of the isolated atom it comes from). The crystal 
structure is fixed by these bands (called j) which correspond to the strongly negative 
energies (they are called strong because a great deal of energy is necessary to break 
them.) For this process to occur, the distance between the atoms of Si must be very 
weak (2.34 Å). 

 
The Schrodinger equation that regulates the states of the isolated atom Si is itself 

modified and the eigenstates of this equation become more numerous than for the 
isolated atom (Z times the number of atoms in the crystal). The energies regroup in 
bands in the solid. In a band, the energy levels are very close to each other [ZIM 72]. 
Figure 3.12 shows that in the case of silicon, two bands appear that are separated by 
a zone where there are no authorized levels. 
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Figure 3.12. Modification of electron energy states occurring if the interatomic distance is 

diminished. A r0 =2.34 ┭ indicates a formed solid. The energy levels are grouped in two 

bands. The valence band corresponds to electrons bounded to a silicon lattice. The 

conduction band corresponds to free electrons (from J.-J. Bonnet [BON 84]) 
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Figure 3.13. Organization of bands in a semiconductor or in an insulator 
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The valence band is the band of lowest energy (that is, greatest absolute value). 
The conduction band has the weakest absolute values and the band gap is the zone 
without allowable states [PHI 73]. The probability of the presence of an electron at a 
given energy ε is given by the Fermi function f(ε) (see Figure 3.13). This law is 
temperature T dependent. At T = OK, f(ε) = 1 when ε ≤ Fermi level and |ε| = o when 
ε > Fermi level. The Fermi level in pure silicon is exactly in the middle of the 
bandgap when the temperature reaches absolute zero (T = OK). The valence band is 
thus saturated and the conduction band is empty (see Figure 3.13). 

 
However, other elements of the periodic table, called transition elements, in the 

isolated state have many peripheral electrons that occupy states other than s and p. 
These electrons cannot combine in interatomic bands when solids are created. The 
crystals that come from these elements have an energy state structure in which the 
bands are not separated by a gap (see Figure 3.14). The crystal has an enormous 
number of free electrons and nothing stops their displacement when a potential 
difference is applied to the crystal. In this case, we are describing a metal. 

 

Ev 

EF 

EC 

Conduction
band

Valence
band

 
 

Figure 3.14. Organization of bands in a metal 
 
 
In all solids, when the temperature increases electrons can occupy higher 

energetic states (less negative) than at absolute zero. Unoccupied places then appear 
in lower energy levels. The Fermi-Dirac statistics of electron’s energetic states 
shows their probability P(E) occupies an energy state comprised of E and E + dE. 
We get: 

( ) 1
( )

( )
1 exp F

dn E
P E

E EdN E

KT

= =
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 [3.33] 
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when dn is the number of electrons whose energy is comprised of E and E + dE, and 
dN is the number of possible energetic states (states specific to the Schrodinger 
equation) between E and E + dE. The Fermi level EF is therefore the energy for 
which the probability of an electron existing at this (possibly imaginary) level is 1/2 
(see Figure 3.15). Of course, at absolute zero, the Fermi level gives the highest 
energy that an electron can attain (if it is authorized). In other words, all the energy 
states lower than Ef are occupied and the higher states are empty. 

wf

P(E)

T = 0K

T 

 

Figure 3.15. Fermi probability 

In the case of metal, the Fermi level is an eigenstate and for this reason is the last 
state occupied at absolute zero. With semiconductors and pure (or intrinsic) 
insulators, the Fermi level is not a proper state but is found exactly in the middle of 
the restricted band. The Fermi energy is not reached at absolute zero and the 
electrons saturate the valence band. We see in Figure 3.15 that the probability of 
finding electrons in the conduction band becomes greater as the temperature 
increases. These electrons no longer take part in crystalline bands and become free 
carriers, as in metal. This increase of the number of electrons in the conduction band 
also frees an equal number of spaces in the valence band. These spaces act as 
positive mobile charge carriers. 

 
The practical uses of semiconductors derive from the fact that the position of the 

Fermi level inside the gap can be moved by introducing carefully selected impurities 
into the crystal [SAP 92]. When these impurities have five peripheral electrons 
(donors), the Fermi level moves towards the top of the gap. The probability of 
finding electrons in the conduction band increases and very few holes remain in the 
valence band. This kind of semiconductor is called type N to remind us that most 
current carriers are electrons. On the other hand, when impurities are elements with 
only three peripheral electrons (acceptors), the Fermi level moves towards the 
bottom of the gap. The probability of finding electrons in the conduction band 
becomes very low, and there are many empty spaces in the valence band. In this 
case, the carriers are mostly holes (semiconductor type P). 
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3.1.8. Current expression in a material containing free charges 

As soon as we apply a tension to the limits of a material that contains free 
charges, this tension forms an electric field E

f
 and the Coulomb force F Eq=

f f
 sets 

these charges in motion. They take on a speed   
f 
v  and the current I, formed by this 

movement, is the quantity of charges crossing the material per second. 
 
When impurities are present, or because of thermal agitation or photon 

absorption (photoelectric effect), certain electrons go into the conduction band and 
holes appear [SMI 67]. These carriers are then free to create an electrical current 
when they are exposed to field E

f
. This current is the density flux of the current 

density J
f

 across the section of the material. If we call と the number of mobile 
charges by unit volume and   

f 
v  the carrier velocity, the current density J

f
in a 

conductor with electron type carriers (n by unit of volume e, charge of the electron) 
is given as: 

J v ne vρ = −  
f f f

=  [3.34] 

In addition, the relation between the speed   
f 
v  of the electron mass me and the 

field E
f

 is given by the Coulomb law and the fundamental relation of the dynamic, 
and is expressed by: 

. e
dv

F e E m  
dt

= − =
ff f

 [3.35] 

dv
E

dt e

e
 

m

−=
f f

 [3.36] 

The resolution of this equation leads to a speed  
f 
v  that linearly increases with 

time: 

v =    (+ = 0  v = 0  at = 0)
e

–e
 E t constant if t

m

ff f
 [3.37] 

Actually, this law is completely unrealistic because the electron (e–) undergoes many 
collisions with the crystalline lattice. If we call k the mean time between two collisions, 
the average velocity is limited to the value it achieves at the end of this time k: 

e

e
v E

m

−=
ff τ  [3.38] 
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The quantity 
e

e

m
τ is called mobility µe of e–: 

e
e

e

m
= τµ  [3.39] 

This relation is general for all charge types, and we get: 

q

m
= τµ  [3.40] 

where the quantity q is the absolute value of the mobile charge. The speed     
f 
v  is thus 

an average velocity between two successive collisions and this velocity is equal to: 

    
f 
v = ± µ 

f 
E  

  

+ :  charges >  0

-  :  charges <  0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  [3.41] 

We see that     
f 
v  is proportional to E

f
 and independent of time because of the many 

collisions. The expression of current density   
f 
J  can be given in the form: 

J ne Eµ= +
f f

     [3.42] 

The current density is proportional to  
f 
E  and we get: 

J Eσ=
f f

  [3.43] 

which is the local Ohm law with j the given electric conductivity, expressed in the 
case of conduction by e– by: 

j = neµ [3.44] 

We can generalize these relations by calling µe and µp the mobilities of e– and of 
the holes (e+): 

 ( )n p n pJ J J e n p Eµ µ= + = +
f f f f

 [3.45] 
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where n and p are the densities of e- and of e+ and where µn and µp are given by: 

n

p

e n

m

e p

m

n

p

. . .
µ    

.k . .
µ    

τ=

=
 [3 .46] 

Then conductivity is written as: 

p n ne p µ +  µ⎡ ⎤σ = ⎣ ⎦  [3.47] 
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Figure 3.16. Mobility variation (cm2/V s) of electrons µe and of the holes µp in silicon 

according to the temperature for materials with different dopings. The mobility of e– is 

represented in continuous traits, with those of e+ in discontinuous traits. The indicated 

gradients correspond to the best linear adjustment of the experimental curves 

 

 

In reality, the problem is more complicated than it appears in this simple 
demonstration. For any given material, mobilities in particular depend both on 
doping and on temperature. Figure 3.16, as it relates to silicon, shows that e– are 
more mobile than e+ and that mobility decreases rapidly with increased 
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temperatures; typically they are reduced from 1 to 2 orders of magnitude between 77 
and 300 K. This complexity aids sensors because in selecting the doping and 
material type, we can produce components that are adapted to the desired measurand 
(see the following section for an example of this). 

3.1.9. Photoconductor cells 

Photoconductor cells are the simplest optical sensors to make use of 
semiconductors. Their basic operating principle depends on the photoelectric effect, 
in which a photon is absorbed by the semiconductor in giving its energy (by 
absorption) to an electron of the conduction band. In other words, the electron is 
freed from the crystalline bands and moves under the influence of an external 
electric field. Macroscopically, light absorption by the semiconductor means a rise 
in its conductivity, while its resistance diminishes. These sensors are made of a 
semiconductive plaquette with a large face that receives light and with two lateral 
faces of surface A that are metallized to be used as collection electrodes (see Figure 
3.17). The sensor is passive, polarized by an exterior tension V. We carry out 
measurements according to the illumination received (the measurand) and the 
variation of the electrical resistance (the measurement). In the following paragraphs 
we will consider material of type N, which means the carriers are essentially of type 
e–. 

wave 
  

Surface A
 

Ip

V
 

L 
  

 

Figure 3.17. Schema of a photoconductive cell 

 
 
Two phenomena occur in the semiconductor. These are: (i) carrier generation 

through the photoelectric effect and (ii) carrier recombination on the crystalline 
lattice. 
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(i) As we saw before, light must be represented in the form of photons that are 
energy grains hv. If hv > Eg (the gap energy) G electrons are created per second 
throughout the volume of the sensor or g electrons per second and by unit of 
volume: 

1 (1 ) 1 (1 )

h h

G さ R さ R
g f そf

AL AL AL c

− −= = =
ν

 [3.48] 

where A.L. is the sensor volume, さ is the photon conversion into electrons, R is the 
coefficient of optical reflection of the receiving surface, f is the flux incident of 
light on the sensor, and そ is the wavelength of the light flux. 

 
(ii) The electrons freed by the photoelectric effect leave in the crystal many 

charged atoms that can trap them after their displacement. The variation by unit time 
of the number of free electrons occurring because of this recombination is 
proportional to the number of free electrons produced, as well as to the number of 
charged atoms. We get: 

2n
r n

t

∂ = −
∂

 [3.49] 

where r is called the recombination rate. At equilibrium, there are as many electrons 
created as recombined:  

0 2n
 - r n g

t

∂ = = +
∂

 from which we get 
g

n
r

=  [3.50] 

We have seen that electrical conductivity is expressed by: 

σ = e µn n  [3.51] 

since the majority carriers are electrons. In the following equation, we see that by 
replacing n with its expression as f (see [3.49] and [3.51]), we get: 

1 (1 )

hn
R

e
AL c

ηµ λΦ−σ =  [3.52] 
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When the sensor is polarized by the tension V, the current going across the 
sensor is equal to: 

.V V AV
I

LR Lと
A

σ= = =  [3.53] 

Relationship [3.53] shows that the measurement I is not proportional to the 
measurand f but to its root. The resistance R of the sensor, inversely proportional to 
f-12, tends toward infinity when f tends toward zero. In practice, this value is 
obviously finite because there are always carriers even when light is absent. This 
darkness resistance R0 depends on the semiconductor being used and the geometric 
form of the sensor. This resistance can go from several dozen Ohms to several 
hundred Mっ. 

 
In fact, the experimental dependence of resistance with the flux f is not exactly 

the same as with the model shown above. This dependence, however, is not linear 
but is like the following: 

R k  with 0.5   1.−γ= φ ≤ γ ≤   [3.54] 

The number of carriers recombined by unit time can also be expressed with the 
help of the lifetime of the carriers kn (which are the e- in the examples given above): 

n

n n

t

∂ = −
∂ τ

 [3.55] 

At equilibrium we get: 

n

n
g =

τ
 [3.56] 

which lets us write the current delivered by the sensor as: 

2

G A
G = FqG

AL L L

n n
n n

V  µ  kV A
I V Vq µ k    q 

R L
= = σ = =   [3.57] 
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where F is called the sensor’s gain factor: 

2L

n n  µ
F V

τ
=  [3.58] 

F can attain several tens of thousands following the applied tension V and the 
geometric form of the sensor. In addition, this equation shows that it is necessary to 
use semiconductors with excellent mobility and lifetime. 

 
The equivalent schema of photoconductive cells involves placing the darkness 

resistance R0 in parallel to a resistance that is sensitive to the flux Rcp. In practice, 
this schema can be reduced to one resistance R, expressed by: 

p p
p

c 0 c
0 c

R
R R R

R
= = >>p0 c -け

R
R    # a l    if      

R  
 [3.59] 

The relation between the light current Ip and the flux f is not linear: 

け
p

V V
I l

R a
= =  [3.60] 

The total sensitivity depends on the value of the detected flux: 

1p けI V
S け

a
φ

φ
−∂

= =
∂

 [3.61] 

Furthermore, the spectral sensitivity can be deduced from the above formulae: 

2

(1 )
( ) n n

c

k µ V R
S q さ そ

hL

−λ =  [3.62] 

This is applicable up to そ max of the gap. If there is an abrupt gap, the spectral 

sensitivity ends after maxそ そ ch

E
≥ = , shown in Figure 3.18. 
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Figure 3.18. Theoretical spectral sensitivity of a photoconductive cell 

 
 
Response time is directly related to the lifetime of the carriers kn. Like the 

lifetime, response time is connected to parameters such as the temperature and 
doping of the semiconductor. If we know the nature and operating mode of the 
semiconductor, we can obtain values that range from 0.1s to 10-7s. Response time is 
noticeably reduced when the luminous flux is high; this is because the lifetime 
decreases with the number of free carriers. 

 
The ultimate noise of these sensors is of the Johnson noise type and its minimum 

value depends on the value of the darkness current I0. This obscurity current comes 
from the creation of carriers (for example, of electrons) by thermal agitation. In 
calling n0 the number by unit of volume of the thermal carriers, the electric 
conductivity in obscurity is j0: 

j0=eµ n0  [3.63] 

from which we get: 

0
0

1
R

nn

L
 

eµ  A
=  [3.64] 

this helps us determine the current of Johnson’s noise traversing R0: 

0
2B

KT
i

R
=  [3.65] 

We remember that R0 largely depends on the kind of semiconductor used and on 
the temperature. Typically, the specific detectivities D* are of the order of  
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1010 W-1 cmHz1/2, clearly inferior to what can be obtained with photodiodes, as we 
will see in the following sections. 

3.1.10. P-N junction and photodiodes 

Introducing impurities into a semiconductor displaces the Fermi levels, so that 
the current carriers become electrons (type N) or holes (type P). The P-N junction is 
basic to the creation of photodiodes. It is obtained by producing on the same 
semiconductor substrata two adjacent doping zones P and N. The junction has an 
advantage over a simple semiconductor because it creates a charge zone of space 
with a powerful electrical field. This field can efficiently separate charges created by 
photoelectrical effect, as well as significantly improving light sensor detectivity. 

3.1.10.1. Non-polarized junctions 

Without bias, an electrostatic equilibrium appears between the two zones 
separating the junction. This equilibrium is converted by the equalization of the 
Fermi levels of the P and N regions. Both the energies 

 
WVP

 and 
 

WVN
 at the top of 

the valence bands, and 
  
WCP

 and 
 

WCN
 at the bottom of the band are displaced in the 

regions P and N and we get: 

  
WCP

>WCN
 [3.66]  

that is: 

<C CP N
W W  [3.67] 

    VP  <  VN  [3.68] 

The electrostatic potential of region P has become inferior to that of region N. 
An electrostatic field   

f 
E  has appeared, directed from N towards P. The majority 

carriers of each region are, for the most part, incapable of crossing this potential 
barrier. However, the minority carriers of each region do cross the barrier. They are 
launched by the field   

f 
E  towards the adjacent region. Again, the equilibrium is 

converted by the equivalence of two currents (flowing in opposite directions) from 
majority carriers with enough kinetic energy to cross both the barrier and the 
minority carriers launched by  

f 
E . 
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It is important to remember that the barrier of potential VN – VP = VB is an 
electrostatic tension which corresponds to an absence of current. This difference of 
potential converts an equilibrium and not an electromotive force. 

b) charge of spacea) diffusion

E

  
 

Figure 3.19. Diffusion and establishment of carriers after recombination  

of the static potential barrier in a non-polarized diode 

 

3.1.10.2. P-N junction with direct bias 

Applying a positive difference of potential between the limits P and N of a 
junction allows a large number of majority carriers to cross the junction. If the 
applied tension is superior to the electrostatic tension of the barrier (0.7 V in the Si), 
VP becomes superior to VN (

  
WCN

>  WC P
). The electrons, very numerous in N, go 

into P, where they recombine in the many holes in that region. The current goes 
through P by diffusing through the holes towards the junction to fill the deficit 
produced by the electron recombinations near the junction. A direct current is 
essentially a current of majority carriers. In practice, this is the sole contribution of 
the total current as soon as VA > VB. It grows exponentially with VA: 

A
0

qV
exp 

kTmajorityI I I  ≈ =  [3.69] 

where q is the electron charge 1.6 10-19 C and k is the Boltzmann constant + 1.36  
10-23 JK-1.  
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Figure 3.20. P-N junction in direct bias 

3.1.10.3. P-N junction in reverse bias 

When we apply a negative tension VA between the extremities P and N of the 
junction, the electrostatic barrier is again amplified. The majority carriers capable of 
crossing the barrier become fewer. The current of the majority carriers which, before 
negative tension VA was applied, exactly offset the current of the minority carriers, 
become very weak in comparison to the minority carriers current. The current 
crossing the inversely polarized junction is almost exclusively a current of minority 
carriers. This current is, by its very nature, opposed to a current obtained through 
direct bias, which fundamentally comes from majority carriers. This reverse current 
is independent of VA because the movement of minority carrier across the barrier is 
produced by diffusion and not by a field effect. This is shown in Figure 3.21. 

Iminority = – I’0 [3.70] 
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Figure 3.21. P-N junction in reverse bias 
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3.1.10.4. Diode equation 

No matter what VA tension is applied to the limits of the diode the current is 
always the sum of the majority carriers current and of the majority carriers current: 

I = Imajority + Iminority   [3.71] 

We get: 

    
I = I0  exp

qVA

kT
− I0

'  [3.72] 

We know that for VA = 0, the equilibrium imposes I = 0, so we get: 

I’0 = I0  [3.73] 

Finally, the diode equation is written as: 

    
I = I0  exp

qVA

kT
− 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  [3.74] 

 

Figure 3.22. Typical current tension of a diode 
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Figure 3.22 shows us that a high negative current appears when reverse bias 
becomes strongly negative. This is called the breakdown voltage and is produced by 
a collision of minority carriers, which take on a high kinetic energy in crossing the 
barrier, ionizing the fixed centers of the crystalline lattice. This effect benefits some 
photodiodes by amplifying the photo current and reducing response time of light 
sensors. 

3.1.10.5. Illuminated P-N junctions  

When diodes are exposed to a luminous flux with a wavelength λ that is inferior 
to the wavelength λs corresponding to the gap energy (or the energy hv of the flux 
photons superior to the gap energy hvs), they produce electron hole pairs through the 
photoelectric effect, as we have seen with photoconductive cells. For these carriers 
to generate a current, the pair must be separated quickly. This only happens through 
the influence of electrical field, especially the one existing in the P-N junction. The 
photoelectrical effect must then be produced throughout the zone of the field   

f 
E  of 

the P-N junction. Through the stimulating effect of the field  
f 
E , the generated photon 

holes go towards region P and the electrons go towards region N. When the holes 
are in P, they encounter negatively charged impurity sites which trap them. These 
sites are almost always taken to be an e- from the atom’s valence Si. The photon 
holes are trapped by these impurities; this produces a liberation of e–. In region P, 
the electrons are diffused, moving toward the junction and filing in the deficit thus 
created. The same thing happens in region N. 

We can see that the photoelectrical current acts as a current of minority carriers 
and therefore is negative.  

3.1.10.6. Principle of photodiode fabrication 

Several conditions must exist for the fabrication of photodiodes (see Figure 
3.23): 

– the photodiode must have a significant field of junction  
f 
E  to efficiently 

separate the created photo carriers. Thus, it is clear that in this case, the diode must 
be polarized in reverse. 

VA

incident flux
hν

0+
 e -

P

zone of the field E

N

 

Figure 3.23. Schematic view of a photodiode 
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– in order for the photons to penetrate the field zone in large numbers, the 
incident flux must not be weakly absorbed by region P. Assume x is the thickness of 
region P and g is its optical extinction coefficient at the frequency ち of the photons 
of the monochromatic flux. The part ぱ0 that comes to the junction after reflection on 
the face in front and transmission by the doped zone P (see Figure 3.23) is equal to: 

    (1 − Ropt )φ0 e-αx  [3.75] 

where Ropt is the reflection coefficient of the photodiode surface. This transmitted 
flux will be accordingly greater than xα ⋅  and will be weaker if the entire flux 
coming into the junction is absorbed mainly in the field region; 

– a field region must be designed that is sufficiently thick to allow the total 
absorption of the light. This becomes possible, for example, by creating the type of 
structure often called junction type PIN (P-intrinsic N). 

3.1.10.7. Photodiode equation 

The light current Ir is equal to the number of electrons (or number of holes) that 
have been created by the photoelectrical effect and that have come to the limit of the 
field zone per second: 

opt
0

(1-R )  
 x

r

q
I e

hc

αη λ
φ −=  [3.76] 

Because this current is created by minority carriers, it becomes entrenched in the 
diode current. The equation (or feature) of the photodiode is: 

0 exp 1A
r

qV
I I I

kT

⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 [3.77] 

or:  

0 0exp 1 xA
qqV

I I e
kT

αη λ
φ −⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

opt(1- R )

hc
 [3.78] 

Equation [3.78] shows that if the dark current I0 is weak with respect to Ir, I is 
proportional to ぱ0 when

A
V is negative. 

3.1.10.8. Electrical schema for a diode 

Photodiodes are current sources, being the sum of the obscurity current and light 
current. They are in parallel with the resistance and the capacity of the reverse 
polarized junction. On the other hand, the charge impedance of the photodiode can 
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always be brought back to a resistance RL in parallel with a capacity CL (see Figure 
3.24). 

Photodiodes can be used as photoconductors with a reverse bias or as 
photovoltaic sources without bias (see Figure 3.25). These two functioning modes 
need some explanation in order to choose correctly between them. 

Using photodiodes as photoconductors allows for a reduced response time 
because reducing the diode capacity results in a shrinking of the junction zone in 
reverse bias. 

 

 

I

C R
VL

 
 

Figure 3.24. Equivalent schema for photodiodes 
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Figure 3.25. Photovoltaic and photoconductor modes 
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With the photoconductor mode, there is always a darkness current that produces 
an internal noise of the Schottky type, which means that this mode is not especially 
favorable for detecting very weak fluxes. On the contrary, with the photovoltaic 
mode, the straight line of the charge goes through the origin I = V = 0, and the 
darkness current no longer limits the very weak flux measurements. In the 
photoconductor mode, photodiodes are linear, but in the photovoltaic mode, 
photodiodes behave in a logarithmic fashion, except under very weak charges when 
a photovoltaic generator is used with a battery charge as for solar cells (see Figure 
3.26). 

  
I

Φ= 0 

Φ = 1 

Φ= 2 

Φ = 3 

  photoconductor mode

photovoltaic mode

V

 

Figure 3.26. Functioning points of photoconductor and photovoltaic modes 

Table 3.1 reviews some of the points just covered. 
 

Implementation Photoconductor mode Photovoltaic mode 

Bias Reverse No 

Output signal Ir = I0 + IL 
L 0

0
0

cc

I I
.ln( ) ;

I

 I

c

L

kT
V

q

I

−
=

≈

 

Advantages 
Wide band pass, short 

response time 
Low noise 

 

Table 3.1. Choice criteria for photoconductor and photovoltaic modes 

Since the equivalent final schema can be reduced to the one shown in Figure 
3.24, photodiodes are first order sensors (see Chapter 2). The cut-off frequency 
given by fc = 1/2ヾRC depends on the charge resistance R (see Figure 3.27). 
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Figure 3.27. Example of a photodiode cut-off frequency versus charge resistance Rm 

Depending upon the structure of the different doped regions of a photodiode, the 
performances are different. Table 3.2 reviews some of these possibilities. In the 
schemata of Table 3.2, we see that the front face of the sensors, excepting the 
Schottky structures, is covered with a fine protective layer of transparent SiO2. The 
first semiconductive layer is generally of type P. This doping is often preferred for 
its simplicity of preparation and transparency. The first schema (called planar type) 
corresponds to the junction already described. The interfaces are flat and establish a 
potential barrier between P and N. For those applications that concern the visible 
light and are in use, this technique, used in silicon, is sufficient. When response time 
needs improvement, the sensor’s thickness must be augmented, which reduces its 
capacity. To effect this, a structured layer can be created by successive dopings 
(weak planar capacity). A progressive passage (type P-N-N) can also be created to 
realize the P-N junction. The spectral sensitivity is then modified by ensuring that 
certain wavelengths are not absorbed into the depletion zone. This allows better 
sensitivities in the infrared or ultraviolet. As mentioned above, the best way to 
reduce diode capacity and improve the separation of photogenerated couples is by 
creating an enlarged depletion zone. This is done by inserting an intrinsic stratum 
between P and N. This produces rapid photodiodes (type P-I-N). Flux detection in 
the ultraviolet field is difficult with semiconductive junctions because their fluxes 
are rapidly absorbed in the P region when the wavelength decreases. To avoid this 
problem, metal semiconductive Schottky junctions are realized. These junctions are 
similar to P-N junctions, especially relating to their potential barriers. Although this 
kind of junction has a narrower depletion zone, the metallic stratum can be made 
very transparent to ultraviolet rays. Often, the width of the charge zone of space can 
be augmented by creating a dopage gradient in the semiconductive area. In addition, 
an internal amplification can be produced by a correct and controlled breakdown 
stage. 
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Type Construction Properties Material 

Planar 

P

N

 

Weak darkness current 
Silicon or 
GaAsP 

Planar, low capacity 

P

N

N
 

Weak darkness current, rapid 
response, strong sensitivity in 
UV and IR rays 

Silicon 

PNN  

P

N

N

 

Weak darkness current, strong 
sensitivity in UV rays, 
insensitivity to IR rays 

Silicon 

PIN  

PN I

 

Very rapid response Silicon 

Schottky  

P

N

N

 

Very high sensitivity in UV 
rays 

GaAsP. 
GaP 

Avalanche 
Internal amplification, ultra 
rapid response 

Silicon 

Table 3.2. Examples of adaptability of photodiode structures to measurands 

 
 
The breakdown stage also influences the noise current so that photodiode 

detectivity does not increase proportionally to the internal gain. In fact, the resulting 
strong bias from the breakdown stage augments the width of the charge zone, 
considerably reducing response time. Avalanche photodiode structures always 
thicken gradually (zone ヾ), so that the electrical field is moderated, even under 
strong tension, sometimes up to 1,000 V. Photodiode structures can also be created 
heterogeneously with different kinds of semiconductors. In these cases, we speak of 
heterojunctions as opposed to homojunctions created by dopings of a single 
semiconductor. Since we have been for the most part discussing visible effects, we 
have been describing photodiodes essentially as silicon homojunctions. 
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3.2. Force and deformation sensors 

Among the range of mechanical sensors (position, speed, acceleration, shock, 
among others), we propose discussing two typical examples, one passive, the other 
active, whose measurands are forces and deformations. 

Passive sensors are mostly used in mechanics. In Chapter 2, we saw that these 
sensors can be resistive, capacitive or inductive. Inductive sensors are often used for 
displacement measurements. On the other hand, resistive sensors are often used for 
deformation measurements and are sometimes called, somewhat incorrectly, 
constraint gauges. 

The piezoelectric effect [CAD 64] is the most widely used basic principle in 
active mechanical sensors. It is used in its simplest form with force and deformation 
sensors. In the following sections, we will explain the principles of piezoelectricity 
and some methods used to analyze the signals it generates. 

It is important to remember that very little difference exists between force and 
constraint measurements. In order to measure a force, a kind of dynamometer is 
generally used. This is a tool that helps us establish an equilibrium between the force 
we want to measure and the constraint produced by the deformations undergone by a 
solid that makes up a part of the sensor under the action of this force. Working in the 
elastic domain of deformations, we see that constraints and deformations are 
proportional. A simple calibration allows the same sensor to carry out both a 
constraint measurement (or force by surface unit) and a deformation measurement. 

3.2.1. Resistive gauges  

Resistive gauges are simply resistive circuits that can be attached to a structure to 
determine its local deformations. These kinds of resistances represent an important 
percentage of deformation sensor sales. Their ability to function in many conditions 
and their low prices explain their widespread usage. In addition to these long-known 
assets, more recently gauges have been developed that aid in producing very small, 
high-resolution sensors. As well, these resistive gauges are associated with proof 
bodies and conditioners that improve sensitivities and signal to noise ratio. 
Following these processes, the measurable relative elongations go from 10-7 to 10-1. 
The relative deformation error, seldom below to 10-3, is more often of the order of 
510-3 to 10-2. These gauges are sometimes in the form of wire, sometimes thin layers 
of some material, or sometimes they are created by doping in the semiconductors. 
For a wire of section S and the width 1 made of a material of resistivity ρ, the 

relative variation 
R

R

∆
 of the resistance R given by 

ρ= l
R

S
 is written: 
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R l S

R l S

∆ ∆ρ ∆ ∆
ρ

= + −  [3.79] 

If we call d the diameter of the section of surface ヾ d 2/4, we get, by introducing 

the Poisson coefficient 
1l d

l d

∆ ∆
ν

= −  and in writing 
V

C
V

∆ρ ∆
ρ

= : 

( ) ( )1 2 1 2
∆ ∆ ∆ν ν= + + − =⎡ ⎤⎣ ⎦

R l l
C k

R l l
 [3.80] 

where k is the gauge factor and C is Bridgman’s constant. The resistance values are 
usually from several hundreds to several thousands of ohms. With metals, when  
ち = 0.3 and C is of the order of 1, we get k of the order of 2. With semiconductors, C 
can reach 200 and the gauge factor is high, of the order of C. This means that 
measuring very weak deformation must be done with semiconductive gauges, but in 
this case it is important to remember that R is very dependent on the temperature, 
which, in practice, limits the use of these gauges to temperatures below 200˚C. 

 
There are gauge assemblies able to determine deformation components following 

several axes. When the situation does not help us know the main deformation 
directions, we use gauges grouped in three resistances, each 120˚ from the other, that 
is, in rosettes. The term rosette extends to more complex deformation measurements 
known as shell deformations. 

 
The main shortcoming of these gauges is that they must be attached to the 

structure. This limits their use to medium temperatures (up to 500-600˚C for 
metallic wire gauges). At higher temperatures, resistive gauges are increasingly 
being replaced by optical methods using coherent light beams, among them speckle 
interferometry. 

3.2.2. Piezoelectric effect 

Piezoelectricity derives its name from the Greek word “piezo”, meaning “to 
press”. The piezoelectric effect is the conversion of pressure into electricity. To be 
more precise, the term describes the appearance, due to the action of microscopic 
deformations, of charges on the surface of a solid. These charges are produced by 
local displacements of centers linked to the crystalline mesh. 

 
In fact, the piezoelectric effect only exists in crystals, ceramics and polymers that 

are anisotropes; that is, that have no symmetrical center in the elementary mesh. 
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Although the Curie brothers discovered piezoelectricity in 1880, it was only put to 
practical use during World War I, first by Paul Langevin, who developed sonar, then 
in 1918 by Walter Cady, who built the first quartz oscillator. Today, the popularity 
of high quality quartz oscillators makes piezoelectricity an integral part of 
electronics. The production of products using piezoelectricity employs hundreds of 
thousands of people throughout the world. 

3.2.2.1. Electrostriction, piezoelectricity and pyroelectricity 

Because the electric field is zero in metals, piezoelectricity cannot exist in it. 
However, when we apply an electric field to a dielectric, the equilibrium positions of 
electric charges bound to a solid undergo a slight displacement. In the absence of a 
permanent dipole moment (corresponding to the moment when barycenters of 
positive and negative charges join), a related dipole moment appears. In the presence 
of a permanent dipole moment, its value is changed. The charge displacements lead 
to a geometric deformation of the solid, with mechanical constraints compensating 
the electric forces produced by the action of the resulting dipole moment. 

 
When the solid has a center of symmetry, the deformation is very weak and is 

proportional to the square of the applied electric field: this is electrostriction. 
 
When the solid does not have a center of symmetry, the charge displacement, 

which is clearly more important, is proportional to the applied filed. This is the 
inverse piezoelectric effect. Often, when there is no center of symmetry, the material 
already has a permanent piezoelectric bias. This dielectric bias varies not only 
according to the applied field but also according to temperature: this is the 
piezoelectric effect. 

 
The following four points summarize these effects: in metals there is no effect; in 

dielectrics with a center of symmetry, the weak effect is called electrostriction; in 
dielectrics without centers of symmetry, their effect becomes stronger and is called 
piezoelectricity; and in anisotropic dielectrics with permanent bias, there is a 
piezoelectric disturbance of the piezoelectricity because the temperature is in this 
case an intruding influence variable. 

3.2.2.2. The case of quartz 

Quartz is a silica crystal composed of SiO2 in which the peripheral electrons of 
Si atoms and O2 groups of chemicals combine and reach the stability level of rare 
gases (see section 3.1 for a discussion of chemical stability). The resulting solid 
structure has a rhombohedric symmetry. This means the SiO2 groups form 
hexagonal structures by projecting on the perpendicular plane to the optical axis z at 
the top, where we find either Si atoms or O2 groups (see Figure 3.28). 
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Figure 3.28. Quartz structure 

 
 
Si atoms can be seen as positively charged centers and O2 as negatively charged 

centers. Both are bound to the crystalline mesh. If a force is applied following the y 
direction shown in Figure 3.29, the hexagon becomes distorted and the barycenters 
of charges + and – stop commingling. Electric dipoles appear that are all directed 
toward the direction of the applied force  

f 
F . 

 

-
+

 
 

Figure 3.29. Appearance of dipole moment P
f

under the action of a directed  

F
f

 force following the y-axis of quartz 

 

 

Suppose we metallize the two opposite faces of a piezoelectric crystal, exposing 
these to an   

f 
F  force. In this case, a dielectric bias appears that will follow the vertical 

direction shown in Figure 3.29. The effect of the elementary dipoles is to produce 
electrostatic charges + and – respectively on the metallic electrodes M1 and M2 and 
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the total charge of the ensemble remains zero. Thus, the electric induction vector   
f 
D  

is also zero (Gaussian law), and we get: 

0 0 from which we get D i E P P i E= + = = − ⋅
f f f f f

 [3.81] 

Finally, the potential V that appears at the limits of the piezoelectric crystal is 
deduced from: 

      

f 
E = −gra

f 
d  V = −

f 
P 

ε0
 [3.82] 

Let us now suppose that we have short-circuited the two electrodes by means of 
a metallic wire (see Figure 3.30b). The potential and the field between the electrodes 
become zero: 

D P  and  P div D div= = =
f f f f

ρ  [3.83] 

which means that the flux of  
f 
P  across the system shown in Figure 3.30b (the 

crystal, the electrodes and the metallic wire) is equal to the total sum of the 
contained charges. In the volume of the crystal と = 0 and the specific charges that 
produce the flux of   

f 
P are the electrode charges M1 and M2 that we call the images of 

internal bias, that is, constraints. 
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Figure 3.30. Quartz with constraints in open circuit (a) and in short circuit (b) 
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3.2.2.3. Constraint tensors 

Charges appearing on piezoelectric crystal faces depend on the direction of 
applied forces that break down into axial components and shearing. In Figure 3.31, 
the axial forces tend to stretch the cube in the direction of Oy and the shearing forces 
tend to make the planes xOy slide toward one another. 

 
 

x

y 

zz 

y

x a) b)  
 

Figure 3.31. Axial constraints (a) and shearing (b) 

 
 
In elasticity [GER 62] we note jij, the constraint components in a solid, the index 

i giving the direction of the component, and the index j showing the normal of a 
facet to which this component is applied (see Figure 3.32). 

 
 σzz

σyz
σxz σzy

σyyσxy

σyx

 

σzx
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Figure 3.32. Definition of constraints 

 

 

It has been shown [ROY 99] that constraint tensors (jij) are symmetrical  
(jij = jji) and we note that jii = ji and jij = jk. In general, we describe the 
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piezoelectric effect through the linear relations which bind the constraints to charges 
by surface unity (qi) appearing on normal of facets in the direction i when the crystal 
is short-circuited: 

q1 = d11σ1 + d12σ2 + d13σ3 + d14σ4 + d15σ5 + d16σ6 

q2 = d21σ1 + d22σ2 + d23σ3 + d24σ4 + d25σ5 + d26σ6 

q3 = d31σ1 + d32σ2 + d33σ3+ d34σ4 + d35σ5 + d36σ6 [3.84] 

We write equations [3.84] in the form of 
  
qi = (di j ) ( σ j ) . Here (dij) represents 

the piezoelectric tensor. Noting the degree of symmetry of the crystals, we can show 
that most of the dij are zero. For example, with quartz in the cross-section (with the z 
axis optical, the x axis mechanical, and the y axis electric; see Figure 3.28), the 
tensor is reduced to: 

    

(di j ) =
d11 ,− d11,  0    d14 ,    0,      0   

0,     0,     0,     0,  -  d14 , −2d11

0,    0,     0,      0,       0,      0    

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 [3.85] 

with d11 = 2.3 10-12 CN-1, d14 = 0.7 10-12 CN-1 
 
For this Curie cut of crystal, we metallize the faces perpendicular to Ox (see 

Figure 3.33). If we apply a force of module F in the direction Ox so that 1
F

L
σ =

`
 

the charge by unity of surface qi that appears on the electrodes equals: 

1
1 11 1 11

QF
q d d

L L
σ= = =

` `
 [3.86] 
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Figure 3.33. Quartz in Curie cut 
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If this same pressing force is applied following the Oy axis, the total charge Q1 

increases in the relation 
L

e
: 

      
q'1 = d12  σ2 = − d11 σ2 = − d11

F

`e
= Q1

L

e
 [3.87] 

Studying the piezoelectric matrix also makes clear that no charge can appear on 
the faces perpendicular to Oz. In addition, the sensor can be used for measuring 
shearing constraints of large surfaces (L, l), but not for hydrostatic measurements 
(pressure P). Indeed, such a constraint leads to: 

q1 = d11 σ1 – d11 σ2 = d11 P – d11 P = 0  [3.88] 

3.2.2.4. Other piezoelectric materials 

Aside from quartz, piezoelectric materials are usually ceramics made from 
piezoelectric polycrystals fritted in the presence of an electric field that directs the 
microscopic electric dipoles and finally produces a macroscopic bias. The only 
ceramic that causes significant bias is PZT. By calling Oz (3) the direction of the 
electric field, the matrix dij of this ceramic is written: 

  

0,     0,      0,     0,    d15,  0

0,     0,      0,     d15   0,    0

   d31 ,   d31,    d33 ,    0,      0,     0    

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

  [3.89] 

Ceramics cut perpendicularly to Oz are used in the manufacture of pressure 
sensors applied to faces xOy. The planes perpendicular to Ox or Oy are generally 
used for shearings. However, ceramics cannot be used for measuring hydrostatic 
pressure because the sum (2d31 + d33) is almost zero. After preparing PZT 
(composition, applied field, type of wiring), the coefficient d33 can be of the order of 
some 102 pCN-1. Piezoelectric sensors can also be constructed with a polymer base. 
As with ceramics, the bias of these materials is obtained, during polymerization, 
through exposure to an electric field, this time by stretching them in heat, then 
cooling them. The material most often used today is PVDF whose piezoelectric 
tensor is written as: 

  

0,     0,      0,     0,    d15 ,  0

0,     0,      0,     d24   0,    0

   d31 ,   d32 ,    d33 ,    0,      0,     0    
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⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

  [3.90] 
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The values of dij are slightly above those of quartz and are sensitive to and 
dependent on preparation procedures. 

3.2.2.5. Construction of piezoelectric sensors 

These kinds of sensors are usually constructed in the form of “charge slices” (see 
Figure 3.34). The extent of the measurement varies from several kN to more than 
100 kN. In order to detect traction, we constrain the charge slice or slices between 
two bolts. To increase sensitivity, assemblies are often used. For example, 
piezoelectric sensors are often in pile assemblies with electric connections so that 
either the tension or the piezoelectric charge is multiplied by the number of pile 
plates. Sometimes sensors are installed on a proof body adapted to the kind of 
constraint to be measured. Aside from compression sensors or simple shearings, 
which have principles very close to those we described above, elementary cell 
assemblies have different principles that allow for the construction of sensors that 
are sensitive to directional forces or structure (such as moment, pair and torque 
sensors). 

3.2.2.6. Using piezoelectric sensors 

The equivalent electric schema of piezoelectric sensors can be deduced directly 
from its principle: a generator of variable charges in time that is represented by a 
current source dQ/dt in parallel with the capacity Cd of the dielectric between the 
two electrodes, and a flow resistance Rd that is also a characteristic of the dielectric. 
In practice, because of the values of Cd and Rd, we must always take into account the 
capacities and resistances Rc and Cc of the connecting cables, as shown in the 
schema in Figure 3.35. 

 

a b  
Figure 3.34. Assemblies for measuring the three components of a force (a) or of the 

component following z and of the couple around z (b) (from G. Asch [ASC 91]) 
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Figure 3.35. Equivalent schema of a piezoelectric sensor 

 
 

If we measure the tension to the limits of the sensor or even the output of a 
tension amplificator (which is equivalent), we get: 
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ω
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=  [3.91] 

This is a first order low pass function with a cut-off frequency of のc=1/2ヾReq Ceq 
and the permanent value Q/Ceq depends on the impedance of the connecting cables 
and the input impedance of the tension amplificator. This situation is less promising 
than using a charge-tension convertor (see Figure 3.36) [BAU 61].  
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Figure 3.36. Piezoelectric sensor used with a charge-tension convertor 

 
 
If we take the operational amplificator as an ideal with Vi zero, we carry out the 

short circuiting of electrodes and the transfer function depends only on the counter-
reaction impedance: 
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 [3.92] 
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The response time k = RrCr of this kind of assembly no longer depends on the 
sensor or on the converter connection. For the values of Cr of the order of several 
hundreds of pF, and of Rr of the order of several 109 っ, we reach time constants of 
the order of several hundred ms and measurement tension of several mV/pC. For 
values of djj of the order of about 100 pC/N, we see that it is easy to reach sensitivity 
of the order of V/N. 

3.3. Thermal sensors 

Thermal measurands are the temperature and the variables related to 
accumulation or transfers of heat (specific heat, conductivity, thermal diffusion, heat 
flux, among others). In this book we have limited our discussion to certain sensors. 
With thermal sensors, the choice is simple, since in fact all these sensors are to some 
extent dependent on the temperature measurement. So, we are going to discuss 
temperature sensors in the following sections, beginning with the definition of 
temperature, modes of heat transfer [CAR 69] and, lastly, the principle of 
thermometry by contact. We will discuss the principle of thermoelectric sensors in 
some detail [GOL 60]. 

3.3.1. Concepts related to temperature and thermometry 

Our bodies can qualitatively evaluate the concept of hot and cold objects, but in 
this sense, though this concept is assimilated to the concept of touch in the normal 
five senses, it is both non-linear and residual: it depends on prior experience. Like 
the other human senses, hot and cold cannot be measured – we do not even know 
what it is we are trying to measure. The basic thermal sensor is, as we said above, a 
temperature sensor. The first question to be answered is how to define this odd 
measurand, which is not well understood in the physiological sense. 

 
Temperature is a macroscopic concept which, even though it makes sense only in 

terms of a number of sufficiently large atoms, is dependent on a microscopic variable. 
This variable is the kinetic energy of each particle of the macroscopic system. The 
temperature of a system is an expression of the mean kinetic energy of all the particles 
contained in the system. The connection between the microscopic kinetic energy and 
temperature is part of the field of statistical mechanics, and we will not discuss it here, 
but will only note that this field proves that temperature sensors must be instruments 
capable of evaluating the mean kinetic energy of a system. 

 
There are two ways a body can transfer its kinetic energy to another body. One is 

by contact that communicates the agitation of the first system to the second system; 
the second is electromagnetic radiation exchanged between the particles of the two 
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systems. The particles of the first body play the role of an electromagnetic source 
and those of the second body play the role of receiver. Temperature sensors are thus 
systems that can transform the kinetic energy of agitation communicated by contact 
or radiation into another form of energy, usually electrical.  

 
We will only describe transfer by contact, since transfer by radiation really only 

occurs with optical sensors. Temperature sensors were called thermometers for the 
first time in 1624. 

3.3.2. Thermodynamic temperature 

Many physical properties of materials depend on thermal agitation of their 
elementary components (of their mean kinetic energy). It is always possible to take 
such a property, measure it and link it to the temperature (in terms of location and 
equality). However, because it would be dependent on the body used and the 
property measured, such a temperature scale would be completely arbitrary. Only 
thermodynamic temperature has a universal character. 

 
Looking for this universality, Carnot stated that energy takes two forms: thermal 

agitation (heat) and organized energy (existence of privileged directions of speed) 
which is called work. This means there is a relation between the concept of 
temperature and that of heat conversion in work by means of a motor. Carnot 
introduced the idea of the ideal or reversible motor able to constantly operate the 
conversion of heat in work or the reverse (reversibility). He showed that the 
production さ of such a motor, functioning between two heat sources of temperatures 
し1 and し2, is independent of the technology used to construct it. This production 
depends only on し1 and し2: 

1

2

F( )
1

F( )

θη
θ

= −  [3.93] 

where F(し) is a function that depends on the temperature scale chosen. 
Thermodynamic temperature is defined by the choice of the scale as F(し) = T, so that: 

1

2
1

T

T
η = −  [3.94] 

To construct a reversible motor, we can follow a compression cycle and 
expansions that are, successively, isothermal and adiabatic to a mole of perfect gas. 
At this point we can see that the temperature appearing in the state equation of the 
mole of perfect gas, PV = RT, is Carnot’s thermodynamic temperature. 
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If the value of R were known with a sufficiently weak uncertainty, temperature 
measurement would be reduced to a pressure measurement. This is not the case and 
we must eliminate R in carrying out a relative measurement. To do that, we chose a 
physical phenomenon that depends solely on the temperature, one that can be 
reproduced with a better uncertainty than we find with R. The triple point of water 
fulfills this condition. With T0 as the value of the temperature of this fixed point, we 
carry out two pressure measurements P0 and P by placing the thermometer 
containing perfect gas first in contact with the triple point of water, then with the 
body whose temperature T we want to measure. The thermodynamic temperature 
scale is fixed, just as its Kelvin unit (K), upon which we impose the value T0. We 
take T0 = 273.16 K in order for R to have a value equal (to the closest uncertainty) to 
that produced by other measurement systems (R being the product of Boltzmann’s 
constant and of Avogadro’s number) in units of international measurement equal to 
8.32 J/K. 

 
The thermometer of this scale in principle must be a perfect gas thermometer. 

However, this kind of thermometer is too delicate for industrial use, and other 
devices have been developed which are capable of giving thermodynamic 
temperature measurements through the variations of other physical variables. The 
ITS 90 scale stipulates the physical methods of measurement and the formulae that 
help link diverse variables to temperature. These formulae are defined on the basis 
of reproducible temperatures (changing of state of pure bodies) measured once with 
a perfect gas thermometer. These fixed points, and interpolation formulae between 
the fixed points under exact conditions, constitute the temperature scale. 

3.3.3. Temperature scales currently in use and widely used measurements 

Two other temperature scales are in use today. Much of the English-speaking 
world uses the Fahrenheit scale for measuring thermodynamic temperature. This 
scale differs from the Celsius system used through most of the world. R values are 
different in the two scales. The R value of the Fahrenheit scale is related to a 
thermodynamic temperature scale called the Rankin scale. 

 
The two non-thermodynamic temperature scales are: 

– Celsius temperature that attributes the value 0˚C to the freezing point of water 
saturated with water to the pressure of 101,325 Pa (273.15 K). The relation between 
the Celsius temperature and the thermodynamic temperature is expressed as: 

し (˚C) = T(K) – 273.15  [3.95]  
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– Fahrenheit temperature, used mostly in the USA and the UK, takes from the 
Rankin scale the value 32˚F as the freezing point of water. The relation between ˚F 
and ˚C is expressed as: 

し (˚C) = 5/9 {し(˚F) – 32} [3.96] 

Following the example of the perfect gas thermometer, thermal dilation is the 
physical variable most useful for making a thermometer. Thermal dilation is at the 
basis of many thermometers used today. In all the bodies, the increase of mean 
kinetic energy, that is, of temperature, is expressed by a modification of the mean 
distances separating the elementary particles (atoms or molecules). In solids, this 
modification is often different depending on the direction, and taking into account 
this anistropy, we define the linear dilatation g1 in the following way: 

1

Te
∂α
∂

= `
`

 [3.97] 

Strictly speaking, g1 is weakly dependent on the temperature. However, in most 
industrial applications, small variations are disregarded. For isotropic materials, and 
therefore for fluids, we introduce the volumic dilatation coefficient gv: 

      
αv = 3α` =

1

V

∂V

∂T
 [3.98] 

Many thermometers, among them perfect gas thermometers, make use of fluid 
dilatation for temperature measurements, but this does not mean the measurand is 
easily converted to an electric variable. Using the phenomenon of dilatation helps us 
understand that it is crucial that thermometers carry out an efficient transfer between 
the system we want to measure and the thermometer. We will discuss this further in 
the following section.  

3.3.4. Heat transfers 

3.3.4.1. Conduction 

The origin of heat (of thermal agitation) cannot really be known. We can say that 
the increased temperature of a system does not retain the memory of whatever 
produced the increase. This is due to the fact that it is impossible to contain heat 
within a system. The agitation inevitably spreads to the outside environment by 
contact or radiation. This process can be slowed to some extent by isolation 
procedures, but the “leakage” is, in fact, inevitable. These phenomena are explained 



Physical Principles of Optical, Thermal and Mechanical Sensors     123 

by heat transfers; and we must understand these transfers in order to establish the 
equilibrium temperature of a system, which is fundamental to procedures of taking 
and recording temperatures. 

 
Figure 3.37 schematizes the group of thermal transfers that can occur between a 

temperature source T0 and the environment surrounding the temperature Ta. The 
source is maintained at a constant temperature T1, partly to compensate for losses it 
undergoes, and partly to give it the highest possible calorific capacity C. Three 
successive plates of different materials have been attached to this source, and Figure 
3.37 shows the temperature distribution from the source to the limit of the material 
stacking making contact with the exterior air. 

 
The transfer that occurs in the plates P1, P2, and P3 is transfer by conduction. It 

lowers the temperature of T0 to Tb. The last temperature decrease (from Tb to Ta) is 
produced by two other possible types of transfers: convection, which is a specific 
form of conduction, and radiation. It is important to note that Figure 3.37 does not 
show the order of importance of different thermal transfers. Transfer by conduction 
is not systematically more efficient than other types of transfer. 

 

 
Figure 3.37. Three types of thermal transfers 

 
 
Each of the gradient plates, which are made of different materials, show transfer 

by contact, that is, conduction. With the notations of Figure 3.37, we get: 
 

grad T
  
f 
ϕ #−λ grad

dS

T

 
Figure 3.38. Transfer by conduction 
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 [3.99] 

This equation shows that the quantity of heat leaving the source by time unit and 
the surface crosses without modifying the plates P1, P2, and P3. In other words, the 

heat flux has been conserved. The factor そi, which defines the gradient 
T

x

∆
∆

 of the 

temperature distribution in each material, is the thermal conductivity (Wm-1K-1). 
More generally, thermal conductivity is defined through Fourier’s law. This 
vectorially expresses the heat flux transmitted by conduction: 

( )T grad Tconductive grad  そ -そ  ϕ = − ≅
f ff

 [3.100] 

This expression only holds absolutely for the first equality because thermal 
conductivity is weakly dependent on temperature (almost always increasing). 

 
In the schema shown in Figure 3.37, we supposed there was no temperature 

discontinuity at the level of contact surfaces between the different plates. In reality, 
this would be impossible. At the junction between solid materials, there is always a 
jump in temperature, as shown in Figure 3.39. 

A Ba

T1
T2A

T3

T2B

T

A B

T2A T2B

Lg

 
Figure 3.39. Contact resistance producing a temperature jump (T2A – T2B) 

 
We characterize this temperature jump with a variable called contact resistance 

Ra. Despite the presence of this resistance Ra, which essentially depends on the 
quality of the surfaces in contact in the thickness zone Lg, there is always continuity 
of heat flux l because no energy can accumulate. We get: 

2 21 dQ
   

S dt
A B

a

T T

R
ϕ −

= =f
 [3.101] 
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Taking into account the weak conductivity of air, the contact zone between the 
two surfaces is responsible for the value of the thermal resistance. This explains why 
the value Ra cannot really be calculated precisely. This value is deduced from the 

relation 2 2A BT T

ϕ
−
f , which is measurable. 

3.3.4.2. Convection 

Convection takes as a starting point the fact of a mobile fluid taking part in a 
thermal transfer. In this transfer, the transmitted thermal flux increases considerably 
in relation to the flux produced by the conduction between a solid and a fluid. The 
fluid particles, their kinetic energy having been increased by contact (conduction) 
with the solid wall, displace and are then replaced by other molecules of weaker 
kinetic energy, capable of harnessing the heat of the wall. The movement of the fluid 
components permanently renews the fluid molecules in contact with the solid. 

Solid

TS

Movement of hot molecules

Kinetic  energy transfer

Arrival of new cold molecules

T∞

 

Figure 3.40. Principle of convective transfer 

Convection appears of its own accord when different temperature zones coexist 
in a fluid. Actually, its volumic mass と = PM/RT decreases with the temperature, so 
that the hot fluid tends to rise and the cold fluid tends to drop with the effect of 
Archimedes’ principle (or law of buoyancy). This type of convection is called 
natural convection. Of course, we can also force the movement of fluid by using a 
turbine. We then speak of a forced convection. The speed of the particle group 
becomes much higher and the flux exchanged by forced convection becomes higher 
by several orders of magnitude to that of natural convection. Calculating convection 
is difficult and often must be carried out by means of numerical calculation. In this 
text we will limit ourselves to phenomenological expressions of the transmitted flux 
by convection of a solid to a fluid. This occurs by means of a proportionality 
coefficient hc that exists between the exchanged flux and the temperature 
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differences, between the surface S of the solid Ts and the fluid far from the surface 
T∞ (in practice to several tens of thousands of µm): 

C

1 dQ
 h (T T )

dt s
S

∞= −  [3.102] 

In the air, hc is clearly equal to 5 W/m2K for natural convection and can reach 
some hundreds of W/m2K for forced convection. 

3.3.4.3. Radiation 

We have seen in our discussion of optical sensors (see section 3.1) that the 
surface dS of a body carried to a temperature T produces a radiation. The energetic 
flux of the radiation transmitted in a solid angle dっ around a direction   

f 
n  (see Figure 

3.41) is expressed by: 

    
dφ =  (ελLλ

0

0

∞
∫ (T ) dΩ dS cosθ) dλ  [3.103] 

where L0
そ (T) is the black body luminance at temperature T and iそ is the 

transmissivity of the surface dS at the wavelength そ. 
 

If the transmissivity iそ does not depend on そ (iそ = i is the gray body), the flux 
transmitted by radiation can be calculated in the half space above the surface dS by 
using the expression of the black body luminance 0L T( )λ  (see Figure 3.41): 

dφ  = ijT4dS  [3.104] 

with j # 5.68 10-8 Wm-2 sr-1K-4. 
 
 

θ

R

ε λ
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1
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∩∫ ε λ0

∞
∫ Lλ

0 (T) dS dΩ cos θ dλ

Lλ
0
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n

dΩ

=
C

1

λ5 (e C2 / λT )−1

 
Figure 3.41. Transfer by radiation 

(T) is the black body luminance 
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We can see that the flux exchanged by radiation grows very quickly with the 
temperature. In section 3.1 we also saw that with two facing objects of 
transmissivity i and ia that are at two temperatures T and Ta, the flux lost by the 
surface dS at the temperature T is: 

    dφ = ε εa  σ (T4 − Ta
4

)dS  [3.105] 

If T is close to Ta, dφ  can be developed to the first order: 

    dφ ≅ 4εεa  σ T3 (T −Ta )dS  [3.106] 

This is how we find a phenomenological law identical to that of convection with: 

    hR = 4εεa  σ T3  [3.107] 

For a body at ambient temperature, we find hr of the order of five. So, in air 
without movement, at a temperature close to ambient, the sum of the convective and 
radiative transfers can be expressed as: 

φ = h(T – Ta)dS with h = 10 Wm-2 K-1 [3.108] 

3.3.4.4. Contact temperature measurement of solids 

When a thermometer comes in contact with the solid body to be measured, 
several thermal transfers will assure the exchange of kinetic energy between the 
thermometer, the solid and the surrounding environment (which we assume to be 
fluid). In order to establish an equation that regulates, at any time, the relation 
between the temperatures of the thermometer, the body and the surrounding 
environment, we must make note of the instantaneous heat reading of the 
thermometer, the equality between the flux gained by unit of time and the amount of 
heat accumulated by unit of time. The factors which govern the equation are the 
thermal capacity of the thermometer C, its geometry and the contact resistance 
between the thermometer and the solid R and the phenomenological coefficient h of 
the equation (see equation [3.108]) expressing the transfer between the thermometer 
and the ambient fluid. 
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This differential equation is of the first order. The response time k of the 
thermometer is expressed by: 

1
C

hs
R

τ =
+

 [3.109] 

with S being the surface of the thermometer in contact with the ambient fluid. 
 
For the usual values of C, S, and R, we get k of the order of the second. This 

order of magnitude shows that temperature sensors usually are very slow. To 
improve this response time, the most frequently used solution is reducing the caloric 
capacity of the thermometer by reducing to the minimum its geometric dimensions. 
However, it is important to keep in mind that response time is not intrinsic to a 
thermometer. It depends on how the thermometer is used. 

 
Another consequence of the heat equation is that the equilibrium temperature of 

the thermometer T∞  is not equal to the temperature of the solid Ts: 

 T T (T T )
1s a s

hs

hs
R

∞ − = −
+

 [3.110] 

The deviation between T∞  and Ts, which is a systematic error of the 
thermometer, can be minimized by improving the thermal exchange between the 
thermometer and the solid and by reducing the exchange with the surrounding 
ambient fluid. This is done in several ways: by reducing the contact resistance (with 
thermal sticking or welding between the thermometer and the solid), by increasing 
the contact surface by burying the thermometer, and by reducing the surface 
exchange with the surrounding environment (reducing the length and diameter of the 
connection wires between the thermometer and the instrumentation). 

3.3.5. Contact thermometers  

Thermometry by contact is done by two types of thermometers. These are 
resistive thermometers that use the dependence of electric resistance on temperature 
and thermocouples that use the Seebeck effect. 

3.3.5.1. Resistive thermometers 

Resistive thermometers are made of two materials: metals and semiconductors. 
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We saw in section 3.1 that electric conductivity is proportional to mobility and to 
the number of carriers by unit of volume. 

 
With metal, electric conductivity decreases with the temperature because the 

number of current carriers in a metal does not, in practice, depend on the 
temperature. The only dependence on temperature comes from mobility, which 
decreases with the number of collisions per second and thus with the temperature. 
This decrease is approximately linear. 

 
In the case of semiconductors, the temperature dependence is mostly controlled 

by the exponential growth of carriers with the temperature. Resistance decreases 
very rapidly with any drop in temperature. This variation is exponential, which 
explains why resistive thermometers are highly sensitive to semiconductors. 
However, their stability is clearly inferior to that of metallic thermometers. This 
factor, more than their linearity, explains why metallic thermometers are preferred as 
reference thermometers. 

3.3.5.2. The Seebeck effect 

Suppose we weld together the ends M and N of two different kinds of metallic 
wires (see Figure 3.42) maintained by an outside energy supply at different 
temperatures T0 and T. We can observe that in the closed circuit between the two 
sources of heat T0 and T circulate not only a heat flux but also an electric charge 
flux, which is another term for a current. 

 

i > 0

i > 0

T0 T Heat
source

Heat
source

Metal A

Metal B

 
 

Figure 3.42. Schema showing principle of the Seebeck effect 
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We can express the creation of this electric current by saying that maintaining 
constant temperatures from two heat sources leads to the appearance of an 
electromotive force in the loop metal A + metal B. This A-B pair is called a 
thermocouple. We make EAB (T, T0) the algebraic value of this electromotive force 
in considering it to be positive because it makes the current circulate from A towards 
B in the junction M to T0. 

 
Of course, by reversing A and B or the temperatures T and T0, we get: 

EAB (T, T0) = – EBA (T, T0) = – EBA (T0, T) = EAB (T0, T) [3.111] 

The electromotive force of the thermocouple can be proved experimentally by 
opening the circuit A-B and placing a voltmeter with all points at a single 
temperature between the two entry points P and Q (see Figure 3.43). 

 

 
Figure 3.43. Measuring the Seebeck effect 

 
 
If T = T0, we observe that the deviation of the voltmeter is canceled and we can 

also verify the sign (Vp – Vq) by reversing T and T0 or the metals A and B described 
by equation [3.111]. 

 
The laws of thermodynamics (the first principle and the Onsager relation for 

irreversible processes) allow us to establish the fundamental laws governing 
thermocouples [MAC 62]. Thermodynamics does not give any explanation for the 
basic physics of the phenomenon (which can be found by studying, through solid 
state physics, the electron distribution in the different energies in the two metals 
[KIT 83]). However, the description physics gives us of the phenomenon is 
sufficient for studying temperature sensors. Thermodynamics shows us specifically 
that the Seebeck effect is the result of the Peltier and Thomson effects.  
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3.3.5.3. The Peltier effect 

Ensemble at uniform T

i
A B

 

Figure 3.44. The Peltier effect 

 

 

Suppose that two different metals A and B are welded and traversed by a current 
i (see Figure 3.44). When the current i traverses the welding in the direction AsB, 
with the ensemble maintained at a temperature T, a certain power is freed in addition 
to the Joule effect. This power dQ/dt is called the Peltier effect. It is proportional to 
the current intensity i which traverses the welding and its sign depends on the 
direction of i, helping us to differentiate it from the Joule effect, which is always 
positive: 

dQ
( ) i

dt A B
Tπ −=  [3.112] 

The proportionality coefficient to i, ヾA-B (T), depends on T and changes sign 
when we reverse i: 

    π A−B (T ) = −π B− A(T )  [3.113] 

where A-B means that the direction of the current is of A towards B. 

3.3.5.4. The Thomson effect 

Suppose a conductor is made of one metal with two extremities P and Q at 
different temperatures T + dT and T (dT > 0). The conductor is traversed by a 
current i of P towards Q. 

 
During a time interval dt, a certain quantity of heat is transmitted by the Joule 

effect. But we also observe an emission or a heat absorption dQ of a different 
physical nature. This quantity dQ is positive (heat emission towards the outside) 
when i circulates from P towards Q and is negative (the metal absorbs the heat) 
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when i circulates from Q towards P. Between two distant points of dx on the 
conductor with the different temperatures of dT, the exchange of d2Q is given as: 

2 ( ) grad(T). i.dx.dtAd Q Tσ=
iiiif f

 or again 
2

A ( ). .
d Q

T dT i
dt

σ=   [3.114] 

where dT and i are algebraic variables. 

3.3.5.5. The Seebeck electromotive force 

In applying the first principle of thermodynamics, we find that the variation of 
the electromotive force of the thermocouple (M – N), dEAB(T,T0), when the welding 
temperature N varies from dT, is equal to: 

( )0 ( , )
( ) ( )AB AB

A B

d E T T d
T T

dT dT

π σ σ= + −  [3.115] 

The Onsager relation then helps us find a second relation: 

0 ( , ) ( )AB ABd E T T T

dT T

π
=  [3.116] 

after derivation in relation to T, the above equation is also written as: 

2
0 0

2

 ( , )  ( , )( ) AB ABAB d E T T d E T Td T

dT dT dT

π
= +  [3 .117] 

from which we deduce, by using the relation in [3.115]: 

2
0

2

 ( , )AB A Bd E T T

TdT

σ σ−
=  [3.118] 

These equations clearly show that EAB is not a linear function of T. With the help 
of the relations just presented, we establish the Seebeck effect created in the circuit 
shown in Figure 3.43. For this, we maintain M to T0 and progressively raise N from 
T0 to T1 so that the integration of dEAB(T, T0) from T0 to T1 leads to: 

[ ] ( )1 1

0 0
AB 1 0 0 1 0E ( , ) ( , ) ( ) ( ) ( ) ( )

T T
AB AB AB A BT T

T T d  E T T ヾ T ヾ T  T T  dT= = − + σ −σ⎡ ⎤⎣ ⎦∫ ∫  [3.119] 
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This fundamental relation shows that we can deduce the electromotive forces of 
the two couples A-B and C-B from the couple A-C: 

    EAB (T1, T0 ) − ECB(T1 ,T0 ) = EAC (T1,T0 )  [3.120] 

Equation [3.120] leads to establishing tables giving the electromotive force 
(EMF) of couples made by combining a metal B of reference (Pb or Pt) with 
different metals or alloys. From these tables we can deduce the EMF of all 
thermocouples using a variety of metals. 

 
The measurement of a temperature T1 with a thermocouple A-B that has a 

welding reference at T0 can be deduced from the measurement with the same 
thermocouple having a welding reference at T’0 by: 

    EAB (T1, T0) = EAB(T1, T0
' ) + EAB(T0

' ,T0 )  [3.121] 

This relation is used when T'0 is the ambient temperature and we want to deduce 
the EMF value in relation to T0 = 0˚C, the latter being the reference temperature 
found in standardized tables. The electromotive force is often created by 
compensation housing that allows for thermocouple use without a reference source. 

 
It is important to remember that all isothermal metals C introduced into the loop 

A-B do not modify the EMF of the thermocouple A-B. This allows us to construct 
couples by heterogeneous welding. This fact also helps explain measurement with 
the help of a voltmeter, as we have already described in section 3.3.5.2. Figure 3.43 
can be schematized by Figure 3.45, in which we see that the branch PQ develops a 
zero EMF if the metal C is at a uniform temperature T', so the only EMF is that of 
the thermocouple A-B. We can introduce as many metals as we wish between P and 
Q provided the temperature of the ensemble remains uniform. 

 

 
 

Figure 3.45. Measurement principle of the EMF of a thermocouple 
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3.3.6. Features and uses of thermocouples 

A normalized notation [ANS 82] of thermocouples (in capital letters such as E, J, 
K, N, T, S, etc.) helps us recognize their alloys. While value tables of electromotive 
forces of these couples [WIL 90] are cross-referenced to maintain standards, it is 
preferable to carry out calibrations for each thermocouple before its use, especially if 
the sensor is old and has already had several or more assemblies [ASH 81]. In fact, 
all chemical or physical variations of the components can cause variations of the 
EMF. 

 
Even though many alloys can be used in making thermocouples, less than ten or 

so are currently used for this purpose. The couple platinum-platinum plated with 
10% rhodium with sensitivity of the order of 10 µVK-1 offers the lowest uncertainty 
(< 0.1˚C) because of the attainable purity of its components and their chemical 
stability. It can be used from 300 to 1,800 K but more often is used above > 500 K 
in which its stability and manageability often make it preferable to other 
thermometers, excepting platinum resistance thermometers, which are considered 
the reference. 

 
Thermocouples made of metal alloys have very weak sensitivities. The most 

sensitive of these is the type E thermometer (chromel-constantan); this has a value 
of around 80 mVK-1. We can replace the metal base couples with semiconductive 
junctions (for example tellurium, bismuth or germanium with different dopings). 
Although the transmitted electromotive forces are in this case clearly higher, the 
manageability of these semiconductive thermocouples is still today limited, in any 
case, for industrial usages. It is important to keep in mind that the calibration curve 
of a thermocouple, whatever its composition, is never linear – but only within a 
narrow temperature range. This means that sensitivity is strongly temperature-
dependent. 

 
The sources of disturbances in thermocouples are, at low frequencies, Johnson’s 

noise in resistance wires and at high frequencies, electrostatic and magnetic 
couplings. 

 
The manufacture and usage of thermocouples depends on two factors: 

– the welding must be as small as possible in order to insure a weak response time; 

– the assembly must be both mechanically solid and protective against disturbance. 
 
The welding and connecting wires are usually placed within a protective metallic 

sheath. The welding is sometimes in electrical contact with this sheath. The wires 
are always isolated by a silica powder or a compacted alumina. When the structure 
to be tested is metallic and can be grounded with the instrumentation, the assemblies 



Physical Principles of Optical, Thermal and Mechanical Sensors     135 

with which the welding is connected to the sheath are preferred for suppressing 
usual disturbances. 

 
In principle, two thermocouples are necessary for measurement (see Figure 

3.45). One of them is placed in contact with the structure whose temperature T is to 
be measured; the other is placed in a protective shield whose temperature T0 is 
known and fixed. It is best to have T0 equal to 0˚C, the reference temperature of 
tables. 

 
However, this kind of assembly is seldom used in industrial settings. In such 

situations, the welding reference is replaced by an electromotive force that, for an 
ambient temperature Ta, constantly gives the value EAB (Ta, T0). This force is placed 
in series with the welding A-B fixed on the structure. The total EMF of the ensemble 
is expressed by: 

0 0( , ) ( , ) ( , )AB AB a AB aE T T E T T E T T= +  [3.122] 

this is the value we would have by using a second couple at the reference 
temperature T0. The EMF EAB (Ta, T0) (compensation casing) can be produced by 
the disequilibrium tension of a Wheatstone bridge containing a thermistor sensitive 
to Ta. Regulating different impedances and tensions of the bridge gives us  
EAB (Ta, T0) with a weak uncertainty if the ambient temperature does not vary more 
than 50˚C during measurement. When the compensation casing cannot be directly 
connected to the thermocouple, intermediary cables, called compensation cables, 
must be used. This avoids systematic errors that can occur by creating parasite 
EMFs at A-B junction connections if the connection was made without proper 
precautions. Obviously, these compensation cables are dependent which A-B 
couples have been used. Their sheath is usually the standard color of the 
thermocouples currently in use. 
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Chapter 4  

Analog Processing Associated with Sensors 

4.1. Introduction 

Correct measurements are crucial to the field of instrumentation. No matter what 
sensor is being used, many influence parameters or disturbances such as 
temperature, pressure, mechanical constraints and electromagnetic environment can 
contribute to measurement error. These kinds of problem are intrinsic to sensors. 
Furthermore, the acquisition chain must link an electronic device that can condition 
information and send it to a transducer. This information relates to the variable to be 
measured and provides the closest possible representation of the observed physical 
phenomenon. 

 
 

sensor filter amplifier
variable 

measurable 
analog processing

digital 
processing  

& data analysis 

 

Figure 4.1. Simplified functional schema of a measurement chain 

 
 
Most analog possessing of a signal sensor contains filtering and amplification 

functions (Figure 4.1). These functions help us retrieve relevant information from 
signal sensors and take it to a compatible and sufficient electric level so that the 
information can be then used by the system or equipment. This process assures 
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proper interface between user and displays, measurement devices and 
microcomputers. 

 
Because measurement systems depend on reducing electronic noise in order to 

function correctly, in this chapter we will discuss in detail the aspects related to 
amplification functions, as well as the different sources of intrinsic noise in 
electronic devices. The concept of filtration will be dealt with in Chapter 5. 

4.2. The problem of electronic noise 

4.2.1. The origin of electronic noise 

Electronic devices are subject to exterior noise sources (the field of 
electromagnetic compatibility studies these sources) and to internal noise sources 
caused by voltage variations and by circuit currents themselves. 

 
There are two sources of exterior noise: 

– one source of noise comes from electric disturbances transmitted by 
conduction. These can include: the influence of network distribution of electric 
energy of 230 V to 50 Hz; supply undulations (for example, alternating phase 
recovery at 100 Hz); power signals functioning at commutation frequencies from 
about 100 Hz to 100 kHz (breaks in energy supply); 

– another source of noise can be radiated electric disturbances, including 
radiofrequency transmitters, electromagnetic fields created by high variations of 
voltage or current sometimes emitted by electric machines, such as motors or 
transformers or, most frequently, by static converters such as clippers or inverters. 

 
Noise sources that come from inside components have many origins and fall into 

five categories. We discuss these below. 

Thermal or Johnson’s noise 

This kind of noise corresponds to the electrons in resistive components. Its 
nature is random and does not depend on the value of the current traversing the 
resistive element. This is because the displacement speeds of the charges linked to 
thermal phenomena are much higher than the speeds of the group creating the 
current in the conductor.  

 
Thermal noise is expressed by an effective noise voltage, given by the relation:  

bB BRTkU ....42 =  [4.1] 
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Here, kB is Boltzmann’s constant (kB = 1.38.10-23J/K), T is the absolute 
temperature in Kelvin (K), R is the ohmic resistance of the element, and Bb is the 
frequency range of usage (the bandwidth). The equivalent schema becomes that of a 
voltage generator (or Thevenin generator) as shown in Figure 4.2. 

UR

               

RR

I

 
 

Figure 4.2. Equivalent sources of a resistance noise 

It is possible to use another, equivalent schema for a noise source using a current 
or Norton generator. In this case, it is enough to divide the expression given above 
by R2 to get a clear expression of noise current. 

f
R

T
kI ∆..42 ⎟

⎠
⎞

⎜
⎝
⎛=  [4.2] 

The spectral density of the voltage of thermal noise is written as: 

( ) RTkf BU ...4=+Φ  [4.3] 

For a resistor of 1 kっ, for example, at ambient temperature (T = 300 K), this 
spectral density of noise is close to 16.10-13 V2/Hz, or 4 nV/Hz1/2. Consequently, the 
spectral density of thermal noise is constant (see Figure 4.3). That is why this kind 
of noise is also called white noise. Thermal noise is present in all the resistive linear 
elements, including microphones, loudspeakers, and antennae. With antennae, noise 
is the product of the thermal agitation of air molecules. 

Shottky’s or shot noise 

Shot noise is present in all semiconductors (diodes and transistors), and is due to 
random instances of charge carriers crossing P-N junctions. The direct external 
current, though it seems constant, in fact fluctuates randomly around its mean value 
ID (see Figure 4.4). 
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Figure 4.3. Spectral density of resistance noise 
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Figure 4.4. Fluctuation of the direct current (t) of a P-N junction 

An electric charge (q) crossing a potential barrier is a Poisson process, so the 
current i(t) is written as: 

( ) ( )∑ −=
j

jttqti δ.  [4.4] 

The sum j corresponds to the crossings that occur per second. The probability 
density of the time interval T1, separated by two successive crossings, is expressed 
by (this is a Poisson process): 

( )tpT λλ −= exp
1

 [4.5] 

where そ represents the average number of carriers crossing the barrier by unit of 
time. We then see that the intercorrelation function Ri(k) of i(t) can given as: 

)(..)(..).()( 222 τδτδλλτ DDi IqIqqR +=+=  [4.6] 
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Here ID represents the average value of the current i(t). The spectral density of 
the power of the current i(t) is calculated with the help of the Wiener-Khintchine 
theorem applied to equation [4.6]. With a direct current we get: 

( ) DDii qIIdfjRf +=−= ∫
+∞

∞−

2)2exp().( ττπτΦ   [4.7] 

The second term of this expression corresponds to the spectral density of the shot 
noise (ぱiG). This means that shot noise, like thermal noise, is white noise. Because 
of this, shot noise cannot be differentiated from thermal noise as soon as they both 
become present in the same electrical circuit. On the other hand, shot noise only 
exists when a current ID crosses the potential barrier. 

 
In conclusion, an effective shot noise current (IG) depends on the direct current 

(ID) and the range of working frequency (Bb) according to the relation: 

bDiGbG BqIfBI 2)(22 == Φ   [4.8]  

Flicker or l/f noise 

This noise has various origins. In bipolar transistors it is due to defects on the 
semiconductor surface in the depletion zone of the base-emitter, the carriers having 
been randomly trapped in the crystalline lattice (also called mesh). The energy of the 
resulting noise is mostly concentrated at low frequencies (between 0.1 Hz and 10 
Hz) and the spectral amplitude density has, on a logarithmic scale, a linear decrease 
according to the frequency (f). Flicker noise is also a function of the direct current ID 

and can be written approximately as: 

b
D

F B
f

I
KI ..1

2
α

=  [4.9] 

where K1 is a constant belonging to the component and g is a number included 
between 0.5 and 2. This type of noise is mostly caused by active components but 
also by carbon resistances. Flicker noise only exists in carbon resistances if the latter 
are traversed by a current ID, with thermal noise always being present. That is why 
metallic resistances in low noise assemblies (replacing carbon resistances) never 
present flicker noise. 
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Figure 4.5. Spectral density of flicker noise 

Burst or popcorn noise 

This is another kind of low-frequency noise (lower than several kHz). It is found 
in integrated circuits and discrete transistors. The nature of popcorn noise is not 
completely known, but we can say that it is linked to the presence of contaminating 
heavy metal ions in the circuits. For example, components doped with gold present 
an especially high level of popcorn noise. The spectral density of noise can be 
expressed as: 

.

1

.
22

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

c

D

b

P

f

f

I
K

B

I
β

  [4.10] 

where K2 is a constant belonging to the experimentally established component, く is a 
number between 0.5 and 2, and fc is a frequency of the given noise process. The 
spectral density of the jump has a speed similar to that of a low pass filter with a 
decrease at higher frequencies in 1/f2. 
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Figure 4.6. Spectral density of popcorn noise 
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Avalanche or Zener noise 

Avalanche noise is produced by creating an avalanche in the P-N junctions of 
Zener diodes. In the depletion zone, holes and electrons acquire enough energy to 
create electron hole couples by colliding with silicon atoms. This phenomenon 
occurs by means of random series of noise peaks. The resulting overall noise level is 
higher than that of shot noise for the same current amplitude. The voltage of useful 
noise, together with the Zener voltage, is strongly dependent on component structure 
and the homogeneity of the silicon crystal. In practice, we measure spectral densities 
of noise of the order of 10-14 V2/Hz for a Zener current Iz = 0.5 mA, which is the 
equivalent of a resistance of 600 kっ to the ambient temperature. This means that it is 
not advisable to use Zener diodes in assemblies requiring low noise levels. 

4.2.2. Noise in an electronic chain 

An electronic chain is made of many discrete components and integrated circuits 
that themselves have a large number of transistors and resistances integrated into the 
same substratum. This means, in practice, that studying noise with the help of an 
equivalent schema representing the noise of the ensemble is a complex, often 
irresolvable task. To simplify the problem, we represent the noise of each 
component, independently of the true schema, by considering the noise as a 
quadrupole (without noise) having a source of voltage noise at input (Un) and a 
source of noise current (In), as shown in Figure 4.7. 

 

Un

In
Quadrupole

without noise

 
 

Figure 4.7. Noise generators at quadrupole input 

 
 
The two sources of noise are established experimentally by measuring their 

respective spectral densities. For integrated circuits or operational amplificators, 
these spectral noise densities in voltage and in current have speeds shown in Figure 
4.8. 
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Figure 4.8. Speed of spectral noise densities in an operational amplifier 

These noise specters have both a white noise component and a noise component 
in 1/f. 

 
Measuring the noise sources of a quadrupole is done with a spectrum analyzer. 

This device analyzes the output signal for several input configurations (see Figure 
4.9): 
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Figure 4.9. Measurement of spectral noise densities of quadrupole noise 

– When the input is short-circuited (R = 0), the spectral density of the noise 
voltage equivalent to the input is simply expressed as: 

22
ni uu =    [4.11] 
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and the spectral density measured by the spectrum analyzer is: 

222 .)( nvmes ufAu =   [4.12] 

Knowing Av(f), we can easily deduce un
2. 

– When the input is charged by a source resistance R = RE, the spectral density of 
the equivalent noise voltage at input becomes: 

nnEnEEni iuRCiRuuu ...2. 22222 +++=   [4.13] 

where the term uE corresponds to the thermal noise of the source resistance, we get: 

EE RTku ..42 =  [4.14] 

where C represents the correlation coefficient (a number between -1 and +1) of the 
noise sources un and 1n. 

 
By taking a very high value of RE, the third term of the equation is preponderant 

even if the measured spectral density is as follows: 

2222 ..)( nEvmes iRfAu =   [4.15] 

This allows us to establish the source of the noise current In. An intermediary 
resistance value for RE helps us find the correlation coefficient C. 

4.2.3. Signal-to-noise ratio 

Let Ps be the power of the useful signal at the output of an electronic chain and 
Bs is the power of the corresponding noise. We then define the signal-to-noise ratio 
(S/B)s at the output of the chain with the relation: 
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  [4.16] 
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In the same way, the signal-to-noise ratio at the input of the chain can be written as: 
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 [4.17] 

These two relations help us establish the quality (with regard to noise) of an 
electronic chain by defining the noise factor as: 
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where G is the power amplification of the electronic chain. If this amplification is 
ideal, it carries no supplementary noise to output, only amplifying noise at input. We 
get: 

BS = G.BE [4.19] 

In this case, the noise factor is equal to the unity (0 dB). Another definition of 
the noise factor is: 

total power of  ouput noise
F =

power of  output noise due to input generator
  [4.20] 

By using the spectral densities of equivalent noise at input of a quadrupole 
(equation [4.13]), the noise factor is written: 
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When the noise sources un and in are weakly correlated, the speed of F according 
to the source resistance is shown in Figure 4.10. 
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Figure 4.10. Evolution of noise factor F according to source resistance RE 

The above expression shows that the noise factor of a quadrupole is always 
higher than the unit. Consequently, signal analysis always involves some 
degradation of the signal-to-noise ratio (see equation [4.18]). With reception 
systems, or with weak signal amplification coming from sensors, the additive noise 
at the first stage of reception or at preamplification plays an essential role in 
conditioning the signals to be analyzed. 

4.3. Amplifiers 

4.3.1. Operational amplifier 

An operational amplifier or integrated differential amplifier is an integrated 
circuit which, in ideal conditions, provides an output voltage proportional to the 
difference of input tensions U+ and U- of the observed limits “+” (not inverted) and 
“-” (inverted) of the component. The positive coefficient A is the voltage differential 
amplification of the amplifier. In practice, this is very high, of the order of 104 to 
106. The power supply of these circuits goes from several volts to several dozen 
volts maximum. The circuits cannot function by themselves (during open loop), 
since they need differential tensions lower than a few µV in order not to “saturate” 
(see the transfer feature in Figure 4.13). 
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Figure 4.11. Schema for a differential amplifier and its features 

This is why, from the perspective of linear functioning, the operational amplifier 
is always used with a retroaction feature. This kind of amplifier can also be used in a 
non-linear functioning mode, with or without a positive reaction. In this instance, the 
feature is used for a broader input voltage dynamic. For these applications 
(comparator, trigger, astable, etc.), the output can only take two values: Usat+ or 
Usat–. 

 
In order to study all possible feedback types, the operational amplifier can be 

assimilated to a quadrupole of simplified design. This is shown in Figure 4.12. 
 

I1A I2A

U1A U2A
Ze

Zs

Av.U1A
 

Figure 4.12. Quadrupole design of a differential amplifier 

Ze represents the input impedance of the operational amplifier, with Zs its output 
impedance, and AV the amplification of the differential voltage. 

4.3.1.1. Feedback and counter-feedback in currents and tensions 

We can study an operational (or differential) amplifier that functions by means 
of amplification in linear regime, by viewing the amplifier feedback (or counter-
feedback block) as the linking of two quadrupoles (Figure 4.13). One is part of the 
direct chain (Av) and the other part of the return chain or retroaction loop (BR). 
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Figure 4.13. Schema of an amplifier with retroaction block 

Following the serial or parallel linkage of input dipoles of the two quadrupoles, 
we can distinguish four possible configurations: 

– serial input dipoles and parallel output dipoles; 

– serial input dipoles and serial output dipoles; 

– parallel input dipoles and parallel output dipoles; 

– parallel input dipoles and serial output dipoles. 
 
These four possibilities correspond to four types of feedback, either of voltage or 

of current. They can be created with an operational amplifier. The following 
examples illustrate, respectively, these four configurations. 

 
– The counter-feedback of applied voltage applied in voltage (serial-parallel). 
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Figure 4.14. Counter-feedback assembly of applied voltage in voltage 

In this assembly (known as a non-inverted amplifier), the output voltage U2 has 
servo-control to the input voltage U1 through the intermediary of R1 and R2. The 
transfer function of the return block is a constant without dimensions  
BR = Kv = R1/(R1 + R2). Since this is a retroactive effect of re-injection of voltage, 
input impedance is multiplied by (1 + T), where T = AvKv. The output impedance is 
approximately divided by this term, on the condition that the generator impedance 
is, ideally, negligible in view of Ze. If the amplification Av of the direct chain is high 
enough, which is in practice true for operational amplificators, the input impedance 
can be considered as infinity (I1 = 0), the output impedance as zero, and the voltage 
amplification as equal to 1/Kv = 1 + (R2/R1). 

 
– The counter-feedback of a current applied in voltage (series-series). 
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Figure 4.15. Counter-feedback assembly for a current applied as voltage 
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As with the output current I2 = U1R/R1 ≈ U1/R1, this has servo-control of the input 
voltage U1: this is how voltage current convertors or transconductance amplifiers are 
made. The transfer function of the return block is consistent with an impedance  
BR = ZR = U1R/I2, (equal to R1 if we disregard I1). This assembly is similar to the one 
shown before it, except that the charge resistance fluctuates because it replaces R2. 
The input and output impedances are very high; they are both multiplied by (1 + T). 
The term T corresponds to the transfer function in open loop of the assembly. It is 
written T = g.ZR. Here, g represents the assembly transconductance. If g is high 
enough, ideally infinite (or if I1 can be disregarded), the input impedances are 
infinite. This means the voltage-current convertor is perfect and the 
transconductance equals 1/ZR = 1/R1. 

 
– The counter-feedback of voltage applied as current (parallel-parallel). 
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Figure 4.16. Counter-feedback assembly of voltage applied as current 

This assembly is also called a current-voltage convertor or transresistance 
amplifier. The transfer function of the return block is an admittance BR = YR = -1/R2 
(it is negative for this assembly.) If we suppose that the operational amplifier 
imposes a nearly zero voltage (U1 = 0), or is negligible in relation to U2, we obtain  
U2/I1 ≈ U2/I1R = -R2. This means the output voltage has servo-control of the input 
current. In such cases, the input impedance is zero. In reality, it is divided by (1 + T) 
where T=YR.z, z being the “transimpedance” of the direct chain. The output signal is 
only approximately divided by (1 + T) if the generator impedance of the current is 
not too small in comparison to the input impedance Ze of the amplifier. If z tends 
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towards infinity, we get an ideal current-voltage convertor with an impedance 
transfer of 1/YR (-R2 for the assembly shown in Figure 4.16).  
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Figure 4.17. Counter-feedback assembly of current applied as current 

With this assembly, the output current I2 has servo-control of the input current I1. 
This current crossing the charge resistance is then shared among the resistances R1 
and R2, which are both linked in parallel because U1 = 0. Under these conditions, we 
can easily show that I2 = I1R(R1 + R2)/R1 ≈ I1(R1 + R2)/R1. The return chain is thus a 
coefficient of current transfer without dimension BR = Ki. The loop transfer function 
is T = Ai.Ki with Ai being the amplification in current of the direct chain. Since this 
is a retroactive effect in current, the input impedance is divided by (1 + T), and the 
output impedance is multiplied by this term. When Ai is very high or if we suppose 
that U1 = 0, the input impedance is zero and the output impedance is infinite, the 
current generator is then ideal and the current amplification equals  
1/Ki = (R1 + R2)/R1. 

 
These assemblies are important for conditioning signals before the measurement 

chain is introduced, especially with signals coming from sensors. According to the 
nature of the available signal, we can make use of one or the other of these counter-
feedbacks.  
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4.3.1.2. Principle features of operational amplifiers 

An operational amplifier is ideal if the differential amplification Av is infinite, if 
the output voltage is zero when the input differential voltage is zero, and if it has an 
infinite input impedance as well as a zero output impedance. These conditions must 
exist throughout the entire range of frequency usage. Since in fact this kind of ideal 
amplifier does not exist, we will summarize the principle features of integrated 
differential amplifiers. 

4.3.1.2.1. Bandwidths 

When the input signals are of high speed and amplitude, the linear functioning of 
the amplifier is limited by its maximum variation speed (also called the slew rate). 
This slew rate corresponds to the maximum gradient of the output signal, so that 
when the input signal exceeds this value, there is a reduction in amplitude and major 
distortion. In such cases, we speak of a “high signal” bandwidth. With these circuits, 
the term varies from 0.5 V/µs to 20 V/µs, but specific amplifiers can reach several 
hundred V/µs and 1,000 or 2,000 V/µs for hybrid components. 

 
When the input signals are of low amplitude (“small signals”), the slew rate no 

longer appears. However, sometimes disturbances can create a bandwidth through 
the Miller effect. At the first order, we can see that the transfer function Av in the 
open loop of an operational amplifier (the relation between the output voltage Vs and 
the differential voltage of input i in sinusoidal regime) is given as: 
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0   [4.23] 

where A0 is the amplification in static open loop, f is the working or using 
frequency, and f0 is the cut-off frequency. For example, for an operational amplifier 
TL081, A0 is higher than 2.105 and f0 is close to 10 Hz (see Figure 4.18). 

 
The asymptomatic forms of the module (which is that of a first order bandwidth 

filter) of this function, in discontinuous features, are: 

– 0AAv =   for f << f0  [4.24] 

– 
f

fA
Av

00 .
=   for f >> f0  [4.25] 
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Figure 4.18. Frequency response of an operational amplifier 

Subsequently, the transfer function of an assembly using an operational amplifier 
in linear regime (with retroaction) keeps approximately the same expression. Here 
we suppose that A0/A’0 is much higher than the unit in which A’0 indicates the static 
amplification of the assembly: 
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In this case, we get a new cut-off frequency f╆0: 
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or a product called the bandwidth gain: 

TffAfA == 0000 .'.'   [4.28] 

This bandwidth gain corresponds to the transition frequency fT, for which the 
voltage amplification in open loop becomes equal to the unity (gain of 0 dB). This 
expression shows that the multiplication term between gain and cut-off frequency 
called “bandwidth” is conserved. We see that the bandwidth of an operational 
amplifier assembly is accordingly reduced when the static amplification of the 
closed loop is high. 
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4.3.1.2.2. Input impedances 

Two types of impedances exist at the input of an operational amplifier (see 
Figure 4.19). These are: 

– differential impedance (Zed); 

– common mode impedance (Zmc). 
 
The differential input impedance of amplifiers with bipolar transistor bases 

rarely exceeds a few dozen Mっ. At low frequencies, this impedance can be 
assimilated to a resistance with a “small signal” expression of: 
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T
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40

2.2
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β
    [4.29] 

where く is the current amplification of transistor currents, IC is the polarization 
current, and UT = kT/q = 25 mV (at 25˚C) , just as IB = IP

+ = IP
¯ = I0.  
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Figure 4.19. Input impedances and polarization currents 

The input resistance in common mode (as seen on inverting and non-inverting 
inputs in relation to the ground), in the same conditions, is expressed by: 

Emc RR .2β=   [4.30] 

where RE indicates the polarization resistance that links the emitters to the power 
source. Rmc is in practice much higher than the differential input resistance  
(Red < <Rmc).  
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However, using JFET or MOSFET transistors in the differential stage of 
operational amplifiers helps us get, at low frequencies, very high input impedances 
(of the order of 1012 っ). 

 
Nevertheless, for high frequencies it is important to bear in mind the differential 

capacities and the common mode of field-effect transistors, which are of the order of 
a picofarad. These can make certain assemblies oscillate or reduce their 
performances at high frequencies. 

4.3.1.2.3. Polarization currents and gap currents 

Input impedances and input currents are obviously closely linked. The higher the 
input impedances are, the lower input currents become. For bipolar input stages, 
these currents vary from 1 to several dozen nA and from 10-3 to 102 pA for input 
stages using field effect transistors of FETs. Also, because of the inevitable 
dissymmetry of the differential input stage, the input currents1 Ip+ and Ip¯ of the 
inverting and non-inverting limits of the amplifier are different. 

 
The polarization current (Ip) is then defined as the average value of the currents 

Ip+ and Ip¯. Their difference is called the gap current (Id): 

2

−+ +
= pp II

Ip  and −+ −= pp IIId   [4.31] 

It is important to limit these currents. In practice, they bring about an output gap 
voltage whose value is dependent on the assembly being used. This is why 
amplifiers with FETs at the input stage are by far the best performing and most 
popular amplifiers currently used for instrumentation purposes. 

4.3.1.2.4. Input gap voltage 

This residual voltage (or offset voltage Ud) at the input of the amplifier (see 
Figure 4.20) is a product of the inevitable dissymmetry of the differential stage. To 
be more precise, it has to do with the different tensions that make up the stage (base 
emitter tensions for bipolar transistors and gate-source for field effect transistors). 
This voltage increases according to the gain of the amplifier assembly in closed 
loop. This can be a drawback for applications in which the amplifier signal is of low 
amplitude. 

 

                              
1 Because the terms Ip+ and Ip- correspond to base (or gate) currents of the differential stage, 
their input or output direction depends on the transistors being used (PNP, NPN, N-channel or 
P-channel). 
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Figure 4.20. Gap voltage Ud 

Advances in microtechnologies have helped to lower this voltage, which in 
previous generations of amplifiers sometimes ranged from several mV to as high as 
100 mV. Today, thanks to current techniques of resistance adjustment by laser or 
Zener short circuiting (sometimes called Zener zapping), gap voltage is around  
25 µV for amplifiers using matched bipolar transistors and around 0.1 mV for 
amplifiers with FET transistors. 

 
Gap voltage is a function of temperature, of the supply voltage of the amplifier, 

and of the amplifier’s age. If the supply voltage is well-designed, correctly regulated 
and filtered, its influence is minimal in relation to that of the temperature. 

 
Because of the evolution of the Ube and the Ugs with the temperature of 

transistors of the differential stage, the thermal drifts of the gap voltage are of the 
order of several µV/˚C. These drifts can be minimized by using the following 
techniques: 

– we can try to create two differential stages to compensate for the drifts 
(LM121, for example); 

– we can stabilize the substratum temperature, close to the differential stage, by 
means of a transistor that heats it (to a certain extent). 

 
There are also self-switching circuits (one example is the ICL 7605 of Intersil) 

that use two differential amplifiers functioning alternately, switching to the rhythm 
of a clock. These are similar to the chopper-stabilized amplifiers like the circuit ICL 
7650, also made by Intersil. The gap tensions we get are of the order of  
2 µV and the temperature drift of the first circuit is of the order of 0.1 µV/˚C. 
However, the use of these components is limited to frequencies below that of their 
internal clocks. 

 
In any case, most circuits have an interior adjustment that provides for an offset 

compensation. 
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4.3.1.2.5. Common mode rejection ratio 

A gap voltage can come from common mode amplification Amc of the 
operational amplifier. Actually, the output voltage depends not only on the input 
differential voltage but also on the common mode voltage Umc, defined by: 

2

−+ +
=

UU
U mc   [4.32] 

The output voltage is then written as: 
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It is clear that the higher the relation Av/Amc, the smaller the gap voltage is at the 
amplifier’s output. We call this common mode rejection ratio the Common Mode 
Rejection Ratio (CMRR). It is expressed in decibels in manufacturers’ specifications 
and can vary from 80 dB to 140 dB depending on the circuits. 

 
We see that this ratio decreases with the utilization frequency and, in practice, is 

only a factor in assemblies with fairly high to high common mode voltage (for 
example, in differentiating assemblies and instrumentational amplifiers). This is 
because with assemblies having one input directly linked to the ground (as with 
reversed assemblies), we have: U+ ≈ U¯ = 0V. 

4.3.1.2.6. Noise 

We model the noise sources appearing at the input of a differential amplifier 
assembly by three generators of basic noise (Un, In1 and In2), and by two other sources 
(UTHR1 and UTHR2). These are relative to the equivalent thermal noise resistances 
analyzed through inverting and non-inverting inputs, as shown in Figure 4.21. 
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Figure 4.21. Equivalent schema of noise of a differential amplifier assembly 
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The generators of noises specific to the amplifier (Un, In, and In2) are defined 
from the respective spectral densities (un, in1, and in2) for a frequency utilization band 
Bb = fmax - fmin: 

∫=
max

min

f

f
nn dfuU ,  [4.34] 

∫=
max

min

2,12,1

f

f
nnnn dfiI   [4.35] 

the sources of thermal or Johnson’s noise being defined as: 

bRR BkU 2,12,1 TR4=   [4.36] 

If we let In = In1 = In2, the voltage of total noise at the input of a differential 
amplifier is written as: 
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Then the output noise voltage is: 

nTs UAU '.=   [4.38] 

where A’ is the assembly amplification (in closed loop) as defined in section 
4.3.1.2.1. 

 
Manufacturers indicate the spectral density values (un, in) of these components 

whose order varies from several nV.Hz-1/2 to about 100 nV.Hz-1/2 for un, and of  
0.01 pA.Hz-1/2 to 1 pA.Hz-1/2 for in.  

 
A well-known method for minimizing noise consists of using two amplifiers to 

get an amplification A’. The first one must be a low noise preamplifier (Unl << UnT) 
with gain A1, while the second can be an initial amplifier (Un2 = UnT) but used with a 
lower gain (A2), so that A’ = A1.A2. 

 

The total noise at assembly output is: 

( ) ( )222
2

121 ...' nns UAUAAU +=   [4.39] 
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( ) ( )21
2

1 /'.' AUUAU nTns +=    [4.40] 

If A1 >> 1 then we get: 

sns UUAU <<≈ 1'.'   [4.41] 

This demonstrates the importance of the first stage of amplification in the global 
noise level of the amplifier device. 

4.3.2. Instrumentation amplifiers 

The name of these amplifiers comes from the fact that they are designed for the 
amplification of very low measurement signals (of the order of µV or of mV) 
coming from sensors, transducers (constraint gauges, thermocouples) and 
measurement bridges such as Wheatstone’s bridge, among others. They must 
perform well and must have the following features:  

– a significant static amplification (> 106); 

– a very low offset error (≈ 1 µV); 

– a lower drift versus temperature and time (< 1 µV/˚C and < 1 µV/month); 

– efficient values of noise, low in voltage and current, (of the order of 1 nV/Hz1/2 

and of 1 pA/Hz1/2); 

– a high common-mode rejection ratio (> 100 dB); 

– a high input impedance in well-functioning high impedances; 

– polarization currents below 1 pA; 

– a bandwidth and a high slew-rate according to the frequency and nature of the 
signal. 

 
Several structures basic to operational amplifiers in order to get a differential 

amplifier are in use. The most frequently used are (see Figure 4.22): 

– an instrumentational amplifier with two operational amplifiers; 

– an instrumentational amplifier with three operational amplifiers; 

– an instrumentational amplifier with switched-capacitor. 
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Figure 4.22. Different assemblies of an instrumentation amplifier 

The first two assemblies offer a very high input impedance and regulation of the 
gain with one variable element (P). However, the common-mode error is, relatively 
speaking, higher for a structure with two amplifiers. The commuted capacity 
assembly can function up to frequencies of close to MHz and the common-mode 
rejection ratio reaches 120 dB. In addition, manufacturers have developed other 
schemata and specialized components. 
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4.3.3. Isolation amplifiers 

This kind of amplifier is used when it is important to isolate an electronic 
monitoring sensor, such as those used in medical instrumentation (electrodes applied 
to the human body, to cite one example). These amplifiers help resolve issues 
arising from problems of ground that can occur when measurement signals are of 
low amplitude. For example, when we must connect two devices with a coaxial or 
sheathed cable, or connect a sensor with a measurement tool, each with its own 
ground, a fairly large “ground” voltage appears between the two ends of the cable. 

Measurement 
device 

Mass tension 

Signal
Device 

or 
sensor 

 

Figure 4.23. Ground voltage resulting from use of a coaxial cable 

There are three types of isolation amplifiers that we define according to the 
physical principle being used. “Galvanic” isolation is achieved by any of the three 
following ways: 

– it can be achieved by electromagnetic coupling with the help of a transformer. 
In this case, a high frequency carrier is modulated in frequency or in impulse width 
by the signal that must be isolated. In particular, this principle is used in the isolation 
amplifiers made by Analog Devices. This company has demonstrated the advantages 
of using only one supply voltage that is shared between the “emission” and 
“reception” points of the transmission; 

– it can be obtained by optical coupling (with a DEL emitter and a photodiode 
receiver). This technique does not require a high-frequency carrier and is well used 
by Burr-Brown. This company has succeeded in reducing linearity defects by using 
a retroaction mechanism with a second photodiode in the emission point; 

– it can be obtained by capacitive coupling of a high frequency carrier 
modulated in frequency by the signal to be transmitted (the ISO 122 model made by 
Burr-Brown is an example). 

 
The isolation tensions are of the order of 4 kV for isolation amplifiers with 

magnetic and capacitive coupling, and of several hundreds of volts for those using 
optical coupling. The bandwidths are lower by about 100 kHz. 
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4.3.4. Logarithmic amplifiers 

When a sensor’s output dynamic is of a high amplitude (10 mV to 10 V, for 
example), it can be useful to compress the signal by using a logarithmic amplifier. 
After amplification and digitization, the signal can be easily transmitted across a 
transmission line. At reception, it is enough to carry out the reverse operation to 
restore the measurement signal. This principle allows us to lower noise sensitivity. 
Thanks to the compression, the output voltage to be digitized can be amplified 
(between 1 V and 5 V, for example) to get the most precise conversion. This is 
possible because the noise is independent of the level of the transmitted signal; in 
fact, it is easier to extract a signal of 1 V from noise than to do this with a signal of  
1 mV. 

 
Logarithmic amplifiers also help us “linearize” sensors, carry out multiplications, 

divisions, elevations in the square, and extractions of the root squared. 
 
To construct this type of amplifier (see Figure 4.24), we use the feature of a P-N 

junction with an equation (Ebres-Moll equation) in the following form: 
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  [4.43] 

where q is the electron charge, k the Boltzmann’s constant, T is the absolute 
temperature, and U is the direct voltage and i0 is the flow of reverse current 
(extrapolated from U = 0). 
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Figure 4.24. Schemata of logarithmic amplifier principle 
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We see that it is also possible to construct an exponential amplifier (or 
antilogarithmic) by using diodes or transistors, as shown in Figure 4.25. 
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Figure 4.25. Schema of an exponential amplifier principle 

4.3.5. Multipliers 

Because of logarithmic and exponential amplifier circuits, it is possible to 
construct a multiplier assembly between two inputs, as shown in the functional 
schema in Figure 4.26. 
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Figure 4.26. Functional schema for a multiplier 

If we replace the functional block adder with a subtractor, we get a divider. 
Multipliers are usually sold in integrated forms; their price depends on how well 
they perform. They are mostly used to modulate amplitude, as well as in 
instrumentation for constructing synchronous detectors. 
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Chapter 5  

Analog Filters 

5.1. Introduction 

Sensors in instrumentation systems usually emit analog signals that must be 
conditioned before they are digitized (see Chapter 1). Analog filtering, which is 
indispensable in an electronic conditioning device, has two principal functions:  

– improving the signal-to-noise ratio; 

– eliminating any frequencies that might be aliased by sampling that precedes 
digital processing. 

 
Analog filters are also used in the output stages of instrumentation systems when 

it is necessary to reconstruct an analog signal from the conversion of a digital signal. 
 
Filters are complex and expensive mechanisms, with features that are often 

crucial to the overall performance of a system. 

5.2. Technological constraints 

The role of a filter is to separate the useful frequencies in a signal (those that 
carry information) from unwanted frequencies, such as noise or other signals. 

 
 

                                   
Chapter written by Paul BILDSTEIN. 
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The basic circuit of a filter is the resonator, a mechanism whose performance 
varies very selectively according to the frequency. A resonator is for the most part 
modeled by a transfer function of the second order, with parameters that are the 
resonance frequency f0 and the quality coefficient Q. For example: 
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An efficient instrumentation filter must have the following qualities: 

– it should have high quality coefficients Q to get a good frequency 
discrimination; 

– it needs very precise and stable resonance pulsations, according to temperature 
and time. In particular, imprecise component values must have only a slight 
repercussion on the values of Q and の0. If this condition is met, we can say that the 
filter presents a low sensitivity to component imperfections; 

– it should have a low noise level and a high dynamic. Passive filters, which are 
constructed without electronic components, are especially important here; 

– this kind of filter should be relatively small; 

– it should entail reasonable production costs. Adjustments that are often 
necessary for producing precise filters are incompatible with this constraint. 

 
Electronic resonators respond badly to the first two constraints, especially if the 

filter must be produced in the form of integrated circuits. That is why high quality 
filters are basically made with mechanical resonators with surface or volume waves. 
In this filter type, mechanical resonance is transformed into electrical resonance by 
piezoelectricity [DIE 74]. However, this technique does not work except with high 
frequencies (more than a few MHz). For lower frequencies that mostly exist in 
instrumentation systems, we get around this problem by using the following three 
techniques: 

– we can use inductors and capacitors. If the L-C resonators individually have 
mediocre stability, the filters made with the help of this technique have, overall, an 
excellent stability (with a few restrictive conditions). This paradoxical property is 
directly turned to good account when technological constraints making adequate 
inductors are not prohibitory. Otherwise, we can make electronic copies of filters 
from L-C models; 

– we can use active filters that have only resistors, capacitors and amplifiers. 
These kinds of filters are made by putting basic filters into cascade or by copying L-
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C filters. The mediocre stability of these mechanisms can be partly compensated by 
settings that eventually have servo-control; 

– we can use switched capacitor filters having only capacitors, amplifiers and 
switches. Because of an ingenious device invented around 1980 [ALL 78], these 
filters, which can be completely integrated into the system, have excellent stability 
and precision and do not require any adjustment. However, their application field is 
limited to several hundred kHz. 

 
These three basic techniques are presented in this chapter, after a brief summary 

of general calculation methods. These techniques are still evolving, connected as 
they are to rapid, constant and unforeseeable progress in electronic component 
technologies. 

5.3. Methods of analog filter calculation 

An analog filter used in instrumentation must respond to fixed behavioral 
specifications in the frequential domain, with attenuation A (expressed in decibels 
dB) and phase difference ϕ. For a filter with inputs and outputs Ve and Vs, these 
variables are defined by the relations: 

))(arg(

)(log20
)(

)(
log20 1

ωϕ

ω
ω
ω

jH

jH
jV

jV
A

s

e

=

== −
 

In these expressions, H(jの) = Vs (jの)/Ve(jの) is the isochronous transfer function 
of the filter. 

 
In order for a filter to transmit a signal without deformation, the phase difference 

must vary linearly according to the frequency. If this occurs, the derivative of the 
phase difference in relation to the frequency has a constant value. This variable is 
the group delay of group k defined by the relation: 

ω
ϕτ
∂
∂

−=  

In practice, the values of A and k become written within the attenuation gauge 
and the group delay gauge, as shown for the attenuation in Figure 5.1 and the group 
delay in Figure 5.2. 
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Figure 5.1. Gauge of a low pass attenuation filter 

 

 

 

 
Figure 5.2. Gauge in group delay of a band pass filter 

 
 

In most instrumentation applications, the attenuation feature is the most 
important. We calculate a filter from the attenuation gauge and, if the application 
requires it, we correct the inequality of the group delay with the help of an additional 
corrective filter [SED 79]. 
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Figure 5.3. Attenuation gauge of a low pass filter 

There are four types of gauges that measure attenuation, with corresponding 
parameters: 

– low pass, with parameters ωp, ωa, Amax and Amin (see Figure 5.1); 

– high pass, with parameters ωp, ωa, Amax and Amin; 

– band pass, with parameters ωp+, ωp- ωa+, ωa-, Amax and Amin (see Figure 5.3); 

– band reject, with parameters: ωp+, ωp-, ωa+, ωa-, Amax and Amin. 
 
In instrumentation systems, band pass filters are most widely used (for anti-

aliasing, improvement of signal-to-noise ratio, and for reconstruction). However, 
band pass and band reject gauges are also used when a major amplitude disturbance 
must be eliminated before conversion into digital signals. 

 
In all cases, the usual method of calculating is to determine, from the attenuation 

gauge, the transfer function of a band pass filter which is called the prototype. From 
this we deduce, by conversion, the transfer function of the filter being planned. The 
synthesis is then carried out from this function. We see that the transfer function of 
the prototype is always normalized; that is, it is calculated by taking the cut-off 
pulsation のp as unity. 
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5.3.1. Attenuation functions of standard low pass prototype filters 

There are four types of important and well identified attenuation functions of 
prototype filters. These give rise to transfer functions that can be physically 
produced and verified: 

– Butterworth filters: 

njH 2221 1)( ωεω +=−  

– Direct Tchebycheff filters: 
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In these relations, n is the order of the filter, that is, the degree of its transfer 
function. i is a parameter depending on attenuation tolerance in the pass band Amax:  

110 10max/2 −= Aε  

For these two types of filters, the inverse of the transfer function is a 
polynominal of variable の. They are thus called polynomial filters. The attenuation 
curve of Butterworth filters is said to be maximally flat because all the attenuation 
derivations are zero at pulsation 0. However, the pass band response of Tchebycheff 
filters fluctuates n + 1 times between the values 0 and Amax (in dB). These are 
called equiripple filters. 

 
In order to meet the requirements of a given filter, the necessary order n is much 

higher for a Butterworth filter than for a Tchebycheff filter. Polynomial filters are 
easy to make because their transfer function is simple. 

 
The following are formulae for elliptical filters: 
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where の0i and ω∞i are respectively normalized pulsations for which the attenuation is 
zero and infinite and ε  is a constant. The numerical values of these parameters can 
be calculated analytically, as Cauer has shown. However, nowadays it is simpler and 
more efficient to calculate these values by direct digital optimization; the existence 
and unicity of the solution have been shown, leading to a rapid and certain 
convergence of the algorithm for the calculation. 

 
The attenuation curve of Cauer filters fluctuates n + 1 times between the extreme 

values allowed by the gauge. This is true both for pass bands and attenuated pass 
bands. Of all filters, these meet the requirements of a given gauge with a transfer 
function of minimal order n. Unfortunately, their group propagation time is 
extremely irregular, which means they cannot be used when the temporal form of a 
signal must be preserved. 

 
– Inverse Tchebycheff filters: 
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These filters are among the best available in terms of stiffness of the attenuation 
curve and pass band group delay regularity. These properties make this kind of 
filters very useful in instrumentation systems. 
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5.3.2. Transfer functions of common prototype low pass filters 

Attenuation functions define the square of the module of the transfer function. A 
standard, but sometimes difficult to realize, mathematical calculation helps us 
deduce the transfer function. It is carried out as follows, by noting the transfer 
function H(p) = P(p)/E(p): 
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By identifying this expression with the attenuation functions calculated above, 
we get polynomial values P(p) and F(p). 

 
We then get E(p) from: 

)()()()()()( pFpFpPpPpEpE −+−=−  

This equation is known as the Feldtkeller equation. It has a unique solution 
because E(p) is a Hurwitz polynomial (its roots are real negative parts) so that the 
transfer function is that of a stable field. 

 
Resolving the Feldtkeller equation requires a computer (there are many software 

programs available that can do this, such as Matlab and Mathcad), except for 
Butterworth filters, which allow for a simple analytic solution: 
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5.3.3 Transfer functions of derived filters 

To obtain transfer functions of filters made from the normalized prototype, we 
apply a frequential transformation according to the transfer function of the low pass 
prototype. These transformations, which are always used, are as follows: 

– low pass low pass transformation: 
0ω

p
p →  
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– low pass high pass transformation: 
p

p 0ω→  

– low pass pass band transformation: 
( )

Bp

p
p

2
0

2 ω+→  

– low pass band rejector transformation: 
2
0

2 ω+
→

p

Bp
p  

 
In these formulae, の0 is the central pulsation of the band pass or band reject, 

expressed in radian/second, with B the width of the band pass or band reject, in the 
same unity. These transformations are complicated and difficult to carry out, 
necessitating the use of a computer. Many commercial software programs contain 
these transformations (Matlab, Mathcad and Matrixx are examples, as are most 
signal analysis programs). 

5.3.4. Filter synthesis carried out from the transfer function 

Two synthesis methods of an analog filter, done from transfer functions, are 
widely used. 

Cascade synthesis 

This is based on the decomposition that can always occur of H(p) in biquadratic 
terms (and of a first degree term when order n of the filter is odd): 
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if n is odd. 
 
To construct this kind of filter, we need to cascade basic biquadratic circuits with 

transfer function Bi(p) (and an additional first order circuit when n is odd). Here we 
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must ensure that no circuit interacts with another (see Figure 5.4). This condition is 
met if the output impedance of each basic circuit is zero, or very low in comparison 
to the input impedance of the next circuit. 

B1 B2 Bi

V1 V2

 

2
1

1
( ) ( ) ( )i

V
H p B p B p

V
= = ×A  

Figure 5.4. Principle of cascade synthesis when circuits Bi are independent 

However, it is impossible to meet this condition with passive elements, although 
it is easy to do with active circuits because of the very low output impedance of 
operational amplifiers. 

 
Each biquadratic element depends on only four parameters. These are ai, bi, a’i 

and b’
i, and can be created by standard circuits that are easy to adjust individually 

and available in the form of hybrid or integrated modules from many manufacturers. 
The best way to adapt these elements to specific needs is to construct them, with the 
help of resistors, capacitors and operational amplifiers, using methods which we will 
describe later. These methods are very easy to implement, both in terms of 
calculations and from the point of view of adjustments and maintenance. They are 
universally applicable and work no matter which transfer function needs to be 
synthesized. Unfortunately, this structure does not have a good sensitivity in relation 
to component value variations. In particular, it does not allow us to construct narrow 
band pass filters (< 5%) as soon as the frequency exceeds several tens of kHz.  

Comprehensive synthesis 

This method involves synthesizing the filter with one network in order to 
minimize sensitivities. Calculations, adjustments, and optimizations are much more 
complex. Since L-C filters have an optimal sensitivity (see section 5.4), most of 
these methods directly or indirectly stimulate L-C structures. 
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5.4. Passive filter using inductors and capacitors 

Passive filters using inductors L and capacitors C were first developed in 1923. 
These are called Zobel filters [ZOB 23]. They are made of a quadrupole that only 
contains this type of element, inserted between two resistors R1 and R2, respectively 
the generator resistor and the charge (Figure 5.5). 

 

L-C
Quadripole

R2

R1

E1
V

2

 

Figure 5.5. Schema of the principle for an L-C filter 

These filters have the following advantages. 

– they do not require a power supply; 

– they have good dynamics; 

– they have a very low noise level; 

– they have low response sensitivity to the values of their own components. 
 
However, these filters require the use of inductors, components that are costly, 

take up much space, and cannot be adjusted for industrial purposes. This is why, in 
mass production, L-C filters have been increasingly replaced by active filters, at 
least for in low and medium frequency applications. However, the technologies 
involved in manufacturing inductors have improved in recent years. Miniaturization, 
quality and costs have continued to improve. Laboratories have created higher 
quality inductors that can be integrated and electronically regulated. 

 
Moreover, the very low sensitivity of L-C filters cannot be matched. Therefore, 

we use these filters as models to produce “electronic copies” with the same 
sensitivity features, but without inductors. These techniques will be discussed in 
sections 5.4.2 and 5.4.3. In practice, the only structures that are still used are ladder 
filters, as shown in Figures 5.6 and 5.7. 
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5.4.1. Sensitivity; Orchard’s theorem and argument 

The basic schema of an L-C filter is shown in Figure 5.5. The voltage generator 
E1 of internal impedance R1 can supply charge R2 with a maximum power 

2
1m 1 1P E / 4R= . 

 
We define the transmission function in power by the relation of P1m to power P2 

effectively furnished to the charge by the relation: 
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The attenuation A(の) of the filter expressed in decibels is given by the relation: 

( ) の)(log20の 1 jHA −=  

This variable is always positive or zero. 
 
Let Xi be the value of an element of the filter (inductor or capacitor), and ∂A/∂Xi 

the partial derivation of A in relation to the value of this element. If Xi diverges from 
its nominal value by a quantity 〉Xi (because of temperature variation or a time drift, 
for example), the corresponding variation of attenuation A moves near the first order 
by means of: 

i
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At frequencies at which adaptation is carried out, P2 = P1m and A = 0 (attenuation 
zeros), which gives us: 
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Since variation 〉Xi is a rather vague sign, the relation can only be verified with 
an equal sign. From this we get the following theorem: the partial derivation of the 
L-C filter attenuation inserted between resistors in relation to the value of each of 
the elements is annulled to the attenuation zeros. 

 
This property is extended to all the non-dissipating quadrupoles whatever 

synthesis method is used. It is valid only for attenuation zeros. However, throughout 
the pass band of a filter, attenuation remains, by definition, close to zero; and we can 
see that ∂A/∂Xi remains low, even lower than the maximum attenuation is low. This 
last proposition has not been proven by very rigorous methods, but it has been 
confirmed often in practical experience. It is known as Orchard’s argument. 

 
Orchard’s argument is very important because it shows that a non-dissipating 

filter inserted between two resistors allows important tolerances on the value of its 
components without affecting its performance. This characteristic is especially 
important since the function of a filter is to accurately discriminate narrow 
frequency fields. This feature demands, a priori, very stable and precise 
components. Zobel filters could attain very high selectivity despite the use of the 
relatively mediocre components then available. 

 
However, active filters do not have the advantages of this property. That is why, 

at this time, constructing a high performance filter using an L-C prototype must be 
done by electronic simulation. We must remember the restrictive conditions of 
Orchard’s argument when carrying out this procedure: 

– it is not valid except for the pass band (and not for the stopband where 
admissible tolerances for attenuation are notably higher); 

– it only applies if attenuation zeros correspond to the transmission of maximum 
available power. Filters taking in a constant non-zero pass band attenuation are 
therefore excluded; 

– it applies only to attenuation and not to propagation delay. 

5.4.2. Low pass ladder filters 

In practice, most L-C filters have a ladder structure. This topology avoids the use 
of transformers and gives better results. From a given gauge, we must establish the 
schema and calculate the value of the elements of this schema. 

 
Cauer and Darlington developed a systematic method of synthesizing ladder 

filters [CAU 41] from the transfer function and the characteristic function. This very 
powerful method makes use of very complex theoretical development. However, 
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implementing it is simple if we limit ourselves to common and straightforward 
ladder structures. This simplified procedure works for most filtering applications 
used in acquisitions systems. That is why we limit ourselves in this book to this 
presentation. The reader who is interested in more complete developments may refer 
to [SED 79] and [SAA 58]. The simplified method presented here consists of first 
calculating a low pass filter prototype with a simple repetitive structure (canonic). 
We can then deduce the planned filter from frequential transformations. 

5.4.2.1. Structures of basic low pass filters 

These filters have topologically simple schemata. They are made of branches 
that have, at most, two elements: an inductor and a capacitor. With the branches in 
series, these elements are in parallel. With the parallel branches, these elements are 
in series. The filter has n branches if its transfer function is of the order n. 

 
The first branch can be a series branch (structure in T) or a parallel branch 

(structure in ぃ). We get only two schemata type; these can be deduced from one 
another by duality (see Figure 5.6). The filters in ぃ of odd order terminate with a 
parallel branch of those of even order with a series branch. The opposite is true for T 
filters. We see that if a branch contains two elements (an inductor or a capacitor), 
this branch provokes a signal interruption transmitted to the charge to its resonance 
frequency (zero transmission to finite frequency). Polynomial low pass filters thus 
have only one element per branch and their structures are quite simple. 

 
Figure 5.6. Schemata of polynomial low pass filters 

 

Direct structure (in Pi) 

Dual structure (in T) 
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The transmission zeros of Cauer and low pass inverse Tchebycheff filters are 
produced by trapped circuits in series in parallel branches. Only odd order filters can 
be produced by L-C technology (the explanation for this is given later). We thus 
have one schema in T (and its equivalent in ぃ) as shown in Figure 5.7. 

 
The schemata shown help produce standard low pass filters, such as the 

Butterworth filter, the direct and inverse Tchebycheff filter, and the elliptic filter. 
These give excellent results in most practical applications. 

 
The schema being established from the transfer function, we need only calculate 

the value of the elements. This calculation can be carried out analytically following 
Darlington’s decomposition method, or it can be done directly by modern methods 
of digital optimization, if the necessary software is available. 

 

Figure 5.7. Schemata for elliptic and inverse Tchebycheff filters 

5.4.2.2. The Darlington analytic synthesis 

Even though the theoretic developments of this method are complex, the method 
is simple to use in the following ways: 

a) From the attenuation gauge, we choose the type of filter we want to complete. 
We determine the minimal order and calculate the transfer functions and 
polynomials E(p), P(p), and F(p) using the method described in section 5.3.2. 

Dual structure (in T)

Direct structure (in Pi) 
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b) By knowing polynomials E(p), P(p), and F(p), we can deduce these L-C 
quadrupole impedances: z11, z22, y11, and y22. The results of this calculation are given 
in Table 5.1. Indices p and I indicate the even and odd parts of polynomial E(p) and 
F(p). This means Ep indicates the even part of polynomial E(p). These results have 
been established from Darlington’s original calculation [HAS 81]. 

c) From any one of these four impedances, we calculate the successive values of 
the branch impedances by a procedure of iterative extraction. For polynomial filters, 
this procedure is very simple; it is only a development of continued fractions of the 
initial impedance. For example, for a structure in T shown in Figure 5.6, it is: 
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Table 5.1. Quadrupole impedances 

This decomposition can occur element after element by making p tend towards 
infinity: 

1 11

2
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L p z p

C p
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etc. 
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For elliptic and inverse Tchebycheff filters, the procedure is a bit more 
complicated. This is because the frequency of L-C branches must be positioned to 
their values, that is, to frequency pulsations ω∞i, which annul P(p) and correspond to 
a transmission zero. For example, for the structure in T shown in Figure 5.7, we get: 
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In this case, the fractional decomposition continues as follows: 
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etc. 
 
We see that in all cases, we must use a calculator to carry out these operations 

precisely in order to avoid cumulative errors at each stage. We illustrate this 
mechanism with two examples. 

 
d) Terminal resistor calculation. For filters with zero attenuation at zero 

frequency, terminal resistors R1 and R2 are equal. Their value determines the 
impedance level of the filter and can be taken as unity of normalization:  
R1 = R2 = Ru.  

  
For filters with attenuation equal to Amax at zero frequency, and infinite at 

infinite frequency (such as direct even order Tchebycheff filters), the resistor of the 
generator is taken as unity and the terminal resistor is calculated in the following 
way. By writing that the attenuation at の = 0 is obtained by bridge divider R1, R2, 
the L-C filter acting as a short circuit between the two resistors is expressed as: 
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The attenuation at の = 0 is: 
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21
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4
log10max
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A  

If R1 = 1, we deduce from it R2
2 + 2R2(1 + 2g) + 1 = 0 

 
with g = 10Amax/10 and so: 

( ) 121)12( 2
2 −−±−= ααR  

In this relation, the sign + is used for structures in T and the sign – for those in ぃ. 
 
It is important to be aware that elliptic and inverse Tchebycheff filters of even 

order can not be completed in L-C filter format. In fact, at pulsations の = 0 and  
の = ,∞ an L-C filter acts as a short circuit between the generator and the charge, or 
simply as a short circuit. For these types of filters, and at two frequencies, 
attenuations have distinct and non-zero finite values Amax and Amin: this means 
that synthesis is not possible. In practice, we avoid this difficulty by carrying out a 
prior transformation of the transfer function [SED 79]. 

5.4.2.3. Examples of synthesis 

Example 1 

We can produce a low pass Tchebycheff filter of the order 6, Amax = 1 dB, and 
whose cut-off frequency is 1 MHz. The retained structure is in T. The calculation 
done according to the method discussed in section 5.3.2 gives the characteristic 
polynomials E(p), F(p) and P(p) in the normalized form (that is, that the cut-off 
frequency is taken as frequency unit): 

6 5 4 3 2( ) 16.28 15.11 31.44 19.57 15.3 5 1.22E p p p p p p p= + + + + + +  

6 4 2( ) 16.28 24.425 9.159 0.5088F p p p p= + + +  

( ) 1P p =  

Since F(p) is even, F(p) =Fp and Fi = 0. This gives us z 11 = y22 and z22 = y11. 

6 4 216.28 31.44 15.3 1.22pE p p p= + + +  
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5 315.115 19.57 5iE p p p= + +  

By carrying over the values in Table 5.1, we get parameters z and y of the filter 
in normalized form (R1 = 1 for the calculation of z11 and y11 and R2 = 1 for the 
calculation of z22 and y22): 

6 4 2

22 11 5 3

32.57 55.86 24.45 1.631

15.11 19.57 5

p p p
z y

p p p

+ + += =
+ +

 

4 2

11 22 5 3

7.015 6.136 0.6132

15.11 19.57 5

p p
z y

p p p

+ += =
+ +

 

The schema obtained by the fractional decomposition of z11 is an L-C ladder in T 
whose normalized component values (and therefore without dimensions) are: 

L1 = 2.1546   C2 = 1.1041   L3 = 3.0634    

C4 = 1.1518   L5 = 2.9367     C6 = 0.8101 

The terminal resistors are calculated as shown above: 

( )2max/10
210 which gives us: ( 2 1) 1 2 1 2.66A Rα= = α− + − α − =  

In order to obtain the real values of the components, we must determine the 
unitary values of the capacitor and the inductor, after having determined an 
impedance level by choosing resistor R1, which we take as unity. For example, if we 
choose R1 = Runitary = 50 っ, we deduce R2 = 133 っ, and from relations RuCuのu = 1, 
and Luのu = Ru: 

1
3.18 and 7.958

2 2
u

u u
u u u

R
C nF L H

f R f
= = = = µ

π π
 

The definitive schema is shown in Figure 5.8. 
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Figure 5.8. Schema of a low pass filter calculated in Example 1. The resistors are in Ohms 

Example 2 

We can construct a low pass elliptic filter of order 5, Amax = 0.2 dB and  
Amin = 40 dB, with a cut-off frequency of 50 kHz. The structure is in T. The 
calculation follows the method presented in section 5.3.2 and gives characteristic 
polynomials E(p), F(p), and P(p) in normalized form. 

5 4 3 2( ) 17.87 26.18 43.68 36.07 23.26 8.141E p p p p p p= + + + + +  

5 3( ) 17.87 24.53 7.319F p p p p= + +  

4 2( ) 6.12 8.14P p p p= + +  

In carrying over the values in Table 5.1, we get parameters z of the filter (if we 
take R1 = 1 and R2 = 1): 

4 2

11 22 5 3

26.18 36.06 8.14

35.74 68.21 30.58

p p
z z

p p p

+ += =
+ +

 

The normalized value of the elements is obtained by the fractural decomposition 
according to the method shown above: 

2 2
1 11 2 2 1| 1/ の 1.3978 0.8965L p z p L C p∞= → − = = =  

or 1 0.8965L =  

2 2
11 1

1 0.8179

1 0.5115

p
Y Yr

z L p p
= − =

− +
 

or C2 = 0.8179 and L2 = 0.6258 

Also: L3 = 1.6857; C4 = 1.140; L4 = 0.2104; L5 = 1.1742 
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Terminal resistor R2 is equal to R1, because z11 = z22. 

By taking a value of 1 kっ for these resistors, as unitary values: 

1
3.183  and 3.183

2 2
u

u u
u u u

R
C nF L mH

f R f
= = = =

π π
 

Eventually, the schema for creation shown in Figure 5.9, where we see that real 
component values have been obtained by multiplying the normalized values by the 
unitary values. 

5.4.2.4. Direct digital synthesis 

When using numerical optimization software, calculating the digital value of 
elements can be directly carried out, with the condition that several precautions must 
be taken. Actually, the weak sensitivity to value variations of L-C filters brings 
about, in mathematical terms, very low partial derivation values. Numerical methods 
are almost always based on calculations of these derivations. The algorithm can 
easily converge on a local minimal more or less removed from ideal values; or these 
may not converge at all. 

 

 
 

Figure 5.9. Schema of a band pass filter calculated by using Example 2.  

The resistors are in Ohms 

 
 

For polynomial filters of order n, the variable is the vector of n values of 
inductors and capacitors. We take as initial values the unity and we carry out the 
calculation from a least mean square criterion by about 100 frequency values 
distributed between the band pass and the stopband. The attenuation is expressed in 
dB. 
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For elliptic and inverse Tchebycheff filters, the variable is also a vector of n 
values of capacitors and inductors; that is, a value by branch. For branches with a 
tuned circuit, the value of the second element is calculated based on knowing 
transmission zeros ω∞i of the transfer function, which means of the zeros of P(p): 

12 =∞ijjCL ω
 

This procedure is shown by the direct numerical calculation of the two same 
filters that were previously calculated by the analytic method, using Matlab software 
and its “optimization toolbox”: 

Step 1: we have the initial values of the components. The unity value is always a 
good choice for L and C elements. The generator resistor is taken as equal to unity. 
The terminal resistor is calculated as shown above. 

Step 2: we choose m pulsation values, for which we calculate the filter 
attenuation. Between 100 and 1,000 values included between normalized pulsations 
0 and 5 constitute a correct order of magnitude. 

Step 3: for these m values, we calculate the filter attenuation with the help of a 
function written for this purpose. 

Step 4: for these m frequency values, we calculate the ideal attenuation from the 
transfer function. 

Step 5: we calculate the distance between these two series of values with a 
quadratic criterion. 

Step 6: we minimize this distance by using a universal optimization function 
made by Matlab. Here, we use the “constr” function which allows us to introduce a 
positivity constraint on the element values. This helps us to avoid arriving at a 
solution that cannot be put into practical use. 

 
The calculation takes only several dozen seconds working with a Pentium III and 

much less time at a workstation. We usually get a correct convergence. We see that 
if the calculation is not carried out very precisely, we can get a value set quite 
different from the values obtained by analytic calculation, even if the filter has a 
satisfactory response. This fact proves the weak sensitivity of L-C filters, since 
equivalent results can be obtained with quite a different value set. 

 
For an elliptic filter, the procedure is almost exactly the same, with one 

difference. It is necessary in this case to calculate the values of the second resonant 
branch elements from the initial values. 
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Example 1 

The same Tchebycheff filter of order 6 calculated by this method gives, after 
1,800 iterations, the following normalized values (without unities): 

L1 = 2.1467 C2 = 1.1113  L3 = 3.0182    

C4 = 1.1690     L5 = 2.9180      C6 = 0.8130 

We notice that the values are more or less different from those calculated by 
Darlington’s exact method, even though the precision required by the algorithm of 
the calculation was very high However, the difference between the response curves 
is undetectable. 

Example 2 

The elliptic filter of order 5 calculated by the direct numerical method gives the 
following normalized values (without unities) after 800 iterations: 

L1 = 0.7407     C2 = 0.8750      L2 = 0.5295       L3 = 1.5832  

C4 = 1.1855     L4 = 0.1787      L5 = 1.0338 

Even if the values are quite different from the exact values, the response curves 
differ by less than a thousandth of a dB. 

5.4.3. L-C filters derived from a pass band 

When the filter is not a band pass, we first calculate the transfer function of the 
corresponding low pass prototype. Then, we carry out the synthesis of this 
prototype. The last step is deducing the final schema by applying the frequential 
transformations shown in section 5.3.3 to the impedance values of the low pass 
schema. In this way we get the schema of the transformed filter, with element values 
expressed in real unities. This transformation is simple to effect. 

Example 

Suppose we want to produce an elliptic band pass filter of order 10 with  
Amax = 0.2 dB and Amin = 40 dB. Its central frequency is of 100 kHz and its band 
width B = 20%, that is, 20 kHz. 

 
The low pass prototype of this filter is exactly the filter calculated in Example 2 

of the above section (see Figure 5.9). Transformations of low pass impedances s 
band pass are seen in Figure 5.10. Each impedance is converted into a capacitor in 
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parallel with an impedance. In this schema, the elements appear with normalized 
values. 
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Figure 5.10. Schema of a band pass filter obtained by conversion of the low pass prototype 

shown in Figure 5.9. The elements are in normalized values (without unities) 

5.4.4. Conversions of L-C filters; optimization 

The schemata obtained by the method just described are not always compatible 
with the technological constraints presented by capacitors and, most importantly, 
inductors. We can then obtain schemata derived from network transformations. 

 
Here, there are many possibilities, such as the Norton transformation and the 

Star/Triangle conversion. Implementing them is a delicate task and needs to be done 
by an engineer. These techniques are described in [HAS 81]. We present here one 
very common example of conversion, universally used in creating band pass filters. 
This consists of replacing the four elements of parallel branches with two resonant 
circuits in series. We then have a schema similar to that shown in Figure 5.11, but 
less sensitive to disturbances and with values that are less dispersed. In this schema, 
the values of elements are in real unities, by taking a value of 1 kっ as the generator 
resistor. 
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Figure 5.11. Schema expressed in real values obtained after transformation  

of the schema in Figure 5.10. The resistors are in Ohms 

Optimization 

The calculations presented above are carried out by supposing that the capacitors 
and resistors have no losses. In reality, even if this hypothesis is generally valid for 
capacitors, it is not as valid for inductors whose coefficients of quality Q are limited. 
The response curves diverge so much from ideal curves that these losses become 
significant.  

 
It is possible to partly remedy these imperfections by modifying the element 

values by using a numerical optimization tool such as the “optimization toolbox” 
made by Matlab. However, losses can be effectively compensated only if component 
quality is sufficiently raised. There must be values of Q of the order of about 100 to 
produce high performance L-C filters. 

5.5. Active filters 

Active filters are made of capacitors, resistors and active elements (almost 
always operational amplifiers). Less bulky, easier to produce, and thus less costly, 
active filters are useful when frequencies are not too high (typically up to several 
MHz). Nevertheless, active components introduce noise, limiting the maximum 
voltage that can be filtered, and requiring a power supply. 

 
Active filters are usually produced by putting basic second order cells in cascade, 

as shown above. Simple and very widely used, this method does have the limitation 
of producing filters that are very sensitive to imprecisions or variations in 
component values. To avoid this problem, we also make active filter copies of L-C 
filters, following several very good methods. The following sections will present 
these different approaches. 
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5.5.1. Second order or biquadratic cells 

RC circuits of varying complexity can be linked successfully to one to four 
operational amplifiers. In this chapter, we present increasingly complex applications, 
beginning with cells linked to only one operational amplifier and a minimal number of 
capacities. Presenting more complex applications at each level, only the most current 
constructions and their main results will be presented and analyzed. The most complex 
configurations will be discussed only if they offer some practical advantage. 

5.5.2. Biquadratic cells with one operational amplifier 

Their general schema is given in Figure 5.12. Quadrupoles (RC)1 and (RC)2 are 
respectively inserted into a positive and negative reaction loop. In order for this to 
be cost-effective, quadrupoles (RC)1 and (RC)2 must not have more than a minimal 
number of capacities, at most two or sometimes three. From there, we have three 
circuit families, each one having approximately the same qualities. 

Negative reaction biquadratic cells 

The positive input of the amplifier is linked to the mass (if there is no RC1 
quadrupole). The most widely used cell of this type is the Rauch band pass cell (see 
Figure 5.13). Its transfer function is given by the following relation: 
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Figure 5.12. General biquadratic cell with one amplifier 
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Figure 5.13. Biquadratic band pass cell in negative reaction (Rauch cell) 

Biquadratic cells in positive reaction 

With these types of circuits, the operational amplifier is assembled as a 
controlled source; that is, as a constant gain amplifier, usually equal to or near unity. 
Low pass and high pass cells of this type, called Sallen-Key cells, are very widely 
used (Figure 5.14). 

 

 

Figure 5.14. A Sallen-Key low pass cell 
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The transfer function of the low pass cell is: 
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Biquadratic cells in mixed reaction 

The two types of cells described above are simple but specific: they have no 
transmission zeros. By combining positive and negative reactions, we can obtain all-
purpose biquadratic cells. However, these cells are much more complex. The most 
widely used cell of this kind is the Friend cell (see Figure 5.15). Its transfer function 
is very complex and the use of an appropriate software program is indispensable for 
calculating a cell of this type, otherwise the cells may not be viable. However, the 
high number of components does allow for a very flexible design. 

 
The major advantages of these simple structures are their low number of 

components and reduced energy use. But there are many disadvantages. Some are: 

– difficult adjustments and settings (not independent for Q and の0); 

– high dispersion of component values (proportional to Q2); 

– high active sensitivities (proportional to Q2); 

– structures specific to a response type. 
 

  

Figure 5.15. General schema of a Friend cell 
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These disadvantages can be minimized by using more complex structures. These 
structures should have dispersions and active sensitivities proportional to Q and, 
especially, universal schemata. Because of this last characteristic, cells with three or 
even four operational amplifiers are mass produced and found in all manufacturers’ 
catalogues. Their relatively high cost and required use of more amplifiers is 
compensated by their wide availability and by the advantages of their simple design 
and adjustments. 

5.5.3. Universal biquadratic cells with three or four amplifiers 

Manufacturers have presented several schemata for these cells. All are based on 
the theory of state variables. According to this theory, it is always possible to 
decompose a transfer function of the order n in an ensemble of n functions of the 
first order that have been simulated by integrators and combined with adders-
subtractors. As an example, let us look at the high pass function of the second order 
with a transfer function as follows: 
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This equation can be written as: 
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This equation can be carried out by the analog circuit shown in Figure 5.16, 
which has two integrators and an adder. 

 
Figure 5.16. Principle of producing a biquadratic state variable high pass transfer function  
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Several schemata derived from this principle have been developed. We will 
present two of them, both of which are widely used and important. 

The Kerwin, Huelsman and Newcombe cell (KHN) 

This cell was the first to be developed. It has been the basis for later cells. It is 
produced by rearranging the signs of Figure 5.16 by using only three amplifiers (see 
Figure 5.17). The calculation is carried out from the adder-subtractor forming the 
first operational amplifier. We get the following transfer function: 
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The KHN cell has the remarkable characteristic of simultaneously presenting, on 
the same circuit, a low pass transfer function (between V1 and V2) high pass 
(between V1 and V3) and pass band (between V1 and V4). This quality is important; 
it allows for easy production standardization. In addition, the gain and the quality 
coefficient Q can be independently adjusted by r1 and R. 

 
These cells are sold by several manufacturers under the name “Universal 

Filters”. A fourth amplifier is also sold along with these cells, allowing the user to 
adjust transmission zeros using a technique we will discuss below. 

 

 

Figure 5.17. KHN biquadratic state variable cell  

Tow-Thomas cell 

Because of a small modification generalized in the Tow-Thomas cell (Figure 
5.18), amplifiers have their positive input linked to the mass. By supposing three 
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amplifiers, whose gain in open loop is A >> 1, to be identical, the transfer function 
of this kind of cell is written:  
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Figure 5.18. Tow-Thomas biquadratic state variable cell  

We simultaneously get a band pass output at point V3. This circuit has excellent 
qualities, low passive and active sensitivities, and gives the possibility of producing 
circuits with very high quality coefficients Q. 

Active KHN universal filter 

KHN cells simultaneously have three outputs: band pass, high pass and low pass. 
In adding these three outputs weighted by factors a’, b’, and c’, we can obtain any 
biquadratic function (see Figure 5.19): 
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This is why component manufacturers sell KHN cells with an amplifier, which 
makes summation possible. These cells are very easy to use, in addition to being 
adaptable and affordable. 
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Universal Fleisher-Tow filter 

Another technique, called feed forward, helps obtain universal biquadratic cells. 
It requires just three amplifiers. This cell is called the Fleischer-Tow cell. The 
schema of its principle is given in Figure 5.20, if the desired transfer function is: 
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Figure 5.19. KHN biquadratic universal cell obtained by weighted summation  

of band pass, high pass and low pass outputs 

The normalized values of the schema elements are, if we suppose that C = 1: 
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5.5.4. Elevated order active filters (elevated by putting biquadratic cells in cascade) 

The principle of these cells has been shown in section 5.3.4 (Figure 5.4). In order 
to minimize noise and maximize the dynamic, three precautions must be taken: 

–  we must ascertain that the order used to put the cells in cascade are such that 
the cells with high overvoltage coefficients are placed near output. This preserves 
the filter dynamic; 

–  for filters with transmission zeros, we should ensure that the poles and zeros 
of biquadratic functions are optimally matched. Practically speaking, we must often 
be satisfied with linking the closest pair of zeros to a pair of poles; 

–  we must ensure that the gain repartitions of the different biquadratic cells 
preserves the ensemble dynamic. A good way to do this is to equalize all cell 
responses. 

 
 

 

Figure 5.20. Universal Fleischer-Tow cell with three amplifiers 

It is important to note that this type of synthesis is limited to certain filters. These 
are: 

– low pass and high pass filters with a degree not exceeding eight to ten; 

– band pass filters with a band width not much below 20%. 
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If these limitations are not considered, the synthesis may produce excess 
sensitivity to component value variations. 

5.5.5. Simulating an L-C filter 

Orchard has shown that L-C filters inserted between two resistors have the best 
possible sensitivity. This means that an active filter with low sensitivity is produced 
by “copying” an L-C filter, which is used as a model. Among the solutions proposed 
for this, three methods yield a workable way of doing this, and are easy to 
implement. All three techniques produce a filter with a sensitivity considerably 
lower than their homologues using the cascade technique. 

Copying by simulation of inductors using gyrators and capacitors 

A gyrator is an electronic ensemble that converts a capacitor impedance to an 
inductor impedance. At the time of writing, the best gyrator is made with a 
generalized impedance converter, called a GIC (Figure 5.21). This mechanism is 
only useful for inductors that have a point linked to the mass. All high pass filters 
and even band pass filters satisfy this constraint, making possible adequate 
conversions. The synthesis method based on the use of gyrators (see Figure 5.22) 
is excellent for producing filters with very narrow bands, up to a few hundred 
kHz. 

FDNR-based simulation 

Another method for simulating L-C filters is based on an impedance conversion 
called the Bruton transformation. This transformation suppresses the inductors while 
activating the Frequency Dependent Negative Resistor (FDNR). This element is an 
electronic ensemble that converts the capacitor impedance into a negative resistor 
whose value is inversely proportional to the square of the frequency. The best FDNR 
schema is obtained with the help of the GIC shown in Figure 5.21, in which Z1 and 
Z are capacitors of value C and the other impedances are resistors of value R. The 

input impedance of this mechanism is then 
22

1

ωRC
Z e

−= . Here, we are describing 

a negative resistor dependent on the frequency. 
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Figure 5.21. Generalized impedance converter (GIC): Z
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Figure 5.22. Inductor simulation by a GIC: L=R2C 

The Bruton transformation involves multiplying all the impedances of an L-C 
filter by 1/p. This leads to the following steps: 

– inductors are converted into resistors; 

– capacities are converted into FDNR; 

– terminal resistors are changed into capacities. 

 
The overall response is not affected by this transformation. This method works 

particularly well with low pass filters (see Figure 5.23), if we begin with a schema in 
T in which resonant circuits are serial circuits, in parallel branches. As with 



202     Fundamentals of Instrumentation and Measurement  

simulating inductors by gyrators, it is not easy to produce floating FDNRs. We must 
also look for the L-C configuration that reduces their number. A combination of 
Bruton transformations and a gyrator can often help us avoid the use of floating 
FDNRs and gyrators. 

Operational simulation of an L-C filter 

A third method of copying L-C filters is to produce an electronic circuit that has 
no inductors but is responsive to the same differential equations. This method is 
widely used to make integrated filters with switched capacitors. This method will be 
presented in the next section. 

 

 

Figure 5.23. Low pass L-C filter (a) and a filter converted by  

Bruton’s method (b) producing two FDNRs 

5.6. Switched capacitor filters 

Producing a filter requires very precise and stable components. This condition is 
incompatible with the technological constraints of integrated circuits. An ingenious 
and very useful device invented by Friend in 1972 [FRI 72] avoided this problem 
and produced excellent filters that were completely integrated and required no 
adjustments. Unfortunately, at the time of writing this type of filter can only be 
produced at frequencies lower than a few MHz. 
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The basic assembly, shown in Figure 5.42, consists of replacing the resistors of 
an active filter with an assembly that only contains capacitors and interruptors that 
alternately open and close to the rhythm of a clock of period T = 1/fh. Each T period 
decomposes in two non-overlapping phases ぱ1 and ぱ2. If this mechanism is 
connected to two voltage sources V1 and V2, we can write that a charge 〉Q is 
transferred from the output source at each period: 〉Q = C1(V2-V1). 

 
During time t >> T, the transferred charge and the mean current are: 

 
Figure 5.24. Principle of switched capacitor circuits: a) basic schema;  

b) control voltages of interruptors 1 and 2; c) equivalent schema 
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In terms of the transferred charge, the circuit becomes equivalent to a resistor: 
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This resistor of value T/C1 can be easily integrated, since MOS transistors can be 
excellent analog interruptors. This mechanism becomes extremely useful when it is 
used as the resistor of an analog integrator (see Figure 5.25). The corresponding 
transfer function is: 
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Figure 5.25. Switched capacitor integrators 

The time constant of this integrator only depends on the relation of capacities C1 
and C2, and not on their individual value. If these elements are produced on the same 
substratum, this relation depends solely on the relation of their physical surfaces, 
which can be established by construction, with excellent precision (of the order of 
0.1%).  
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Since it is possible to make active filters that use only integrators (the KHN cell 
is one example), we can create very precise integrated filters without carrying out 
adjustments. Another advantage is that the time constant depends on the clock 
period T, so we can modify cut-off frequencies by digitally programming the clock. 
In practice, this is a very helpful property. 

5.6.1. Integrators without sensitivity to stray capacitances 

As such, the basic assembly cannot be used in an integrated filter. Actually, the 
values of C1 and C2 must be very low (lower by several pF) in order to conserve the 
silicon surface. This means that it is of crucial importance that inevitable stray 
capacitances, which have values that are difficult to control, should not influence the 
charge transfer. We can achieve this by using an integrator with four interruptors 
(see Figure 5.26). This assembly is insensitive to the principles of the stray 
capacitances of MOS interruptors. It can be used with two phasings of separate 
clocks. The following steps describe two different phasings: 

– interruptors 1 and 4, as well as 2 and 3, are simultaneously activated. The 
transfer function is that calculated previously. We will call this a “type 1” integrator; 

– interruptors 1 and 3, as well as 2 and 4, are simultaneously activated. The sign 
of the transfer function is reversed, because capacitor C1 is re-set before ceding its 
charge to C2: 
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This is called a “type 2” integrator. 
 

 
 

Figure 5.26a. Type 1 integrator (reverser) 
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This dual possibility facilitates filter synthesis by avoiding the use of inverters. 
We will see that, strictly speaking, these two circuits do not share the same transfer 
function in z, which is an added advantage. 

 

 
 

Figure 5.26b. Type 2 integrator (non-reverser) 

 
 
As a standard analog electronic mechanism, it is possible to place several 

branches with switched capacitors at the input of an integrator. In this way, we have 
an adder or subtractor with multiple inputs. This is why these two schemata are the 
bases for creating all integrated filters with switched capacitors. 

5.6.2. Analysis of switched capacitor integrators 

Equivalence between a switched capacitor resistor and an ohmic resistor is only 
approximate because this equivalence has been established by assuming a very high 
clock frequency in view of the filtered signal frequency. A more precise analysis 
comes up against a fundamental problem: a circuit with switched capacitors is not 
time invariant and therefore cannot be analyzed by using traditional methods. In 
particular, the concept of transfer function does not really apply to these circuits. 

 
Attempting to overcome this problem, we see that, aside from input nodes, 

currents are zero and voltages are completely stationary, except for moments of 
interruptor switching. If we restrict our observation of circuits to instants that 
immediately follow these transitions, we can write equations from divergences that 
create the charge conservation between two consecutive clock periods. From this we 
can deduce a transfer function in z, allowing for a rigorous analysis of the circuits. 
For this method to be effective, we must block the input voltage on each T period in 
order to make it stationary as well. 
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We illustrate this method by calculating the transfer function of the type 1 
integrator (Figure 5.26a) that has an input blocked between two T instants. If we 
estimate the charge transferred to capacitor C2, between two consecutive instants (n-
1)T and nT, by supposing perfect interruptors and amplifiers (the charge transfers 
then being instant), we get: 

2 2 2 2 1 1C V (nT)  C V (n 1)T  C V (nT)− − = −  

In taking nT as the reference instant, we deduce the linked transfer function in z: 

1 2 1
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For a type 2 integrator, a charge is accumulated by C1 before transfer into C2. 
Taking into account this delay, the inversion of C1 and the blocked input, the 
equation for the charge transfer becomes: 
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This is a transfer function of a non-inverting integrator 

5.6.3. Synthesis of switched capacitor filters 

The technology of switched capacitors plays only a practical part in making 
integrated filters. The following three application categories have been developed: 

– switched capacitor biquadratic cells, available in standard packaging have been 
developed. These are parametrizable by external resistors. They have a great 
advantage over the usual equivalent analog devices of being programmable in cut-
off frequency by clock frequency; 

–  manufacturers have developed filters of all types in the form of catalog 
circuits. This is possible because cut-off frequencies can be adjusted and set by the 
clock; 

–  specific circuits have been developed by manufacturers of analog circuits. 
They also offer a wide range of switched capacitor filters, as well as software 
necessary to carry out the correct synthesis. This helps us make a filter or include a 
filtering function in a more complex integrated circuit. 
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Synthesis of biquadratic cells is done only from state variable cells. Only these 
cells use nothing but adder-subtractor integrators. As for the last two applications, 
they use all the operational simulations of L-C filters, in order to take advantage of 
the low sensitivity of these filters. This method will be described in the next section. 

5.6.4. Operational simulation of an L-C filter (leapfrog simulation) 

It is actually impossible to create a gyrator and an FDNR only with integrators. 
This is why we use another technique to copy L-C filters: it is an operational 
simulation called leapfrog. It consists of simulating differential equations that 
govern the L-C circuit by means of an ensemble of integrators and adder-
subtractors. This procedure is similar to that used for creating state variable 
biquadratic cells. Its principle is illustrated by band pass filter synthesis. 

 
An L-C filter is a ladder filter with impedances of branches in parallel. These are 

noted as Zi, with the admittances of serial branches Yj (Figure 5.27). We can express 
recurrently the node voltages and branch currents as follows: 
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Figure 5.27. Structure of an L-C ladder filter 

These equations can be symbolized by a graph in leapfrog form, as in Figure 
5.28. For a polynomial low pass L-C filter, impedances Zi and admittances Yj have 
the respective values of 1/Cip and 1/Lip. They can be produced by switched 
capacitor filters. 
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Figure 5.28. Leapfrog operational graph 

To illustrate this method, we have to use a third order filter, knowing that the 
process is iterative (Figure 5.29). The iterative equations are modified in order to 
introduce terminal resistors and to avoid voltages (we multiply the intensities by a 
scaling resistor of arbitrary value R). We then introduce the appropriate signs for the 
integrations to end up with a simple schema. We get the following equations: 
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Figure 5.29. Third order polynomial L-C filter 

 

I1 Z2 
V2 

Y1 E1 

-1 

-1 

Y3 Z4 
I3 

-1 

I2 

Re 

C1 C3 

L2  

Rs 

V2 

Ve Vs 



210     Fundamentals of Instrumentation and Measurement  

pC1

1−

pC 3

1−

pL

R

2

2

Vs

1/Re
-V2Ve

1/Rs

1/R

1/R 1/R

1/R

1/Re

RI2

 
Figure 5.30. Operational graph of the L-C filter shown in Figure 5.29 

This set of equations is symbolized by the graph shown in Figure 5.30, where 
there are only integrators and adder-subtractors. Integrators 1 and 3 are type 1 and 
the central integrator is type 2. The ensemble can be created entirely with switched 
capacitor integrators. We see that many interruptors have two uses. After 
suppressing the unnecessary elements, we get the final schema, shown in Figure 
5.31. 

 
In this assembly, capacitor values C2 and C4 are the same as those in the first 

schema. The other capacitor values are established after choosing a clock frequency 
of period T and a resistor of arbitrary value R: 
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A careful analysis of the assembly, made with the transfer functions in z 
introduced before, shows that alternating type 1 and 2 integrators suppresses the 
imperfections (losses) coming from the discretization of the resistors. We speak of 
the “exact synthesis” of an L-C filter for this kind of operation, which is notable for 
its precision and stability. 
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Figure 5.31. Switched capacitor filter deduced from graph in Figure 5.30 

5.6.5. Switched capacitor biquadratic cells  

All manufacturers of analog integrated circuits offer universal cells with 
switched capacitors. These are usually parametrizable by external resistors, but this 
can also be done by setting cut-off frequencies to clock frequencies. All these 
circuits are variants of variable state cells, but they only have two operational 
amplifiers because they have inverting and non-inverting integrators. 

 
To show this, Figure 5.32 presents a schema of this type of cell. The interruptors 

shown there are in another form which is also widely used. The reference phase is 

Vs 

Φ1 

C2 

Ve 

Φ1 Φ2 

Φ1 

C3 

C4 

Ce 

Cs 

Ce 

C C 

C C 

Φ1 

Φ2 

Φ2 

Φ2 

Φ2

Φ

Φ2 

Φ1 

Φ1 

Φ1 

Φ2 



212     Fundamentals of Instrumentation and Measurement  

that which corresponds to the position of the interruptors on the schema. In the next 
phase, all interruptors switch. The transfer function of this cell is: 

   
)()2(

)(
21

21

1

2

AEBDzBDAEACzBD

DJzDIDJAGzDI

V

V

−+−++
+−−+= −−

−−
 

These switched capacitor filters perform very well from the point of view of 
flexibility and complete integration possibilities. However, we should remember that 
their applications are limited in frequency to several hundred kHz. In addition, the 
filters have been sampled and are subject to aliasing. This means they must have a 
continuous filter that eliminates this unwanted phenomenon.  

 

 

Figure 5.32. Switched capacitor biquadratic cell 
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Chapter 6 

Real-time Data Acquisition  
and Processing Systems 

6.1. Introduction 

When carrying out numerical analysis in real time, it is not enough to sample the 
signal to be analyzed at a rhythm that complies with Shannon’s criterion. It is also 
necessary to calculate at a speed compatible with the flow of the incoming samples. 
If, for a sampling frequency fe, we make M basic operations1 between each 
sampling, the necessary calculation power is M · fe, expressed in MOPS (millions of 
operations per second). This calculation power is a datum of the processor being 
used and is a compromise between the sampling frequency and the sophistication of 
the chosen analysis. But the lower the sampling frequency, the higher the order of 
the anti-folding filter;2 thus it will be difficult to integrate into the numerical system. 
The popular technique currently used to solve this issue (over-sampling and 
decimation) is discussed at length in this chapter. Part of this discussion will deal 
with ぇ - 〉 analog-to-digital converters using this technique. This will lead us into a 
presentation of implanting digital filters in cabled or programmed models (these can 
be comb or half-band filters). 

 
In this chapter, we will only discuss “real” signals, that is, those with a physical 

existence. It is also quite often a question of limited spectrum signals. These are 
signals with a spectrum assumed to be zero outside a band [fmin · · · fmax]. From a 
mathematical point of view, limited spectrum “real” signals do not exist. Actually, a 

                              
Chapter written by Dominique MILLER. 
1 This means it is part of the range of instructions of the processor being used. 
2 This is always necessary, if only as regards noise. 
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limited spectrum signal is always of infinite duration, so it not very “physical” in 
nature. In addition, when we speak of a limited spectrum “real” signal, we mean a 
signal that has been limited the spectrum occupation to a band containing one 
sufficient part of the signal energy. This means we have replaced: 

∫
+∞

0

2
)( dffX  [6.1] 

which contains the energy integrality of the signal, with: 

∫
max

min

2
)(

f

f

dffX  [6.2] 

The concept of “sufficient part” obviously depends on the application. 

6.2. Electronic devices for signal sampling and quantification  

6.2.1. Nyquist sampling 

In real-time, the Nyquist frequency is the minimum frequency that can be used 
for signal sampling. The first criterion is Shannon’s criterion, which shows that, for 
a limited spectrum signal [0…fmax], we can take3: 

max2 ffe ⋅>  [6.3] 

The second criterion is more constraining than the first. It is the anti-folding 
filter4, and it is indispensable, even if a priori the signal to be analyzed is present at 
input. Here, we must always take noise into account. If we consider that the signal at 
input is spoiled by a uniform density noise in a band [0···K · fe/2], with K being even, 
a sampling at fe will fold down in the band [0···fe/2] the K-1 bands for 

( )[ ]ee fnnf
2
1+A  for 

22

K
n

K <≤− . This means the noise power in the band [0···fe/2] is 

therefore K times more significant after sampling than before, degrading the noise-
signal ratio accordingly. 
                              
3 We will see in section 6.2.4 that there is another, less constraining version in the case of 
band signals limited around a carrying frequency. 
4 Or, in symmetrical fashion, the smoothing filter as a analog-to-digital converter, if the 
analyzing device has an analog output that functions at the same frequency as the sampling. 
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The anti-folding filter must: 

– “let the band go” through [0··· fmax]; 

– avoid folding in the band [0··· fmax] by sufficiently attenuating5 beyond fe – fmax . 
 
It becomes clear that we are not trying to eliminate folding in the band [0···fe/2]. 

Consequently, there has to be some folding in the band [fmax ··· fe/2]. We assume from 
the start that the numerical analysis we will carry out will sufficiently attenuate this 
band. 

 
We see that the width of the transition zone of this filter is fe - 2fmax. For a given 

attenuation, the more narrow the transition zone, the higher the order of the filter; 
and since this is an analog filter, the higher the phase distortion in the band [0···fmax] 
will be. By way of an example, we sample an order 9 elliptical filter at 256 kHz, and 
do an 18 bit quantification on a useable band signal heard from 0 to 100 kHz. We 
understand how difficult it will be to produce such a filter and the stability problems 
that will occur over time. 

 
This is why another approach is being used increasingly. In order to limit the 

order of the analog filter, we will sample at a frequency significantly higher than 
Nyquist’s frequency. This will give us a good flow of samples, which we will reduce 
by digital filtering operations,6 called decimations (analyzed in section 6.3.2). We 
will see in section 6.2.3 that over-sampling yields a better resolution than an analog-
to-digital converter. This technique is fundamental to ぇ - 〉 converters. 

6.2.2. Quantification noise 

The analog-to-digital converter, as a quantifier, introduces an error term. We can 
model it as in Figure 6.1. For a converter that rounds off, this term is included 
between –q/2 and q/2, where q is the quantum. A priori this quantification error 
depends on the input signal. 

                              
5 “Sufficiently” here depends, in this case, on the quantum of the analog-to-digital converter 
being used. The folded data will be of a lower level than the quantum. 
6 These filters, even if they are often of a higher order than their analog equivalent, will be 
stable over time and more often will be linear-phase filters. 
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Figure 6.1. Modeling an analog-to-digital converter 

However, for a high-amplitude signal, this error presents the speed of a noise 
(Figure 6.2). This means we consider the error to be an independent random input 
signal called quantification noise. This is characterized by it power spectral density. 
This approach is only valid if the quantum is small in relation to the maximum value 
of the input signal. Since this value defines the full range of the converter, the 
concept of independent quantification of the input signal only has meaning for 
converters with a fairly high number of bits. 

 
 

 

Figure 6.2. Quantification error of a 8 bit full-scale CAN 

By applying a triangular signal to an amplifier input, we easily show that the 
power of the quantification error equals j2

q = q2/12 for a quantifier by rounding off. 
This power becomes the noise power of the quantifier. This concept does not 
interfere with the sampling frequency. It interferes only in that it guarantees a 
correct monitoring of the signal; that is, that we do not jump from the quantum 
between two samplings. Under these conditions, the quantification noise power does 
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not depend on the signal frequency, and the spectral density can be considered as 
uniform. In order to give a value to this density, and to respect Shannon’s criterion 
as much as possible, we limit the input signal frequency to the interval 0 to fe/2. We 
then over-extend the uniformity domain of the spectral signal throughout [0···fe/2]. 
With this hypothesis, the spectral density of the quantification noise power equals: 

ee
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q

f
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f
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6
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22
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 [6.4] 

From here, we establish a reference signal ratio to quantification noise where the 
reference signal is an amplitude sinusoid equal to the full range Vref of the converter, 
whose frequency is in the band [0···fe/2]: 
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The quantum is calculated from Vref and the M number of bits: 
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or, expressed in dB, we have the standard relation: 

10log 1.76 6.02
q ref

S
M

B

⎛ ⎞
= + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 [6.7] 

6.2.3. Over-sampling 

6.2.3.1. Acquisition over-sampling 

Let us suppose that a signal to be sampled has a Nyquist frequency equal to 2fa, 
meaning that its useful band is approximately [0···fa]. We sample this signal at a 
frequency ae ff 2⋅=α , where 1>α  is the over-sampling factor. The first goal of this 
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over-sampling is to enlarge the width of the transition zone of the anti-folding filter 
that goes through ( )12 −αaf . This helps lower the order of this filter and improves the 
phase linearity in the useful band. Again, there will be noise folding in the band 

( )[ ]1−αaa ff A , but we already know that numerical filtering will eliminate this 
problem. 

 
The other advantage of over-sampling is that it distributes the quantification 

noise over a higher band frequency, thereby reducing spectral density: 

aa f
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 [6.8] 

The power noise quantification in the only useful band is reduced by a factor a: 
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For a full-scale sinusoid in the band [0···fa], the signal to quantification noise 
ratio becomes: 

10log 1.76 6.02 10log
q ref

S
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B

⎛ ⎞
= + ⋅ + α⎜ ⎟⎜ ⎟

⎝ ⎠
 [6.10] 

We can write: 

1.76 6.02 10 log 1.76 6.02 eM M+ ⋅ + α = + ⋅  [6.11] 

by taking: 

α2log
2

1+= MM e
 [6.12] 

In other words, an analog converter of M bits, used with an over-sampling factor 
α, leads to the same noise quantification power in the useful band as a converter of 
Me bits used at Nyquist frequency. We then say that this converter has a resolution 
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or an equivalent number of bits of Me bits. We gain 1 resolution bit each time we 
multiply the sampling frequency by four. 

 
Here, this concept of “resolution” improved by over-sampling needs some 

explanation. For example, let us consider a 10 bit convertor with a full range ±10 V. 
Its quantum is 19.53 mV. We sample a sinusoid of 100 Hz with an amplitude of  
9 mV at a frequency of 256 kHz. It becomes obvious that the converter output is 
always zero. If we then use a 14 bit converter at 1 kHz (whose quantum is 1.22 mV), 
we get the signal shown in Figure 6.3. The first converter is used with an over-
sampling factor of 256 per second, leading to a theoretical resolution augmentation 
of 4 bits, or 14 equivalent bits. Obviously, this does not lead to the same result. 
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Figure 6.3. Quantification by a 14 bit CAN/10 V with a sinusoid amplitude of 9mV 

Here, the idea of resolution is only defined in terms of the signal-quantification 
noise ratio in the useful band. However, we can obtain the effective resolution of 14 
bits by superimposing on the input signal, before quantification, a noise apart from 
the useful band. This noise should have an amplitude higher than the quantum of the 
10 bit converter. We eliminate this noise by digital filtering, leading to the 
quantification error shown in Figure 6.5. This operation is called dithering (see 
Figure 6.4). 
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Figure 6.4. Dithering technique 

 

Figure 6.5. Quantification error after dithering 

6.2.3.2. Over-sampling and reconstruction 

If, after over-sampling with Nyquist frequency, we have to reconstruct the 
analog signal, the problem of the smoothing filter following the analog-to-digital 
converter is absolutely the same as with anti-folding filter. The over-sampling before 
conversion allows us to reduce the order of this filter. 

 
Over-sampling of an entire factor N consists of, for the first time, inserting N – 1 

zeros between each sample. This clearly does not change the spectrum of the 
sampled signal (since we have added only zeros), but it does displace the sampling 



Real-time Data Acquisition and Processing Systems     223 

frequency of the first image of the spectrum in the basic band to that of the Nth 

power. A low pass numerical filtering, carried out at the new sampling frequency, 
helps eliminate all the intermediary images (Figure 6.6). 

 
sampled signal

oversampled signal by insertion of N '0'

oversampled signal after lowpass filtering

-fe fe

fe

fe

2fe fe*N

 

Figure 6.6. Output over-sampling 

A sample of N of the signal to be filtered is not zero. This allows us to introduce 
this filter in a polyphase form. This reduces the power of the necessary calculation. 
If the filter is a FIR filter (for phase linearity), of length L, it must be calculated as 
follows: 

∑
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In general, L > N. We can take, for example L = 2 · N ·R + 1 with 4 ≤ R ≤ 10. If 
at this instant n, x(n) is a non-zero sample, the calculation of y(n) is reduced to: 
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Then, at the instants n + 1, n + 2…,n + N - 1: 
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Then the filter initially of length L, working at a sampling frequency Nfe, requires 
a power calculation L · N · fe, which is divided into N filters of length (L-1)/N. These 
are calculated alternately. The necessary power calculation is therefore only Lfe. 

6.2.4. Under-sampling 

A discussion of Shannon’s theorem usually concerns a signal to be sampled at 
limited spectrum in [0···fmax], called a baseband signal, but in fact, this theorem is 
more general. It stipulates that the sampling frequency must be higher than the 
doubled width of the signal band, that is, for a signal at spectrum in [fmin ··· fmax]: 

( )minmax2 fffe −>  [6.16] 

This does not mean we cannot take a sampling frequency lower than fmax or fmin. 

In general, we speak of under-sampling as soon as the sampling frequency is below  
2 fmax, this being the minimum frequency for standard sampling. 

 
In Figure 6.7, we give the spectral effect of an ideal sampling of a basic band 

signal at limited spectrum. 
 
If we number the “Nyquist zones” that have a width fe/2, we find that: 

– the images of positive frequency are in the odd zones; 

– the images of negative frequency are in the even zones. 
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Figure 6.7. Spectra before and after an ideal basic band sampling 

If now, for a given sampling frequency, we start from a “high frequency, narrow 
band”7 signal (HF-NB) that is located in an odd Nyquist zone, after under-sampling 
we find absolutely the same spectrum as in the previous case (see Figure 6.8). In 
zone 1 we find same spectral information as in the signal of origin at an interval  
(f s f – Nfe). In other words, if the signal frequency is not useful information, the 
under-sampling preserves the information. The major under-sampling application 
domain is that of transmitting information by amplitude modulation and/or phase, or 
carrier frequency. This falls within the field of communication, but some sensors 
function according to the same modulation principle as a measurement carrier8. 

 

 

-fe fe 2fe N  fe*

1 2 3 4 5 2N 2N+1

 

Figure 6.8. HF-NB Signal under-sampling in an odd zone 

If the HF-NB is in an even zone (see Figure 6.9), we find, after under-sampling, 
the same spectrum, but with a frequency turn-up (f s Nfe – f). 

 

                              
7 This means the band is still lower by half than the sampling frequency. 
8 For example, sensors using Foucault currents in measurement applications of thickness and 
distance in front of a moving object. The frequency used is linked to the electromagnetic and 
geometric properties of the object, and this influences the module impedance and the sensor’s 
phase. But the development rapidity of this impedance, and thus the band width of the signal, 
depends mainly on the speed of movement. 
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Figure 6.9. Under-sampling of an HF-NB signal in an even zone 

According to both cases, the criteria for under-sampling are as follows: 
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which clearly fits the Shannon criterion of “widened”. 
 
We see that under-sampling can lead to using a sampling frequency much lower 

than those in the useful field domain. We can thus use an analog-to-digital converter 
with a fairly long conversion time. However, the sampling must be “ideal”, which 
means it must be very short as concerns the signal frequency domain. In addition, 
the sampling clock must have a very weak jitter, always in keeping with the signal 
frequency domain. This means that under-sampling requires using sampling 
structures that perform, as well as those of “standard” sampling. The importance is 
in the fact that the flow of numerical data to be analyzed by the processor may be 
low and is not connected to the carrying frequency. To demonstrate this (see Figures 
6.10 to 6.15), we present the structure and the different analysis steps of a GSM 
receptor functioning by under-sampling of the first intermediary frequency  
(69.875 MHz) for a band width of 200 kHz (corresponding to the juxtaposition of  
8 channels). 
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Figure 6.10. Structure of a GSM digital receiver 

In this structure, the processor finally receives a flood of digital data at  
406.25 kHz. We should see that part of the digital analysis (translation, filtering and 
decimation9 of a factor 16) of the output of an analog-to-digital converter is carried 
out by wired structures. 

69.875  

Figure 6.11. Signal of origin, at intermediary frequency 

-6.5 0 4.785 6.5  

Figure 6.12. After sampling at 6.5 MHz, zones 1 and 2 and quantification noise 

                              
9 See section 6.3.2 on a discussion of ぇ - 〉 converters. 
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-6.5 0 6.5  

Figure 6.13. Changing digital frequency at 100 kHz 

-6.5 6.50  

Figure 6.14. After low pass digital filtering at 200 kHz 

-0.406 0 0.406  

Figure 6.15. After decimation by a factor of 16 

The anti-folding filter is still necessary, even if only to limit the noise band to 
[fmin ··· fmax]. The anti-folding filter then becomes a pass band (see Figure 6.16). 

 

If the pass band filter is symmetrical in relation to its central frequency, it 
becomes important to center the band in a Nyquist zone: 

– in an odd zone: 
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– in an even zone: 
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Figure 6.16. Anti-folding filterings in standard sampling and in under-sampling 

We get from this a relation between the sampling frequency, the central 
frequency of the signal to be sampled, and the number of the Nyquist zone in which 
we find the signal: 
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 [6.21] 

In this way we establish the relation between the carrying frequency of  
69.875 MHz and the sampling frequency of 6.5 MHz. 

6.3. Analog-to-digital converters 

Since the technologies develop so quickly, in a reference book of this type it is 
not helpful to discuss all utilization domains of different types of analog-to-digital 
converters. The following points briefly summarize a few general points: 

– there are converters that carry out successive approximations, all-purpose 
converters, as well as converters with medium resolution and medium sampling 
frequency converters; 

– there are “high speed” converters. These are not defined by their number of 
bits (that is, by their binary word format), but by a number of effective bits that take 
imperfections into account, depending on the frequency; 
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– gradient converters, both the high resolution and low speed varieties, have 
been supplanted by ぇ - 〉 converters. 

 
In this section we have only touched on “new” points, introducing the idea of 

number of effective bits and, most importantly, the ぇ - 〉 converter, which uses the 
more modern techniques of over-sampling and digital decimation. 

6.3.1. Features of SINAD10 and ENOB11 
converters 

The first criterion for choosing an analog-to-digital converter is its number of 
bits M, determined by the dynamic of the signal D12 to be quantified, as well as by 
the minimum signal to quantification noise ration RSBqmin that we want to allow. For 
the full-range signal and a converter of M bits, the signal to quantification noise ratio 
is given in equation [6.7]. For the minimum signal, of lower useful value D dB, the 
signal-to-noise ratio is only: 

min 6.02 1.76RSBq M D= ⋅ + −  [6.22] 

If this quantity is a constraint, we then take: 

min 1.76

6.02

RSBq D
M

+ −
=  [6.23] 

From this point, the converter can be characterized in terms of dynamic or static 
non-linearities, missing codes and so on. These features can be obtained by applying 
a sinusoid to the converter’s input. This sinusoid must be of very high spectral 
purity. We then analyze the incoming samples: 

– by histogram, that is, mainly in order to detect the missing code; 

–by FFT for non-linearities.  

 
 

                              
10 Signal to Noise and Distortion ratio. 
11 Effective Number of Bits. 
12 That is, the relation between its maximum value and it minimum useful value, expressed in 
decibels. 
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The spectral analysis of an ideal converter gives a single line to the input 
frequency13 emerging from a lower limit of quantification noise. With non-linearity, 
lines will appear at harmonic frequencies. We then call SINAD the ratio, in power, 
of the fundamental line to the highest disturbance lines or of the ground noise. If 
there is no distortion, the SINAD is equal to the reference signal-to-noise ratio 
defined in section 6.2.2, depending only on the number of bits. If not, we define the 
number of effective bits by: 

1.76

6.02

SINAD
ENOB

−=  [6.24] 

The non-linearities depend on the input frequency and increase with it. At low 
frequencies, the number of effective bits is equal to the number of bits of the 
converter; but this decreases at higher frequencies. This means an 8 bit converter can 
have an ENOB of 6.7 bits for an input signal of 100 MHz. A general rule is that we 
get curves of the type shown in Figure 6.17. 

 

 

Figure 6.17. Development of the ENOB depending on the input frequency, for two converters 

At a higher input frequency, the best ENOB does not necessarily correspond to 
the highest number of low frequency bits. 

6.3.2. ぇ - 〉 converters 

These were first developed by audiodigital technology. They have increasingly 
supplanted gradient converters for instrumentation purposes. The problem of 

                              
13 There must be a precise relationship between the sampling frequency and the sinusoid 
frequency. 
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audiodigital technology was this: it used a base Nyquist frequency (44 kHz for a 
pass band of 20 kHz) in order to reduce the number of samples to be memorized and 
analyzed. This was done with a quantification of at least 16 bits for 90 dB of desired 
dynamic and a signal-to-noise ratio of the order of 8 dB, leading to very high order 
anti-folding filters. This type of filter is not only tricky to produce; in an essentially 
analog technology it cannot be integrated on the same chip as the rest of the digital 
part.14 This resulted in higher costs. To overcome this problem, manufacturers have 
tried to reduce as much as possible the analog part by transferring most of the 
analysis towards digital processes. Over-sampling has provided this solution. Today, 
64 the most widely used over-sampling factor, bringing the anti-folding filter to an 
order of 2 to 4. However, there are not (or were not) 16 bit converters at 2.8 MHz 
(64 times 44 kHz). But we can make use of the fact that over-sampling helps 
improve a converter’s resolution (see section 6.2.3). To improve resolution even 
more, we proceed to ぇ - 〉 modulation that helps reject quantification noise at high 
frequencies, that is, outside the useful band. We can then significantly lower the 
number of converter bits, and even use a 1 bit converter (a simple comparator) that 
has the advantage of being perfectly linear. An inherent part of the converter, digital 
analysis for filtering and decimation helps return the initial high flow and low 
resolution to the Nyquist flow with a resolution of 16, 18, …, 24 or even 28 bits! 
That is the range of techniques discussed in this section. 

 
The ぇ - 〉 modulator is supported in the beginning by the 〉 modulator (see 

Figure 6.18) whose output is a signal modulated by impulse length. Its mean value is 
equal to the derivation of the input signal. 

 

 

Figure 6.18. 〉 modulator 

In order to obtain an output with a mean value directly proportional to an input 
signal, we integrate the input signal ahead of the 〉 modulation, hence the name  
ぇ - 〉 filter. 

 

                              
14 The production and purchasing levels reached by the field of audio technology has lead to 
the creation of specific integrated circuits. 
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Figure 6.19. ぇ - 〉 modulator 

In a sampling context, the comparator is actually an analog-to-digital converter 
(possibly 1 bit, more often M bits), that we model as a source of quantification 
noise15 (see Figure 6.20). In the return loop, an analog-to-digital converter is 
necessary. It must be modeled by a pure time-lag. 

 

 

Figure 6.20. Sampled ぇ - 〉 modulator 

The transfer functions in z of the integrator and of the time-lag are respectively 

11

1
−− z

 and z-1. In these conditions, we get: 

( )1* 1)()()( −−+= zzBzSzS q  [6.25] 

This is a “pass-through” structure with regard to the signal and a differentiator; 
that is high pass structure regarding quantification noise. This means it doubles the 
noise power (if we consider that two successive samplings of the quantification error 

                              
15 Extrapolating the concept of quantification noise to a 1 bit converter is a bit risky. 
However, it does give a qualitative approach and the technique of dithering helps us use this 
model. 
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are independent), but rejects it at higher frequencies. We say that the noise has been 
“put into form”. Its power spectral density is obtained by calculating: 
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If g is the over-sampling factor and q is the converter’s quantum, the noise 
power in the useful band is: 
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by supposing 1<<
α
π , this power is written as: 
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We can express the signal-noise ratio with the reference signal according to M 

and g.  
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So as soon as 3 1.8α > π ≈ , the signal-to noise ratio increases much faster with g 
than in the case of simple over-sampling, without appearing as noise. We gain 9 dB, 
that is, 1.5 bits of resolution each time that g doubles. 

 
We can also improve this resolution by using a ぇ - 〉 modulator of the order N 

(see Figure 6.21). This is expressed by: 

( )Nq zzBzSzS 1* 1)()()( −−+=  [6.31] 
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Figure 6.21. ぇ - 〉 modulator of order N 

The power spectral density of the noise put into form is then: 
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Integrating this function is not simple, and we must be content with a first order 
development. This is reasonable because we integrate from 0 to fe/2α, a field for 
which f << fe, since we over-sample from a significant factor. 
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We then get: 
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We can give, in monograms, the resolution gain16 according to g and N (Figure 
6.22) and compare it with the simple over-sampling (“MIC” in the figure). 
Theoretically, we get more than 20 bits of resolution with a 1 bit converter, a 
modulator of order 4, and an over-sampling factor of 64. We should not forget that, 
in addition to a good resolution, we get a converter with very good linearity. This is 
because when we use a low-bit converter, the resulting digital analysis will also be 
linear. 

                              
16 That is, the gap between the number of effective bits and the number of converter bits used 
in the modulator. 
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Figure 6.22. Resolution gain of a ぇ - 〉 modulator of N order 

We thus have a significant flow of quantified data with a low number of bits, 
representative of a basic signal frequency and a significant noise level; rejected 
beyond, however, the useful band of the signal (Figure 6.23). 

 

Figure 6.23. Spectral densities of the signal (7 Veff ) and  

of the quantification noise for M = 1, g = 64 and N = 3 

Digital filtering suppresses this high frequency noise in order to conserve only 
the useful band [ ]α20 efA . Since at the end of this digital filtering, there is nothing 
left in the band [ ]22 ee ff Aα , we can only take a sample on α without losing 
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information. This brings the sampling frequency to the Nyquist frequency. This 
ensemble of operations, filtering and lowering the sampling frequency, is called 
decimation. This process will be discussed in detail. 

 
A priori, it is sufficient to set up a digital filter of type FIR to ensure linearity. 

We can calculate the order of the filter by using a standard empirical formula: 
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where: 

– ha and hp are undulations in attenuated bands and pass bands; 

– 〉f is the width of the transition band of the filter. 
 
Looking at the example in Figure 6.23, we see that we want to bring the noise 

level to that in the pass band (–100 dB is the “resolution” of a 16 bit converter) for a 
transition width of 22 – 20 = 2 kHz. This means we need an attenuation of 110 dB. 
We can choose an undulation in the pass band lower than ½ quantum. Let this be 
152 µV (16 bits, full range 10 V). The sampling frequency is 64*44 kHz = 2.816 
MHz. All this leads to a filter order of around 13,000. With a processor capable of 
analyzing 200 million operations per second, at 2.816 MHz, we cannot produce a 
filter of an order above 70. This means we have to proceed in several steps, by 
beginning with a filter that can be made by using a cabled structure: the comb filter. 

 
The comb filter is an FIR filter, with all coefficients equal. It is therefore a linear 

phase filter, and there is a recursive way of expressing it. For a filter of L length, we 
get: 
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The response in frequency of this filter is given by the following equation and is 
shown in Figure 6.24. 
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Its continuous gain is therefore h0┳L. For a unitary gain we take h0 = 1/L. This 
filter carries out the arithmetic mean of the last L input samples. If L = 21, the 
division by L in turn performs l intervals to the line of the accumulated total of the 
samples. Under these conditions, the filter can be made with the help of simple 
accumulators and registers, that is, by means of a hard-wired logic that can function 
at a very high sampling frequency. 

      1/16  2/16  3/16  4/16  5/16  6/16  7/16  8/16
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Figure 6.24. 16 length comb filter, response in dB between 0 and fe/2 

The attenuation is infinite throughout fe/L, and is significant around these 
frequencies. This means that if the useful band of the filtered signal is much lower 
than fe, we can proceed to a decimation of order L (that is, we only sample L) 
without folding in the useful band. Actually, the decimation of order L will fold the 
frequencies in the useful band that are close to different multiples of fe/L. The comb 
filter of length L easily helps us produce a decimator filter of order L that can 
function at high frequencies (see Figure 6.25). 
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Figure 6.25. Three equivalent ways of producing comb filtering and one decimation 
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In the last analysis, the filtering-decimation ensemble is made by means of: 

– an accumulator 
11

1
−− z

 , functioning at fe; 

– taking a sample of L at the accumator’s output; 

– a differentiator 11 −− z  functioning at fe /L. 
 
To enlarge the zones of high attenuation around all the fe/L areas, we increase the 

filter order by cascading the accumulators17 and differentiators before and after 
decimation (Figure 6.26). The frequency response for an order 4 is compared to that 
of an order 1 in Figure 6.27. 

 
N integrator

N differentiator  

Figure 6.26. Order N comb filter 
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Figure 6.27. Response in frequency (in dB) of comb filters of 16 lengths and  

of order 1 and 4, between 0 and fe/2 

                              
17 This cascading does not require accumulators with a high number of bits. 
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This kind of filter is used as the first decimator filter at the output of the ぇ - 〉 
modulator. It is most frequently of an order 4 and a length 16; this means it has a 
decimation of factor 16. This filter does not perform well enough to be able to go as 
low as Nyquist frequency. This phase is completed by FIR programmed filters. For 
these filters, we must minimize the necessary power calculation. 

 
Looking again at Figure 6.23, we see that the noise remaining after a comb filter 

of 16 lengths and of order 4, but before decimation of a factor 16, is given in Figure 
6.28. We see that, except for the first two lobes, all the others are below –80 dB. The 
decimation will move back all these lobes for a total level of –64 dB. To proceed 
further in decimation (there remains a factor 4), we must bring this level to the 
required –100 dB. By calculating the order of the necessary filter, we get the 
following parameters: 

– 36 dB and 152 µV undulation; 

– sampling frequency of 176 kHz and transition width of 2 kHz. 
 
This leads to an order of 376 or a more realistic calculation power18 of 66 MOPS 

(which can be even somewhat higher). 
 

 

Figure 6.28. Quantification noise after comb filtering 

                              
18 By assuming that the processor can make a product and an accumulation in one operation. 
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The decimation, done in two steps with half-band filters, helps reduce the 
necessary power calculation. 

 
A half-band filter is really a linear phase low pass filter with a unitary gain in the 

pass band, so that H(f) presents an odd symmetry around the point ( )4
, 0.5ef :  
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These kinds of filters are of odd order, with even coefficients, apart from the 
central coefficient, which is zero. For a given order of a filter, the required power 
calculation is two times lower than for an ordinary FIR filter. In addition, ha = hp. 
This kind of filter is especially useful to the decimation of a factor 2, as we see in 
Figure 6.29. Since the transition width is relatively large, this leads to a slightly 
higher order. Still for the same example: 

– for a first order half-band filter: 

- ha = hp = 50⋅10-6 (1/3 of the previous undulation because we will cascade 
three filters); 

- sampling at 176 kHz and transition width (88 – 20) – 20 = 48 kHz; 

– for a second order half-band filter: 

- ha = hp = 50⋅10-6; 

- sampling at 88 kHz and transition width (44 – 20) – 20 = 4 kHz. 

 
This gives filters of order 19 for 111 for the second. So the total power 

calculations of 10*176 103 + 56*88 103 ≈ 6.7 MOPS. 
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Figure 6.29. Half-band filter and decimation 
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We have to complete the procedure with a standard FIR filter that compensates 
for the attenuation in the pass band resulting from the comb filter and carries out a 
last filtering in the transition zone. Of an order of around 100, at 44 kHz, it adds 
about ten MOPS, which is within the range of all specialized processors. 

 
This concept of over-sampling (with or without being in the form of 

quantification noise) and decimation is so important that specialized integration 
circuits have been have been made that include comb filters and FIR filters.19 

 

Today, we find integrated converters20 that have a modulator, digital filters and 
decimation capabilities. With the resulting high number of bits, the interface is 
serial, often connected to a processor unit. 

6.4. Real-time digital analysis by a specialized processor 

Specialized processors used in signal analysis are basically conceived for linear 
analyses of the convolution type or the equivalent. These can be expressed by: 

∑ ⋅=
i

ii xay  [6.40] 

Choosing the number of bits used to represent intervening variables in the 
analysis depends on the same criterion used for choosing the number of bits for an 
analog-to-digital converter (see section 6.3.1). We need to know the dynamic of 
these variables and the admissible quantification. 

 
Representation in fixed-point notation (in whole numbers or fractions) leads to a 

non-uniform quantification error that is more significant for lower values. However, 
representation in floating point (with mantissa and exponents) will be more or less 
independent of the quantified value. 

 
A calculation unity expressed in floating point is more complex, and thus more 

costly21; above all, it uses more energy. There are also processors that use both types 
of notation, but the ones that use fixed-point notation tend to be preferred when 
energy consumption is a concern. 

                              
19 For example, HSP50016, HSP43220, HSP43168, etc., from Harris [HAR 95]. 
20 Often with two in the same circuit, since the audio is stereo. 
21 But which especially depends on the production volume. 
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6.4.1. Fixed point and floating point analysis 

6.4.1.1. Fixed point notation 

Here we will discuss only complement notation of 2, which is used solely for the 
purpose of carrying out fixed point calculations22. 

 
If a whole number is shown in complement of 2s by the N binary digits bN–1bN– 2··· 

b0, its numerical value is: 

0
0

1
1

2
2

1
1 2222 ⋅+⋅++⋅+⋅− −

−
−

− bbbb N
N

N
N …   [6.41] 

The most weighted bit is representative of the sign, but there is a weighting since: 

( ) 111 212222 −−− −=+−⋅=+− NNNN

  [6.42] 

An integer represented with N bits can be represented by N + 1 bits by recopying 
the most weighted bits. The extension of the sign is: 

0
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1
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1
11 2222 ⋅+⋅++⋅+⋅− −
−− bbbb N

N
N

N …   [6.43] 

We can represent the fractional numbers by arbitrarily putting a decimal point 
between the bits k - 1 and k. We then speak of a representation in Qk. The 
representation 0121 bbbbb kkNN AA −•−−  has the value of: 

( ) kN
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N
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− ⋅⋅+⋅++⋅+⋅− 22222 0
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1
1

2
2

1
1 …   [6.44] 

For a coding in fractional numbers, the dynamic23 is always (2N-1 – 1). The 
quantification error (1/2 LSB or 2-k-1) is a constant, and relatively more important for 
low values. 

6.4.1.2. Floating point notation 

We notate the number in the form 2exp mantissa, where exp is an integer in 
complement of 2s on E bits and mantissa is a fractional number coded as Qk on  
M = N – E bits (k ≤ M). The number is then written on N bits: 

021021

021

mmmeee

bbb

MMEE

NN

AA
AAAAAAA

−−−−

−−   [6.45] 

                              
22 Many AN and NA converters use, by successive approximations, the offset binary. We 
continue with the complement of 2s by complementing the most weighted bit. 
23 That is, the relation, in absolute values, of the highest value to the non-zero lowest value. 
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For a reason we will explain below, we exclude the possible values by exposing 
the value – 2E-1. We then get: 

12exp12 11 −≤≤+− −− EE   [6.46] 

If we work with positive numbers: 

– the highest positive value is ( ) kME −−− ⋅−⋅
−

2122 )1(12 1

; 

– the lowest non-zero positive value is .212 12 1 kE −+− ⋅⋅
−

 
 
This gives us a dynamic of ( )122 122 −⋅ −− ME

.  
 
The dynamic in floating point notation is thus around EE −−222  times higher than 

for a fixed point notation on the same number of bits. For 16 bits having 4 exponents 
and 12 of mantissa, the dynamic is 3.35⋅107 in floating notation as opposed to 
3.28⋅104 in fractional. 

 
The multiplicity of notation is hard to control. We can impose a condition on the 

mantissa (similar to that of the scientific notation in the decimal system): 

1 ≤｡mantissa｡< 2  [6.47] 

The value “0” is then represented by 12exp −−= E . 
 
The notation of the mantissa is in QM-2, but one of the most weighted of the 2 bits 

is necessarily non-zero: 

– the highest positive value is ( ) ( )2)1(12 2122
1 −−−− ⋅−⋅
− MME

, 

– the lowest positive non-zero value is 12 12 1

⋅+− −E

. 
 
So the dynamic is ( )( )222 222 −−− −⋅ ME

. This is around 2(M - 2) times lower than in 
the previous example. For 16 bits, 4 of exponents and 12 of mantissa, the dynamic is 
of 3.28⋅104, practically the same as for fractional notation. In terms of the dynamic, 
we have lost the advantage of the floating point, but the quantification error is no 
longer a constant. It equals 2exp ⋅2- M + 1. This means that for the relative error, we 
have, no matter what the value is: 

1
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2 +−
+−

−
+−
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M

M
M

x

xδ   [6.48] 

We should keep in mind the following points. 

– For positive numbers, the mantissas between 1 and 2 coded as QM-2 are written 
01.xxxxxxx. 
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 – For negative numbers, the mantissas between -1 and -2 coded as QM-2 are 
written as 10.xxxxxxx.  

 As such, 2 bits of the mantissa are always complementary. It is redundant to 
conserve both. We gain a bit of resolution by making one of them implicit.24 

 
There is an IEEE 754 normalization of numbers in floating notation, allowing for 

the exchange of data between different systems. The format, on 32 bits, is: 

SEEEEEEEEMM…M 

The exponent on 8 bits is in offset binary of 126. The binary mantissa is signed 
on 23 bits, with the first “1” implicit. The notated value is then: 

( ) ( )mantisse
S .0121 127exp ⋅⋅− −

  [6.49] 

In certain cases: 

– 0 if exp = 0 and mantissa = 0; 

– (-1)s ∞ if exp = 255 and mantissa = 0; 

– NaN (Not A Number) if exp = 255 and mantissa ≠ 0; 

– (-1)s·2-126 .(0.mantissa) if exp = 0 and mantissa ≠ 0 (denormalization). 
 
If the concepts of NaN or of infinity are of mathematical importance, we cannot 

do much in real-time. 

6.4.1.3. Comparison between the two notations 

If we impose a minimum precision (that is, a maximum relative error), the fixed 
point dynamic is much lower than in floating point. If we compare the two notations 
on 32 bits with, for the floating point, 8 bits of exponent, we find the following. 

– in floating point, the relative error is always below 6 10-8, for a dynamic of the 
order of 1076; 

– in order to have a relative maximum error below 6 10-8, the lowest value that 
can be notated is therefore 8.333 106, for a maximum value of 2.14 109 or a dynamic 
of 256. 

 
Using a processor in fixed point requires special attention in the area of data 

framing, in order to obtain the best precision by avoiding overflow problems. In 
floating point, the problem of framing is not of crucial importance. The only 
remaining issue is the effect on the final result of the variable quantification. 
                              
24 In TMSC3x processors, made by Texas Instruments, the bit of the mantissa sign is kept and 
the following bit is omitted. 
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6.4.2. General structure of a DSP25 

Almost by definition, a signal analysis processor is a RISC machine26. This is so 
because we need a machine that can analyze a limited number of operations with 
maximum efficiency. The limited number of instructions, a maximum resource 
parallelization and a pipeline of 4 or 6 levels helps us obtain an optimum situation: 1 
instruction = 1 word = 1 cycle.  

 
The examples in this section are drawn from processors of TMS320C54x (fixed 

point) and TMS320C3x (floating point) made by Texas Instruments, the uncontested 
leader in DSP processors. What we present here is general information: the 
structures described here can be found in all these processors. 

 
In this section we are only interested in real-time analysis, which generally 

means that the analysis is done on samples taken by an analog-to-digital converter. 
In other words, in the expression: 

∑ ⋅=
i

ii xay   [6.50] 

the xi are successive samples x(n-i); they are numbers noted in fixed point, coming 
from a M bits converter, thus in QM-1. 

 

Figure 6.30. Linear real-time digital analysis 

                              
25 Digital Signal Processor: a specialized processor for signal analysis. 
26 Educed Instruction Set computer: a calculator (or processor) with a reduced range of 
instructions, which allows for a more efficient and rapid wiring circuit, with an instruction 
carried out by cycle. 
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Looking at Figure 6.30, we see that for efficient analysis, we must have: 

– a multiplication/accumulation structure (see section 6.4.2.1); 

– a time lag or data aging structure (see section 6.4.2.2). 
 
Another structure that is not explicitly shown in Figure 6.30, but is nevertheless 

necessary, for both DSP processors working in fixed point and floating point is data 
reframing. It will be described in section 6.4.2.3. 

6.4.2.1. Multiplication/accumulation structure 

This operation is the basis of all DSP processors, often indicated by MAC 
(Multiply and Accumulate27). The usual structure is shown in Figure 6.31. The 
multiplication makes two operands play a part, which can be identical or different: 

– they can be different for adaptive operations at constant coefficients. The ai are 
the constants and can be arranged as “ROM”, or more generally as program 
memory, with the x(n-i) and y(n-i) being the variables that can be stored as “RAM” 
(data memory); 

– they can be identical for adaptive or correlative filtering operations. All the 
operands are variable and can be stored as data memory. 

 
In the first case, the operands can be introduced simultaneously if distinct buses 

exist, and the multiplication/accumulation can be carried out in a single cycle. In the 
second case, a temporary register T is necessary, and there must be a supplementary 
cycle.  

 
We have already discussed multiple buses. These have two types of structures: 

– the modified Harvard type of structure with a memory space “program” and a 
memory space for “data”, all accessible by several bus addresses and data (Figure 
6.32). The “program” and “data” spaces can be internal and/or external. This kind of 
configuration allows, means of a pipeline, an instruction “fetch”, two data readings, 
and a data writing, all in a single cycle (see Figure 6.37). The one condition that 
must be met for this to happen be that the two “program” and “data” spaces are 
respectively internal and external; 

– a single memory space “simplified”, but with multiplication buses to allow for 
simultaneous access to the different memory units (Figures 6.34 and 6.35). 

 

                              
27 It is under the name MAC that the aptitude of a general-interest processor or micro-
controller is designed to carry out signal analysis. 
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Figure 6.31. Multiplier/accumulator 
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Figure 6.32. Structure of modified Harvard (doc. Texas Instruments C54x) 
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MPY

ADD

D C

acc A acc B

A
B
0

PA T D A

s/u s/u

FRCT

D = Data Bus

C = Coefficient Bus

P = Program Bus

A = A accumulator

B = B accumulator

T = Temporary register

s/u    = signed/unsigned

FRCT = Fractional mode bit  

Figure 6.33. Operand choices for a MAC operation (doc. Texas Instruments, C54x) 

 

Figure 6.34. Multiples buses of C3x (doc. Texas Instruments) 
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Figure 6.35. C3x MAC unit (doc. Texas Instruments) 

6.4.2.2. Time lag structures 

Time lags converts a sample x(n-i) and x(n-i-1) for the next convolution. There 
are two techniques used for carrying out this operation: 

– time shifts carried out through memory (see Figure 6.36); 

– the use of pointers on a circular table (see Figure 6.38). 
 
Time shifts carried out through memory stimulate high bus activity. However, if 

the convolution is calculated in “inverse” order, we get: 

)()1()()( 01
0

nxaNnxaNnxainxa NN

N

i

i ⋅+++−⋅+−⋅=−⋅ −
=
∑ A  [6.51] 

Once the sample x(n-i) is loaded in the multiplier, it can be rewritten at the next 
address x(n-i-1), which already has been used and been shifted. This operation is 
called MACD (Multiply, Accumulate, and Delay: see Figure 6.37). The modified 
Harvard structure seen in section 6.4.2.1 helps us produce it in a single cycle if the 
pipeline is used correctly. 
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x(n-N)

x(n)
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Beginning Beginning

new value x(n)

Garbage

x(n-N+1)

 

Figure 6.36. Time shifting by memory shifts 

 

Figure 6.37. Arithmetic operations and possible shifts with a modified  

Harvard structure (extract from instructions of C54x) 

Pointers are the only solution to circular addressing (that is, of ARn address 
registers). But these pointers must allow us to carry out modular operations 
throughout the length of the table. This requires a dedicated arithmetical unit, such 
as the Address Register Arithmetic Unit (ARAU). This allows for efficient address 
tables (see Figure 6.39). 

Mult./add. instructions: 
• MPY[R] Smem ,dst : 

( Smem )*(T)->dst 
• MPY  Xmem , Ymem ,dst 

( Xmem )*( Ymem )->dst
( Xmem )->T 

• MAC[R]  Smem ,dst : 
( Smem )*(T)+(dst)->dst

• MAC  Xmem , Ymem , src [,dst]
( Xmem )*( Ymem )+(src)->dst
( Xmem )->T 

Time shift instructions:
•DELAY Smem

(Smem)->Smem+1
•LTD Smem

(Smem)->T
(Smem)->Smem+1

Multiplication/accumulation and time shifts:  
MACD Smem,pmad,src

(Smem)*(Pmad)+(src)->src
(Smem)->T
(Smem)->Smem+1
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Figure 6.38. Time shifts done with pointer on a circular table 

 

Figure 6.39. Extract from addressing mode by register of C3x (doc. Texas Instruments) 

Apart from the problem of shifting, addressing by register (or indirect 
addressing) is useful because it makes instruction coding possible with a single 
word, whether with one, two, or three operands. 

6.4.2.3. Reframing structures 

Suppose we want to carry out, on a fixed point DSP, an analysis of the type: 

∑ −⋅=
i

i inxany )()(

  

[6.52] 
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Here, y(n) and the x(n-i) are samples directly represented as whole numbers, 
since they come from or will go into AN or NA converters. The ai are coefficients 
that can be determined by one of several techniques, and are therefore real numbers 
that we will represent as Qk: 

( ) 2k
i i ia A round a→ = ⋅   [6.53] 

The processor will calculate: 

)(2)()( nyinxAnY k

i

i ⋅=−⋅=∑   [6.54] 

At each sampling period, y(n) will be obtained by a cropping28 of Y(n). A barrel 

shifter is the structure that allows us to shift a binary word to the right or left of a 
quantity. If the principle structure (Figure 6.40) is simple, the number of ports of the 
combination unit increases significantly. 

 

 

Figure 6.40. Barrel shifter 

If we now consider a DSP working in floating point mode, the problem of 
reframing appears when two numbers are added (Figure 6.41) when we must bring 
one of the exponents to the same value as the other. 

 

                              
28 A multiplication by 2-k is carried out by k shifts, to the right or left according to the sign of 
k. 

H 
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Figure 6.41. Addition of two numbers in floating point mode 

6.4.2.4. Resource parallelization 

All the resources described above are for the most part parallelized (see Figures 
6.42 and 6.43). 

 
 

 

Figure 6.42. Resource parallelization in a C54x (doc. Texas Instruments) 
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Figure 6.43. Resource parallelization in a C3x (doc. Texas Instruments) 

This structure is linked to an intensive pipeline. In most cases, this allows for 
functioning according to the following rule: one instruction = one cycle (Figures 
6.44 and 6.45). 
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PP Drive Drive addressaddress of instruction of instruction

FF CollectCollect instruction instruction

DD InterpretInterpret instruction, plan job instruction, plan job

AA Set up pointers,Set up pointers, Calc Calc data data address address

RR Collect operandCollect operand

XX Execute operationExecute operation

PPAA

PPDD

ctlr

DDAA/C/CAA

DDDD/C/CDD

*,+

Calculate Write address

Send result

EEAA

EEDD  

Figure 6.44. Decomposition of a C54x instruction (doc. Texas Instruments) 
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Figure 6.45. C54x pipeline (doc. Texas Instruments) 

It should be remembered here that, because of the pipeline, the instructions 
giving the parallel operations calculate with the register values before the beginning 
of the instructions. This means that a MAC instruction accumulates a product that 
has already been calculated. It then calculates a new product which will then be 
accumulated subsequently. 

6.4.3. Using standard filtering algorithms 

6.4.3.1. General structure of a real-time filtering program 

In a digital filtering operations, there is input and output of analog variables via 
the converters. Since parallelization is a concern, DSPs have input/output ports. 
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Usually these are serial, and interface directly with the analog interfaces of the same 
family. These interfaces have converters, anti-folding filters and switched smoothing 
capacities. The counters help determine the filters’ sampling frequencies and break 
frequencies (see Figure 6.46). 

 

 

Figure 6.46. TCL32040 analog interface (doc. Texas Instruments) 

The interfaces also ensure data transfer to and from the DSP. This makes the 
exchanges completely transparent for the programmer. Almost without interruption, 
an input register can be read and an output register can be filled in when a transfer 
has taken place. The main program resumes at initializations and while waiting for 
interruptions (see Figure 6.47) and analysis is done during the interruptions (Figure 
6.48). 

 

 

Figure 6.47. Main program (C3x syntax) 

The system is configured so there will be interruptions: 
• each time the CAN carries out a conversion (DRRO full) 
• each time the system carries out a conversion (DRRO empty)

. text

; different initializations and pointers

wait_ and _ see: idle ; IT waiting
NOP ; continuous loop
NOP
b wait_and_see
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Figure 6.48. Analysis of emission and reception interruptions 

6.4.3.2. The FIR filter and simple convolutions 

The transfer function in z of these filters being a simple polynominal, they are 
always stable. Quantifying coefficients, especially in fixed point, can be expressed 
by a slightly different frequency response, but this does not lead to instability. 
However, there is no specific structure for setting up these filters. We can choose the 
memory-based structure shown in Figure 6.49 for a filter of length N. The relevant 
algorithm is given in Figure 6.50. We see that there is a setting for the instruction 
repetition RPTS that uses a loop counter and provides for the optimum functioning 
of the pipeline in the fetch phase. Use of the pointers is as follows: 

– the pointer on the coefficients undergoes N incrementations modulo N. It thus 
returns to the initial situation; 

– the pointer on the samples undergoes N + 1 decrementations modulo N. It 
shifts at each FIR carrying out. This brings about the time shift. 

 

 

Figure 6.49. Memory-based structure for an FIR filter 

receive: recuperation in DRR0 of x(n)
                            putting into format of x(n)
  

; output calculation of filter Yn

RETI                        ;  interruption return

transmit:               putting into format of y(n)
                             y(n) -> DTR0
                             RETI 
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 R4 contains x(n) AR1 point a(n-N+1), AR2 point x(n-N+1) 
The circular address is made modulo N 

FIR: stf     R1,*AR2--(1)% storage x(n) 
and time shift 

                 ldf   0,R2 RAZ sum total
mpyf  *AR1++(1)%,*AR2--(1)%,R0 first product 

RPTS N-2 repetition N-1
 mpyf  *AR1++(1)%,*AR2--(1)%,R0

                || addf   R0,R2,R2 MAC

addf   R0,R2,R2 final product 

the result is in R2 

 

Figure 6.50. FIR filter algorithm (C3x syntax) 

Only six words are necessary, whatever the filter order. 11 + (N – 1) cycles must 
be anticipated. 

 
If we use a fixed-point DSP with a quantification closest to the coefficients (see 

section 6.4.1), the accumulation can temporarily exceed the maximum representable 
value. This can force us to a quantification as Qk with k lower; that is, with a 
relatively higher quantification error. However, most accumulators or data registers 
have guard bits (8 for 32 bit registers) and these help solve the problem of overflow. 
Only the final result must be in format. This happens if the filter does not carry the 
gain. But we can still configure the ALU so that if overflow occurs,29 we can obtain 
a saturation-type functioning. 

 
FIR filters in linear phase have a central coefficient symmetry, so that the 

number of products can be divided by two: 
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Each calculation step requires an addition, a product and an accumulation. 
Without an instrument to aid in carrying out these three operations in a single cycle, 

                              
29 This means that an error results from a 2 complement. 
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we gain nothing from the symmetry feature, since it requires two instructions and 
thus two cycles. The C54x makes use of the FIRS instruction: 

– total of the accumulation A in the accumulation B; 

– multiplication of the accumulation A by a coefficient of a memory-based 
program; 

– addition of the two samples of a memory-based program in the accumulation 
A. 

6.4.3.3. IIR filters 

An IIR filter is characterized by a transfer function in z of a rational fraction 
type: 

N
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linked to a direct recurrent equation: 
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Studies on the quantification effect of coefficients show that we reduce 
calculation errors by decomposing the transfer function through a cascade of second 
order cells. We then pair the poles and the zeros: 
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The most straightforward way of producing the effect described above on second 
order cells in shown in Figure 6.51, but since the analyses are linear, we can 
exchange them (see Figure 6.52), leading to the effect shown in Figure 6.53, which 
has the advantage of reducing the number of samples to be memorized. 
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Figure 6.51. Direct form of a second order cell 

 

Figure 6.52. Equivalent form 

 

Figure 6.53. Canonic form 

If this solution is recommended by floating-point processors, it can be used with 
precaution for fixed-point processors. This is because the input of a cell can be 
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found outside format. In this case, we use a scale factor before each cell (Figure 
6.54), such that: 

– for the first cell: ( )ejwT
ez

zhSF == )(max 11  

– for the second cell: 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅⋅=

= ejwT
ez

zhzh
SF

SF )()(
1

max 21
1

2
 

 

Figure 6.54. Second order cell with scale factor 

The memory structure for a second order cell is given in Figure 6.55. Setting up 
the circular address (here, modulo 3) with masking creates the alignment of an 
address table to the addresses of the power of 2 (here 4). 

 

 

Figure 6.55. Memory structure for a second order cell 

This structure allows for a simultaneous calculation of the products of the 
numerator and denominator (see Figure 6.56). We no longer use circular addressing 
for the coefficients, since the tables are not of the same length. This means we must 
reinitialize the pointer at each call. 
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 ; R2 contains x(n), AR1 point -b2,  AR2 point w(n-2)
the circular addressing is done modulo N

IIR2: mpyf   *AR1,*AR2,R0 ; -b2*w(n-2) -> R0
mpyf   *++AR1(1),*AR1--(1)%,R1 ; a2*w(n-2) -> R1

mpyf   *++AR1(1),*AR2,R0 ; -b1*w(n-1) -> R0
               || addf   R0,R2,R2             ; x(n)-b2*w(n-2) -> R2

mpyf   *++AR1(1),*AR2--(1)%,R0 ; a1*w(n-1) -> R0
               || addf   R0,R2,R2             ; x(n)-b2*w(n-2) -b1*w(n-1) -> R2 

mpyf   *++AR1(1),R2,R2 ; w(n)*a0 -> R2
               || stf      R2,*AR2++(1)% ; memorization w(n)

; and time shift
addf   R0,R2 ; a0*w(n)a1*w(n-1) -> R2

                 addf   R1,R2,R0 ; a0*w(n)a1*w(n-1)+a2*w(n-2) -> R0 

; result in R0              

 

Figure 6.56. Algorithm for a second-order IIR cell (C3x30 syntax) 

This sequence requires 7 words and 11 cycles. 
 
For the cascading operation, we can use the structure shown in Figure 6.57. The 

empty compartment is necessary for the alignment of the multiple addresses of 4 
tables. After calculating a cell, the pointer on the coefficients jumps by 4 in order to 
go from one table to the next. 

 
 

                              
30 The assembler of the C3x makes the idea of parallel instrumentation explicit, here a 
“MAC” written as mpyf (operands) ｬaddf (operands). But this corresponds to one instruction, 
coded on one word and carried out in one cycle, if the pipeline functions well. 
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Figure 6.57. Memory structure for a cascade of second order cells 

6.5. Conclusion 

In this chapter, we have tried to show the efficiency and relative simplicity of 
digital signal analysis as carried out by modern converters and specialized 
processors. Their use for instrumentation purposes will continue to grow because 
manufacturers are increasingly offering “standard” microcontrollers with added 
signal analysis features. We thus have mechanisms with input/output that sometimes 
have defects on DSPs. As well, the increased capacities of FPGAs allow us to set up 
filters with order that are too high and coefficients coded on 8 or 12 bits. In this way, 
they can function at fairly high sampling frequencies, but we should not forget 
integrated digital filters that work with coefficients and data with significant word 
capacities.  
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Chapter 7  

The Contribution of Microtechnologies 

7.1. Introduction 

7.1.1. The vehicle: a system of complex, interdependent parts 

 Optimizing the performances and respecting qualitative and quantitative rules of 
a complex system comprising a vehicle, its drivers and its passengers means 
acquiring and exploiting a large amount of dedicated data. These include the 
following: 

– data having to do with passive security features, such as airbags, seatbelts with 
pretensioners, de-mistifiers, door closing indicators, levels, and quality of wheel-to-
ground contact; 

– data having to do with active security, including automatic driving and 
monitoring, anti-collision radar, ABS, and turning adjustment; 

– passenger comfort data, such as temperature control, hygrometric degree and 
air quality; 

– data relevant for control and transmission, including parametrization by 
cartography, electronic steering and steering wheel functions, servo-control of oil 
and water temperatures, and anti-pollution devices. 
 

                              
Chapter written by François BAILLEU and Olivier VANCAUWENBERGHE. 
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 In this sense, these shared acquisition and analysis structures are superior to 
equivalent centralized systems in at least three ways: 

– in terms of reliability, because of redundancy and reduction of connective 
wiring; 

– response time; 

– flexibility. 
 
 These shared structures are based on data capturing, carried out as closely as 
possible to their source, accompanied by a local conditioning and pre-analysis. The 
goal of these operations is to make a quick decision, most often of the reflexive 
kind. The exchanges with the central unit, made through a serial transmission bus, 
are then reserved for slowly changing data analysis (door closing indicator, trunk, 
hood, tire pressure, different alarms, to name a few features). Some of these features 
require fairly complex calculations. 

7.1.2. Microtechnologies and microsystems 

 The “neurons” of these shared systems must have perception mechanisms 
(sensitive elements) and eventually must be able to respond to the environment. 
They have the ability to analyze local information (conditioning, digitization, 
communication, auto-test and autocalibration, among others). They have access to 
an energy source (energy supply unit, cell and battery units, telesupply, latent energy 
microsource, to name several). These are very small in dimension, and are called 
microsystems (Figure 7.1). Ideally, microsystems are the natural result of extending 
microelectronic methodology to the collective manufacture of sensitive elements, 
called actuators and to the hybrid or monolithic integration of relevant electronics.  
 
 In practice, depending on a manufacturer’s abilities, microsystems are the final 
result of a goal of fulfilling market needs within economic constraints. 
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Figure 7.1. A microsystem or intelligent system 
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 This is certainly true of the automotive sector, in which electronic innovation is a 
priority. Research costs must be absorbed incrementally even if they lead to fairly 
high production expenses. If the vehicle proves to be popular, the market for the 
product may extend to medium and low-end buyers, meaning lower production costs 
even if research costs climb, since these will be absorbed over a larger number of 
sales. 
 
 According to this schema, the first generation of a microsystem depends on the 
following:  

– sensitive elements;  

– more or less miniaturized actuators; 

– an electronic mechanism made of discrete components; 

– a programmable circuit that can be a microcontoller. 
 
 The above may be assembled on a primed circuit or on a CMS. This constitutes 

an intelligent mesosystem. Later, when the innovation has been absorbed and 
diffused, the sensitive elements and actuators must be optimized, miniaturized and 
integrated in hybrid or monolithic manner with the electronics. Then the ensemble 
can be called a microsystem. This new system can benefit from the inherent 
advantages of microelectronic or non-microelectronic technologies, such as: 

– miniaturization; 

– reliability; 

– low production costs; 

– insertion compatibility with traditional microelectronic units. 

7.1.3. Appropriate architectures for electronic microsystems 

 The transition from intelligent mesosystems to microsystems is facilitated by 
using electronic architectures, adapted to these specific development steps. 
 
 These architectures must be linked to significant material adaptability (primed 
circuits, CMS, hybrid circuits, specific monolithic circuits, etc.). It should be 
unnecessary to question, at each change of technology, the underlying principles of 
these architectures. In other words, the many forms of electronics must remain 
identical in terms of system description. 
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 These properties help us use the experience gained from previous versions and 

apply it to the newer technologies. They lead to higher profits for the manufacturer 
and better quality for the consumer through lower production and advertizing costs. 

7.1.4. Which examples should be chosen? 

 To support the concepts presented in this long introduction, we will emphasize 
two strategies that are completely symmetrical. These concern microtechnology and 
electronic microsystems. 
 
 The technological aspects will be developed using the highly representative 
example of the car. We will explain how pressure microsensors that integrated with 
its MOS electronic device work, and will briefly describe how they are 
manufactured.  
  
 The electronic aspects will be discussed, along with some of the relevant 
architectures for the conditioning of signals coming from three different sensitive 
elements (capacitive and pressure piezoelectric cells, and capacitive acceleration 
cells). These are important because of their diversity and complementarity. 
 
 All the examples we have chosen come from the automotive field. 

7.2. Microtechnologies 

 Car motors have been affected by microtechnological advances since the 1970s, 
when monitoring pressure sensors appeared, and since the 1980s, with the 
development of accelerometers that released airbags. Today, apart from these two 
applications, microsystems are no longer employed in this general way. However, 
within the next decade their use may increase greatly, both in the replacement of 
older technologies and in new applications. 
 
 The general history of new automotive microsystems can be summarized as 
follows: 

– 1960-1970: development and commercialization of first pressure sensors with 
a layer of silicon; 

– 1970-1980: large-scale production by photolithography, extended use of 
micromachining, and Si/glass sealing; 

– 1980-1990: new micromachining applications, related to both surface and 
scale, as well as development of new functions (for example, inertial 
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electromechanical microsystems (IEMS), temperature sensors, electromagnetic field, 
flow); 

– 1990-2000: monolithic or hybrid integration of microsensors and electronics; 

– 2000-2010: large-scale use of microsystems for automotive applications in the 
following systems: 

- security (airbags, night vision, anti-collision radar, etc.), 

- motor control (combustion, cylinder pressure, etc.), 

- transmission control (rotation speed, road condition information, etc.), 

- comfort control (humidity, microphone for vocal instructions, etc.). 
 
 These and other microsystems have developed because of the growing use of 
electronics, which has the higher calculation power necessary for the car of the 
future. In order to use the increasingly miniaturized electronic systems throughout a 
car, we also must be able to send these systems adequate information through 
sensitive elements or very small, even miniature, sensors. 
 
 However, a harsh environment can present a problem with using sensors in a car. 
High temperatures, shocks, vibrations, humidity, conditions that cause corrosion, 
electromagnetic interferences and radio frequencies can cause problems. This type 
of environment makes more demands on design and manufacturing. As well, 
production volume must be high (usually one million units or more) in order to 
absorb research and manufacturing costs and follow the market demand for new 
vehicles. The lifespan of vehicles must be at least 10 years/250,000 km and their 
prices must remain low. Generally, cars need the hardy qualities of military vehicles, 
at mass-market prices. These qualities (high production volume, low prices, 
reliability, and durability) are inherent to microsensors and microsystems. 
 
 The mass manufacture of many units at the same time, all with the same Si 
layers, functioning like integrated units, leads to very high production volume, 
overall low price and high reproducibility. The reliability of these microsystems is 
due to: 

– expertise in manufacturing processes; 

– using materials (especially silicon) with well-known (mechanical, thermal, 
electronic) properties; 

– relatively simple assemblies with few units and few or no mobile parts. 
 
 Microtechnologies allow for integration within the same casing, even in 
monolithic form (that is, on the same Si layer) of the sensor and the electronic 
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mechanism of analog and/or digital analysis. These capacities can even extend to 
monolithic integrated circuits merging DSP and Si microsensors. 
 
 There are drawbacks to microsensors and microsystems. They are relatively 
costly and time-consuming to develop, and must be of high quality to be used in 
cars. This is why pressure microsensors take almost 40 years to develop and refine 
before they can be integrated monolithically and used in automotive applications. 
 
 In summary, microsystems are used in cars to reduce sensitive cell size, to lower 
their production costs, to improve their performances, and to integrate them 
simultaneously with their electronics and/or other microsensors. This is to enlarge 
the application of the cells, leading to the creation of an “intelligent car”. 
 
 The technology behind the manufacturing of microsystems mostly comes from 
microelectronics. At each stage of the manufacturing of integrated circuits, the 
specific stages have been developed to build microstructures into the silicon, mainly 
by micromachining. Assembling and housing sensors can be complicated in 
comparison to integrated circuits because the sensor must be in contact with the 
external environment it measures. However, new technologies are being developed 
using materials other than silicon to extend the application field of microsystems. 
 
 As an example for introducing the different steps and technologies of 
microsystem manufacturing, we will discuss the main points of the steps of 
producing a piezoresistive Si pressure microsensor that is integrated with its type 
MOS electronics. For reasons of clarity, the manufacturing processes we discuss 
have been simplified and modified. 
 
 The Si pressure microsensor we describe has been schematized according to Figure 
7.2. This is made of a thin Si layer of some piezoresistive microns that convert the 
mechanical signal (deformation of the layer due to pressure) into an electrical signal. 
The resistances change and a tension appears on a Wheatstone bridge. 
 

  

Figure 7.2. Design of the principle (not to scale) of a piezoresistive microsensor in micro-

machined silicon, integrated monolithically with a MOS transistor 
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 Figure 7.3 shows all the necessary steps needed to produce this integrated 
pressure microsensor with its electronics. As the succession of steps show, the 
principle of producing integrated circuits and microsystems is to repeat, as many 
times as is necessary, the following two basic steps: 

– remove or modify the thickness of the structure or material layer; 

– use photolithography to establish the geometry of shapes. 
 
 The devices are made on an Si layer by successive stacking of layers with 
bidimensional patterns that are different but aligned with each other. By repeating 
these patterns all along the layer, many units can be made in parallel, all with the 
same specifications. 
 
 To illustrate this concept of mass manufacturing, Figure 7.4 shows how 
accelerometers and pressure microsensors are manufactured with Si layers. 
 
 
 
 
 
 
 
 
 
 
a) 
  
 
 
 
 
 
 
 
 
b)  

Figure 7.4. Mass manufacture of a) micro-accelerators and b) pressure microsensors  

by using silicon (a: courtesy of ESIEE; b: courtesy of Auxitrol) 

 In the following sections, we will discuss, in order: 

– technologies derived from microelectronics (section 7.2.1); 
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– technologies specific to Si microstructures (section 7.2.2); 

– technologies developed for using materials other than Si in microsystems 
(section 7.2.3). 
 
 Our discussion will be limited to the general principles and essential points of 
these technologies. For a more detailed discussion, the reader can consult more 
specialized texts, including: 

– for microelectronics [SZE 81], [GHA 94]; 

– for microstructures [SZE 94], [RIS 94], [GAR 94], [ELW 98] and [FUK 98]. 

7.2.1. Technologies derived from microelectronics 

7.2.1.1. Si substrate 

 Integrated circuits and silicon microsensors are mass-produced in 
monocrystalline substrate in the form of a disc (see Figure 7.3, step 1 and Figure 
7.4). The Si layers are made from a monocrystalline bar obtained by Chzochalski’s 
method. The bar is sawed, then polished to obtain a finished mirror. 
 
 According to the technologies used by different companies, the Si layers can be 
of varying diameters and different compositions. The diameters of layers vary from 
four inches or 100 mm in a research laboratory to 200 mm, even 300 mm in the 
production of integrated circuits. Their thickness is usually between 300 mm and 
500 µm. For integrated circuits, the layers are of type 100. For certain 
microstructures, we can use other types, often the 110. As well, the Si layers are 
doped with either type P or N in a regular and homogeneous way throughout their 
volume. The doping levels can vary from 1013 atoms/cm3 to 1019 atoms/cm3, 
typically between 1014 and 1016 atoms/cm3. 
 
 The Si substrate provides: 

– mechanical and thermal support; 

– active material for semiconductor devices; 

– active material for microsensors and microactuators. 

7.2.1.2. Si epitaxy 

 The Si monocrystalline substrate can be continued by the ordered or epitaxial 
layering of a thin Si layer (see Figure 7.3, step 2). Epitaxy helps control the active 
layer in which the devices are made. In addition, epitaxy enables the stacking of Si 
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layers of different dopings, since these cannot be created by diffusion or 
arrangement (see section 7.2.1.7). 
 
 Si epitaxy proceeds by a Chemical Vapor Deposition, or CVD by silane 
pyrolysis (SiH4) or chlorislaine decomposition (SiH4-nC1n): 

SiH4 s Si + 2 H2                                           SiH2Cl2 u Si + 2 HC1 

 The Si atoms deposited on the surface must then organize themselves following 
the substrate atoms in order to form a perfect crystalline film. In general, this step is 
difficult to perfect technologically, and therefore is rather costly. In this case, we can 
use mechanisms to attain better performances. For these reasons, Si epitaxy is used 
mainly in bipolar and BiCMOS technologies, and optionally in some CMOS 
industries. 

7.2.1.3. Si thermal oxidation 

 The widespread use of Si as a material in integrated circuits is due to several 
factors, including its abundance, thermal and mechanical properties, and in 
particular, its natural oxide, SiO2.  
 
 When the Si layer is exposed to an oxidizing atmosphere at a high temperature, 
Si oxidizes on the surface, forming a layer of SiO2 according to one of the two 
following reactions: 

– dry oxidation: Si + O2 s SiO2 

– wet oxidation: Si + 2H2O s SiO2 + 2H2 
 
 Wet oxidation occurring with water steam (H2O obtained by H2 with O2) is faster 
and helps us obtain thicker oxides. It can provide lateral isolation between the 
different mechanisms of a circuit (see Figure 7.3, step 3). 
 
 Dry oxidation with O2 is slower and results in layers of oxide that are thinner but 
of better quality. These oxides are used as grid dielectrics in MOS transistors, the 
building blocks of very high density integrated circuits such as VLSI-ULSI (Figure 
7.3, step 5). 
 
 As microsystems, SiO2 is used as an isolation layers or for chemical properties 
different from that of Si. 
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7.2.1.4. Photolithography 

 In order to manufacture integrated circuits and microsystems on a significant 
scale, the patterns that make up mechanisms are transferred to the wafer by 
photolithographic techniques whose main steps are shown in Figure 7.5. 
 
 In the manufacture of our pressure microsensor integrated with its MOS 
electronic unit, there are at least five steps of photolithography necessary to carry 
out across the sensor and circuit (Figure 7.3, steps 4, 7, 8, 11 and 13). 
 
 For each of these steps, a glass mask with opaque patterns in chrome has been 
designed from a computer-generated layout. 

7.2.1.5. Polycrystalline silicon layer 

 As soon as grid oxidation occurs with dry oxidation, a layer of Si is deposited to 
form the metallic grid of the MOS transistor (Figure 7.3, step 6). Because this 
silicon is deposited on the amorphous SiO2, the resulting layer is composed of a 
mosaic of small, random crystals. This polycrystalline silicon is called polysilicon 
(PolySi). 
 
 This PolySi layer is deposited by a technique called Low Pressure CVD by silane 
pyrolysis. It is also possible to deposit PolySi with types N or P doping by 
introducing certain gases: phosphine (Ph3) and diboraine (B2H6) respectively. 

7.2.1.6. Etching 

 To transfer defined photoresin patterns on the Si wafer, photoresine acts as a 
protective mask for the parts of the wafer we want to retain (thick oxide in step 4 
and PolySi in step 7). The rest of the wafer that is not protected is removed by 
etching. 
 
 Two types of etching are currently used. These are listed below: 

– Moist etching, an operation in which a liquid agent marks the different layers 
selectively, in relation to both photoresine and lower existing layers (see Figure 7.3, 
steps 4, 11, and 15, SiO2 marking by HF; step 13, Al marking). 

– Dry etching, an operation in which a plasma is used to mark the layer by 
physical effect (chemical reaction and conversion of the layer) or by a combination 
of two effects of reactive pulverization called Reactive Ion Etching (RIE) (see 
Figure 7.3, step 7 for PolySi etching; step 13 shows Al etching). 
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Figure 7.5. Details of photolithography steps. Definitions of active zones for a circuit’s MOS 

transistors and for a pressure microsensor (see also Figure 7.3, step 4) 

 Dry etching gives better control of the dimensions of etched patters, as well as 
high reproducibility. Because of this, it is used in VLSI and ULSI technologies. 

glass mask 
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UV exposing 
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7.2.1.7. Doping 

 With conductors, we can modify and control their electric conductivity with the 
addition of miniscule amounts of impurities. This is called doping. When a 
semiconductor is doped type N, the current transfer is made by electrons, while with 
a semiconductor doped type P, the charge carriers are the positive holes. By 
juxtaposing zones of different dopings, we can make semiconductive electronic 
mechanisms such as PN junction diodes, bipolar transistors and MOS, thyristors, 
and optoelectrics such as light transmitting diodes, lazers, photodetectors and many 
others. 
 
 There are two doping techniques: 

– The first technique is called ionic insertion (see Figure 7.3, step 9). The doped 
atoms are first ionized in an ion source, then extracted and accelerated 
electrostatically with energies of between a few keV to several MeV. They are then 
incorporated into the Si wafer (in a way analogous to a bullet being shot into a wall). 
The ionic insertion is a relatively violent physical phenomenon that creates many 
defects in the Si crystal. Therefore, an annealing at a high temperature  
(800 – 1,100°C) is necessary to repair the crystal and activate the doping. However, 
ionic insertion allows for very good control of the quantity, dose and profile of the 
dopage incorporated into the Si, respectively by measurement of incident current, 
selection of mass and ion energy. This explains why, despite its relatively high costs, 
insertion is widely used in VSLI and ULSI technologies. 

– Predisposition is the second doping technique. During predisposition, the 
dopants are incorporated into the Si surface by placing the wafers in a high 
temperature environment that contains the dopants. To incorporate the dopants more 
deeply into the Si, the predisposition is followed by a diffusion annealing. 
Historically, predisposition was the first doping technique that made integrated 
circuits possible, and it is still used in certain industries, usually for microsystems. 
While predisposition is a very simple technique compared to ionic implantation, its 
drawback is its poor reproducibility, especially if the surface and/or the operating 
conditions are not well-controlled. 
 
 Once introduced, the doping profile can be modified by using the following 
steps. At high temperatures (T > 800°C), impurities diffuse significantly in the Si. 
Depending on the situation, this diffusion can be desirable to obtain an adequate 
profile for the diffusion annealing and/or oxidant (see Figure 7.3, step 10). Or this 
diffusion may be an inevitable interference that we try to limit as much as possible 
following a strict thermal regime. 
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7.2.1.8. Deposit of thin metallic and dielectric layers 

 In our example of a pressure microsensor and its MOS electronics, the 
mechanisms are made entirely in the Si at the end of step 10 in Figure 7.3. These 
mechanisms need to be protected from the exterior environment (from humidity or 
contamination) in order to ensure linkages and to have electronic access. 
 
 This protection or passivation is made with deposits of thin layers of dielectrics 
such as SiO2 (Figure 7.3, step 10) and Si3N4 (Figure 7.3, step 14), or even other 
inorganic isolating materials (TiN and others), or organic materials such as 
polymides. 
 
 There are two main techniques of depositing dielectric layers: 

– Low-pressure CVD deposit (LPCVD) or carried out by a plasma (Plasma 

Enhanced CVD). 

– Pulverization, in which a target of the material to be deposited is eroded by 
argon ions generated in a plasma. The atoms of the target are pulverized and settle 
on the circuit wafer. 
 
 To ensure the connections between the different parts of the circuit (or 
microsystems), and the environment, the metallic lines are defined by the wafer 
(Figure 7.3, steps 12 and 13). Several levels of metallic interconnections are 
sometimes necessary for complex circuits, in which case an electric layer is inserted 
between each level of metal for isolation. 
 
 Different metals can be used: 

– for interconnecting lines, aluminum (Al) and its alloys (Al-Si-Cu), and more 
recently, copper (Cu); 

– for local metallic contacts, tungsten (W) and metallic compounds such as 
silicides (TiSi2 and others). 
 
 The main depositing techniques for metals are the following: 

– Pulverization, which has already been explained. 

– Evaporation under vacuum, in which a vapor of atoms of metal is generated in 
a vacuum tank. The atoms condense on the “cold” substrate so that the water vapor 
condenses on a cold pane of glass. 

– A small number of CVD deposits may also be used. 
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7.2.2. Technologies specific to microstructures 

 In our example of a pressure microsensor and its integrated MOS electronics, we 
stopped at step 14 of Figure 7.4 showing the creation of a circuit facing the Si wafer. 
Now a deformable membrane is necessary. 

7.2.2.1. Double face photolithography 

 Step 15 of Figure 7.3 is a step of “double face” photolithography. It allows us to 
align the back facing patterns with the front facing patterns. This leads to the next 
step of creating an Si membrane with correctly placed piezoresistances, thus 
ensuring maximum sensitivity. 

7.2.2.2. Volume micromachining 

 Liquid anisotropic etching was the first technique developed for making Si 
microstructures. 
 
 This kind of etching has Si erosion speeds that are highly dependent on the 
directions of the crystalline planes. This means the planes <100> and <110> are 
etched much more rapidly than the planes <111>, which stay almost intact. The 
chemical agents that stimulate this anisotropic etching are inorganic alkalines such 
as KOH or organic solutions like EDP (ethylene diamine pyrocatechol), to name a 
few of the best-known. Table 7.1 gives these two anisotropic etching agents the 
etching speed of SiO2. Figure 7.6 shows the details of the different steps of the 
process and the resulting microstructures. 
 
 

Etching speed in µm/h Solution 
alkaline 

Temperature 
(°C) 

Si <100> Si <110> Si <111> SiO2  

KOH: H2O 80 66 132 0.33 ≤ 0.008 

EDP 110 51 57 1.25 0.004 

Table 7.1. Main features of liquid anisotropic etchings for Si and SiO2 (from [GAR 94]) 
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Figure 7.6. Details of anisotropic etching steps 

 To determine the Si zones to be etched, an SiO2 layer can be used as a mask. 
However, in certain conditions, other materials must be used as masking, such as 
Si3N4 or metals like chrome, which are not at all affected by KOH or EDP. 
According to the patterns established by double face photolithography, different 
structures can be micromachined and these are shown by Si <100> liquid anisotropic 
etching in Figure 7.7. 
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Figure 7.7. Examples of structure made possible by liquid anisotropic etching of Si (100) 

 To form the Si membranes, bridges and beams, we must not etch the entire 
thickness of the wafer. Instead the etching must be controlled, then stopped to leave 
the desired fine layer of Si. 
 
 The simplest way of controlling the anisotropic etching is to stop it after a certain 
time period, but because the structures of Si wafers are inherently inhomogeneous, 
requiring different etching speeds from one point to another, this technique is not 
sufficiently reproducible and reliable. In practice, four etch-stopping techniques are 
used. We will discuss them here. 
 
 Etch-stopping on an Si layer that has been highly doped with boron or Si:P+ (see 
Figure 7.6 for how the membrane is made). The liquid anisotropic etching speed 
drops quickly for the Si doped with boron, with concentrations above 3 1019 
atoms/cm3. The problem of layers that have been stopped with Si:P+ is that the high 
boron concentration induces significant voltage constraints in the Si, modifying the 
mechanical properties of the membrane. It also stops the creation of semiconductive 
mechanisms in the layer, even if these are simple piezoresistances. 
 
 Electrochemical etch-stopping at PN junctions (Figure 7.3, step 15). The Si 
wafer is plunged into an electrochemical cell containing KOH or EDP. By adequate 
polarization of the contact potential of the junction (0.6 V), the N zone of the Si is 
protected by electrochemical potential. The anisotropic etching stops at the PN 
junction. This technique avoids the problems of mechanical constraints associated 
with high boron dopings and is compatible with certain procedures relating to 
integrated circuit technologies. 



284     Fundamentals of Instrumentation and Measurement 

 Etch-stopping at SiO2 or Si3N4 protected by the opposite facing layer (see Figure 
7.6d before HF piercing). The membranes or multi-layered beams of SiO2/Si3N4, 
SiO2PolySi/ SiO2 and so on can be created in opposite layer after the volume of the 
subjacent Si wafer has been etched. 
 
 Etch-stopping at the SiO2 layer buried in an Si wafer on an isolator (Silcon On 

Insulator, SOI). Using different techniques, it is possible to make Si wafers in which 
an Si monocrystalline layer is separated from the rest of the substrate by a layer of 
buried SiO2. These SOI wafers allow for the creation of Si microcrystalline 
microstructures and their electronics. These have high design flexibility and very 
good performance value, both mechanically and electronically. However, they need 
a technological network of integrated SOI circuits in which to develop. 

7.2.2.3. Surface micromachining 

 Large-scale micromachining by liquid anisotropic etching of Si is not always 
compatible or easy to integrate with the manufacture of electronic circuits. At the 
beginning of the 1980s, a micromachining technique was developed using only 
manufacturing processes such as depositing, etching, all parts of VLSI technologies. 
 
 The main principles of this surface micromachining technique is shown in Figure 
7.8. It depends on etching a sacrificial layer, usually SiO2, to free a mobile and/or 
deformable microstructure that is usually PolySi. By using several sacrificial 
structures and structures stacked on top of each other with adequate patterns defined 
by photolithography, it is possible to make microstructures with one, two or three 
consecutive layers. We see that it is also possible to use SOI wafers in which the 
buried oxide and the surface Si constitute the structural layer. 
 
 Accelerometers and above all other inert sensors (like the microgyrometer shown 
in Figure 7.9) can be created on the surface of the Si wafer with their electronic 
command and analysis integrated monolithically. In general, the principle of 
detection and/or excitation is capacitive, the different Si or PolySi levels being 
conductors. These microstructures are called micro electro-mechanical systems 
(MEMS). 
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7.2.2.4. Micromaching by deep anisotropic dry etching 

 Recently, following the example of VLSI etching technologies, dry etching 
techniques have been developed that are used with or instead of moist etching. 
 
 In particular, deep anisotropic etching devices have appeared (Deep Reactive Ion 
Etching (DRIE)). With these, a dense plasma and specific operating conditions 
(having to do with the nature of gases, wafer temperature, etching sequencing) are 
conducive to high-speed etching Si carried out vertically and very deeply (Figure 
7.10, example a). The form of these etched structures no longer depends on patterns 
defined by photolithography; and this leaves complete freedom in designing the 
microdevice (Figure 7.10, example b). In using the masking layers and adequate 
stopping layers, the Si wafer can be locally etched, either partially or completely, as 
is shown in the examples of Figure 7.10. 
 

 

b. Etched microstructures in Si on a 

thickness of 40 µm  

 

a. Test structure for deep anisotropic etching of 

holes 15 µm in diameter at a depth of 150 µm 

 

c. Supported and pierced membrane of 

15 µm thickness created by etching 

across the entire Si wafer  

Figure 7.10. Examples of deep anisotropic dry etching (source: ESIEE) 
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7.2.2.5. Heterogenous assemblies 

 In general, microstructures created in or on an Si wafer are not part of a device. 
This means that in our example of a pressure microsensor, if we want to an absolute 
pressure sensor, we must close the cavity created by the anisotropic etching of the Si 
by making this cavity into a sufficiently large empty space. For pressure 
microsensors with Si membranes of capacitive type, we assemble a counter-
electrode on a rigid support that is linked with the Si wafer. 
 
 Depending on the application field, different heterogenous assembling 
technologies can be used for the complete assembling and usage of the microsensor. 
The main features are summarized in Table 7.2. 
 

Bonding Temperature Bonding the Si wafer with 

by collage 
low 

130-350°C 
a layer of polymer resin, 
polymides, epoxy, etc. 

by forming an eutectic or 
metal alloy 

400°C a layer of gold or other metal 

by glass, Si low temperature 100-600°C 
a thin layer of phosphorus 
glass, with boron or fritted 

with Pb 

anodic glass-Si 
average 

350-800°C 

a substrate of sodium glass 
under polarization of  

400 to 700 V 

direct Si-Si 
average 
≥ 300°C 

another Si wafer 

Table 7.2. Principle characteristics of heterogenous assembling technologies 

and Si welding (from [GAR 94] and [SZE 94]) 

 From these five technologies, the glass-Si anodic bonding was developed 
specifically within the framework of microsystems. 
 
 The glass-Si anodic bonding helps us assemble an Si wafer with a sodium glass 
wafer that can be micromachined, or it can have metallic patterns for the electrodes. 
After having connected the two wafers, the ensemble is placed at a moderate 
temperature (350-500°C), at which the sodium ions become mobile in the glass. By 
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applying a voltage of between 400 and 700 V according to the temperature, the 
sodium ions leave the interface zone. This produces a significant electrical field and 
generates high electrostatic pressures that are sufficient to establish very close 
contact between the two wafers, even when their flatness is not perfect. The bonding 
takes several minutes, usually with the formation of a very fine layer of SiO2 as a 
connecting layer. Today, the reliability and reproducibility of anodic bonding means 
it can be used in industrial settings, especially in the assembling of Si pressure 
sensors. However, the use of high voltages is not always compatible with the 
presence of integrated circuits on the same wafer. 
 
 Direct Si bonding is a more recent development that makes it possible to put 
together two Si wafers without an intermediate layer. The two Si wafers are cleaned 
according to correct procedures and then brought into contact. At this stage, the 
wafers have already been adhered using weak Van der Waals forces. They are then 
transferred to a furnace set at a relatively high temperature (700˚C) to carry out the 
final bonding, which probably occurs due to Si-O bonds. Direct Si- Si bonding is 
especially useful for constructing Si microstructures and is one of the techniques 
used in making SOI layers. Its disadvantage is that the high temperature required for 
the bonding process means integrated circuits cannot be present on the layers. 

7.2.3. Beyond silicon 

 To end this discussion on microsystems, we will briefly mention other possible 
technologies: 

– these can be based on materials other than Si, either in the substrate or in the 
thin layers. If Si is still used, it is usually as a mechanical substrate with the 
possibility of the electronic circuit being integrated with it; 

– techniques other than integrated circuit technologies can be used, such as 
techniques used with more “macroscopic” materials. 
 
 In addition, other substrates can be used. Some of these are listed below: 

– silicon-carbon (SiC) can be used in creating microsystems in harsh 
environments (high pressure, high temperature, corrosion); 

– gallium-arsenide (GaAs) and, less often, indium phosphide (InP). Both are III-
V mixed semiconductors used for HF and electronic devices and circuits. 
 
 New microsystem functions can be created by using active materials, often 
deposited in thin layers, such as: 

– piezoelectric materials like ZnO, AIN and PZT; 
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– mechanical materials like metals (Cr and W, among others) and shape memory 
alloys (Ti/Ni and others); 

– magnetic materials (NiFe, CoFe and others); 

– thermoelectric materials (SiGe, Bi2Te3); 

– inorganic chemical materials (SnO2, metallic oxides and others) and organic 
chemical materials (polymide, polypyrroles and phtalocyanines). 
 
 Lastly, a range of micromachining techniques enable us to make microstructures 
and microdevices. Some of these are: 

– the LIGA process, a micronic scale molding technique; 

– lazer-beam micromachining; 

– micromachining by focalized ion beams (Focused Ion Beam Milling (FIBM)); 

– micromachining by electrostatic discharges (Electro-Discharge Machining 
(EDM) [FUK 98]). 

7.3. Electronic architectures and the effects of miniaturization 

7.3.1. Overall trends 

 Before beginning the description of selected architectures, we will remind the 
reader of certain general ideas that will help in understanding the reasons for our 
selection. 
 
 First of all, whatever the mechanical, physical, chemical or biological variables 
to be measured, and whatever conversion mechanisms are used, the output signals of 

the sensitive elements are almost always electrical – voltage, current, charge, 
variation resistance or capacity – with a marked tendency towards capacitive 

variation, linked to miniaturization. 
 
 Moreover, the robust architectures, as regards the material variability, must have 
the following characteristics. 

– they must not be significantly affected by the length of their connections to the 
sensitive cells and by the majority of the interference capacities. This suggests that 
low impedance inputs of the virtual mass type; 

– they must be sensitive to the single performances of a minimum number of 
components, especially to the sensitive element. This means that a feedback loop 

must be used systematically in order to reduce significantly the influence of the 
component variability that is part of the direct chain. Then we proceed to 
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measurement by zero method. In the absence of nonlinearities, the output signal or 
electrical image of the quantity to be measured is then proportional to the relation 
between the value of the measured quantity and a reference value. The 
proportionality coefficient is a stable electrical quantity. 
 
 The architectures must proceed to an early digitization of the measurement 
signal. This means the A/N conversion is incorporated into the feedback loop that is 
part of the basic structures of ぇ-〉 modulators. 
 
 This last concept is only valid for transducers with a relatively slow response 
speed (limited to around 10 kHz). As for the how the process is carried out, this 
value rarely is an obstacle. In a vehicle, however, this limitation prohibits the use of 
a ぇ-〉 modulator in applications requiring a dynamic measurement of the steering 
wheel angle. Conversions of the “flash” or “weighted” types that occur outside the 
loop are, in this case, preferred. 
 
 In addition, these architectures must be dynamically reconfigured so that 
functioning modes, such as measurement, calibration and autotest, may be changed 
on demand or automatically. 
 
 Calibration is a programming operation whose purpose is the storing of 
numerical values specific to each microsystem. Initially carried out collectively in 
order to reduce cost prices, this procedure can be renewed, for certain microsystems, 
throughout the life of the vehicle. 
 
 Autotest, either total or partial (we will look at the accelerometer for an example 
of this difference), must be at all times superimposed on the measurement, which 
itself must remain fully operational. 
 
 In the case of a disfunctioning microsystem (an intelligent mesosystem), the 
central computer of the vehicle must be informed of the problem in order to proceed 
to the implementation of a degraded functioning mode for the ensemble. An airbag 
failure, for example, must be signaled to the driver, who can then adjust to this new 
situation. 
 
 On a completely conceptual order, the electronic architectures must either 
overcome the effects of miniaturization or use them. This is especially true of 
electronics associated with sensitive cells for inert variables (acceleration, angular 
speed, to name a few), with capacitive detection. The electrostatic forces brought 
about by the processing of the measurement signal are of the same order as for cells 
of mechanical origin. 
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 As for noise, miniaturization degrades the signal-to-noise ratio of sensitive cells 
in relation to that of larger cells. The noise of sensitive cells in microsystems 
remains low and requires low noise architectures to conserve reasonably good 
resolutions. 
 
 Lastly, taking into account these important objectives: material flexibility; low-
cost integration of analog and digital parts on the same chip with CMOS or 
BICMOS technology; low sensitivity to supply voltages; and good low noise 
frequency functioning. Without a doubt, switching capacity techniques are the best 
means of carrying out these architectures. 

7.3.2. Conditioning electronics for capacitive cells that are sensitive to absolute 

pressure 

 A capacitive cell sensitive to pressure has two capacities. One is variable 
according to the pressure Cmes(P), and the other, Cref, is not. A possible process 
(see Figure 7.11) consists of linking two identical counter-electrodes that are both of 
millimetric dimensions. These are then diffused in a silicon substrate of reversed 
doping to a thickened, electrically conductive membrane to the right of one of them. 
This membrane is connected to the substrate by means of a spacer, of thickness do, 
made of isolating material that surrounds the counter-electrodes. The holes formed 
by this are empty of atmosphere, and constitute a capacitive cell that is sensitive to 
absolute pressure. This is because, being far from the spacer, the thin membrane 
deforms under the effect of pressure. Independent input signals can be applied to the 
counter-electrodes that are, practically speaking, electrically isolated from the 
substrate by well-polarized PN junctions. The output signal can be extracted from 
the membrane. This type of sensitive cell is used in measuring barometric pressure 
for regulating motors. 
 

                                       Pressure                      Pressure 

 
Counter-electrodes 

Figure 7.11. Capacitive pressure sensor with a differential structure 
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7.3.2.1. Measurement principle 

 In the absence of pressure: 
do

So
CmesoCref

⋅== ε
  

 
 An approximation of the piston plan (see Figure 7.12a) Cmes(P) is expressed: 

( )
max

1
P

P

Cmeso
PCmes

−
=  

where Pmax is the pressure at which the thin membrane touches the substrate; P is 
in principle always below Pmax. 
 

 The voltage: ( ) max
1

P

P
Vref

PCmes

Cref
VrefVs =⎥

⎦

⎤
⎢
⎣

⎡
−=  

 
is then a “good” expression of the pressure to be measured. 
 
 However, this model is not very realistic, since it does not take into account the 
embedment effect that immobilizes the thin membrane, keeping it to the limits of the 
enclosure. This gives us the new expression of Cmes(P) (see Figure 7.12b): 

( )
max

1
P

P

Co
CoffsetPCmes

−
+=   with:     CrefCoCoffset =+    [7.1] 

P P

 

Figure 7.12. Effect of pressure on the membrane: two models 
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 We will keep the formula shown in [7.1] as the definitive expression of the 
capacity dependent on the pressure. To obtain a measurement voltage linearly linked 
to the pressure, it must be capable of calculating: 

( ) max
1

P

P
Vref

CoffsetPCmes

CoffsetCref
VrefVmes =⎥

⎦

⎤
⎢
⎣

⎡

−
−

−=   [7.2] 

switching capacity techniques allow us to easily carry out the above formula. 
 
 We note here that this technique is based on analysis of analog signals sampled 
periodically (Figure 7.13). It requires discrete time circuits made of capacities, 
switches, and amplifiers sequenced at the sampling frequency Fe by a clock f (in 
general of ½ cyclic ratio) of period T. 
 

 

Figure 7.13. Discretization of an analog signal 

7.3.2.2. The analog version 

 The electrical schema with two supply sources (+Vcc, -Vee) is represented in 
Figure 7.14. Equation [7.2] simply uses the analysis of this structure by expressing, 
step by step, the sharing of charges and their relations with reference voltages to the 
common point of energy supplies. As well, f and Φ  are two complementary clocks 
and are non-recoverable. They are assumed to be active at high states (switch 
closing demand): 

– high state of f: ] nT, (n + 1/2)T [; low state of f: ] (n + 1/2)T, (n + 1)T [ 

– low state of Φ : ] nT, (n + 1/2)T [; high state of Φ : ] (n + 1/2)T, n(n + 1)T [ 
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Figure 7.14. Switching capacities structure, analog version 

 Here, the amplifier is ideal (infinite gain in open loop and infinite pass band); the 
charges are always calculated on the plaques that can be part of electrostatically 
isolated systems. To be able to apply the Z conversion, Cmes(P) will be assumed to 
be invariant in time [BAI 94-1]. 
 
 In the architecture shown above, the two capacities {Cref – Coffset} and Coffset 
are very easily produced. This is done by dividing the counter-electrode from the 
capacitive structure that is insensitive to pressure into two electrically independent 
parts (see Figure 7.11). There are two subsystems: S1, which has the three capacities 
Coffset, {Cref – Coffset}, Cmes(P); and S2, which is made of C2. 

7.3.2.2.1. Switching capacities integrator: the first phase (see Figure 7.15) 

 The switch that short-circuits C2 only has an initialization function. In normal 
functioning, it stays permanently open. 
 
 Interval ] (n – 1/2)T, nT [: 

( ) ( )( )TnVCoffsetVrefCoffsetCrefQ STnS 2/1)()2/1(1 −⋅−−−=−  

( ) ( )( )TnVSCQ TnS 2/1,2)2/1(2 −⋅−=−  
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Figure 7.15. Precharge 

7.3.2.2.2. Switching capacities integrator: second phase (see Figure 7.16) 

 

Figure 7.16. Transfer 
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 Interval ] nT, (n + 1/2)T [: 

( ) ( ) ( ) ( )
TnSTnSnTSnTS QQQQ )2/1(2)2/1(121 ++ +=+  

 Or, after explicit development: 

( )( ) ( ) ( )( )
( )( ) ( )VrefCoffsetCrefTnVC

TnVCoffsetnTVCnTVPCmes

S

SSS

−−−⋅−
−⋅−=⋅−−

2/1

2/1)(

2

2  

Interval ] (n +1/2)T, (n+1)T [: ( )( ) ( )nTVTnV SS =+ 2/1  
 
 Also, the recurrent equation of the system is expressed as: 

( )

Vref
C

CoffsetCref

C

Coffset
nTV

C

PCmes
TnV SS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
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⎠

⎞
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⎝

⎛
+=⎟⎟

⎠

⎞
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⎝

⎛
++

2

22
1)(1))1((

 [7.3] 

 From the transfer function in “Z”, we deduce the recurrence equation: 

( ) 1
22 )(

)(
)(

)(
−+++

−==
ZCoffsetCPCmesC

CoffsetCref
ZH

ZVref

ZVS  

 It is easy to establish the stability condition of such a system, knowing that: 

)(PCmesCoffset <       [7.4] 

a constraint which is always satisfied when the substrate is maintained at a constant 
potential. 
 
 If the value of C2 conditions the response time of the device, the sensitivity of the 
sensor, on the other hand, is completely independent of the choice, since the relation 
that links the voltage VS to the pressure is expressed in stabilized regime: 

max)1()())1(( PPVref
CoffsetCmes

CoffsetCref
VrefnTVTnV nSS −⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

==+ ∞⇒   [7.5] 

 Here, we see the advantage of the feedback loop that eliminates the variability 
influence of the components inside the loop. It also enables the use of a zero method 
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that generates a signal in the form of a product of a stable value of the chosen 
electrical variable, here voltage, using the relation between the measured variable 
value and the reference value. By taking VS from Vref, we get Vmes (equation [7.2]). 
This subtraction operation, not shown in the schema, is easily carried out with a 
switching capacities amplifier. The voltage Vmes can then be digitized with an A/N 
converter used at the end of the chain. 

7.3.2.3. Basic first order ぇ-〉 modulator with a one-bit quantifier 

 

Figure 7.17. ぇ-〉 modulator used for pressure measurement 

 Let us look again at the example shown above, substituting the discrete analog 
feedback {-VS(nT)(Cmes – Coffset)} with a quantified feedback: {0, –Vref(Cmes – 

Coffset)}, driven by a conditional clock (see Figure 7.17). As we will see, we keep 
the advantages of the zero method by proceeding to digitization by using some of 
the properties of first order ぇ-〉 modulators with one bit [BAI 96]. 
 
 Our discussion will be in two stages: 

– first, in order to clarify principles, we will discuss a qualitative approach based 
on a hydraulic analogy; 

– then we will present a quantitative approach based on recurrent equations that 
show the advantages of this technique in terms of precision and “precision/response 
time” compromises. 

7.3.2.3.1. The qualitative approach 

 Employing one-bit ぇ-〉 modulators for pressure measurements with the help of 
capacitive sensors makes use of a hydraulic analogy. With this analogy, we can 
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easily understand the relevant principle. In effect, we compare (see Figure 7.17) the 
capacities Cref – Coffset and Cmes – Coffset to the tub vref at a liquid level. The 
integrator then becomes a tub, and the comparator (a one-bit quantifier) is a 
measurer of the logical output level (SL = 0/1). In this direct mode, at each clock 
cycle, (f) the tub is refilled with the help of Cref - Coffset, which is always smaller 
than Cmes – Coffset. When the liquid level in the tub rises above a certain level, it is 
partly emptied with the help of Cmes – Coffset by means of commanded 
commutators, especially by the conditional cycle SL(f). During N clock cycles, the 
number of times it makes use of Cmes – Coffset: 

∑
−=

=

1

0

)(
Ni

i

iSL  

thus also expressing the maintenance of a constant level in the tub: 

{ }
1

0
( ) ( ) ( ) 0

i N

i

N V re f C re f C o ffse t S L i V re f C m es C o ffse t
= −

=
⋅ − − ⋅ − =∑   

 The mean ∑
−=

=

1

0

)(
1

Ni

i

iSL
N

 represents this quantity with a fractional number between  

{0 and 1}, which can be linked to the numerical pressure measurement: 

1 1

0 0

1 1
(1 ( )) ( )) 1

max

i N i N

d

i i

Cref Coffset P
number SL i SL i

N N Cmes Coffset P

= − = −

= =

−= − = = − =
−∑ ∑  [7.6] 

to the near quantification noise. 
 
 There can be errors when this schema is being carried out. These can occur when 
the result of the transferred charges in the integrator by charge injection (of liquid, 
for example) due to the clocks, by the interference capacities that are part of the 
circuit is not zero “numberd”. To eliminate this systematic error, we can proceed to a 
new sequence in reverse mode. In this case, the tub is emptied at each clock cycle 
(f) by Cref – Coffset and is refilled, under the effect of the conditional clock SL (f) 
with the help of the capacity Cmes – Coffset. By alternating the two modes, we see: 

.........
max maxd i
P P

number err number err
P P

= + = −     [7.7] 

 The error is naturally eliminated by the addition of the two direct and reverse 
modes. It disappears easily through a simple decimation filtering. 
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 Quite often, we must be content with a lower quality correction, with the goal of 
simplifying the architecture. The cause of errors can be assimilated to a capacity that is 
added to or subtracted from Cref - Coffset. This means it is enough to add or subtract a 
physical capacity of the same value to find the quantity “number” we need to find. 

( ){ }
{ }

1
maxd

Cref Coffset Cerr Cerr P
number number err

Cmes Coffset P

⎡ ⎤− ±
= − = − =⎢ ⎥

−⎢ ⎥⎣ ⎦

∓  

7.3.2.3.2. The quantitative approach 

 In this discussion, we have not discussed interference effects. By using the 
schema shown in Figure 7.17, sequenced in direct mode, we get successively: 

– interval ] TnnT )2/1(, + [: 

( ) VrefCrefCoffsetVrefCoffsetnTSLnTVCQ SnTS )()()(2 −+⋅⋅−⋅−=  

– interval ] TnTn )1(,)2/1( ++ [: 

( )
)())2/1((

))2/1(())2/1(())2:1((2)2/1(

nTSLTnSL

VrefTnCmesTnSLTnVCQ STnS

=+

⋅+⋅+−+⋅−=+  

 In this expression, Cmes is a variable that constantly varies over time according 
to the measured pressure but slowly with the recurrence frequency of the clock f 

(Fe), or “over sampling” frequency chosen to avoid problems of spectrum folding. 
That is why a certain degree of leeway is possible in selecting the associated 
sampled variable; so we write: Cmes ((n+1/2)T) = Cmes(nT). 

Interval ] TnTn )2/11(,)1( +++ [: ))1(())2/1(( TnVTnV SS +=+  

and: 

( ) ( )
2 2(( 1) ) ( )

( ) ( )
S SC V n T C V nT

C ref C offset Vref SL nT C m es nT C offset Vref

⋅ + = ⋅
+ − − −

 [7.8] 

( )
w ith : 1

( ) m ax

C re f C o ffse t P n T

C m e s n T C o ffse t P

− = −
−

 

 To create number (nT), we can set up, at each clock cycle, the accumulation of 
consecutive N values of SL: 

( )
1 1

0 0

1 1
( ) 1 ( ) (( ) )

i N i N

i i

number nT SL n i T SL n i T
N N

= − = −

= =
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= − − = −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑        [7.9] 
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 The above equation becomes: 

2
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(( 1) )

( )1 (( ) ) 1
( )

(( 1) ))max
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i N nT

Si

n N T
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−
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∑    [7.10] 

so that Cmes((n - i)T) is very close to Cmes(n – i - 1)T), which is even coherent with 
the principle of “oversampling”. 
 
 Formula 7.10 shows, in a certain way, the increase in resolution produced by the 
averaging operation. However, since it contains two unknowns, this equation, like 
equation [7.8], does not have any predictive value. To obtain this value, we must 
eliminate an unknown by expressing VS according to SL. They are connected by the 
nonlinear relation: 

0)1(0)1(

1)1(0)1(

=+⇒<+
=+⇒>+

nSLnVS

nSLnVS
             

 This implication, added to equation [7.8], completely describes the behavior of 
the ぇ-〉 modulator, but does not help us precisely quantify the resolution increase 
suggested by equation [7.10]. 
 
 A double approximation, based on linearization on a range of limited pressure 
and the introduction of quantification noise, resolves this problem. 
 
 For a stabilized value of the observed measurement capacity, the average voltage 
of integrator output <VS>, is established at: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ >−<−−
>≈<

22

)()(2

C

CoffsetCmesCoffsetCref
VrefVS    [7.11] 

 This approximate expression (the rigorous equation is not linear) comes from the 
simple observation of the output voltage of the integrator for diverse values of 
(Cmes – Coffset) (see Figure 7.18). The relation between VS(nT) and SL(nT) is then 
established easily. By combining equations [7.6] and [7.9], equation [7.11] becomes: 

2

12 −>≈<
>−<

><
SL

CoffsetCmesVref

VC S   
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Figure 7.18. Chronogram of voltages for diverse pressure values 

 In instantaneous value, this is translated into: 
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where hS(nT) represents the instantaneous error resulting from quantification. 
Actually, the only logical values of the comparator output (with a one-bit quantifier), 
SL(nT), are “0” or “1”, while the fraction of the first member has a spectrum of 
continuous values. 
 
 Then, after taking into account the results and rearrangement, equation [7.8] 
becomes: 
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   [7.13] 

 This equation also assumes, in an approximate way, that Cmes((n+1)T) is very 
close to Cmes(nT). This assumption, which is coherent with the “oversampling” 
principle, is the recurrence equation of a first order ぇ-〉 modulator. 
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 It is usual to link this recurrent equation two transfer functions in Z: 
– The transfer function of the corrected useful signal: 

1 ( )
( )

m a x

( ) 2 2( ) ( ) ( )
m a x

w ith : ( ) 1 ( )
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S L S L

P Z
S L Z Z
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⎛ ⎞− ⎛ ⎞= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

   [7.14]  

– The transfer function of the quantification error: 

)()1()( 1 ZSZZbrSL δ−−=                      [7.15]  

Why digital filtering is necessary 

 For a usual range of relation values P(t)/Pmax (1/4, 3/4), which covers all the 
cases encountered experimentally, and as far as the input signal is itself noisy and 
variable, the instantaneous quantification error hS(nT) has, very approximately, the 
properties of a sampled white noise, with a spectral density that can be of the 
magnitude of: 

Fe
dspbrS 12

2∆=   with: 
22

Fe
f

Fe ≤≤−     [7.16] 

with ∆, the quantification step (which is equal to 1, since we evaluate on the basis of 
the capacitive ratios and, by extension, the pressure ratios included between {0,1}) 
and that the quantifier has one bit. A noise power corresponds to this density: 

12

2∆=SPbr  

 Relations [7.13] and [7.15] show that the ぇ-〉 modulator carries out the discrete 
differentiation of the quantification noise of the comparator. This operation 
transforms the “white noise” of the one-bit quantifier to a colored noise concentrated 
in high frequencies (Figure 7.19). It is characterized by a spectral density of power: 
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22
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Fe ≤≤−                        [7.17] 
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Figure 7.19. Effect of digital filtering on quantification noise 

 The effects of this transformation of quantification noise are the following: 

– a multiplication by almost two of the quantification noise power; 
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– a drastic reduction of the amplitude of the spectral density of the quantification 
noise power at low frequencies (Figure 7.19). It is advisable to follow the ぇ-〉 
modulator with low pass digital filtering. 
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Figure 7.20. Transfer functions 
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 This filter must combine three fundamental features: 

– It must ensure a pass band that is compatible with performance expectations. 

– It must guarantee a signal-to-noise ratio compatible with expected precision. 

– It must allow for the slowest possible output sampling in accord with the pass 
band. 
 
 With this modulator, the choices of an oversampling frequency Fe and the 
numbers of samplings N constitute the only required parameters. 
 
 The first filter is a simple averaging filter that helps establish the number. Its 
schema of principle is shown in Figure 7.20. It has a shift register that contains an 
adder and its accumulator on M bits: 2M = N at each instant kT N, consecutive values 
of SL (SL(kT) to SL(k-N+1)T). These are sequenced at the oversampling frequency 
Fe. This filter is regulated by the recurrent equation shown below, deduced from 
equations [7.9], [7.10] and [7.13]: 
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to which we can link the transfer function for the corrected useful signal of the 
quantification error: 
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and the transfer function for the quantification noise: 
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 For the useful signal, this filter presents a frequency response more or less in 
cardinal sinus: 
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 The module of the above equals the unity at zero frequency, which has 

transmission zeros at all the 
N

Fe±  and presents a pass band: {–Fe/2N to Fe/2N}, 

shown in Figure 7.20. 
 
 As for the quantification noise, it is characterized by a power spectral density: 
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 At each step of the filtering, the signal-to-noise ratio is already improved by a 
fraction of the factor N, as is shown by the closer relations [7.17] and [7.19]. 
However, the output signal must be sampled at the oversampling frequency Fe, since 
the spectral density of the noise still extends throughout the band {–Fe/2 ⇔ + Fe/2} 
(see Figure 7.19). 
 
 The second filter is an averaging filter of the same type as described above, but it 
has as input number and for output <number>: 
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 [7.20] 

 Its schema principle includes the accumulator presented above, and (N - 1) 
identical registers. It thus constitutes a “pipeline” structure sequenced to the 
oversampling frequency for reasons already shown. The result is accumulated with 
the help of a second adder. The ensemble is regulated by the following recurrent 
equations: 
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 For the useful signal, this filter presents a frequency response approximately in 
squared cardinal sinus: 
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   [7.21] 

which clearly attenuates the useful signal (see Figure 7.20) outside the pass band  
≈ {–Fe/2N ⇔ + Fe/2N}. 
 
 As for the quantification noise, it has a power spectral density: 
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 At this filtering level, the signal-to-noise ratio gains another factor √N in relation 
to the previous step. This is because its non-zero spectral density (see Figure 7.19) in 
more or less concentrated from: ~ {–Fe/2N to Fe/2N}; that is, a band N times more 
narrow than before the previous filtering. 

After all calculations have been made, we get: 
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π≅   [7.23] 

 The output sampling frequency can be greatly reduced without, however, 
reaching the limits of NYQUIST: pass band: {–Fe/2N to Fe/2N}; sampling 

frequency: Fc = Fe/N. In fact, because of the low reliable attenuation outside the 
pass band of this filtering, a reduction of this order of the sampling frequency can 
cause irreversible damage (linked to the spectrum replenishment) to the useful 
signal. 

7.3.3. Electronic conditioning for piezoresistive cells sensitive to differential pressure 

 A simple thin membrane chamber manufactured in a silicon substrate constitutes 
a pressure sensitive cell. It is sensitive to absolute pressure if the membrane delimits 
an empty space, or to differential pressure if the substrate has been pierced. The 
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piezoelectric elements, arranged as a Wheatstone bridge, are placed on the edge of 
the membrane and are subject to maximum constraints for a given pressure shift 
(Figure 7.21). 

 

Silicon “substrate” 
  Doped silicon  
  constraint gauge  

Figure 7.21. Piezoresistive cells sensitive to differential pressure 

 The temperature range that can support this type of device can be increased by 
placing the piezoresistive elements in oxide shells. This eliminates any escape 
currents. These sensitive cells are used in electronic speed boxes or they are used to 
measure oil pressure (20-50 bars, more than 200 degrees). 
 
 Figure 7.22 shows a principle schema of how a ぇ-〉 modulator adapts to a one-
bit quantifier measuring the disequilibrium voltage of the gauge bridges. The 
integrator, the comparator, and the CMOS switches are of the same type used in the 
previous application. The scale factor is fixed by the relation: K.Cref/Cref. This 
helps us measure the low disequilibrium voltage of the bridge, with the help of a 
reference voltage that is higher by two orders of magnitude, all without using a 
preamplifier [ANA 95], [BAI 97]. 
 
 However, the sequencing differs from that used in the capacitive pressure sensor, 
since here we measure a differential pressure that can be positive, negative, or zero. 
From this we see that at each clock cycle (f), the quantity of charge Cref ⋅ Vref, 
must be brought to or sampled by an integrator according to the state of the 
comparator. According to the principle schema, the state “SL = 1” of the comparator 
is a sampling and counting order, while the state “SL = 0” constitutes a carrying and 
deducting order. As well, during N clock cycles of the clock f, the balance of 
charge transfers is established as: 
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Figure 7.22. Application of ぇ-〉 modulator for the measurement of low voltages 
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  [7.24] 

  “Number” is a measurement of the voltage of the bridge disequilibrium in 
relation to the quantification noise and to the charge injection errors of the clocks. 
 
 By linking the results to the constraint effects created by the differential pressure 
of the membrane, we get: 

4

R
N number K N K N け P

R

δ⎛ ⎞⋅ = ⋅ = ⋅ ⋅ ⋅ ∆⎜ ⎟
⎝ ⎠

 [7.25] 

to the quantification noise and to close to the charge injection errors of the clocks. 
 
 The factor け is the result of the combination of piezoelectric properties of the 
gauges and the elasticity of the membrane. 
 
 It is notable that in equation [7.24], as in equation [7.25], only the factor “K” 
remains; the values of Vref and Cref have no effect from a metrological point of 
view. The improvement of the modulator the proceeds by introducing two 
functioning modes, “direct” and reverse”, which, as in the previous application, 
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eliminate the effect of injection. And by using a reconfigured mode (shown by the 
dotted line in the schema), the scale factor K can be measured precisely (the exact 
value of other capacities are without importance from a metrological point of view). 
Then K can be stored for subsequent measurements. This functioning mode can be 
activated at any time; the modulator is able to performing autocalibration. By 
reducing the impact of interference effects, integration, in the form of symmetrical 
architecture, leads to very good performances (16 bits of resolution for a pass band 
of 1,000 Hz, an oversampling frequency of 2 MHz for a first order modulator, to cite 
two examples). 

7.3.4. Electronic conditioning for cells sensitive to acceleration 

 Accelerators are being used more and more inside of vehicles. Recently, airbags 
have been equipped with similar microsystems; these are the basis of the inflation 
that occurs in case of accidents. As well, accelerometers functioning as 
inclinometers are used for controlling the suspension of some vehicles. These 
mechanisms also function in automatic shock absorption systems, used more or less 
often according to the state of the road or the car. 
 
 Even though these capacitive structures are mostly used in low-precision 
piezoresistive structures, they are can also be adapted to servo-control accelerometers. 

7.3.4.1. Direct applications of first-order ぇ-〉 modulators to 1 bit quantifiers  

 Figure 7.23 shows the schema for the principle of adapting a ぇ-〉 modulator to a 
one-bit quantifier for measuring acceleration with a differential capacitive sensor 
that has been optimized to function in open loop. This means that from zero 
frequency to the “pseudo-frequency” of resonance of the system of a buffered spring 
connected to a mass, the response will be almost flat and is regulated by the 
equation: 

γ
k

m
dd =− 12    [7.26] 

where け is the acceleration and m the seismic mass. The distances d2 and d1 measure, 
are, respectively, the gaps (polegaps) that separate the seismic mass from the lower 
and higher counter-electrodes. 
 



The Contribution of Microtechnologies     311 

d1

d2

C1–C2

C1+C2

C1

C2

SLn

SLp

Vref

SL = SLn

SL = SLp

N.number= n - p = N (            )

γ

γ

Ø

Ø

Ø

Ø

Counter-electrode
Suspension arm

Seismic
mass ∫

Counter-electrode

 

Figure 7.23. Schema principle of a modulator for an accelerator 

 This kind of device is much smaller when it is micromachined on silicon. It has a 
mass of several micrograms to several nonograms, a pole gap of several microns, 
lateral dimensions of several hundred microns, and reduced stiffness. A fluid such as 
atmospheric air pressure is an excellent accelerator buffer of the range of between 0 
and 100 g. Moreover, the seismic mass, along with the counter-electrodes, makes up 
two flat capacities: 
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where S represents the surface of the seismic mass as relates to the counter-
electrodes, and i0 the permittivity of the void. These two capacities are not 
independent and are linked by the relation: 
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where d0 represents the distance of the seismic mass to one or the other of the 
counter-electrodes in the absence of acceleration, and C0 represents the 
corresponding capacity. The introduction of relations [7.2] and [7.28] to the interior 
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of the expression in [7.26] suggests that a measurement principle has been 
completely adapted to the potentialities of the ぇ-〉 architecture. So we get: 
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 The modulator that enables this acceleration measurement is identical to the 
device which produced the pressure measurement with the help of the capacitive 
cell, and is close to the modulator that modified the clock regulator. By using the 
hydraulic analogy again, we understand the measurement process. If the tub level is 
too low, it must be replaced with the help of C1 under the effect of the conditional 
clock SLn f. In the opposite case, it is emptied with the help of C2 under the effect 
of the complementary clock SLp f ( SL SLn p= ). On N count rates, the balance of 
calls to C2, p, subtracted from C1, n, equals: 
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to the quantification noise and to near to the clocks’ charge injection errors. 
 
 Also: 
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with the same error sources as in [7.30]. 
 
 All techniques used for eliminating the effects of injection by a combination of 
direct and reverse modes, as well as the control of the combination of pass 
band/precision by digital filtering discussed above in detail in capacitive pressure 
sensor applications, are rigorously reusable without any prior adaptations. 

7.3.4.2. Producing an accelerometer in true open loop by eliminating the effects of 

electrostatic forces 

 Here, we are close to the formula in [7.3]. It ignores the impact of electrostatic 
forces whose results are not zero by principle with the functioning mode of the ぇ-〉 
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architecture. An acceptable compromise can be attained by reducing the extent of 
the voltage applied to the electrodes (Vref). This is because the electrostatic forces 
decrease with the square of the electrodes. 
 
 However, when we must try to find linearity and a very good signal-to-noise 
ratio in order to conserve the functioning of the open loop of the capacitive sensitive 
cells, we must use other architectures that in principle eliminate this problem. 
 
 Miniaturization aggravates this problem. In fact, if all the dimensions, including 
the pole gap, develop at the same rhythm, the mechanical force decreases at a fixed 
acceleration rate along with the seismic mass volume, while the electrostatic force 
remains constant. 

2 2
2 3 3

22
 

L V
Fe V Fm L L

d

massic density

ε ⋅ ⋅= ∞ ⇔ = ρ⋅ ⋅ γ ∞ ⋅ γ
⋅

ρ =
 

 These forces are of the same order of magnitude for the potential value 
compatible with the microelectronics in the ranges of acceleration measurements 
usual when the pole gap has an order of several micrometers for mass dimensions of 
the seismic mass, which are millimetric. These values are typical of cells that can be 
produced through current silicon microtechnologies. 
 
 It is always desirable to eliminate electrostatic forces. Doing so means bringing 
the seismic mass to a certain potential in relation to two counter-electrodes in order 
to cancel the effects of the forces (see Figure 7.24). 
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where Q1 and Q2 are the shared charges on the surfaces of the seismic mass in 
relation to the two counter-electrodes. The equation is fulfilled under two specific 
conditions: 

21 QQ =    or    021 =⇒−= QQQ    [7.33] 



314     Fundamentals of Instrumentation and Measurement 

 Only the second condition can lead to a relevant measurement of the technique 
of the switching capacities. We will know if the verification of the sum of the 
charges contained by the mass is actually zero. 
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Figure 7.24. Illustration of the two principles of acceleration measurement 

 We can interpret these results by using dimensional parameters, the potentials 
Vin, –Vin, and x, the two counter-electrodes, and the seismic mass. We do this by 
assuming as a hypothesis that the seismic mass displaces in parallel position to itself. 
So we get (see Figure 7.24); 
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 [7.34] 

 Since Vin is stable, the potential x  of the seismic mass of the effects of the 
electrostatic forces constitutes an acceleration measurement, since from equation 
[7.31], we get: 

γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⋅=
okd

m
Vin

dd

dd
Vin

CC

CC
Vinx

2
.

21

12

21

21         [7.35] 



The Contribution of Microtechnologies     315 

 The circuit shown in Figure 7.25 ensures the required functionality [LEU 90]. 
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Figure 7.25. Schema principle of the analog architecture  

for eliminating effects of electrostatic forces 

 During the intervals ] nT, (n + 1/2)T [, the switches switched by the clock f are 
closed. All the nodes of the charge amplifier, the counter-electrodes, and the seismic 
mass are brought to the same potential. The seismic mass is subject only to 
mechanical forces. 
 
 During the intervals ](n + 1/2)T, (n + 1)T [, the node “+” of the charge amplifier 
does not change in potential, but the output voltage varies according to the 
disequilibrium measurement of the shared charges on the surface of the seismic 
mass, since: 
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 The integrator accumulates the effects of these disequilibriums, then cancels 
them in static regime, thanks to the feedback loop; at the same time it eliminates the 
electrostatic effects. We then have: 
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 With this result, we must take note of two phenomena: 

– This system includes a feedback loop. This means it is subject to stability 
conditions that impose certain constraints on the capacity values: 
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– In variable regime, equation [7.36], for practical purposes, is satisfied in so far 
as the sampling frequency remains as fast as the variation speed of acceleration. In 
other words, the sampling frequency must be high in relation to the pass band of the 
sensitive cell. 
 
 Here we again see the inherent advantage of feedback structures. These help us 
obtain a measurement quality (apart from response times) that is not sensitive to 
component variability, with the exception of the sensitive cell itself. 

7.3.4.3. Servo-control of an accelerometer using balanced mechanical forces 

through electrostatic forces 

 In the previous solutions, the analog or digital measurement representing the 
acceleration of an approximate scale factor contained the quotient: 

/( )om d k⋅  

 The value of the stiffness “k” is a parameter that is highly sensitive to dispersive 
effects related to dimension reduction and to certain thermal steps of manufacturing 
processes. In addition, this value can vary according to conditions of usage. 
Although the small pole gap “d0” is not identical to a sample taken from the same 
series, but its value remains stable. The seismic mass is, however, a well-identified 
physical object of some size even in the most miniaturized sensitive cells and is 
time-invariant. “d0” and “m” can thus be memory-stored objects. 
 
 The theoretic static scale factor now depends on only two parameters if the 
measurement method is based on the balancing of the mechanical force by the 
electrostatic forces. 

7.3.4.3.1. Analog solution 

 In the cell with two counter-electrodes (Figure 7.24), the equation expressing this 
principle: 
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expresses at equilibrium: 
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 In addition: 
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 The measurement structure is a looped electromechanical system in which the error 
signal is the gap between the values of two capacities C1 and C2 (see Figure 7.24). 
 
 The switching capacities circuit (Figure 7.26) fulfills the desired functionality; the 
potential difference “b” brings about the gap between the two capacities C1 and C2. 
 

 

Figure 7.26. Principle schema of the analog architecture of equilibrium forces 

 Under the effect of constant acceleration, the signal this circuit transmits is 
expressed as: 
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 This relation shows the dependence between the static scale factor and the stiffness 
that occurs when the loop gain is not infinite. However, to further develop this 
analysis, the dynamic characteristics of the sensitive cell must be taken into account. 
The seismic mass is subject to the linking of four forces: the effects of suspension 
stiffness; acceleration; viscous absorption; and the result of electrostatic forces. 
 
 In the absence of “small signal” electrostatic forces, the function of the harmonic 
transfer of the sensitive cell is expressed as: 
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where )(ωY , )(ωΓ  and )(ωH  are respectively the harmonic expressions of the 
displacement of the seismic mass, of acceleration, and of the transfer function; and 
“そ” is the coefficient of viscous absorption. 
 
 As soon as the sampling frequency Fe is high enough, the results of the 
discretization can be ignored. The transfer function describing the “small signal” 
behavior of the entire system is easily determined by explicitly inserting H(の) into 
the block schema (see Figure 7.27): 
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 This expression shows that the error analysis operator, A(の) cannot be chosen 
independently of the sensitive cell. To clarify this point, we will look at two cases: 
the cell with dominant absorption and the cell with optimum absorption. 

 

Figure 7.27. Block schema 
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7.3.4.3.2. Analog solution: sensitive cell with dominant absorption 

 In this kind of cell, the stiffness “k” is very low, so that the transfer function of 
the cell is close to: 
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 To avoid any instability in the looped system, the error analysis operator is a 
limited-gain amplifier. Expression [7.42] then becomes: 
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   [7.43] 

 The signal to mechanical noise ratio of this type of sensitive cell is potentially 
the best. But these cells are also the most fragile because of the low stiffness of the 
seismic mass suspension; and they also withstand miniaturization poorly. 

7.3.4.3.3. Analog solution: sensitive cells with optimum absorption 

 The response of these cells is nearly flat up to their pseudo-pulsation resonance っR: 
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 The error analysis operator can then be an integrator with a limited transition 

pulsation “のT”. Expression [7.42] then becomes: 
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 Micromachined accelerometers used to measure high accelerations typically 
have this kind of behavior. 
 

 

 

Figure 7.28. Chronogram and digital architecture for a sensitive cell  

with dominant absorption 

7.3.4.3.4. Digital solutions 

 Structures derived from ぇ-〉 modulators can also be used in servo control 
accelerometers. Figures 7.28 and 7.29 are shown in block schemas with two 
structures of this kind. The first is suitable for accelerometers with dominant 
absorption; the second is for accelerometers that are close to optimum absorption 
[ZIM 95], [BAI 94b]. 
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 [7.46] 

 Accelerometers, and more generally inert systems, have been the subjects of 
much research; the final performances of these microsystems are very sensitive to 
using electronics within technological parameters. However, it would be outside the 
scope of this chapter to treat this topic in depth, since here we are limiting our 
discussion to initiation technologies 
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Figure 7.29. Digital architecture and chronogram of a sensitive cell with optimum absorption 

7.3.5. Energy sources in microsystems 

 In a certain number of microsystem applications, energy sources can prove 
problematic. This is the case with nomad systems and even more with abandoned 
systems without their own sources. 
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 Much research has been undertaken on electronics with low consumption levels, 
microsources (electrothermal, electrodynamic and photovoltaic), Hz and optical 
telesupplying, among other areas. 
 
 Up to now, this research has not had much impact in the area of automotive 
technology devoted to the battery. However, telesupplying has already appeared in 
mobile parts microsystems responsible for chassis-road connections (such as tire 
pressure), remote control, and engine immobilization. 
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Chapter 8  

Instruments and Measurement Chains 

 In general, studying a physical phenomenon is done with a computerized system 
and a central computer guiding a range of measurement devices. Each of these 
devices is connected to a type of sensor, as well as to one or more buses for the 
exchange of information. Between the operator and the computer is the user 
interface. The idea of a measuring device should be understood in a broad sense, 
whether the device exists separately (battery or mains operated) or is part of a 
measurement card in a rack or a computer. In this chapter, our goal is to present an 
overall view of the principle measurement instruments, their functioning principles 
and the kinds of measurement that can be obtained by using them. Then connecting 
buses will be discussed, as well as ways to create a measurement chain; that is, an 
instrumentation system. 

8.1. Measurement devices 

In this section, we will discuss standard measurement devices and their recent, 
digital, developments. Recently digitization is done throughout the system before the 
overall measurement process begins. This means it is carried out increasingly with 
sensors. 

                              
Chapter written by Bernard JOURNET and Stéphane POUJOULY. 
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8.1.1. Multimeters 

8.1.1.1. Measurement principles 

 Generally speaking, a multimeter links a voltmeter, an amperemeter and an 
ohmeter. We limit ourselves to these three kinds of measurement because they can 
be organized easily around the same unit: the analog-to-digital converter (ADC). 
The three measurements listed above are often based on the numerization of one 
voltage. The measurement results are converted and displayed in the form of digital 
values. The ADC unit and its display constitute what we call the ideal voltmeter, 
“idVm”, shown in Figure 8.1. 
 

 
 

Figure 8.1. Principle of the multimeter and voltage measurement  

 
 
 Analog-to-digital converters generally operate by successive approximations, but 
there are some converters that operate on the multiple ramp system. 
 
 Displays are carried out with a certain number of numerals or digits. We find 
devices called “3 ½ digits” or “6 ½ digits”. In this designation, the ½ digit is the first 
character to be displayed, with 0 or 1 or even 2 (it is a half digit because it does not 
take all the possible values). The whole number (here a 3 or a 6) represents the 
following digits. Thus, the displayed number (without taking into account possible 
decimal points) can have values of between 0 and the maximum displayable or 
number of points. A 3 ½ multimeter can display from 0 to 1,999 and is called a 2 
million point device. The HP34410A multimeter made by Agilent TechnologiesTM is 
a 6 ½ digit or 2 million point multimeter. 

8.1.1.2. Input resistance influence 

 The first source of errors in measuring voltage comes from the non-infinite 
resistance of the voltmeter. We can design a digital voltmeter by joining the ideal 
voltmeter (idVm) to an input resistance Rin. A systematic measurement error appears 
when the equivalent Thevénin resistance of the dipole we want to study is relatively 
high compared to the input resistance of the multimeter.  
 
 

    

idVm ADC   
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VX
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iVmRInVX

RS

 

Figure 8.2. Influence of input resistance 

 Here, the measurement error (in percentages) is expressed by the following 
formula. 

inS

S

RR

R
m

+
=

100δ  [8.1] 

 The input resistance is typically 10 Mっ but can reach much higher values. For 
example, on the HP34401 multimeter, we can choose on the ranges of 0.1 V, 1 V 
and 10 V as an input impedance of 10 Mっ or even above Gっ, whereas on the 100 
and 1,000 V ranges it is worth 10 Mっ. 

8.1.1.3. Intensity measurements 

 An intensity measurement is obtained by converting the intensity into a voltage 
through a shunt resistance. The voltmeter then measures the voltage to the resistance 
limits. 
 

idVm
inRshR

 

Figure 8.3. Principle of the multimeter: intensity measurement 

 The important parameter to consider in estimating the quality of the 
measurement is the voltage drop to the limits of the shunt resistance. 

8.1.1.4. Resistance measurements 

 The measurement of a resistance is usually obtained in a multimeter by crossing 
it with a known current and measuring the voltage at its limits. It is important to 
have a good calibrated current source. 
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idVmRX RIn

I0

 
 

Figure 8.4. Principle of the multimeter: resistance measurement 
 
 
 A problem occurs when measuring low resistances. In this case, the resistance of 
the measurement wires is of the same order of magnitude and introduces a 
significant error (drop of potential in the wires). Here we use the “4 point” method. 
 

idVmRX RIn

I0

 
 

Figure 8.5. Multimeter principle: resistance measurement by the 4 point method 
 

8.1.1.5. Two types of multimeters 

 In situations of variable voltage and intensity measurements, two types of 
multimeters are used: averaged response multimeters (sensitive to the averaged 
response of the corrected signal) and root mean square (RMS) multimeters with 
true, effective responses that are sensitive to the square of the signal. Multimeters 
sensitive to the averaged value are calibrated to display the effective value for a 
sinusoidal signal. This means that with other signals there is a measurement error to 
correct; this is done by taking the form factor into account. 
 
 One basic feature to consider is the passband of the device, which for 
multimeters is a fairly general base. For the HP34401A multimeter, the passband has 
100 kHz of voltage and 5 kHz of intensity (for an accuracy below 1%). 
 
 The measurement of the effective value takes into account the effective value of 
the alternating current Vf-ac and that of the direct current Vf-cc. We especially need to 
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separate the two in cases of an end face alternative value of a component remaining 
high. In this case, we get the true effective value. 

22
acfccff VVV −− +=  [8.2] 

 Signals having high comb factors (relation between the comb value and the 
effective value) set at relatively high frequencies pose error risks, due to the 
presence of fairly high harmonics. 

8.1.1.6. Measurement accuracy 

 Other measurement error sources are often due to ground loops, to 
thermoelectric effects due to contacts between different kinds of metals, to problems 
of common mode rejection (isolation of the LO limit in relation to the ground) and 
to sector noise in the case of a device in the sector. 
 
 Of course, the fact that a digital value is displayed is not a sign of absolute 
accuracy. Measurement accuracy is not directly accessible with a device, as was the 
case with magnetoelectric instruments with moving coils indicating the class of the 
instrument. It is necessary now to refer to the device’s instructions for information 
concerning accuracy, taking into account a percentage of the measurement, of the 
range, and even the number of digits. Accuracy is expressed as: 

( )% of  the measurement +% of  the range±  [8.3] 

 Still using the example of the HP34401A multimeter, to measure the direct 
voltage on a caliber 1 V, the accuracy for a year is given as 0.0040 + 0.0007 or 
0.0047% full-scale maximum. This means an accuracy of 4.7 · 10-5 V for a 1 V 
measurement. 
 
 Accuracies are less precise measuring resistances or currents than in measuring 
voltages, and are less precise measuring variable signals than direct signals. 

8.1.2. Frequency meters 

 A frequency meter is organized around an accuracy time base and a counter. A 
good time base has a quartz oscillator for a reference. This oscillator can be at 
ambient temperature (we speak of room temperature crystal oscillator (RTXO)). 
This gives a stability of up to 2.5 ppm. It can be temperature compensated 



330     Fundamentals of Instrumentation and Measurement 

(temperature compensated crystal oscillator (TCXO)); in this case the stability 
drops to 0.5 ppm. The oscillator also can be stabilized in a temperature-controlled 
enclosure, and here we speak of an oven controlled crystal oscillator (OCXO). The 
stability of an OCXO can reach values of 0.01 ppm. 
 

Counter Display 

 Control 

Impulses 
Port 

 
 

Figure 8.6. Synoptic of a counter frequency meter or periodmeter 
 
 
 Whether frequency or periods are being measured, one synoptic can be given for 
the instrument being used. This synoptic is shown in Figure 8.6. In this figure, the 
synoptic counts the number of impulses during the high state period of the control 
signal. 
 
 To measure the frequency of a periodic signal means we refer to the definition of 
the frequency by counting the number of times the signal is reproduced during an 
interval of known time (which can be a second or some other established interval). 
In this case, the signal we want to measure is found after it is formatted as an input 
“Impulses”. The time base gives the “Control” signal shown in Figure 8.6. This is 
the frequency meter functioning mode. 
 
 For measuring high frequencies, we can introduce a frequency divider to 
determine the number of times a reference signal (a clock) is reproduced identically. 
This mode is used for measuring very low frequencies. In this case, the time base 
(clock) creates the “Impulse” signal and the input signal, which serves as the 
“Control” signal shown in Figure 8.6. This is functioning in periodmeter mode. 
 
 Reciprocal counting functioning combines the advantages of the two other 
modes. A counting window is opened by the input signal, and it stays open during a 
time TCK that is set by the time base. During the period 〉TF of this window, a first 
counter sets the number Np of events of the input signal. A second counter 
determines the number NCK of periods of the time base (clock). Since  
〉TF = NCK .TCK = Np .T, we get the signal’s period: 

p

CKCK

N

NT
T

.
=  [8.4] 
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 The input impedance is usually 1 Mっ in low frequencies or 50 っ beyond  
50 MHz. We find a direct DC coupling on inputs or an AC coupling that suppresses 
the direct component. 
 
 Here we mention a little-known but useful instrument of the same type. It is an 
analyzer of time intervals or frequencies that helps to visualize the temporal 
developments of frequencies, of periods, and phases of signals. It carries out a 
measurement by counting the time interval between each zero crossing of the input 
signal. We can then follow the behavior of a signal whose frequency develops over 
time. We can also note the stability and dynamic behavior of different components 
or systems such as a VCO (variations of the frequency according to temperature), 
and the dynamic behavior of a phase-locked loop. 

8.1.3. Oscilloscopes 

8.1.3.1. Introduction 

 Today, since oscilloscopes are usually digital oscilloscopes, we will only discuss 
this type. The synoptic of a oscilloscope is shown in Figure 8.7. 
 
 After selecting the coupling mode as input (DC for direct current and AC for the 
part of the signal without a direct current), the principle chain is connected to a 
preamplifier (G), a sample and hold (Samp.B), an analog-to-digital converter and a 
memory storage device. The converter usually has an 8-bit accuracy. 
 
 The criteria which fix the frequency of the oscilloscope are the analog pass band 
of the input stages and the sampling frequency. Rise time is also a possible criterion 
but is seldom used anymore. 
 
 Sampling can be carried out either in real time (or in single-cycle mode) or 
repetitively (in sequential or random mode). In the first case, in order to respect 
Shannon’s theorem, we must have fs > 2.BW where fs represents the sampling 
frequency and BW the length of the signal band. In the second case, we must 
implement a reconstruction procedure and we have BW.kf Rs > where kR is equal to 
2.5 for a sinusoid, around 4 for a transient regime, or even 10 when there is no 
reconstruction. We find oscilloscopes with sampling frequencies of up to 20 MEch/s 
(as with series HP54600 made by Agilent TechnologiesTM) to 2 GEch/s (the 
HP54615 and Infinium). 
 
 
 
 



332     Fundamentals of Instrumentation and Measurement 

µPr.

Mem.Samp. B CAN

CH1 
AC 

DC 

G

Mem.Samp. B CAN

CH2 AC 

DC 

G

Clock/ 
Samp.

Clock

Time
base

External 
trigger 

 
 

Figure 8.7. Synoptic of a digital oscilloscope 
 
 
 After the analog-to-digital conversion, the data are stored in a memory unit that 
currently can be up to 1 Mega-samplings. Recent instruments almost always have an 
interface (serial or IEEE488) that facilitates data transfer to a calculator. 
 
 There are several visualization modes for signals: by points or vectorial (the 
points obtained are linked). We can also carry out an averaging of the data to 
improve the signal-to-noise ratio on in general 8, 64 or even 256 acquisitions. The 
visualization of modulated signals (amplitude or angular modulation) can cause 
some problems with display. This is due to the fact that multiple frequencies occur 
during reconstruction. With such cases we must be careful to avoid taking a 
vectorial display so as not to place too much importance on falsely correlated 
phenomena. A single-cycle sampling can be most practical here, since the passband 
is strictly limited by Shannon’s theorem. 

8.1.3.2. Input impedance and measurement 

 The standard model of an oscilloscope’s input impedance is shown in Figure 8.8. 
The input resistance of an oscilloscope is generally equal to 1 Mっ (normalized 
value). With oscilloscopes that have high bandwidths (above around 500 MHz), we 
can also choose an input impedance of 50 っ. 
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Rin Cin

 
 

Figure 8.8. Model of an oscilloscope’s input impedance 

 
 
 The input capacitor has a capacity with an order of magnitude of 15 pF, but this 
value is not normalized (and varies from around 10 to 20 pF). If we carry out the 
measurements with a standard coaxial cable (with a line capacity of 100 pF/m), the 
capacitor brought to the measurement point is therefore of 15 pF + d*100 pF where 
d is the cable length. For a coaxial cable of 1 m this can come to 115 pF, which can 
prove to be counter-productive. To resolve this problem, we can use measurement 
probes. 
 
 The model of the probe used with the input stage of an oscilloscope is shown in 
Figure 8.9. For this model, we can establish the corresponding transfer function that 
links the voltage analyzed by the oscilloscope (written as Vin) to the voltage to be 
measured (written Vm). 

Rin Cin
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Figure 8.9. Modelization of the measurement probe used with an oscilloscope 
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 Regulating the probe to obtain an all-pass filter means adjusting the capacitor Cso 
so that: 

ininsoso CRCR =  [8.6] 
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 The impedance brought to the measurement point is then: 

ωinin

inso
eq

CjR

RR
Z

+
+

=
1

 [8.7] 

 This impedance is equivalent to a resistance Rso + Rin in parallel with a capacitor 

of the capacity in
inso

in C
RR

R
C

+
='  and is therefore lower than Cin, the total capacity 

of the coaxial cable, which is itself smaller that that of a impedance cable of about 
50 っ. 
 
 So, with Rin = 1 Mっ; Rso= 9 Mっ; Cin = 12 pF. In this case, Cso must be adjusted 
to 1.33pF, which gives an input impedance probe + oscilloscope equivalent to 10 
Mっ in parallel with 1.2 pF. The capacity of the cable being used for the probe is 
often around 7 to 8 pF, which gives the ensemble a capacity below 10 pF! But of 
course, even the smallest disturbance brought to the assembly is obtained to the 
detriment of an attenuation by 10 of the voltage to be measured. There are also 
active probes that present very high input impedances and very low disturbance 
capacities (the measurement element is a MOS transistor). 

8.1.3.3. Measurements done by an oscilloscope 

 Once the signal displayed on a screen is digitized, it is relatively easy to introduce 
measurement functions into an oscilloscope. These functions have different aspects. In 
voltage measurements, we most often find measurements of peak voltage, of effective 
or average voltage, the final value (high or low), or a squared signal. With temporal 
measurements we find the period, the frequency, the rise time and fall time of a signal. 
Related to these measurement functions we also find mathematical functions that are 
applied to signals: sum; difference; product; FFT (fast Fourier transform, the 
calculation of the coefficient differential or integrant). 

8.1.4. Spectrum analyzers 

 There are mainly two methods of carrying out a frequency analysis of a signal. 
With low frequencies (up to a few 100 of kHz), we used an analyzer based on the 
calculation of the Fourier transform of the signal, which has been digitized 
beforehand. For radiofrequencies, high frequencies and microwaves, we use a 
sweeping analyzer (a technique using several 100 kHz up to 100 GHz). 

8.1.4.1. Sweeping analyzers 

 The principle of a sweeping spectrum analyzer is more or less the same as that of 
a heterodyne radio receptor.  
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 Instead of regulating a tunable filter to cover the signal we want to measure, it is 
better to pass the spectrum through a fixed filter. We then combine (or multiply) the 
signal with another signal that carries out a frequency sweeping. The frequencies 
obtained by structure (sum of frequencies) are detected when they are equal to the 
central frequency of the selective filter (also called the intermediate frequency (IF)). 
The principle is shown in Figure 8.10. 
 
 

detAtt. G 
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generator 

Local 
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In 

IF 
LO

 
 

Figure 8.10. Schema principle of the sweeping spectrum analyzer 
 
 
 We see that the most important unit in this process is the mixer, the signal to be 
studied having been applied after formatting on the RF input and the sweeping 
signal having been formatted on the LO input. Since the signals we apply on the RF 
input of a mixer must come up to certain levels, the input has an attenuation stage 
and an amplifier. It can have several successive conversion stages before optimally 
adapting the frequency range of the signal to be studied to the frequency of the 
selective filter. Each stage has a mixer, a local oscillator and an intermediary 
frequency filter. With recent instruments, we use a digital filter for the last IF stage 
that facilitates high stability in the filter, even at very low resolutions like 1 Hz. In 
this case, the final section is digital, including the peak detection and the display 
control. 
 
 After the selective filter, there is a peak detector for finding the amplitude of 
selected lines, then a filtering before beginning the visualization process. Recently, 
in some microprocessing variations, the signal is digitized after the video filtering 
and a microprocessor controls the local oscillator and display functions. 
 
 The main parameters to regulate are the central frequency, the frequency span, 
the resolution (length of the selective filter or resolution bandwidth, written as 
BWres) and the sweep rate, written as SWr. However, we should remember that the 
higher the response, the more selective the passband filter. We have to “wait” for the 
output signal to go through transient regime before being able to correctly carry out 
peak detection. So, if we want to improve resolution (that is, separate the close 
lines), we must increase the sweep time so that the span parameters, sweep rate and 
resolution cannot be regulated independently. The resolution values usually can be 
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regulated by sequences 1, 3 (100 Hz, 300 Hz, 1 kHz, etc.). We can give an 
approximate formula between sweep rate and resolution: 

F

res
r

k

BW
SW

2

=  [8.8] 

where kF is a kind of form factor dependent on the type of filter used (for a Gaussian 
filter we have kF ≈ 2). 
 
 For the adjustments concerning detected amplitude, we find the reference, that is 
the maximum value displayed at the top of the screen, the unit chosen for the display 
and the scale (quantity displayed by division). The unit of amplitude can be in volts 
(or its sub-multiples), in dB (with different variants dB, dBv, dBm, and so on, 
according to the reference chosen for the calculation of decibels). We see that 
display in dB (logarithmic) is the most widely used, taking into account the very 
wide gaps possible between amplitudes of different peaks. 
 
 Sweeping can be done by a analog VCO, but today it is more often carried out by 
frequency synthesis devices with frequencies that are calculated according to the 
span and number of measurement points. With these devices it is possible to average 
the measurements carried out at each of the frequencies; this increases the signal-to-
noise ratio. 
 
 Spectrum analyzers with sweeping functions have another important option: 
tracking generators. These are generators that supply a sinusoidal signal, of constant 
amplitude, that varies linearly over the course of time (but are synchronized on 
sweeping by the frequency of the analyzer itself). We can, for example, apply this 
signal to the quadrupole input. The spectrum measurement of the output signal of 
this quadrupole directly shows the response curve in amplitude of the quadrupole 
being studied. 

8.1.4.2. FFT analyzers  

 The schema principle for this instrument is shown in Figure 8.11. 
 

 
Att. FFTADC 

FS 

In 

  analog num. 

 
 

Figure 8.11. Schema principle for a spectrum analyzer using FFT 
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 The signal is first attenuated or amplified (according to its amplitude), then 
filtered to avoid spectrum aliasing. Then the signal is sampled and digitized (with an 
ADC sample and hold) to a frequency written as FS. Lastly, the system calculates the 
Fourier transform of the number obtained by a rapid algorithm called the FFT. 
Shannon’s criterion must also be respected, so we get: 

max2FFS >   [8.9] 

 One important advantage of the FFT analyzer is its rapidity, since it establishes 
all the components of the spectrum in frequency in one time; the measurement speed 
is, at equal resolution, well above that of a sweep analyzer. Another advantage is 
that it also allows us to obtain a good resolution even at low frequencies (as low as 
Hz), which would be impossible with a sweep method. 
 
 It is important to remember one of the problems basic to the calculation principle 
of the Fourier transform. The calculation is applied to the digitized signal on a finite 
interval of time. This means it is seen in a certain temporal window. The obtained 
result is thus the convolution product of the Fourier transform of the signal, which 
itself is the product of the Fourier transform of the window. A simple rectangular or 
uniform window will then appear from the sinus functions (x)/x at each peak with 
relatively high lobes (Gibbs phenomenon) that risk flooding lower neighboring 
peaks. We then have the possibility, according to the quality criterion selected, of 
using different forms of windows to improve our results. 
 
 The windows proposed by FFT analyzers are the following: uniform; Barlett (or 
triangular); Hanning (in cosine); Hamming; Blackman; Kaiser; and Flattop. Each 
type of window has certain advantages (such as fewer secondary lobes, a good 
respect for the maximum value, among others), but these are to the detriment of the 
length at half-maximum or to the measurement accuracy of the amplitude. Here, we 
give the expressions of some of these windows, by the function w(n), defined as  
0 ≤ n ≤ N – 1, and which is zero outside, n representing the number of the sample  
[OPP 74]. 

Uniform: 1)( =nw  [8.10a] 

Bartlett: 
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Hanning: ⎥
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Hamming:
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Kaiser:
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 The Kaiser is defined from the Bessel function of order zero, of the first type. 
The parameter のa allows us to adjust the compromise between width of the central 
lobe and amplitude of the secondary lobes. 

8.1.4.3. Principles of possible measurements 

 Here we give some of the main applications of spectrum analyzers. 
 
 Of course, we must mention direct spectral studies of a signal, for example the 
signal delivered by an oscillator or modulated signals of type AM or FM. These help 
us establish the spectral dimension around the carrier. Some spectrum analyzers 
even include demodulation functions (one example is the ESA1500 made by Agilent 
TechnologiesTM). 
 
 When we study the output signal of an amplifier, the spectrum analyzer allows a 
certain number of measurements. The measurement of harmonic distortion rate is 
worth mentioning here. This is an indicator of the relation of the energy contained in 
all the harmonics and the energy contained in the fundamental; the results are 
usually shown in percentages. The measurement is limited to a few harmonics, with 
the analyzer offering the possibility of choosing the number (here we cite the 
example of the FFT analyzer SR760 made by Stanford Research SystemsTM). 
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 A very important measurement concerns the power spectral density (PSD). This 
is the amplitude normalized to 1 Hz of passband (expressed as /V Hz or in 

/dB Hz ). This measurement gives us a result independent of the span (an example 
of this type of signal analyzer is the HP89410 made by Agilent TechnologiesTM). 
 

 The study of oscillators requires another type of measurement carried out with a 
spectrum analyzer: the measurement of phase noise. This measurement lets us 
encode the spectral purity of an oscillator, or the sharpness of the line corresponding 
to the oscillation frequency. If the resolution of the spectrum analyzer filter is 
written as BW and if we carry out the measurement at a distance fx of the central line 
or carrier fc, the phase noise is then: 

)1/log(10))(())(()/)(( HzBWdBmfPdBmfPHzdBcfL Cx −−=  [8.12] 

 Figure 8.12 shows the principle of the measurement of phase noise done with a 
spectrum analyzer. The measurement is carried out with a gap f in frequency in 
relation to the central frequency of the oscillator (or of the carrier in a transmission 
system). 
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BWBHzdBcB log10)/( +=ϕ

 
 

Figure 8.12. Measurement of phase noise done by a spectrum analyzer 

8.1.5. Network analyzers 

8.1.5.1. S parameters 

 With high frequencies (radio frequencies or hyper frequencies), it is imperative 
to take into account the propagation effects on the transmission lines, and even, in 
some cases, on the components. In the case of lines (bifilar, coaxial, microstrip, and 
waveguide), we define the incident and reflected waves as a line plane (V1, Vr) the 

reflection coefficient 
i

r

v

v
=ρ , the characteristic impedance RC, the reduced 

impedance 
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Z
z = . 
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We define the incident traveling wave by 
C
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ν
=  and the reflected traveling 

wave by 
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 Remembering that fundamental formulae link と and z: 
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 The chart allows と to go to z, as well as the reverse, according to the previous 
formulae. This is Smith’s chart. 
 
 The matrix S is made of scattering parameters or S parameters representing the 
way energy enters into a multiport system and is shared at output at the level of 
these ports: 

( ) [ ]( )aSb =  [8.14] 

or also: 
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 is the transmission coefficient of the port (j) towards the port (i) 

all the ports (k ≠ j) being matched to cR . 

8.1.5.2. Measuring S parameters 

 Measuring the S parameters of a quadrupole is done with a network analyzer 
called a vectorial analyzer when it carries out an amplitude and a parameter phase 
measurement. We say that we are using a system that helps us compare amplitude 
and phase of two incident waves, as two inputs written as R and A. 
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8.1.5.2.1. Measuring Sij 
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Figure 8.13. Measurement of a reflection coefficient 
 
 
 At first, an all pass replaces Q. The attenuators and the phase shifter are adjusted 
to regulate R = A. Then we place Q, R is unchanged and A’ = Sij*A so that we get 

'

'

R

A
S ij = , and from this the module and the phase of the transmission coefficient. 

8.1.5.2.2. Measuring Sii 

 We replace Q with a reflectometer bridge, characterized by its matrix S: 
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Figure 8.14. Measurement of a reflection coefficient 
 
 
 Port (3) is matched, so a3 = 0. Port (2) is in open circuit. We adjust R = A as 

before, and we have 14

1
aAR == . Then we place the port (i) of the relevant 
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quadrupole at port (2) of the reflectometer. R = R’ and 14

1
' aSA ii=  and so 

'

'

R

A
S ii = , from which we get the module and the coefficient relection phase. 

 
 Because of coupling possibilities between the paths R and A, and of defects at 
the connector levels, as well as defects of the bidirectional coupler, it is necessary to 
proceed to calibration, that is to pre-measurements, with all the elements perfectly 
known (open circuit, short-circuit, adapted charge and all pass). The instrument 
deduces from the error vectors, taking into account the error sources and making 
corrections during later measurements. 
 
 It is very important to define the components’ measurement plans as clearly as 
possible during calibration. 
 
 The S-parameter test set is an essential part of a network analyzer and can be 
integrated either to the device itself or in casing. This unit ensures all successive 
connections of the source, of the quadrupole, of the reflectometer to ports (i) and (j) 
alternately, and allows us to determine the four parameters iiS , ijS , jiS  and jjS . 
 
 The results obtained can be shown on the analyzer screen unit in the form of a 
Smith chart, mainly for the reflection coefficients or in the module and phase form 
for the transmission coefficients. From the transmission coefficients Sii we establish 
the input impedance at the level of port (i). 

8.1.6. Impedance analyzers 

8.1.6.1. Method using a self-equilibrated bridge 

 This method, or at least its principle, can be described by the somewhat 
simplified schema shown in Figure 8.15. 
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Figure 8.15. Measurement of impedance, self-equilibrated method 
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 The impedance to be measured ZX is obtained by the transfer function of the 
assembly: 

2

1

V

V
RZ X −=  [8.17] 

 There is also a four-point method for very low impedances, which is quite 
similar to that used for multimeters. 
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Figure 8.16. Measurement of impedance, self-equilibrated four point method 

 
 
 We get a high accuracy (up to 0.05%) during resistance, conductance, inductances, 
capacity, quality factor and loss angle measurements. This method has its upper limit 
at around 100 MHz. It is this method that is used by the HP4192A analyzer 
manufactured by Agilent TechnologiesTM that functions from 1 MHz to 13 MHz. 

8.1.6.2. RF 1-V method 

 This method is used from around 1 MHz to 2 GHz, with an accuracy of about 
0.8%. The range covered is relatively large, from 0.1 to 50 kっ.  
 
 In a way similar to the voltamperometric method of measuring resistances, we 
find test plates of the “long shunt” type for high impedances, or “short shunt” for 
low impedances (see Figure 8.17). 
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Figure 8.17. Impedance measurement by RF 1-V method 
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 The impedance to be measured is given by the following formula: 

1

2

V

V
RZ =  [8.18] 

 This method is used by the HP4291B analyzer made by Agilent TechnologiesTM. 

8.1.6.3. Measurement with a network analyzer 

 Measurement of impedances can also be done with a network analyzer at high 
frequencies, from 1 MHz, but more appropriately above 1 to 2 GHz. However, these 
methods are not recommended for high impedances, since the measurement 
accuracy is around 3% for impedances close to 50 っ. 
 
 The methods described below are in accord with E1A512 recommendations. 

8.1.6.3.1. Measurement by reflection 

 This method measures the S11 parameter and deduces the impedance from it by 
the basic relation linking impedance with the reflection coefficient. 
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8.1.6.3.2. S parameters method 

 It is also possible to deduce the impedance of a complete measurement of S 
parameters (two port method). 
 

 

DUT

P1 P2

 
 

Figure 8.18. Measurement of impedance with a network analyzer 
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 With all these methods it is important to closely observe the quality of the fixture 
systems of the components being tested (in particular for CMS components) and 
then proceed to a calibration step of the measurement system. This last step controls 
all stages leading up to and including measurement planning. 

8.1.7. Synchronous detection 

 Using a synchronous amplifier (called a lock-in amplifier, which carries out 
detection by synchronous modulation) helps us eliminate 1/f noise in circuits, as 
well as noise close to f = 0, on the condition that the direct or slowly varying useful 
signal x(t) can be modulated in amplitude to the source by a reference signal r(t). 
Synchronous detection allows for a reduction in the signal-to-noise ratio. 
 

 

r(t) 

 phase shifter
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s(t) 

multiplier

modulation 
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signal 

x(t) 
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a(t) m(t)
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ampli. (FR) 
passband 
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Figure 8.19. Schema principle of synchronous demodulation detection 

 
 
 In fact, with the useful signal spectrum x(t) concentrated close to f = 0, the 
modulation of x(t) by the reference signal of the frequency fr leads to the creation of 
a signal s(t) whose spectrum is that of x(t) but is shifted from f = 0 to f = ± fr. The 
signal s(t) is then filtered by an amplifier tuned to the frequency fr, which eliminates 
all the noise found outside the passband of the tuned amplifier. A synchronous 
detection using a multiplier, a phase shifter and a passband filter restores the useful 
signal x(t). 
 
 To illustrate this method, let us consider a signal x(t) provided with a white 
noise. We suppose that the reference signal is purely sinusoidal. Figure 8.20 shows 
the spectrums obtained at the output of the different analysis units shown in Figure 
8.19. 
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Figure 8.20. Schema principle of detection by synchronous demodulation 

 
 
 We see that this type of detection helps us measure the phase shifting between 
two signals of the same frequency, as well as the separation of real and imaginary 
components from a signal in the complex ensemble. 
 
 One of the important parameters of the lock-in amplifier is the time constant, 
which is directly linked to the cut-off frequency of the passband filters. These filters 
eliminate the 2 fr component, and also help reduce noise by diminishing the 
bandwidth. For example, the SR510/SR530 amplifiers made by Stanford ResearchTM 
have two passband filters. The first has time constants that are adjusted from 1 ms to 
100 s for the first stage, and from 1 s to 0.1 s for the second stage. The bandwidth of 
the amplifier is of 100 kHz. 
 
 To improve measurement accuracy, we find the input of band reject filters set to 
the frequency of the sector. We then double this frequency. 
 
 There are also digital lock-in amplifiers (one example is the SR810/830 made by 
Stanford ResearchTM). With these instruments, the synchronous detection is carried 
out digitally. The signal is sampled (after antialiasing filtering) at the maximum 
frequency of 256 kHz, then a DSP carries out the demodulation, that is, the “digital” 
multiplication of the signal sampled by the reference signal. The signal is then 
filtered. As an example, the DSP can carry out 16 million multiplications and 
additions per second on 24 bits. The time constant is adjustable from 10 µs to 30 ks, 
the input passband going from 1 mHz to 102 kHz. 
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8.2. Measurement chains 

8.2.1. Introduction 

 Previously we have seen the description of a number of measurement 
instruments which are currently in use. The user/instrument interface is reduced in 
many cases to its simplest expression; that is, to some buttons and a display. We can 
see why the microcomputer has become, over the years, an essential tool in a 
measurement chain. Linked to an acquisition card or driving an instrumentation bus, 
a computer gives its user numerous control and analysis capabilities. 
 
 In the field of instrumentation, we will look at the most up-to-date solutions 
available to the consumer. Figure 8.21 summarizes data acquisition systems. 
 

 
Figure 8.21. Measurement chains connected to a microcomputer 

 
 
 Depending on the type of measurement and the environment in which the system 
functions, the designer can choose between different options. There is no one 
solution to any given problem, since today there are so many possibilities from 
which to choose. The new communication interfaces available to the public are 
reflected in the field of instrumentation, and so offer new possibilities. The serial 
bus USB is one of the latest examples. 
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8.2.2. Communication buses PC/instruments 

 Communication buses connecting microcomputers and instruments fall mainly 
into two categories: parallel and serial buses. 

8.2.2.1. The parallel bus IEEE488 

 Parallel transmission is the most usual way to transfer data between two devices 
in binary form. The high number of lines that are required, as well as the connecting 
technology needed, make this option relatively expensive, and its usage is limited to 
shorter distances. 
 
 However, this kind of transmission is quite suitable for measurement banks or 
for distances of several meters. For these applications, the IEE488 bus, a standard 
instrumentation bus widely used today, was developed. 
 
 There are many devices (those previously mentioned) and almost 250 
manufacturers (among them Agilent TechnologiesTM, TektronicsTM, National 
InstrumentTM) that offer interfaces and programs for this bus. 
 
 At the international level, the IEEE488 bus has different names: 

– HPIB (Hewlett-Packard Interface Bus); 

– GPIB (General Purpose Interface Bus); 

– IEEE BUS, ASCII BUS or PLUS BUS. 

8.2.2.1.1. Specifications for the IEEE488 bus 

The IEEE488 norm completely defines the electrical features and mechanics of 
this bus, as well as the exchange protocols. 

 
This is a parallel bus with asynchronous communication (bit-serial parallel 

bytes), and is directed by a handshake system in which the slowest unit imposes its 
rhythm. It can achieve a maximum transmission speed of 1 Mbit/s. 

 
The ensemble can be linked by starfish or chain connections, or can use a 

combination of the two. In all cases, for reasons of transfer speed, it is imperative to 
respect the following criteria: 

– the distance between two devices must not exceed 2 m; 

– the total length of the bus must be below 20 m. 
 
We can connect a maximum of 15 devices, including the PC controller, and half 

of these devices must be powered on. 
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8.2.2.1.2. Architecture of the IEEE488 bus 

As shown in Figure 8.22, the instruments connected to the bus can have the 
following functions: 

– They can have control functions. This is usually the card inserted into the 
microcomputer. Although many controllers also can be used in this way, they cannot 
be used at the same time as controllers. The controller organizes exchanges, 
configures the ensemble of devices, and ensures proper sequencing of operations 
throughout the measurement chain. 

– They can have “talker” functions. The instrument transmits messages 
(continuation of binary words) to other instruments, most often towards the controller. 
This is true of all measurement instruments (multimeters, oscilloscopes, etc.). 

– They can have “listener” functions. The instrument receives messages from the 
controller or from other instruments. This occurs during the configuration of a 
measurement instrument, as well as with graphic tracers. 

 
An instrument is usually both transmitter and receptor, but the transmission 

direction is determined by the controller. Each device on the bus is identified by an 
address that is sent on the bus for each new transfer. 

NDAC

EOI

NRFD
DAV

REM
SQR
ATN
IFC

Controller
Transmitter
    and/or
  receptor

Receptor
  and/or
transmitter

Control line
of the bus

Handshake
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8 bit data bus
Microribbon 57 connector
(24 contracts: 16 lines + 8 lines
of mass over twisted pairs  

Figure 8.22. Architecture of the IEEE488 bus 

 The signals used for transmission are divided into three main levels, with 
subdivisions according to functions. 

–  there are eight data lines. Each is a bidirectional bus ensuring word, 
transmission, addresses and ASCII data; 
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–  there are three handshake lines: 

- NDAC (No Data ACcept): the receiving device indicates if it will accept or 
reject received data, 

- NRFD (Not Ready For Data): this indicates if the device is ready to receive 
data, 

- DAV (DAta Valid): the transmitter confirms if the data presented over the 
bus are valid; 

–  there are five control line for the bus: 

- ATN (ATtentioN), or the control mode of the bus, depending on the mode of 
the data, 

- IFC (InterFace Clear) indicating the interface is in inactive mode, 

- REN (Remote ENable) authorizes the instruments to function in remote 
mode, meaning they are piloted by the bus, 

- SRQ (Service ReQuest) warns the controller that an instrument needs its 
attention, 

- EOI (End Or Indentify) indicates the last byte in a message. 
 
Electrical signals have levels compatible with TTL standards and work in 

negative logic. 
 
SRQ, NRFD and NDAC lines only use open collectors. For other lines, we find 

both open collectors and three-state buffers that help us obtain transfer speeds above 
250 Ko/s. 

 

 

Figure 8.23. Electric linkage over the IEEE488 bus 
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8.2.2.2. Serial buses 

In this transmission mode, the data pass sequentially bit by bit over the same 
conductor, their rhythm set by a transmitter clock. The main advantage of this 
method is the limited number of wires connected to small connectors, meaning it 
takes up less space. Serial buses are mostly used for transmission distances of 
between several meters and around 1 km. 

8.2.2.2.1. Transmission modes 

A line is called simplex if the transfer is always in the same direction; it is a 
duplex line for bidirectional communications. In a linked series, there are two data 
transmission modes corresponding to the synchronicity of the receiver clock in 
relation to that of transmission. 

Asynchronous mode 

The ensemble of bits to be transmitted is organized as a frame of about 10 bits 
maximum. Each bit has a duration Tb in time. This frame contains the following 
features: 

– a low-level start bit; 

– a message containing N bits, usually a type ASCII code, with N having 
between 5 to 8 bits; 

– a control bit (Checksum) more or less equal to the transmitted message; 

– one or two high-level stop bits. 
 

t 

Transmission 

Reception 
(sampling) 

Start Stop message

P

Activation 

Tb

Rest 

 

Figure 8.24. Asynchronous serial transmission 

Signal recuperation begins when the detection at the beginning ends as 
transmission begins. Reading the transmitted bits is done by sampling each bit in the 
middle of each basic period Tb. This process requires a good knowledge of the 
format being used and of the transmission flow (1/Tb), expressed in bauds. 
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Controlling the message reception can be done by using specialized components 
of type UART (Universal Asynchronous Receiver Transmitter) or more often by a 
microcontroller. 

 
This very simple transmission mode is widely used. However, it does not allow 

for significant flows (lower than 19,200 bauds, with a corresponding Tb period of  
52 µs). In the majority of cases, the transmitter is faster than the receiver, usually 
because the receiver takes longer to analyze data. However, the reception buffer is 
generally very limited. This means the signal receiver used with the transmitter must 
use a handshake system. This system can be material (one example is the Data 

Terminal Ready (DTR) protocol) or it can consist of software (such as the Xon Xoff 
protocol). 

Synchronous mode 

Here, the transmitter and the receiver are synchronized, which means their 
transmission and reception clocks of identical frequencies and phases. We then can 
obtain very long and high speed message transmissions. 

 
The transmission clock can be transmitted to the message or can also be 

combined with it. In this case, we use transcoders that, in a logical manner, convert a 
signal and the data to be transmitted from a clock. One of the most widely used of 
these codes is the Manchester code. The transmitted signal comes from the XOR of 
both clock and initial data signals. In this system, transmitted data can appear on 
leading and trailing edges over all clock periods. It then becomes easy to produce a 
receiver clock by synchronizing clocks by edge detection. 

8.2.2.2.2. Electric interfaces 

Whatever occurs in transmission and receiving operations, electric signals are 
most often TTL compatible. This does not give good transmission conditions for 
distances longer than 1 meter. We then have to use electric interfaces that change 
and adapt the logical levels to be transmitted. 

 
We can speak of two structures for driver connections and line receivers: 

– Unbalanced structures, in which one conductor wire is used for transmitting a 
logical signal, as well as a ground conductor wire that can be shared when several 
transmission lines are necessary. 

– Balanced structures, a mode in which two conductor wires are needed to 
transmit a logical signal. As with the unbalanced structure, one ground conductor 
wire is used. The major advantage of this structure is that it is relatively insensitive 
to environmental noise. For this reason it is widely used in industrial applications. 
As well, it allows larger flows than unbalanced structures do. 
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At this time, there are four important standards used in serial transmission 
systems. There are drivers and receivers of connected lines corresponding to each 
norm. Figure 8.25 shows the type of wiring for each norm needed for the 
transmission of logical signals (apart from the TIA/EIA485 norm, which permits 
bidirectional transmission). 
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Figure 8.25. Standard transmission interfaces 

As we can see by looking at Table 8.1, an essential element of buses is the 
speed-distance product. Figure 8.26 summarizes this feature for different types of 
serial and parallel transmission. 
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 EIA/TIA232 EIA/TIA423 EIA/TIA422 EIA/TIA485 

Structure Asymmetrical Asymmetrical Symmetrical Symmetrical 

Maximum line 
length 

“Capa” line  
< 2,500 pF 

1,200 m 1,200 m 1,200 m 

Maximum flow 20 kbps 100 kbps 10 Mbps 10 Mbps 

Maximum number 
of transmitters 

1 1 1 32 

Maximum number 
of receivers 

1 10 10 32 

Table 8.1. Essential features of serial transmission systems 

The voltages we find are basically due to the line capacities used for carrying 
signals. 

 
 Bit/s speed 
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Figure 8.26. Speed/distance for different communication buses 

8.2.3. Internal acquisition cards 

These are electronic cards placed in extensions of computers dedicated to 
instrumentation. These are not only used for the acquisition of analog and/or logical 
signals but can also deliver control signals or command variables. 

 
Their use is relatively simple and their costs are moderate, considering their 

capabilities and performances. The major advantage of these cards is their good 
transfer speed for data in terms of measurement and control. This means we can use 
real-time analysis. 
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In general, the number of inputs/outputs is fairly limited and can pose some 
problems when a computer is not close to the process. 

8.2.3.1. Description of inputs/outputs and associated conditioning 

Depending on the process to be measured or controlled, it is vital to know: 

– the nature of the information (analog or digital variables and their electric 
characteristics); 

– the type of analysis (amplification, scaled, filtering, analog-to-digital 
conversion, memorization, etc.). 

 
Figure 8.27 gives us a glimpse of a “universal” acquisition card showing a 

number of inputs and outputs, as well as the electronics used for analysis. 
 

 
Figure 8.27. Universal acquisition card 

 
 
The main features of this kind of acquisition card are as follows. 

–  For analog input/output: 

- bipolar or unipolar mode, 

- analog-to-digital converter (ADC) of 8, 12, or 16 bits, 

- digital-to-analog converter (DAC) of 8, 10, or 14 bits, 
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- a maximum sampling frequency of 1 Go/s, 

- a programmable gain with ratios of 1, 2, 4, 8, and/or 1, 10, 100, or 1,000, 

- number of channels covered by using a multiplexer (MUX), 

- depth of maximum memory of about 100 Mo. 

– For logical input/output: 

- input/output levels TTL/CMOS, 

- all or nothing input with the use of a optocoupler, 

- input counting or period measurement. 
 
If signal conditioning is still hard to carry out, we can use external signal 

conditioning modules, such as the SCXI (Signal Conditioning eXtension for 

Instrumentation). 

8.2.3.2. Description of PC buses  

According to the acquisition system to be inserted, transfers between the 
instrumentation card and the microprocessor of the PC can be done another way. 
There is a method called polling. In polling, the microprocessor is completely 
dedicated to the task of acquisition, which limits overall analysis time. This method 
uses interruptions. These interrupt the microprocessor only for the acquisition and 
memorization of data, the rest of the time being devoted to control and applications. 
By far the best-performing technique is the Direct Memory Access (DMA). In this 
method, there are specific controllers that direct acquisitions and transfers towards 
memory without the microprocessor and PC being involved. This leads to better 
performances, since the PC deals solely with applications. 

 
The cards developed for instrumentation use the standard principles of computer 

extension cards.  

– The first is the Industry Standard Architecture (ISA) bus. Although it is older, 
it is still used for instrumentation purposes. This is an asynchronous 16 bit bus set to 
a rhythm of 8.33 MHz, with a transmission rhythm that does not exceed 1 to 2 Mo/s 
because of cycles and interruptions. However, there are cards in ISA format that 
allow for sampling of signals at frequencies of the order of several tens of Mech/s 
that must be integrated with memory. The transfer towards the PC is then done 
according to a lower rhythm and does not allow for a real-time analysis. 

– The second is the Peripheral Component Interconnect (PCI) bus, which was 
developed by Intel in 1993 and has been widely used since 1995. This is a 32 bit bus 
set at 33 MHz, allowing for a theoretical maximum flow of 132 Mo/s. This is higher 
than the flows allowed by the ISA bus, which explains its popularity for users 
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needing rapid acquisition cards. It also has “plug and play” features, eliminating the 
cordless plugs needed for cards of the ISA formats. Again, differing from the ISA 
system, the cards of PCI format integrate the DMA controller on the card itself, so 
the bus can have autonomous control; thus, these are called master cards. There are 
also “slave” cards that cannot integrate DMA functions in this way. 

8.2.4. External acquisition cards: the VXI system 

8.2.4.1. Functions of the VXI bus 

The VXI system, developed from the VME, is widely used in modular 
instrumentation. VXI is an abbreviation of “VMEbus eXtensions for 

Instrumentation”. The specifications of this bus, which is dedicated to 
instrumentation, detail the technical constraints for compatible VXI systems; we 
find certain requirements in terms of chassis, signals used in load pockets, energy 
feed and modules that can be connected. 

 
This system was first developed in 1987 by five manufacturers of electronic 

devices wishing to create a new standard for the industry. Their goal was to create 
an instrumentation system with the advantages of the VME bus and increase the 
capacities of the IEEE488 bus. They did this by increasing rapid activation between 
devices. 

8.2.4.2. Description of the VXI bus 

The major advantage of the VXI is that it shares much of the format of the VME 
bus. This means it can be easily used in industrial applications. The two A and B 
card formats of the VME bus are kept, as well as the P1 connector and the center 
row of the P2 connector as shown in Figure 8.28. In order to offer the largest 
possible range of equipment, the VXI system allows for the addition of higher C and 
D formats, as well as a P3 connector that is specific to the VXI system. 

 
Specifications for the VXI bus completely describe the P2 and P3 connectors. 

The P2 bus is made of several elements. It has a VME bus, a 10 MHz clock, 
activation lines with ECL and TTL logical levels, an analog summation line, a 
module identification line and a local bus. The P3 connector has supplementary lines 
for a local bus structure, a clock line set at 100 MHz, and high performance 
activation lines in ECL logic. 

 
This design gives activation signals above 50 MHz and local data transfers of 

100 Mb/s. 
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D
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VMEVXI

P1 VME Computer bus
16 bit transfer, 16 Mo addressing
Multi-master Arbitration bus
Priority Interrupt bus, Utilities bus
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VME 32 bit data & 4Go addressing
P2 Outer rows adds:
10 MHz Clock bus, TTL&ECL Trigger
12 Pin Local bus, Analog Sum bus
Module Identification bus
Power Distribution bus
P3 adds:
100 MHz Clock bus, ECL Star Bus
ECL Trigger bus, 24 pin local
Power Distribution bus

    

Figure 8.28. Connector specifications 

A system developed with a VXI bus foundation can support up to 256 
instruments, of which one or several are control and arbitration modules. These 
modules are usually found in the slot0 of the VXI chassis. Figure 8.29 shows the 
standard VXI chassis with 13 modules. In the basket of the chassis are P1, P2 and P3 
connectors. The chassis integrates a feed that supplies different voltages offered in 
VXI specifications (+5 V, +12 V, +24 V, -2 V, -5.2 V, -12 V, -24 V) with different 
available powers. 

 
The VXI system is very complete and offers a standard of performance for the 

field of instrumentation. However, it is still relatively expensive and therefore is 
found only in top-of-the-line acquisition and automatic test systems. 

 

Figure 8.29. VXI chassis 
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Chapter 9  

Elaboration of Models for the Interaction 
Between the Sensor and its Environment 

9.1. Modeling a sensor’s interactions with its environment 

 The focus of this chapter will be to describe the relation between a sensor’s 
output variables and the physical variable applied to its input, called the measurand. 
 
 This relation can also take into account the role played by other variables, a 
priori external, that can cause variations in the output signal (some examples are the 
sensor’s feed tension and the temperature). 

9.1.1. Physical description of the model 

 The best approach is first to analyze what a sensor does and then to understand 
and completely describe the physical processes of transduction. We then convert 
these into mathematical forms by using physical laws. The result is an equation that 
links output variables to input variables (creating a knowledge model). 
 
 This is a difficult task, requiring a complete understanding of all the phenomena 
involved. In general, this process is long, especially for complex phenomena, but 
this approach does have the advantage of being easily transposable to other, similar 
systems. 

                              
Chapter written by Michel LECOLLINET. 
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9.1.2. Phenomenological approach 

 This is an experimental method that consists of collecting data. The values of the 
output signals are compared to the values taken by the input variables under a set of 
given conditions. The study of the structure of these data helps us collect results in 
the form of mathematical relations (dependency models) that explain the 
observations. 
 
 This experimental approach is improved by well-organized experiments, with the 
goal of reducing the number of such experiments in order to keep a relevant 
meaning. This approach does have the disadvantage of not being easily transposable 
to other systems. 

9.1.3. Adjustment 

Sensor output

Model output

Deviation

Sensor

Parametric
model

– +Adjustment
algorithm

 
 

Figure 9.1. Data adjustment between a process and its model 
 
 
 In both cases, the method uses the following steps (see Figure 9.1): 

– using either physical laws or a close observation of data, we establish a model 
(equation) that has a certain number of unknown parameters; 

– by setting an optimization criterion (the least squares, for example), we look 
for parameter values that “at least” adjust the observed deviations between the 
sensor’s output signal and the output signal of the model; 

– the study of deviations between the data and the adjusted variables allows us, 
for the first time, to verify the adequacy of the model and then, a second time, to 
estimate the limits of this adequacy in terms of variability. 
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9.2. Researching the parameters of a given model 

9.2.1. The least squares method  

 Let us assume Y, X1, X2 are the variables represented by the output signal of a 
sensor according to the input variables (signal, limiting quantity and so on). After a 
physical analysis, we know that there is a mathematical relation between these 
quantities, written as: 

),...,,,...,( 1021 kXXfY θθθ=   [9.1] 

where し0, し1, …, しk represent the parameter relation. 
 
 We can also observe the measurements carried out with this sensor and make the 
hypothesis that there is an expression such as the one in equation [9.1]. 
 
 In both cases, the problem consists, apart from observations, of calculating the 
values of the parameter model. For example, the relation between the input signal X 
and the output signal Y can be a polynomial form of degree k: 

k
k XXXY θθθθ ++++= ...2

210      [9.2] 

where we estimate the k+1 parameters from the n pairs of observations (x1, y1), (x2, 
y2), …, (xn, yn). 
 
 If the number of pairs is equal to the number of parameters to be estimated, we 
have a linear parameter system to be estimated, with n equations for n unknowns. If 
the number of point pairs is lower than the number of parameters to be estimated, 
the values of some of these parameters can be chosen arbitrarily to resolve the 
problem. 
 
 The situation discussed here is when the number of points is strictly higher than 
the number of parameters to be assessed. Under these conditions, the n equations 
representing the n measurements cannot be resolved simultaneously. We then have 
to analyze the system: 

11
2
121101 .... exxxy k

k +++++= θθθθ   [9.3] 

22
2
222102 .... exxxy k

k +++++= θθθθ   [9.4] 

i
k
ikiii exxxy +++++= θθθθ ....2

210   [9.5] 
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n
k
nknnn exxxy +++++= θθθθ ....2

210   [9.6] 

where the quantities e1,e2,….,en represent the deviations between the supposed or 
theoretical model and the effected measurements. The value of each of these 
deviations varies according to the optimization criterion adapted to analyze this 
problem. 
 
 The criterion used here will be the least squares method of Gauss, who described 
it as follows: “The estimator of the parameters し0, し1,…,しk are the specific values that 
reduce to minimum the sum of the squared deviations between the experimental 
observations and the corresponding values predicted by the adopted theoretic 
model.” 
 

 This means we must form the quantity 

∑
=

=
n

i

ikà eQ

1

2
1 ),...,,( θθθ   [9.7] 

which is a function of し0, し1, …, しk and find the values of these parameters that 
minimize this function. 

9.2.2. Application to estimate a central value 

 An example of a simple application of this principle may be provided by looking 
for the estimator of the central value parameter of a series of measurements. 
 
 Let x1, x2, …, xn be the results obtained during n independent repetitions of the 
measurement of the same variable under the same experimental conditions. We 
make the hypothesis that these results are n specific numerical values of an expected 
variable µ that we want to estimate (the expectation represents the ideal value that 
the variable has under ideal conditions, that is, without random disturbance). The 
obtaining conditions being identical, we can formulate the hypothesis that these 
results have the same variance j2. The n measurement results are translated by the 
system of the following n equations: 

11 ex += µ    [9.8] 

22 ex += µ    [9.9] 

ii ex += µ    [9.10] 
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nn ex += µ    [9.11] 

 Applying the Gaussian criterion leads to forming the quantity: 

2

11

2 )()( µµ −== ∑∑
==

n

i

i

n

i

i xeQ    [9.12] 

 The graph representing the variation of Q(µ) according to µ is a parabola. (Figure 
9.2). 
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Figure 9.2. Variation of the sum of squared deviations according to parameter 

 
 
 The minimum of this function is attained for the value µ̂  of µ , which is the 
solution of the equation obtained by writing that: 

0=
µd

dQ
   [9.13] 

which immediately gives us: 

n

x

n

i

i∑
== 1µ̂   [9.14] 

 In other terms, the estimator of the central value of the measurement results, in 
the sense of the least squares, is simply the average arithmetic x  of the values 
obtained. We know that this estimator is not biased; that is, its expectation is equal 
to µ. The variance of this estimator is then: 
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n
xVV

2

)()ˆ(
σµ ==    [9.15] 

9.2.3. Introduction to weighting 

 Let us look again at the example of finding the estimator of the central value 
parameter of a measurement series. 
 
 Let x1, x2, …, xn be the results obtained during n independent repetitions of the 
measurement of the same value. We now make the hypothesis that certain 
experimental conditions have varied during the measurements, so that the variance 
associated with each result varies from one measurement to another. This leads to: 

2)( iixV σ=    [9.16] 

 However, the expectation of each result is the same; thus, we let µ be the 
expectation of this variable. The n measurement results are expressed by the same 
system as before: 

11 ex += µ   [9.17] 

22 ex += µ   [9.18] 

ii ex += µ   [9.19] 

nn ex += µ   [9.20] 

 To take in consideration the fact that the measurements do not have the same 
variance, we weigh each square of the deviance with a weighting (or weight) 
coefficient gi. We then look at the expression: 

2

11

2
. )()( µµ −== ∑∑

==

n

i

ii

n

i

ii xgegQ    [9.21] 

 The minimum of this function is attained for the value pµ̂ of µ, which is the 
solution of the equation obtained by writing that: 

0=
µd

dQ
  [9.22] 
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which gives us: 
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n
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in

i

i
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∑
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= ==
1

1

1µ̂    [9.23] 

where wi is a normed weight such that 1
1

=∑
=

n

i

iw . [9.24] 

 
 The normalization condition imposed on wi automatically means that pµ̂  is an 
unbiased estimator of µ. We can also try to determine the weights that minimize the 
variance of pµ̂ . The variance of the weighted estimator is written: 

22)ˆ( iip wV σ=∑µ    [9.25] 

 We can try to determine the form of the weights that bring about the smallest 
variance for ûp. Looking for the minimum of this function, taking into account the 
constraint on the sum of the weights, gives us: 

2

1

i

ig
σ

=    [9.26] 

and 
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σ

σ
  [9.27] 

 In other words, the weight obtained by imposing the minimum variance 
condition of the estimator is inversely proportional to the result of the variance being 
considered. Under these conditions, the expression of the variance of pµ̂  is written 
as: 

∑
=

=
n
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pV

1
2
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σ

µ    [9.28] 
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9.3. Determining regression line coefficients 

 We measure n pairs of joined values xi, yi that, in a plan brought to an axial 
system (Ox, Oy), are represented by n points. A model explaining the form of the 
scatter plot has a linear tendency that can be understood by two possible models: 

– the proportional model Y = し.X that depends on one parameter し; 

– the affine model Y = し0 + し1.X that make use of two parameters. 
 
 With a sensor, the parameter factor of X is the sensitivity of the sensor, with the 
scale gap being a constant parameter that is either optional when the instrument has 
an expanded scale or is required in the case of an inopportune zero gap. We discuss 
the two situations by presenting the following hypotheses: 

– H1, with values xi that are perfectly known (E(xi) = xi and V(xi ) = 0); 

– H2, with values of Y made without systematic errors; 

– H3, with the variable Y measured with a constant variance, so V(yi) = j2 

 constant; 

– H4, with independent measurements of Y, that is cov(yi, yj) = 0 when i ≠ j. 

9.3.1. A proportional relation 

 The system representing n measured points is written: 

111 . exy +=θ   [9.29] 

222 . exy +=θ    [9.30] 

iii exy += .θ    [9.31] 

nnn exy += .θ    [9.32] 

 The terms e1, e2, …, en express the gaps between the observed values of Y and 
the values predicted by the chosen model. Hypothesis H2 immediately shows that 
each of these gaps is, on average, zero. So E(ei) = 0 whatever the index i of the 
measurement. 
 
 By applying the Gaussian criterion, we form the quantity: 

2
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2 ).()( i
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i xxeQ θθ −== ∑∑
==

   [9.33] 
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 The graph representing the variation of Q(し) according to し is also a parabola. 
The minimum of this function is reached for the value θ̂  of し, which is the solution 
of the equation obtained by writing: 

0=
θd

dQ
   [9.34] 

which gives the normal equation: 
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whose solution is: 
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1θ̂    [9.36] 

 This estimator is expressed according to random variables. It is therefore a 
random quantity. Building on the hypotheses previously formulated, this unbiased 
estimator, that is, E(θ̂ ) = θ . 
 
 In addition, the variance calculation is considerably simplified by hypotheses H3 
and H4. Its expression is given by: 
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)ˆ(
σθ   [9.37] 

 For each measured point of the abscissa xi, we call the residuals ri the gap 
existing between the measured value yi and Y of the corresponding value ii xy .ˆˆ θ=  
of the model: 

iiiii xyyyr .ˆˆ θ−=−=    [9.38] 

If we look at the normal equation, we see that 0.
1

=∑
=

i

n

i

i xr   [9.39] 
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  This property allows us, a posteriori, to verify the validity of the numerical 
value of θ̂ . 
 
 As well, the residuals help us obtain an unbiased estimator 2σ̂ of the variance, 
with which the measurements of Y are carried out, providing the chosen model 
allows it: 

1
ˆ 1
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=
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n
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n

i

i

σ   [9.40] 

 Using the least squares line equation helps us calculate the interposed value ┫ of 
Y that corresponds to an undetermined abscissa of the field validity of the model: 

xy .ˆˆ θ=    [9.41] 

 The variance of this quantity is written: 
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σθ    [9.42] 

 It is possible to estimate this by replacing the variance j2 with its estimator. We 
can see that the variance of ┫ is in origin zero (this is normal, the point being 
absolutely fixed by the chosen model), and that it increases as the square of x for all 
other abscissas. 

9.3.2. Affine relations 

 We will look at the previous schema again by adapting it to the case of an affine 
model in order to explain the measurements. The system representing the measured 
n points is written: 

1111 . exy o ++= θθ    [9.43] 

2212 . exy o ++= θθ    [9.44] 
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iioi exy ++= .1θθ    [9.45] 

nnon exy ++= .1θθ    [9.46] 

 The terms e1, e2, …, en express the deviations between the observed values of Y 
and the values predicted by the chosen model. Hypothesis H2 leads us immediately 
to the conclusion that each of the gaps are on average zero, so E(ei) = 0 whatever the 
index i of the measurement. By applying the Gaussian criterion, we get the quantity: 
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  [9.47] 

 In a three-dimensional space brought to the axes 0 し0, 0 し1 and 0 Q, the surface 
represented by the previous equation is an elliptic paraboloid that is intersected by a 
vertical plane. The intersection is a parabola, while the intersection by a horizontal 
plane (when it exists) is an ellipsis. As a general rule, the surface is not of a 
revolution, which means the axes of the ellipsis are not parallel to the axes of the 
coordinates. 
 
 Even though no relation exists between し0 and し1 (that is, they can vary 
independently from one another), the minimum value of this surface is reached for 
the value 0θ̂  and し0 and the value 1̂θ  of し1 that are the solutions of the usual 
equation systems obtained when we write: 
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which gives us the normal equation systems: 
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whose solution is written: 
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 For each of the solutions, the first form, directly deduced from normal equations, 
is the fastest for carrying out calculations. This is because the different sums that are 
part of it are calculated as input data arrives. However, the second form, which 
requires a priori calculation of the average of the values of X and Y, interposes the 
differences into these averages and is less sensitive to rounding errors of the 
calculation systems. 
 
 These estimators are expressed according to the random variables. These are 
therefore random quantities. Taking into account hypothesis H2, these are unbiased 
estimators, which means that E ( 0θ̂ ) = 0θ  and that E( 1θ̂ ) = 1θ . 
 
 Despite hypotheses H3 and H4, calculating the variance of each of these 
estimators requires several precautions regarding the basic relations to be used. In 
particular, the second form given for each estimator simplifies the calculations. We 
get the following expressions: 
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 Also, we see that the obtained estimators are usually correlated, so their 
covariance expression is as follows: 
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 Later we will give an explanation for this correlation and why the covariance is 
zero when the arithmetic mean of the values of X are zero. 
 
 For each measured point, we call residuals ri, the gap existing between the value 
measured yi of Y and the corresponding value ii xy .ˆˆˆ 10 θθ +=  of the model: 

iiiii xyyyr .ˆˆˆ 10 θθ −−=−=   [9.57] 

 The first of the normal equations shows that: 
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 This property shows that the residuals are positive for some, negative for others, 
and that overall, the sum cancels itself out: the line of the least squares goes from 
“the middle” of the scatter of measured points and can be either above or below the 
line. 
 
 The second of the normal equations give us: 
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i xr   [9.59] 

 A posteriori, these properties make it possible to verify the validity of the 
numerical value of the estimators. 
 
 The residuals also help to obtain an unbiased estimator 2σ̂  of the variance. The 
residuals make up the measurements of Y, on condition that the chosen model is 
pertinent: 
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We see that the denominator, corresponding to the number of degrees of 
flexibilities associated with this estimator, is formed by the number of measured 
points, and diminished by the number of estimated parameters (here two, one for the 
gradient, the other for the ordinate of origin). 
 
 The first of the normal equations shows that the point whose coordinates are: 
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belongs to the least squares line. This point is linked to the measurements made by 
the system and not to the adjusted line. 
 
 In other terms, the relation: 

xy .ˆˆ
10 θθ +=   [9.62] 

is always satisfied. 
 
 This has two consequences. The first is that we can now calculate one of the 
estimators (in practice, 0θ̂ ) from knowing the other one (in practice, 1θ̂ ), and the 
values of x  and y . The second is that it qualitatively explains the correlation 
between 0θ̂ and 1θ̂ . Since the line must go through the point of the coordinates x , 
y  being fixed for a data set, any attempt to modify the gradient, for example, can 

only be done by rotation around this point. 
 
 Let us suppose that the average of X is strictly positive. Under these conditions, 
the covariance between 0θ̂  and 1θ̂  is negative. We then see graphically that 
augmenting the gradient means a diminishment of the ordinate source. This explains 
the covariance sign. A completely similar conclusion can be obtained when the 
average of X is negative. In the specific case when the average of X is zero, this 
particular point is on the ordinates axis. The rotation of the line does not mean 
source ordinate modification, and the covariance is zero. 
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 Using the least squares line equation allows us to calculate the interposed value ┫ 
of Y corresponding to an indeterminate abscissa x of the validity domain of the 
model: 

xy .ˆˆˆ 10 θθ +=   [9.63] 

 The variance of this quantity is written as: 

)ˆ,ˆcov(2)ˆ(.)ˆ()ˆ( 101
2

0 θθθθ xVxVyV ++=   [9.64] 

 By replacing the variances of the estimators and the covariance between the 
estimators with their respective expressions, we get the forms: 
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 We see that the variance of ┫ varies according to the value of x (see Figure 9.3). 
It presents a minimum of xx = , where its value is: 

[ ]
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yV xx

2

)ˆ(
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 This is a logical result, since yy =ˆ  
 
 We also see that for x = 0, we also find: 

[ ] )ˆ()ˆ( 0θVyV ox ==   [9.67] 

 The estimated ordinate variance of the line of least squares increases according 
to the lengthening function at x . 
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 All these expressions can be evaluated by replacing the variance j2 with its 
estimator, which has been obtained from the residual sum of squares. 
 

0 5 10 15

 
 

Figure 9.3. Approximate gap envelope around the least squares line 

 

 
 We can also reverse the least squares line method by calculating the abscissa 
x̂ that corresponds to an ordinate ┫: 
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 Applying the variance composition law to this expression leads to the following 
conclusion: 
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 There is a direct correspondence between the gap type of the abscissa and the 
gap type of the ordinate throughout the gradient of the least squares line. 
 
 All these expressions can be estimated by replacing the variance j2 by its 
estimator. This is shown in equation [9.60]. 
 
 We should remember that the least squares criterion does not, when used alone, 
allow us to test the validity of the chosen linear model. 
 
 An examination of the graph representing the distribution of residuals according 
to the values of X allows us to make a zoom around the line. This shows that one or 
several points are abnormally far from the model, a concavity or inflection that can 

Y
 

X 
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be explained by a too low polynomial degree, or in the opposite situation, by a 
satisfactory distribution (random) of the points (Figure 9.4). 
 

 
Figure 9.4. Distribution of residuals according to the model being used 

 
 
 We call the coefficient signification R the square of the correlation coefficient 
between the values of X and the values of Y, so: 
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 This coefficient can also be expressed in one of the following forms: 
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 We can easily see that if the experimental points are perfectly aligned, that is, if 
the dispersion of the values of Y are completely explained by the chosen theoretical 
model, the residuals are zero, so R = 1. However, if the values of Y are independent 
of the values of X, that is, if the gradient of the model is zero, then R = 0. Aside 
from these two extreme cases (which are rarely found in practice), we must be 
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careful to draw conclusions solely from the value of R, since different forms of point 
scatters can lead to the same value of the correlation coefficient. 

9.3.3. Weighting application 

9.3.3.1. Calculation hypotheses 

 We will look again at adjustment problems with linear models by modifying 
hypothesis H3 only. Now we are in a situation where the measurement uncertainty 
of the variable Y can be different from one value to another, so that: 

2)( iiyV σ=   [9.72] 

 This is the case when measurements are made with a type of constant relative 
gap ji/yi. In these conditions, we use a weighting coefficient that converts the more 
or less high proximity of the passage of the line near to the point according to the 
uncertainty function that is being affected. 

9.3.3.2. Weighting and proportional relations 

 The quantity we want to minimize is the sum of the squared gaps, each gap 
having a weight gi: 
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 The minimum of this function is reached for the value pθ̂  of し, which is the 
solution of the equation obtained by writing that: 

0=
θd

dQ
  [9.74] 

which gives the normal equation: 
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whose solution is: 
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 Taking into account the hypotheses that have already been formulated, the 
estimator is always unbiased, which means that E( pθ̂ ) = θ . 
 
 In addition, the variance of pθ̂  is given by the general expression: 
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 This is the function of values that we can give to the weighting coefficients. 
 
 We can find the weighting values that allow us to obtain a minimal value for 

)ˆ( pV θ , that is, for the solutions obtained by writing: 

0
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V θ
  [9.78] 

for all the values of j between 1 and n. 
 
 We come to the condition: 

222
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2
11 .......... nnjj gggg σσσσ ====   [9.79] 

 This means that we find the fact that the weight that minimizes the variance is 
inversely proportional to the variance of the quantity it weights: 

2
1

i
ig

σ
=   [9.80] 

 In these conditions, the gradient estimator and its variance respectively take the 
following expressions: 
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 In the specific case of a variance being identical for each measurement, these 
expressions result in the same relations as those shown for the non-weighted case. 
 
 For the measurement point of an abscissa xi, the estimated ordinate is ii xy .ˆˆ θ= , 
and the residual is worth: 

iiiii xyyyr .ˆˆ θ−=−=   [9.83] 

The normal equation shows that: 
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 A posteriori, this property allows us to verify the validity of the numerical value 
of pθ̂ . 
 
 Since the idea of weighting requires knowledge of weights, and therefore of 
variances linked to each result, estimating a variance from the sum of squared 
residuals is not relevant to this discussion. 

9.3.3.3. Weighting and affine relations 

 Here we again look at the previous schema adapted to a situation of choosing an 
affine model to explain measurements. The quantity to be minimized is the sum of 
the squared gaps weighted by the weight gi, so 
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 The minimum of this function is attained for the value p0θ̂ of し0 and the value 

p1θ̂  of し1, solutions of the equation obtained by writing: 
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which gives us the normal equation system: 
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for which the solution is written: 
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 Taking into account the previously formulated hypotheses, these estimators are 
unbiased, that is: 

E( p0θ̂ ) = 0θ  [9.92] 

E( p1θ̂ ) = 1θ  [9.93] 
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 Whatever the weighting coefficients being used, this results in the 
“autonormalization” of these. 

 By dividing the two members of the first normal equation by ∑
=

n

i

ig

1

, we get: 
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by positing: 
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which are respectively the weighted average of the values of X and Y. The point of 
the coordinates px , py  belongs to the least squares line. Consequently, it is possible 
to obtain a new set of relations that give estimators by using a new axial system, 
parallel to the initial axes but centered on the point of coordinates px , py . Here, the 
line intersects the origin and we find a proportional form, with the same leading 
coefficient, so: 
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 The value of p0θ̂  is expressed by: 

pppp xy .ˆˆ
10 θθ −=  [9.97] 

 As was the case before, this second set of solutions, even though requiring a 
prior calculation of the weighted averages of X and Y, produce values that are less 
sensitive to calculation errors. This is because the expressions only relate to gap 
values measured in relation to these averages. 
 
 These estimators are expressed according to random variables. This means they 
are random quantities. Taking into consideration hypothesis H2, these are unbiased 
estimators, so that E( 0θ̂ ) = 0θ  and E( 1θ̂ ) = 1θ . 
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 The following expressions give the variances of each estimator, as well as their 
covariances. 
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and 

( )∑∑ ∑∑

∑

== ==

=

−

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

=
n

i

pii

p

n

i

n

i

iiii

n

i

i

n

i

ii

xxg

x

xgxgg

xg

1

2

1

2

1

2

1

1
10 )ˆ,ˆcov( θθ   [9.100] 

 The variance values of the obtained estimators are functions of the values 
attributed to weighting coefficients. 
 
 As before, we can show that the weights that minimize these quantities are 
inversely proportional to the gap variance, so: 
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 Using the least squares line equation allows us to calculate the interposed value ┫ 
of Y corresponding to an indeterminate abscissa x of the validity field of the model: 

xy pp .ˆˆˆ 10 θθ +=   [9.102] 

 The variance of this quantity is written: 
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 By replacing the variance of the estimators and the covariance between the 
estimators with their respective expressions, we get the form: 
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9.3.4. The least measured-squares line: when two measured variables contain 

uncertainties  

 The previous sections do not discuss the problem of determining line coefficients 
when there are uncertainties only for variables represented as ordinates. 
 
 Practically, the quantities represented as X and Y are both likely to include 
uncertainties. We can refer back to the previous examples if we wish to show that 
the uncertainty of the variable represented on the axis of the abscissas, projected as 
an uncertainty on the axis of the ordinates, is small compared to the uncertainty of Y 
itself; that is: 

)()( 2
1 ii xVyV θ>>   [9.105] 

 If this inequality is not resolved, we can resolve the problem by using the method 
developed by Williamson. 
 
 This is part of the framework of the general hypotheses that follow. 
 
 The measured variables X and Y are connected by a formal relation: 

xy 10 θθ +=   [9.106] 

 We measure n pairs of values (xi, yi), each of these measurements being seen as a 
random variable, with the following variances: 

ii pxV =)(   [9.107] 

ii qyV =)(   [9.108] 
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 It is not possible to bring in covariance a priori, since the variables X and Y are 
results of different experimental processes. 
 
 The quantity to be minimized is the sum of the squared weighted distances 
between each experimental point Mi of the coordinates (xi, yi) and the corresponding 
point M’i of coordinates (Xi, Yi) belonging to the theoretic equation line Y = し0 + し1X, 
so: 
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or again: 
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which is also written: 
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by proposing: 

iii xyv 10 θθ −−=   [9.112] 

 We again mark the variances of xi and yi as the denominators of this expression, 
which weighted each square of the gap, as we have previously seen. 
 
 During a preliminary phase, it is necessary to determine the values Xi and Yi of 
the point of the line, then make the adjustments in relation to these. 
 
 Williamson handles the problem by minimizing each quantity written inside the 
bracket by proposing that: 
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 We get: 

2

1

. i

n

i

i vgQ ∑
=

=   [9.114] 

by proposing: 

ii

i
pq

g
2

1

1

θ+
=   [9.115] 

 We see that the proposed method means considering the squared gap, measured 
parallel to the axis of the ordinates, between the experimental point and the 
theoretical line. This quantity is modified by a weighted coefficient projected onto 
the axis of the ordinates of the variance of yi, and then by the component projected 
onto the axis of the ordinates of the variance of xi. This means that we come back to 
the standard situation analyzed above: the calculation of vi as well as of gi requires 
knowledge of the theoretical line that we are trying to measure. We thus 
immediately know that resolving the problem requires going through an iterative 
process or phase. 
 
 The first phase, in which we establish the estimators of し0 and of し1, is done in 
the standard way by finding the solution of the equations system obtained by writing 
that: 
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  [9.116] 
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  [9.117] 

 Taking into account the relations existing between vi and gi on the one hand, and 
between し0 and し1 on the other, we get: 

1
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∂
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iv
  [9.118] 
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  [9.119] 
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  [9.120] 

 We also get the system of normal equations: 

0
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ivg   [9.121] 
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i xpvgvg θ   [9.122] 

 By replacing gi and vi with their expressions in the first of the normal equations, 
and by proposing: 
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we end up with the formula: 

ππθθ yx =+ .ˆˆ
10   [9.124] 

 This easily shows that the estimated line intersects with the point of the 
coordinates πx , πy , a result we have already seen with more restrictive hypotheses. 
 
 As for the second normal equation, with the following: 

πxxx ii −=′   [9.125] 

πyyy ii −=′   [9.126] 

and: 

iiiiiii ypgqgxz ′−′= 1θ̂   [9.127] 
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 This can be expressed as: 

0).ˆ( 1
1

=′′−
=
∑ iii

n
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i xyzg θ   [9.128] 

 From this we immediately get the gradient estimator: 
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1
1θ̂   [9.129] 

 This format is less satisfactory than it seems, since gi and also zi are functions of 

1θ̂  and therefore of the solution! 
 
 Practically, we calculate by iteration from an initial value of し1 written as 10θ̂  
(obtained from a graphic estimation or by means of a brief preliminary calculation). 
From this value we calculate the following quantities: 
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π   [9.132] 

πxxx ii 00 −=′   [9.133] 

πyyy ii 00 −=′   [9.134] 
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and: 

iiiiiii ypgqgxz ′−′= 0100000 .ˆ.... θ   [9.135] 

 We get a new value of the gradient estimator: 
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which helps us calculate new values for ig , πx , πy , ix′ , iy ′ , iz  and thus for 1θ̂ , etc., 
continuing up to the convergence towards the gradient value. 
 
 As with all iterative problems, it is important to start from a value close to the 
solution, both to minimize the number of iterations and to guarantee the 
convergence towards the desired value, even though here this last point is not an 
issue. 
 
 Once we have 1θ̂ , we get 0θ̂  from the relation: 

ππ θθ xy .ˆˆ
10 −=   [9.137] 

 This technique also helps us obtain the variances of the estimators: 
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expressions in which 
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and: 
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π   [9.141] 

 All these relations restore values already seen when uncertainties only affect the 
variable Y, whether in a constant way as a variable according to the measurement 
index. 

9.4. Example of a polynomial relation  

 Now we come to a situation where the adjustment model is written in the form of 
a polynomial development of X. We get: 

)(.)(.)(.)(.)( 221100 XfXfXfXfXfY kkθθθθ +++==  [9.142] 

0 1 2( ), ( ), ( ),  ..., ( )k f X f X f X f X  being polynomials of X, of 0, 1, 2,…, k 
respectively. 
 
 We try to find the estimators of the parameters し0, し1, し2,…,しk of the model from 
the measurement of n pairs of values (xi , yi) when n > k + 1. 
 
 The ordinate form: 

k
k XXXXfY ...)( 2

210 θθθθ +++==   [9.143] 

is a specific example of this model. 

9.4.1. A simple example 

 This situation will be discussed in the following hypotheses, already formulated 
for the line: 

– H1: the values are perfectly known (E(xi) = xi and V(xi) = 0); 

– H2: the measurements of Y are obtained without systematic errors; 

– H3: the variable Y has the same variance whatever its value, so V(yi) = j2 

constant; 

– H4: the measurements of Y are independent, that is, cov(yi , yj) = 0 when i ≠ j. 
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 The measurement ensemble is expressed by the system of n equations: 

111122111100 )(.)(.)(.)(. yexfxfxfxf kk =++++ θθθθ   [9.144] 

222222211200 )(.)(.)(.)(. yexfxfxfxf kk =++++ θθθθ   [9.145] 

nnnkknnn yexfxfxfxf =++++ )(.)(.)(.)(. 221100 θθθθ   [9.146] 

 We can obtain a more compact expression by using the matrix formalism. By 
introducing the following vectors: 
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the above system is written: 

YeA =+θ.   [9.148] 

 The matrix: 
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is sometimes called the conditioning matrix of the system. 
 
 The sum of the squared gaps becomes: 

.ee
T==∑

=

n

i

ieQ

1

2   [9.150] 

where eT represents the transposed vector e. 
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 This sum is minimum when the derivations of Q in relation to each of the model 
parameters are simultaneously zero. This leads us to the system of normal equations: 

)()()(ˆ....)()(ˆ)(ˆ

1
0

1
01

1
01

1

2
00 ∑∑∑∑

====
=+++

n

i

iiik

n

i

iki

n

i

i

n

i

i xfyxfxfxfxfxf θθθ  [9.151] 

2
0 0 1 1 1 1 1

1 1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ....      
n n n n

i i i k i k i i i

i i i i

f x f x f x f x f x y f xθ θ θ
= = = =

+ + + =∑ ∑ ∑ ∑ [9.152] 

2
0 0 1 1

1 1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ....   
n n n n

i k i i k i k k i i k i

i i i i

f x f x f x f x f x y f xθ θ θ
= = = =

+ + + =∑ ∑ ∑ ∑ [9.153] 

 In this system, kθθθ ˆ...,,ˆ,ˆ
10 , solutions of this system, are the estimators of the 

parameters kθθθ ...,,, 10  in the sense of the least squares. 
 
 By writing the vector of the estimator: 
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the system of normal equations takes the form: 

.yA.A.A TT =θ̂   [9.155] 

 From this we get the solution to the problem: 

( ) .yA.AA T-1T=θ̂   [9.156] 

 We see that the matrix: 
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is a squared symmetrical matrix with lines and columns that are equal to the number 
of estimated parameters. 
 
 We can calculate the matrix given the variances and the covariances of the 
obtained estimators. 
 
 We get the following general result: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)ˆ(....)ˆ,ˆcov()ˆ,ˆcov(

................

)ˆ,ˆcov(....)ˆ()ˆ,ˆcov(

)ˆ,ˆcov(....)ˆ,ˆcov()ˆ(

)ˆ

10

1110

0100

kkk

k

k

V

V

V

V(

θθθθθ

θθθθθ
θθθθθ

θ  

( ) ( )-1TT-1T .AA.V(y).A.A.AA=   [9.158] 

where V(y) is the variances-covariances matrix of y. 
 
 With hypotheses H3 and H4, this takes the form of: 
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and the variances-covariances matrix of the estimators takes the simpler form: 

( )-1.AAV T2ˆ σ)θ( =   [9.160] 

 Near to the factor j2, this is simply the inverse matrix of AT · A. Even though it is 
symmetrical, this matrix generally is expressed in non-zero terms outside the 
diagonal principle. This becomes a general rule: the obtained estimators are 
correlated. 
 
 As needed, it is always possible to obtain an estimator of j2 from calculating the 
residuals r by using the relation: 
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where p is the number of estimated parameters. When a polynomial form is 
complete, p = n + 1. 
 
 We can use the coefficients obtained to calculate the value ┫ of the polynomial 
corresponding to a given value of x, so: 

)(.ˆ)(.ˆ)(.ˆ)(.ˆˆ 221100 XfXfXfXfy kkθθθθ +++=   [9.162] 

 If we introduce the vector: 
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we also get: 

θ̂.ˆ T
x=y   [9.164] 

from which we have the variance of ┫: 

( ) .x.AA.x).x.V(xyV
-1TT

.
T2σθ == ˆ)ˆ(   [9.165] 

 This solution done with a least squares matrix contains the results already 
obtained in the example of the line. 

9.4.2. An example using weighting 

 Here, we look once more at a situation in which the values of Y are not 
correlated but are obtained with a different variance for each measurement. Under 
these conditions, hypothesis H3 is written: 

V(yi) = 2
iσ   [9.166] 

so that the variance-covariance matrix of y takes the form: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2
2

2
1

...00

............

0...0

0...0

n

V(y)

σ

σ
σ

  [9.167] 
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 The system describing the measurements always has the form: 

YeA =+θ.   [9.168] 

 However, we need to know the sum of the squared gaps weighted by a weight 

2
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i
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i

ii egQ
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2   [9.169] 

 Finding the minimum of this quantity leads us to the system of normal equations 
which, in matrix form, is written: 

.g.yA.g.A.A TT =θ̂   [9.170] 

 From this we get the solution of the problem: 

( ) .g.yA.g.AA TT 1−
=θ̂   [9.171] 

 In these expressions, the weighting matrix g is the inverse of the variances-
covariances matrix of y: 

[ ] 1−= V(y)g   [9.172] 

 The matrix giving the variances and covariances of the obtained estimators is 
written: 

( ) 1−
= .g.AAV T)θ( ˆ   [9.173] 

 This matrix solution of the least squares contains the results already found in the 
example of the line. 

9.4.3. Examples with correlated variables 

 The matrix notation of the least squares provides the simpler calculation 
solutions than the algebraic form. 
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 For example, let’s look at the following example: we are measuring pairs of 
values (xi, yi) whose representation in a system of axes Ox, Oy gives points that are 
fairly well-aligned. We then use the following representation model: 

xy o .1θθ +=   [9.174] 

 In relation to the examples analyzed above, we make the hypothesis that the 
measurements of y are made with the same variance and are correlated. This occurs 
fairly often in practice, if only because of the uncertainties introduced by the 
measurement instrument.  
 
 If we suppose that the covariance between the values of y, taken two by two, 
remain the same, the variance-covariance matrix of the vector y takes the form: 
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by writing that と is the correlation coefficient between the two measurements of Y. 
 

 Since the measurements have the same variance, it is not necessary to weight the 
results; and the solution of the least squares retains the usual form: 

( ) .yA.AA TT 1−
=θ̂   [9.176] 

 However, the variance-covariance matrix of these estimators is obtained by using 
the complete form: 

( ) ( ) 1-1
)(

−
= .AA.V(y).A.A.AAV TTTθ̂   [9.177] 

which leads to the expressions: 
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  [9.180] 

All these values obviously depend on the correlation coefficient. When this takes 
the value 0, we find the same results as obtained before. 

 
When the correlation coefficient takes the value + 1, we get: 

2
0 )ˆ( σθ =V   [9.181] 

0)ˆ( 1 =θV   [9.182] 

0)ˆ,ˆcov( 10 =θθ   [9.183] 

These paradoxical results can be explained as follows: when the correlation 
coefficient equals + 1, the experimental points are rigorously aligned. As well, the 
least squares line is parallel to the theoretical line. This means the gradient has no 
random features, from which we get a zero value for its variance (as well as for the 
covariance between the gradient and the ordinate of source). The only random 
quantity is the ordinate of origin, which is equal to the variance of the values of Y. 

 
The ordinate ┫, which is on an interposed point of the abscissa x, is expressed by: 

xy .ˆˆˆ 10 θθ +=   [9.184] 
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has a variance: 
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When と = 0, we find the normal value, but when と = + 1, we get: 

2)ˆ( σ=yV   [9.186] 

This variance is constant and equal to the measurement variance of Y. 
 
We should remember that, for a measurement series, all the correlation 

coefficients cannot be simultaneously negative. 

9.5. A simple example 

The least squares method also applies to situations when the model chosen to 
represent the dependence between the variables X and Y results in a non-linear 
normal equation system. Here, we can linearize the equation in several ways: by 
changing the variable; by developing the function serially near to the representative 
measurement points; or by working numerically and finding the function of the sum 
of the squared gaps. 

9.5.1. Linearizing the function 

There are functions linking X and Y that lead to non-linear systems expressed in 
parameters to be estimated, but which, by changing a variable, can be relevant to 
this example. This means they can be analyzed by the standard methods. By way of 
example, we cite the following cases: 

– U = A.exp(BT) which refers to the linear example Y = し0 + し1 X by proposing  
Y = In (U) and X = T, from which we derive し0 + In(A) and し1 = B. 

– U = A + B.In(T), which refers to the linear example Y = し0 + し1X by proposing 
that Y = U and X = In(T), from which we derive し0 = A and し1 = B. 

– U = A.TB, which refers to the linear example Y = し0 + し1X by proposing that  
Y = U and X = In(T), from which し0 = In(A) and し1 = B. 
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– 
BXA

T
U

+
=

.
 which refers to the linear example Y = し0 + し1X by proposing 

that Y = 1
U

 and X = 1
X

, from which we derive し0 = A and し1 = B. 

 

We should be aware of the fact that even if the values of the transformed variable 
U have the same variance V(U), changing the variable usually involves unequal 
variances for the values of the resulting variable Y, since the variance Y is expressed 
as: 
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Calculating the coefficients of the model thus involves weighted forms. 
 
When changing variables proves impossible, we can resolve the system in an 

approximate way by carrying out a limited development. So, for example: 

),...,,,( 10 kXfY θθθ=   [9.188] 

The equation transforms the relations between the values of X and the 
measurements of Y. It depends on the values of k + 1 parameters し0, し1,…しk. 

 

We measure n pairs of values (xi, yi) so that V(yi) = ji
2. Applying the principle of 

the least squares gives us the function: 
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with the weighting coefficient 2
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i
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σ
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The estimators we are trying to find are the solution of the normal equations 
systems: 
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 In general, this system is not linear, which makes its resolution difficult. We can 
resolve it from the initial values of the written solutions 00θ , 10θ , …, kθ0  and 
giving each of them an increase 0e , 1e , …, ke , so that: 

0000
ˆ e+= θθ   [9.194] 

1101
ˆ e+= θθ   [9.195] 

 

kkk e+= θθ 0
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 We can then write: 
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 The normal equations are then of the type (what we have written here is only that 
of the index parameter j): 
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 We find a linear system as ej. From this solution, and from the initial values 
given to the parameters, we get a new set of values that can help iterate the 
calculation. 
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9.5.2. Numerical search for the minimum of the function of the sum of the 

squared gaps 

Another approach is to state that the quantity: 

[ ]210
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),...,,,( kii

n

i

i xfygQ θθθ−=∑
=

  [9.199] 

is a function of the parameters of the model. This is an equation of a surface in an 
axial system formed by the parameters and by Q. In a situation of an affine relation, 
we have an equation of an elliptic paraboloid, so-called because its intersection with 
a plane parallel to the axis OQ produces a parabola. Moreover, its intersection with a 
plane parallel to the parameter plane is an ellipsis (when this intersection exists).  
 
 As a general rule, the form of this surface can vary, but close to the solution 
(corresponding to a surface summit), we find an elliptic paraboloid. 
 
 The concept is as follows: from the initial values, we calculate a first value of Q. 
We then give an increase to each of the values of the parameters and observe the 
variation of Q. If Q increases, we move away from the surface summit, so that the 
increases are in the wrong direction. In the opposite situation, the sense of 
displacement is correct, and we continue until converging on the solution. To put it 
another way, the representative point of the parameter values is displaced on the 
surface until it joins its summit again. 
 
 Carrying out the method can be somewhat difficult when the number of 
parameters is high. There are methods that allow us to systematize finding the 
solution and the speed of the convergence towards this solution (the Maquard 
method, for example). 
 
 Certain precautions must be taken if we use graphic methods. When using these 
methods, the following conditions must be met: 

– The departure point must be sufficiently close to the solution in order to have a 
quick maximum convergence. 

– The variations given to the parameters must not be so significant that 
oscillation from one part to another of the solution occurs and no solution is 
achieved.  

– Due to the local curvature of the surface, the rapidity of convergence may be 
different depending on whether the solution is reached by larger or smaller values. 
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– Some functions that lead to a surface with a representation that presents 
several minima. In this case, we must ensure that the found solution is well-
researched. 

9.6. Examples of multivariable models 

 The principle of the least squares also applies to finding the parameters of a 
multivariable model, that is, to describing the development of an explained variable 
Z according to the explicative variables. 
 
 This is an example of the least squares plane when the relation between Z and 
the variables X and Y is expressed as: 

yxz 210 θθθ ++=   [9.200]  

 The problem consists of finding the estimators 210
ˆ,ˆ,ˆ θθθ  of 210 ,, θθθ from the 

measurement of n triplets of the paired values xi, yi, zi which, in an n plane brought 
to an axial system (Ox, Oy, Oz), is represented by n points. 
 
 The system of n equations transforming these measurements is written: 

1112110 zeyx =+++ θθθ   [9.201] 

2222210 zeyx =+++ θθθ   [9.202] 

nnnn zeyx =+++ 210 θθθ   [9.203] 

or again, by proposing: 
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and: 
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 The previous system is written: 

zeA =+θ.   [9.206] 

 Looking again at the expressions in the examples of polynomial relations, we see 
that the solutions given there are still valid, whatever these are for the vector of the 
estimators or for the variance-covariance matrix. 
 
 Here we give as examples the expressions of the coefficients of the least squares 
plane: 
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 The multivariable forms also help us in cases where sensors have sensitivities 
that vary according to a variable; that it is external to measurement (influence 
variables). 
 
 Let us look, for example, at the response Y of a sensor to a variable X. If the 
sensor is linear, its response can be modelized by the form: 

Sxy += 0θ   [9.214] 

where S is the sensitivity of the sensor. If this sensitivity is itself a function of a 
parameter t, which we write: 

tS 21 θθ +=   [9.215] 

し1 being the sensitivity of the sensor when t = 0 and し2 describing the development 
of the sensitivity according to t. We then get: 

txxxty ...).( 210210 θθθθθθ ++=++=   [9.216] 

 We recognize the plane equation, the variable y being described according to the 
function of the variable x, and xt. 
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9.7. Dealing with constraints 

9.7.1. Presentation of the method 

 The least squares method consists of finding the minimum of the parameter 
function of the model Q(し0, し1….しk) formed by writing the sum of the squared gaps. 
This minimum is reached when: 
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 In the absence of any constraint (that is, of an exterior relation between  
し0, し1….しk), the differential elements kddd θθθ ...,,, 10  can be chosen arbitrarily and, 
for the above relation to be resolved, it must be enough that: 
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 This is the standard normal equation system. 
 
 Now we come to a situation with a constraint relation between the parameters し0, 
し1….しk, that is, they are connected in an equation that we can write as: 

Cg k =)...,,,( 10 θθθ   [9.221] 

where C is a constant. Under these conditions, it is clear that we can no longer 
arbitrarily choose the differential elements kddd θθθ ...,,, 10 since they are linked by 
the equation: 
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 The result is that we can express one of the elements (for example, dしk) 
according to the others: 
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 By bringing back this value to equation [9.217], and by writing that the quantity 
as a factor of each differential element is zero, we end up with: 
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 The solution of these gives the estimators 110
ˆ...,,ˆ,ˆ
−kθθθ . 

 
 The last estimator kθ̂  is obtained by applying the constraint relation, so: 

Cg k =)ˆ,...,ˆ,ˆ( 10 θθθ   [9.227] 

9.7.2. Using Lagrange multipliers 

 We can systematize our search for solutions by applying the method of Lagrange 
multipliers. 
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 Let us look at the system formed by the sum of the squared gaps and the 
constraint condition: 
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Cg k =),...,,( 10 θθθ   [9.229] 

 Then we form the quantity: 
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where そ is the Lagrange multiplier. We thus add an unknown and the system giving 
the solution of the problem is formed by writing the following k + 2 equations: 
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 We can either resolve the system of unknown k + 2 equations or extract the value 
of the multiplier そ of one of the equations and bring it to the others in order to 
decrease the order of the system. This methodology is applicable to situations where 
several constraint relations exist simultaneously. 

9.8. Optimizing the search for a polynomial model 

9.8.1. System resolution 
 
 When looking for model parameters: 

)(....)(.)(.)(. 221100 XfXfXfXfY kkθθθθ ++++=   [9.235] 



408     Fundamentals of Instrumentation and Measurement 
 

 We have seen that the resolution of the least squares method with the help of 
matrix formalism works by means of matrix inversion: 
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 We see that the calculations are considerably simplified if all the terms outside 
the principle diagonal are zero; that is, if: 
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ihij xfxf   [9.237] 

 This condition is a condition of orthogonal polynomials fj (X) and fh (X) on the 
defined ensemble by measurements. As a general rule, polynomials do not contain 
this orthogonality condition. We then make the hypothesis that the polynomial form: 

)(....)(.)(.)(. 221100 XfXfXfXfY kkθθθθ ++++=   [9.238] 

is rewritten in the equivalent form: 

)(....)(.)()(. 221100 XPXPXPXPY kkΦ++Φ+Φ+Φ=   [9.239] 

 Here we impose orthogonality throughout the ensemble of experimental points 
on the polynomials P0 (X), P1 (X), P2(X),…Pk(X), taken two by two. This basic 
change results in a change of the parameters that describe the model.  
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 The least squares resolution remains unchanged, the only modification being the 
matrix to be inversed, which takes the following form: 
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or, taking into account the condition of orthogonality imposed on the polynomials: 
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 The matrix is diagonal and the resolution of the problem no longer poses a 
problem. This is because the equations of the system are independent. We thus 
obtain the general form of the equation: 
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 The general form of the variances is: 
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 The orthogonality has the secondary effect of making the estimators non-
correlated, so that: 

0)ˆ,ˆcov( =ΦΦ hj  jh ≠∀   [9.244] 

9.8.2. Constructing orthoganal polynomials using Forsythe’s method 

 In books dealing with this subject, we find many polynomial forms that have 
orthogonal characteristics. We can start here with trigonometric polynomials with 
orthogonality features used to calculate the coefficients of the Fourier development 
of a periodic function. There are also Lagrange and Legendre polynomials that 
present constraints on the values situated on the axes of abscissas (these values are 
between -1 and +1 and/or equidistant values of x).The polynomials used by Forsythe 
do not have that constraint. They are written: 
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)()().()( 02122 xPxPxxP βα −−=   [9.247] 
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 In these expressions the coefficients gj and くj are expressed by: 
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 We immediately notice the recurrent nature of these expressions. The polynomial 
of degree j and the coefficients are expressed according to the polynomials (already 
known) of degree j – 1 and j – 2. 
 
 In order to make these calculations more exact, Forsythe recommends 
establishing norms for numerical values of xi of between –2 and +2. Not following 



Elaboration of Models for the Interaction Between the Sensor and its Environment     411 

this recommendation nevertheless leads to polynomial values and to coefficients that 
are completely acceptable. In the case of a line adjustment: 

)()(. 1100 XPXPY Φ+Φ=   [9.250] 

 The calculations are carried out using the following sequence. 
 
a) Calculation of f0 

 

 The polynomial P0 (X) is, by definition, worth 1. 
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b) Calculation of f1 
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Consequently, 
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 Finally, the relation is expressed in the form: 

)(1 xxyy −Φ+=   [9.254] 

 This can be attained if we remember the fact that the least squares line intersects 
the coordinate point ),( yx . 

9.8.3. Finding the optimum degree of a smoothing polynomial 

 The recurrent nature of the Forsythe polynomials has the advantage of easily 
increasing the degree of the adjustment polynomial. 
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 Generally, we can show that the sum of the squares of the residuals Rk after an 
adjustment of the degree k, is expressed according to the sum of the squares of the 
residuals Rk-1 that correspond to an adjustment by the polynomial of degree k – 1 by 
the relation: 
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22
1 ∑
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n

i

ikkkk xPRR   [9.255] 

 This quantity decreases as k increases. In other words, the fact of increasing the 
degree of the adjustment polynomial acts to constrain the polynomial from coming 
closer to the experimental points. This can carry the risk of being unnecessary 
because these points have a variance that defines an uncertainty field. Therefore, it is 
physically sufficient that the polynomial goes into the interior of the uncertainty 
field without intersecting the experimental points. In addition, this constraint has no 
effect on the measured points. Outside these points, no constraint applies, even if the 
polynomial might oscillate with an amplitude well above that of the desired 
adjustment gain. 
 
 There are two simple methods for determining the optimum degree of the 
smoothing polynomial. 
 
 The first method calculates, after adjusting the degree k, the quantity: 

)1( +− kn

Rk   [9.256] 

 This is an estimator of the variance linked to the variable Y until this estimation 
is coherent with a predetermined value. 
 
 The second method traces the graphic representation of the development of Rk 
according to the function of k (see Figure 9.5). This graph presents, in general terms, 
a gradient rupture showing that the degree increase of the polynomial degree no 
longer tells us much about the model’s experimental adequacy. This break occurs 
for an adjustment degree that coincides with the optimum degree of the polynomial. 
According to the conditions in the figure, this rupture will be more obvious in a 
system of Cartesian axes, which are systems of semi-logarithmic or logarithmic 
axes. 
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Figure 9.5. Representation of the sum of squared residuals showing  

an optimum polynomial degree equal to 3 (the polynomial of degree 2  

here introduces no real reduction of the residuals) 
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Chapter 10  

Representation and Analysis of Signals 

10.1. Introduction 

 Generally, a physical phenomenon is observed through a signal carrying 
information. We want to extract this information and to convert it so it can be 
exploited. The signal processing tools and methods used in measuring a physical 
variable and the associated instrumentation depend on the exploitation that is carried 
out. An instrumentation chain consists of analog or digital electronic devices, 
according to the objectives for the analysis of the measured signals and the 
properties of these signals. Actually, rapid variations of high frequency signals are 
sometimes difficult to observe with a digital measurement chain; a purely analog 
measurement chain is preferable in this case. However, the development of 
microprocessors has meant that very sophisticated functions can be used in the 
processing algorithms. This means that a digital processing chain helps to solve 
much more complex problems than are possible for an analog processing chain. 
 
 The goal of this chapter is twofold. We will first present some basic 
mathematical tools necessary for analyzing analog and digital signals that are 
present in instrumentation chains. Then we will provide some examples of signal 
processing methods that can lead to adaptations, according to the applications being 
considered. In this chapter we will especially emphasize mathematical tools for 
digital signal processing and time-frequency representations that are useful for 
extracting continuous information in signals that may not be stationary, a usual 
situation in practice. Any reader wanting to gain a more in-depth knowledge of basic 
signal representations may consult, for example, the following books: [CHA 90]; 

                              
Chapter written by Frédéric TRUCHETET, Cécile DURIEU and Denis PRÉMEL.  
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[COT 97]; [COU 84]; [DEL 91]; [GAS 90]; [MAX 89]; [MAX 96]; [PIC 89, 93, 94, 
95]; and [ROD 78]. In addition, some methods of analog processing are discussed in 
Chapters 4 and 5. 

10.2. Analog processing chain 

10.2.1. Introduction 

 Sensors used to observe a physical phenomenon provide a signal that carries 
information. This signal follows, in this case, a continuous time law and thus it is a 
purely analog instrumentation chain throughout. It can undergo various processing by 
purely analog electronic devices, including: amplification; filtering; modulation-
demodulation; clipping, correlation; synchronous demodulation. The synoptic 
schema of this kind of processing chain in shown in Figure 10.1. 

 

 
 

Figure 10.1. Analog measurement chain 

 
 
 In certain applications, for example, in control systems, the signal obtained after 
processing can be reinjected into the process input in the form of a control law that 
will eventually modify the behavior of the observed physical phenomenon. For 
example, in active vision, the analyzed signal can serve to follow the trajectory of an 
object; and, if necessary, correct the position, the direction and the settings of the 
sensors that are following the scene. 
 
 Signals can be analyzed in the time domain or in the frequency domain. The 
following section gives some definitions that are often used in the analysis of analog 
signals. 

10.2.2. Some definitions and representations of analog signals 

 10.2.2.1. Deterministic signals 

 A signal can be described by a mathematical model. For example, a sinusoidal 
signal is determined by its magnitude, its pulsations or its frequency, and its phase at 
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time origin. Practically, a deterministic model is only partially known, and its 
unknown parameters introduce random behaviors that are more or less 
unpredictable. A deterministic signal has little importance in real situations, since it 
does not carry information, apart from its presence or absence. However, this kind of 
signal can act as an excitation signal that indirectly obtains information about a 
physical variable through the interaction that this signal can have with the physical 
system being analyzed. A signal carrying information of uncertain nature is a 
random signal. Some statistical properties of this signal allow us to describe it 
simply or even to evaluate our knowledge of this signal by relating it to a known 
model. 
 
 In practice, a sensor is activated from a given time t0, very often chosen as a time 
origin. The signals which are observed and processed are then considered as zero 
signals up to the time t0 = 0. These are called causal signals. In addition, signals are 
observed during a finite period T. By commodity, especially of calculation, we very 
often represent an observed signal by a periodic signal; or we construct a periodic 
auxiliary signal from the observed signal. The rest of this section will provide some 
fundamental descriptions of signals and present some of their usual features. 
 
 An analog signal represented in the time domain by a scalar function x(t) of the 
continuous variable t can be characterized in different ways. Subject to the existence 
of integrals, we have the following definitions: 

– mean value ∫
−

+∞→
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T
T

x ttx
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– energy ∫
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– instantaneous power 
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– mean power ∫
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22
; 

– mean power of the signal fluctuations around its mean 
2222 )()( xxx mtxmtx −=−=σ . 

 
 The time representation of a signal in its form x(t) is the most natural. It directly 
shows the magnitude variation of the signal according to time. However, there are 
other representations. The remainder of this section will discuss the frequency 
representation that indicates the variation frequency of the signal magnitude. This 
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representation is ensured by the Fourier transform. A more general discussion of 
representations is given in section 10.6. 

 10.2.2.1.1. The Fourier transform 

Under certain conditions, always verified by physical signals, a signal has an 
equivalent representation that is a function X(f) of the frequency f or even a 
continuous function X(の) of the pulsation の called the Fourier transform. This is 
defined by: 

∫
+∞

∞−

−= tftjtxfX d)2exp()()( π  [10.1] 

and: 

∫
+∞

∞−

−= ttjtxX d)exp()()( ωω  [10.2] 

A sufficient condition of existence of this representation is that the energy of the 
signal must be finite. For clarity, from now on, X(f) = TF[x(t)] represents the 
function defined by equation [10.1] and X(の) will represent the function defined by 
equation [10.2]. The inverse Fourier transform is expressed by the relation: 

ωωω
π

π d)exp( )(
2

1
d)2exp )()( tjXfft(jfXtx ∫∫

+∞

∞−

+∞

∞−

==  [10.3] 

If x(t) is a real signal, its Fourier transform is a complex function of even module 
and odd argument: X(-f)= X*(f). In addition to the linearity of the Fourier transform, 
we see several other properties: the time reversal property:  
TF[x(-t)] = X(-f); the conjugation property TF[x*(t)] = X*(-f ); and the delay 
theorem TF[x(t-k)] = exp(-j2ヾfk)X(f). The convolution product of two signals x(t) 
and y(t), denoted by (x*y)(t) is defined by: 

∫
+∞

∞−

−=∗=∗ uutyuxtxytyx d)()())(( ))((  

and this expression may be written more easily in the frequency domain than in the 
time domain. Indeed, we have TF[(x*y)(t)] = TF[x(t)]TF[y(t)]. This property, which 
is also called the Plancherel theorem, is very useful for the linear filtering of signals 
and for calculating correlation functions. 
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 10.2.2.1.2. Correlation and spectral density 

 The energy of the signal x(t) is also expressed in the frequency domain: 

∫∫∫
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∞−
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∞−

+∞

∞−

=== ωω
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d)(d )(

222
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This means the energy of a signal does not depend on the chosen representation. 
The function 

2
)()( fXfxx =Φ  is called the energy spectral density of the signal 

x(t) and is a frequency representation of the energy. This quantity is, by definition, 
always real and positive. The inverse Fourier transform of fxx(f), written けxx(k), is 
called the energy autocorrelation function of the energy signal x(t). By writing that 

)()()( *2
fXfXfX =  and by using the property )](TF[)( ** txfX −=  we deduce 

from this: 

∫∫
+∞

∞−

+∞

∞−

−== ttxtxffjfxxxx d )()(d )2exp()()( * ττπΦτγ  

けxx(k) expresses the resemblance between x(t) and x*(t-k) and produces the 
continuous autosimilarities in the signal. If the signal x(t) is real, its autocorrelation 
function is real, even, and maximum at the time origin. 
 
 These results can be applied to two signals x(t) and y(t). First of all, we have: 

∫∫
+∞

∞−
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∞−
= ffYfXttytx d)()(d )()( **  

 This relation constitutes the Parseval theorem. The quantity 
)()()( fYfXfxy =Φ  is called the cross-energy spectral density of the signals x(t) 

and y(t). The inverse Fourier transform of this quantity, written けxy(k), is the energy 
cross-correlation function of the signals x(t) and y(t). Then we have the relation: 

∫∫
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which constitutes the Wiener-Kintchine theorem. If the signal y(t) is also obtained 
by a linear filtering of the signal x(t), then we have )()()( ffGf xxyx ΦΦ =  or 

),()()(
2

ffGf xxyy ΦΦ =  G(f) being the frequency response of the filter. These 
relations correspond to the interference formula. 
 
 We will now discuss a specific example dealing with periodic signals. 
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 10.2.2.1.3. Periodic signals 

 Obtaining a spectral representation of a signal requires knowing this signal 
throughout its entire time domain. Practically, we only know the signal x(t) on a 
finite time support, for example [0,T[. Outside this interval, we consider that the 
signal is equal to zero in order to calculate the previously introduced quantities. It is 
also possible to define an auxiliary periodic signal xT(t) that is equal to x(t) on the 
interval [0,T] and is of period T. Always under certain conditions, the representation 
of xT(t) in the form of a Fourier series is: 

)2exp()( ∑
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where 1/T is the fundamental frequency and cn the amplitude of the harmonic of 
rank n. With this new representation, integrating the signal is done on a finite 
interval, but we have to calculate an infinite number of coefficients. This is why 
another representation will be defined later for the analysis of digital signals that are 
defined by a finite number of harmonics (see section 10.6). 
 
 By introducing the distribution formalism [ROD 78], we can extend the 
definition of the Fourier transform to periodic signals, and connect this to Fourier’s 
serial decomposition. Actually, by introducing the impulse signal that is expressed 
by )1()]2TF[exp( TfTtj −= δπ , we firstly get: 
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 The mean power PT of the periodic signal xT(t) is written in the form: 
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periodic signal xT(t). The inverse Fourier transform of this quantity is the power 
autocorrelation function of this signal. It is defined by: 
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and is also periodic. 

 10.2.2.2. Random signals 

 In many applications, we are only interested in statistical properties of first and 
second orders of random signals: mean, correlation, power and signal-to-noise ratio. 
This section presents these ideas. 
 
 Strictly speaking, a random signal is stationary if all its statistical properties are 
invariant by changing the origin of time. If we limit this property only to the first 
and second statistical times, we say that the signal is in a wide sense stationary. This 
last feature is commonly accepted as the starting hypothesis for processing methods 
that use the statistical properties of the signal to be analyzed. The random process 
fluctuates and the observed signal corresponds only to a special realization of the 
random process x(t, u) called trajectory. In absolute terms, in order to know the 
statistical variables of the process, we must carry out the same experiment many 
times. This is obviously not possible in most situations and we usually assume that 
the nature of the information conveyed by the time behavior of the signal is the same 
as that which is conveyed by carrying out the process a number of times. The 
stationary random process is called ergodic if all the statistical means coincide 
asymptomatically towards the time means, in particular that is if: 
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where f(x) is the probability density of the random signal x(t, u). The correlation 
function of a stationary signal is defined by: 

)],(),(E[)( * utxutxxx ττγ −=  

 For this kind of signal, けxy(k) does not depend on the time t. Moreover, if the 
signal is ergodic, we get: 
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 In practice, the random signal is observed on a finite time support and we 
therefore exploit windowed time information. 
 
 The power spectral density fxx(f) of a stationary signal is the Fourier transform 
of the autocorrelation function (the Wiener-Khintchine theorem): 

)](TF[)( τγΦ xxxx f = . For stationary and ergodic signals, the time means and the 
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statistical means coincide, the quadratic mean is directly related to the power 
spectral density, and we have: 

∫
+∞

∞−
Φ==⎥⎦
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⎡== ffutxutxP xxxxx d )()0(),(E),(
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 As an example, we look at a signal that is both stationary and ergodic: that of a 
white noise w(t) characterized by a zero mean and a uniform spectral density: fww(f) 
= c. Its autocorrelation function is thus ).( )( τδτγ cww =  A white noise is often used 
in a random process with a power spectral density that is constant up to a frequency 
much higher than the maximum frequency intervening in modelization of the signal 
or of the system being studied – even higher than the passband of the process chain. 
 
 The cross-correlation function of two random signals x(t, u) and y(t, u), which 
are jointly stationary and ergodic, is defined by: 
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and their cross-power spectral density is shown by fxy (f) = TF[けxy(k)]. The signals x(t, 
u) and y(t, u) are said to be uncorrelated if their correlation is zero (whatever k may 
be). If the signal y(t, u) is obtained by a linear filtering of the signal x(t, u), the 
interference formula is written )()()( ffGf xxyx ΦΦ =  or 

),()()(
2

ffGf xxyy ΦΦ = G(f) being the filter’s frequency response. 
 
 Many analog circuits allow us to carry out, in an approximate manner, the 
functions described above. Recent developments in digital signal processing have 
led to methods that are more sophisticated than those obtained with analog 
electronics. The following section will discuss the tools and representations of 
digital signals. 

10.3. Digital processing chain 

10.3.1. Introduction 

 Digital functions process series of numbers that usually come from sampling an 
analog signal, the amplitude being quantified. Figure 10.2 shows part of a synoptic 
of a digital instrumentation chain. We note by xb(t) the sampled and hold signal and 
xq[n] the digital signal. 
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Figure 10.2. Digital processing chain 

 
 

 In an instrumentation chain, in addition to the principal elements that make up 
the analog chain seen above, we add an analog-to-digital converter (ADC) and if, 
after digital processing, we want to observe or exploit the signal in an analog form, a 
digital-to-analog converter (DAC). An ADC converter has a sampling/holding 
function (S/H) and a quantizer (Q). The sampling/holding function takes 
instantaneous samples of the time signal x(t) and keeps them constant to the input of 
the quantizer during a period necessary in order to convert the sampled signal into a 
digital signal. The study and processing of digital signals require us to first bear in 
mind some basic concepts, including the sampling theorem and quantization. 

10.3.2. Sampling and quantization of signals 

 10.3.2.1. The Fourier transform and sampling 

 Periodic sampling is the acquisition of values or samples of the analog signal x(t) 
at time tn = nTe, Te being the sampling period. The choice of the sampling period 
depends on the spectral content of the signal x(t). The informational content will 
remain intact if we theoretically have the capability to exactly reconstruct the analog 
signal x(t) from the sampled signal x[n] = x(nTe). The sampling theorem establishes 
a criterion for the preservation or alteration of the quantity of information contained 
in the sampled signal and expresses the conditions for a good restitution of the 
original signal. 

 10.3.2.1.1. The discrete time Fourier transform 

 The Fourier transform of the sampled signal x[n] is defined by: 

∑ −=
n

fnjnxfX )2exp(][)(TD π  [10.4] 

or also: 

∑ −=
n

njnxX )exp(][)(TD ωω  [10.5] 
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 In the following presentation, XTD(f) will be the function defined by equation 
[10.4] and XTD(の) the function defined by equation [10.5]. We point out that the 
variable f intervening in the definition of XTD(f), which is the Fourier transform of 
the sampled signal, is without dimension. While it is involved in the definition of 
X(f), the Fourier transform of an analog signal x(t) has a dimension: if the variable t 
represents the time and is expressed in seconds, then f is expressed in Hertz. The 
function XTD(f) is periodic (of period 1) and is expressed, as we will see, according 
to X(f). To establish this result, we first of all introduce the impulse 
train ∑ −=

n
T nTett

e
)()( δδ  then the ideal sampled signal: 

)()()( ttxtx
eTe δ=  [10.6] 

 If the signal x(t) is continuous, we have: 

∑ −=
n

ee nTtnxtx )(][)( δ   [10.7] 

 Thus, the signals xe(t) and x[n] are equivalent. First, taking the Fourier transform 
of equation [10.7], we establish that: 
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 Xe(f) is thus periodic of period Fe = 1/Te. Starting from Fourier series )(t
eTδ , by 

taking the transform of this decomposition, we establish that: 
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 This tells us that the Fourier transform of an impulse train is still an impulse 
train. The Fourier transform of equation [10.6] is then written: 
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 The impulse function being the neutral element of the convolution product, we 
have deduced from this fact that: 
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The Fourier transform of the sampled signal is obtained from that of the analog 
signal by periodic replication. Figure 10.3 illustrates this point for a bandlimited 
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signal; that is, that B exists so that 0)( =fX  Bf ≥∀  or that all the frequency 

representation of x(t) is inside the band ]–B, B[. Two examples are then considered: 
2eFB <  or 2eFB ≥ . 

fBB 0− fFFF eee 202−

fFBB e0−

)( fXT ee

)( fXT ee

2 cas eFB ≥

2 cas eFB <)( fX

 
Figure 10.3. Sampling and aliasing 

 
 

 If 5.0<eBT , )( fX  and )( eTnfX −  do not overlap for all n ≠ 0; X(f) can 
then be obtained from Xe(f) by simple multiplication by the frequency response H(f) 
of a ideal lowpass filter defined by: 

if 2 2,
( )

0 otherwise
e e eT      F f F

H f
  .

− ≤ ≤⎧
= ⎨
⎩

 

 The original signal x(t) can then be reconstructed from the ideal sampled signal 
xe(t) or then from the sampled signal x[n]. After filtering the signal xe(t) by the 
lowpass filter, the information is intact. 
 
 If 0.5,eBT ≥  the supports of X(f) and of )( eTnfX − (n ≠ 0) overlap, which 
leads to a spectrum aliasing, as shown in Figure 10.3. Thus we cannot come back to 
X(f) from Xe(f). This brings us to a representation of the sampling theorem. 

 10.3.2.1.2. Sampling theorem 

 An analog bandlimited signal x(t) exists with B so that 0)( =fX  Bf ≥∀ ) 
can be reconstructed from the samples )(][ enTxnx = without loss of information if 
the sampling frequency Fe is higher than 2 B. 



426     Fundamentals of Instrumentation and Measurement 

 10.3.2.1.3. Interpolation 

 The interpolation formula is obtained by going back to the time domain of the 
relation X f H f X fe( ) ( ) ( )= . We then have ))(()( txhtx e∗= , with: 
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where .)sin()sinc( xxx ππ=  By using the properties of the impulse function, we 
deduce from it that: 

( )∑ −=
n

eee TnTtnTxtx )(sinc)()(  

 The duality of the time representation of a signal with its frequency 
representation helps establish an equivalent theorem for the sampled signals in the 
frequency domain. Sampling the Fourier transform of a signal of finite support 
signal (for example, [,0[ ,0)( Tt=tx ∉∀ ) does not lead to any information loss if the 
Fourier transform is sampled with a step ∆f ≤ 1/T (see section 10.6). 
 
 These results lead us to several remarks concerning practical implementation. 
First of all, the interpolation formula requires that we calculate an infinite sum of 
terms. Practically, only a finite number of terms can be calculated, and the 
reconstruction of the signal x(t) can only be approximated.  
 
 Secondly, the sampling condition Fe ≥ 2B cannot always be achieved and the 
inputs of the digital measuring devices must have anti-aliasing filters. This kind of 
filter guarantees the sampling condition independently of the applied input signal. 
The transition band of this lowpass filter is not inconsiderable (see Figure 10.4), and 
thus we must always take it into account when choosing a sampling rate. 

 
  

B Fe / 2  f

(dB))( fH  

     Passband    Transition 
    of the filter      band 

0  

 
 

Figure 10.4. Choice of the pass-band of an anti-folding filter 
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 10.3.2.2. Quantization 

We are only looking at real-valued signals. Representing numbers on a calculator 
requires approaching their values by whole numbers coded on a given number of 
bits. The quantization models the operation that carries out this approximation. The 
input-output non-linear characteristic represents the nature of the approximation 
(Figure 10.5). 

qxi
q

bii xxxs 10 +

qx

1+i
qx

 

Figure 10.5. Input-output characteristic of a quantizer 

We write i
qx  as the output values of the quantizer. With the example shown in 

Figure 10.5, all the quantization steps are equal: quantization is then uniform and 
qxx i

q
i
q +=+1 , q being the quantization step. The quantity s0, shown in Figure 

10.5, models a threshold that characterizes the nature of the quantization. Two 
examples are current today: quantization by truncation (s0 = q) and quantization by 
rounding off (s0 = q/2). 

 
Quantization of a discrete time signal introduces a precision limitation. Even if 

the quantization operation is nonlinear, by commodity to lead the calculations, we 
modelize the quantization operation by a linear relation: )()()( ttxtx qq η+=  where 
the signal さq(t) which represents the quantization noise is presumed to be 
independent of x(t). In many applications, if we do not know a priori the statistical 
properties of this noise, we presume that its values are uniformly distributed 
throughout their extreme values. Consequently, we regard the quantization noise as 
being a random signal of uniform probability density function f(a). In the case of a 
rounded off quantization discussed here, the extreme values are –q/2 and q/2 (see 
Figure 10.6). 
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Figure 10.6. Modelization of quantization noise 

 
 

Using these simplified hypotheses, we can calculate the statistical properties of 
the second order of the quantization error and a signal-to-noise ratio. The error mean 
statistic is zero and its variance or its power is: 
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If the input signal is a triangular signal that is not clipped, the quantization noise 
is a sawtooth signal of period T with a power expressed by: 
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We find the same result as before. If the input signal has any form, the power of 
the quantization error must be calculated by considering both its probability density 
and time representation. However, if the quantization step and sampling period are 
sufficiently low, it is justifiable to conserve the uniform law hypothesis. With this 
hypothesis, for a sinusoidal signal of maximum amplitude A and a quantization 
operation on n bits with a dynamic [-A, A], the quantization step is q = 2A/2n and the 
error variance )23( 222 nA ×=ησ .The power of the signal being equal to A2/2, the 
signal-to-noise ratio is RSB = 3 × 22n–1. In decibels, this becomes a widely used 
relation in technical documentation [AZI 96]: 

RSB 10 log(3/ 2) 20  log 2 1.76 6.02 n n= + = +  

We must keep in mind that the signal-to-noise ratio increases by 6 dB each time 
we increase the converter capacity by one bit. In Chapter 6, we described the 
principles of sigma-delta converters that can significantly increase the signal-to-
noise ratio with a looped system. In the remainder of this chapter, no more 
distinction will be made between x[n] and xq[n]. 
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The concepts of correlation and spectral density relating to analog signals seen in 
section 10.2 can easily be generalized to discrete time signals; the time integrals are 
then replaced by sums. 

10.4. Linear digital filtering 

Only digital filters will be considered in this chapter. For information on 
producing analog filters, we direct the reader to Chapter 5, and for details of 
mathematical tools, to the general texts cited at the beginning of this chapter. We 
will now discuss analysis tools used for digital filters. 

10.4.1. The z transform 

We call the z transform of the sequence of x[n], the complex function defined by: 

{ } ∑ −==
n

nznxnxzX ][][TZ)(  

We can show that this series converges if the complex number z belongs to a ring 
of complex plane that is delimited by two concentric circles centered on the origin of 
the radius Rmin  and Rmax , that is, for [,] maxmin RRDz x =∈  (see Figure 10.7). If 
the signal is causal as well, the convergence domain becomes [,] min +∞= RDx . For 
certain signals, the z transform converges in minRz = ; for example, the z transform 
of the unit impulsion unit ][][ nnx δ=  where ][nδ is the Kronecker symbol 
( 1][ =nδ  for 0=n  and 0][ =nδ for 0≠n , exists whatever the value of z and the 
convergence ring is the entire complex plane: [,0[ +∞=xD ).  

 
 Some properties of the z transform are: 

– delay: { } )(][TZ zXzpnx z
p−=− ; 

– differentiation: { }
z

zX
znxn z

d

)(d
 ][ TZ −= ; 

– convolution: ).( (z)][][])[(TZ zYXknykxnyx
k

=
⎭
⎬
⎫

⎩
⎨
⎧

−=∗ ∑  
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Rmin

Rmax

 

Figure 10.7. Convergence domain 

 
 

The inverse z transform is: 

∫ −=
C

n zdz zX
j

nx 1)(
2

1
][

π
 

where C models a closed contour directed in the direct trigonometric direction 
belonging to the convergence ring and surrounding the origin. The direct calculation 
of this integral uses the residual theorem [BEL 87] and is often difficult. We prefer 
to carry out a simple partial expansion to cause, as much as possible, basic z 
transforms for which we know the corresponding signals, with the help of tables. 
We deduce the signal x[n] from linearity. We point out here that knowledge of the 
convergence domain is required, since two different signals can give the same z 
transform, as we will see. Actually, the z transforms of the causal signal  
x[n] = 1 if n ≥ 0 and x[n] = 0 otherwise, and of the anticausal signal y[n] = –1 if  
n ≤ –1 and y[n] = 0 otherwise are equal: 11)1()()( −−−== zzYzX  but with 
different convergence domains: Dx = +∞] , [1  and [1,0[=yD . 

10.4.2 Filtering applications 

We are going to apply certain properties of the z transform for digital filtering. 
The kind of digital processing described here concerns linear time and invariant 
systems, that is, linear filters, for which the input signal x[n] is related to that of the 
output y[n] by the constant-coefficient difference equation: 

][][][
10

jnybinxany
q

j
j

p

i
i −−−= ∑∑

==
 with 0>p  and 0>q  [10.8] 
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This kind of filter is causal. This relation is written in the form of a discrete 
convolution equation: 

∑ −=
k

knxkhny ][][][  

The causality of the filter means that h[n] = 0 for n < 0. When the coefficients bj 
are not all zero, the filter is called recursive and its impulse response is infinite (IIR). 
However, when the coefficients bj (j = 1, …q) are zero, the coefficients  
ai (i = 0, …p) are the p + 1 non-zero coefficients of the impulse response of the filter 
and we say that the filter has a finite impulse response (FIR). 

 
By taking the z transform from the relation shown in equation [10.8], and by 

using the delay property of the z transform, we deduce that: 

)(1)(
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zXzazbzY i
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=
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∑∑ =⎟
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then the transfer function of the system: 
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==
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1

1
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)(
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This transfer function is a rational fraction. The filter is then called a rational 
filter. The roots of 01

10 =+++ −− p
p zazaa …  are called zeros of H(z) and the 

roots of 1 01
1+ + + =− −b z b zq

q…  poles of H(z). In the specific example when all the 
coefficients of ai and bj are real, we have the property )()( zHzH ∗∗ = . The poles 
and zeros of H(z) are then real or complex and conjugate. If the unit circle 
( z j f= exp( )2π ) belongs to the convergence domain, the transfer function of the 
filter H(z) allows for the expression of the complex gain G(f). We then have  

( ))2exp()( fjHfG π= . The unit circle can be either graduated according to angle or 
frequency (between –1/2 and 1/2). 

 Causality and stability 

The impulse response of a linear filter expresses generally as a sum of exponential 
signals. The stability condition +∞<∑

n

nh ][  is expressed by the fact that the unit 

circle must belong to the convergence ring. The convergence ring of a causal linear 
filter being of the form [,] min +∞R , the stability thus imposes Rmin ≤ 1 which means 

that the poles of the transfer function are inside the unit circle. 
 



432     Fundamentals of Instrumentation and Measurement 

The stable rational and causal filters constitute a specific class of filters called 
dynamic filters. Minimum phase filters are dynamic filters with zeros that are also 
inside the unit circle. These filters are especially useful because their inverse is also 
a minimum phase filter. The inverse filter is also stable. 

 Stability of FIR and IIR filters 

 The transfer function of a causal FIR filter being of the form 
p

p zazaazH −− +++= …1
10)( , this filter is always stable whatever the ai 

coefficients. However, the transfer function of a recursive filter being a z rational 
fraction, the stability of this filter requires that all its poles are inside the unit circle. 

 Synthesis of digital filters 

The synthesis of a digital filter consists of determining its transfer function or its 
impulse response from specifications defined in the time or frequency domain. The 
specifications can, for example, be represented by the frequency specifications of a 
lowpass filter shown in Figure 10.8. 

 
Synthesis consists of finding a filter that fulfills the specifications. Choosing an 

FIR or IIR filter depends on the implementation constraints. The advantages or 
disadvantages of each structure must be considered in the choice. For example, 
linear phase filters are used with FIR filters. For a frequency specification, the 
required calculation charge for an FIR filter is generally much higher than that 
needed for a recursive filter. The synthesis of FIR filters is not discussed in this 
chapter. We advise the interested reader to consult [BEL 87], [FON 81], [LAB 88] 
and [OPP 75]. 
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Figure 10.8. Example of a lowpass filter specifciation envelope 
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10.4.3. Synthesis of IIR filters 

We here present two synthesis methods for IIR filters. The first method involves 
approaching the transfer function of an analog filter by a discrete time transfer 
function. The second method calculates the coefficients of the filter by an 
optimization process. Analog filters are usually Butterworth, Bessel, Tchebycheff or 
elliptic filters. 

 10.4.3.1. Methods using an analog reference filter 

The impulse invariance method consists of making a digital filter with an 
impulse response which coincides with the impulse response of a given analog filter 
at sampling times. This method has several disadvantages, It requires long 
calculations, introduces distortions in frequency responses due to spectrum aliasing, 
and does not conserve the DC gain. This is why we prefer to carry out a direct 
transform of the transfer function Ha(p) of the analog filter according to a transfer 
function Hn(z) of the digital filter by directly replacing p with a function f(z). The 
most often used transform is the bilinear transform which, at every M(z) point of 
affix z, makes the M’(p) point correspond to the affix p by the passing relation: 

1

1

1

1
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−
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−=

z

z
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e

 

This transform is justified by the approximation of the integral of a signal with 
the trapezoidal method, so: 
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In this way, the transfer function 
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−
 corresponds in an integration in the 

Laplace domain of the transfer function 1/p. With this transform, we link a point of 
the imaginery axis of affix ajp ω=  with [,] +∞∞−∈aω  and the point of 

)exp( enTjz ω=  with ( )2/artg
2

ea
e

n T
T

ωω =  and  ] [een TT ππω ,−∈ . This 

transform introduces a frequency response distortion due to its non-linearity. If のa is 
low compared to the sampling frequency, のn is close to のa, so the distortion 
introduced by the bilinear transform for the low frequencies is low. If Te increases, 
the non-linear relation that links のa and のn involves a frequency deformation of the 
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axis and, consequently, a specification deformation. A scale factor k in part 
compensates the distortion in order to fit the frequency response of the analog filter 
with the frequency response of the digital filter within a given frequency range. The 
transform is then as follows:  

p k
z

z
 =  

1

1

1

1

−

+

−

−
 

A suitable choice of the factor k is to impose the same frequency responses 

oaa ωω = and onn ωω = . For this, it is enough to choose ( )2tg /Tk eonoa ωω= . If 
のc is the cut-off frequency of the analog filter, the choice conoa ωωω ==  helps 
conserve the cut-off frequency. The choice k = 2/Te helps to conserve the behavior at 
low frequencies. With the bilinear transform, a low-pass or pass-band analog filter is 
converted to a digital filter of the same type; only the characteristic frequencies are 
modified. But the linear property of the phase of a filter will not be conserved. We 
mention here that there are other transforms capable of carrying out synthesis [LAB 
88]. 

 10.4.3.2. Methods of synthesis by optimization 

The synthesis methods discussed above introduce a distortion of the frequency 
response. The development of computer-based techniques have led to the 
development of synthesis methods which make use of optimization algorithms of a 
cost function. This approach consists of imposing a priori the structure of the digital 
filter (of a recursive filter, for example), then adjusting the coefficients of this filter 
to approach as closely as possible an impulse response, a frequency response, or 
satisfy specifications established by, for example, a specification envelope. 

 
Several criteria can be chosen to carry out approximation in the best possible 

way. In general, these criteria lead to resolving a non-linear optimization issue with 
constraints. This means we need a method to determine the coefficients of the filter; 
these coefficients will optimize the criterion with the goal of determining the 
optimal filter in a given family. For example, we look for the coefficients of a filter 
with a given structure that will minimize the distance between the frequency 
response of this filter and the required frequency response for the frequencies  
fi (i = 1, …N). 

 
The least squares method, initially conceived to study the movement of planets, 

is widely used and is basic to many estimation techniques. As we will see, its 
popularity is due to the fact that the choice of a quadratic parameter criterion leads to 
an explicit solution of the parameters we want to find. The principle of this method 
will now be discussed. 
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We try to minimize the mean-squares gap Q between the given coordinate points 
),( ii yx ( 1, , )i N= …  and the values ))(,( θii gx  given by a model that depends 

on the parameters vector し = [し1, …, しp]
T. This gap is written: 

2

1

2
)し(gy)し( −=−=∑

=

N

i

ii gyQ  

with T
1 ],,[ Nyy …=y . To simplify the presentation, we assume that g(し) is real. 

 
If the model is affine in its parameters cG)g( += θθ , the mean-squares gap is 

then quadratic in its parameters: )()( T
cGycGy −−−−= θθQ /2. The optimal 

value θ̂  of し, which minimizes Q, is again said to be estimated in the least squares 
sense. It is obtained by writing that the gradient of Q, written )(θQ∇ in しし ˆ=  is 
zero. Now, )θθ cGyG −−−=∇ ()( T

Q ; so, if the matrix GG
T  is reversible, there is 

one solution: )()(ˆ T1T
cyGGG −= −θ . If the model is not quadratic in its 

parameters, Q is not quadratic in its parameters. We then can come back to problem 
that can be processed by the least squares method by a first order Taylor 
approximation g(し) at kθ̂ : 

 

 ∆θθ Gcg +≈)( , with )ˆ( kθgc = , 
kθθ

ˆT∂
∂= g

G and )ˆ( kθθθ −=∆  

 
We then apply the previous results with this linearized function to obtain the new 

estimated value of し. After calculations, we get θθθ ˆˆˆ
1 ∆+=+ kk  with 

).()( T1T
cyGGG −=∆ −θ  This new recursive formula is also expressed according 

to the gradient )(θQ∇ of the criterion Q and of its approximate Hessian formula 
)(

~ θQH  (in this formula, the terms on which the second derivatives depend are 
ignored). So we have )()ˆ( T c−−=∇ yGkθQ  and GGH T)ˆ(

~ =kθQ ; the estimated 
value of し is updated according to the recursive formula 

).ˆ()ˆ(
~ˆˆ 1

kkkk θθθθ QQ ∇−= −
+ H1  However, the decrease of the criterion Q is not 

guaranteed. This is why we introduce a coefficient そk that allows the algorithm 
converge, at least to a local minimum: ).ˆ()ˆ(

~ˆˆ 1
kkkk θθθθ QQk ∇λ−= −

+ H1  This is 
called a Gauss-Newton algorithm and can be obtained by a second order Taylor 
approximation of the criterion. There are methods that avoid the inverse calculation 
of the approximate Hessian formula. The algorithms are based on a first order 
Taylor approximation of the criterion, only using a gradient but converging more 
slowly. For more details on optimization methods, we direct the reader to [MIN 83] 
and [WAL 94]. 
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10.5. Examples of digital processing 

The goal of this section is to use several concepts discussed earlier to solve 
common signal processing problems that lead to finding an optimal filter. Even 
though signals can be complex, in the remainder of this section, in order to simplify 
formulae, we will suppose that they are real. 

10.5.1. Matched filtering 

From observing a signal drowning in noise, we want to learn from linear filtering 
if this effective (noiseless) signal, whose waveshape is known, is present or absent. 
The matched filter that maximizes the signal-to-noise ratio at its outset at the time of 
our decision. This problem is found, for example, in radar applications when we 
need to determine the presence or absence of a target from measuring the received 
signal. 

 
Let us suppose that s(t) is the effective signal of known waveshape that we 

assume is buried in an additive noise b(t). A digital version of an matched filter is 
then introduced, and an analog filter can be used in a similar way. The impulse 
response of the filter is noted h[n] and its frequency response H(f). The time we 
decide if the effective signal is present (P) or absent (A) is written as t0 = n0Te, with 
Te the sampling period. The process performed by the matched filter is shown in 
Figure 10.9. 
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Figure 10.9. Detecting a signal buried in additive noise 

 
 

We also assume that the noise b[n] is white, of a power j2
b. The mean power of 

the output noise of the filter is then ( ) ∑=∗=
k

bhb khnbhP 222 ][]])[(E[ σ . The 

instantaneous power of the effective output signal of the filter is: 
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and the signal-to noise ratio of the filter at the time of detection eoTn  is 

0 0RSB[ ] [ ] .hs hbn p n P=  From the Schwartz inequality we get: 
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the inequality being satisfied if and only if ][ ][ 0 knsckh −= , which leads to 

2
0 2 2

[0]1
RSB[ ] [ ] ss

kb b

n s k
γ

σ σ
≤ =∑  where ][nssγ  is the energy autocorrelation of 

the effective signal s[n]. The maximum output signal-to-noise ratio therefore only 
depends on the energy of the effective signal s[n] and on the noise power b[n]. The 
impulse response of the optimal filter ( ][ ][ 0 nnscnh −= ) is a reversed and shifted 

duplicate of the signal s[n]. This filter is said to be matched to the signal s[n]. Its 
response to the effective signal s[n] is ∑ −−=

k
s knsknscny ][][][ 0  and again, to a 

close multiplicative coefficient, the energy autocorrelation of the effective signal: 
][][ 0nncny sss −= γ . The matched filter is a correlator. For example, the response 

of the matched filter to a rectangular impulse is a triangular signal. The choice of n0 
depends on the application and on a causality constraint related to a real-time 
process. This causality constraint can be strictly fulfilled if the effective signal s[n] 
has a finite time structure.  

10.5.2. Optimum filtering 

Now we will look at the problem of estimating a signal x(t) by causal linear 
filtering from a signal y(t) that is correlated with x(t). We consider here a digital 
filter. The signal y(t) is then sampled at the frequency ee TF 1= and we want to 
know the estimation of )(][ enTxnx = according to samples ][ky ( nk ≤ ). We write 

][ˆ nx  as the estimated value of x[n]. 

 10.5.2.1. Wiener filtering 

The Wiener filter is a causal linear filter that minimizes the mean square error 

]])[ˆ][E[(][ 2nxnxnP −= . We first adjust the causal filter so that it is at the finite 

impulse response of length M. We write h[n](n = 0, … M–1) the non-zero 
coefficients of the impulse response. We then look for ][ˆ nx  in the form 

∑
−

=
−=

1

0

][][][ˆ
M

k

knykhnx . The optimal filter is the one whose impulse response 

minimizes P[n]; so it verifies the relations: 
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( )[ ] 0][ˆ][][E 2
][

][ =−−−= nxnxkny
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, 1,,0 −=∀ Mk …  

If the signals are stationary, these relations are rewritten according to the 

correlation functions of the signals x[n] and y[n]: 0][][][
1

0
=−− ∑

−

=

M

i
yyxy ikihk γγ , 

1,,0 −=∀ Mk … . The causal FIR optimal filter thus satisfies the equations: 

1,,0])[(][ −=∀∗= Mkkhk yyxy …γγ  [10.9] 

and it is necessary to know the correlation functions. 
 
We can show that this relation can also apply to a causal filter that is not 

necessarily of finite impulse response: 

00])[(][][][
0

≤∀=∗=−= ∑
≤

kkhikihk yy
i

yyxy γγγ  [10.10] 

and that it is also validated with an analog filter [LIF 81]; [MAX 89]; [PIN 95]. 
Equation [10.10] is called the Wiener-Hopf equation. 

 
An optimal linear filter without constraints satisfies the relation 

kkkh xyyy ∀=∗ ][])[( γγ . In taking the Fourier transform of this relation, we 
deduce that the frequency response of the optimal filter (digital or analog) without 
constraints is then expressed according to the spectral densities of the signals: 

.)()()( fffH yyxy ΦΦ=  
 
In the specific case where )())(()( 0 tbtxhty +∗= with b(t), which is a white 

noise independent of x(t), we get: 
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which means that 1/H0 (f) is weighted by a coefficient which is all the closer to 1 
since the noise is low. 

 
The causality constraint leads to an mean square error above that obtained with 

an optimal filter without constraints. The resolution, shown in equation [10.10] (or 
its equivalent with an analog filter), leads to the Wiener filter; and this is fairly 
complicated [LIF 81]; [PIN 95]. This is why often we prefer using a causal linear 
filter with finite impulse response, in order to solve equation [10.9]. 
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 10.5.2.2. Matched filtering 

To obtain the best estimation possible of the signal x[n], we take into account all 
previous available observations y[1],...y[n] (y[1] being the first sample). We thus 
choose for M the highest value: M = n. The length of the impulse response of the 
filter depends on the time and is equal to n. The filter thus defined is called adaptive 
because its impulse response is time variant. To further explain this filter, we 
propose: T]]1[][[ ynyn A=y , T]]1[]0[[ −= nhhn Ah , T]]1[]0[[ −γγ= nxyxyn …γ  
and nΓ the squared and symmetrical Toeplitz matrix of n dimension where the 
element of the ie line and je column is ][ jiyyij −= γΓ . The relation in equation 
[10.9] with M = n, is then written nnn γΓ =h and this leads to nnn γΓ 1−=h  and then 

nnnnx y
1T][ˆ −= Γγ . The disadvantage of this formula is that it requires inverted a 

matrix of dimension n that increases over time. The next section shows how to avoid 
calculating the inverse of this matrix. 

 10.5.2.3. Kalman filtering 

If the signals are described by an internal representation, the Kalman filter allows 
us, as we will see, to obtain a recursive formula for the estimation problem seen 
above. This algorithm avoids inversing a matrix with dimensions that increase over 
time; also, it is no longer necessary to know the correlation of signals and this 
applies to time variant systems. 

 
To introduce the Kalman filter, we still keep in mind the previous problem, but 

add that the system is described by state space representation: 
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the noises v[n] and w[n] being white and uncorrelated to each other and to the initial 
state x[0]. We respectively write Rv and Rw as the covariances of v[n] and w[n]. The 
signal x[n] is called autoregressive of order one. We can generalize this to a filter of 
a higher order by introducing a state vector of equal dimension to the order of the 
filter. 

 
The best causal linear estimator (in the sense of mean square error) of x[n] 

according to all available observations y[1], …, y[n] is now written as ][ˆ nnx  and its 
quadratic error ]])[ˆ][E[(][ 2nnxnxnnP −= . From what has been previously 
shown, we now have: nnn

nnx yh
T][ˆ = with nnnn γΓ 1−=h . 

 
We now introduce a new observation y[n + 1] and look for the estimator. We 

will establish that ]11[ˆ ++ nnx  can be obtained in a recursive manner in two steps. 
For that, we write ]1[ˆ nnx + as the best linear estimator of x[n + 1] according to all 
previous observations y[1], ···, y[n]: nnn

nnx yh
T

1]1[ˆ +=+ . This quantity is called a 
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one-step prediction. To establish the equations of the predictive filter, we write that 

nn 1+h  minimizes ])]1[ˆ]1[[(]1[ 2nnxnxEnnP +−+=+ , which leads to:  
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 Taking into account the statistical properties of noises, this relation is rewritten 

nnnn aγΓ =+1h . We deduce from this that nnnn ahh =+1 , then ][ˆ]1[ˆ nxannx =+ . 
By expressing x[n + 1] according to x[n] in the expression P[n + 1/n] and in 
considering the statistical properties of v[n], we deduce that 

vRnnPannP +=+ ][]1[ 2 . 
 
Next, in order to produce the recurrence relation, we decompose ]11[ˆ ++ nnx in 

two terms, the first corresponding to the past and the second corresponding to the 
present: ]1[]11[ˆ 1

T ++=++ + nyknnx nnn yβ . We express x[n + 1] and y[n + 1] 
according to x[n] in the formula P[n + 1/n + 1], then write that the optimal estimator 
corresponds to the cancellation of the gradient of this quantity with respect to nβ . 
We deduce from this that nnnn cka γΓβ 1

1 )1( −
+−=  which leads to 

])1[ˆ]1[(]1[ˆ]11[ˆ 1 nnynyknnxnnx n +−+++=++ +  where ]1[ˆ]1[ˆ nnxcnny +=+  
is the one-step prediction of y[n + 1]. So we correct ]1[ˆ nnx +  with a term that 
depends on the prediction error of the measurement. We then write that the 
derivative of P[n + 1/n + 1] with respect to kn+1 must also be zero. After 
calculations, we get: 
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These relations no longer require a matrix inversion or signal correlation. 
 
By following a similar line of reasoning, we show that these equations can 

extend to vectors and a time variant linear system. The equations of the system are 
then as follows: 
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with pn ℜ∈][x , qn ℜ∈][y , and nnn CBA ,,  the known matrixes, u[n] a known 

input, v[n] and w[n] the white noises of covariance ][nvR and ][nwR  known. We 

also assume that the noises are uncorrelated to each other and to the initial state x[0]. 
By applying what we see with the matched filter and adding a term when looking for 
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an optimal estimator to take into account u[n] (we are then looking for ][ˆ nnx in the 

form nnnn
nn α+= yhx

T][ˆ ), we obtain the recurrence relations that are those of the 

Kalman filter. Finding the estimator is carried out in two steps. The first prediction 
step leads to: 
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and the correction step to: 
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This algorithm must be initialized. If we have the first and second order of the 
initial state x[0], we can choose [ ]]0[xE]00[ˆ =x  for initialization and 

[ ]T])0[ˆ]0[])(0[ˆ]0[(E]00[ xxxxP −−= ; we then show that this estimator is non-

biased. Otherwise, we can choose 0]00[ˆ =x and IP α=]00[ with a being rather 

high. There are other ways (least squares, Bayesian approach) to obtain these 
equations and we direct the reader to [AND 79], [JAZ 70] and [SCH 91]. We note 
here that if the state noises and observations are Gaussian, the obtained estimator is 
the best estimator without imposing a linearity constraint. The Kalman filter is 
relatively robust and is being used more and more frequently. For non-linear 
systems, the previous equations can be applied after a first order approximation of 
the system around the current estimated state. 

10.6. Frequency, time, time-frequency and wavelet analyses 

As we have seen before, a signal coming from a sensor can be represented in 
several ways. There are actually almost an infinite number of representations. The 
best-known and most natural is time representation x(t). Another representation that 
is currently being used is frequency representation, written X(の), the passage of one 
representation to another being ensured by the Fourier transform given in equations 
[10.2] and [10.3]. The particular benefit of frequency representation is linked not 
only to the relevance of its content but also to its properties for certain operations as 
the convolution product or cross-correlation products. The time representation of a 
signal directly indicates the variation in the time of the amplitude, while the 



442     Fundamentals of Instrumentation and Measurement 

frequency representation demonstrates the frequency at which these variations have 
taken place. Even if these two representations are equivalent, since for the physical 
signals we assume the Fourier transform always exists and is perfectly reversible, 
the nature of the information that is directly accessible differs radically. The 
essential feature of these two representations is their global nature, which is 
expressed by the infinite length of the integration field: x(t) integrates all the time 
information while X(の) contains all frequency information. 

 
Generally, to make the presentations of different transforms uniform, we assume 

that a representation is obtained by projecting a time signal on an analysis signal that 
somehow is a basic tile or atom of the time-frequency plane: 

sssxxtTx tt d)()(,),( *
,, ωω ψψω ∫

+∞

∞−
==  

This projection operation is linear, so that projecting one linear combination of 
signals is the linear combination of projections. 

 
We can define the orders of magnitude of the dimensions of this atom from the 

variance of the energy of the analysis function and from its Fourier transform so 

that, for an analysis function of normed energy, we have ∫
+∞

∞−
= sss tt d)(

2
,

22
ωψσ  

and ∫
+∞

∞−
= θθΨθ

π
σ ωω d)(

2

1 2
,

22
t . These variables are shown in Figure 10.10. 
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Figure 10.10. Tiling of the time-frequency plane 

 
 

It is easy to demonstrate that the surface of the atom (for an analysis function 
normalized to 1) cannot be below a limit given by the Heisenberg-Gabor inequality: 

21≥ωσσ t . This result fixes the resolution limits of the time-frequency 
representations. It is important to note that this limit is attained for an analysis 
function of the Gaussian model: 

 

)2)(exp()( 24/1
, txxt −−= −πψ ω  
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For the Fourier transform (frequency representation), the analysis function only 
depends on the pulsation and the atom is a band of infinite length and of zero height 
parallel to the time axis: )exp()(., sjs ωψ ω = , )()(., θωδθΨ ω −= , ∞=tσ  and 

.0=ωσ In addition, we can use the same expression for the time representation: 

)()(,. stst −= δψ  and ).exp()(,. θθΨ jt −=  The atom being analyzed in this case is a 

band of zero thickness parallel to the frequency axis 0=tσ and .∞=ωσ  

 
In general, the atom of analysis contains the essential of the representation 

energy. It therefore represents the time-frequency resolution of the energy. Time and 
frequency representations correspond to specific degenerated examples of time-
frequency representation. Most processed signals processed in instrumentation are 
generally not the most appropriate. A true time-frequency representation is 
necessary. These methods are currently done from the standard toolbox of a signal 
processor. In the following sections we present the tools that help us obtain the most 
current time-frequency representations: the sliding window Fourier or short-term 
transform; the wavelet transfer; and bilinear transforms (in particular, the group of 
Wigner-Ville transforms). We will see that the wavelet transform leads more often 
to a time-scale representation than to a time-frequency representation. Our 
presentation will be schematic; the reader wanting a deeper knowledge of these 
questions may consult the works of Patrick Flandrin [FLA 93] and Stéphane Mallat 
[MAL 99]. 

 
These various representations can also be used with digital signals and a certain 

number of efficient processing algorithms have been developed. In this regard we 
emphasize the importance of the fast Fourier transform (FFT) and the discrete 
wavelet transform. 

10.6.1. Frequency analysis 

Frequency analysis of a signal is given by its frequency representation. This can 
be obtained, under a set of conditions specific to signals processed in an 
instrumentation chain (see the beginning of this chapter), by the Fourier transform or 
by one of its variants such as the cosine transform or Hartley transform (these last 
two are real). 

 10.6.1.1. Continuous transforms 

The most important of these transforms is the Fourier transform whose definition 
and main properties were discussed in section 10.2.2. There are many variants of the 
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Fourier transform. Among them, the Hartley transform stays within the domain of 
real functions, since its nucleus is real: sss ωωωψ sincos)(., += . It is defined by: 

∫
+∞

∞−
+= ttttxH d)sin(cos)()( ωωω  

The inversion is obtained the same way because the analysis function is real and 
forms an orthogonal base: 

∫
+∞

∞−
+= ωωω

π
d)sin(cos)(

2

1
)( tttHtx  

The Hartley transform can easily be linked to the Fourier transform by the 
intermediary of its even part ( ) 2)()()( ωωω −+= HHH p  and of its odd part 

( ) 2)()()( ωωω −−= HHH i  which are respectively the cosine transform and the 
sinus transform: so we have )()()( ωωω ip jHHX −= . The Hartley transform is 
usually deduced from the Fourier transform, its real part providing the even part, and 
its imaginary part, the odd part. Although this transform is not much used today, it 
can be advantageous because the analysis is real and the inversion formula is 
identical to direct transform. The cosine transform, seldom used as a frequency 
analysis tool, has a particular importance in another context; its discrete version is a 
good approximation of the Karhunen-Loève transform [BEL 87]. 

 10.6.1.2. Discrete Fourier transform 

In practice, we often calculate a discrete transform rather than a continuous 
transform, either because the signal to be analyzed is sampled, or because computer-
based methods seem more practical than usual analog methods. In both cases, it is 
useful to examine the consequences of this technique for interpreting results in terms 
of frequency representation of the signal (see [DUV 91], [KUN 84] and [PRO 92]). 

 
Calculating a discrete Fourier transform (DFT) means not only sampling (of 

period Te) but also windowing the signal. Windowing is a constraint due to the 
material impossibility of carrying out an infinite number of calculations. A sampling 
in the frequency domain becomes necessary. 

 
Signal windowing is imposed by the choice of the transform length, that is, by 

the number N of samples retained for the calculation. The width of the window is 
then eNTT = . The truncated signal is written )(rect)()( ttxtx Tf =  where )(rect tT  

is the carried function equal to 1 on the observation horizon and to 0 elsewhere. The 
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Fourier transform of the truncated signal becomes ))(Rect(
2

1
)( ω

π
ω Tf XX ∗=  

with, if the observation horizon is centered at the origin in time, 
)T(TT 2sinc)(Rect ωω = . The frequency representation )( fX  of the analog 

signal is thus convoluted with a cardinal sinus. 
 
In such a fashion that the transform is reversible and non-redundant, the 

sampling in the frequency domain should retain N samples per period. The positions 
of the samples also correspond to the zeros of the cardinal sinus function. Under 
these conditions, the discrete Fourier transform of a discrete signal of length N is a 
discrete signal of length N that is written: 

( )∑
−

=
−=

1

0
2exp][][

N

k

NnkjkxnX π  [10.11] 

and we have ( )NnXnX f TD][ = . The reversed transform is expressed by: 
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nx π  

Applying an inversion formula leads to a periodic signal x[n] of period N 
identical to the initial signal of a period. We see from what follows that x[n] and its 
transform are periodic. This transform is also used as a frequency analysis tool for 
digital signals. The properties of the discrete Fourier transform are very close to 
those of the discrete time transform. Plancherel’s theorem is applied by considering 
the circular convolution z[n] that is only represented for the periodic groups x[n] and 
y[n] or periodized with the same period N: 
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and [ ] ][][ nYnXnZ = . The Fourier transform of the circular correlation: 
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 10.6.1.3. Algorithm of the fast Fourier transform 

Calculating the DFT ([BEL 87]; [KUN 84] and [TRU 97b]) by the direct 
application of equation [10.11] requires N2 complex multiplications and )1( −NN  
complex additions. This is a complex algorithm )O( 2N . In 1965, Cooley and Tukey 
developed a method that lead to a series of rapid algorithms that could be adapted to 
a large number of unitary transforms, such as Hadamard, Haar, Fourier, cosine and 
Hartley. These algorithms, which are of complexity ),logO( NN  have the generic 
name of FFT. These are recursive algorithms based on the implementation of a basic 
transform on two data, so that these algorithms have maximum efficiency if the total 
number of data are of a power of mN 2= . 

 
The basic operation, called the butterfly operation, is simply a DFT on two 

samples, one of even range and the other of odd range: 

( )
( )⎪⎩

⎪
⎨
⎧

−−=+

−+=

][2exp][]2/[

][2exp][][

11

11

nXNnjnXNnX

nXNnjnXnX

ip

ip

π

π
  

For a complete transform, there are 2/mN  butterfly operations. Since 
Nm 2log= , the total number of operations is NN 2log)2/(  complex 

multiplications and NN 2log  complex additions. We estimate the gain G of the fast 
algorithm in relation to the direct calculation by only considering that the most 
complex operation is the complex multiplication that represents four real 
multiplications and two real additions. We then have NNG 2log2=  (Figure 
10.11). 
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Figure 10.11. FFT gain according to m 
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10.6.2. Sliding window or short-term Fourier transform 

 10.6.2.1. Continuous sliding window Fourier transform 

As we saw in the introduction to this section, the representation given by the 
Fourier transform has a zero time resolution. The simplest way to improve the 
precision of the analysis is to proceed to a windowing of the function to be analyzed 
before carrying out its frequency analysis. This is what occurs during the sliding 
window Fourier transform (SWFT), otherwise called the short-term Fourier 
transform [FLA 93]. If the windowing function is written )(tg , the analysis function 
of the representation becomes )exp()()(, sjtsgst ωψ ω −= and: 

∫
+∞

∞−

−−== ssjtsgsxxtxT tfg d)exp()()(,),( *
, ωψω ω  

This transform is reversible if the resolution relation of identity is verified, 
which, in this case, is equivalent to a normality condition of the energy of the 

envelope function: ∫
+∞

∞−
= 1d)(

2
ttg . In these conditions, the reconstruction is 

ensured by: 

∫ ∫

∫ ∫
∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−

−−=

=

ωωω
π

ωψω
π ω

dd)exp()(),(
2

1

dd)(),(
2

1
)( ,

stjtsgsxT

stsxTtx

fg

sfg

 

We see that the reconstruction can, in a more general way, be conducted with the 

help of a function ね’ satisfying 1d)()( * =′∫
+∞
∞− ttt ψψ . This representation 

conserves the energy; and we have a theorem analogous to that of Parseval’s: 

∫ ∫∫
+∞

∞−

+∞

∞−
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∞−
== ωωω

π
dd),(),(
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1
d)( *2

ttxTtxTttxE fgfgx  

Each atom of the time-frequency representation is defined following the method 
shown in the introduction. The tiling of the time-frequency plane (see Figure 10.12) 
thus obtained is regular, the dimension of the tiles is constant at all points of the 
plane. Intuitively it is clear that, in these conditions, the resolution will not be 
optimum. In fact, an atom in a low-frequency domain will contain only a low 
number of time oscillations and will thus be badly estimated, while an atom in a 
high-frequency domain contains many more time oscillations than is necessary for a 
good estimation. This leads to a sub-optimal time localization in this situation. 
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We have seen the importance of choosing a Gaussian window that helps in 
obtaining a minimal surface for the basic tile ( 21=ωσσ t ). The transform 
obtained in this case is sometimes called a Gabor transform and the analysis 
functions are called gaborets: )exp()2)(exp()( 24/1

, sjtsst ωπψ ω −−= − . Figure 
10.13 shows the time-frequency representation given by the Gabor transform with a 
phase-modulated signal. In this model, the intensity represents the module of the 
SWFT. The modulating sinusoidal signal is clearly identifiable, which is not the case 
when the frequency representation of this signal is that given by the Fourier 
transform (see Figure 10.14). 
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Figure 10.12. Tiling of the time-frequency plane by SWFT 

 

 
Figure 10.13. Time-frequency representation of a phase modulated signal 

 

time

p
u

ls
e

50 100 150 200 250 300 350 400 450 500

50 

100 

150 

200 

250 



Representation and Analysis of Signals     449 

)( fX  

50 100 150 200 2500

10 

20 

30 

40 

50 

60 

70 

ω  
 

Figure 10.14. Fourier transform of a phase modulated signal 

 

 10.6.2.2. Discrete sliding window Fourier transform 

The representation given by the SWFT is continuous and the tiling of the time-
frequency plane is obviously very redundant. A time sampling (of step t0) and 
frequency (of step の0) limits this redundancy. However, a discrete base cannot be 
constructed and an exact reconstruction is impossible. 

∑∑=
n m

nmfg tmnxTtx )(],[)( ψ with 4122
, )()exp()2)(exp()( ooomn tsjmntss πωψ −−=  

but the analysis does not allow us to find the coefficients of this discrete 

representation: tttxmnxT mnfg d)()(],[ *
,∫

+∞
∞−≠ ψ . 

10.6.3. Wavelet transforms 

A tiling of the time-frequency plane at a constant overvoltage can bring about an 
optimum resolution of the representation throughout the plane. This idea led to the 
development of the wavelet transform (see [DAU 92], [GAS 90], [MAL 99] and 
[TRU 97a]). The analysis function has a time area inversely proportional to its 
spectral area. We easily obtain this result by dilating and translating a mother 
function: ( ) aabttba )()(, −=ψψ or )exp()()(, bjaaba ωωΨωΨ −= . The 
variable a, which has the dimension of the inverse of a frequency is called a scale 
variable, and b is the translation factor. The term in a1  conserves the energy of 
the analysis function despite variation of scale. 

 
If ∆t and ∆の are the dimensions of the time-frequency atom of the representation 

of the scale a = 1, it is easy to show that for whatever scale a, these become 
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tat ∆=σ  and aω∆σω = . This means that the surface of the atom being analyzed 
remains constant throughout the scales but that the tiling of the plane respects the 
conditions of an optimum analysis: a time spread that is inversely proportional to the 
frequency. This is called a time-scale representation. 

 10.6.3.1. Continuous wavelet transforms 

The continuous wavelet transform (CWT) of the signal )(tx  is written: 

t
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Figure 10.15. Time-frequency tiling for the wavelet transform 

 
 

and the admissibility condition or identity resolution: 
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which, after the Fourier transform, becomes: 
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This condition is not very restrictive and a function of normalized energy and of 
zero mean ( 0)0( =Ψ ) suitably located around the source will generally be 
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admissible. We see that, as was the case with SWFT, reconstruction is possible with 
another function )(' tψ  if it verifies the condition: 

1d
)(')( *

=∫
+∞

∞−
ω

ω
ωΨωΨ

 

If this admissibility condition is met by the function analysis, the transform is 
reversible using the following formula: 

∫ ∫
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The time-scale representation conserves the energy: 
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22 dd
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We can cite two examples of functional analyses used for the continuous wavelet 
transform. One is called the Mexican hat: ( ) )3()2exp(12)( 4122 πψ ttt −−= . 
This is simply a second derivation of the Gaussian and the Morlet wavelet formula 

412 )exp()2exp()( πωψ tjtt o−= which itself came from gaborets; however, 
gaborets are not, strictly speaking, admissible (see Figure 10.16). 

 

t

 

t

 
  

Figure 10.16. Mexican hat and Morlet wavelet (real part) 
 
 
Practically, this transform is never calculated analytically and must be estimated 

digitally. In all cases this means it is sampled. This being the case, the analysis is 
continuous and thus redundant. However, contrary to the situation of discrete 
SWFT, the discrete wavelet transform allows for an exact reconstruction; the bases 
for this do exist. 
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 10.6.3.2. Discrete wavelet transforms 

Discretizations in time and frequency are often done by a discrete dyadic 
analysis that aids in constructing orthogonal bases. In these situations, the relation 
between two successive scales is 2 and the translation step will be arbitrarily unitary 
with the scale 1=a ia 2= and inb 2= . From this, we have the discrete wavelet 
transform (DWT): 

∫
+∞

∞−

−− −== xnxtxxnixT ii
niod d)2(2)(,),( *2/

, ψψ  

Y. Meyer [MEY 90] and S. Mallat [MAL 99] propose an especially efficient 
calculation algorithm from this transform and its inverse in the general field of 
multiresolution analysis (MRA). We will present a very general overview. 

 
A multiresolution analysis of a function )(tx  of (R)L2  is made of projections 

)(txAi of this function by a series of infinite spaces of approximations Vi enclosed in 
each other and filling L2 (R). These subspaces are constructed by a simple dilation of 
a subspace Vo that is invariant by translation throughout the entire step. Each 
subspace Vi is completed in its immediately higher container by an orthogonal 
subspace Wi so that the approximation x(t) Ai 1− can be expressed according to the 
immediately larger approximation of the projection x(t)Di of the function on Wi: 

)()()(1 txDtxAtxA iii +=− . The following properties must be verified: 
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Orthonormed bases of the subspaces oV  and oW  are made of two families of 
functions obtained by translating the integer step of two functions )(tϕ  and )(tψ  
called, respectively, the scale function and the wavelet function. The bases of other 
subspaces are made by dilation of the mother functions. 

 
The )2(2)( 2/

, ntt ii
ni −= − ϕϕ with n integer form an orthonormal basis of iV : 

we see that these functions are not admissible wavelets. )2(2)( 2/
, ntt ii
ni −= − ψψ  

with an integer forms an orthonormal basis of iW ; we see that these functions are 
admissible wavelets. 
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All iW  spaces are, by construction, 2 by 2 orthogonal, the direct sum of all these 

subspaces is equal to (R)L2 . This means the ensemble of ni,ψ  for i and n integers 

forms an orthonormal basis of (R)L2 . We therefore have a discrete wavelet basis 

and coefficients i
nd  of the projection of x(t) on the subspaces Wi constituting the 

discrete wavelet transform of x(t): ∑=
n

ninii xxA ,,, ϕϕ , ∑=
n

ninii xxD ,,, ψψ , 

ni
i
n xa ,,ϕ=  and ),(, , nixTxd odni

i
n == ψ . 
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Figure 10.17. Schema for multiresolution analysis 

 
 
The calculation algorithm of these coefficients, proposed by Mallat, is recursive. 

It makes use of linear digital filtering operations. We define two filters by their 
impulse responses ][nh  and ][ng : nnnh ,1,0 ,][ −= ϕϕ  and nnng ,1,0 ,][ −= ϕψ . 
Taking into account the subspaces and their bases, these two filters form a pair of 
quadratic mirror filters: )()( 11 −− −−= zHzzG and ]1[)1(][ nhng n −−= . By 
representing these returned filters ][][

~
nhnh −=  and ][][~ ngng −= , we show that the 
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algorithms of analysis and reconstruction use the filtering operations and processes 
of over-and under-sampling presented in Figures 10.18 and 10.19. 
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Figure 10.18. Recursive algorithm of a multiresolution analysis 
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Figure 10.19. Recursive algorithm of a MRA 

 
 
The iterated application of the analysis algorithm helps determine as many 

wavelet coefficients as necessary – provided we use an initial approximation of the 
signal to be analyzed. This first approximation is not, in general, precisely accessible 
and often we must be content with assimilating the digital signal deduced from 
sampling x(t) following 0

na . 
 
We can show that, in the case of 1 – D, the choice of an orthogonal 

multiresolution analysis leading to linear-phase filters with finite impulse responses 
does not work: if the filters are linear-phase, they will be IIR; if they are FIR, then 
the phase-linearity will not be respected. We see that it is possible to satisfy the two 
constraints if we use non-orthogonal multiresolution analyses. We can, in particular, 
by choosing biorthogonal bases, obtain perfect reconstruction analyses that are well-
localized in the time-scale, space linear-phase, leading to filters with finite impulse 
responses. In this situation, the function analysis is different from the reconstruction 
function and the interpretation of the time-scale analysis will be less clear. 

 
By way of example, we cite two families of filters used in orthogonal 

multiresolution analyses. The first is phase-linear and the filters are IIR. The 
analysis functions are constructed by the orthogonalization of a base of functions  
B-splines, the parameter is of the order N of these splines [TRU 97a]. If N = 0, we 
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find the Haar analysis (very badly frequentially localized); if N = 3, we obtain 
Battle-Lemarié wavelets; and the higher N is, the better the frequency localization is. 
Doppler signal analysis on 5 scales is discussed later as an application example (see 
Figure 10.20). The signals presented are the approximations to different scales 
constructed from the transform coefficients. We can clearly see the development of 
the resolution in the time-frequency plane consecutive to a constant overvoltage 
analysis; the time localization decreases when the frequency analysis decreases. 
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Figure 10.20. Example of analysis of a Doppler signal by cubic spline wavelets 

The second family has been developed by I. Daubechies [DAU 92] and is made 
of an FIR filter. The analysis functions have a finite structure (2N), and the family is 
parametered by N. As size increases, the analysis function becomes regular, and 
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analysis becomes better localized in the time-scale plane. We see that the linear-
phase condition can be met in this context for a sufficiently large structure 
( 10>N ). 

 
Lastly, we point out that the discrete wavelet transform is not invariant in 

translation. 

10.6.4. Bilinear transforms 

In some applications, the relevant variable is not the signal itself but its energy. 
In such cases, we may want time-frequency representations of this variable. Energy 
is by its nature a quadratic variable and transforms produce these representations 
using bilinear combinations of the signal (when it is real). These transforms are 
called bilinear transforms. In the following sections, we discuss several of these, the 
best known being the group of transforms of the Cohen class: the spectrogram; the 
scalogram; the Wigner-Ville transform; and the pseudo-Wigner-Ville transform. 

 10.6.4.1. The spectogram 

The simplest way to obtain an energetic time-frequency representation is to use 
the results of signal representations. The spectrogram is a bilinear transform 
obtained from the sliding window Fourier transform, which gives a real positive 
representation: 

2
** d)exp()()(),(),( ∫

∞+

∞−
−−= ssjtsgsxtxTtxT fgfg ωωω  

 We can see that, when a signal is of limited duration, the transform does not 
preserve the width of the structure, which has been enlarged by the analysis window. 
As well, the spectrogram is a non-reversible transform, so some loss of information 
is at the source of this phenomenon. However, in spite of this problem, this 
representation is one of the most widely used and the range of apodization windows 
used for calculating the Fourier transform (such as Blackman, cosinuisoidal, 
Gaussian, Hamming, Hanning and Kaiser) influence the choice of a window 
function. 
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 10.6.4.2. The scalogram 

The same simple concept is applicable to the wavelet transform. The scalogram 
is the equivalent of the spectrogram for a time-scale representation: 
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The representation is equally positive and real; it also is non-reversible. 

 10.6.4.3. The Wigner-Ville transform 

The Wigner-Ville transform (WVT) is a bilinear transform that makes possible 
another energetic time-frequency representation of the signal [FLA 93]: 

τωτττω d)exp()2()2(),( * jtxtxtWx −−+= ∫
+∞

∞−

 

If we see that the autocorrelation is in fact the mean of the instantaneous 
correlation )2/()2/( * ττ −+ txtx , we observe that the Wigner-Ville transform is 
the Fourier transform of this instantaneous correlation. The Wigner-Ville transform 
can thus be interpreted as a sliding window Fourier analysis in which the window is 
simply the signal itself reversed in time. It is a natural auto-adaptation of the 
analysis window. Consequently, with a low structure function, the representation 
preserves the structure, and there is no time spread. In addition, we see that the 
instantaneous correlation of a real signal is an even function, so the Wigner-Ville 
transform is also real. This transform is reversible and satisfies the marginal 
properties: 

2
)(d),( ωω XttWx =∫

+∞
∞−   

and:   

 
2

)(d),(21 txtWx =∫
+∞
∞− ωωπ   

always preserving the total energy: 
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However, the Wigner-Ville is not positive and its energetic interpretation is 
therefore limited. It corresponds more to a quadratic superimposition principle that 
generates the intermodulation terms in the representation. These terms, which are 
called interferences, disrupt the smoothness of the time-frequency plane: 

)],(Re[2),(),(),( ωωωω tWtWtWtW xyyxyx ++=+  

with ( ) ( ) τωτττω d)exp(22),( * jtytxtWxy −++= ∫
+∞
∞− . These interferences are 

oscillatory terms that are concentrated in the time-frequency plane in the middle of 
the segment that joins the representation centers of x(t) and y(t). The phenomenon is 
illustrated in the figure below that shows the Wigner-Ville transform of the sum of 
the two signals localized in time (100 and 350) and in frequency. We will see that 
the interferences also affect the negative frequency terms. 
 

 
Figure 10.21. The Wigner-Ville transform of a sum of two signals 

 
 
We can decrease the number of these disturbance terms in this way: we use the 

analytic signal deduced from the real signal by presetting to zero the negative 
frequency components of the Fourier transform of the signal. Another way to 
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attenuate the interferences is to smooth the oscillations of the Fourier transform with 
a lowpass filter. 

 
Discretizing the Wigner-Ville transform produces a supplementary constraint; 

the discrete transform obtained is periodic of period ヾ, so in order to avoid spectrum 
folding, the sampler must work at a period that is half the signal sampling period 
required by Shannon’s theorem: )2(exp][][2],[ * kjknxknxnW

k

x ωω −−+= ∑  

 10.6.4.4. The pseudo-Wigner-Ville transform 

 As indicated in the previous section, filtering the WVT can attenuate the 
interference terms and also improve the smoothness of the time-frequency 
representation. The new transform obtained is called the pseudo-Wigner-Ville 
transform (PWVT). This frequency smoothing is equivalent to a time windowing so 
that the PWVT is obtained by a sliding window Fourier transform of instantaneous 
autocorrelation: 
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The filtering window is usually positive and real, so we can propose: 
)2/()2/()( * τττ hhg =  which allows us to introduce a windowed version of x(t): 

)()()( * τττ +=+ txhtxg  and the PWVT is written: 

∫
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This transform is simply the WVT of a windowed signal, and so, contrary to the 
spectrogram, the PWVT preserves the structure of a compact signal. The other side 
of this advantage is that the sampling, as is the case with the WVT, must be at the 
double frequency of the minimum required by Shannon for x(t) to avoid spectrum 
folding. 

10.7. A specific instance of multidimensional signals 

 Processing multidimensional signals is a vast subject which requires long 
developments that are incompatible with the strongly synthetic nature of our 
presentation. Here, we will limit ourselves to the few paragraphs that follow, 
providing some facts and possible research paths. 
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Multidimensional sensors, especially those producing images (2D) are being 
used more and more in instrumentation. CCD technology is important in these 
developments (see [GON 92] and [HOR 93]). However, the processing capabilities 
brought by the miniaturization of electronic components, and the wide availability of 
microprocessors, have also contributed to the use of these methods. Data furnished 
by ultrasonic sensors, thermal sensors, magnetic probes and olfactory sensors are 
spatialized. Three-dimensional (3D) images are also produced by topographical 
systems used widely in medical contexts, but also in industrial settings (X rays, 
PET-scan, ultrasounds, scanners and MRI, to give some examples). We will discuss 
nD+1 for time sequences of spatial signals: time, by its irreversible nature, appears 
as a variable. These developments have repercussions on processing methods, and 
the simple transposition of techniques developed for standard time signals are 
insufficient for processing the specific properties of multidimensional data. 

 
Among the fundamental difference between the two types of signals, we must 

first note the impossibility of good planning for data nD. This has obvious 
consequences for transposing recursive algorithms; the causality constraints, strictly 
speaking, disappear but implementing the algorithms must take into account the 
order in which the operations are possible (see the problem of recursive 2D filters). 
This absence of a natural order of data reading emphasizes the need to use 
algorithms that respect this symmetry; the problem of phase linearity of the filters 
used for imaging is a good example of this constraint. 

 
Multidimensional signals are often intrinsically low. CCD sensors, for example, 

furnish finite dimension images that are known in advance, with the signal to be 
processed usually available in its whole in the image memory. The problems must 
be taken into account and a processing can never be completely invariant for 
translation. Image sensors often work through spatial sampling of data before they 
are measured. As such, we can say, in many instances, that the primary signal is 
digital and the means of processing the signal must be approached in this 
perspective. 

 
We also find the usual problems of multidimensional signal processing 

sometimes transposed: finding differences becomes looking for contours, and the 
concept of segmentation [COC 95] is at the heart of imaging problems. 

 
 In certain cases, 1D processing tools can be transposed directly and naturally. 

We mention here separable filters in which the impulse response is simply the 
product of two monovariable functions. Here, the 2D filtering operation is 
conducted twice in the form of 1D filtering following lines, then columns. The 
Gaussian filter is a good example of a separable filter. Correlation function 
calculations are also separable, as well as time-frequency analyses (Fourier, 
wavelets, etc.). 
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However, there are operations and techniques which specifically deal with 
multidimensional processing [KUN 93]. There are non-separable filters, geometric 
transforms, segmentation methods by active contour [BLA 97], mathematic 
morphology [COS 89] and Markovian field modelization [GUY 93], among others. 
Here, we briefly mention the specific case of signal sequencing processing; n spatial 
dimensions more than time. Specific tools are used in this case, since the time 
dimension has particular properties. 
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Chapter 11  

Multi-sensor Systems: Diagnostics and Fusion 

11.1. Introduction 

 Generally, sensors are used to acquire relevant information about an environment 
for purposes of knowledge and control. In this chapter, the “control” aspect refers to 
a sensor’s capacity to respond to specification needs of surveillance and command. 
The development of this capacity leads to the creation of an acquisition chain in the 
sensor itself which, although it is an essential element, becomes just one basic 
element in the overall system. 
 
 Actually, beyond obtaining an “image” or “cartography” of an environment, 
resolving the problem requires diagnostics. This can include, for example, a 
classification of the situations, then a decision leading to an action taken on the 
environment. Here we refer to the environment in the broadest sense, not only the 
external elements but also the internal elements of the sensors themselves. 
 
 As for the term “diagnostics”, usually rather broadly defined, it refers to 
classification issues that focus on three important problems: 

– finding weak or degraded system modes; 

– signal segmentation (or sometimes detecting a specific transient element in a 
signal); 

– signature classification or, in a broader sense, formula recognition. 
 

                              
 Chapter written by Patrice AKNIN and Thierry MAURIN. 



464     Fundamentals of Instrumentation and Measurement 

Different steps appear in the conception and implementation of a diagnostic or 
control system; they require choices and optimizations associated with evaluation 
criteria. 

 
Choosing the right sensor is obviously of crucial importance; the quality of the 

obtained cartography depends on it. The image of the environment must have 
sufficient precision and reliability to be used in subsequent processing. To meet this 
requirement, a network of sensors called a multisensor is the best way to increase 
and improve the overall performance of an observation system. 

 
The first solution consists of using redundancy, by multiplying the number of 

sensors of the same modalities (with the same variables being observed) working in 
parallel. Three sensors, observing the same variable, after a “majority vote” decision 
make up the basis of this approach, which increases reliability. 

 
On the other hand, increasing the relevance and the quality of the cartography 

usually leads to linking sensors of different modalities (different observed 
variables). For example, in a situation where we want to predict the presence of ice 
on roads, knowing the temperature and the hygrometric degree of the best 
predictions will not help us learn anything about the temperature. 

 
Once defined by the transducer or transducers used for learning about the 

physical phenomenon or, more generally, the environment, we must go on to 
analyze the information they provide to extract the variables that are relevant to the 
diagnostic task. The term “information” is used here in its broadest sense, since it 
can refer to signals, images, numerical or symbolic content, to mention a few 
usages. The work of parameterization generates and chooses variables, which then 
help us decide: 

– if a system is or is not functioning in degraded mode; 

– if a transient is or is not present in a signal; 

– if the perceived object belongs or does not belong to a specific class. 
 
If the information is available from precise, complete measurements, the 

decision phase will effectively integrate techniques for combining data, and the 
decisions made will lead to reconfiguration actions, of moving or changing sensors, 
even to an active modification of the environment. 

 
We can see that a pragmatic approach is necessary, centered on sensor choice, 

variables, decision and data fusion techniques. The nature of the problem is 
summarized in Figure 11.1 and encompasses three disciplines: signal processing; 
artificial intelligence; and statistics. 
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Figure 11.1. Diagnostic processing chain 

 
 
This chapter will present these themes in the following order: 

– representation space, parametrization and selection; 

– Bayesian and non-Bayesian classifications; 

– probabilistic and possibilistic fusion. 
 
We cannot cover all existing techniques in depth, but rather offer a range of 

solutions with comparisons between these solutions whenever possible. We direct 
the interested reader to reference works for more detailed implementation 
techniques. 

11.2. Representation space: parametrization and selection 

11.2.1. Introduction 

The goal of parameterization (see Figure 11.1) is to find a set of variables 
extracted from raw data that have both a high descriptive potential of signals and a 
high insensitivity to certain transformations recorded as invariants of the problem 
(homotheties if the gains are modified, translation if offsets appear; or possibly 
symmetries). This variable set constitutes the representation space. 

 
In diagnostics, where we must generally classify the observed situations into 

different categories, other constraints guide the choice of this space: the observations 
belonging to the same class must be grouped as much as possible in the 
representation space. Inversely, the observations coming from different classes must 
be situated in regions separated from each other. In spite of a good level of initial 
expertise with a given application, sometimes a certain number of variables 
considered as “obvious” turn out to be relatively irrelevant to the expected 
diagnostic. 

 
The choice of a representation space also requires a thorough consideration of 

the practical problems of constructing test bases, which are necessarily of limited 
size. This is related to the “curse of dimensionality” described by the mathematician 
Bellman [BEL 61] who showed that the number of observations required for 
developing and perfecting a program grow exponentially with the dimension p of the 
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representation space. Practically, we often must limit p in the representation space 
by using feature selection so that the n observations at our disposal can carry out a 
reasonably good tiling of the space. This limitation leads to diagnostic algorithms 
that require less calculation time, an especially important parameter for reactive 
systems. 

 
The work is thus divided into two stages: parameterization, then variable 

selection, but these stages are in fact joined. After a brief summary of the 
parameterization currently in use, the following sections will offer a range of 
variable selection methods. 

11.2.2. Signal parametrization 

Generating descriptive variables is greatly influenced by whether or not we 
understand and can control the type of physical phenomenon being observed and the 
type of sensor being used. 

 
When there is significant a priori knowledge, heuristic parameterizations are 

often used; these are chosen for their known relevance. These parameterizations can 
group together variables of very different types, such as peak-to-peak values, useful 
values, Kurtosis factors, mid-height widths, power spectral densities or wavelet 
transforms [ZWI 95]. In the case of image information, these variables can be 
contrast measurements, entropy measurements, first or second order histograms, 
measurements of local curves or air [THE 99]. These heuristic parameterizations 
compress the initial information of a certain number of features judged relevant by 
the expert. 

 
Unfortunately, this kind of expertise is not always possible – especially for a new 

problem – and it is often difficult to predict in advance which variable will be 
important. Compressing information a priori cannot really be done, at least in the 
same terms. It is better to use more complete modelizations of initial information 
which will help in processing unknown degraded modes or a new class of objects. 

 
Processing signals and images can be done using many different techniques, 

among them being: AR, MA and ARMA modelization; Fourier descriptors; time-
frequency analyses; polynomial approximations; splines; and Prony models. All 
these techniques provide, for each observation, a variable set, such as coefficients of 
ARMA filters, serial Fourier coefficients, or polynomial coefficients. The 
dimensions of this variable set are usually significant, but before trying to select 
from among these variables, certain expressions must be represented. 
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The observation basis will be written X. This includes n lines corresponding to n 
observations x1, x2, ..., xn and p columns corresponding to p variables X1, X2, ..., Xp 

obtained after signal parameterization: 
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[11.1]

 

For each of these observations of value in RP, we have one desired output yi of 
the decision system. This output corresponds to a class designation and takes values 
of between 0 and K – 1 for a problem general to K classes Ω0, Ω1, ..., ΩK–1: 

Y  =  y1, y2 ...yn[ ]t
 with yi ∈ 0,  1  ...  K -1{ }  [11.2] 

First and second order statistics will later be utilized. The center of gravity in the 
scatter plot is a vector of p components: 

    
m  =  m1 , m2 ... mp[ ]  with  mi = E X i[ ]=

1
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xki
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∑  [11.3] 

The covariance matrix will be written V: 
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This matrix of dimensions p × p is symmetrical and positive. Its values are 
therefore real positive or negative. They will be written as そi. 

 
The total variance of the scatter plot is represented by: 

σ2 =
1

n
x k − m

2

k =1

n

∑  [11.5] 

We can also show that this total variance is equal to the trace of V [SAP 90] 

σ2 = σk
2

k =1

p

∑  [11.6] 
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We see that this quantity is independent of the coordinates system chosen and 
that in the particular axial system made of vectors specific to V, this total variance is 
expressed by: 

σ2 = λk
2

k =1

p

∑  [11.7] 

In order to suppress irrelevant variables that may appear, or variables that are 
over-coordinated between themselves, and also to limit the curse of dimensionality 
(see section 11.2.1), we must choose a subset of a variable set X1, X2, ..., Xp. The 
following sections will present in some detail several good selection methods in a 
supervised context in which a database, which we assume to be exhaustive, is 
available for designing a diagnostic system. 

11.2.3. Principle component analysis  

This method of information analysis was first proposed by K. Pearson in 1901. 
Basically, principle components analysis or PCA determines the pr axes of a 
subspace or RP that best represents the basic data X after projection. The 
“representivity” criterion is an inertia type criterion: 

J =
1

n
xi − proj(x i)

2

i=1

n

∑  [11.8] 

In PCA, we try to make J minimum, so that the projected scatter plot is as 
undeformed as possible; that is, the variance of the projected scatterplot is then 
maximum. 

 
We can easily show [SAP 90] that the subspace we are looking for is generated 

by the pr vectors proper to Ui of the variance-covariance matrix V (see equation 
[11.4]) related to its first pr proper values そi ranged in decreasing order. The axes 
defined by these proper vectors are called inertia axes or principle axes. 
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 From the example of the 2D illustration in Figure 11.2, we can easily see that 
1D space that least deforms the initial scatterplot is the linear regression line that 
merges with the first inertia axis. In any dimension space, the PCA determines 
through linear combinations the initial p variables Xi of the new centered variables 
Ui of the maximum and uncorrelated variance between them. 

 
The PCA can be used for two purposes: to reduce the representation space of the 

data by projecting the data in a space of reduced dimensions, or simply to aid in 
visualizing the observation bases of large dimensions. In analyzing data, it is 
important to visualize the correlations between the initial variables and the variables 
coming from the PCA that “summarize” a large part of the basic inertia. The 
correlation between the initial variable Xi and the principle component Ui is 
calculated with the following expression [LEB 97]: 

    
R( X i ,U j ) =

λ j  U j (i)

σ i

 [11.9] 

where Uj(i) is the ith component of the vector related to そi. 
 
 The visualization of these correlations is traditionally done with correlation 

circles in which each initial Xi variable is represented by a coordinate point: 

    
R( X i ,U j), R( X i ,U k )( ) 

This visualization helps us understand the links between each Xi variable with 
the principle inertia axes (the principle plane j = 1, k = 2 is the most used). These 
points are contained in a center circle 0 and of radius 1, whatever i and j are: 

    
−1 ≤ R( X i ,U j) ≤1  

Looking at the example in Figure 11.3, we observe that Xi is correlated to the 
first principle axis, Xj is anticorrelated to the second principle axis, and Xk has no 
strong correlation with these two axes. 
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Figure 11.3. PCA correlation circle 

 
 
The PCA is a relatively powerful data analysis method, allowing many ways of 

visualizing information [SAP 90]. With the PCA, we can verify the independence of 
descriptive signal variables. It offers a new representation base made by a linear 
combination of initial variables. The axial hierarchy is established by using an 
inertia criterion that favors variables presenting the highest variances. 

 
If we want to reduce the number of initial variables by using the PCA, we then 

face the problem of choosing the pr dimension of the representation subspace. 

 
 

Figure 11.4. Choosing a dimension of the projection subspace using a PCA 
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Usually this choice is made by visualizing the range of values belonging to the 
matrix of variance-covariance ranged in decreasing order. By using equation [11.7], 
each value raised to the square “explains” part of the total variance of the cloud of 
data points X. Choosing a threshold percentage of the curve represents the 
accumulated sum of the squares of the values that help us obtain the value of pr (see 
Figure 11.4). The existence of a break in the value set also helps us set the threshold. 

 
As we can observe, this choice is made without taking into account the class Y 

labeling that is available to us. This is doubtlessly the biggest drawback to using the 
PCA as a method for selecting variables for diagnostic purposes. Actually, nothing 
shows that the retained variables will be the most relevant ones for separating 
classes. With the example shown in Figure 11.5, the basis of data X is divided in two 
groups (corresponding, for example, to the class of correct modes and to the class of 
faulty modes). The principle axis Il (the one possessing the highest inertia) is not 
evidentially the most important axis for distinguishing between the two classes; 
choosing the axis Id seems much better. 

 
 These considerations lead to implementing other technologies that take into 

account class labeling. 
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Figure 11.5. Principle inertia axis and class separation 

11.2.4. Discriminate factorial analysis 

The work of Fischer and Mahalanobis (1936) first explored this statistical 
method. Discriminate factorial analysis (DFA) is both a descriptive method and a 
method of classifying data. In this section, we will only discuss the first method. 

density 

density 
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Figure 11.6. Centre of gravity and variance matrix internal to classes 

 
 
To present the basic principles of DFA, some equations must be represented. For 

each っi of X, it is possible to define a center of gravity and a variance-covariance 
matrix by using equations [11.3] and [11.4]. These are expressed, respectively, mΩi 
and VΩi. nΩi is the number of observations of X belonging to the class っi (see Figure 
11.6). 

 
Using the variance-covariance matrices belonging to each class, we can represent 

the idea of an interclass variance matrix: 

Vin =
1

n
 nΩ i

VΩ i

i=0

K -1

∑  [11.10] 

The interclass variance matrix produces the average of the matrices proper to 
each class. It can be interpreted as an overall measurement of the concentration of 
classes around their center of gravity. If all the classes were reduced to their center 
of gravity, their matrix trace of interclass variance would be zero. 

 
Inversely, the interclass variance matrix measures the dispersion of the centers of 

gravity of classes: 

Vex =
1

n
 nΩi

i=0

K -1

∑ mΩ i
− m( )t mΩ i

− m( ) [11.11] 

The closer the K centers of gravity are to each other, the weaker the interclass 
matrix traces are. 
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Analogous to Huygen’s theorem in mechanics, we show that the total variance is 
equal to the average of the variances plus the variance of the averages [GAI 83]: 

V = Vin + Vex  [11.12] 

We can easily understand the importance of these two matrices for diagnostic 
problems. The DFA tries to find a projection into the subspace of Rp that minimizes 
Vin (concentrated classes) while maximizing Vex (classes far from each other). The 
main result of this method [SAP 90] is that the subspace we are looking for is 
generated by the pr vectors belonging to the matrix Vin

-1Vex linked to its first values 
ranged in decreasing order. The choice of pr is made in exactly the same way as with 
the PCA method. However, we can show that the ranking of Vex is at most K-1 [GAI 
83]; this means we must limit pr to pr≤ K-1. 

 
A more detailed analysis also shows that the DFA is nothing less than a PCA on 

the K centers of gravity of classes having a non-Euclidian metric (the Nahalanobis 
distance: ||u||2 = ut Vin

-1u [GAI 83]). 
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Figure 11.7. Illustration of the Fischer criterion 

 
 
A simplified version of this method, called the Fischer criterion, consists of 

measuring the compactness of classes not on the principle axes of the matrix     Vin
−1

Vex  
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but on the source axes by making the hypothesis that they are orthogonal. For a 
problem of two classes, for example, we calculate the quantities: 

    

F X i( )= mΩ 0
(i)− mΩ1

(i )( )2
nΩ 0

σΩ 0

  2
(i)+ nΩ1

σΩ 1

  2
(i)

 [11.13] 

The larger this quantity, the better we can discriminate it from the axis i. For 
example, in Figure 11.7, the variable Xi is more discriminate than the variable Xj. 

 
This sub-optimal method does not allow us to combine the initial variables to 

obtain new, more relevant variables. Selecting variables using this criterion is 
therefore very simple to do; a version of equation [11.13] can be extended to a 
situation in which K classes also exist [DOC 81]. We should avoid using this simple 
method when the complete variance-covariance matrix structure is not close to being 
a diagonal structure. 

 
DFA is often more useful than the PCA for diagnostic problems and for formula 

recognition. This is because it takes into account the fact that elements of the 
observation base appear in classes. However, the interclass variance matrix used is 
an averaged matrix that only imperfectly represents the internal variance matrices of 
each class, especially if the classes are very disparate. Added to this theoretical 
difficulty is a practical one that occurs during the estimation of matrices Vin and Vex, 
mainly if the observation basis contains few examples. 

11.2.5. Selection by orthogonalization 

The selection method described in this section uses the linear regression 
formalism. With the representations proposed in section 11.2.1, choosing a linear 
regression model imposes the following matrix relation between the input and 
output variables: 

Y = XP + ε  [11.14] 

P contains the regressors obtained by orthogonal projection of Y on the 
information base X. This projection is carried out in the least squares sense in order 
to minimize the modelization error ε. We remember that the output vector Y contains 
the class labeling of the base examples. 
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The relevance of each variable – that is, of each X column – is estimated by 
measuring the output vector in a space of dimension n, with n being the number of 
base examples [CHE 89]. The lower the angle between Xi and Y, the better this 
variable “explains” the output. In the example shown in Figure 11.8, the variable X3 
is the most relevant. 

 
 

Figure 11.8. Illustration of the OFR method for n=3 and p=5 

 
 
The selection method by orthogonalization (or the Orthogonal Forward 

Regression (OFR)) works by a classification of initial variables, from the most 
relevant to the least relevant. However, so as to not count the same information 
several times, we iteratively eliminate the variables remaining to be classed. The 
Gram-Schmidt iterative orthogonalization procedure is used for this. 

 
During the first iteration, we choose the variable Xi1, the most colinear to Y: 

( ) ( )22

2 21

.
cos , max

 

t
k

i
k p

k

X Y
X Y

X Y≤ ≤

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

1
 

During the second iteration, we first orthogonalize all the remaining variables, as 
well as the output so it is perpendicular to Xi1 

Y 2( )  =  Y  −  
X i1

tY

X i1

t X i1

  and  Xk
2( )  =  Xk  −  

X i1

t X k

X i1

t X i1

 

with 11  and k p k i≤ ≤ ≠  
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The procedure ends at the iteration p, when all the variables have been classed. 
 
The choice of the reduced dimension pr of the representation subspace is carried 

out, as with the PCA method, by choosing a threshold for the estimation of the 
contributions of the subspaces successively constructed. This contribution is written: 

o j( ) = cos X i k

(k)
, Y( k)( )2

k =1

j

∑  

The OFR method is very simple to implement. The underlying linearity 
hypothesis is quite complex, but the variables retained by the method are pertinent 
[STO 97]. In addition, the curve visualization o(j) (see Figure 11.9) easily gives us 
an idea of the significance of the non-linearities of the problem as formulated; if the 
problem is completely linear, o(p) = 1. Observing a sufficiently high value of o(p) 
(0.75 < o(p) < 1, for example), a posteriori justifies using this method. 

 
The reader will find very complete developments in the variable selections in 

texts such as [DUD 73], [FUK 72], [KIT 86], and [KRI 82]. 

 
Figure 11.9. Choice of reduced dimension in the OFR method 

 
 

11.3. Signal classification 

11.3.1. Introduction 

From the parameterization/selection phase, we use observations belonging to an 
optimized representation space, from which we implement the diagnostic 
procedures. The labeling of a base being assumed known, section 11.3 will only 
present techniques of supervised classification. 
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After having introduced the Bayesian classification approach, first we will 
discuss in some detail a Bayesian parametric method, then k methods and Parzen 
nuclei. 

 
The last two methods to be presented come from the domain of Bayesian 

classification; they are first of all decision trees and neuron networks, of either 
multilayered perceptron types or radial base functions. 

11.3.2. Bayesian classification  

11.3.2.1. Optimum Bayes classifier 

Statistical classification has a long history that dates back to the work of Thomas 
Bayes (1763). His formula helps in calculating the probability of creating a class by 
knowing the observation x is created in a given space. The Bayes formula, given 
below, is a consequence of definitions and properties of conditional probability 
laws. Its practical importance is significant: 

( ) ( ) ( )

( ) ( )
0

i i

i

j j

j

x
x

x
=

Ω Ω
Ω =

Ω Ω∑
K-1

p  p
p

p  p

   (Bayes formula) [11.15] 

p(Ωi|x) is the a posteriori probability that the observation represented by x that 
belongs to っi, p(っi) is the a priori probability of the class っi and p(x|Ωi) is the 
probability that the observation equals x knowing that it belongs to the class っi.  

 

Applying the Bayes formula assumes that the range of classes is complete, or 
that – since we are dealing with classification – each observation only belongs to 
one class and that the group of classes entirely covers the representation space Rp. 

Example: what is the probability that every person measuring 1.60 meters in height 

is a woman? 

Responding to this question brings us back to estimating the following 
conditional probability: p(っF｡x = 1.60). If the person is chosen randomly from a 
population, and if we suppose that this population is half women and half men, 
applying the Bayes formula gives us: 

( ) ( )
( ) ( )

1.60 0.5
1.60

1.60 0.5  1.60 0.5

×

× ×

Ω
Ω =

Ω + Ω
F

F
F H

p
p

p p
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With this simplified model of the distribution of the heights of men in France, a 
Gaussian centered at 1.75 meters, and a deviation of 0.15 meters, and for women a 
Gaussian centered at 1.65 meters and a deviation of 0.15 meters, applying the Bayes 
formula finally gives us: 

( ) 1.61 0.5
1.60 60.9%

1.61 0.5 2.52 0.5

×

× ×
Ω = =

+Fp  

If now, we choose a person from among, say, a national legislative body, and not 
from among the French population, the probabilities change, if we assume that this 
legislative body is composed of 10% women and 90% men. Applying the Bayesian 
rule in this case gives us: 

( ) 1.61 0.1
1.60 14.8%

1.61 0.1 2.52 0.9

×

× ×
Ω = =

+Fp  

We notice that the answer to the question is significantly influenced by the 
probabilities of classification. With the formula, we can even calculate that a 
legislator has 50% chance of being a woman, if this legislator is less than 1.20 
meters tall. Of course, these models are very simplified. 

 
To construct a classifier, we must complete the Bayes formula with a decision 

rule. The decision rule of Bayes leads to an optimum classifier and is expressed as 
follows: 

( )      such that∈ ⎡ ⎤Ω Ω⎣ ⎦=0...K-1
   Max pi j

j
x x  

The final choice of class is carried out by comparing the a posteriori 
probabilities of belonging to all the classes and by choosing the highest one. By 
observing that the denominator of equation [11.15] is the same for all the conditional 
probabilities, irrespective of class, the Bayes rule can also be formulated in the 
following way: 

( ) ( )        such that xi jj
j

x ∈ ⎡ ⎤Ω Ω Ω⎢ ⎥⎣ ⎦=0...K-1
   Max p  p   (Bayes rule) [11.16] 



Multi-sensor Systems: Diagnostics and Fusion     479 

 

Figure 11.10. Illustration of the Bayesian decision rule for two classes 

 
 
Figure 11.10 shows the Bayesian rule in one dimension. On the first curve, we 

see that the decision threshold is placed at the equality point of probabilities a 

posteriori, as the Bayes rule shows. The line of this threshold (respective to the left), 
the observation will be modified to class 1 (respective to class 0). The poorly 
modified observations of class 0 (respective to class 1) are regrouped in the area A0 
(respectively in the area A1). With a threshold differently arranged, as in the second 
curve in Figure 11.10, the sum of these two areas can only increase (see areas A’0 
and A’1). This explains that the Bayes rule must also be called a minimum cost rule. 

 
This decision rule gives an equivalent weight to all classification errors. 

Practically, we perhaps penalize certain errors more harshly (for economic or 
security reasons, for example). We direct the interested reader to more specialized 
texts for variants of the Bayesian decision: [DUB 90] and [THE 99]. 

 
The Bayesian classifier cannot always be used directly; it requires knowing the 

probabilities of belonging to classes, as well as the internal probabilities densities of 
classes. To resolve these difficulties, many classification methods have been 
developed. Some of these, including derivation methods, parametric and non-
parametric methods, will be discussed at the end of this chapter. The Bayesian 
decision rule still has great theoretic importance; it provides a standard for 
comparison for all these methods. 
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11.3.2.2. Parametric Bayesian classification 

This method provides a model for probability densities and a priori probabilities 
with parameters that we adjust with a learning base. The most up-to-date model is 
that of the classes distributed according to the Gaussian multidimensional laws: 

( )
( )

( ) ( )1

1/ 2/ 2

1 1
exp

22
i i i

i

t

i p
x x m V x m

V

−
Ω Ω Ω

Ω

⎛ ⎞Ω = − − −⎜ ⎟
⎝ ⎠π

p  

The parameters mΩi and VΩi are determined on the learning base. Lacking 
complementary information, the probabilities will be chosen equal: 

( ) i

i

n

n

ΩΩ =p  [11.17] 

In this specific case of a parametric model, applying the rule of Bayes’ decision 
(see equation [11.16]) will lead to [DUB 90]: 

( ) ( ) ( ) ( )( )1
  

j=0...K-1
   such that Min Log 2Log p

j jj j

t

i jx x m V x m V−∈ Ω ΩΩ Ω
⎡ ⎤

Ω − − + − Ω⎢ ⎥
⎣ ⎦

 

The first term expresses the removal of the observation to the center of the class j 
with a Mahalanobis metric. The second term is a corrective term linked to the 
dispersion of of the class j. The final term takes into account the a priori probability 
of the class j in the decision rule. If the classes are equiprobable and of the same 
dispersion, the Bayes rule is reduced to an attempt to find the minimum distance 
between the classes’ centers. 

11.3.2.3. Method of the k-nearest neighbor 

This non-parametric method was introduced by Fix and Hodges in 1951. Instead 
of using a probability density model, here we try to locally estimate these features 
by observing the nearness of each observation. We determine the volume v centered 
on x which incorporates k observations of the learning base. Once we have 
determined this volume, we count the number ki of the neighbors belonging to each 
class. The probability density of the class i is then estimated locally by:  

( )ˆ    0...K–1
( )

i

i

i

k
x i

n v x×Ω

Ω = =p  with ki
i=0

K -1

∑ = k  
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Choosing a specific metric influences the form of the volume v; the volume is a 
sphere with a Euclidian distance, a cube with a Manhattan distance (||u|| = ∑|ui|) and 
an ellipsoid with a Mahalanobis distance. 

 
 If we choose, a priori, a probability like the one in [11.17], the Bayes decision 
rule then becomes very simple: 

  
j=0...K-1

      such that Maxi jx k∈ ⎡ ⎤Ω ⎣ ⎦    

 The observation is allocated to the class that is most represented among the 
closest k neighbors. We can demonstrate that the error rate of the method tends 
towards that of the Bayesian classifier if k tends to infinity (the error is two times 
higher if k = 1) [KRI 82]. 
 
 Unfortunately, this method, which is very easy to use, takes a long time to 
calculate; with each new observation to be classed, we must calculate the distances 
between each observation and all the observations of the learning base. 

11.3.2.4. Parzen nuclei 

 A dual method of the method described above was developed more recently by 
Rosenblatt in 1956 and Parzen in 1962. It fixes a given volume around the 
observation and counts the number of examples of the learning base that it contains, 
class by class. The simplest volume is a hypercube of side h with a volume hp. In 
this way, we directly estimate the probability densities with the formula: 

( ) ( )
ˆ    0...K 1

i

i

i p

k x
x i

n h×Ω

Ω = = −p  [11.18] 

 Applying this method often leads to obtaining very noisy probability densities, 
the results of densities that are too low in the learning base in certain zones of the 
representation space. Parzen proposed smoothing these densities by using nuclei 
[PAR 62]; these “gently” modify the term ki(x) shown in equation [11.18], instead of 
an all-or-nothing counting: 

ˆ p x Ωi( ) =
1

nΩ i
× hp

ϕ
x − x

k

h

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

xk ∈Ωi

∑  [11.19] 

l is the nuclei function we must verify: ϕ( x) ≥ 0  and ϕ (x)
R

p
∫ dx = 1 . 
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 Finally, by the bias of this function, each observation of the class I intervenes in 
estimating p(x|Ωi), not those situated in the immediate proximity of x. Gaussian 
nuclei are most often used. The adjustment parameter h then plays the role of the 
gap type of the nuclei; the more h increases, the more the density estimation will be 
smoothed. 
 
 By supplementing a choice concerning a priori probabilities (for example, in 
equation [11.17]), the decision rule in equation [11.16] can then be applied for 
modifying the class. 

11.3.3. Decision trees 

 The first work on this non-Bayesian method dates from the 1960s. According to 
experts, tree classification brings about a series of interleaved tests with a learning 
phase that helps define the structure. These tests operate successively on each 
descriptive variable and divide the representation space into the most homogeneous 
regions possible relative to the classes. Figure 11.1 gives an example of a tree 
structure in a situation with two dimensions and three classes. 

 
 

Figure 11.11. Example of a decision tree in two dimensions 

 
 
 There are many ways to construct this type of tree [GUE 88]. Their construction 
principles are often the same. Using the complete learning group, we must look for 
all the variables, with the best thresholds separating the base into two groups that are 
as homogenous as possible relative the classes. We then have the threshold – and its 
linked variable – which produces the best among the best separations. We then 
develop the two branches obtained. With each of them, we apply the same procedure 
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as before, but applied to the part of the learning base that corresponds to the 
threshold as defined above. 
 
 Each branch develops this way up to the point when the observations verify all 
the tests that already belong to the same class. This sub-group is then termed “pure”. 
 
 To measure the efficiency of a separation, entropic criteria or “rate of impurities” 
criteria can be used. For example, the impurity measurement of a group E can be 
obtained by using equation [11.20] where p(Ωi|E) corresponds to the proportion of 
representatives of the class i in the group E. We can verify that the impurity 
measurement of a pure group is zero: 

( ) ( )
,

i j

i j i j

×

≠

= Ω Ω∑∑I(E) p E  p E  [11.20] 

In our case, the placing of a threshold α on a variable xi leads to measuring the 
linked impurities of the two subsets issues from the test: 

( ) ( ) ( ) ( )I( ) p .p p .pr i s i r i s i

r s
r s

x x x x

≠

= Ω > Ω > + Ω ≤ Ω ≤∑∑α α α α α  [11.21] 

For classification, the procedure is very simple; we carry out a new observation 
on the majority class represented in the extremity of the branch where the 
observation is located. 

 
The main importance of this method is that the order of the tests allows us to 

take a decision in an optimized way according to the zones of the space where the 
observation is located. Modifying a particular class only requires a low number of 
tests, and only a few variables need be introduced; but for other classes, the set of 
tests can be longer. Overall, the calculation time required is low. 

 
What is more, knowing all the descriptive variables is not necessary if the 

observation is in a zone where the modification is simple. Here, the parametrization 
time is less (but in industrial control settings, the cost of certain controls is quite 
high). 

 
The problems with implementing decision trees lie in choosing the development 

level of each branch. If the sub-groups obtained are not pure, the tree structure can 
be developed up to the point where each extremity only contains a single 
observation! The correct classification rate is then 100% for the learning base but of 
course, the generalization capacity of the tree is poor. 
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In the domain of decision trees, current research is being done on “pruning” 
techniques applied to trees whose branches are too long, while looking for more 
efficient subtrees [LEB 97]. 

11.3.4. Neural networks 

Neural networks (NN) have undergone important developments since the mid-
1980s. The work of Rumelhart and Le Cun [RUM 86] is fundamental to this new 
trend, since with it we can implement efficient and fast algorithms for learning 
multilayered NNs. However, as early as the 1940s, McCulloch and Pitts had begun 
working on elementary NNs. 

 
The “biological analogy” is the source of the name, but today, NNs are no longer 

seen as simple mathematical operators. Rather, their popularity is due more to their 
universal approximate and inexpensive qualities [BIS 95] than to their potential to 
reproduce the functioning of the human brain! 

 
Several families exist. In this chapter, we will discuss the most widely used, 

supervised-mode structures: the multilayer perceptron (MLP) and the Radial Basis 
functions network (RBF). We direct the reader to other texts dealing with other, less 
widely used networks [HAY 94] [HEY 94]. 

11.3.4.1. Basic neurons 

Neural networks are assemblies of basic blocks; we will discuss two types of 
these. The first type is a basic neuron called a “scalar product”. 

 
Figure 11.12. “Scalar product” type of basic neuron 

 
 
 This neuron carries out two operations. The first operation is the scalar product 
between the input vector and a vector w called the weight (we see that the input 
vector includes a constant so that an adjustable bias may be introduced). 
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 The second operation is an activation throughout of a non-linear function with 
many variances: a threshold function (Rossenblat’s perceptron, 1960); linear 
(Adaline de Widrow’s model, 1960); and a hyperbolic tangent. The sigmoidal 
function is also a widely used function (see Figure 11.13). 
 
 This “scalar product” neuron carries out a linear separation of the input space in 
two regions, whether or not the activation function being used is linear or non-linear. 
 
 An example is given in Figure 11.13 in two dimensions. Here we see the line of 
the plane for which S = 0.5 and which defines two half-planes. The neuron output is 
indicated in gray. We can understand the importance of using this type of operator in 
a classification problem of two classes; for example: 

00.5S x ∈< ⇒ Ω  and 10.5S x ∈> ⇒ Ω  

S=0

S=0,5

0

1

φ u( )

u

S =
1

1 + e
− w0 +x1w1 +x2w2( )

g

w0 + x1w1 + x2w2 = 0

x1

x2

 
Figure 11.13. Linear separation in two dimensions 

 
 
 The second type of neuron is called a basic “distance” neuron. This time, the 
neuron (or nucleus) calculates the distance, with a metric A, between the input vector 
and a center C, before injecting the result into the activation function, which is 
usually Gaussian. The possible partition of the space is then quadratic. An example 
is given in Figure 11.15 in two dimensions. 

 

S = 0.5
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Figure 11.14. Basic “distance” neuron 

 

 

Figure 11.15. Quadratic separation in two dimensions 

 The space partitions remain in a rudimentary form when one neuron is 
introduced. More complex partitions necessarily occur when several neurons are 
linked in a network. 

11.3.4.2. Mulilayered perceptrons 

 The linkage most often used is called a multilayered perceptron. This structure 
combines the neurons of the “scalar product” into several interconnected layers, as 
shown in Figure 11.16. 
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Figure 11.16. Architecture of multilayer perceptrons 
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Figure 11.17. Partition examples in two dimensions  

with mulitlayer perceptrons 

 
 
 Regulating the weights of all the layers is done in supervised mode, thanks to the 
retropropagation algorithm of the gradient which uses the derivation of the 
prediction error of the outputs calculated on the group of the learning base, and 
propagated in layers from the output to the input [HEY 94]. 
 
 The parameters of the network’s architecture that require adjustment are the 
number of layers and the number of neurons per layer. This means that the space 
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partitions brought about by using these networks are no longer simple hyperplanes 
(2D lines), but much more complex forms. 
 
 Figure 11.17 gives examples in two dimensions of possible partition speeds with 
two or three layers and one output. 

11.3.4.3. Radial base function networks 

 This second architecture, called a radial base function network, connects basic 
“distance” neurons to an input layer and the “scalar” product” neurons to an output 
layer (see Figure 11.18). 
 

 
 

Figure 11.18. Architecture of a radial base function network 

 
 
 Adjusting this kind of network is more complicated than with multilayer 
perceptrons [OUK 99]. Adjustments must deal with the number and position of the 
nuclei of the first layer, the widths of the Gaussians linked to these nuclei, as well as 
the weights of the output layer. The type of distance must also be selected 
(Euclidian, Manhatten, Mahalanobis, among others). 
 
 Even with few nuclei, the partitions of the space are of widely varying speeds, 
depending both on the type of distance being used and the weights of the output 
layer. Figure 11.19 gives several examples of partitions that are possible with three 
nuclei. 
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Figure 11.19. Partition in two dimensions with radial base function networks 

 Choosing a type of neural network must obviously be done by considering the 
general form of the classes in the representation space, combining linear separations 
(see Figure 11.17) adapted to multilayer perceptrons, and combining quadratic forms 
(see Figure 11.19) that are adapted to radial base function networks. 

11.3.4.4. Neural networks and classification 

 Contrary to the Bayesian approaches, NNs used for classification purposes tend 
to a posteriori directly approach the probabilities of belonging to classes. At the 
moment of learning, the outputs representing the classification of base examples. 
 
 For situations in which there are more than two classes, two approaches are 
possible. Even if the network has as many outputs as there are classes, each output 
in the end represents the a posteriori probability of belonging to the class i knowing 
x: p(Ωi|x). This approach is called global classification. The retained class will be the 
one with the highest associated output. 
 
 Let us assume that we subdivide the global problem of K classes into two classes 
and construct sub-classifiers dedicated to each sub-problem. Several subdivision 
techniques are possible [PRI 94]; the simplest is shown in Figure 11.20, where K 
sub-classifiers are represented by the separation of each class among the  
K – 1 others. In this simple subdivision instance, the retained class will also be the 
one with the highest output of the associated sub-classifier. 
 

 
 

Figure 11.20. Global approaches and by partition of a K class classification 
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 The partition approach is very useful in practice. Following the aphorism “divide 
and rule”, the complete problem is divided and an individualized adjustment of each 
sub-classifier is possible according to the relative difficulty of its sub-problem. 
Learning sub-classifiers are independent of each other, which often improves 
convergence speeds. This approach even allows personalized selection of input 
variables for each sub-classifier, since some variables prove to be relevant for the 
separation of a specific class [OUK 98]. 
 
 We should remember that the partition approach can be used for all types of 
classifiers and not only for neural networks. 
 
 After having presented some supervised classification methods (Bayesian and 
non-Bayesian), in section 11.4 we will discuss some issues dealing with information 
fusion. 

11.4. Data fusion 

11.4.1. Introduction 

 Up to now, we have discussed information coming from sensors, and sensors 
themselves, without taking into account their intrinsic qualities. Statements such as 
“variable No. 1 is more certain than variable No. 2”, “it is more certain”, “sensor A 
breaks down more often than sensor B” express these intrinsic qualities. 
 
 The first objective of data fusion is to help manipulate this kind of knowledge, 
always taking into account the changing nature of a dynamic environment. Data 
fusion may be seen as a process which helps us integrate information coming from 
multiple sources so as to produce more specific and relevant data about an entity, an 
activity or an occurrence. 

11.4.1.1. Modelizing imperfections and performances 

 A key point here is the characterization and modelization of knowledge in terms 
of imprecision and incompleteness, as well as the level of the sensor and of the 
diagnostics. 
 
 Imprecision characterizes a quantity. “The security distance between two 
vehicles on the highway must be large” or “The distance must be around 200 meters 
to 100 km per hour” are both imprecise statements of information. A quantification 
of this imprecision on the content of the information, of the knowledge, or of the 
measurement is obviously necessary. 
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 Uncertainty characterizes a quality. “The road might be icy” is a uncertain 
statement that qualifies the information in relation to its truth. Information can be 
both imprecise and uncertain as in the statement “The road may be icy about 10 km 
from here”. 
 
 Incompleteness characterizes the fact that knowledge, information or a fact is 
either not inaccessible or not especially accessible. The absence of a hygrometric 
measurement to estimate the presence of road ice or the masking of obstacles in a 
radar view are examples of incomplete information. 
 
 Finally, these are performances of an overall system that matter. Among them, 
reactivity plays a basic role in “real time” systems when the reaction time of the 
system to a change in the environment is a very significant parameter. Thus, with the 
car, a system that detects obstacles must be able to react to a pedestrian in its field of 
vision; that is, to provide information to the driver in less than 100 ms. The 
reliability of the system is also a factor of utmost importance. In our example we 
give an example of limiting or cancelling the false alarm rate. 
 
 How can we improve performances of these systems? In particular, how can we 
improve the reliability of information, the quality of the “cartography”, diagnostic 
and decision-making precision, all the time respecting cost and reactivity 
constraints? 

11.4.1.2. Different fusion techniques and levels 

 Several levels of fusion can be defined according to the nature and semantic of 
the information processed. This means that we would not process the values coming 
form a tachymeter the same as we would symbolic knowledge such as that relative 
to signalization panel for vehicles.  
 
 There are three main types of this fusion. 

– low-level fusion of basic data. An example of this is image retiming; 

– numerical fusion. This has to do with quantified data or information. An 
example of this is infrared laser telemetry used in radar; 

– symbolical fusion, used in knowledge and forms of expertise. An example of 
this is the introduction of expert advice that has a strong added semantic value. 

 
 Whatever its level, the issue is to know what should be fused. What are the 
sensors or information sources? How these should be fused, and which techniques 
should be implemented? 
 
 Among data fusion techniques, we can very generally distinguish three large 
classes: 
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– standard probabilistic techniques (Bayesian fusion) and non-standard 
techniques (the evidence theory of Dempster-Shafer); 

– least-squares techniques (PPV, PDAF, optimization); 

– techniques that are not part of the above two (flow and principle possibilities 
theory). 

 
All these theories (probabilistic, evidence theory, possibilities theory) modelize 

the knowledge of a source of information on a basic referential composed of the 
group of important hypotheses. The models that manipulate the data, as well as the 
fusion techniques used, depend on the type of imperfections that we need to take 
into account. This means the fusion will not be the same with imprecise data or with 
uncertain data; the formal scope will be different. 

 
We point out two stages in fusional processing of data: the fusion itself and the 

decision. As with our discussion in earlier sections, here we will only speak of the 
decision or the diagnostic procedures concerning the hypotheses (class homologues) 
constructed on the data or measurements (signal homologues). 

 
We will only discuss in detail three techniques of fusion that present a gradation 

in possible modelization of the imprecision and uncertainty [HEN 88]. These 
techniques also can be used in low level data processing as well as in symbolic 
processing. 

11.4.2. The standard probabilistic method 

 Data fusion very often uses the Bayesian method of decision (see section 11.3.2). 
Here we use a well-established formalism that has theoretical and experimental 
advantages [PEA 88]. 
 
 The problem consists of determining the configuration of the environment 
observed in K configurations (hypothesis or occurrences) possible. More exactly, we 
must decide on the most possible hypothesis, taking into account the imprecisions of 
different redundant and/or complementary measurements. Using the same equations 
as in the earlier sections, we write っi the ith hypothesis among the K listed and x the 
measurement or observation carried out. 

11.4.2.1. Modelization, decision and hypothesis choice  

 In a situation with one sensor, choosing a hypothesis is made by opting for one 
that maximizes its a posteriori probability p(Ωi|x) [11.16]. In other words, having 
observed the measurement x provided by the sensor, we choose the most probable 
hypothesis – the one that gives the highest vale of p(Ωi|x). If we assume the group of 
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K hypotheses to be exhaustive in providing configurations of the environment, we 
can use the Bayes formula (equation [11.15]), written again below, to calculate the 
p(Ωi|x) 

( ) ( ) ( )

( ) ( )
0

i i

i

j j

j

x
x

x
=

Ω Ω
Ω =

Ω Ω∑
K-1

p  p
p

p  p

 

 In this approach, we modelize the sensor by the probability p(x|Ωi) that the 
observation equals x, knowing that the hypothesis っi is verified. We then speak of 
the likelihood that the measurement x is conditional to the hypothesis っi. A 
Gaussian distribution is often used to modelize the sensor’s measurement. 
 
 For example, let us assume a detection system using an ultrasonic sensor with 
binary response, is triggered in the presence of obstacles in its field of vision: x = 0 
(no triggering) or x = 1 (triggering). Assuming that we have two hypotheses:  
Ω0 = no obstacles, Ω1 = presence of an obstacle. So, let us lastly assume that the 
sensor has a false alarm rate of 1% (p(1|Ω0) = 0.01) and a non-detection rate of 5% 
(p(0|Ω1) = 0.05). The sensor will then be modelized by the matrix of the conditional 
probabilities shown in Table 11.1. The importance of choosing an example with two 
hypotheses with a measurement that can take only two states is that it allows us to 
calculate the group of related conditional probabilities. 
 

p(x|Ωi) Ω0 Ω1 
x = 0 0.99 0.05 

x = 1 0.01 0.95 

 
Table 11.1. Matrix of conditional probabilities p(x|Ωi) 

 
 
 Let us now assume that an a priori knowledge of the environment in which the 
vehicle moves helps us to estimate the probability of the presence of an obstacle up 
to 0.1% (p(っl) = 0.001, thus p(っ0) = 0.999). Constructing the conditional probability 
matrix using the Bayes formula gives us Table 11.2. 
 
 

p(Ωi|x) Ω0 Ω1 
x = 0 0.999 5.10-5 

x = 1 0.913 0.087 

 
Table 11.2. Conditional probability matrix p(Ωi|x) 
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 We then observe that the decision rule (equation [11.16]) which chooses the 
hypothesis giving the highest value of p(Ωi|x) leads to retaining, whatever the 
observation, the “non-obstacle” hypothesis! We see how Bayesian information 
fusion can modify this result. 

11.4.2.2. Multisensor Mayesian fusion 

 Suppose we now have two independent sensors that verify: 

( ) ( ) ( )1 2 1 2p , p p
i i i

x x x x×Ω = Ω Ω  

 The decision is made this time by choosing the hypothesis that a posteriori 
maximizes the conditional probability. We know that x1 and x2 are calculated with 
equation [11.22]. Under these conditions, the two sensors both have an information 
fusion coming from them both: 
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 Now we look at the above example but use two identical ultrasonic sensors. This 
time, we will obtain the conditional probability matrix shown in Table 11.3. 
 

p(Ωi|x1,x2) Ω0 Ω1 
(x1,x2) = (0,0) 0.999 0.001 

(x1,x2) = (0,1) 0.995 0.005 

(x1,x2) = (1,0) 0.995 0.005 

(x1,x2) = (1,1) 0.1 0.9 

 

Table 11.3. Conditional probability matrix p(っi|x1,x2) 

 

 

 The decision rule shown in equation [11.16] chooses the same conclusion as 
before (no obstacle), except when there is concomitant triggering in the two sensors 
(x1, x2) = (1, 1). The effective fusion of information of the two sensors modifies the 
result significantly. 
 
 Applying this method is simple but assumes: 

– a priori knowledge of probabilities p(っi) that can be re-actualized during 
processing); 
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– statistical independence of the measurements provided by the sensors; 

– knowledge of their probability model p(x|Ωi). 
 

 This poses a problem. The measurement of these probability laws is on one hand 
far from being easy, and on the other hand can lead to different results in a learning 
context than in a reality context. It also assumes that we have an exhaustive 
knowledge of the group of possible hypotheses. 
 
 If Bayesian fusion analyzes sensor imprecisions, it does not allow us to take into 
account their reliability or, more generally, the uncertainties in their model. 
 
 In addition, if we have a sensor incapable of distinguishing between two 
hypotheses っ0 and っ1, its probabilistic model will be p(x|Ω0 or っ1). Using the 
Bayesian approach to fusion means equally distributing the probabilities between the 
two hypotheses and then choosing p(x|Ω0) = p(x|Ω1). In conditional cases, only the 
probability values that are a priori p(Ωi) will decide the hypothesis choice, the 
sensor response no longer intervening in this choice. To avoid this difficulty, the 
Dempster-Shafer theory of evidence introduces masses that allow us to characterize 
the confidence degree of a measurement, of a model, of a hypothesis, and of a group 
of hypotheses. 

11.4.3. A non-standard probabilistic method: the theory of evidence 

 This theory is based on the work of A.P. Dempster and was formalized by G. 
Shafer [SHA 76]. It uses as a starting point the group E made of K hypotheses っi 

considered as exclusive and exhaustive. It also assumes that one of these hypotheses 
corresponds to each observed situation. The group E is called the frame of 

discernment. 

11.4.3.1. Mass sets of a source 

  To take into account the uncertainties of the information provided by a sensor 
and its possible inability to perceive certain hypotheses, we introduce the group 2E 
of all the possible combinations of the hypotheses, combinations made by the 
intermediary of the connector “or”, which is also written ∪. The group consists of 
2K– 1 elements Ai . Thus, with a group E of three hypotheses Ω0, Ω1 and Ω2 (see 
Figure 11.21), we construct the following group 2E: 

A0 = Ω0   A1 = Ω1   A2 = Ω2 

A3 = Ω0∪Ω1   A4 = Ω0∪Ω2  A5 = Ω1∪Ω2 

A6 = E = Ω0∪Ω1∪Ω2 
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A0 , A1 and A2 are called singletons. 

A2=ž 2

A0=ž 0 A1=ž 1

A6=E

A4 A5

A3

 
Figure 11.21. Ensemble of hypothesis combination for  

a 3D discernment frame 

  
 
 The theory of evidence introduces a mass function m(.) representing the 
likelihood of hypothesis combinations. This function is defined for the group 2E and 
is of value in the interval [0,1]. It verifies: 

( )

( )
K2 2

=0

m 0  with  the empty group

m 1j
j

A
−

∅ = ∅

=∑
 [11.23] 

 In the previous example, m(A3) will represent the likelihood that can be 
attributed to the hypothesis Ω0∪Ω1, without discernment possible between Ω0 and 
Ω1. 
 
We call elements focal, Ai having a non-zero mass. We say that if all the focal 
elements are singletons, then the function m(.) corresponds to a probability. 
 
 Practically, the mass sets generated each time the sensor is tested easily allows 
us to express the indiscernability between hypotheses. When there are three 
hypotheses, if m(E) = 1, then m(A0) = m(A1) = m(A2) = 0. This extreme situation 
expresses total uncertainty: the sensor is incapable of discerning between the 
different hypotheses of the discernment frame.  
 

A0=Ω0 A1=Ω1 

A2=Ω2 
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 The major advantage of this theory is that it allows for conjoint evaluation of 
hypotheses, modelization of uncertainties and the indiscernability between 
hypotheses – all factors that the Bayesian theory cannot handle well. Uncertainty 
cannot be expressed in Bayesian theory, except by an equidistribution of 
probabilities for the different hypotheses. 

11.4.3.2. Example of mass set generation 

 Using the theoretical framework discussed above helps us quantify the related 
uncertainty to a sensor’s functioning. For each measurement x delivered, a 
distribution of masses, which take into account the uncertainty of its functioning, 
will be represented. Later in this chapter, we will systematically express equations in 
one dimension to simplify them (x = x). Obviously, all the results shown can be 
extended, for a given representation space, into any dimension. 
 
 Let us look at a binary response sensor C1, x = 0 (no triggering) or x = 1 
(triggering) in the context of two hypotheses: っ0 = no obstacle, っ1 = obstacle. The 
sensor is assumed to function perfectly. When x = 1, we use, for example, the 
following mass set: 

mC1(Ω0) = 0.2  mC1(Ω1) = 0.8  mC2(Ω0 ∪ Ω1) = 0 

 The value mC1(Ω0 ∪ Ω1) = 0 characterizes the certainty as to the sensor’s C1 
functioning. The distribution of the two other masses and mC1(Ω0) et mC1(Ω1) 
characterize the precision of the measurement x = 1. 
 
 Let us now assume a second sensor C2 whose functioning is less reliable. We 
introduce, to characterize this uncertainty, a coefficient g to the interval value [0, 1]. 
We then attribute to the mass mC2(Ω0 ∪ Ω1) the value 1 - α. With α = 0.9 and still 
using the example of a response x = 1, we will use the following mass set: 

mC2(Ω0) = 0.18  mC2(Ω1) = 0.72  mC2(Ω0 ∪ Ω1) = 0.1 

 The value mC2(Ω0 ∪ Ω1) = 0.1 characterizes the uncertainty of the sensor’s 
functioning. The distribution of the two other masses mC2(Ω0) mC2(Ω1) remains, in 
our example, in the same proportions as before. 
 
 It is important to remember that the mass sets are not fixed entities and they can 
be changed at each new measurement. 
 
 The fusion itself of the mass sets coming from several sensors will be discussed 
in section 11.4.3.4. 
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 We can also adjust the modelization of a sensor of its functioning is assumed to 
be certain in a given environment and uncertain in another environment. This means 
we can know perfectly the conditional distribution function p(x|Ωi) of the 
measurements in the framework of hypothesis っ0 and imperfectly in the framework 
of っ1. We then construct two different mass sets following the underlying 
hypothesis [APR 91]. These mass sets can also be fused. 

11.4.3.3. Credibility and plausibility 

 For a given mass set, we should bear in mind that m(Ai) does not express the 
likelihood of Ai particularly well. The group of elements of 2E included in Ai also 
contributes to our knowledge of Ai. In Figure 11.21, we see that the likelihood of A5 
must take into account the mass m(A5) but also the masses m(A1) and m(A3), since 
A1 ⊂  A5 and A3 ⊂  A5. For that, we introduce the credibility function defined on the 
group 2E and of interval value [0, 1], such as: 

( ) ( )Cr m
B A

A B
⊆

= ∑  [11.24] 

 The credibility expresses the minimum likelihood veracity of hypothesis A. 
 
 On the contrary, it is good to have an idea of the maximum likelihood that is 
possible for the veracity of hypothesis A. For that, we introduce the plausibility 
function represented for the group 2E of interval value [0, 1], such that: 

( ) ( ) ( )Pl 1 Cr m
B A

A A B
∩ ≠∅

= − ¬ = ∑  [11.25] 

where ¬A represents the complementary group of A for the group 2E . We see that if 
the only elements Ai having a non-zero mass (focal elements) are the singletons, 
then: 

( ) ( ) ( ) ( )Cr Pl m pi i i iΩ = Ω = Ω = Ω  

 Finally, we should remember that generating a mass set linked to an information 
source is a complex task, requiring a priori knowledge of the nature of the source 
and its environment. This generation should take into account uncertainties and the 
underlying hypotheses of the context, as discussed in section 11.4.3.2. 

11.4.3.4. Fusion of mass sets 

 Fusion by the Dempster-Shaffer combination rule [11.26] allows us to reinforce 
the increase associated with hypotheses whose sources are in accord, and to 
attenuate the increases associated with hypotheses whose sources are in disaccord. If 
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we have two sources, and thus the mass sets mC1 and mC2, the fusion is expressed by 
the following rule: 

m( Ak ) = m C1
(Ak )⊕ mC2

(Ak ) =
1

1 − H
  mC1

(Ai) m C2
( Aj )

Ai ∩A j = Ak

∑  [11.26] 

 1/(1-H) represents a normalization coefficient in which H characterizes the 
degree of conflict between the sources and is expressed by the relation: 

H =  mC1
( Ai )  mC2

(A j)
Ai ∩ Aj =∅
∑  

 H = 0 shows that the two sources are never in contradiction. This normalization 
allows the mass set obtained by fusion to verify the definition [11.23]. This rule 
generalizes when there are several or many sources and/or sensors, always 
respecting the properties of commutability and associability that are indispensable to 
all fusion mechanisms (see [JAN 96] and [SHA 76]). 
 
 Below we will define the decision rule constructed from the fused mass set. 

11.4.3.5. Decision rule 

 The decision phase is based on the definitions given in section 11.4.3.3. We will 
retain the singleton hypothesis っ1 as the most plausible among the K singletons of 
the discernment frame: 

( ) ( ){ }
0...K-1

  such that  Pl max Pli i k
k=

Ω Ω = Ω  [11.27] 

11.4.3.6. Example 

 Let us look again at the example of the two binary response sensors working in 
the framework of two hypotheses っ0 = no obstacles; っ1 = an obstacle. Assuming 
that they independently analyze the same scene with different modalities, one of the 
sensors is ultrasonic, the other infrared. The ultrasonic sensor is assumed to have 
reliable functioning. The infrared sensor’s functioning is assumed to be less well 
known (g ≠ 1). Once the mass set and response functions of the sensors are set up, 
and taking into account the value attributed to g for the infrared sensor, it is possible 
to fuse the sets coming from the two sensors and to make a decision by retaining the 
most possible hypothesis. Assuming that the ultrasonic sensor provides the response 
xus = 1 (an obstacle is present). We then construct the mass set: 

mus (Ω0) = 0.2  mus (Ω1) = 0.8  mus (Ω0 ∪ Ω1) = 0  
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 We assume that the infrared sensor provides the response xir = 0 (no obstacle) 
and that the reliability of its functioning is characterized by g = 0.9. We then 
construct the following mass set: 

mir (Ω0) = 0.72  mir (Ω1) = 0.18  mir (Ω0 ∪ Ω1) = 0.1 

 The two sensors give contradictory results but the mass fusion allows us to 
decide. Applying the rule in [11.26] and the representation [11.25] provides the 
result given in Table 11.4 that chooses the “presence of an obstacle” hypothesis. 
 

 Ω0 Ω1 Ω0 ∪ Ω1 

US xus = 1 0.2 0.8 0 

IR xir = 0 0.72 0.18 0.1 

Fusion 0.42 0.58 0 

Plausibility 0.42 0.58 0 

 
Table 11.4. Specific example of the fusion of two mass sets 

 
 We see that the mass set of the infrared sensor with uncertainties (and which 
responds to “no obstacle”) cannot counterbalance the response of the ultrasonic 
sensor. We also see that, in this simple situation, plausibility is directly equal to the 
mass set resulting from fusion. 
 
 Tables 11.5 and 11.6 show the results of the fusion obtained for the two previous 
sensors in all possible response configurations. 
 

mus / mir Ω0 Ω1 Ω0 ∪ Ω1 

x = 0 0.75 / 0.72 0.25 / 0.18 0 / 0.1 

x = 1 0.2 / 0.2 0.8 / 0.7 0 / 0.1 

  
Table 11.5. Mass sets of two sensors 

 

mus ⊕  mir = Pl Ω0 Ω1 Ω0 ∪ Ω1 

(xus , xir) = (0,0) 0.9 0.1 0 

(xus , xir) = (0,1) 0.53 0.47 0 

(xus , xir) = (1,0) 0.42 0.58 0 

(xus , xir) = (1,1) 0.09 0.91 0 

 
Table 11.6. Fusion of two mass sets 
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 We notice that in cases where there is contradiction, the ultrasonic sensor does 
not impose its choice because of the distributions of the masses on singletons. 
 
 Simple situations with two hypotheses, shown in the examples, imperfectly 
illustrate the complexity of the credibility-plausibility approach. In this theoretic 
framework, working out more complex cases (in terms of number of hypotheses) 
helps us imagine very elaborate decision strategies that can lead to rapid choices of 
non-singleton elements of the hypotheses’ spaces. 
 
 An extension of these fusion methods is also possible with a non-exhaustive 
discernment frame [JAN 96]. A possible problem is the constraint on the mass sum, 
which must be equal to 1; this can be the case when we have very little information 
from the source. 
 
 To open up the range of fusion possibilities by limiting constraints, we can, 
while still using the methods described above, use the theory of fuzzy groups and 
extend it to fusion: the theory of possibilities. 

11.4.4. Non-probabilistic method: the theory of possibilities 

 The theory of possibilities was introduced by D. Dubois and H. Prade [DUB 87]. 
It is based on the fuzzy subgroups of L.A. Zadeh [ZAD 65] [ZAD 78]. It allows us 
to leave the probabilistic framework of many fusion approaches. It is particularly 
well-adapted to a situation where we know very little about the information sources 
(sensors, experts, etc.). 
 
 Modelization of imprecise or uncertain information is based on the functions 
represented in the observation space and the interval value [0, 1]. These are called 
ownership functions; they express the available knowledge of the different 
propositions or hypotheses of the discernment frame. 
 
 an ownership function µΩi(x) will be linked to the hypothesis っi. This function is 
represented on the group of values possible for the variables. The value µΩi(x1) 
characterizes the veracity of the hypothesis Ωi for the observation x1. Figure 11.22 
shows, in a 1D case, examples of ownership function for two hypotheses. 
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Figure 11.22. Examples of ownership functions 

 
 The imperfections of a sensor and how well the person performing the experiment 
knows the sensors can also be modelized by functions of the same type. Here, we 
speak of a distribution of possibilities. We assume that a sensor delivers the 
measurement xm of a real variable xr. The information we have about the value of the 
measured variable is expressed by a distribution of possibilities written as πm(x): that 
the variable is equal to x, knowing that the measurement is xm (see Figure 11.23). 

x

πm x( )

xm

 
Figure 11.23. Distribution of possibilities linked to a measurement 

 
A completely imprecise sensor is expressed by: πm(x) = 1 ∀x∈R. The existence 

of an ideal sensor and the knowledge of this perfection is expressed by the 
distribution of possibilities: πm(xm) = 1 and πm(x) = 0 ∀x ≠ xm . 
 
 The analogy with a probability p(x|xm) is only graphic, since no constraint is 
imposed on the probability distribution. 

11.4.4.1. Operations on ownership functions and possibility distributions 

 We can define operations on functions µΩ(x) or πm(x) such as inclusion, 
intersection, union and complementing. This helps express logical operations on 
hypotheses or on information relative to variables. The “and” and the “or” or their 
corresponding symbols ∪ and ∩ can be expressed, for example, by [11.28]: 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

max ,

min ,

1

A B A B

A B A B

A A

x x x

x x x

x x

∪

∩

¬

µ = µ µ

µ = µ µ

µ = −µ

 [11.28] 
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11.4.4.2. Possibilistic multisensor fusion 

 Let us look at a situation where there are reliable but imprecise sensors all 
observing the same variable. Each will be modelized by a distribution of 
possibilities relative to this variable. The fusion of information will then take the 
form of an intersection of distributions of possibilities, using the operator ∩. 
 
 If these sensors are not completely reliable, especially if the information they 
provide is discordant, we can take this discordance and uncertainty of this information 
into account by using the conjunction of distributions using the operator ∪. 
 
 Figure 11.24 illustrates these two types of fusion when there are two sensors. 
πC1(x) and πC2(x) are the distributions of possibilities of the values of the variable x 

observed by two sensors C1 and C2. 
 
 All intermediary forms of fusion are certainly possible [BLO 96], which justifies 
sophisticated supervision techniques, according to a priori knowledge.  

 
Figure 11.24. Possibilistic multisensor fusion 

 

 As for hypotheses, the same types of fusion can be used. This means that the 
ownership function µΩ1 ∪ Ω2(x) characterizes the veracity of the hypothesis 
Ω1 ∪ Ω2. 

11.4.4.3. Diagnostics and fusion 

 From a distribution of possibilities, obtained from a sensor or from a fusion 
operation between sensors, it is possible to characterize the information we have 
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about a variable. To do this, we introduce two functions, the possibility degree Π 
and the necessity degree N represented on a subgroup S of the possible variable 
values: 

( ) ( )( )
( ) ( )( ) ( )

Sup 

N Sup 1 1

x S

x S

S x

S x S

∈

∉

Π = π

= − π = −Π ¬
  [11.29] 

 These functions evaluate the confidence we have in the statement: “The variable 
has a value belonging to the group S.” 
 
 If now a hypothesis Ωi can be expressed by an ownership function, it is easy to 
construct, by extension, a possibility degree linked this time to a hypothesis Ωi, 
knowing the distribution of possibilities of the variable. Formula [11.30] shows the 
calculation of Π(Ωi). 

( ) ( ){ }ii っ
x

ぃ っ = Sup  min µ ( ),ヾ ( )mx x   [11.30] 

 If Π(Ωi) is obtained from a possibilistic multisensor fusion, its value evaluates 
the confidence that we have in the veracity of hypothesis Ωi, taking into account the 
measurements carried out and fused. 
 
 A diagnostic operation is thus possible by discriminating the hypothesis 
corresponding to the maximum possibility degree: 

( ) ( ){ }
0...K 1

  such that  Sup  i i k
k= −

Ω Π Ω = Π Ω   [11.31] 

 To illustrate this, let us imagine an obstacle detection situation in a road or 
highway. We assume these obstacles are of two types: “car” or “truck”. To validate 
one or the other of these hypotheses, a sensor (or a fusion of sensors) gives us a 
measurement (for example, of volume of vehicles). A distribution of possibilities 
will be linked to the measurement; we express it as: πm(x). In addition, our two 
classes have their own ownership functions: µtruck (x) and µcar (x). 
 
 We can evaluate the degree of possibility of each hypothesis (truck or car) and 
finally decide by using the rule of maximum possibilities (equation [11.31]). Figure 
11.25 shows this mechanism. 
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Figure 11.25. Example of fusion and possibilistic diagnostics 

 We should observe that, on the figure, the maximum possibility degree rule gives 
a “car” result different from the “truck” result which would have been obtained from 
the raw measurement xm by using as a decision rule the maximum of the ownership 
function. So: 

( ) (truck)m mcarπ > π   while  truck car( ) ( )m mx xµ > µ  

 Probabilistic fusion allows us to analyze the measurements provided by sensors, 
cameras [DEV 94], and temporal information about sequences of events [NIF 97] 
directly. The advantage of this theoretical framework is that it gives us many choices 
among fusion mechanisms that can lead to supervised control on a hierarchic level 
of the symbolic type [DUB 97] [ZAD 92]. The drawback is in the difficulty of 
mastering the obtained results. This means that fusion laws cannot be associative, 
cannot even be used in cases where there are more than two sources. Decisions 
coming from them may not agree with the operator’s intuition. 

11.4.5. Conclusion 

 Data fusion can take various forms. The reader will find a more thorough 
coverage of different fusion techniques in [ABI 92], [TS 94] and [TS 97]. 
 
 Generally, we can say that if only imprecision has to be controlled, we can 
choose a Bayesian fusion. If fusion must deal with both uncertainties and 
imprecisions, but if we have information of a symbolic nature, we can choose the 
theory of evidence.  
 
 On the other hand, if the data are numeric, we choose possibilistic fusion; in 
particular if we do not have a reliable probabilistic modelization of the sensors. 
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Constraints are relaxed when we go from Bayesian fusion to theory of evidence 
fusion, then to theory of possibilities fusion, but it can also lead to systems in which 
it is difficult to regulate parameters. 

11.5. General conclusion 

 This chapter has presented some of the aspects of diagnostic problems with the 
help of multisensor systems: choosing a representation space of signals and in 
particular the reduction of it dimension; Bayesian and non-Bayesian classification 
techniques; and fusion of probabilistic and possibilistic data. 
 
 All these topics have been extensively researched and developed. The recent 
refinement of connectionist techniques, logical flow and the theory of evidence, to 
name several, have all made their contribution. 
 
 We have also noticed a recent convergence of interests, even of methods, on the 
part of a scientific community that had previously been divided into areas of 
specialization such as data analysis (in statistics), form recognition (in artificial 
intelligence) and neural networks (in signal processing). This synergy has resulted in 
many new theoretical and practical developments such as vocal and cursive 
handwriting recognition, aids to detecting driving problems, analysis of 
malfunctions in industrial settings, and medical imagery. 
 
  A certain number of problems encountered during the implementation of a 
diagnostic system can be mentioned here. Other chapters of this book have covered 
themes strictly related to those covered in this one. So, the geographic distribution of 
these sensors, whether the system being used is in an industrial workshop or a 
system that perceives specific targets, poses the problem of choosing software and 
material architecture. It can be centralized or distributed. If distributed, we need 
sensors that integrate an “intelligence” that helps them make local diagnostics. 
Chapter 12 will discuss these problems.  
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Chapter 12  

Intelligent Sensors 

12.1. Introduction 

 Since the end of the 1980s, many articles have appeared in scientific [BER 87], 
[GIA 86] and technical [BLA 87], [JOR 87] books using the term “intelligent”, a 
word often associated with sensors, transmitters, actuators and instrumentation. In 
this chapter, we will define an intelligent sensor as the linkage of one or several 
measurement chains to a computing “machine”. Its main function is providing 
reliable, useful information. However, sometimes we read that the sensor is the 
weakest link in the measurement chain. 
 
 As shown in Figure 12.1, we remember that the purpose of a sensor is essentially 
to provide information, that is, to measure a variable and to communicate 
representative information of the value of this variable. A sensor is always part of an 
action/reaction loop: 

– This action/reaction loop may be “closed” in the technological sense through a 
certain number of components such as controllers, calculators, Programmable Logic 
Controllers (PLC) or actuators. The sensor is then an element in an automation loop 
that provides a representative signal of a physical variable: for example, it provides a 
signal to a regulator or to a PLC that will itself provide a command signal to be 
transmitted to an actuator. In the automotive field, a typical example is that of a 
rotation speed sensor placed on each of the wheels which transmits this rotation 
“speed” information to the central Anti-Breaking System (ABS), which makes the 
“right” decision by comparing the rotation speeds of the same axle. 

                              
Chapter written by Michel ROBERT.   
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– This action/reaction loop could also be closed by a human operator. Still in the 
automotive context, it is the driver who usually observes the speedometer and either 
brakes, accelerates or reduces gear to adjust the speed of the car to the speed limits. 
Obviously in this context the speed sensor must be precise and reliable. 

 

Observe Act

Analyze,
Make decision

Process

Goals

 
 

Figure 12.1. Sensor in an action/reaction loop 

12.2. Users’ needs and technological benefits of sensors 

 Whatever the context, sensor users want products that perform well; that is, 
sensors that are reliable from the first performance or, to be more technologically 
exact, that are accurate1. In complementing this accuracy, it is more particularly the 
credibility2 of the information which is required by the users of the systems. This is 
especially true in the automotive context, with users who tend to have absolute 
confidence in their vehicles and would be angered by erroneous warnings generated 
by a faulty surveillance system.  
 
 Together with this need for accurate measurements, integration strategies require 
mutual exchanges of information between the automation units. The development of 
these techniques and automation methods has led to less centralized processing, 
made possible by new communication networks. These networks are called 

                              
1 Accuracy of a measurement instrument: the ability of the measurement instrument to give 
close indications of the true value of a measured variable (ISO norm, NF X07-001, December, 
1984, International Organization for Standardization). 
2 The quality, capability or power to elicit belief (OED). 
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fieldbuses [CIA 99] and the appearance, by the 1980s, of “smart” or “intelligent” 
equipment. 
 
 In industry, current strategies aim to improve the quality of this equipment by 
increasing reliability and improving productivity. Automation is part of this 
improvement and requires the collection of relevant data to be used and processed 
by a production system. This data must be conveyed to decision-making units which 
then undertake a range of actions that culminate in predefined objectives. 
Measurements, which are the result of a collection of information, are thus 
inherently linked to automation, which itself integrates the following procedures: 

– automation integrates the control-command features, which provide “real 
time” information about the value of strategic variables that are indispensable to 
production. These variables qualitatively or quantitatively describe the product or 
they provide information about the state of the production system; 

– automation integrates the maintenance; in this area, the measurements detect or 
anticipate any deterioration in the system that might adversely affect its functioning; 

– automation coordinates safety procedures, usually cross-integrated, that protect 
operators, equipment, and the environment; 

– automation regulates production, helps establish guidelines and expected 
results, and helps adjust product and energy flow; 

– automation improves technical management, giving information about 
processing availability. 
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Figure 12.2. Four automation units (DEL 90) 
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In the automotive context, automation is used in the following instruments or 
systems: 

– it is used in the command-control of a car. It coordinates everything to do with 
speed regulation, since the car must be able to move safely. It also guides the vehicle 
and regulates the interior temperature; 

– automation helps maintain the car, integrating diagnostics, on-off engine 
functions, engine temperature, tire pressure and compression measurements, among 
other functions; 

– automation integrates safety functions, including the essential function of 
protecting drivers and passengers. This includes inflatable airbags, ethylometers, 
which can stop a driver from driving under the potentially dangerous influence of 
alcohol, as well as anti-theft systems; 

– automation coordinates data concerning fuel consumption. This data usually 
tells the driver how much fuel is available and, indirectly, the distance that can be 
covered with this fuel. This kind of information comes from a gas tank sensor that 
determines from the volume of fuel available, taking into account the geometry of 
the tank and conditions in which the vehicle is being used. These factors are 
provisionally parameterized by conditions such as urban or highway driving that an 
intelligent sensor can provide, given the distance to be traveled. The information the 
sensor provides is in an adapted form the driver can use;3  

– automation coordinates technical regulation of the system itself; there are 
sensors that give information about tires and their condition. The company 
Continental Teves has developed a system called Sidewall Torsion Sensor (SWT) 
that has produced Smart Tyres [CRO 99]. 

 

                              
3 We will come back to this example of “intelligent distance sensors” after discussing the 
concept of “intelligent sensors”. 
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Figure 12.3. Schema principle for the direct injection system with an injection pump 
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2) Airflow meter 

3) Regulated control of supercharging pressure 

4) Control for gas recirculation system (EGR) 

5) Control of supercharging cut-off 

6) Reheating of cooling system 

7) Preheating spark plugs 

8) Pump injectors 

9) Fuel temperature sensor 

10) Brake camshaft sensor 

11) Crankshaft sensor 

12) Speed sensor 

13) Pedal accelerator sensor 

14) Alternator 

15) Multiplexer circuit 

16) Diagnostics connection 

17) Anti-theft system connection 

18) Electronic control-command unit engine unit 

 
We see that the car can be described as a system and also can be broken down 

into subsystems; the motor control and anti-lock brake systems are themselves 
systems. In looking at the example of Figure 12.3, taken from [GUY 99], we see 
there are no less than seven sensors that provide information to the injection system, 
which, in this particular case, leads to an increase of 21.3% of the engine torque to 
1,900 tr/mn. 
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12.2.1. A short history of smart sensors 

The first “smart” sensors were developed by internationally well-known 
manufacturers like Honeywell, Fuji and Control Bailey, who had in a sense already 
developed precursors to these sensors, at least in terms of concept. These first-
generation smart sensors were most often dedicated to numerical control-command 
systems. In France, work on users’ needs was gathered in 1987 within the 
publication of a White Book [CIA 87], and completed by a census of services 
proposed by intelligent sensors in automated production systems [ROB 93]. 

12.2.2. Smart or intelligent? 

We are basing our ideas on those in [KLE 91] in distinguishing between a smart 

sensor and an intelligent sensor (see Figure 12.4): 

– a smart sensor has functionalities that improve its metrological performances 
by using numerical processing; 

– an intelligent sensor integrates functions that allow it to fully participate in the 
goal of an automated system, which then becomes a distributed automated system. 
Mechanisms are implanted in this system and exchange information through the 
dedicated communication system. This system is the backbone of a true real-time 
database [BAY 95]. 
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Figure 12.4. Smart and intelligent sensors 
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Although these names are now in common usage, we prefer the term “digital 
sensor with processing and communication capacities”, which specifies that the 
system is a measurement device, that it is created by digital technology, that it has 
bidirectional communication means, and processing capacities. An intelligent sensor 
is then seen as a fully functional system with its own processing abilities, one that 
can take part in more complex systems. 

12.2.3. Architecture of an intelligent system 

 Figure 12.5 gives an example of material architecture of an intelligent sensor. 
This architecture includes one or several transducers connected to the conditioners: 
 – basic sensor components that convert the measurand into an electric signal, 
which is usually analog; 

– a numerical processing chain of information, including the following elements: 

- an interface of the measurement (a multiplexer, amplifier, ADC, sample and 
hold); 

- a calculation unit (a microcontroller, microprocessor, DSP) and linked 
peripherals (memory units); 

- a communication interface that ensures bidirectional communication with the 
automation system through a fieldbus; 

 – an energy feed that is usually integrated with the intelligent sensor. 
 
This architecture clearly is more complex that that of a standard sensor. It links 

one or several measurement chains and the equivalent of a computer machine [BRI 
96]. The related processing possibilities improve metrological performances in terms 
of reliability and sensor availability. 
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Figure 12.5. Example of intelligent sensor architecture 
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12.3. Processing and performances 

12.3.1. Improving performances with sensors 

Among the essential qualities of sensors [AFN 94] are the following: freedom 
from bias error, fidelity, accuracy, rangeability, sensitivity, linearity, sharpness or 
keenness, rapidity, resolution, traceability, repeatability and reproducibility. 
Accuracy is the attribute which is most often considered by users. 

 
Information processing carried out by intelligent sensors improves accuracy by 

the following means: 

– processing compensates for influence quantities, which must be taken into 
account as “normal” variables, leading to a multisensor approach to data fusion; 

– processing uses signal processing algorithms, from the simple mobile average 
to, for example, the implementation of deconvolution procedures that return to the 
excitor signal of the sensor. If its transfer function is known, fairly sophisticated 
numerical filters can be used. 

 
This improvement of accuracy can make the sensor more adaptable and improve 

its range, so it can be used in a variety of situations and applications. 
 
For example, the same type of temperature sensor can acquire information about 

the interior temperature of a car and about the interior of a cylinder, always retaining 
its precision. Obviously, modelizing the transfer function signal output = 
f(measurand) feature goes beyond simple linear transformations. In addition, the 
linearity requirements need no longer be respected, since the information provided is 
quantified, digitized and transmitted according to a range of different codings. These 
codings allows us to link the corresponding physical unity, freeing us from fixed 
rule of linearity imposed by using an intermediary variable such as the 4-20 mA, or 
0-10 V for reasons of interoperability between sensors, actuators, regulators or 
recorders. 
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Figure 12.6. Rangeability, linearity and exactitude 

 
 
In other words, these improvements in metrological performances have a 

downside. This downside is mainly connected with modelization which takes place 
during conception stages and static or dynamic modelization of the transducer(s), 
which may be completed by individualized calibration procedures [NOI 97], [ROB 
99]. 

12.3.2. Reliability and availability of information 

 Technical writing abounds with examples of failures in production systems [VIL 
98] caused by sensors transmitting incorrect measurements and information to 
operators or to automation systems. The decisions made from this information based 
on measurements sometimes have had serious consequences.  
 
 Thus, the overriding need for reliability was behind the early development of 
intelligent sensors. An intelligent sensor must be able to provide valid information 
leading to the dependability of the application, even if the application itself is not of 
optimal reliability, availability, safety, maintainability or durability. 
 
 These goals are met through validation procedures that are completed by: 

– auto-tests and auto-diagnostics; 

– stored memory of the last delivered values; 

– alarm systems used when failures are detected; 

– configuration re-readings; 
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– network reconfigurations. 
 
These procedures are described in detail in [BRI 94] and [CIA 87]. 
 
In the context of cars, the need for reliable, certain and validated information is 

obvious. No consumer will accept an airbag that doesn’t inflate; no driver will 
accept false warnings about engine problems. 

 
 

 
 

Figure 12.7. Validation and functionalities 

 
 Validation functions provide informal descriptions of the idea of the intelligent 
sensor, as shown in Figure 12.7. 
 
 There is a crucial need for intelligent sensors which can provide data and 
generate validated information. Indeed, the issue of validation is crucial to 
intelligent sensors. 
 
 Validation on many levels, including technological, functional, metrological and 
operational, is discussed in detail in [ROB 93]. Validation is based on material or 
analytical redundancies and is integrated at different levels. However, we must keep 
in mind that a material and conceptual limitation does not allow us to recursively 
validate all information necessary to carry out and record a measurement. 
 
 However, the basic function of a sensor is to provide measurements. The 
processes it undergoes allow it to transform the principle quantity or quantities into 
an operational measurement (see Figure 12.8) that results from the consideration of 
metrological compensations through the influence quantity or quantities, and of 
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validations made through technological means. Obtaining this “high value-added” 
measurement requires: 

– knowing and exploiting the behavior models of the transducer(s); 

– regulation of internal time, which helps in dating the operational measurement; 

– regulation of diverse data, such as: 

- validation thresholds; 

- anterior values to the operational measurement; 

- measurements coming from other sensors. 
 
All these are re-grouped in an equivalent database. 
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Figure 12.8. Obtaining an operational measurement 

12.4. Intelligent distance sensors in cars 

In the following paragraphs we will illustrate these concepts by showing how the 
level of gasoline in a tank is converted to relevant information about how far a car 
can travel with this gasoline. 

 
The principle quantity here is obviously the level of fuel in the gas tank. 
 
The temperature inside the gas tank can be seen as an influence quantity that 

through the laws of liquid dilation influences the quantity of energy actually 
available. The influence quantities are intrinsically linked to metrological and 
physico-chemical characteristics of the proof body, allowing us to carry out the first 
measurement. We see that the chemical characteristics of the fuel (the octane rate 
can vary according to where the gasoline was bought) can be taken into account to 
make the prediction more exact. 
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The autocontrol variables are, for example, the pressure and temperature in the 
gas tank. These help to validate the nominal functioning of the sensor of the level 
used and provide information relating to safety. We see that the variable 
“temperature inside the gas tank” appears as both an influence quantity and an 
autocontrol variable; it can be used in many validation steps. On another level, the 
temperature of the processing unit, the supply voltage of the electronic module, and 
the supply voltage of any sensor can also be variables requiring surveillance. 

 
The primary measurement is an electronic signal coming from the height sensor, 

a signal which must be validated technologically. Then it must be verified that the 
frequency and amplitude of the supply voltage conditioner linked to the capacitive 
transducer being used are close to nominal values, that the output of this conditioner 
is coherent with the geometric characteristics of the gas tank. 

 
The auxiliary measurement is the tension delivered by a thermistor that has been 

traversed by a known or measured current that represents the temperature of the 
tank. This measurement is obtained though a model specific to the thermistor that 
describes the temperature relation of the range of potential utilization of this proof 
body. So the temperature = f(tension, current). This model must be constructed and 
stored in the intelligent sensor. We point out here that this auxiliary measurement 
can be compensated by taking into account auto-heating phenomena, for example, or 
validated by measuring the current going through the thermistor; so validation has a 
recursive or returning aspect. 

 
Technological measurements are: 

– the signal delivered by the proof-body and pressure-conditioner that have been 
placed in the sensor for safety reasons; 

– the signal delivered by the temperature sensor; 

– the various supply voltages that must be watched. 
 
The group of primary and auxiliary measurements leads to the production of a 

functional measurement. In our example of a car, the initial measurement of the fuel 
level can be converted into information showing the volume of available fuel. The 
information is produced by taking into account the geometry of the fuel tank, which 
varies according to the vehicle. The information is then clarified during a 
configuration step and then is stored in the intelligent sensor in the “static database” 
zone. This data about fuel volume can then be corrected by data about volume of 
fuel available at a “normalized” temperature; that is, by consideration of laws of 
fluid dilation, which will then also be memorized in the “static database”. 

 
The validated or qualified measurement is the information pertaining to the 

available fuel volume available at a normalized temperature relative to the 
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technological measurements requiring that the nominal conditions for primary and 
auxiliary measurements be combined at the moment a measurement is made. If this 
is not the case, the processing can be done following several different strategies: 

– if the producer of the primary measurement is faulty, then an estimation of the 
measurement can be obtained from measurements previously made that have been 
stored on a specific temporal horizon in the “dynamic database” by taking into 
account the distance traveled since the problem began; 

– if the metrological conditions are not combined by the faulty temperature 
sensor, for example, the estimation of the distance traveled will be less precise and 
this estimation error may be transmitted to the user; 

– in other circumstances, a foldback value that has previously been 
parameterized according to the application may be produced. Typically, the foldback 
value can be the last produced operational measurement; 

– in addition, alarm systems can be produced; the receiving systems or units 
must have be able to make decisions to regulate these unusual situations which, 
however, have been foreseen in the design step of the system. 

 
Lastly, the operational measurement is the information concerning the distance 

that the vehicle can travel; this is the truly useful information. It will then be 
transmitted to the “final” user who may be the driver, or to a control guidance 
system that will even lead the driver to a local, open service station. This operational 
measurement is expressed in a configurable unit for the user in miles of kilometers. 
It integrates a margin of error that takes into account the exactitude of each of the 
first mechanisms that provide information: the primary sensors. This measurement is 
obtained by looking at the instantaneous consumption that reflects how the vehicle is 
being used. The fuel consumption can be measured by a flow sensor that itself 
produces validated information which it transmits to an intelligent sensor showing 
the distance that can be traveled. 

 
The physical variable or quantity “time” can also be measured or more or less 

produced within the system itself, in order to represent the refresh period of the 
operational measurement. This physical variable “time” can be considered as an 
implicit physical quantity. 

 
This purely academic example shows us that an intelligent sensor: 

– can integrate local processing, based on models; 

– requires parameterization or configuration that allows it to be dedicated to a 
given application; 

– requires information coming from other components. 
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An example of the third point is a temperature measurement that must be tested 
by a control mechanism of the vehicle that guards against overheating or fires, 
possibly by triggering a fire extinguisher. 

 
This transmission of information in a vehicle is not perfect [MEN 99]. It often 

depends on a speed sensor, for example, put in an ABS system that transmits 
information about speed to a dashboard, which then can override the rotation speed 
sensor initially part of the output of the transmission shaft. 

 
This last example underlines the need for integration and precise representations 

of relevant data, specifications for related processing, and efficient exchanges of 
data within a vehicle. It brings up the potential problems of optimal data distribution 
and the related processing of a system. 

12.5. Fieldbus networks 

 Using intelligent sensors or, more generally, a range of automation components 
means digital communication between producers and consumers, and also using 
dedicated communication networks, since operating constraints in real time or 
critical time are not the same as those of usual computer networks. 
 
 For production systems, more than 50 types of fieldbuses are currently on the 
market, many of which are described in [CIA 99], [FAG 96], [PET 96] and [TER 
97]. 
 
 In the automotive domain, the Controller Area Network (CAN) [PAR 96, 99] is 
currently the reference fieldbus, as well as another automotive multiplexing 
network, the Vehicle Area Network (VAN), which has mainly been used by PSA 
and its subsidiaries [ABO 97]. 
 
 CAN was first developed by Bosch and Intel for automotive applications. It has 
had good reliability and low costs. Many car manufacturers use or are preparing to 
use the CAN network. The association of utility vehicles of the USA have also 
adopted the fieldbus as a standard, as have most industrial manufacturers, mostly 
because of the buses’ wide availability and competitive costs. At this time, 
according to [MEN 99], sales for CAN components for cars have surpassed sales to 
the industry. 
 
 Schematically, the CAN uses a bus topology and belongs to the class of 
multimaster networks of the producer/consumer type. In these networks, different 
levels of information are transmitted according to the diffusion principle, and 
regulated by implanting the protocol CSMA/CR (Carrier Sense Multiple 
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Access/Collision Resolve). The nominal rate of communication depends on the 
physical length of the bus; typically, a length of 40 m is associated with a 
transmission rate of 1 Mbit/s. 
 
 Many other multiplexing systems or, more generally, exchange systems in cars 
are now being developed by automotive manufacturers or other consortia. Among 
these are the J1850 or the ITS (Intelligent Transport System), the Data Bus made by 
the SAE, Society of Automotive Engineers, and the OSEK/VDE or the Open 
systems and Interfaces for Distributed Electronics in Cars/Vehicle Distributed 
Executive. The latter is a consortium of European manufacturers and scientists that 
aims to establish operating system norms and communication protocols in the field 
of electronics. 
 
 Other projects connected to automotive embedded electronics are using fiber 
optic networks that enable flows of more than 10 Mbit/s (the AMINC consortium, 
standing for the Automotive Multimedia Integration Consortium). 

12.6. Towards a system approach 

 The previous sections show that, in the world of automotive electronics, the 
current trend is towards developing interacting, multiplexing systems. This approach 
is very important to the field of intelligent sensors, which are integrated into a 
distributed automation architecture since, in addition to the characteristics discussed 
above, an intelligent sensor must have the following features; 

– it must be interoperable. This means it must cooperate with other automation 
components in and with a specific application. This, at the very least, means using a 
common standard of communication to allow the exchange of information and also 
means that the two components conform to the same interpretation of data; 

– its components must be interprocessible. This feature, which is not easily 
differentiated from the first one, is especially important for the equipment and its 
integration with a automation system with distributed architecture (ASDA) 
dedicated to an industrial process; 

– it must be interchangeable. This means that the equipment of one manufacturer 
can be replaced with that of another manufacturer without changing the components. 

 
 The above concepts [STA 96] are both an advance and a check to any large-scale 
diffusion of intelligent sensors in industry. They imply normalization procedures 
which could appear to be constraints. However, some studies ([INC 93]; [LEE 96]) 
have proposed a standard, or at least an aid, to producing intelligent instruments that 
might disregard interface communication. In the near future, these works might lead 
to a total or partial modelization of the abilities of intelligent sensors and also lead to 
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creating tools to aid in designing intelligent sensors, thus verifying specifications 
and performances and ensuring that interoperability and inter-processing criteria are 
respected. 
 
 This is one of the objectives of the LARII project for “Software of Assistance to 
the Creation of Intelligent Interfaces for Sensors and Actuators” which profited from 
the financial support of the French authorities and which must make it possible to 
diffuse near the French companies manufacturing of the sensors, mainly PMI-PME 
of the software libraries, comprising functional blocks based on the standard IEC 
1131 (typing of the data, definition of the functions, programming language, etc.) 
directly usable in the design of intelligent sensors. These libraries will be integrated 
in the strategy of design which should no longer remain on a solely technological 
approach [ LEM 99]. 

12.7. Perspectives and conclusions 

In spite of industry’s stated enthusiasm for the idea of intelligent sensors, there 
are clear drawbacks to their present widespread use: 

– the wait-and-see policy of designers, manufacturers and potential users, who 
must choose between the current wide range of communication networks and 
fieldbuses (more than 50 fieldbuses are currently on the market ([TER 97, PET 
98])); 

– advances in industrial instrumentation are basically marketing tools of 
manufacturers who develop new techniques before there is a real need for them; 

– the integration of intelligent automation components is linked to the issue of an 
optimal distribution of data and processing [CON 99]; [HER 98]. 

 
However, academic studies have seemed to develop in two directions: 

– integration of information processing techniques using fuzzy logic, neural 
networks, etc. [END 97]; 

– connection on the same sensitive element structure and of the processing 
electronics using microtechnologies or nanotechnologies [MUL 95]. 

 
In addition, catalogues of automation systems tend to promote “intelligent” 

products to improve sales. 
 
Especially in the automotive context, Figure 12.9 shows the variety of sensors 

which can be integrated in a vehicle that is used on a daily basis. 
 
An article from the end of the last century [GRA 99] mentioned the sale of 

sensors used in vehicles: these sales are estimated at $5.18 billion in 1997, while 
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sales predictions for 2002 are estimated at $6.86 billion. Even though the technical 
works often combine sensors, associated electronics, associated software and 
mulitplexing, the sale of electronic chips for cars was estimated at $8.25 million in 
1998; predictions for 2000-2001 have been estimated at $13.3 million [VER 99]. 
Experts’ predictions say that automotive electronics will, in the short term, represent 
20% of the finished product, which may well surpass the cost of the mechanics. 
According to [GRA 99], the “salability threshold” for a vehicle sensor may be 
around $5-7, including the cost of signal processing. This means using digital 
technologies of the MEMS (Microelectochemical systems) or MST (Microsystems 
technologies) type. 

 
Figure 12.9. Car sensors (image courtesy of Robert Bosch GmbH) 

 
 
Aside from the optimal running of the engine and the comfort of the driver and 

passengers, the key word in the automotive field is safety. We can see this simply by 
looking at acronyms such as ESP (Electronic Stability Program), EBS (Electronic 
Braking System), TCS (Traction Control System) and ASR (Acceleration Slip 
Regulation), which imposes calculation powers comparable to those of a 1982 A310 
Airbus [VER 99]. 
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We also note that on the margins of automotive manufacturing, the demand for 
sensors and associated systems is also important in the field of vehicle testing, both 
in the design phase and in the test-run phases [ERW 99]. 
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