

 i

��������	
�
��
���

����	�����

�����

����� �����
�

Dan Brandon, PhD, PMP
Christian Brothers University, USA

��	������

���������� ��� �����
����� �����
����
��� ����������
�

�����

����� ����������� ������� ��� ���������
��

Hershey • London • Melbourne • Singapore

ii

Acquisitions Editor: Michelle Potter
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: Becky Shore
Typesetter: Diane Huskinson
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
IRM Press (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033-1240
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

Library of Congress Cataloging-in-Publication Data

Brandon, Dan, 1946-
 Project management for modern information systems / Dan Brandon.
 p. cm.
 Summary: "This book describes and illustrates practices, procedures, methods, and tools for IT project
management that address project success for modern times"--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 1-59140-694-3 (softcover : alk. paper) -- ISBN 1-59140-695-1 (ebook : alk. paper)
 1. Project management. 2. Management information systems. I. Title.
 HD69.P75.B733 2005
 004'.068'4--dc22
 2005022459

ISBN (hardcover) 1-59140-693-5

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

 iii

This book is dedicated to my family, who had to settle for less of my attention
during the writing of this book, but who, nonetheless, enthusiastically sup-
ported me; specifically to my father and mother, Dan and Shirley, who in-
stilled in me the principles and ethics that have guided my life, and to my
children, Madison and Victoria, whose presence are my greatest blessing.

�����
����

iv

��������	
�
��
���

����	�����

�����

����������
�

�
���������������

Preface ..viii

Acknowledgment ... xii

Chapter I
Today’s IT Environment ...1

The Information Revolution ... 2
Better, Cheaper, Faster ... 4
Teamed-Based Workplaces ... 6
Projects and Project Management .. 9
The Project Manager .. 11
IT Project Management .. 13

Chapter II
Critical Success Factors for IT Projects .. 18

Definition of Success ... 18
Completion and Satisfaction Criteria .. 19
Generalization of Success Factors for IT .. 20
Managing for Success ... 24

Chapter III
Project Selection and Initiation .. 29

Organizational Planning ... 29
Project Initiation ... 31
Project Proposals ... 32
Project Business Plan ... 34
Financial Evaluation and Selection Methods ... 35
Decision Trees ... 37
Project Scoring Methods ... 42
Project Stage Gates .. 45

 v

Chapter IV
The Project Management Discipline .. 48

Project Management Organizations ... 48
Project Management Institute .. 50
Project Management Body of Knowledge ... 50

Chapter V
The Software Engineering Discipline .. 59

Software Engineering vs. Project Management ... 59
Software Development Lifecycle Methodology ... 60
Management Stage Gates .. 65
SDLC Variations and Alternatives ... 66
Development Acceleration ... 71
Modern SDLC Implementations ... 74
Object-Oriented Software ... 79
Software Reuse .. 85
Software Engineering Institute ... 88
Institute of Electrical and Electronics Engineers .. 92
Other Software Standards Organizations ... 94

Chapter VI
Project Overall Planning .. 98

The Project Charter .. 98
The Project Master Plan ... 100
Project Calendars and Fiscal Periods ... 100
Kickoff Meeting ... 104
Scope Management ... 106
Requirements Analysis .. 109

Chapter VII
Developing the Schedule and Cost Plan .. 120

Detail Project Planning ... 121
Developing the Work Breakdown Structure .. 122
Task Estimation .. 133
Task Sequencing and The Critical Path ... 143
Scheduling ... 147
Resource Assignment and Costing Methods .. 150
Developing the Cost Plan .. 152

Chapter VIII
Risk Planning and Management ... 157

Project Risks and Opportunities ... 157
Risk Identification .. 160
Risk Quantification ... 166
Risk Response Development ... 169
Risk Plan Example ... 175
Risk Response Control ... 179

vi

Chapter IX
Project Execution and Control .. 183

The Control Process ... 183
What to Control ... 185
Measurement of Completion Factors ... 186
Measurement of Satisfaction Factors .. 191
Measuring and Reporting .. 193
Stage Gate Implementation ... 195
Corrective Actions ... 197

Chapter X
Managing Quality ... 202

Quality Management .. 202
Quality Planning ... 204
Quality Assurance ... 208
Quality Control ... 209
Software Testing .. 212
Quality Stage Gates .. 220
Quality Programs .. 223
Software Development Standards .. 227

Chapter XI
Change and Closeout Management ... 234

Project Changes ... 234
Establishing a Change Control System .. 236
Version Control .. 239
Configuration Control .. 240
Scope Creep ... 241
Project Closeout ... 243

Chapter XII
Procurement and Outsourcing ... 248

Procurement ... 248
Procurement Planning .. 251
Solicitation Planning .. 253
Solicitation ... 255
Source Selection ... 255
Contract Administration and Closeout .. 257
SEI SA-CMM .. 257
Outsourcing ... 258

Chapter XIII
Stakeholder Management ... 274

Stakeholder Identification and Analysis .. 274
Communication Management .. 278
Organizational Context ... 286
Human Resource Management .. 291
Managing the Project Team ... 297

 vii

Chapter XIV
Performance Reporting and Earned Value Analysis .. 309

Traditional Performance Reporting .. 310
Earned Value Analysis ... 316
Effective Implementation of EVA ... 322
Progress Reporting .. 324
Actual Cost Data .. 327
Other EVA Issues .. 331
EVA, Success Factors, and Stage Gates .. 333

Chapter XV
Software Systems for Project Management ... 338

Spreadsheets .. 338
General Project Management Software .. 343
Open Source Software .. 345
The FiveAndDime System ... 348

Chapter XVI
Managing Multiple Projects ... 351

The Project Management Office ... 352
Portfolio Management .. 357
Knowledge Management ... 365
Lessons Learned .. 367
Standard Forms and Templates .. 372
Global Projects ... 372
The PMO Portal ... 374
Project Management Maturity ... 376
Project Management and Strategic Planning ... 378

Glossary and Acronyms .. 385

About the Author ... 405

Index .. 407

viii

����
��

In the past, the formal discipline of project management was applied primarily to very
large projects lasting several years and costing millions of dollars; this was as true for
information technology (IT) projects as it was for other industries. Furthermore in the
20th century, project management methods were largely based upon “command and
control” techniques. These techniques evolved from ancient military regimes and dic-
tatorial governments, where relatively few educated people directed large numbers of
uneducated people. Some industries are still that way, but many companies and most IT
organizations are evolving into team- and project-based environments using knowl-
edge workers, independent contractors, and, perhaps, various forms of outsourcing.
Competitive advantage today is increasingly based upon knowledge assets instead of
upon the traditional assets of land, labor, and capital. In addition there is now a separa-
tion of “work” from “workplace,” and operations may be performed on a global scale.
To be successful in our IT projects (and most IT projects are still not successful), it is
imperative that we apply formal project management methods and tools to all IT project-
based work. Also the formal methods and tools of project management need to evolve
to address the changes in modern software engineering and our high-tech global work-
places. In the past, project success was defined too narrowly as simply meeting time
and cost constraints for a given scope of work. However, in order for an IT project to be
completely successful, that basic definition of success needs to be extended. This
extension is particular with regard to product quality, stakeholder satisfaction, security,
organizational human capital, and long-term factors such as maintainability and adapt-
ability. With that extended definition of success, management techniques and tools can
be extended or otherwise modified to be more effective.
This book describes and illustrates practices, methods, and tools for IT project man-
agement that address this extended definition of project success for modern times. As
such, this book is directed to IT project managers, those IT personnel aspiring to
become project managers, and also to experienced IT personnel who wish to learn of
new project management concepts, methods, and tools. This book is also designed for
use as a textbook or reference in graduate or upper-level undergraduate university

 ix

programs in IT or project management. Throughout the book, a number of IT project
management “standard forms” are presented and a number of spreadsheet models are
also developed. An open source general Web-based project management software sys-
tem (FiveAndDime) is used to illustrate many of the methods and applications dis-
cussed in the book. An appendix of the book contains a glossary of the IT project
management and software engineering terms and acronyms used.
Chapter I introduces and defines a project, project management, the project manager,
and project stakeholders. These management concepts are discussed relative to our
modern IT dominated world and in context with today’s “information revolution” and to
the business and technical forces that drive this revolution. The distinctions of IT
project management as compared to general project management are also identified
here.
Chapter II introduces the concept of project “critical success factors.” A key factor
leading to the continued failure in IT projects is the lack of identification and apprecia-
tion for all the major components of project success. Critical success factors are those
things that must be done or handled properly for a project to be successful. A compre-
hensive model of critical success factors for IT projects permits the development of
better management plans, processes, and metrics particularly for risk, quality, and per-
formance control. In this chapter, general critical IT success factors are identified and
techniques for the management of those factors are introduced. The notion of a “dual
stage gate process” for the comprehensive and effective management of these success
factors is also introduced in this chapter; later chapters define metrics and control
methods for these success factors using dual stage gating.
Chapter III discusses project initiation and selection. The careful selection of which
projects to initiate is vital to the success of an organization. Project initiation repre-
sents a future commitment of both human and financial resources as well as of manage-
ment attention. In this chapter, methods for the proper selection and initiation of projects
are discussed with regard to overall organizational goals and business justification. In
this chapter, project initiation and the processes and documents involved with project
evaluation from a business perspective are discussed and illustrated. Standard forms
for the “project proposal” and “project business plan” are presented. (Later, Chapter VI
continues with the life of a project after an organization has committed to perform said
project.)
Chapters IV and V discuss project management and software engineering from a disci-
plinary perspective, as these concepts and terms are used throughout the remainder of
this book. A number of worldwide professional organizations have been developed to
foster the project management discipline, and these organizations and their bodies of
knowledge are presented in Chapter V.
Although software engineering is not a formal part of project management, it is vital for
the proper planning of IT projects. Even for IT projects that primarily involve software
acquisition and integration instead of software development, the software engineering
embedded in the products that are acquired will significantly affect long-term project
success factors. In Chapter V, modern software engineering and its relation to IT project
management is discussed. Key challenges to software engineering in the 21st century
are presented as well as how software engineering together with project management
can address those challenges.

x

Chapter VI formalizes overall project planning and requirements analysis. Getting off to
a fast start in the right direction is important in any endeavor, and overall planning and
requirements are two of the most important aspects of IT project management. Standard
forms are presented for the project charter, overall project plan, software management
plan, and requirements document. The process of IT requirements’ discovery and docu-
mentation is formalized and illustrated. Once a complete and clear set of requirements
has been documented and approved by all relevant stakeholders, detail project plan-
ning can begin; such detail planning is covered in the following chapters.
Chapter VII is concerned with detail project planning, particularly the schedule and
cost plan. In this chapter, the formulation of a detail schedule and cost plan is dis-
cussed and illustrated. WBS formulation, task sequencing, task estimation, scheduling,
and costing methods are all covered. The detail scope, time, and cost planning of this
chapter forms the basis for other detail plans—including the risk plan, procurement
plan, HR plan, quality plan, control plan, and change plan—described in subsequent
chapters.
Success in the modern business world involves taking some risk. All the systems that
are really changing the world today are very risky systems, but one needs to know how
to manage risk, including how to identify risk sources, quantify risk parameters, and
develop plans to handle risks; these are the topics covered in Chapter VIII. The total
project risk-management process is described and illustrated and standard forms are
developed for an IT risk-management plan. A framework based upon critical success
factors for analyzing project risk threats and hazards is also presented.
Once a project is planned and underway, the project manager cannot simply walk away
and assume that everything will go according to plan. In Chapter IX, project perfor-
mance control metrics and techniques are defined and discussed. Performance metrics
for each critical success factor are identified and illustrated. Standard forms for status
reports and stage gate reviews are presented. Corrective actions to bring a project back
in compliance with the plan are also identified and discussed.
As a project proceeds, quality is often the most difficult area to keep on track. Chapter
X discusses the many quality aspects of project management, and project success
factors are used as the basis for key quality metrics. A quality management plan for IT
projects includes both verification and validation, and such a plan is presented here.
Other important quality topics are also discussed in this chapter, including the many
types and methods of software testing, software development standards, and quality
organizations and programs. Standard forms for quality standards and quality stage
gates are included here.
Change is a fact of life for most projects, particularly IT projects. A major cause of IT
project overruns is changes in scope. Change can be good or bad, but change is
expected, and change has to be managed. Chapter XI is concerned with the overall IT
change management process, including version control and configuration control.
Project closeout and related topics such as lessons learned are also included and illus-
trated. Standard forms for change control plans, change orders, and project closeout are
presented in this chapter.
Many IT projects involve the purchasing of goods or services, and some IT projects
are mostly procurement activities, at least from a cost perspective. With the increase in
IT outsourcing and outsourcing offshore, there is an increasing need for very formal

 xi

procurement management, and that overall management process is the subject of Chap-
ter XII. This chapter covers general project procurement and the formal procedures and
documents used in procurements such as the statement of work, request for proposal,
and contracts. The different types of procurement documents are discussed and which
types are used in which situations and with what types of contracts. In particular for IT
projects the subject of outsourcing is also covered in detail.
The identification and management of a project’s stakeholders is vital to the complete
success of a project. Often, well-planned and properly executed projects can still fail
due to a lack of relationships or inappropriate relationships between the project man-
ager and various stakeholders. Chapter XIII discusses matters related to the human
side of project management including stakeholder relations, communications, team
management, and security. Standard forms are presented for the project communica-
tions plan, human resources plan, and security plan.
Traditional methods of progress performance reporting are often inaccurate and mis-
leading. Earned value analysis (EVA) has proven to be an extremely effective tool for
project time and cost management, providing good estimates of actual project comple-
tion cost and date. EVA is also is a good early indicator of project problem areas, so that
appropriate corrective action can be initiated. In Chapter XIV, EVA is defined, dis-
cussed, and illustrated in detail. EVA is one of the key metrics in the management-for-
success philosophy that is developed in this book via critical success factors and dual
stage gates. EVA is often difficult to implement effectively and can have a number of
problem areas. However, this chapter identifies the EVA problem areas and their practi-
cal solutions.
There is a vast amount of project management software available today in a wide vari-
ety of capabilities, applicability, platform requirements, and prices. These software
products significantly enhance a PM’s job of managing a project in almost all aspects
including selection, planning, scheduling, execution, control, risk, communications,
and so forth. Therefore, PMs should be aware of the types of tools available and the
features and applicability of those tools. In Chapter XV, types of software products and
some specific products are identified and discussed, including spreadsheet models and
open source software.
Management of IT projects and being on an IT project team used to be simpler. PMs
typically had one project to manage and team members were only on one team. All the
team members were located in close geographic proximity, and the work was all done at
the workplace. Today, however, the project landscape has become much more complex,
where everyone is concerned, with multiple projects and teams spread out all over the
world. The business needs of cutting costs to the bone and being quicker to market
have increased the pressures on project teams and their managers. Chapter XVI dis-
cusses modern ways that organizations can effectively deal with these complexities,
including the use of project management offices (PMOs), project portfolio optimization,
knowledge management, project dashboards, and PMO portals. Chapter XVI also dis-
cusses project management from a strategic perspective.

xii

My sincere thanks and appreciation goes out to the many individuals both in
the academic world and in the commercial sector who discussed various book
topics with me. My particular appreciation goes to those who helped review
the content and style of the book: Jonathan Pierce at Computer Science Corpo-
ration; Richard Flaig at the NASA Stennis Space Center; Professors Frank
Marion, James Aflaki, and Larry Schmitt, all at Christian Brothers University;
and communication specialist Diane Brandon.

�� ��!����
���

Today’s IT Environment 1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Today’s
IT Environment

A competitive advantage comes only with superior IT.
 (Aetna Healthcare Chairman/CEO Richard Huber)

In the last few years, information technology (IT) has significantly impacted the
operation of most businesses, and even though most corporations still spend only 3%
to 8% of their revenue on IT, businesses depend upon IT for their day-to-day operations.
For many businesses, IT is a, if not the, key factor in their competitive strategy. Due to
IT, we have all experienced many changes, some good some bad, in our personal lives.
In fact, probably not since the industrial revolution have people all over the world
experienced such dramatic life-style changes. One is reminded of the opening sentence
from A Tale of Two Cities, by Charles Dickens: “It was the best of times, it was the worst
of times.” Dickens was referring to the French Revolution, but in the 21st century we are
well into the “IT Revolution.” In regard to project management, there are two IT related
matters: the utilization of IT in managing all types of projects and the management of IT
projects. Before we further discuss these project management matters in this modern IT
dominated world, we need to consider the technical and business forces that are shaping
this new environment.

2 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Information Revolution

According to the RAND organization (Hundley, 2004),

Advances in information technology are affecting most segments of business, society,
and governments today in many if not most regions of the world. The changes that IT
is bringing about in various aspects of life are often collectively called the “information
revolution.”

The current IT revolution is not the first of its kind. Historians and nations may debate
the exact time and place of previous information revolutions, but they are as follows:

• Invention of writing, first in Mesopotamia or China, around 3000 BC
• Invention of the written book in China or Greece, around 1000 BC
• Gutenberg’s printing press and engraving, around AD 1450

Major revolutions help some people and some organizations, and, therefore, for them it
is the “best of times;” but revolutions also hurt some people and organizations, and for
them it is the “worst of times.” With big revolutions, there always will be big winners and
big losers. As an example, when the printing press was invented, the largest occupation
in Europe was the hand copying of books in thousands of monasteries, each of which
was home to hundreds of monks; 50 years later, the monks had been completely
displaced. The impact to society was enormous, not because of the displacement of
monks by other craftsmen and machines, but because the price of books dropped so
drastically that common men could now afford to educate themselves.
For many, this new IT revolution is bringing great things with unprecedented improve-
ments in the quality and efficiency of all we do as organizations and as individuals. For
others, however, IT is a two-edged sword, bringing about many problems, disturbances,
and unresolved issues. A great digital divide is being created, and this divide has three
dimensions: income, age, and education. This divide will further separate the haves from
the have-nots as manufacturing operations move to lesser developed countries, where
over 1 billion low-paid workers will be available in a few years. In the future, for developed
countries, workers may be divided into InfoWorkers and McWorkers. In addition IT
security and privacy problems are getting out of control, as evidenced by computer
viruses, worms, e-mail fraud and spam, compromise of personal and private digital
information, spyware, piracy of intellectual property, ID theft, hacking, and other
computer crimes. Today, there are major and numerous security “holes” in most software
that corporations and individuals use every day.
The most important technology of this information revolution has to be the Internet,
which is the combination of several underlying technologies. Consider the penetration

Today’s IT Environment 3

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

rate (in the time to reach 50 million users) of recent milestone information technologies
compared to the Internet:

• It took the telephone 40 years to reach 50 million users.
• It took radio 38 years to reach 50 million users.
• It took cable TV 10 years to reach 50 million users.
• It only took the Internet only 5 years to reach 50 million users!

The Internet and related technologies are, however, beginning to cause significant
industrial disruptions:

• Internet shopping is disrupting traditional sales channels for hard goods.
• Internet sharing and distribution is disrupting traditional intellectual property

rights and sales of soft goods (print, audio, video, multimedia).
• Voice Over IP combined with ultra-high-speed optical and wireless media will start

to disrupt traditional telecommunications.
• Open source software with community online support will start to disrupt the

traditional software marketplace.
• Separation of work from workplace will disrupt corporate and personal real estate

and related business sectors.
• As national barriers (political, physical, economic, and temporal) are removed,

massive globalization will allow the free flow of both work and product.
• The need for retraining and lifetime learning, coupled with distance education, is

transforming the traditional higher education landscape.

The process and results of these disruptions has been called “creative destruction” by
the RAND corporation, and this results in the “economic eclipse” of organizations not
embracing the new IT world. Traditional mechanisms of government (i.e., jurisdiction,
taxation, regulation, permits, and licenses, etc.) will also significantly be disrupted in
response to these other disruptions, as will the insurance and finance industries.
Likewise this process of creative disruption will result in the career destruction of
managers (including project managers) not embracing modern IT.
In his essay on this modern information revolution, business guru Peter Drucker (2004)
noted, “This revolution will surely engulf all major institutions of modern society,” and
“[t]his revolution will force us to redefine what the business enterprise actually is—the
creation of value and wealth.”
Furthermore, he questioned whether management is prepared for the full impact of this
revolution, and he saw no sign of it at that time.

4 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Better, Cheaper, Faster

The battle cry of the 1990s, what with the advent of client-server technology to replace
mainframes, was

Better!
Cheaper!
Faster!

These themes are still dominant in the 21st century. That battle cry continues from the
board room down through the management chain, because these themes are the crux of
market positioning (quality, cost, and time to market), as illustrated in Figure 1.1.
To produce better and cheaper products or services and get them to market quicker
requires better, cheaper, faster processes, as is illustrated in Figure 1.2. In today’s world,
information systems play a key role and an ever-increasing role in the overall process of
producing and delivering products or providing services. Today, almost every aspect
in the design, creation, delivery, and support of products or services depends strongly
on IT.
As Tom Cruise said in the movie Top Gun (Paramount Pictures, 1986), “I feel a need, a
need for speed.” Upper management emphasizes that need for speed to IT project
managers and software development teams. Many managers and technologists see
speed as a solution to the problem illustrated in Figure 1.3. The world is changing so fast
that, by the time we develop an IT solution for a business problem, the shape of that
problem has changed.
Newer and faster project management and software engineering methods can address a
portion of this problem. Speed, however, is not the only way to address the problem
shown in Figure 1.3 (as this book will show). Compounding the problem is the fact that
too many in IT and general management have though that better-cheaper-faster pro-
cesses are obtained primarily by better-cheaper-faster people. Thus management meth-
ods as exporting work to cheaper locations, importing cheaper workers, or dismissing (or
buying out) older workers have become common. Another management misconception
is that better and faster is obtained by using better and faster tools; but better-faster tools
without better practices and methods simply allow one to build the wrong product even
faster.
A basic premise of this book is that the best long-term solution to better-cheaper-faster
IT products and services involves a number of modern project management and software
engineering practices and methods that can be collectively called “IT project manage-
ment maturity.” Three important basic project management and software engineering
themes are embodied in this maturity model:

1. Do it right the first time
2. Do only manageable portions at a time
3. Do it in a reusable and adaptable manner

Today’s IT Environment 5

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 This method is illustrated in Figure 1.4, and each of these components will be discussed
later in this book.
The project management processes, practices, and methods that are the key to this IT
maturity model are based upon critical success factors. All too often in IT, project and
line management do not allocate enough time to do the project work right the first time,
but later they are forced to find the time and resources to do it over again. Completing

Figure 1.1. Marketing dimensions

Figure 1.2. Products and processes

Figure 1.3. Changing shape of IT problems

Product
or Service

Quality Cost

Tim e To
Market

Better Cheaper

Faster

Better,
Cheaper, Faster

Better,
Cheaper, Faster

Requires

ProcessesProducts

Business
Problem

Business
Problem

Business
Problem

Business
Problem

Requirements Design Development Solution

Solution Domain

Problem Domain

6 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IT projects successfully the first time requires the identification and understanding of
all the critical success factors of such projects. Once these factors are itemized and fully
appreciated, then effective management and technical methods and metrics can be
formulated for project performance, risk, and quality control.
Theoretically and statistically, project success probability decreases as the size of an IT
project grows. Many factors, such as the interaction of project stakeholders and the
interaction of technical components, increase in complexity in ratio to the square of the
number of such items. Therefore, subdividing large IT projects into smaller parts
decreases complexity and thus increases the likelihood of success; however, this
subdivision needs to be consistent with the metrics and methods to monitor and control
all identified critical success factors. In the next chapter, critical success factors for IT
projects are identified and defined and, in later chapters, effective management and
technical techniques for the measurement and control of these factors are presented.

Teamed-Based Workplaces

In the 20th century, management methods were largely based upon “command and
control” techniques. These techniques evolved from ancient autocratic societies and
military environments in which relatively few educated people lead large numbers of
uneducated people. Management structures were developed to take much detailed
information and to summarize that information up through a number of middle manage-

Figure 1.4. IT Project management maturity

Manageable
Scope

(Requirements
and Phasing)

IT Project

Appropriate
Methodology

OO
Architecture

Standards
(embedded and

enforcable)

Software
Engineering

Maturity

Success Factor
Based Project
Management

Quality
Program

(TQM, QFD, ISO
9000, Six Sigma)

Business
Justification

Security
Program

 (project and
product)

Today’s IT Environment 7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ment levels so that decisions could be made in regard to different scopes and time
horizons. Several management levels were formed at each of the business operational,
tactical, and strategic decision points.
Today, however, in developed countries, management structures have changed and
evolved due to a number of factors. One is that the economies of developed countries
continue to shift from a manufacturing economy to a service economy. Another factor
is that most corporate workers have become knowledge workers, where a computer or
computer interface is an integral part of their job. And the other major factor is that IT is
used extensively to gather and summarize the information flow from the point of origin to
the eventual decision maker; IT is now often part of the decision process itself through
decision support systems.
This evolution of management structures has resulted in a reduction of the number of
middle management layers and the creation of team-based work at the lower levels. It used
to be that a corporate organization chart might have management positions for supervi-
sors (or foremen), unit managers, section managers, department managers, division
managers, directors, and vice presidents. In a modern organization, there are much fewer
levels, such as team leader (or project manager), director, and vice president (or CIO).
Teams are given not only the work assignment(s) but also are given the responsibility
(at least partially) for the work results. Management used to monitor employee perfor-
mance by observing work activity and work results, hence the old expression MBWA
(managing by walking around). But in the team environment, it is becoming the respon-
sibility of teammates to observe work activity and the team leader to monitor work
results. This creation of teams at the lower levels of the organization has proven very
effective for maximizing employee performance, and where the nature of the work is the
completion of projects, the team leader is called the project manager (PM).
IT has also shown that productivity is not necessarily related to proximity and, thus, work
is being separated from the workplace. Many knowledge workers can do much of their
work from places other that the company facility including working from home, or while
traveling, or while at a customer or vendor location. In many cases, IT has made it possible
for an individual to work for an organization and live anywhere.
Due to the tearing down of national barriers, the work of many companies and individuals
is now on a global scale. Furthermore, IT has permitted the team based workplace to be
extended to a global scale by the facilitation of virtual teams using electronic communi-
cation and collaboration tools such as e-mail, interactive Web sites with electronic forms,
chat rooms, bulletin boards, instant messaging, and other forms of groupware. Even
business processes, both intracorporate and intercorporate, have become Web-enabled.
Virtual teams may be assembled quickly with the right mix of skills to address a particular
problem or project, and then they may be disassembled just as quickly when the job is
done. It is not atypical for an individual to be a part of many virtual teams simultaneously.
In a virtual environment, managers only monitor work results and the old concept of
managing work activity has almost disappeared. This does not mean that managers no
longer interact with their staff, it is just that the mode of interaction has often become
digital instead of face to face.
Some organizations have gone a step further and created the virtual organization, in
which extensive use of IT is used to create an extremely flexible team- and project- based

8 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organization, which may need no physical facilities at all. A related concept is embedded
in the term virtual corporation, which refers to a business strategy for allying comple-
mentary businesses via IT into a “symbiotic network” and allowing them to respond to
customers as a single entity. The complete integration of IT into the work and virtual
workplace is creating a number of strategies that include the word (or synonym) instant
(Pearlson & Saunders, 2004, pp. 76-77):

• Instant Value Alignment: Understanding the customer so well that the customer’s
needs are anticipated.

• Instant Learning: Building learning directly into each employees work process
and/or schedule (“just in time training”).

• Instant Involvement: Using IT to communicate all needed information to vendors,
employees, and so forth (“just in time inventory” and “supply chain automation”).

• Instant Adaptation: Creating an environment enabling all teams to act instantly and
to make timely decisions.

• Instant Execution: Designing business processes so that they have as few people
involved as possible and reduce cycle times so that these processes appear to
execute instantly.

To successfully function in this new IT-enabled instant world and workplace, managers
must adapt and obtain the necessary knowledge and skills. Several years ago, The
Gartner Group researched this topic, and their list of these management skills follow
(York, 1999):

• Understand project management
• Manage for results
• Speak the language of business
• Improvise with grace and harmony
• Understand IT processes and business processes
• Make informed business decisions quickly
• Know how and when to measure performance
• Cultivate an environment of risk tolerance
• Communicate clearly, appropriately, and relentlessly

Computerworld also investigated this topic and called the new breed of IT team leaders
“business technologists” and listed their ideal characteristics as (Brandel, 2001):

• Business and financial acumen
• Understand tension between budget, operations, capital, expense, and head

count

Today’s IT Environment 9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Sensitivity to all the dimensions that influence a project
• Both written and oral communication skills
• An understanding of relationship management
• Project planning skills
• Performance monitoring skills
• An understanding of the value of coaching
• A customer focused approach

In the preceding lists, those items that specifically deal with project management (as
opposed to management in general) have been italicized; however, all these traits are
necessary for effective project managers.

Projects and Project Management

A project is defined as “a temporary endeavor undertaken to create a unique product or
service” (PMI, 2000). A project is undertaken when work is best accomplished through
methods that fundamentally differ from those of everyday operations. A list of the key
characteristics of a project can further clarify that definition:

• Temporary endeavor with a beginning and an end
• Often broken into subprojects (or phases)
• Creates a unique product or service
• Done for a purpose
• Has interrelated activities (tasks)
• Is an instrument of change

A project usually has certain aspects or key components which include project-related
management, a common vocabulary, project-related methods and tools, teamwork, a plan,
trade-offs (involving scope/deliverables, time, cost, and quality), identified require-
ments (needs) and unidentified requirements (wants or expectations), and stakeholders.
The stakeholders involved with a project may be many and possibly diverse in several
respects including interests, needs, expectations, and priorities. Satisfying the stake-
holders is one of the key objectives of the project and the project manager. Key
stakeholders include the organization and people doing the work, who are called the
“performing organization,” and the people or organization benefiting from the work (and
also usually paying for the work), who are called the “benefiting organization.” These
two organizations may or may not belong to the same corporation. This is illustrated in
Figure 1.5. The benefiting organization, customer, and end user also may or may not be

10 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

part of the same organization. The project manager is a key stakeholder, and this
individual is almost always part of the performing organization. Another key stakeholder
is the project sponsor (sometimes called the project champion), and this individual
usually initiates or formalizes the idea of the project. It is extremely helpful if a project
has support from high up in an organization, and the project sponsor is often part of upper
management. Usually the project sponsor does not (and should not) play an active role
in the day-to-day management of the project. Other stakeholders (shown in the diagram
as “S”) may be in either organization or be external to both.
Project management is “the application of knowledge, skills, tools, and techniques to
the project activities in order to meet or exceed stakeholder needs and expectations from
a project” (PMI, 2000). It involves the planning, organization, monitoring, and control of
all aspects of a project and also the management, leadership, and motivation of all
involved parties to achieve the project objectives within agreed time, cost, quality,
safety, and performance criteria.
Project management in some form has existed for thousands of years, and it was likely
used in the construction of the wonders of the ancient world. Modern project manage-
ment, including the use of the engineering and management disciplines, started around
the turn of the 20th century. “Around that time, managers of such projects faced pressure
from proponents of scientific management to organize in a centralized way and control
not just what was done but the details of how and when it was done” (Yates, 2000). Henry
Gantt developed the Gantt Chart in World War I, and it was used in huge projects like
the construction of the Hoover Dam in the 1930s. IT project management appears to go
back to the 1950s, when the Critical Path Method (CPM) was developed by DuPont and
Remington Rand/Univac.
However, it is not always necessary to use formal project management methods for
important temporarily endeavors, and the British Computer Society (in the spirit of David
Letterman’s Top Ten List) itemizes the top 10 reasons not to use such formality:

10. Our customers really love us, so they don’t care if our products are late and don’t
work.

9. I know there is a well-developed project management body of knowledge, but I can’t
find it under this mess on my desk.

8. All our projects are easy, and they don’t have cost, schedule, and technical risks
anyway.

7. Organizing to manage projects isn’t compatible with our culture, and the last thing
we need around this place is change.

6. We aren’t smart enough to implement project management without stifling creativ-
ity and offending our technical geniuses.

5. We might have to understand our customers’ requirements and document a lot of
stuff, and that is such a bother.

4. Project management requires integrity and courage, so they would have to pay me
extra.

Today’s IT Environment 11

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Our bosses won’t provide the support needed for project management; they want
us to get better results through magic.

2. We’d have to apply project management blindly to all projects regardless of size
and complexity, and that would be stupid.

1. We figure it’s more profitable to have 50% overruns than to spend 10% on project
management to fix them.

The Project Manager

The project manager (PM) is the leader of a team performing a project. The project
manager and his team must identify the stakeholders, determine their needs, and manage
and influence those needs to ensure a successful project. A key to stakeholder
satisfaction is the diligent and accurate analysis of the stakeholders themselves as well
as their stated needs and unstated expectations. A project manager should not just be
handed a statement of work from upper management and then try to complete it; rather
the PM should be deeply involved with the development of that statement of work. The
roles of a PM are many, some of which include the following:

• Identifying the requirements and risks
• Making plans and organizing the effort
• Qualifying and possibly selecting project team, vendors, and other participants
• Communication among team, management, stakeholders
• Assessing the probability of occurrence of problems
• Developing solutions to problems (both in advance and on the spot)
• Ensuring that progress occurs according to the plan
• Deliverable management

Figure 1.5. Project stakeholders

Performing
Organization

Benefiting
Organization

S

S

Customer

End
User

S

S

12 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Running meetings
• Acquiring resources for the project
• Influencing the organization
• Leading and team building
• Negotiation (external and internal)

The many elements of a PM’s work were expressed in the “PM’s Worldview,” as shown
in Figure 1.6 (Cooke-Davies, 2004).
It is the role of the project team members to do their assigned duties, complete their
assigned tasks, and help each other. It is the role of upper management to define the goals
of the project, support the project, and protect it from disruptive influences. Other project
matters fall to the PM; thus, the prime role of the PM is as the integrator, communicator,
and problem solver for the project team, upper management, the customer, and all other
stakeholders. Project managers need a host of skills and knowledge of both business and
technical matters, and this is particularly true in IT. Computerworld states:

Shouldering project management responsibilities isn’t for the average Joe or the
fainthearted. It requires people who have a relentless, or one might say obsessive-
compulsive, attention to detail. They must also be thick-skinned individuals, willing
to withstand verbal barbs, insults to their genealogy and possibly some old-fashioned
assault and battery from people tired of being prompted for their part of the project.
(Hall, 2004)

“It’s a tough job with long hours and stress that needs someone who’s a cross between
a ballet dancer and a drill sergeant” (Murch, 2000). A well-known story (but of unknown
origin) about PMs emphasizes their role:

A project manager, his chief software engineer, and lead network analyst were having
a lunchtime stroll in the woods when they happened on a small brass lamp. They picked
it up and rubbed it and a grateful genie appeared. When confronted with three of them,
the genie granted the traditional three wishes, but only one wish to each of them.
The eager analyst went first and requested a South Sea Island with sweet music, swaying
palm trees with a matching supply of lei-clad girls delivering endless Tequila Sunrises.
“No problem” said the Genie, and with a quick flash and a cloud of smoke, the analyst
disappeared.
Next came the software engineer, who merely wished to be locked in the sample room
of the Coors Brewery with a guarantee of a self-regenerating liver. “No problem” said
the Genie, and with a quick flash and a cloud of smoke the software engineer
disappeared.
Then came the project manager. “No problem!” he said. “I want those other two back
at their desks by 1:15.”

Today’s IT Environment 13

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IT Project Management

The evolution of flatter and team-based workplaces has progressed quicker and deeper
in IT organizations than in the general corporate world. In addition, IT project manage-
ment has some key differences and distinctions from project management in other fields.
Some of these differences have to do with visibility, and this aspect alone makes IT
projects more difficult that projects in other industries (McDonald, 2001). For example,
the scope is hard to see—one cannot count the bricks, and quality is hard to see—it is
not apparent if parts do not fit, do not work, cannot handle loads, cannot handle
extensions, and are not compliant with standards. Here are other major differences and
difficulties:

• The major cost is labor with high degrees of specializations
• There is a large difference in productivity rates of the human resources even in same

job category
• There are multiple quality dimensions and criteria
• Cost and time estimation is more complex
• There are multiple architectures, methodologies, tools, et cetera, and these are

constantly changing
• Projects have a high degree of complexity
• Projects may effect the entire organization or beyond
• Projects have a large amount of changes to requirements
• Projects usually have a high degree of significant risks, including
• New features
• New algorithms and methods
• New languages, platforms, architectures, and supporting tools
• New operating systems, telecommunications, interfaces
• New technology in general
• Measurement of return on investment (ROI) and other business metrics is difficult
• There are often unrealistic goals and pressures placed upon project managers and

project teams to deliver software products better-cheaper-faster
• Today, IT projects often involve many outside parties as consultants and vendors
• Today, IT projects often involve offshore resources

Despite ongoing advances and innovations in project management, many projects fail;
in IT, most projects still do not succeed. The Standish Group has been performing a study
called CHAOS for about a decade. In 1994, their study found that only 16% of all IT
projects come in on time and within budget (Cafasso, 1994); projects that are completely

14 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

abandoned represent about 15% of the failures. The problem is so widespread that many
IT professionals accept project failure as inevitable (Cale, Curley, & Curley, 1987;
Hildebrand, 1998). In 2004, the IT project success rate in the CHAOS report was 28%,
down from 34% in 2003, and IT projects were getting more expensive (Hayes, 2004).
The failure rate goes up as the size of the IT project increases; projects over $10 million
have success rates of only 2%, projects between $3 and $10 million have success rates
from 23% to 11%, and projects under $3 million have success rates from 33% to 46%. Even
relatively small IT projects succeed only half of the time. However, the definition of
success used here may be too restrictive and this is the topic of the next chapter.
The CHAOS report also lists the major causes of IT project failure, and over the years
the top causes have been lack of end-use involvement; lack of executive support; poor
project management and/or planning; unclear business justification; and problems with
requirements, scope, methodology, and estimation (Standish Group, 2004). All of these
issues (and other problem areas) are discussed in this book, and methods to mitigate such
problems are illustrated.
Due to the difficulties in delivering successful IT projects, project management is viewed
as one of the most valuable skills for IT professionals. The Project Management Institute
(PMI) has a certification program for the project management discipline, and the highest
level of certification therein is the project management professional (PMP). Citing a 2002
Foote Partners Study, Computerworld listed the certifications obtained by IT profession-
als, and which certifications were the most valuable in terms of percentage pay increases
after certification (King, 2003). The three most valuable certifications in IT were

• PMI Project Management Professional (PMP): 15%
• GIAC Certified Intrusion Analyst: 12%
• Microsoft Certified Trainer: 12%

Figure 1.6. PM’s worldview

Benefits
Straegic
Change

Stake
Holders

Goals Strategy Resources

Stages
Project
Team

Product
or Service

Project
Work

Risk

Involves

Desire

Appoint

Allocate

Decide

Perform

Plan &
Execute

Affects

Requires

Delivers

Influences

Suggest

Met
By

Delivers

Expressed
In

Achieved Thru

Performed
In

Today’s IT Environment 15

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

According to Sommerville (2003), there are three challenges to software engineering
projects in the 21st century:

1. The Heterogeneity Challenge: Flexibility to operate on and integrate with multiple
hardware and software platforms from legacy mainframe environments to the
landscape of the global Web.

2. The Delivery Challenge: Ability to develop and integrate IT systems rapidly in
response to rapidly changing and evolving global business needs.

3. The Trust Challenge: Being able to create vital (mission and/or life critical)
software that is trustworthy in terms of both security and quality.

These are also three of the most critical issues for IT project management in general, and
these issues are addressed throughout this book. Being able to build flexible and
adaptable systems to address the heterogeneity and delivery challenge is crucial
because more IT and related environmental matters are changing, and they are changing
in an ever faster rate. In a similar vein, Computerworld’s 2005 Executive Panel described
an “evil triad” that has become the predominant future IT concern. That evil triad is poor
security, unreliability, and increased complexity (Anthes, 2005).
With more powerful tools comes the potential for greater benefits including productivity
increases, better cost and performance, and improved quality. However that power also
brings a higher cost and damage potential when the tool is misused either accidentally
or intentionally. IT is such a powerful tool, and that power in terms of computational
speed is still doubling about every 18 months. Many other IT advances are also
facilitating the possible misuse of IT, including,

• Price for computational resources has dropped so low that even the smallest of
organizations and countries can obtain massive power

• Advances in data storage technology mean that huge amounts of data can be
stored cheaply

• Advances in data mining techniques mean that huge amounts of data can be
analyzed in many ways

• Advances in data networking mean that the cost and time of moving and accessing
data has become very low, and that computers both inside and outside of an
organization are increasingly connected

As a result of these advances which facilitate IT misuse, computer security incidents are
growing rapidly. The number of domestic U.S. computer security incidents published by
the CERT Coordination Center at Carnegie Mellon University has increased dramatically
in recent years, as is shown in Figure 1.7. The number of these incidents has increased
so much that CERT is no longer keeping detail information thereon.

16 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These are just the security incidents that have been reported. Because IT is so prevalent
in all the products and services that organizations offer today and so prevalent in
everything we do as individuals, the impact of these security problems is also quickly
increasing. This problem could become enormous in the years ahead, and security
breaches such as Trojan horses and back doors may already be in place within key
software used by corporations and governments. The security issue in IT project
management is twofold:

• Being able to shield the project work, project team, and other resources from
security threats

• Being able to build adequate security protection into the product that is the subject
of the project

In the future, the last of Sommerville’s (2003) challenges previously listed may become
as, or even more, important than the first two. Being able to run projects and build systems
that are impervious to both internal and external security threats will become vital to the
success of organizations and survival of free world governments.

Figure 1.7. Reported security incidents

6 406 2340 3734

21756

137529

0

20000

40000

60000

80000

100000

120000

140000

160000
R

ep
or

te
d

 In
ci

de
n

ts

1988 1991 1994 1998 2000 2003

Today’s IT Environment 17

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Anthes, G. (2005, March 7). The dark side. Computerworld.
Brandel, M. (2001, January 1). Dual personalities. Computerworld.
Cafasso, R. (1994). Few IS Projects come in on time, on budget. Computerworld, 28(50),

20.
Cale, E. G., Curley J. R., & Curley, K. F. (1987). Measuring implementation outcome.

Information and Management, 3(1), 245-253.
Cooke-Davies, T. (2004). Project success. In P. Morris & J. Pinto (Eds.), The Wiley guide

to managing projects. Wiley.
Drucker, P. (2004). The next information revolution. Retrieved from www.versaggi.net/

ecommerce/articles
Hall, M. (2004, February 16). Thieves among us. Computerworld.
Hayes, F. (2004, November 6). Chaos is back. Computerworld.
Hildebrand, C. (1998). If at first you don’t succeed. CIO Enterprise, Section 2, 4-15.
Hundley, R., et al. (2004). The global course of the information revolution: recurring

themes and regional variations. Retrieved from www.rand.org/publications/MR/
MR1680/

King, J. (2003, February 10). Where certifications and paychecks meet. Computerworld.
McDonald, J. (2001). Why is software project management difficult ? And what that

implies for teaching software project management. Computer Science Education,
11(1), 55-71.

Murch, R. (2000). Project management best practices for IT professionals. Upper Saddle
River, NJ: Prentice Hall.

Paramount Pictures. (1986). Top Gun. Directed by Tony Scott.
Pearlson, K., & Saunders, C. (2004). Managing and using information systems. New York:

Wiley.
PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,

PA. ISBN 1-880410-22-2.
Sommerville, I. (2003). Software engineering. Boston: Addison-Wesley.
Standish Group. (2004). Chaos chronicles. Retrieved from www.standisgroup.com
Yates, J. (2000, August). Origins of project management. Knowledge Magazine.
York, T.(1999, January 18). Shift in IT roles ahead. InfoWorld.

18 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Critical Success Factors
for IT Projects

IT managers’ careers will rise and fall based on their ability to deliver high
quality projects on time.

(J. I. Cash, Harvard Business School)

A key factor leading to the continued failure in IT projects is the lack of identification
and appreciation for all the major components of project success. Critical success factors
are those things that must be done or handled properly for a project to be successful.
A comprehensive model of critical success factors for IT projects permits the develop-
ment of better management plans, processes, and metrics, particularly for risk, quality,
and performance control. In this chapter, general critical IT success factors are identified
and techniques for the management of those factors are introduced; later chapters then
detail those techniques.

Definition of Success

Cost, time, and quality (often referred to as the Iron Triangle) have formed the prime basis
for measuring project success for the last 50 years (Atkinson, 1999). However a number
of authors in more recent years (Atkinson, 1999; Brandon, 2004; DeLone & McLean, 1992;
Lim & Mohamed, 1999; Morris & Hough, 1987; Pinto & Slevin, 1998;) have suggested
that other criteria are also important. Some of these other criteria may be less quantitative,
more difficult to measure, and some of the criteria may be temporary in that their values
may be much more important at some points in the project.

Critical Success Factors for IT Projects 19

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

So what is meant by project success? Success needs to be defined completely so that
the factors that lead to success or failure in a broad perspective can be identified. In the
past, success has been too narrowly defined; this definition has typically been confined
to scope, cost, and time issues. Handling these particular issues has been well addressed
by methods such as earned value analysis (EVA), which have proven successful for
accurate performance measurement and control (Brandon, 1999; Fleming & Koppelman,
1994, 1998); earned value is specifically addressed in later chapters of this book.
Originally, Schultz and Slevin (1979) discussed overall implementation success and
identified three dimensions to success: technical (Does it work?), organizational validity
(Is it what the users want?), and organizational effectiveness (Is it a cost effective
solution?). Pinto and Slevin (1998) presented a widely used “10 Factor Model” for
success factors involving project mission, management support, planning, client con-
sultation, personnel, technical tasks, client acceptance, project control, project commu-
nication, and handling unforeseen issues (Pinto & Millett, 1999; Pinto & Slevin, 1992).
Hawkins (2004) determined that the most critical success factors for ERP IT projects were
adequate resources, shared and well communicated business justification, open commu-
nications, participation by all relevant levels of management, visible and continuous
executive sponsorship, being in touch with those most affected, preimplementation
training, and structured change management.
Klastorin (2004) illustrated project success in broader terms with the example of the movie
Titanic (Paramount Pictures, 1997). When that movie was release in 1997, it was well
behind schedule and cost almost twice the planned amount. It was, however, the first
movie in history to gross over $1 billion, and it received the best picture award for that
year.
Lim and Mohamed (1999) also raised the question of “What is a successful project?” and
noted that different stakeholders involved with the same project may have different
opinions about a project’s success. One of their examples concerned the construction
of a shopping center that was eventually completed to match the required quality
standard, however with significant cost and time overruns. Some stakeholders were very
unhappy, depending upon the type of contracts involved and who contractually bears
the burden of the cost overruns (i.e., who pays for cost overruns). Other stakeholders
(such as mall customers and the merchants renting space in the mall) were all pleased and
saw the project as a great success. Lim and Mohamed defined two perspectives, the
macro perspective, which involves all the stakeholders, and the micro perspective, which
involves only the construction parties such as the developer and contractor(s). The
macro perspective is relevant for all phases of a project from conceptualization, through
construction, and then operation. The micro perspective is most relevant for the
construction phase.

Completion and Satisfaction Criteria

Lim and Mohamed (1999) also defined two types of success criteria: completion and
satisfaction. Completion criteria include contract-related items such as cost, time, and

20 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scope. Satisfaction criteria include utility (fitness for purpose), quality, and operation
(ease of use, ease of learning, ease of maintenance, etc.). The macro perspective involves
both; the micro perspective only involves completion perspectives. This is illustrated
in Figure 2.1. Often, scope can be somewhat divided into a portion affecting completion
(mainly stated requirements, or needs) and a portion affecting satisfaction (mainly
unstated requirements and expectations, or wants). This division of success criteria into
micro and macro perspective types is very important in terms of project performance
control and the effectiveness and cost thereof. This division provides for different review
time periods, different review methods, and different project stakeholder involvement
for the review of each type of criteria.
Lim and Mohamed (1999) drew a clear distinction between “success criteria” and
“success factors.” The criteria are “a principle or standard by which anything is or can
be judged”; factors are “any circumstance, fact, or influence which contributes to a
result”. Figure 2.2 illustrates this point. Factors for the completion criteria would typically
include financial variables, process variables, resource variables (cost, availability, skill,
motivation, etc.), management variables (project manager skill, line management support,
etc.), and risk variables (weather, economy, technology, etc.). Factors for the satisfaction
criteria would be those things that drive the satisfaction of the stakeholders.
Success criteria tend to be relatively independent of the type of project being measured.
The factors are, however, very dependent on the type of thing being built (or accom-
plished). In the previous mall example, a factor for the satisfaction type criteria of utility
might be “ample parking”; a factor for the operation component of the satisfaction criteria
might be “ease of parking.”

Generalization of Success Factors for IT

I proposed a more generalized model in an earlier work (Brandon, 2004), and in developing
that generalized model for IT success factors, the success criteria were divided into the
two dimensions of project success defined by Lim and Mohamed (1999). Next, the general
criteria suggested by Lim and Mohamed were also used, and these criteria are relatively
independent of project type. The third step was to determine the factors that underlie
these criteria for IT projects.
Many authors have studied components of IT project success and risk. The original

Figure 2.1. Success criteria

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

+ =

Critical Success Factors for IT Projects 21

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Standish Group (1994) study found that the three most common causes of project failure
were: lack of user input, incomplete requirements, and changing requirements. Con-
versely they found that the three most important factors for success were user involve-
ment, executive management support, and a clear statement of requirements. The
European Software Process Improvement Initiative (ESPITI) performed a study in 1995
and noted that the major IT project failure factors were requirements specifications,
managing customer requirements, documentation, quality, and project management
methods. Hallows (1998) stated that the major causes of failure involved scope: poor
original definition, poor management of scope, and unforeseen changes in scope.
Jones (1994) studied software risks in different IT environments and identified major
issues and related metrics. For example, MIS software problems were “creeping”
requirements (80%), excessive schedule pressure (65%), low quality (60%), cost over-
runs (55%), and inadequate configuration control (50%). McConnell (1998) developed
a “survival test” for software development projects and detailed a number of success
criteria within five categories. Pearlson (2001) assessed project success criteria by asking
key questions to minimize risk: “Are we doing the right things?”, “Are we doing it in the
best way?”, “How do we know how well we are doing?”, “What impacts are we having
on the business?”, “Is the project cost-effective?”, “Is there clear accountability for the
project?”, and “Are key assets protected?” In 2004, The Standish Group (1994) updated
its list of IT critical success factors to include (Collett, 2005):

• User involvement
• Executive management support
• Clear business objectives
• Experienced project manager
• Minimal scope and requirements
• Iterative and agile process

Figure 2.2. Criteria and factors

Criteria

Principles
Standards

Factors

Circumstances
Facts

Influences

Judgement

Project Success

22 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Skilled personnel
• Formal methodology
• Financial management
• Standard tools and infrastructure

Based on the detail study of these past works (both scientific parametric-based studies
and the expert opinion of practitioners) combined with our own experience and research,
we have developed a recommendation for the major IT project success factors, both
completion and satisfaction. For the area of completion criteria, these major IT success
factors have been identified:

• Ability to Perform: Includes having the necessary amount of resources needed and
the correct resources to carry out the project plan. The ability to perform is also one
of the Software Engineering Institute (SEI) “common features” in their Capability
Maturity Model (CMM), which is discussed later in this book.

• Commitment to Perform: (Another CMM common feature) includes both project
sponsor and upper management support (including organizational and environ-
mental matters).

• Methodology: Involves the selection of specific IT software engineering pro-
cesses (requirements analysis, systems analysis, design, development, documen-
tation, testing, etc.) and how these processes will be organized, utilized, and
integrated both amongst themselves and with the project management processes.

• Verification: Involves “built-in” quality or “defect prevention” and concerns the
quality of the development processes, thus answering the question, “Have we built
the product right?” Formally, verification is proof of compliance with requirements,
specifications, and standards. Verification processes usually result in exception
(bug) reports where compliance is not achieved.

• Technology: Involves the proper selection of applicable technology for use both
in the product and in the process of building the product. It covers architecture,
platform, language, tools, and supporting technology selection as well as issues
of each including the maturity, stability, and support thereof.

• Project Management: Addresses the use of proper project management skills and
knowledge in dealing with planning, schedule, cost, scope, risk, human resources,
and stakeholders; this is what the Project Management Institute (PMI) calls
“knowledge areas.” Also included herein are the capabilities and experience of the
project manager.

In the area of satisfaction criteria, these major success factors have been identified:

• Business Justification: Involves some type of cost-benefit model. Line manage-
ment, users, and the project team must “buy-into” and support this model. Business

Critical Success Factors for IT Projects 23

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

justifications, financial models, and project feasibility are discussed later in the
book.

• Validation: Involves the product that is the subject of the project and checks all
user (customer) requirements (both stated and expected) and answers the ques-
tion, “Have we built the right product?” Formally, validation is proof that the
customer and end users are satisfied with the system. Proper user involvement is
vital to this aspect of the development and/or integration process. Validation
processes usually result in change orders when the user is not satisfied with an
aspect of the product.

• Workflow and Content: Involves the effective integration of the new product into
the organization and each user’s workflow. Content includes all deliverable
information including: documentation, help system, data, and media content
(especially in the sense of modern and internet applications).

• Standards: Relate to compliance with applicable industry, corporate, and user
(customer) standards in regard to both external (i.e. user interface) and internal
issues (i.e. coding standards). Standards are also discussed later in this book under
quality management.

• Maintainability and Support: Involves the inherent maintainability of the devel-
oped product and the willingness and timeliness of the developing (or support)
organization in responding to the customer’s concerns about usage or integrity
(real or perceived) issues.

• Adaptability: Relates to the flexibility of the product to be adapted (successfully
modified) for evolving changes in the environment in which the product is
deployed; this includes both technical changes and business changes.

• Trust and Security: Relates to both the security built into the product and to the
security of the process for building the product. Product security and trust
involves the customer’s willingness to fully utilize the system in all necessary
modes without concern for compromise of any of the customer’s assets including
information assets.

Figure 2.3 summarizes our general modern model for IT success factors. In the last chapter
of this book, we discuss project management from a strategic perspective and in
particular the collective management of multiple projects. Probably the most effective
method of modern strategic management is the Balanced Scorecard Method (BSC), which
divides strategic metrics into four perspectives: financial, process, learning and growth,
and the customer’s perspective. Our general model uses just two perspectives for
management at the individual project level (completion and satisfaction) and the reasons
for that will become clearer with each chapter of this book. However, our completion
criteria map to the BSC financial and process perspectives; and our satisfaction criteria
map to the BSC learning, growth, and satisfaction perspectives.
The Slevin-Pinto Profile (Pinto & Slevin, 1998) discussed earlier has often been used to
identify IT project success factors in order to focus management attention on the key
issues. A more recent Project Management Journal article illustrates the application of
such a profile (Finch, 1993). Figure 2.4 shows a mapping of our broader IT Success Criteria

24 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model to the Slevin-Pinto model. For the “Project Management” column, the PMI project
management “knowledge area” is shown, and these are discussed later in this book.
Our critical IT success factors are for IT projects in general, and will be used throughout
this book to formulate effective IT project management processes. If some of these
factors are not relevant to a particular IT project (or if there are additional critical factors),
then the processes, techniques, and metrics described later in this book can be modified
accordingly.

Managing for Success

This book focuses on managing for success in modern times. Once the critical success
factors for IT projects have been identified, then those factors become the foundation

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Completion Factors

Project Management
Methodology

Commit to Perform
Ability to Perorm

Verification
Technology

Satisfaction Factors

Business Justification
Validation

Workflow & Content
Standards

Maintainability & Support
Adaptability

Trust/Security

+ =

Figure 2.3. Critical IT success factors

Figure 2.4. Success factors vs. Slevin-Pinto Profile

Critical Success Factors for IT Projects 25

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

for effective performance management and management of other key project aspects as
risk. Performance management involves the things we know we have to do; risk manage-
ment involves the things we may have to do. This is illustrated in Figure 2.5.
This book introduces and develops the concept of splitting the traditional stage gate
reviews (exit gates or kill points) based upon the critical completion and success criteria.

Figure 2.6. Dual stage gates and success criteria

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Managment Stage

Quality
Stage

Quality
Stage Gate

Quality
Stage

Quality
Stage Gate

Quality
Stage

Managemant
Stage Gate

Quality
Stage Gate

+ =

Figure 2.5. Success factors and performance/risk management

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Completion Factors

Project Mgmt.
Methodology

Commit to Perform
Ability to Perorm

Verification
Technology

Satisfaction Factors

Business Justification
Validation

Workflow & Content
Standards

Maintainability & Support
Adaptability

Trust/Security
Performance

Monitoring and
Control

Risk
Identification

and Mitigation

+ =

26 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Management stage gates are used for the completion criteria and are implemented via
management by exception using earned value metrics at regular time periods so that the
project can flow quickly with minimal management review delays. Quality stage gates are
used to monitor the satisfaction criteria and their timing is event driven by the completion
of preliminary product manifestations. This is outlined graphically in Figure 2.6 and
discussed in detail later in the book. This dual gating process minimizes the time that both
upper management and the project team spends in status meetings by splitting the review
process into separate completion and satisfaction reviews with the occurrence of each

Figure 2.7. Risk framework and success factors

Risk Source Framework
 Potential Hazards
 Internal External

Threats to:

P
ro

d
uc

t

P
ro

ce
ss

P
eo

pl
e

O
rg

an
iz

at
io

n

O
th

er

P
ro

d
uc

t

P
ro

ce
ss

P
eo

pl
e

O
rg

an
iz

at
io

n

O
th

er

Completion Factors
 Project Management
 Methodology
 Commitment to Perform
 Ability to Perform
 Verification
 Technology
Satisfaction Factors
 Business Justification
 Validation
 Workflow & Contents
 Standards
 Maintainability & Support
 Adaptability
 Trust/Security

Figure 2.8.

Critical Success Factors for IT Projects 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

based upon the need thereof. However, it ensures that customer involvement is sufficient
in the project items that most concern the users.
With the success factor model becoming the foundation for other key project manage-
ment areas (including quality, security, and risk), frameworks are developed for the detail
processes of each management area. For example, a framework for risk identification and
quantification is formulated as shown in Figure 2.7.

Chapter Summary

In this chapter the concept of critical success criteria has been developed, and critical
success factors for IT projects have been identified and divided into completion and
satisfaction groups. More detailed coverage of each critical success factor is contained
in succeeding chapters of this book, and Figure 2.8 shows a rough mapping between
success factors and book chapters. The notion of a dual stage gate process has been
introduced for the comprehensive and effective management of these success factors,
and later chapters will define metrics and control methods for both completion and
satisfaction criteria.

References

Atkinson, R. (1999). Project management: Cost, time and quality, two best guesses and
a phenomenon., International Journal of Project Management, 17(6), 337-342.

Brandon, D. (1999). Implementing earned value easily and effectively. Essentials of
Project Control, 113.

Brandon, D. (2004, May). A generalization of critical success factors for IT projects.
Proceedings of the 2004 IRMA (Information Resources Management Associa-
tion) Conference, New Orleans, LA.

Collett, S. (2005, February 28). New project perils. Computerworld.
DeLone, W., & McLean, E. (1992). Information systems Success: The quest for the

dependent variable. Information Systems Research, 3(1), 60-95.
European Software Process Improvement Initiative. (1995). User survey report. Bizkaia,

Spain.
Field, T. (1997). When bad things happen to good projects. CIO, 11(2), 54-62.
Finch, P. (1993, September). Applying the Slevin-Pinto Project Implementation Profile to

an information systems project. Project Management Journal.
Fleming, Q., & Koppelman, J. K. (1994). The essence of evolution of earned value. Cost

Engineering, 36(11), 21-27.

28 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fleming, Q., & Koppelman, J. K. (1998, July). Earned value project management.
CROSSTALK, The Journal of Defense Software Engineering.

Hallows, J. (1998). Information systems project management. AMACON, American
Management Association.

Hawkins, P., et al. (2004). Change management: The real struggle for ERP systems
practices. Innovations through information technology. Hershey, PA: Idea Group
Publishing.

Hildebrand, C. (1998). If at first you don’t succeed. CIO Enterprise Section, 2, 4-15.
Jones, T. C. (1994). Assessment and control of software risks. New York: Yourdon Press/

Prentice Hall.
Klastorin, T. (2004). Project management: Tools and trade-offs. Hoboken, NJ: Wiley.
Lim, C. S., & Mohamed, Z. (1999). Criteria of project success. International Journal of

Project Management, 17(4), 243-248.
McConnell, S. (1998). Software project survival guide. Seattle, WA: Microsoft Press.
Morris, P. W. G., & Hough, G. (1987). The anatomy of major projects. New York: Wiley.
Paramount Pictures. (1997). Titanic. Directed by James Cameron.
Pearlson, K. (2001). Managing and using information systems. New York: Wiley.
Pinto, J., & Millet, I. (1999). Successful information system implementation. Newton

Square, PA: Project Management Institute.
Pinto, J., & Slevin, D. (1992). Project implementation profile. Newton Square, PA: Xicom.
Pinto, J., & Slevin, D. (1998). Critical success factors across the project lifecycle. Project

Management Journal, XIX, 67-75.
Schultz, R., & Slevin, D. (1979). Introduction: The implementation problem. The Imple-

mentation of Management Science. North-Holland.
Software Engineering Institute. Retrieved from www.sei.cmu.edu
The Standish Group. (1994). Charting the seas of information technology—Chaos.

West Yarmouth, MA.

Project Selection and Initiation 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Project Selection
and Initiation

If everyone is thinking alike, then somebody isn’t thinking.
(George Patton)

Careful selection of which projects to initiate is vital to the success of an organization.
Project initiation represents a future commitment of both human and financial resources
as well as of management attention. If a choice is careless or inappropriate, then the
consequences may be severe and long lasting. In this chapter, methods for the proper
selection and initiation of projects are discussed with regard to overall organizational
goals and business justification.

Organizational Planning

Organizational planning and the associated decision processes occur at several levels
of the company, including the operational level, the tactical level, and the strategic level.
This is illustrated in Figure 3.1. The operational level is concerned with day-to-day
activities in operating the business, including running the ongoing projects. The
management focus at this level is on efficiency, productivity, and quality: managers make
sure that things are done right. The tactical level is concerned with short-term planning
(i.e., annually). The management focus at this level is on effectiveness, consistency, and
accuracy; here, managers make sure the right things are being done. The strategic level
is concerned with long-term planning (i.e., 5 to 10 years), and the focus is on competi-

30 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tiveness and the value of the organization’s service and/or products as perceived by the
customers and other stakeholders.
Most of this book is focused on the operational level, which concerns the planning,
execution, and control of approved projects, thus addressing the question, “Are we
doing our projects right?” Project managers play the leading role in this level of
management. Chapter XVI examines the strategic level in regard to IT projects, including
overall IT governance issues as they relate to project management, the management of
broad issues that span multiple projects, and the adoption of special management
structures for projects.
Chapter III, however, focuses on the tactical level of an organization and addresses the
question, “Are we doing the right projects?” For those types of decisions, although
project managers should be involved, business analysts and upper IT management play

Figure 3.1. Organizational management levels

Figure 3.2. Book content vs. organizational levels

Strategic

Tactical

Operational

Information

Direction

S tr a te g ic
(C h a p te r 1 6)

T a c t ic a l
(C h a p t e r 3 & 1 6)

O p e ra t io n a l
(C h a p te r s 6 -1 5)

F o u n d a t io n
(C h a p te r s 4 & 5)

E n v i r o n m e n t
(C h a p te r s 1 & 2)

Project Selection and Initiation 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the lead role. The layout of this decision-rights–based content by book chapter is
illustrated in Figure 3.2.

Project Initiation

Projects are initiated from the recognition that (a) there is a problem (or a specific need)
to be addressed, and (b) that this problem can be addressed through a project to
implement some solution. Problem needs must be quantified (eventually, in terms of
requirements for IT projects) for a project to be formally initiated. The general process
of refining “needs” into a problem statement is shown in Figure 3.3.
The party that recognizes the problem, the party that articulates the problem, the party
that proposes the problem solution, and the party that performs the project may be
different parties, either individually or organizationally. Project proposals are developed
in the organization(s) in response to requests from managers (top down), from workers
(bottom up), and from customers or other stakeholders (external). Proposals are generally
reviewed by line management (which may request a detailed business plan), and if
approved result in a project charter, which is the official go-ahead document. Project
management (when selected and empowered) generally develops a scope statement,
which eventually leads to functional requirements (what the proposed system will do),
interface requirements, and technical requirements (how it will work). This is illustrated
in Figure 3.4.
All the documents shown in Figure 3.4 contain a great deal of uncertainty. The problems
and needs that are identified, and then articulated, are inherently fuzzy due to several
common circumstances:

Figure 3.3. Project initiation

Problem
Emergence

Problem
Recognition

Problem
Articulation

Project
Initiation

Proposed
Solution

32 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The entire problem is like an iceberg; only a portion of it can be seen
• Customers (end users or benefiting organizations) may be somewhat ignorant or

unclear about their true needs
• The needs change in time

In addition, the proposed solution (that is the subject of the project) may be identified
prematurely. An end user cannot usually relate the problem to the proposed solution in
abstract terms. Customers usually know what they do not want or need much better than
they know what they do want or need, or how to best articulate the same. Customers needs
to “see” the solution (or a manifestation thereof) before they can verify an effective match
between their problem and the proposed solution. In addition, for large benefiting
organizations, there may be multiple (and possibly conflicting) views of the problem and
alternative solutions thereof. Effective project management involves a recognition of
uncertainty in all the initial documents and plans, and also involves methods and tools
that adequately address these uncertainties. In addition to initial uncertainty and
uncertainty that develops as a project proceeds and takes on tangible forms, the end
users may see new possibilities, and they may pressure the performing organization for
changes and enhancements.

Project Proposals

Historically, IT projects have been justified on one or more of the three F’s: fear, faith,
or facts. The fear approach uses rational such as:

Figure 3.4. Scope and requirement development

Problem
Articulation

Project
Initiation

Proposed
Solution

Project
Proposal

Project
Business

Plan

Project Scope
Statement

Interface and
Functional

Requirements

Technical
Requirements

Project
Charter

Project
Management

Line
Management

Project Selection and Initiation 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Our competitors are already developing such a system!
Upper management and shareholders will consider us behind the technology curve
if we do not do this!

The faith approach uses rational such as:

Our competitors have done this and it is working for them!
This type of system is part of our IT infrastructure, and we cannot quantitatively
justify it like we could an additional factory capital equipment item!

A facts-based project proposal would identify the specific benefits of such a project, the
rough costs for developing the project’s associated product, some information about the
scope of the project, project and product risks and uncertainties, and the key stakehold-
ers that may be involved. Benefits typically involve improving or solidifying an
organization’s financial position (additional revenue and/or reduced costs) through

Figure 3.5. Project proposal

34 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

improvements to products and/or processes or new products (or services). Sometimes
the benefit is not of a direct financial nature but is due to a compliance requirement of
some external governing body. IT “benefits assessment” is neither specifically nor fully
covered directly in this book; it is a very broad topic and part of the realm of general IT
governance and management as opposed to IT project management. Finally, proposals
should be formalized, and forms such as that shown in Figure 3.5 may be used.

Project Business Plan

After a proposal has been approved for further evaluation, a formal business plan should
be required that elaborates (via extended research and analysis) all of the items shown
in Figure 3.5, including a feasibility analysis and reviewing of alternative methods (and
even alternative related project proposals). We say “should be required” because, in
reality, many IT projects are funded without a further detail analysis due to organization
issues including egos, power/politics, and who controls the purse strings.
With a more formal approach, IT projects would typically undergo feasibility analyses
from at least three perspectives: technical feasibility, operational feasibility, and eco-
nomic feasibility—in other words, Can we build it? Can we maintain it? and Can we make
money on it? Economic feasibility typically involves numerical financial techniques.
Other dimensions of feasibility may also need investigation for certain types of projects,
such as schedule feasibility for a time critical contracting situation, legal feasibility for
projects involving multiple companies and jurisdictions, and political feasibility when
conflicting interests prevail within an organization or within stakeholders, or where the
“balance of power” may change in an organization as a result of the project. The following
is an example of the contents for a project business plan:

Project Business Plan

Table of Contents

I. Opportunity
Background
Problem Description/Customer Needs
Market Window
Proposed Solution
Alternative Solutions
Consistency with Organizational Strategy
Critical Success Factors

II. Benefits
Description of Benefits
Mapping of Benefits to Problem Specifics
Quantification of Benefits
Measurement and Verification of Benefits

III. Resources (Schedule, Cost, People, other)
IV. Financial Analysis

Benefit Cost Ratio
Payback Period
Internal Rate of Return

Project Selection and Initiation 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Financial Evaluation
and Selection Methods

There are many numerical techniques used to evaluate the net benefit of a project. Most
of these are financial in nature and rely on future estimates of revenues and costs. The
most elementary technique is the simple cost-benefit analysis, which compares the cost
to implement a project versus the benefit to be realized. For example, if we build a software
system at a cost of $100,000 and it will save us $400,000 over the projected program’s
useful system lifetime of 10 years, the benefit-to-cost ratio would be 4 to 1. A simple return
on investment (ROI) calculation can also be made as the ratio of the benefit minus cost
over the cost; in this case 300% (300,000/100,000). Payback periods can also be similarly
determined. For this example the payback period would be determined by dividing the
cost ($100,000) by the annual benefit of $40,000 ($400,000 divided by 10 years) for 2.5
years. Information Week (D’Antoni, 2005) recently performed a study of payback periods
on IT projects for U.S. companies, and results were as follows:

Less than 6 months—about 30% of projects
Within 1 year—about 35% of projects
Within 2 years—about 20% of projects
Within 3 years—about 15% of projects

Project Business Plan

Table of Contents (cont.)

V. Technical Feasibility
VI. Operational Feasibility

Operation
Maintenance
Total Cost of Ownership

VII. Economic Feasibility
VIII. Organization of Effort/Attention

Benefiting Organization
Performing Organization
Key Stakeholders
Project Organizational Framework

IX. Project Impacts
Performing Organization
Benefiting Organization
Other

X. Initial Risk Assessment
Internal
External
Risk of not Doing Project

XI. Security
XII. Other Issues

Organizational
Socio-Political
Legal, Ethical, Environmental, Health, Safety

36 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The aforementioned financial metrics do not consider the absolute size of the investment
or the benefit. Simple cost-benefit analysis is also problematic because it ignores the time
value of money. When interest rates are low and short projects are under consideration,
this may not be a serious shortcoming. However when interest rates are high (i.e., over
8%) and the projects under consideration are long (over several years), then net
present value (NPV) techniques should be used. The formula for NPV (or discounted
cash flow) is:

NPV = ∑ (B – C)t/(1+i)t

Where (B – C)t is the benefit minus the cost for period t, and i is the interest rate (cost
of borrowing money or opportunity cost for other uses of cash). For NPV, benefit minus
cost is more formally revenue (cash in) minus expenditures (cash out). Figure 3.6 is an
example of a NPV calculation done in a spreadsheet program. The cost column includes
development and long-term total cost of ownership (TCO) values. TCO includes the
incremental ongoing cost of support, operations, and maintenance (above the status
quo). The column for discounted benefit minus cost is calculated from the application
of the above formula. Even though the total benefit minus the total cost is $305,000, the
NPV is only about $44,000 at an interest rate of 10%.
Another similar project financial evaluation technique is called the internal rate of return
(IRR). This metric is better than NPV because it is not as sensitive to the uncertainties
of future benefits and costs and to the future interest rates. The internal rate of return
is the value of the interest rate that yields a zero value for NPV; this is sometimes called
the return on investment. This can be calculated in spreadsheet programs by using built-
in solver tools. Because, in reality, a quadratic equation is being solved, multiple IRR
values could be found. Thus one must impose additional constraints on the solution
(such as IRR is positive, or in a given range). Figure 3.7 shows the spreadsheet calculation
for IRR on the previous example; the IRR here is about 13%.
Projects with the same net present value may have different internal rates of return.
Consider the two cases shown in the spreadsheet of Figure 3.8. This is another reason
that the IRR is a better way to compare competing projects.

Figure 3.6. NPV cost/benefit analysis

Project Selection and Initiation 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Decision Trees

The financial aforementioned evaluation methods rely on future estimates of revenues
and costs. As the uncertainty in these future estimates increases, the utility of these
methods decreases. Decision trees are another project selection technique that consid-
ers the impact of uncertainty in the decision process. Decision trees are based on the
Bayes (1763) rules of conditional probability, and they are typically implemented in a
graphical and/or spreadsheet model.
The basis for decision trees goes back hundreds of years. In the early 18th century, an
English philosopher and clergyman, Thomas Bayes, devoted his attention to a perplexing
problem. Suppose there is a set of events, one of which must happen. It is possible to
compute the chance that each will occur through the normal rules of probability. Now
suppose that two or more of these events could give rise to the same observation. What
is the probability that the observation came from a particular one of the events?

Figure 3.7. IRR calculation

Figure 3.8. IRR vs. NPV

38 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bayes (1763) was so unsure of his rules that he did not publish them. His results were
published by a friend, Richard Price, in 1763. The same results were later verified by the
famous French mathematician Marquis de Pierre Simom LaPlace in 1774. His definition
for conditional probability was:

P(AB) = P(B)P(A|B),

where P is probability, A and B are events, and | means “conditional.” If A can occur if
B does or does not (B’ is not B):

P(AB’) = P(B’)P(A|B’).

Then, because A can occur either way:

P(A) = P(AB) + P(AB’)
P(A) = P(A|B)*P(B) + P(A|B’)*P(B’).

For example, there may be a severe winter. Let severe winter be event B, and the
probability of B is 0.7. Let event A be the selling of over X units of product. If the winter
is severe, the probability of selling mote than X units of product is 0.8. If the winter is
not severe, the probability of selling more than X units of product is 0.5. What is the
probability of selling more than X units, that is what is P(A).

P(A) = P(A|B)*P(B) + P(A|B’)*P(B’)
Now P(A|B’) = 1 – P(A|B)
And P(B’) = 1 – P(B)
P(A) = (0.8 * 0.7) + (0.5 * 0.3) = 0.71

This analysis can also be represented graphically, as shown in Figure 3.9.
Decision trees are a form of graphical analysis used to select a decision based upon
alternatives and their outcomes. The trees can also be implemented via spreadsheets as
well as graphs. Each outcome has a probabilistic value. The components of a decision
tree are:

“decision nodes”—represented by squares
“alternatives”—represented by circles
“states”—represented by ovals

Project Selection and Initiation 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The states are known in the sense of their likelihood to occur or not to occur, and each
state has an outcome measured in dollars of benefit. The alternatives have costs
associated with them, as is illustrated in Figure 3.10. The Ps are the probability of
occurrence of each state/outcome for each alternative, and the Bs are the benefit of each
state for each alternative, and the Cs are the cost of each alternative. The sum of the Ps
for each alternative is unity. The decision on which alternative to choose is based on the
calculated EMV (expected monetary value) of each alternative. The EMV of each
alternative is calculated by summing each benefit multiplied by its probability:

EMVj = ∑ Pji * B1i (where i is the state and j is the alternative).

The overall EMV is the greatest EMVj of each of the alternatives.
As we add additional layers to the decision tree, the overall EMV is “conditional” upon
moving forward to the next level in the tree; here, the next phase of the project. As an
example, consider the two-level tree in Figure 3.11 representing a two-phase project. The
first phase is to develop a new software application and the second phase is to market
that application. In that figure:

Cd = cost to develop
Cm = cost to market

Figure 3.9. Graphical representation of conditional probability

State A

State A'

State A

State A'

Severe
Winter

(0.7)

Mild
Winter

(0.3)

Sales > X
(0.8)

Sales <
X

(0.2)

Sales >
X

(0.5)

Sales <
X

(0.5)

40 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pts = probability of technical success
Pbs = probability of market success
Bbs = benefit of business success
Bbf = benefit of business failure

The EMV of launching the new application conditional to the technical success of
developing it is:

EMVb = Bbs * Pbs + Bbf * (1-Pbs) – Cm.

The overall EMV is:

EMV = EMVb * Pts + 0 * (1–Pts) – Cd =
 Pts * (Bbs * Pbs + Bbf * (1-Pbs) – Cm) – Cd.

For example, if the probability of technical success is .80 and the probability of market
success is .70, and the development cost is $300,000 and the marketing cost is $100,000,
and the benefit is $1,000,000 over the life of the application for a business success and
$200,000 for a business failure, then the EMV is only

Figure 3.10. Decision tree

Decis ion

Alternativ e
1

Alternativ e
N

Outcom e
1-1

Outcom e
1-N

Outcom e
N-1

Outcom e
N-N

...

...

...

P 1-1

P 1-N

P N-1

P N-N

B N-N

B N-1

B 1-1

B 1-NC1

CN

Project Selection and Initiation 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

EMV = .8 * ((1000000*.7 + 200000*.3) – 100000) – 3000000 = $228,000

as compared to a simple benefit minus cost of $600,000.
If the development time plus the time to market was several years and the interest rate
was high, then one should use NPV in these formulas instead of simple benefit dollars.
This is illustrated in the spreadsheet shown in Figure 3.12. Notice that now the EMV for
this project has become negative.
The decision tree depicted in Figure 3.11 and Figure 3.12 could be extended both vertically
to add other alternatives and horizontally to add additional phases. This is depicted in
Figure 3.13. Here the project with the greatest EMV would be chosen (unless there are
other factors to consider as discussed later).
The choice of which project (or projects) to initiate in Figure 3.13 is based upon the
calculated EMV, which is based upon estimated costs, benefits, and probabilities of
success in each phase. Other approaches can be used which do not rely on probabilities,
but on a best case and worst case analysis for the benefit minus cost, or NPV. Here one
employs a maximax, maximin, or equally likely approach. The maximax approach picks the
maximum of the best case scenario; it is the most risky approach and would be used when
the stakeholders were not adverse to risk (speculative). The maximin approach picks the
maximum of the worst cases and this would be used with very risk adverse (timid)
stakeholders. The equally likely approach averages the best and worst case scenarios.
This is illustrated in Figure 3.14. Here we get three different choices based upon which
strategy we follow.

Figure 3.11. Project decision tree

Develop
?

Develop
New Ap

Do Nothing

Technical
Success

Technical
Failure

Launch ?

Yes

No

Status
Quo

Business
Success

Business
Failure

Pts

(1-Pts)

Costs = 0

Cost = Cd

B = 0

B = 0

B = 0

Pbs

(1-Pbs)

Cost = 0

Cost = Cm

B = Bbf

B = Bbs

42 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project Scoring Methods

The aforementioned financial evaluation methods rely on future estimates of revenues
and costs, either including uncertainty or not including uncertainty. Other methods of
scoring that do not rely on entirely future financial estimates can be used in addition to
or in replacement of the financial models. These other methods may consider purely
strategic considerations or may involve a number of criteria including risk factors,
environmental factors, sociological factors, and so forth. Stix and Reiner (2004) classified
a number of IT project selection methods, as are represented in Figure 3.15:

B’s—Bedell’s Method
BSC—Balanced Scorecard

Figure 3.13. Multiphase project decision tree

Which
Project ?

Project
1

Project
 i

Project
N

Phase 1
Success

Phase 1
Failure

Phase 2?

Yes

No

Phase 2
Success

Phase 2
Failure

Figure 3.12. EMV calculation

Project Selection and Initiation 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CBA—Cost Benefit Analysis
CSF—Critical Success Factors
DCF—Discounted Cash Flow
DT—Decision Trees
IE—Information Economics
IM—Investment Mapping
IP—Investment Portfolio
KU—Kobler Unit Framework
OT—Option Theory
ROI—Return on Investment
ROM—Return on Margin
SIESTA—“Siesta” Method
SP—Scenario Planning
SWOT—Strengths/Weaknesses
TCO—Total Cost of Ownership

Although less than 20 methods are illustrated in Figure 3.15, over 100 such methods
currently exists (Stix & Reiner, 2004). Each of these methods has pros and cons, and each

Figure 3.14. Maximax and minimax calculation

Multi-Criteria

Financial

Strategic

DCF

ROI

SIESTA

KU

CSF
SWOT

SP

BSC

OT
DTIP

IM
B'S

ROM
IE

TCO
CBA

Figure 3.15. Project scoring methods

44 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

method is more applicable for certain types of IT projects and less applicable for other
types of projects.
In an attempt to develop more holistic methods, many different scoring and ranking
methods have been proposed that include less quantitative and more qualitative metrics
for evaluating proposed projects. Most of these methods define a list of metrics with a
corporate weighting assigned to each metric; the weightings sum to 100%. Then a score
is given to each metric such as a value between 1 and 10 (not all methods use a linear scale).
The definition of each metric is usually worded so that a high score is good and a low
score is bad. As part of the definition of each metric, examples of the meaning of high and
low scores should be specified. For example, in considering technical feasibility, a score
of 10 may mean that “this type of project has been done in this organization successfully
in the recent past,” a score of 5 may mean that “this type of project has been done in similar
types of organizations with success,” and a score of 1 may mean that “we have not seen
it done successfully anywhere yet.” Statistically, it is best if the metrics do not interact
too much, however in reality many metrics are going to indirectly affect other metrics.
Typical metrics include:

Consistency with Organizational Mission and Goals (1 = low, 10 = high)
Technical Feasibility (1 = low, 10 = high)
Operational Feasibility (1 = low, 10 = high)
Economic Feasibility (1 = low, 10 = high)
External Risk (1 = high, 10 = negligible)
Internal Risk (1 = high, 10 = negligible)
Risk of Not Doing this Project (1 = high, 10 = low)
Internal Rate of Return (1 = low, 10 = high)
Capital Investment (1 = very significant, 10 = little)
Payback Period (1 = long, 10 = short)
Degree of Contracting/Outsourcing (1 = much, 10 = little)
Development Time (1 = long, 10 = short)
Geographical Dispersion of Team (1 = much, 10 = little)
Impact on Customer Base (1 = little, 10 = much)
Impact on Organization (1 = little, 10 = much)
Sociopolitical Impact (1 = little, 10 = much)
Environmental & Safety Considerations (1 = very significant, 10 = little)
Increase in Organizational Knowledge (1 = little, 10 = much)
Increase in Organizational Competitiveness (1 = little, 10 = much)

In this list, external risks involve factors outside of the performing organization such as
market factors, regulatory factors, and the risk of working with a particular customer or
benefiting organization (including the risks that the project is inappropriate for the

Project Selection and Initiation 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

customer’s desired business objective). Internal risks involve the project team, the
chosen technology, and other factors inside of the performing organization. These risks
are itemized and analyzed later in the book. If a number of projects are being evaluated
at one time, one can also use a forced ranking instead of a scale.
In older days, informal versions of this scoring and ranking were often called murder
boards to eliminated projects from consideration which scored very low in one or more
categories. Today, many organizations use modern group decision support software
(groupware) to allow a number of stakeholders to come together in a virtual meeting room
to score and rank projects. The groupware allows the stakeholders to voice opinions and
to score each factor for each project in an anonymous manner. Many organizations today
also have a project management office (PMO), which carries out project scoring and
ranking directly or facilitates that process for stakeholders and/or line management.
PMOs, managing multiple projects, and project portfolio management are discussed
further in Chapter XVI.

Project Stage Gates

Project benefit analysis and scoring/ranking also needs to take place as a project
proceeds as well as when a project is proposed. As a project proceeds, particularly for
long projects, many factors may change, which could make this project less beneficial
or make other projects more beneficial. Factors that may change include organizational
factors, customer factors, or environmental factors. In Chapter II, project success factors
were discussed and the dual stage gate notion was introduced (a dual gating process was
shown in Figure 2.6). Management stage gates are place at regular time intervals (i.e.,
monthly or quarterly), and quality stage gates are placed at key delivery points for
preliminary product manifestations (i.e., requirements documentation, use cases, paper
prototypes, working prototypes, test results, etc.). There may be multiple quality stage
gates within a management stage gate time interval, or vice versa.
The chosen project benefit metric(s) would be recalculated at each management stage
gate using the earned value analysis (EVA) based estimate for the cost at completion;
earned value is discussed in detail later in this book. The chosen benefit metrics might
be any of those discussed previous such as IRR or scoring methods. It is important that
these management reviews do not use sunk cost (how much has already been invested/
spent) in determining whether a project should proceed or not; the only cost consider-
ation should be the estimated cost at completion versus the benefit. Keeping a badly
performing project alive by consideration of sunk cost is a trap into which many
organizations have fallen.
In analyzing the chosen benefit metric(s), the satisfaction criteria needed would be those
reported at the previous quality stage gate. Here the customer and other stakeholders
have input into the decision as to whether a project should continue, be canceled, or be
placed on hold. Canceling a project (as well as normal project close out) are discussed
in detail later in the book. The customer’s continued support for the project in terms of
the overall benefit can be recalculated in light of the latest estimate for the total cost at

46 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.16. Stage gate evaluation

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage
Gate

Managemant
Stage Gate

Stage Gate
Evaluation

EVAStakeholders

Benefit
Metrics

Risk
Analysis

+ =

Figure 3.17. Stage Gate Review Form

Project Selection and Initiation 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

completion (EAC). Figure 3.16 illustrate this dual gating review process in regard to
benefit metrics.
Figure 3.17 is an example of a stage gate review form. On this form the metrics from the
earned value analysis as of a certain time period are recorded which indicate how the
project is going from a progress and cost perspective. The next portion of the form
concerns the satisfaction factors that are qualitatively evaluated by both the benefiting
organization (typically users) and the performing organization (typically business
analysts). The basis of the satisfaction scoring is also specified, which would be the last
quality stage gate where a product manifestation was available, such as a prototype.
Financial metrics are then recalculated based upon the current estimated cost to complete
the project and the latest benefit projections. The risks that were identified and quantified
at the start of the project are also reevaluated; risk analysis is covered in detail later in
the book.

Chapter Summary

In this chapter, project initiation and the processes and documents involved with project
evaluation from a business perspective were discussed and illustrated. Chapter VI
continues with the life of a project after the organization has committed to perform said
project. However, before getting to Chapter VI, Chapters IV and V discuss project
management and software engineering from a disciplinary perspective, as these con-
cepts and terms will be used throughout the remainder of this book.

References

Bayes, T. (1763). An essay towards solving a problem in the doctrine of change. In R.
Price (Ed.), Philosophical Translations of the Royal Society: Vol. 53 (p. 370).
London, UK.

D’Antoni, H. (2005, February 28). Behind the numbers, tech investments take time to
thrive. Information Week.

Stix, V. & Reiner, J. (2004, May). IT appraisal methods and methodologies—A critical
literature review. Proceedings of the IRMA (Information Resources Manage-
ment Association) Conference, New Orleans, LA.

48 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

The Project
Management Discipline

Those who cannot remember the past are condemned to repeat it.
(George Santayana)

Professional organizations that have developed around the world to foster the project
management discipline (Morris, 2001) have recognized that a distinct skill set is neces-
sary to ensure successful project managers, and these organizations are devoted to
assisting their members develop, improve, and keep these skills current (Boyatzis, 1982;
Caupin, Knopfel, & Morris, 1998). In this chapter, I discuss the methods, techniques, and
standards that these organizations have formalized.

Project Management Organizations

The Project Management Institute (PMI) is the largest organization in the world devoted
to project management. Other major international organizations include the Association
for Project Management (APM), British Standard Institute (BSI), Engineering Advance-
ment Association (ENAA) of Japan, Australian Institute of Project Management, and the
International Project Management Association (IPMA). Each of these organizations has
developed a set of project management standards as has the ISO (International Organi-
zation for Standards) with its ISO 10006 Guide to Quality in Project Management. These
various project management standards can be compared using word size (Crawford,
2004):

The Project Management Discipline 49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PMBOK—56,000
APM BoK—13,000
IPMA ICB—10,000
ENAA P2M—36,000

The APM has developed a Body of Knowledge (BoK) of Project Management Compe-
tencies, which identifies 40 key competencies grouped as follows:

• Project Management: Covering the key elements that differentiate projects from
general management

• Organizations and People: Detailing the main qualitative skills of a project
manager

• Techniques and Procedures: Details the quantitative methods
• General Management: Covers industry specific concepts

The APM Body of Knowledge also provides a focal point for many of the programs run
by the APM, including their Certification Programme, which assessing a person’s
competence in managing a project; the Course Accreditation Programme, which reviews
training courses run by both commercial private training companies and higher education
institutes; and the Project Management Capability Test, which assesses a person’s
knowledge in the APM Body of Knowledge.
The British Standards Institute publishes the Guide to Project Management (BS6079).
This standard has been adopted by the British government and industry, and establishes
commonly accepted terminology. The stated objectives of BS6079 are to provide
guidance to

• General managers, to enable them to provide proper support for project managers
and their teams;

• Project managers, to improve their ability to manage their projects;
• Project support staff, to help them understand project management issues and

solutions; and
• Educators and trainers, to help them understand the project management environ-

ment and the context in which project management methods are deployed.

The International Project Management Association is a federation of national project
management associations for several European countries. It publishes the IPMA
Competency Baseline (ICB) in English, French, and German (it was first published in
1998). The content is similar to the APM BoK, but the organization is different and is
termed the Sunflower. The IPMA encourages each national organization to form its own
competency baselines, called “National Competency Baselines.” There are now about
30 countries with NCBs throughout Europe, Egypt, India, and China.

50 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Engineering Advancement Association (ENAA) of Japan has also issued a project
management body of knowledge: P2M (A Guidebook of Project and Program Manage-
ment for Enterprise Innovation). Their PM standard is different from that of the PMI or
APM, and is based on how project management can be used to increase business value
for an organization and promote innovation. This P2M was a multiyear joint effort
between the Japanese Project Management Forum (JPMF) and the Japanese Ministry of
Economy, Trade and Industry (METI); it was supported by both the Japanese industry
and government with a very significant contribution from academic research. The
Japanese P2M is based on a tower structure. which, according to the Japanese Standard
Committee, focuses on aligning project management to the business units (as opposed
to the European and North American approach, which is dedicated to the management
of a single project). The four areas of certification in the Japanese program are Objectives,
Strategy, Value Management, and Finance.
Terminology, methodology, and, sometimes, concepts in project management. differ
somewhat in these different organizations and in different parts of the world. In the
United States, a concept may be commonly associated with a certain term and in other
parts of the world a different term or terms may be used. Even within the United States,
terms and concepts may differ in the federal agencies (i.e., NASA, DOD, etc.) versus the
private sector. In this book we have tried to show alternative terms for the same concept
and differing concepts used in similar ways.

Project Management Institute

The Project Management Institute (PMI) is the world’s largest project management
organization, with about 150,000 members in more than 125 countries. PMI has also
established more than 200 local chapters around the world. The PMI Web site
(www.pmi.org) records over 4 million visitors per year. Founded in 1969, PMI establishes
project management standards, provides seminars and other vehicles for professional
growth, promotes educational programs, funds and encourages research, and provides
professional certification that many of the world’s organizations desire for their project
personnel. PMI produces a number of publications, including the Project Management
Journal, Project Management Quarterly, PM Network, and PMI Today. This book will
closely follow the PMI standards, however other and broader standards and concepts
found in the other major project management organizations will also be included.

Project Management
Body of Knowledge

PMI established its first body of knowledge in 1976, which around 1987 became A Guide
to the Project Management Body of Knowledge (PMBOK; PMI, 2000). It was revised

The Project Management Discipline 51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several times with major releases in 1996, 2000, and 2005; there are approximately 1.5
million copies of all PMBOK versions in circulation. The PMBOK embodies generally
accepted best of practice procedures, methods, and general tools, which are derived by
a structured consensus of its vast membership. The PMBOK an approved American
National Standard (ANS) by the American National Standards Institute (ANSI). There
is some overlap among project management best practices, general management prac-
tices, and practices specific to various fields, as illustrated in Figure 4.1.
The PMBOK’s content is organized into processes, and each of the 37 key processes are
defined as procedures that receive various input, produce various output, and use
various methods (such as management techniques, mathematical techniques, statistical
techniques, etc.), perhaps with the assistance of some general tools (typically, some type
of software). These processes are shown pictorially in Figure 4.2.
These processes are grouped into five process groups that relate to how project work
is managed:

1. Initiation
2. Planning
3. Execution
4. Control
5. Closing

Figure 4.1. PMBOK components

Figure 4.2. Process representation

PMBOK

General
Management

Application
Specific

Process

Methods

Inputs Outputs

Tools

52 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These processes are further subdivided into nine knowledge areas:

1. Integration Management [3 processes]
2. Scope Management [5 processes]
3. Time Management [5 processes]
4. Cost Management [4 processes]
5. Quality Management [3 processes]
6. Human Resource Management [3 processes]
7. Communication Management [4 processes]
8. Risk Management [4 processes]
9. Procurement Management [6 processes]

There are also overall project management activities The process groups are often called
project management phases or stages, which are distinguished from project phases that
are discussed later. Figure 4.3 shows the general sequencing of the process groups in
the timeline for a project. In practice, however, there may be considerable overlap; that
is, all initiation processes will not be complete before all the planning processes begin.
Output from one process-group process will typically be the input to another process,
either in the same process group or the next one in the sequence.
The overall organization of the PMBOK and the relationship among the processes,
process groups, and knowledge areas is shown in Figure 4.4.
Large projects typically are broken down into phases, and the organization of those
project phases is discipline specific and typically follows some type of methodology.
Various types of IT methodology are detailed later in this book. Each project phase has
a beginning and an end, and the five process groups are a part of each phase. Deliverables
from one phase are typically inputs to the next phase; there may be phase overlap in some
methodologies. Figure 4.5 shows how effort is generally distributed across project
phases.
A typical phasing for very large IT projects might look like the following:

Figure 4.3. Process group interaction

Initiation Planning

Execution Control Closing

The Project Management Discipline 53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Feasibility, Proposal, Business Plan
Requirements Specification
Design

Overall design
External (user interaction) specifications
Detail design
“As designed” internal documentation
Test plans
Deployment and integration specifications

Figure 4.4. PMBOK process groups vs. knowledge areas

PMI Process Groups and Knowledge Areas
 Initiation Planning Executing Controlling Closing
Integration

Project Plan
 Development

Project Plan
 Execution

Overall Change
 Control

Scope Initiation Scope Planning
Scope
Verification

Scope Change
 Control

Scope
 Verification

 Scope Definition

Time Activity Definition Schedule Control

 Activity Sequencing

Activity Duration
 Estimation

Schedule
Development

Cost Resource Planning Cost Control

 Cost Estimating

 Cost Budgeting

Quality Quality Planning Quality Assurance Quality Control

Human
Resources

Organizational
Planning Staff Acquisition Team Development

Communications
Communications
 Planning

Information
 Distribution

Performance
 Reporting

Administrative
 Closure

Risk
Risk
Identification Risk Identification

Risk Response
 Control

 Risk Quantification

Risk Response
 Development

Procurement Procurement Planning Solicitation
Contract
 Administration

Contract
Closeout

 Solicitation Planning Source Selection

Contract
 Administration

Time -->

Effort

Initial
Phase

Final
Phase

Intermediate
Phases

Figure 4.5. Project phasing

54 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implementation
Coding
Unit testing
Module and Feature Testing
User documentation
“As built” internal documentation

Installation
Conversion
Training
Network and site preparation
Hardware install and integration
Software install and integration
Integration and acceptance testing
Parallel operation

Operation and Maintenance (O & M)

As stated previously, in large phased projects the five process groups occur in each
project phase, as is illustrated in Figure 4.6. For some industries and in some methodolo-
gies there may be overlap in project phases. IT may also have some project phase overlap,

Figure 4.6. Process groups in each phase

Initiation Planning

Execution Control Closing

Initiation Planning

Execution Control Closing

Phase
N + 2

Phase
N-1

Phase N

Phase N + 1

The Project Management Discipline 55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

depending on the type of methodology adopted and the type of contracting arrangement;
both of these aspects are discussed in more detail later in the book.
PMI’s summarization of key activities by process group follow:

Key Initiation Activities
Project feasibility (high-level ROI approximation)
High-level planning
Project charter document (memo, letter)

Key Planning Activities (order important)
Develop scope statement
Assemble project team
Develop work breakdown structure (WBS)
Finalize project team
Do network type diagram (showing activity dependencies)
Estimate cost and time, find the “critical path”
Determine overall schedule and budget
Procurement plan
Quality plan
Identify risks, quantify them, develop risk responses
Other plans: change control plan, communications plan, man
agement plan
Overall project plan
Project plan approval
“Kickoff meeting”

Key Execution Activities
Execute the project plan
Complete work packets (activities)
Information distribution
Quality assurance
Team development
Scope verification
Progress meetings

56 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Key Control Activities
Overall change control
Performance reporting
Scope control
Quality control
Risk response control
Schedule control
Cost control
Manage by exception to the project plan

Key Closing Activities
Procurement audits and contract(s) close out
Product verification
Formal acceptance
Lessons learned documentation
Update all project records
Archive records
Release team

PMI established a certification program in 1984 for the project management discipline.
The highest certification level is that of a PMP (project management professional). The
requirements for an individual to be awarded that certification level include

• 4,500 hours of documented project management experience over 3-6 years
• BS/BA Degree and at least 35 contact hours in PM training
• Passing a very comprehensive 4 hour exam on the PMBOK
• Adherence to the PMI professional code of ethics

There are about 100,000 certified PMPs in the world. Those who have been granted PMP
certification must demonstrate an ongoing professional commitment to the field of
project management by satisfying PMI’s Continuing Certification Requirements Pro-
gram to retain their PMP status. In 1999, PMI became the first organization in the world
to have its Certification Program attain International Organization for Standardization
(ISO) 9001 recognition. The IPMA also has certification processes with four levels of
certification: practitioner, professional, manager, and director. ENAA’s P2M has three
levels of certification: architect, manager, specialist (Crawford, 2004).
The PMP certification (or equivalent certification from another international organiza-
tion) is now being required (or highly recommended) by many large corporations for one

The Project Management Discipline 57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.7. Book contents and PMI process groups

PMI Process Group Book Chapter
Initiation III, V, VI
Planning VI, VII, VIII, IX, X, XI, XII, XIII
Execution XIII, IX, X, XI, XII, XIII, XVI

Controlling XIV, XV, XVI
Closing XI, XII, XVI

PMBOK SDLC
Process
Group Outputs Stage Outputs

Initiation Business Plan

 Project Charter

Plan Overall Plan

Management
Plan

 Scope Statement Definition Project Plan:

 Communications Plan

 Change Management Plan

 Requirements Requirements Document

 WBS Document

 Network Diagram

 Schedule

 Resource Plan

 Cost Plan

Procurement
Plan

 Quality Plan

 Risk Plan

Execute/Control
Performance
 Reports Analysis Overall Design Documents:

Stage Gate
 Reviews Use Cases

 Preliminary
 Users Manual

 Test Plan

 Design Detail Design Documents:

 Menu/Navigation Design

 Screen Designs
 and Storyboards

 Report Designs

 Database Design

 Algorithms Design

 Prototypes

 Construction Development Objects:

 Commented Code

 Test Scripts

 Help Screens

 Testing Test Results Documents

 User Manual

 Training Material

 Installation Install Documents

Closing Project Close Out

 Contract Close Out

 Lessons Learned

Figure 4.8. PMBOK and SDLC

58 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to become a project manager in their organization. Additionally many companies expect
vendors to provide certified project managers for contracted work.

Chapter Summary

The formal discipline of project management was introduced and international organi-
zations that foster the project management discipline were discussed. The PMI body of
knowledge was illustrated (in later chapters the key processes and activities that are a
part of each process group will be discussed in detail for IT projects). Figure 4.7 shows
the chapters in which PMI process groups are covered.
In IT projects, there will be a correlation between the PMI process groups (and their
outputs) and the chosen software engineering methodology (and its outputs). Chapter
V discusses software engineering and IT methodologies; Figure 4.8 is an example of a
correlation between PMI process groups and the classical software development life
cycle (SDLC) of a single phase project.

References

Boyatzis, R. (1982). The competent manager: A model for effective performance. New
York: Wiley.

Caupin, G., Knopfel, H., & Morris, P. (1998). ICB IPMA competence baseline. Zurich,
Switzerland: International Project Management Association.

Crawford, L. (2004). Global body of project management knowledge and standards. In P.
Morris & J. Pinto (Eds.), The Wiley guide to managing projects. Newton Square,
PA: Wiley.

Morris, P. (2001, September). Updating the project management bodies of knowledge.
Project Management Journal.

PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,
PA. ISBN 1-880410-22-2.

The Software Engineering Discipline 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

The Software
Engineering Discipline

He who hurries cannot walk with dignity.
(Ancient Chinese saying)

Software engineering is vital for the proper planning of IT projects, although it is not a
formal part of project management. The software engineering embedded in the acquired
products will significantly affect long-term project success factors, even for IT projects
that primarily involve software acquisition and integration instead of software develop-
ment,. In this chapter I review software engineering and its relation to IT project
management.

Software Engineering vs.
Project Management

The project management and software engineering disciplines overlap considerably, as
is illustrated in Figure 5.1. The Institute of Electrical and Electronics Engineers (IEEE)
software standard 1490-2003 provides for the adoption of PMI Standard (PMBOK).
The IT industry has no one methodology, architecture, or set of standards; however, in
other industries, there are typically established codes, frameworks, patterns, methods,
and tools that are almost always used. For example, the home building industry has
county building codes, frameworks for house patterns (ranch, colonial, Tudor, contem-
porary, etc.), subdivision guidelines and limitations, standard methods, and tools of the
trades involved. The IT industry has a number of rapidly changing and evolving

60 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

standards, frameworks, architectures, tools, and methodologies from which to choose.
Therefore, before the project is planned in terms of breaking down and assigning to
resources the scope/requirements, these other issues need to be addressed. Many of the
problems in project management can be traced back to problems in methodology,
architecture, reuse (lack of), and standards.
The term software engineering was coined by Bauer (1972) who was a principal organizer
of the 1968 NATO conference on that subject. His definition of software engineering was
“the establishment and use of sound engineering principles in order to economically
obtain software that is reliable and works on real machines.” The IEEE definition is “the
application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software (IEEE Std 610-1990). The modern Webopaedia
definition follows:

Software engineering is the computer science discipline concerned with developing
large computer applications. Software engineering covers not only the technical
aspects of building software systems, but also management issues, such as directing
programming teams, scheduling, and budgeting.

Software Development
Life Cycle Methodology

According to Webster’s dictionary, methodology is “a system of methods.” My
definition for methodology is “organized know-how.” The most common and established

Figure 5.1. Software engineering vs. project management

S co p e
C h a n g e M a n a g e m e n t

Q u a lity
Ris k

Re q u ire m en ts
M e th o d o lo g y
Ar ch itec tu re
D e p lo y m en t

Re u s e

S ch e d u le
C o s t

P ro cu r em en t
C o m m u n ica tio n s & HR

P ro ject
M anagem ent

S oftw are
E ng ineering

The Software Engineering Discipline 61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methodology used in building and/or integrating IT systems has been informally called
the waterfall method and formally called the software development life cycle methodol-
ogy (SDLC). This notion and term was first applied to IT systems by Royce (1970). The
steps (illustrated in Figure 5.2) in this classical methodology are:

• Definition
• Specification (requirements)
• Design
• Construction (programming and unit testing)
• Testing (system and integration)
• Installation
• Operation and Maintenance

In theory these steps are not supposed to overlap or iterate. Some of the newer software
methodologies are variations of or alternatives to the basic waterfall approach.
One hears many comments about the classical waterfall software development life cycle:

• The software development life cycle is the cornerstone of development!
• The life cycle is out of date!

Figure 5.2. SDLC waterfall

Definition

Specification

Design

Construction

Testing

Installation

Maintenance

62 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Get good people and the life cycle will manage itself!
• There must be better and faster ways to build IT systems!

SDLC goals are to

• Do it right the first time!
• Meet customers’ stated requirements!
• Have a timely completion!
• Complete within cost constraints!
• Build system with the necessary quality!

The definition step involves making a clear statement of goals, identifying why and how
the proposed system will be better–cheaper–faster than the system it is replacing, and
usually a overall/rough cost-benefit analysis. This phase is typified by frequent cus-
tomer interaction, elimination of arbitrary constraints, negotiation and compromise on
scope (features) versus time and cost, statement of assumptions, rough time and cost
estimates, a rough project plan, and a signed go-ahead (i.e., the project charter).
The specification step involves a complete statement of scope (requirements), use case
scenarios, preparation of preliminary user manual (external design specifications),
detailed project plan (including work breakdown structure [WBS]), specification of
needed resources, refined estimate of time and cost, refined cost-benefit analysis, and
signed approval of requirements and user manual by stakeholders. However in practice
the user’s manual is rarely written at this stage. The reason the user’s manual (or at least
a draft) should be done at this step is so that some other dependent activities can begin,
such as test planning and test scripts, making training plans and materials, and other
dependent tasks, like internal or external marketing.
The design step involves resolution of critical technical issues, selection of architecture
and platform(s), adoption of standards, assignment of staff, completion of external
design (user interface design), design of critical data structure and database, internal
design of algorithms and processes, Requirements Traceability Matrix, preliminary test
script, final time and cost estimate, and a final cost-benefit analysis. Often the design step
is divided into two steps; analysis (or overall design) and design (or detailed design).
The construction step involves the implementation of the design (i.e., via coding), unit
testing, systems integration, draft internal documentation, and the completion of test
scripts.
The testing step involves full scale integration and system testing, completion of user
documentation, completion of training material, adoption of formal change control
procedures, completion of the internal documentation, completion of installation manual
and roll-out or phase-in plan. Testing is further discussed in Chapter X.
The installation step involves product roll-out, end-user training, producing lessons
learned documentation, and defining procedures for handling operations, user support,
and configuration management.

The Software Engineering Discipline 63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The maintenance step involves following and revising procedures for problem resolu-
tion and problem escalation, operations, backup and security, configuration control, and
quality/performance monitoring.
At the end of each step there is usually a formal meeting in which a document is produced
for the culmination of effort in that step. This document is reviewed by project
management, the performing organization line management, and the benefiting organi-
zation (customer). If any of these stakeholders are not satisfied with the results of that
step, the project can be terminated or the step repeated; the project will not proceed
unless the stakeholders have given approval to move forward at each step. In theory this
should result in a product that satisfies the initial requirements and the stakeholders. The
following is what can, and often does, go wrong:

• User requirements are misunderstood, incomplete, not fully documented, or not
fully implemented

• Requirements have changed
• Documentation is “unusable”
• System is difficult to use
• Training is ineffective
• Capacity or performance problems are present
• Audit and integrity problems are present
• “Bugs” and other quality issues are present
• Standards are not followed
• Estimation of workload is poor
• Project is managed poorly
• Budget is exceeded
• Not completed on time

These issues and others are discussed in detail in later chapters, along with the
examination of root causes and remedies. Many in the field feel that the classical waterfall
approach is too slow in today’s fast-paced and rapidly changing world. Remember that
only a small number of all IT projects result in fully working systems. Other projects are
sent back for reconstruction, abandoned after delivery, or never completed. Therefore,
how, in general, does one keep things from going wrong, even when a sound method-
ology is employed? These questions have to be answered:

• Are you committed to the methodology, or is it just words in a book gathering dust
on the shelf?

• Do you have the ability to follow the methodology organizationally and with
respect to resources?

64 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Does the methodology specify the things that need to be done?
• Do you measure via metrics or benchmarks things that have been done and done

properly?

Under the Software Engineering Institute’s (SEI) capability maturity model (CMM),
which is detailed later in this chapter, these questions correspond to the “common
features” of the maturity models:

• Commitment to Perform
• Ability to Perform
• Activities Performed
• Measurements and Analysis
• Verifying Implementation

Later chapters provide practical answers for the last three questions as they relate to
specific project management and/or software engineering methods and tools. Figure 5.3
shows the IEEE/EIA Life Cycle Process definition as well as the definitions for support
and organizational processes. (These processes are also covered in later chapters.)

Figure 5.3. IEEE/EIA life cycle process

Life Cycle

Organization Supporting Primary

Management

Infrastructure

Improvement

Training

Documentation

Configuration
Management

Quality Assurance

Verification

Validation

Joint Review

Audit

Problem Resolution

Acquisition

Supply

Development

Operation

Maintenance

The Software Engineering Discipline 65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Management Stage Gates

The notion of stage gates can be traced back to phased project planning used decades
ago by NASA for handling very large aerospace projects. These gates are attractive to
management because they restrict investment in later stages until the anticipated return
on investment is clarified and made more certain by earlier phases. Under this method-
ology, stages and gates divide the total effort into a series of consecutive stages,
whereby gating criteria must be met before the project can move from one stage to the
next. This is illustrated in Figure 5.4. The gating criteria involve the review of the defined
outputs from the previous stage as well as metrics to justify that the project scope can
still be completed within the time and budget constraints.
For IT projects, a traditional stage gate technique can be superimposed upon the chosen
methodology. For example, combining the classical waterfall methodology with stage
gates may result in the stage deliverables/outputs as shown in Figure 5.5.
At each stage gate, management would traditionally review the following:

• Defined output (stage deliverables)
• Completion status of activities
• Actual costs to date

Figure 5.4. Stage gates

Figure 5.5. Stage gate outputs

Gate 1 Stage 1 Stage 2 Stage NGate 2 Gate N...

66 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Estimated cost at completion
• Estimated time to complete
• Updated risk analysis (i.e., the need for more or less reserves)

The stage gate technique can be used with any of the variations or alternatives to the
classical waterfall discussed later in this chapter. For example, the stage gates can be set
for each iteration if an iterative methodology is used. Another way to implement this
approach is to set the gates at specific time periods, such as each month or each quarter.
This traditional stage gate process can slow down a project, however, due to the amount
of review time at each gate. The events that comprise review time involves producing
reports, sending reports to management, having management privately review reports,
and then scheduling a public review meeting. Project cost is also higher due to the high
cost of the people involved with a stage gate review. To overcome these disadvantages,
a number of alternatives to the basic stage gate process have been proposed. These
variations are called a number of names, such as fuzzy gates or exception gates, but the
common goal is to have a process that is not slowed down by the gates, unless there is
a significant problem.
As was discussed in earlier chapters, I suggest using a dual gating approach with a
management stage gate at specific time periods (i.e., monthly or quarterly) wherein the
earned value critical ratio is the dominant metric used for the go/no-go decision. This
management gating technique is combined by a quality gating process, and there may
be multiple quality gates within each management gate (or vice versa). The management
gate focuses on the completion criteria and the quality gates address the satisfaction
criteria. The quality gates review specific preliminary product manifestations in regard
to the satisfaction factors of operation, utility, maintainability. A revised cost benefit
analysis (based on latest earned value estimate at completion and revised benefit
numbers) can also be included. This combined gating process effectively and efficiently
addresses all the project success factors discussed previously in this book. Later
chapters elaborate on earned value, quality management, metrics for all the success
factors, and this type of gating process. Figure 5.6 illustrates this combined gating
process and its relation to the project success criteria.

SDLC Variations and Alternatives

Because of the extensive and formal stakeholder review at the end of each step and the
lack of overlap, the classical waterfall methodology can be slow in getting a software
product to market. Also, the waterfall method becomes unstable if the initial requirements
are significantly in error or change much. New technologies and global competition are
quickly changing the business landscape, creating another problem. From the time a
business problem is analyzed and a solution built, the “shape” of the original problem
has changed significantly; thus, the developed solution no longer matches the original
problem. This is illustrated in Figure 5.7. Project success rates show that large IT projects

The Software Engineering Discipline 67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.6. Dual stage gates

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Managment Stage

Quality
Stage

Quality
Stage Gate

Quality
Stage

Quality
Stage Gate

Quality
Stage

Managemant
Stage Gate

Quality
Stage Gate

Preliminary
Product

Manifestations

Earned Value
Analysis

Business
Benefit

Metric(s)

+ =

Figure 5.7. Changing shape of IT problems

Business
Problem

Business
Problem

Business
Problem

Business
Problem

Requirements Design Development Solution

Solution Dom ain

Problem Dom ain

Start of
Project

End of
Project

68 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are getting harder to complete successfully (Standish Group, 2004). Projects over $10
million have success rates of only 2%, projects between $3 and $10 million have success
rates from 23% to 11%, and projects under $3 million have success rates from 33% to 46%.
Because of these low success rates, a number of variations and alternatives have been
suggested and tried, with varying degrees of success. Many of these approaches take
large IT projects and break them down into smaller, more manageable pieces. However,
there is no single silver bullet approach (Jones, 1994). Some of the software development
life cycle methodology (SDLC) alternatives, to list a few, include Yourdon Structured
Design, Ward/Mellor, Stradis, Spectrum, SDM/70, LBMS, Information Engineering, IBM
AD/Cycle, Gane & Sarson Structured Analysis, DeMarco Structured Analysis, Ander-
son Method/1, Bachman, Agile and XP, and Clean Room. In this chapter, we will first
discuss SDLC variations generically, and then discuss modern specific implementations.
The Overlap or Free-Flow Method allows any task to proceed as long as its dependent
tasks are completed. Here the basic waterfall steps may have considerable overlap (this
is illustrated in Figure 5.8). For example, even though the total-system design is not
completed (or documented and approved), the implementation of those components
whose design is completed may begin. This overlap is built into the dependency
relationships in the work breakdown structure (WBS), which is discussed later in this
book. One is betting that the total design (such as may be manifested in UML design
drawings) will be approved. The concept is similar to optimistic record locking in an
interactive database application. This technique works very well with the use of the dual
stage gate approach of this book. This is also a good technique on contracts where
incentives are available for early completion. Obviously risks are greater with larger
projects and for projects where requirements can change significantly.
Evolutionary Development begins with only the user requirements that are very well
understood and builds a first version. Often that first version is just a prototype.
Analysis, design, implementation, and testing are done in a free flow overlapping manner
without any formal review of documents. This first version is then taken back to the
customer for review and definition of further requirements. Next the second version is
built, and then taken back to the customer. This process continues until the customer is
satisfied with a version and no further extensions are required. (This is illustrated in
Figure 5.9.) Documentation, training, acceptance testing and other project completion
activities are done at that point at which all (or most) of the customer’s requirements have

Analysis
Design

Implementation

Testing

Time -->

Effort

Figure 5.8. Overlap method

The Software Engineering Discipline 69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

finally been included. This methodology is much faster than a waterfall approach and also
somewhat quicker than the free-flow method. However, management visibility may be
limited because little intermediate documentation is produced. Also, in a contracted
environment (external or internal), a fixed price contract could not be used since the
overall scope is not initially determined and priced. For a contracting environment, either
a cost plus or time and material contract would have to be used. Contracting and
procurement are discussed in a later chapter of this book. Also, internal design is often
poor for evolutionary development because the entire scope is not visible from the
beginning, and continually changing a system leads to a design that is less adaptable
and harder to maintain. If the system is designed and built in a fully object-oriented
manner, this problem may be minimized; object-oriented design is discussed later in this
chapter.
Incremental Development begins with a determination of all the requirements, but only
in a rough outline form. Next, those requirements are prioritized normally based upon
those features that are most important from a business perspective. Because time is spent
up front looking at all requirements a more appropriate overall platform, architecture, and
design can be selected. This is particularly important for security requirements, because
security cannot be an afterthought. Good security has to be built into the total product
(and the methodology of constructing it), not bolted on afterwards.
After the initial requirements phase, development proceeds as in the evolutionary
method. (This is illustrated in Figure 5.10.) Each increment typically represents a product
portion that can be placed into service. Incremental development is not as quick as
evolutionary development, but attempts to avoid the design problems caused by not
knowing all the major requirements initially. However it suffers from the same contract
type issues as the evolutionary method. Another potential problem is that the increments
are based on the priorities of the requirements, and sometimes priorities may significantly

Figure 5.9. Evolutionary development

 Code &
 Test

 Req's
 Subset

 Design

 Code &
 Test

 Req's
 Subset

 Design

 Code &
 Test

 Req's
 Subset

 Design

Version 1

Version 2

Version N

...

70 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

change during the time of developing the increments. Both the Rational Unified Process
and Extreme Programming as well as several other new methodologies use this technique
and these are discussed later in this chapter.
Bounding Box Development is similar to incremental development, except that each
increment is not based on a certain scope (requirements subset) but is instead based on
a measure of effort. If the effort put into an increment is constrained by calendar time then
the term timebox is commonly used. (This is illustrated in Figure 5.11.) For contracted
development (external or internal), the increments are usually based on a dollar (budget)
amount. Thus this method does not have the contracting disadvantage that evolutionary
or iterative methods have, but customers must be willing to contract for portions of the
total system. However, because the amount of scope that will actually be completed in
each increment is not known, each increment may not represent a product portion that
can be placed into service.

Figure 5.10. Incremental development

 Req's Subset

 Design Code &
Test

 Req's Subset

 Design Code &
Test

Req's Subset

 Design Code &
Test

Requirements &
Overall Design Version 1

Version 2

Version N

...

Figure 5.11. Bounding box development

 Effort Contraint

 Design Code &
Test

 Effort Contraint

 Design Code &
Test

Effort Constraint

 Design Code &
Test

Requirements &
Overall Design Version 1

Version 2

Version N

...

The Software Engineering Discipline 71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There is no one best methodology. An organization must select the methodology that
is most appropriate for the type and size of the IT project at hand, the nature of the
customer and stakeholders, the contracting environment, and the resources involved,
both people and financial. Combinations of these methodologies can also be used such
as in the Rational Unified Process which combines incremental and free-flow techniques.
Figure 5.12 shows the primary advantage and disadvantage of each of the methodologies.

Development Acceleration

In addition to modifications of the basic SDLC, a number of other philosophies, methods,
and tools have been proposed and tried, to compress all or certain steps in the SDLC.
Rapid Application Development (RAD) is a generic term for software development
methods and tools that speed up the development process. It was commonly applied to
products that automatically generated code to create user interface screens both of the
character type and graphical type (GUI) starting in the 1990s. Products such as Clarion,
FoxPro, Visual Basic, and PowerBuilder are examples of this era. Often these products
also featured automatic report generation capabilities, and some products were devoted
to this aspect such as Crystal Reports. So-called fourth-generation languages, such as
Natural, were also part of this RAD landscape. Many RAD products were combined with
databases such as Microsoft Access, and other RAD products could interface to stand-
alone database products. Earlier RAD products built stand-alone PC applications or
multiuser PC applications via LAN (local area network) file redirection (mapped drives).
Later RAD products used SQL (structured querylanguage) to create true client-server
applications; however, almost all of these still required client machine configuration such
as mapping drives, client installation of drivers, or other middleware. These RAD
products did speed up considerably the implementation step for smaller applications, but
they did not accelerate other development steps: requirements, analysis, design, and
testing. For larger or more complex systems, automatic code generation is not powerful
or flexible enough to meet application needs and programmers usually have to resort to
traditional hand coding. Today, modern IDEs (integrated development environments),
such as Dreamweaver, NetBeans, Eclipse, and Visual Studio, contain features including
WYSIWYG (what you see is what you get), drop and drag screen generators, and

Figure 5.12. Methodology comparison

Method Advantage Disadvantage Best For
Waterfall Sound Development, High

Quality
Slowest Method Fixed Price Contract

Free-Flow Faster Development Risky for Unstable
Requirements

Incentive Contracts

Evolutionary Quick Development for
Small Applications

Design Problems Smaller Systems

Incremental Quick Production of
Partial Products

Contract Issues Rapid Phased Deployment

Bounding Box Quicker Development
within Budget

Partial Products
Uncertain

Budget Bound Organization

72 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

including, possibly producing, thin client Web applications, which do not require any
client–machine configuration changes. It is often said that RAD products speed up the
easy part of the development; however, RAD products are very useful in creating
prototypes and are particularly useful in incremental types of development methods.
RAD tools are constantly evolving with the fast-changing IT landscape, and RAD tool
vendors are constantly being acquired by other IT vendors. Therefore, if one develops
a product today, using a particular RAD tool, that tool may be obsolete or be in the hands
of a different vendor tomorrow (with little or no remaining support).
CASE (computer aided software automation) refers to computer software systems that
generally support several steps in the development process, usually including require-
ments, analysis, design, and possibly other steps such as coding, testing, documenta-
tion, and version control. Most CASE products are primarily geared towards the
development of business software systems and central themes are a data dictionary and
various design drawing and associated repositories. There are different types of CASE
products, and these products can be classified in a number of ways. Some products
support one particular methodology and others can support several methodologies;
some support one particular computer language and some may support several lan-
guages. Some CASE products are called horizontal tools or workbenches or environ-
ments, and they provide integrated tools for the support of multiple development steps.
A modern CASE environment consists of a number of tools operating on a common
hardware and software platform; these tools may be from one or multiple vendors. This
CASE environment also supports a number of different types of users: project managers,
designers, programmers, database administrators, testers, technical writers, and so forth.
The CASE environment is distinguished from a random tool set in that the environment
facilitates the integration of those tools so that they can work together coherently
without duplicating effort or information.
Today there are hundreds of CASE tools available, and perhaps many in each of the
aforementioned categories. Commercial products include such names as Amadeus,
Continuous, InConcert, Life*Flow, MATE, Process Continuum, Process Engineer,
ProcessWeaver, ProcessWise, ProSLCSE Vision, and SynerVision. Although these
products have provided significant development accelerations (up to 50% in some
cases), one must be careful not to let CASE replace a sound methodology, or all you
will accomplish is to build the wrong system even faster.
Prototyping involves creating a scaled-down model of the product to be built. The
scaled-down model is usually live, in that it is implemented in software and has some
degree of functionality; however, it may be only on paper (paper prototype). A prototype
is not fully tested, does not implement all features/requirements, and typically does not
address tasks/issues as database interaction, concurrency, transaction boundaries,
scalability, security, recoverability, maintainability, reusability, and so forth. Speed and
capacity are not issues here unless the prototype is specifically built to test those
characteristics. Prototypes should be easily modifiable to explore different layouts,
navigations, and behaviors; thus, today’s prototypes are usually built with RAD/IDE
type products. They can often serve as an external design for portions of the final system.
The purposes of prototypes are to demonstrate feasibility, evaluate alternatives, clarify
and flush out user requirements, and evaluate “user friendliness” and other qualitative
aspects.

The Software Engineering Discipline 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, there are dangers in using prototypes. Often, a prototype can assume a life of
its own. Sometimes when managers or customers see the prototype, they think that the
product is close to being ready; they are not aware that the prototype is grossly scaled
down and that some of the most difficult and time-consuming parts of the product are
not in the prototype. Despite these dangers, this author thinks that prototyping is a vital
part of modern application development independent of whatever overall methodology
is utilized.
Paper prototypes, or storyboards, have many of the same advantages of live prototypes,
but they do not have the aforementioned disadvantages of live prototypes, and they can
be produced and modified quicker and cheaper. Paper prototypes can be constructed
with paper and pencil, simple drawing programs, presentation software, or RAD prod-
ucts. The television and motion picture industry have used story boards for decades, but
use in IT was minimal until the advent of Web applications. Storyboards essentially walk
the user through the interaction between the end users and the system, and visually show
that interaction through screen mock-ups of both input and output screens. After basic
requirements are gathered and perhaps represented with use cases, storyboarding is the
next logical step in clarifying or detailing those requirements and flushing out added
requirements. Each interaction in a use case diagram could be simulated via a storyboard.
For example in the case of building modern Web-based applications, storyboards and
simple user interface prototypes can be easily constructed with RAD products, like
Dreamweaver. Even if the final Web product is going to use a Web server API (application
programming interface), the tags and scripts (JSP, PHP, Cold Fusion, or ASP) can be
added directly to the prototype HTML/XML/JavaScript code.
Joint application design (JAD) was formulated by IBM personnel in the late 1970s. In
1980, IBM Canada held several workshops to demonstrate the concept, and later in the
1980s, JAD was utilized in a number of companies. IBM defined JAD as an “interactive
systems design concept involving discussion groups in a workshop setting.” The
purpose of JAD was to bring together developers and users in a structured environment
for the purpose of obtaining quality user requirements. They believed this structured
approach provided a better alternative to traditional serial interviews by analysts of the
performing organization. The prime advantage of JAD is a reduction in the time it takes
to complete a project. It improves the quality of the final product by focusing on the initial
portion of the SDLC thus reducing the likelihood of errors that are expensive to find and
correct later on.
JAD takes place in a structured workshop session. Representatives from the performing
and benefiting organization meet in a room and discuss preset issues. Everyone gets a
chance to speak, and questions are answered immediately—there is no telephone tag or
waiting for memos or e-mails to recycle. JAD also seeks to eliminate the problems with
traditional meetings by turning them into organized workshops, with facilitators, visual
aids, agendas, deliverables, and feedback.
As JAD was used more in the 1990s, the term was broadened to include more collaborative
efforts between the benefiting and performing organizations, including conflict manage-
ment, brainstorming sessions, and motivational meetings. Sometimes the sessions were
more like technical workshops, where participants focused on needs analysis and applied
software tools in the process of gathering business requirements. Sometimes these

74 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sessions used RAD and CASE tools, and JAD usage expanded to functions other than
the requirement gathering step in the software development life cycle.
Today, JAD is used in many steps of SDLC and is often defined as a system development
methodology. In 20th century, JAD brought users and developers together in the same
physical location, but today JAD is often held via virtual meetings. JAD meetings must
be structured, and some guidelines include the following (Dennis, 1999):

• Have management support
• Use experienced facilitators
• Get the right people to participate and set their roles
• Set clear session objectives and deliverables
• Have a detailed agenda and stick with it
• Produce deliverables shortly after the session

I feel that clear and complete communication between the performing and benefiting
organization is vital to the success of IT projects. JAD offers a valuable technique for
effective communication particularly in requirements gathering. One must be careful to
follow the above guidelines or these sessions may just waste more of everyone’s time
in meetings. There are also certain types of customers where access to customer
personnel is very limited. JAD sessions combined with review of prototypes are excellent
way to solidify requirements early in a project.

Modern SDLC Implementations

The Rational unified process (RUP) is based upon both the incremental methodology and
the free-flow methodology discussed earlier. Instead of attempting to address all of a
project’s requirements, RUP produces software iteratively that addresses a compromised
but known feature set and evolves the project over time (Jacobson, 1999; Kruchten,
1998). The difference between evolutionary methods and RUP, though, is that one
identifies the requirements for the entire system, but only details the top 20% or so of
architecturally significant cases during a single increment. This enables the determina-
tion of an appropriate architecture and design which will accommodate the remaining 80%
of the requirements without compromising the integrity and quality of the total system.
This is particularly important for security requirements, and a plug-in to the standard
RUP, called CLASP (Comprehensive Lightweight Application Security Process), is
available which, provides a structured way to address security issues in the software
development process.
RUP specifies different roles for project participants. Before an architect ever gets
involved, an analyst is building use cases and evaluating and prioritizing them with the
customer. Before the coders begin implementation, architects work with analysts to

The Software Engineering Discipline 75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identify the architecture which best satisfies requirements and constraints. UML tools
are used to build a consistent model from requirements to detail design. RUP uses the
free-flow methodology also in that there is considerable overlap in activities of different
roles.
RUP is a phased approach that defines four distinct phases:

• Inception: Understanding the need, understanding the proposed system to ad-
dress the need, making the business case for the proposed solution

• Elaboration: Selecting the architecture and developing the project plan
• Construction: Design, coding, integrating, and testing
• Transition: Installing the product on the target platform(s) and getting the user

take ownership of the system

The key to RUP is iteration, both within each of the aforementioned phases and within
the incremental production of version. Each iteration within a phase ends in a deliverable,
and each increment results in a working product version. RUP defines static workflows,
core workflows (business models, requirements, analysis/design, testing, deployment)
and support workflows (change management, project management, environment and
tools). However each of these static workflows is not associated with any one phase, and
some degree of each type of workflow goes on within each phase.
The transition from phase to phase is not separated by a stage gate, and management
control is not done by placing dates upon the phase boundaries. Management control
is only done upon iterations. The project plan contains a list of proposed iterations
(which is likely to change), and each iteration has an estimate (which is also likely to
change). The proposed iterations are not assigned due dates, but decision points are set
up in time (usually based upon weeks). At each decision point, a decision is made in
regard to adding/removing resources, adding/removing iterations form the next release
(version) of the product, or killing/holding the project. These decisions are based upon
progress, cost, and/or earned value metrics. Thus a key part of the project plan is how
risks will be managed; it is a plan of contingencies, as opposed to just a plan of activities.
RUP is not suitable for all IT projects. It is complex and difficult to quantify in a
contracting arrangement. However for internal projects that are large and risky, and
where quick deployment of partial products is necessary, it may be an appropriate
choice.
Agile programming (AP) is a name given to a growing number of lightweight methodolo-
gies with names like Crystal (Cockburn, 2001), Scrum (Schwaber, 2001), Adaptive
(Highsmith, 2000), Feature-Driven Development (Palmer, 2002), Dynamic Systems Devel-
opment Method (DSDM; Stapleton, 1997), and Extreme Programming (Beck, 1999).
During the 1990s, there was such a need to quickly build new IT systems to take
advantage of new technologies like Web applications and e-commerce, as well as the
need to address the Y2K problem, that IT organizations began exploring these light-
weight techniques. Lightweight methodologies do away with much of the SDLC process
overhead that slow down developers, such as detailed formal requirements definitions
and extensive documentation. Some feel that these new development approaches are

76 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

based on the premise that if you hire competent programmers who always know what they
are doing, then any problems they encounter are organizational and communications
ones; and those are what the agile approach focuses on.
Although the various agile methods differ, they have some things in common. Most use
an incremental free-flow approach, as does RUP. The common intent is to be agile, so one
should embrace change and produce software that is adaptable; thus, most of these
methods call for the use of object-oriented languages. Another common feature is a lot
of contact time with users. Still another key focus is a focus on people, not processes,
thus emphasizing team morale building. Most AP methods have some core principles,
including the following:

• Use a simple design (the old military KISS principle)
• Design as you go, and keep refactoring the code
• Take small, incremental steps (when changing or adding code, take the smallest

step possible, then test again)
• Stick to one task at a time (do not add code to accomplish two things at the same

time)
• Use IDE and RAD tools
• Use only the techniques that really work for you

These methods may seem basic and obvious to many developers, but I know many
programmers who never followed any of these principles. Some programmers, instead of
modifying a module or class for a small change or addition, will spend a great deal of time
writing the entire module from scratch. The advantages of these AP principles include
the following:

• Faster reaction to changes in requirements
• Overall simplicity of the design
• Earlier coding is possible
• By refactoring the code, the most important parts get the most attention (no time

invested in changing what does not need to be changed)
• Code in progress is always stable

Refactoring, one of the core development concepts, is a new word for cleaning up the
code. More formally, refactoring improves the design and maintainability of code in small
incremental steps confined to areas of current interest. One problem with refactoring,
however, is that, when a programmer comes under pressure to finish quickly, he or she
may not complete the refactoring work.
AP is relatively new, so the success and applicability of these methods is unclear. It is
felt that AP is suitable for small projects and small teams; whether it has practical
application for larger environments is still in question.

The Software Engineering Discipline 77

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Extreme programming (XP) is a software development approach initially created for small
teams on risk-prone projects with unstable requirements (Beck, 1999). Kent Beck, a
programmer and project leader, developed XP while working on a long-term project to
rewrite Chrysler’s payroll application. XP is a form of AP based on a lightweight
methodology. XP however, differs from most other agile approaches by being much more
prescriptive. Like AP, XP is an incremental method with free-flow. XP advocates say the
methodology (creating user scenarios and performing upfront feature testing) allows
them to develop and deliver code more quickly with fewer bugs. XP is built around rapid
iterations, an emphasis on code writing, and working closely with end users. The 12 basic
practices of XP are:

1. Customers define requirements via use case scenarios (“stories”)
2. Early on, teams release small increments into production
3. Teams use standard names and descriptions
4. Simple object-oriented coding is used
5. Designers write automated unit test scripts before coding
6. Refactoring is used extensively
7. Programmers work in pairs
8. Programmers have collective ownership of all code
9. Teams integrate and check code back into repositories frequently (no longer than

1 day)
10. Developers work only 40-hour weeks
11. User representative(s) remain on site
12. Programmers follow strict coding standards

Although XP in different forms has been used for a few years, many IT organizations have
been reluctant to try it. A major issue is that some XP principles contradict longstanding
IT policies. For example, XP specifies pair programming, in which two programmers sit
side by side, working at a single workstation. Pair programming seems inefficient, but
studies have shown that it is no less efficient that traditional programming and usually
results in fewer code defects (Williams, 2000). Fewer defects eventually means quicker
delivery. However, not all programmers want or are suited for pair programming. Very
good programmers should not be encumbered with a sidekick. Many programmers like
solitude—that is one of the reasons they choose to work as programmers. Often,
programmers consider themselves masters of the trade, and two masters often cause
conflicts.
Another problem with XP (like all AP) is its application in contract environments, and still
another problematic issue for XP is that all code is generally open for programming pairs
to review and alter. This can open up the team to integrity and security issues. As was
mentioned previously in this book, internal security is becoming a prime concern for IT
organizations, for internally developed code and, particularly, for outsourced program-

78 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ming. Further XP does not address downstream SDLC issues such as training and user
documentation.
XP requires the benefiting organization to take a very active role in the development
process, even to the extent that users are asked to write tests that will prove that
requested functions work properly before they are coded (e.g., customers may write
needed scenarios or features—one scenario per card—on index cards. Using index cards
is far cheaper and faster than writing, editing, and reviewing a large formal requirements
document.). Then, the developers estimate the time needed to build that feature, and,
based on the estimates, the customer prioritizes the features. Next, the customer writes
the test, and the developers write code that will successfully pass the test. Testing is
normally automated, and test harnesses organize test scripts that related to particular
functional areas. However, because testing is limited to “acceptance” type testing, full
multilevel testing is seldom performed. This may lead to problems with unanticipated
inputs, scalability problems, and security problems. This is discussed further in
Chapter X.
Because XP requires constant communication between the benefiting and performing
organizations (as well as among the developers), and because communication time and
traffic increases in proportion to the square of the number of communicating parties, XP
is not suited to large teams (Beck, 1999, advises limiting project teams to no more than
12 developers, working in pairs). As with JAD and AP methods in general, a customer
may not be able to commit his or her resources to that much involvement.
Thus, XP has a number of specific advantages and a number of specific disadvantages.
This is a hot debate topic in the IT world. On the one hand it is thought of as a great
breakthrough, and on the other it is akin to “letting the inmates run the institution.” XP
is not for all IT organizations.
Cleanroom software development (CSD) as a process was developed by Harlan Mills
(Mills, 1996) and involves the application of formal specification to software design. CSD
can use any of the methodologies previously discussed, but the incremental approach
is most often used. Requirements are turned into formal (sometimes mathematical)
specifications (Prowell, 1999). These formal specifications are then turned into the final
code through a series of correctness–preserving transformations. “Cleanroom treats
software as a set of communicating state machines that separate behavior and implemen-
tation concerns” (Garbett, 2003).The code is statically checked via rigorous inspections,
then system testing is done using statistical techniques. The testing team must be in a
separate organization from the developing team. The Cleanroom Reference Model may
be obtained online at the Software Engineering Institute (www.sei.cmu.edu/publica-
tions/documents/). Research results indicated that CSD produces code with fewer
defects (less than 1 bug per KLOC) at no greater cost than traditional methods (4 to 50
bugs per KLOC; Linger, 1994). However, CSD requires high-level experienced analysts
and programmers. For that reason, CSD is best applied to mission-critical and/or life-
critical types of systems that are built internally by expert programmers.
Component-based software engineering (CBSE) is a development philosophy that
utilizes existing software modules to build application systems. Any of the aforemen-
tioned methodologies may be utilized, but the requirements specification stage here may

The Software Engineering Discipline 79

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be longer due to the preparation of procurement documentation. CBSE is a formalized
system of reuse at a high level, formalized in the sense of a business approach rather than
at the software architecture level. Later in this chapter, reuse is discussed in more detail
in regard to software architecture. CBSE is based on having a cadre of reusable modules
or programs and some framework for integrating these modules. “IS shops that institute
component-based software development reduce failure, embrace efficiency and augment
the bottom line” (Williamson, 1997). CBSE can be applied at several levels of granularity.
At the highest level is the COTS (Commercial Off-the-Shelf Software) approach, whereby
commercial programs are purchased and integrated through a data exchange mechanism.
Software acquisition is discussed in Chapter XII.
Web services is a recently evolving approach to CBSE using the Internet. Using this
approach, different services are provided by different vendors in real time on their
servers, generally at a per usage price. This new computing architecture is formally called
SOA, or service oriented Architectures (Hall, 2003). Web services are based upon modern
open standards; unfortunately some of these standards (SOAP, WSDL, UDDI, etc.) do
not have adequate security built into them yet. Web services architecture uses SOAP
(simple object access protocol) as a lightweight remote method invocation process.
Older. more complex protocols for distributed object services are Microsoft’s DCOM
(distributed component object model), Java’s RMI (Remote Method Invocation), and
OMG’s CORBA (Common Object Request Broker Architecture); RMI and CORBA are
more secure than SOAP. Central repositories (registries) catalog which services are
available and where. using the UDDI (Universal Description Discovery and Integration)
protocol. Providers list the usage specifications of their services via the WSDL (Web
Services Description Language) protocol. Web service applications can be created in a
number of languages. with most written in Java, PHP, or Visual Basic-Net. Some think that
the “service-oriented architecture” may become the core paradigm for software applica-
tions and integration (Eisenberg, 2004).
The advantages of the CBSE approach are speed of assembly and short-term cost. The
disadvantages are that no strategic advantage is derived from the resulting product
(nothing is proprietary, anyone can do it), compromise of requirements to meet capabili-
ties of available components, vendor dependencies, possible performance issues, and
security problems.

Object-Oriented Software

Object-oriented (OO) programming is a key part of many of the methodologies previously
discussed, such as RUP, AP, XP, and CSD. Charles Darwin (1859) postulated that it was
not the biggest, smartest, or fastest species that would survive, but the most adaptable.
The same is true for application software. Applications must evolve, even before they
are completely developed, because the environment under which they operate (business,
regulatory, social, political, technical, etc.) changes during the time the software is
designed and implemented (see Figure 5.7). In addition, there is the ever-present
requirements creep, and even after the application is successfully deployed, there is a

80 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constant need for change. Conceptually, the concept of adaptable software is illustrated
in Figure 5.13 (as compared to Figure 5.7).
Object-oriented software systems are inherently more adaptable and maintainable than
traditional procedural software, and OO systems foster software reuse. “Object technol-
ogy promises a way to deliver cost-effective, high quality and flexible systems on time
to the customer” (McClure, 1996). In fact, out of all the aforementioned methodology
variations and development acceleration techniques, OO is the only technique proven
to be almost always effective in reducing long-term software development costs.
Modern OO design methods and programming languages are based on the concept of
a class, which is a type of thing. Once a class is defined, it serves as a mold for making
specific objects (instances) of that type. We could, for example, design a class for a
student which would indicate the data properties (attributes) and functionality (meth-
ods) that is attributable to each specific student object. This is illustrated in Figure 5.14.
Here we have defined a Rectangle class that has two properties: length and width, and

Figure 5.13. Software adapting to problem changes

Business
Problem

Business
Problem

Business
Problem

Business
Problem

Requirements Design Development Solution

Adaptive Software

Start of
Project

End of
Project

Figure 5.14. Class instances (objects)

Rectangle Class

Length
Width

Area()

Perimeter()

Rectangle 1

Length = a
Width = b

Rectangle N

Length = c
Width = d

...

The Software Engineering Discipline 81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

also two methods: Area and Rectangle. Every instance of a Rectangle (each object) will
have specific values for length and width.
OO classes have a property called encapsulation, which is a way to protect the properties
from unauthorized access from other code (functions) in a software system. This is
illustrated in Figure 5.15, in which the width and length data is protected. To find the value
for one of an object’s properties, a “get” method must be used, and to change the value
of an object’s properties, a set method must be used. These methods can be coded with
whatever access protection is necessary.
Figure 5.16 uses an UML (unified modeling language) diagram to show the main
relationships involved in OO analysis, design, and programming. As well as the
classification relationship (an object is classified as being an instance of a class), there
are composition and inheritance relationships. An object can be composed (physically
or logically) of other objects, and this composition is also a part of the class definition.
Figure 5.17 illustrates the inheritance relationship. Here we have introduced another
class, Positioned Rectangle, which inherits from (is derived from) the Rectangle class.
The Rectangle is called the base or super class, and the Positioned Rectangle is called
the derived or subclass. A derived class has the same properties and methods as were
defined in the base class, but more properties and methods can be included. In this
example, the Positioned Rectangle adds two more properties and one more method.
Polymorphism is another property of OO systems, wherein a derived class can alter the
behavior (code inside) of a method of the base class with the same name (signature: name
and arguments). For some OO languages, the actual mechanisms involve more complex

Figure 5.15. Encapsulation

Figure 5.16. Object-oriented relationships

Width Length

getWidth()

setWidth()

getLength()

setLength()

Class Object
*classifies >

1..* < is an instance
of

< is part of

< is
composed

of

*

*

< is a
subtype of

< is a
supertype

of *

*

82 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

notions, such as virtual functions and/or late/early binding. This is illustrated in Figure
5.18, in which the skill-level function (e.g., which might return the skill level as an integer)
has a different meaning in each of the three subclasses of Employee. The code in the skill-
level function would be different in each of the three sub classes and presumably use the
properties which could also be different in each subclass.
As an example of the power of OO systems in contrast to non-OO systems, consider the
code for a payroll system. In this system, there are three types of employees: salaried,
hourly, and commission based. So we would have three subclasses of Employee, each
with its own version of the Pay function. This is illustrated in Figure 5.19.

Figure 5.17. Class-based inheritance

Rectangle Class

Length
W idth

Area()

Perim eter()

Positioned Rectangle 1

Length = a
W idth = b

X = w
Y = x

Positioned Rectangle N

Length = c
W idth = d

X = y
Y = z

Positioned Rectangle Class

X
Y

Mov e()

...

Figure 5.18. Polymorphism

Employee

SkillLevel()

Programmer

KLOC_Month
Bugs_KLOC

SkillLevel()

Typist

WpM

Errors_Page

SkillLevel()

Pilot

Incidents_Year

SkillLevel()

The Software Engineering Discipline 83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To perform the payroll operation in an OO system, we would walk through our database
or data structure of employees and invoke the Pay function in each instance. In a non-
OO system, we cannot use the same function name with different code therein, so in such
a traditional non-OO language, we would have to use conditional code such as if, go-to,
or switch/case constructs. We would need to say something like, If the employee were
salaried, then invoke the salary-pay function. If the employee were hourly, then invoke
the hourly-pay function. If the employee were commissioned, then invoke the comm-pay
function. This may not seem important, but consider the evolution and maintenance
problems.
Payroll may be just one of the operations in a huge human resources system of hundreds
of thousand of lines of code. Many of the operations therein have conditional code,
because the nature of the operation is different depending upon the type of employee.
That particular conditional code is implemented within the operations, and conditional
code is spread throughout the system. To make a change to the logic, you must first find
all the conditional constructs that need to be changed. In an OO system, we just change
the method in question in each class.
Now suppose we need to add another type of employee, one that is a piece-work laborer.
With a non-OO system, we would have to go to possibly every conditional construct and
add another case. Of course, we first have to find each one. With an OO system, all we
have to do is add another class. OO systems are also safely modifiable, because when
we add that additional class we are not involved with the other code in the system. In
the non-OO systems, we have to examine and possibly modify much of the code in the
system, and chances are (40%) that we are going to create a problem elsewhere while
trying to solve the original problem.
SIMULA was the first object-oriented language (SIMULA I was developed in 1962-1965,
and SIMULA 67 was developed in 1967). It was based somewhat on the ALGOL 60
programming language, and it introduced most of the key modern concepts of object-
oriented programming, including objects, classes, subclasses, and inheritance. SIMULA
was developed at the Norwegian Computing Center by Ole-Johan Dahl and Kristen
Nygaard, and it quickly got a reputation as a simulation programming language. Later,
it was found to possess interesting properties as a general programming language when

Figure 5.19. Subtypes of employees

Employee

Pay()

Salaried

Pay()

Hourly

Pay()

Commission

Pay()

84 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the inheritance mechanism was used. In 1968, Edsger Dijkstra wrote his famous letter
titled GO TO Statement Considered Harmful, and this letter was perhaps the first stone
cast in the battle against spaghetti code. SIMULA compilers were developed for
UNIVAC, IBM, Control Data, Burroughs, DEC and other computers throughout the
1970s.
SIMULA is still used around the world, but its main impact was the introduction of the
modern OO programming principles. Alan Kay in 1970 was the person to coin the terms
object oriented and object-oriented programming. His group at Xerox PARC (Palo Alto
Research Group) used SIMULA as a platform for their development of Smalltalk (initially
developed around 1973), extending object-oriented programming by the integration of
graphical user interfaces and interactive program execution. In 1975, Marvin Minsky
introduced frames in artificial intelligence (AI) programming, which were an ancestor to
modern objects implemented later in languages such as C++. Brian W. Kernighan and
Dennis M. Ritchie published The C Programming Language in 1978, after years of
development. Although not object-oriented itself, C heavily influenced and formed the
basic syntax and structure of most modern OO programming languages, such as C++,
Java, C#, and PHP.
In the 1980s, at Bell Labs, Bjarne Stroustrup started his development of C++ (originally
called “C with classes”) by bringing the key concepts of SIMULA into the C programming
language. In the 1980s, considerable resources were invested in the ADA language by
the U.S. Department of Defense and in PROLOG via the Japanese Fifth Generation
Computer Project. ADA had some basic OO capabilities and extended the Pascal
language with strong typing, which reduced the occurrence of many types of program-
ming errors. Many computer experts initially believed that ADA, PROLOG, and Smalltalk
(with its Xerox and IBM backing) would fight for dominance in the 1990s, but as object-
oriented programming became the dominant style for implementing complex programs
with large numbers of interacting components (such as in GUI class libraries), more
capable and flexible languages as C++ raced to the forefront. In 1989 the Object
Management Group (OMG) was founded. It is committed to developing vendor indepen-
dent OO specifications for the software industry.
In 1991 Sun Microsystems developed the Java programming language as part of a
research project to create software for consumer electronic devices like TVs and VCRs.
It contains many object-oriented programming features similar to C++ and was extended
to easily handle Web and multimedia type of applications. In 1994, Rasmus Lerdorf
created the initial version of Hypertext Preprocessor (PHP), an open-source Web server
scripting language with object-oriented capabilities similar to C++ and Java. A number
of other OO languages have some adopters (i.e., Eiffel, CLOS, SELF), however, with the
current push to rewrite and convert applications to a Web-centric environment, even C++
is being replaced by more web enabled and standards embracing languages such as Java
and PHP.
Because one uses a modern object-oriented language (i.e., C++, Java, or PHP) does not
necessarily mean that one has written an object-oriented program. One can still build
poor, non–object-oriented and nonreusable software with a fully object-oriented lan-
guage.

The Software Engineering Discipline 85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Reuse

Today’s software development is characterized by many disturbing but well-docu-
mented facts:

• The supply of qualified IT professionals is less than the demand
• The complexity of software is constantly increasing
• IT needs better-cheaper-faster software development methods
• Most software development projects fail (Standish Group, 2004; Williamson, 1997)

Granneman asked, “Why is this IT project so expensive?” (Granneman, 2004). His answer
was that software is designed without much regard for future changes, even easily
foreseeable changes. He suggested asking this question as part of the project design—
Will this software need programming changes if:

• Business conditions change?
• Business partners change?
• Economic conditions change?
• Vendor relationships change?
• Banking relationships change?
• Products or services are added, changed, or discontinued?
• Business activity increases or decreases dramatically?
• The timing of how quickly information is needed changes?
• The source or destination of information changes?

“Reuse [software] engineering is a process where a technology asset is designed and
developed following architectural principles, and with the intent of being reused in the
future” (Bean, 1999). “If programming has a Holy Grail, widespread code reuse is it with
a bullet. While IT has made and continues to make laudable progress in our reuse, we
never seem to make great strides in this area” (Grinzo, 1998). “The quest for that Holy Grail
has taken many developers over many years down unproductive paths” (Bowen, 1997).
Jones (1994) discussed the problem with the lack of reusability and itemized reusable
material and the percentage of companies investigating and using the same. This is
detailed in Figure 5.20. Although these numbers are somewhat outdated, the table
illustrates the kinds of IT artifacts that can be reused and the relative percentage
utilization of each. Jones also indicated that the amount of risk in a project is in inverse
proportion to the amount of reuse. A root cause of the lack of reusability is that software
development has evolved as a “craft” rather than as an engineering or manufacturing.
The discipline of software engineering is an attempt to correct this historic evolution.

86 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In his book, Jones (1994) itemized and discussed the risks from a lack of reusability in each
of the above areas, and he indicated root causes, cost impact, and methods of prevention
and control for each. Although outdated, many of the general principles still apply. “The
bottom line is this: while it takes time for reuse to settle into an organization—and for an
organization to settle on reuse—you can add increasing value throughout the process”
(Barrett & Schmuller, 1999).
Radding defines several different types of reusable components in IT business systems
(Radding, 1998):

• GUI Widgets: Effective, but only provide modest payback
• Server-Side Components: Provide significant payback but require extensive up-

front design and an architectural foundation
• Infrastructure Components: Generic services for transactions, messaging, and

database … require extensive design and complex programming
• High-Level Patterns: Identify components with high reuse potential
• Packaged Applications: Only guaranteed reuse, however may not offer the exact

functionality required

For all of the above types of reusable components, except packaged applications, OO
programming is the most effective architectural and programming technique. Packaged
applications and COTS software were identified and discussed earlier in this chapter.
Reusing code has several key implementation areas: application evolution, multiple
implementations, standards, and new applications. The reuse of code from prior appli-
cations in new applications has received the most attention. Just as important, however,
is the reuse of code (and the technology embedded therein) within the same application.
As stated earlier, applications must evolve even before they are completely developed,
because the environment under which they operate (business, regulatory, social,
political, technical, etc.) changes during the time the software is designed and imple-
mented.

Reusable Material % Investigating % Using
Architectures 1 1
Data 25 50
Designs 3 5
Code 20 50
Estimates 5 20
Human Interfaces 10 50
Plans 5 10
Requirements 2 10
User Documents 2 10
Test Cases 10 20

Figure 5.20. Reusable artifacts

The Software Engineering Discipline 87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another key need for reusability within the same application is for multiple implemen-
tations, the most common of which involves customizations, internationalization, and
multiple platform support. For example, organizations whose software must be utilized
globally might need to present an interface in customers’ native languages and with a
socially acceptable look and feel (localization). The multiple platform dimension of reuse
today involves an architectural choice in delivery platforms (hardware and operating
system) on both the client and server sides.
Corporate software development standards concern maintaining standards in all parts
of an application and maintaining standards across all applications. For a computer
system to have lasting value it must exist compatibly with users and other systems in an
ever-changing information technology (IT) world (Brandon, 2002). Software reuse and
OO programming as it relates to standards are covered in more detail in a later chapter
of this book.
In most organizations, software reusability is a goal that is very elusive,“a most difficult
promise to deliver on” (Bahrami, 1999). Radding stated, “Code reuse seems to make sense,
but many companies find there is so much work involved, it’s not worth the effort. … In
reality, large scale software reuse is still more the exception than the rule” (Radding,
1998). Bean, in “Reuse 101,” stated that the current decreased “hype” surrounding code
reuse is likely due to three basic problems:

• Reuse is an easily misunderstood concept
• Identifying what can be reused is a confusing process
• Implementing reuse is seldom simple or easy to understand (Bean, 1999)

Grinzo (1998) also list several reasons and observations on the problem of reuse, other
than for some “difficult to implement but easy to plug-in cases,” such as GUI widgets;
a “nightmare of limitations and bizarre incompatibilities”; performance problems; “thorny
psychological issues” involving programmers’ personalities; market components that
are buggy and difficult to use; fear of entrapment; component size; absurd licensing
restrictions; or lack of source code availability.
Some organizations try to promote software reusability by simply publishing specifica-
tions on class libraries that have been built for other in house applications or that are
available via third parties, some dictate some type of reuse, and other organizations give
away some type of “bonus” for reusing the class libraries of others (Bahrami, 1999).
But more often than not, these approaches do not result in much success.
“It’s becoming clear to some who work in this field that large-scale reuse of code
represents a major undertaking” (Radding, 1998). “An OO/reuse discipline entails more
than creating and using class libraries. It requires formalizing the practice of reuse”
(McClure, 1996).
There are two key components to formalizing an effective software reuse practice
(Brandon, 2002):

88 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Defining a specific information technology architecture within which applications
would be developed and reuse would apply

2. Defining a very specific object-oriented “Reuse Foundation” that would be
implemented within the chosen IT architecture. Such a foundation is typically the
combination of an overall framework and specific reusable patterns.

“If you want reuse to succeed, you need to invest in the architecture first” (Radding,
1998). “Without an architecture, organizations will not be able to build or even to buy
consistently reusable components.” The major architectures today are Java Two
Enterprise edition (J2EE), Microsoft’s .Net, and open source LAMP (Linux, Apache,
MySQL, PHP). Object-oriented frameworks are available from a number of vendors for
each architecture, or an organization can create its own framework and patterns. Modern
architectures may support one or more application servers, programming languages and
IDEs (integrated development environments).
Application frameworks are a holistic set of specifications for the interaction and
assembly of multiple reusable patterns. A pattern is the design of a core functional
element such as the MVC (model-view-controller) pattern used for user interfaces. The
boundary between architecture, framework, pattern, and programming language is blurry
and not the same in different architectures. Examples of modern proprietary application
frameworks include IBM’s Websphere, Macromedia’s ColdFusion and Flex, Sun’s I-
Planet, and BEA’s Weblogic.
These reuse foundations (frameworks and patterns) are based on the key object-oriented
principles of inheritance and composition. By establishing foundations like these, an
organization can effectively begin to obtain significant reusability since programmers
must inherit each of their classes from one of the established classes and they must only
compose their classes of the established pre-built components. As has been concluded
by several authors, “A reuse effort demands a solid conceptual foundation” (Barrett,
1999).

Software Engineering Institute

The Software Engineering Institute (SEI; www.sei.cmu.edu/cmm) is a research institute
funded by the U.S. Department of Defense (DoD), contracted to Carnegie Mellon
University, which was started in 1984. The SEI receives tens of millions of DoD dollars
on an annual basis. Their overall goal is to advance the practice of software engineering,
and they are perhaps best known for their formulation of software engineering “maturity
models.” These models, called capability maturity models (CMM), define best prac-
tices—key practices (things to be done and ways of doing things) that organizations at
different levels of software engineering “maturity” do.
A popular baseball analogy was first reportedly expressed by Watts Humphrey, known
as the Father of CMM:

The Software Engineering Discipline 89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Immature Team: When the ball is hit, some players run toward the ball and others
stand around and watch, perhaps not even thinking about the game.

• Mature Team: When the ball is hit, every player reacts in a predefined disciplined
manner. Depending upon the situation, the pitcher might cover home plate,
infielders might set up a double play, and outfielders might back up their teammates.

The SEI has formulated a number of CMM over the years, including,

• SW-CMM: CMM for Software Development
• SA-CMM: Software Acquisition CMM
• P-CMM: People CMM
• SE-CMM: Software Engineering CMM
• IPD-CMM: Integrated Product Development CMM

The Software Capability Maturity Model (CMM for Software) was the first, best known,
and probably used the most today. It defines five levels of software process maturity that
determine effectiveness in delivering quality software:

• Initial
• Repeatable
• Defined
• Managed
• Optimized

It is primarily geared to large organizations and their contractors, however, many of the
processes involved are appropriate to any organization, and if reasonably applied can
be helpful. Organizations can receive CMM ratings by undergoing assessments by
qualified auditors. These ratings are useful to an organization for two reasons. First the
assessment lets an organization know where it stands in terms of software engineering
maturity as viewed by an independent source, and secondly the assessment (if very
good) can be used by the organization in selling its services. A description of each level
follows:

• Level 1 (Anarchy): At this level, programmers generally do what they individually
think best. Chaos, periodic panics, and heroic efforts are often required by
individuals to successfully complete projects and successes is typically not
repeatable. Cost, schedule, and quality are unpredictable. There is little formal
planning or established programming practices. Overcommitment is common, and
senior management does not understand application development/procurement.

90 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Level 2 (Folklore): Here programmers have experience developing certain kinds
of applications. They have devised effective processes (policies and procedures
in regard to project management, requirements, and configuration), and generally
make time and cost estimates. Their strength depends upon doing the same kind
of application, but they cannot adapt well to new applications, new methods, or new
tools. Knowledge is only in heads of programmers.

• Level 3 (Standards): Here the corporate “mythology” is written down in a set of
standards. These standard software development and maintenance processes are
integrated throughout the organization and some sort of a software engineering
process group is in place to oversee these processes. Groups may tailor the
standards with approval, however the process has not been measured (by collect-
ing data) or compared to other methods. Since it is not measured, programmers and
managers debate the effectiveness of the metrics that are used to track productiv-
ity, processes, and products.

• Level 4 (Managed): Here project performance is predictable, and quality is
consistently high. Metrics have been established, and hard data is collected to
access process’s effectiveness. Measurements are used to improve the product
quality.

• Level 5 (Optimized): Here the focus is on continuous process improvement. The
impact of new processes and technologies can be predicted and effectively
implemented when required. Tools are available to automate collection of data, and
measurements are used to improve the processes.

Each maturity level, except for the first, is broken down into key process areas. Each key
process is described in terms of key practices. The key process areas at each level are:

Level 2 Key Process Areas [Basic Project Management]
Requirements Management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

Level 3 Key Process Areas [Organizational Processes Standardization]
Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

The Software Engineering Discipline 91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Level 4 Key Process Areas [Quantitative Process Analysis - Metrics]
Quantitative process management
Software quality management

Level 5 Key Process Areas [Continuous Improvement of Entire Process]
Defect prevention
Technology change management
Process change management

Note that the SEI CMM Level 2 key process areas encompass basic project management.
We will look more into these level two processes in later chapters of this book. For
convenience, the practices at all the levels are organized by common features, which
address the level of implementation; these common features are:

• Commitment to perform
• Ability to perform
• Activities performed
• Measurements and analysis
• Verifying implementation

Note that these common features are embedded into our model for IT project critical
success completion factors as described in Chapter II (in our model, verification
assumes measurement and analysis).
The SEI is currently revising the software SW-CMM into a more comprehensive CMMI
integrated model that will also encompass systems engineering and product develop-
ment. Higher CMM levels have correlated with less software defects and higher cost
savings (in terms of function points, which are discussed later in this book). Figure 5.21
shows these types of data, as published in Computerworld (King, 2003).
During the last 5 years, about 1,000 organizations have been assessed, and 27% were
rated at Level 1, 39% at Level 2, 23% at Level 3, 6% at Level 4, and 5% at Level 5. Currently
there are about 70 companies worldwide that are at Level 5 (King, 2003).
However, being at Level 5 does not guarantee that a company’s internal implementation
of these standards is best in class (King, 2003). The CMM standards describe what must
be done, not how to do it. Remember also that “the CMM is a consensus among a
particular group of software engineering theorists and practitioners concerning a
collection of effective practices grouped according to a simple model of organizational
evolution. As such, it is potentially valuable for those companies that completely lack
software savvy, or for those who have a lot of it and want to avoid its pitfalls. At worse,
the CMM is a whitewash that obscures the true dynamics of software engineering,
suppressing alternative models” (Bach, 1994). A notable alternative model of software
maturity is that of Jones: “Software Productivity Research” (Jones, 1994).

92 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Institute of Electrical and
Electronics Engineers

The Institute of Electrical and Electronics Engineers (IEEE) is one of the world’s largest
professional organizations with over 350,000 members in over 150 countries. About one
half of the IEEE members are outside of the United States, and that portion is growing
more rapidly than the U.S. membership. IEEE publishes about one quarter of the world’s
literature within the technical fields it encompasses. The IEEE Computer Society is the
largest of the 36 technical societies in IEEE, with over 100,000 members. The IEEE
Computer Society is in the final stages of completing and approving a Software
Engineering Body of Knowledge (SWEBOK). The knowledge areas to be covered
include:

• Professional engineering economics
• Software requirements
• Software design
• Software construction and implementation
• Software testing
• Software maintenance
• Software configuration management
• Software engineering management
• Software engineering process
• Software engineering tools and methods
• Software quality

Most of the SWEBOK has already been documented within the various IEEE software
standards, and many of these standards are discussed later in this book. These IEEE
software standards include:

CMM Level Defects per
Function
Point

% Improvement
 (from lower level)

1 0.750 ---
2 0.620 17.33
3 0.475 23.34
4 0.228 52.00
5 0.100 56.00

Figure 5.21. CMM levels and improvements

The Software Engineering Discipline 93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• 730-2002 IEEE Standard for Software Quality Assurance Plans
• 828-1998 IEEE Standard for Software Configuration Management Plans
• 829-1998 IEEE Standard for Software Test Documentation
• 830-1998 IEEE Recommended Practice for Software Requirements Specifications
• 982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable Software
• 1008-1987 IEEE Standard for Software Unit Testing
• 1012-1998 IEEE Standard for Software Verification and Validation
• 1016-1998 IEEE Recommended Practice for Software Design Descriptions
• 1028-1997 (R2002) IEEE Standard for Software Reviews
• 1044-1993 (R2002) IEEE Standard Classification for Anomalies
• 1045-1992, (R2002) IEEE Standard for Software Productivity Metrics
• 1058-1998 IEEE Standard for Software Project Management Plans
• 1058.1-1987 (R1993) IEEE Standard for Software Project Management Plans
• 1061-1998 (R2004) IEEE Standard for Software Quality Metrics Methodology
• 1062, 1998 Edition (R2002) IEEE Recommended Practice for Software Acquisition

(includes IEEE 1062a)
• 1063-2001 IEEE Standard for Software User Documentation
• 1074-1997 IEEE Standard for Developing Software Life Cycle Processes
• 1175.1-2002 IEEE Guide for CASE Tool Interconnections-Classification and De-

scription
• 1219-1998 IEEE Standard for Software Maintenance
• 1220-1998 IEEE Standard for the Application and Management of the Systems

Engineering Process
• 1228-1994 (2002) IEEE Standard for Software Safety Plans
• 1233, 1998 Edition (R2002) IEEE Guide for Developing System Requirements

Specifications (including IEEE 1233a)
• 1320.1-1998 (R2004) IEEE Standard for Functional Modeling Language - Syntax and

Semantics for IDEF0
• 1320.2-1998 (R2004) IEEE Standard for Conceptual Modeling Language Syntax and

Semantics for IDEF1X97 (IDEF object)
• 1420.1-1995 (R2002) IEEE Standard for Information Technology—Software Re-

use—Data Model for Reuse Library Interoperability: Basic Interoperability Data
Model (BIDM)

• 1420.1a-1996 (R2002) IEEE Supplement to Standard for Information Technology—
Software Reuse—Data Model for Reuse Library Interoperability: Asset Certifica-
tion Framework

• 1420.1b-1999 (R2002) IEEE Supplement to IEEE Standard for Information Technol-
ogy—Software Reuse—Data Model for Reuse Library Interoperability: Intellec-
tual Property Rights Framework

94 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• 1462-1998 [Adoption of International Standard ISO/IEC 14102:1995(E)], Informa-
tion technology — Guideline for the evaluation and selection of CASE tools

• 1465-1998 [Adoption of ISO/IEC 12119: 1994(E)], IEEE Standard Adoption of
International Standard ISO/IEC 12119: 1994(E) Information Technology—Software
Packages: Quality requirements and testing

• 1490-2003 IEEE Guide (©IEEE) — Adoption of PMI Standard—A Guide to the
Project Management Body of Knowledge (©PMI)

• 1517-1999 (R2004) IEEE Standard for Information Technology—Software Life
Cycle Processes—Reuse Processes

• 2001-2002 IEEE Recommended Practice for the Internet—Web Site Engineering,
Web Site Management, and Web Site Life Cycle

• 1540-2001 IEEE Standard for Software Life Cycle Processes-Risk Management
• 12207.0-1996 IEEE/EIA Standard: Industry Implementation of International Stan-

dard ISO/IEC 12207:1995 Standard for Information Technology—Software Life
Cycle Processes

• 12207.1-1997 IEEE/EIA Standard: Industry Implementation of International Stan-
dard ISO/IEC 12207:1995 Standard for Information Technology—Software Life
Cycle Processes—Life Cycle Data

• 12207.2-1997 IEEE/EIA Standard: Industry Implementation of International Stan-
dard ISO/IEC 12207:1995 Standard for Information Technology— Software Life
Cycle Processes—Implementation considerations

Other Software
Standards Organizations

There are about 50 other organizations worldwide that produce software engineering
standards. Some of these are the International Organization for Standardization (IOS),
the American National Standards Institute (ANSI), World Wide Web Consortium (W3C)
for Internet-related standards, NIST which is an agency of the U.S. Commerce
Department’s Technology Office, space agencies such as NASA and military organiza-
tions such as the U.S. Department of Defense (DoD). The American National Standards
Institute (ANSI) is a private, nonprofit organization that is the focal point for the U.S.
voluntary consensus standards system. ANSI consists of approximately 1,300 national
and international companies as well as many government agencies, institutional mem-
bers, professional, technical, and trade organizations. ANSI facilitates a consensus
amongst its members to foster ANSI accredited standards. A key part of the approval
process is the fact that all members have the opportunity to participate in the standards
development process.
However, the most dominant of these other organizations worldwide is ISO/IEC, the
software engineering subcommittee of the International Organization for Standardiza-

The Software Engineering Discipline 95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion. The International Organization for Standardization (ISO, from the Greek isos,
meaning equal) has set international standards (about 14,000 of them) in many areas for
many years, including software engineering standards. ISO has over 180 technical
committees, covering many industry sectors and products. The American Society for
Quality Control (ASQC) handles the U.S. Technical Advisory Group (TAG), which offers
its opinions to the overall ISO technical committees. Many ISO standards are shared
(“adopted”) by IEEE, and are so noted in the above list of IEEE standards. The ISO/IEC
12207 standard provides a total framework for the acquisition, supply, development,
operation, and maintenance of software. In addition, the standard provides a methodol-
ogy for managing software life cycle activities and a reference point for new and emerging
engineering standards. ISO/IEC 12207 has been adopted/adapted by ANSI, IEEE, EIA,
and DoD in the United States.
The European Software Institute is a major industry initiative, founded by leading
European companies, to improve the competitiveness of the European Software Indus-
try. To this end ESI promotes good software engineering and management practice. Since
1993, the Software Process Improvement and Capability determination (SPICE) project,
launched within ISO, has been developing a framework standard for software process
assessment. ESI, is a key partner in SPICE, and is taking the leading role in the European
adaptation of SPICE.

Chapter Summary

Earlier in this book, the three challenges to software engineering in the 21st century were
outlined (Sommerville, 2003):

• The Heterogeneity Challenge: Flexibility to operate on and integrate with multiple
hardware and software platforms from legacy mainframe environments to the
landscape of the global web

• The Delivery Challenge: Ability to develop and integrate IT systems rapidly in
response to rapidly changing and evolving global business needs

• The Trust Challenge: Being able to create vital (mission and/or life critical)
software that is trustworthy in terms of both security and quality

These challenges can be met by a careful integration of modern project management and
software engineering principles and practices. This was illustrated in Figure 1.4 in
Chapter I, and this chapter has discussed software engineering maturity, methodologies,
and OO architecture. In Chapter VI, project scope, phasing, and requirements are
discussed; later chapters of this book will further detail these other principles and
practices. Throughout the book, critical IT project success factors are used as the basis
for key project management processes as performance, risk, and quality control.

96 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Bach, J. (1994, September). The immaturity of CMM. American Programmer.
Bahrami, A. (1999). Object oriented systems development. New York: McGraw Hill-Irwin.
Barrett, K., & Schmuller, J. (1999, October). Building an infrastructure of real-world reuse.

Component Strategies.
Bean, J. (1999, October). Reuse 101. Enterprise Development.
Beck, K. (1999). Extreme programming explained: Embrace change. Boston: Addison-

Wesley Professional.
Bauer, F. (1972). Software engineering. Information Processing, 71.
Bowen, B. (n.d.). Software reuse with Java technology: Finding the Holy Grail. Retrieved

from www.javasoft.com/features/1997/may/reuse.html
Brandon, D. (2002). Achieving effective software reuse for business systems. In Success-

ful software reengineering. Hershey, PA: Idea Group Publishing.
Cockburn, A. (2001). Agile software development. Boston: Addison-Wesley.
Darwin, C. (1859). The origin of species by means of natural selection (or the preserva-

tion of favoured races in the struggle for life).
Dennis, A. (1999, Spring). Business process modeling with group support systems.

Journal of Management Information Systems, 115-142.
Eisenberg, R. (2004, April 17). Service-oriented architecture: The future is now. Intelli-

gent Enterprise.
Garbett, S. (2003, August). Cleanroom software engineering. Dr. Dobb’s Journal.
Granneman, M. (2004). Why is this IT Project so expensive? Computerworld, June 4.
Grinzo, L. (1998, September). The unbearable lightness of being reusable. Dr. Dobbs

Journal.
Hall, M. (2003, May 19). The Web services tsunami. Computerworld.
Highsmith, J. (2000). Adaptive software development. New York: Dorset House.
Jacobson, I. (1999). The unified software development process. Boston, MA: Addison-

Wesley Professional.
Jones, C. (1994). Assessment and control of software risks. Englewood Cliffs, NJ:

Yourdon Press Computing Series.
King, J. (2003, December 8). The pros and cons of CMM. Computerworld.
Kruchten, P. (1998). The rational unified process. Boston: Addison-Wesley.
Linger, R. (1994). Cleanroom process model. IEEE Software, 11(2).
McClure, C. (1996). Experiences from the OO playing field. Extended Intelligence.
Mills, H. (1996). Cleanroom software engineering. Oxford, UK: Blackwell Publishers.
Palmer, S., & Felsing, J. (2002). A practical guide to feature-driven development. New

York: Prentice Hall.

The Software Engineering Discipline 97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Prowell, S. (1999). Cleanroom software engineering: Technology and process. Boston:
Addison-Wesley.

Radding, A. (1998, November 9). Hidden cost of code reuse. Information Week.
Royce, W. (1970). Managing the development of large software systems. Proceedings

IEEE WESTCON, IEEE Computer Society, Los Angeles, CA.
Schwaber, K., & Beedle, M. (2001). Agile software development with Schrum. Upper

Saddle River, NJ: Prentice Hall.
Sommerville, I. (2003). Software engineering. Boston: Pearson Addison Wesley.
Standish Group. (2004). Chaos chronicles. Retrieved from www.standisgroup.com
Stapleton, J. (1997). DSDM dynamic systems development method. Boston: Addison-

Wesley.
Williams, L., & Kessler, R. (2000). Strengthening the case for pair programming. IEEE

Software, 17(4), 19-25.
Williamson, M. (1997, May). Software reuse. CIO Magazine.

98 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Project Overall
Planning

The will to succeed is important, but the will to prepare is even more important.
(Bobby Knight)

Getting off to a fast start in the right direction is important in any endeavor. This chapter
discusses overall project planning and requirement analysis. These are two of the most
important aspects of IT project management (Standish Group, 2004).

The Project Charter

In a previous chapter I discussed the project proposal and the project’s business
justification, which are often formalized in a project business plan. After these documents
are approved, a formal project charter should be drafted. Whereas the project charter may
be written by the project sponsor (project champion) or project manager (PM), the project
charter is normally signed by general (upper line) management. The charter is the official
go-ahead document for the project and indicates that funding and resources have been,
or will shortly be, made available. The charter typically contains the following:

• Project title and description
• Project manager assigned and his or her authority level set (i.e., authority to set

budget, schedule, staffing, procurement)
• Goals and objectives (what the project is to accomplish)

Project Overall Planning 99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Product (or service) description
• Applicable standards
• Assumptions and constraints

The charter should be signed by someone high enough in the organization so that
everyone on the team will eventually report directly or indirectly to that person.
Executives from both the performing and benefiting organization may sign off on the
project charter, especially when both organizations are part of the same corporation. In
larger corporations, IT project charters usually need the approval of the chief financial
officer (CFO) and the chief information officer (CIO). The benefits of this charter are that
it:

• Gives authority to the PM
• Formally recognizes the creation and existence of the project
• Outlines the objectives of the project

The charter should be broad enough that it will not require change during the project
execution. Figure 6.1 shows an example of a simple project charter. If a project proposal
or business plan is developed after the charter, the charter may also include financial
information, such as the basic project budget and contingency funds.

Figure 6.1. Project charter

100 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.2. Project master plan

Figure 6.3. Master plan formality

Project Master Plan

Staffing & HR
 Plan

Scope &
Change

 Plan

Quality
 Plan

Security
 Plan

Risk
 Plan

Procurement
Plan

Communications
Plan

Stakeholder
Plan Control Plan

Project Size ->

Project
Complexity

WBS
Network Diagram

Schedule
Risk Plan

Security Plan
Change Plan
Quality Plan

WBS
Network Diagram
Detailed Schedule

Cost Plan
Risk Plan

Security Plan
Procurement Plan

Change Plan
Quality Plan

Communications Plan
HR Plan

WBS
 Schedule
Cost Plan
Risk Plan

Security Plan
Quality Plan

Communications Plan
HR Plan

To Do List
Shopping List
List of Helpers

The Project Master Plan

Once the project charter has been signed off and a PM has been assigned to the project,
an overall project master plan is assembled by the PM and his or her staff. The word
assembled is used here because, in most organizations that have formal project manage-
ment, much of the initial master plan is boilerplate material in which existing templates for
the subplans are used and customized for the project at hand. This is often coordinated
by a project management office (PMO). The PMO is discussed in detail in Chapter XVI.
The master plan may be a simple one-page document, as is shown in Figure 6.4, but it is
typically a collection of subplan templates, as is illustrated in Figure 6.2. Each of these
subplans incorporate (or simply refer to) policies, procedures, and standards for the
organization as a whole. The formality and detail of this master plan should be based on
the size and complexity of the project, as is illustrated in Figure 6.3. The content and
nature of each of these subplans is described and illustrated in later chapters of this book.

Project Overall Planning 101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As the project unfolds and the scope is determined, the project-specific work and
deliverables are incorporated into each of these subplans. This planning process, and
the appropriate methods thereof, for IT projects are discussed and detailed in later
chapters of this book.
The Software Engineering Institute’s (SEI; www.sei.cmu.edu/cmm) CMM defines nec-
essary Level 2 practices for software project planning:

• Are estimates documented for use in planning and tracking the project?
• Do the plans document the activities to be performed and the commitments made

fore the project?

Figure 6.4. Project overall plan

P roject O vera ll P lan

P r o je c t C o d e:_ _ _ _ _ _ __ _ _ _ __ _ _ _ _ _ _ _ D a te:_ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
P r o je c t N a m e :__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _
B e fitt in g O r g a n iz a tio n :__ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _
P e r fo r m in g O r g a n iza tio n :_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
P r o je c t M a n a g e r :_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __

R o u g h E stim a te s: S ta r t D a te :_ _ _ _ _ __ _ E n d d a te :_ _ __ _ _ _ _ _ C o st:_ _ _ _ _ __ _ _ _ _ _ _

O v e r a ll P ro d u c t D e liv e ra b les – In S c o p e :

1 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
2 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
N . _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _

P r o d u c t F e a tu r es – O u t of S co p e :_ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 ._ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ __ _ _
2 ._ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _
N ._ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _

K ey M ilesto n e s:

1 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _
2 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _
N . _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _

K ey R isk s, P r o c u re m en t, S e c u rity , a n d Q u a lity Issu es:_ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ __ _ _ _ _ __ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

K ey S ta k e h o ld er s a n d H u m a n R e so u r ce s:

P er so n R o le /R esp o n sib ili ty C o n ta c t In fo
1 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
2 . _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
N . _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _

C o m m u n ic a tio n s a n d R e p o r tin g :_ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __

_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

N o te s: _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _

A p p r o v a ls

B e n e fit in g O r g a n iz a tio n P er fo rm in g O rg a n iz a tio n
B y :_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ B y :_ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _

D a te :_ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ D a te :_ __ _ _ _ _ _ _ _ _ _______

102 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Do all affected parties agree to their commitments?
• Does the project follow a written policy for planning a project?
• Are adequate resources provided for planning the project?
• Are measurements used to determine the status of the planning activities?
• Doe the PM review the activities for planning the project on both a periodic and

event-driven basis?

The IEEE also has a standard for software project management plans: IEEE Std. 1058-1998.
In their standard, the elements of such a management plan include:

Overview, references, and definitions
Project organization

External interfaces
Internal structure
Roles and responsibilities

Managerial process plans
Start-up (estimation, staffing plan, resource plan, budget plan)
Work plan (activities, schedule, resources, budget)
Control plan (requirements, schedule, budget, quality, reporting,
metrics)
Risk management plan
Closeout plan

Technical process plans
Process model
Methods, tools, techniques
Infrastructure plan
Product acceptance plan

Supporting process plans
Configuration management plan
Verification and validation plan
Documentation plan
Quality assurance plan
Reviews and audits
Problem resolution plan
Subcontractor management plan
Process improvement plan

Additional plans

Project Overall Planning 103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modern IT projects should also have a specific security plan. Neither the current PMI
nor IEEE standards include such a component in planning. The security issue in IT
project management is twofold:

• Being able to shield the project work and project workers and other project
resources from security threats

• Being able to build adequate security protection into the product that is the subject
of the project

The first security item would also be included in the risk management plan, detailed in
a later chapter of this book. A Gartner research report projected that IT project downtime
due to security issues would rise from 5% in 2004 to 15% in 2008 for organizations that
do not have a comprehensive security plan (Alexander, 2004). Such security plans should
address both logical and physical security. However, it is no longer sufficient simply to
“secure the perimeter” physically and logically; active security procedures need to be
implemented for those objects already inside of the perimeter. Thus, security plans are
also related to human resource (HR) planning in terms of procedures that may be
necessary, such as personnel background checks; this is detailed later in the book. The
second security item should be addressed (at least partially) in the software engineering
that is embedded in the product, which is the subject of the project. In today’s IT
environment, it is vital that both of these security points be fully addressed in the project
planning.

Project Calendars and Fiscal Periods

Before starting the project and the detail planning thereof, it is necessary to establish
a project calendar. Such a calendar indicates the quantum of time used for both planning
and reporting, as well as periods of nonwork, such as holidays and weekends. Some
practitioners use scheduling systems whereby arbitrary time units can be used for task
start and end dates. Also, some practitioners try to schedule IT resources down to the
day or even hour. For IT projects (and other types of professional work) this is
inappropriate and ineffective; and as a result one may spend more time managing the
schedule than managing the work. IT human resources are largely professional types,
they may work varying numbers of hours per day, they may be called upon to help another
person or another project from time to time, and they may take off a day or two for whatever
reason whenever they so chose. IT effort, time, and cost estimates involve considerable
uncertainty, thus for all these reasons it is more effective to chose the project time
quantum at a larger interval than 1 day;, periods of 1 week, 2 weeks, or a month are more
appropriate.
In addition, the time quantum should match both the fiscal calendar of the organization
and the accounting periods of the organization. This facilitates cost and completion
reporting because such reporting can be incorporated into an existing payroll and/or

104 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

timekeeping process. The time period of 1 week is the commonly used quantum for
professional projects. This is discussed in more detail in later chapters of this book.
Figure 6.5 shows an example of a fiscal calendar for the first half of 2004. In this calendar,
week numbers are used as the basis for planning and reporting, and these week numbers
are numbered sequentially for the year, as 2004-06, which is in fiscal month 2004-02. When
a specific task is defined and assigned resources, the task is scheduled for one or more
fiscal weeks. Figure 6.6 shows such a fiscal calendar for the NASA Jet Propulsion
Laboratory.

Kickoff Meeting

After the project charter has been approved and appropriately signed off, it is recom-
mended to have an official kickoff meeting with the project team. This meeting has many
benefits including finding out early if there are any major problems that have not surfaced
already in the initial planning. Problems may include forgotten stakeholders or key team
members, organizational issues, interpersonal issues, technical issues, environmental or
regulation issues, or other constraints. Other alternative methods, plans, or approaches
may also be discovered at this meeting. This first meeting allows team members to meet
each other and builds enthusiasm, shared vision, and common goals and purpose. Things
that should be done at this meeting include:

Figure 6.5. Project periods

Project Overall Planning 105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Introduce the project sponsor or champion
• Establish clear leadership on the project
• Share then vision of the champion and other leaders
• Clarify and communicate goals and objectives to team and stakeholders
• Discuss overall project plan
• Review major milestones and deliverables
• Establish working relationships and lines of communications
• Explain relevant policies and procedures
• Get teams members to know one another
• Review status to date
• Review standards that will apply
• Establish responsibilities (individual and group)
• Make sure everyone understands his or her role and tasks
• Solicit questions and comments
• Document and follow up on questions that cannot be answered at this time
• Identify potential problems and risks
• Handle any other issues that may interfere with starting work
• Give team formal go-ahead to start work

Figure 6.6. NASA JPL calendar

106 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For this meeting, one should follow the general guidelines for effective meetings; these
guidelines are discussed in Chapter XIII.

Scope Management

A project’s scope is the work to be done and the things to work on. This scope is enclosed
within a multidimensional boundary line that separates those things that are part of the
project from other things that are not part of the project. As part of defining this boundary
line, one may itemized the things that are to be included in the project work and
deliverables as well as to itemize those things that are not part of the project work. This
itemization may be at a general level or a very specific level, or a combination thereof. The
dimensions may include what, how, who, when, and other concepts used as metrics or
definitions.
According to PMI’s PMBOK (PMI, 2000), scope management involves the following
processes:

• Scope Initiation
• Scope Planning
• Scope Definition
• Scope Verification
• Scope Change Control

Scope initiation, as discussed earlier, involves making sure that the project charter is
approved and that the necessary financial and other resources are available to move
forward with the project. Scope planning involves developing a written scope statement
that is more specific than that included in the project charter. The scope statement usually
further itemizes and defines the project objectives and includes the major features of the
IT product(s) and other major deliverables.
For IT projects, the project scope is more extensive than the product scope. The product
scope will be eventually be described by design documentation and includes the features
and specific functionality of the software product(s) that is to be built, procured and/or
integrated as well as appropriate standards and the chosen architecture. This is
illustrated in Figure 6.7.
The project scope includes not only the product(s) but also all of the associated activities
and deliverables. Some deliverables may be called for in the requirements, some
deliverables are mandated by the organization’s chosen methodology and/or standards,
and some deliverables are called for in the contract between the performing organization
and benefiting organization. The aforementioned project charter describes the project
scope at a very high level, and often the charter may only describe the product scope.

Project Overall Planning 107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A separate deliverable definition document (DDD) may be produced, which lists every
deliverable, the form of the deliverable (document, software, hardware, etc.), applicable
standards, and approval levels. Items typically found in the DDD include:

• Requirements document
• Overall design document
• Paper prototype (storyboards)
• Detail design document
• Product prototype
• Users’ manual (external specifications document)
• Internal specifications document
• Test plan and scripts
• The product itself
• Installation and operation document

The scope definition process involves determining the all the details embodied within
the scope statement and DDD and then subdividing those details into smaller, more
manageable components. For IT systems, this first major activity of determining the
scope details is called requirements analysis, which is discussed later in this chapter.
Those detail requirements must be subdivided further in order to effectively and
accurately plan and control the project. The further definition (or breakdown) of scope
is manifested in a work breakdown structure (WBS), which is defined by PMI as “a
deliverable oriented grouping of project components which organizes and defines the
total scope of the project” (PMI, 2000).
The WBS is typically arranged in a multilevel hierarchical manner, and the first level
(Level zero) often corresponds to the project life cycle (phases: requirements, design,
construction, etc.) and is fully specified before the project is further broken down; each
level of the WBS is a further breakdown of the higher level. The lowest level defines the

Figure 6.7. Product scope

Requirements Architecture Standards

Product
Scope

108 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

individual tasks, work packets, or activities. The development of WBS’s for IT projects
is discussed in detail in Chapter VII.
Scope verification is the process of formalizing the acceptance of the project by the
stakeholders, particularly the benefiting organization (customer). It involves review of
the work results (the final product or service) versus the scope definition (requirements).
Scope verification
is typically done at the end of each project phase or, as suggested in this book, at quality
stage gates; it involves requirements traceability, verification, and validation. Verifica-
tion is a process related notion and is one of our critical completion success factors. It
answers the general question, Have we done this process correctly? or, more specifically,
Have we built the product correctly? Validation is a product-related notion and is one
of our satisfaction critical success factors. It answers the general question, Have we
done the correct process? or, more specifically, Have we built the correct product (the
product the customer wanted)? Traceability of requirements means that every require-
ment is properly included in every preliminary product manifestation as well as in the
final product; traceability is actually a part of validation. This is discussed in detail in
Chapter X.
Scope change control is concerned with influencing the factors that cause change and
controlling them to ensure that changes are beneficial. Change control also happens in
retrospect to determining that a scope change has actually occurred and then handling
the change in an appropriate manner. As part of this scope planning process, a scope
management plan may be formally written that indicates how the scope will be further
defined and then later managed in regard to scope changes. A scope change control
process and system may be implemented that defines the procedures by which the project
scope may be changed and often includes:

• Forms and other paperwork
• Tracking systems
• Approval levels
• Billing and or contract change procedures

The scope management plan also includes the processes necessary to make sure that all
project work is addressed and extra work is not done. This extra work, which is outside
of the project scope, is called gold plating and should not be done without the proper
written approval of the benefiting and performing organizations. The goal of project
management is to give the customer what they have asked for and expect, no more and
no less. Most IT projects do not fully succeed, and so extra work should not be done;
after all, one does not know that the customer actually desires that extra work or not, or
if the customer will pay for that extra work. In this book, we address scope changes under
the larger topic of “change management,” which is discussed in detail in Chapter XI.

Project Overall Planning 109

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements Analysis

One of the best and quickest ways to ensure problems or failure in an IT project is to have
hastily gathered, ill-defined, incomplete, and/or poorly documented requirement speci-
fications. Requirements are the details describing an IT product’s features and other
properties that are needed (and wanted) by the benefiting organization. Requirements
should embody the features and capabilities of the IT product (application) and also the
behavior and content of the application. The requirements analysis process involves
several subprocesses, including:

• Requirement discovery
• Requirement organization and documentation
• Requirement prioritization and project phasing
• Requirement change management

Requirements can take many forms, and this is illustrated in Figure 6.8. One form is input
specifications, which describe the content and form of the input to the application.
Another form is output specifications, which describe the content and form of the output.
For interactive systems, these input and output specifications are often combined into
external specifications or interface requirements. The processing that the application will
do is described in a set of functional specifications, and how that processing is done is
specified in a set of technical or internal specifications. The external specifications will
be externally observable in the application, and the functional specifications may be
externally observable or implied from the output versus the input. However, the internal
specifications may not be externally observable. Even though not externally observable,
these internal specifications may be vital to the long-term success of the application,
including its maintainability and adaptability. As discussed in Chapter V, many of these
internal requirements can be embodied in the set of software standards adopted by an
organization.

Figure 6.8. Types of requirements

IT
Product

OutputInput

Input
Specs

Functional
Specs

Output
Specs

General
Specs

Internal
Specs

110 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General specifications can involve any other properties of the application or the
application’s environment. As is illustrated in Figure 6.7, standards and target architec-
ture may be separated from the application requirements, as the standards and architec-
ture may be common to a number of applications, perhaps all the applications that are
built/integrated by a particular organization. There is an IEEE standard for requirements
(830), and that standard differentiates between product requirements and project
requirements. Project requirements typically involve date/time and cost issues, and
these are usually specified separately in contracts from the requirements or the statement
of work (SOW); contract issues are discussed in Chapter XII.
Other general specifications may include grade and quality levels, portability, load and
scalability, response times and other service levels, information content, security, and
constraints such as the use of certain products or the use of general products as
commercial off the shelf (COTS). Becoming more important in modern times is the need
for security requirements to be detailed as early as possible. Security cannot be an
afterthought, because good security has to be built into the total product (and the
methodology of constructing it), not added on later. New legislation in various govern-
ments may be mandating added security-related requirements such as the Health
Insurance Portability Act (HIPPA) and Sarbanes-Oxley Act (SOX) laws in the United
States.
Requirement discovery is a process that involves a cooperative effort between the
performing organization and the benefiting organization. This process may also involve
other stakeholders with different needs and priorities. Chapter XIII deals with stake-
holder identification and analysis, and how to handle different types of stakeholders. The
IT personnel involved with requirement discovery are usually analysts such as business
analysts, systems analysts, market analysts, or so-called requirements analysts. These
analysts facilitate the flow of information from the users of the application to the builders
of the application (designers and programmers). Thus these analysts need a combination
of both people skills and technical skills; human resource and communication issues are
also detailed in Chapter XIII.
Requirements must be consistent with the stated purpose of the overall system, and the
PM must referee the requirements discovery process to make sure that suggested
requirements are consistent with the project charter. Requirements should also be clear,
complete, sufficiently detailed, doable, and testable. Just as it may be of little use to have
a great solution to the wrong problem, it is of little practical use to build the wrong product
very well. For this reason, requirements have to be clear (unambiguous), complete, and
detailed enough so that the product, or at least a preliminary product manifestation, can
be constructed. For example, a common nontestable requirement that often shows up in
requirement specification is that the application should be user friendly. This is too
subjective, and a testable version of this notion should be included instead, perhaps
involving the types of human-computer interaction and the devices involved (mouse,
keyboard, etc.).
There are many techniques of requirement discovery for IT projects, and these include:

• Informal conversations with end users and/or their management
• Structured interviews with end users and/or their management

Project Overall Planning 111

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Collaborative working sessions between the benefiting and performing organiza-
tions

• Review of existing work flow and work processes
• Review of existing IT systems
• Review of existing external or internal documentation of processes and/or systems

Care should be taken to involve all of the stakeholders at some point in the total
requirements process. Anyone who has an interest in the project and is not involved to
some degree in the requirement discovery process could later cause problems. Again,
stakeholder determination, analysis, and planning are discussed in detail in Chapter XIII.
A benefiting organization’s requirements usually evolve during the planning and
execution phases of a project. Requirements usually evolve from descriptions of the
problem to descriptions of the solution; this is illustrated in Figure 6.9.
“The phenomenon is likened to a continuous application of Maslow’s hierarchy of
needs. Every time any need is satisfied, more needs appear” (Davis, Hickey, & Zweig,
2004). Often, end users cannot express in words what they want, but they may know what
they want once they see it, or, conversely, they may know what they do not what when
they see it. Showing the end users preliminary product manifestations is the best way
to flush out all the real requirements, to further define the requirements, and to expedite
this overall requirement evolution process. These preliminary product manifestations are
part of the overall validation process, and those manifestations used depend upon the
choice of methodology, as discussed in Chapter XVI. Typical manifestations include
paper prototypes, working prototypes, and user’s manuals. Users’ review of these
preliminary product manifestations is part of the quality stage gate process, which is
described previously in this book and will be elaborated upon in upcoming chapters.

Figure 6.9. Requirements evolution

Needs

Wants

Interface & Functional
Requirements

Internal and Technical
Requirements

Problem
Domain

Solution
Domain

112 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Organizing requirements in an effective and efficient manner can be difficult. One wants
to cover as much detail as possible, but the resulting document must be clear. In addition,
the time to produce the requirement document should not consume a high percentage
of the project time and budget, and the document must not be overly burdensome to work
with. Different organizations vary considerably in the manner and form of producing this
document. Forms of the requirements document may be:

• No document at all (only in the minds of the users and developers)
• Simple checklist
• Spreadsheet
• Database
• Formal document
• High-level design documents (i.e., UML use cases)
• Specialized software product

Combinations of documents in this list may also be used. The degree of formality of this
documentation process depends upon the software methodology chosen and the type
of formal or implied contract between the performing and benefiting organizations.
Whether the contracting situation between the performing and benefiting organization
is formal or not, the requirements should be agreed to in writing by the line management
of both organizations as well as the PM. Usually in the business world, “if it is not written,
it never existed and/or was never agreed to.”
As part of the validation process, requirements must be traceable through all preliminary
product manifestations and in the final product and test plan thereof. Figure 6.10 is an
example of a spreadsheet form of a requirements document that provides for each
requirement: a brief description, a unique identifying code, a reference to a more detail
description, and checks that each appears in the product manifestations. The spread-
sheet may be sorted based on the contents of any column(s) such as priority, type, or
appearance in the product manifestations.
Often, requirements are represented with high-level design documents. UML “use
cases” are used more because their visual format facilitates communication with end
users. A use case clearly shows the external aspects of a system. In the use case diagram,
“actors,” which may be humans or other IT systems, are shown as stick figures. The
actors make requests of the system, provide information to the system, and receive
information from the system. A rectangle, which represents the system’s boundary, is
drawn, and processes are shown as ovals within the rectangle. The processes respond
to the actor’s requests by either providing information back to the actor and/or changing
the state of the system (information content of the system). An example is shown in Figure
6.11 with multiple processes. In addition to the drawing, there would be a simple text
description for each interaction (line) between the actors (stick figures) and a process
(oval) within the system (rectangle). These text descriptions embody both the interface
specifications (what and how information is exchanged between the system process and
the actor) and functional specifications (what the process is supposed to do); how the

Project Overall Planning 113

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process works is not included in the use case. An excellent method of documenting
external requirements is to combine the spreadsheet of Figure 6.10 with use cases,
wherein the last column in each row of the spreadsheet references an interaction in a use
case diagram.
Use cases (or a similar technique) are also a good discovery method because they keep
unnecessary detail out of the requirement process. As previously stated, how the
processes within the system work should usually not be part of the discovery process.
The how of the process is determined later in the design stage (or detail design stage)
of the project, including the definition of data requirements (database tables), classes,
packages, algorithms, and so forth. A general misconception is that use cases are only
used in object-oriented systems. Although I feel that object-oriented methods should
always be used for new IT systems, use cases can be used just as effectively for non–
object-oriented systems. Paper prototypes or “storyboards” are often used as a follow
up to use cases or other forms of preliminary requirement documentation to further
discover or clarify/detail requirements. These have many of the same advantages of live
prototypes, but they can be produced and modified quicker and cheaper. Paper proto-
types can be constructed with paper and pencil, simple drawing programs, presentation
software, or RAD products. Storyboards essentially walk the user through the interac-
tion between the end users and the system and visually show that interaction through
screen mock-ups of both input and output screens. Each interaction in a use case diagram
could be simulated via a storyboard.
Note that some software development methodologies may use little or no requirements
documentation. Agile methods, discussed earlier in this book, use methods that require
very close interaction between developers and end users to develop incrementally the
application and to produce no formal and very little informal requirement documentation.
Often the programmers use a test first approach to create automated testing scripts that
embody the requirements in those test scripts. As discussed in Chapter V, these agile
methods may have limited application.
After the initial requirements have been discovered and recorded, it must be determined
which of those requirements will actually be included in the project or in the first phase
of the project. First, the requirements must be prioritized, then very rough estimates of
the time/cost of each requirement must be developed, typically using historical (or
industry available) costs of similar work. In the requirements spreadsheet shown in
Figure 6.10, another column could be added for the estimated cost and/or time. Detail cost
estimation techniques are covered in Chapter VII. Both the benefiting organization and
performing organization are integral to this process, which involves trade-offs and
compromises between the project dimensions of time, cost, and scope. This requirement
selection process may be done in a number of ways, and the particular manner in which
it is accomplished is related to the chosen software engineering methodology and
contracting arrangement to be used as

• Single-phase, fixed scope
• Multiphase, fixed scope per phase
• Multiphase, fixed time per phase
• Multiphase, fixed cost (budget) per phase

114 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The first two methods are best suited to contract and bid situations, and the last two
methods may be best suited to a type of incremental or iterative development method-
ology. Other issues may also factor into requirement phasing such as risks, market and
application timing, interdependent applications, and available resources. In the require-
ments spreadsheet shown in Figure 6.10, another column could be added for the project
phase; or separate spreadsheets (perhaps in the same workbook) could be used for each
phase.
The final requirement process is “requirement change management.” Requirements will
evolve—some requirements will change, some will be removed, and others will be added.
At some point in the initial planning process, the baseline requirements must be set (at
least for the first phase), and after that, formal change control should be used. Formal
change control is necessary for proper coordination between all the stakeholders, to
make sure that all changes are needed and wanted, to review the total impact of changes,
and to make sure that changes are properly included in the financial arrangements
between the benefiting organization and performing organization. Changes to require-
ments should go through the same process as the original requirements, including written
approval, cost/time impacts, project schedule revision, and traceability. Change control
is discussed in detail in a later chapter of this book. The PM must make sure that all
stakeholders know the full impact that changes may have on the project, and manage both
the changes and stakeholders in the manner most beneficial to the project.
The Software Engineering Institutes Capability Maturity Model includes requirements
management as a key process in its Level 2 maturity (www.sei.cmu.edu/cmm).

Level 2 Key Process Areas:
Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

Figure 6.10. Requirements specification form

Project Overall Planning 115

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The level 2 requirements management goals are:

• System requirements allocated to software are controlled to establish a baseline for
software engineering and management use.

• Software plans, products, and activities are kept consistent with the system
requirements allocated to software.

The key practices under each common feature for requirements are:

Commitment to Perform
The project follows a written organizational policy for managing the system
requirements allocated to the software.

Ability to Perform
For each project, responsibility is established for analyzing the system require-
ments and allocating them hardware, software, and other system components

The allocated requirements are documented
Adequate resources and funding are provided for managing allocated require-
ments
Members of the software engineering group and other software-related groups are
trained to perform their requirements management activities

Activities Performed
The software engineering group reviews the allocated requirements before they are
incorporated into the software project
The software engineering group uses the allocated requirements as the basis for
the software plans, work products, and activities
Changes to the requirements are reviewed and incorporated into the project

Measurement and Analysis
Measurements are made and used to determine the status of the activities for
managing the allocated requirements

Verifying Implementation
The activities for managing the allocated requirements are reviewed with senior
management on a periodic basis
The activities for managing the allocated requirements are reviewed with the
project manager on both a periodic and event-driven basis
The software quality assurance group reviews and/or audits the activities and work
products for managing the allocated requirements and reports the results

The ISO also defines standards for the requirement processes and these are detailed in ISO
9001:2000—Quality Management Systems—Requirements. These standards emphasize

116 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The requirement processes and the management of these processes
• The commitment and involvement of top management
• The customer focus
• The involvement of people
• Continual improvement of these processes
• The factual approach to requirement decisions

The IEEE also has developed standards for requirements. General system requirements
are describe in IEEE Std. 1233-1998. Software requirements are detailed in IEEE Std. 830-
1998: IEEE Recommendations for Software Requirements Specification (SRS). As stated
in that document, a good SRS has the following benefits:

• Establish the basis for agreement between the customers and the suppliers on what
the software product is to do.

• Reduce the development effort.
• Provide a basis for estimating costs and schedules.
• Provide a baseline for verification and validation.
• Facilitate transfer (of the software product).
• Serve as the basis for enhancement.

Figure 6.11. Use case analysis

Project Overall Planning 117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Their IEEE document also discusses the considerations for producing a good SRS:

Nature of the SRS
Functionality
External interfaces
Performance (speed, availability, response, recovery, etc.)
Attributes (portability, correctness, maintainability, security,
etc.)

Environment of the SRS
Include all needs
Not include design or implementation details
Not impose arbitrary constraints

Characteristics of a good SRS
Correct
Unambiguous
Complete
Consistent
Ranked
Verifiable
Modifiable
Traceable

Joint preparation of the SRS (customers, suppliers)
SRS evolution
Prototyping
Embedding design in the SRS (show design constraints not design specifics)
Embedding project requirements in the SRS (address the product not the process)

SRS templates are provided in this IEEE standard, and one such template is:

External interface requirements
User Interfaces
Hardware interfaces
Software interfaces
Communication interfaces

Functional requirements
Mode 1

118 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Functional requirement 1.1
…
Functional requirement 1.n

…
Mode n

Performance requirements
Design constraints
Software system attributes
Other requirements

As well as general purpose software tools such as spreadsheets, databases, and group
decision support tools, there are a number of specialized software tools available to
facilitate different portions of the requirement processes including discovery, organiza-
tion/documentation, prioritization/phasing, and change control. Discovery tools allow
users to enter data about possible requirements, sort and filter requirements based on
their attributes, check for possible redundancies, and disseminate requirement informa-
tion to stakeholders via various paper or electronic media. Prioritization tools allow users
to enter priorities and other comments about each requirement (perhaps anomalously)
either in a synchronous or asynchronous manner. Phasing tools allow users to finds set
of requirements that match time and/or budget constraints based upon priorities and/or
other factors. Examples of specialized requirements software include DOORS/ERS by
Telelogic (www.telelogic.com/products/), Analyst Pro by Goda (www.analysttool.com/
), RTM by Serena (www.serena.com), SpeeDev RM (www.speedev.com), RMS by
TrueREQ (www.truereq.com), Catalyst Enterprise 3 by SteelTrace (http://steeltrace.com),
RequisitePro from IBM/Rational (www-306.ibm.com/software/awdtools/reqpro/),
ActiveFocus from Xapware (www.xapware.com), RIQTek (http://home.riqek.com), and
Cradle from 3SL (www.threesl.com/). However, these specialized tools do not fully
automate the overall requirement process, they simply facilitate certain portions thereof
because all of these requirement processes involve attentive and careful personal
interaction amongst stakeholders.
For further details on IT requirements, see Managing Software Requirements (Leffingwell
& Widrig, 2000), Software Engineering Requirements (Thayer & Dorfman, 1999), and
Mastering the Requirements Process (Robertson & Robertson, 1999).

Chapter Summary

In this chapter, initial and overall project planning has been covered. The process of IT
requirements discovery and documentation has been discussed and illustrated. Once a
complete and clear set of requirements has been documented and approved by all
relevant stakeholders, detail project planning can begin; such detail planning is covered
in upcoming chapters.

Project Overall Planning 119

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Alexander, M. (2004). Software development should include security plan. Retrieved
from www.adtmag.com

Davis, A., Hickey, A., & Zweig, A. (2004). Requirements management in a project
management context. In P. Morris & J. Pinto (Eds.), The Wiley guide to managing
projects. New York: Wiley.

Leffingwell, D., & Widrig, D. (2000). Managing software requirements. Boston: Addison-
Wesley.

PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,
PA. ISBN 1-880410-22-2.

Robertson, S., & Robertson, J. (1999). Mastering the requirements process. Boston:
Addison-Wesley.

Standish Group. (2004). Chaos chronicles. Retrieved from www.standisgroup.com
Thayer, R., & Dorfman, M. (1999). Software engineering requirements. New York: Wiley.

120 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Developing the
Schedule and Cost Plan

You got to be careful if you don’t know where you’re going, because you might
not get there.

(Yogi Berra)

The Project Management Institute (PMI) project management process groups include
initiation, planning, execution, control, and closing. In practice, however, the initiation
processes of a project are often not part of a project for budgeting and control issues,
but rather are charged to management and administration (M&A) or operations and
maintenance (O&M) general ledger accounts. In some organizations, these charges are
later reversed back to a project after it is decided to move forward with that project. Thus,
only the planning, execution, and control processes become part of the project for
accounting purposes; sometimes detail planning is part of a project but not overall
planning. Similarly, the closing process group may or may not be a formal part of the
project, and sometimes those processes are performed by an independent organization.
This chapter is concerned with detail project planning, particularly the schedule and cost
plan.

Developing the Schedule and Cost Plan 121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Detail Project Planning

After the requirements have been determined, documented, and approved, a detail
analysis and breakdown of that project’s scope are created. According to PMI.

Scope definition involves subdividing the major project deliverables (as identified in
the scope statement and requirements document) into smaller more manageable
components in order to:

• Improve the accuracy of estimates
• Define a baseline for performance measurements
• Facilitate clear responsibility assignments. (PMI, 2000)

These manageable components are organized into a work breakdown structure (WBS).
According to PMI, the major activities (and the order in which they are to be performed)
in project planning include the following (PMI, 2000):

• Develop scope statement
• Assemble project team
• Develop work breakdown structure
• Finalize project team
• Build a network diagram (showing activity dependencies)
• Estimate cost and time, and find the “critical path”
• Determine the overall schedule and budget
• Plan procurement
• Plan quality
• Identify risks, quantify them, and develop responses
• Other plans: change control plan, communications plan, and management plan
• Completion of an overall project plan
• Project Plan approval
• “Kickoff Meeting”

For a very simple project, however, one may only need a to-do list and a shopping list.
The degree of project management formality has to be adjusted for the size and complexity
of a project, as illustrated in Figure 7.1. For a large and/or complex project, all the above
activities need to be done; but the order of these activities depends upon the manner in
which IT departments estimate project costs and handle resource allocation and costing
(particularly human resources).

122 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Developing the
Work Breakdown Structure

The concept and name of the WBS goes back to the U.S. Department of Defense (DoD)
in the 1950s. The PMI definition of a WBS is “A deliverable oriented grouping of project
elements that organizes and defines the total work scope of the project” (PMI, 2000). PMI
is developing a practice standard for the WBS, which was only partially available during
the writing of this book.
“The most important part of the planning phase is the development of the work
breakdown structure” (Klastorn, 2004). It is essential to develop a complete and well-
organized WBS. Many project managers or coordinators spend too little time in
developing the WBS and perhaps too much time in scheduling resources too precisely
to WBS tasks. The WBS is the basis for all project planning and later performance
monitoring; this is illustrated in Figure 7.2.
For most projects, the WBS is typically arranged in a multilevel hierarchical manner, a so-
called tree structure. The first level (Level zero, or top level) typically corresponds to the
project phases. Each level of the WBS is a further breakdown of the previous level. Note
that some authors refer to the top level of the WBS as Level 1 and there is only one code
(node) at the top level, which represents the project in total. In the IT field, we are
accustomed to starting our numbering at zero and consider the top node as our data
structure name, not a WBS code (node). Note also that, although the WBS specifies the
work to be done, it does not specify the order in which the work is to be done, nor does
the WBS numbering indicate the order in which work items are to be done. The WBS
numbering per se also does not indicate assignment of work to responsible organizational
components, assignment of work to any resources, or the cost of any work item. The WBS
can be schematically represented by a tree diagram, either horizontally, as shown in
Figure 7.3, or vertically, as shown in Figure 7.4.

Figure 7.1. Project planning formality

 Increasing
Managment

Formality

Project
Size

Project
Complexity

and Risk

Developing the Schedule and Cost Plan 123

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WBSEstimation of
Time & Cost

Staffing &
Assignment

Risk Analysis
Performance

Analysis

Dependencies
& Sequencing

Figure 7.2. WBS uses

Figure 7.3. Horizontal WBS

Project

Scope
Item 1

First
Breakdown

 of 1

N'th
Breakdown

of 1

Scope
Item N

Task 1 of
N'th

Breakdown

Task N of
N'th

Breakdown

Level
0

Level
1

Level
2

.

.

.

.

.

.

.

.

.

124 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.4. Vertical WBS

Project

Scope
Item 1

First
Breakdown

 of 1

N'th
Breakdown

of 1

Scope
Item N

Task 1 of
N'th

Breakdown

Task N of
N'th

Breakdown

Level
0

Level
1

Level
2

.

. . .

...

Text-based schematic representations are typically horizontal with indentation used for
each level. Identification numbering of each WBS code typically uses a dot or dash
notation. For computer sorting purposes, leading zeros are used so that each level of the
WBS identification code uses the same number of digits. For example, with 12 codes at
level zero, use “01” through “12”, not “1” through “12”.

1.0 Scope Item 1
1.1 First Breakdown of Scope Item 1

…
1.N N’th Breakdown of Scope Item 1

1.N.1 First Task of N’th Breakdown of Scope Item 1
…

1.N.N N’th Task of N’th Breakdown of Scope Item 1
2.0 Scope Item 2
…

The lowest level (when viewed as a vertical tree) defines the actual tasks, often called
work packets. These work packets are also called activity WBS codes, as opposed to the
WBS codes at the higher levels, which are called “control” codes. A control code has
one or more lower level subsidiary code, each of which is either another control code or
an activity code. Each activity code is associated with one and only one control code.
Planned costs are posted only to activity accounts, and actual costs may be posted at
any level, but the recommended approach is to gather costs at the activity level, also.
The sum of the costs for a control code’s activity codes are rolled up from is subsidiary
codes to that control code.

Developing the Schedule and Cost Plan 125

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Note that some authors consider the bottom level of the WBS as not a part of the WBS
per se, because they consider tasks or activities to be part of the schedule not part of the
WBS. In their view, WBS codes are only nouns or adjectives, and the schedule items are
verbs. Also, in the early implementation of a WBS for earned value (discussed in a later
chapter) by the U.S. DoD, the second lowest level of the WBS was called cost accounts
(or control accounts), where each code corresponded to in intersection of the higher
WBS level and a performing organization code; below that level of cost accounts were
the work packets. In this early method, pricing was done at the cost account level and
scheduling (including dependencies between packets) was done at the packet work level.
In practice this is not always practical for several reasons including the fact that task
dependencies may encompass multiple cost accounts. In our more realistic and general
purpose view, the tasks at the bottom level of the WBS are the activities that later get
estimated, priced, assigned resources, and scheduled.
There are several common methods of logically breaking down the scope of a project.
These methods not only logically divide the overall work, but also are relate to the way
costs are accumulated for the project in an organization. Later in this book, we discuss
cost gathering methods, constraints, and associated issues.
The organizational method divides the scope based upon the organization doing the
work (performing organization), responsible for the work (responsible organization), or
benefiting from the work (benefiting organization, usually the customer). This is illus-
trated in Figure 7.5. For the performing or responsible organization method, costs are
gathered by the organization doing or delegating the work through its payroll, job
costing, and/or accounts payable system. For the benefiting organization method, costs
are usually gathered by a billing and accounts receivable system.

Figure 7.5. Organizational WBS

Company

Division 1 Division N

Department
1

Department
N

Section
 1

Section
N

Task 1 Task N

126 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The product method organizes the scope based upon the logical or physical parts of a
product, which is the subject of the project. This is illustrated in Figure 7.6. Here, costs
are typically gathered based upon the part being worked upon and may be from a
manufacturing/material resources/requirements planning (MRP) system. Because some
scope may be related to nonspecific parts (overall management, operation, or services
such as engineering design services), a totally product-based WBS is not common.
Product-based WBSs are often associated with contracted work, such as with the U.S.
government.
The functional (or task-based) WBS is based upon the work being done to carry out the
scope of the project, and is illustrated in Figure 7.7. This type of organization is the most
effective for measuring project performance as will be shown later in this book. Most
organizations have some type of methodology for building the item that is the subject
of the project, and the task based WBS usually follows that methodology in its logical
layout.
Because none of these pure WBS methods reflect a logical structure by organization,
product, or task, a hybrid WBS structure may be used, such as the one shown in Figure
7.8.
To account for the multiple dimensions of organization, product, cost category, and
resources, other coding systems may be used for a project in addition to the WBS. These
are used for both pure and hybrid types of WBS structures. These coding systems are

• OBS: The organizational breakdown structure is used to show organizational units
of a performing or responsible organization. There may be an OBS for benefiting
organizations also, but there is generally only one benefiting organization for the
entire project (and the overall project code may include the benefiting organization
code). Typically each task at the lowest level of the WBS (work packet) is
associated with one OBS code for the responsible or performing organization.

Product

Component
1

Component
N

Unit 1 Unit N

Part 1 Part N

Task 1 Task N

Figure 7.6. Product WBS

Developing the Schedule and Cost Plan 127

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.7. Functional WBS

Product

Phase 1 Phase N

Step 1 Step N

Task
 1

Task N

Product

Component
1

Component
N

Unit 1 Unit N

Part 1 Part N

Step 1 Step ... Step N

Task 1 Task N

Figure 7.8. Hybrid WBS

• PBS: The part breakdown structure shows the physical breakdown of parts. A PBS
may be the “top” of a hybrid WBS, which has a task-based, lower level WBS.
Alternatively, a PBS may be used as a code that is an attribute of some of the WBS
codes (those that are specifically associated with one part).

• RBS: The resource breakdown structure is used to identify resources that are to
be used on a project such as individuals (or labor categories). Typically each work
packet is associated with one or more RBS codes. This is discussed later in this
chapter.

128 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• CBS: The contractor breakdown structure identifies outside (outside of the
company or responsible organization) responsibilities for work or other services
and may be used in a similar manner to the OBS (or the OBS may accommodate
internal and external organizations). CBS codes are also commonly used for WBS
codes at levels above the work packets to show outside delegation.

• EOC: The element of cost structure identifies the type of cost incurred or to be
incurred such as labor, lease, travel, space allocations and other charges to a
project.

• GL: The general ledger code is an accounting code to which charges are applied
in the company’s financial system. Typically, the GL code is determined (calcula-
tion or table lookup) automatically from other codes (typically the overall project
code, the OBS, and the EOC).

In some organizations (i.e., the U.S. government) it is common to develop an organiza-
tional assignment matrix, which maps the WBS (down to the lowest level, excluding the
work packets/activities) to the OBS. This may be called a responsibility assignment matrix
(RAM), but that term is also commonly used for a mapping between the WBS and the RBS.
Figure 7.9 shows a conceptual example of this matrix in a spreadsheet. The cells of the
spreadsheet are typically the work packets (or a small set of interdependent work packets)
and are called cost accounts, a term that originally came from the U.S. DoD Cost/Schedule
Control Systems Criteria (C/SCSC), discussed in Chapter XIV.
The task or functional WBS is best for project performance measurement and control
because the WBS is organized by the actual work to be done. This more clearly illustrated
in Chapter XIV. The best approach for IT projects is to base the WBS tasks on the
company’s adopted methodology for software development, software acquisition, and/
or software integration. Thus, an IT WBS is best developed from the project scope using
adopted methodology with consideration for how the work will be allocated to organi-

Figure 7.9. Organizational assignment matrix

Developing the Schedule and Cost Plan 129

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

zational components and further broken down into manageable pieces. This is concep-
tualized in Figure 7.10.
In using a methodology and task-based structure, it is common to use a PBS to create
a hybrid WBS. The PBS for IT projects usually corresponds to software and/or hardware
deliverables. There are two ways to structure such a hybrid WBS. The first is the
methodology first method, as shown in Figure 7.11, and the second is the deliverable first
method, as shown in Figure 7.12. The deliverables shown in these diagrams may consist
of several levels, such as a level for major subsystems and a second level for the
components of each subsystem (screens, reports, etc.).
The lowest level of the WBS represents the tasks to be done (work packages or activity
codes). “The work package usually has a short-time span schedule (40 to 100 hours), is
limited to one performing department, and has defined completion criteria” (Kiewel,
1998). The size and nature of these work packets is very important in regard to project
cost planning and control. It is very important that they

• Are realistically and confidently estimable
• Cannot be (or should not be) logically subdivided

Figure 7.10. WBS development

Requirements Architecture Standards

Product
Scope

Project Scope

Methodology Deliverables

WBS

Time Period
Considerations

OBS, CBS, RBS,
EOC Considerations

130 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.11. Methodology first WBS

Product

Phase 1
01

Phase N
N

Design
01.02

Testing
01.04

Analysis
01.01

Construction
01.03

Production
01.05

Overall
Design
01.02.01

Prototype
01.02.02

Detail
Design
01.02.03

Deliverable 2
01.02.02.02

Deliverable 1
01.02.02.01

Deliverable 3
01.02.02.03

Level 0

Level 1

Level 2

Level 3

Level 4...Tasks...

Figure 7.12. Deliverable first WBS

Product

Phase 1
01

Phase N
N

Design
01.01.02

Testing
01.01.04

Analysis
01.01.01

Construction
01.01.03

Production
01.01.05

Overall
Design

01.01.02.01

Prototype
01.01.02.02

Detail
Design

01.01.02.03

Deliverable 1
01.01

Deliverable N
01.N

Level 0

Level 1

Level 2

Level 3

Level 4...Tasks...

Developing the Schedule and Cost Plan 131

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Are to be assigned to one OBS/CBS code
• Can be completed relatively quickly (80 hours max rule of thumb)
• Have a meaningful and measurable conclusion and deliverable
• Have enough “visibility” so that progress and cost can be determined
• Can be completed without interruption (i.e., need for more info)

Each work packet should be assigned to one organization that is responsible for the work
to be completed, so the packet would be associated with a single OBS or CBS code. If
possible, it is also best to have each work packet assigned to a single resource (RBS
code), although this may not be possible in some IT organizations where techniques such
as pair programming are used. Different types of work should not be lumped into a work
package; for example, design and coding should be in separate packages, particularly for
estimation purposes, discussed later. A time period in a project calendar corresponds to
the interval that is to be used for gathering project performance data, including hours
expended and percent complete estimates. It is important that a work packet not
encompass many such periods; the optimal situation would be for a work packet to
correspond exactly to one time period. For performance analysis, progress estimates (%
complete) and cost data should be available at each time period for each work packet
(incurred effort and cost during that period). Work packets that are highly interdepen-
dent should be combined (if such is possible without extending the time of that packet
beyond a few time periods) to reduce overall work packed interdependencies for
scheduling. A Work Packet Decomposition Checklist was presented by Raz and
Globerson (1998):

• Is there a need to improve the accuracy of the cost and duration estimates?
• Is more than one individual responsible for the work?
• Does the work content include more than one type of activity?
• Is there a need to know precisely the timing of activities internal to the work

package?
• Is there a need to cost out activities internal to the work package?
• Are there any dependencies between the internal activities of the work package and

other work packages?
• Are there any significant time breaks in the execution of the internal activities?
• Do resource requirements within the work package change over time?
• Do the prerequisites differ among the internal activities?
• Are there acceptance criteria applicable before the completion of the entire

package?
• Are there any intermediate deliverables that can be used to generate a positive cash

flow?
• Are there specific risks that require focused attention?

132 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to the formulation of the WBS itself, a WBS dictionary is often created by the
project team and is typically used to control what work is done and when. It puts a clear
boundary around each work packet:

• Work Packet ID Info: Code, name, element of cost
• Assignments: Performing organization, resource assigned to, customer contact
• Time Information: Start, length, end
• Dependencies (dependent WBS codes)
• Detail Description (both product/service and work)
• Acceptance: Quality criteria, testing required, approval by

As an example of IT WBS formulation, consider the case of a project for the development
of a corporate Web site. A WBS based upon a typical software development methodol-
ogy may appear as in Figure 7.13, which shows the first two levels (0 and 1) of the WBS
developed for this project. Each Level 1 item expands into work packets at Level 2.
Software packages used in project management are discussed in Chapter XV, but a typical
form to add a WBS code to a project appears in Figure 7.14 (from the Web-based

Figure 7.13. Web site development WBS

Web Site
Project

Design
02

Documentation
05

Planning
01

Construction
03

Deployment
06

Site Plan
02.01

Storyboards
01.02.02

Testing
04

Overall
Plan
 01.01

Requirements
01.02

Hosting
01.03

Templates
03.02

Content
03.04

Server
Pages
03.06

Integration
Testing
04.01

Load
Testing
04.02

Focus
Groups
04.04

Help
05.01

Users
Guide
05.02

I & M
05.03

Installation
06.01

Training
06.02

Post
Mortem
06.03

Database
03.01

Destructive
Testing
04.03

Use Cases
02.02

Database
02.03

Standards
02.04

Style
Sheets
03.03

Graphics
03.05

Level 0

Developing the Schedule and Cost Plan 133

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.14. Form to add WBS code

FiveAndDime system). Figure 7.15 shows a screen capture from a display of the Level
zero WBS codes. Each Level 1 code expands into the Level 2 codes, which are the work
packages for this project. For example, the Level 1 WBS code for Standards is shown
expanded to the bottom level in Figure 7.16. Figure 7.17 is an example of another form;
this one is used for quicker entry of subsidiary WBS codes, which by default inherit the
OBS code of their master WBS code.

Task Estimation

After a WBS is formed, the next step is to estimate the amount of time it will take to perform
each of the tasks at the lowest level of the WBS (work packets). Task estimation is still
a problem area for IT projects. In a 2004 Computerworld survey, the question was asked
in about 150 companies: “Do your project managers have the appropriate skills to develop
accurate estimates?” The results were

• Sometimes: 47%
• Rarely: 27%
• Often: 19%
• Most often: 6%
• Routinely: 1% (Brandel, 2004)

134 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.15. Table of Level 0 WBS codes

Figure 7.16. Table of Level 1 WBS codes

Developing the Schedule and Cost Plan 135

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In many projects, particularly IT projects, the type of resource(s) needed for each of these
tasks must be determined to estimate time and cost. Resource needs are usually specified
generically at this point in the project, such as programmer/analyst Level 3 (PA3) or
technical writer Level 2 (TW2). If the organization’s resource breakdown structure is
generically oriented, then a RBS(s) code may be assigned to the WBS codes at this point.
Figure 7.18 is an example of a generic resources table that shows the “burdened” rate for
each type of resource. The amount of time needed to complete a work packet should be
a function of the type of resource and number of resources assigned; for example, we
would expect that a PA3 would typically complete a programming task quicker that an
PA2. Also, certain types of tasks may have “levels of difficulty” that could only be
assigned to a resource above a certain level.
In many IT organizations, however, promotions from one grade level to another are based
more upon “time in grade” than upon competency level, so there may not be much actual
average productivity increase in moving up the grade scale. For that reason and others,
in IT, the productivity rate varies widely between individuals, even in the same grade.
This is a phenomenon that is perhaps peculiar to IT and a few other professional areas,
such as engineering. As a contrasting example, in the construction area, most bricklayers
have a similar productivity rate in terms of bricks per hour. Some IT organizations may
specify the actual resources (i.e., by person) at this point in the project (or they may
specify a “preferred individual” for a task), but typically, specific resource assignments
come later in the project.
For IT projects, most packets involve only labor and the amount of work is usually
estimated by using historical data, benchmarks, and/or some specific parametric tech-

Figure 7.17. Form to add subsidiary WBS codes

136 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.18. Generic project resources

nique such as lines of code, function point analysis, or number and type of requirements
involved. Even if a parametric estimation technique or benchmarking is used, historical
data (either internal or external to the organization) should be used for a reality check.
Historical estimates for the effort required in the work packets usually come from informal
estimates by individuals experienced with the specific type of work. If possible, estimates
from the actual people who would be doing the work may prove the best, and it also
provides a type of buy in from those individuals regarding the validity of the project
estimates. A formal process such as the Delphi technique can also be used to gain better
understanding and consensus among multiple experts on the effort required in IT tasks
(Roetzheim & Beasley, 1998). This is an iterative technique and can take longer than
informal methods, but usually produces better results.
Another form of estimation is analogous estimating or top down estimating. This
technique uses prior similar projects, and then estimates the overall cost of the entire
current project. Eestimates are then formed from that overall estimate for the first level
of the WBS (Level zero) using a percentage breakdown from prior project experience.
Then costs are broken down to the next lower level of the WBS, and so on. This technique
is often used during project conception and selection but fortunately not typically used
for IT projects for detail cost and time estimating. When this technique is used by upper
management or PMs to set overall project cost, it can often result in unrealistic budgets
and schedules for a project that will ultimately doom the project and/or demoralize the
IT staff such that future projects will be at risk. PMs do not have a reputation for making
accurate estimates of IT work by themselves. This may be true even if a PM came up
through the technical ranks, since IT technology changes so quickly.
One or more benchmarks of task level work may be available from previous, similar
projects, or actual benchmarks may be used. Often, prototyping and benchmarking
efforts can be combined. These benchmarks may be used in a linear manner to estimate

Developing the Schedule and Cost Plan 137

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

time for the tasks at hand. For example, we may know that a Web screen form with four
fields took 2 hours to build and test, and that another Web form with eight fields took
3 hours to build and test. A linear relationship (two equations in two unknowns) would
then predict the time to build and unit test such Web forms would be 1 hour plus the
number of fields divided by 2. If there are many such Web forms to build, a “learning
curve” relationship could be added, which is usually in a form as:

T(i) = T(1)*(a + (1-a)i-b),

where T(i) is the time to build the i’th form, T(1) is the time to build the first form, b is the
learning rate which is less than 1 (typically in the range of .01 to .1), and a is the
incompressibility factor also less than 1 (typically about .5). Actual values of a and b can
be calculated by how long it would take a programmer to build the first such form and how
long it takes him to build a second and third such form. These values are then substituted
in the formula (which is made linear via log functions) to determine the learning factor
and the compressibility factor.
In practice, however, this scenario is oversimplified and there is usually more that one
factor that influences the time to build an IT component. In the Web form example, each
form field may have a different degree of complexity. For example, some fields may require
validation, and they may require a new type of validation that is not already in our
JavaScript validation library. Some fields may require simple lookups (i.e., drop downs)
or more complex database lookup and/or validation, such as foreign key fields. In general,
most parametric effort estimation models are a function of problem size and other
adjustment factors (sometimes called “cost drivers”).
In the early days of software application development (i.e., the 1960s and 1970s), the
standard metric for the size and complexity of a software development task was measured
in lines of code (LOC). Back then, business applications were written mostly in COBOL,
and engineering/scientific applications were written mostly in FORTRAN. Although, it
was always augmentable which lines counted and which lines were not counted (such
as declarations and comments), and many such metric-based estimation techniques and
databases were developed and found utility. The utility of such methods were the
greatest where comparisons were made using the same language in the same platform and
programming environment; also, the tasks being measured should be totally program-
ming tasks (not involve testing and documentation or other related tasks).
The constructive cost model (COCOMO) was introduced in 1981 (Boehm, 1981). Based
on a number of real software development projects, it presented parametric models
correlating LOC to task effort. Using COCOMO, one first classifies the type of project
into one of three categories: organic, semidetached, and embedded. Organic projects are
relatively routine, embedded projects represents new endeavors for the organization,
and semidetached are not new endeavors but are more complex than organic projects.
There are also three points of application in a project: basic (applied early in a project),
intermediate (after requirements are finalized), and advanced (applied after detail design).
Basic COCOMO formulas were

138 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Organic Projects: EFFORT = 2.4 * KLOC 1.05

Semidetached Projects: EFFORT = 3.0 * KLOC 1.12

Embedded Projects: EFFORT = 3.6 * KLOC 1.2

where KLOC is 1 thousand lines of code and EFFORT is expressed in person months. The
intermediate model uses 15 cost drivers, including reliability needed, database size,
complexity, experience and capability factors, schedule factors, and practices and tools
maturity. The advanced model gets more detailed and sophisticated including phasing
factors.
As languages multiplied and diversity and as fourth generation languages (4GLs),
computer aided software engineering (CASE), and what you see is what you get
(WYSIWYG) code generators became more common, these basic correlation metrics
became less predictive. Other IT changes (such as a move away from mainframe batch
processing to client-server real-time turnaround; more emphasis on software reuse,
components, and OO software; and spending more time in design and less time in coding)
also required new correlations. Other estimation techniques were developed, and
COCOMO was expanded to COCOMO II (or COCOMO 2) for newer IT environments
(Boehm, 2000). The original COCOMO model was also redesignated COCOMO 81.
COCOMO II consists of three submodels, each one offering increased accuracy based
upon the depth of planning/design. In order of increasing accuracy, these submodels are
the applications composition, early design, and postarchitecture models.
With LOC estimation techniques, one still has to convert an application level component
(such as a Web form) into an LOC number. This often can be done by looking at past
coding artifacts. The concept of function point analysis (FPA) was proposed by IBM
(Albrecht, 1979). This concept starts with application-level components. FPA tends to
be relatively independent of language, coding style, and software architecture. A
function point is defined as one end-user computational task, such as a query for an input.
This notion is important because it allows a function point to be mapped easily into user-
oriented requirements and components, but it hides internal functions.
Basic function points are categorized into five groups, or transaction types: files (internal
logical file), outputs (external output), inquiries (external inquiry), inputs (external input),
and interfaces (external interface). This is illustrated in Figure 7.19. In addition, each type
of function point is rated as to it complexity: low, average, and high.
Complexity categories are assigned point scores, and a typical assignment might be low
= 5, average = 10, high = 15.
The point score can vary based upon which of the five transaction types is involved. A
file is typically a traditional disk file or a relational database table. The file’s complexity
is low if there are few attributes and it is complex if there are many attributes and groups.
An interface is also typically a connection to a file or table, but one that is outside of the
domain of this application. An external input provides for data to come into the
application. It is typically a user input screen, but it can be any means of gathering input,
such as from scanners. The external inputs generally alter the data in the files/tables via
add, delete, or update functions; the number of files/tables affected determines the
complexity level. An external output provides for data to exit the application boundary

Developing the Schedule and Cost Plan 139

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and is typically a report or an output screen; the number of files/tables from which the
data comes determines the complexity. Queries first request and then output data across
the application boundary but do not alter the state of the system (data contained in the
files/tables); complexity is a function of the number of files/tables involved. Once all the
application components are classified and rated for complexity, an unadjusted function
point total (UFP) is calculated as shown in the spreadsheet template of Figure 7.20.
The next step in FPA is to calculate a value adjustment factor (VAF) based upon the
presence (or lack thereof) of certain general system characteristics. Each of these general
system characteristics is assigned a degree of influence from 0 to 5, with zero being not
present to 5 being a very strong influence. These degrees of influence are then summed
to get the total influence; this sum is then divided by 100 and added to a base factor (a
typical base factor might be 0.65). General characteristics would include distributed data
processing, online updates, transaction processing, multiple sites, and so forth. The total
function points are then FP = UFP * VAF. For all the details and particulars for different
IT environments, please see the standard practices for FPA methodology, which is found
in the IFPUG Counting Practices Manual (IFPUG, 1996).
FPA can and should be done at several points in an IT project. An initial FPA can be done
based on the overall scope statement; a more detailed FPA done later, based on the formal
requirements definition; and again later, based on the WBS. FPA can also be done for
change orders and to detect scope creep. Without some standardization of how the
function points are enumerated and interpreted, consistent results can be difficult to
obtain. For example, how are relational database views to be counted—one file/table, or
many. Successful application depends on establishing a consistent method of counting
function points and keeping records to establish baseline numbers for your specific
systems. Training in FPA is available from many sources, and such training is recom-
mended. There are also certification programs.

Figure 7.19. Function point types

Application

Internal
Files

External
Files

Input

Query

Output

Application
Boundary

140 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Function point methodology has evolved over the years; the International Function
Point User Group (IFPUG; www.ifpug.org/), formed in 1986, is the focal point for
information on function point analysis (IFPUG, 1996). There is also a FPA user group for
the United Kingdom, UFPUG. The original metrics have been considerably updated and
refined to cover more IT application areas. Today, FPA has become widely used to
estimate a software project’s effort and duration, set productivity rates in function points
per hour, determine support requirements, and to estimate system change orders. There
is a large user community for function points; IFPUG has more than 1,200 member
companies, and they cooperate in establishing an effective FPA program.
There are correlation tables to convert between function points and LOC in different IT
environments, and this is called “backfiring” (Jones, 1995). Typical approximate values
are shown in Figure 7.21.
COCOMO II supports the use of either/both function points or source lines of code. Early
in the project, object points are used, which are similar to function points but broader
and which basically represent an external object (such as a screen, report, or batch
module) and their complexity. Each object generates a number of object points:

Screens – Simple = 1; Medium = 2; Difficult = 3;
Reports – Simple = 2; Medium = 5; Difficult = 8;
Modules – 10

There are guidelines for defining simple, medium, and difficult based upon the number
of views used and database files/tables involved. The COCOMO II application compo-
sition (rough estimate) formulas using object points (OP) take the form of

EFFORT = NOP / PROD
NOP = OP * (100 - % reuse)/100

Figure 7.20. Unadjusted function point total

Developing the Schedule and Cost Plan 141

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PROD is the productivity that varies depending upon the maturity of the organization
and the individual(s) involved; it typically ranges from 4 (very low) to 50 (very high).
During the early design stage of a project, unadjusted function points are used. Once a
specific architecture has been chosen, lines of code are used. The COCOMO II
postarchitecture formulas take the form of:

EFFORT = ASLOC (AT/100) / ATPROD + 2.5 * (SIZE * (1 + BRAK/100))b •EMi

b = 1.01 + (“SFj)/100
SIZE = KSLOC + KASLOC * AAM * (100 – AT)/100
Where:

AT = % of components adapted
SFj = scale factor
EMi = effort multiplier
ASLOC = size of adapted components
BRAK = % code discarded due to requirements volatility
ATPROD = automatic translation productivity
AAM = adaptation adjustment multiplier
KSLOC = thousand lines of source code
KASLOC = thousand lines of adapted source code

There are a number of other estimation methods and formulas including the Software
Lifecycle Model (SLIM, or Putnam Model), Price-S (Lockheed Martin Model), Waltson-
Felix Model, Bailey-Basil Model, and the Doty Model. For a detailed analysis of these
methods, see the DOD report by McGibbon (1997). For example a project of 100,000 lines
of source code would be roughly estimated as shown in the following list by some of these
models (assuming nominal effort multipliers and scale factors, no discarded code, and
no adapted code):

Figure 7.21. Function point backfiring

Language LOC per Function Point
Machine Language 650
Assembly Language 300
Ada 70 - 80
Pascal 80 - 100
C 100 - 150
C++ 30 - 50
Visual Basic 30 - 40
Java 25 - 50

142 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

COMOMO II – 500 person months
SLIM – 275 person months
Doty – 650 person months
Walston/Felix – 350 person months
Bailey/Basil – 175 person months (McGibbon, 1997)

There can be wide variation in predicted values for these different parametric models.
Kemerer (1997) reported average errors of over 600% for COCOMO 81 models. For many
of these estimation models, there are also estimation formulas for the schedule time as
a function of the effort in person months, because the relationship between schedule time
and person months tends to be nonlinear, particularly for large, complex projects. There
are software programs available that implement the COCOMO II methodology, and these
are available from both academic (USC) and commercial vendors. As of this writing, the
latest version was USC COCOMO II.2001.0. For the latest in COCOMO II methodology,
see one of the Web sites that maintain this information, such as http://sunset.usc.edu/
research/COCOMOII or www.jsc.nasa.gov/bu2/COCOMO.html. Other estimating and
costing software programs are available from a number of vendors, including
www.softstarsystems.com/, www.galorath.com/, www.rcinc.com, www.pricesystems.
com, www.marotz.com, and www.spr.com.
Whether historical estimates, benchmarks, or parametric models are used, there is a level
of uncertainty in the estimates. For parametric models, there will be uncertainty both in
the input to the model (size and other factors) as well as in the model itself. People tend
to be overly optimistic, particularly in IT, about estimating the time required to do
something. On the other hand, it is natural for the people who will actually be doing the
work or responsible for the work (i.e., managers) to throw extra “padding” into an
estimate. Program evaluation and review technique (PERT) is the most common method
of dealing with uncertainties in task duration estimates. It assumes that these durations
are random variables drawn from a beta distribution (Malcolm, Rosebooom, & Clark,
1959). Such a distribution is show in Figure 7.22. To calculate the PERT time for a task,
three estimates are obtained: optimistic, pessimistic, and most likely. The PERT time (PT)
is calculated as:

PT = (Optimistic + Pessimistic + 4 * Most Likely)/6.

The task variance and standard deviation is given by:

Variance = (Pessimistic – Optimistic)2 /36
Standard Deviation = (Pessimistic – Optimistic)/6.

The beta distribution is typically not symmetric but it is unimodal. To find the combined
variance from a group of tasks, we do not sum the individual variances, but instead sum

Developing the Schedule and Cost Plan 143

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

deviation and take its square root. Many authors have investigated the accuracy and
utility of PERT estimates and other techniques over the years, and there are other
techniques that may be more accurate or useful in certain disciplines. However, for IT
projects, the PERT estimate provides a reasonable method of estimating task times in the
presence of uncertainty. Using our earlier example with Web forms, an optimistic value
could be based upon the situation whereby none of the fields required any special
handling (unusual validation or foreign key lookup), and the pessimistic value would be
where each field required some type of special handling. It is important not to confuse
the notions of pessimistic estimates with risk analysis, discussed later in this book. The
pessimistic estimate is not made in regard to some unusual or catastrophic occurrence,
such as a prolonged power outage, illness of the assigned programmer, and so on.

Task Sequencing and the Critical Path

Once a WBS is established and the effort involved in each work packet is determined,
the next step is to sequence the tasks in the order they need to be performed. Task
sequencing typically uses a network diagram, sometimes called a logic diagram, that
shows how the project tasks (work packets) will flow in time from beginning to end of
project. This sequencing can actually be done without knowledge of the effort involved
in each task, and sometimes the sequencing is done before estimation. However, for the
determination of a critical path, we must know how long it will take to do each task as well
as the order in which the tasks can be done. How long it takes to do each task depends
not only on the amount of effort of a task (typically measured in person hours) but also
on how many people will be assigned to a task.

Figure 7.22. Beta distribution

Most Likely

Pert Weighted Average =
Optimistic + 4 × Most Likely + Pessimistic

Opt imist ic Pess im is t i c

Duration

144 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A network diagram is constructed by taking the tasks and putting them in the order they
will be done, taking into account any dependencies. This process is called activity
sequencing. Note that this process need not be done at the lowest level of the WBS,
although it is typically done at that level to maximize the parallelism (the number of task
that can be worked on simultaneously). When done at higher levels of the WBS, whole
blocks of task may be dependent upon other blocks of tasks. For example, all of the
implementation tasks may be dependent on the completion of all of the design tasks as
in a strict waterfall methodology of software development. To maximize parallelism, and
thus minimize overall development calendar time, it is more common to have the
implementation and unit testing of one software module only dependent upon comple-
tion of the design for that one module (in reality one module’s design may involve a
number of design tasks such as its user interface, involved database tables, etc.).
Eventually, all the software modules come together for integration testing, which would
be dependent upon completion of the implementation and unit testing of every module.
The two general ways to do draw these network diagrams are activity-on-arrow and
activity-on-node. The original critical path method (CPM) developed by Dupont and
Remington Rand in 1957 used the activity-on-arrow method and used one time estimate
only per task (as opposed to several estimates as in the PERT method). The more common
method today is to show the activity on a node and the precedence diagramming method
(PDM) is based on this representation. In the PDM method, nodes or boxes represent
tasks, and arrows between the nodes show task dependencies. This is illustrated in
Figure 7.23 with activities labeled A, B, and so on. There are four types of dependencies
that may apply between two tasks:

1. Finish-to-start: A task must finish before another one can start.
2. Finish-to-finish: A task must finish before another can finish.
3. Start-to-start: A task must start before another one can start.
4. Start-to-finish: A task must start before another one can finish.

Figure 7.23. PDM method

Developing the Schedule and Cost Plan 145

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the illustration, task E is dependent on tasks A and C. All, except the finish-to-start,
are not commonly used and can be simulated by setting an earliest start date for a task,
if necessary. There are no dummy activities in this method, and this method is easier to
visualize than the activity-on-arrow method. Most modern project management software
packages use this method.
In the activity-on-arrow (AOA) method, arrows are used to represent tasks, and ovals
are used to relate tasks. Generally, only finish-to-start relationships can be used. This
method was the one originally used with PERT. Dummy activities may be needed to show
dependencies between tasks (often shown with a dotted line). This method does have
a visual advantage in that the length of arrow can optionally be used for duration of task.
Figure 7.24 illustrates this, and in that figure task D is dependent on E and C, and a dummy
activity (no task identification letter) is used to show the dependence of D on E.
The critical path is the longest path(s) through a network diagram from the project start
to project end. It can be found using either of the network diagramming techniques after
the tasks are estimated; for the activity-on-arrow method, the critical path may run
through a dummy activity. The critical path determines the earliest completion date for
the project. It may change during a project, if task estimates are revised. There can be more
than one critical path, and this is not desirable because it increases overall risk. Critical
paths are calculated by most project management scheduling software systems and are
done using dynamic or linear programming techniques (an example of using linear
programming is found in Chapter XVI).
The amount of time a particular task can be delayed without delaying the entire project
completion is called the total slack or float for a task. The float for the entire project is
a fixed completion time minus the scheduled time (it may be negative). Tasks on a critical
path typically have no slack (unless the project completion date is longer than the critical
path activities). In the network diagram of Figure 7.25 (activity-on-node method),
durations are shown in the nodes, and the critical path is shown using the bigger arrows.
The length of this project is 35 time units, which is the sum of the tasks on the critical
path.

Figure 7.24. AOA method

146 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A forward pass through the network is used to calculate early-start and early-finish
dates, and a backward pass (from the overall finish date) is used to determine late-start
and late-finish dates. The float (total slack) for a task is the difference between the early-
start and late-start dates for a task (or between the early-finish and late-finish dates, or
the late-finish minus early-start dates plus task duration). Free slack is the amount of time
a task can be delayed without delaying the early start of its successor task (minimum
early-start time of all successor tasks minus early start of this task minus task duration).
Most computer systems show total slack (float) time per task, and project managers use
this number to know which tasks need to be most closely monitored and also in allocating
scarce resources amongst multiple projects. Free slack can be used to determine how
much a critical path task can be crashed before the critical path changes. If the fixed end
date changes for a project, the critical path does not change; however, the overall project
float may become negative. If the overall project float becomes negative (you are behind
schedule), then the project manager would consider crashing or fast tracking (covered
later in this book). In Figure 7.26, the floats are shown for the tasks that are not on the
critical path. Note that the float for task A is 1, not 2, because delaying A by 2 units would
not delay C, but the path through A and D to E would become longer than the path through
B and C to E.
Lag is a necessary wait time between tasks; one adds lag time to a predecessor task to
delay the start of a dependent task. For example, you must wait 2 days after pouring
concrete before you can start to build the house frame. Another example, you must order
certain materials 10 days before you need to use them. Lag is typically shown on the
arrows on an activity-on-node diagram. Lead time is the amount of time you can overlap
dependent tasks.
For time-sensitive IT projects, schedule compression can best be achieved by removing
unnecessary coupling (dependencies) between tasks, thus allowing for more work on
more tasks simultaneously. As discussed earlier in this chapter, this can be done with
the proper choice of architecture, standards, and methodology. For example if require-
ment specifications, standards compliance, and end user documentation is done early
in a project, then design and implementation can be done in parallel with integration test
planning and end user training. Methodologies were discussed earlier in this book, and

Figure 7.25. PDM network diagram

Developing the Schedule and Cost Plan 147

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

if modern free-flow incremental techniques are used instead of classical waterfall
methods, then more work (WBS packets) can be done in parallel.

Scheduling

After all the tasks are sequenced, a schedule can be developed. The difference between
a network diagram and a schedule is that a schedule is calendar based and takes into
account the length of work weeks and holidays. The basic differences in these project
management concepts are

• WBS defines “what”
• Network Diagram defines “how”
• Schedule defines “when”
• RAM defines “who”

If specific resources are assigned at this time, the schedule may also take into consid-
eration resource availability (i.e., percent of their time devoted to this project) and
resource absences for vacation and other time off. Many project management software
packages can also level resources so that a resource is used an equal amount of time in
each workweek. Adding specific resource issues to scheduling will generally lengthen
a project’s duration. The critical path on the schedule may also be different than the
critical path in the network diagram due to resource availability and resource leveling.
Graphic representations of schedules can be produced in expanded network diagrams
and the nodes in such a schedule drawing may look like those shown in Figure 7.27; an
example of such a diagram is shown in Figure 7.28.

Figure 7.26. Network slack

148 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The typical graphical representation of a schedule, however, is the Gantt chart, which
is the most commonly used graphic in project management. It was named after Henry
Gantt, who first developed it during World War I with the U.S. Army. He was a mechanical
engineer and management consultant and his charts were later employed on major U.S.
infrastructure projects, including the Hoover Dam and the interstate highway system. An
example is shown in Figure 7.29. The Gantt chart represents each task as a horizontal bar
and is a time-line view of the tasks. This chart is a bar graph on which the length of each
bar designates the start and finish dates for each task. Each task is labeled with its WBS
code and description. There are many variations of the basic Gantt chart; more informa-
tion may be added in extra columns or in the graphic area with the bars. In the graphic
area there may be precedence relations, shading in the bars to show percent completions
of the tasks, coloring of the bars to show tasks on the critical path, milestones (zero-
length event markers), WBS hierarchy and envelopes, and so forth. A problem with the
Gantt chart is that it portrays an even distribution of effort from the start of a task to the
end of that task (particularly when a percent-complete shading of the bars is used).
Another problem with the traditional Gantt chart is that it requires a lot of “real estate”
on a computer screen or a printout for large projects. Figure 7.30 shows a Plan Gantt chart
from the FiveAndDime system, which also shows planned cost in the bars; this is a Web-
hyperlink-based system where one can click on WBS codes for added detail or to “drill
down” to the next level of the WBS.

Figure 7.27. Schedule nodes

Figure 7.28. Network diagram with expanded nodes

Developing the Schedule and Cost Plan 149

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One must be careful, particularly with IT projects, in not overplanning a schedule. A
project manager should focus on managing the project, not managing the schedule. A
number of companies plan resource allocations using specific resource assignments and
plan down to the day. IT human resources are largely professional types, they may work
varying numbers of hours per day, they may be called upon to help another person or
another project from time to time, and they may take off a day or two for whatever reason,
whenever they so chose. As mentioned previously, estimates involve considerable
uncertainty, and productivity rates of individuals, even within the same category, vary
greatly in IT. These factors have always played a major role in IT project scheduling; one
of the best discussions of this goes back to Frederick Brooks’s classic book, The
Mythical Man-Month (Brooks, 1975). Many companies have wasted valuable time with
dedicated project schedulers, who constantly modify the project schedule, trying to keep
up with individual resource availability. A rule of thumb for a work packet is to have one

Figure 7.29. Gantt chart

Figure 7.30. Planning Gantt chart

150 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

timekeeping reporting period, which is 1 or 2 weeks in most organizations. Making
resource assignments at that level (either specific or generic resources) is a more
reasonable approach for IT projects. In other words, for each WBS work packet after the
effort (in person hours) is determined, simply assign one or more individuals to that
packet for the number of periods (weeks) necessary. Unrealistic schedules are one of the
primary reasons for project crises and failures. According to Young (2003), seven things
to do before one can create a realistic schedule are:

1. Nail down the scope and requirements
2. Prototype the biggest technical risks
3. Create a model for the user interface
4. Pay attention to industry-standard estimates for similar projects
5. Let each person create an estimated task schedule for his own work
6. Accept only observable, measurable status reports
7. Subdivide all the tasks until each task takes 1 or 2 weeks to complete

Resource Assignment and
Costing Methods

Resource assignment in IT is usually necessary to estimate the time duration of the work
packets. In some industries, for some projects, time estimates may be independent of
resource assignments. Resource assignment for preliminary task time and cost estimates
is usually done generically, using a table, as was shown in Figure 7.18. The category rates
may be averages for employees in that category, midpoints for the corporate salary
bracket, contractor rates for contract labor, or some external average rate, such as that
of a regulatory body or trade union.
At some time early in the project, the effort to staff the project begins. The initial staffing
depends upon the time phased need of certain resources, the lead time to bring said
resources onto the project, conflicting needs for said resources, and other related
resource issues. The project may be reestimated (repriced) at that time if there is a
significant difference in the rates for the actual resources versus the planned rates for
those resources; for contracted projects, this depends on the terms of the contract. A
responsibility assignment matrix (RAM) may be developed, which is similar to the
organizational assignment matrix previously shown but shows the actual resources
(mapping between WBS and RBS) as well as the organization; some organizations may
maintain a single RAM for all projects. Figure 7.31 shows a window from the FiveAndDime
system for adding resource information; FiveAndDime allows the adding of resources
to the overall organization (such as for generic rate categories) and the adding of project-
specific resources.

Developing the Schedule and Cost Plan 151

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Assignment of actual resources to a project brings up the problem of resource leveling,
that is making sure that a single resource is not overcommitted, not just to a single project,
but between all projects in which that resource is involved. Some project management
software programs can do some form of resource leveling within one project and some
can do leveling between multiple projects. In either case, these automatic solutions may
be far from optimum. The first step in resource leveling should be to obtain a report
showing the planned time for each resource across all projects for the time span of
interest. When a resource is overcommitted there are several possible solutions,
including setting up task priorities, setting up a finish to start precedence between the
tasks competing for said resource, getting the resource to agree to be overcommitted for
a period of time (preferably in writing), and finding an alternative resource internally or
via contracting or outsourcing.
As the project proceeds, actual costs accrue to the project. The costing of resources,
particularly human resources, is one where confidentiality concerns may override
concerns for accuracy of actual costs. The hours a person charges to a project and
particular WBS codes are regularly reported. There are, however, a variety of ways to turn
those actual hours into actual costs. Some organizations apply the actual burdened
(including benefits, taxes, and possibly other factors) hourly cost of each individual.
Although this approach to actual cost acquisition is the most accurate, it can reveal
individual salaries. To solve this problem, many organizations use some type of average
rates, which may be the same table used for cost estimating purposes. Another way to
handle this problem for projects, where almost all the cost is labor, is to report and control
actual costs in terms of person-hours instead of dollars; these details are discussed later
in this book.

Figure 7.31. Form to add resource

152 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Developing the Cost Plan

After the schedule is developed, the estimated cost of each work packet is rolled up to
the top level of the WBS to develop the cost plan. The cost plan, sometimes referred to
as a cash flow analysis, shows the amount of money that has been planned to be spent
as a function of time. This process is illustrated in Figure 7.32. Sometimes two such curves
are developed, one with each work packet starting at the scheduled time, and another on
which each noncritical task starts at the latest start time. If cash flow is an issue, one can
choose between the two curves or, in a contract situation, one can base a payment
schedule on one of the two curves.
Once the cost plan is accepted, it becomes the baseline for the project; baseline cost plans
may be modified later as change orders are added. As an example, consider the following
two-level WBS (Level zero is in bold) from an example appearing in the Project
Management Journal (Brandon, 1998, 1999):

• Planning & Staffing: Project Plan, Resource Commitments
• Prototype Design: Requirements, Design
• Construct Prototype: Detail Design, Construction
• Test/Evaluate Prototype: Test Plan Development, Component Testing, Full Test-

ing, Destructive Testing, Test Documentation
• Full Design Specifications: External Specifications, Internal Specifications
• Documentation: Internal Specifications, Required External Documents
• Site Preparation: Site Design, Site Construction
• Construction: Component Construction, Component Assembly
• Test/Certification: Test Plan Development, Component Testing, Full Testing,

Destructive Testing, Test Documentation

WBS
Tasks

Effort

Sequence

Resource
* Type
* Number

Cost Plan

Schedule

Risk
Analysis

Figure 7.32. Schedule and cost plan development

Developing the Schedule and Cost Plan 153

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Finishing: Component Finishing, Assembly Finishing
• Maintenance Training: Maintenance Personnel, Supervisory Personnel

The cost plan for this WBS (at Level zero) is shown in Figure 7.33, and a graph of the cost
plan is shown in Figure 7.34. The cost plan becomes the basis for cost performance
reporting as discussed later in this book. In developing a cost plan in most software
project management programs each WBS work packet is associated with one of more
resources and has a start date and a complete date. The cost calculated from the effort
of the task (usually in person hours) and the rates of the assigned resource(s) is evenly
spread from the start date to the completion date. In other types of project management
software, time periods (work periods) are separate entities in the program and cost is
associated with a time period and a work packet to form a plan item; in other words, a plan
item is how much is to be spent in a particular time period for a particular WBS code.

Figure 7.33. Cost plan in spreadsheet

Figure 7.34. Cost plan graph

154 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As was discussed in Chapter VI, in many organizations and in the U.S. government,
standard calendars are set up based upon a work period of 1 week (for either a fiscal or
calendar year). This later method provides for nonlinear distribution of WBS cost over
time, easier handling of project overhead (level of effort) costs, and improved perfor-
mance metric calculation (discussed later in this book). Figure 7.35, from the FiveAndDime
systems, shows project work plan items for the current example, and Figure 7.30 showed
a Plan Gantt chart which shows the individual plan items in a spreadsheet like chart.
This cost plan is sometimes called the planned cost based on known work and may
include risk factors at the individual WBS work packet level. The inclusion of added cost
based upon risk factors at the WBS work packet level (mainly estimation risk factors) and
overall project risk is discussed in Chapter VIII. There may also be some unpriced
additional work (real or suspected) added which brings the cost up to the expected work
cost or the performance measurement baseline. The difference between the expected
work cost and the planned cost based on known work is called the undistributed budget.
The undistributed budget is for known work and sometimes used as a holding account
until a formal contract change is made.
The project manager generally has responsibility to manage to the performance measure-
ment baseline. In addition a management reserve may be added as a reserve for overall
project risks including unforeseen work that is still within the overall scope of the project.
The performance measurement baseline plus the management reserve adds up to the total
project budget (or for a contract situation the negotiated cost). These provisions are part
of the ANSI standard on Earned Value Management System guidelines (ANSI/EIA-748-
1998), which is discussed later in this book and is illustrated in Figure 7.36.
For IT projects, costs other than labor may be present and these may or may not be
allocated to the project. Contractor and consultant costs are usually part of the WBS and
RBS structures. Other direct costs, such as hardware, software, training, entertainment,
and travel, may made be part of the WBS or just added to the cost plan developed via

Figure 7.35. Cost plan table

Developing the Schedule and Cost Plan 155

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the WBS. Indirect, overhead, or level of effort types of cost may also be assigned to a
project and become part of the project budget. These may be General and Administrative
(G & A), Internal Operations and Maintenance (I & O), allocations (space, utilities,
consumables, communications, etc.), nonproject time (general meetings, general train-
ing, etc.). In some organizations these costs are included in the burdened rates for the
labor categories. In some organizations, these costs are given separate WBS codes. In
projectized organizations, and even in traditional line management organizations, as
more work becomes team and projected based, it becomes desirable to associate these
costs with projects. If given separate WBS codes, their contribution to the cost plan is
typically a linear spread over the project life.

Chapter Summary

The formulation of a detail schedule and cost plan has been discussed and illustrated in
this chapter. WBS formulation, task sequencing, task estimation, scheduling, and
costing methods have all been covered. The detail scope, time, and cost planning of this
chapter forms the basis for other detail plans described in subsequent chapters including
the risk plan, procurement plan, HR plan, quality plan, control plan, and change plan.

References

Albrecht, A. (1979, October 14-17). Measuring application development productivity.
Proceedings of the SHARE/GUIDE IBM Applications Development Symposium,
Monterey, CA.

Planned Cost of Known Work

Unpriced Work
(undistributed budget)

Management Reserve

Award Fee or
Incentive

Performance Management
Baseline

Total Project
Budget

Figure 7.36. Hierarchy of contract cost

156 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Boehm, B. (1981). Software engineering economics. Upper Saddle River, NJ: Prentice
Hall.

Boehm, B. (2000). Software estimation with Cocomo II. Upper Saddle River, NJ: Prentice
Hall.

Brandel, M. (2004, August). Budgetary black holes. Computerworld.
Brandon, D. (1998). Implementing earned value easily and effectively. Project Manage-

ment Journal, 29(2) 11-18.
Brandon, D. (1999). Implementing earned value easily and effectively. In J. Pinto (Ed.),

Essentials of project control (pp. 113-134). Newton Square, PA: Project Manage-
ment Institute Press.

Brooks, F. (1975). The mythical man-month. Boston: Addison Wesley.
IFPUG. (1996). IFPUG counting practices manual. Retrieved from www.ifpug.org/
Jones, C. (1995). Backfiring: Converting lines of code to function points. IEEE Computer,

28(11), 87-88.
Kemerer, C. (1987). An empirical validation of software cost estimation models. Commu-

nications of the ACM, 30(5), 416-429.
Kiewel, B. (1998, January). Measuring progress in software development. PM Network,

29-32.
Klastorn, T. (2004). Project management—Tools and trade-offs. New York: Wiley.
Malcolm, D., Roseboom, J., & Clark, C. (1959). Application of a technique for research

and development program evaluation. Operations Research, 7(5), 646-669.
McGibbon, T. (1997, August 20). Modern empirical cost and schedule estimation tools.

DOD Data and Analysis Center for Software Report (DACS), Air Force Research
Laboratory.

PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,
PA. ISBN 1-880410-22-2.

PMI. (2004). Practice standards for work breakdown structures.
Raz, T., & Globerson, S. (1998, December). Effective sizing and content definition of work

packages. Project Management Journal, 17-23.
Roetzheim, W., & Beasley, R. (1998). Software project cost and schedule estimating: Best

practices. Upper Saddle River, NJ: Prentice Hall.
Young, S. (2003, August). Why IT projects fail. Computerworld, p. 44.

Risk Planning and Management 157

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Risk Planning and
Management

He who is not courageous enough to take risks will accomplish nothing in life.
(Muhammad Ali)

Success today in the business world (whether as an employee, manager, executive, or
self-employed businessperson) involves taking some risks. The systems that are
changing the world today are very risky, but the payback is enormous (DeMarco & Lister,
2003). One needs to know how to manage risk, however, including how to identify risk
sources, quantify risk parameters, and develop plans to handle risk; these are the topics
covered in this chapter.
Risks are inevitable in projects (particularly IT projects), and if a PM does not practice
sound risk management, that PM may constantly be in a crisis-management mode. The
high failure rate of modern large IT projects, such as those involving EAI/ERP, CRM,
and SCM, is largely due to senior management and project management’s failure to
assess risks up front and to mitigate the causes of the greatest risks at the start of the
project (Gibson, 2003). An adequate analysis of potential risks can significantly increase
the likelihood of success for a project and can justify dollar amounts set aside for
management reserves. “Risk management is increasingly seen as one of the main jobs of
project managers” (Sommerville, 2003).

Project Risks and Opportunities

Risk is the possibility of suffering loss. In IT, the loss may involve increased costs, longer
completion times, reduced scope, reduced quality, reduced realization of proposed

158 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

benefits, or reduced stakeholder satisfaction. Risk and opportunity are different sides
of the same coin. Some IT projects advance the state of the art, and as such are more risky
than those that do not. The opportunity for significant advancement cannot be done
without significant risk. “Risk in itself is not bad; risk is essential to progress, and failure
is often a key part of learning. But we must learn to balance the possible negative
consequences of risk against the potential benefits of its associated opportunity” (Van
Scoy, 1992).
Many organizations around the world are involved with general project risk management
and/or IT project risk management. Barry Boehm of the U.S. Air Force, while working with
the Software Engineering Institute (SEI), set the stage for modern IT risk management
(Boehm, 1991). According to the SEI, risk management is a software engineering practice
with the following processes: assess continuously what can go wrong (risks), determine
what risks are important to deal with, and implement strategies to deal with those risks.
The SEI model for risk management is shown in Figure 8.1.
The ISO/IEC 17799-1:2000 Code of Practice provides a sequencing of the risk manage-
ment process into subprocesses for context identification, risk identification, risk
analysis, risk evaluation, and risk treatment. The IEEE 1540 standard on software risk
management is being merged with the corresponding ISO/IEC standard. Figure 8.2 shows
the IEEE 1540:2001 overall risk management process.
The Project Management Institute (PMI; 2000) Risk Management Processes are:

• Risk identification
• Risk quantification
• Risk response development
• Risk response control

This book will mainly follow the PMI process definitions. All projects have some degree
of risk, and most IT projects have considerable risk. Risk can, however, be reduced
(studies have found that risk can be reduced up to 90% [PMI, 2000]). A PM should be
somewhat risk averse (avoids taking unnecessary risks), but to significantly reduce risks,
one must start with thorough risk planning.

Figure 8.1. SEI risk management model

Identify

Analyze

PlanTrack

Control Communicate

Risk Planning and Management 159

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk management involves making plans and decisions in the face of uncertainty, and
uncertainty is a state of nature, typified by the absence of information on a desired
outcome. A risk event is a particular occurrence that could affect a project for good or
bad. Risk analysis is the combination of risk identification and risk quantification.
Therefore, risk management is the processes involved with identifying, analyzing, and
handling risk. It includes maximizing the results of positive risk events and minimizing
the consequences of adverse events.
Risk context identification is a step in the ISO risk-management processes. This context
identification establishes the strategic, organizational, and risk-management environ-
ment.
Context identification is made through familiar business models like:

• SWOT: Strengths, weaknesses, opportunities, threats
• Context: Describes the system capabilities, as well as its goals and objectives and

the strategies that are in place to achieve them
• Target: Describes the goals, objectives, strategies, scope and parameters of the

activity, or system to which the risk management processes being applied
• Assets: Describes the identified assets and their dependencies
• Security Requirements: Describes the security requirements needed to preserve

the identified assets

Figure 8.2. IEEE 1540:2001 risk management process

Management
Oversight

Risk
Treatment

Plan &
Implement

Risk
Management

Manage Risk
Profile

Risk
Analysis

Risk
Monitoring

Evaluate Risk
Management

Process

Information
Needs

Feedback

Risk
Profile &

Action
Requests

Risk ProfileImprovement

Decisions

160 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk context identification is typically focused on a particular management level: the
entire organization, the IT organization, or the programs and projects,. Risk management
for the entire organization involves threats and hazards to the organization as a whole.
Risk management for the IT organization usually goes under the name “disaster
planning” and involves threats and hazards to the IT assets, including hardware,
software, and people. This chapter focuses on project-level threats and hazards that may
affect the completion criteria or the satisfaction criteria identified earlier in this book.
Most IT projects create or acquire software for deployment across one or a few servers
and affect only part of an organization (i.e., few stakeholders). In EAI/ERM-type projects,
however, the entire organization is affected (numerous stakeholders) and there are many
more risk sources, including complex political, business value, expectations (require-
ments validation), security, workflow, and support issues (Maverick, 2003).
Good risk management is not a substitute for poor project planning! Risk management
looks for things that might be a problem, whereas project planning (scope, cost, time,
quality, etc.) identifies things that will definitely be problems and plans to make sure
they do not happen (Young, 2003).

Risk Identification

The risk identification process normally considers the product description, scope, WBS,
planning documents, historical information, and industry information to determine
sources of risk, potential risk events, and risk symptoms. One must determine which risks
are likely to affect the project (and the product that is the subject of the project) and the
key characteristics of each risk. Ideally, risk identification should start during project
initiation and should finish during project planning. In practice for IT projects, however,
a risk analysis is typically done after project planning and before the final costing of the
project. Risk identification cannot be fully completed until the WBS is created and most
work, staff, and procurements have been specified. Then risks are further identified as
the project proceeds and as change orders come in.
Project critical success criteria and factors were discussed previously in this book. In a
broader sense, risk identification should start with these critical success factors of the
project. These factors can be used to identify critical sources of risks that may arise from
our satisfaction criteria and completion criteria. The critical success factors were
determined by considering all stakeholders for a project, and risk source identification
should also consider all stakeholders. For large IT projects that will create products that
will significantly change organizations (such as how business processes are performed
and the “balance of power” within an organization), the major risks may involve
satisfaction criteria more than the completion criteria. “Business based project failures
come from such things as not having new workflow processes [to go with the new
product], not adapting the structure of the organization to the new ways of working, not
revising incentives and rewards to emphasize the new goals, and keeping the old cultural
practices in place even when they impede the new ways of working” (Gibson, 2003).

Risk Planning and Management 161

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk identification is carried out by finding potential hazards and threats in different risk
sources. What is the difference between a hazard and a threat?

• The primary volcanic hazards are pyroclastic flows and surges, airborne fallout
such as tephra clasts, ash (heavy accumulations and persistent), and lightning.

• The threats posed to people by these hazards are death or injury from inundation,
fire, heat, missile impact, lightning strike, and ash ingestion.

• The threats to infrastructure, lifelines, and property are destruction, damage, route
obstruction, structural collapse, electrical malfunction, and pollution.

For example, a board with a nail sticking out or it is a hazard that is more of a threat to people
if the board is lying on the beach rather than lying in the street. Lying in the street this
hazard may be more of a threat to cars than that same board lying on the beach. Risks/
hazards are often separated by such categories as:

• Business Risk: Risk of a gain or loss
• Pure (Insurable) Risk: Risk of a loss only

The sources of risk are further classified as:

• Internal: Project variables (including managing the “normal” trade-offs in the
project schedule, cost, quality, scope) and other factors inside an organization

• Technical: Technology uncertainty or change
• External: Factors outside of the organization
• Unforeseeable: Only 10% of risks fall into this category

Internal and technical risks are often quantified at the WBS level for projects, whereas
external and unforeseeable risks are quantified at the overall project level. A PM is
generally responsible for internal and technical types of risk events. Sometimes issues
dealing with the customer are classified as external, and sometimes they are classified as
internal depending upon whether the customer (benefiting organization) is internal or
external to the company. The same situation may be true of procurement, that it may be
classified as internal or external; outsourcing risks are usually considered internal.
Procurement and outsourcing are discussed in detail in a later chapter of this book. Some
indicators of potential internal risks would be related to:

• Investment Size: Size of project cost versus budget of benefiting or performing
department (i.e., IT department)

• Project Size: Time length of project compared to “cycle” time in that industry

162 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Impact Analysis: How broadly project results may impact organization, customers,
industry

• Business Risks: New corporate organization, merger, new employees, new ven-
dors/contractors

• Political Risks: Who internally cares about the project and their corporate
influence and power

• Performing Organization Risks: Staff and management uncertainties

Some technical risks in IT projects would possibly be:

• New type of project
• New area of application
• New methodology
• New technology (platforms, languages, tools, algorithms, methods, etc.)
• New standards
• “Going where no project in this company has gone before”

External and unforeseeable risks are not usually the responsibility of the PM. Unforesee-
able risks include natural hazards (such as weather events, earthquakes, etc.), market
fluctuations, riots, fires, crime, war, and the like. Only about 10% of risks are unforesee-
able (PMI, 2000). Some indicators of external risks would be related to:

• Benefiting Organization (Customer) Risks: Management and contact uncertain-
ties

• Procurement Risks: Vendor issues
• Political Risks: Those who externally cares about the project and their political

power
• Compatibility Risks: Alignment to current and new standards
• Economic Risks: Flexibility to changes in local, national, and global economic

factors

One good way to start to identify risks is with a standard industry checklist or
questionnaire. One such questionnaire from Pearlson and Saunders (2004) is:

• Are we doing the right things?
Are project objectives clear?
Will the proposed solution support business activities?
What changes should be considered?

Risk Planning and Management 163

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Are we doing it the best way?
Have alternative ways been explored?
Are there new or emerging ways we should consider?
What changes would increase the likelihood of success?

• How do we know how we are doing?
What are the performance standards?
Is there regular progress reporting?
How will the staff give feedback?

• What impacts are we having on the business?
To what extent have project objectives been achieved?
Are the project clients satisfied?
Is satisfaction improving or declining?
Is support for the project improving, stable, or declining?

• Is the project cost effective?
What significant business costs are influenced by this project?
What is the trend of these costs?
What significant variances from budget have occurred?

• Is there clear accountability for the project?
Are the right people involved?
Are lines of responsibility clear?
Is senior management supportive?
Is performance monitored and on track?
Do all those involved with the project understand their roles?

• Are key assets protected?
Will the IT infrastructure handle the deployment of this application?
Is IT security adequate?
Are risks identified and monitored?
How are incidents reported and analyzed?”

A widely used checklist was given by Wideman (1992) who listed common general project
risks and then specific risks by category: external unpredictable, external predictable,
internal nontechnical, technical, and legal. Some of the items from his common general
lists that are typical in IT projects are:

• This project is very different from previous ones we have done.
• The project scope, objectives, and deliverables are not clearly defined.
• Some or all technical data are lacking.

164 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The technical process is immature.
• Standards for performance are unrealistic.
• Design lacks engineering input.
• Prototype of key elements are missing.
• There is a higher than usual R&D component
• Other similar projects have not been successful.
• A wide variation in bids for support products and services.
• Some key subsystems are sole source bids.

Sommerville (2003) identified common risks to software development: staff turnover,
management change, hardware unavailability, requirements change, specification de-
lays, size underestimation, CASE tool underperformance, technology change, and
product competition.
Another way to identify risk is via a framework. One such framework, defined by
Marchewka (2003), began by examining risks involving project scope, quality, or budget.
It then viewed risk influences for these items in terms of people, legal, process, and so
forth. It then considers whether the risk is internal or external, what is known about the
risk (frequency and impact), and where in the project timeline the risk will occur:

Scope
Quality
Schedule
Budget

People
Legal
Process
Environment
Technology
Organization
Product
Other

Internal
External

Known risks (frequency and impact known)
K-U risks (frequency known, impact unknown)
Unknown risks (frequency and impact unknown)

Project conceptualization
Charter and plan

Risk Planning and Management 165

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Execute and control
Closeout
Evaluation

The IEEE framework (taxonomy) is based upon identifying risk in three areas: product
engineering, development engineering, and program constraints. Each category has
subcategories, and each subcategory has specific areas (Carr, 1993):

• Product engineering
Requirements
Design
Code and unit test
Integration and test
Engineering specialties

• Development engineering
Development process
Development system
Management process
Management methods
Work environment

• Program constraints
Resources
Contract
Program interfaces

This framework is very specific; for example, under product engineering/requirements,
the areas are stability, completeness, clarity, validity, feasibility, precedent, and scale.
Next questionnaires are developed based upon the three framework areas. The aforemen-
tioned IEEE report has specific questionnaires, and other related IEEE documents
prescribe meeting and interview techniques to administer the questionnaires.
A more general framework suggested herein for IT projects is based upon the critical
success criteria and factors introduced early in this book. Figure 8.3 shows a template
for this risk source identification template.
Each cell in our framework table (intersection of a hazard and a threat) is a risk source
arena. There may be more than one risk source in each cell. In practice, each cell is
analyzed to identify sources of risk, and for each risk identified, a set of specific symptoms
is listed. These symptoms are early warning signals that a risk event may be about to
occur. Thus, the PM, project team, and line management can watch for these symptoms
during the project execution.

166 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk Quantification

After the risks and their symptoms are identified, those risks need to be quantified and
the stakeholders’ risk tolerance levels determined. The risk quantification process will
result in a list of opportunities to pursue, threats to respond to, opportunities to ignore,
and threats to accept. Risk quantification may utilize several models, including

• Hazard Frequencies: Describes frequency estimates for the identified hazards
• Threat Frequencies: Describes frequency estimates for the identified threats
• Consequence Estimates: Describes consequence estimates for the identified

hazards

The formal analysis of risk includes the following risk factors:

• The probability that the risk event(s) will occur
• The economic impact (money at stake)
• When the risk event(s) may occur (timing)
• How often are they likely to occur (frequency)

The first step in the analysis is determining the probability and impact. The two methods
are commonly used are

Figure 8.3. Critical success-factor–based risk framework

Risk Source Framework
 Potential Hazards
 Internal External

Threats to:

P
ro

d
u

ct

P
ro

ce
ss

P
eo

p
le

O
rg

an
iz

at
io

n

O
th

er

P
ro

d
u

ct

P
ro

ce
ss

P
eo

p
le

O
rg

an
iz

at
io

n

O
th

er

Completion Factors
 Project Management
 Methodology
 Commitment to Perform
 Ability to Perform
 Verification
 Technology
Satisfaction Factors
 Business Justification
 Validation
 Workflow & Contents
 Standards
 Maintainability & Support
 Adaptability
 Trust/Security

Risk Planning and Management 167

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Qualitative: Expert opinion, project historical data, educated guess
• Quantitative: Parametric formulas, simulation, industry and/or application statis-

tical data

Quantitative methods are certainly better (less subjective and more accurate) when the
data are available and the use of that data is appropriate. Monte Carlo simulations using
the network diagram and PERT estimates are sometimes used to simulate risk involving
time and cost (gives a percentage probability that each task will be on the critical path).
The most common quantitative method is the expected monetary value (EMV) calcula-
tion. Probability and impact are used to calculate the EMV as:

EMV = Probability * Impact

EMV units may be dollars or some other loss scale. EMV is very important to a PM in
that it helps the PM prove his or her need for reserves! The impact is typically in money
or person hours. A single impact number may be used in the previous formula, or the
impact may be calculated from a maximum impact (total loss) times the probability of that
maximum value (Pi):

Impact = maxImpact * Pi

EMV = Pe * Pi * maxImpact (where Pe is the event probability)

Calculation of management reserves involves summing up the EMV for all the identified
threats and opportunities. This is can be done in tabular or spreadsheet form, as shown
in Figure 8.4.
A less precise quantitative method uses the base formula but expresses both impact and
event probability on a scale (such as from 1 to 10) or as a rough percentage. This method,
though less precise, may be more applicable, particularly in IT projects in which impact
and probability are harder to estimate in an absolute sense. The impact for each risk is
the fraction of the project overall budget that is directly affected by that risk. A relative
EMV is calculated for each risk by multiplying the probability of the risk by the impact

Risk/Opportunity Impact Probability EMV
Threat 1

…
Threat N

Opportunity 1
…

Opportunity N
Total ----- ----- xxx

Figure 8.4. EMV determination

168 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(amount of the budget at risk). The relative EMVs may be summed to calculate a
management reserve for risk mitigation:

Management Reserve = ∑ Probabilityi * Impacti

For example, if there are two risks, and the first risk affects 50% of the project budget with
a probability of 20%, and the second risk impacts 30% of the project budget, with an
probability of 15%, then he management reserve would be 14.5%. Another similar method
is based upon a risk matrix, which gives a grade to the intersection of risk probabilities
and impacts. This is shown in Figure 8.5. Each risk is assigned a grade and then is ranked
accordingly.
Tolerance levels (the amount of risk that is acceptable) should be determined for each
stakeholder (or each type of stakeholder). Those tolerance levels are later used in
developing the risk management plan, specifically what types of risk events may be
accepted versus those risk events that need to be averted, deflected, or mitigated. A
project’s stakeholders may be daredevils, or they may be timid. If they are daredevils,
they will assume risks and will not be too upset if a risky decision proves to be the wrong
choice; however, if the stakeholders are timid, they will be upset about decisions that
involve any significant degree of risk. The R-Variables control the stakeholders view of
risk: Regret/Resent [pain], and Rejoice [rejoice] (Piney, 2003). By knowing the stakehold-
ers well, or by interviewing them, one can determine risk tolerance. A formal utility
function can also be developed, as is illustrated in Figure 8.6.
Piney (2003) defined different zones for the utility function graph that indicate different
ways risks may need to be analyzed to determine stakeholder tolerance. The dead zone
indicates threats and opportunities for which no response is developed. A table or
spreadsheet may be prepared listing threats and opportunities for which responses need
to be developed, as is shown in Figure 8.7.
As stated previously, internal and technical risks are often quantified at the WBS level
for projects, whereas external and unforeseeable risks are quantified at the overall project
level. Figure 8.8 shows a screen from the FiveAndDime system that provides for project-
level risk factors for internal and technical risks (the project risk factor—how risky is this
work) and for external risk (the customer—how risky [difficult] is this customer to work
with). These risk factors are applied to cost estimates. Further on in this chapter, a specific
example is given to illustrate one way to calculate these factors. Figure 8.9 also shows
a screen from the FiveAndDime system for a WBS item in which there is a risk factor at
the WBS level (how risky is this item of work).

Figure 8.5. Risk grading

 Impact
Probability Low Medium High
Low 1 2 3
Medium 2 3 4
High 3 4 5

Risk Planning and Management 169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk Response Development

Once the threats and opportunities have been categorized (opportunities to pursue,
threats to respond to, opportunities to ignore, and threats to accept), the risk responses
are formulated and the risk management plan is completed. The risk management plan
usually specifies the overall management reserve. This is illustrated in Figure 8.10.

Figure 8.6. Risk utility function

Pleasure

Pain

GainLoss

Rejoice
Quadrant

Regret
Quadrant

Dead
Zone

Figure 8.7. Response matrix

Risk/Opportunity EMV Priority Respond ?

Threat 1

…

Threat N

Opportunity 1

…

Opportunity N

Total xxx ----- -----

170 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.8. Project form (showing project risk factors)

Figure 8.9. WBS form (showing WBS risk factor)

Figure 8.10. Risk plan development

Risk Planning and Management 171

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are several types of risk response plans (often called “mitigation strategies”):

• Avoidance: Eliminate the cause of the event(s) or reduce the EMV via reducing
probability

• Mitigation: Reduce the EMV via reducing the impact of the risk event
• Acceptance: Accept the risk (take no preventive action)
• Deflection: Assign (transfer) the risk to another party

Avoidance reduces the EMV by reducing (or setting to zero) the probability. The main
methods used here are safety- and prevention-related techniques, which are employed
in the early stages of a project. Prevention measures are available for almost all IT risks
and include such methods as employee retention and motivation incentives, buying
parts of a system instead of building all of it, use of contract labor for nonconfidential
parts of the system, parallel design and construction of alternative algorithms, platform
independent implementation techniques, use of open source software, using reusable
components, and using object-oriented techniques. These methods have been dis-
cussed in earlier chapters of this book. For avoidance to be effective, one must identify
the root cause of potential risk problems. One method is the Ishikawa Diagram (commonly
called the fish bone or cause-and-effect diagram), which is illustrated in Figure 8.11.
Mitigation reduces the EMV by reducing the impact; these methods are:

• Contingency Plans: “Planned mitigation”; alternative means to do something
should a certain risk event occur; “contingency reserves”

• Workarounds: A method devised to handle risk when the risk event happens
(“unplanned mitigation”)

Figure 8.11. Cause and effect diagram

Tools - Equipment

Key Team
Members

Leave

Work
Problems

Personal
Problems

Burn
Out

Management
Problems

Better
Job

Family
Problems

Location

Substance
Abuse

Individual
Conflict

Team
Conflict

Culture
Mismatch

Office Space

Dull
Work

Unrealistic
Schedule

Overtime
Demands

PM

Line
Manager

HR

Higher
Pay

More
Op for
Adv

More
Interesting

Work

Tools - Equipment

172 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A bullet analogy (extended here), concerning being the target of a gunshot, was
presented by Wideman (1992):

Mitigation (workarounds):
Move out of the way
Deflect the bullet
Repair the damage done by the bullet

Mitigation (planned):
Wear a bulletproof vest

Avoidance (reduces the probability of being shot at):
Carry a visible gun yourself
“Play dead”
Take steps to avoid being confronted by someone with a gun

Avoidance is usually a better measure than mitigation, but it is not always cost effective
or possible. One can chose mitigation, avoidance, or both; however, one is not in control
of the bullet. One could also ignore the risk by assuming that the likelihood is very low
or that the impact is very low (bullets cannot hurt me). Mitigation techniques may be
planned but are not typically implemented until the risk event is imminent or has occurred.
This is illustrated in Figure 8.12. Well-planned projects have more contingency plans
than workarounds; the opposite is the case for poorly planned projects. Avoidance and
mitigation usually cost money to implement, and reserves are formulated. Reserves are
the amount of time and cost added to a project to account for risk, also called management
reserve. PMI recommends at least 10% (PMI, 2000). Using PERT and Monte Carlo
simulations, one can calculate the reserve needed at the task level and then total these
amounts for the entire project. However, in practice, less-precise methods are typically
used because the data available for the analysis are less precise.

Figure 8.12. Risk plan components

Risk Planning and Management 173

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Deflection attempts to transfer the risk (part or all) to another party via:

• Insurance: Exchanges most of a risk of a probabilistic event(s) for a certain fixed
cost

• Outsourcing: Let someone more capable or experienced do the work
• Procurement/Contracts: Buy/rent the needed expertise, equipment, material, soft-

ware, and so forth

Deflection transfers and reduces the risk, but does not eliminate it. As discussed in a later
chapter of this book on procurement and outsourcing, there are considerable risks in
outsourcing. Hallows (1998) lists such subcontractor risks as:

Technical
Competent resources not assigned
Lack of familiarity with project or product
Methodology not proven
Poor project management techniques
Technical disconnects due to distance of relationship

Operational
Subcontractor staff goes out on strike
Subcontractor lands a higher priority project
Distance leads to business and operational disconnects
Transportation causes problems
Customs causes problems

Financial
Subcontractor goes bankrupt
Subcontract holds up deliverables due to contract or payment
disagreements
Subcontractor uses your schedule to extract extras
Subcontractor reduces quality

Jones (1994) lists the major risk factors (and a percentage of projects at risk) in contracting
and outsourcing arrangements as:

• High maintenance costs (60%)
• Friction between contractor and client personnel (50%)
• Creeping user requirements (45%)

174 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Unanticipated acceptance criteria (30%)
• Legal ownership of software and deliverables (20%)

These risks can be minimized by thoroughly qualifying the vendor, requiring the vendor
to have the proper certifications, having the proper contract (with regard to terms, legal
language, length, etc.), handling security issues, and requiring the vendor to report costs
and progress using earned value methods (discussed later in this book).
The table in Figure 8.13 lists common risks for IT projects and possible avoidance and
mitigation measures.

Risk Avoidance Mitigation
Incomplete requirements;
Insufficient user involvement

Document clearly all
requirements and get
customer approval; utilize
prototypes; make sure your
analysts are talking to the
right customer personnel;
establish formal change
control system

Involve users in documenting
and approving requirements;
use prototypes to flush out
requirements; involve users
with testing and
documentation

Customer is difficult to work
with

Assign higher risks and
increase reserve; request
customer management
contact for conflict
resolution; determine if the
problem is with your
personnel or customer
personnel; have very good
legal contracts

Document all customer
interaction; frequently involve
customer with requirement
analysis, prototype review,
design review, and test review

Lack of standard architecture Obtain software engineering
expertise; adopt standard
architecture; adopt relevant
IT standards; consider open
source software

Depending upon depth into
project, adopt and enforce
relevant standards; use more
prototypes

Inaccurate task estimating;
Unrealistic task estimates

Use parametric estimation
technique and compare with
historical data and estimates
by those who will do the
work

Re-estimate remaining work if
original estimate were not
done in a quantitative manner
and/or if multiple estimation
techniques were not used; see
cost overruns below

Inexperienced or poor PM Set up apprentice PM
program in organization;
require PMI (or equivalent)
certification for all PM’s
(for projects over a certain
size); set up a PMO in
organization

Project plans, controls, and
issues reviewed by internal or
external certified PM
consultants; upper
management review of PM
choice

Insufficient staff; recruiting
problems, staff illness

Prioritize requirements and
phase project; use contract
labor; outsource part of
work; buy components

Use contract labor; outsource
part of work; request
extension from customer

Dependency on key team
member(s)

Special recognition,
position, incentives for
these key persons; identify
backup employees or
contractors

Additional incentives to
motivate the key members to
stay thru project completion

Figure 8.13. Common IT project risks

Risk Planning and Management 175

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.13. Common IT project risks (cont.)

The final risk-management plan documents information about the identified risks and
how each risk is be handled. It may also include information about noncritical risks (risks
not needing a response development) so that they can be revisited (during project
execution) if necessary. An excellent risk management plan is a sign of an experienced
PM versus an inexperienced PM.

Risk Plan Example

As a very simple example, consider the case of a company that plans to develop a software
system, and has the following steps in its risk management plan:

Risk Avoidance Mitigation
Scope creep, requirements
changes

Have user sign off on
requirements and change
order plan; contingency
funds for unforeseen
changes; more use of
prototypes

Document all change requests;
Prioritize requirements and
phase project; Charge
customer for changes and
develop new baseline schedule
and cost plan

Vendor problems (lateness,
quality issues, etc.)

Have a formal procurement
process that results in
qualified vendors, good
legal contracts, and a “win-
win” situation for both
buyer and seller

Negotiate issues with vendor
and use whatever measures are
available within your contract
(see book chapter on
procurement)

Cost overruns (not due to scope
creep)

Use earned value metrics
(see book chapter on
performance measurement);
employ multiple estimation
techniques, employ PERT
estimation

Voluntary uncompensated
overtime, scope reduction,
project phasing, buy
components

Lateness (not due to scope creep) Use earned value metrics Crashing, fast tracking,
contract resources, scope
reduction, project phasing

Quality problems Carefully set and enforce
standards, utilize modern
object oriented
architectures, use proven
technology, plan for
thorough testing; use
Quality Function
Deployment (QFD) to
involve customer; use
extensive prototyping

Increase prototyping and
testing, verify standards
adherence, use QFD

Team problems: low
productivity, burn out, low
morale

HR to interview backups,
identify contractors; “team
building” measures

“Team building” measures; re-
assign people to different tasks
or projects; utilize backup
personnel or contractors

Weak upper management
support

Strong quantified business
justification for project;
thorough project charter
signed off at high level in
organization

Revisit business justification
with upper management; seek
other support in organization;
regular reporting of project
progress and cost

176 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Identify the risks via the success factor framework, its lessons learned and industry
historical data

• Grade each risk on a scale of 1 (low) to 10 (high), based on the probability of
occurring

• For each risk, list the symptoms
• Grade each risk on its impact (percentage of budget affected) from 0 (no impact)

to 10 (total); a value of 10 in this instance means that the entire project budget is
at risk

• Calculate the relative EMV (impact times probability divided by 100)
• Identify the response to be taken for each risk (deflection, avoidance, contingency

plans, workarounds)

In identifying the risks, the PM and his or her team review the published lists of the most
common reasons why projects fail, both in general and for IT projects in particular. Jones
(1994) studied software risks in detail, and his list of the most serious software risks are:

• Inaccurate metrics
• Inadequate measurement (of software development costs)
• Excessive schedule pressure
• Management malpractice (PM experience)
• Inaccurate cost estimation
• Silver bullet syndrome
• Creeping user requirements
• Low quality
• Low productivity
• Canceled projects

Another well-known list for software risks in IT projects is called “CHAOS,” from the
Standish Group (2004), which has surveys for several years from 1994 to 2004:

• Lack of executive management support
• Insufficient user involvement
• Inexperienced project manager
• Business objectives not clear
• Minimization and compromise of scope
• Lack of standard software architecture/infrastructure
• Lack of clear statement of requirements
• Lack of formal methodology

Risk Planning and Management 177

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Poor estimates
• Lack of proper planning
• Unrealistic expectations
• Scope minimized
• Lack of project “ownership” by team
• Team not hard working and focused
• Vision and objectives unclear
• Incompetent staff
• Improper setting of milestones

This Standish risk list represents the ranking of the problems in their 2000 report,
although other years had a different order to the issues, for example in 2004 user
involvement was first and executive support was second. Here is another list of risks from
the ETP Group (O’Connell, 2002):

• The goal of the project is not defined properly
• The goal of the project is defined properly, but then changes to it are not controlled
• The project is not planned properly
• The project is not led properly
• The project is planned properly, but then is not resourced as planned
• The project is planned such that it has no contingency
• The expectations of the project participants are not managed
• The project is planned properly but then progress against that plan is not monitored

and controlled properly
• Project reporting is inadequate or nonexistent
• When projects get in trouble, people believe the problem can be solved by some

simple actions (e.g., work harder, extend the deadline, or add more resources)

Here is yet another list, from Tennant (2002):

• Poor planning
• Lack of resources (money and people)
• Constant reorganization and scope changes
• Lack of management support
• Poor communications
• Too much infighting and disputes
• No clear definition of roles and responsibilities

178 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Lack of clear objectives or scope
• Failure to recognize warning signs
• Unrealistic expectations

Another list is available from PCI Global (2002):

• Lack of timely approvals
• Delay in funding
• Surprise audits
• Defective materials
• Mistakes trigger rework
• Vendors do not deliver on time
• Key staff member is pulled off project
• Management institutes a “hiring freeze”
• Member of the team is absent too much
• Member of the team resigns
• Changes in specifications

This example in Figure 8.14 is a new and difficult type of project for the company, and
the project team identifies the following risks: employee burnout, poor project manage-
ment, insufficient resources, general employee turnover, key programmers leave, scope
creep, overly low task estimates, and nonfeasable choice in technology (i.e., “immatu-
rity”). Using these identified risks, the project team prepares a risk-management plan in

Figure 8.14. Example risk analysis

Risk Prob. Budget
Impact

Relative
EMV

Symptoms

Employee “burnout”

2 1 .02 Low Morale, lateness

Poor project
management

1 5 .05 Lateness, cost overrun,
earned value issues

Insufficient
resources available

3 1 .03 Lateness, staffing
problems

Employee turnover

2 1 .02 People leaving

Key programmers
leave

2 4 .04 Key people leave

Scope “creep”

3 1 .03 Lateness (project level);
 additional scope

Task estimates are
too low

2 3 .06 Lateness (task level),
earned
value issues (task levels)

Poor IT architecture
choice

1 2 .02 Prototype time lengthens

Risk Planning and Management 179

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a tablular format. The columns include information about probability, impact, EMV, and
the symptoms for each risk.
The team next ranks the risks by EMV and then determines the response (in this example
there is a need to respond to each threat); this is shown in Figure 8.15. The management
reserve is calculated at about 27% (sum of relative EMVs). To complete their risk plan,
the following information is recorded for each risk:

• Complete definition of the risk
• Why the risk is important to the project
• The impact, probability, and EMV
• The planned response(s)
• Who is responsible for recognizing and tracking the symptom(s)
• Who is responsible for the response(s) and recording results thereof
• What resources are needed for the response(s)

Risk Response Control

Risks need to be monitored continuously during the execution of a project by looking
at the risk symptoms and seeing if any risk events have occurred or are about to occur.
In fact, one of the most important items to address during project team meetings is risk.
If any planned risk events occurred, then the risk management plan must implement the
called-for response (i.e., contingency plans); or, if any unplanned risk events occur, then
a workaround must be found. New risks or risk events may have also surfaced, or there
may be a change in the risk ranking due to changes in probability or impact amount; some
previous noncritical risks now become important. In Chapter IX, I review corrective

Figure 8.15. Example risk plan

Risk Response
Task estimates are too low Closely monitor against actual costs to

see if project needs to be phased or
scope reduced

Poor project management PM and team address specific issues,
Upper Mgmt. involvement

Key programmers leave Provide added incentives to key people
to at least stay until project completion

Insufficient resources available Phase project or request more $
Scope “creep” PM steps in to “phase” project and

deal with customer
Employee turnover HR to interview backups, identify

potential contractors
Employee burnout Re-assign people to different tasks or

projects
Poor IT architecture choice Re-evaluate architecture choice, use

more prototyping

180 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actions and workarounds for projects that have schedule and/or cost problems, includ-
ing such methods as fast tracking and crashing.
When risk events happen, they should be recorded in a project risk log, which describes
the risk, the circumstances of its occurrence, the risk response taken, the degree of
success of the response, the estimated cost of the event, and how the team thinks such
risks could be better handled in the future. This log becomes part of the lessons-learned
documentation at project closeout (project closeout is discussed in Chapter XI).
Rita Mulcahy (2003) listed the most common stumbling blocks in risk management:

• Risk identification is completed without knowing enough about the project.
• Project risk is evaluated using only questionnaire, interview, or Monte Carlo

techniques and thus does not provide a detailed, per task analysis of risk.
• Risk identification ends too soon resulting in a brief list (about 20) rather than

an extensive list (hundreds) of risks.
• Risk identification and risk quantification are blended resulting in risks that are

evaluated or judged when they come to light. This decreases the number of total
risks identified and causes people to stop participating in risk identification.

• The risks identified are general rather than specific (e.g. communication rather
than poor communication of customers needs regarding installation of system xxx
caused two weeks of rework).

• Whole categories of risks are missed such as technology, cultural, or market-
place.

• Only one method is used to identify risk rather than a combination of methods.
A combination helps ensure that more risks are identified.

• The first risk response strategy identified is selected without looking at other
options and finding the best option or combination of options.

• Risks are not given enough attention during the project execution stage. (Mulcahy,
2003)

Chapter Summary

Risk management and the planning thereof have been discussed in this chapter. The
project risk-management process interacts with the other project management processes
(as defined by PMI, 2003) in such a manner as to create or minimize risks. This is illustrated
in Figure 8.16. Procurement and outsourcing activities in any phase of an IT project
introduce additional risk, and these topics are covered more extensively in Chapter XII.
Thus, how well the other project management processes are done affects the risk
introduced into the total process.

Risk Planning and Management 181

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The project management office (PMO; discussed in detail in Chapter XVI), should be the
organizational focal point for risk policies, procedures, frameworks, templates, and
checklists. Risk factors (probability and impact) need to be evaluated not only initially
but throughout the project. Earlier in this book, success criteria and stage gates were
discussed. The stage gate evaluation process should include an updated analysis of risk;
this overall process was shown in Figure 3.16 in Chapter III. Example forms for this stage
gate evaluation were also illustrated earlier in the book, and based on that form each risk
was reexamined.
For another excellent analysis of IT and software-related risks, see Assessment and
Control of Software Risks (Jones, 1994). Jones itemizes the most common and most
serious software risks and for each risk discusses: definition, severity, frequency,
occurrence, susceptibility and resistance, root causes, associated problems, cost im-
pact, methods of prevention, methods of control, support (product, consulting, educa-
tion, periodical, standards, and professional associations), effectiveness of known
therapies, cost of therapies, and long-range prognosis. Some of the details in this book
are outdated at this point in time, although the general observations and recommenda-
tions are still very relevant. PMI also has a risk management special interest group (SIG;
www.risksig.com/). The PMI Risk Management SIG offers forums for the exchange of
ideas on topics in this area. Products like FiveAndDime have risk management built into
the total PM system, but there are software products that are used only for risk
management and interface to various PM software tools and or spreadsheet programs:
Pertmaster (www.pertmaster.com), RiskTrak (www.risktrak.com), Crystalball

Figure 8.16. Planning influence on risk

Time

Scope

Cost

Quality

Risk

HRProcurement

Standards
&

Performance

Requirements
&

Expectations

Cost
Constraints

Time
Constraints

Availability
&

Skill

Contracts &
Products/Services

182 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(www.decisioneering.com), Primavera’s P3-MonteCarlo (www.primavera.com/products),
Decision Products’ RiskDriver(www.riskdriver.com/), Palisade’s @RISK
(www.palisade.com), and Risk+ and RiskRadar (www.iceincUSA.com).

References

Boehm, B. (1991). Software risk management. Upper Saddle River, NJ: IEEE.
Carr, M. (1993). Taxonomy-based risk identification (Tech. Rep. No. 93-TE-6). Pitts-

burgh, PA: CMU/SEI.
DeMarco, T., & Lister, T. (2003). Waltzing with bears: Managing risks on software

projects. New York: Dorset House.
Gibson, C. (2003). IT enabled business change: An approach to understanding and

managing risk. MIS Quarterly Executive, 2(2), 104-115.
Hallows, J. (1998). Information systems project management. American Management

Association.
Jones, C. (1994). Assessment and control of software risks. Englewood Cliffs, NJ:

Yourdon Press Computing Series.
Marchewka, J. (2003). Information technology project management. Wiley.
Maverick, G. (2003, November). EAI project management. Business Integration Journal,

48-50.
Mulcahy, R. (2003). Risk management, tricks of the trade for project managers.

Minneapolis, MN: RMC.
O’Connell, F. (2002). Reasons why projects fail. Retrieved from www.etpint.com/whyfail
PCI Global. (2002). Crises events in projects. Retrieved from www.pciglobal.com
Pearlson, K., & Saunders, C. (2004). Managing and using information systems. New

York: Wiley.
Piney, C. (2003, September). Applying utility theory to risk management. Project

Management Journal.
PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,

PA. ISBN 1-880-410-22-2.
Sommerville, I. (2003). Software engineering. Boston: Pearson Addison Wesley.
Standish Group. (2004). Chaos chronicles. Retrieved from www.standishgroup.com
Tennant, D. (2002, July 7). Reasons why projects fail. PMI.
Van Scoy, R. L. (1992, September). Software development risk: Opportunity, not problem

(CMU/SEI-92-TR-30, ADA 258743). Pittsburgh, PA: Software Engineering Insti-
tute.

Wideman, R. (1992). Project and program risk management. Newton Square, PA: PMI
Press.

Young, S. (2003). Why IT projects fail. Computerworld.

Project Execution and Control 183

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Project Execution
and Control

If you can’t measure it, you can’t manage it.
(Peter Drucker)

In fairy tales and traditional romance movies, the story ended when the prince found his
soul mate, married her, and rode off with her into the sunset. The ending caption said:
“They lived happily ever after.” Well, we know that real life is not quite that simple; after
the marriage comes the most difficult (and, one hopes, interesting) part. Similarly, a great
project contract and plan is of little consequence without constant monitoring and
control. Once the project is planned and underway, the project manager cannot simply
ride away and assume that everything will go according to plan.
To insure success, many project matters need to be monitored; if a matter deviates from
the plan, then some form of control must be exerted to bring the situation back in line with
the plan. In this chapter I discuss the many matters that need to be monitored for IT
projects, how best to monitor each matter, and what type of control actions may be
appropriate for each.

The Control Process

The basic control process used in project management is the same process used in most
engineering and business systems. It is based on the definition and establishment of key
measures, and those measurements are then compared to some desired values or
standards to formulate algebraic formulas, usually called metrics. If the difference

184 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

between the measurement and the desired value exceeds some threshold, then corrective
action (feedback) of some type is invoked, and the degree of corrective action may be
a function of the size of the difference (and/or the integration [accumulation] or
differentiation [rate] thereof). The measurements may be of process outputs or of the
process itself, and the measurement level may be process-related (generally, how things
are being done) or product-related (generally, what things are being built). This is
illustrated in Figure 9.1.
The project control processes go on during the execution of the project. The execution
of the project is carried out primarily by the project team members, and the control of the
project is carried out primarily by the project manager. PMI defines several processes that
support the overall process of project execution (PMI, 2000), that is, activities that should
be taking place while the team does it work:

• Information dissemination (i.e., reporting)
• Team development
• Scope verification
• Quality assurance
• Procurement activities (solicitation, source selection, contract administration)

The Software Engineering Institute’s (SEI; www.sei.cmu.edu/cmm) CMM also implies
necessary practices (Level 2) for project tracking and oversight:

• Are the project’s actual results compared with estimates in the plans?
• Is corrective action taken when actual results differ significantly from the plan?
• Are changes agreed on by all affected parties?
• Does the project follow a written policy for tracking and control of activities?
• Is someone assigned specific responsibilities for tracking work products and

activities?

Figure 9.1. The control process

Taking action to
improve

performance

Comparing
actual performance
against standards

Deciding what to
control

Deciding how to
measure

Project Execution and Control 185

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Are measurements used to determine the status of the tracking activities?
• Are activities for tracking and oversight reviewed with upper management?

What to Control

Once the decision is made to measure and control project matters, the next question is,
What to control? PMI (2000) defined several processes that support the overall process
of project control:

• Scope change control
• Schedule control
• Cost control
• Quality control
• Risk response control

For most projects, the consumption of resources (time and cost) is always controlled, and
the previous list of supporting processes adds the control of scope, risk, and quality.
Other matters need to be considered, however, for effective management of IT projects.
The Standish Group Reports (called “CHAOS”), which are based on large surveys in
years from 1994 to 2004 (Standish, 2004), provide some guidance. The reports list the
leading causes of IT project failures as:

• Lack of executive management support
• Insufficient user involvement
• Inexperienced project manager
• Business objectives unclear
• Minimization and compromise of scope
• Lack of standard software architecture/infrastructure
• Lack of clear statement of requirements
• Lack of formal methodology
• Poor estimates
• Lack of proper planning
• Unrealistic expectations
• Scope minimized
• Lack of project “ownership” by team
• Team not hardworking and focused

186 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Vision and objectives unclear
• Incompetent staff
• Improper setting of milestones

The order of the Standish list represents the ranking of the problems in its 2000 report.
The list in other years ordered the issues differently; for example, in 2004, user involve-
ment came first and executive support was second. This list suggests that other matters
that need to be tracked include management support, requirements verification and
validation, user involvement and attitudes, project management practices, business
objectives and vision, technology issues like architecture and infrastructure, method-
ology, and project team attitudes.
Another qualified source for matters that should be controlled in IT projects is the “Seven
Core Metrics in the rational unified process (RUP), which was discussed in Chapter V
(Royce, 1998):

• Work and progress
• Budgeted cost and expenditures
• Staffing and team dynamics
• Change traffic and stability
• Breakage and modularity
• Rework and adaptability
• Mean time between failure and maturity

All these project matters that need to be controlled (as suggested in the three previous
lists) are already included in the general model for IT project critical success factors. This
is a general model, and therefore some of these factors may not be relevant or important
for any particular project or some other peculiar factors may need to be included. Figure
9.2 shows a spreadsheet that organizes these items, specifies key measurements for each,
and indicates the book chapter(s) that provides detail coverage thereof. Each of these
areas is briefly defined in Figure 9.2 and discussed in more detail with specific techniques
in other chapters of this book.

Measurement of Completion Factors

Once it has been decided which project matters need to be controlled, the measurements
that need to be made must be decides upon. Figure 9.2 indicates the measurements for
our critical success factors of IT projects, and we will first examine the completion factors.

Project Execution and Control 187

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9.2. Book content and success factor

Project Control

Success Criteria Metrics
Book

Chapter

Completion Factors
 Project Management
 Schedule (Time) EVA SPI XIV
 Cost EVA CPI XIV

 Progress Percent Complete, EVA CR XIV
 Scope CO Approved/CO Submitted XI

Team Morale Surveys & Interviews,

 Staff Attitude, Turnover XIII

 Stakeholder Morale Surveys & Interviews XIII
 Risk Planned vs Unplanned Mitigation VIII
 Methodology
 Change Introduction $ CO/ $ Budget V, X

 Change Resolution CO Completed/CO Approved V, X
 Commitment to Perform
 Sponsor Support Interviews XIII
 Upper Management Support Interviews XIII

 Ability to Perform Current Budget, Budget Horizon VI, X
 Verification
 Defect Introduction Defects per 1000 LOC (by phase) V, X
 Defect Resolution Defects Reported/Defects Corrected v

 Technology
 Process Productivity (LOC per person hour) V
 Product Product-related metrics V

Satisfaction Factors

 Business Justification ROI, IRR, Payback Period III, X, XVI
 Validation
 Stated Requirements Requirements Document Approval VI

Unstated Requirements Preliminary Product

 Manifestation Review X

Acceptance Testing Acceptance Exceptions

 (Changes & Defects) X
 External Quality Dimensions Product-related Metrics X

Workflow & Content Preliminary Product

 Manifestations Review X

Standards Compliance Audits

 and Inspections V, X

Maintainability & Support Comment Ratio, LOC per CO,

 Code Walkthrough V, X

Adaptability Reuse %, Avg Time per CO,

 Code Walkthrough 5, 10
 Trust/Security Security and background checks XII, XIII
 Process Security Security incidents, lost time VI
 Product Security Intrusion testing VI, VIII, X

Project management addresses the use of proper project management skills and methods
in dealing with each of the nine PMI knowledge areas. The following is a list of
subdivisions

• Schedule, cost, and progress control has been traditionally handled via Gantt chart
analysis and budget-vs.-actual cost metrics. A much better method of measure-

188 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ment and analysis is earned value analysis (EVA), detailed in Chapter XIV. EVA
uses three measurements and provides three key metrics: cost performance index
(CPI), schedule performance index (SPI), and critical ratio (CR). These metrics can
be used to estimate project time to complete and cost at completion. The three
measurements are budgeted cost (BCWS), actual costs (ACWP), and earned value
(BCWP); these are illustrated in Figure 9.3. Earned value is a function of the progress
measured in terms of “percentage complete” of each WBS task.

• Scope control comprises the management of project change for the benefit of the
project and resulting product. A PM must avoid scope creep and gold plating, and
depending upon the contract situation, must make sure that all changes are
estimated, priced, and billed. A key metric is the ratio of approved change orders
to the total requested change orders. If the majority of change order requests are
being approved (as opposed to being denied or deferred to another phase/version),
then either changes are being accepted that are outside of the initial scope or the
initial scope was ill defined. Change control is discussed in detail in the chapter on
change management.

• Team morale and the morale of other stakeholders can be monitored through
various types of interviews or surveys. The quality stage gates technique,
discussed throughout this book, provides one opportunity for such monitoring.
Other indicators of team morale problems include poor attitudes and complaints
about the project and assignments, staff turnover, unplanned overtime, and low
productivity.

• Risk management comprises the identification, quantification, and mitigation of
potential risks to the project. This was discussed in detail in Chapter VIII, including
specific metrics and techniques for IT risks. The key measure of risk planning
effectiveness is the number of planned versus unplanned mitigation (workarounds).

Figure 9.3. Earned value analysis

Time ->

^
Dollars

(or manhours)

BCWS

ACWP

X
BCWP

BCWP

Schedule
Variance

Cost
Variance

Plan Cost Curve

Actual Cost Curve

Project Execution and Control 189

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9.4. Change orders

Cummulative
Change Orders

Time ->

X = Open
O = Closed

x

x

x

x O

O

O

Methodology comprises the selection of specific IT software engineering processes
(requirements analysis, systems analysis, design, development, documentation, testing,
etc.) and how these processes will be organized, utilized, and integrated, both among
themselves and with the project management processes. (Chapter V discussed these
subjects.) If the methodology chosen is inappropriate for the project, then there will be
a high percentage of the project cost for changes and corrections. For measurement
purposes, these costs can be subdivided into the following areas:

• Change introduction can be measured by the money (or person hours) in change
orders relative to the total budget. Values over 10% may indicate the need for a
different methodology or smaller increments if an incremental methodology is
already in use. As discussed previously, large IT projects have lower success rates
than smaller projects because the complexity grows according to the square of the
number of items (people, requirements, technologies, etc.) involved. Excess change
causes the project to grow and become more complex.

• Change resolution can be measured by the ratio of completed change orders to
total change orders submitted and approved. As a project draws towards comple-
tion, the curve of completed change orders should approach the curve of approved
changed orders, as is shown in Figure 9.4. If these two curves do not start to
converge, then the change process is out of control due to an inappropriate choice
of methodology.

Commitment to perform comprises upper management support for the project from both
the project sponsor and upper management. It can best be measured by personal
interviews and dialog as the project proceeds. In many organizations, this involves
“politics,” to which either the PM and/or the project sponsor must be a party.

190 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Ability to perform is having the amount of resources needed and the correct resources
to carry out the project plan. The key measurement in this area involves budgetary
matters including both the current fiscal period budget and the budget horizon for longer
term projects and multi-phase projects. In this area the PM must work with the project
sponsor and upper management to make sure that continued funding for the project is
included in strategic planning forecasts.
Verification involves built-in quality or defect prevention and concerns the quality of
the development processes, thus answering the question, “Have we built the product
right?” Formally, verification is proof of compliance with requirements, specifications,
and standards. Verification processes usually result in exception (bug) reports, in which
compliance is not achieved. For measurement purposes, this is implemented via internal
testing and inspection and can be subdivided as follows:

• Defect introduction measures the defects relative to the size of the development
effort, the common measure being defects per 1,000 LOC (KLOC). The basis for the
KLOC may be the total LOC or just the LOC in new code, not including any “reused”
code (“included” code). If the basis is the total code, greater reuse will mean a lower
defect introduction rate. Current industry values average between 2 and 5. Defect
introduction should also be analyzed based upon where the defect was originally
introduced (requirements, design, coding, testing, etc.); this is discussed in more
detail in Chapter X.

• Defect resolution measures the number of defects reported versus the number of
defects corrected, and may be measured in terms of numbers or cost (i.e., in money
or in person hours). Similar to the situation with change orders, as a project draws
toward completion, the curve of corrected defects should approach the curve of
found defects, as is shown in Figure 9.5. If these two curves do not start to

Cummulative
Defects

Time ->

X = Found
O = Corrected

x

x

x

x O

O

O

Figure 9.5. Defects

Project Execution and Control 191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

converge, then the defect situation is out of control due to the lack of built-in
quality or an inappropriate choice of technology.

Technology comprises the proper selection of applicable technology for use in both the
product and in the process of building the product. It covers architecture, platform,
language, and supporting technology selection as well as issues of each, including the
maturity, stability, and support thereof. It can be subdivided into the following:

• Process comprises the technology used to construct the product, and a key
measure is productivity rate, usually measured in function points and/or KLOC per
person, per hour, or per day. Design processes typically use function point-based
metrics, and coding processes typically use KLOC metrics. Depending upon the
chosen programming language, most programmers average anywhere from 25 to
100 KLOC per day (code developed prior to integration testing), with an average
value of 50 to 60.

• Product comprises the technology built into the product, including the choice of
platforms and other dependent software. There are a number of product-related
metrics, including recoverability, scalability, and portability. Another key metric
is whether the product is (or can be) based on open source components (runs on
or utilizes open source products, such as Linux, Apache, MySQL, etc.).

Measurement of Satisfaction Factors

In a similar manner, the satisfaction factors can be examined to determine the necessary
key measurements:

Business justification comprises the selected type of cost-benefit model(s), as was
discussed earlier in this book. The business justification should be revisited and
measured during the project to ensure that the assumptions in those models are still
correct and relevant. This is part of the quality stage gate analysis process.
Validation comprises the product, which is the subject of the project and checks all user
requirements (both stated and expected) and answers the question, “Have we built the
right product?” Formally validation is proof that the customer and end users are satisfied
with the system. Validation processes usually result in change orders when the user is
not satisfied with an aspect of the product. Proper user involvement is vital to this aspect
of the development and/or integration process.

• Stated requirements (needs) are initially manifested in some type of requirements
document, as was discussed earlier in this book. Additional requirements are
formalized via the change order approval process. The requirements are also
included in more tangible forms in other documents, such as a users manual.

192 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Unstated requirements (wants and expectations) are best discovered via user
review of preliminary product manifestations, such as use cases, design drawings,
paper prototypes, and live prototypes. Unstated requirements were discussed in
detail in Chapter V, and are part of the quality stage gate analysis.

• Acceptance testing is the final and formal measure of user satisfaction with the
product (see Chapter X for more details on acceptance testing).

• External quality dimensions are a part of validation, even though they may not be
a formal part of the contract or the acceptance testing. External quality dimensions
must be addressed for the long-term success of the product and the performing
organization. Included herein are measures such as usability, reliability (does the
product do it right all the time), robustness (product can handle invalid/unusual
data and usage), responsiveness and efficiency (with respect to speed, storage,
clicks, keystrokes, and other resources), testability, auditability, and capacity/
scalability.

Workflow and content comprises the effective integration of the new product into the
organization’s (and each user’s) workflow. Content includes all deliverable information,
including documentation, help system, data, and media content (especially in the sense
of modern and Internet applications). The measures for this aspect of the project are the
degree to which the deliverables corresponding to these items have been completed and
the degree of the customer’s satisfaction with such manifestations of the product.
Standards relate to compliance with applicable industry, corporate, and user (customer)
standards in regard to both external (i.e., user interface) and internal issues (i.e., coding
standards). (See Chapter X for more details on standards.) The measures for this item are
compliance audits and inspections, which may be exhaustive or selective (“spot”
checks).
Maintainability and support involves the inherent maintainability of the developed
product and the willingness and timeliness of the developing (or support) organization
in responding to the customer’s concerns about usage or integrity (real or perceived)
issues. For IT projects that succeed, 70% of the total life-cycle cost of the product is spent
in the maintenance phase; thus, maintainability is extremely important. Maintenance
programmers also spend about half of their time studying the existing code (Standish,
1984). Therefore, if the code is easy to read and easy to understand, support costs are
lower. One traditional but important metric is the ratio of comment statements to
executable statements in the code. For well-written 3GL code, this ratio should be about
one comment line per every one to three code lines. Periodic code walkthroughs are also
necessary to ensure the quality of the comments and the quality (and standards
compliance) of the code. Another measure of maintainability is the lines of code affected
per change order. More comprehensive metrics in this area include both the lines of code
affected and the lines of code examined per change order.
Adaptability relates to the flexibility of the product to be adapted (successfully modified)
for evolving changes in the environment in which the product is deployed; this includes
both technical changes and business changes. Design and code walkthroughs are
necessary to ensure proper object-oriented techniques. One key measure is the ratio of

Project Execution and Control 193

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the total code that has been reused (from object-oriented libraries and packages). The
percentage of reused code should be over 50 for most projects in modern IT environ-
ments. This metric can be misleading if one imports simply because that code is part of
the overall imported module, but that code is not actually used. Modern object-oriented
implementations usually have ways to measure only the code that is part of the executable
program. One cannot assume that the cost for reusing code is always negligible. Another
important measure is the average time (person hours) per change order, because
adaptable systems are able to be changed faster.
Trust and security relates to both the security built into the product and to the security
of the process for building the product. Security must start with the project stakeholders,
particularly the people involved in designing, building, and testing the product; these
individuals (both employees and contractors) should undergo complete security and
background checks.

• Process security metrics would include counts and severity of security incidents
that occur during the project. A related metric would be lost time due to security
problems.

• Product security involves the customer’s willingness to fully utilize the system in
all necessary modes without concern for compromising any of the customer’s
assets, including information assets. This type of security must be built into the
product, and the metrics involve special intrusion testing in regard to security
holes.

Measuring and Reporting

To avoid spending more effort on measure and control than can possibly be gained in
return, appropriate measures are necessary. The metrics for a project must be selected
carefully and appropriately for the size and complexity of the project. Once the desirable
measures are selected, the next step is to find the best way to obtain those measurements.
It is important, particularly for projects involving professionals, to have measurements
that are noninvasive and consume very few additional resources. If possible, the
measures should be a byproduct of normal work or of other normal and required
processes, such as basic time/attendance and/or status reporting. For IT projects, many
of the measures can be obtained automatically by the choice of methodology and
technology and the supporting tools thereof; this is illustrated in Figure 9.6. For most
IT organizations, the chosen system of measurements is put into place for all projects
performed by that organization; certain metrics for small or simple projects may be
excepted. A project management office (PMO) often coordinates this overall measure-
ment system and its supporting tools and techniques (PMOs are discussed in Chapter
XVI).
The reporting process consists of taking the information from established metrics and
summarizing some of that information for some stakeholders; not all measures are

194 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

reported to all stakeholders. A communication plan indicates specific information that
is reported to certain stakeholders, and included how and when that information is
reported. (Communications and stakeholder management is discussed in Chapter XIII.)
Although not all information is reported to all stakeholders, there may be organizational
policies and procedures or contract provisions that dictate certain reporting require-
ments; however, the PM should always follow the following key principles in reporting
progress and other measures:

• Honesty is the best policy!
• Bosses hate surprises!
• Bad news does not get better with age!
• Document all issues and problems!

A simple progress report form is shown in Figure 9.7. Problematic projects require closer
monitoring than nonproblematic. Some warning signs of “runaway” projects were given
in PM Network (Block, 1999):

• Inadequate project planning
• Faulty task management
• Poor reporting and communications
• Infrequent status reports
• Insufficient documentation
• Abrupt schedule changes

Figure 9.6. IT project metrics

Design:
New UC/FP's

Reuse UC/FP's
UC/FP per day

Validation

Coding:
New LOC

Reuse LOC
LOC per day

Change
Orders

Defects

Integration:
New FP

Reuse FP
FP per day

Validation Validation

Verification Verification Verification

Defects/KLOC, Defects Found vs Defects Fixed, Cost per Defect

CO $ vs Budget, CO's Approved vs Co's Completed, LOC per CO, LOC examined per LOC, Cost per CO

Base
Requirements

Project Execution and Control 195

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Project disorganization
• Muddled business objectives
• Extreme project complexity
• Escalating costs
• Too many project team meetings

Stage Gate Implementation

As suggested earlier, the use of a dual stage gate approach to project performance
reporting and control. This is illustrated again in Figure 9.8. Multiple quality stage gates
may be within one management stage gate or vice versa. This dual gating process
minimizes the time that upper management and the project team spends in status reporting
meetings by splitting the review process into separate completion and satisfaction
reviews with the occurrence of each, based upon the need thereof. However, it ensures
that customer involvement is sufficient in the project matters that most concern the users.

Figure 9.7. Project status

196 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9.8. Dual stage gates

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Managment Stage

Quality
Stage

Quality
Stage Gate

Quality
Stage

Quality
Stage Gate

Quality
Stage

Managemant
Stage Gate

Quality
Stage Gate

+ =

Figure 9.9. Stage gates and stakeholder involvement

Completion
 Criteria

Scope
Time
Cost

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage
(Event Driven)

Quality Stage
Gate

Management
Stage

(periodic)

Management
Stage Gate

Continue?
Recycle?

Continue?
Hold?

Cancel?

PM

Business
Analyst

Users

Upper
Management

Development
Team

By
Exception

Only When
Necessary

Project Execution and Control 197

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Management stage gates handle the completion criteria, and these stage gates can be
set at fixed time intervals or upon completion of a major project phase. For methodologies
in which phases overlap, or when using incremental or iterative approaches, the
management stage gates can be set between increments or iterations, or upon fixed-time
increments, such as 1 month. To minimize the time and cost associated with formal
management reviews, it is recommended that the management stage gates happen at
regular time intervals but that they take place only on an exception basis, when key
metrics (such as EVA indexes) indicate problems. At the management stage gate,
completion metrics are reviewed (either exhaustively or by exception) and a go/kill/hold
decision is reached. This is illustrated in Figure 9.9.
Quality stage gates address the satisfaction factors that are examined by relevant
stakeholders for that gate via focusing on a particular preliminary product manifestation;
the review does not make a go/kill/hold decision but rather a go-forward or recycle type
decision. Figure .9.9 illustrates these distinctions. These concepts are discussed in more
detail in Chapter X.

Corrective Actions

Measurements are compared to some desired values or standards to determine devia-
tions and differences. If the difference between the measurement and the desired value
exceeds a threshold, corrective action of some type may be necessary. In project
management, the need and amount for corrective action depends upon the direction and
magnitude of the deviation. Deviation rates and accumulations may also factor into the
type and magnitude of the chosen corrective action as well as the point in the project that
the deviation is discovered.
Controls need to be appropriate for the type, size, complexity, and organizational
environment of the project, or one may spend more on the effort to control than can
possibly be gained in return. A PM cannot assume the job is finished when he or she has
implemented the controls. In addition, accurate results may not be obtained unless the
project team and other subordinates also buy into the controls. Some controls are
needed, particularly in IT, and one should:

• Keep them as simple as possible
• Control only what needs to be controlled
• Minimize the additional work of data acquisition and processing for the controls
• Let the project team and other employees in on the controls and the overall purpose

thereof

In general, the PM uses the measures and controls to track and review but does not
intervene directly unless there is a problem. Corrective actions are management preroga-
tives that are available to a PM (and upper management), based upon the type of

198 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organization (functional/hierarchical, projectized, or matrix, as is discussed in a later
chapter), the position of the project manager, the organization culture, HR policies,
possible union rules, and the governing laws of the state or country. Some corrective
actions may be operational, some tactical, and some strategic.
Managing a project involves the trade-off of some key variables, in particular, scope,
time, and cost. There is an old expression in project management that says, “Do you want
it good, fast, or cheap—pick any two.” If the project is behind schedule, one can consider
adding additional resources (people, money, etc.). This will cost additional money, which
may be acceptable if the project is below cost or if the customer is more concerned with
schedule than cost (contract permitting). Changing resources and obtaining better-
cheaper-faster resources may also be considered, but there will be a cost and delay for
the changeover (and added risk), and if it is late in the project or if it is a relatively short
project, the net benefit may be minimal. If the customer is more concerned with cost than
schedule, the schedule can be extended by adding more time, contract permitting.
Another alternative is to reduce the scope by deleting features, by moving features into
a future phase (or version), or moving features into the maintenance phase. Still another
alternative is to reduce quality by:

• Increasing tolerances (safety margin, backup, etc.)
• Reducing testing
• Forcing the testing onto users
• Not fixing all the defects

These measures usually increase the long-term cost of a product, but some software
companies often use these techniques.
Duration compression is another technique that can sometimes be used to correct
schedule problems. There are two types of duration compression: crashing, which may
be combined with reductions in scope and/or quality, and fast tracking. Both of these
methods usually increase project risk. Crashing involves allocating more resources to the
critical path tasks; according to PMBOK, “Taking action to decrease duration by
analyzing a number of alternatives to get the maximum compression for the least amount
of cost” (PMI, 2000). Resources may be taken from noncritical path tasks if resource types

Figure 9.10. Task crash evaluation

Task Duration Crash Time
Savings

Crash Cost Crash Risk

A 15 2 3000 HIGH
B 10 2 9000 LOW
C 4 1 1000 LOW
D 8 1 2000 HIGH
E 12 3 8000 NONE

Project Execution and Control 199

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are same or similar. This may result in higher costs; however, for many tasks (particularly
IT tasks), increasing resources may not speed up those tasks. A common analogy
applies: It takes one woman 9 months to have a baby; the process cannot be accelerated
by putting nine women on the job for 1 month. According to Brook’s Law, adding
manpower to a late IT project makes it later (Brooks, 1995).
As an example, consider the project-critical path tasks shown in Figure 9.10. If one had
to cut 3 months time off the project and the schedule was most important, followed by
cost and then risk, then tasks A and C would be crashed. Instead, if one had to cut 3
months time from the project, and schedule was most important, followed by risk and then
cost, tasks E would be crashed.
Fast-tracking is starting tasks that fall later in the project schedule before their predeces-
sors are completely finished and/or reducing lag times. This also typically increases
project risks. For traditional waterfall methodologies, fast-tracking may include starting
one phase before its predecessor phase is completed (i.e., starting coding before the
completion of detailed design). Fast-tracking to some extent is already a part of overlap,
iterative, and incremental methodologies, which are discussed in Chapter V. Consider the
small project schedule shown in Figure 9.11. Any task on the critical path that has a
predecessor task could be fast-tracked by starting it before the predecessor was completed
(if it was physically possible to do so); here, task B, C and/or G.
Many other corrective actions may be available to PMs that may improve the productivity
or resourcefulness of the PM’s project team members and thus reduce time or cost, or
improve quality. These actions include employee/contractor disciplinary actions (nega-
tive reinforcement), employee/contractor incentives (positive reinforcement), and “pep
talks” and other motivational techniques. A PM must maintain the strong commitment
of stakeholders throughout the project, and these human resources issues are discussed in
detail in Chapter XIII. Of course, upper management may also choose to change the PM.
There may be systematic problems in the project due to the choice of methodology,
technology, or tools. Defects introduced early in the overall development process are
more expensive to correct than defects introduced later. For this reason it pays to focus
defect prevention during the early processes, such as requirements and design. An
analysis, such as the one shown in Figure 9.12, examines where the defects are introduced
versus where they appear.

Figure 9.11. Network PDM diagram

Start

A

B C

GD

E F

200 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9.12. Defects by stage

Defects

Analysis Design Build Test Deploy

X

X

X
X

XX = Found
O = Introduced

O
O

O

O
O

Figure 9.13. Cause and effect diagram

Other

Defects

Standards
 Problem

Design
Problem

Testing Problem Requirement
Problem

OverallCoding

User
Interface

Algorithm

Method

Code

Unit Test

Integration
Test

Destructive
Test

Missing

Unstated

Unclear

Implementation
Problem

Load
Test

Mis-understood

External

InternalOther

Project Execution and Control 201

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For systematic problems, one first needs to find the root causes. Fishbone diagrams, as
is shown in Figure 9.13, are a good way to analyze these types of problems in detail so
that an eventual solution will be discovered.

Chapter Summary

In this chapter, project performance control and corrective action techniques were
defined and discussed. Performance metrics for each critical success factor were
identified and illustrated. PMs must often be clever and innovative to solve difficult
project control problems. A common analogy is that upon running into a “brick wall,” a
PM must examine all alternatives and find a way to go over, under, or around that wall.
Cockburn (as cited in King, 2004) stated in Computerworld: “A core part of the job of
project manager is coming up with inventive ways to get out of incredibly constrained
situations.”

References

Block, T. (1999, April). The seven secrets of a successful project office. PM Network.
Brooks, F. (1995). The mythical man month: Essays on software engineering, 20th

anniversary edition. Boston: Addison-Wesley.
King, J. (2004, February). Project management in the trenches. Computerworld, p. 16.
PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,

PA. ISBN 1-880410-22-2.
Royce, W. (1998). Software project management—A unified approach. Addison-

Wesley.
Standish Group. (2004). Chaos chronicles. Retrieved from www.standisgroup.com
Standish, T. (1984, September). An essay on software reuse. IEEE Trans on Software

Engineering, Vol.SE-10(5).

202 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Managing Quality

Well done is better than well said.
(Benjamin Franklin)

Quality is defined by PMI as conformance to requirements, specifications, standards and
fitness for use (PMI, 2000). Part of this definition is mostly quantitative, namely the
requirements, specifications, and standards (assuming that these three things have been
carefully and correctly itemized), but “fitness for use” is mostly qualitative. Because of
this qualitative portion of the definition, the quality of the product which is the subject
of the project may be an area for potential conflict between the performing organization
and benefiting organization. In fact, as a project proceeds, quality is the most difficult
area to keep on track, not because of its complexity, but because the project team may
compromise it when a crunch arises (Hallows, 1998).

Quality Management

Quality is more than just conformance to requirements. A good set of requirements is
often difficult to devise for IT systems. If there are defects in the requirements (which
there usually are), one could conceivably have a high-quality system that is useless. In
addition, simply meeting the requirements will not guarantee that the customer or end
users are satisfied with the product. Quality must also be distinguished from grade. A
low-grade product may have just as much quality as a high-grade product. Different
grades of a product are generally created for different classes of service, and they
generally have different unit prices.

Managing Quality 203

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Most people think of bugs when they think of quality in the context of IT systems. The
term bug was originally coined by Dr. Grace Hopper, who developed the COBOL
language. She had found that a computer crash was due to a moth that lodged inside of
the hardware. For large IT systems of 1,000 function points or more, total defects will
average five bugs per function point (Jones, 1994). Even with high-quality software
development, for every 500 or so lines of procedural C-like code there is one bug (Linger,
1994). Your electric razor has dozens of bugs, your TV may have hundreds of bugs, and
your car may have thousands of bugs. Most of these bugs are encountered only when
a certain set of circumstances arises. Software bugs cost as much as $60 billion annually,
as estimated by the National Institute of Standards and Technology. Inside sources
reported that Microsoft Windows 2000 was released with 63,000 potential defects (Foley,
2000; ZDNet, 2000). Software bugs increase in number in our modern world as our
dependency on IT deepens and our reliance on automation and embedded software
grows.
In addition to bugs, however, the basic definition of quality needs to be further extended
when we consider completion criteria and satisfaction criteria. A more complete defini-
tion of quality for IT projects should include:

• Conforms to requirements and specifications
• Meets “customer expectations”
• Is defect-free
• Is highly usability
• Is consistent with adopted standards
• Is reliability (does it do it right all the time)
• Is robust (can handle invalid/unusual data and usage)
• Is testable
• Is auditable
• Is maintainable and readable
• Is secure
• Is recoverable
• Is appropriately documented (external and internal)
• Is efficient (with respect to speed, storage, clicks, keystrokes, and other resources)
• Is platform independent (portability)
• Is flexible and adaptable

A less specific but official list of quality attributes is found in IEEE 83: portability,
reliability, efficiency, accuracy, error, robustness, correctness. Another official list of
quality attributes is found in ISO 9126: functionality, reliability, usability, efficiency,
maintainability, and performance.

204 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Poor quality can result in a number of undesirable events and states, including increased
costs, low morale in both the performing and the benefiting organization, lower stake-
holder satisfaction, increased risk, lost business, and lower project business benefits,
whereas meeting quality standards generally results in increased morale, lower risk,
higher stakeholder satisfaction, and meeting project benefit expectations. Quality in IT
projects has a long-term effect. Sometimes the effects of poor quality may not be noticed
until well after an IT product is built and deployed. Often, an IT product will perform in
a satisfactory manner but may not be economically maintainable or adaptable. For an IT
project that is successful (and remember that most IT projects do not succeed), most of
the long-term costs will be in the maintenance phase (about two-thirds of the life-cycle
costs).
A PM needs to understand what quality looks and feels like for his or her project. It can
be disastrous if the PM of an IT project does not understand how quality manifests itself
in the application area for his or her project! Team members need the same understand-
ing and appreciation, and if lacking appropriate training should be supplied. Quality
management is the overall process required to ensure that the above IT quality metrics
are achieved; this overall process includes the following three subprocesses: quality
planning, quality assurance, and quality control. Figure 10.1 defines these three pro-
cesses (PMI, 2000).

Quality Planning

The main focus on quality used to involved product inspection (checking items after
development). Deming (1982) and others showed that quality could be improved more
by preventative measures such as improving production processes rather than by
postproduction inspection. With the advent of modern quality philosophies, companies
have begun to spend more on planning and prevention. It was found that the cost of using
prevention was less than the cost of quality nonconformance. A rule of thumb states that
for every dollar spent on prevention, the cost of repair is reduced by $3 to $10 (Jones,
1994). Often, management is less concerned with prevention, because solving problems
is a high-visibility effort with immediate rewards, whereas preventing problems has low
visibility. Both conformance and nonconformance incur costs; the different cost issues
of each are shown in Figure 10.2. Thus, the total costs involved with quality can be
expressed as (Campenella, 1999; Crosby, 1979):

Figure 10.1. Quality processes

Quality Planning Quality Assurance Quality Control

Define quality for the
project and how it will
be measured

Take measurements;
determine if
measurements are
appropriate

Compare measurements
to plan and take
corrective action

Planning project phase Execution project phase Controlling project phase

Managing Quality 205

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.3. Web application development methodology

Req's

Overall Site
Design

Prelim. User
Manual

Use Case
Scenarios

Screen Design
(Storyboards)

Database
Design

Help Screens

Database
Development
(SQL Create

Table Scripts)

Program
Development Unit Testing

Database
Testing (SQL
Insert, Select,
Update Scripts)

Integration
Testing

Deployment

Online User
Manual

Test Plans

Content
Development

Cost quality = Cost conformance + Cost non-conformance

Complete quality planning comprises the design and plans for preventative measures
(built-in quality) and product testing.
Nonconformance costs are classified as internal or external. Internal costs are incurred
when the performing organization finds the defect, and external costs are incurred when
the benefiting organization finds the defect. External costs are typically greater than
internal. The cost of correcting defects in IT systems is a function of when the defect is
introduced and when the defect is discovered. Defects introduced early and found late
in the development process are the most expensive to correct. Consider the example
methodology in Figure 10.3 for developing Web applications. Defects introduced in the
requirements stage but not found until deployment may mean that all intervening steps
have to be repeated in some degree. Defects introduced during program development
(programming bugs) and found during integration testing will require the repetition of
much fewer steps.

Figure 10.2. Cost of conformance and nonconformance

Cost of Conformance Cost of Non-Conformance

Quality Planning and Training Rework and Delay Costs

Effectiveness Studies Wasted Effort

Validation and Verification Warranty, Refund, Contract Penalty,
and Legal Costs

Benefit Surveys Loss of Customer Goodwill and
Market Share

206 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Defects generally can be traced to five origins (Jones, 1994): requirements, design,
coding, documentation, and bad fixes. It can cost 40 to 1,000 times more to fix a defect
found late in the development cycle (Gause & Weinberg, 1989). Up to eighty percent of
a typical software product’s development time may be spent correcting errors not found
early in the project (McConnell, 1997). In U.S. Department of Defense’s (DoD) studies
conduct by Hughes, it was found that it cost 100 times more to fix a problem that is not
recognized until the application is released. A large number of errors are not found until
the product is released and put in general use (about 22%) and most errors are introduced
in the definition/requirements phase (about 55%). When defects are eventually fixed,
there is a 40% change that other errors will be inadvertently introduced (for non-object-
oriented software). Thus, the initial focus for IT project quality should be on prevention
or built-in quality. Building in quality involves establishing defined rigorous procedures
for how something is built or assembled. The discipline of software engineering is largely
concerned with this topic, and this was covered in an earlier book chapter. For IT systems,
this dimension of quality manifests itself mainly through: IT standards, requirements
gathering techniques, design techniques, implementation techniques, and maintainabil-
ity, adaptability, and reuse methods. Jones lists primary software defect prevention
techniques as (Jones, 1994):

• Formal quality plans
• Use of joint application development (JAD)
• Use of prototyping
• Structured analysis and design techniques
• Reusable code and designs
• Software quality assurance teams
• Total quality management (TQM) methods
• Quality function deployment (QFD) methods
• “Clean room” development methods
• Quality measurement programs
• Reviews and inspections
• Use of defect estimation and measurement tools

The term verification and validation (V&V) has emerged in recent years and has been
applied to software development projects; IEEE 1012-1998 is the new standard for V&V.
Definitions from an IT perspective differ among authors concerning exactly which project
activities are verification activities and which are validation activities; and some types
of activities have ingredients of both. Formally, verification is proof of compliance with
requirements, specifications, and standards. Verification is primarily concerned with
built-in quality and is a process-related notion that asks the question, “Are we building
the product in the correct manner?” Answering that question requires both the internal
testing of the product and the inspection of processes. For IT projects, inspection
involves primarily design walkthroughs, code walkthroughs, and method and tool

Managing Quality 207

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.4. Pareto chart

evaluations. These are often called peer reviews because peers are involved and typically
provide more valuable feedback that management in these activities. These defect preven-
tion methods can have a high defect removal rate of about 60% (Jones, 1994).
Formally, validation is proof that the customer and end users are satisfied with the
system. Validation is a product-related notion that asks the question, “Have we built the
correct product?” Answering that question requires inspection and acceptance (exter-
nal) testing of the product, which for IT systems mainly comes at the end of the
development cycle. Prior to the acceptance testing, which is typically performed by the
benefiting organization (sometimes for contract compliance), there is normally several
levels of internal testing (verification), including unit testing, integration testing, load
testing (capacity), timing tests, destructive testing, and intrusion testing (security).
Testing is discussed in more detail later in this chapter.
All validation need not be at the end of the development process. There are a number of
procedures that can be carried out early in the overall process to help guarantee that the
correct product is being built. These procedures involve getting the benefiting organi-
zation and other stakeholders more intimately involved in the review of preliminary
product manifestations; this methodology is discussed in detail later in this chapter.
A part of the effort to build in quality for IT systems is to identify the major quality problem
areas and then find the root causes of these problems. The Pareto chart is a classic quality
engineering diagram that helps focus attention on the most critical problems of a project
by presenting information in order of priority; this is illustrated in Figure 10.4. The
philosophy is based on the old 80/20 rule (80% of the problems come from 20% of the
activities). For a PM, instead of solving each problem as soon as it occurs, the Pareto
diagram helps put the problems into perspective so a PM’s time can be focused first on
the key issues.

M
is

si
n

g
 R

e
q

208 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Quality Assurance

Quality assurance is done primarily during the execution of a project. Planned measure-
ment systems are analyzed to see if all measurements are necessary or if more measure-
ments need to be established. Overall project performance is regularly analyzed to make
sure the project will satisfy the required quality standards. For IT projects, quality
metrics should be defined in three areas: process, product, and perception; these three
areas should encompass the critical success factors identified earlier in this book. For
IT maturity models such as the SEI CMM model, maturity levels involve improvement of
both the product and the process of building the product. Project control was covered
in Chapter IX, and some of the control metrics identified and discussed in that chapter
that are also quality related and are shown and classified in Figure 10.5. As well as product
and process quality metrics, some metrics involve environmental factors into which the
product is to be deployed.

Figure 10.5. IT quality metrics

Quality Metrics

Success Criteria Metrics
P

ro
d

u
ct

P
ro

ce
ss

E
n

vi
ro

n
m

en
t

Completion Factors
 Project Management

Team Morale Surveys & Interviews,

Staff Attitude, Turnover X X
 Stakeholder Morale Surveys & Interviews X X
 Verification
 Defect Introduction Defects per 1000 LOC X X

Defect Resolution Defects Reported

Defects Corrected X
 Technology
 Process Productivity (LOC per man hr) X
 Product Product related metrics X X
Satisfaction Factors
 Business Justification ROI, IRR, Payback Period X X
 Validation

Stated Requirements Requirements Document

 Approval X

Unstated Requirements Preliminary Product

 Manifestation Review X

Acceptance Testing Acceptance Exceptions

(Changes & Defects) X

External Quality
 Dimensions Product Related Metrics X X

Workflow & Content Preliminary Product

 Manifestations Review X X

Standards

Compliance Audits
 and Inspections X X

Maintainability & Support Comment Ratio, LOC per CO,

Code Walkthrough X

Adaptability Reuse %, Avg Time per CO,

Code Walkthrough X
 Trust/Security
 Process Security Security incidents, lost time X
 Product Security Intrusion testing X

Managing Quality 209

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The product which is the subject of the IT project may also need to meet a certain service
level agreement (SLA), which could even be part of the project contract. A SLA
specifically defines the “quality” of service that is to be provided by the product within
a certain deployment environment. Items typically found in SLAs are:

• Response time upper limits
• Percentage of log-ins or calls not answered first time
• Downtime maximum percentages (i.e., “99% uptime”)
• Maximum downtime interval

The Software Engineering Institute’s (SEI; www.sei.cmu.edu/cmm) CMM defines the
necessary Level 2 practices for software quality assurance:

• Are quality assurance activities planned?
• Do these activities provide objective verification that software products and

activities adhere to standards and requirements?
• Are the results of quality reviews and audits provided to affected parties?
• Are issues of non-compliance that are not resolved within the project addresses

by upper management?
• Does the project follow a written policy for implementing quality assurance?
• Are adequate resources provided for performing quality assurance activities?
• Are measurements used to determine the cost and schedule status of quality

assurance activities?
• Are these activities reviewed with upper management on a regular basis?

Quality Control

Quality control involves analyzing the measurements, comparing them to the plan, and
taking corrective action if necessary, such as eliminating the cause of unsatisfactory
performance. Analyzing the measurements typically involves quality control tools, such
as statistical methods, control charts, trend analysis, and other flowcharting methods.
Trend analysis may also involve using mathematical techniques to forecast future
outcomes based upon historical values. Trend analysis is often used in IT projects to
monitor technical performance metrics, such as how may defects have been introduced
and detected and in which stages of the project. Finding many defects in later stages such
as integration testing or user acceptance testing is an indication of earlier quality
problems in analysis or design. This is illustrated in Figure 10.6.
Figure 10.7 shows another useful type of trend chart that of cumulative defect occurrence
and correction. For this type of analysis, one hopes to see the gap between cumulative

210 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

defects found and cumulative defects corrected closing as the project proceeds. If that
gap (between the two curves) is becoming wider, then there is a problem in getting timely
fixes to the defects.
A very useful technique for finding root causes of projects is the Ishikawa or Fishbone
diagram (also called cause-and-effect diagrams). These diagrams show how various
causes or potential causes (and their subcauses) relate to cause the overall problem.
These diagrams also help stimulate project team thinking. Figure 10.8 shows this type of
diagram for the problems involved with requirements analysis.

Figure 10.6. Defects introduced and found

Defects

Analysis Design Build Test Deploy

X

X

X
X

XX = Found
O = Introduced

O
O

O

O
O

Figure 10.7. Cumulative defects

Cummulative
Defects

Time ->

X = Found
O = Corrected

x

x

x

x O

O

O

Managing Quality 211

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.8. Requirements cause and effect diagram

Technology
 Issue

Requirements
Issues

Team Misunderstood
Requireemnts

Scope
Creep

Customer Unclear
of Needs

Unstated
Needs

Direct

Indirect

Application
Issuet

Culture
Issue

Functionality

Quality

Doc/Sup

Functionality

Operation

Quality

Functionality

Operation

Quality

Gold
Plating

Doc/Sup Doc/Sup

Technology
 Issue

Figure 10.9 shows another diagram of this type for analyzing the problem of software
defects.
Jones (1994) lists the eight root causes of quality problems as:

• Lack of an understanding of what quality means for software
• Inadequate defect prevention
• Inadequate use of reviews and inspections
• Insufficient or careless testing
• Lack of quality measurements
• Lack of understanding by project management that quality is critical to completion

metrics and user satisfaction
• Excessive schedule pressure leading to reduced quality efforts
• Unstable and ambiguous user requirements

Often detailed and structured, quality audits are conducted upon project completion to
evaluate both the software engineering and the project management processes in regard
to quality aspects, and these become part of the project lessons-learned documentation.

212 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Testing

Techniques to build quality into software systems have been quite successful over the
last several decades. The average software defect rate declined from about 8 per KLOC
(thousand lines of code) in the 1970s to 5 per KLOC in 1990 (“The Quality Imperative,”
1991). However, when software is created using the most rigorous of methodologies and
quality standards (producing 1 or 2 defects per KLOC), there will still be a significant
number of defects in the product prior to testing. Software testing and defect correction
typically takes between 30% to 60% of project development time and budget. Complex
application developments can spend more than half of their total program effort on
testing. When a time crunch arises in a project, often the full testing of a product is
compromised. A generally accepted rule is that testing costs will be 25% of the total
development costs (Brown, 1998).
There may be times that testing is not necessary; the Software Program Managers
Network has identified these circumstances (Brown, 1998):

• When the responsibility for failure can be shifted to someone else
• When the impact or significance of any problem is insignificant
• When the software does not have to work
• When no one is or will be using the system
• When the project has already failed

Other

Defects

Standards
 Problem

Design
Problem

Testing Problem Requirement
Problem

OverallCoding

User
Interface

Algorithm

Method

Code

Unit Test

Integration
Test

Destructive
Test

Missing

Unstated

Unclear

Implementation
Problem

Load
Test

Mis-understood

External

InternalOther

Figure 10.9. Defects cause and effect diagram

Managing Quality 213

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Testing should be a multilevel process with different types of testing in different stages
of the project. Single stage testing is about 30% effective, but multilevel testing can
achieve a much higher efficiency (Jones, 1994). Testing should also be included for
software components that are purchased or otherwise acquired.
Unit testing is typically done by the developers and is a process to make sure that each
software module performs properly relatively independently from other modules. Input,
output, and interface operations are typically simulated. Unit testing is typically mostly
white-box (“structural”) testing where knowledge of module internals is utilized to insure
that each source code statement and path through the code is exercised, possibly as a
function of different external and database conditions. Often, test harnesses are created
for each module, which is a set of specific tests for that module. These harnesses are
checked into the source code version control system, and they are usually automatically
repeated for each change to that module. For cleanroom software engineering discussed
earlier in this book, unit testing is not done by the coders but by separate testers; the
coders review each others code and walk through the execution paths. The economic
benefits of this clean room approach to unit testing are debatable. The unit testing of a
module is typically included in the work breakdown structure (WBS) task to build that
module.
Integration testing involves testing the entire system working together; this is often
called an “end-to-end” or system test. This type of testing should not be done by the
developers, but by an independent testing group. The project WBS should have separate
WBS code(s) for integration testing. This testing process is typically composed of three
phases: test planning, test set construction, and test execution. Figure 10.10 from the

Figure 10.10. IEEE standard for software unit testing

Test
Planning

Test Set
Construction

Testing

Overall
Test Doc's

Defect
Report

Detail Test
Scenarios

Project Info

Product Info

Previous
Test Sets

214 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IEEE Standard for Software Unit Testing (IEEE/ANSI STD 1008, 2002) illustrates these
three testing phases.
The activities in each phase include the following (IEEE/ANSI STD 1008, 2002):

• Test planning
Plan the general approach
Plan resources and schedule
Determine test environment(s)
Determine features to be tested
Refine the general plan

• Test set construction
Design the set of tests and associated procedures
Implement that design (build test scripts)

• Testing
Execute the test sets
Check for correct behavior and results
Evaluate the test results, effort, and other relevant metrics
Document results

A test plan document is usually produced not only for the testing group, but also to be
read by other interested stakeholders. It would include such items as:

• Identification of IT product and version
• Background of product/version including purpose
• Prior versions including revision history
• Purpose and objectives of this testing
• Reference to other product documents (i.e., requirements, design, etc.)
• Relevant standards
• Project team and stakeholder identification and contact info
• Test organization contact info
• Test resources (people, training, access to other people, hardware, space, etc.)
• Test environment(s), platforms, locations, and conditions
• Assumptions and dependencies
• Test scope and focus
• Relation to other validation activities
• Testing outline

Managing Quality 215

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Testing data and other setup
Test metrics
Testing tools
Test scripts

• Detail test procedures
• Test reporting, documentation, deliverables

A key part of this test process is the construction of the test sets, sometimes called test
scripts. The test scripts should be based upon the product requirements either directly
or via the use case scenarios and storyboards (screen design or “paper prototypes”);
this is illustrated in Figure 10.11. If the test scripts are taken from the use case scenarios,
then the likelihood is much greater that the testing will involve features and code paths
that are more important to the customer. Testing is expensive, so one does not want to
waste time testing features that no one will use or cares little about. However, if the test
scripts are not taken directly from the requirements, there still needs to be a check that
each requirement is included somewhere in the test scripts (requirements traceability
was discussed earlier in this book).
These test scripts indicate specifically how the product is to be tested and what the
expected results are at each point in the test. For example, in testing a form to add a new
entity to a database, the script would indicate exactly what was to be typed into each field
on the form, including typing of invalid entries (for which the product should give
meaningful error messages). In conjunction with the generation of test scripts, there may
be a need to generate test data. The ideal situation is to have the test data created as part
of running earlier test scripts. However, to allow more testing to go on in parallel, the test
data may need to be created before running the test scripts; also, for volume testing, huge
amounts of data may need to be generated. The test environment also has to be defined
and set up, and this environment may involve one or more platforms on both the server
and client sides. For example, in building a modern Web application, one may need to test

Figure 10.11. Requirements-based testing

Req's

Use Case
Scenarios Storyboards

Test Plans

216 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

using both Microsoft and Unix/Linux type servers, possibly from different vendors and
versions; and one may need to test using multiple client configurations (browser types,
browser versions, screen size/resolution, and PC/MAC).
The running of test scripts can often be automated by direct programming or by using
a software-testing product; this is discussed later in this chapter. When running the test
scripts, each failure, defect, standard deviation, concern, or suggestion for improvement
must be noted in the test documentation. Failures may arise from a number of causes, and
the test plan should indicate procedures for dealing with each of these causes:

• A fault in the test script
• A fault in the test data (including meta data [table/view definition, constraints,

etc.])
• A fault in the test environment
• A fault in the implementation (i.e., coding bug)
• A fault in the algorithm
• A fault in the design
• A misunderstanding of the requirement

The ANSI/IEEE STD 829-1983 IEEE Standard for Software Test Documentation is a
standard for the documentation produced in the testing phases. For each failure, detail
documentation should be produced that would include items such as:

• Product name and version
• Location of defect within product
• Environment and platform info
• Related processing info (database conditions, etc.)
• Assigned/generated defect ID number
• Date/time
• Status (new, previous, etc.)
• Complete information about the failure (including screen shots, etc.)
• How to reproduce the problem (if reproducible as opposed to “random”)
• Estimated severity of the problem
• Cause of defect (if known or suspected)
• Tester info (name, contact, organization, etc.)

When the defects were deemed fixed and/or rerested, that information would be
appended to the aforementioned record (retest info, status, etc.). When developers
indicate that a defect has been corrected, there is a need to retest. Defect corrections (and
possibly other requested changes) are generally “batched” together to produce a new

Managing Quality 217

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

version of the software product. Integration/system testing is then repeated for that new
version. This retesting process is called “regression testing,” and a key issue is how
many of the original test scripts need to be repeated. One can simply repeat just the tests
for new features and those that produced defects in the previous version, or alternatively,
run all the tests again. Any specific fix cannot correct the defect (or partially correct it),
but can also introduce other defects. The safest choice therefore would be to run all the
tests again; this is often not a feasible choice in terms of time and cost, unless the testing
has been considerably automated.
After integration testing, which focuses on features, there may be separate testing for
loads, scalability, and timing. Timing may be a function of the load for “wall clock”
measures of completion or response times, or it may be measured in the number of “clicks”
or “keystrokes” needed to complete a task. These types of tests may be necessary to
ensure compliance with SLAs during production operation. Destructive testing may also
be carried out separately or in conjunction with the integration testing. A certain amount
of destructive testing should be included in both unit testing and integration testing such
as the effect of incorrect or missing user input. In destructive testing, one tries to destroy
or compromise the integrity of the system via input errors, usage errors, executing
features out of sequence, violating security measures, and intentionally tricking the
system. Most integration testing utilizes black-box (behavioral) testing, in which only
the external specifications of the product are used. However, destructive testing may
involve types of “white-box” testing, in which knowledge of module internals is utilized.
Separate auditability tests may also be run particularly for business applications in which
both forward and reverse traceability is tested. Forward tracing follows the entry of a
transaction through the system to where it is posted to account/entity totals. Reverse
tracing takes account totals and works backward to display the transactions that make
up that account total.
Acceptance testing, which involves the benefiting organization (i.e., the customer), is
often carried out after integration testing. The project contract may require that accep-
tance testing be done; this testing is sometimes performed exclusively by the benefiting
organization. Normally, acceptance testing is implemented on a much smaller scale than
integration testing, and it represents a sampling of features and conditions. After (or
instead of) acceptance testing, the product might be produced for alpha testing for use with
a limited set of friendly users. If alpha testing is successful, beta testing is implemented,
which involves a larger and not necessarily friendly group. Beta testing, involving many
users (i.e., 1,000 or more), can achieve testing efficiencies of about 75% (Jones, 1994).
The Software Program Managers Network defines eight levels of software testing from
white-box unit testing through final site black-box production testing (Brown, 1998).
Each level has a focus, organizational responsibility, documentation basis, test type, and
test activities. Their 10 commandments of testing are as follows:

1. Black-box test that validates requirements must trace to approved specifications
and be executed by an independent organization

2. Test levels must be integrated into a consistent structure
3. Do not skip levels to save time or resources; test less at each level

218 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. All test products, configurations, tools, data, and so forth, need configuration
(version) control

5. Always test to procedures
6. Change must be managed
7. Testing must be scheduled, monitored, and controlled
8. All test cases have to trace to something that is under configuration (version)

control
9. You cannot run out of resources
10. Always specify and test to criteria

Extreme programming (XP) was discussed earlier in this book, and extreme testing is a key
part of that XP methodology. Developers are expected to write unit test scripts first before
the application is constructed. Test scripts are under source control (version control)
along with the source code. The customers are expected to be a part of the project team
and to help develop scenarios for the test scripts, at least acceptance scripts, if not all
testing scripts. QA and test personnel are also expected to be a part of the project team.
Most testing of IT systems is still done manually. However, automated testing can often
produce better results at a cheaper price. Newer, automated tools cover all phases of the
testing process, including planning. The Quality Assurance Institute conducted bench-
marks comparing manual and automated testing methods and found an overall reduction
in person time of 75% (QA Quest, 1995). Reduction in the actual test runs was 95%, with
little savings in the test planning phase. Automatic testing, along with saving time and cost
(after an initial learning curve in time and dollars), has these further advantages (Brown,
1998):

• Test repeatability and consistency
• Expanded and practical test reuse
• Practical baseline suites

Automatic testing tools really come in handy when one has to repeat the same tests for
a number of different client and/or server platform environments, as is the case with
modern Web and e-commerce applications. Automated testing is also very useful when
load testing is necessary with a high volume of users, transactions, and/or data.
However, there are situations in which automatic testing is less useful, such as situations
in which human judgment is necessary, and it is difficult to define criteria in a quantitative
manner. Usability testing is one such area (usability of documentation as well as the
product), and another area is “localization” particularly of global e-commerce applications.
There are a number of software testing products available to automate all or portions of
the testing process: QAWizard (www.seapine.com), TestQuest (www.testquest.com), e-
Test (www.empirix.com), HighTest (www.vtsoft. com), ApTest (www.aptest.com), QES
(www.qestest.com), TestComplete (www.automatedqa.com), QACenter
(www.compuware.com/), and TestWorks (www.soft.com/TestWorks/). Some testing

Managing Quality 219

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

products are for specific environments (i.e., Web applications, windows applications,
Java applications, etc.), some are for specific products (i.e., SAP, Peoplesoft, etc.), some
are for specific problems (i.e., “memory leaks,” bounds checkers, uninitialized variables,
type mismatch, nonconformance to coding standards), and some are general purpose.
For a l ist of current open source testing tools see OpenSourceTesting
(www.opensourcetesting.org/). There are also a number of special purpose programs
available for defect tracking as: Bug-Track (www.bug-track.com), ElementTool
(www.elementtool.com), and TrackStudio (www.trackstudio.com).
Evaluating, selecting, procuring, and learning a test tool can be a significant expense and
perhaps be a project in itself for an IT organization. Activities that are part of this effort
include a needs analysis, a business justification for the procurement and implementa-
tion costs, a study of the available appropriate tools, implementation of the tool, and
personnel training on the tool. These tools are difficult to evaluate and it is possible that
it will take 6 months to discover that the tool will not fit the application (Hendrickson,
1999). “Try before you buy” is the best philosophy here. For example, with modern GUI
applications, simple playback tools are inadequate, because if a single GUI widget is
changed on a screen, then the whole script may have to be changed. For GUIs, more
complex tools are needed that allow one to associate specific GUI widgets with specific
series of valid/invalid script entries. Organizations should not underestimate the time and
cost necessary to learn to use a specific tool, or the effort in setting up the tool for the
application at hand (which typically involves test script programming). Dustin (1999)
listed some lessons learned in test automation, including:

• Various tools used throughout the life cycle do not integrate easily
• Duplicate information had to be kept
• The testing tool drove the effort
• The staff was very busy learning to write the scripts
• Elaborate test scripts are developed, duplicating development effort
• Script creation is cumbersome
• The test tool(s) were introduced too late
• Training in the tools was too late
• Some testers resisted tools
• Expectations of early payback were not realistic
• Tool(s) had problems recognizing third party GUI controls
• Lack of test development guidelines
• Tool(s) was intrusive, and required “inserts” into code
• Reports reproduce by tool(s) was useless
• Tools were selected before overall system architecture was determined
• Upgrade to new tools had compatibility problems
• Tool(s) database was not scalable

220 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are also companies that offer testing and Q/A services, such as Systemware
(www.sysemware.com). Several Web sites are available that provide links to numerous
testing resources (tools, books, articles, etc.), such as the Software Q/A Test Resource
Center (www.softwareqatest.com), the Software Testing and Quality Engineering Net-
work (www.stqe.net), and Testing and Quality Engineering Magazine
(www.stqemagazine.com).

Quality Stage Gates

User acceptance testing is a validation activity that comes late in the development
process but not necessarily at the end. There are activities that can be carried out earlier
in the overall process to help guarantee that the correct product is being built. These
activities involve getting the benefiting organization and other stakeholders more
intimately involved in the review of preliminary product manifestations. Sometimes these
types of activities are called “static testing” because they do not actually involve
running the system (final product). The cooperative review of these preliminary product
manifestations are called quality stage gates. Management stage gates were discussed
earlier in this book, and applying management stage gates to the classical waterfall
methodology (and variations thereof) was also illustrated. Figure 2.6 in Chapter II
illustrated my notion of dual gates.
Multiple quality stage gates may fall within one management stage gate or vice versa.
At the management stage gate, the completion criteria are reviewed (either exhaustively
or by exception), and a go/kill/hold decision is reached. Management stage gates can be
set at fixed time intervals or upon completion of a major project phase. For methodologies
in which phases overlap, or when using incremental or iterative approaches, the
management stage gates can be set between increments or iterations or upon fixed time
increments, such as 1 month. To minimize the time and cost associated with formal
management reviews, it is recommended that the management stage gates occur at
regular time intervals but that they take place only on an exception basis when key metrics
(such as EVA indexes) indicate problems.
For each quality stage gate, the satisfaction factors typically are reviewed by focusing
on a particular preliminary product manifestation by relevant stakeholders for that gate;
the review does not make a go/kill/hold decision but rather a go-forward or recycle type
decision. Figure 10.12 illustrates these distinctions.
Whereas the management stage gates review completion factors (i.e., actual costs to
date, earned value, estimated cost at completion, completion status of activities,
estimated time to complete, updated risk analysis, and need for more or less reserves),
the quality stage gates focus on satisfaction factors as utility, operation, maintainability,
auditability, and a revised business justification (i.e., revised cost-benefit analysis based
on latest cost estimate and revised benefit numbers). Different stakeholders may be
present at the two types of stage gate reviews, to minimize the cost and time of key
individuals. Preliminary product manifestations that should be reviewed by concerned
stakeholders would include requirements document, use case scenarios, preliminary

Managing Quality 221

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.12. Dual stage gates

Completion
 Criteria

Scope
Tim e
Cost

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage

Quality
Stage Gate

Stakeholders

Management
Stage

Management
Stage Gate

L ine

 Mgm t

Continue
or

Recycle

Go, Kill,
or Hold

user manual, storyboards (“paper prototypes”), screen/report designs, and working
prototypes. Wiegers (1999) reported a return on investment of up to 800% for require-
ments reviews. Figure 10.13 shows an example of how the quality gates might be set up
for the classical waterfall methodology.
Figure 10.14 is an example of a stage gate review form. On this form, the metrics from the
earned value analysis of the last management gate (typically at certain time period
intervals) are recorded, which indicate how the project is going from a progress and cost
perspective. The next portion of the form concerns the satisfaction factors, which are
qualitatively evaluated by both the benefiting organization (customer) and the perform-
ing organization (project team). The basis of the satisfaction scoring is also specified,
which would be the last quality gate in which a product artifact was available, such as
a prototype. The risks that were identified and quantified at the start of the project are
then reevaluated. The information on this form is then typically reviewed by line
management of both organizations (either regularly or by exception) to determine if the
project should continue.

222 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10.13. Event driven quality stage gates

Figure 10.14. Stage gate review form

Managing Quality 223

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Quality Programs

There are a number of modern quality programs sponsored by national and international
organizations. These organizations foster quality by defining certain general or specific
approaches to achieving quality and/or by setting standards for quality. Earlier in this
book, the Software Engineering Institute’s Capability Maturity Models (SEI CMM) and
the Project Management Institute’s Body of Knowledge (PMI PMBOK) were discussed.
Quality assessment methods for IT (specifically software development) were also
discussed, including the SPICE (ISO/IEC 15504), TickIT, CobiT, and ITIL approaches.
These organizations foster quality by defining rather specifically the best practices for
each of these overlapping disciplines. These best practices are the things organizations
need to do in order to produce quality products via properly managed projects. Although
the things that need to be done are itemized, exactly how to do them is left up to the
discretion of the individual organization and/or PM. In this section we look at more
general quality programs.
Total quality management (TQM) is a business philosophy that encourages organiza-
tions and their employees to focus on quality and finding ways to make continuous
improvements to the organization’s products/services and practices. TQM gained
popularity in the United States in the 1990s after successful implementation by Ford,
Boeing, and other major corporations. TQM is based on earlier work from around the
world (particularly in Japan after World War II) by Shewart, Demming, and Ishikawa. The
six principles of TQM are:

• Customer focus
• Focus on process as well as results
• Prevention versus inspection
• Mobilize the expertise of the workforce
• Fact-based decision making
• Feedback

The cornerstones, however, of TQM are continuous improvement, employee empower-
ment, and customer focus. Continuous improvement (or kaizen) is a continuous process
of making improvements, typically by small steps. In Japanese, kai means to alter and
zen means to make better. Employee empowerment means to allow employees to make
suggestions on how to improve processes, because they are the people most intimate
with the process, not their supervisors. TQM is based on the tenet that most employees
want to be involved in improvement and to do their jobs well. TQM fosters teamwork
among employees to identify quality issues and corrections. An application for the
Malcolm Baldrige Award1 may be made by companies that have fully implemented TQM
and quantified the benefits thereof.
Quality function deployment (QFD) was founded in Japan in the late 1960s by Professors
Shigeru Mizuno and Yoji Akao. Statistical quality control had become prevalent in the

224 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Japanese manufacturing industry, and these quality activities were being integrated with
the teachings of Ishikawa and Feigenbaum, which later became known as TQM. Mizuno
and Akao sought to develop a quality assurance method that would design customer
satisfaction into a product before that product was produced. The first major application
was in Bridgestone Tire, in Japan, which used a Ishikawa (“fishbone diagram”) to identify
each customer requirement (effect) and to identify the design the process factors
(causes) needed to control and measure it. With continued success, these fishbone
diagrams of customer needs and expectations were refashioned into a spreadsheet or
matrix format, with the rows being desired effects of customer satisfaction and the
columns being the controlling and measurable causes. At about the same time, Ishihara
introduced the value engineering principles that described business functions neces-
sary to assure quality of the design process itself. QFD emerged as a combination of these
two methods to ensure comprehensive quality design system for both product and
business process (Akao, 1990). QFD reached the United States and Europe in the 1980s
when the American Society for Quality Control published Akao’s work and invited Akao
to give QFD seminars in America. Today, QFD is used extensively in the United States,
Japan, Sweden, Germany, Australia, Brazil, and Turkey. QFD is somewhat different from
other quality principles in that it focuses on both customer-stated and unstated
requirements. It seeks to maximize positive quality aspects, such as ease of use, fun to
use, interesting, etc. QFD key principles are (Mizuno & Akao, 1994)

• Understanding customer requirements
• Quality systems thinking + psychology + knowledge/epistemology
• Maximizing positive quality to add value
• Comprehensive quality systems for customer satisfaction
• Strategies to “stay ahead of the game”

The International Organization for Standardization (ISO) also defines a set of quality
management principles called ISO 9000, which encompasses much of TQM. Within the
U.S. DoD, 2167A represents a similar set of principles and requirements. The latest
version of ISO 9000 (ISO 9000:2000) is composed of these management principles:

• Customer Focus: Keep the customer’s need at the forefront
• Quality Focus through Leadership: Leaders must always be concerned with

quality and foster a similar attitude in their followers
• People Focus: Management must keep all stakeholders involved and foster open

and honest communication
• Process Focus: Production and project activities should be viewed as a process

so that process optimization techniques can be applied
• Systems Approach: Interrelated and dependent processes should be viewed as a

system so that system optimization principles can be applied across all such
processes

Managing Quality 225

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Continuous Improvement: The organization should strive to continually improve
its systems and processes via metrics and goals

• Quantitative Decision Making: Decisions should be based upon information and
methods to formally analyze that information

• Symbiotic Relations with Suppliers: Relations with vendors should create value
for both organizations for the long-term success and quality of both organizations

Organizations may seek ISO 9000 certification to prove that they have implemented these
quality management principles and the business processes to support same. ISO 9000
certification can be sought under one of three programs: ISO 9001, ISO 9002, or ISO 9003.
ISO 9001 is the certification that typically applies to IT organizations because it is for
organizations that have design and development processes as well as production and
support. If an IT organization does not do design and development (such as may be the
case where all projects involve integration of off-the-shelf products), then ISO 9002 may
apply. The process standards for the ISO certifications basically make sure that
organizations have and follow their own quality procedures; they do not define the
quality procedures. Companies desiring such certifications typically conduct a detailed
self assessment first, then seek formal approval by a third party which is registered to
conduct such audits. It has been suggested that jumping through the ISO hoops can be
an expensive and depressing process for organizations as opposed to the application for
a the TQM Baldrige award, which is more uplifting (Jones, 1994).
A bit more quantitative and specific quality program is Six Sigma. This program was
started by Motorola in the 1980s and received considerable attention after very success-
ful implementations by General Electric (GE) in the 1990s. Sigma (σ) is Greek and is the
standard deviation in the normal distribution. This statistical distribution is the most
common, and it is used in quality analysis, such as for measurement variations; it is
illustrated in Figure 10.15. The standard deviation (sigma) is a measure of how far a point
is from the mean (half of the distribution is on each side of the mean). Sigma ranges are

Figure 10.15. Normal distribution

3 sigmas: 99.73%

mean

1 sigma:
68.26%

6 sigmas: 99.99%

226 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• 68.26 % of the distribution is within one sigma
• 95.46% of the distribution is within two sigma
• 99.73% of the distribution is within three sigma
• 99.99% of the distribution is within six sigma

For six sigma, about 99.99% of the products (or lines of code) are without defects.
Inversely, for a metric like defects per million, the six-sigma level is only 3.4 defects per
million.
Like other quality programs, Six Sigma focuses on processes; metrics are set up to
measure defects per opportunity (DPO). A defect is essentially anything that results in
stakeholder dissatisfaction. Defects are measured as early as possible during develop-
ment rather that after the product is produced. For IT development, this involves setting
up metrics at each stage in the development process: requirements gathering, analysis,
design, implementation, testing, and deployment. Six Sigma differs from earlier quality
programs (like TQM) in that it is not quality just for the sake of quality but specifically
for the sake of the customer. The customer defines the defects. Once customers have
defined what is most important to them, such as speed in completing the on-line ordering
process, the organization determines which activities most affect its ability to speed up
that process. Those selected activities become critical-to-quality (CTQ) activities
(Shand, 2001). The Six Sigma program is composed of 12 steps (Harry & Schroeder, 2000):

Measure
1. Select critical-to-quality (CTQ) activities
2. Define performance standards
3. Validate measurement system
Analyze
4. Establish product capability
5. Define performance objectives
6. Identify variation sources (root causes)
Improve
7. Screen potential causes
8. Discover variable relationships
9. Establish operating tolerances
Control
10 Validate measurement system
11. Determine process capability
12. Implement process controls

Managing Quality 227

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The basic Six Sigma process identifies CTQ activities, finds root causes for potential
problems with those processes, discovers quantitative relationships between cause and
effect, sets up metrics to measure causes, and controls the causes of the potential
problems so that the effects remain within the six-sigma level. To implement Six Sigma
requires a significant investment in a very specific training program.
Recently, Computerworld has defined many of these quality programs and summarized
their degree of abstraction and specific IT relevance, as is illustrated if Figure 10.16
(Athens, 2004).

Software Development Standards

Quality programs and best practices focus mainly on processes, and most are fairly
general rather than specific. Quality programs do not always handle the long-term effects
of quality problems, particularly in IT projects. Issues like maintainability, adaptability,
and reuse are not fully addressed in quality programs, particularly in customer-focused
programs (because these aspects may never be seen by the customer). Standards focus
mainly on product criteria, and standards can also be established to deal with the long-
term effect of quality. One of the best ways to ensure quality in IT processes, products,

Figure 10.16. Quality programs

TCO

ITL CMM

CobiT

Six
Sigma

ISO
9000

TQM

Level of Abstraction -->

M oderate H ig hLo w

^
IT

Relev ance

Specific

H o lis tic

228 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and projects is by setting standards within the IT organization at the highest relevant
level. Standards are formal documented specifications for how processes are to be
specifically executed, how products are to be built, and/or how products are to perform.
There are many areas of technical standards. Some of the most common and important
for IT development involve requirements, design, coding, database, testing, internal and
external documentation, user interface, and other external interfaces. The IEEE has many
important software engineering standards, and the ones most relevant in the quality area
are:

• IEEE Standard for Software Quality Assurance Plans
• 829730-2002 -1998 IEEE Standard for Software Test Documentation
• 982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable Software
• 1008-1987 IEEE Standard for Software Unit Testing
• 1012-1998 IEEE Standard for Software Verification and Validation
• 1012a-1998 IEEE Standard for Software Verification and Validation—Supplement

to 1012-1998
• 1061-1998 (R2004) IEEE Standard for Software Quality Metrics Methodology
• 1228-1994 (2002) IEEE Standard for Software Safety Plans
• 1465-1998 [Adoption of ISO/IEC 12119: 1994(E)], IEEE Standard Adoption of

International Standard ISO/IEC 12119: 1994(E) Information Technology-Software
packages: Quality requirements and testing

Details of these standards are available on the IEEE Web site (www.standards.ieee.org).
Other relevant IT standards are also available from the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO); IEEE,
ANSI, and ISO standards overlap in many areas and often correlate directly to each other.
These are all fairly general standards which must be made specific for each organization,
and perhaps for each platform and programming language. Consider, for example, an
organization’s coding standards, which may include such items as:

• Naming conventions for variables (static and instance), constants, classes, func-
tions/methods, and so forth.

• Use and placement of constants (i.e., in one place such as a resource file, C++/PHP
abstract class, or Java interface)

• Use of object orientation (inheritance, composition, polymorphism, interfaces)
• Use of comments and internal documentation
• Use of indentation and “white space”
• Use of parenthesis for expression evaluation order
• Conditional versus logical expressions
• Proximity of decisions and actions

Managing Quality 229

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Iteration versus recursion
• Code density (i.e., one code line per statement) and readability
• Function/method sizes (i.e., only one logical function and under 100 lines of code)
• Types of classes (delegation, adapter, inner, anonymous, etc.)
• Access protection (public, private, package, protected, etc.)
• Minimization of coupling (friends, object arguments, etc.)
• Error handling (input checking, exceptions, etc.)
• Overloading (function, operator, etc.)

For communicating and enforcing standards, many companies probably still rely on some
type of printed standards manual. For some companies, this is a large multivolume set
of bound documents. Other organizations, who may or may not have such extensive
standards manuals, do periodic “code walkthroughs,” which have peers and/or manag-
ers examine samples of each programmer’s code to make sure they are following the
company standards. Some software engineering methodologies have a degree of code
walkthrough built into the methodology, such as in pair programming, in XP.
The testing process is another way to make sure the programs have the desired “look and
feel.” Here, the results are easily viewed but not the underlying methods. Weinschenk
(1997) stated that “in order for your guidelines to be successful, people must know they
exist and be encouraged to use them.” She outlines a list of several management actions
which foster effective standards implementation.
The only way to really make sure that standards are being followed from both an
external and internal perspective, however, is to require developers to utilize compo-
nents in which the relevant standards have already been embedded (Brandon, 2000).
The method of component utilization varies with the programming language and pro-
gramming style from simple “include” techniques (such as a COBOL copy books, SHTML
server-side includes, or PHP requires) to the object-oriented techniques of inheritance
and composition that were discussed earlier in this book.
As an example, consider the user interface, which is often the key part of a modern IT
application. There has been a lot of attention on user interface approaches and standards
ever since Apple Computer was successful with the first commercial graphical user
interface (GUI; Collins, 1995). Many books and some movies have been made concerning
the technical, business, and social issues of the GUI saga. For a computer system to have
lasting value, it must exist compatibly with users and other systems in an ever-changing
IT world. Even if a system by itself is excellent, the fact they it may have a different look
and feel to other systems in use will eventually spell its doom.
Companies building software systems, whether for their internal use or for resale, must
build products that are compatible with other systems. As stated by Weinschenk and Yeo
(1995), “interface designers, project managers, developers, and business units need a
common set of look-and-feel guidelines to design and develop by. Coming up with these
guidelines can be a long and difficult process. New GUI applications can’t be held up for
eight months while a task force argues about guidelines.” There have been many books

230 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

written on the subject of proper user interface design in general (Fowler, 1998; Galitz,
1997; Wood, 1998), and there are also books specifically devoted to certain platforms,
such as Microsoft Windows (Cooper, 1995; Microsoft, 1995). Appendix A of Weinschenk’s
(1997) book also presents a list of user interface standards; there are more than 300 items
listed there.
To enforce standards and to provide a flexible and adaptable programming base, an IT
organization should adopt or develop a foundation for standards implementation. Figure
10.17 illustrates the concept of one such standards foundation with a unified modeling
language (UML) diagram (Brandon, 2000).
In this example, an application is composed of a number of Application Windows. Each
Application Window (i.e., PHP program, Java Server Page, Java Applet) is derived
(inherited) from the Corporate Standard Window. The Application Window implements
the GUI Standards Interface (or a window from which the Application was derived has
implemented this interface). By interface, it is meant a Java interface or a C++ or PHP
abstract class. The Application Window is composed of the Corporate Standard GUI
Components. These standard components use the Corporate GUI Standards and these
components may be derived from HTML/XML GUI objects, MFC, Java AWT, Java
Swing, or third-party class libraries as long as these class library sources have been
extended (customized) to use the data in the Corporate GUI Standards.
As well as implementing all the desired corporate standards, the standards foundation
classes can also be constructed to encapsulate security mechanisms. If all application
input is forced to take place through the standard foundation classes, then rogue
programmers or contractors will be less likely be able to build-in “back doors,” “Trojan
horses,” “time-bombs,” and other illicit mechanisms into the system being developed.
The standard foundation classes would be built and inspected by trusted sources, and
those classes to be imported by other coders would be made final.

Figure 10.17. Standards foundation

Managing Quality 231

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Whereas Figure 10.17 shows a conceptual standards foundation, Figure 10.18 is an
example of a typical implementation (via object-oriented inheritance) of a corporate
standards foundation for windows in a business database type application. Each window
would be further subclassed; for example, the general table would be subclassed for
different entities such as employees, vendors, and so forth.

Chapter Summary

Earlier in this book, the many IT project management challenges were identified. These
challenges can be met by a careful integration of modern project management and
software engineering principles and practices. This was illustrated in Figure 1.4 in
Chapter I; this chapter has discussed the quality aspects of project management. Critical
IT project success factors were used as the basis for key quality metrics. A quality
management plan for IT projects should include both verification and validation, and
both of these processes should be on going throughout the project and controlled via
a technique such as the quality stage gate process described herein. Other key quality
topics were also discussed in this chapter, including the many types and methods of
software testing, software development standards, and quality organizations and pro-
grams.

References

Akao, Y. (1990). Quality function deployment: Integrating customer requirements into
product design (G. Mazur, Trans.). New York: Productivity Press.

Figure 10.18. Standards implementation via window inheritance

Application
Window

Database Modal

Table Form
Foreign

Key
Lookup

Message Help

Warning ConfirmAdd
Modify
Delete

Database
View

Info

Error

232 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Athens, G. (2004, March). Model mania. Computerworld.
Brandon, D. (2000). An object oriented approach to user interface standards. Challenges

of information technology management in the 21st century (pp. 753-756). Hershey,
PA: Idea Group Publishing.

Brown, N. (1998). Little book of testing: Vols. I & II. Chesapeake, VA: Software Program
Managers Network.

Collins, D. (1995). Designing object oriented user interfaces. Boston: Benjamin/
Cummings.

Cooper, A. (1995). About face. Boston: IDG Books.
Crosby, P. (1979). Quality is free. Princeton, NJ: McGraw-Hill.
Deming, W. (1982). Out of the crisis. MIT Press.
Dustin, E. (1999, September/October). Lessons in test automation. Testing & Quality,

1(5).
Foley, M. (2000, February 11). Can Microsoft squash 63000 bugs in Windows 2000. Smart

Reseller.
Fowler, S. (1998). GUI design handbook. McGraw-Hill.
Galitz, W. (1997). The essential guide to user interface design. New York: Wiley.
Gause, D. & Weinberg, G. (1989). Exploring requirements: Quality before design. New

York: Dorset House.
Hallows, J. (1998). Information systems project management. New York: American

Management Association.
Harry, M. & Schroeder, R. (2000). Six Sigma: The breakthrough management strategy

revolutionizing the world’s top corporations. New York: Doubleday.
Hendrickson, E. (1999, May-June). Making the right choice. Software Testing and

Quality Engineering.
IEEE/ANSI STD 1008. (2002). IEEE standard for software unit testing. Piscataway, NJ:

IEEE Computer Society.
Jones, C. (1994). Assessment and control of software risks. Englewood Cliffs, NJ:

Yourdon Press Computing Series.
Linger, R. (1994). Cleanroom process model. IEEE Software, 11(2)
McConnell, S. (1997). Software project survival guide. Seattle, WA: Microsoft Press.
Microsoft. (1995). The Windows interface guidelines for software design. Microsoft

Press.
Mizuno, S. & Akao, Y. (1994). QFD: The customer-driven approach to quality planning

and deployment (G. Mazur, Trans.). Newton Square, PA: Quality Resources.
PMI. (2000). The project management body of knowledge (PMBOK). ISBN 1-880410-22-

2.
QA Quest. (1995, November). The newsletter of the Quality Assurance Institute.

Orlando, FL.

Managing Quality 233

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Quality Imperative. (1991, Bonus Issue, Fall). Business Week.
Shand, D. (2001, March 5). Six Sigma.Computerworld, p. 38.
Weinschenk, S. & Yeo, S. (1995). Guidelines for enterprise wide GUI design. New York:

Wiley.
Weinschenk, S., Pamela J., & Sarah Y. (1997). GUI design essentials. Wiley.
Wiegers, K. (1999). Software requirements. Seattle, WA: Microsoft Press.
Wood, L. (1998). User interface design. Boca Raton, FL: CRC Press.
ZDNet. (2000, February). Retrieved from www.zdnet.com

Endnote

1 The Malcolm Baldrige National Quality Award (presented by NIST – National
Institute of Standards and Technology) was created by Public Law 100-107, signed
into law on August 20, 1987. Principal support for the program comes from the
Foundation for the Malcolm Baldrige National Quality Award, established in 1988.
The award is named for Malcolm Baldrige, who served as Secretary of Commerce
from 1981 until his tragic death in a rodeo accident in 1987.

234 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

Change and Closeout
Management

You must welcome change as the rule, but not as your ruler.
(Denis Waitley)

Change is a fact of life for most projects, particularly IT projects. The biggest single cause
of project overruns is changes in scope (Hallows, 1998). Change can be for the good or
the bad, but change is to be expected, and change has to be managed. This chapter is
concerned with that management process.

Project Changes

Resistance to change is usually rooted in fear of the unknown as PMs and people in
general prefer stability and predictability. However, in order for a project to survive, PMs
must deal with changes effectively. Many projects fail not in their goals and directions,
but in their plan (or lack of a plan) for dealing with changes. Not having a formal change
control system “guarantees a project will be plagued by chaos, errors, permanent
damage, low productivity, and unmanageable software evolution” (Brown, 1998). For-
mal change control is vital in projects involving an external performing or benefiting
organization so that one organization can be appropriately compensated for the
additional effort.
Change can arise for many reasons; in IT projects, the leading sources or indicators of
change are:

Change and Closeout Management 235

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The customer (benefiting organization) is unsure of their needs
• The customer is unsure as to how the needs should be delivered
• The performing organization is unclear to the details of the customer’s needs
• The performing organization is not sure how to do the work
• The deployment environment has changed
• Planned methods or algorithms prove unsuitable
• Better methods of building or deploying the system have come forward
• The business case for the project has changed
• Market demographic and/or geographic shifts
• The sociopolitical environment for the project has changed
• The corporate environment has changed (reorganizations, mergers, acquisitions)

Changes in a project can come in any part of the project from early planning through
project closeout; in IT projects, most changes come later in a project such as during
implementation, testing and deployment. Changes coming later in a project are usually
much more expensive than if that need for a change were identified earlier. A change
in one part of the project deliverable may cause changes in many other parts of the project
as well. So, as was discussed earlier in this book, it is very important to take steps early
to flush out user requirements and potential changes. Validation of the preliminary
product manifestations with quality stage gates using methods as prototypes, use case
walkthroughs with customers, and design reviews with appropriate stakeholders will
minimize changes later in a project.
Project change management usually concerns changes to scope, but other changes also
need to be managed. Normally, change control systems are set up to deal with only scope
and deliverable change; other project change is usually handled via risk management,
as was discussed earlier in this book. Scope management in general includes the
processes necessary to make sure that all project work is addressed and that extra work
is not done. Scope change control should be planned and procedures defined early in
the project (charter, SOW, contract, overall project plan). Change control is concerned
with the following (PMI, 2000):

• Influencing the factors that cause change control to ensure that changes are
beneficial

• Determining that a scope change has occurred
• Managing the actual changes when and if they occur

In the IT environment, the term change control can be confusing because those words
are often applied to the control of changes to program source code and/or changes to
a target hardware/software deployment platform. In this book, the control of source code
and related artifacts will be called version control, and the control of hardware and
dependent software components on the deployment platforms will be called configura-

236 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion control; both of these topics will be discussed later in this chapter. In this book, the
term change control refers only to change control at the project level; however, a change
in a project requirement or deliverable may trigger corresponding version or configura-
tion changes.

Establishing a Change Control System

A project scope change control system defines the procedures by which the project
scope may be changed and typically includes forms, tracking systems, and approval
levels. An illustration of such a form is shown in Figure 11.1. It should be integrated with
a system that logs and documents all project changes. A code or number should be
assigned to each proposed change whether the change is proposed internally (i.e.,
project team member) or externally (i.e., customer). This degree of formality is usually
imposed after a segment of the methodology is initially completed. For example, formal
change control of the design work is normally implemented after the initial design is
completed. The pros and cons of the change should be analyzed and discussed in terms
of all project parameters including cost and time consequences, and what other changes
may be necessary (or desirable) due to this change. The propose change may or may not
be within the project budget, or may or may not be part of the undistributed budget.
The discussion of suggested changes normally takes place at a regularly scheduled
meeting of a change control board, which has members from both the performing

Figure 11.1. Change order form

Change and Closeout Management 237

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organization and the benefiting organization. It is also advisable to include representa-
tives from other major stakeholder groups. Representatives should be educated into the
process that they are about to become a part of. To maximize the benefit of these meetings
and minimize the meeting time lost by attendees, the meetings should not be too frequent,
briefing packages should be sent to representatives in advance of the meeting, and
changes should be sorted and bundled into product functional areas. Often, many small
changes can be analyzed and discussed as one change set or release. Defects and
noncompliance to requirements and/or standards normally do not go through formal
change control, however in some organizations the change control board may be advised
of such issues during the project. Sometimes there is a fine line between a change to the
scope and noncompliance to the original requirements; and of course this may cause
conflict between the organizations involved. It is best to document all such issues and
their resolution even if that information will not be turned over to the change control board.
If the change is approved by the board, then there may be certain required additional
levels of approval necessary in the line management of the performing and benefiting
organization. Often if a change is within the undistributed budget, then higher approval
is not required. After approval, a new work breakdown structure (WBS) work packet is
created (or an existing packet modified) to reflect the change and a new project baseline
cost plan and schedule is created; for externally contracted work, a contract change may
also be required, which is called a “change order.” Figure 11.2 shows an example of
change control information (change control number) associated with WBS work packets.
Usually it is better to create a new WBS work packet that will be a replacement (or in
addition to) another packet; for replacements, the old packet has its planned cost set to
zero (or to the amount already spent on it if work on it was already started).
Figure 11.3 illustrates a typical overall procedure for handling project changes. After a
change request is initiated, a decision is made as to whether the requested change is
actually part of the original (baseline) scope or not. This decision may be made by the
CC board or upstream from the board by project management. Those change requests
that are encompassed by the baseline scope are sent to work control to be incorporated

Figure 11.2. Form to add WBS Code (showing change info)

238 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

into the WBS. Those change requests that are for additional work are sent to the CC board
for study. The board studies the request in light of benefit versus project impact and
makes a decision to implement the change or not. If the decision is to implement, then
contract administration may need to price the new work and issue a contract change
order. If the contract change order is approved (by benefiting and performing organiza-
tions), then the change goes to work control. Scope changes and corrective changes are
typically batched into product versions which go through version control (discussed
later) and Q/A.
Figure 11.4 shows a useful type of trend chart for cumulative change orders opened and
cumulative change orders closed (approved for implementation or rejected). For this type

Figure 11.3. Change control process

? CC
Board

?

CC Repors

Version
Control

Change
Request

Contract
Admin

Contract
Change
Order

Work
Control
(WBS)

New Version
of Product

Q/A &
Testing

Version
Specs

Test
Reports

Scope
Change

Non-Compliance
to Scope

No

OK

Bugs/Defect
Corrections

Hold

Figure 11.4. Cumulative change orders

Cummulative
Change Orders

Time ->

X = Open
O = Closed

x

x

x

x O

O

O

Change and Closeout Management 239

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of analysis, one hopes to see the gap between open change orders and closed orders
closing as the project proceeds. If that gap (between the two curves) is becoming wider,
then there was a problem in the project scope definition. For IT projects that succeed,
70% of the cost of the product is in the maintenance phase; thus, maintainability is
extremely important. A measure of IT product maintainability is the lines of code affected
per change order. A comprehensive metric in this area includes both the lines of code
affected and the lines of code examined per change order, because in implementing a
change, programmers spend about half of their time just examining the existing code. Both
of these metrics are included in the sample change order form of Figure 11.1.

Version Control

Version control is primarily a process for making sure that multiple developers do not
override each others changes to source code modules. It typically involves manual or
automatic check-in/check-out procedures for these modules. Version control may apply
to IT project artifacts or deliverables other than just source code including various forms
of documentation (including design documents) or system content. In a modern software
engineering process, where requirements and design as well as implementation are
captured in rigorous notations early in the life cycle, formal version control is applied to
all of these artifacts (Royce, 1998). Version control systems typically document changes
in terms of who, what, why, and when changes were made, as well as keeping developers
from stepping on each other toes. Version control systems may also maintain information
on who can make and/or approve what type of changes and maintain archive copies of
all versions of artifacts, handle naming and numbering rules, thus providing traceability
of the software and related artifacts throughout the product’s life cycle. Version control
systems typically manage changes to source code and related artifacts both due to
project level changes (requirement changes and additions) and due to internal changes
such as bugs or needed redesigns. Modern version control products also coordinate
changes so that builds of a particular version use the appropriate and current modules.
Traditionally the building process for a software product involved compilation and
linking operations; however, today, with modern Web-based systems, there may not be
any linking or any compilation. However, there are still processes (Java bytecode
production, encryption [HTML, JavaScript, PHP], obfuscate, etc.) that need to be
performed in making the transition from the source code the developers use to the code
that is placed on the production server(s).
The major components of a version control management system are (Brown, 1998)

Item Identification
Product identifiers (names and numbers)
Product artifact identifiers
Identification of product acceptance criteria
Identification of changes

240 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Identification of releases
Change Control

Change criteria
Revisions
Procedures
Organizational review

Status/Accounting
Product description records
Change status records
Verification records
Authorizations and approvals

Audits
Formal Qualification Reviews
Physical Audits
Functional Audits

There are number of commercial products available for version control some of which are
server based and some are peer-to-peer based, these include QVCS (www.qumasoft.com),
CS-RCS (www.componentsoftware.com/), Code Co-op (www.relisoft.com/), Surround
SCM (www.seapine.com/surroundscm.html), and CodeMatrix (www.codematrix.com/).
There are also a number of free, shareware, or open source products available
(www.thefreecountry.com/programming/versioncontrol.shtml).

Configuration Control

Control of interdependent software modules and hardware components on client and
server platforms is typically called configuration control. However, sometimes the term
configuration control is applied to both version control (as discussed previously) and
deployment platform configurations. For a client server application, there may be many
interdependent software modules each of which requires particular versions of the other
modules to operate. This may include the operating systems, database management
systems, device drivers, communication protocols, and many middleware software
components. This is further complicated because there may be many versions of a
particular software interdependent modules in time and/or in features. For example, a
software product may be in its fifth version, with eight different customizations installed
on thousands of customers’ computers, where each customer may have a different
version and customizations.
With the advent of Internet applications, a single network protocol (TCP/IP), and thin
clients, organizations were able to eliminate all of their configuration control issues on

Change and Closeout Management 241

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the client side (because the only application level client software required was a browser).
In addition, many configuration control issues on the server side were also eliminated
since once the new version of an application was placed on the server it was downloaded
to clients when they first accessed the system (downloaded HTML, JavaScript, CSS, and
image or other multimedia files). However, with the need (or opportunity) to sell goods
or services globally now, configuration control issues have resurfaced in a different form
since the web content may have to be “localized” for different languages, countries, and
demographics.

Scope Creep

Scope creep is very common in IT projects. Customers should get what they asked for
and expect, no more and no less. Giving the customer extra work is called gold plating.
However, because the majority of IT projects do not succeed, you should never do
additional work for the customer because you may not be compensated for it, and you
do know for sure that the customer actually wants the work done. Scope creep is so
common because it is natural for project team members to want to please their customer,
and much of the communication between project team members and customer personnel
takes place without any involvement of the PM. It is also not uncommon for a project
member (particularly in IT and in other technical work) to want to explore technical details
beyond the task boundaries. The PM must make sure that all the stakeholders know what
is encompassed in the scope and also what is not part of the project scope; this
distinction is best made early in the project. The project team members (and PMs) have
to be educated (and reminded) about the need to prevent scope creep and for formal
change control.
The Software Program Managers Network (Brown, 1998) lists best practices for change
and version control:

• Make change management everyone’s job
• Create an environment and process that enables change management
• Define and document the process, then select a tool set to support it
• The change control staff should consists of individuals with technical expertise to

support the development and maintenance of the product
• The change plan and procedures need to be developed and documented in the same

way that the development plan is created at the start of the project

They also establish the following rules for successful change management (Brown,
1998):

• The change management system must “own” the product information
• Early identification and control of products and artifacts is essential

242 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The change management process and procedures must be simple and supported
by the methods and tools used in the product development

• The actions of the change control board must be documented
• Change control must be a primary focus and integrated into the organizational

culture
• All information that is placed under change control must be “promoted” via a

quality (stage) “gate”
• All proposed changes must be properly classified (as to the type of change)
• All releases of code and artifacts from the library (check-outs and check-ins) must

be recorded
• It is essential that the change control system be continually aware of the status of

the products/artifacts under control and of the relationship of one product/artifact
to another

• The worst way to establish change control is to buy a tool set and then to fit your
process to the tool

The Software Engineering Institute’s (SEI; www.sei.cmu.edu/cmm) CMM defines nec-
essary Level 2 practices for software configuration management (change control):

• Are change control activities planned for the project?
• Has the project identified, controlled, and made available the software products

through the use of configuration management?
• Does the project follow a documented procedure to control change and configu-

ration?
• Are standard reports on the software baseline distributed to affected parties?
• Does the project follow a written policy for implementing change control activities?
• Are project personnel trained to perform those change control activities?
• Are measurements used to determine the status of change control activities?
• Are periodic audits performed to verify that software baselines conform to the

documentation in which they are defined?

There are also industry standards (IEEE 828) and military standards (MIL-STD 973, 2549)
that can be used as further guidelines in setting up change, version, and configuration
control systems. Software systems are available to aid in the control of project change
management. As well as features built into general project management software systems
such as FiveAndDime, there is software dedicated to project change management such
as TrackWise (www.sparta-systems.com), SeaPine (www.seapine.com/cmsuite.html),
Software Planner (www.softwareplanner.com), and ChangeManagementExpert
(www.change-management-expert.com/).

Change and Closeout Management 243

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project Closeout

Management must, at some point, stop taking change orders, and the project must
officially end. Additional requests for changes can be deferred to a successive version
of the product or deferred until the product is officially transferred to the operation and
maintenance phase. The original contracting arrangement (written or implied) will often
determine (or suggest) the time a project should end. This is usually after all the original
scope is completed plus important change orders that must be done before the product
is placed in service. In many IT projects, coming to closure may be difficult:

• Sometimes a project will continue when funding is available, even when the budget
and schedule is far exceeded; this is often due to management’s misunderstanding
of “sunk costs” and/or a lack of a clear original business justification.

• Sometimes it is difficult to call an end to projects when the benefiting organization
stills wants more changes (and is willing to pay for them) and the performing
organization wants to do the work.

• Sometimes the buyer (which is often the benefiting organization) will not sign off
for official acceptance until some issue(s) is resolved.

• Sometimes the project team wants to continue because some of them may be
concerned about: future assignments, significant scope has not been completed
yet, documentation deliverables have not been completed, and bugs or problems
are still present (even though they may not yet have surfaced in testing).

Project closeout can be a very hectic time and can also be a time of distress or excitement
for different stakeholders. The PM must take care that all tasks and issues are fully and
properly finished. Team members may worry about future work after the project is
complete or they may be overly eager to get on with the next project. But unless the
projected is ended, and a new one started if necessary, the work being done will no longer
match the original goals and business justification.
Projects may come to successful completion and end normally or they may be terminated
abnormally. A project may end normally (perhaps within time and budget constraints)
even though management may decide not to use the product (put it into operation). This
decision may be for a number of reasons, including:

• The product is no longer needed or wanted by the end users.
• Economic conditions have change, and the business value can no longer be

realized.
• The product cannot be operated in an economically feasible manner.
• Resources have run out.
• The product is not sufficiently secure.
• The product cannot be economically maintained.

244 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The product is not sufficiently “usable.”
• The product has major design flaws.
• The product is riddled with bug.
• The product does not comply with current standards or regulations.
• The project sponsor (“champion”) no longer supports the effort.
• Other alternative products have proven more effective.

These conditions could have also occurred at a stage gate review, and the project could
have been prematurely canceled or put on hold. This criteria are part of a quality stage
gate review as defined in this book, and organizations can save considerable amounts
of money and effort by discovering any of these problems before the project fully
completes.
Whenever a project is canceled or put on hold, the PM should consult with key
stakeholders and administrative offices (e.g., legal, HR, and procurement/contracting
offices) to determine the impact of the cancellation and mitigating actions that may be
necessary. To minimize organizational impact on both the performing and the benefiting
organizations, a formal cancellation plan may be needed, and all stakeholders should be
informed of the cancellation at the appropriate time and in the appropriate manner. The
cancellation plan should also include steps to salvage reusable components.
When the project is completed, either normally or abnormally (hold or cancel), some key
activities that should be performed include:

• Procurement audits and contract(s) closeout
• Product validation and verification, including change orders
• Confirmation of deliverables
• Formal inspections and compliance verification by regulators
• Formal acceptance and sign off” by buyer or benefiting organization
• Notification of completion to all stakeholders
• Formal “turnover” to operations/customer
• Postproject review and lessons learned documentation
• Itemization of change orders that were not done (deferred or rejected)
• Updating and closing project time, cost, and other records
• Properly archive of all records and artifacts
• Turnover relevant information to PM of next phase/version of product
• Acknowledgment of support of key stakeholders
• Acknowledgment of outstanding contributions
• Releasing project resources, including financial accounts and security items
• Formally releasing team

Change and Closeout Management 245

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project closeout forms or checklists are often used. Figure 11.5 is an example of a simple
project closeout form. In some organizations, project closeout is divided into three parts:
administrative closeout, contract closeout, and personnel closeout. Administrative
closeout is done by the PM and project team in conjunction with line management of the
performing organization and ensures that all project matters, including all billing, have
been completed. Contract closeout is done by the procurement office and ensures that
all contracts are properly completed, all vendors are paid, and all inventory issues are
settled.
Personnel closeout is done by the HR office, which handles final personnel evaluations
(typically done by the PM), return of checked-out equipment and other items, and final
security issues. Project team members (groups or individuals) need to be properly
released when their role on the project is over. If they are released in a proper and timely
manner, costs will be reduced by not having to make work for them until they are
reassigned to other projects. This also improves morale by reducing uncertainty about
future project assignments or work opportunities. A final team meeting should be held
so that all closing activities can be coordinated and a post mortem done that answers the
following questions:

• Was the business justification realized (or does it appear that it will be realized)?
If not, why not?

• What processes, methods, tools, techniques, and resources worked well?
• What processes, methods, tools, techniques, and resources did not work well?

Figure 11.5. Project closeout form

246 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• What risks events occurred, and how they were handled?
• What risks events did not occur? Why not?
• What artifacts and components can be reused?
• What in general should be done differently on the next such project?

All these questions must be answered and documented. In addition, this documentation
must be formulated in such a manner that it will actually be used. The answers to this post
mortem can be entered into a lessons-learned software system. This process, as well as
knowledge management in general, is discussed further in Chapter XVI.
A final stage gate review would be necessary if a stage gating process was used. An
example of a stage gate review form is illustrated in Figure 11.6. This final quality stage
gate review provides the final view of the project’s critical success factors: completion
and satisfaction. Whether or not a final stage gate report is used, it is common for a final
project closeout report to be created. That final report includes the information shown
in Figures 11.5 and 11.6, including final progress, time, and cost. Often a separate closeout
meeting is held with the benefiting organization and possibly with the end users. In this
closeout meeting, the end users are introduced to the operation and support people with
whom they may work in the future. Often the performing organization uses this meeting
as an opportunity to introduce or discuss the possibility for product extensions or
enhancements. For successful projects, many organizations also have a celebration
party for the project team and other key stakeholders. For unsuccessful projects, many
organizations have an outside independent auditor review the way the project was
managed.

Figure 11.6. Final stage gate review form

Change and Closeout Management 247

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter Summary

In this chapter, project general change management has been covered, particularly for
IT projects version control and configuration control. A serious problem for IT projects
is always “scope creep,” and this topic was also covered. Project closeout and related
topics were also included and illustrated.

References

Brown, N. (1998, November). Little book of configuration management. Software
Program Managers Network.

Hallows, J. (1998). Information systems project management. American Management
Association.

PMI. (2000). The Project Management Body of Knowledge (PMBOK). Project Manage-
ment Institute. ISBN 1-880410-22-2.

Royce, W. (1998). Software project management. Addison-Wesley.

248 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Procurement and
Outsourcing

A pessimist sees difficulty in every opportunity; an optimist sees the opportu-
nity in every difficulty.

(Winston Churchill)

Many IT projects involve the purchasing of goods and/or services, and some IT projects
are mostly procurement activities, at least from a cost perspective. Between one quarter
and one third of all U.S. software projects involve contractors or subcontractors (Jones,
1994). With the increase in IT outsourcing and of outsourcing offshore, there is an
increasing need for very formal procurement management.

Procurement

PMI defines procurement as the processes required to acquire goods and services from
outside the performing organization; it breaks procurement down into the following
procurement management processes (PMI, 2000):

• Procurement planning
• Solicitation planning
• Solicitation
• Source selection

Procurement and Outsourcing 249

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Contract administration
• Contract closeout

The Software Engineering Institute (SEI) addresses software acquisition, and there is a
separate capability maturity model for software acquisition (SA-CMM); however, in
discussing procurement herein, I will follow the PMI process outline. Project manage-
ment in a contracted situation is more involved and more difficult:

• The PM must deal with another company’s procedures and systems
• Problems (in scope, cost, schedule, quality) are not as visible
• Solutions to problems take longer to implement
• The PM must rely on the accuracy and timeliness of vendor reports
• The PM must have a very good relationship with vendor
• Risks are more and greater, thus sound risk management is vital

Risk management in general was discussed earlier in this book, and subcontracting risks
were identified and discussed in that chapter. Outsourcing magnifies procurement risks
and other corporate risks and this is discussed separately later in this chapter.
Procurement typically involves contracts, and most contracts are formal agreements that
contain the relevant requirements/specifications for the goods and/or services to be
exchanged. Contracts are enforceable within courts of the specified jurisdiction and,
legally, a contract must:

• Contain an offer to provide something specific by one party
• Contain an acceptance of that offer by the other party
• Specify consideration—payment in the form of money or something else
• Involve parties with “legal capacity” (separate competent legal parties)
• Be for a “legal purpose” (that which is to be provided must not be illegal)

The contract also typically includes business terms and conditions and things referred
to in the bid documents, such as marketing literature, specifications, drawings, request
for proposal (RFP) information, scope statements, and the like. A contract supercedes
any memos or conversations, either before or after the contract is signed. Most IT
contracts are atrocious, poorly written, and short on details. The faults lie largely with
technology buyers (Hoffman, 2004), so project managers (PMs) need to be fully involved
in the procurement process and work with their buyers and/or procurement offices to
ensure a successful procurement and contract.
A PM should be named before the procurement process begins. Procurement is actually
one form of risk mitigation and the PM should be in control of what is to be procured and
how it may affect schedule, cost, quality, and other project issues. Depending upon the

250 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12.1. Procurement processes

organization, either the PM or a procurement (or contracting) officer may handle the
process. In either case, the PM must have an understanding of the needs and risks of the
project and communicate these to the procurement officer. Because the PM should be
aware of the terms of project contracts, the PM must understand contracts and procure-
ment. An organization may have a centralized procurement office that handles all
contracts. The advantages of having such a procurement office are that there is more
expertise and experience in contracting, and standardized methods and forms are in place.
The disadvantages are that people are not dedicated to the project, and it may take more
time to get the officer’s attention.
The overall procurement procedure is shown in Figure 12.1. Procurement planning
involves a make-or-buy decision, and then for the buy decision, creation of a statement
of work (SOW). Solicitation planning involves the creation of the RFP or other form of
procurement document and associated evaluation criteria. Solicitation involves the
distributing and advertising the RFP and answering questions of potential bidders.
Source selection involves the selection of a vendor and execution of a contract. Contract
administration involves the review of reports and correspondence from the vendor,
review of the work, approval of payments as required, and the handling changes.
Contract closeout involves verification that work was completed in a satisfactory

Procurement
Planning

SOW

Solicitation
Planning

RFP

Source
Selection

ExecutionContract

Change
Orders

Close Out

Vendor
Proposals

Solicitation

Procurement and Outsourcing 251

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

manner, formal acceptance of the work and related deliverables, and gathering and filing
all supporting paperwork.

Procurement Planning

The procurement planning process starts with a description of the needed product and/
or services, goes through a make/buy/lease decision process, and then develops a draft
statement of work. The make versus buy/lease decision involves which services or
products are best bought externally instead of done internally. Best is measured in terms
of improved risk, cost, time, and quality. It may be better to “make” if one has idle capacity,
the need to retain control (i.e., for strategic advantage), or if confidential information is
involved. It may be better to buy/lease if the process to produce the product in question
is not a core competency of the organization. In considering procurement, one must
quantify not only the initial price but the total cost to manage the procurement and any
long-term operational or maintenance issues.
Procurements usually involve contracts, and deciding which type of contract to use is
part of procurement planning. There are several contract types, although any individual
contract may not fall exactly into one of these standard categories. These types have
different ways of assigning risk between the buyer and seller (vendor), and also may
establish incentives for the seller to complete the contact faster or cheaper. The contract
type a buyer uses is usually based upon standards in that industry, the type of goods/
services, amount of risk the buyer can tolerate, how well defined the scope is, or amount
of change to scope anticipated. The three main types of contract are:

• FP: Fixed price (or FFP, Firm Fixed Price)
• CR: Cost reimbursable
• T&M: Time and material

A key distinction of the contract types involves which party (buyer or seller) bears the
risks of cost overruns. In a fixed-price (FP) contract, which is the most common type of
contract, one price is agreed upon by the parties and the seller assumes the most risk.
A purchase order (PO) is a simple form of a FP contract that is unilateral (signed only by
the buyer); the PO is typically used for simple purchases of standard stock items. In a
fixed price incentive fee (FPIF) contract, an incentive is added, typically to get the job
done quicker or cheaper. An example would be $100,000 fixed fee, with an incentive of
$5,000 for every week completed before the contract end date. There may also be a sharing
ratio (x/y), in which the buyer gets x% of the cost savings (overage) and the seller gets
y% of the cost savings. For FP contracts a ceiling cost may be included. Another variation
typically used for long-term contracts is the fixed price economic price adjustment
(FPECA), which allows for periodic price increases typically tied to material prices or
economic indicators.

252 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12.2. Pros and cons of contract types

 FP CPFF T&M

Pros Lowest risk.
Vendor must
control costs.
Price known.
Easier to manage.

Lower cost than FP.
SOW may be less
detailed.

Simpler SOW.
Easy to manage.
Good for “professional
services” for people at
your site under your
direction.

Cons Highest price.
SOW must be
more detailed.
Changes may be
expensive.
Vendor may
compromise
quality or scope.

Most risk.
Price unknown.
Must audit vendor’s
costs.
More costly to manage.
Seller has less
incentive to control
costs.

Possibly high rates for the
people.
Difficult to control the
amount of time used when
the people are not at your
location and/or under your
direction.

In a cost reimbursable (CR) contract the buyer assumes the most risk. The vendor’s costs
are reimbursed plus some profit; costs typically include all costs, including management
and administration (M&A). There are various contract variations that determine the
method of calculating vendor profit:

• CPFF (Cost Plus Fixed Fee): The profit (fee) is a fixed amount
• CPPC (Cost Plus Percentage of Costs): There is no incentive for the vendor to

control costs (the U.S. government cannot enter into these types of contracts)
• CPIF (Cost Plus Incentive Fee): Buyer pays all costs plus a defined fee, in addition

there are incentives to increase (decrease) the fee if costs are minimized and/or
schedule is improved; there may be a sharing ratio (x/y), where the buyer gets x%
of the cost savings (overage) and the seller gets y% of the cost savings

In a T&M contract, the buyer has some risk, depending upon whether the time or the
material cost is greater for the job. The buyer reimburses the vendor for material (either
actual cost or a specified rate for each type of material), and the buyer typically pays for
time at a specified rate (for each type of worker). The rate for labor includes the seller’s
profit. This contract type is typically used for professional services: architects, lawyers,
engineers, and programmers. The buyer incurs more risk when the work is done at the
vendor’s location because actual work time is harder to oversee. Figure 12.2 illustrates
the pros and cons of these contract types.
The statement of work, sometimes called scope of work is written to describe the work
to be done under the contract. There are several common forms of SOWs, and the
appropriate form depends upon standards in a particular industry, nature of the services/
products, and type of contract. Commonly, the SOW legally becomes part of the contract.
SOWs typically contain specifications, drawings, plans, requirements, functionality and
other descriptions. There are several forms of the SOW:

Procurement and Outsourcing 253

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Design: Describes how the product is to be built
• Performance: Describes what the resulting product should do
• Functional: Defines the purpose of the product and key characteristics

There is normally a relationship between contract type and type of SOW. For an FP
contract, the SOW must be very complete and detailed; a design form of SOW usually
is used. Often the SOW is done by a design firm, such as an architectural firm. For a CR
contract, the SOW is typically not as complete or detailed, and may be a performance or
functional SOW. In this case, the buyer realizes there may be considerable additions or
changes to the SOW. For T&M work, the SOW is typically brief and could take any of
the three forms, but it is more often design or functional. The buyer typically hires bodies
for some professional service of a relatively short time period. Figure 12.3 illustrates this
relationship.
During procurement planning, and before the draft SOW is completed, there should be
a form of Procurement Management Plan completed that clearly states:

Goods/service to be procured
Time period desires/constraints (start, milestones, end)
Contract issues:

Type of contract
Type of SOW
Expected cost (should cost)
Other important project-related contract terms (not legal issues)

Solicitation Planning

After the procurement management plan and draft SOW is completed, solicitation
planning begins. The output from solicitation planning will be bid documents, evaluation

Figure 12.3. Procurement documents

Procurement
Documents

Form of SOW Type of Contract

RFP Performance or Functional CR

RFQ Functional or Design T&M

IFB Design FP

254 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

criteria, and a final SOW. Bid documents are the papers assembled to describe to vendors
the products or services the buyer needs. Bid documents should allow vendors to make
suggestions or alternatives that will provide for a better or cheaper procurement and also
allow buyers to better compare the vendors. The bid documents usually include:

• SOW
• Buyer identity and corporate information
• Instructions for preparing and delivering proposals
• Vendor evaluation criteria
• Pricing worksheets
• Preliminary contract terms and conditions

There are several forms the bid documents take:

• Request for Proposal (RFP): Request a detailed report on how a job will be done
and often who (generically or specifically) will be doing the work

• Request for Quotation (RFQ): Usually used to request a rate for professional
services

• Invitation for Bid (IFB, or RFB): Requests one price for total job, perhaps with a
breakdown or with rates for specific extras

An RFP usually indicates to a vendor that the buyer is interested in high-quality work,
whereas an RFQ or IFB may indicate that the procurement will be mainly price driven.
Evaluation criteria are often included in bid documentation, particularly for RFPs, and
typically includE:

• Financial capacity and history of vendor
• Understanding of SOW
• Contract price and life-cycle costs
• Ability to perform (skill sets of people doing the work) and certifications held
• Management approach including project management
• Vendor suggestions and alternatives

Sometimes a procurement is awarded to a seller without competitive biding; this may be
used when:

• The project is under extreme schedule pressure
• The vendor has unique qualifications

Procurement and Outsourcing 255

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• There is only one vendor for the product or service
• Other mechanisms exists to make sure vendor prices are competitive

A single-source procurement means that there is a preferred seller, and a sole source
procurement means there is only one supplier for this product or service. Whenever a
procurement is made without competitive bidding, there may be suspicion of compro-
mise to procurement integrity; one has to be extremely careful in such a situation to
completely document the reasons for not going through the full competitive process.

Solicitation

The next step in the procurement process is to begin the solicitation process. In this
process, the bid documents are sent to prospective vendors, and eventually proposals
are received from these vendors. Vendors may be selected from a number of sources,
including listings of qualified sellers in industry publications. Some of these lists may
contain vendors that have been pre-qualified by virtue of some past performance,
examination, or certification. SEI CMM, ISO, PMI, and other specific network, database,
security, or programming certifications are very relevant in IT procurement.
A bidder’s conference is often used, which may involve one or more meetings held with
prospective vendors to make sure that they understand the procurement documents. The
vendors have the opportunity to answer questions; such questions and answers should
be written up and distributed to all vendors (whether attending the conferences or not).
These conferences are quite important in complex and/or large procurements to obtain
the correct pricing for the scope at hand. After the bidder’s conference, there is generally
a period of due diligence, where both buyer and seller investigate and validate the
information provided by the other party, including financial information about each
organization.
In order to gain the attention of more sellers, buyers can advertise their procurement. The
U.S. government (and many other government bodies) is required to advertise certain
procurements in certain publications. Generally, each industry area has trade journals
that have sections devoted to such ads.

Source Selection

The next step in the procurement process is source selection, which involves the review
of vendor proposals, the selection of a vendor, and the execution of contracts. First
proposals are reviewed for completion and timeliness, and the proposals may be rejected
entirely or the vendor asked to resubmit depending upon bid document stipulations.
Complete proposals are reviewed in detail and “scored” using the established evaluation

256 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

criteria. Screening criteria (minimum standards), vendor past performance, comparison
of vendor’s proposed cost versus a “should cost” value may be used to shorten the list
of vendors receiving a full evaluation and scoring. A short list of vendors may be selected
for a detailed presentation, site visit, or other fact finding initiatives. Upon preliminary
selection, a letter of intent may be issued; however, this letter is not legally binding.
Once a specific vendor is selected, then negotiation begins on contract price and terms.
The objectives at negotiations are to develop and protect a good and honest relationship
with the vendor and to agree on a fair price for the product/service with reasonable terms.
In negotiations it is important to arrive at a win-win situation; if not, one party may try
to get back at the other party for what they lost in the negotiations. Price is usually
negotiated first, and a final revised proposal representing a last and best may be offered
by the vendor. Typical things discussed in negotiations for IT type contracts are price
and incentives, payment schedule, work schedule and milestones, work locations and
oversight, security issues, standards, responsibilities and penalties, management meth-
ods, technical methodology, reporting requirements, documentation requirements, con-
tract change procedures, testing methods and metrics, and ownership of tangible and
intangible products and byproducts.
The next step in this process is the execution of contracts. A PM should be involved as
a consultant here, but this step needs to be the responsibility of the procurement office,
purchasing department, and legal department. Vendor’s responses to RFPs (which
become part of the contract) are usually written by the sales people of the vendor and
written in such a manner to close the deal; important details are avoided. Hoffman
presents a list of things to do in contract negotiation (Hoffman, 2004):

• Align the finalization of contracts with the end of vendor’s fiscal quarters.
• Include provisions for acceptance testing for both functionality and performance.
• Make sure that software does not include intellectual property of another vendor.
• Have a source-code escrow clause in the contract.

Risk management was discussed in Chapter VIII, and there are more and greater risks
involved in activities that involve procurement. As part of risk management planning, risk
identification and contingency plans need to be made for most procurements (Perkins,
2002).These include

• Estimating the probability of failure on the part of the vendor, both performance
failure and business failures (going out of business, bankruptcy, acquisition, etc.)

• Assess the impact of potential failures
• Evaluate current treatment of vendor
• Protect yourself contractually
• Protect work continuance
• Regularly monitor the vendor work performance and corporate performance

Procurement and Outsourcing 257

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Contract Administration and Closeout

The administrative portion of procurement involves review of the vendor’s reports and
work results to ensure compliance with contract provisions in regard to scope, quality,
time, and cost. Vendor payments may be tied to one or more of these performance
dimensions. Contract exception issues should involve both the PM and the contracting
officer. A major portion of contract administration particularly in IT contracts involves
coordinating contract changes. A portion of the contract should have specified change
procedures. The PM is responsible for his or her company’s change control system and
the interface with the vendor’s change control system. Change management was
discussed in Chapter XI.
At the completion of a contract, all of the contract artifacts must be gathered and logically
and physically filed (contract, contract changes, contract formal reporting, letters,
memos, etc.). This provides a basis for information to settle any disputes (legal or
otherwise) that may arise from the contract work. This is similar to project closeout, but
with more attention to detail in regard to documentation. Lessons learned (postcontract
evaluations) should be held and documented for use in future contract matters. Some-
times there may be procurement audits. These are structured reviews of the entire
procurement process. The objective may be to identify successes and failures that can
be used in other projects (or in other procurements on this project) or to look for
suspected wrongdoing on the part of the PM, procurement staff, or project team members.

SEI SA-CMM

The Software Engineering Institute has a model of software acquisition called the
Software Acquisition Capability Maturity Model (SA-CMM). It is a model for benchmarking
and improving the software acquisition process. The model has a similar structure to the
Capability Maturity Model for Software (SW-CMM) but is tailored to the needs of
individuals and groups who are planning and managing software acquisition.
Each maturity level indicates an acquisition process capability and has several key
process areas (KPAs). Each KPA has goals, common features, and specific activities. The
common features are commitment to perform, ability to perform, measurement and
analysis, and verification. The KPAs for each level are:

• Level 2: Repeatable (basic project management)
Planning
Evaluation
Contract tracking and oversight
Project management
Requirements development and management
Transition to support

258 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Level 3: Defined (process standardization)
Training program
Acquisition risk management
Contract performance management
Project performance management
User Requirements
Process definition and maintenance
Solicitation
Software acquisition planning

• Level 4: Quantitative (quantitative management)
Quantitative acquisition management
Quantitative process management

• Level 5: Optimizing (continuous process improvement)
Acquisition innovation management
Continuous process improvement

Outsourcing

A trend in recent years has been to outsource some or all of IT resources, activities, or
projects. Software development is often totally or partially outsourced to software

Figure 12.4. Outsourcing analysis

Cost
Sensitivity

->

^
Strategic

Value

Do not
outsource ?????

Outsource Outsource
Offshore

Procurement and Outsourcing 259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

subcontractors. There are many factors driving this outsourcing trend, but the major
ones are reducing costs by using cheaper labor pools and the fact that highly qualified
IT staff are often expensive and difficult to find and retain in the United States and other
highly developed countries. Also, by bringing in outside expertise, management can
focus less on IT development and operations and more on their key business goals.
Outsourcers are specialists, and should understand how to manage IT staff and other
resources more effectively. Outsourcers may have larger IT resource pools that can
provide greater capacity on demand.
Outsourcing is primarily a major means of cost control that allows an organization to
focus on its core competencies. Figure 12.4 shows the traditional decision space for an
outsourcing decision. The classic outsourcing model was to outsource only processes
that did not give away competitive advantage. Processes that were not strategic but that
were cost sensitive (cost of labor is very important) were considered for outsourcing to
locales were labor was very cheap.
A new model sometimes outsources competitive advantage functions, if these are
completed by outside experts with the proper confidentiality agreements, security
safeguards, and legal foundation. Selective outsourcing is the decision process that
chooses which IT capabilities to retain in-house and which to outsource. Software
Development Magazine lists the factors that make good outsourcing project candidates
(Strigel, 2004):

• Not much innovation required
• Close collaboration not required
• No critical or strategic code
• Limited need for specialized domain knowledge
• Minimal dependencies on other projects
• Stable hardware and software platforms
• Clearly defined requirements, performance goals, and acceptance criteria
• Internal management and domain expertise available to the supplier

CIO Magazine also listed the type of work that will likely be outsourced as opposed to
the type of work that will not (Koch, 2004):

Going:
Highly defined, noncollaborative programming
Commodity help desk
Legacy maintenance

Staying:
Collaborative, creative programming
Project management
Requirements analysis

260 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design
Business process consulting
Processes requiring ultra–high-service levels
Security risk processes

The Software Engineering Institute’s (SEI; www.sei.cmu.edu/cmm) CMM also considers
outside contracting and defines necessary Level 2 practices for software subcontract
management:

• Is a documented procedure used for selecting subcontractors?
• Are changes to subcontracts made with the agreement of all affected parties?
• Are regular technical interchanges held with subcontractors?
• Are the results and performance of the subcontractors tracked?
• Does the project follow a written policy for managing subcontractors?
• Are the people responsible for managing subcontractor appropriately trained?
• Are measurements used to determine the status of subcontract management

activities?
• Are the subcontract activities reviewed with the PM on a regular basis?

An organization can outsource activities to another company within the same country
or outsource to companies in other countries. Outsourcing to other countries is called
offshore outsourcing or just offshoring. Insourcing involves using the company’s own
employees. Offshore insourcing involves using employees of that company who live in
another country. There are a number of ways companies utilize labor markets to reduce
manpower costs, and the following table lists some of the common terms for these
options:

Outsource Insource
On Shore On Shore
Offshore Offshore
Near Shore Near Shore
Best Shore Best Shore

All of these options involves trade-offs in terms of cost, quality, creativity, risks
(organizational, security, economical, political, legal), loyalty, and career-path develop-
ment. Almost one half of all U.S. CIOs used offshore outsource providers in 2004, and
two thirds plan to send work overseas. The Gartner Group predicted that by the end of
2004, 1 in every 10 IT jobs with U.S.-based companies would be staffed offshore. Eighty-
six percent of the 100 plus U.S. IT executives surveyed by CIO Magazine in 1993 said
they already outsourced offshore application development, and 26% offshore their call

Procurement and Outsourcing 261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

centers; all predicted their offshore outsourcing to rise. Gartner further estimated that
by 2005, 30% of the top global 2,000 companies would have a sourcing strategy
encompassing near-shore or off-shore solutions (Datz, 2004). A quick comparison of
programmer salaries and projected salaries around the world (Figure 12.5) explains the
push to offshore software projects.
India leads the world in attracting offshore outsourcing IT work, with almost 60% of the
total global market; the distribution is shown in Figure 12.6 (Greenspan, 2003).
India is also the largest producer of movies in the world, because movie production is
being outsourced from Hollywood to Bollywood in India. India has the second largest
English-speaking technical workforce in the world, however India’s middle class is
estimated at only 0.35% of their total population (approximately 350 million out of 1
billion).
Corporations are always looking for a cheaper source of labor , so India may be close to
the peak of their market penetration, especially because salaries are rising quickly in India
and the turnover rate is becoming large. Some IT organizations are looking closer to home
to minimize travel, communications cost, and, possibly, risks; for U.S. companies, Canada
and Mexico, and even cheaper markets in the United States (such as Oklahoma) are being
given a second look. Ciber Corporation, based in Colorado, has picked Oklahoma City
as its first “made in America” application development center (Frauehheim, 2005).

Figure 12.5. Programmer salaries

Figure 12.6. Outsourcing market share

Country 2003 2015
United States 74, 486 85,000

Germany 39,879 65,000
England 38,450 67,000
France 37,250 65,000
Japan 30,338 35,000
Russia 7,540 25,000
India 6,350 20,000
China 5,852 10,000

Thailand 1,760 8,000

Country Market %
India 57.8

United States 5.6
Germany 2.8

Australia/Oceania 2.6
United Kingdom 2.3

China 2.1
Mexico 2.0

South America 1.9
Africa 1.4

Other European Countries 13
Other Asian 8.5

262 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Many organizations today are performing a formal risk analysis (discussed later in this
chapter) and trying to diversify their outsourcing locations (not “putting all their eggs
in one basket”). CIO Magazine recently ranked 24 countries in regard to key outsourcing
characteristics (Datz, 2004; see Figure 12.7).
Whether outsourcing on- or offshore, there are many disadvantages and potential
problems to consider, such as:

• Possible abdication of control
• High switching costs—hard to get out of an outsourcing arrangement once one is

begun
• Lack of internal technological innovation (loss of creativity)
• Loss of local candidates for career path vacancies
• Loss of worker corporate loyalty
• Outsource provider does not have complete visibility into organizational needs

and culture
• Possible loss of ownership
• Loss of work results (possibly due to political instability)
• Privacy problems with data
• Security problems

Potential security problems are enormous in outsourcing and particularly in offshore
outsourcing. Offshore outsourcing services—which, unlike software development,
typically require the transfer of personal data—grew to about $2 billion in 2003. Consider
the potential for compromise of vital trade secrets and possibly the ability for an
organization to operate at all when a large percentage of an organization’s software code

Figure 12.7. Outsourcing analysis

Country Assessment Political Risk English Salaries
India Leader Moderate Good 4 – 12K
China Up and Comer Low Poor 4 – 12K

Thailand Rookie Low Poor 4 – 12K
Malaysia Up and Comer Low Fair 4 – 12K
Vietnam Rookie Moderate Poor Under 4K

Singapore Up and Comer Low Fair Over 12K
Philippines Leader Moderate Good 4 – 12K

Ireland Leader Low Good Over 12K
Russia Up and Comer Moderate Poor 4 – 12K
Poland Up and Comer Low Poor 4 – 12K

South Africa Up and Comer Moderate Good Over 12K
Israel Leader Moderate Good Over 12K
Brazil Up and Comer Moderate Poor 4 – 12K

Argentina Rookie Moderate Fair 4 – 12K
Canada Leader Low Good Over 12K
Mexico Up and Comer Moderate Poor Over 12K

Procurement and Outsourcing 263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is written offshore. As stated in Computerworld, “How do you keep customer data, or
the powerful algorithms that give your systems a competitive edge, from being sold to
the highest bidder?” (Betts, 2004). CIO Magazine listed six steps to making a smart
outsourcing decision (Overby, 2004b):

• Resists the instinct to either rule out or not outsourcing based upon initial reactions
• Involve corporate and business units early in the discussion and analysis phase
• Take at least 6 months to study the issues
• Engage outside experts to help study the situation
• Consider the impact on employees
• Once a decision is made, remember that it needs to be revisited as conditions

change

The long-term disadvantages of outsourcing professional work (such as IT program-
ming and design) are only beginning to appear. Programmers often form the foundation
for the career ladder to higher level IT jobs because programming develops both
essential quantitative analysis skills and understanding of the business process that
are the subject of the development. Without that large corporate foundation to select
from, where will companies find the competent knowledgeable people to fill vacancies
in higher level IT (and other business segment) positions? As stated in CIO Magazine:
“As the former deputy CIO of Proctor and Gamble learned, it’s crucial to retain enough
work in-house to train the next generation of IT leaders” (Smith, 2004). The business
process of compensating professional people for work has always involved more than
just code for money; this is illustrated in Figure 12.8.
For these reasons, many large successful IT organizations do not even consider
outsourcing. Such is the case with the retail giant Wal-Mart, whose CIO once stated that
“we’d be nuts to outsource” (Sullivan, 2004). About 21% of IT executives surveyed in
2004 by management consulting firm DiamondCluster International said they had
prematurely terminated offshore arrangements in the prior 12 months (Network World,
2004). Computerworld reminded readers of the “mythical man-month” principle, which

Figure 12.8. Employee compensation

Organization Employee

Money

Work
Product

x
Creative Ideas

Loyality
Career Ladder

264 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

says that “you cannot compress the time it takes to complete software by throwing more
bodies at it—the brute force programming techniques with low cost coders from India
and elsewhere” (Hall, 2004). Research has shown that 80% of organizations have suffered
problems ranging from time and cost overruns to nonadherence to specifications and
requirements when outsourcing IT projects (Meta Group, 2004). For offshore outsourcing,
“while 93% of business technologists surveyed recently by Software Development
magazine say the work that’s going offshore is either important or critical to their
companies’ operations, 56% say what’s coming back is worse than what could be
achieved in-house and, in the worst cases, unusable.” (TechWeb, 2004).
Twenty percent of outsourcing deals do not produce cost savings; in fact, 10% of those
deals actually wind up increasing costs (Network World, 2004). Claims of 80% savings
in cost are exaggerated and do not consider all the cost in offshore outsourcing. A more
likely number is 20%, and that takes years of effort and a huge up-front investment
(Overby, 2003). CIO Magazine developed methods to calculate the total cost of
offshoring (TCO), which included cost items and factors (of base contract value) for best
and worst case historical data. This is shown in Figure 12.9 (Overby, 2003). As is shown
in Figure 12.9, hidden costs range from about 15% to 60%
Software Development magazine lists seven steps that help make outsourcing projects
work (Strigel, 2004):

• Choose the right partner
• Choose the right type of project
• Choose the right phase of the project
• Manage communication
• Write detailed specifications
• Manage changes
• Manage the project

In terms of partner selection, some suggestions on how to avoid vendor pitfalls in
outsourcing include the following:

Cost Item Best Case Worst Case
Vendor Selection .002 .02
Transitioning Work .02 .03
Layoffs and retention .03 .05
Lost Productivity/ Cultural Issues .03 .27
Improving Development Process .01 .10
Managing Contract .06 .10
Total Hidden Costs .152 .57

Figure 12.9. Hidden outsourcing costs

Procurement and Outsourcing 265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Do not focus solely on price—vendor markup is about 30%
• Thoroughly evaluate outsourcers’ capabilities and certifications (i.e., SEI CMM)
• Work to establish “strategic alliances”
• Use multiple, best-of-breed suppliers
• Choose an outsourcer whose capabilities complement your own
• Base choice on corporate cultural fit as well as expertise
• Develop skills in contract management and procurement

An item on the list concerns the certifications of the vendor, and verifying technical and
business competencies is important. However, just as important, and missing from this
list, is a comprehensive security assessment of both the outsourcing organization and
each and every person that will be involved with the work. Security clearances and
complete background checks should be in place for anyone doing IT work or having any
kind of access to IT resources. Such clearances and checks have become vitally important
for both work that is outsourced as well as the use of foreign labor internally, such as
via work and/or study visas.
One key indicator of vendor competence is the SEI CMM maturity level discussed earlier
in this book. Today, many U.S. government agencies in addition to the DoD require
companies that bid on their contracts have a CMM Level 3 or higher. Some corporations
that outsource to India in particular require that software developers have a CMM Level
5, the top level (Koch, 2004). However, some outsource vendors lie about their CMM
scores, appraisers cheat and are bribed, and there is no organization that verifies CMM
maturity claims. Koch listed 12 critical questions to help validate CMM claims (Koch,
2004):

• Who was the appraiser?
• What part of the company was tested?
• How long ago was this done?
• How long did it take the company to move from one level to another?
• Where is your evidence of continuous improvement?
• Who runs the quality group?
• Was the appraiser from inside or outside the organization?
• Where are the reports?
• What types of projects were assessed?
• Did the appraiser consult on the projects being appraised?
• How many project managers who were assessed at Level 5 will be on your project

team?
• How does the company train new people to be CMM Level 5?

266 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another list of outsourcing pitfall avoidances is from Gomolski (2002):

• Know your strengths—Outsource your weaknesses, not your strengths
• Do not completely write off IT infrastructure—Own your processes
• Know what you are outsourcing
• During vendor selection, do not shop based on price alone
• Stay engaged with the work and the vendor

Staying engaged with the vendor involves the marriage of people and process from both
organizations, both during the transition and during the operation (or maintenance)
phases. This is illustrated in Figure 12.10.
Software Development magazine listed 12 warning signs that an outsourcing arrange-
ment may be headed for trouble (Wieggers, 2003):

• Schedule status reports are late, incomplete, or do not correlate with observations
• Unqualified staff are being assigned to the project
• The acquiring organization is not actively managing the relationship with the

vendor
• Unrequested requirements (gold plating) are being implemented
• Schedule reviews are postponed or do not take place
• Decisions are not made in a timely manner
• Incomplete deliveries are received
• Processes are being bypassed or not working
• Project tracking charts for earned value are missing
• Cost and deviations have no explanations
• Early milestones are missed

Figure 12.10. Outsource management

Oversight
Committee

Transition
Team

Operation
Team

Metrics SLA

People
 &

Process

People
&

Process

Procurement and Outsourcing 267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Proper legal foundations (confidentiality, nondisclosures, noncompete, hiring restric-
tions and other agreements with vendors and individuals) are vital in outsourcing.
Renegotiation clauses in these contracts are also very important. Gartner reported that
85% of all outsourcing contracts signed since 2001 would be renegotiated within 3 years
because the original contracts did not serve the organization’s long-term needs (Gartner
Group, 2004). “To a CIO, outsourcing contracts may look like another procurement, but
they are much riskier” (Melymuka, 2004). “You’re writing a contract for a service that is
impossible to describe, that will change over time, that will make you dependent on the
service provider, and for which termination is not an option.” Specific contract problem
areas listed by Computerworld are unresolved issues, fuzzy scope, tasks missing from
scope, exclusivity, damage waivers, decreasing technology costs (being locked into total
costs), complex benchmarking, lock-in to provider, ownership of intellectual property,
ceding control of people, and ignoring termination issues (Melymuka, 2004). An Infor-
mation Week survey listed the worst situations companies have faced with outsourcing
(Gareiss, 2002):

• Takes more management time that expected
• Does not meet performance specifications
• Unexpected add-on costs
• Does not meet savings projections
• Systems cannot change quickly when strategy changes
• Lack of promised knowledge transfer
• Lack of innovation
• Conflicts over intellectual property

Earlier in this book I discussed software engineering and modern methodologies such
as free-flow, incremental methods, agile, and extreme programming. These newer meth-
ods are difficult to use in an outsourced arrangement (Iverson, 2004). Thus, outsourcing
will limit one’s choices in methodologies and techniques. Maintaining a project’s
knowledge base and continuity is more difficult with an outsourcing arrangement,
particularly offshore outsourcing. Foreign employee turnover in offshore outsourcing
countries is around 30% and growing. CIO Magazine offered a list of 10 key steps in
dealing specifically with knowledge transfer between a company and its outsourcing
foreign partners (Overby, 2004a):

• Start with a pilot
• Include contract provisions for minimal continuous staffing of critical positions
• Create a knowledge transfer “roadmap” with roles and responsibilities
• Require offshore workers to shadow one’s own employees during transition
• Map outsourcer’s responsibility to the individual role, not to the team level
• Train outsourcer’s people into your processes and terminology

268 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Conduct classes into language and culture issues
• Keep at least 20% of offshore staff on site as liaisons
• Send a home country based manager to the offshore location
• Rotate on shore and offshore staff

In today’s business world, offshore outsourcing may appear to be a competitive
necessity for many companies. But it is not always the best option. You should weigh
a number of factors before you make such a move. Among them are (Iyengar, 2004)

• Cost: Take into account the total cost of the move. It may save you some money
and increase your competitiveness but some costs may not be readily apparent. Do
not forget to consider elements such as physical and system infrastructure,
telecommunications, and management overhead.

• Protection of Intellectual Capital: You should expect greater difficulty in manag-
ing the loss of intellectual property (IP) and the retransfer of IP in offshore
situations.

• Understanding of Local Business Requirements and Culture: Providers often lack
executives on site who can interact effectively with your higher level executives.

“In addition to performing due diligence in assessing factors like these, be sure that your
internal debate takes into account the concerns of all your key stakeholders. Offshore
outsourcing can be profitable but only if you develop a sourcing strategy that weighs
and then diminishes risks” (Iyengar, 2004). For those in IT concerned with functions of
their department being outsourced, CIO Magazine listed eight steps to take to
“outsourceproof” your IT organization (Koch, 2004):

• Focus on collaboration with the business organization
• Compete on process (such as the SEI CMM)
• Develop a standard enterprise architecture
• Sell service levels
• Reeducate your staff (both state of the art tech skills and collaboration)
• Create career paths from tech ranks into collaborative and project management

areas
• Augment, don’t replace (use outsourcing for overload situations)
• Get transparent (clearly show cost and time)

Deciding what activities to outsource and where and how to outsource them is an exercise
in risk management and portfolio optimization. “In an outsourcing relationship, only
enterprises that can effectively manage risk will be able to address the issues that will
inevitably arise and prevent a successful outcome” (Murphy, 2003). Gartner listed some
risk categories and compares the degree of risk of internal software development versus

Procurement and Outsourcing 269

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

outsourced development (Murphy, 2003). This is illustrated in Figure 12.11, where 0 is
low risk and 5 is high risk.
Each software development life cycle (SDLC) process can be examined for each business
process. The objective is to maximize the cost savings at a tolerable risk. For example,
Figure 12.12 shows certain portions (tasks) of different business processes which may
be outsourcing candidates.
The choices here may be based upon the magnitude of the cost of each task, the criticality
of that task to business continuation, and the potential for security compromises for each
area. In a formula it may be represented as:

Outsource Potential Cost = Cost - EMV business – EMV security

EMV business = Business Loss * Frequency
EMV security = Security Impact * Frequency

Figure 12.11. Internal vs. outsourced risk factors

Figure 12.12. Outsourcing analysis by SDLC phase and business process

Risk Category Internal Development Outsourced Development
Cost Effectiveness 2 4

Business Value Failure 1 4
Operational Failure 4 2
Slow to Operation 5 2

Political Resistance 1 3
Future Flexibility Inhibited 0 4
Management Complexity 5 5

Figure 12.13. Outsourcing risk portfolio analysis

270 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Business losses can occur in a number of ways and some were listed earlier as business
value (ROI) not met, operation/implementation delayed, and so forth. Security losses can
similarly occur in a number of ways as compromise of customer privacy, compromise of
company competitive information, loss of company resources, loss of customer good
will, and so forth. Here cost and EMV are measured in dollars per time period. Next one
would take each one of these candidate outsourcing tasks and look at the cost and risks
of outsourcing each in different locations. This is illustrated in Figure 12.13. Here one
wants to maximize the product of cost times risk factor summed over all tasks to be
outsourced. The additional constraint is for diversification, and that constraint may
specify that no country gets more than so many tasks or so many dollars. The
optimization process is similar to maximizing the return and minimizing the risk of a stock
portfolio with certain diversity constraints.
As outsourcing matures, mutations of the standard business arrangement are occurring
to mitigate some of the inherent problems with offshore outsourcing. One arrangement
is being called cosourcing, where work and management is shared between the buyer and
the offshore vendor. The five recommendations listed in MIS Quarterly for developing
successful cosourcing arrangements are as follows (Kaiser & Hawk, 2004):

• Understand where cosourcing is applicable
• Define and develop the appropriate in-house IT competencies
• Build trust but avoid building a binding relationship
• Foster mutual understanding of ethnic and corporate cultures
• Map out a progression to cosourcing

The key to successful cosourcing is the establishment of a dual project management
hierarchy. Figure 12.14 shows one successful implementation (Kaiser & Hawk, 2004):

Figure 12.14. Cosourcing implementation

Upper IT
Management

Relationship
Manager

IT Line
Management

Anchor

Project
Manager Offshore PM

Team
Lead

Team
Lead

Team
Lead

Team
Lead

Staff Staff Staff Staff

Procurement and Outsourcing 271

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One of the most bitter debates at this point in U.S. history is the extent to which
outsourcing is responsible for some of the current labor-market problems. Given the
potential impact of outsourcing on the domestic and global economies, this issue has
become a “political football.” Responding to a survey on this prominent issue, 66% of
U.S. workers believe that offshore outsourcing of jobs is harmful for the economy
(Hudson Global Resources, 2004). In the last 3 years, offshore programming jobs have
nearly tripled while at the same time U.S. undergraduate computer science majors have
dropped by 30% (Chabrow, 2004). India is now graduating 75,000 IT students, compared
to 26,000 in the United States. India is the largest recipient of offshore outsourcing jobs,
with about IT 50,000 jobs per quarter. About 80% of the jobs coming into India are from
the United States. The U.S. Department of Labor has reported U.S. IT job loses at 5,000
per quarter. Thus without offshore outsourcing, there would be considerable IT growth
rate in the United States. Other highly developed countries are experiencing the same
effect.
The other side to this argument is that offshore outsourcing helps domestic companies
save money and thus avert layoffs in other types of jobs. It is difficult to determine a clear,
accurate measure of how many total U.S. jobs are being lost to outsourcing, or how many
might be lost in the future. Out of the current 140 million jobs in the United States, about
900,000 may have been lost already with up to 6 million lost through this year (2004);
another 14 million U.S. jobs are at risk (Center for American Progress, 2004) Computerworld
predicts that by 2015, 3.3 million white collar jobs will move offshore; of that number,
about 500,000 will be IT jobs (Hoffman & Thibodeaux, 2003). Service jobs and IT jobs are
at risk in all major developed countries. In the United Kingdon as many as 50,000 jobs
moved offshore in 2003; Germany and Sweden are feeling political pressure as well. Up
to 25% of IT jobs in developed countries may move offshore by 2010 (Gartner Group,
2004). America is the only developed nation that does not have protectionist legislation
that provides disincentives for companies that use imported and offshore cheap
foreign labor. However, that may change in the future; as of February 2004, 27 bills
designed to restrict offshore outsourcing had been introduced into the U.S. Congress.
Similar bills have passed or been introduced into legislatures of the individual U.S. states.
Both federal and state bills range from full restriction, to preferences for local companies,
to limits on work permits and visas (i.e., H-1B and L-1).
Offshore outsourcing has caused a considerable backlash in the United States from both
employees and customers. Eighty-four percent of buyers and 82% of providers in the IT
sector are now concerned about this negative backlash from their employees (King,
2004). Fifty-eight percent of American workers believe that companies that outsource
work that could be done by Americans should be penalized by the U.S. government (ELA,
2004). A Harris Poll stated that 53% of Americans felt it is un-American to send U.S. jobs
overseas (St. John, 2004). Twenty-four percent of customers indicated that they will stop
doing business with a vendor if they outsource support offshore, regardless of the
quality of support (Bodem, 2004). Sixteen U.S. states have introduced “right-to-know”
bills that require corporate call-center employees to disclose their geographic location
to customers.
Corporate CEOs, however, are certainly benefiting from outsourcing. Studies show that
CEO salaries at the 50 U.S. firms outsourcing the most (IBM, Intuit, etc.) increased by 46%
in 2003 compared to 365 other large U.S. firms which had an increase of only 9%

272 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Frauehheim, 2004). From 2001 to 2003, the CEOs of these top 50 outsourcers earned $2.2
billion while sending an estimated 200,000 U.S. jobs overseas. With outsourcing, the
CEO-to-worker wage gap is rising again (after two years of narrowing), with a ratio in 2003
of 301:1.

Chapter Summary

This chapter covered general project procurement and the formal procedures and
documents used in procurements, such as the statement of work, request for proposal,
and contracts. The different types of procurement documents were discussed along with
types used in certain situations and with what types of contracts. In particular for IT
projects, the subject of outsourcing was also covered. In the last century, outsourcing
was mostly a simple cost-cutting maneuver used for noncritical labor intensive func-
tions. In the 21st century, outsourcing has become a strategic initiative that can
drastically transform an organization. In a rapidly changing global IT intensive
marketplace, the pressure is on to cut even deeper into one’s business for outsourcing
opportunities. Take the wrong slice or get it wrong, then undoing the outsourcing
arrangement will be a most formidable and expensive task; take the right slices and
do it right, and the reward may be very significant. In either case, the security risks and
the risk of permanently losing key expertise and creativity for the organization and for
an entire country are enormous.

References

Betts, M. (2004, November 15). Outsourcing dangers. Computerworld.
Bodem, W. (2004, August). Service excellence research group report. Retrieved from

www.serviceXRG.com
Center for American Progress. (2004, March 16). Outsourcing statistics in perspective.

Retrieved from http://www.americanprogress.org/
Chabrow, E. (2004, August 16). By the book. Information Week.
Datz, T. (2004, July 15). Outsourcing world tour. CIO Magazine.
Einhorn, B. (2003, July 30). The quest for Asia’s outsourcing crown. Business Week

Online.
ELA. (2004). Equipment leasing association, June survey. Retrieved from

www.ChooseLeasing.org
Frauehheim, E. (2004). For CEO’s, offshoring pays. Retrieved August 31, 2004, from http:/

/zdnet.com
Frauehheim, E. (2005, January 14). Outsourcing to Oklahoma? CNET News.
Gareiss, R. (2002, November 18). Analyze the outsource. Information Week.

Procurement and Outsourcing 273

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gartner Group. (2004, March). Successful outsourcing relationships. Proceedings from
the Gartner Symposium/ITxpo, San Diego, CA.

Gomolski, B. (2002, May 17). Don’t be naïve about outsourcing. Computerworld.
Greenspan, R. (2003, September 10). Going to the (out) source. Retrieved from

www.clickz.com/stats/markets/b2b
Hall, M. (2004, November 15). Offshoring revives man-month myth. Computerworld.
Hoffman, T. (2004, August 23). Attorney says sloppy IT deals all too common.

Computerworld.
Hoffman, T. & Thibodeau, P. (2003, April 28). Exporting IT jobs. Computerworld.
Hudson Global Resources. (2004). Retrieved from www.hudson resourcing.com
Iverson, J. (2004, May). Extreme outsourcing. Proceedings of the 2004 IRMA Confer-

ence, New Orleans, LA.
Iyengar, P. (2004). Factors to weigh before going offshore. Retrieved from http://

outsourcing.weblog.gartner.com
Jones, C. (1994). Assessment and control of software risks. Englewood Cliffs, NJ:

Yourdon Press Computing Series.
Kaiser, K., & Hawk, S. (2004). Evolution of offshore software development: from

outsourcing to cosourcing. MIS Quarterly Executive, 3(2).
King, J. (2004, July 12). Damage control. Computerworld.
Koch, C. (2004, March 1). The CMM hype. CIO Magazine.
Koch, C. (2004, October 15). How to outsource-proof your IT department. CIO Magazine.
Melymuka, K. (2004, March 22). Outsourcing gothas. Computerworld.
Meta Group. (2004). Retrieved from techupdate.zdnet.com/source/Meta_Group
Murphy, J. (2003). Evaluating and mitigating outsourcing risk. Gartner Group.
Network World. (2004). Retrieved from www.networkworld.com
Overby, S. (2003, September 1). The hidden cost of offshore outsourcing. CIO Magazine.
Overby, S. (2004a, July 15). Lost in translation. CIO Magazine.
Overby, S. (2004b, November 1). One outsources, the other doesn’t. CIO Magazine.
Perkins, B. (2002, December 9). Developing a supplier contingency plan. Computerworld.
Smith, G. (2004, November 1). You can’t outsource everything. CIO Magazine.
St. John, D. (2004). Outsourcing pipelone. Retrieved August 16, 2004, from

www.outsourcingpipeline.com
Strigel, W. (2004). Outsourcing: What works. Software Development.
Sullivan, L. (2004, September 27). Wal-Mart’s way. Information Week.
TechWeb. (2004). Retrieved from www.techweb.com
Wieggers, K. (2003). See you in court. Software Development.

274 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

Stakeholder
Management

Always treat your employees exactly as you want them to treat your customers.
(Steven Covoy)

The identification and management of a project’s stakeholders is vital to the complete
success of a project. Well-planned and properly-executed projects often can still fail due
to a lack of or inappropriate relationships between the project manager and various
stakeholders. This chapter discusses matters related to the human side of project
management, including stakeholder relations, communications, and project team man-
agement.

Stakeholder Identification and Analysis

The first step in good stakeholder management is the complete identification of all of the
stakeholders. Cleland (1998) defines stakeholders as follows:

Stakeholders are people or groups that have, or believe they have, legitimate claims
against the substantive aspects of the project. A stake is an interest or share or claim
in a project; it can range from informal interest in the undertaking, at one extreme, to
a legal claim of ownership at the other extreme.

Stakeholders are associated with both the performing organization and the benefiting
organization; these are called internal stakeholders. The performing and benefiting
organizations may or may not be part of the same company, and there may be a formal

Stakeholder Management 275

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or informal contract situation. In addition, there are usually “external” stakeholders that
are not part of these two groups. Traditionally, the key stakeholders have been
individuals or other groups closely associated with either the benefiting or performing
organizations. “However, long-run changes in the social, political, and economic
environment of projects have meant that this is no longer necessarily the case for a
number of reasons” (Winch, 2004). Today there may also be a number of key external
stakeholders in terms of various social, political, or economic interests.
Internal stakeholders related to the benefiting organization might include:

• Project sponsor(s)
• Business owners or stockholders
• Customer line management
• Customer’s users of the IT system
• Customer’s IT group
• Customer’s accounting group
• Customer’s business units affected
• Customer’s other employees
• Customer’s customers
• Customer’s contractors and vendors
• Customer’s financiers

Internal stakeholders related to the performing organization might include:

• Project manager
• Business owners or stockholders
• Project team
• Performing organization’s line management
• Performing organization’s IT group
• Performing organization’s accounting group
• Performing organization’s other employees
• Performing organization’s customers
• Performing organization’s contractors and vendors
• Performing organization’s financiers

External stakeholders may be concerned individuals, companies, or associations that can
be termed private interests; they may be local, state, federal, or international government
bodies that can be termed public interests (Winch, 2004). External private stakeholders

276 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

might include concerned individuals, trade associations, environmental and conserva-
tionists associations, neighborhood association, and the like. External public stakehold-
ers might include local governments, state governments, federal regulatory agencies,
federal governments, or international agencies.
Once the stakeholders have been identified, then each must be analyzed carefully in order
to determine the manner in which that stakeholder should be managed. Stakeholders that
are more concerned about a project will have to be managed differently than those that
are less concerned; similarly, stakeholders that are more powerful will have to be managed
differently than those that are less powerful. Each stakeholder or group of stakeholders
may have a different type of stake in the project including monetary, job security,
position, influence, reputation, or convenience (time). The interests of all stakeholders
in one group may not be the same, if the result of the successful completion of the project
may alter the “balance of power” in that organization. For example, within the benefiting
organization different stakeholders may be for, against, or neutral about the project and
this may depend upon the way the final project manifests itself or the way it is implement
in the benefiting organization. IT ERP projects, which involve a number of corporate
business units, there is very much corporate change including work flow, policies and
procedures, management structure, and so forth; for this reason different stakeholders
within the same group (i.e., the benefiting organization) may have varying interest in the
success of such a large project.
Figure 13.1 shows a power vs. concern graph that can be used to visually assign
stakeholders into one of these four categories. Powerful and highly concerned stake-
holders will have to have to be actively managed throughout the project; these are the
people who will need their hands held. For each of these individuals or groups the project
manager must ascertain:

Figure 13.1. Stakeholder classification

Concern ->

^
Power

Compliance Individual
Hand Holding

Buy OffInformed

Stakeholder Management 277

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• What is the biggest thing this stakeholder has to gain if the project succeeds (fails)?
• What is the biggest thing this stakeholder has to lose if the project fails (succeeds)?

Next the project manager (or line management) must try to best align this person with the
project and get early buy-in; and then check on this alignment during all phases of the
project. Stakeholders that are powerful but not too concerned, usually have some
standards or other manifestation of principle that they wish to be followed. An example
here is regulatory agencies. This group of stakeholders is best managed by becoming
very knowledgeable and clear on the principles and standards involved and then
complying with same. Stakeholders that are not powerful but quite concerned need to
be aligned with the project; this is the so-called buy-off group. This done first by finding
out why they are so concerned, and then seeing if they can be aligned with the project
initially; they do not need constant attention as does the powerful and very concerned
group. Stakeholders that are not powerful and not too concerned simply need to be kept
informed on a regular basis as a group.
In terms of power and influence over project affairs, there are four types of power in most
organizations and communities of stakeholders:

• Power due to position (or rank)
• Power due to control over resources (like budget)
• Power due to unique expertise
• Power due to politics and/or charisma

Some authors define other types of power like physical power, which may have relevance
on a sport team, but typically not in a project management environment. Other types of
power defined by some are position subtypes of power as:

• Reward: Power based on being able to give an employee something he wants; does
not necessarily mean money, may be a position/role on the team, or may be a
positive evaluation supplied by the PM to a functional line manager

• Referent: Power bestowed from a higher point in the organization
• Penalty: Power based on being able to penalize someone (may be more than

monetary)

A stakeholder may fall into more than one of these categories. Figure 13.2 shows one
method to perform this stakeholder analysis including an analysis of power vs. concern
and type of power. In this spreadsheet each stakeholder is listed and characterized by
checking off columns.
After all the stakeholders have been identified and analyzed, a stakeholder action plan
should be developed. This plan will explain how each stakeholder is to be managed
and who (within the project team, line management, or project management office

278 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

[Chapter XVI]) is responsible for carrying out each item in the action plan for that
stakeholder. This stakeholder management plan can be a separate plan or be part of the
communications plan, discussed later in this chapter. As part of the stakeholder
management plan, potential claims by a stakeholder or other potential unfavorable
actions should also be identified and included in the project risk management plan
covered earlier in this book. As well as correlating with the communications plan and risk
management plan, the stakeholder management plan should also map to the quality plan.
PMI’s PMBOK does not specifically address the larger issue of general stakeholder
management, but defines two knowledge areas directly concerned with stakeholder
management: communications management and human resource management. Risk
management has already been addressed in this book, and as stated earlier, stakeholder
risk tolerances are a factor in determining an overall risk management plan.

Communication Management

Communications management involves managing the process of information flow to and
from stakeholders. As discussed previously, there are many different stakeholders, each
with differing roles, interests, priorities, and agendas. In addition there are many types
of information some of which needs to go between different stakeholders at different
times and frequencies, possibly using different mechanisms. The project manager’s role
is not to try to control all these differing flows, but to influence project communications
to the benefit of the project. Remember that it is the role of the project team members to
do their assigned duties and complete their assigned tasks; and it is the role of general
management to define the project, support the project, and protect it from disruptive or
unnecessary changes; however, the prime role of the PM is as the integrator and
communicator for all project stakeholders. Thus the project manager serves as the focal
point for project communication. The PM should try to influence communications to the
extent that communications are following plan, but the PM cannot physically control
communication. If there are N people involved, there will be N*(N-1)/2 possible commu-
nication channels; this is illustrated in Figure 13.3 for five people.

Figure 13.2. Stakeholder analysis

Stakeholder Management 279

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The PMI communication management processes are (PMI, 2000):

• Communications planning
• Information distribution
• Performance reporting (covered in Chapter XIV)
• Administrative closure (covered in Chapter XI)

Poor communication is a major cause of project problems and project team members may
loose motivation or be caught up in rumors due to poor communication. Stakeholders also
may become discouraged or angry with lack of proper communication. A typical project
manager spends 90% of his or her time communicating (PMI, 2000). This includes:

• About 2 hours/day in meetings
• Over 1 hour per day in one-on-one coaching or discussion
• Much of the balance in reporting, both oral and written

Thus, PMs must be skilled in both oral and written communications. PMs communicate
regularly with:

• Upper line management
• The project sponsor
• The project team
• Other PMs and related project teams
• Customers
• Other stakeholders

Figure 13.3. Communication channels

1 2

35

4

1

2

3
4

5
6

7

8

9

10

280 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The direct purpose of all the PM communication is to keep all the stakeholders informed
to the degree necessary as specified in the stakeholder analysis. However, the indirect
purpose is to “take the pulse” of the stakeholders in regard to their opinion and
concern over project direction, progress, risks, and other issues. This is illustrated in
Figure 13.4.
In general, communications involves sending a message between a sender and a receiver
over a particular medium in a mode with certain parameters (such as frequency). This is
illustrated in Figure 13.5. Proper communications involves choosing the correct media,
mode, and parameters for a given message to a given receiver.
The sender is responsible for making the message clear, unambiguous, and complete. The
receiver is responsible for making sure that the message is received in its entirety, and
that the message is completely understood. The message is encoded by the sender and
decoded by the receiver. The encoding/decoding is done by each party based on their:

• Language (and dialect)
• Culture
• Units of measure (currency, size, weight, volume, time, etc.)
• Discipline
• Education and industry area
• Experience

Figure 13.4. PM and stakeholder communications

Project
Manager

Stakeholders

Keep
Informed

Monitor
Opinions

Figure 13.5. Communications

Stakeholder Management 281

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If there is significant mismatch between the sender and receiver in any of these areas
then the message may not be fully understood. Earlier in this book we discussed the
formal project management discipline and the formal software engineering discipline.
However, much of project communication to stakeholders will involve individuals who
are not familiar with formal project management or software engineering terms or
acronyms. Terms like critical path should be replaced with phrases like high-priority
tasks. Other common project management terms to rephrase to stakeholders may include
Gantt chart, earned value variances and indexes, dependency, slack, float, WBS, etc.

The media (channel) may be:

• Spoken (voice/personal, phone, voice-mail, video conferencing)—one-on-one or
group

• Written (paper, e-mail, fax, shared media)

and the mode may be:

• Listening or speaking
• Formal or informal
• Internal or external
• Vertical or peer-to-peer

Various types of written reports that are distributed also make up a significant portion
of project communication; these would include:

• Status reports (see a later chapter for performance reporting)
• Assignments and direction
• General correspondence
• Topic specific memos
• Meeting notes
• Technical (designs, specifications, drawings, charts, test results, etc.)

Today many of these are transmitted via e-mail. However, spoken communication is still
heavily relied upon for many stakeholders in many projects. A significant portion (about
one half) of all spoken communication is effected via nonverbal modes such as physical
mannerisms (body and face language) and paralingual (tone and pitch of one’s voice).
Effective listening involves watching the speaker for these nonverbal messages and
using active listening and feedback. In active listening, the receiver confirms that he has
received the message and asks a question to confirm that he understood the entire

282 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

message. Feedback means that the sender requests acknowledgment from the receiver
to confirm that he or she has indeed understood the entire message. These communica-
tion techniques are very important when there is significant sender/receiver mismatch.
For modern IT projects, there can be significant mismatch for global projects and/or
for where any outsourcing is involved particularly, offshore outsourcing.
Sender/receiver mismatch is one form of communication obstacles, and a list of such
obstacles includes:

• Sender/receiver mismatch
• Distance (in space or time)
• Noise (channel is not clear or “cluttered”)
• Hostility and other detrimental attitudes
• Lack of openness to hear ideas of others

A key task of the PM in is to work with his team and other stakeholders to specifically
remove any such obstacles or to mitigate the impact of their presence. In this regard,
the PM should:

• Avoid the aforementioned communication blockers/obstacles
• Have a proactive communications style
• Be a communications expeditor
• Make sure communications is following plan (discussed later in this chapter)
• Insure communications integrity through active listening and feedback
• Use a project war room (either physically or virtually)
• Make meetings effective (discussed later in this chapter)

For all communication, both written and spoken, a PM should keep documentation
thereof. The PM has several reasons to maintain such project documentation, including
the need to be able to reconstruct why certain decisions were made (including who said
what)—“CYA”—and for historical value (lessons learned, settling disputes, etc.).
A communications plan involves determining the information reporting needs and other
communication needs of stakeholders—who, what, how, and when:

• Who needs what type of information
Content
Format

• How is the information to be distribution
• When

Stakeholder Management 283

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Frequency (weekly, monthly, etc.)
Timing (specific day of week, or day of month)

The project communication plan should be formal written proactive plan that details
the aforementioned aspects; that plan is used with or combined with the stakeholder
analysis described at the start of this chapter. The communication plan should also
cover

• Meetings (regular/special, when/where, how, notes, note-taker, etc.)
• Communication channels including phone numbers, e-mail addresses, and perhaps

physical offices addresses (for all team members and stakeholders)
• Organizational structures and reporting relations
• Problem escalation procedures

Meetings represent a significant expense to a project, since the time of many expensive
people are being consumed on indirect work activities. However some meetings are
necessary to a project for team building, group decisions and group consensus, problem
solving, and conflict resolution. In a PMI survey of PMs (PMI, 2000):

• Average meetings were six per week
• An average of 25% of meeting time was on nonproductive issues
• Causes of meeting time wastage: meeting not properly planned, inept leadership,

undisciplined participants

A PM may have many different types of meetings with the project team or with other
stakeholders; however, many PMs still try to manage via meetings, and many meetings
are neither efficient nor an effective use of people’s time. When meetings are used, only
the people who need to be at a meeting should attend and only the necessary topics
should be covered. Many project issues and much project communication (such as
status) can be reported without having meetings. In this book, a dual gating process for
project performance monitoring has been suggested. This approach not only provides
for the exposure and analysis of both project completion and satisfaction success
criteria, but minimizes the time of key individuals in meetings. This is illustrated in Figure
13.6, where upper management and the development team are relatively isolated from
regular meetings.
A set of meeting guidelines such as the following should be included in the project
communication plan:

• Set a meeting policy for regular and ad hoc meetings
• Have a meeting only when they are really necessary and consistent with the

meeting policy

284 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Cancel any regularly scheduled meeting when there is little to discuss
• Establish a clear meeting purpose and prepare an agenda
• Check with team and possible other stakeholders on items for the agenda
• Carefully select participants; include everyone that should be there but be careful

about inviting others
• Send participants a copy of the agenda in advance
• Prioritize agenda items in case of time overflow
• Follow agenda, encourage participation but control the flow of the meeting, include

a team-building segment
• Take and file meeting notes
• Promptly distribute notes
• Identify and follow up on action items

There is software available to aid in the scheduling of meetings, including the display
of all the participant’s schedules to find open time/place slots. Today meetings may be

Figure 13.6. Dual stage gates and stakeholder involvement

Completion
 Criteria

Scope
Time
Cost

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage
(Event Driven)

Quality Stage
Gate

Management
Stage

(periodic)

Management
Stage Gate

Continue?
Recycle?

Continue?
Hold?

Cancel?

PM

Business
Analyst

Users

Upper
Management

Development
Team

By
Exception

Only When
Necessary

Stakeholder Management 285

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

virtual instead of physical, and there is much software available to facilitate virtual
meetings both the synchronous and the asynchronous types.
Project communication may be spoken or written (paper or electronic), and it may be
formal or informal. Generally, one of these four combinations is most appropriate for
certain situations, and this may simply be part of an organization’s culture or it may be
made a formal part of the project communication plan.
Figure 13.7 is an example of such a formalization.
Also the communication may involve stakeholders at the same place or different places
and the communication may be at the same time (synchronous) or at different times
(asynchronous). This is illustrated in Figure 13.8.
Typical modern communication modes and media for each of these four cases would be

• Same Place—Same Time: Traditional meetings and in-person conversations
• Different Place—Same Time: Synchronous modes such as conference calls, video

conference, instant messaging, groupware, and chat rooms

Figure 13.7. Appropriate type of communications

Method When Appropriate

Formal Written Project charter, project plans, performance reports,
communications where “obstacles” are involved,

discussions of complex problems

Formal Verbal Project kick-off meting, presentations, speeches

Informal
Written

Memos and e-mail

Informal Verbal Conversations and meetings

Figure 13.8. Place and time of communications

Time

Place

Different Place - Same Time Different Place - Different Time

Same Place - Different TimeSame Place - Same Time

Traditional

Synchronous A- Synchronous

A-Synchronous

286 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Same Place—Different Time: Asynchronous local modes as rotating files, Post-
it notes, e-mail, online forums

• Different Place—Different Time: Asynchronous distance modes as e-mail and on-
line forums

The project communications plan should also specifies the details for these four cases.
There are a number of software tools available to facilitate most of these communication
tasks, places and times. These include:

• Office productivity suites (word processing, spreadsheet, and presentation soft-
ware)

• Project management software (discussed later in this book)
• E-mail and instant messaging
• Internet and Intranet
• Virtual meetings, chat, forums, blogs, bulletin boards
• Groupware
• Imaging systems
• Design distribution and exchange (UML, CAD, etc.)
• Document routing and management systems
• Report generation software
• Standard formatting and info exchange software (XML, HTML, VRML, etc.)

Another aspect of the formal communications plan is definitive procedures for problem
escalation. Without such defined procedures, the PM may be questioned in regard to the
timeliness of bringing certain types of information to the attention of higher management.
Those escalation procedures specify how much time each organizational component
(project team member, project manager, line manager, etc.) should wait trying to contact
someone else for problem solution and how much time to wait without resolution before
escalating a problem to the next level.

Organizational Context

In examining stakeholder management for internal stakeholders, the organizational
context of project management needs to be discussed; that is, how does a PM fit into the
organization’s overall management structure. The manner in which a PM manages and
controls his or her project depends somewhat on this overall organization structure. In
regard to the management of projects, there are several types and subtypes of organi-
zational structures:

Stakeholder Management 287

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Functional
• “Project expeditor”
• “Project coordinator”
• Projectized
• Matrix
• Weak
• Strong
• Balanced

The functional organization is the traditional structure and the most common way to
organize a company. Advantages of this structure are that their organization is well
understood and has a rigid chain of command, each employee reports to only one
manager, and it is easier to manage specialists. Figure 13.10 depicts this traditional
functional organization.
The disadvantages of this traditional organization in regard to project management are
that employees place more emphasis on their functional specialty than on the project and

Figure 13.9. Problem escalation plan

 Project Team Member Project Manager
 Wait Time Escalation Time Wait Time Escalation Time
Type of Problem

… … … … …

Figure 13.10. Traditional functional organization

CEO

Engineering VP
Human

Resources VP
Manufacturing VP Marketing VP

Manager 1 Manager 5

Manager 2 Manager 6

Manager 3

Manager 4

Manager 7

Manager 8

288 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

there is no explicit career path in project management. Here the PM role is weak
(particularly if the project team is not all in one division/department), and the PM has to
go to the functional manger to make and enforce decisions.
In functional organizations, sometimes there is a project expediter who typically reports
to a functional manager (as a staff assistant) in the division/department that sponsors
or is primarily affected by the project. This expediter has little power and typically only
maintains the project schedule, status, and budget/costs; he or she cannot personally
make or enforce decisions, and his or her main role is in the area of communications. Figure
13.11 illustrates the expediter role.
Instead of a project expediter, a functional organization sometimes uses project coordi-
nators. The coordinator typically reports to someone high up in the organization,
perhaps even to the CEO or in IT the CIO. Here the PM has more power than the project
expeditor, including some power to make limited decisions (limited by scope, impact,
costs, etc.). Figure 13.12 depicts this project coordinator.
At the opposite end of the extreme is the projectized organization. Here the project
manager has full authority over project personnel. Advantages are that a PM has full
control and it is efficient for project execution, employees have loyalty to the project, and
project communication is direct and efficient. Disadvantages are that of a weak functional
structure (may have lack of professionalism in disciplines), employees have no home
when project is completed, and there may be a less efficient use of resources. Projectized

Figure 13.11. Project expediter

CEO

Engineering VP
Human

Resources VP
Manufacturing

VP
Marketing VP

Manager 1 Manager 5

Manager 2 Manager 6

Manager 3

Manager 4

Manager 7

Manager 8

Project
Expediter

Stakeholder Management 289

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organizations are more common in professional services firms such as architectural and
engineering companies. Figure 13.13 illustrates this type of organization.
Matrix organizations represent a compromise between functional and projectized orga-
nizations. Figure 13.14 shows the matrix organization. There are three subtypes of matrix
organizations:

• Strong: Balance of power rests with project manager
• Weak: Balance of power rests with functional manager (here a project expeditor or

coordinator my be common)
• Balanced: Power is balanced between functional and project manager

The commonly used term tight matrix has nothing to do with a matrix organization per
se; it simply means colocating the project team members.
The advantages of a matrix organization are:

• The project objectives are very clear
• The PM has better control over resources
• More support from functional organizations
• Better utilization of human resources

Figure 13.12. Project coordinator

CEO

Engineering VP
Human

Resources VP
Manufacturing

VP
Marketing VP

Manager 1 Manager 5

Manager 2 Manager 6

Manager 3

Manager 4

Manager 7

Manager 8

Project
Coordinator

290 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 13.13. Projectized organization

Figure 13.14. Matrix organization

CEO

Engineering VP Human
Resources VP

Manufacturing
VP

Marketing VP

CEO

Engineering VP
Human

Resources VP
Manufacturing

VP

Manager 1 Manager 5

Manager 2 Manager 6

Manager 3

Manager 4

Manager 7

Manager 8

Marketing VP VP Projects

Project 1 Manager

Project 2 Manager

Employee 1

Stakeholder Management 291

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Better coordination of project tasks
• Better horizontal and vertical information flow than functional
• Employees maintain a home

The disadvantages of the matrix organization are:

• Less cost effective because of extra administrative personnel
• More than one boss for project teams
• More complex to administer
• Possibly more and bigger resource allocation problems
• More detailed policies and procedures needed
• Functional managers may have different priorities than project managers
• Higher potential for duplication of effort and resulting conflict

Human Resource Management

Human resource management is the term used by PMI for a group of processes primarily
concerned with the interpersonal interaction of internal stakeholders. In the PMBOK the
specific processes are (PMI, 2000):

• Organizational planning
• Staff acquisition
• Team development

These processes involve methods for managing the human aspects of a project. Poor
human resource management is often the cause of project failures. Common human
resource (HR) project problems include:

• Upper management meddling
• Lack of upper management support
• Project estimated before appointment of PM (usually manifested in unrealistic time/

cost estimates)
• Project manager micro management
• Poor mix of project team members (too little or too much of certain skills, too little

diversity, conflicting egos, immaturity, etc.)
• Lack of proper project staff motivation

292 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A key part of proper HR management is to clarify and communicate the roles of different
management components in an organization. These will vary somewhat depending on the
organizational context. Generally, it is upper management’s responsibility to approve a
project business plan and charter, select and empower the PM, protect the project from
adversarial stakeholders and other distractions, and approve the project schedule and
cost plan (and significant changes thereto). It is the PMs responsibility to plan, estimate,
and schedule a project. A PM should not be handed a project with the estimates and
schedule already prepared; both the PM and project team need to buy-into these aspects
of a project. It is the project team’s responsibility to help plan (WBS, network diagram,
estimates) the project and to carry out the work.
The PM has the main responsibility to assemble the project team and get the right mix
of people for the project. The proper mix of people will include those who:

• Understand the project management process
• Understand the business justification for the project (business analysts)
• Understand the chosen software engineering methodology (software architects)
• Understand the details involved in constructing and delivering the product

(system designers)
• Understand the customer and end users and their needs and wants (subject-matter

experts)
• Understand the meaning of quality relative to this type of project and product
• Are specialists in regard to the technology that is to be embedded in the product

or used on the project (technical experts)
• Can think outside the box and inject new ideas

If possible within the constraints of getting the correct skill mix from a technical
perspective, it is usually helpful to get a mixture of people from differing perspectives,
including:

• Left (analytical) brain versus right (intuitive) brain thinkers
• Adapters versus innovators
• Customer focused versus developer focused
• Insiders versus outsiders
• Shared (multiproject) versus dedicated (only this project)

“The riskier the project, the more diversity you need in the team. IT ends to attract
similar types of people, and that’s something you need to counteract.” (Melymuka,
2004)

Stakeholder Management 293

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In an IT organization, the CIO and the HR department will typically work together to define
and classify IT personnel into categories for the purposes of skill identification,
experience levels, and salary ranges (for project cost estimation). This was discussed
earlier in this book in regard to the development of a project’s cost plan (budget). A PM
needs to verify this classification and rate structure for use in his project. Typical IT
categories may include:

• Project manager
• Subject matter expert
• Business analysis
• System architect
• Requirements analyst
• System analyst
• Programmer
• Technical writer
• Database analyst
• Webmaster
• Communications analyst
• Network administrator
• Testing specialist
• Security specialist
• Computer operator

Usually there are three or more expertise/experience levels within each of these catego-
ries. For each category and level there is usually a salary range. For project labor
estimation purposes, the midpoint of these salary ranges is usually used. At one or more
points in the project, specific employees are assigned to the project based upon
availability and the necessary category type(s) for each WBS task. In assigning these
specific human resources, the PM should consider a number of factors, including:

• Previous experience, including education and training (ability to do the job)
• Personal interests in and aptitude for the job
• Personal characteristics (e.g., do they work well in a team environment for this type

of project)
• Availability within the time frames needed

To assist in this evaluation and selection process, the HR department or the IT
department may maintain a skills-inventory database. In such a database, the skills for
each employee are itemized along with the experience level (perhaps in months) for each
skill either just for this company or for the employee’s entire career. Some organizations

294 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maintain such a skill inventory database for not only employees but also for job
applicants and contractors as well. An assessment matrix can be used where available
personnel are mapped to needed job categories; this is illustrated in Figure 13.15, which
shows months of experience in each category. This also helps identify any needed staff
development, and it is important to define such training needs early so that they can be
included in the schedule and cost plan.
A PM should assign all tasks and all team members without ambiguity or redundancy and
in such a manner that follows the project WBS and detailed scope definition. One must
be careful of the Halo effect (e.g., a great programmer will make a great system architect)
when assigning staff. A formal HR plan can be documented to show the people that may
be or will be a part of the project team. A sample simple HR plan form is shown in Figure
13.16.
There are several other types of forms and charts that are often used in this process:

• Responsibility Assignment Matrix: Relates tasks to people
• Resource Histogram: Shows resource utilization in time
• Resource Gantt Chart: Shows when staff is assigned

A responsibility assignment matrix is illustrated in Figure 13.17. The cells may show one
or more types of information regarding the assignments:

• Primary versus Secondary (P = primary, S = secondary)
• % of time allocated to this task
• Role (P = participant, I = input required, R = review required, S = sign-off required,

A = accountable)

Figure 13.18 illustrates a resource histogram which shows the hours scheduled for either
a single resource or a single resource type by time period throughout the project.
Figure 13.19 illustrates a resource Gantt chart that shows the scheduled time periods for
resources on the project. A resource Gantt chart can also be made for all resources on
all projects; such a chart is used for resource allocation across projects and also resource
leveling.

Figure 13.15. Skill assessment

Skill Ed Jane Mary Tom Bill Larry Sue Marge
Analyst 3 42 15 6

Sft. Designer 3 12 30 12
Programmer 12 12
Tech Writer 12 20

Database 12 24
UI Designer 12 6

Sys. Architect 3 6
Tester 12 24

Stakeholder Management 295

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 13.16. Project HR plan

Project HR Plan

Project Code:____________________ Date:__________________
Project Name:_____________________________________
Befitting Organization:_____________________________
Performing Organization:___________________________
Project Manager:__________________________________
HR Manager:_____________________________________

Human Resources:
Person Code Role/Resp Burdened Rate % Alloc to Proj Training

1. __
2. __
3. __
4. __
5. __
N. ___

Recruiting Needs:__
__

Team Building:__
__

Consulting:__
__

Contracting:___
__

Notes: __
__

Approvals

Benefiting Organization Performing Organization
By:____________________ By:___________________
Date:__________________ Date:__________________

Figure 13.17. Resource assignment matrix

TASK TEAM MEMBER

 Jane Tom Bill Mary

Task 1 P S

Task 2 P

Task 3 S P

Task 4 P S

296 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Software Engineering Institute (SEI; www.sei.cmu.edu/cmm-p/) also has a “people”
capability maturity model. Like their other maturity models, five levels of maturity are
defined, and each of these levels has key processes defined:

1. Initial.
2. Repeatable. The key process areas at Level 2 focus on instilling basic discipline

into workforce activities. They are:
• Work environment
• Communication
• Staffing
• Performance management
• Training
• Compensation

3. Defined. The key process areas at Level 3 address issues surrounding the
identification of the organization’s primary competencies and aligning its people
management activities with them. They are:
• Knowledge and skills analysis
• Workforce planning

Figure 13.18. Resource utilization

Figure 13.19. Resource Gantt chart

Stakeholder Management 297

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Competency development
• Career development
• Competency-based practices
• Participatory culture

4. Managed. The key process areas at Level 4 focus on quantitatively managing
organizational growth in people management capabilities and in establishing
competency-based teams. They are:
• Mentoring
• Team building
• Team-based practices
• Organizational competency management
• Organizational performance alignment

5. Optimizing. The key process areas at Level 5 cover the issues that address
continuous improvement of methods for developing competency, at both the
organizational and the individual level. They are:
• Personal competency development
• Coaching
• Continuous workforce innovation

As discussed earlier in this book, security aspects should not be ignored in HR planning,
and procedures such as background checks for all personnel (employees, contractors,
consultants, etc.) involved with a project are becoming more appropriate. It is no longer
sufficient simply to secure the perimeter physically and logically, but active security
procedures need to be implemented for those objects already inside of the perimeter.
Figure 13.20 shows the types of issues that should be addressed in a simple project
security plan.

Managing the Project Team

In general, a manager may play many roles. There are interpersonal roles such as
figurehead, leader, liaison, coach, motivator; informational roles including monitor,
disseminator, spokesman, reporter; and decisional roles such as conflict resolver,
entrepreneur, distance handler, resource allocator, negotiator, and facilitator. A project
manager, however, must play most of these roles, as project management is a more
comprehensive and perhaps more difficult type of management position. Like a line
manager, a project manager must deal with direct reports and must motivate these
individuals to do their best for the project, but like an upper manager, many and diverse
stakeholders (as defined earlier) are involved, and each of these stakeholders have
different interest in the success or failure of the project. In addition most projects will

298 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

bring about changes, which always introduces apprehensive and uncertainty into the job
situation.
The key responsibilities (i.e., things that a project manager must possess or do) are:

• Be honest and ethical
• Motivate staff and team
• Understand deliverables and quality in regard to the deliverables
• Be sensitive to organizational values and politics
• Assign meaningful tasks for each employee
• Provide something “to look forward to” for each employee
• Shared goals (employee/supervisor & employee/organization)
• Delegate; generally, give direction, not directions (depends somewhat on perfor-

mance, capabilities, maturity)
• Be a facilitator
• Be an example
• Be accessible and visible, then listen

Project Security Plan

Personnel (employees, vendors, contractors, users …)
 Work History Verification
 Background/Criminal Check
 Credit History Check
 Security Training
 Security Clearance
Access Control
 Log On (User Name & PW)
 Access Privileges
 Encryption
 Access Logs
 Review of Access Logs
Backup
 Incremental
 Full
 Recovery Testing
Physical
 Buildings
 Work Areas
 Central IT Facilities (servers, hubs, routers, firewalls …)
Software
 Code Security Walkthrough
 Trojan/Backdoor Scans
 Intrusion Prevention Software
 Code Randomization
 Intrusion Testing (Access, Session, Cookie, Buffer, XSS, Post/Get, …)
 Change Security Review

Figure 13.20. Project security plan

Stakeholder Management 299

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Look after the welfare of employees
• Be fair but firm
• Provide equal treatment for all employees

Conversely, an employee’s responsibilities to his or her manager are:

• Honesty about your capabilities, desires, and opinions; about work status; about
asking for help when you need it

• Cooperation/loyalty as team member, commitment to coworkers
• 100 % effort, commitment to work, team, and organization
• Keep superiors informed: Remember, bosses hate surprises!

A project manager must foster and encourage the above traits in his or her employees.
Managers and supervisors are charged with activities like planning, budgeting, organiz-
ing, staff assignment, and control (taking corrective action). Leaders also assume
activities such as projecting a vision, setting direction, inspiring teamwork, aligning
employees and business units, motivating, and supporting. Project managers should be
both.
Projects bring about change, thus it is important that a PM create and communicate a clear
and important vision to his or her team. Thorns and Kerwin (2004) define vision as follows:

A vision is a cognitive image of an organization or project team that is positive enough
to followers to provide motivation and elaborative enough to provide direction for
planning and goal setting.

A vision and the goals derived from it should be challenging yet obtainable, and
somewhat idealistic. PMs should show optimism about the project goals and have a
positive attitude. Projecting the vision to the team and organization in a very positive
manner is somewhat akin to being a visionary; being such a visionary is a key trait of an
effective leader.
There are many theories of leadership; and leadership and management needs and styles
vary somewhat by industry and discipline. For IT, leadership theories that deal with
professional types of organizations and people are more applicable. The Situational
Leadership Model (Hersey, 1977) is quite applicable for IT projects. It deals with the type
of management style that may be most appropriate for different types of individuals
depending upon their experience/capabilities versus their self motivation/initiative.
In this theory, management style is represented in two dimensions. The first dimension
is directive (management) or task-oriented behavior, and the second dimension is
supportive (leadership) or relationship-oriented behavior:

300 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Directive (management): Structure, Control, Supervision
• Supportive (leadership): Listen, Praise, Empower, Facilitate

This is illustrated in Figure 13.21. There are four quadrants representing four types of
management style:

• Directing: High directive and low supportive
• Coaching: High directive and high supportive
• Supporting: High supportive and low directive
• Delegating: Low supportive and low directive

In addition to the four types of management styles there are five levels of employees:

• L0 - Low competence and low initiative
• L1 - Low competence and high initiative
• L2 - Some competence and low initiative
• L3 - High competence and some initiative
• L4 - High competence and high initiative

Competence in this instance means task-relevant knowledge, skills, and experience.
Initiative means self-motivation and confidence. There is a natural evolutionary path for
most professionals:

Figure 13.21. Management styles

Directive (task-orietation) ->

Supportive
(relationship

oriented)

Supporting Coaching

DirectiveDelagating

Stakeholder Management 301

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

L1 -> L2
New employee is L1 (full of enthusiasm but with little job-specific knowledge). After
a while, the employee realizes that there is a still a lot to learn therefore, his or her
competence goes up while initiative goes down

L2 -> L3
Employee knows most things needed in job, and some initiative is restored

L3 -> L4
Employee fully knows job and thus has high initiative

For best results, managers needs to match their management style to the employee’s level
of development:

• L0 -> Reassign, transfer, or terminate
• L1 -> Direct
• L2 -> Coach
• L3-> Support
• L4 -> Delegate

Thus, for employees with low competence and low initiative, a project manager should
avoid having any such people on the team. For employees with low competence and high
initiative, a project manager should use a directing style. For employees with some
competence and low initiative, a project manager should use a coaching style. For
employees with high competence and some initiative, a project manager should use the
supporting style. For employees with high competence and high initiative, a project
manager should use the delegating style (stay out of their way).
The ability to delegation is often a problem for managers, particularly managers in
professional occupations (like IT) and particularly for managers who have come up
through the technical ranks. Most managers who do not delegate well are really afraid
of losing control. These managers need to ask themselves, “What have I got to lose by
delegation?” and then find ways to mitigate such potential losses. Such mitigation
techniques include:

• Giving clear direction
• Monitor progress in a quantitative manner
• Building milestones into schedules
• Providing explanations and assistance if and when needed
• Monitoring team attitudes such as via quality stage gates

302 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In contrast, they can ask themselves: “What have I got to gain?” and the answer to this
question is typically a list of valuable items. Specific delegation techniques include:

• Delegate outcomes with the tasks
• Do not give team members ill-defined or unsolvable tasks
• Delegate only to people you trust (or should trust)
• Clearly point out to team members the consequences of this assignment to the

organization and to them
• Delegate small tasks at first, the add more tasks as the first are handled well
• Have a reporting system so that you catch little problems before they become big

problems (i.e., quality and management stage gates with earned value systems
which are discussed later in this book)

• Ask the team member to develop the estimates and milestones (even if you may
know what they should be, to obtain buy-in form that team member)

• Do not delegate tasks that should be automated
• Do not delegate tasks that only you can do

PMs sometimes have some degree of difficulty in getting people to perform and
cooperate, particularly in a matrix-type setup. Organizational power types were dis-
cussed earlier, including position (and its subtypes: reward, penalty, referent), political,
resource, and expert. In a functional or matrix organization, the PMs must rely on powers
other than formal position power. The most effective forms of power for a PM are typically
expert and reward; less effective is penalty and referent. Formal, reward, and penalty are
powers derived mainly from position; expert power is earned. True leadershipis not
based on position, but being able to motivate people in other ways. If you have to use
formal power to tell your staff you are the leader, you’re not!
Motivation is an internal drive that initiates and sustains activity toward specific goals.
An effective manager and leader must know how to motivate others, especially PMs with
little formal power. An employee, even if fully capable, will not reach full (or perhaps even
adequate) performance without motivation. Motivation may be derived from external
sources (extrinsic) or from internal sources (intrinsic). Internal motivation is derived from
the satisfaction of either doing or completing a task/activity. External motivation comes
from a reward system based upon successful completion of a task/activity. Our hobbies
and leisure activities generally involve internal motivation. Our employment activities
generally involve external motivation, but for some there may also be much internal
motivation (you really like your job).
Henry Gantt (1861-1919), who developed the Gantt chart, focused on motivational
schemes, emphasizing rewards for good work (rather than penalties for poor work). He
developed a number of such systems including incentive pay systems for groups and
bonus systems for individuals. In management science, there are a number of motivation
theories; the most applicable for professional work as IT are:

Stakeholder Management 303

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Maslow’s theory (hierarchy of needs)
• McGregor’s theory (X and Y types)
• Herzberg’s theory (hygiene and motivating agents)
• Expectancy theory
• Equity theory

In Maslow’s theory, people are motivated based upon their level in a hierarchy of needs
(from lowest to highest):

• Physiological: Air, water, food, shelter, clothing
• Safety: Security and freedom from harm
• Social: Love, approval, friends, association
• Esteem: Accomplishment, respect, attention, appreciation
• Self-Actualization: Self fulfillment, growth, learning

If one is satisfied with one level, then they will be motivated to get to the next level; and
until satisfied with one level, they will not care about the next level
McGregor’s theory state that all workers fall into one of two categories:

• Theory X: These workers need to be closely supervised; they are incapable, avoid
responsibility, and avoid working whenever possible [“No” (X) people]

• Theory Y: These people are wiling to work without supervision and want to achieve
[“Yes” people]

In my experience for IT projects:

• One third of people fall into category X
• One third of people fall into category Y
• One third of people’s motivation can be significantly influenced by their manage-

ment

Herzberg’s theory defines poor hygiene factors that reduce motivation and good
hygiene factors that foster motivation. To maintain motivation, poor hygiene factors
need to meet adequate levels, but improving them further will not necessarily improve
motivation. Adequate levels may be subjective, but are usually industry standard levels.
These poor hygiene factors are:

304 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Working conditions
• Salary
• Personal life
• Relationships at work
• Security
• Status

The good hygiene factors or motivating agents involve the work itself for professional-
type employees as:

• Responsibility
• Self-actualization
• Professional growth
• Recognition

Under expectancy theory, employees who believe their work efforts will lead to good
performance and who expect to be rewarded for their accomplishments, remain produc-
tive as rewards meet their expectations. With equity theory, employees must believe that
they are being treated in a similar manner to other employees; otherwise they will lose
their motivation.
To adequately motivate IT project team members, I believe that a combination of methods
that consider each of the major theories is best:

• Adequate (industry standard) working conditions, salary, benefits, security, and
so forth

• Equity between employees
• Interesting and challenging assignments
• Delegation of responsibility
• Rewards (financial, position, office location, other perks) based upon performance
• Public recognition and praise (praise in public, criticize in private)
• Staff development (i.e., training)
• Other “team-building” methods

Team building is included in the list, and one of the responsibilities of the PM is to
encourage and facilitate the involvement and contribution of all the stakeholders in the
project and for each to feel a part of the team. Team building requires a deliberate and
continuous effort on the part of the PM. There are many management theories concerning
team building; a prominent one is the Tuckman model, which describes the phases of team
development as Forming, Storming, Norming, and Performing (Tuckman, 1965). Tuckman’s

Stakeholder Management 305

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model explains that as the team forms and becomes more adapt at the tasks, relationships
develop and solidify. The team leader also changes leadership style beginning with a
directing style, moving through coaching, then supporting, and finally delegating, as
was described earlier in this chapter. Whenever diverse people are brought together in
a team, some time is necessary for them to evolve from a group of individuals into a team.
Figure 13.22 illustrates the differences between a group and a real team. Team-building
activities facilitate and expedite team “forming and storming,” and these activities should
start very early and proceed throughout the entire project. Specific opportunities for team
building include:

• Kick-off meeting
• Requirements review
• WBS specification
• Overall design review
• Prototype review
• Communication of status via stage gate meetings
• Staff development (project team training and end user training)
• Testing review

Tight organizations involving some colocation also foster team building such as a war
room. This war room need not be physical, but may be a virtual meeting place via
synchronous electronic communication.
Some conflict is unavoidable in any effort among many people (such as a project) due
to the number and differing agendas and priorities of all the stakeholders. The limited
authority of the PM and his need to compete for scarce resources (budgets and people)
in the organization also leads to conflict. The classical view was that conflict is bad and
that it happens in a dysfunctional group without good leadership. But the modern view
is that conflict is inherent in teams and organizations and that conflict can be helpful to
explore more solution alternatives. Another older view was that conflict could be
resolved by separating the conflicting parties or by going up the management chain. But
separation or upper management involvement is at best only a temporary solution. The

Figure 13.22. Groups vs. teams

Characteristics of a “Group” Characteristics of a “Team”
Individual performers Common goals

Responsibilities may drift Task based structure
Mostly “organizational” meetings Mostly progress or problem resolution

meetings
Individual egos Collective ego

Members have other more important duties This is a major activity for each
Relative isolation Much connection (either physically or

electronic)

306 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modern view is that conflict is best resolved through identification of the root causes and
by problem solving discussions of the parties involved.
The main sources of conflict on a project in order of frequency are (PMI, 2000) as follows:

• Schedules
• Priorities
• Resources
• Technical opinions
• Administrative procedures
• Cost
• Personalities

Many people think that personality differences would be a major conflict source, and in
some situations this may be still be true, but professional employees tend to put aside
personality differences (or hide them) so that they can effectively negotiate their
interests in terms of schedules, priorities, resources, and so forth. There are some
management techniques that the PM can employ to avoid or at least minimize conflicts:

• Keep the team and other stakeholders informed:
• Project goals and objectives
• Schedule and cost
• Assignments (task and times)
• Changes (schedule, scope, assignments, etc.)
• Other key project decisions
• Assigning tasks fairly and clearly (who, what, when)
• Design tasks to be relevant, interesting, doable yet challenging
• Monitoring team attitudes such as via quality stage gates

The main techniques for formal conflict resolution are:

• Compromising: Identifying an acceptable solution that gives all the parties some
degree of satisfaction

• Withdrawal: Postponing a solution decision until a later point in the project
• Smoothing: Focusing on the things the parties agree on and avoiding dealing with

the other issues for the present
• Forcing: Mandating one proposed solution over the other
• Structured Problem Solving: Identifying root causes then solving the real problem

Stakeholder Management 307

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Withdrawal and smoothing are effective when a solution to the problem is not needed
until later in the project—perhaps by then more information may be available, the issue
may be less important, or the conflicting parties may have resolved it amongst them-
selves—but when a decision is needed immediately, many PMs and/or line managers
result to forcing. However, forcing is not nearly as effective as structured problem
solving in the long run. Smoothing is also more effective in the long term when structured
problem solving cannot be used due to time, distance, or other constraints. In regard to
conflict resolution and other decision making, there may be additional constraints
imposed upon the PM in some organizations due to organizational structure, union
agreements, quotas and regulations, and industry or government codes and standards.

Chapter Summary

In this chapter, the human aspects of project management were covered, including
stakeholder management, project communications, and human-resource management.
These plans are all highly interrelated, and also related to the project risk and security
plans (which was also discussed in this chapter). According to Baker and Baker’s (1998)
12 golden rules of project management:

1. “Thou shalt gain consensus on project outcomes.
2. Thou shalt build the best team you can.
3. Thou shalt develop a comprehensive, viable plan and keep it up-to-date.
4. Thou shalt determine how much stuff you really need to get things done.
5. Thou shalt develop a realistic schedule.
6. Thou shalt not try to do more than can be done.
7. Thou shalt remember that people count.
8. Thou shalt gain the formal and ongoing support of management and stakeholders.
9. Thou shalt be willing to change.
10. Thou shalt keep people informed of what you’re doing.
11. Thou shalt be willing to try new things.
12. Thou shalt be a leader as well as a manager.”

References

Baker, S., & Baker, K. (1998). The complete idiot’s guide to project management.
Indianapolis, IN: Alpha Books.

308 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cleland, D. (1998). Stakeholder management. In J. Pinto (Ed.), Project management
handbook. New York: Jossey-Bass.

Hersey, P., & Blanchard, K. (1977). The management of organizational behavior. Upper
Saddle River, NJ: Prentice Hall.

Melymuka, K. (2004, April 12). How to pick a project team. Computerworld.
PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,

PA. ISBN 1-880410-22-2.
Thorns, P., & Kerwin, J. (2004). Leadership of project teams. In P. Morris & J. Pinto (Eds.),

The Wiley guide to managing projects. New York: Wiley.
Tuckman, B. (1965). Developmental sequence in small groups. Psychological Bulletin,

63, 384-399.
Winch, G. (2004). Managing project stakeholders. In P. Morris & J. Pinto (Eds.), The Wiley

guide to managing projects. New York: Wiley.

Performance Reporting and Earned Value Analysis 309

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Performance
Reporting and

Earned Value Analysis

Never mistake motion for action.
(Ernest Hemingway)

A PM must report on the project’s performance to the upper management of the
performing organization and perhaps also to the benefiting organization. Upper manage-
ment usually realizes the complexity and rapid dynamics of IT projects, however, it still
needs accurate projections of project completion time and cost so that interdependent
business activities, including product release/migration can be planned. Traditional
methods of progress-performance reporting are often inaccurate and misleading. Earned
value analysis (EVA) has proven to be an extremely effective tool for project time and
cost management providing good estimates of actual project completion cost and date.
EVA is also is a good early indicator of project problem areas, so that appropriate
corrective action can be initiated. The effective use of earned value in IT projects,
however, is still low, particularly outside of the U.S. government and its contractors.
The application of EVA in IT projects is neither trivial nor straightforward because earned
value requires careful planning and reporting in regard to work-packet specification,
progress measurements, and actual cost determination. In addition, mechanisms to
obtain all this information must be integrated into the organization’s project manage-
ment, software engineering methodology, and financial reporting systems. This chapter
discusses and illustrates effective ways to integrate EVA into an organization’s meth-
odology and financial systems, and also presents specific techniques to deal with
associated EVA complexities.

310 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Traditional Performance Reporting

A PM needs to track and review progress and cost, but should not intervene directly
unless there are problems. When there are problems, early intervention is more effective
than delaying corrective actions; thus the PM needs methods and systems that not only
accurately and efficiently track cost and progress but that also highlight problems and
pinpoint the trouble spots. The problem is that traditional project progress reporting is
neither accurate nor effective in the early identification of problems, nor in projecting cost
or time to complete.
For illustrating traditional reporting problems and the merits of EVA, I will use a simple
yet effective example from previously published works (Brandon 1998, 1999). An earlier
chapter discussed the formation of the WBS for a project; and that formulation involves
subdividing the work to be done into tasks, or work packets, which are organized into
a logical pattern.
For this example, the WBS consists of Level 0 and Level 1, shown graphically in Figure
14.1 for Level 0, and for both levels in the list format of Figure 14.2. As discussed in an
earlier chapter, the top level of the WBS is sometimes called Level 1, but in IT, the top
level is usually numbered Level 0.
As discussed in an earlier chapter, in IT the work definition is usually based on the
organization’s software development methodology. Any type of methodology can be
used (waterfall, overlapping waterfall, spiral, iterative, incremental, etc.), but this example
uses use a classical waterfall methodology. Iterative and incremental methodologies can
be more difficult to schedule and employ EVA because one does not know in advance
how many increments or iterations may be necessary. However, a schedule and EVA cost
plan can be set up for each iteration (at the beginning of that iteration). Alternatively,
a “bounding box” methodology can be used. As was discussed earlier in the book, a time
or cost boundary is established for the phase of the project being scheduled and costed.
Typically, each work packet is assigned to an organization at the upper WBS levels and
to individuals at the bottom WBS levels. The organizational structure may also be

Figure 14.1. Example WBS (Level 0)

Example
Project

Planning &
Staffing

Prototype
Design

Construct
Prototype

Evaluate
Prototype

Full Design
Specs

Documentation

Site Preparation

Construction

Test
Certification

Finishing

Maintenance
and Training

Performance Reporting and Earned Value Analysis 311

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

represented in a hierarchically manner typically called an organizational breakdown
structure (OBS). The amount and type of cost to complete each work packet is then
estimated, and then those costs are rolled-up to the higher WBS levels. For IT projects,
most packets involve only labor and the amount of work can be estimated by any of a
number of techniques described earlier in the book. Resources to perform the work are
identified either generically or specifically for each packet and may be coded by using
a resource breakdown structure (RBS). Each packet also typically has one type of cost
(labor, travel, materials, etc.), coded by an element of cost (EOC) breakdown or general
ledger (GL) account number. If the full GL account number is used, reconciliation to the
organization’s accounting system may be easier.

Figure 14.2. Example WBS

Level Zero Level One
Planning & Staffing

 Project Plan
 Resource Commitments

Prototype Design
 Requirements
 Design

Construct Prototype
 Detail Design
 Construction

Test/Evaluate Prototype
 Test Plan Development
 Component Testing
 Full Testing
 Destructive Testing
 Test Documentation

Full Design Specs
 External Specifications
 Internal Specifications

Documentation
 Internal Specifications
 Required Documents

Site Preparation
 Site Design
 Site Construction

Construction
 Component Construction
 Component Assembly

Test/Certification
 Test Plan Development
 Component Testing
 Full Testing
 Destructive Testing
 Test Documentation

Finishing
 Component Finishing
 Assembly Finishing

Maintenance and Training
 Maintenance Personnel
 Supervisory Personnel

312 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Thus, each work packet is the intersection of these coding dimensions, and it has a
detailed objective and work description plus a specification of WBS, OBS, RBS, EOC,
estimated cost, and dependent tasks. “The work package usually has a short-time span
schedule (40 to 100 hours), is limited to one performing department, and has defined
completion criteria” (Kiewel, 1998). When these tasks are “rolled-up” the WBS hierarchi-
cally, the total cost plan is derived as shown in Figure 14.3 in spreadsheet form for the
example project herein. This is also illustrated graphically in Figure 14.4.
In developing the cost plan using a bottom-up estimation method, each Level 0 WBS item
would be further broken down into another spreadsheet that shows the estimated cost

Figure 14.3. Project cost plan in spreadsheet

Project Cost Plan

 Ja Fe Ma Ap Ma Jn Jl Au Se Oc No De Total

Planning & Staffing 3 2 5
Prototype Design 3 3 6
Construct Prototype 8 8 16
Evaluate Prototype 5 10 15
Full Design Specs 5 6 3 14
Documentation 2 2 1 1 1 1 8
Site Preparation 8 3 3 14
Construction 20 50 50 20 140
Test/Certification 10 6 4 20
Finishing 8 4 12
Maintenance Training 4 4

 Monthly Cost 3 5 11 13 15 16 28 54 61 27 13 8 254
 Cumulative 3 8 19 32 47 63 91 145 206 233 246 254

Figure 14.4. Project cost plan graph

Project Cost Plan

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

C
os

t

Performance Reporting and Earned Value Analysis 313

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 14.6. Cost breakdown in contracts

Planned Cost of Known Work

Unpriced Work
(undistributed budget)

Management Reserve

Award Fee or
Incentive

Performance Management
Baseline

Total Project
Budget

and schedule for associated the level one work packets, as shown in Figure 14.5 (for one
of the level zero items).
This cost plan is sometimes called the planned cost based on known work and may
include risk factors at the individual WBS work-packet level. The inclusion of added cost
based upon risk factors at the WBS work-packet level (mainly estimation risk factors) and
overall project risk was discussed in Chapter VIII. There may also be some unpriced
additional (real or suspected) work added which brings the cost up to the expected work
cost or the performance measurement baseline (PMB). The difference between the
expected work cost and the planned cost based upon known work is called the
“undistributed budget.” The undistributed budget is for known work and sometimes
used as a holding account until a formal contract change is made (and new WBS codes
are added).
The project manager generally has responsibility to manage to the performance measure-
ment baseline. In addition a management reserve may be added as a reserve for overall
project risks, including unforeseen work that is still within the overall scope of the
project. The performance measurement baseline plus the management reserve adds up

Figure 14.5. Cost plan for prototype

Test/Evaluate Prototype

 A M J J A S O N D Plan
Test Screens 3 3
Test Reports 2 2
Test Processing 2 2
Audit Trail Verify 4 4
Destructive Testing 4 4

 Monthly Plan 5 10 0 0 0 0 0 0 0 15

314 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the total project budget (or, for a contract situation, the negotiated cost). This is
illustrated in Figure 14.6.
In contracting situations, the total contract price for a project will include a profit for the
contractor. The performance measurement baseline normally excludes the profit for
performance calculations (i.e., EVA) on both the part of the contractor and the buying
organization in the case of cost-plus-fee contracts. In time and material contracts it is
normally included, because it is typically built into the rate structure of the resources.
As the project progresses, actual costs are incurred by the effort expended in each work
packet. Hopefully, these actual costs are measurable at least in total, as they may not be
measurable for each work packet at the lower levels of the WBS (this is discussed later).
However, the relative amount of things to be accomplished within the work packet that
has actually been completed (percentage complete) can be estimated. The planned cost
may change in time also (change orders), and thus work packets may need to be
reestimated or new ones added or deleted. Figure 14.7 shows an example of a Microsoft
Project entry screen for entering progress information. In Microsoft Project, cost
information cannot be directly entered (without altering system defaults), but it is
typically input via resource utilization, where resources have been given a particular rate.
For tasks that span multiple progress reporting time periods, Microsoft Project generally
assumes a linear distribution of both planned and actual costs across the task (although
some front-loading or back-loading contouring patterns may be used).
Figure 14.8 shows an example of the Web-based FiveAndDime screen for entering
progress information and cost data (a progress transaction). FiveAndDime has other
screens for simplifying the labor entry process, illustrated later in this chapter.
There are several types of traditional performance reports. One type is status reports that
describe the time and cost spent on each WBS item rolled up to the reporting level. The
reporting level is typically Level 0 or Level 1. These may be displayed in a list format, or
in a WBS tree diagram showing the person hours and/or dollars spent for each item. The
progress report is a very popular report that describes what has been accomplished in
terms of percentage complete by task. This information is typically shown superimposed

Figure 14.7. Task form in Microsoft Project

Performance Reporting and Earned Value Analysis 315

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 14 .9. Gantt chart

on the Gantt chart as percentage complete numbers inside of the bars or shading a portion
of each bar in an amount proportionate to the percentage-complete value. An example
of this is shown in Figure 14.9. There are also variance reports that compare actual values
to planned values, usually in terms of cost either measured in currency or person-hours.
This is usually reported for the entire project or at Level 0. Trend reports show metrics
as a function of time, and common metrics to plot are planned costs, actual costs, or
overall percentage complete. Figure 14.10 is an example of this for planned and actual cost
in currency (dollars). Forecasting reports extrapolate trend curves.
For most organizations using traditional progress reporting, two types of displays are
presented to management: progress data and cost data. Progress data are typically
shown in a Gantt or similar type chart, as is shown in Figure 14.9 for the example project
here.

Figure 14.8. Progress transaction form

316 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cost data are typically reported as actual cost for the entire project versus planned cost,
as is shown in Figure 14.10 for the example here. In that figure the planned cost curve is
marked with the diamond symbols, and the actual cost curve is marked with the triangle
symbols.
The problem with these usual methods is that they do not provide a clear quantitative
picture of the true project status, nor do they provide a quantitative means for extrapo-
lating project cost to complete or completion date. For the example project here,
consider the Gantt chart above (which also shows the task percentage complete as dark
bars stripes inside the bars) and the actual cost versus budget graph. The project is not
over budget (actual cost of $83,000 versus planned cost of $91,000), however it is hard
to determine if it is on schedule or not. Actually this project is well behind schedule and
is over-spent as the forthcoming earned value analysis will show.

Earned Value Analysis

Earned value (EV) is basically the value (usually expressed in currency) of the work
accomplished up to a point in time, based upon the planned (or budgeted) value for that
work. The original U.S. government’s term for earned value is budgeted cost of work
performed (BCWP). EVA (or EVM—earned value management) is a progress-versus-
plan–based metric to evaluate the true performance of a project in terms of both cost
deviation and schedule deviation. It also provides a quantitative basis for estimating
actual completion time and actual cost at completion; EVA can provide an early warning

Figure 14.10. Planned and actual cost plan graph

Pla n a nd Actua l Cost

0

50

100

150

200

250

300

Jan Feb Mar A pr May Jun Ju l A ug Sep Oc t Nov Dec

M on th

C
os

ts

Performance Reporting and Earned Value Analysis 317

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of project time and/or cost problems as early as 15% into the project (Fleming &
Koppelman, 1998).
The EV concept has been around in several forms for many years, dating back to cost
variance metrics defined in the 1950s. In the early 1960s, program evaluation review
technique (PERT) was extended to include cost variances and the basic concept of earned
value was adopted therein. PERT did not survive, but the basic earned value concept did.
That concept was a key element in the 1967 U.S. Department of Defense (DoD) policy
called “cost/schedule control systems criteria” (C/SCSC). Early implementations of C/
SCSC met with numerous problems, the most common of which was overimplementation
due to excessive checklists, data acquisition requirements and other paperwork, special-
ist acronyms, and overly complicated methods and tools. “Much of the criticism that has
been levied on earned value in the past was due to an inflexible and dogmatic approach
that was applied in the early days” (Webb, 2003). However, after several decades of
refinement, C/SCSC is now very effective and the U.S. government has accumulated many
years of statistical evidence supporting it. Also in the last decade, initiatives within DoD
have been successful in removing excessive and ineffective components of the C/SCSC
(Abba, 2000). The C/SCSC have now been successful, and have met the test of time for
nearly 3 decades on major government projects (Abba, 2000).
EVA methods have migrated and evolved throughout the world and are now internation-
ally recognized as an effective project management tool. However, these methods have
not been widely applied in IT projects (Christensen & Ferens, 1995). Also, until recently
EVA use was still minimal outside of the U.S. government and its contractors (Fleming
& Koppelman, 1996). There are several reasons for this continued lack of use, including
the overcomplication of some surrounding methodologies and procedures, the human
factors involved in gathering the necessary input data, the careful planning and WBS
setup required, and integrating of EVA effectively with other management information
systems. Methods for overcoming these obstacles in general were discussed in the
Project Management Journal (Brandon, 1998), and such effective methods for IT
projects are discussed later in this chapter.
Earned value terminology was originally formalized in DoD standard 7000.2. The ANSI
standard (ANSI/EIA-748-1998) on earned value management systems (EVMS) was
approved in May of 1998. In 1999 the DoD adopted the ANSI EVMS Standard for use on
defense acquisitions. Other governments and organizations have adopted similar stan-
dards for earned value such as the Canadian General Standards Board (CGSB 187.1-93
November 1993). These EVMS guidelines incorporate best business practices for EVA
systems that have proven to provide solid benefits for enterprise planning and control.
In EVA, the three key terms and definitions are:

• BCWS: Budgeted cost of work scheduled (the cumulative planned cost) as of a
certain point in time

• ACWP: The cumulative actual cost of work done as of a certain point in time
• BCWP: This is the “earned value” and is determined from the product of the

budgeted cost of each work packet times the percentage complete of each work
packet as of a certain point in time

318 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For this example, Figure 14.11 shows the EVA calculation through July. Note that the
calculation of EV does not involve actual costs, but is simply the product of the
percentage complete and the planned cost.
Percentage complete is determined for each work packet and then EV is calculated for
each packet. The total project earned value at a point in time is determined by a WBS rollup
of the EV values. For example if a packet had an estimated total cost of $10,000, and if the
things to be done in the packet were 70% complete (or 70% of the things were done), then
the earned value would be $7,000. A WBS rollup example is shown in Figure14.12, for the
level one tasks corresponding to the Level 0 item of evaluate prototype.
Variances between the three values BCWS (planned cost), BCWP (earned value), and
actual cost (ACWP) yield the earned value metrics. There are earned value metrics
available for both cost and schedule variances. The cost metrics are:

• Cost Variance (Dollars) = BCWP - ACWP
• Cost Variance (%) = (BCWP - ACWP) * 100/BCWP

Figure 14.11. EV calculations in spreadsheet

Earned Value—Through July
 J F M A M J J … Plan % C EV

Planning & Staffing 3 2 5 100 5
Prototype Design 3 3 6 100 6
Construct Prototype 8 8 16 100 16
Evaluate Prototype 5 10 15 80 12
Full Design Specs 5 6 3 14 50 7
Documentation 2 2 8 12 0.96
Site Preparation 8 3 14 36 5.04
Construction 20 140 15 21
Test/Certification 20 0 0
Finishing 12 0 0
Maintenance Training 4 0 0
 Monthly Plan 3 5 11 13 15 16 28 … 254 73
 Cumulative 3 8 19 32 47 63 91 …

 Monthly Actual 4 4 10 11 12 15 27 0 83
 Cum. Actual 4 8 18 29 41 56 83

Figure 14.12. EV calculation for prototype activities

 Ap Ma … Plan % C Value

Test Plan Devel. 3 3 100 3
Unit Testing 2 2 100 2
Full Testing 4 4 100 4
Destructive Testing 4 4 50 2
Test Documentation 2 2 50 1

 Monthly Plan 5 10 0 15 80 12

Performance Reporting and Earned Value Analysis 319

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Cost Performance Index (CPI) = BCWP/ACWP
• Estimated Cost at Completion (EAC) = ACWP + (BAC - BCWP)/CPI
• Or in its simpler form, EAC = BAC/CPI

Where BAC is the budget at completion, ACWP is a sunk cost and (BAC - BCWP) is the
estimated remaining work. The CPI is also called the cost efficiency factor; values less
than 1 indicate that the project is costing more than planned, or that one is getting CPI
of a dollar for each $1 spent. This is good prediction formula if one expects that future
performance will be similar to past performance. There are several other (EAC) formulas,
and the most appropriate depends upon project type, whether past performance is a good
indicator of future performance, and when in the project the EAC is calculated (Christensen
et al., 1995). The PMI PMBOK (PMI, 2000) provides this formula when past performance
is not expected to be a good indicator of future performance:

EAC = BAC – (BCWP – ACWP),

which is the budget at completion adjusted for the cost variance. Here one is assuming
that corrective action will be effective so that the poor performance of the past will not
continue and future performance will follow the original plan.
The schedule metrics are:

• Schedule Variance (Dollars) = BCWP - BCWS
• Schedule Variance (Months) = (BCWP - BCWS)/(Planned Cost for Month)
• Schedule Variance (%) = (BCWP – BCWS) * 100/BCWS
• Schedule Performance Index (SPI) = BCWP/BCWS
• Estimated Time to Complete (ETTC) = ATE + ((OD – (ATE * SPI))/SPI
• Or in a simpler form, ETTC = OD/SPI

Where ATE is the actual calendar time already expended and OD is the original duration.
The SPI is also called the schedule efficiency factor; values less than 1 indicate that the
project is taking more time than planned. In the example project herein, the schedule
variance is 0.67 months (behind schedule) and the cost variance is $10,000 (overspent).
The estimated time to complete is 15 months instead of the 12 months planned, and the
estimated cost to complete is $289,000 instead of $254,000. The calculation of these
numbers for our example using the previous formulas is implemented in the spreadsheet
of Figure 14.13.
Figure 14.14 shows a display from the Web-based FiveAndDime system for this same
example showing EVA calculations (as well as percentage complete and cost data) using
a “super-charged” Gantt chart format. The color in the Gantt chart bars is green for
completed tasks, yellow for tasks in progress, and orange for tasks not yet started. The

320 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

last column for percentage complete shows a ratio where the numerator is the rolled up
percentage complete and the denominator is the percentage complete that should have
been obtained as of the reporting date; the value of that ratio is actually the SPI for that
task. WBS codes that have either the CPI or SPI below unity are displayed in red.
The EV can be projected onto the planned cost (BCWS) curve to graphically show
deviations. This is illustrated in Figure 14.15, which shows the planned cost and actual

Figure 14.13. EV variance calculations in spreadsheet

Schedule Variances
 Budgeted Cost of Work Scheduled (BCWS) 91
 Budgeted Cost of Work Performed (BCWP, EV) 73

 Schedule Variance (Dollars) -18
 Schedule Variance (Months) -0.67

 Schedule Efficiency Factor 0.8
 Estimated Time to Complete (Months) 15

Cost Variances
 Actual cost of Work Performed (ACWP) 83
 Budgeted Cost of Work Performed (BCWP, EV) 73

 Cost Variance (Dollars) -10
 Cost Variance (Percent) -3.9

 Cost Efficiency Factor 0.88
 Estimated Cost at Completion 289

Figure 14.14. EV display in Gantt table

Performance Reporting and Earned Value Analysis 321

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cost curves for a project analysis, for this example, through July. The schedule variance
in time is also shown in that figure along the time axis.
There are other formulas that can be used for ETTC, and some may be better as a project
draws closer to completion. In addition, there are EAC formulas that use both the CPI and
SPI, and a popular one that is often called the “pessimistic” or “most likely” formula is
(Webb, 2003):

EAC = ACWP + (BAC-BCWP)/(SPI * CPI)

If the SPI is more than 1, then this formula would be less appropriate. The critical ratio
(CR) is the product of SPI times CPI; it is also called the cost-schedule index. The CR is
the single most important overall metric for time and cost performance. Plotting CR (and
also CPI and SPI) versus time is an excellent way to view overall project cost/time health
over time and spot trends. Some project management software systems use a dashboard
or traffic light indicator for project overall health, and the green-orange-red status color
is a function of the project’s CR.
The earned value metrics of CPI, SPI, CR, and EAC are very appropriate and useful in the
great majority of projects. However ETTC is problematic and less reliable and should only
be used as a very rough estimate (Webb, 2003). Whenever the overall project or any
critical task activities go beyond their planned time, then the formula for ETTC goes
negative. One adjustment is to modify the previous ETTC formula if the project is already
past the original duration (OD):

ETTC = OD/SPI

Figure 14.15. Graphical EV analysis

Time ->

^
Dollars

(or manhours)

BCWS
ACWP

X
BCWP

BCWP

Schedule
Variance

Cost
Variance

Plan Cost Curve

Actual Cost Curve

322 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, a more detailed analysis would yield better results. In a more detail analysis,
all incomplete tasks would be reestimated using one of the two ETTC formulas depending
upon whether the original duration had been exceeded or not. Then a new critical path
would be determined; then from that new critical path a new ETTC found.
EVA greatly facilitates management by exception. When there is a problem with a project
as indicated by CPI and/or SPI less than unity, one can drill down in the earned value
analysis to lower levels of the WBS. For example, if the overall project index(s) is below
unity then one can view the Level 0 WBS codes that have their indexes below unity and
then so on to the next level (Level 1 for our example). Some project management software
supports this drill down capability and some software systems allow a PM to drill down
interactively. Figure 14.16 is a screen shot from FiveAndDime showing a drill down from
Level 0 to Level 1. This was accomplished by clicking on a particular WBS code (evaluate
prototype) on the Level 0 display (Figure 14.14, where WBS codes with a CPI or SPI below
unity are shown in red).

Effective Implementation of EVA

If earned value analysis is so useful, then why is not used more in industry and in
particular for IT? There are several reasons for this. First, commercial awareness of earned
value is still low; corporate training courses rarely discuss earned value, and there is still
relatively little in commercial print on the subject (Brandon, 1999). Even recent compre-
hensive books on software development project management do not include earned
value (Hallows, 1998; Yeates & Cadle, 1996). Second, the data acquisition required (for

Figure 14.16 EV drill down

Performance Reporting and Earned Value Analysis 323

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

obtaining percentage complete and actual cost numbers), if implemented in a by-the-
book method, may be too costly and time consuming. Third, earned value reporting has
not been handled in a usable manner by most project management software. And last,
there can be significant employee and contractor resistance problems when trying to put
EVA into practice.
Timely and reasonably accurate progress reporting is necessary for EVA, but this data-
acquisition process must be easy and inexpensive. Providing for easy and effective data
acquisition requires that the methods used are nonintrusive yet provide for the neces-
sary accuracy. Nonintrusive means that very little extra effort is required by project team
members or managers to provide the input data for the analysis. The goal is to implement
the necessary data acquisition as a by-product of existing corporate reporting or payroll
(“time and attendance”) procedures where possible. The key issues in the effective
implementation of EVA are (Brandon, 1999):

• Setting appropriate work-packet size
• Progress reporting (defining and obtaining percentage complete information)
• Actual cost basis
• Level of effort tasks
• Human resource issues

If work packets are too small, then project team members will be required to acquire and
report excessive data. If work packets are too big, then performance will not be measured
frequently enough to allow effective corrective action. If project performance is to be
measured monthly (the most common interval), then the work packets should be smaller
than a month, such as a week or two. It is a best to tie the maximum size of work packets
to the progress and effort data acquisition frequency, especially where employee labor
is a significant cost item, as is the typical case with IT projects. In an earlier chapter, WBS
packet size was discussed; a recap of the criteria for the packet size is:

• Are realistically and confidently estimable
• Cannot be (or should not be) logically subdivided
• Are to be assigned to one OBS/CBS code
• Can be completed relatively quickly (80 hours maximum rule of thumb; I prefers a

maximum of 40 hours)
• Have a meaningful and measurable conclusion and deliverable
• Have enough “visibility” so that progress and cost can be determined
• Can be completed without interruption (i.e., need for more info)

As stated above, each work packet should be assigned to one organization which is
responsible for the work to be completed. Additionally if possible, it is also best to have
each work packet assigned to a single resource (RBS code), although this may not be

324 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

possible in some IT organizations where techniques such as “pair programming” are
used. Different types of work should not be lumped into a work package; for example
design and coding should be in separate packages, particularly for estimation purposes.
Earlier in this book, project calendars and time periods were discussed; time periods in
a project calendars should correspond to the interval that is to be used for gathering
project performance data, including hours expended and percentage complete estimates.
It is important that a work packet not encompass many such periods; the optimal situation
would be for a work packet to correspond to exactly one time period. For performance
analysis, progress estimates (percentage complete) and cost data should be available at
each time period for each work packet (incurred effort and cost during that period). Work
packets that are highly interdependent should be combined (if such is possible without
extending the time of that packet beyond a few time periods) to reduce overall work packet
interdependencies for scheduling.

Progress Reporting

For EVA, percentage complete estimates must be provided for each work packet on a
regular reporting basis. For most work packets, taking the time to calculate the percentage
complete based on the amount of completed versus the amount of work remaining (or the
number of things completed versus the number of things in the work packet) is too time
consuming and an unnecessary burden on project team members. If the work packet size
has been appropriately determined, then the packet percent estimates can be very rough
without losing much accuracy on the overall project performance evaluation.
There are several methods that have been suggested for estimating project percentage
complete that provide sufficient accuracy without much additional effort (Christiansen,
1995). The easiest percent completion method is the “all or nothing rule”:

• Work on packet has not started 0%
• Packet is finished 100%

Another a very easy percentage complete scheme is the halfling, or 50/50 method:

• Work on packet has not started 0%
• Working on packet has started 50%
• Packet is finished 100%

Another common method is based upon the 80/20 rule (from the notion that 80% of the
problems are due to 20% of the work items):

Performance Reporting and Earned Value Analysis 325

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Work on packet has not started 0%
• Working on packet has started 20%
• Packet is finished 100%

In contracting situations or other situations in which payments may be based upon
percentage-complete progress reporting, the contractor can be expected to arrange his
or her work to maximize payments. For example, in the 50/50 method, the contractor would start
as many work packages as possible; in a 0/100 method, the contractor would break work
packets down to a very low level to complete as many packets as possible (Anbari, 2003).
Another method is the weighted milestone, or interim milestone, method in which a
percentage complete is allocated for each of several milestones. In most software
development methodologies, there is a review, verification, and/or testing step involved
in each phase of the methodology (requirements, design, coding, etc.). Common comple-
tion and/or monitoring methods include self-checking via unit testing, integration
testing, team leader reviews, peer reviews, walkthroughs, or even Fagan inspections
(Yeates & Cadle, 1996). Usually, by proper decomposition, that verification step can be
subdivided and a portion placed in each work packet. For example, in the implementation
or coding phase, the verification step could involve unit testing and/or peer code review
(even in pure cleanroom approaches, programmers are going to do some unit testing).
With that being the case, the percentage complete can be obtained by a standard interim
milestone method where the milestones are:

• Not started 0%
• Started 50%
• Finished packet 75%
• Packet verified 100%

For coding packets, additional milestones can be introduced as:

• Not started 0%
• Started 25%
• Coding complete 75%
• Unit testing complete 90%
• Integration testing complete 100%

Rothman (2004) calls these interim milestones pebbles and prefers the pebbles to be of
about a day or two duration. An example of pebbles from that reference for software
development is:

326 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Verify design
• Check out code; implement changes
• Develop unit tests
• Successfully compile
• Review code with peer; check code back in
• Develop documentation
• Verification and validation

To be fully useful, any project management performance measurement system must be
accepted by project team members and project managers. Thus it is very important that
obtaining regular progress (percentage complete) and effort (labor hours) information be
easily obtained. The effort required by team members to report their status must be
insignificant relevant to the overall work being done. The easiest way to obtain
percentage complete and effort statistics is to include such information with existing
regular reporting. Some organizations may have timecards and/or progress reports that
are completed regularly. The proper time interval for most software projects would be
weekly or biweekly; any more frequently would be bothersome, and any less frequently
would allow problems to grow before corrective action could be applied. The decompo-
sition of overall work into work packets should be done so that most packets are
completed in one or two reporting periods. Whether time cards or progress reports are
used, the data obtained must include:

• Work packet ID
• Percentage complete
• Hours expended

If time cards are used, all of an individual’s time (paid time) should be accounted for,
including project objective work, project level of effort work, and nonproject time
(including time off). By doing so, one system can perhaps be used for time and
attendance, payroll, and EVA. Figure 14.17 shows an example of a very simple example
of such a weekly timecard. Uncompensated overtime (i.e., extra unpaid time put in by

Figure 14.17. Time card

Performance Reporting and Earned Value Analysis 327

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

professional employees) should not be included in EVA analysis, whether the EVA is
based on currency or on person hours. If an organization wants to keep track of unpaid
time, then separate codes need to be used that so that these numbers are not included
in EVA analysis (or in payroll calculations). Modern software engineering methodolo-
gies discourage such uncompensated time, at least on a regular continuing basis. Some
organizations keep an informallog of such unpaid time, and then provide some comp time
to employees at the end of the project.
Ease of use and validity of user input are essential for project progress entry. Figure 14.18
shows a screen from the FiveAndDime system for the entry of progress. The resource
ID can optionally be automatically obtained from the user’s Web log-on. Look-up
buttons are provided to allow the user to select resource ID, time period, and WBS code
from the database via look-up windows. A look-up window is shown for selecting the
WBS code, and if a partial WBS is first entered, then the look-up window will only display
the WBS codes that begin with that text. All fields on the form are fully validated. The
screen shows the default of five line items; however, when the window opens the user
can specify any number of line items. FiveAndDime uses the open source MySQL
database, and an organization can also build an SQL (or XML) interface directly into the
system to automatically transfer progress information from its own time/payroll system.

Actual Cost Data

As described earlier, EVA uses a percentage complete for each work packet to calculate
an earned value for each packet. This value requires knowledge of the planned cost and
the percentage complete; it does not require knowledge of the actual cost. Thus, EVA
schedule variances can be calculated without any knowledge of actual costs. For some
projects, the determination of actual costs may not be practical in an accurate and/or
timely manner. This may happen when much work is outsourced or when purchased
components represent major parts of the system being built or integrated. It can also
occur when there is no mechanism to gather costs at the project level; some organizations

Figure 14.18. Progress entry per resource

328 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

only code cost to general ledger accounts and have no “job/project costing” system.
However, EVA can still be performed partially without any actual cost data including the
SPI and estimated time to complete, as well as “drill down” to find problem spots in the
WBS in regard to progress.
The total EV cost variances for the project only require knowledge of the total project
actual cost not individual work packet actual costs. Thus the CPI and EAC can be
determined; however, drilling down to find problem spots in the WBS in regard to cost
overruns will not be possible. A major problem in many organizations is that actual costs,
while coded to a project, are not subdivided further to the individual WBS codes.
Another problem in many organizations is that while actual costs may be captured at the
project and even the WBS level, the close out time of the general ledger and/or job costing
system is so slow that it could be many weeks after the end of the month before an actual
cost breakdown is available. And while late is better than not at all, it may be too late to
take corrective actions. Figure 14.19 illustrates the common method of obtaining actual

Figure 14.19. Actual cost from general ledger

Figure 14.20. Actual cost from job control

H o u r s

%
C o m p P M IS G /L

P /R

A /P
M R P

Hours

%
Comp

PMIS G/LJ/C

P/R

A/P
MRP

Performance Reporting and Earned Value Analysis 329

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cost data from the organization’s general ledger (GL) system into the project management
system (PMIS). Usually the actual cost data gets into the GL form payroll (PR), from
accounts payable (AP), and/or manufacturing/materials resource/requirements plan-
ning (MRP). There are so many major IT systems involved, one can see why there may
be significant delays and also significant mispostings and other errors.
Figure 14.20 illustrates the common method of obtaining actual cost data from the
organization’s job-costing system (JC). The JC system, however, gets information from
PR, GL, AP, and MRP. One can see why there may be significant delays, mispostings, and
other errors.
Figure 14.21 illustrates a common hybrid method of obtaining actual cost data from the
organization’s IT systems where multiple systems feed actual cost information into the
PMIS. This type of hybrid system is an attempt to get cost data into the PMIS faster;
however, due to the complication thereof, there may be significant mispostings and other
errors. This method may also suffer from the fact that there may be journal entry postings
to affected accounts that are need to correct prior period errors (in AP, PR, or MRP), and
this results in an out of balance condition between the GL and the PMIS.
In IT most of the cost is usually labor, and that being the case there are several ways that
one can expedite the gathering of actual cost information. For IT projects, one effective
EVA method is to represent cost in terms of person hours instead of currency (Brandon,
1998). All of the EVA formulas still apply there is just a change to the dimension. This
often provides sufficient accuracy for project control purposes, even where there is
considerable variation between pay rates on the project team. Even nonlabor costs can
be converted back into equivalent person hours using a standard average overall labor
rate. This has another advantage for the PM, since it focuses his attention on the matters
that he can control.
Another very effective EVA method for IT projects is to set up a feed forward cost
reporting system instead of the “feedback” cost system coming from GL (Brandon,

Figure 14.21. Hybrid cost transfer

Ho u rs

%
Com p

PM IS G/L

J/C

P/R

A/P
MR P

330 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1998). This is illustrated in Figure 14.22, the hours worked are entered directly into the
PMIS, and could also be sent to the PR system directly or indirectly.
With a feed-forward system, resource utilization is entered (as well as percentage
complete), and the predicted cost is the resource utilized times the estimated resource
rate. For labor, the resource utilization is in person hours. Using these two data items in
each reporting period, earned value can be calculated in one of three manners:

• Expressing earned value in terms of person hours (or person days)
• Using the actual pay rate of project workers
• Using categories of skills and skill levels

As discussed in the first option, the entire work plan is expressed in terms of person hours
instead of currency. This is the least accurate method, but the simplest.
In the second method, a table of burdened individual pay rates (pay rates multiplied by
a factor, which includes all overhead, benefits, etc.) is maintained. This is the most
accurate of the three methods, but requires more data to be stored and maintained. There
may also be a confidentiality issue in using people’s actual pay rates. When this method
is used, a computer interface is typically set up between the PR/HR system (which is the
system of record for the employee pay rates) and the PMIS.
The third method is fairly accurate yet simple; and it does not pose confidentiality
problems. Categories are set up for skills (i.e., analysts, programmers, etc.) and for skill
levels (i.e., programmer 1, programmer 2, etc.). For each category an average burdened
rate is established (currency per person hour). Then each project worker is assigned one
specific category. A spreadsheet or simple database program can be used for these tables
also, and linked to the spreadsheet tables previously shown in the EVA; or the PMIS may
be able to accommodate this type of information directly, as shown in the screen from
FiveAndDime, in Figure 14.23.

Figure 14.22. Feed forward cost transfer

Hours

%
Comp

PMIS G/L

J/C

P/R

A/P
MRP

Performance Reporting and Earned Value Analysis 331

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Other EVA Issues

Reporting earned value in many project scheduling software systems (PMIS) is usually
not easy for several reasons. First, getting actual costs onto a project so that it can be
used in the system’s earned value mechanism usually means getting actual costs onto
each task, and in many systems getting actual usage onto the resources for each task.
Second, setting up an automatic interface between the corporate systems (or departmen-
tal databases) and a project management systems is not trivial and usually does not use
a standard format such as XML. Third, using the earned value mechanism in these
systems is typically not straightforward and simple (Brandon, 1998), and features such
as “drill-down” are not available or available only in a batch (noninteractive) manner.
As stated earlier, to be fully successful any project management performance measure-
ment system must be accepted by project team members and project managers. The
system must be nonintrusive and directed primarily towards measuring projects, not
measuring individuals. Because earned value analysis provides a level of insight deep
into the project workings, it is likely to be viewed by some as a means of “employee (and/
or contractor) evaluation” instead of project performance evaluation. The best way to
address this issue is to adopt earned value methodology along with some form of total
quality management (TQM). If TQM (or a similar quality effort) is already in place, then
earned value could be sealed within that overall envelope. Various quality programs were
discussed in the chapter on quality management. Management must focus on the use of
earned value for:

• Extrapolation of project cost to complete (EAC)
• Estimation of actual completion date (ETC)

Figure 14.23. Table of resources

332 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Identification of project trouble areas (so corrective action can be taken)
• Refinement of work packet estimation methods

and not on the use of earned value for individual evaluations (Brandon, 1998).
For IT projects, costs other than labor may be present and these may or may not be
allocated to the project. Contractor and consultant costs are usually part of the WBS and
RBS structures. Other direct costs, such as hardware, software, training, entertainment,
and travel, may made be part of the WBS or just added to the cost plan developed via
the WBS. Indirect, overhead or level of effort (LOE) types of cost may also be assigned
to a project and become part of the project budget. These may be general and adminis-
trative (G&A), Internal operations and maintenance (I&O), allocations (space, utilities,
consumables, communications, etc.), and nonproject time (general meetings, general
training, etc.). In some organizations, some of these costs are included in the “burdened
rates” for the labor categories. In some organizations these costs are given separate WBS
codes. In projectized organizations, and even in traditional line management organiza-
tions, as more work becomes team- and project-based, it becomes desirable to associate
these costs with projects. If given separate WBS codes, then their contribution to the
cost plan is typically a linear, spread over the project life. This is easily handled by
software systems in which costs are planned using a combination of time periods and
WBS codes. For other software systems in which cost is estimated only at the WBS level
for the entire project, handling these overhead costs and percentage complete progress
information becomes difficult. One could also exclude these costs from the performance
management baseline; however, in a contracted situation this may not be possible. Figure
14.24 shows an example of the input screen from FiveAndDime, where a WBS may be
designated as an LOE code, and thus the percentage complete never needs to be input

Figure 14.24. Form to add WBS code (showing LOE and PB)

Performance Reporting and Earned Value Analysis 333

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(the EV will equal the planned cost through the current period yielding no schedule
variation). Also as seen in that same screen shot, a WBS may be designated as outside
of the performance baseline (PB) in which case it will not be included in the EVA analysis.
WBS codes may also be designated as baseline or change order, and EVA can be done
with or without change orders.
As well as the web based FiveAndDime system, there are a number of other software
products (both mainframe and client-server based) that were specifically made to handle
earned value in a comprehensive manner including:

• C-Brat (www.cbratproject.com)
• PMOffice (www.systemcorp.com)
• Cobra (www.welcom.com)
• Microframe’s MPM (www.businessengine.com)
• C/S Solutions’s WinInsight (www.cs-solutions.com)
• DeckKer’s Tracker (www.dtrakker.com)

EVA, Success Factors, and Stage Gates

Stage gates are the traditional way that project performance is monitored and controlled
by upper management of both the benefiting and performing organizations. These stage
gates may be event driven by project milestones or they may be periodic. The most
common scenario for IT projects is periodic (i.e., monthly) using the traditional Gantt
chart and budget-versus-actual cost data (as was discussed earlier in this chapter) plus
whatever verification (product testing) and/or validation (user satisfaction) information
is available at those times. Figure 14.25 illustrates this traditional stage gate approach.
The problem with this traditional approach is that considerable time (and cost) is
expended at the stage gate review meetings, because the PM, users, line management of
both the performing and benefiting organizations, and some project team members are

Figure 14.25. Traditional stage gate

Stage
Gate

Stage
Gate

Stage
Gate

PM Users

Perf
Org

Mgmt

Bene
Org

Mgmt

Stage
Gate

Stage
Gate

Team

...

334 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

generally present. The project team members typically in attendance include the business
analysts and, in some cases, even key designers and developers.
If the overall stage gate is divided into completion and satisfaction reviews, then both
the frequency and number of participants can be reduced resulting in the consumption
of less project time and cost. In earlier chapters, project completion and satisfaction
success factors were discussed, and the notion of separating the gating process into
these categories was presented. This dual gating process was illustrated in Figure 2.6
in Chapter II, where management stage gates are placed at regular time intervals (i.e.,
monthly or quarterly), and quality stage gates are placed at key delivery points for
product manifestations (i.e., requirements documentation, use cases, paper prototypes,
working prototypes, test results, etc.). There may be multiple quality stage gates within
a management stage gate time interval, or vice versa.
EVA is used in the management stage gate not only to evaluate the completion factors,
but the EAC is also used to reevaluate the chosen project benefit metric(s) as shown in
Figure 14.26. The chosen benefit metrics might be any of those discussed earlier in the
book such as IRR or scoring methods. The estimated completion date might also be used
in recalculating benefit metrics, if calendar completion time is a key factor in the benefit
analysis. It is important that these management reviews do not use sunk cost (how much
has already been invested/spent) in determining whether a project should proceed or not;
the only cost considered should be the estimated cost at completion versus the benefit.
Keeping a badly performing project alive by sunk cost is a trap into which many
organizations have fallen.
The dual gating approach not only provides for the exposure and analysis of both project
completion and satisfaction criteria, but also minimizes the time of key individuals in
meetings. This is illustrated in Figure 14.27, where upper management and the develop-

Figure 14.26. Management stage gate (using EVA)

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Managment Stage Managemant
Stage Gate

EV
Metrics

Go/Hold/Stop
Decision

+ =

Performance Reporting and Earned Value Analysis 335

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ment team are relatively isolated from regular meetings. The management stage gate
reviews, while periodic, need to be held only if the EVA values are not good (CPI and/
or SPI below unity). In addition, upper management does not need to be involved in the
quality stage gates at all, and neither does most of the project team; users, business
analysts, and the PM may be the only personnel needed for these gate reviews.
Since earned value metrics are currency based, both schedule variance and cost
variances can be rolled up along organizational lines for one project or even for multiple
projects. In this way, the overall performance of organizational components can be
evaluated. This is illustrated in Figure 14.28. A decision is made in regard to the
management level for the organization, and the earned value metrics assigned to those
organizational components are summed up. This is discussed further in Chapter XVI.

Chapter Summary

In this chapter earned value analysis has been discussed and illustrated in detail. EVA
is often difficult to implement effectively and can have a number of problem areas.

Figure 14.27. Dual stage gates and stakeholder involvement

Completion
 Criteria

Scope
Time
Cost

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage
(Event Driven)

Quality Stage
Gate

Management
Stage

(periodic)

Management
Stage Gate

Continue?
Recycle?

Continue?
Hold?

Cancel?

PM

Business
Analyst

Users

Upper
Management

Development
Team

By
Exception

Only When
Necessary

336 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, this chapter has identified the problem areas and their practical solutions. EVA
is the only practical method to determine actual project status and develop reliable
estimates for completion cost and time. EVA should be included in all IT projects of any
significant size. EVA is one of the key metrics in the management-for-success philosophy
that has been developed in this book via critical success factors and dual stage gates.

References

Abba, W. (2000). Earned value management rediscovered. Retrieved from http://
www.acq.osd.mil/pm/newpolicy/misc/abba_art.html

Anbari, F. (2003, December). Earned value project management method and extensions.
Project Management Journal, 34(4).

Brandon, D. (1998, June). Implementing earned value easily and effectively. Project
Management Journal, 29(2).

Brandon, D. (1999). Implementing earned value easily and effectively. In J. Pinto (Ed.),
Essentials of Project Control (pp. 113-124). Newton Square, PA: Project Manage-
ment Institute Press.

Christensen, D., & Ferens, D. (1995). Using earned value for performance measurement
on software projects. Acquisition Review Quarterly, Spring, 155-171

Figure 14.28. EVA rollup by organizational component

OBS

WBS

X

X X

X

BCWS
BCWP (EV)

ACWP

BCWS
BCWP (EV)

ACWP

BCWS
BCWP (EV)

ACWP

Sum

Sum

Sum

Performance Reporting and Earned Value Analysis 337

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Christensen, D., et al. (1995). A review of estimate at completion research. Journal of Cost
Analysis, Spring.

Fleming, Q., & Koppelman, J. (1996). Earned value project management. Project Man-
agement Institute.

Fleming, Q., & Koppelman, J. (1998). Earned value project management. A Powerful Tool
for Software Projects. CROSSTALK, The Journal of Defense Software Engineer-
ing, July, 19-23

Hallows, J. (1998). Information systems project management. New York: Amacom.
Kiewel, B. (1998). Measuring progress in software development. PM Network, January,

29-32
Lewis, J. (1995). Project planning, scheduling & control. In Irwin.
Rothman, R. (2004, February 16). Using pebbles to track project state. Computerworld.
Webb, A. (2003). Using earned value. Burlington, VT: Gower.
Yeates, D., & Cadle, J. (1996). Project management for information systems. London:

Pitman.

338 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

Software Systems for
Project Management

You miss 100% of the shots you don’t take.
 (Wayne Gretzky)

A vast amount of project management software is available today in a wide variety of
capabilities, applicability, platform requirements, and prices. These software products
significantly enhance the PM’s job of managing a project in almost all aspects, including
selection, planning, scheduling, execution, control, risk, and communications. PMs
should therefore be aware of the types of tools available and the features and applica-
bility of those tools. In this chapter, types of software products and some specific
products are identified and discussed.

Spreadsheets

Spreadsheet programs are the most commonly used computer software programs for
project management (and business in general). Spreadsheets are easy to learn, easy to
use, inexpensive, generally available, and adaptable to most project management tasks.
Consider the project planning and progress information shown in the spreadsheet of
Figure 15.1; the last two columns are calculated columns. A graphical representation in
the form of a classical Gantt chart can also be created from the spreadsheet data in the
first three columns using the charting capability in most modern spreadsheet programs
(such as Microsoft Excel). In addition, one can also use the columns for weeks completed
and weeks remaining to draw a Gantt chart showing progress, as illustrated in Figure 15.2.

Software Systems for Project Management 339

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Excel chart wizard was used to create Figure 15.2 with the columns for task, start week,
weeks complete, and weeks remaining; the first part of each bar was made the same color
as the chart background (the chart is shown in black and white here, but the completed
and remaining parts of each bar are different in color). There are also spreadsheet
templates available from a number of sources to facilitate Gantt-chart creation.
A cost-based Gantt chart is shown in Figure 15.3. The bars are represented as a series
of cost numbers for each time period of each task. This provides for a nonlinear
distribution of cost (and resources) across the time span for the task and allows one to
quickly see at a glance both the time for a task and the cost distribution (cash flow).

Figure 15.1. Project plan and progress

Figure 15.2. Gantt chart

340 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 15.5. Project network diagram

Start

A
14

B
9

C
20

D
12

F
9

E
6

Finish

Figure 15.3. Project cost plan spreadsheet

Figure 15.4. Project cost plan graph

Project Cost Plan

 Ja Fe Ma Ap Ma Jn Jl Au Se Oc No De Total

Planning & Staffing 3 2 5
Prototype Design 3 3 6
Construct Prototype 8 8 16
Evaluate Prototype 5 10 15
Full Design Specs 5 6 3 14
Documentation 2 2 1 1 1 1 8
Site Preparation 8 3 3 14
Construction 20 50 50 20 140
Test/Certification 10 6 4 20
Finishing 8 4 12
Maintenance Training 4 4

 Monthly Cost 3 5 11 13 15 16 28 54 61 27 13 8 254
 Cumulative 3 8 19 32 47 63 91 145 206 233 246 254

Project Cost Plan

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

C
os

t

Software Systems for Project Management 341

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using charting capabilities built directly into the spreadsheet products, one can use the
project cost plan in Figure 15.3 to draw a cost plan graph as shown in Figure 15.4.
In an earlier chapter, the critical path model (CPM) was discussed including the
determination of critical path, early/late start times, early/late finish times, and slack/float.
Spreadsheet models can also be used to calculate these variables. Consider the CPM
drawing in Figure 15.5: The heavy lines denote the critical path and task names and
durations are shown inside the nodes.
Once the critical path is determined, a spreadsheet can be used to determine early and
late start dates, early and late finish dates, and slacks. This is shown in Figure 15.6 using
the network in Figure 15.5, with an example from Klastorin (2004).
Instead of first determining the critical path from inspection (or an algorithm like dynamic
programming, used in most scheduling tools), sophisticated spreadsheet programs can

Figure 15.6. Project task information

Task Duration Predecessors

Early
Start
Time

Late
Finish
Time

Total
Slack

Free
Slack

Critical
Path ?

START 0 --- 0 0 0 0 Yes
A 14 START 0 14 0 0 Yes
B 9 START 0 14 5 5 No
C 20 START 0 29 9 6 No
D 12 A,B 14 26 0 0 Yes
E 6 C,D 26 35 3 3 No
F 9 D 26 35 0 0 Yes

END 0 E,F 35 35 0 0 Yes

Figure 15.7. Spreadsheet determination of critical path

342 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 15.8. Spreadsheet determination of critical path (answers)

also be used to find the critical path via linear programming. This is illustrated in Figure
15.7 for the network in Figure 15.5. Using Microsoft Excel, in the solver dialog box, we
have requested minimization of the start of the end task subject to constraints for the
dependency relationships (i.e., the start time of a task must be greater than or equal to
the finish time of its predecessors). Figure 15.7 shows the initial values in the spread-
sheet; columns F, G, H are formulas, and column E has the starting values of the cells to
be calculated by the LP solver. The formula for column F (task end time) is the start time
plus the duration. The formula for column G (total slack or float) is:

(minimum of successor start times minus task end time) plus (task start time minus max
of predecessor end times)

The formula column F (critical path) is “yes” if total slack is zero, otherwise “no.”
Figure 15.8 shows the solution. Since the LP criteria was to minimize the end time, the
solution started all critical path tasks at their earliest time; however, it also started all
noncritical path tasks at the latest times. This can be seen because task E (not on critical
path) is started at 29 instead of 26. To force the solution to start noncritical path task at
their earliest start time we would minimize the sum of all task start times instead of just
the “end” task.
LP solutions are no better in this simple case that regular algorithms in scheduling
programs, but if there are other constraints such as cost, cash flow, late finish penalties,
or early finish incentives, then a LP solution can handle these additional complexities
whereas the standard scheduling programs cannot (Klastorin, 2004).
Throughout this book, spreadsheets have been already been used to illustrate the
analysis and solution of problems in a number of project management knowledge areas;
Figure 15.9 itemizes these spreadsheet models. There are many spreadsheet add-ons
available to facilitate analysis in many knowledge areas. Although spreadsheets are very
useful, they are less appropriate for large projects and should not be used for everything.

Software Systems for Project Management 343

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Project Management Software

There are many general-purpose project management software systems that handle
project scheduling and progress reporting. Some of these systems may also include
capabilities for some other aspects of project management, including risk. Many project
management software systems also handle very specific aspects of project management,
such as estimation, risk, change management, portfolio management, earned value, and
so forth. Many such specific software programs have already been identified in chapters
dealing with those specific aspects of project management.
In addition to features and capabilities, the general-purpose programs may be catego-
rized based on several factors:

• Single or multiuser
• Single or multiproject
• Platform (PC/Mac, file services [redirection], mainframe, client-server, Web based)
• Server operating system (Windows, Unix, Linux, other)
• Data access (file system, ISAM, relational database, other)
• User interface (text, simple GUI, rich GUI, other)

Figure 15.9. Spreadsheet models in this book

Spreadsheet Model Chapter

Net Present Value III
Internal Rate of Return III
Decision Tree III
Maximax/Minimax Selection III
Requirements Specification III
Organizational Assignment Matrix VII
Generic Resource Table VII
Function Point Analysis VII
Cost Plan VII, XIV, XV
Risk EMV VIII
Risk Plan VIII
Outsource Processes XII
Outsource Country Analysis XII
Stakeholder Analysis XIII
Resource Assignment Matrix XIII
Earned Value Analysis XIV
Timesheet XIV
Schedule & Gantt Chart XV
Critical Path Analysis XV
Project Portfolio Optimization XVI
Project Scoring XVI

344 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Import/Export (spreadsheet, XML, etc.)
• Sales/Support (proprietary, open source, shareware, freeware)

The most appropriate package would be a function of capabilities desired, size and
complexity of projects, size and complexity of performing organization (number of
projects), performance methods used (i.e., earned value or not), platform constraints,
location and type of users, and budget constraints. Commonly used general packages
include (in alphabetical order):

• @task (www.attask.com)
• Artemis (http://www.artemispm.com/)
• Autotask (www.autotask.com)
• BPSProject (www.bpsproject.com)
• Cooper (www.cooperproject.com)
• EasyProject (www.easyprojects.net)
• EPK-Suite (www.epkgroup.com)
• Microsoft Project & Project Server/Central (www.microsoft.com/project)
• Milestones Simplicity & Professional (www.kidsa.com)
• OpenPlan (www.welcom.com)
• Planview (www.planview.com)
• Primavera & TeamPlay (www.primavera.com/)
• Project KickStart (www.projectkickstart.com/)
• Projistics (www.projistics.com)
• PS Next (www.sciforma.com)
• TeamCenter (www.inovie.com)
• TurboProject (www.tekdeal.com)
• WebProject (www.wproj.com)
• Websystems’ AceProject (www.aceproject.com)

The most appropriate software packages for modern IT projects would be Web based,
would utilize a comprehensive relational database, are highly scalable, and have a modern
GUI. Many of these packages do not have all these features. Some general purpose
project management software systems are offered in the form of shareware; that is, one
can try the system without charge and then pay a relatively modest fee to continue using
the system; examples of shareware systems are MinuteMan, SmartWorks, PlanBee Pro,
and QuickGantt.

Software Systems for Project Management 345

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Open Source Software

Organizations pay significant amounts for annual software license fees; the average Web
retailer pays about $300,000 per year. It used to be that free open source software meant
“buggy and without support”; the source code itself was the first line of support.
However, many organizations are now taking a second look at open source.
There are open source systems products such as the Linux operating systems and the
Apache Web server, and open source application components. The application com-
ponents include database management systems, application servers, architectures,
programming languages, integrated development environments, development tools,
browsers, utilities, and various “middleware” components. Both of these types of
components may be part of the environment for a project management overall software
system. System software products like Linux and Apache are well established now, and
their use for prime-time enterprise systems is well documented. For example, United
Parcel Service (UPS), which rejected Linux 3 years ago, recently reevaluated this product
and is now looking to move all of its RISC-based applications to Linux. Seventy percent
of IT executives polled by Information Week say their companies now use Linux, up from
56% in 2003 (Greenemeir, 2004). Open source application components are now trying to
make the same inroads as has the Open source system software.
The open source model of software distribution and usage is vastly different from
commercial products. Open Source software is copyrighted but freely released; exten-
sions and improvements are freely released also. There are a number of free license types,
the most popular is the general public license (GNU). Open Source software is free to run,
copy, distribute, modify, extend, and improve. Open source software may not have a
single product provider. Open source may be developed by an individual, group, or
organization and then extended by a “community” of cooperative groups of individuals,
each of whom contributes parts of the product. Documentation, support, training, and
consulting is generally not centrally available but provided by the community. Some
products have sponsor organizations that become focal points for the coordination of
official releases of the products and the documentation thereof; most documentation
today is online. Sponsor organizations raise funds for their activities via sale of priority
support, installation and integration services, other consulting, and/or related products.
Sponsor organizations who are also the copyright holder may also release versions of
the product under multiple open source–type contracts or under proprietary contracts.
Implementing an Open Source solution requires a different approach from the buyer’s
perspective. There is no salesperson, no license agreements to sign, and no serial
numbers to record. Initial and ongoing license cost savings in using open source
software can be huge. For example, the annual cost (per processor) for major vendor
relational database management software (RDBMS) follows (Hall, 2003):

• Oracle Standard Edition: $15,000
• Oracle Enterprise Edition: $40,000
• IBM DB2 Workgroup: $7,500

346 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• IBM DB2 Enterprise Edition: $25,000
• Microsoft SQL Server Standard Edition: $4,999
• Microsoft SQL Server Enterprise Edition: $19,999

“After the operating system, it (database management system) is the next significant
layer in building an environment based entirely on open source” (Banerjee, 2001). An
efficient and scalable relational database product is a key part of a modern general-
purpose project management tool that can handle multiple projects. Most major open
source products are comparable to their proprietary counterparts in basic features (as
prescribed by relevant international standards bodies), and are also comparable in
necessary business environment integrity in matters relating to security, backup,
recovery, reliability, scalability (multiprocessor, etc.), clustering, replication, and so
forth. Thus, a general feature-by-feature comparison of open source versus proprietary
products would be meaningless, just as a feature-by-feature comparison of proprietary
products is meaningless unless the comparison is with regard to the construction of a
specific application for a specific platform.
The MySQL RDBMS is nearly free, depending upon any paid support purchased. In the
past, the first line of support for open source products was the source code, but not
anymore. For an organization to successfully and economically utilize open source
software, it must assemble a coalition of providers for each open source product and use
them to create the necessary support infrastructure. Some providers may be paid, such
as for priority support (via e-mail, phone call centers, etc.), and others may be Web links
to chat sites which link posted problems to proposed solutions. At first glance, it may
seem risky not having a single provider responsible for the whole application, but in
reality the overall risk is lessened. Major open source products have sponsors with
various types of paid support plans, large communities of users who answer problem
postings relatively quickly, and a large number of available knowledgeable individual
contractors and potential employees. CIO Magazine lists (and then dispels) the main
myths about open source software (Wheatly, 2004):

• The attraction is the price tag.
• The savings are not real.
• There’s no support.
• It’s a legal minefield.
• Open Source is not for mission critical applications.
• Open Source is not ready for the desktop.

The development of enterprise-class modern business applications (such as comprehen-
sive project management systems) typically utilizes an application framework that is
based upon a particular architecture. Application frameworks are a holistic set of
specifications for the interaction and assembly of multiple reusable patterns. A pattern
is the design of a core functional element, such as the MVC (model-view-controller)
pattern found in many architectures such as J2EE (Java Two Enterprise Edition). Modern

Software Systems for Project Management 347

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architectures may support one or more application servers, programming languages and
integrated development environments (IDEs). The major architectures today are J2EE,
Microsoft’s .Net, and the Open Source LAMP (Linux, Apache, MySQL, PHP). The
boundary between architecture, framework, and programming language is blurry and not
the same in different architectures. Examples of modern proprietary application frame-
works include IBM’s Websphere, Macromedia’s ColdFusion and Flex, Sun’s I-Planet,
and BEA’s Weblogic.
Hard benchmarks between open source products and proprietary products are seldom
published, and these benchmarks are very problem specific. However, PC Magazine
performed a reasonably comprehensive benchmark using Java server pages (JSPs) and
several RDBMSs; it also wrote the same benchmark using active server pages (ASP) in
a .NET to include Microsoft SQLServer in the test (Dyck, 2003). The peak throughout
results (in pages per second) for the products were:

• MySQL 4.0 (open source) – 608
• Oracle9i – 629
• Sybase ASE 12.5 – 476
• IBM DB2 Universal 7.2 – 494
• Microsoft SQLServer 2000 SP2– 209

However, the acid test for open systems, both at the system and application levels, has
to be Sabre’s 4-year project to convert its massive airline reservations and related
systems from proprietary mainframe-based system and application software to open
systems software (Anthes, 2004). The Sabre systems process more transactions than the
New York Stock Exchange—about 50 million transactions per day. Sabre is halfway
finished its conversion and reengineering efforts for major applications, and has been
successful in utilizing open source products as Linux, Common Object Request Broker,
Lightweight Directory Access Protocol, MySQL, and Java. The open source MySQL
database runs on a very large server farm of four-way HPrx5670 servers running Linux
with about 100 GBs of information. Sabre CTO Craig Murphy stated that “we evaluated
several database managers, and MySQL was really the winner from a performance
standpoint, and it was certainly the lowest cost.” Total cost of ownership is expected to
be 40% less with anticipated savings of “tens of millions of dollars” (Babcock, 2004).
Some products are built using open source project management software (i.e., MYSQL),
some can operated in an open source environment (i.e., Linux/Apache), and some are
distributed completely in an open source manner. The FiveAndDime system utilizes open
source software. Some fully open source project management systems are:

• dotProject (www.dotproject.net)
• Double Choco Latte (http://dcl.sourceforge.net)
• GForge (http://gforge.org)
• PHProjekt (www.phprojekt.com)

348 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• ProjectOpen (www.project-open.com)
• Projectory (http://projectory/sourceforge.net)
• ToutDoux (www.gnu.org/software/toutdoux/en/index.html)
• WebCollab (http://webcollab.sourceforge.net)

The FiveAndDime System

Project management software systems are very complex applications. There are many
entities involved (work breakdown structures, organization structures, personnel and
other resources, time periods, both planned and actual costs, work schedules, etc.) and
the database relationships between these entities is complex, including recursive
relationships and many-to-many relationships. I have been involved in the design and
development of several of these type systems using major RDBMSs such as Oracle, and
these have been quite challenging applications to construct. The FiveAndDime system
that is used to illustrate many of the concepts and methods in this book is an example
of such a comprehensive system, Web based upon open source software. It system uses
the MySQL database product and the PHP application server, and it will operate in an
open source mode (Linux/Apache) or on proprietary platforms such as Microsoft
Windows/IIS or a Unix operating systems. The general application framework for
FiveAndDime is shown in Figure 15.10.

Figure 15.10. FiveAndDime application architecture

Server API
 (PHP, ColdFusion,

JSP)

Server
Includes

Relational
Database

 Dynamic Web Page

 HTML/XHTML/JavaScript

Client
Browser

Images Style Sheet
Libraries
(.css)

JavaScript
Libraries (.js)

(PHP or Java)

Server OO Class Library

Software Systems for Project Management 349

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 15.11 is a screen print from the FiveAndDime system of a rollup to the top level
of a WBS showing progress (percentage complete), plan costs, actual costs, and earned
value.
Figure 15.12 is another screen print from the system that shows the drill-down option.
When one clicks on a top level WBS, code the system shows the subsidiary WBS codes
(used to identify problem spots in a project). Note that the screen shots in the figure are
black and white, but the actual screens are in color, to highlight WBS codes with cost
and/or progress problems.

Figure 15.11. Earned value analysis superimposed on Gantt chart

Figure 15.12. Earned value drill down

350 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter Summary

In this chapter, software for project management has been discussed. Spreadsheet
models have been illustrated for a number of common project management tasks,
software for specific project management functions have been identified, and general
project management systems have been listed. open source software as it relates to
project management was also discussed and illustrated. However, these tools do not
replace the need for a PM’s complete understanding of the project management
discipline, because “a fool with a tool is still a fool.”

References

Anthes, G. (2004, May 31). Sabre flies to Open Systems. Computerworld.
Babcock, C. (2004, March 29). Open Source, Part 2. Information Week.
Banerjee, P. (2001, September 18). Open to discussion. Intelligent Enterprise.
Dyck, T. (2003, March 26). SQL databases—Clash of the titans. PC Magazine.
Greenemeir, L. (2004, May 24). Going main stream. Information Week.
Klastorin, T. (2004). Project management—Tools and trade-offs. New York: Wiley.
Wheatly, M. (2004, March 1). The myths of open source. CIO Magazine.

Managing Multiple Projects 351

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVI

Managing Multiple
Projects

The best way to predict the future, is to invent it.
(Alan Kay)

Managing IT projects and being on an IT project team used to be simpler. PMs typically
had one project to manage, and team members were on only one team. All the team
members were located in close geographic proximity, and the work was all done at the
workplace. Currently the project landscape has become much more complex, where
everyone is concerned with multiple projects and teams may be spread out all over the
world. The business needs of cutting costs and being quicker to market have increased
the pressures on project teams and their managers.
According to the “Chaos Report” from the Standish Group (2004), unqualified IT project
success only occurs in about one third of IT projects,. To improve this success rate, many
associations (such as the IT Governance Institute) and companies are investigating
broad IT governance issues. In regard to project management, these broad issues include
such matters as project portfolio management, corporate-wide comprehensive standard
project policies and procedures, and project knowledge management. As a vehicle for
such consolidation and standardization and to deal with the complexities of project
teams, companies have started to establish a Project management office (PMO). The
PMO, its key current functions, and the future role of the PMO in global projects, project
management maturity, Web portals, and strategic planning are discussed further in this
chapter.

352 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Project Management Office

The program office has been a common organizational construct in governments and
companies for decades. A program is a group of projects managed in a coordinated way
to obtain benefits not available from managing them individually (PMI, 2000). Program
offices typically have some operational responsibility as well. Within a program office,
the projects are all related in some way, typically advancing the goals of the overall
program. For example, in the United States, a government agency would have program
offices devoted to particular specific efforts generally funded by a specific source.
However, the project management office is an umbrella organization for all the projects
in an organization and does not have any operational responsibility. The organization
in question may be the entire corporation or one division, such as the IT division. In 2003,
about two thirds of organizations with IT departments had PMOs, either inside or outside
of the IT department (Hoffman, 2003). PMOs are sometimes called “project management
support offices” (Powell & Young, 2004), and they are usually set up in one of two
manners: with administrative authority or with a consultancy role. There may, however,
be PMOs that have combinations of these basic roles. One definition of a PMO is that
“a project office is a corporate management organization that evaluates, measures, and
essentially enforces the performance and interaction of the implementation of IT project
processes across a company’s business units” (Elkins, 2003). Whether a PMO is an
administrative function or purely a consulting function, a common goal of the PMO is
to foster the discipline of project management within the organization. As state in the
PM Network: “The project office’s long-term vision is to transform project management
knowledge throughout the organization so that it becomes part of the culture” (Block,
1999). According to Computerworld the roles of the PMO are as follows (Elkins, 2003):

• Eliminate project redundancies (across different departments or even divisions)
• Standardize the delivery process
• Access project ROI (both upon proposal and after project completion)
• Avoid the “latest and greatest” syndrome

CIO Magazine also itemized the roles for a PMO (Santosus, 2003):

• Project support: project management guidance
• Project management process/methodology
• Provide training
• Provide a “home” for project managers
• Provide internal consulting and mentoring
• Project management software tools (evaluate, select, configure, maintain)
• Project portfolio management

Managing Multiple Projects 353

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to the lists provided by leading IT publications, other (and more specific) roles
often given to or assumed by PMO’s include:

• Making sure projects are in line with the organization’s strategy and goals
• Aiding in the project selection process
• Helping develop a project WBS, schedule, and cost plan
• Helping with software engineering methodologies, standards, and reuse
• Doing or checking estimation at both the task level and at the project deliverable

level
• Doing or checking the risk analysis
• Developing detail policies and procedures
• Developing detail templates, forms, spreadsheets, and so forth.
• Reviewing all project plans (communications, risk, human resource, procurement,

etc.)
• Coordinating the use (or acquisition) of scarce resources (including key personnel)
• Performing EVA and other performance analysis on projects
• Checking verification and validation efforts
• Being involved with project change control boards
• Performing or checking stage gate analysis
• Keeping project managers focused on priorities
• Integrating performance information for all projects as a part of executive level

reporting
• Coordination of interacting or dependent projects in terms of business issues,

technical issues, and corporate politics
• Coordination of diverse projects such as global efforts involving different time

zones, currencies, measures, languages, cultures, and so forth
• Troubleshooting and proposing remedies for projects that run into schedule, cost

or other difficulties
• Managing common key stakeholders
• Serve as a repository for project lessons learned
• Facilitating effective and consistent use of PM tools
• Making sure projects (and contracts) are properly closed out
• Being an advocate for project managers
• Guiding the organization in the improvement of PM (PM maturity)
• Helping project managers in their career development

PMOs established within the IT division often encompass more than just the project
management discipline and may also include the software engineering discipline. For

354 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

example, software engineering and architectural services which in the past may have been
centralized in a chief technology officer (CTO) may be migrated into an IT PMO. PMOs
may also include IT integration expertise and services that are often consolidated in an
integration competency center (ICC).
In theory, the successful execution of all these roles will result in improved organizational
performance, including reduced overall project costs, reduced lead time in implementing
solutions, increased quality of delivered products, increased overall business benefit of
project implementations, reduced risks of carrying out projects, and ability of the
organization to handle bigger and more complex projects. The Sarbanes-Oxley Act
(SOX)1 now requires organizations to disclose large investments, including large
projects; PMOs can facilitate compliance with this act.
A PMO requires extra overhead costs, and the benefits of the PMO must exceed these
overhead costs. CIO Magazine reported that about one half of the companies it surveyed
with PMOs indicated overall success, 16% saw no improvement, and 22% did not know
yet (Santosus, 2003). However, Computerworld reported that 16% to 33% of organiza-
tions (depending upon industry) feel that their PMO is ineffective, and only 12% to 19%
feel that their PMO is very effective (Hoffman, 2003). It is still often felt that PMOs spend
too much time compiling reports for upper management and too little time ensuring that
projects are running smoothly (Hoffman, 2003). Some “secrets” for PMOs to get off to
a quick successful start and still follow their long-term vision were listed in PM Network
(Block, 1999):

• Rein in runaway projects
• Assist project startups
• Establish risk management
• Establish portfolio management
• Conduct reviews and audits
• Organize and manage the resource pool
• Identify and develop potential PMs
• Establish and enforce a project management process

The last item in the above list is of paramount importance, and earlier in this book the
concepts of critical success criteria and the dual stage gate review process were
developed. Completion criteria are monitored by management stage gates primarily using
earned value analysis (EVA), and satisfaction criteria are monitored by quality stage
gates primarily via stakeholder opinions of preliminary product manifestations (risk and
financial metric status are also part of these stage gate reviews). This process is
illustrated again in Figure 16.1.
How to measure the success of the PMO can be a difficult issue, and different
organizations have different approaches. Some look at the cumulative success rates of
the projects and see if the PMO is responsible for improving that overall rate (for projects

Managing Multiple Projects 355

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that produce products that are actually put into use). Some look only at the improvement
of estimated time and cost versus actual time and cost for the projects. Some base PMO
success on the opinion of stakeholders for all of the projects. Project closeout was also
discussed in an earlier chapter and that closeout would go through a final stage gate
review with a form such as that in Figure 16.2. The metrics shown in that closeout form
could be aggregated for all projects and used to clearly quantify the success of the PMO.
As mentioned earlier, there are two basic ways that PMOs may be set up within an
organization. The first way is without any administrative authority, where the PMO staff
act as consultants, mentors, and trainers. Here the PMO may have many of the same roles
as the authoritative PMO such as developing standard PM policies, procedures, forms,
templates, and so forth, but it has no direct authority to enforce any of its suggestions.
In this role the PMO observes and reports on what is going on and may or may not try
to influence it, but has no direct authority to change anything. On the other hand, the
authoritative PMO can enforce its policies and procedures, and often the project
managers report to the PMO directly. For some IT divisions the PMO office is simply a
staff position or positions to the CIO or CTO, and its authority comes through the CIO.
In either case, the PMO should be kept separate from project teams so it can maintain its
objectivity. CIO Magazine observed that the creation of an authoritative PMO which has
the power to approve or kill projects and the power to audit projects for strict compliance
with policies and procedures may be too bureaucratic and not work well in many
organizations (Santosus, 2003). Some PMs resent PMO staff and consider them as paper
shufflers or know-it-alls. In today’s knowledge-worker–based world, a PMO with
primarily a consultancy role may be a better fit in most IT organizations. Thus, when a
project is in trouble, and if its PM did not follow the recommended PMO policies and
procedures, then that PM would have “a lot of explaining to do” to the CIO.
The nature of the people that staff a PMO typically include project management
specialists, subject matter experts, and project analysts. The PM specialists have gained
their PM expertise through specialized training (such as through PMI certified training
organizations) and/or years of experience. Subject matter experts are usually IT experts
from a software engineering perspective and/or expertise in the specific type of IT
applications involved. The project analysts are experienced in working with project
information and specific tools. PMO staff members are usually well versed in both the
business and technical aspects of IT projects, and it is not uncommon for some PMO staff
to be outside consultants. The process of creating a PMO should be carried out like any
project, and a part of that process is the evaluation of the effectiveness of the PMO. This
is illustrated in Figure 16.3. That figure also indicates the main concepts that an IT PMO
must develop, evaluate, and update including the organizational structure of the PMO,
the roles and responsibilities of its staff, the office infrastructure, the PM methodology
and software engineering methodology, the communications, and the tools and systems.
For a PMO to be successful, it may take several years. CIO Magazine reported that 37%
of PMOs were successful within 1 year, but that the success rate went rose to 65% for
PMOs over 4 years old.
PM Solutions (www.pmsolutions.com) has identified the top 10 critical success factors
for a PMO:

356 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The PMO has senior executive-level support.
• A superior process for selecting project managers and teams has been established.
• Project teams include participants from multiple business functions and disci-

plines.
• A high standard of truthfulness and integrity exists within the PMO.
• The PMO serves as an ambassador, communicating with all internal and external

stakeholders.
• Training of project managers is competency-based (rather than purely academic).
• Project management methodologies, tools and templates are standardized.
• A useful knowledge library of best practices is maintained as part of the PMO.
• The PMO is involved in all projects from start to finish.
• The organization’s project portfolio is managed by the PMO.

Figure 16.1. Dual stage gates

Completion
 Criteria

Scope
Time
Cost

Overall IT
Project

Success

Satisfaction
 Criteria

Utility

Operation
Quality

Quality Stage
Gate

Managemant
Stage Gate

Stage Gate
Review

EVAStakeholders

Benefit
Metrics

Risk
Analysis

+ =

Managing Multiple Projects 357

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Portfolio Management

An organization’s project portfolio is the set of projects currently underway as well as
projects that have been proposed. IT management has to be concerned not only with
doing projects correctly but also that the correct projects are being done. Projects are
normally prioritized based on the three R’s: reward, risk, and resources. IT projects
generally fall into several categories: mandatory, sustaining, and strategic. Mandatory
projects are those that have to be done to remain in compliance with regulations of
governing bodies or perhaps due to other legal or security issues. Sustaining projects
are those that maintain the integrity of the IT infrastructure. Strategic projects are those
which promise to improve the competitive position of the organization. IT portfolio
management is the process of assessing the portfolio of projects to make sure that priority
is given to the projects that are expected to add the greatest value to the organization

Figure 16.2. Final stage gate review form

Figure 16.2. Final stage gate review form

358 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

within acceptable levels of risk. Projects that duplicate effort, are too risky, or produce
smaller benefits are not done, canceled, or placed on hold. Unfortunately 75% of
companies do not do formal project portfolio management; most CIOs “steer project
funding with little thought for the entire investment picture” (Stone, 2004). “Often the
only hard information an organization can collect about its projects is how much they’re
spending—which is like trying to steer an airplane by looking at the fuel gauge” (Wayne,
2004). CIO Magazine lists the benefits to an organization via project portfolio manage-
ment (Stone, 2004):

• Fairer decisions about funding (not just the political muscle of the sponsor)
• Optimal mix of risk and reward
• Better communication between IS and business leaders due to a common financial

model
• Greater understanding and cooperation over funding allocation
• Greater business accountability for investment decisions
• Strengthened alignment between IS and business
• More efficient use of resources
• Fewer project and effort overlaps

Figure 16.3. PMO processes

Proposal &
Charter

Assessment

Plan Implement

Evaluate

Staffing
Roles &
Resp.

Infra
Structure PM Method.

Software
Eng.

Method.

Comm. &
Reporting

PMO Roles
& Resp.

Systems &
Tools

Managing Multiple Projects 359

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PortfolioStep lists the value of PMO portfolio management as (PortfolioStep, 2004):

• Improved resource allocation
• Improved scrutiny of work
• More openness of the authorization process
• Less ambiguity in work authorization
• Improved alignment of work (IT versus business units)
• Improved balance of work (type of work and risks involved)
• Changed focus from cost to investment
• Increased collaboration
• Enhanced communication
• Increased focus on when to “sell” (bail out)

A serendipitous beauty of project portfolio management is that it’s actually impossible
to do it without being aligned with the business, because creating a portfolio requires
close collaboration with the business. It will elevate the CIO in other executives’ eyes
because he (finally) will be speaking in their native tongue (Berinato, 2004).

A portfolio must be “balanced” to make sure that potential rewards are weighed against
risk levels. One might undertake a few very risky projects if the rewards are quite high,
but one would not engage in many very risky projects. The process is similar to
maximizing the returns from a portfolio of investments subject to risk constraints. In
addition to maximizing returns and minimizing risks, the optimization of the project
portfolio also needs to consider the availability and allocation of key resources and the
time phasing of resource usage. Consider Figure 16.4, which shows several projects in
a graph of risk versus reward.
Projects in quadrant A are no-brainers and are always to be done if resources permit.
Projects in quadrant D are to be avoided, unless they are “must do” because of some
compliance issue. Projects in quadrants B and C would be balanced off against each other
to match the risk tolerance of the stakeholders. Some software systems might show the
projects with different size circles, so that the absolute size of the projects was part of
the above visualization. Suppose the estimated annual cost (in thousands of dollars) for
the eight projects in that figure were as shown in the following list:

• P1 – 350
• P2 – 150
• P3 – 350
• P4 – 250
• P5 – 200

360 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• P6 – 300
• P7 – 150
• P8 – 150

If our total annual budget for the period was $1,000,000, we would likely choose P1 and
P2 because they are in quadrant A, then chose P3 and P7 to balance high-risk and low-
risk projects. The total of these four project budgets is $1,000,000.
Spreadsheet models in conjunction with integer linear programming (LP) can also be used
to find the optimal mix of projects. Consider the eight projects shown in Figure 16.5. For
each project the internal rate of return (IRR), cost, and risk factor has been tabulated. The
risk factor translates to a money amount of contingency (factor times cost) that is
estimated for each project.
Figure 16.6 shows the spreadsheet after calculated columns have been added to
determine the total investment (investment % times cost), total return (cost times IRR),
and dollars at risk (cost times risk factor). The LP solution involves maximizing the return
with constraints such that the dollars invested does not exceed the budget ($3,000 in this
example), such that the dollars at risk does not exceed the total contingency (20% in this
example, $600), and that the investment % are between zero and 1 and also must be
integers (i.e., zero for not doing a project and 1 for doing a project):

Max: Return = Xi * IRRi * Costi

Subject to:
Xi * Costi <= Budget
Xi * Costi * Riski < = Contingency (Overall Risk Factor *

Budget)
0 <= Xi <= 1 and Xi is integer

These formulae are also shown in Figure 16.6 in the Excel Solver window.
Figure 16.7 shows the solution; again, the 1s in the investment % column indicate the
chosen projects. Projects 1,2,6,7, and 8 would be done with our budget of $3,000 and
overall risk factor of 20%.
A number of financial benefit metrics were discussed and detailed in Chapter III. In
addition to (or instead of) risk versus reward or one of these financial benefit metrics,
projects can be scored and ranked using “holistic” techniques that include both
quantitative and qualitative metrics. Most of these methods define a list of metrics with
a corporate weighting assigned to each metric. A score, such as a value between 1 and
10 (not all methods use a linear scale), is then given to each metric. The definition of each
metric is usually worded so that a high score is good and a low score is bad. As part of
the definition of each metric, examples of the meaning of high and low scores should be
specified. For example, in considering technical feasibility, a score of 10 may mean that
“this type of project has been done in this organization successfully in the recent past”;
a score of 5 may mean that “this type of project has been done in similar types of

Managing Multiple Projects 361

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organizations with success”; and a score of 1 may mean that “we have not seen it done
successfully anywhere yet.” Statistically it is best if the metrics do not interact too much,
but in reality many metrics are going to indirectly affect other metrics. Figure 16.8 is an
example of such project scoring.
After projects are scored, they are ranked by the score and a cut-off line is drawn when
the sum of project budgets (for the period in question, such as the fiscal year) matches
the period budget limit; a limit point on resources could also be used. Many organizations
have some type of project review board made up of executive members from both IT and
business units. This board periodically reviews both the scoring and ranking process as
well as other issues that may be involved with the selection and cancellation of projects.
CIO Magazine discusses the process of building a portfolio and breaks it down into five
levels (Berinato, 2004):

1. Put all projects into one database; include such information as name, description,
purpose, estimated time and costs, benefit metric (i.e., ROI or IRR), and key
resources. This step alone will let IT management see the whole project landscape
and allow pruning of duplicated efforts.

2. Prioritize the projects based on either the reward/risk or a scoring/ranking method.
3. Divide projects into two (mandatory versus discretional) or three budgets (man-

datory, infrastructure, or strategic) based on the type of investment.
4. Automate the repository – reexamine key parameters regularly.
5. Apply modern portfolio theory (i.e., Markowitz methods).

Figure 16.4. Project risk vs.reward

P1

P3

P5 P6P8 P7

P2 P4

Risk ->

^
Reward

Quadrant
A

Quadrant
B

Quadrant
C

Quadrant
D

362 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For large organizations, step 1 may be a bit overly ambitious to do for all projects, and
the old 80/20 rule should be applied at first; concentrate on the 20% that make up the dollar
bulk of your projects. For step 3, an organization has to decide how much of its total
budget to place in each of the two or three investment categories, such as 60% into
infrastructure and 40% into strategic projects once the funding for mandatory projects
is set aside. The last step requires a lot of data and discipline and many argue that it is
not worth the cost of the effort. On this point CIO Magazine presents a quote from
Douglas Hubbard: “The cancellation rate of IT projects exceeds the default rate on the
worst junk bonds; and the worst junk bonds have a lot [of formal portfolio management]
applied to them” (Berinato, 2004).
Tools for project portfolio management range from simple spreadsheets to complex
software utilizing the very detailed math and economics of Markowitz modern portfolio
theory. Spreadsheets and simple databases are good starting points. A number of
specialized software products for portfolio management are available and evolving,
including those based on simulation techniques (i.e., Monte Carlo) such as Crystal Ball
Pro. Other notable products are PlanView (www.planview.com), ProSight’s Portfolios
(www.prosight.com), Artemis International Solutions’ PortfolioDirector
(www.artemisintl.com), Niku’s Clarity (www.niku.com), Pacific Edge’s Portfolio Edge
(www.pacificedge.com), SystemCorp’s PMOffice (www.systemcorp.com), ChangePoint’s
ChangePoint 8 (www.changepoint.com), Deltek Systems’ Project Planner
(www.sema4.com), and SystemCorp’s PMOffice (www.systemcorp.com). Many of these
products combine portfolio management with other PMO functions discussed later in
this chapter including knowledge management and performance report consolidation
with dashboards. Most of the IT portfolio software products do not include risk
assessment or life-cycle cost of IT assets (Hoffman, 2004).
However, WiseTechnology suggests that “before you’re ready to go shopping for
software to help you manage your project portfolio, you need to be sure that your
organization is ready for portfolio management” (Glick, 2004). There are many models
for “project management maturity,” but none of them puts portfolio management at the
basic levels. Without basic sound project management skills and processes, any amount
of expensive portfolio management software will not help much.

Figure 16.5. Project risk/reward

Managing Multiple Projects 363

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mark Jeffery, of the Kellogg School of Management at Northwestern University, has
developed a formal IT Portfolio Management Maturity Model (Melymuka, 2004a):

Level 1—“ad hoc”:
Random projects
Uncoordinated decisions

Level 2—“defined”:
Standard methods for evaluating and prioritizing project proposals
Central project management office
Central budget oversight
Central database of projects, with rough estimates of costs and benefits
Basic understanding of financial metrics used to make investment decisions
No consistent organization wide compliance
No links into budgeting cycles
No assessment of results or feedback into decision making

Level 3—“managed”:
Links to budgetary cycle
Financial metrics such as ROI and net present value consistently calculated and
used in annual reviews with business leaders

Figure 16.6. Project risk/reward spreadsheet

364 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Level 4—“synchronized”:
Professional project management processes
Use of evolving metrics to measure project value through its life cycle
Frequent reviews to realign projects and weed out underperformers
Assessment of both project and portfolio risks
Assessment of future opportunities the project enables
Disciplined feedback from business
Results feed decision making

Figure 16.7. Project risk/reward spreadsheet (answers)

Figure 16.8. Project scoring

Managing Multiple Projects 365

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In his survey of 130 Fortune 1,000 IT groups he found the following distribution:

• Level 1—4.5%
• Level 2—24.5%
• Level 3—54%
• Level 4—17%

Knowledge Management

Another key function of a modern project management office is to be the focal point for
corporate knowledge management or at least of knowledge management with respect to
projects and project management. Information is data endowed with relevance and
purpose, but knowledge is distinct from information and provides a higher level of
meaning. The ability to act is an integral part of being knowledgeable. Having knowledge
implies that it can be exercised to solve a problem, whereas having information does not.
Knowledge management (KM) is a process that helps organizations identify, select,
organize, and transfer important knowledge and expertise that are part of the organization’s
memory.

Corporate
Market
Value

Equiy
(assets -
liabilities)

Intellectual
Capital

Brand
Identity

Human
Capital

Structural
Capital

Organizational
Know-How

Customer
"Goodwill"

Figure 16.9. Organizational value

366 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The PMO fosters knowledge management by sponsoring and/or undertaking initiatives
to:

• Identifying knowledge
• Share knowledge in a formal manner
• Leverage the value of knowledge through reuse

Knowledge management promotes organizational learning and is used to help solve
problems. Knowledge is a main ingredient in the value of a modern organization. Figure
16.9 shows a breakdown of an organization’s value.
Historically, the main value was a business’s equity, and the three factors thereof—land,
labor, and capital—were the key to economic success. Today, knowledge is the fourth
factor and is becoming the most important factor in many industries. From the industrial
revolution until about 1980, the business landscape was mainly product driven. From
about 1980 until 2000, most business was primarily market driven. Today, business is
becoming knowledge driven; customers need an additional reason to buy, and a
company’s knowledge about how best to use/deploy the product or service is becoming
of paramount importance. Thus, intellectual capital, which is made up of human capital
and structural capital, is becoming the driver of business valuation. Information and
knowledge have become the fields in which businesses compete. Ultimately, an
organization’s only sustainable competitive advantage lies in how its employees apply
knowledge to business problems.

Human Capital

Organizational
Know-How

Knowledge
Management

System

Related InfoProblem

Figure 16.10. Knowledge management system

Managing Multiple Projects 367

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are two kinds of knowledge: explicit and tacit. Explicit knowledge is easily
collected, organized, and communicated. Tacit knowledge is “knowing more than one
can tell,” such as how to ride a bicycle; it is personal, context specific, and very hard to
formalize and communicate. Human capital embodies tacit knowledge whereas structural
capital is mostly explicit knowledge. Modern knowledge management systems can
contain and make available both types of knowledge, as is illustrated in Figure 16.10.
Explicit knowledge matches problems with solutions in the form of facts (including
historical data), procedures, best practices, recipes, standards, and the like. Tacit
knowledge matches problems with people who have encountered or solved such
problems in the past; this approach builds social environments to facilitate the sharing
of such understanding.
A functioning knowledge system follows six steps to develop an effective knowledge
base:

• Create knowledge
• Capture knowledge
• Refine knowledge
• Store knowledge
• Manage knowledge
• Disseminate knowledge

A state-of-the-art dissemination process makes knowledge visible through maps, direc-
tories (yellow pages), hypertext linkage, and search techniques.
For knowledge management to be effective in a company, however, organizational
culture must change; employees must be willing to contribute knowledge and use
knowledge. Thus there must be strongly committed top leadership, clearly expressed and
communicated goals, and end users involved in the implementation process. A direct or
indirect reward structure for contributing and using knowledge should also be included.

Lessons Learned

Lessons learned (LL) is the most common form of project knowledge management. As
was discussed earlier in this book, a key part of the closeout of each project is a formal
post-mortem meeting. This should be conducted preferably by the PMO. In such as
meeting the discussion would involve general evaluating questions such as:

• Was the business justification realized (or does it appear that it will be realized);
if not, why not?

• What risks events occurred and how they were handled?

368 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• What risks events did not occur, and perhaps why not?
• What in general should be done differently on the next such project?

The discussion would also involve process-specific questions, such as:

• What methods, tools, techniques, resources worked well?
• What methods, tools, techniques, resources did not worked well?
• What artifacts and components can be reused?

Each PMI project management process group (scope, time, cost, risk, quality, etc.) as
well as each project deliverable, should be revisited in regard to these questions.
There are a number of formal management techniques that can be used for the LL process.
Two commonly used techniques are structured walkthroughs and the external, internal,
self-assessment (EISA) approach used in ISO, TQM, and CMM appraisals. In a struc-
tured walkthrough, the project team selects the participants and agenda and runs the
meeting. No upper management personnel attend these meetings, so team members are
not hesitant to be open and honest (Yourdon, 1988). In the EISA approach, an internal
self-appraisal is followed up first by an appraisal using independent auditors from the
same organization, then by an appraisal using external auditors (Wilson, 1995).
The intent of LL is not only to capture problems and related events, but to initiate
solutions for use in future projects. This may involve formal processes (such as fishbone
diagrams) to identify “root causes,” as was covered earlier in the book. This LL process
is a leading indicator of the maturity of an organization with respect to project manage-
ment. Ewusi-Mensah (2003) systematically analyzed software development failures. He

Figure 16.11. NASA lessons learned Web site

Managing Multiple Projects 369

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

found it most distressing that companies continue to make the same mistakes over and
over again on projects. Most of these companies did some type of post-mortem analysis,
including lessons learned, but most either did not keep those records or make any use
of that archived information.
Like any information knowledge repository, a formal LL information system gathers
information, stores it, organizes and indexes it, makes it available, and monitors the usage
thereof. The major uses of lessons learned knowledge is:

• Changing organization policies, procedures, methodologies, techniques, and
tools

• Improving cost and time estimation methods and parametric data
• Improving risk assessment methods and parametric data
• Correlating problems with solutions (and/or those who may how to solve such

problems)

Figure 16.11 shows the gateway screen for the NASA LL system.
NASA’s described their LL information system as follows (Smith, 2004):

The NASA LLIS is an on-line, automated database system designed to collect and make
available for use the NASA lessons learned from over forty years in the aeronautics and
space business. The LLIS enables the knowledge gained from past experience to be
applied to current and future projects. Its intent is to avoid the repetition of past failures
and mishaps, as well as the ability to share observations and best practices. Through
this resource, NASA seeks to facilitate the early incorporation of safety, reliability,

Figure 16.12. NASA lessons learned search

370 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maintainability, and quality into the design of flight and ground support hardware,
software, facilities, and procedures.

Figure 16.12 shows the search screen for the NASA LL Web-based system, which
searches for keywords within date range for all or a particular space center.
Today, large, effective LL systems can be built using modern data warehouse information
technology. A central fact table is constructed and a star topology (related tables) is
typically used, as illustrated in Figure 16.13. Relational database technology and/or
multidimensional technology (online analytical processing, or OLAP) can be incorpo-
rated. Using this approach, topics and/or problems are easily related to solutions and/
or people.
Project management lessons learned type of information is not only obtained at the
corporate level but also at the trade organization level. A number of IT project
management organizations from time to time publish general lessons learned across their
industry area, such as the project management organizations (e.g., PMI), software
engineering organizations (e.g., IEEE or SEI), and trade publications. For example,
InfoWorld’s 2004 top 20 IT mistakes were (Dickerson, 2004)

• Botching your outsourcing strategy
• Dismissing open source or bowing to it
• Offshoring with blinders on
• Discounting internal security threats
• Failing to secure a fluid perimeter
• Ignoring security for handhelds

Figure 16.13. Lessons learned as OLAP system

Fact Table

Event ID
Project

Perf Org
Bene Org

Person
Date/Time

Topic
Problem Link
Solution Link

Topics

PeopleOrgs

Problems Solutions

Projects

Managing Multiple Projects 371

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Promoting the wrong people
• Mishandling change management
• Mismanaging software development
• Letting engineers do their own QA
• Developing web applications for IE only
• Relying on a single network performance indicator
• Throwing bandwidth at a problem
• Permitting weak passwords
• Never sweating the small stuff
• Clinging to prior solutions
• Falling behind on emerging technologies
• Underestimating PHP
• Violating the kiss principle
• Being a slave to vendor marketing strategies

Most of these issues have been discussed in prior chapters of this book as they relate
to IT project management.

Figure 16.14. Forms and templates in this book

Process Group Forms/Templates Chapter

Initiation Project Proposal 3

 Project Business Plan 3

Planning Project Charter 6

 Overall Project Plan 6

 Methodology & SE 5

 Software Management Plan 6

 Communications Plan 6, 13

 Requirements Document 6

 Security Plan 6, 13

 WBS 7

 Schedule 7

 HR Plan 7, 13

 Cost Plan 7

 Procurement Plan 12

 Risk Plan 8

 Quality Plan & Standards 10

 Change Control Plan 11

Exec & Control Management Stage Gate 3, 9, 11, 14, 15

 Quality Stage Gate 9,10

 Status Report 9

 Change Order 11

Closing Project Close Out 11

 Final Stage Gate 11, 16

 Lessons Learned 11, 16

372 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Standard Forms and Templates

Another key function of a modern project management office is to develop standard
polices and procedures relevant to the initiation, approval, management, and closeout
of projects. A closely related responsibility is the creation and distribution of standard
forms and templates based on those procedures. Policies, procedures, forms, and
templates may be paper based, but in a modern organization these will all be in an
electronic format, and some may be embedded in project management software tools, as
was discussed in Chapter XV. Figure 16.14 is a recap of sample forms and templates that
have been illustrated in this book. This recap can also be used as a checklist for an IT
project life cycle.

Global Projects

Ever since the end of the Cold War, the world has been rushing toward international
convergence of capital markets, business regulation, trade policies, and the like. More
than 95% of world population lives outside of the United States, and for most countries
the majority of their potential market for goods and services is outside of their borders.
In addition, more than 60% of the world’s online population resides outside of the United
States, with the average Web site getting 30% of its hits from foreign surfers (Brandon,
2002). Business needs today are forcing organizations to manage projects outside of their
home countries and often in multiple countries. In the last decade, domestic profits of
U.S. companies increased about 20% while profits of their foreign subsidiaries increased
almost 200%. Because the PMO is the corporate focal point for managing multiple
projects, it makes sense for the modern PMO to coordinate foreign and multicountry
projects.
Obviously, the spoken language is a major issue for managing projects on a global scale.
English is the native language to only 8% of the world, and more than 70% of the 1 billion
Web users around the world are non-English speakers. Most users in foreign countries
prefer document content in their own language; it was found that visitors spend twice
as long and are three times more likely to buy from a Web site presented in their native
language (Brandon, 2002). Multiple languages are used in many areas. Belgium uses both
French and Dutch. In Switzerland, German, French, and Italian are used. One has also to
take into account differing dialects across various countries speaking the same lan-
guage. One cannot use “classic German” in Germany, Austria, or Belgium because all
those countries speak a different form of German. The combination of language and
dialect is called a “locale,” and the ISO has established a coding system for such locales.
Language, however, is just one of the many difficult issues in managing projects on a
global scale. Other problem areas include cultural diversity, political, legal, logistic,
regulatory, monetary, measures, standards, technical, and geographical. For example, an
organization’s contract may stipulate that it get paid in dollars, but the expenses may be
incurred in foreign countries under a different currency; thus, the actual costs may vary

Managing Multiple Projects 373

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 16.15. Project global issues by success factor

Figure 16.16. Multiple project dashboard

Global Issues by Success Factor

Success Criteria Global Issues

Completion Factors
 Project Management
 Schedule (Time) Foreign holidays, vacations, time zones
 Cost Foreign currency; multiple currencies, conversion costs
 Exchange rate fluctuations
 Need for foreign "on-site" manager
 Travel expense
 Long distance voice costs
 Tax issues (VAT, duties, import/export, etc.)
 Additional legal costs for contracts
 Progress Delays in getting progress info
 Stakeholders/Communication Language/culture communication difficulties
 24 hour communication needs (time zones)
 Email, network, internet outages
 Need virtual "war room"; can't use collocation
 Foreign labor laws
 Knowledge retention
 Employee performance evaluation difficulties
 Risk More risk factors and mitigation plans
 Political uncertainties
 Legal uncertainties & different judicial systems
 Methodology Cultural differences
 Commitment to Perform Authority overlaps and gaps
 Ability to Perform Cultural differences including work ethics
 Verification Differing quality standards
 Technology Differing units of measure (English vs Metric)

Satisfaction Factors
 Business Justification Offshore outsourcing issues
 Validation Distance/Time factors complicate customer involvement
 Workflow & Content Developing/maintaining content for multiple locales
 Standards Differing national standards & conventions
 Compromise of certifications (CMM, ISO, etc.)
 Maintainability & Support 24 hour support requirements
 Version control for multiple locales
 Adaptability Differing OO implementation languages/methods
 Trust/Security Political differences
 Difficulty of background checks
 Information privacy

Project
Dashboard

Project 1 Project N

EVA Risk
Update

Quality
Stage Gate EVA Risk

Update

Quality
Stage Gate

Test
Control

Change
Control

Change
Control

Test
Control

...

374 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

widely with the exchange rate. To effectively identify and thus manage all these global
issues, one can relate such issues to the project’s critical success factors; this type of
analysis is shown in Figure 16.15.

The PMO Portal

In a move to reduce the overhead costs of the PMO yet still obtain many benefits thereof,
some organizations are starting to develop virtual PMOs, or a PMO portal. With a virtual
PMO, many of the functions of that office are provided online to project managers, project
team members, and line management. Thus, the expertise of the PMO staff is leveraged
to provide support to more people in more locations even on a global scale. Today’s
model for the virtual PMO is a Web-based system with central information repositories.
For example, one component of the virtual PMO is typically a project dashboard, as is
illustrated in Figure 16.16.
The dashboard provides current status information on all projects that may include
earned value ratios, risk status, change control status, defect introduction and correction
status, and quality stage gate stakeholder input. Because earned values are quantitative
numbers expressed in currency (i.e., dollars) for both cost and schedule deviations, these

Figure 16.17. Project dashboard indicators

Vital Sign Variance Points
Schedule Delay < 10%

10% to 20%
> 20%

0
1
2

Milestone Delay < 10%
10% to 20%

> 20%

0
1
2

Deliverable Delay < 10%
10% to 20%

> 20%

0
2
4

Unresolved issues No issues
< deliverables
> deliverables

0
1
2

Cost Over Budget < 10%
10% to 20%

> 20%

0
1
2

Resource Shortage < 10%
10% to 15%

> 15%

0
2
4

High Probability, High
Impact Risk Events

1 – 3 risks
4 - 5 risks
6 – 7 risks

1
3
5

Disposition of Team Good
Fair
Poor

0
2
4

Sponsor’s Commitment Good
Fair
Poor

0
3
6

Managing Multiple Projects 375

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 16.18. Instrument gauge analogy of project dashboard

Figure 16.19. PMO portal

User

PMO
 Portal

Policies &
Procedures

Std. Forms &
Templates

Knowledge
Engine

Project
Dashboard

Project 1 Project N LL
Other

Know How

Project Portfolio

Technical
Standards

Business
Standards

... ...

numbers can be rolled up along an OBS for example, to give a picture of how all projects
are performing in an organization. Some dashboards use vital signs based upon a point
system. An example from Computerworld is shown in Figure 16.17 (Melymuka, 2004b).
If the total number of points is below 9, then the project is considered healthy; 9 to 15
is rated as caution, and over 16 is rated as danger. The recommended approach herein
is to make vital signs correlate with project critical success factors (using the metrics for
each success factor as was discussed earlier in this book).

376 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some organizations use software tools that show the dashboard concept visually, with
gauges and charts. One example of this is the Project Control Panel developed as an Excel
add-on by the Software Program Managers Network (www.spmn.com/pcpanel.html) as
illustrated in Figure 16.18. While the dashboard concept is quite useful for keeping upper
management informed, a physical dashboard analogy may only appeal to pilots; most
PMs likely prefer information displayed in a more common format such as tables,
spreadsheets, and Gantt charts.
Figure 16.19 illustrates the conceptual organization of a comprehensive virtual PMO
portal. The user of the system can view or download policies and procedures as well as
standard forms and templates. The project portfolio can be viewed or even updated if the
user has the authority to do so. A knowledge engine provides the user with solutions
to problems from the lessons learned, puts the user in touch with people who have dealt
with that problem previously, and provides training information via documents, slide
shows, or videos. Chat rooms, bulletin boards, blogs, and wikis can be added to this
virtual PMO so that physical meetings of various “boards” can be replaced with virtual
meetings; for example, the project approval board, the change control board, or the stage
gate board could go virtual. Intelligent software agents can also be added to the virtual
PMO; these agents watch all the information available in the system and report
exceptions and trends to upper management.

Project Management Maturity

Just as the SEI develops maturity models for software engineering, a number of project
management organizations have been developing project management maturity models.
The purpose of these models, just like the SEI models, is twofold:

• Internally: Companies access their maturity to find ways to improve
• Externally: Companies use their maturity rating to sell their project management

services and other services that utilize project management (such as building
things like IT systems)

PMI has been working on such a model for a number of years and has just recently
introduced the organizational project maturity (OPM3). More than 30 other earlier
maturity models were part of the research that PMI did for its model using over 800
volunteers (Cooke-Davies, 2004). The PMI model defines three domains to project
management (portfolio management, program management, and project management)
and four levels (stages) of maturity for each (standardize, measure, control, and continu-
ously improve). Within each domain there are the five PMI process groups (initiating,
planning, executing, control, and closing). Process within the process groups are
described in terms of five entities: best practices, capabilities, outcomes, key perfor-
mance indicators (KPI), and pathways. A practice is a component of a process or process
group. A combination of certain capabilities result in a particular best practice through

Managing Multiple Projects 377

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a defined pathway, and the outcomes signify the attainment of a capability via KPI
metrics. There are one or more outcomes and corresponding KPIs for each capability.
The office of government commerce (OGC) in the United Kingdom has also released a
comprehensive maturity model called project management maturity model (PMMM). Like
the SEI CMM, PMMM defines five levels of maturity (Initial, Repeatable, Defined,
Managed, and Optimized) with specific processes at each level. Like CMM, maturity is
typically assessed by questionnaires that determine if those key processes are being
carried out. PMMM is considerably less complex that OPM3 and may be more appropriate
for many companies. However, PMMM does not include program or portfolio manage-
ment.
The responsibility for project management maturity in an organization is typically
logically housed with the PMO. Thus the PMO would determine the organization’s initial
maturity, take steps to raise the maturity level, and re-access the maturity as needed. Our
model for IT project management maturity (at the single-project level) has been devel-
oped throughout this book and is summarized again in Figure 16.20. This model is a
combination of best software engineering and project management principles and
practices, and the project management practices and metrics thereof are based on
identified critical IT project success factors.

Figure 16.20. IT project management maturity

Manageable
Scope

(Requirements
and Phasing)

IT Project

Appropriate
Methodology

OO
Architecture

Standards
(embedded and

enforcable)

Software
Engineering

Maturity

Success Factor
Based Project
Management

Quality
Program

(TQM, QFD, ISO
9000, Six Sigma)

Business
Justification

Security
Program

 (project and
product)

378 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project Management and
Strategic Planning

EVA and other stage gate methods provide management key information to take
corrective action primarily at the operational level for a particular project. When EVA
metrics from all projects in a program are rolled-up and combined, then management has
a greater visibility to examine issues across multiple projects and take actions some of
which may be tactical as well as operational. Many project management techniques are
often criticized as being too short-sighted and limited to control tactics that may not be
in the best interest of the long-term success of an organization (Brandon, 2004). Certainly
we understand (and most of us have seen cases) where employees are pushed too hard
for success on one project only to become demoralized for performance on future
projects.
One of the main responsibilities of a PMO is to implement an overall corporate project
management strategy. Implementing such strategy involves the development and/or
adoption of some type of strategic foundation upon which to translate corporate vision
and goals into winning strategies with effective tactics. Long-term winning strategies
must address both the quality and satisfaction dimensions as well as the financial and
temporal dimensions (Brandon, 2004).
A number of strategic foundations have been used by organizations in the past, but the
modern balanced scorecard (BSC) approach seems most successful and relevant in
today’s global and fast-paced economic setting. The BSC is a modern approach to
strategic management that was originally proposed in 1992 by Robert Kaplan and David
Norton (Kaplan & Norton, 1992). They recognized the shortcomings of traditional
management approaches which have an overemphasis on metrics that are strictly
financial based and looking for the most part at the results of past actions and plans. This
rear-facing approach is becoming obsolete in today’s fast moving, global, and technol-
ogy-based economy. The balanced scorecard approach provides definitive procedures

Figure 16.21. Intangible assets

Intang ib le A s s ets

0%

10%

20%

30%

40%

50%

60%

70%

80%

1980 1990 2000

Managing Multiple Projects 379

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as to what companies should measure in order to balance that traditional prime focus on
solely a financial perspective.
While the processes of modern business have changed dramatically over the past several
decades (especially with the growth of the Internet), the methods of performance
measurement have stayed much the same. Past measurement methods are well suited to
asset-based, slow changing manufacturing organizations. But past-performance mea-
surement systems are no longer as relevant to capture the value creating mechanisms of
today’s modern business organizations (Kaplan & Norton, 1996). Today, intangible
assets such as employee knowledge, customer base and relations, supplier base and
relations, and access to innovation are the key to creating value; Figure 16.21 shows this
shift for U.S. companies. When financial statements (profit/loss, balance sheet, cash
flow), Gantt charts, or even EVA analysis are reviewed, the results of those reports reflect
actions and decisions that occurred in the past. Some of the past actions and decisions
that determine an organizations present financial state may have taken place a month ago,
a year ago, or a decade ago (Brandon, 2004).
The balanced scorecard does not ignore financial matters but changes the perspective
from a reactive to a proactive involvement. The balanced scorecard approach takes a look
at the key management actions (including metrics) that will most likely affect a company’s
future financial state; these are termed leading indicators (Eickelmann, 2003). The
balanced scorecard is a management system, not only a system of metrics. Using BSC,
organizations first clarify and quantify their vision and strategy and then turn them into
actions. BSC provides feedback around both the internal business processes and
external outcomes to continuously improve overall performance. When appropriately
implemented, a BSC approach transforms strategic planning from an academic exercise
into the primary control mechanism of an organization (Averson, 2002; Niven, 2002).
In the language of the founders of BSC:

The balanced scorecard retains traditional financial measures. But financial measures
tell the story of past events, an adequate story for industrial age companies for which
investments in long-term capabilities and customer relationships were not critical for
success. These financial measures are inadequate, however, for guiding and evaluating
the journey that information age companies must make to create future value through
investment in customers, suppliers, employees. (Kaplan & Norton, 1996)

BCS has been successfully implemented in thousands of organizations around the world,
both for profit and nonprofit; success ratios (success in the last major change effort) are
reported as (Averson, 2002)

• Non-measurement Managed organizations (55%)
• Measurement Managed Organizations (97%)

380 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The BSC approach defines four perspectives from which an organization is viewed.
Metrics are developed then data is collected and analyzed relative to each of these
perspectives. This is illustrated in Figure 16.22 (Brandon, 2004).
The first perspective is the learning and growth perspective. It involves the investment
in human capital through activities like positive feedback, motivational techniques,
setting up mentors, communications facilitation, employee training, and the develop-
ment of a company-cultural and code of ethics. Chapter XIII discussed many of these
issues from an operational perspective. In the current climate of rapid technological
change, it is becoming necessary for knowledge workers to be in a continuous learning
mode. Organizations often find themselves unable to hire new technical workers and at
the same time allow a decline in training of existing employees. This is a leading indicator
of “brain drain” that will ultimately kill an organization. Metrics can be put into place to
guide managers in focusing personnel development funds where they can help the most.
This perspective is the foundation for long-term success of an organization. From a
project team perspective, short-term learning and growth perspectives are already
included in the metrics for our quality stage gates. However, for long-term success, long-
term actions and metrics need to be established.
The next perspective is the business (or internal) process perspective. This perspective
relates to the internal business processes. Metrics based on this perspective allow the
managers to know how well their business is running, and whether its products and
services conform to customer-stated requirements and unstated expectations. These
metrics have to be carefully designed by those who know these processes best. There

Figure 16.22. BSC perspectives

 Financial Perspective

"To succeed financially, how
should we appear to our

stockholders"

Objectives
Metrics
Targets

Customer Perspective

"To achieve our vision, how
should we appear to our

customers"

Objectives
Metrics
Targets

Learning and
Growth Perspective

"To achieve our vision, how will
we sustain our ability to change

and grow"

Objectives
Metrics
Targets

 Internal Business Perspective

"To satisfy our stakeholders,
how will we excell at our key

business processes"

Objectives
Metrics
Targets

Vision

Strategy

Managing Multiple Projects 381

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are two kinds of business processes in an organization’s value chain. Primary (mission-
oriented processes) are the special functions of an organization often used for competi-
tive advantage, and support processes (i.e., accounting, legal, procurement, HR, etc.)
which are more repetitive in nature, and hence easier to measure and benchmark using
classical metrics. From a project perspective, business process metrics are included in
the metrics for both our management and quality stage gates.
The next perspective is the customer perspective. Recent management philosophy and
IT products as customer relations management systems (CRMs) and sales force auto-
mation systems (SFAs) have shown an increasing realization of the importance of
customer focus and customer satisfaction in any business. If customers are not satisfied,
they will eventually find other suppliers that will meet their needs. Poor performance from
this perspective is thus a leading indicator of future decline, even though the current
financial picture may look good. From a project perspective, customer relations are
included in the metrics for our quality stage gates.
The last perspective is the financial perspective. Kaplan and Norton do not disregard
the traditional need for financial data. Timely and accurate funding data will always be
important. Their point is that the current emphasis on financials leads to the unbalanced
situation with regard to other perspectives. There is also a need to include additional
financial-related data, such as risk assessment and cost-benefit data, in this category.
Again, from a PM perspective, financial data is a key metric of our management stage gate,
including EVA and risk analysis.
Figure 16.23 shows the perspectives in a waterfall, long-term, strategic cause-and-effect
scenario. Motivation, skills, and satisfaction of employees are the foundation for all
improvements. Motivated, skilled and empowered employees will improve the ways they
work and also improve the work processes. Improved work processes will lead to
improved products/services, which will mean increased customer satisfaction. Increased

Figure 16.23. BSC perspectives cause and effect

Financial
Perspective

Customer
Perspective

Learning and
Growth

Perspective

Internal Business
Perspective

382 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

customer satisfaction will in turn lead to long-term improved financial performance
(Brandon, 2004).
In the early industrial revolution in order to shield the customer from receiving poor-
quality products, aggressive efforts were focused on inspection and testing at the end
of the production line. The problem with this approach, as pointed out by Deming (as
cited in Walton, 1991), is that the true causes of defects could never be identified, and
there would always be inefficiencies due to the rejection of defects. What Deming saw
was that variation is created at every step in a production process, and the causes of
variation need to be identified and fixed. Deming emphasized that all business processes
should be part of a system with feedback loops. The feedback data should be examined
by managers to determine the causes of variation, and then attention could be focused
on fixing those particular problems. These aspects of quality management were dis-
cussed in detail earlier in this book. BSC emphasizes feedback control from each of the
four perspectives in each major business process; that is, each perspective for each key
process should have objectives, metrics, and targets for proper feedback control.
The successful concepts of BSC can be integrated into the project management context.
Considering a project as a key business project, one needs to establish metrics for each
of the four perspectives at the individual project level and also at the PMO level. BSC
performance metrics at the project level have already been included in our dual stage gate
methodology and comprehensively discussed earlier in the book. For example, EVA
would be a key metric for the project level BSC financial perspective. Success factors from
the completion perspective are used in the BSC internal perspectives, and success
factors from the satisfaction perspective are used in the BSC customer perspective.
An BSC scorecard defines the key activities for each perspective and the metrics that are
going to be used to monitor the performance of that activity. One possible very simple
score card at the PMO level is shown in Figure 16.24 (Brandon, 2004). For example, at the
BSC customer perspective, we would measure not only the customer’s satisfaction with
our projects, but how involved our project team, project manager, and line management
was with customer personnel. Thus, using the combined principles of dual critical

Figure 16.24. PMO BSC metrics

Perspective Activities Metrics
Learning
& Growth

Effective Communications
Management Team Building & Motivation

Project Manager Development
Motivation
PM Forum

Communication Problems
PM and Employee Feedback

Training Funding
PM Incentive Packages

Sharing of “Lessons Learned”
Use of “Lessons Learned”

Customer Customer Relations
Customer Involvement

Customer Satisfaction
Customer Feedback (about PM,

and line management)
Internal Planning

Process Standardization
PM Support (from line management)

Rollup of EVA Time
Standard Forms & Procedures

PM Feedback
Financial Use of Resources

Contracting/Procurement
Rollup of EVA Cost

Procurement Problems

Managing Multiple Projects 383

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

success factor-based stage gates, and BSC, a PMO office can more effectively manage
all project work across an organization from a strategic perspective.

References

Averson, P. (2002). The Balanced Scorecard Institute. Retrieved from
www.balancedscorecard.org

Berinato, S. (2004, October 16). Do the math. CIO Magazine.
Block, T. (1999, April). The seven secrets of a successful project office. PM Network.
Brandon, D. (2002). Issues in the globalization of electronic commerce. In V. K. Murthy

& N. Shi (Eds.), Architectural issues of Web-enabled electronic business. Hershey,
PA: Idea Group Publishing.

Brandon, D. (2004). Project performance measurement. In P. Morris & J. Pinto (Eds.), The
Wiley guide to managing projects. New York: Wiley.

Cooke-Davies, T. (2004). Project management maturity models. In P. Morris & J. Pinto
(Eds.), The Wiley guide to managing projects. New York: Wiley

Dickerson, C. (2004, November 22). The top 20 IT mistakes. InfoWorld.
Eickelmann, N. (2003). Achieving organizational IT goals through integrating the

balanced scorecard and software measurement frameworks. In Technologies and
methodologies for evaluating information technology in business. Hershey, PA:
IRM Press.

Elkins, W. (2003, February 17). Maximize ROI with a project office. Computerworld.
Ewusi-Memsah, K. (2003). Software development failures. Cambridge, MA: MIT Press.
Glick, B. (2004). Steering a project takes more than expensive software. Retrieved

October 16, 2005, from www.wisetechnology.com
Hoffman, T. (2003, July). Value of project management offices questioned. Computerworld.
Hoffman, T. (2004, February 10). Balancing the IT portfolio. Computerworld.
Kaplan, R., & Norton, D. (1992, January). The balanced scorecard—Measures that drive

performance. Harvard Business Review
Kaplan, R., & Norton, D. (1993, September). Putting the balanced scorecard to work.

Harvard Business Review.
Kaplan, R., & Norton, D. (1996). The balanced scorecard. Cambridge, MA: Harvard

Business School Press.
Melymuka, K. (2004a, May 3). Harrah’s betting on IT value. Computerworld.
Melymuka, K. (2004b, September 27). How to kill an IT project. Computerworld.
Niven, P. (2002). Balanced scorecard—Step by step. New York: Wiley.
PMI. (2000). The project management body of knowledge (PMBOK). Newton Square,

PA. ISBN 1-880410-22-2.

384 Brandon

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PortfolioStep. (2004). The value of portfolio management. Retrieved from http://
www.porfoloistep.com

Powell, M., & Young, J. (2004). The project management support office. In P. Morris &
J. Pinto (Eds.), The Wiley guide to managing projects. New York: Wiley.

Santosus, M. (2003, July 1). Office discipline: Why you need a project management office.
CIO Magazine.

Smith, E. (2004). Welcome to the NASA lessons learned information system. Retrieved
from http://llis.nasa.gov

Standish Group. (2004). Chaos chronicles. Retrieved from www.standisgroup.com
Stone, P. (2004, October 16). The case for portfolio management. CIO Magazine.
U.S. Department of Commerce. (1999). Guide to balanced scorecard performance

management methodology. Retrieved from http://oamweb.osec.doc.gov/bsc/
guide.htm

Walton, M. (1991). Deming management at work. New York: Perigee.
Wayne, R. (2004). Conscious choices. Software Development, January.
Wilson, P., & Pearson, R. (1995). Performance-based assessments: External, internal,

and self assessment tools for total quality management. Englewood Cliffs, NJ;
American Society for Quality Control Press.

Yourdon, E. (1988). Structured walkthroughs. Prentice Hall.

Endnote

1 The Sarbanes-Oxley Act was signed into U.S. law on July 30, 2002, and introduced
highly significant legislative changes to financial practice and corporate gover-
nance regulation. It introduced stringent new rules with the stated objective: “to
protect investors by improving the accuracy and reliability of corporate disclo-
sures made pursuant to the securities laws.”

Glossary and Acronyms 385

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

"����
���
���������
�

Acceptance: Accept a risk (take no preventive action).

Activity Code: A WBS code to which budgeted costs and actual costs are assigned.

Activity-on-Arrow (AOA): A network diagramming technique in which activities are
represented by arrows and the nodes represent the coordination of activities in regard
to the sequencing of the work (same as ADM).

Activity-on-Node (AON): A network diagramming technique in which activities are
represented by nodes and the lines represent dependencies (same as PDM).

Actual Cost: The costs that are to be incurred and are to be charged to the project.

Actual Cost of Work Performed (ACWP): The costs that have already been incurred and
are charged to the project as of a point in time.

Alpha Testing: Prerelease testing in which a small friendly sampling of the targeted
customer base tries out the product.

AP: Agile Programming or Accounts Payable.

Application Frameworks: A holistic set of software specifications for the interaction and
assembly of multiple reusable patterns.

386 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Apportioned Effort (AE): In earned value analysis, a method of distributing value to
activities whose progress is governed by another activity.

AR: Accounts Receivable.

Arrow Diagramming Method (ADM): A network diagramming technique in which
activities are represented by arrows and the nodes represent the coordination of
activities in regard to the sequencing of the work.

As-Built Documentation: Text and diagrams that describe the system as it was actually
built.

Authorized Unpriced Work (AUW): Work that has been authorized, but for which a
budget has not set.

Authorized Work (AW): Work that has been planned, priced, and for which authority
has been received to commence.

Avoidance: Eliminate the cause of a risk event or reduce the EMV via reducing risk
probability.

Backward Pass: Calculating the latest start dates moving from the finish date of a project
to the left along a network.

Balanced Matrix: A matrix type of organizational structure functional managers and
project managers have the same priority.

Balanced Score Card (BSC): A modern method for strategic planning.

Bar Chart: A depiction of project task and schedule data that uses horizontal bars on
a time scale to represent activity. The most common form of such is the Gantt chart.

Baseline Schedule: A copy of the project schedule when the project starts before change
orders; the original plan.

Benefiting Organization: The organization benefiting from the work of the project.

Beta Testing: Prerelease testing in which a significant sampling of the targeted customer
base tries out the product.

Glossary and Acronyms 387

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bid Documents: A set of documents issued for purposes of soliciting bids in the course
of the procurement process.

Black Box: A process done without knowledge of the inner workings of the subject of
the work, as in Black Box Testing.

Budget at Completion (BAC): The total budget for a project.

Budgeted Cost of Work Performed (BCWP): A measure of the value of work performed
so far based upon the initial estimated cost for said work as of a point in time (same as
“earned value”).

Budgeted Cost of Work Scheduled (BCWS): The planned cost for project work as of a
point in time.

Bug: A malfunction in a hardware or software product.

Burden: The difference between the full cost of a resource (i.e., a person) and the amount
paid to that resource. For a person, it would include employer taxes (FICA, MEDI, FUTA,
SUTA), workmen’s compensation, benefits, and so on.

Business Risk: An uncertain situation that could result in a gain or a loss.

CBS: Contractor Breakdown Structure.

CBSE: Component-Based Software Engineering.

CFO: Chief Financial Officer.

Change Control: The process of managing changes to the project’s baselines to
determine which changes to include and which not to include.

Change Control Board (CCB): A formal group of stakeholders responsible for approving
or rejecting changes to the project baselines.

Change Management: A formal process for managing changes to the project.

Change Management Plan: The formal plan for managing changes to the project.

388 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Change Order: A request to the performing organization to modify a requirement or
deliverable.

CIO: Chief Information Officer.

CKO: Chief Knowledge Officer.

CMM: Capability Maturity Model.

COCOMO: Constructive Cost Model.

Communication Plan: A formal plan for how, when, where, and what information will be
exchanged amongst project stakeholders.

Configuration Management: Managing changes to a hardware/software configuration
in a holistic and cohesive manner so that performance and integrity is not compromised.

Conflict Resolution: The process of seeking resolution to conflicts amongst project
stakeholders.

Contingency: Money or amounts of time may be set aside to be used in the event of risks
occurring during the project.

Contract: A legally binding agreement between competent parties to acquire legal goods
or services in trade for some form of compensation.

Contract Administration: Managing a relationship with a vendor including all necessary
documents and deliverables.

Contract Closeout: Processes and activities which assure that the contractor has
fulfilled all contractual obligations and has released all claims in regard to the work
performed.

Contract Price: The amount payable by the customer under the terms of the contract for
work done and deliverables received.

Contract Target Cost (CTC): The sum of authorized and priced work excluding unpriced
work.

Glossary and Acronyms 389

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Contractor: The party who performs work on behalf of another based on a legally binding
contract.

Control Code: In our notation, a WBS code which has subsidiary activity codes. Costs,
both planned and actual, are posted to the activity accounts and rolled-up to control
accounts. (In C/SCSC, a cost account.)

CORBA: Commonobject request broker architecture.

Cost Account: In the United States C/SCSC, a budget account associated with a WBS
element, at which lower level tasks are gathered for management purposes (and assigned
to one organizational element). (Also called control code in ANSI and DoD EVA.)

Cost Benefit Analysis: The ratio of a endeavor’s estimated cost to its anticipated benefit.

Cost Performance Index (CPI): The cost efficiency factor representing the relationship
between the actual costs incurred and the planned value of the work performed (earned
value)—BCWP/ACWP.

Cost/Schedule Control System Criteria (C/SCSC): A reporting and control system
devised by the U.S. Department of Defense for its contractors to use to minimize and
anticipate cost overruns.

COTS: Commercial Off the Shelf Software.

CPAF: Cost Plus Award Fee.

CPFF: Cost Plus Fixed Fee.

CPIF: Cost Plus Incentive Fee.

CPM (Critical Path Model): A network diagram using a single time estimate per task to
determine the longest sequence(s) of connected (dependent) tasks.

Crashing: Decrease the duration of a task(s) or activity typically by increasing the
expenditure of resources or moving resources to critical path tasks.

Critical Path: The set of inter-dependent tasks that must finish on time for the entire
project to finish on schedule.

390 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Critical Success Criteria (CSC): The principles or standards by which the success of
a project will be judged.

Critical Success Factors (CSF): Any circumstance, fact, or influence which contributes
to a critical success criteria; measurable factors that are most important to a project’s
success criteria.

CSD: Cleanroom Software Development.

CTO: Chief Technical Officer.

Decision Tree: A graphical representation of a decision process with alternatives.

Deflection: Assign (transfer) a risk to another party.

Deliverable: A specific tangible product or observable event that is to be produced by
a project. Examples include such things as an item of hardware, document, a software
product, a process definition, a training session, etc. Deliverables are usually nouns, as
opposed to tasks which are verbs.

Delphi Technique: A process where a consensus is reached facilitated by experts; for
projects it is often used as an estimating technique.

Dependency: A relation between task, such that one cannot either start (or finish) until
another either finishes (or starts).

Design Review: A formal review of the design of a product in regard to the project
requirements and other standards or constraints.

Direct Costs: Costs that are directly the result of the activity associated with a project
task.

Discounted Cash Flow (DCF): Calculation of the present value of a projected cash flow
(income minus expense) based on some an interest rate and compounding period.

Drill Down: The opposite of “roll-up” or summarization; digging deeper into a structure
(such as the WBS) to get more detail information.

Glossary and Acronyms 391

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dummy Activity: An activity of zero duration used to show a dependency relationship
in the arrow diagramming method.

Duration: The length of calendar time needed to complete an activity. Original duration
is the original planned completion time of a task, remaining duration is the time left to
complete the task.

Early Finish: The earliest date on which a task can finish. It is based on the task’s early
start which may depend on the finish of predecessor activities and the activity’s effort
requirements.

Early Start: The earliest date on which a task can begin. It is dependent on when all
predecessor tasks finish.

Earned Value (EV): The planned cost for project work completed as of a point in time;
a measure of the value of work performed so far based upon the initial estimated cost for
said work (same as “budgeted cost of work performed”).

Effort: The amount of labor units necessary to complete a task, usually expressed in
person-hours.

Engineering Change Notice (ECN): The formal release of a software design change.

Enterprise Resource Planning (ERP): Integrated software and procedures for an
organization to operate and automate its key business processes; typically relies on a
central relational database management system.

EOC: Element of Cost.

Estimate at Completion (EAC): Estimated total cost of project work when the project is
finally completed.

Estimate to Complete (ETC): The estimated money required to completed the work of the
project.

EVA: Earned Value Analysis (also EVMS).

392 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Executive Sponsor: The executive typically responsible for the project purpose and
direction; may have sponsored the project or had the initial idea for the project (also called
“project sponsor” or “champion”).

Expected Monetary Value: The product of an event’s probability of occurrence and the
monetary gain or loss that will result.

Factor: A circumstance, fact, or influence which contributes to a result or has an effect
on a result.

Fast Tracking: Compressing a project schedule by doing some tasks in parallel that
would normally be done in sequence; starting a task before its predecessor task(s) have
completed.

FFP: Firm Fixed Price.

Float: The difference between the time available for performing a task and the time
required to complete it.

Forward Pass: Calculating the earliest start dates moving from the start date of a project
to the right along a network.

FPIF: Fixed Price Incentive Fee.

Free Float: The maximum amount by which a task can be delayed beyond its early dates
without delaying any successor task beyond its early dates.

Free Slack: The amount of time a task can slip without delaying another task.

Function Point (FP): Individual high level software components such as screens and
reports that are classified by degrees of complexity.

Function Point Analysis (FPA): A software development estimating technique that was
is characterized by breaking software deliverables into function points.

Gantt Chart: A chart using horizontal time lines that illustrates tasks in a project.

GL: General Ledger.

Glossary and Acronyms 393

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Goal Seek: Back solving a model by allowing certain variables to change to optimize some
criteria.

Groupware: Software which facilitates groups of people working together to collaborate
in decision processes or other work efforts.

GUI: Graphical User Interface.

Hammock: A summary activity that encompasses several tasks; it does not change or
schedule dates for the tasks that are encompassed.

Headcount: Total hours expended divided by the average hours worked per employee per
week.

Human Resource Management: The processes, functions, policies, and procedures
involved with the management of people and their needs.

Impact: An assessment of the adverse effect (usually in money) of a risk event.

Incentive Contract: A contractual arrangement where the contractor is rewarded with a
higher fee if performance (time, cost, quality) is above contract specified level.

Indirect Costs: The costs for common resources or expenses that are not associated with
any one task.

Insurable Risk: A particular type of risk which can only involve a loss (not a gain) which
is often covered by an insurance policy.

Internal Rate of Return (IRR): The value of the interest rate that causes the net present
value of future cash flows (income minus expense) to be zero.

Invitation for Bid (IFB): A formal request to a vendor for one price for total job, perhaps
with a breakdown or with rates for specific extras.

JAD: Joint Application Development.

Key Performance Indicators (KPI): Those management indicators that are determined
to reflect most directly on the key objectives of the project.

394 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kick Off Meeting: The first official stakeholder meeting for a project.

KISS: Keep It Simple, Stupid.

KLOC: Thousands of lines of code.

Knowledge Management: The formal management of information and knowledge as an
asset; includes information acquisition, maintenance, access, and distribution.

Lag: The amount of time after one task is finished before the next task can be started.

LAMP: An open source architecture for the development of software (Linux-Apache-
MySQL-PHP).

Late Finish: The latest time a task may be completed without delaying the entire project.

Late Start: The latest time a task may start without delaying the entire project.

Lead: The minimum time between the start of one task and the start of an overlapping task.

Lessons Learned: The stakeholders’ learning from the project; usually documented
during closeout.

Letter of Intent: A non-legally binding letter issued to a contractor to confirm the award
of a contract pending the signing of a formal contract.

Level of Effort (LOE): A task of a general nature that has a uniform rate of effort over all
or a portion of the project.

Lifecycle: A group of work phases which determines the formal methodology for
building and maintaining something

Liquidated Damages: A contractual arrangement that provides for a final non-negotiable
settlement for a loss due to some aspect of non-performance on a contract other than cost
such as time or quality.

LOC: Line of Code.

Glossary and Acronyms 395

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

M&A: Management and Administration.

Managerial Reserves: The reserve accounts for various contingencies (such as risk) of
a project.

Matrix Management: A cooperative organizational approach in which both project
managers and line managers cooperate in regard to resource management.

Maturity Model: A framework used as a basis for determining the degree of maturity of
an organization with regard to a particular discipline or part thereof.

Mean: A measure of central tendency that divides the area under a probability curve into
two equal parts.

Methodology: An organized system of “know-how.”

Milestone: A major event in a project’s schedule that is easily identifiable by such things
as the completion of a significant deliverable, the occurrence of an event, and so on.

Mitigation: Reducing risk EMV via reducing the impact of the risk event.

Monte Carlo Method: A statistical method involving the generation of random numbers
within a prescribed range to represent the value of a factor in a project.

Most Likely Time: The most realistic time estimate for completing a task under normal
conditions.

MOU: Memo of Understanding.

MRP: Manufacturing (material) Resource (requirements) Planning.

MVC: Model View Controller (a design pattern for user interface construction).

Net Present Value (NPV): The difference between the discounted (based on a fixed
interest and compounding period) present value of benefits (income) and the discounted
present value of expense (costs).

Network Diagram: A schematic drawing of the logical relationship of the tasks in a
project.

396 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nonconformance: The failure of a product (or component thereof) to conform to specified
requirements for any quality attribute.

Noncritical Activity: A task which is not on the critical path.

O&M: Operations and Maintenance.

OBS: Organizational Breakdown Structure.

OO: Object Oriented.

Open End: An activity other than project start or finish that does not have both a
predecessor task and a successor task (to be avoided in good scheduling).

Optimistic Estimate: The minimum reasonable time in which a task might be completed.

Organizational Breakdown Structure (OBS): A hierarchical structure of organization
components.

Original Duration (OD): The original planned time for a project or task.

Outsourcing: The procurement of goods or services from outside of one’s own overall
organization.

Parametric Estimating: An estimating technique that uses a mathematical relationship
between relevant variables. The constants in these relationships are derived from
historical data.

Parent Task: A task within the work breakdown structure that encompasses one or more
subordinate child tasks.

Pareto Diagram: A histogram of relevant, ordered by frequency of occurrence.

PBS: Part Breakdown Structure.

Percent Complete (PC): A ratio comparing the part of a task complete to the total effort
of the task.

Glossary and Acronyms 397

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Indexes: Project planning and status indicators that measure variances in
regard to key metrics.

Performance Measurement Baseline (PMB): The portion of the total project budget for
which the project manager is responsible and against which performance is to be
measured.

Performing Organization: The organization doing (or primarily responsible for) the
project work.

PERT Analysis: A process by which a probable outcome (i.e., a task effort estimate) is
based on three specific estimates: best case, most likely, and worst case.

PERT Chart: A network diagram that shows all tasks and task dependencies.

Pessimistic Estimate: The maximum reasonable time to complete a task should all things
go poorly (does not include the occurrence of unforeseen risks).

Phase: A major period in the life of a project.

Planned Cost: Costs set when the project work starts and he current schedule becomes
the baseline.

PMBOK: The Project Management Institute’s Project Management Body of Knowledge
publication.

Portfolio Management: The management of a number of projects (that do not share a
common objective) in regard to the selection of which projects to initiate.

Precedence: A task has precedence over another task, if the first must be completed
before the second task starts.

Precedence Diagram Method (PDM): A method of drawing a network diagram using
nodes to represent the activities and lines to show dependencies.

Predecessor Task: A task that must start or finish before another task can start or finish.

Present Value: The calculation in current dollars of a regular stream of future payments
or income using a specific interest rater and compounding period.

398 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Prime Contractor: The contractor with overall responsibility for delivery a project or a
contract in general; the prime contract will coordinate and oversee the work of subcon-
tractors.

Probability: The likelihood of occurrence.

Procurement: The establishing contractual relationships to obtain goods or services.

Production Rate: An older term for SPI.

Productivity: The rate of output creation per unit of time.

Program: A set of projects with a common goal managed collectively.

Program Evaluation and Review Technique (PERT): A project management technique
for estimating how much time is needed to complete the work. Each task is assigned a best,
worst, and most likely completion time estimate. These estimates are used to determine
the mean completion time via a Beta distribution.

Program Management: The management of a set of projects with a common goal which
may also include operational aspects.

Project Charter: A document that describes a project in terms of its overall scope,
schedule, dependencies, assumptions and resources. It is the official “go-ahead”
document for the project and establishes a clear overall level of understanding between
the sponsor, upper management, and the rest of the project team.

Project Management (from Wikipedia): “The ensemble of activities (such as tasks)
concerned with successfully achieving a set of goals. This includes planning, scheduling
and maintaining progress of the activities that comprise the project. Reduced to its
simplest project management is the discipline of maintaining the risk of failure at as low
a value as necessary over the lifetime of the project. Risk of failure arises primarily from
the presence of uncertainty at all stages of a project. An alternate point of view is that
project management is the discipline of defining and achieving targets while optimizing
the use of resources (time, money, people, space, etc).”

Project Management Information System (PMIS): A system for gathering, processing,
and reporting project related information; usually the system involves (or is) a software
package(s).

Glossary and Acronyms 399

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project Management Office (PMO): A group of technical and business personnel who
oversee and/or foster professional project management practices within an organization.

Project Management Professional (“PMP”): The highest level of professional certifi-
cation by the Project Management Institute.

Project Manager (PM) (from Wikipedia): Project management is the province and
responsibility of an individual project manager. This individual seldom participates
directly in the activities that produce the end result, but rather strives to maintain the
progress and productive mutual interaction of various parties in such a way that overall
risk of failure is reduced.”

Project Sponsor: The executive typically responsible for the project purpose and
direction; may have sponsored the project or had the initial idea for the project (also called
executive sponsor or champion).

Projectized Organization: Any organizational structure in which the project manager
has full authority over the personnel assigned to a project.

Prototype: A model encompassing some but not all features of the desired product.

QFD: Quality Function Deployment.

Quality: Conformance to requirements, specifications, and standards and fitness for use
in a defined environment for specific purposes.

Quality Assurance (QA): Actions, policies, and procedures necessary to provide
adequate confidence that a product or service will satisfy given requirements for quality.

Quality Control (QC): The process of monitoring specific quality tests to determine if
they comply with relevant quality standards.

Quality Management: Those portions of the overall project management processes that
determines and implements the quality policy.

Request for Proposal (RFP): A formal invitation containing a scope of work which
requests a formal response from a vendor indicating how a job will be done and often who
(generically or specifically) will be doing the work.

400 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Request for Quotation (RFQ): A formal invitation to submit a price or rates for goods and/
or services as described in the requesting document.

Requirements: A formalized set of measurable customer/user wants and needs.

Reserve: Money or time set aside in the total project budget for risks and other
unknowns.

Resource: Items necessary to complete project work including money, people, equip-
ment, and so on.

Resource Breakdown Structure (RBS): A coding structure to identify resources to be
used on a project(s).

Resource Leveling: A form of network and schedule analysis in which resource
requirements are spread evenly across time periods (and possibly projects) for one or
more resources.

Responsibility Assignment Matrix (RAM): A table correlating resources (either generi-
cally or specifically) to tasks; may also be used to correlate organizational responsibility
to tasks or groups of tasks.

Return on Investment (ROI): The financial return in terms of an interest rate for a given
monetary investment.

Risk: The possibility of an undesirable outcome.

Risk Analysis: An examination of risk areas to assess the impact and likelihood of a risk
event (also risk assessment).

Risk Avoidance: Eliminate the cause of a risk event or reduce the EMV via reducing risk
probability.

Risk Deflection: Transferring all or part of a risk to another party, usually by some form
of insurance.

Risk Identification: The process of identifying all possible risk events which may
happen during a project.

Glossary and Acronyms 401

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Risk Response: The planned or actual action in response to a risk event.

RMI: Remote Method Invocation.

ROM: Rough Order of Magnitude (estimate).

RUP: Rational Unified Process.

Schedule: A calendar based sequence of tasks representing the order and time at which
work will be done.

Schedule Performance Index (SPI): The ratio of the value of the work performed (earned
value) to work planned (BCWP/BCWS).

Schedule Variance (SV): A difference between the scheduled completion date of a
task(s) and the actual completion date of that task(s); in EVA: BCWP minus BCWS.

Scope: A description of the project work to be performed in terms of the desired results
and deliverables.

Scope Creep: A progressive increase in scope as the project continues.

Scope Definition: Breaking down a deliverable in to smaller more manageable parts to
allow improved estimation, assignment, and control.

Scope Management: The parts of the overall management processes that deal with
controlling the work definition.

Scope of Work (SOW): A formal description of the work involved in the production and
delivery of the goods or services and/or a description of the goods or services
themselves that are part of a job or project.

SDLC: Software Development Lifecycle.

Single Source: There is a preferred seller for good and/or services to be procured.

Slack Time: The amount of time a task can be delayed before it affects another task’s
dates or the project completion date.

402 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOA: Service Oriented Architecture.

SOAP: Simple Object Access Protocol.

Sole Source: There is only one qualified supplier for goods and/or services to be
procured.

Sponsor: A person who initiates, finances, has a controlling interest, or champions a
project; the sponsor is normally a person in upper management.

Stage Gate: A point in time of a project at which progress and other factors will be
reviewed for the purpose of deciding whether the project will continue or not.

Stakeholder: One who has a stake or interest in the outcome of the project.

Standard Deviation: A measure of the dispersion of data points around a mean of a
probability distribution.

Statement of Work (SOW): A formal description of the work involved in the production
and delivery of the goods or services and/or a description of the goods or services
themselves that are part of a job or project.

Status Report: A report produced by the project team on a regular basis showing
progress and cost versus plan

Success Criteria: The principles or standards by which the success of a project will be
judged.

Success Factors: Any circumstance, fact, or influence which contributes to a critical
success criteria; measurable factors that are most important to a project’s success
criteria.

Successor Task: A task that cannot begin until another task has started or finished.

Sunk Costs: Costs which have already been incurred, and cannot be reversed even if
the project was canceled.

SWAG: Systematic (scientific) Wild Ass Guess

Glossary and Acronyms 403

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SWOT Analysis: A business or technical analysis of an organization’s strengths,
weaknesses, opportunities, and threats.

Task: An individual unit of effort which refers to the work that will be assigned to
individuals to produce the project’s deliverables. Typically tasks are verbs, and
deliverables are nouns.

TCO: Total Cost of Ownership.

Test Plan: A description of the tests needed to satisfy requirements and standards for
the proper completion of a project.

Time Box: An amount of calendar time allocated for the completion of a project or phase
of a project.

Total Float (TF): The amount of time by which a task can be delayed without delaying
the project planned completion date.

Total Quality Management (TQM): A quality program to encourage guide employees to
strive for high quality in all aspects of their work.

Total Slack: The amount of time a task can be delayed without affecting the project
planned completion date.

UDDI: Universal Description Discovery and Integration.

UML: Unified Modeling Language.

Uncertainty: Lack of knowledge of future events.

Undistributed Budget (UB): Budget for work to be done on a project that is within the
project’s scope but has not been specifically identified yet.

Validation: The process of guaranteeing that the customer/user is satisfied with the
product.

Variable Cost: A cost that changes with the amount of product produced or the effort
expended.

404 Glossary and Acronyms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Variance: Deviation from a plan, or a measure of uncertainty or dispersion.

Verification: The process of guaranteeing that the work processes and products comply
with specifications.

Version: A time sequenced variant of some artifact or product manifestation.

Version Control: The process of controlling changes, additions, and deletions to
product manifestations as a development process moves from one version of a product
to the next.

Walk-Through: The physical or logical comprehensive examination of the quality of a
work product (such as a design or program unit) in regard to quality metrics and
standards; in IT, the walk-through is usually performed by peers.

W3C: World Wide Web Consortium.

White Box: A process done with detail knowledge of the inner workings of the subject
of the work, as in White Box Testing.

WIMP (Wheels in Motion Person): Someone who confuses activity with progress.

Work Breakdown Structure (WBS): A deliverable oriented grouping of project ele-
ments that organizes and defines the total work scope of the project.

Work Package (WP): A unit within a work breakdown structure at the lowest level of
a branch, not necessarily at the lowest level of the whole WBS.

WSDL: Web Services Description Language.

Workaround: An unplanned alternative solution to a problem that has arisen.

XF: Expected Finish.

XP: Extreme Programming.

About the Author 405

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

����������������

In a speech in Cape Town, South Africa, in June of 1966, Robert F. Kennedy said, “May
you live in interesting times.” He said the phrase was of Chinese origin, although even
the Chinese are not sure about this, but it certainly applies to we who have become deeply
involved with information technology (IT). This book’s author, Dan Brandon, took his
first computer course in college in 1966 and has been fascinated by IT ever since.
As Brandon began his career, IT was also just starting. The disciplines of computer
science, software engineering, and IT project management were formulated and solidified
during his working years. He has designed and developed software for every generation
of software (assembly through object oriented), and almost every generation of IT
architecture and hardware (mainframe, mini, PC, client-server, Web). He has also
programmed in most major computer languages, including ALGOL, FORTRAN, Pascal,
Ada, COBOL, Basic, C, C++, Java, and in modern Web-based languages such as PHP to
develop applications in a wide variety of areas encompassing the business, engineering,
and scientific fields.
As his career moved him from programmer to designer to manager, he was always
involved with the application of new computer technology and concepts to the solution
of application problems. The effective management of all the resources and stakeholders
involved with building, integrating, and deploying IT applications has always repre-
sented a major interest and challenge to him. Along the way he managed to fit in some
schooling, earning a BS (Case Western Reserve University), MS, and PhD in engineering
(University of Connecticut); his PhD specialization was in computer methods.
Before returning to the university environment, Dr. Brandon accumulated more than 30
years of commercial experience in both the IT technical and management arenas. He was
a senior engineer at Mobil Research, a manager of application development for Control
Data Corporation, an MIS manager for several companies, and director of information
services at the NASA Stennis Space Center.

406 About the Author

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

He is currently a professor of information technology management (ITM) and chairper-
son of that department at Christian Brothers University (CBU) in Memphis, Tennessee.
CBU is a part of the De La Salle Christian Brothers global educational organization, with
more than 1,000 schools in more than 80 countries. Dr. Brandon’s research interests
include both the management and technical side of IT. At CBU he teaches undergraduate
and graduate courses in IT, including information systems management, project manage-
ment, software engineering, database design, decision support systems, Internet sys-
tems, and programming.
He has been published in a number of books, journals, and conference proceedings
including The Project Management Journal, The Wiley Guide to Managing Projects,
Essentials of Project Control, Encyclopedia of Information Technology, Journal of
Computing Sciences in Colleges, Successful Software Reengineering, Technologies &
Methodologies for Evaluating Information Technology in Business, Issues and Trends
of Information Technology Management in Contemporary Organizations, Architec-
tural Issues of Web-Enabled Electronic Business, Managing Information Technology
Resources in Organizations in the Next Millennium, and Managing Information
Technology in a Global Economy.
He is a member of the Society of Information Management (SIM), the Information
Resource Management Association (IRMA), and the Project Management Institute
(PMI). He also holds the PMP (Project Management Professional) Certification which is
the highest certification granted from PMI. He continues to do consulting with a number
of companies, both locally and internationally. Currently he is involved in the design and
development of comprehensive open source software systems for project management
and other business applications.

Index 407

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

����#

A

ability to perform 64
acceptance 171
acceptance testing 191
access protection 229
accounts payable (AP) 328
accounts receivable 125
active listening 281
activities 108
activity 124
activity code 124
activity sequencing 144
activity-on-arrow 144
activity-on-node 144
actors 112
actual costs 65
actual costs (ACWP) 187
ADA 84
adaptability 23, 192
administrative closeout 245
administrative closure 279
agile programming (AP) 75
all or nothing rule 324
alpha testing 217
American National Standard (ANS) 51

American National Standards Institute
(ANSI) 51

analogous estimating 136
Apache 191, 345, 346
application programming interface (API)

73
application composition 141
application framework 346
architecture 62
architectures 13
artifacts 239
Association for Project Management

(APM) 48
asynchronous 285
auditability 192
auditable 203
audits 177
Australian Institute of Project Manage-

ment 48
availability 117
avoidance 171

B

baseline 121
benchmarks 137
benefit analysis 45

408 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

benefiting organization 9, 125
best practices 88
best shore 260
beta distribution 143
beta testing 217
bid documents 253
bidder’s conference 255
black-box (behavioral) testing 217
Body of Knowledge (BoK) 49
bounding box development 70
British Standard Institute (BSI) 48
budgeted cost of work scheduled

(BCWS) 316, 317
bugs 63, 202
builds 239
built-in quality 189, 205
bulletin boards 374
bundled 237
burdened 151
burdened rate 135, 332
business analysts 292
business justification 22
business objectives 176
business plan 34
business risk 161
business risks 162
buy-in 136, 227
buy-off 277
by exception 220
bytecode production 239

C

C++ 84
capability maturity model (CMM) 22
capability maturity models (CMM) 88
capacity 192
computer aided software automation

(CASE) 72
CC board 237
celebration party 246
certification 49
change control 234
change control board 236
change control plan 55
change control system 235
change introduction 189

change orders 152
change resolution 189
change set 237
changeover 198
chart wizard 338
chat rooms 374
check-in/check-out 239
chief financial officer (CFO) 99
chief information officer (CIO) 99
chief technology officer (CTO) 354
cleanroom software development (CSD)

78
client configurations 215
closeout 234
closing 51
CMMI 91
coaching 300
code density 229
code for money 263
code walkthroughs 229
coding 62
coding standards 228
comments 228
commercial off the shelf (COTS) 110
commitment to perform 64
common features 22
communication channels 283
communication management 52
communication obstacles 282
communication plan 193
communications management 278
communications plan 55
communications planning 279
compatibility risks 162
completion criteria 19
component-based software engineering

(CBSE) 78
composition 81
compromising 306
conditional probability 37
confidentiality 266
configuration control 240
configuration control 63
constructive cost model (COCOMO)

138
context identification 159
contingency plans 171

Index 409

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

contingency plans 179
contingency reserves 171
contract administration 256
contract administration 248
contract artifacts 257
contract closeout 245, 248
contractor breakdown structure (CBS)

128
contracts 249
control 51
control charts 209
control code 124
control process 183
core competencies 258
correctness 117
cosourcing 270
cost accounts 128
cost control 185
cost drivers 137
cost efficiency factor 319
cost management 52
cost performance index (CPI) 318
cost performance index (CPI) 187
cost plan 152
cost reimbursable (CR) 251
cost variance 318
cost-benefit analysis 35
cost/schedule control systems criteria

(C/SCSC) 128
COTS 86
coupling 229
Cost Plus Fixed Fee (CPFF) 252
Cost Plus Incentive Fee (CPIF) 252
Cost Plus Percentage of Costs (CPPC)

252
cost reimbursable (CR) 251
crashed 146
crashing 198
creeping user requirements 176
critical path 55, 121
critical ratio (CR) 187, 321
critical success factors 5, 18
critical-to-quality (CTQ) 226
customer expectations 203
customizations 240

D

dashboard 321
data warehouse 369
database 62
dead zone 168
decision support 44
decision trees 36
defect 205
defect introduction 190
defect prevention 189
defect rate 212
defect resolution 190
defects per opportunity (DPO) 226
deflection 171
delegating 300
delegation 301
deliverable 11
deliverable definition document (DDD)

107
Delphi technique 136
dependencies 132
dependencies 55, 144
design flaws 244
digital divide 2
directive 299
disaster planning 160
discounted cash flow 35
diversity constraints 270
downtime 209
drill-down 331
dual gating 26
due diligence 268
dummy activities 145
duration compression 198

E

earliest start date 145
early warning signals 165
early-finish 146
early-start 146
earned value (BCWP) 187
earned value analysis (EVA) 19, 187
earned value critical ratio 66
earned value management 316
earned value management systems

(EVMS) 317

410 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

economic feasibility 34
economic risks 162
effective listening 281
efficiency 192
element of cost structure (EOC) 128
employee burnout 178
employee turnover 267
encapsulation 81
encryption 239
Engineering Advancement Association

(ENAA) 48
equally likely 42
equest for proposal (RFP) 249
equity theory 303
ERP 19
esource breakdown structure (RBS)

128
estimated cost at completion 66
estimated cost at completion (EAC)

318
estimated time to complete 66
estimation 14
European Software Industry 95
European Software Process Improve-

ment Initiative (21
evolutionary development 68
exception 195
execution 51
exit gates 25
expectancy theory 303
expected monetary value (EMV) 39,

167
explicit knowledge 366
external design (user interface design)

62
external, internal, self-assessment

(EISA) 367
external quality dimensions 191
external specifications 109
extreme programming (XP) 77
extreme testing 218

F

fact table 369
fast tracking 146, 198
feed forward 329

feedback 184, 281
financial evaluation 35
fiscal periods 103
fish bone or cause-and-effect diagram

171
fitness for use 202
FiveAndDime 132
fixed price economic price adjustment

(FPECA) 251
fixed price incentive fee (FPIF) 251
fixes 205
float 145
follow up 284
forced ranking 44
forcing 306
forming 304
forward tracing 217
foundation 230
fourth generation languages (4GLs) 138
fourth-generation languages 71
FP: Fixed price 251
framework 26, 88
free slack 146
free-flow 68
function point analysis (FPA) 138
Functional 287
functional 197
functional requirements 31
functional specification 109

G

Gantt chart 148
general ledger (GL) 128, 328
general public license (GNU) 345
generic resources 135
go/kill/hold decision 195
gold plating 108, 188, 266
grade 202
groupware 7, 44
GUI 71

H

Halo effect 294
hazard Frequencies 166
hazards 160
Health Insurance Portability Act (HIPPA)

Index 411

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

110
Herzberg’s theory 303
hierarchical 107
hiring restrictions 266
holistic methods 43
HTML 286
human capital 366
human resource management 52, 291,

278
human-computer interaction 110
hyperlink 149
hypertext linkage 367

I

IDEs (integrated development environ-
ments 71

impact 167
impact analysis 162
incremental development 69
indirect 155
information distribution 279
information repositories 372
information revolution 2
inheritance 81
initiation 51
insourcing 260
inspection 204
inspections 244
Installation 61
instant messaging 286
Institute of Electrical and Electronics

Engineers 59, 92
insurance 173
integrated development environments

(IDEs) 346
integration competency center (ICC)

354
integration management 52
integration testing 144
intellectual capital 268
intellectual capital 366
intellectual property 266, 267
Intelligent software agents 376
interface requirements 31, 117
interim milestone 325

internal design 62
internal documentation 62
internal rate of return (IRR) 35
internal specification 109
International Function Point User Group

(IFPUG 140
International Organization for Standard-

ization (IS 224
International Project Management

Association (IPMA 48
Internet applications 240
intrusion testing 193
invitation for bid (IFB, or RFB) 254
Ishikawa diagram 171
ISO 9000 224
IT security 2

J

Java 79
Java Two Enterprise edition (J2EE) 88
JavaScript 137
job-costing system (JC) 328
joint application design (JAD) 73

K

K-U risks 164
kaizen 223
key measures 183
key performance indicators (KPI) 376
key practices 90
key process areas 90
keystrokes 217
kickoff meeting 55, 104
kill points 25
KISS 76
KLOC 78, 138
knowledge areas 52
knowledge management 246
knowledge management (KM) 365
knowledge transfer 267
knowledge workers 6
known risks 164

L

lag 146

412 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

LAMP (Linux, Apache, MySQL, PHP)
88

LAN (local area network) 71
last and best 255
late-finish 146
late-start 146
lead time 146
leadership 299
learning curve 137
legal foundations 266
lessons learned 367
lessons learned 62
level of effort 155, 326
level resources 147
levels of difficulty 135
lightweight methodologies 75
linear programming (LP) 360
lines of code 83
lines of code (LOC) 137
Linux 191, 345
loads 217
localization 87
logic diagram 143
low morale 203

M

macro perspective 19
maintainability 23, 66, 72, 117, 192
maintenance 61
manage by exception 56
management 299
management and administration (M&A)

120
management reserves 167
management stage gates 25
management support 176, 185
manufacturing/material resources/

requirements plan 126
Markowitz 361
Maslow’s hierarchy 111
Maslow’s theory 302
matrix 197, 287
maturity level 90
maximax 42
maximin 42
McGregor’s theory 303

meeting notes 281
meeting policy 283
meetings 283
methodologies 13
Methodology 22
metrics 176, 183
micro management 291
micro perspective 19
Microsoft Excel 338
Microsoft’s .Net 88
middleware 240
mitigation 171
mitigation strategies 169
Monte Carlo simulations 167
most likely 142
motivation 302
motivational techniques 199
multiphase 113
murder boards 44
MVC (model-view-controller) 88
MySQL 191, 346

N

naming conventions 228
near shore 260
negative reinforcement 199
negotiated cost 154
net present value (NPV) 35
network diagram 121, 143
noncompete 266
nonconformance 204
nondisclosures 266
nonintrusive 323
nonverbal 281
norming 304

O

object points 140
object-oriented (OO) programming 79
office productivity suites 286
offshore 260
offshore outsourcing 260
on shore 260
online analytical processing (OLAP)

369
open source 191

Index 413

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

operation 61
operation 66
operational level 29
operations and maintenance (O&M)

120
opportunity 158
optimistic 142
organizational assignment matrix 128
organizational breakdown structure

(OBS) 126
organizational goals 29
organizational planning 291
organizational project maturity 376
organization’s culture 285
original critical path method (CPM) 144
original duration (OD) 321
outsource 258
outsourcing 44, 173
overcommitted 151
overhead 155, 332
overlap 66
overloading 229

P

pair programming 77, 323
paper prototype 72
paper prototypes 45
Pareto chart 207
part breakdown structure (PBS) 128
pattern 88
payback periods 35
payroll (PR) 328
pebbles 325
peer reviews 206, 325
penalty 277
percentage complete 187
performance management 24
performance measurement baseline

154
performance measurement baseline

(PMB) 313
performance reporting 56, 279
performing 304
performing organization 132
performing organization 9

personnel closeout 245
pessimistic 142
PHP 84, 346
Plan Gantt chart 154
plan item 153
planned costs 124
planned mitigation 171
planning 51
platform 62
platform independent 203
playback 219
PMP (Project Management Profes-

sional) 56
political risks 162
polymorphism 81
portability 117, 191
portfolio management 357
portfolio optimization 268
portfolio theory 361
positive reinforcement 199
power vs. concern 277
precedence diagramming method

(PDM) 144
precedence relations 148
preferred individual 136
preliminary product manifestations 26
prevention 204
probability 166
process groups 51
process security 193
procurement 55, 248
procurement audits 244
procurement audits 257
procurement management 52
procurement planning 248
product manifestation 45
product scope 106
product security 193
program evaluation and review technique

(PERT) 142
program office 352
programming language 88
project business plan 34
project calendar 103
project champion 9
project charter 31

414 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

project control panel 374
project coordinator 287
project documentation 282
project expeditor 287
project initiation 31
Project Management Institute (PMI) 14
project management maturity 376
project management maturity model

(PMMM) 376
project management office 352
project management office (PMO) 44
project management organizations 48
project management professional (PMP)

14
project management support offices

352
project master plan 100
project portfolio 357
project proposals 32
project risk log 179
project scope 106
project scoring 42
project selection 29
project sponsor 9
projectized 155, 197, 287
prototype 45
prototyping 72
purchase order (PO) 251
pure risk 161

Q

quality assurance 55
quality audits 211
quality control 185
quality criteria 132
quality function deployment (QFD)

206, 223
quality management 23, 52
quality management systems 115
quality programs 223
quality stage gates 26

R

rational unified process (RUP) 70, 71,
74, 186

reality check 136

recoverability 72, 191
recoverable 203
recycle 197
refactoring 76
referent 277
relational database management

software (RDBMS) 345
release 237
reliability 192
report generation 286
reporting level 314
reports 129
request for proposal (RFP) 254
request for quotation (RFQ) 254
requirement discovery 109
requirements 11
requirements traceability 215
requirements traceability matrix 62
resource assignment 150
resource Gantt chart 294
resource histogram 294
resource leveling 151
responsibility assignment matrix 294
responsibility assignment matrix (RAM)

128
retest 216
reusability 72
reusable 79
reusable component 86
reuse foundations 88
reverse tracing 217
reward 277
risk 157
risk 157
risk averse 158
risk event 159
risk identification 158
risk identification 27
risk management 52
risk management 25
risk quantification 158
risk response 169
risk response control 179
risk response control 158, 185
risk response development 158
risks 11
robustness 192

Index 415

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ROI 43
rollup 318

S

sampling 217
Sarbanes-Oxley Act (SOX) 110, 354
satisfaction criteria 19
scalability 72, 191, 192, 217
schedule 22
schedule compression 146
schedule control 185
schedule performance index (SPI) 187
schedule variances 327
scope 13
scope change control 106
scope change control 185
scope creep 178, 188
scope definition 106
scope definition 121
scope initiation 106
scope management 52, 106
scope planning 106
scope verification 106
scope verification 55
scoring and ranking methods 43
screening criteria 255
screens 129
secure 203
security holes 193
security risks 272
selective outsourcing 259
service level agreement (SLA) 208
Service Oriented Architectures 79
shareware 343
short list 255
silver bullet 176
SIMULA 83
single-phase 113
single-source procurement 254
Six Sigma 225
skill mix 292
slack 146
smalltalk 84
smoothing 306
SOA 79

(Simple Object Access Protocol
(SOAP) 79

software acquisition 79
software acquisition 249
software architects 292
software capability maturity model 89
software development life cycle (SDLC)

58
software development standards 227
software engineering 59
software engineering 22
software engineering body of knowledge

(SWEBOK) 92
Software Engineering Institute (SEI)

22, 88
software reuse 85
sole source procurement 254
solicitation 248
solicitation planning 248
solver 36
source selection 248
structured query language (SQL) 71
staff acquisition 291
stakeholder action plan 277
stakeholder identification 274
stakeholder management 274
stakeholders 6
standard calendars 154
standard deviation 143
standard forms 371
standards 23
standards manuals 229
star topology 369
stated requirements 191
statement of work 11
statement of work (SOW) 110, 250
static testing 220
status reports 281
storming 304
storyboards 73
strategic alliances 264
strategic level 29
structural capital 366
structured interviews 110
structured problem solving 306
structured walkthroughs 367

416 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

subject-matter experts 292
success criteria 20
success factors 20
sunk cost 45, 319
support 23
supportive 300
switching costs 261
SWOT 159
symptoms 175
synchronous 118, 285
system designers 292
system test 213
systems integration 62

T

time and material (T&M) 251
tacit knowledge 366
tactical level 29
task estimation 132
task sequencing 143
tasks 108, 122
taxonomy 165
team building 297, 304
team development 291
team morale 188
technical experts 292
technical requirements 31
templates 371
test harnesses 78, 213
test metrics 214
test plans 53
test script 62
test scripts 215
testable 203
testing 61
testing data 214
testing tools 215
thin clients 240
Threat Frequencies 166
threats 160
tight matrix 289
time and attendance 323
time in grade 135
time management 52
time periods 153
time value of money 35

timebox 70
timing 217
tolerance 168
tolerances 198
top down estimating 136
total cost of ownership (TCO) 35
total project budget 154
total quality management (TQM)

206, 223
total slack 145
training 63
tree structure 122
trend analysis 209
trust 193

U

UML 68
UML (unified modeling language) 81
unadjusted function point total (UFP)

139
uncertainty 159
unforeseeable risks 162
unit testing 54
unplanned mitigation 171
unpriced 154
unstated requirements 191
usability 192
use case scenarios 77, 215
use cases 45, 112
user documentation 54
user friendliness 72
user interface 229
user involvement 176
utility 66
utility function 168

V

validation 23
value adjustment factor (VAF) 139
variance 143
vendor 249
verification 22
verification and validation (V&V) 206
version 216
version control 239
version control 72

Index 417

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

virtual corporation 7
virtual meetings 286
virtual organization 7
virtual PMO 372
virtual teams 7
vision 176
vision 299
vital signs 372
volume testing 215
VRML 286

W

walkthroughs 325
war room 282
waterfall 65
WBS dictionary 132
Web applications 73
Web services 79
white-box (structural) testing 213
win-win 255
withdrawal 306
work breakdown structure (WBS) 122
work breakdown structure (WBS) 55
work packet 237
work packets 55, 108, 124
work periods 153
workaround 171, 179
workbenches 72
working prototypes 45
World Wide Web Consortium (W3C) 94
wrongdoing 257
WYSIWYG (what you see is what you

get) 71

X

XML 286

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

Single Journal Articles and Case Studies Are

Now Right at Your Fingertips!

www.idea-group.com

Business Process Reengineering Data and Database Management
Distance Learning E-commerce
Emerging and Innovative Technologies End User Computing
Healthcare Human Side of IT
Information Resource Management Internet-Based Technologies
IS/IT Planning IT Education
IT Management Knowledge Management
Organization Politics and Culture Software Engineering Tools
Systems Planning Decision Support Systems
Telecommunication and Networking Virtual Offices
Client Server Technology Strategic Information Systems
 Design, Implementation

You can now view the table of contents for each journal so it is easier to
locate and purchase one specific article from the journal of your choice.

Case studies are also available through XanEdu, to start building your
perfect coursepack, please visit www.xanedu.com.

For more information, contact cust@idea-group.com or 717-533-8845
ext. 10.

Purchase any single journal article or
teaching case for only $18.00!

 Idea Group Publishing offers an extensive collection of research articles and
teaching cases that are available for electronic purchase by visiting
www.idea-group.com/articles. You will find over 980 journal articles and
over 275 case studies from over 20 journals available for only $18.00. The
website also offers a new capability of searching journal articles and case
studies by category. To take advantage of this new feature, please use the
link above to search within these available categories:

An excellent addition to your library

�����������	�
��
���
��
��	����
����������
����	����	��	�

��������������� ��!�"

#	��$����%�"�����%""����&
��'�	��(�!�) �*	�������������������++�

ISBN 1-59140-206-9 (h/c) • US$79.95 • ISBN 1-59140-280-8 (s/c) • US$64.95
• 304 pages • Copyright © 2004

Idea Group Publishing
Hershey • London • Melbourne • Singapore

,����
������
����
��
���

�*
�-���������	�	��%

��	�������
�.�/�������	������

0��1�

Mahesh Raisinghani, PhD, University of Dallas, USA

2004 RELEASE

“Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks
discusses current state-of-the-art best practices and future directions/trends in Business
Intelligence technologies and applications as well as Business Intelligence in next generation
enterprises and virtual organizations.”

– Mahesh Raisinghani, PhD
 University of Dallas, USA

Business Intelligence in the Digital Economy:
Opportunities, Limitations and Risks describes what
Business Intelligence (BI) is, how it is being conducted and
managed and its major opportunities, limitations, issues and
risks. This book takes an in-depth look at the scope of global
technological change and BI. During this transition to BI,
information does not merely add efficiency to the transaction,
it adds value. Companies that are able to leverage the speed
and ubiquity of digital communications are going to have the
advantage over those who are late-adopters in the years to
come. The book brings together high quality expository
discussions from experts in this field to identify, define, and explore BI methodologies,
systems, and approaches in order to understand the opportunities, limitations and
risks.

