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Preface

Information Science and Digital Technology form an immensely com-
plex and wide subject that extends from social implications of techno-
logical development to deep mathematical foundations of the techniques
that make this development possible. This puts very high demands
on the education of computer science and engineering. To be an effi-
cient engineer working either on basic research problems or immediate
applications, one needs to have, in addition to social skills, a solid un-
derstanding of the foundations of information and computer technology.
A difficult dilemma in designing courses or in education in general is to
balance the level of abstraction with concrete case studies and practical
examples.

In the education of mathematical methods, it is possible to start with
abstract concepts and often quite quickly develop the general theory to
such a level that a large number of techniques that are needed in practical
applications emerge as

”

simple” special cases. However, in practice, this
is seldom a good way to train an engineer or researcher because often the
knowledge obtained in this way is fairly useless when one tries to solve
concrete problems. The reason, in our understanding, is that without
the drill of working with concrete examples, the human mind does not
develop the

”

feeling” or intuitive understanding of the theory that is
necessary for solving deeper problems where no recipe type solutions are
available.

In this book, we have aimed at finding a good balance between the
economy of top-down approach and the benefits of bottom-up approach.
From our teaching experience, we know that the best balance varies
from student to student and the construction of the book should allow a
selection of ways to balance between abstraction and concrete examples.

Switching theory is a branch of applied mathematics providing mathe-
matical foundations for logic design, which can be considered as the part
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Group
theory

Switching theory Fourier
analysis

Fourier analysis on groups

Group-theoretic Approach to Logic Design

Figure 1. Switching theory and Fourier analysis.

of digital system design concerning realizations of systems whose inputs
and outputs are described by logic functions. Thus, switching theory
can be viewed as a part of Systems Theory and it is closely related to
Signal Processing.

The basic concepts are first introduced in the classical way with
Boolean expressions to provide the students with a concrete understand-
ing of the basic ideas. The higher level of abstraction that is essential
in the study of more advanced concepts is provided by using algebraic
structures, such as groups and vector spaces, to present, in a unified
way, the functional expressions of logic functions. Then, from spec-
tral (Fourier-like) interpretation of polynomial, and graphic (decision
diagrams) representations of logic functions, we go to a group-theoretic

Consequently, this book discusses the fundamentals of switching the-
ory and logic design from a slightly alternative point of view and also

ing and system theory. In addition, we have paid attention to cover the
core topics as recommended in IEEE/ACM curricula for teaching and
study in this area. Further, we provide several elective lectures discussing
topics for further research work in this area.

Jaakko T. Astola, Radomir S. Stanković

approach and to optimization problems in switching theory and logic
design. Fig. 0.1 illustrates the relationships between the switching theory
and Fourier analysis on groups. A large number of examples provides
intuitive understanding of the interconnections between these viewpoints.

presents links between switching theory and related areas of signal process-
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Chapter 1

SETS, RELATIONS, LOGIC FUNCTIONS

1. Sets
In mathematics, set is a basic notion defined as a collection of objects

that we call elements. Typically these objects have similar properties.
Set theory can be developed in an axiomatic way but, in this book, we
use the intuitive notion of sets that is entirely sufficient for our purposes.
Two sets are defined to be equal iff they have the same elements. A set
is finite iff it has a finite number of elements.

We denote the fact that an element x belongs to a set X as x ∈ X.
Consider two sets X and Y , if every element of X is also element of Y ,
then X is a subset of Y , and we denote this by X ⊆ Y . If at least a
single element of X does not belong to Y , then X is a proper subset of
Y , X ⊂ Y . Every set has itself as an improper subset. The empty set ∅,
which is the set with no elements, is also a subset of any set.

Definition 1.1 (Operations over sets)
The union X of a collection of sets X1, X2, . . . , Xn is the set X = X1 ∪
X2∪. . .∪Xn the elements of which are all the elements of X1, X2, · · · , Xn.

The intersection of a collection of sets X1, X2, . . . , Xn is a set X =
X1 ∩ X2 ∩ . . . ∩ Xn consisting of the elements that belong to every set
X1, X1, . . . , Xn.

The power set P (X) of a set X is the set of all subsets of X.

A tuple (x, y) of two elements arranged in a fixed order is a pair.
In general, a tuple of n elements (x1, x2, . . . , xn) is an n-tuple. Two
n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal iff xi = yi for all i.

1
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Definition 1.2 (Direct product)
The set of all pairs (x, y) is the direct product, or the Cartesian product,
of two sets X and Y ,

X × Y = {(x, y)|x ∈ X, y ∈ Y }.
Example 1.1 For X = {0, 1} and Y = {0, 1, 2},

X × Y = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
Similarly, the direct product of the sets X1, . . . , Xn is defined as

×n
i=1Xi = {(x1, . . . , xn)| xi ∈ Xi, i = 1, . . . , n}

and if Xi = X for all i we write ×n
i=1Xi = Xn Note that if any of the

factor sets is empty, so is the direct product.
The identification of a set of the form Xn where |X| = m with the

set {0, 1, . . . , mn − 1} is particularly simple as the correspondence can
be written as

(x1, . . . , xn) ↔ x1 + x2m + x3m
2 + . . . + xnmn−1.

2. Relations
Definition 1.3 (Relation)
A subset R of the direct product X × Y of two sets X and Y is a binary
relation from X to Y , i.e., if R ⊆ X ×Y , x ∈ X, y ∈ Y , and (x, y) ∈ R,
then x and y are in the relation R, or the relation R holds for x and y.

A binary relation from X to X is a binary relation on X. An n-ary
relation is a subset of the direct product of n sets X1 × X2 × · · · × Xn.
If x is in relation R with y then y is in inverse relation R−1 with x.

Definition 1.4 (Inverse relation)
If R is a relation from X to Y , then the inverse relation of R is R−1 =
{(y, x)|(x, y) ∈ R}.
Definition 1.5 (Equivalence relation)
Let R be a binary relation on X. If

1 (x, y) ∈ R for all x ∈ X, (reflexivity),

2 (x, y) ∈ R implies (y, x) ∈ R, (symmetricity),

3 (x, y) ∈ R and (y, z) ∈ R, imply (x, z) ∈ R, (transitivity),

then, R is called an equivalence relation.
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The set {x ∈ X|(x, y) ∈ R} is called the equivalence class of X con-
taining y. The equivalence classes form a partition of X, i.e., they are
disjoint and their union is X. The elements of a partition P are called
blocks of the partition P .

Example 1.2 (Partition)
The set {1, 2, 3} has five partitions {{1}, {2}, {3}}, {{1, 2}, {3}},
{{1, 3}, {2}}, {{1}, {2, 3}}, and {{1, 2, 3}}.

Notice that {∅, {1, 3}, {2}} is not a partition (of any set) since it
contains the empty set. Similar, {{1, 2}, {2, 3}} is not a partition (of
any set), since the element 2 is contained in two distinct sets. Further,
{{1}, {2}} is not a partition of {1, 2, 3}, since none of the blocks contains
3, however, it is a partition of {1, 2}.
Example 1.3 Let X = Z and define xRy if g divides x−y. It is easy to
see that R is an equivalence relation. Clearly, the numbers 0, 1, . . . , g−1
each define an equivalence class. For instance, 1 defines the equivalence
class of integers having the reminder =1 when divided by g.

Example 1.4 Let X = R2 = {(x, y)|x, y ∈ R} and let (x, y)R(u, v) if
x − u = y − v. It is easy to see that R is an equivalence relation. The
equivalence classes are straight lines with slope = 1. Thus, each class has
infinite number of elements, and there are an infinite number of classes.

Example 1.5 Equivalence of sets, as considered above, is an equiva-
lence relation.

Definition 1.6 (Order relation)
Let R be a binary relation on X. If

1 (x, x) ∈ R for all x ∈ X, (reflexivity),

2 (x, y) ∈ R and (y, x) ∈ R imply x = y, (anti-symmetricity),

3 (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R, (transitivity),

then R is called an order relation or partial order relation. If R is a
partial order relation and (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ X, then
R is the total order relation.

Example 1.6 Consider a set {{0}, {1}, {0, 1}}, and define a relation
X ⊂ Y . Then, ⊂ is a partial order relation, since there is no relation ⊂
between {0} and {1}.
Example 1.7 Consider the set of integers Z. The relation x ≤ y mean-
ing x is smaller or equal to y, is a total order relation.

Logic
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Definition 1.7 (Ordered set)
A pair 〈X,≤R〉, where X is a set and ≤R an order relation on X is an
ordered set. If ≤R is a partial or total order relation, the 〈X,≤R〉 is the
partially or totally ordered set, respectively.

The partially and totally ordered sets are also called posets, and chains,
respectively.

Example 1.8 Consider the power set P (X) of a set X, i.e., P (X) is
a set of all proper subsets of X. Then, 〈P (X),≤〉 is a partially ordered
set.

Example 1.9 The pair 〈Z,≤〉, where Z is the set of integers and x ≤ y
means x smaller or equal to y, is a totally ordered set or a chain.

Any two elements of a chain are mutually comparable. In logic design,
it is convenient to encode values applied to the inputs of circuits by
elements of a chain, since it is convenient to have possibility to compare
values applied at the inputs. Another interesting application of the
notion of chain is related to the extensions of the notion of an algebra to
multiple-valued functions, in the cases when the Boolean algebra, defined
below, and the generalized Boolean algebra cannot be used [124].

Definition 1.8 Consider two sets X1 and X2 ordered with respect to
the order relations ≤1 and ≤2, respectively. If there exists a bijective
mapping φ between X1 and X2 such that x ≤1 y implies φ(x) ≤2 φ(y),
then X1 and X2 are called isomorphic with respect to the order relations
≤1 and ≤2, respectively. The mapping φ is denoted as the isomorphism
with respect to the order relation.

3. Functions
Definition 1.9 (Function, or Mapping)
Let f be a binary relation from a set X to a set Y . If for each element
x ∈ X there exists a unique element y ∈ Y such than xfy, then f is a
function from X to Y , i.e., f : X → Y .

The set X is the domain of f . The element y in Y that corresponds
to an element x ∈ X is the value of the function f at x and we write
f(x) = y. The set f(X) of all function values in the domain of f is the
range R of f and is a subset of Y . Thus, a function is a special type
of relation and each function f defines a relation Rf by (x, y) ∈ Rf iff
f(x) = y .

Notice that f−1, the inverse relation of Rf , in general, is not a func-
tion. However, it is usually called the inverse function of f and f−1(y)
is a subset of X.
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Example 1.10 Consider a function f(x) = x2 from the set Z of in-
tegers to Z. The inverse relation is clearly not a function since, for
example, there is no x ∈ Z such that 3R−1

f x, i.e. f(x) = 3. The inverse
function f−1 is not a function even from the range of f to Z because,
for instance, 4R−1

f 2 and 4R−1
f (−2).

This definition of functions through relations makes it sometimes pos-
sible to prove the existence of a function without being able to calcu-
late its values explicitly for any element of the domain. Also, it allows
to prove general properties of functions independently on their form.
However, in many considerations, the following informal definition is
sufficient.

Definition 1.10 A function is a rule that associates each element x ∈
D to a unique element y = f(x) ∈ R, symbolically f : D → R. The first
set is called the domain, the second the range of f .

Definition 1.11 Let f be a function form D to R, i.e., f : D → R.
The function f is called

1 injective (or one-to-one) if x �= y implies f(x) �= f(y).

2 surjective (or onto) if for each y ∈ R there is x ∈ D such that
f(x) = y.

3 bijective if it is both injective and surjective.

Example 1.11 The function f : Z → Z defined by f(x) = x+1 is both
injective and surjective and thus a bijection. The function f : Z → Z
defined by f(x) = x3 is injective, but not surjective. The function f :
Z × Z → Z defined by f(x, y) = x + y is surjective but not injective.

Definition 1.12 Let f : D → R be a function, S a binary relation on
D and T a binary relation on R. If xSy implies f(x)Tf(y), then f is a
homomorphism with respect to S and T . If f is also a bijection, we say
that f is an isomorphism with respect to S and T .

Example 1.12 Let D be the set of complex numbers and R the set of
real numbers. xSy if x − y = 1 + j, where j is the imaginary unit.
If the relation T is defined by uTv if u − v = 1, then the function
f(x1 + jx2) = x1 is a homomorphism with respect to S and T .

Two sets X and Y are equivalent if there exists a bijective mapping
between them, i.e., to each element in X at most one element of Y can
be assigned, and vice versa.

Sets, Relations, FunctionsLogic
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Example 1.13 The set of natural numbers is equivalent to the set of
even numbers, since to the sequence 1, 2, . . . we can assign the sequence
2, 4, . . ..

If two sets X and Y are equivalent, we say that X and Y have the
same cardinal number or X and Y are sets of the same cardinality. Thus,
cardinality is the joint characteristics of all equivalent sets.

Sets equivalent to the set of natural numbers N are often meet in
practice and are denoted as the countable sets, and their cardinality is
denoted by the symbol ℵ0. Sets equivalent to the set of real numbers
have the cardinality of the continuum, which is denoted by c. For finite
sets, the cardinality corresponds to the number of elements in the set
and is denoted by |X|. Often, we identify a finite set X of cardinality k
with the set of first k non-negative integers and write X = {0, . . . , k−1}.

Notice that for the infinite sets, two sets may have the same cardinality
although a set may be a proper subset of the other, as for instance in
the above example.

In this book, we are concerned with functions on finite sets and look
closer at different ways of expressing them.

Definition 1.13 A finite n-variable discrete function f(x1, . . . , xn) is
defined as

f : ×n
i=1Di → Rq,

where Di and R are finite sets, and xi ∈ Di.

Definition 1.14 A multi-output function f is a function where q > 1.
Thus, it is a system of functions f = (f0, . . . , fq−1).

a multi-output function can be
replaced by an equivalent single output function fz where the output is
defined as a weighted sum of outputs

∑q−1
j=0 fjw

j where w is the weight-
ing coefficient. It may be convenient to enumerate the outputs in reverse
order, i.e., f = (fq−1, . . . , f0) to have the expression appear similar to
radix w numbers.

Example 1.14 A digital circuit with n inputs and q outputs defines a
switching (or Boolean) function f : {0, 1}n → {0, 1}q. Consider the case
where n = 3 and q = 1. The function can be given by listing its values
f(x1, x2, x3) as (x1, x2, x3) runs through the domain {0, 1}3.

In some practical applications,
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x1, x2, x3 f(x1, x2, x3)

000 f(0, 0, 0)
001 f(0, 0, 1)
010 f(0, 1, 0)
011 f(0, 1, 1)
100 f(1, 0, 0)
101 f(1, 0, 1)
110 f(1, 1, 0)
111 f(1, 1, 1)

If we use the correspondence {0, 1}3 ↔ {0, 1, . . . , 7} given by

(x1, x2, x3) ↔ x1 + 2x2 + 4x3,

the function f can be compactly represented by the vector

F = [f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7)]T ,

where T denotes transpose.

Example 1.15 Consider a two-output function f = (f0, f1) : {0, 1}3 →
{0, 1}2, where f0 is defined by F0 = [1, 0, 1, 1, 0, 1, 1, 1, ]T and f1 by
F1 = [1, 0, 0, 1, 1, 1, 0, 0]T . The function f can be represented as a single
function f ′ = 2f1+f0. Often, we view the domain and range as subsets of
the set of integers Z = {. . . ,−2,−1, 0, 1, . . .} and write f = fZ : Z → Z
defined by FZ = [3, 0, 2, 3, 1, 3, 2, 2]T . Note that if the domain and range
sets had originally some structure imposed on them, it is lost in the
representation by subsets of integers.

It is clear that a similar

”

coding” of the domain and range can be
used for any finite sets.

Example 1.16 Consider a function f : X0×X1 → Y where X0 = {0, 1}
and X1 = {0, 1, 2} and Y = {0, 1, 2, 3}. Writing x = 3x0 + x1, we get

X0 X1 X f(x)

0 0 0 f(0)
0 1 1 f(1)
0 2 2 f(2)
1 0 3 f(3)
1 1 4 f(4)
1 2 5 f(5)

In general, a function f : ×n−1
i=0 Xi → Y , where Xi = {0, 1, . . . , mi−1},

and m0 ≤ m1 ≤ · · · ≤ mn−1 can be represented using the coding

(x0, x1, . . . , xn−1) ↔
n−1∑
i=0

xi

n∏
j=i+1

mj ,

Sets, Relations, FunctionsLogic
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Table 1.1. Discrete functions.

f : ×n
i=1{0, . . . , mi − 1} → {0, . . . , τ − 1} Integer

f : {0, . . . , τ − 1}n → {0, . . . , τ − 1} Multiple-valued
f : {0, 1}n → {0, 1} Switching, or Boolean
f : ×n

i=1{0, . . . , mi − 1} → {0, 1} Pseudo-logic
f : {0, 1}n → {0, . . . , τ − 1} Pseudo-logic
f : {0, 1}n → R Pseudo-Boolean
f : {GF (p)}n → GF (p) Galois
f : In → I, I = [0, 1] Fuzzy

Table 1.2. Binary-valued input functions.

x1x2x3 f

0. 000 f(0)
1. 001 f(1)
2. 010 f(2)
3. 011 f(3)
4. 100 f(4)
5. 101 f(5)
6. 110 f(6)
7. 111 f(7)

where mn = 1.
The number of discrete functions is exponential in the cardinality of

the domain. Consider discrete functions f : X → Y . Each function is
uniquely specified by a vector of its values the length of which is |X| as
there are |Y | choices for each component, the total number of functions
is |Y ||X|.

Example 1.17 The number of Boolean functions f : {0, 1}n → {0, 1} is
22n

. Similarly, the number of ternary functions f : {0, 1, 2}n → {0, 1, 2}
is 33n

. For n = 2, there are 16 Boolean (two-valued) functions and
19683 ternary functions.

Table 1.1 shows examples of different classes of discrete functions. In
this book we mainly consider switching, multiple-valued, and integer
functions.
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Table 1.3. Binary-valued input
two-output functions.

x1x2 f

0. 00 f0(0)f1(0)
1. 01 f0(1)f1(1)
2. 10 f0(2)f1(2)
3. 11 f0(3)f1(3)

Table 1.4. Multiple-valued
input functions.

x1x2 f

0. 00 f(0)
1. 01 f(1)
2. 02 f(2)
3. 10 f(3)
4. 11 f(4)
5. 12 f(5)

by the enumeration of its values for all the assignments.

4. Representations of Logic Functions

corresponding function values in the right part. In the case of switch-
ing functions, these tables are the truth-tables, and function values are
represented by truth-vectors. Table 1.2, Table 1.3, and Table 1.4 show
tables that define functions with domains considered in Example 1.14,
Example 1.15, and Example 1.16. The size of tables defining discrete
functions is exponentially dependent on the number of variables. There-
fore, this method, and equally the vector representations, the right part
of tables, are unsuitable for functions of a large number of variables.

In tabular representations, all the function values are explicitly shown,
without taking into account their possible relationships. The reduced
representations can be derived by exploiting peculiar properties of switch-
ing functions. Various representations, both analytical and graphic rep-
resentations, will be discussed in Chapters 3, 4, and 5. Here, we briefly
introduce by simple examples some of the classical representations of
switching functions.

Cubes
Since switching functions take two possible values 0 and 1, it is not

necessary to show the complete truth-table or the truth-vector. It is
sufficient to enumerate the points where a given function f takes either
the value 0 or 1, and assume that in other points out of 2n possible points

In the above tables, the left part shows all possible assignments of
values to the variables. Therefore, a discrete function is uniquely specified

Discrete functions, having finite sets as domains, are conveniently
defined by tables showing elements of the domain in the left part, and the

Sets, Relations, FunctionsLogic
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Table 1.5. 0- and 1-fields.

0-field

000
010
011
100 110

1-field

001
101
111

Table 1.6. Cubes for f in Example 1.18.

0-cubes

xx0
01x

1-cubes

x01
1x1

of the domain of definition f has the other value 1 or 0, respectively. In
this way, f is given by the 0-field, or 1-field.

Example 1.18 (0- and 1-fields)
With the above convention, a three-variables function f whose truth-

vector is F = [0, 1, 0, 0, 0, 1, 0, 1]T is completely specified by showing the
corresponding either 0-field or 1-field given in Table 1.5. Usually, we
select the field with smaller number of entries.

If in a function, the appearance of a certain combination of inputs is
hardly expected, the function value for this combination of inputs need
not be specified. Such function is a incompletely specified function, and
the points where the value for f is not assigned, are called don’t cares.
In this case, since there are three possible values for f , 0, 1, and − to
denote don’t cares, two of three fields should be shown to define f .

symbol x which can take either the value 0 or 1. In this way, n-variable
switching function f is given by cubes which are sequences of the length
n with elements 0, 1 and x.

Example 1.19 (Cubes) The 0-field and 1-field in Table 1.5 can be rep-
resented as set of cubes in Table 1.6. In these cubes, the symbol x can
take either value 0 or 1.

The 0- and 1-field can be written in reduced form by introducing a



11

Table 1.7. 0-, 1-, and 2-fields.

0-field

00
11
20

1-field

01
02
21

2-field

10
12
22

Table 1.8. Cubes for f in Example 1.20.

0-cubes

y0
11

1-cubes

0x
21

2-cubes

1y
22

y ∈ {0, 2}, x ∈ {1, 2}

Extension of these ways to represent switching functions to other
classes of discrete functions is straightforward.

Example 1.20 (Fields and cubes for multiple-valued functions)
Table 1.7 and Table 1.8 show the specification of a two-variable ternary
function f given by the truth=vector F = [0, 1, 1, 2, 0, 2, 0, 1, 2]T by arrays
and cubes.

Diagrams and Maps
Switching functions of small number of variables, up to five or six,

are conveniently represented graphically by various diagrams or maps.
Widely used examples are Veitch diagrams and Karnaugh maps [76].

different ways. In Veitch diagrams, the lexicographic order is used, and
in Karnaugh maps the order of Gray code is used.

Example 1.21 (Veitch diagram)
Fig. 1.1 shows a Veitch diagram for a four-variable switching function

whose truth-vector is

F = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]T .

Example 1.22 Fig. 1.2 shows a Karnaugh map for the function f in
Example 1.21.

Sets, Relations, FunctionsLogic

It should be noted the data in these representations are ordered in
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x1

x2

x3

x4

x1

x2

x3 x3

x4

x4

_

_

_ _

_

_

1

1 1

Figure 1.1. Veitch diagram for f in Example 1.21.

1

1

1

x x1 2

x x3 4

00 01 11 10

00

01

11

10

Figure 1.2. Karnaugh map for f in Example 1.21.

Hypercubes
For visual representation and analysis of switching functions and their

of values for each variable is shown along an edge in the hypercube. The
vertices colored in two different colours show the logic values 0 and 1 a
function can take.

Example 1.23 Fig. 1.3 shows representation of a two-variable func-
tions f1 and a three-variable function f2 by two-dimensional and three
dimensional hypercubes. Truth vectors for these functions are F1 =
[0, 1, 0, 1]T and F2 = [0, 1, 1, 0, 1, 0, 1, 0]T .

properties, it may be convenient to use graphic representations as
n-dimensional hypercubes, where n is the number of variables, and change
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x x1 2 x x x1 2 3

x x1 2 x x x1 2 3
x x1 2 x x x1 2 3

x x1 2 x x x1 2 3

x x x1 2 3

x x x1 2 3
x x x1 2 3

x x x1 2 3

_ __ _ _ _ _

_

_

_

_ _

_ __ _

x2=1
x2=1

x3=1

x1=1 x1=1

n = 2 n = 3

Figure 1.3. Hypercubes for function in Example 1.23.

4.1 SOP and POS expressions
Tabular representations of switching functions in Example 1.14 can

be easily converted to their analytical representations, meaning that the

ing basic concepts provided and properly defined.

Definition 1.15 (Literals)
A two-valued variable xi may be written in terms of two literals, the
positive literal xi and the negative literal xi. The positive literal xi is
usually assigned to the logic value 1, and the negative literal xi to the
logic value 0.

A logical product of variables is defined in terms of the logic AND
defined in Table 1.9 and denoted as multiplication. Similar, a logical
sum is defined in terms of logic OR defined in Table 1.10 and denoted
as sum.

A logical product of variables where each variable is represented by a
single literal is a product term or a product. A product can be a single
literal or may consists of literals for all the variables, in which case is
denoted as a minterm. Similarly, a logical sum of variables, where each
variable is represented by a single literal is a sum term. A sum term
can be a single literal or may consist of all n-literals in which case it is
called a maxterm.

Sets, Relations, FunctionsLogic

function is presented as a formula written in terms of some basic expres-
sions. In order to do this, some definitions should be introduced. Extensions
and generalizations to other classes of discrete functions are possible and

 for some classes of discrete functions straightforward when the correspond-
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Table 1.9. Logic AND.

· 0 1

0 0 0
1 0 1

Table 1.10. Logic OR.

+ 0 1

0 0 1
1 1 1

Table 1.11. Minterms and maxterms.

Assignment Minterm Maxterm

(000) x1x2x3 x1 + x2 + x3

(001) x1x2x3 x1 + x2 + x3

(010) x1x2x3 x1 + x2 + x3

(011) x1x2x3 x1 + x2 + x3

(100) x1x2x3 x1 + x2 + x3

(101) x1x2x3 x1 + x2 + x3

(110) x1x2x3 x1 + x2 + x3

(111) x1x2x3 x1 + x2 + x3

The left part in Table 1.2 shows the assignments of
values to variables in the function f whose truth-vector is shown in

a maxterm as specified in Table 1.11.

Table 1.12. Function f for SOP and POS.

x1, x2, x3 f

0. 000 1
1. 001 0
2. 010 1
3. 011 1
4. 100 0
5. 101 1
6. 110 1
7. 111 1

is a logical sum of minterms, where all the minterms are different.

the right part of the table. Each assignment determines a minterm and

Example 1.24

Definition 1.16 A canonical sum-of-products expression (canonical SOP)
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A canonical product-of-sums (canonical POS) is a logical product of
maxterms, where all the maxterms are different.

The canonical SOPs and POSs are also called as a canonical disjunc-
tive form or a minterm expression, and a canonical conjunctive form
or a maxterm expression, since logic operations OR and AND are often
called the disjunction and conjunction.

Definition 1.17 An arbitrary logic function f can be represented by a
canonical SOP defined as a logic sum of product terms where f = 1.

Similar, an arbitrary logic function f can be represented by a canonical
POS defined as a logical product of maxterms where f = 0.

In this definition, the term canonical means that this representation is
unique for a given function f .

Example 1.25 For the function f in Table 1.12 the canonical SOP is

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3,

and the canonical POS is

f = (x1 + x2 + x3)(x1 + x2 + x3).

These canonical representations will be discussed also later in this
book in the context of the Boolean algebra and its applications. In
particular, notice that canonical POS for a function f is a logical product
of maxterms which are obtained as logic complements of false minterms
for f . Further, the canonical POS is obtained by applying the De Morgan
theorem to the canonical SOP for the logic complement f of f .

SOPs and POSs are considered as two-level representations, since in
circuit synthesis may be realized with networks of the same number of
levels. For instance, in SOPs, the first level consists of AND circuits
realizing the products, which are added in the sense of logic OR by the
OR circuit in second level, assuming that circuits have the corresponding

Example 1.26 Fig. 1.4 shows logic networks realizing SOP and POS
in Example 1.25. It should be noticed that in some cases the number
of circuits and their inputs can be reduced by the manipulation with the
SOP and POS representations.

they may be realized by subnetworks of circuits with fewer number of
nodes. Fig. 1.5 shows two realizations of the OR circuit with six inputs.

Sets, Relations, FunctionsLogic

the first level are OR circuits and the second level is an AND circuit.
number of inputs. It is similar with networks derived from POSs, where

When circuits with the required number of inputs are unavailable, then
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f f

x1

x1

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

x3

x3

x3

_

_

_

_

_

_

_

_
_

_

Figure 1.4. Networks from SOP and POS for f in Example 1.25.

Figure 1.5. Realizations of six inputs OR circuit.

In this way, the multi-level logic networks are produced [155]. These
networks may be also derived by the application of different minimization
techniques to reduce the number of required circuits and their inputs.
These techniques consist of the manipulations and transformations of
SOPs and POSs as will be discussed later. Multi-level networks are
conveniently described by the factored expressions.

4.2 Positional Cube Notation

and ∗, which denotes the unspecified value, i.e., don’t care. In positional
cube notation, these symbols are encoded by two bits as follows

Ø 00
0 10
1 01
∗ 11

The positional cube notation, also called bit-representations, is a
binary encoding of implicants. A binary valued input can take symbols 0, 1
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Table 1.13. Representation of f in Example 1.27.

x1x4 01 11 11 01
x1x3 10 11 01 11
x2x3x4 11 01 01 10
x1x3x4 10 11 10 01

where 10, 01, and 11 are the allowed symbols, and Ø means none of the
allowed symbols. Thus, Ø means that a given input is void and should

Such notation simplifies manipulation with implicants, although in-
creases the number of columns in the truth-table. In particular, the
intersection of two implicants reduces in the positional cube notation to
their bitwise product.

Example 1.27
function

f = x1x4 + x1x3 + x2x3x4 + x1x3x4.

The intersection of cubes x1x4 and x1x3 is 00, 11, 01, 01, thus, it is
void. Similarly, the intersection of x1x3 and x2x3x4 is 10, 01, 01, and
10, thus, it is x1x2x3x4.

Example 1.28 The multiple-output function f = (f1, f2, f3) where

f1 = x1x2 + x1x2,

f2 = x1x2,

f3 = x1x2 + x1x2,

can be represented by the position cube notation as in Table 1.14.

5. Factored Expressions
Factored expressions (FCE) can be characterized as expressions for

switching functions, with application of logic complement restricted to
switching variables, which means that complements cannot be performed
over subexpressions in an expressions for a given function f . Therefore,
the following definition of factored expressions can be stated.

Sets, Relations, FunctionsLogic

Table 1.13 shows the positional cube notation for the

be deleted from the functional expression in terms of implicants.
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Table 1.14. Representation of f in Example 1.28.

x1x2 10 10 100
x1x2 10 01 001
x1x2 01 10 001
x1x2 01 01 110

f

x

x

_

_
z

z

y

y

Figure 1.6. Multi-level network.

Definition 1.18 (Factored expressions)

1 A literal is a FCE.

2 Logic OR of FCEs is a FCE.

3 Logic AND of FCEs is a FCE.

If in a given FCE for a function f , logic AND and logic OR are
mutually replaced and positive literals for variables xi are replaced by
the negative literals and vice versa, then FCE for f is converted into a
FCE for the logic complement f of f . Thus derived FCE for f has the
same number of terms as FCE for f . For a given function f there are
few factored expressions, and their useful feature is that FCSs describe
fan-out free networks, which means that output of each circuit at a level
is connected to the input of a single circuit at the next level in a multi-
level network. In FCS, hierarchy among subexpressions, which define
levels, is determined by brackets.

Example 1.29 Fig. 1.6 shows a multi-level network that realizes the
function defined by the FCS

f = ((x + y) + (z + y))(x + z).



19

6. Exercises and Problems
Exercise 1.1 Consider the set A of all divisors of the number 100 and
the binary relation ρ over A defined by xρy if and only if x divides y.
Show that this relation is a partial order relation in A.

Exercise 1.2 Consider the set A of all divisors of the number 8 and
the binary relation ρ over A defined by xρy if and only if x divides y.
Show that this relation is a total order relation in A.

Exercise 1.3 Show that the following switching functions are equal to
the constant function 1

1 (x1 ∧ x2) → x1,

2 (x1 ∧ (x1 → x2)) → x2,

3 (((x1 → x2) → x1) → x1), - Pierce law,

4 (x1 → x2) ∨ (x2 → x1),

5 (x1 → x2) ∧ (x3 → x4) → ((x1 ∨ x3) → (x2 ∨ x4)),

where ∧ and ∨ are the logic AND and OR, and → denotes the implica-
tion defined by the Table 1.15.

Table 1.15. Implication.

→ 0 1

0 1 1
1 0 1

Exercise 1.4 Show that the following switching functions are equal to
the constant function 0

1 (x1 ∨ x2)x1 ∧ x2,

2 (x1 → (x1 → x2)),

3 (x1 → x2) ∧ (x1 ∧ x2),

4 (x1 → (x1 ∨ x2)).

Sets, Relations, FunctionsLogic
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Exercise 1.5 Show that the following switching functions are equal

f1(x1, x2) = (x1 ∨ x2) ∨ (x1 ↓ x2),
f2(x1, x2) = (x1 → x2) ∨ (x1 → x2),
f3(x1, x2) = (x1 ∨ x2) ∨ (x1 ∧ x2),

where ↓ denotes the logic NAND.

Exercise 1.6 Determine the complete disjunctive normal form of the
function f(x1, x2, x3, x4) defined by the set of decimal indices where it
takes the value 1 as f (1) = {0, 1, 4, 6, 7, 10, 15}. Then, define the complete
disjunctive normal form for the logic complement f of f .

Exercise 1.7 Determine the complete disjunctive and conjunctive forms
of the function f(x1, x2, x3, x4) defined as

f(x1, x2, x3, x4) = x1 + x2x3 + x1x3x4.

Represent this function as the Karnaugh map.

Exercise 1.8 Show that switching functions

f1(x1, x2, x3) = x1x2 + x2x3 + x1x3,

f2(x1, x2, x3) = x1x2 + x1x3,

have the same disjunctive normal form, i.e., they are equal functions.
Prove the equivalence of these functions also by using the complete con-
junctive normal form.

Exercise 1.9 Determine the complete conjunctive normal form for the
function g + h, if

g(x1, x2, x3) = x1x2 + x1x2 + x1x2x3,

h(x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2.

Exercise 1.10 A switching function f(x1, x2, x3) has the value 0 at the
binary triples where two or more bits have the value 1, and the value 1
at all other triplets. Represent this function at the Karnaugh map and
determine the complete disjunctive and conjunctive forms.

Exercise 1.11 Determine the complements and show the positional cube
notation for of the following switching functions

f1(x1, x2, x3) = x1(x2x3 ∨ x1x3,

f2(x1, x2, x3) = x1 → x2x3,

f3(x1, x2, x3) = ((x1 ↓ x2) + x2x3))x3,

f4(x1, x2, x3) = (x1 ⊕ x2) ⊕ x3.



Chapter 2

ALGEBRAIC STRUCTURES FOR LOGIC
DESIGN

1. Algebraic Structure
By an algebraic system we mean a set that is equipped with operations,

that is rules that produce new elements when operated on a number of
elements (such as addition producing the sum of two elements) and a set
of constants. It is useful to specify classes of systems by agreeing about
sets of axioms so that all systems that satisfy certain axioms belong to
that particular class. These classes are called algebraic structures and
form abstractions of common features of the systems.

Definition 2.1 An algebraic structure is a triple 〈A,O, C〉, where

1 A is a nonempty set, the underlying set,

2 O is the operation set,

3 C is the set of constants.

Remark 2.1 An i-ary operation on A is a function o : Ai → A. Thus
we can write O =

⋃n
i=0 Oi where Oi is the set of i-ary operations. Usually

we consider binary operations such as addition and multiplication, etc.
Sometimes the set of constants is not specified because any constant can
be represented as a 0−ary operation c : A0 = {∅} → A.

Below we discuss algebraic structures that are useful in Switching
Theory a Logic Design.

2. Finite Groups

21

Group is an example of algebraic structures with a single binary
operation, where a binary operation on a set X is a function of the form
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f : X×X → X. Binary operations are often written using infix notation
such as x + y, x · y, or by juxtaposition xy, rather than by functional
notation of the form f(x, y). Examples of operations are the addition
and the multiplication of real and complex numbers as well as the com-
position of functions.

Definition 2.2 (Group)
An algebraic structure 〈G, ◦, 0〉 with the following properties is a group.

1 Associative law: (x ◦ y) ◦ z = x ◦ (y ◦ z), x, y, z ∈ G.

2 There is identity: For all x ∈ G, the unique element 0 (identity)
satisfies x ◦ 0 = 0 ◦ x = x.

3 Inverse element: For any x ∈ G, there exists an element x−1 such
that x ◦ x−1 = x−1 ◦ x = 0.

Usually we write just G instead 〈G, ◦, 0〉.
A group G is an Abelian group if x ◦ y = y ◦ x for each x, y ∈ G,

otherwise G is a non-Abelian group.

Definition 2.3 Let 〈G, ◦, 0〉 be a group and 0 ∈ H ⊆ G. If 〈H, ◦, 0〉 is
a group, it is called a subgroup of G.

The following example illustrates some groups that will appear later
in the text.

Example 2.1 The following structures are groups.
Zq = 〈{0, 1, . . . , q − 1},⊕q〉, the group of integers modulo q. As spe-

cial cases we have, for instance, Z2 = 〈{0, 1},⊕〉, the simplest nontrivial
group and Z6 = 〈{0, 1, 2, 3, 4, 5},⊕〉, the additive group of integers mod-
ulo 6.

Notice that addition modulo 2, symbolically ⊕, is equivalent to the

Likewise, multiplication modulo 2 is equivalent to logic AND.
The symmetric group S3 〈{a, b, c, d, e, f}, ◦〉 with the operation defined

by the Table 2.1

Notice that groups of the same order can have totally different struc-
ture. For instance, the symmetric group S3 and Z6 have the same num-
ber of elements. This feature is often exploited in solving some tasks in
Logic Design.

Example 2.2 (Groups of different structure)
Consider the group of integers modulo 4, Z4 = ({0, 1, 2, 3},⊕4) and the

logic operation EXOR usually denoted i switching theory simply as ⊕.n
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Table 2.1. Group operation ◦ of the symmetric group S3.

◦ 1 a b c d e

1 1 a b c d e
a a b 1 e c d
b b 1 a d e c
c c d e 1 a b
d d e c b 1 a
e e c d a b 1

group B2 = ({(0, 0), (0, 1), (1, 0), (1, 1)},⊕), where ⊕ is pairwise EXOR.
In Z4 we have 1⊕4 1 = 2 �= 0, but in B2, it is (x, y)⊕ (x, y) = (0, 0) for
any (x, y) ∈ B2.

As examples of infinite groups, notice that the set of integers Z under
the usual addition is a group. The real numbers R form a group under
addition and the nonzero real numbers form a group under multiplica-
tion.

Definition 2.4 Let 〈Gi,⊕i, 0i〉 be a group of order gi, i = 1, . . . , n.
Then, 〈×n

i=1Gi,⊕, (01, . . . , 0n)〉 where ⊕ denotes componentwise addition
is group, and it is called the direct product of Gi, i = 1, . . . , n. It is clear
that the order of G = ×n

i=1Gi is g = Πn
i=1gi.

Let 〈G,⊕, 0〉 be a finite group and a an element of the group. As a,
a ⊕ a, a ⊕ a ⊕ a, . . . cannot all be different there is the smallest positive
integer n such that na = 0. This number n is called the order of the
element a and it always divides the order of the group.

If G is decomposable as a direct product of 〈Gi,⊕i, 0i〉, a function
f(x) on G can be considered alternatively as an n-variable function
f(x1, . . . xn), xi ∈ Gi.

Example 2.3 Let f : ×n
i=1Gi → R be a function. We can alternatively

view f as a single variable function f(x), x ∈ ×n
i=1Gi, or an n-variable

function f(x1, . . . , xn), where xi ∈ Gi.

In a decomposable group 〈Gi,⊕i, 0i〉, if gi = p for each i, we get a
group Cn

p used as the domain for p-valued logic functions, and Cn
2 , when

gi = 2 for each i, used as the domain for switching functions.

Example 2.4 The set Bn of binary n-tuples (x1, . . . , xn), xi ∈ {0, 1}
has the structure of a group of order 2n under the componentwise EXOR.

for Logic Design
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The identity is the zero n-tuple O = (0, . . . , 0) and each element is its
self-inverse. This group is called the finite dyadic group Cn

2 .

The finite dyadic group is used as the domain of switching functions,
since C2 has two elements corresponding to two logic values, as it will
be discussed later.

Example 2.5 For n = 3, a three-variable function f(x1, x2, x3), xi ∈
{0, 1}, can be represented by the truth-vector

F = [f(000), f(001), f(010), f(011), f(100), f(101), f(110), f(111)]T ,

often written as

F = [f000, f001, f010, f011, f100, f101, f110, f111]T .

The set B3 = {(x1, x2, x3)|xi ∈ B} of binary triplets with no structure
specified, can be considered as the underlying set of the dyadic group C3

2 ,
and the values for xi are considered as logic values 0 and 1. If we perform
the mapping z = 4x1 +2x2 +x3, where the values of xi are considered as
integer values 0 and 1, and the addition and multiplication are over the
integers, we have one-to-one correspondence between B3, the underlying
set of C3

2 and the cyclic group of order 8, Z8 = ({0, 1, 2, 3, 4, 5, 6, 7},⊕8).
Therefore, f can be alternatively viewed as a function of two very dif-
ferent groups, C3

2 and Z8, of the same order.

3. Finite Rings
A ring is a much richer structure than a group, and has two operations

which are tied together by the distributivity law. The other operation
besides the addition ⊕, is the multiplication · for elements in G. We get
the structure of a ring if the multiplication is associative and distribu-
tivity holds.

Definition 2.5 (Ring)
An algebraic structure 〈R,⊕, ·〉 with two binary operations ⊕ and · is a
ring if

1 〈R,⊕〉 is an Abelian group,

2 〈R, ·〉 is a semigroup, i.e., the multiplication is associative.

3 The distributivity law holds, i.e., x(y ⊕ z) = xy ⊕ xz, and (x⊕ y)z =
xz ⊕ yz for each x, y, z ∈ R.

Example 2.6 (Ring)
〈B,⊕, ·〉, where B = {0, 1}, and ⊕, and · are EXOR and logic AND,
respectively, forms a ring, a Boolean ring.
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Example 2.7 (Ring)
Consider 〈{0, 1}n,⊕, ·〉, where ⊕ and · are applied componentwise. It is
clearly a commutative ring, i.e., multiplication is commutative. It is the
Boolean ring of 2n elements. The zero element is (0, 0, . . . , 0) and the
multiplicative unity is (1, 1, . . . , 1). It is in some sense a very extreme
structure. For instance, each element has additive order 2 (a⊕a = 0 for
all a), each element is idempotent (a · a = a for all a), and no element
except 1 = (1, 1, . . . , 1) has a multiplicative inverse.

Example 2.8 (Ring)
Consider 〈{x + y

√
2|x, y ∈ Y }, +, ·〉, i.e., real numbers of the form x +

y
√

2, where x and y are integers. It is clearly a commutative ring with
multiplicative identity and it is obtained from the ring of integers by
adjoining

√
2 to it.

Example 2.9 Consider the ring Z2 = 〈{0, 1},⊕, ·〉 and consider poly-
nomials over Z2, i.e., expressions of the form

p(ξ) = p0 + p1ξ + . . . + pnξn,

where pi ∈ Z2, i = 0, 1, . . . , n. These polynomials form a ring under
the usual rules of manipulating polynomials and taking all coefficient
operations in Z2, for instance,

(1 + ξ2) + (1 + ξ + ξ2) = (1 + 1) + (0 + 1)ξ + (1 + 1)ξ2 = ξ

(1 + ξ2)(1 + ξ + ξ2) = 1 + ξ + ξ2 + ξ2 + ξ3 + ξ4 = 1 + ξ + ξ3 + ξ4.

Consider the equation x2 + x + 1 = 0 in Z2. Clearly, neither 0 or 1
satisfies the equation, and so, it has no root in Z2.

Assume that in some enlargement of Z2, it has a root θ say. Then,
over Z2, the elements 0 = 0+0 ·θ, 1 = 1+0 ·θ, θ, and 1+θ are different
and we get their addition and multiplication rules from the rules for
polynomials and always reducing higher order terms using the relation
θ2 = θ + 1. Thus, we have the structure 〈{0, 1, θ, 1 + θ}, +, ·〉 with the
addition and multiplication defined in Table 2.2 and Table 2.3.

As we can associate 0 = (0, 0), 1 = (2, 0), θ = (0, 1), 1 + θ = (1, 1),
we see that this ring has the same underlying set as the Boolean ring of
22 elements. The additive structure is actually the same in both, but the
multiplicative structures are very different.

4. Finite Fields
If the non-zero elements of a ring form an Abelian group with respect

It is the
ab
the complex numbers.

to multiplication, the resulting structure is called a field.
stract structure that has the familiar properties of e.g., the real, or
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Table 2.2. Addition in the extension of Z2.

+ 0 1 θ 1 + θ

0 0 1 θ 1 + θ
1 1 0 1 + θ θ
θ θ 1 + θ 0 1

1 + θ 1 + θ θ 1 0

Table 2.3. Multiplication in the extension of Z2.

· 0 1 θ 1 + θ = θ2

0 0 0 0 0
1 0 1 θ 1 + θ
θ 0 θ 1 + θ 1

1 + θ 0 1 + θ 1 θ

Definition 2.6 (Field)
A ring 〈R,⊕, ·, 0〉 is a field if 〈R\{0}, ·〉 is an Abelian group. The identity
element of this multiplicative group is denoted by 1.

Example 2.10 (Field)

1 The complex numbers with usual operations, i.e., 〈C, +, ·, 0, 1〉 is a
field, the complex field C.

2 The real numbers with usual operations, i.e., 〈R, +, ·, 0, 1〉 is a field,
the real-field R.

3 The integers modulo k, Zk form a ring. The underlying set for this
ring is {0, 1, . . . , k−1} and the operations are the usual addition and
multiplication, but if the result is greater or equal to k, it is replaced
by the remainder when divided by k. It is easy to check that these
operations modulo k (modk) are well defined. Notice that this ring
has the multiplicative identity 1. In general, not all non-zero elements
have multiplicative inverse and, thus, it is not necessarily a field. For
example, In Z4 = 〈{0, 1, 2, 3},⊕, ·〉, where ⊕ and · are taken modulo
4, there is no element x such that 2 · x = 1. However, if k is a prime
number, then Zk is a field.
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The fields with finitely many elements are finite fields. It can be shown
that for any prime power pn, there exists essentially a single finite field
with pn elements.

The finite fields can be constructed in the same way that the field of
Example 2.9 was constructed.

Example 2.11 If p = 2, and n = 2, then 〈{0, 1, θ, 1+θ},⊕, ·〉 is a finite
field if the addition ⊕ and multiplication · are defined as in Table 2.2
and Table 2.3, respectively. This can be checked directly, but, in general,
follows from the construction. Note that the field GF (4) is quite different
to the ring Z4 The other possible definitions of
operations over four elements that fulfill requirements of a field, can be
obtained by renaming the elements.

The fields with pn elements are most frequently used in Switching

valued n-tuples. Further, the case p = 2 corresponds to realizations with
two-stable state elements. It should be noted, that also logic circuits
with more than two states, in particular three and four stable states
have been developed and realized [155].

However, for the prevalence of binary valued switching functions in
practice, the most widely used field in Logic Design is the field of order
2, i.e. Z2 = {0, 1}.

Fig. 2.1 shows relationships between discussed algebraic structures,
groups, rings and fields, imposed on a set G by introducing the addition
⊕, the multiplication · and by requiring some relations among them.

5. Homomorphisms
A function from an algebraic structure to another such that it is com-

patible with both structures is called a homomorphism. Unless the func-
tion mapping is too trivial, this implies that the structures must be quite
similar. Homomorphisms can be defined in a general way, but in the fol-
lowing we give definitions for groups sand rings. Note that this also
covers fields that are rings with additional properties.

Definition 2.7 (Group homomorphism)
Let 〈A,⊕〉 and 〈B,⊕〉 be groups and f : A → B a function. If for all
a, b ∈ A

f(a ⊕ b) = f(a) ⊕ f(b),

then f is a group homomorphism.

Example 2.12 Let f : Z3 → Z6 be defined by

f(x) = 2x = x ⊕ x,

Algebraic Structures for Logic Design
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Figure 2.1. Relationships between algebraic structures.

is a homomorphism. As it is injective it means that Z6 has the group
Z3

”

inside” it.

Example 2.13 Let f : 〈R, +〉 → 〈C∗, ·〉 (the multiplicative group of
nonzero complex numbers) be defined by

f(x) = ejx = cosx + j sinx.

Then f is a homomorphism. It is clearly not injective as f(n · 2π) = 1
for all n ∈ Z.

Example 2.14 Let f : 〈R, +〉 → 〈R+, ·〉 (the multiplicative group of
positive real numbers) defined by

f(x) = ex.

be
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Then f is a bijective homomorphism, an isomorphism, which means that
these groups have an identical structure.

Definition 2.8 (Ring homomorphism)
Let 〈A,⊕, ·〉 and 〈B,⊕, ·〉 be rings and f : A → B a function. If for all
a, b ∈ A,

f(a ⊕ b) = f(a) ⊕ f(b),

and

f(a · b) = f(a) · f(b),

then f is a ring homomorphism. If, in addition, f is bijective, it is called
an isomorphism.

Example 2.15 Let f : Z → Z be defined by

f(a) = ga,

where g is a natural number. Then, f is an injective homomorphism.
Note that both f(A)(⊆ B) and f−1(B)(⊆ A) are subrings. Thus, for

instance f−1(0), the kernel of f is a subring of A.

Example 2.16 Let B be a ring with (multiplicative) unity 1. Define
f : Z → B by f(n) = n · 1. It is obvious that

(n + m) · 1 = n · 1 + m · 1,

and

(n · m) · 1 = (n · 1)(m · 1),

in B. Thus, f is a ring homomorphism.

The characteristic of a ring with unity is the smallest number k such
that k ·1 = 0. If such number does not exist, we say that the character-
istic is zero. If a ring has characteristic, then f is clearly injective and
B contains a subring isomorphic to Z.

Example 2.17 Let B be a ring with characteristic k. Consider again
the homomorphism f : Z → B defined by f(n) = n · 1. Obviously,

f(Z) = {f(0), f(1), . . . , f(k − 1)},
and, thus, B contains a subring isomorphic to Zk. If B is a field, then
k must be prime, because if k = r · s, where r, s > 1, then we would have
f(r)f(s) = f(r · s) = k · 1 = 0 contradicting the fact that in a field the
product of two nonzero elements cannot be zero.

The following section discusses some more algebraic concepts such as
matrices.

Algebraic Structures for Logic Design
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6. Matrices
Let P be a field. Recall that a rectangular array

A =

⎡
⎢⎣

a1,1 · · · a1,n
...

am,1 · · · am,n

⎤
⎥⎦

where ai,j ∈ P is called a (m × n) matrix (over P ). When the size of
the matrix is evident from the context, we may write A = [ai,j ]. The
addition of matrices of the same size is defined componentwise, i.e., if
A = [ai,j ], B = [bi,j ], then A + B = [ai,j + bi,j ]. Similarly, we can define
multiplication of A by an element λ ∈ P by λA = [λai,j ].

The multiplication of matrices is defined only when the number of
columns in the first factor equals the number of rows in the second. Let
A = [ai,j ] be a (m × k) matrix, and B = [bi,j ] a (k × n) matrix. Then,
AB is the (m × n) matrix

AB =

[
k∑

l=1

ai,lbl,j

]
.

It is straightforward to show that matrix product is associative when-
ever the sizes are such that the product is defined.

Consider the set of (n × n) square matrices over P . It clearly forms
a ring where the zero element is the matrix 0 = [0i,j ], where 0i,j = 0 for
all i, j. The matrix I = [δi,j ], where

δi,j =
{

1 if i = j,
0 if i �= j,

is the multiplicative identity. The matrix I is usually called the identity
matrix.

The transposed matrix MT of a matrix M is a matrix derived by
interchanging rows and columns.

Example 2.18 If M =
[

m1,1 m1,2

m2,1 m2,2

]
, then MT =

[
m1,1 m2,1

m1,2 m2,2

]
.

A matrix M for which

MMT = MTM = kI,

is an orthogonal matrix up to the constant k. If k = 1, we simply say
M is orthogonal.
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A matrix M−1 is the inverse of a matrix M if

MM−1 = M−1M = I.

If M is orthogonal up to the constant k, then M−1 = k−1MT . The
matrix M is a symmetric matrix if M = MT , and M is self-inverse if
M = kM−1. Thus, if M is orthogonal up to a constant k and symmetric,
then M is self-inverse up to the constant k.

Example 2.19 The matrix W =
[

1 1
1 −1

]
is a symmetric matrix

since W = WT . It is orthogonal up to 2−1, since 2−1WW = I. Thus,
it is self-inverse up to the constant 2−1.

It is easy to find matrices A and B satisfying AB �= BA. Thus, the
set of (n × n) matrices forms a (in general noncommutative) ring. The
set of invertible matrices, i.e., those having a (unique) inverse form a
group under multiplication.

Example 2.20 Consider the set of (2× 2) matrices over P of the form

A =
[

1 a
0 1

]
. Now,

[
1 −a
0 1

] [
1 a
0 1

]
=
[

1 a
0 1

] [
1 −a
0 1

]
=[

1 0
0 1

]
= I, and, thus, each element has the inverse. From the identity

[
1 a
0 1

] [
1 b
0 1

]
=
[

1 a + b
0 1

]
,

we see that this multiplicative group has exactly the same structure as
the additive group of P .

Definition 2.9 (Kronecker product)
Let A be a (m × n) matrix, and B a (p × q) matrix. The Kronecker
product A ⊗ B of A and B is the (mp × nq) matrix

A ⊗ B =

⎡
⎢⎣

a11B a12B · · · a1nB
...

...
...

am1{B am2B · · · amnB

⎤
⎥⎦

The Kronecker product satisfies several properties. For instance, if
the products aC and BD exists, then the product (A ⊗ B)(C ⊗ D)
exists and it is equal to (AC)⊗ (BD). Also, (A⊗B)T = AT ⊗BT and
if A and B are invertible, then (A ⊗ B)−1 = A−1 ⊗ B−1.
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Consider a (2 × 2) matrix M =
[

a b
c d

]
. If we write ∆ = ad − bc,

it is easy to verify that if ∆ �= 0, the inverse of M exists and M−1 =

∆−1

[
d −b

−c a

]
.

The quantity ∆ is called the determinant of the matrix M and denoted
by det(M). It can be recursively defined for square matrices of any size
by

1 For a (1 × 1) matrix A = [a], det(A) = a.

2 Let A = [ai,j ] be a (n× n) matrix and denote by Ai,j the ((n− 1)×
(n − 1)) submatrix obtained by deleting the row i and the column
j of A.

Then, we have

det(A) =
n∑

i=1

(−1)i+jai,jdet(Ai,j) =
n∑

j=1

(−1)i+jai,jdet(Ai,j),

where in the first case we say that the determinant has been expanded
with respect to the column j, and in the second case with respect to the
row i.

Example 2.21 Consider a (3 × 3) matrix A = [ai,j ]. Then,

det

⎛
⎝
⎡
⎣ a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤
⎦
⎞
⎠ = a1,1det

([
a2,2 a2,3

a3,2 a3,3

])

−a1,2det
([

a2,1 a2,3

a3,1 a3,3

])

+a1,3det
([

a2,1 a2,2

a3,1 a3,2

])
.

An important property of the determinant is that a matrix A has the
inverse iff det(A) �= 0.

Example 2.22 Consider the matrix (Vandermonde matrix)

A =

⎡
⎢⎢⎣

x0
1 x0

2 · x0
n

x1
1 x1

2 · x1
n

. . .
xn−1

1 xn−1
2 · xn−1

n

⎤
⎥⎥⎦ ,
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over a field P . It can be shown (e.g. by induction) that

det(A) =
∏
i<j

(xj − xi),

and so A is invertible if xi �= xj for i �= j. We will use this matrix when
we discuss Fourier transform methods.

7. Vector spaces
Definition 2.10 Given an Abelian group G and a field P . The pair
(G,P ) is a linear vector space, in short, vector space, if the multiplication
of elements of G with elements of P , i.e., the operation P × G → G is
defined such that the following properties hold.

For each x, y ∈ G, and λ, µ ∈ P ,

1 λx ∈ G,

2 λ(x ⊕ y) = λx ⊕ λy,

3 (λ + µ)x = λx ⊕ µx,

4 λ(µx) = (λµ)x,

5 1 · x = x, where 1 is the identity element in P .

In what follows, we will consider the vector spaces of functions defined
on finite discrete groups.

Definition 2.11 Denote by P (G) the set of all functions f : G → P ,
where G is a finite group of order g, and P is a field. In this book P is
usually the complex-field C, the real-field R, the field of rational numbers
Q or a finite (Galois) field GF (pk). P (G) is a vector space if

1 For f, h ∈ P (G), addition of f and h, is defined by

(f + h)(x) = f(x) + h(x),

2 Multiplication of f ∈ P (G) by an α ∈ P is defined as

(αf)(x) = αf(x).

Since the elements of P (G) are vectors of the dimension g, it follows
that the multiplication by α ∈ P can be viewed as the componentwise
multiplication with constant vectors in P (G).

Example 2.23 Consider the set GF (Cn
2 ) of functions whose domain is

Cn
2 and range GF (2). These functions can be conveniently represented
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by binary vectors of the dimension 2n. This set is a vector space over
GF (2) with the operations defined above.

Similarly, the set C(Cn
2 ) of functions whose domain is Cn

2 and range
the complex field C forms a set of complex vector space of the dimension
2n.

Generalizations to functions on other finite Abelian groups into dif-
ferent fields are also interesting in practice.

Very often the Abelian group in the definition of the vector space V
is a direct product (power) of C, GF (2), or some cyclic group Cp. Thus,
the elements of V are ”vectors” of the length n, say

V = {(x1, x2, . . . , xn)|xi ∈ C, i = 1, . . . , n}.
Vectors v1, . . . , vk are called linearly independent if λ1v1+ · · ·+λkvk =

0 implies λ1 = λ2 = · · · = λk = 0, otherwise they are called linearly
dependent (over P ).

A system of vectors v1, . . . , vn is called a basis of V if they are linearly
independent and any v ∈ V can be expressed as a linear combination of
v1, . . . , vn, i.e., in the form v = λ1v1 + · · ·λnvn. The number n is called
the dimension of V and any basis has n elements. The scalars λ1, . . . λn

are called the coordinates of v in the basis v1, . . . , vn.
Let V be a vector space over P and consider a linear transformation

L : V → V , i.e., a mapping satisfying

L(u + v) = L(u) + L(v) for all u, v ∈ V ,
L(λv) = λL(v) for all v ∈ V, λ ∈ P.

(2.1)

Assume that V has the dimension n and v1, . . . , vn is a basis of V .
Take any vector v ∈ V . Because v1, . . . , vn is a basis, we know that

v = λ1v1 + λ2v2 + · · · + λnvn,

where λ1, . . . , λn ∈ P , and (n×1) matrix [λ1, . . . , λn]T constitutes the co-
ordinates of v, and we may write v = [λ1, . . . , λn]T in the basis v1, . . . , vn.

Now, by (2.1), we can write

u = L(v) = λ1L(v1) + · · · + λnL(vn). (2.2)

Because v1, . . . , vn is a basis, we have the representation

L(v1) = a11v1 + · · · + an1vn, (2.3)
...

L(vn) = a1nv1 + · · · + λnvn,



35

and combining (2.2) and (2.3), we have

u = λ1(a11v1 + · · · + an1vn) + · · · + λn(a1nv1 + · · · + annλn)
= (a11λ1 + . . . + a1nλn)v1 + · · · + (an1λ1 + · · · + annλn)vn

= µ1v1 + · · · + µnvn. (2.4)

The meaning of (2.3) is that for any linear transformation there is
a fixed matrix A = [aij ] such that the coordinate matrix of the trans-
formed vector is obtained by matrix multiplication from the coordinate
matrix of the original vector.

In symbolic notation, let v = [λ1, . . . , λn]T in the basis v1, . . . , vn.
Then, ⎡

⎢⎢⎢⎣
µ1

µ2
...

µn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

a11 · · · a1n
...

...
...

an1 · · · ann

⎤
⎥⎦
⎡
⎢⎢⎢⎣

λ1

λ2
...

λn

⎤
⎥⎥⎥⎦ . (2.5)

Formula (2.5) gives us the coordinate vector of a linearly transformed
vector. Another important task is to compute the coordinate matrices
of a fixed vector with respect to different bases.

Assume that we have two bases A = {a1, . . . , an} and B = {b1, . . . , bn}.
Let v ∈ V and denote by [λ1, . . . , λn]T and [µ1, . . . , µn]T the coordinate
vectors of v in A and B, respectively. As each element of B can be
expressed in the basis A, we can write

v = λ1a1 + . . . + λnan = µ1b1 + · · ·µnbn

= µ1(α11a1 + α21a2 + · · · + αn1an)
+ · · · + µn(α1na1 + α2na2 + · · · + αnna1)

= (α11µ1 + · · · + α1nµn)a1 + · · · + (αn1µ1 + . . . + αnnµn)an,

or equivalently,⎡
⎢⎢⎢⎣

λ1

λ2
...

λn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
...

...
αn1 αn2 · · · αnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

µ1

µ2
...

µn

⎤
⎥⎥⎥⎦ .

Notice that when we go from B to A, the columns of the transforma-
tion matrix (change of the basis matrix) are the coordinates of b1, . . . , bn

when expressed in the basis A.
An immediate and important fact is that if M is the matrix of change

from B to A, then M−1 is the matrix of change from A to B.
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Example 2.24 Consider the logic function f(x1, x2) given by the truth-
vector F = [1, 1, 1, 0]T , i.e., logic NAND. We can view [1, 1, 1, 0]T as an
element of C4, i.e., the complex vector space of the dimension 4. It has
the natural basis E:

e1 = [1, 0, 0, 0]T , e2 = [0, 1, 0, 0]T , e3 = [0, 0, 1, 0]T , e4 = [0, 0, 0, 1]T ,

and thus [0, 1, 1, 0]T is (also) the coordinate vector of f (hence the term
natural basis). Let us represent F in another basis

B = {(1, 1, 1, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.
The rule is to take the coordinate vectors of basis elements of the orig-

inal basis expressed in the target basis as columns of the change matrix.
By the remark above we can equivalently first find the change of the basis
matrix from B to E, that is just

R =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ,

and we know that the matrix to perform the change from E to B is

S = R−1 =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦ .

Thus, the coordinate vector of f in B is⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎦ .

Notice that the coordinate functions of the natural basis are the truth-
vectors of x1x2, x1x2, x1x2, and x1x2, respectively (the Shannon basis).
Thus, f(x1, x2) = 1 − x1x2 for x1, x2 ∈ {0, 1} ⊆ C.

Now, when represented in the natural basis, f has three non-zero en-
tries in the coordinate vectors, while when represented in the arithmetical
basis, it has two non-zero entries. This is of great importance when we
are dealing with functions of large number of variables.

We can repeat the above computation in the case that F = [1, 1, 1, 0]T

is considered as an element of the vector space over GF (2). Again,
consider the basis

D = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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The matrix R stays the same, just with different interpretation of
values for the entries, but over GF (2) the inverse is different

S = R−1 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ,

and the coordinate vector of f in B is

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ .

Thus, f(x1, x2) = 1 ⊕ x1x2 for x1, x2 ∈ GF (2).

8. Algebra

algebra 〈V,⊕, ·〉 if a multiplication · is defined V such that

x(y ⊕ z) = xy ⊕ xz,

(y ⊕ z)x = yx ⊕ zx,

for each x, y, z ∈ V , and

αx · βy = (αβ)(x · y),

for each x, y ∈ V and α, β ∈ P .

Two examples of algebras that will be exploited in this book are the

ponentwise or by convolution and the Boolean algebra.

Example 2.25 The space C(Cn
2 ) may be given the structure of a com-

plex function algebra by introducing the pointwise product of functions
through (f · g)(x) = f(x) · g(x), for all f, g ∈ C(Cn

2 ), for all x ∈ Cn
2 .

Boolean algebras form an important class of algebraic structures.
They were introduced by G. Boole [14], and used by C.E. Shannon as a
basis for analysis of relay and switching circuits [163]. It is interesting to
note that Japanese scientist A. Nakashima in 1935 to 1938 used an alge-
bra for circuit design, which, as he realized in August 1938, is identical
to the Boolean algebra, see discussion in [155]. These investigations are

Definition 2.12 A vector space 〈V,⊕〉 over a field P becomes an

algebras of complex functions with multiplications defined either
com

Algebraic Structures for Logic Design
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reported in few publications by Nakashima and M. Hanzawa [125], [126],
[127]. Similar considerations of mathematical foundations of synthesis of
logic circuits were considered also by V.I. Shestakov [166] and A. Piech
[133].

Because of their importance in Switching Theory and Logic Design,
we will study Boolean algebras in more details.

9. Boolean Algebra
Boolean algebras are algebraic structures which unify the essential

features that are common to logic operations AND, OR, NOT, and the
set theoretic operations union, intersection, and complement.

Definition 2.13 (Two-element Boolean algebra)
The structure 〈B,∨,∧,−〉 where B = {0, 1} and the operations ∨, ∧, and
− are the logic OR, AND; and the complement (negation) respectively,
is the two-element Boolean algebra.

Here, for clarity, we use ∧ and ∨ to denote operations that correspond
to logic AND and OR, respectively. Later, we often use · and + instead
of ∧ and ∨.

Using the properties of the logic operations, we see that the two-
element Boolean algebra satisfies

1 a ∧ b = b ∧ a, a ∨ b = b ∨ a, commutativity,

2 (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c), associativity,

3 a∧(b∨c) = (a∧b)∨(a∧c), a∨(b∧c) = (a∨b)∧(a∨c), distributivity,

4 a ∧ a = a, a ∨ a =, idempotence,

5 a = a, involution,

6 (a ∧ b) = a ∨ b, (a ∨ b) = a ∧ b, de Morgan’s law,

7 a∧ a = 0, a∨ a = 1, a∧ 1 = a, a∨ 0 = a, a∧ 0 = 0, a∨ 1 = 1, 1 = 0,
0 = 1.

Despite its seemingly trivial form, the two-element Boolean algebra
forms the basis of circuit synthesis. A binary circuit with n inputs can
be expressed as a function f : Bn → B, where B = {0, 1}.

The general Boolean algebra is defined by

Definition 2.14 The algebraic system 〈B,∨,∧,−〉 is a Boolean algebra
iff it satisfies the following axioms
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1 The operation ∨ is commutative and associative, i.e., a ∨ b = b ∨ a
and a ∨ (b ∨ c) = (a ∨ b) ∨ c, for all a, b in B,

2 There is a special element ”zero” denoted by ”0” such that 0 ∨ a = a
for all a in B. The element 0 is denoted by 1,

3 a = a for all a in B,

4 a ∨ a = 1 for all a in B,

5 a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), where a ∧ b = (a ∨ b).

From these axioms one can deriver all other properties, eg., those
presented above for the two-element Boolean algebra.

Example 2.26 (Boolean algebra of subsets)
The power set of any given set X, P (X) forms a Boolean algebra with
respect the operations of union and intersection, with the empty set ∅
representing the ”zero” element 0, and the set X itself as the element 1.

This Boolean algebra is important, since any finite Boolean algebra is
isomorphic to the Boolean algebra of all subsets of a finite set. It follows
that the number of elements of every Boolean algebra is a power of two,
from which originate the difficulties in extending the theory of binary-
valued switching functions to multiple-valued logic functions. Consider
two Boolean algebras 〈X,∨,∧,−, 0X , 1X〉, and 〈Y,∨,∧,−, 0Y , 1Y 〉. A
mapping f : X → Y such that

1 For arbitrary r, s ∈ X, f(r ∨ s) = f(r) ∨ f(s), f(r · s) = f(r) · f(s),
and f(r) = f(r),

2 f(0X) = 0Y , f(1X) = f(1B),

is a homomorphism. A bijective homomorphism is an isomorphism.

Example 2.27 (Homomorphism)
Consider the Boolean algebras of subsets of A = {a, b} and B = {a, b, c}
and define f : A → B by ∅ → ∅, {a} → {a, c}, {b} → {b}, {a, b} →
{a, b, c}. Then, f is a homomorphism.

Example 2.28 (Isomorphism)
n ,∨,∧,−〉 where the operations

are taken componentwise and B the Boolean algebra 〈P ({1, 2, . . . , n}),∪,
∩,∼〉. It is clear that the structures are identical and an isomorphism is
given by

f : B → A, f(X) = (x1, . . . , xn),

Let A be the Boolean algebra 〈{0, 1}

Algebraic Structures for Logic Design
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where xi = 1 iff i ∈ X.

Example 2.29 (The Boolean algebra of logic functions)
Consider a logic function f : B = {0, 1}n → {0, 1}. We define the
Boolean operations in the set B of logic functions in the natural way

(f ∨ g)(x) = f(x) ∨ g(x), (f ∧ g)(x) = f(x) ∧ g(x), f(x) = f(x).

As each function is represented by its truth-vector that is of the length
2n and the definition of the operations (oper) is equivalent to com-
ponentwise operations on the truth-vectors, 〈B,∨,∧,−〉 is isomorphic
to 〈{0, 1}2n

,∨,∧,−〉 and 〈P ({1, . . . 2n}),∨,∧,−}〉. Thus, there are 22n

logic functions of n variables.

In this book, the two-element Boolean algebra and the Boolean alge-
bra of all switching functions of a given number of variables n will be
mostly studied. When we speak about Boolean algebra in the sequel,
we mean the two-element Boolean algebra, or the corresponding Boolean
algebra of switching functions.

9.1 Boolean expressions
More complicated relations and functions on Boolean algebras can be

defined by using Boolean expressions. We typically use them for defining
switching functions on the two-element Boolean algebra.

Definition 2.15 (Boolean expression)
〈B,∨,∧,−, 0, 1〉. Boolean expression is

defined recursively as

1 A variable taking values in B, the Boolean variable, is a Boolean
expression,

2 An expression obtained as a finite combination of variables with the
operators ∨, ∧ and − where the order is indicated with parenthesis,
is a Boolean expression.

The de Morgan laws formulated above for two variables, hold for n
variables

x1 · x2 · . . . · xn = x1 ∨ x2 ∨ . . . ∨ xn,

x1 ∨ x2 ∨ . . . ∨ xn = x1 ∧ x2 ∧ · · · ∧ xn,

and can be applied to Boolean expressions.

Definition 2.16 (Complement of a Boolean expression)
Given a Boolean expression in n variables F (x1, x2, . . . , xn). The Boolean
expression is obtained from F by

a Boolean algebraConsider A
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1 Adding the parenthesis depending on the order of operations,

2 Interchanging ∨ with ∧, xi with xi, and 0 with 1,

is the complement Boolean expression F (x1, x2, · · · , xn).

Boolean expressions are used in describing Boolean functions.

Definition 2.17 (Boolean functions)
A mapping f : Bn → B, that can be expressed by a Boolean expression
is a Boolean function.

It should be noticed that not all the mappings f : Bn → B are
necessarily Boolean functions for Boolean algebras with more than two
elements.

Then, f : B2 → B defined as f(x1, x2) = {a} for all x1, x2 cannot be
defined as a Boolean function.

A fundamental feature of Boolean algebras is the Principle of Duality.

Definition 2.18 (Principle of Duality)
In a Boolean algebra, if an equation E holds, then the equation obtained
from E by interchanging ∨ with ∧, and 0 with 1, also holds.

Definition 2.19 (Dual Boolean expression)
For a Boolean expression F , the dual Boolean expression FD is defined
recursively as follows

1 0D = 1.

2 1D = 0.

3 If xi is a Boolean variable, then xD
i = xi, i = 1, . . . n.

4 For Boolean expressions X and Y , if X = Y , then XD = (Y D).

5 For Boolean expressions X, Y , Z, if
X = Y ∨ Z, then XD = Y D ∧ ZD,
X = Y ∧ Z, then XD = Y D ∨ ZD.

The application of the principle of duality in study of Boolean func-
tions is due to he following property. If two Boolean expressions X and Y
represent the same Boolean function f , which we denote as X ≡ Y , then
XD ≡ Y D. Therefore, if manipulation with dual expressions is simpler

the principle of duality may be used to reduce complexity of processing
a function f .

Example 2.30 Consider a Booleanalgebra where B ={∅,{a},{b},{a,b}}.

Algebraic Structures for Logic Design
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Figure 2.2. Graph.
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Figure 2.3. Directed graph.

10. Graphs
The concept of a graph is very useful in many applications. We have

already informally used graphs for describing logic circuits and switching
functions.

is a pair (V,E) where V is a set of
so- called vertices (nodes) and E is a set of two-element subsets of V ,
so called edges.

Example 2.31 (Graph)
Let V = {a, b, c, d, e} and E = {{a, b}, {a, d}, {b, c}{b, d}, {c, d}, {d, e}}.
Then, G can be depicted as in Fig. 2.2.

Sometimes we want to extend the definition of graphs by allowing the
edges to be directed. This is expressed formally so that E is a set of
ordered pairs of elements of V so that, e.g., the edge (a, b) is directed
from a to b. We call then G a directed graph or a digraph.

Example 2.32 Let V be as in the Example 2.31 and replace the edge set
by the set of directed edges E = {(a, b), (d, a), (b, d), (b, c), (c, d), (d, e)}.
This digraph can be depicted as in Fig. 2.3.

Definition 2.21 (Terminology)
Let (V,E) be a graph. We say that the vertices x and y are adjacent if
{x, y} ∈ E, otherwise they are non-adjacent. A subgraph of (V, E) is a

A walk
in a graph is a sequence

(v0, e1, v1, e2, v2, . . . , en, vn),

where ei = {vi−1, vi} for i = 1, . . . , n. The length of the walk is the
number of n of edges in the sequence.

A path is a walk whose vertices are distinct except possibly the first
and the last and a circuit is a path whose first and the last vertices are
equal.

Definition 2.20 A graph G

graph whose vertex and edge sets are subsets of those of (V,E).
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Figure 2.4. Tree.
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Figure 2.5. Rooted tree.
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Figure 2.6. Isomorphic directed graphs.

We can define a relation ρ on V by xρy iff there is a walk from x to y. It
is easy to see that ρ is an equivalence relation and the equivalence classes

is the number of edges containing v.

Definition 2.22 (Tree)

vertex called the root, the tree is called a rooted tree. A vertex in a rooted
tree is said to be at the level i if there is a path of the length i from the
root to the vertex.

Example 2.33 (Tree)
Fig. 2.4 and Fig. 2.5 show a tree and a rooted tree, respectively.

Definition 2.23 Two (directed) graphs G = (VG , EG), H = (VH, EH)
are isomorphic if there exists a bijective mapping α : VG → VH such that
(u, v) ∈ VG

Example 2.34 Two digraphs in Fig. 2.6 are clearly isomorphic.

Algebraic Structures for Logic Design

are called the (connected) components of (V, E). A graph is connected if

A tree is a connected graph that contains no circuits. If there is a special

it has just one component. The degree of a vertex v in the graph (V, E)

if and only if (α(u), α(v)) ∈ E.
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11. Exercises and Problems
Exercise 2.1 Show that the set B8 = {0, 1, a, b, c, d, e, f} with opera-
tions +, ·, and ′ defined by the Tables 2.4, 2.5 and 2.6 forms a Boolean
algebra.

Table 2.4. The operation · in Exercise 2.1.

· 0 a b c d e f 1

0 0 0 0 0 0 0 0 0
a 0 a 0 0 a a 0 a
b 0 0 b 0 b 0 b b
c 0 0 0 c 0 c c c
d 0 a b 0 d a b d
e 0 a 0 c a e c e
f 0 0 b c b c f f
1 0 a b c d e f 1

Table 2.5. The operation + in Exercise 2.1.

+ 0 a b c d e f 1

0 a a b c d e f 1
a a a d e d e 1 1
b b d b f d 1 f 1
c c e f c 1 e f 1
d d d d 1 d 1 1 1
e e e 1 e 1 e 1 1
f f 1 f f 1 1 f 1
1 1 1 1 1 1 1 1 1

Table 2.6. The operation ′ in Exercise 2.1.

f 0 a b c d e f 1

f ′ 1 f e d c b a 0
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Exercise 2.2 Consider the set B = {1, 2, 3, 7, 10, 14, 35, 70} with the
operations + as the greatest common divisor, · as the smallest common
multiple, and a

′
as 70 divided by a. For instance, 7+10 = 1, 14+35 = 7,

10·14 = 70, and 35
′
= 2. Show that {B,+, ·,′ , 1, 70} is a Boolean algebra.

Exercise 2.3 Denote by P (E) the set of all subsets of a non-empty set
E, i.e., the power set of E. The operations ∪, ∩, ′ are the operations
of the union, intersection, and complement in the set theory. Show that
{P (E),∪,∩, ′, ∅, E}, where ∅ is the empty set, forms a Boolean algebra.

Exercise 2.4 Let x, y, and z be elements of a Boolean algebra B. Prove
the following relations

1 x + x = x,

2 x · x = x

3 x + 1 = 1,

4 x · 0 = 0,

5 x + xy = x,

6 x(x + y) = x,

7 x(x′ + y) = xy,

8 x + x′y = x + y,

9 (x + y)(x′ + z) = xz + x′y.

Exercise 2.5 Let B be a Boolean algebra and x, y ∈ B. Define x ≤ y
if and only if x ∧ y = x. Show that ≤ is a partial order.

Exercise 2.6 Prove that in an arbitrary Boolean algebra, if x ≤ y, then
y′ ≤ x′, and if x′ ≤ y, then y ≤ x.

Exercise 2.7 Determine assignments of (x1, x2, x3) for which x1+x2 =
x3 and x1 ⊕ x2x3 = 1.

Exercise 2.8 1 2 3

table of a function that has the value 1 if the number of 1 bits is even.
Do the same for a function having the value 1 for an odd number of
1-bits.

Exercise 2.9 Consider two-bit binary numbers x = (x1, x0) and y =
(y1, y0). Determine the truth-table for a function f(x1, x0, y1, y0) having
the value 1 when x < y and 0 otherwise.

Consider binary number (x x x ) and determine the truth-

Algebraic Structures for Logic Design
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x1

x2

x2

x3

x3

x4

x4

Figure 2.7. Logic network for the function f in Exercise 2.11.

Exercise 2.10 Realize the function f(x1, x2, x3, x4) = x1x2x3+x1x2x4+
x2x3x4 + x1x2x3x4 by a network with three-input AND and OR ele-
ments. Assume that both variables and their complements are available
as inputs.

Exercise 2.11 Analyze the logic network in Fig. 2.7 and simplify it by
using properties of Boolean expressions. Determine the truth-table of the
function realized by this network.



Chapter 3

FUNCTIONAL EXPRESSIONS FOR
SWITCHING FUNCTIONS

The complete Sum-Of-Product (SOPs) forms an analytical represen-
tation for switching functions when these functions are considered with
the Boolean algebra as the underlying algebraic structure. The term
analytical is used here in the sense of an expression or a formula written
in terms of some elementary symbols, in this case minterms, to express
a given switching function f . In this setting, SOPs can be viewed as
analytical descriptions of truth-tables. Fig. 3.1 explains the relationship
between the complete SOP and the truth-table for a two-variable func-
tion f . The assignments for variables are written in terms of literals,
i.e., as minterms, which are then multiplied with function values. The
minterms that get multiplied by 0 have no effect and are eliminated.
The remaining 1-minterms are added to represent the given function f .

The following example discusses the same relationship from a slightly
different point of view.

Example 3.1 Fig. 3.2 shows the truth-table for a function of n = 3
variables. The truth-vector of f is decomposed into a logic sum of sub-
functions each of which can be represented by a single minterm. The
addition of thus selected minterms produces the complete SOP for f .

This example suggests that a complete SOP can be viewed as a series-
like expressions where the basis functions are described by minterms and
the coefficients are the function values. These functions are usually called
the trivial basis in the space of binary-valued functions on the group Cn

2 ,
GF2(Cn

2 ), which can be identified with the block-pulse functions. Fig. 3.3
shows the waveforms of the basis functions described by minterms.

In matrix notation, the minterms can be be generated through the
Kronecker product of basic matrices X(1) =

[
xi xi

]
for i = 1, . . . , n.

47
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Figure 3.1. Truth-table and SOP for a two-variable function f .
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Figure 3.2. The decomposition of f in terms of minterms.

When written as columns of a (2n × 2n) matrix, the minterms produce
the identity matrix, which explains why this basis is called the trivial
basis, and that the coefficients in a series-like expansion in terms of
this basis are equal to the function values. The identity matrix of size
(2n ×2n) can be represented as the Kronecker product (or power) of the

basic matrix B(1) =
[

1 0
0 1

]
.
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Figure 3.3. Waveforms of block-pulse functions.
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Figure 3.4. Minterms and the identity matrix for n = 2.

Example 3.2 Fig. 3.4 explains generation of the trivial basis for n = 2
and its Kronecker product structure.

for Switching Functions
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1. Shannon Expansion Rule

represented as

f = xif0 ⊕ xif1. (3.1)

Indeed, let x1, . . . , xi−1 and xi+1, . . . , xn have arbitrary fixed values.
Then,

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = f0 = 1 · f0 ⊕ 0 · f1 = 0 · f0 ⊕ 0 · f1,

and

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) = f1 = 0 · f0 ⊕ 1 · f1 = 1 · f0 ⊕ 1 · f1.

In this way, f is represented in terms of the co-factors with respect
to the variable xi, and, therefore, this representation is an expansion or
alternatively, decomposition of f . The rule (3.1) is usually called the
Shannon expansion (decomposition) by referring to [163], although it
has been used by J. Boole already in 1854 [14].

A recursive application of the Shannon expansion to all the variables
in a given function f produces the complete SOP for f .

Example 3.3 For a two-variable function f(x1, x2), we first perform
the decomposition by x1 and then by x2, although the order in which the
Shannon rule is applied is irrelevant. Thus,

f(x1, x2) = x1f(0, x2) ⊕ x1f(1, x2)
= x1(x2f(0, 0) ⊕ x2f(0, 1)) ⊕ x1(x2f(1, 0) ⊕ x2f(1, 1))
= x1x2f(0, 0) ⊕ x1x2f(0, 1) ⊕ x1x2f(1, 0) ⊕ x1x2f(1, 1),

which is the complete SOP for f .

In matrix notation, the Shannon expansion rule can be expressed in
terms of basic matrices X(1) and B(1),

f =
[

xi xi
] [ 1 0

0 1

] [
f0

f1

]
,

which can be written as

f = X(1)B(1)F.

It can be easily shown that each switching function f can be
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Recursive application of the Shannon expansion to all the variables in
f can be expressed using the Kronecker product. Thus, each n-variable
switching function f can be represented as

f = X(n)B(n)F =

(
n⊗

i=1

X(1)

)(
n⊗

i=1

B(1)

)
F,

which is the matrix notation for the complete SOP.

Example 3.4 For n = 2,

f =
([

x1 x1
]⊗ [ x2 x2

]) ([ 1 0
0 1

]
⊗
[

1 0
0 1

])⎡⎢⎢⎣
f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦

=
([

x1x2 x1x2 x1x2 x1x2
])
⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦

= x1x2f(0, 0) + x1x2f(0, 1) + x1x2f(1, 0) + x1x2f(1, 1).

Notice that in the above expression, logic OR can be replaced by
EXOR, since there are no common factors in the product terms. Thus,
it is possible to write

f = x1x2f(0, 0) ⊕ x1x2f(0, 1) ⊕ x1x2f(1, 0) ⊕ x1x2f(1, 1).

Matrix notation provides a convenient way for the transition from
SOPs to other representations, as for example, the polynomial expres-
sions for switching functions. In this approach, different choices of the
basic matrices instead B(1), produce different expressions. We can also
change the operations involved, for instance, instead of logic AND and
OR, we may use AND and EXOR, which means that we change the alge-
braic structure from the Boolean algebra to the Boolean ring (or vectors
space over GF (2)) to derive polynomial representations for switching
functions.

2. Reed-Muller Expansion Rules
Recalling that in GF (2), the logic complement xi of a variable xi

can be viewed as the sum of xi and the logic constant 1 in GF (2), i.e.,
xi = 1 ⊕ xi, the Shannon expansion can be written as

Functional Expressions for Switching Functions
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= (1 ⊕ xi)f0 ⊕ xif1

= 1 · f0 ⊕ xif0 ⊕ xif1

= 1 · f0 ⊕ xi(f0 ⊕ f1).

Thus derived expression

f = 1 · f0 ⊕ xi(f0 ⊕ f1),

is called the positive Davio (pD) expansion (decomposition) rule. With
this expansion we can represent a given function f in the form of a
polynomial

f = c0 ⊕ cixi,

where c0 = f0 and c1 = f0 ⊕ f1.
Recursive application of the pD-expansion to all the variables in a

given function f produces the Žegalkin polynomial also called as the
Reed-Muller (RM) expression for f , by referring to the work of Žegalkin
in 1927 [206], and 1928 [207], and Reed [141] and Muller [119] in 1954.
Since all the variables appear as positive literals, this expression is the
Positive Polarity Reed-Muller (PPRM) expression for f .

Example 3.5 (PPRM)
For n = 2,

f = 1 · f(0, x2) ⊕ x1(f(0, x2) ⊕ f(1, x2))
= 1 · (1 · f(0, 0) ⊕ x2(f(0, 0) ⊕ f(0, 1)))

⊕x1(1 · f(0, 0) ⊕ x2(f(0, 0) ⊕ f(0, 1))
⊕1 · f(1, 0) ⊕ x2(f(1, 0) ⊕ f(1, 1)))

= 1 · 1f(0, 0) ⊕ x2(f(0, 0) ⊕ f(0, 1))
⊕x1 · 1 · (f(0, 0) ⊕ f(1, 0))
⊕x1x2(f(0, 0) ⊕ f(0, 1) ⊕ f(1, 0) ⊕ f(1, 1))

= c0 ⊕ c1x2 ⊕ c2x1 ⊕ c3x1x2,

where, obviously,

c0 = f0,

c1 = f(0, 0) ⊕ f(0, 1),
c2 = f(0, 0) ⊕ f(1, 0),
c3 = f(0, 0) ⊕ f(0, 1) ⊕ f(1, 0) ⊕ f(1, 1).

These coefficients are the Reed-Muller (RM) coefficients.

f = xif0 ⊕ xif1
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Notice that the indices of ci do not directly refer to the indices of
variables in the corresponding monomials. However, when interpreted
as binary numbers, there is correspondence and this will be used later
when we discuss the matrix notation and the Hadamard ordering.

In matrix notation, the pD-expansion can be derived by starting from
the Shannon expansion as follows

f =
[

xi xi
] [ f0

f1

]

=
[

xi xi
] [ 1 0

1 1

] [
1 0
1 1

] [
f0

f1

]

=
[

xi ⊕ xi xi
] [ 1 0

1 1

] [
f0

f1

]

=
[

1 xi
] [ 1 0

1 1

] [
f0

f1

]
,

or more compactly

f = XrmR(1)F, (3.2)

where Xrm =
[

1 xi
]

and R(1) =
[

1 0
1 1

]
is called the basic Reed-

Muller matrix.
Extension to functions of an arbitrary number n of variables is done

with the Kronecker product

f =

(
n⊗

i=1

Xrm(1)

)(
n⊗

i=1

R(1)

)
F.

Example 3.6 For n = 2,

f =
([

1 x1
]⊗ [ 1 x2

]) ([ 1 0
1 1

]
⊗
[

1 0
1 1

])⎡⎢⎢⎣
f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦

=
([

1 x2 x1 x1x2
])
⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦

= c0 ⊕ c1x2 ⊕ c2x1 ⊕ c3x1x2.

Functional Expressions for Switching Functions
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From linear algebra we know also that the change back is obtained just
by the inverse matrix. Because over GF (2),⎡

⎢⎢⎣
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

the change of the basis matrix is self-inverse and we have⎡
⎢⎢⎣

1
c1

c2

c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f00

f01

f10

f11

⎤
⎥⎥⎦ .

The matrix

R(n) =
n⊗

i=1

R(1),

is called the Reed-Muller matrix and its columns are called the Reed-
Muller functions. It is also called the conjunctive matrix and studied by
Aizenberg et. al. [4], see also [2].

Example 3.7 Fig. 3.6 shows the Reed-Muller matrix for n = 3. Its
columns, the Reed-Muller functions rm(i, x), i, x ∈ {0, 1, . . . , 7}, can be
represented as elementary products of switching variables

rm(0, x)
rm(1, x)
rm(2, x)
rm(3, x)
rm(4, x)
rm(5, x)
rm(6, x)
rm(7, x)

=
=
=
=
=
=
=
=

1
x3

x2

x2x3

x1

x1x3

x1x2

x1x2x3

.

Fig. 3.5 shows waveforms of Reed-Muller functions for n = 3.

This ordering of Reed-Muller functions is determined by the Kro-
necker product and is denoted as the Hadamard order [71].

The following recurrence relation is true for the Reed-Muller matrix

R(n) =
[

R(n − 1) 0(n − 1)
R(n − 1) R(n − 1)

]
.
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rm x(1, )

rm x(2, )

rm x(3, )

rm x(4, )

rm x(5, )

rm x(6, )

rm x(7, )

x0 1 2 3 4 5 6 7

Figure 3.5. Waveforms of Reed-Muller functions for n = 3.

R(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 3.6. Reed-Muller matrix for n = 3.

with R(1) the basic Reed-Muller matrix and where 0 is the zero matrix,
i.e., a matrix whose all elements are equal to 0.

Definition 3.1 (Reed-Muller spectrum)
For a function f given by the truth-vector F = [f(0), . . . , f(2n −1)]T the
Reed-Muller spectrum is the vector Sf = [Sf (0), . . . , Sf (2n−1)]T defined
by

Sf,rm = R(n)F.

Functional Expressions for Switching Functions

rm(0,x)



56 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

Thus, the Reed-Muller spectrum gives the representation of a function
given in the Shannon basis in the Reed-Muller basis if we are working
over GF (2). If the spectrum is computed over some other field, e.g., the
real numbers, the interpretation is different and will be considered in
detail later.

Example 3.8 For a function f(x1, x2, x3) = x1x2 ∨x3, the truth-vector
is F = [0, 1, 0, 1, 0, 1, 1, 1]T and the Reed-Muller spectrum is calculated
as

Sf = R(3)F

=
([

1 0
1 1

]
⊗
[

1 0
1 1

]
⊗
[

1 0
1 1

])
F

= [0, 1, 0, 0, 0, 0, 1, 1]T ,

which determines the PPRM for f as

f = x3 ⊕ x1x2 ⊕ x1x2x3.

3. Fast Algorithms for Calculation of
RM-expressions

By using the properties of the Kronecker product, it can be shown
that a Kronecker product representable matrix can be represented as
an ordinary matrix product of sparse matrices, each of which is again
Kronecker product representable. This representation is usually called
the Good-Thomas factorization theorem [52], [187]. In particular, for
the Kronecker product of (2 × 2) matrices Qi,

n⊗
i=1

Qi =
n∏

i=1

(I2i−1 ⊗ Qi ⊗ I2k−i) ,

where Ir is an (r × r) identity matrix.

Example 3.9 For n = 2,

R(2) = R(1) ⊗ R(1) = C1C2

where

C1 = R(1) ⊗ I(1)

=
[

1 0
1 1

]
⊗
[

1 0
0 1

]
=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ ,
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C2 = I(1) ⊗ R(1)

=
[

1 0
0 1

]
⊗
[

1 0
1 1

]
=

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦ .

We can directly verify

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ .

Each of the matrices C1 and C2 determines a step in the fast algorithm
for calculation of the Reed-Muller coefficients. The non-zero elements in
the i-th row of the matrix point out the values which should be added
modulo 2 (EXOR) to calculate the i-th Reed-Muller coefficient. When in
a row there is a single non-zero element the value pointed is forwarded
to the output. From there, it is easy to determine a flow-graph of a
fast algorithm to calculate the Reed-Muller spectrum with steps in the
algorithm performed sequentially, meaning the input of a step is the
output from the preceding step.

Fig. 3.7 shows the flow graph of the fast algorithm for calculation of
the Reed-Muller coefficients.

4. Negative Davio Expression
By using the relation xi = 1 ⊕ xi we can derive the negative Davio

(nD) expansion from the Shannon expansion similarly to the case of the
positive Davio expansion.

f = xif0 ⊕ xif1

= xif0 ⊕ (1 ⊕ xi)f1

= xif0 ⊕ 1 · f1 ⊕ xif1

= 1 · f1 ⊕ xif0 ⊕ xif1

= 1 · f1 ⊕ xi(f0 ⊕ f1)
= c0 ⊕ c1xi.

Recursive application of the nD-expansion results in the Reed-Muller
polynomial where all the variables appear with negative literals, the
negative polarity Reed-Muller expression (NPRM).

Functional Expressions for Switching Functions
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Figure 3.7. Fast Reed-Muller transform for n = 2.

In matrix notation, the nD-expansion can be represented as

f =
[

1 xi
] [ 0 1

1 1

] [
f0

f1

]
.

The matrix R(1) =
[

0 1
1 1

]
is the basic negative Reed-Muller (nRM)

matrix. It should be noted that the negative literals for variables corre-
spond to exchanging columns in the basic RM-matrix.

Example 3.10 For the function f in Example 3.8, the RM-expression
with nD-expansion assigned to all the variables is determined as

Sf = R(3)F

=
([

0 1
1 1

]
⊗
[

0 1
1 1

]
⊗
[

0 1
1 1

])
F

= [1, 0, 0, 1, 0, 1, 0, 1]T ,

which gives the NPRM for f as

f = 1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2x3.
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Table 3.1. Fixed-polarity RM-expressions for n = 2.

Polarity RM-expression

(pD, pD) = (0, 0) fH=(0,0) = c0(0,0) ⊕ c1(0,0)x2 ⊕ c2(0,0)x1 ⊕ c3(0,0)x1x2

(pD, nD) = (0, 1) fH=(0,1) = c0(0,1) ⊕ c1(0,1)x2 ⊕ c2(0,1)x1 ⊕ c3(0,1)x1x2

(nD, pD) = (1, 0) fH=(1,0) = c0(1,0) ⊕ c1(1,0)x2 ⊕ c2(1,0)x1 ⊕ c3(1,0)x1x2

(nD, nD) = (1, 1) fH=(1,1) = c0(1,1) ⊕ c1(1,1)x2 ⊕ c2(1,1)x1 ⊕ c3(1,1)x1x2

5. Fixed Polarity Reed-Muller Expressions
We can freely choose between the pD- and nD-expansions for a par-

ticular variable xi in a given function f . In this way, we can produce 2n

different Reed-Muller expressions, where n is the number of variables.
These expressions are called Fixed-polarity Reed-Muller (FPRM) ex-
pressions, since the polarity of the literal for each variable is fixed. The
assignment of pD or nD-expansion rules to variables, i.e., the positive or
negative literals in the elementary products in the Reed-Muller expres-
sion, is usually specified by the polarity vector H = (h1, . . . , hn), where
the component hi ∈ {0, 1} specifies the polarity for the variable xi. If
hi = 0, then the i-th variable is represented by the negative literal xi,
and when hi = 0, by the positive literal xi.

For a given function f different FPRM expressions typically differ in
the number in non-zero coefficients. A FPRM expression with the min-
imum number of non-zero coefficients is a minimum FPRM expression
for f . It may happen that there are two or more FPRMs with the same
number of non-zero coefficients. In this case, we select as the minimum
FPRM the expressions in whose products there is a least number of
variables.

In circuit synthesis from Reed-Muller expressions, reduction of the
number of products reduces the number of circuits in the network, and
the reduction of the number of literals in products implies reduction of
the number of inputs of the circuits to realize the products.

Example 3.11 Table 3.1 shows the FPRM expressions for a two-variable
function for different assignments of the positive and negative Davio
rules. Table 3.2 shows the calculation of coefficients in these expres-
sions and Table 3.3 specifies the matrices used in calculation of these
coefficients.

Example 3.12 Consider a function of two variables

f = x1x2 ⊕ x1x2 ⊕ x1x2 = x2 ∨ x1x2.

Functional Expressions for Switching Functions
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Table 3.2. FPRM-coefficients.

H = (0, 0) H = (01)

c0(0,0) = f0 c0(0,1) = f1

c1(0,0) = f0 ⊕ f1 c1(0,1) = f0 ⊕ f2

c2(0,0) = f0 ⊕ f2 c2(0,1) = f1 ⊕ f3

c3(0,0) = f0 ⊕ f1 ⊕ f2 ⊕ f3 c3(0,1) = f0 ⊕ f1 ⊕ f2 ⊕ f3

H = (1, 0) H = (11)

c0(1,0) = f2 c0(1,1) = f3

c1(1,0) = f2 ⊕ f3 c1(1,1) = f2 ⊕ f3

c2(1,0) = f0 ⊕ f2 c2(1,1) = f1 ⊕ f3

c3(1,0) = f0 ⊕ f1 ⊕ f2 ⊕ f3 c3(1,1) = f0 ⊕ f1 ⊕ f2 ⊕ f3

The truth-vector for this function is F = [1, 0, 1, 1]T . Table 3.4 shows
the Reed-Muller spectra for all possible polarities, the related FPRMs
and the number of product terms.

This example explains the rationale for studying of FPRM expres-
sions. For some functions the number of products can be considerably
reduced by choosing the best polarity. However, the problem is that
there is no simple algorithm to select in advance the polarity for a par-
ticular function f . It can be shown that finding an optimal polarity is an
NP-hard problem, [155]. Exact algorithms for the assignment of the de-
composition rules to variables that produce the minimum FPRM, consist
of the brute force search, which because of the large search space are re-
stricted to the small number of variables. There are heuristic algorithms,
for example, [32], [33], [152], that often find nearly optimal solutions, but
there is no guarantee for the quality of the results achieved.

An approach, usually used in practice, is to find the coefficients in all
the FPRM expressions for a given function f in an efficient way. To that
order, it is convenient to consider the FPRM polarity matrix FPRM(n)
defined as a (2n × 2n) matrix whose rows are coefficients in different
FPRMs for f . Thus, the i-th column of the polarity matrix shows the
i-th coefficient in all the FPRM for f . Since the logic complement of a
variable xi can be viewed as the EXOR addition with the logic 1, which
can be considered as the shift on finite dyadic groups, it follows that
the FPRM(n) expresses the structure of a convolution matrix on Cn

2 .
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Table 3.3. Matrices for FPRMs.

H = (0, 0)

R(1) ⊗ R(1) =

[
1 0
1 1

]
⊗
[

1 0
1 1

]
=

⎡
⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎦

H = (0, 1)

R(1) ⊗ R(1) =

[
1 0
1 1

]
⊗
[

0 1
1 1

]
=

⎡
⎢⎣

0 1 0 0
1 1 0 0
0 1 0 1
1 1 1 1

⎤
⎥⎦

H = (1, 0)

R(1) ⊗ R(1) =

[
0 1
1 1

]
⊗
[

1 0
1 1

]
=

⎡
⎢⎣

0 0 1 0
0 0 1 1
1 0 1 0
1 1 1 1

⎤
⎥⎦

H = (1, 1)

R(1) ⊗ R(1) =

[
0 1
1 1

]
⊗
[

0 1
1 1

]
=

⎡
⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎤
⎥⎦

Table 3.4. Fixed-polarity Reed-Muller expressions.

Sf FPRM # of products

Sf,(0,0) = [1, 1, 0, 1]T f = 1 ⊕ x2 ⊕ x1x2 3
Sf,(0,1) = [0, 1, 1, 1]T f = x2 ⊕ x1 ⊕ x1x2 3
Sf,(1,0) = [1, 0, 0, 1]T f = 1 ⊕ x1x2 2
Sf,(1,1) = [1, 0, 1, 1]T f = 1 ⊕ x1 ⊕ x1x2 3

Functional Expressions for Switching Functions
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Thus, if the convolution of two functions f and g on Cn
2 , denoted as the

dyadic convolution, is defined as

(f ∗ g)(τ) =
2n−1∑
x=0

f(x)(x ⊕ τ),

= 0, . . . , 2n − 1,, then it can be shown that the columns
of

sponding rows of the Reed-Muller matrix R(n) [171].

Example 3.13 The FPRM polarity matrix for n = 2 is

FPRM(2) =

⎡
⎢⎢⎢⎣

c0(0,0) c1(0,0) c2(0,0) c3(0,0)

c0(0,1) c1(0,1) c2(0,1) c3(0,1)

c0(1,0) c1(1,0) c2(1,0) c3(1,0)

c0(1,1) c1(1,1) c2(1,1) c3(1,1)

⎤
⎥⎥⎥⎦ .

The Reed-Muller matrix for n = 2 is

R(2) =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ .

We denote the columns of these matrices FPRM(2) and R(2) by ci,
and ri, i = 0, 1, 2, 3, respectively. Then,

ci = ri ∗ F,

where F is the truth-vector for a function f on C2
2 .

6. Algebraic Structures for Reed-Muller
Expressions

Fig. 3.8 specifies the algebraic structures that are used for the study
of Reed-Muller expressions. We can use an algebra, that can be the
classical two-element Boolean algebra, or the Gibbs algebra defined in
[51]. In this case, the addition is considered as EXOR and the multipli-

RM- expressions can be studied in vectors spaces of function on finite
dyadic groups into the field GF (2).

Tables 3.5 and 3.6 illustrate the properties of the RM-expressions in
the Boolean algebra and the Gibbs algebra, respectively. It should be

where τ
the polarity matrix can be calculated as the convolution with the

corre

cation is defined as a convolution-like multiplication. Alternatively,
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Algebra




Algebra




BooleanBoolean GibbsGibbsGibbs GF2(C2
n)

Vector space

GF2(C2
n)

Vector space

RM

Algebraic structure

RM

Algebraic structure

Figure 3.8. Algebraic structures for study of Reed-Muller expressions.

Table 3.5. Properties of RM-expressions in the Boolean algebra.

Function Spectrum

h(x) = f(x) ⊕ g(x) Sh(w) = Sf (w) ⊕ Sg(w)
h(x) = f(x) ∨ g(x) Sh(w) = ⊕u∨vSf (u)Sg(v)
h(x) = f(x) ∧ g(x) Sh(w) = Sf (w) ⊕ Sg(w) ⊕u∧v Sf (w)Sg(w)
Convolution theorem
If Sh(w) = Sf (w) ∨ Sg(w) then h(x) = ⊗y∨z=xf(y)g(z)

noticed that in the case of the Boolean algebra, the relations in terms
of the EXOR are simpler that in terms of logic OR, which suggests
that the Boolean ring defined earlier for R = {0, 1}, is a more natural

Gibbs algebra, RM-expressions exhibit properties that are much
more

of the Boolean algebra. Notice that the convolution theorem in
the Boolean algebra holds only in one direction. In the Gibbs algebra,
the multiplication itself is defined as the convolution.

7. Interpretation of Reed-Muller Expressions
Fig. 3.9 explains that RM-expressions can be interpreted as polyno-

mial expressions corresponding to the Taylor series in classical
mathematical analysis, in which case the Reed-Muller coefficients can be

similar to the properties of the classical Fourier series, than in the
case

structure for spectral considerations of Reed-Muller expressions. In
the

Functional Expressions for Switching Functions
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Table 3.6. Properties of RM-expressions in the Gibbs algebra.

Self-inverseness
SW q (w) − δ(q, w) SSf (w) = f
W (x) = 1, ∀x ∈ {0m . . . , 2n − 1} δ-Kronecker symbol
Translation formula

SW q f(w) =

{
Sf (w − q), w > q,
0, w < q.

Parseval relation

〈f, g〉 =
∑2n−1

w=0
Sf (w)Sg(w) 〈f, g〉 =

∑2n−1

x=0
f(x)g(x)

g - the dyadic conjugate g = RT g
R - RM-transform matrix
Convolution theorem
Sf·g(w) = Sf (w) · S(w)

RM

Coefficients

RM

Coefficients

PolynomialPolynomial

PPRM, FPRM

Taylor

series-like

PPRM, FPRM

Taylor

series-like

Fourier

series-like

RM-transform

Fourier

series-like

RM-transform

SpectralSpectral

Figure 3.9. Interpretation of Reed-Muller expressions.

sidered as the values of the Boolean differences, as will be discussed
later.

Alternatively, RM-expressions can be considered as an analogue to
Fourier series. Moreover, as it will be shown later, these expressions can
be derived from the discrete Walsh series, which are the Fourier series
on Cn

2 .

8. Kronecker Expressions
Fixed-polarity Reed-Muller expressions (FPRMs) are generalizations

con

of the Positive-polarity Reed-Muller expressions (PPRMs) and are
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rived by allowing to choose any of two possible decomposition rules
for each variable in a function f . In this way 2n possible expressions are
determined for a given function f . A further generalization, called the
Kronecker expression, is achieved by allowing to freely chose among the
three decomposition rules, the Shannon (S), the positive Davio (pD),
and the negative Davio (nD) rule for each variable. In this way, there
are 3n possible expansions for each function of n variables. The larger

pressions with small numbers of non-zero coefficients.

ex
in symbolic and matrix notation.

Kronecker transform matrices defined as

K(n) =
n⊗

i=1

Ki(1),

where Ki(1) is any of the matrices for S, pD, and nD-expansion rule.
Basis functions in Kronecker expressions are determined by columns
of the inverse matrices K−1(n) which are the Kronecker products of
the inverse matrices for the basic matrices Ki(1) used in K(n). From
Table 3.8, columns of K−1(n) can be written in symbolic notation as

Xk(n) =
n⊗

i=1

X(1),

where the index k shows that this is the basis for a Kronecker expression
which certainly depends on the choice of the basic matrices Ki(1).

Therefore, the Kronecker expressions are formally defined as

f = Xk(n)K(n)F.

Since Kronecker expressions are defined in terms of Kronecker product
representable matrices, where the basic matrices are the Reed-Muller
matrices R(1), R(1) and the identity matrix I(1), the coefficients in these
expressions can be calculated by the same algorithms as the FPRMs,
with steps corresponding to the Shannon nodes reduced to transferring
output data from the previous step to input in the next step.

Example 3.14 Consider the assignment of decomposition rules to the
variables of a three-variable function as

x1 → K1(1) = B(1)
x2 → K2(1) = R(1)
x3 → K3(1) = R(1)

de

pressions. Table 3.8 shows the basis functions in Kronecker expressions
Table 3.7 specifies the decomposition rules allowed in Kronecker

Coefficients in these expressions can be calculated by using the

Functional Expressions for Switching Functions

an ex
the number of possible expressions, he larger the possibility of findingt
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Table 3.7. Transform matrices in Kronecker expressions.

B(1) =

[
1 0
0 1

]
R(1) =

[
1 0
1 1

]
R(1) =

[
0 1
1 1

]

Table 3.8. Basis functions in Kronecker expressions.

[
xi xi

] [
1 xi

] [
1 xi

]
B−1(1) =

[
1 0
0 1

]
R−1(1) =

[
1 0
1 1

]
R

−1
(1) =

[
1 1
1 0

]

This assignment determines the Kronecker transform matrix

K(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

that should be used to determine the coefficients in the Kronecker expres-
sions with respect to the set of basis functions represented by columns of
the inverse matrix

K−1(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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thus, in symbolic notation in terms of switching variables, these basis
functions are

x1 x1x3 x1x2 x1x2x3 x1 x1x3 x1x2 x1x2x3.

8.1 Generalized bit-level expressions

out the expressions. Thus, each variable can appear as either positive or
negative literal, but not both. Another restriction was imposed to the
form of the product terms. We used the so-called primary products, and
no products consisting of the same set of variables may appear.

The generalized Reed-Muller expressions (GRM) are derived by allow-
ing to freely choose polarity for each variable in every product irrespec-
tive to the polarity of the same variable in other products. However,
the restriction to primary products is preserved, i.e., no two products
containing the same subset set of variables can appear.

Example 3.15 For n = 3, the GRM expressions is an expression of
the form

f = r0 ⊕ r1
∼
x3 ⊕r2

∼
x2 ⊕r3

∼
x2

∼
x3 ⊕r4

∼
x1 ⊕r5

∼
x1

∼
x3 ⊕r6

∼
x1

∼
x2 ⊕r7

∼
x1

∼
x2

∼
x3,

where ri ∈ {0, 1} and
∼
xi denotes either xi or xi.

For example, the expression

f = x1x2 ⊕ x2x3 ⊕ x1x3,

is a GRM expression, since no product have the same set of variables,
and the variables x1 and x2 appears as both positive and negative literals,
implying that it is not a FPRM.

For an n variable function, since each input can be 0,1 xi, or xi, there
are n2n−1 possible combinations, and it follows that there are at most
2n2n−1

GRM expressions.
The EXOR sum-of-products expressions (ESOPs) are the most general

class of AND-EXOR expressions defined as an EXOR sum of arbitrary
product terms, i.e., as the expressions of the form

f =
⊕

I

∼
x1

∼
x2 · · · ∼xn,

where the index set I is the set of all possible products, and
∼
xi could be

1, xi or xi. It should be noticed that in ESOPs, each occurrence
∼
xi can

be chosen as 1, xi or xi independently of other choices for
∼
xi.

Functional Expressions for Switching Functions

In FPRM expressions above, the polarity of a variable is fixed through-
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Example 3.16 For two-variable functions there are 9 ESOPs,

xy, xy, x · 1, xy, xy, x · 1, 1 · y, 1 · y, 1.

Example 3.17 The expression x1x2x3 ⊕ x1x2 is a PPRM. The expres-
sion x1x2x3 ⊕ x2x3 is a FPRM, but not PPRM, since x3 appear as the
negative literal x3. The expression x1 ⊕ x2 ⊕ x1x2 is a GRM but not

1and x1. The expression x1x2x3 ⊕ x1x2x3

variables from the same set.

Increasing the freedom in choosing the form of product terms and
in assigning polarities to the variables increases the number of possible
expressions for a given function f , which improves possibilities to find
a spares representation for f in the number of products count. How-
ever, the greater freedom makes it more difficult to determine all the
possible expressions in order to find the best expression for the intended
application.

There have been developed exact algorithms that are applicable to a
relatively small number of variables, and heuristic algorithms for larger
functions.

Table 3.9, the data in which are taken from in [153], clearly provides
rationale for study of different expressions. It shows the number of
functions representable by t product terms for different AND-EXOR
expressions. For a comparison, the number of product terms in SOP,
thus, AND-OR expressions, is also shown.

Some further generalizations of AND-EXOR expressions are derived
by referring to the corresponding decisions diagrams and will be dis-
cussed in the corresponding chapters.

9. Word-Level Expressions
The expressions in previous sections are usually called bit-level expres-

sions, since the coefficients are logic values 0 and 1. In the case of SOPs,
these are function values, and in the other expressions, the coefficients
are elements of the spectra that are obtained by the transform matrices
representing the decomposition rules. Calculations are performed over
the finite field of order 2, GF (2).

The word-level expressions are generalizations of bit-level expressions.
In word-level expressions the coefficients are viewed as elements of the
field of rational numbers Q or more generally, complex numbers C. It
is assumed, that logic values for variables and function values are inter-
preted as real or complex numbers 0 and 1.

Fig. 3.10 illustrates this extension of the theory of functional expres-
sions for switching functions.

is an ESOP, since it contains products of the same form, i.e., containing
FPRM, since it contains bothx
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Table 3.9. Number of functions realizable by t product terms.

t PPRM FPRM Kronecker GRM ESOP SOP

0 1 1 1 1 1 1
1 10 81 81 81 81 81
2 120 836 2268 2212 2268 1804
3 560 3496 8424 20856 21774 13472
4 1820 8878 15174 37818 37530 28904
5 4368 17884 19260 4512 3888 17032
6 8008 20152 19440 56 24 3704
7 11440 11600 864 0 0 512
8 12870 2336 0 0 0 26
9 11440 240 0 0 0 0

10 8008 32 24 0 0 0
11 4368 0 0 0 0 0
12 1820 0 0 0 0 0
13 560 0 0 0 0 0
14 120 0 0 0 0 0
15 16 0 0 0 0 0
16 1 0 0 0 0 0

av. 8.00 5.50 4.73 3.68 3.66 4.13

LevelLevel

FE

r
i

r
i

C GF (2)

Word B it

WLE BLE

Figure 3.10. Bit-level and word-level expressions for switching functions.

Functional Expressions for Switching Functions
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9.1 Arithmetic expressions
expressions is the

Arithmetic expression that can be viewed as the integer counterpart
of a PPRM.

Table 3.10.

Table 3.10. Boolean and arithmetic operations.

Boolean Arithmetic

x1 ∧ x2 x1x2

x1 ∨ x2 x1 + x2 − x1x2

x1 ⊕ x2 x1 + x2 − 2x1x2

When we considered bit-level expressions, we started from an expan-
sion (decomposition) rule, and its matrix interpretation and derived the
set of basic functions and the corresponding transform matrix. The
word-level expressions are more closely related to other spectral trans-
forms used in computer engineering, that are typically defined over the
field of rational numbers Q or complex numbers C, and we take the
opposite route. We start from a set of basis functions and the related

rule as the transform with respect to a single variable.
To derive arithmetic expressions, we take the same set of basis func-

tions as that used in PPRMs, specified by columns of R(n) and interpret

matrix A(n) which is formally equal to R(n), but the entries are in C.
In symbolic notation, the columns of this matrix are represented as

Xa(n) =
n⊗

i=1

Xa(1),

where Xa(1) =
[

1 xi
]
, xi ∈ {0, 1} ⊂ Z. The matrix A−1(n), inverse

to A(n) over C, is then used to calculate the coefficients in ARs,

A−1(n) =
n⊗

i=1

A−1(1),

Probably the simplest example of word-level

Arithmetic expressions (ARs) can be obtained by replacing the Boolean
operation by the corresponding arithmetic operations as specified in

transform matrix, and define a functional expression with word-level
coefficients. Then,we derive the corresponding expansion (decomposition)

the logic values 0 and 1 as integers 0 and 1. In this way, we get a
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where A−1(1) =
[

1 0
−1 1

]
. This matrix A−1(n) is called the Arith-

metic transform matrix and A−1(1) is the basic arithmetic transform
matrix.

Definition 3.2 (Arithmetic expressions)
For a function f defined by the truth-vector F = [f(0), . . . , f(2n − 1)]T ,
the arithmetic expression is defined as

f =

(
n⊗

i=1

Xa(1)

)(
n⊗

i=1

A−1(1)

)
F.

The arithmetic spectrum Sa,f = [Sa,f (0), . . . , Sa,f (2n − 1)]T is defined
as

Sa,f = A−1(n)F.

Example 3.18 The basis functions of ARs for n = 2 are specified by
columns of the matrix

A(2) =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎥⎥⎦ ,

and the coefficients are calculated by using the matrix

A−1(2) =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦ ,

For a function f given by the truth-vector F = [1, 0, 1, 1]T , the arith-
metic expressions is

f = 1 − x2 + x1x2,

since the arithmetic spectrum is

Sa,f = A−1(2)F =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
−1

0
1

⎤
⎥⎥⎦ .

The arithmetic expression for n = 1 is

f =
[

1 x
] [ 1 0

−1 1

] [
f0

f1

]
.

Functional Expressions for Switching Functions
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This expression can be derived by starting form the Shannon expan-
sion in the same way as the pD-expressions is obtained, if the logic
complement of x is interpreted as 1 − x over C.

f =
[

xi xi
] [ f0

f1

]

=
[

1 − xi xi
] [ 1 0

1 1

] [
1 0

−1 1

] [
f0

f1

]

=
[

xi + xi xi
] [ 1 0

−1 1

] [
f0

f1

]

=
[

1 xi
] [ 1 0

−1 1

] [
f0

f1

]
.

When matrix operations performed, this expression can be written as

f = 1 · f0 + x(−f0 + f1). (3.3)

This expansion is called the arithmetic expansion (decomposition) rule.
When applied to a particular variable xi in an n-variable function

f(x1, . . . , xi−1, xi, xi+1, . . . xn), this expression performs decomposition
of f into cofactors with respect to xi. Therefore, (3.3) written in terms
of a variable xi, defines the arithmetic expansion which is the integer

however, with arithmetic instead of Boolean operations.
Due to the Kronecker product structure, when applied to all the vari-

ables in an n-variable function f , the arithmetic expansion produces the
arithmetic expressions for f , whose coefficients are the elements of the
arithmetic spectrum in Hadamard ordering dictated by the Kronecker
product. This completely corresponds to the recursive application of the
pD-expansion to derive PPRMs. Therefore, the expansion (3.3) is the
positive arithmetic (pAR) expansion. Recalling that the complement of
a binary-valued variable taking values in {0, 1 } ⊂Z, can be defined as
xi i as

f = 1 · f1 + xi(f0 − f1).

by
able in a given function f , in the same way as that is done in

FPRMs [91], [101].

=(1− x ), we may define the negative arithmetic (nAR) expansion

The Fixed-Polarity Arithmetic Expressions (FPARs) are defined
allowing to freely chose either the pAR or nAR-expansion for each

vari

counterpart of the Positive Davio expansion, since it has the same form,



73

9.2 Calculation of Arithmetic Spectrum
Arithmetic expressions are defined with respect to the Reed-Muller

functions, however, with different interpretation of their values. The
arithmetic transform matrix has the same structure as the Reed-Muller

formed by the same algorithm as the Reed-Muller spectrum with
operations changed as specified in the transform matrix.

Example 3.19 For n = 2,

A−1(2) = A−1(1) ⊗ A−1(1) = C1C2

where

C1 = A−1(1) ⊗ I(1)

=
[

1 0
−1 1

]
⊗
[

1 0
0 1

]
=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦ ,

C2 = I(1) ⊗ A−1(1)

=
[

1 0
0 1

]
⊗
[

1 0
−1 1

]
=

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0

0 0 1 0
0 0 −1 1

⎤
⎥⎥⎦ .

We can directly verify⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0

0 0 1 0
0 0 −1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎤
⎥⎥⎦ .

Each of the matrices C1 and C2 determines a step in the fast
algorithm for calculation of the arithmetic coefficients. The non-zero
elements in i-th row of the matrix point out the values which should
be added to calculate the i-th arithmetic coefficient. When there is a
sin
From there, it is easy to determine a flow-graph of a fast algorithm with
steps performed sequentially, the input of a step is the output from the
preceding step.

Fig. 3.11 shows the flow graph of the fast algorithm for calculation of
the arithmetic coefficients.

matrix, therefore, calculation of the arithmetic spectrum can be
per

the values pointed are forwarded to the output.gle non-zero element,

Functional Expressions for Switching Functions
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Figure 3.11. Fast arithmetic transform for n = 2.

9.3 Applications of ARs
An important application of arithmetic expressions is the represen-

tation of multi-output functions. In a representation of a multi-output
function by bit-level expressions, each output should be represented by
a separate polynomial. A considerable advantage of ARs is that it is
possible to represent multiple-output functions by a single polynomial
for the integer equivalent functions.

Example 3.20 [99]: Consider a system of functions

(f2(x1, x2, x3), f1(x1, x2, x3), f0(x1, x2, x3)),

where

f0(x1, x2, x3) = x1x3 ⊕ x2,

f1(x1, x2, x3) = x2 ∨ x1x3,

f2(x1, x2, x3) = x1(x2 ∨ x3).
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If we form the matrix F whose columns are truth-vectors of f2, f1,
and f0, with their values interpreted as integers,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 1 1
0 1 1
0 1 1
1 0 0
1 1 0
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [F2,F1,F0] ,

we have a compact representation for f2, f1, f0. Reading the rows of
F as binary numbers, we obtain an integer valued representation for f2,
f1, f0 as f = 22f2 + 2f1 + f0, i.e.,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3
3
3
4
6
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 22

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 4F2 + 2F1 + F0.

Now, the arithmetic spectrum of F = [0, 0, 3, 3, 3, 4, 6, 7]T is

Sf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0
−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0

−1 1 1 −1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3
3
3
4
6
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3
0
3
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↔
↔
↔
↔
↔
↔
↔
↔

1
x3

x2

x2x3

x1

x1x3

x1x2

x1x2x3.

Therefore, f is represented as the arithmetic polynomial

f(z) = 3x2 + 3x1 + x1x3.

From the linearity of the arithmetic transform, this polynomial can be
generated as the sum of the arithmetic polynomials for f1, f2, f3.

Functional Expressions for Switching Functions
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The arithmetic spectra for f2, f1, and f0 are

Af2 = [0, 0, 0, 0, 0, 1, 1,−1]T ,

Af1 = [0, 0, 1, 0, 1,−1,−1, 1]T ,

Af0 = [0, 0, 1, 0, 1,−1,−2, 2]T ,

and, therefore,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
3
0
3
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 22

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1

−1
−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1

−1
−2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 4Af2 + 2Af1 + Af0 .

The corresponding arithmetic polynomials for f2, f1, and f0 are

Af2 = x1x3 + x1x2 − x1x2x3,

Af1 = x2 + x1 − x1x3 − x1x2 + x1x2x3,

Af0 = x2 + x1 − x1x3 − 2x1x2 + 2x1x2x3.

Notice that since an integer z = 22z2 + 2z1 + z0 can be represented
in different ways for different assignments of integers to z2, z1, and z0,
it is not possible to deduce the arithmetic expressions of f0, f1, and f2

from the arithmetic expressions of 22f2 +2f1 +f0 directly. For instance,
in the above example, the value 0 for the coefficients Sa,f (0), Sa,f (1) and
Sa,f (3) is written as 0 = (0, 0, 0), while for the coefficients sa,f (6) and
Sa,f (7) as 0 = (1,−1,−2) and 0 = (−1, 1, 2), respectively.

Arithmetic expressions are useful in design of arithmetic circuits [84],
[85], [86], [87]. They were recommended by Aiken and his group [186],
with which Komamiya worked for some time [179].

Arithmetic polynomials have proved useful also in testing of logical
circuits [45], [63], [64], [91], [123], [136], and their efficiency in parallel
calculations has been reported [88], [102], [103]. Further applications
of ARs are considered in [99], [100], [101]. A brief review of arithmetic
expressions is given in [44].

following section, we consider the Walsh expressions.
As another important example of word-level expressions, in the
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10. Walsh Expressions
Walsh expressions for discrete functions are defined in terms of dis-

crete Walsh functions, that are the discrete version of Walsh functions
introduced in 1923 by Joseph Leonard Walsh [199]. They were originally
used for solving problems of uniform convergence in approximation of
real-variable functions on the interval [0, 1). The discrete Walsh func-
tions can be considered as sampled versions of Walsh functions, provided
that the values at the points of discontinuity are handled properly [12],
[181], [191]. Alternatively, discrete Walsh functions can be viewed as an
independently defined set of discrete functions whose waveforms have

In this approach,
the matrix notation offers a simple way to define the discrete Walsh
functions.

Definition 3.3 (Walsh functions)
The discrete Walsh functions of order n, denoted as wal(w, x), x, k ∈
{0, 1, . . . , 2n}, are defined as columns of the (2n × 2n) Walsh matrix

W(n) =
n⊗

i=1

W(1),

where the basic Walsh matrix W(1) =
[

1 1
1 −1

]
.

Example 3.21 (Walsh functions)
For n = 3 the Walsh matrix is

W(3) =
[

1 1
1 −1

]
⊗
[

1 1
1 −1

]
⊗
[

1 1
1 −1

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

n =3.

recurrence relation for the Walsh matrix

W(n) =
[

W(n − 1) W(n − 1)
W(n − 1) −W(n − 1)

]
.

From the Kronecker product structure, we obtain the following

Fig. 3.12 shows waveforms of the discrete Walsh functions for

shapes similar to those of Walsh functions [191].

Functional Expressions for Switching Functions



78 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

wal x(0, )

wal x(1, )

wal x(2, )

wal x(3, )

0 1 2 3 4 5 6 7 x

wal x(4, )

wal x(5, )

wal x(6, )

wal x(7, )

Figure 3.12. Waveforms of Walsh functions for n = 3.

Walsh functions with the indices w = 2i, i = 1, . . . , n−1 can be viewed
as discrete Rademacher functions [135]. They are also called the basic
Walsh functions, since other Walsh functions can be generated as the
componentwise product of these basic Walsh (Rademacher) functions.

Example 3.22 In Example 3.21, basic Walsh functions are represented
by columns 0, 1, 2, 4. The Walsh function in the column 3 is the compo-

the column 5 is the product of columns 1 and 2. The column 6 can be
generated as the product of columns 1 and 3. The column 7 is the prod-
uct of three basic Walsh functions, i.e., wal(7, x) = wal(1, x) ·wal(2, x) ·
wal(3, x).

The statement is true also for rows of the Walsh matrix, since it a sym-
metric matrix. Therefore,W(n)=WT (n)Moreover, sinceW(n)WT (n)=
2−nI(n), the Walsh matrix is an orthogonal matrix up to the constant
2−n. It follows that being real-valued, symmetric, and orthogonal, the
Walsh matrix is self-inverse matrix up to the constant 2−n.

Definition 3.4 (Walsh spectrum)
For a function f represented by the vector F = [f(0), . . . , f(2n − 1)]T ,

Similarly,nentwise product of the Walsh functions in columns 1 and 2.
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the Walsh spectrum, in matrix notation, Sf = [Sf (0), . . . , Sf (2n − 1)]T

is defined as

Sf = W(n)F,

and the inverse transform is

F = 2−nW(n)Sf .

When the Walsh transform is applied to switching functions, it is

and 1.

Example 3.23 For a function f of three variables given by the vector
F= [1, 0, 1, 1, 0, 0, 1, 1]T , theWalsh spectrum is Sf = [5, 1,−3, 1, 1, 1, 1, 1]T .

The Kronecker product structure of the Walsh matrix, permits deriva-
tion of an FFT-like fast calculation algorithm for the Walsh transform
(FWT) [2]. The method is identical to that used in the Reed-Muller
and the arithmetic transform discussed above. The Good-Thomas fac-
torization is used and the difference in the algorithms is in the weighting

co
case of Walsh transform these are operations of addition and subtrac-
tion, since all the elements in the Walsh matrix are either 1 or -1, thus,
there are no multiplications, which means the weighting coefficients are
also 1 and -1 and stand for addition and subtraction respectively. Since,
unlike the Reed-Muller and the arithmetic transform, in the Walsh trans-
form matrix there are no zero entries, there are no missing edges in the
graph, and the basic operation is the complete butterfly as in the case

[29].
We will explain derivation of this algorithm by the example of the

Cooley-Tukey algorithm [29] for the Walsh transform for n = 2.

Example 3.24 For n = 2,

W(2) = W(1) ⊗ W(1) = C1C2

where

C1 = W(1) ⊗ I(1)

=
[

1 1
1 −1

]
⊗
[

1 0
0 1

]
=

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦ ,

implicitly assumed that logic values 0 and 1 are considered as integers
0

efficients actually determine operations that will be performed. In the
coefficients assigned to the edges in the flow-graph. The weighting

3.4( )

( )3.5

Functional Expressions for Switching Functions

of the Cooley-Tukey algorithm for the discrete Fourier transform (DFT)
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C2 = I(1) ⊗ W(1)

=
[

1 0
0 1

]
⊗
[

1 1
1 −1

]
=

⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ .

We can directly verify⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ .

Each of the matrices C1 and C2 determines a step in the fast algo-
rithm for calculation of the Walsh coefficients. The non-zero elements
in the i-th row of the matrix point out the values which should be added
to calculate the i-th Walsh coefficient. When there is a single non-zero
element, the values pointed are forwarded to the output. From there, it is
easy to determine a flow-graph of a fast algorithm with steps performed
sequentially, the input of a step is the output from the preceding step.

Fig. 3.13 shows the flow graph of the fast algorithm for calculation of
the Walsh coefficients.

11. Walsh Functions and Switching Variables
Rademacher functions can be identified with trivial switching func-

tions f(x1, . . . , xn) = xi in (0, 1) → (1,−1) encoding, i.e., wal(2i, x) =
rad(i, x) = xi, xi ∈ {1,−1}. In the usual 0,1 encoding, wal(2i, x) =
rad(i, x) = 1 − 2xi.

Example 3.25 Table 3.11 shows vectors of trivial switching functions
and Rademacher functions.

12. Walsh Series

Columns of the basic Walsh matrix W(1) =
[

1 1
1 −1

]
can be

expressed in terms of switching variables as
[

1 1 − 2xi
]
. Since the

Walsh matrix is self-inverse up to the constant 2−n,

f =
1
2
[

1 1 − 2xi
] [ 1 1

1 −1

] [
f0

f1

]
.

When the matrix calculations are performed,

f =
1
2
(1 · (f0 + f1) + (1 − 2xi)(f0 − f1)).
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Figure 3.13. Fast Walsh transform for n = 2.

Table 3.11. Switching variables and Rademacher functions.

Switching variable Rademacher function

0 = [00000000]T rad(0, x) = [11111111]T

x1 = [00001111]T rad(1, x) = [1111 − 1 − 1 − 1 − 1]T

x2 = [00110011]T rad(2, x) = [11 − 1 − 111 − 1 − 1]T

x3 = [01010101]T rad(3, x) = [1 − 11 − 11 − 11 − 1]T

This expression is called the Walsh expansion (decomposition) rule
with respect to the variable xi. Recursive application of this rule to all
the variables can be expressed through the Kronecker product

Example 3.26 For n = 3,

f =
1
8
(
[

1 1 − 2x1
]⊗ [ 1 1 − 2x2

]⊗ [ 1 1 − 2x3
]
)([

1 1
1 −1

]
⊗
[

1 1
1 −1

]
⊗
[

1 1
1 −1

])
F.

Functional Expressions for Switching Functions
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Table 3.12. Relationships among expressions.

Reed-Muller Arithmetic Walsh

Basis R(1) =

[
1 0
1 1

]
A(1) =

[
1 0
1 1

]
W(1) =

[
1 1
1 −1

]

Transform R−1(1) =

[
1 0
1 1

]
A−1(1) =

[
1 0

−1 1

]
W−1(1) = 1

2

[
1 1
1 −1

]

Encoding (0, 1)GF (2) (0, 1)Q (0, 1)Q

13. Relationships Among Expressions

ables.
In study of different functional expressions, we consider different rep-

resentations for a given function f , which allows to select a represen-

sentations, the complete information about f should be preserved, but
may be distributed in different ways over the coefficients in the represen-
tations. We start from a given function and determine a different form
representation for the same function f . It follows, that all the operations
we perform to determine a representation, finally reduce to the identical
mapping, however, written in different ways for different expressions.
This consideration is the simplest explained through the matrix nota-
tion. In particular, if a function f is given by the vector of function
values F, we can multiply it by the identity matrix I provided that the
corresponding dimensions agree. The identity matrix can be written as
the product of two mutually inverse matrices, I = QQ−1. The product
of Q−1 and F defines the spectrum Sf for f with respect to the basis
determined by the columns of the matrix Q. This consideration can be
summarized as

f := F = IF = QQ−1F = QSf ,

where Sf = Q−1F.
When the basis functions, (the columns of Q) can be represented in

terms of the variables of f , polynomial-like expressions result. We get

Walsh expressions can be related through different encoding of switching
vari

Table 3.12 shows that the Reed-Muller, the arithmetic, and the

tation the best suited for an intended particular application, with
suitability judged with respect to different criteria. Whatever the repre-
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polynomial expressions when the basis functions are expressed through
products of variables and their powers, under suitably defined multi-
plication. This is the case for the Reed-Muller, arithmetic, and Walsh
expressions.

Notice that if the columns of Q = W(n) are written in terms of
the discrete Walsh functions wal(w, x), we get the orthogonal Walsh
(Fourier) series. Thus, any function on Cn

2 can be expressed as

f(x) = 2−n
2n−1∑
w=0

Sf (w)wal(w, x), (3.6)

where x = (x1, . . . , xn) and the Walsh coefficients are defined as

Sf (w) =
2n−1∑
x=0

f(x)wal(w, x). (3.7)

The relations (3.7) and (3.6) define the direct and inverse Walsh trans-
form pair, written in matrix notation in (3.4) and (3.5).

pose any restriction to the range of functions represented. Thus,
they can be applied to integer valued or, more generally, complex-valued
functions on Cn

2 .
When applied to switching functions, Walsh and arithmetic expres-

sions can be related to the Reed-Muller expressions, as will be explained
by the following example.

Example 3.27 (Relationships among expressions)
For n = 2, a function f on C2

2 given by the vector of function values
F = [f(0), f(1), f(2), f(3)]T can be expressed as

f =
1
4
(wal(0, x)Sf (0) + wal(1, x)Sf (1) (3.8)

+wal(2, x)Sf (2) + wal(3, x)Sf (3)), (3.9)

where the Walsh coefficients are determined as specified by (3.7) as

Sf (0) = f(0) + f(1) + f(2) + f(3),
Sf (1) = f(0) − f(1) + f(2) − f(3),
Sf (2) = f(0) + f(1) − f(2) − f(3),
Sf (0) = f(0) − f(1) − f(2) + f(3).

Since Walsh functions in Hadamard ordering can be expressed in terms
of switching variables in integer encoding as

Notice that in both Walsh and arithmetic expressions we do not
im

Functional Expressions for Switching Functions
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wal(0, x) = 1,
wal(1, x) = 1 − 2x2,

wal(2, x) = 1 − 2x1,

wal(3, x) = (1 − 2x1)(1 − 2x2),

the Walsh series (3.8) can be written as

f =
1
4
(1 · (f0 + f1 + f2 + f3)

+(1 − 2x2)(f0 − f1 + f2 − f3)
+(1 − 2x1)(f0 + f1 − f2 − f3)
+(1 − 2x1)(1 − 2x2)(f0 − f1 − f2 + f3)),

that, after calculations and simplification performed, results in

f = f0 + x2(−f0 + f1) + x1(−f0 + f2) + x1x2(f0 − f1 − f2 + f3),

which is the arithmetic expression for f .

If in arithmetic expressions the operations of addition and subtraction
are replaced by modulo 2 operations, i.e., EXOR, the Reed-Muller ex-
pressions are obtained. It is assumed that in this transition to modulo 2
operations, the integer values 0 and 1 for variables and function values
are replaced by logic values 0 and 1.

In representation of switching functions by Walsh series, some advan-
tages may be achieved by using (0, 1) → (1,−1) encoding, which makes
the functions more compatible to the transform [71]. In this coding,
the Walsh spectral coefficients are even numbers in the range −2n to
2n, and their sum is 2n. Further, there are restrictions to the combina-
tions of even integers within this range which may appear in the Walsh
spectra of switching functions. For instance, for n = 3, Walsh spectral
coefficients may take values from three distinct sets {0, 8}, {0, 4,−4},
{2,−2, 6}. However, not all the combinations within these distinct sets
are allowed. For example, the vector 1

8 [−2,−2, 2, 2,−6,−2, 2,−2]T , does
not correspond to any switching function as the Walsh spectrum.

There are some other spectral transforms that appears efficient in
applications in switching theory and logic design, and among them the
Haar transform appears particularly interesting, especially due to their
computational simplicity, and basis functions that can be expressed in
terms of switching variables, as the other considered transforms [69],
[70], [71], [77], [176], [177].
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Figure 3.14. Extensions and generalizations of functional expressions.

14. Generalizations to Multiple-Valued Functions
Bit-level expressions for switching functions were extended into word-

level expressions by changing the range of functions considered. In gen-
eralizations to multiple-valued (MV) functions, we change the domain
of functions from the group Cn

2 into Cn
p . For the range, the finite field of

order p, or some other suitable algebraic structure can be used. In this
way, we can consider bit-level expressions for MV functions, however,
with multiple-valued bits. As in the binary case, extensions can be done
by assuming the field of complex numbers for the range.

Fig. 3.14 shows basic directions in extensions and generalizations of
functional expressions to MV functions.

number f : {0, 1, 2, . . . , p − 1}n → {0, 1, 2, . . . , p − 1}. We denoted by
GF (Cn

P ) the space of such functions. In matrix notation, such functions
can be defined by vectors of function values F = [f(0), . . . , f(pn − 1)]T .

Definition 3.5 (GF-expressions)
Each function f ∈ GF (Cn

p ) can be represented as

f(x1, . . . , xn) =

(
n⊗

i=1

[
1 xi x2

i · · · xp−1
i

])( n⊗
i=1

Q−1(1)

)
F,

where calculations are in GF (p), and Q−1(1) is a matrix inverse over
GF (p) of a matrix Q(1) whose columns are described by powers xr

i ,
r = 0, 1, . . . , p − 1.

Example 3.28 (GF-expressions)
Consider three-valued functions of n = 2 variables f : {0, 1, 2}2 →

For illustration, we will present an example of Galois field (GF)
expressions for p-valued functions, where p-prime or a power of a prime

Functional Expressions for Switching Functions
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{0, 1, 2}. In matrix notation, such functions can be represented by vec-
tors of function values F = [f(0), . . . , f(8)]T . Each function can be
represented by the Galois field (GF) expression defined as

f(x1, x2) =

(
2⊗

i=1

[
1 xi x2

i

])( 2⊗
i=1

Q−1(1)

)
F,

where the addition and multiplication are modulo 3 operations, and the
basic transform matrix Q−1(1) is the inverse of the matrix Q(1) whose
columns determine the basis functions in terms of which GF-expressions
are defined,

Q(1) =

⎡
⎣ 1 0 0

1 1 1
1 2 1

⎤
⎦ .

Therefore,

Q−1(1) =

⎡
⎣ 1 0 0

0 2 1
2 2 2

⎤
⎦ .

Thus,

f(x1, x2) =
([

1 x1 x2
1

]⊗3
[

1 x2 x2
2

])
⎛
⎝
⎡
⎣ 1 0 0

0 2 1
2 2 2

⎤
⎦⊗3

⎡
⎣ 1 0 0

0 2 1
2 2 2

⎤
⎦
⎞
⎠F.

The corresponding transform matrix is

Q−1(2) = Q−1(1) ⊗3 Q−1(1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2
2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For a function f given by F = [2, 0, 1, 1, 1, 0, 0, 0, 2]T , coefficients in
the GF-expression are given by Sf = [2, 1, 0, 2, 0, 0, 0, 1, 1]T . Thus,

f(x1, x2) = 2 ⊕ x2 ⊕ 2x1 ⊕ x2
1x2 ⊕ x2

1x
2
2,

where addition and multiplication are modulo 3.
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15. Exercises and Problems
Exercise 3.1 Determine the basis functions in terms of which Sum-of-
products expressions are defined for functions of n = 3 variables. Show
their waveforms and discuss relationships with minterms. Explain rela-
tionships to the Shannon expansion rule.

Exercise 3.2 Write the Sum-of-products expression for the truth-table
of a 2-bit comparator (f1, f2, f3). Notice that a two-bit comparator com-
pares two two-bit numbers N1 = (x1x2) and N2 = (x3x4) and produces
the outputs f1 = 1 when N1 = N2, f2 = 1 when N1 < N2, and f3 = 1
when N1 > N2.

Exercise 3.3 Consider the function f(x1, x2, x3) given by the set of
decimals indices corresponding to the 1-minterms {2, 4, 7}. Write the
Sum-of-products and Product-of-sums expressions for f . Notice that the
list of decimal indices corresponding to 1-maxterms consists of numbers
which do not appear in the list of decimal indices for 1-minterms.

Exercise 3.4 Derive the Positive-polarity Reed-Muller expression for
functions of n = 3 variables by the recursive application of the positive
Davio expansion rule. Determine the basis functions in terms of which
these PPRM-expansions are defined, determine their waveforms, and
write the Reed-Muller matrix.

Exercise 3.5 Determine the flow-graph of the FFT-like algorithm for
calculation of PPRM-expressions for functions of n = 3 variables.

Exercise 3.6 Determine the PPRM-expressions for the functions

f(x1, x2, x3) = x1x2 + x1x3 + x1x3,

f(x1, x2, x3) = (x1 + x2x3)(x1x2 + x1x3),
f(x1, x2, x3) = x1 + x2 + x1x2 + x2x3 + x1x3.

Exercise 3.7 Determine PPRM-expression for the function f(x1, x2, x3)
which takes the value 0 for the assignments of input variables where two
or more variables are 1, and the value 1 otherwise.

Exercise 3.8 How many Fixed-polarity Reed-Muller expressions there
are for functions of n = 3 variables? Determine all them for the function
given by the SOP-expression

f(x1, x2, x3) = x1x2 + x1x3 + x2x3 + x1x2x3,

ficients.
and compare their complexities in terms of the number of non-zero
coef

Functional Expressions for Switching Functions
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Table 3.13. Multi-output function in Exercise 3.14.

n x1x2x3 f0 f1

0. 000 1 1
1. 001 0 1
2. 010 0 1
3. 011 1 0
4. 100 1 0
5. 101 1 1
6. 110 0 0
7. 111 1 1

expressions for the function f in Exercise 3.6.

Exercise 3.10 Calculate the FPRM-expression for the polarity H =
(110) for the function given by the truth vector F = [1, 0, 0, 1, 1, 0, 1, 1]T

by exploiting the relationships between the Reed-Muller expressions and
dyadic convolution.

Exercise 3.11 function in Exercise 3.10 determine the
Kronecker expressions for the following assignments of the Shannon,
positive Davio, and negative Davio expansion rules to the variables x1,
x2,and x3, respectively

1. S, pD, nD, 3. pD, S, S,
2. S, nD, pD, 4. nD, S, pD.

Write the corresponding matrix relations and draw the flow-graphs of the
related FFT-like algorithms.

Exercise 3.12 Discuss differences and relationships between bit-level
and word-level expressions and their applications.

Exercise 3.13
larity arithmetic expressions, and show that the FPRM-expressions

canbe derived from them by recalculating the coefficients modulo 2 and
replacing the operations of the addition and subtraction by EXOR.

Exercise 3.14 Table 3.13 shows a multi-output function f = (f0, f1).
Determine the arithmetic and Walsh expressions for this function by
converting it into the integer-valued function fz = 2f1 + f0.

Exercise 3.9 Compare the number of non-zero coefficients in theFPRM-

For the

For functions in Exercise 3.8, determine the fixed
po



Chapter 4

DECISION DIAGRAMS FOR
REPRESENTATION OF
SWITCHING FUNCTIONS

The way of representing a switching function is often related to the
intended applications and determines the complexity of the implementa-
tion of related algorithms. Therefore, given a function f and determined
the task, selecting a suitable representation for f is an important task.
In this chapter, we will discuss decision diagrams for representation of
discrete functions.

1. Decision Diagrams

diagrams and we adopt the classical approach [19].
We will first consider an example to illustrate the idea of decision

diagrams and then define them rigorously.

Example 4.1 Consider the logic function f(x12, x2, x3) = x1x2 ∨ x3.
We can represent all the possible combinations of values that the vari-
ables can have in a tree (decision tree) form (Fig. 4.1) and for each
combination the value of the function is in a rectangular box. For in-
stance, the combination x1 = 0, x2 = 1, x3 = 0, f(0, 1, 0) = 0 is shown
as the

”

thick” path.

It is obvious that we can go directly to 1 , from the right node x2

with value x2 = 1 because x3 has no effect anymore. Also, we can
eliminate the left node for x2 because both choices x2 = 0 x2 = 1 lead to
the identical solution. In this way, we get a simpler representation for
f , which is no more a tree, but a directed graph (Fig. 4.2). This is a
much more compact representation than the full decision tree. It is also

89

Decision diagrams are data structures that are used for efficient
representation of discrete functions such as switching functions ormultiple-
valued logic functions. There are several ways to define decision
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Figure 4.1. Decision tree for f in Example 4.1.

clear that this representation is minimal. Indeed, as there are no fictive
variables, each must show at least once as a non-terminal node with two
outgoing edges. Also, both terminal nodes are needed.

0 1

x3

x2

f

x1

0

0

0

1

1

1

Figure 4.2. Decision diagram for f in Example 4.1.

We could equivalently first have the choices for x3, then for x1, and
finally for x2. This would lead to the decision diagram in Fig. 4.3. If
we choose the order x1, x3, x2, we necessarily have two nodes for x3 and
this leads to a more complex diagram (Fig. 4.4).
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Figure 4.3. Decision diagram
for f in Example 4.1 with order
of variables x3, x2, x1.

0 1

x x3 3

x2

f

x1

0

0

0
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1

1
1
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Figure 4.4. Decision diagrams
for f in Example 4.1 with order
of variables x1x3x2.

Definition 4.1 An (ordered) binary decision diagram is a rooted di-
rected graph with the vertex set V with two types of vertices. A non-
terminal vertex has a label index(v) ∈ {1, 2, . . . , n} and two children
low(v) and high(v) ∈ V . A terminal vertex has a label value(v) ∈ {0, 1}.
Further, for any non-terminal vertex v, if low(v) (high(v)) is non-
terminal, then index(low(v)) > index(v), (index(high(v)) > index(v)).

The function f represented by the decision diagram is defined as fol-
lows in a recursive manner.

Let (x1, . . . , xn) ∈ {0, 1}n and v ∈ V . The value of f(x1, . . . , xn) at
v, fv(x1, . . . , xn) is

1 . fv(x1, . . . , xn) = value(v) if v is a terminal vertex,

2 . fv(x1, . . . , xn) = xindex(v)flow(v)(x1, . . . ,xn)+xindex(v)fhigh(v)(x1, . . . ,

xn) and f(x1, . . . , xn) = froot(x1, . . . , xn).

Example 4.2 Consider the following decision diagram.
Vertex set (or node set) is V = {a, b, c, d, e}.
Edge set E = {(a, b), (a, c), (b, c), (b, e), (c, d), (c, e)}.
Non-terminal vertices are a, b, and c.
Terminal vertices are d and e.
The terminal vertices have labels value(d) = 0, value(e) = 1, and the

non-terminal vertices have the labels

 for Representation of Switching Functions
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1 index(a) = 1, low(a) = c, high(a) = b,

2 index(b) = 2, low(b) = c, high(b) = e,

3 index(c) = 3, low(c) = d, high(c) = e.

Thus, the labels of the non-terminal vertices actually determine the
structure of the graph and also the assignment of the variables to the
vertices. Notice that the fact that a is the root is evident from either
labels or the edge set. For instance, in the edge set, the root does not
appear as the second component of any edge and the terminal vertices
do not appear as the first component of any edge.

Let us consider the function f defined by this decision diagram. Let
(x1, x2, x3) = (1, 0, 1), then

f(1, 0, 1) = fa(1, 0, 1) = 1 · fc(1, 0, 1, ) + 1 · fb(1, 0, 1)
= 1 · (0 · fc(1, 0, 1) + 0 · fe(1, 0, 1))
= 1 · (1 · (1 · fd(1, 0, 1) + 1 · fe(1, 0, 1)))
= fe(1, 0, 1) = value(e) = 1.

We can also work backwards filling values of the function at each
vertex

fe(1, 0, 1) = 1,
fd(1, 0, 1) = 0,
fc(1, 0, 1) = 0 · fd(1, 0, 1) + 1 · fe(1, 0, 1) = 1,

fb(1, 0, 1) = 1 · fc(1, 0, 1) + 0 · fe(1, 0, 1) = 1,

fa(1, 0, 1) = 0 · fc(1, 0, 1) + 1 · fb(1, 0, 1) = 1,

f(1, 0, 1) = fa(1, 0, 1) = 1.

Of course, as the diagram is the same as in Fig. 4.2 in Example 4.1,
all this is obvious just by a glance at the diagram.

For large functions and serious manipulation we need to represent the
function/diagram in a computer.

A key property of ordered binary decision diagrams is that each
switching function has a unique representation as a reduced BDD, where
redundant nodes and edges have been removed. Thus, Ordered Binary
Decision Diagrams form a canonic representation of switching functions.

ter).
Recall the Shannon expansion of a switching function

f = xif0 ⊕ x1f1,

chap
(A more rigorous discussion of reduction will be given later in this
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Figure 4.5. Shannon node.

where f0 and f1 are cofactors of f with respect to xi. Fig. 4.5 shows
graphic representation of the Shannon expansion which is called the
Shannon (S) node. The outgoing edges can be alternatively labeled by
xi and xi instead of 0 and 1, respectively. In this case, the node is
denoted by the variable xi that is called the decision variable assigned
to the node.

Recursive application of the Shannon expression to all the variables
in a given function f finally results in the complete disjunctive normal
form. In the case of graphic representations, recursive application of
the Shannon expansion can be represented by attaching non-terminal
nodes to the outgoing edges of a node to represent cofactors pointed
by the edges of the considered node. It is clear that the process of
Example 4.1 and the way how function values are defined by a decision
diagram correspond exactly to the Shannon expansion.

We read values that f takes at the 2n possible assignments of logic
values 0 and 1 to the binary variables x1, . . . xn, by descending paths
from the root node to the corresponding constant nodes [23].

Example 4.3 For functions of two variables f(x1, x2) the application
of the Shannon expansion with respect to x1 produces

f = x1f0 ⊕ x1f1.

The application of the same expansion with respect to x2 yields the com-
plete disjunctive normal form

f = x2(x1f0 ⊕ x1f1) ⊕ x2(x1f0 ⊕ x1f1)
= x2x1f00 ⊕ x2x1f10 ⊕ x2x1f01 ⊕ x1x2f11.

Fig. 4.6 shows the graphic representation of this recursive application of
the Shannon expansion to f , which is called the Binary decision tree,
(BDT), for f [19].

junctive normal form for a given function f is straightforward. The
The correspondence between the truth-table and the complete

dis

Decision Diagrams  for Representation of Switching Functions
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Figure 4.6. Binary decision tree for n = 2.

table. Since a BDT is graphic representation of the complete disjunctive
normal form, there is a direct correspondence between the truth-table
and the BDT for f . Fig. 4.7 shows this correspondence for functions for
n = 3 variables.

Notice that in the complete disjunctive normal form, the coefficients
of the minterms are function values. In a BDT, each path from the root
node corresponds to a minterm, which can be generated by multiplying
labels at the edges in the path considered. Therefore, in a BDT, values
of constant nodes are values of f at the corresponding minterms. Non-
terminal nodes to which the same variable is assigned form a level in the
BDT. Thus, the number of levels is equal to the number of variables. It
follows that there is a direct correspondence between the truth-table for
a given function f and the binary decision tree for f .

For this reason, we say that f is assigned to the BDT by the identity
mapping which corresponds to the Shannon decomposition rule. How-
ever, we can as well use some other decomposition rule, but then the
coefficients of the functional expressions are not function values, but
something else. In fact, the constant nodes will be the spectral coeffi-
cients that correspond to the transform that is defined by the particular

complete disjunctive normal form is an analytical description of the truth-
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Figure 4.7. The correspondence between the truth-table and the BDT for n = 3.

decomposition rule applied. This will lead to spectral interpretation and
a uniform treatment of decision diagrams and will be discussed below.
Different decomposition rules produce different decision diagrams and
e.g., in [175] there has been enumerated 48 essentially different types of
decision diagrams.

Example 4.4 Fig. 4.8 shows the BDT for a function f for n = 3 given
by the truth-vector F = [1, 0, 0, 1, 0, 1, 1, 1]T . For clarity the nodes are
labelled by 1, . . . , 7. The paths from the root node to the constant nodes
with the value 1, determine the minterms in the complete disjunctive
normal form for f as

f = x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3.

Conversely, this BDT represents f in the complete disjunctive normal
form.

Notice that both outgoing edges of the node 7 points to the value 1.
Therefore, whatever outgoing edge is selected, x3 or x3 the same value

Decision Diagrams  for Representation of Switching Functions
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Figure 4.8. Binary decision tree for f in Example 4.4.

is reached. Thus, we do not make any decision in this node. Thus, it
can be deleted. Subtrees rooted in the nodes 5 and 6 are isomorphic.
Therefore, we can keep the first subtree, delete the other, and point the
outgoing edge x2 of the node 3 to the node 5. Thus, we share the isomor-
phic subtrees. In this way, binary decision tree is reduced into a Binary
decision diagram (BDD) in Fig. 4.9. This BDD represents f in the form
of a SOP

f = x1x2x3 ⊕ x1x2 ⊕ x1x2x3 ⊕ x1x2x3,

derived by using the property x1x2x3 ⊕ x1x2x3 = x1x2, since x3 ⊕ x3 =
1. Each product term corresponds to a path from the root node to the
constant node with the value 1.

The reduction of the number of nodes in a BDT described in the above
example can be formalized as the Binary decision diagrams reduction
rules (BDD-reduction rules) shown in Fig. 4.10. The reduction rules can
be defined as follows.

Definition 4.2 (BDD reduction rules)
In a Binary decision diagram,

1 If two sub-graphs represent the same functions, delete one, and con-
nect the edge to the remaining sub- graph.

2 If both edges of a node point to the same sub-graph, delete that node,
and directly connect its edge to the sub-graph.
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Figure 4.10. BDD-reduction rules.

Example 4.5 Fig. 4.11 shows reduction of a BDT for a function f
given by the truth-vector F = [0, 0, 0, 1, 1, 1, 0, 1]T into the BDD for f .

2. Decision Diagrams over Groups
It is often useful to consider decision diagrams that have a more gen-

eral structure, e.g., instead of branching into two directions, a node may
have more children. Also, the values of the constant nodes can be arbi-
trary instead of binary or logic values 0 and 1.

Let G be a direct product of finite groups G1, . . . , Gn, where the order
of Gi, |Gi| = gi, i = 1, . . . , n. Thus, G is also a finite group. Consider a

Decision Diagrams  for Representation of Switching Functions
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Figure 4.11. Reduction of the BDT into the BDD for f in Example 4.5.

function f : G → P , where P is a field. Because

G = G1 × G2 × · · · × Gn,

we can write f(x) = f(x1, . . . xn), where xi ∈ Gi. For each i = 1, . . . , n,
define (δ function ) δ : Gi → P by

δ(x) =
{

1 if x = 0, the zero of Gi,
0 otherwise.

To simplify the notation, we denote each function just by δ and the
domain specifies which function is in question. We can define the more
general concept of decision diagram in an analogous way.
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Definition 4.3 Let G, P , f , and δ be as above. An ordered decision
diagram over G is a rooted directed graph with two types of nodes. A non-
terminal node has a label index(v), and gindex(v) children, child(j, v), j =
1, . . . , gindex(v). Each edge (v, child(j, v)) has a distinct label element(j, v)
∈ Gindex(v). A terminal node has a label value(v) ∈ P . Further, for
any non-terminal node v, if child(i, v) is non-terminal, then index(child
(i, v)) > index(v).

Again, the function f is represented by the decision diagram in a
recursive manner as follows.

Let (x1, . . . , xn) ∈ G and v ∈ V . The value of f at v, fv(x1, . . . , xn)
is

1 If v is a terminal node, fv(x1, . . . , xn) = value(v)

2 If v is a non-terminal node,

fv(x1, . . . , xn) =
gindex(v)∑

j=1

δ(xindex(v)−element(j, v))fchild(j,v)(x1, . . . , xn),

and f(x1, . . . , xn) = froot(x1, . . . , xn).

Remark 4.1 The recursion 2. is an exact generalization of the binary
case, but because the variables take values in the domain groups Gi,
the concept (label) element(j, v) provides the correspondence between the
elements of gi and the outgoing edges of a node having the index i.

Remark 4.2 In a decision diagram over a group G = G1×G2×· · ·×Gn,
the nodes on the level i (root being the level 1) correspond to the factor
Gi in the sense that the elements of gi correspond to the outgoing edges
(decisions) of the nodes on the level i.

Example 4.6 A three-variable switching function f is usually viewed as
a function defined on C3

2 , in which case can be represented by the BDT
as in Fig. 4.8. However,the same function can be viewed as a function
defined on the groups G = C2 × C4 and G = C4 × C2. Fig. 4.12 shows
the corresponding decision diagrams for f . It is obvious that change of
the domain group for f results in diagrams of different structure.

3. Construction of Decision Diagrams
A discrete function f can be specified in different ways, and there are

procedures to construct a decision diagram for f by starting from almost
any specification of f . We will illustrate this approach by the following
example.

Decision Diagrams  for Representation of Switching Functions
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Figure 4.12. Binary decision trees of different structure.

Example 4.7 Consider BDD representation of a function f given by
the disjunctive form

f = x1x2 ∨ x3.

Let us first construct BDDs for the variables x1 and x2 and then
perform logic AND over these diagrams. Thus, in the resulting diagram
if x2 = 0 the outgoing edge of the root node points to the logic values 0,
which follows from the definition of logic AND. If x2 = 1, we check what
is the value for x1. Then, we construct a BDD for x3 and perform logic
OR with the previously constructed BDD for x1x2. From definition of
logic OR, if x3 = 1, the outgoing edge pints to the logic 1, otherwise, it

1 2 f .
In general, consider the functions f and g and h = f � g where � is

a binary operation such as AND or OR. The construction of the BDD
for h is again done recursively. Let x be one of the variables. It is easy
to see that

f � g = x(f1 � g1) ⊕ x(f0 � g0),

where f1, f0, g1, and g0 are the cofactors of f and g with respect to the
variable x.

Example 4.8 Consider the function f(x, y, z) = xy ∨ xz ∨ yz. We can
write

f(x, y, z) = x(y ∨ z) ∨ x(yz) = xf1 ∨ xf0.

depends on x and x . Fig. 4.13 illustrates construction of the BDD for
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Figure 4.13. Construction of the BDD for f in Example 4.7.

Fig. 4.14 shows construction of the BDDs for the cofactors f1 and f0

and finally the BDD for f .
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Figure 4.14. Construction of the BDD for f in Example 4.8.
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Figure 4.15. Shared binary decision diagrams.

Table 4.1. Construction of Shared BDD for f in Example 4.9.

x1x2 f0 f1

0. 00 0 0
1. 01 0 1
2. 10 1 0
3. 11 1 0

4. Shared Decision Diagrams
In practice we usually deal with multi-output functions, and a straight-

forward way to construct decision diagram representation for a multiple-
1 k

gram for each output fi, i = 1, . . . , k. However, BDDs for different
outputs may have isomorphic subtrees, which can be shared. In this
way, Shared BDDs (SBDDs) are derived [114]. Fig. 4.15 illustrates the
concept of shared BDDs.

Example 4.9
output function in Table 4.1.

Example 4.10 Fig. 4.17 shows a Shared BDD where the number of root
nodes is greater than the number of non-terminal nodes. This example
also shows that in a shared BDD all the root nodes are not necessarily
at the first level of the decision tree. The Shared BDD represents the
functions

f1 = x1x2,

f2 = x1 ⊕ x2,

f3 = x2,

f4 = x1 ∨ x2.

output function f = (f , . . . , f ) is to construct a binary decision
dia

Fig. 4.16 shows generation of Shared BDDs for a two-
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Figure 4.16. Construction of Shared BDD for f in Example 4.9.

5. Multi-terminal binary decision diagrams
BDDs and Shared BDDs are used to represent functions taking logic

values. Multi-terminal binary decision diagrams (MTBDDs) [27] have
been introduced to represent integer valued functions on Cn

2 . General-
izations to functions defined on other finite groups is straightforward.
For instance, a multiple-output function f = (f0, . . . , fk) can be rep-
resented by an integer-valued function fz determined by summing the
outputs fi multiplied by 2i. Then, fz can be represented by a MTBDD
instead of SBDD.

Example 4.11 Table 4.2 and Fig. 4.18 show a function f = (f0, f1),
and its representation by a Multi-terminal binary decision tree (MTBDT),
reduced into the corresponding diagram (MTBDD), and a SBDD.

6. Functional Decision Diagrams
Both BDDs and MTBDDs are decision diagrams defined with respect

to the Shannon expansion rule. The difference is in the values of constant
nodes and the interpretation of the values for variables in the functions
represented. We can interpret BDDs and MTBDDs as decision diagrams
defined with respect to the Shannon expansion over the finite field of

Decision Diagrams  for Representation of Switching Functions
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Figure 4.17. Shared BDD for functions f1, f2, f3, and f4 in Example 4.10.

Table 4.2. Representation of f in Example 4.11.

x1, x2 f0 f1 fz

00 0 0 0
01 0 1 1
10 1 0 2
11 1 0 2

order 2 or the field of rational numbers as

f = xif0 ⊕ x1f1,

or

f = xif0 + xif1,

where xi = 1 ⊕ xi and xi = 1 − xi, respectively.
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For some functions, BDDs and MTBDDs have a large number of non-
rule,

enumerated. We will introduce here the Functional decision diagrams
(FDDs) which are the first extension of the notion of BDDs in this
respect and have been introduced in [80]. FDDs are defined in terms of
the positive Davio (pD) expansion f = 1 · f0 ⊕xi(f0 ⊕ f1) whose graphic
representation is the positive Davio (pD) node shown in Fig. 4.19. A
FDT is defined as a decision tree which represents a given function f
in terms of a Positive-polarity Reed-Muller (PPRM) expression. Thus,
a FDT is a graphic representation of the recursive application of the
pD-expansion to f and the values of constant nodes in a FDT are the
Reed-Muller coefficients for f . In this way a FDT represents f in the
form of the PPRM-expression. In contrast to a BDD, edges in a FDT
are labeled by 1 and xi, as follows from the pD-expansion rule, since 1
and xi are assigned to f0 and f2 = f0 ⊕ f1 to which the outgoing edges
of a node point.

Figure 4.19. Positive Davio node.

terminal nodes. However, with respect to some other decomposition
the number of nodes may be smaller and for that reason, decision
diagrams defined with respect to various decomposition rules have
been defined. In [175], 48 essentially different decision diagrams have been

Decision Diagrams  for Representation of Switching Functions
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Figure 4.20. Functional decision tree for n = 3.

Example 4.12 Consider a switching function f(x1, x2, x3). It can be
decomposed by the positive Davio expansion with respect to x1 as

f = 1 · f0 ⊕ x1(f0 ⊕ f1) = 1 · f0 ⊕ x1f2.

Application of pD-expansion to cofactors f0 and f1 produces

f0 = 1 · f00 ⊕ x2f02,

f1 = 1 · f20 ⊕ x2f22,

which results in positive polarity Reed-Muller expression for f

f = 1 · (1 · f00 ⊕ x2f02) ⊕ x2(1 · f20 ⊕ f22)
= 1 · f00 ⊕ x2f02 ⊕ x1f20 ⊕ x1x2f22.

Fig. 4.20 shows a graphic representation of this functional expression
which is called the Functional decision tree (FDT) for f .

1 2 3

The constant nodes are coefficients of the Positive-polarity Reed-Muller
expression, i.e., the values of the Reed-Muller spectrum of f(x1, x2, x3).
Thus, the FDT is the BDT of the Reed-Muller spectrum. Since the ma-
trix of the Reed-Muller transform is self-inverse over GF (2), the same
relation holds also in the opposite direction, i.e., the BDT of f is the
FDT for the Reed-Muller spectrum of f .

Notice that in FDT for fixed values of the variables x1, x2, . . . , xn, to
find the value of the function one just sums the constant nodes that have

Consider the functional decision tree for f(x ,x ,x ) shown in Fig. 4.20.
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a path from the root to the constant node such that all edges along the
path have the value equal to 1.

A functional decision diagram (FDD) is obtained from a FDT by the
reduction rules. Notice that, in this case, to compute the value of the
function we just sum the constant nodes that have a path from the root
to the constant node with all edges equal to 1, each as many times as
there are different such path to the node.

It is obvious that instead the pD-expansion, the negative-Davio rules
can be also used to assign a given function f to a decision tree. This
decision tree would consist of the negative Davio (nD) nodes, which
differs from the pD-nodes in the label at the right outgoing edge, which
is xi instead of xi.

Example 4.13 Consider the function f(x1, x2, x3) = x1x2∨x3. We can
transfer it to Positive-polarity Reed-Muller form by the relation a ∨ b =
a ⊕ b ⊕ ab giving

f(x1, x2, x3) = x3 ⊕ x1x2 ⊕ x1x2x3,

resulting in the FDD in Fig. 4.21.
We can write the Negative-polarity Reed-Muller form by using the

relations a = (1 ⊕ a), a ∨ b = a ⊕ b ⊕ ab, giving

f(x1, x2, x3) = (1 ⊕ x1)(1 ⊕ x2) ⊕ (1 ⊕ x3)
⊕(1 ⊕ x1)(1 ⊕ x2)(1 ⊕ x3)

= 1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2x3,

resulting in the FDD in Fig. 4.22.

produces FDDs with different number of nodes.

Depending on the properties of the function represented, a Functional
decision tree reduces to a Functional decision diagram in the same way
as a BDT reduces to a BDD. However, because of the expansion rules,
and the properties of related Boolean expressions, some additional re-
duction rules for the positive Davio expansion have been defined in [112].
These rules utilize the fact that when the outgoing edge of a pD-node
points to the value 0, this node can be deleted since the 0-value does
not contribute to the PPRM-expression. As in the BDD reduction rules,
isomorphic subtrees can be shared also in FDDs. These rules are called
the zero-suppressed BDD (ZBDD reduction rules). They can be defined
as follows.

This example shows that choice of different decomposition rules

Decision Diagrams  for Representation of Switching Functions
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Figure 4.21. Positive-polarity FDD for f in
Example 4.13.
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Figure 4.22. Negative-polarity FDD for
f in Example 4.13.

Definition 4.4 (ZBDD-reduction rules)
In a decision diagrams having Davio nodes

1 Eliminate all the nodes whose one-edge points to the zero-terminal
node, then connect the edge to the other subgraph directly.

2 Share all equivalent subgraphs.

Fig. 4.23 shows BDD (a) and (b) and ZBDD reduction rules (b) and
(c).

Example 4.14 Fig . 4.24 shows a FDT reduced by the BDD and ZBDD
reduction rules. Both decision diagrams represent f in the form of the
expression f = x3 ⊕ x1x3 ⊕ x1x2, as can be determined by multiplying
labels at the edges in all the paths from the root node to the constant
nodes showing the value 1.

7. Kronecker decision diagrams
The main idea in Functional decision diagrams is to exploit fact that

for some functions the Reed-Muller spectrum gives more compact de-
cision diagrams in the number of non-terminal nodes than the original
function itself. The same idea can be further extended by defining Kro-
necker decision diagrams (KDDs) where a different decomposition rule,
the Shannon, positive Davio or negative Davio rule, can be assigned to
each variable in the function represented. Thus, a Kronecker decision
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FDT FDD in BDD rules FDD in ZBDD rules

pD pD pD

pD pDpD pD pD
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x3

Figure 4.24. FBDT, and FDDs derived by BDD and ZBDD reduction rules for f in
Example 4.14.

diagrams is completely specified by a Decision Type List (DTL) enumer-
ating decomposition rules per levels in the diagram.

Example 4.15 Fig. 4.25 shows a Kronecker decision diagram for n = 3
defined by the DTL = (pD,pD,S). This decision diagram can be viewed
as graphic representation of a functional expression in terms of basis
functions.

Decision Diagrams  for Representation of Switching Functions
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ϕ0 = x3, ϕ1 = x3, ϕ2 = x2x3, ϕ3 = x2x3,

ϕ4 = x1x3, ϕ5 = x1x3, ϕ6 = x1x2x3, ϕ7 = x1x2x3.

If we write the basis functions as columns of an (8 × 8) matrix, we
obtain the matrix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

1 0
1 1

]
⊗
[

1 0
1 1

]
⊗
[

1 0
0 1

]
.

On the other hand, the function is represented by the decision tree in
Fig. 4.25. The values of constant nodes in this decision tree can be
interpreted as spectral coefficients determined by multiplying the truth-
vector for the function f the matrix Q−1 that is inverse of the matrix
of basis functions Q over GF (2). The Kronecker product form of Q
cor
expansion is performed.

Notice that matrix calculations are used here just for theoretical expla-
nations and clarification of the notion of Kronecker decision diagrams.
In practice, a Kronecker diagram is constructed by the application of the
specified decomposition rules as in the case of BDDs and FDDs. Actu-
ally, this corresponds to the operations of so-called fast transforms.

8. Pseudo-Kronecker decision diagrams
A further extension of the decision diagrams is achieved by allowing

to freely chose a decomposition rule from the set of nodes {S, pD, nD}
for each node in the decision diagram irrespective of the other nodes
at the same level in the diagram. Such decision diagrams are called
Pseudo-Kronecker decision diagrams (PKDDs) [158]. They are com-
pletely defined by specifying the assignment of decomposition rules to

Ex
decomposition rules to the nodes per levels. Notice that while compact
representations are obtained, all regularity is lost.

responds to the fact that first two pD-expansions and then the Shannon

tended Decision Type List (ExtDTL) whose rows show assignment of
the nodes, which can be conveniently performed by establishing an
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Figure 4.25. Kronecker decision diagram for the function f in Example 4.15.

Example 4.16 Fig. 4.26 shows a Pseudo-Kronecker decision tree for
a function given by the truth-vector F = [0, 1, 1, 0, 1, 1, 0, 1]T , and its
reduction into the corresponding decision diagram by using both BDD
and zero-suppressed BDD reduction rules, depending on the meaning of
nodes. This diagram is specified by the ExtDTL

Level Decomposition rule

1 S
2 pD nD
3 S pD nD S

In this Pseduo-Kronecker decision diagram, paths from the root node
to the constant nodes determine basis functions

ϕ0 = x1x3, ϕ1 = x1x3, ϕ2 = x1x2, ϕ3 = x1x2x3,

ϕ4 = x1, ϕ5 = x1x3, ϕ6 = x1x2x3, ϕ7 = x1x2x3.

In matrix notation, these basis functions are given by the (8×8) matrix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Decision Diagrams  for Representation of Switching Functions
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Values of constant nodes are spectral coefficients with respect to this
basis, thus, can be determined by using the inverse of the matrix Q over
GF (2).

9. Spectral Interpretation of Decision Diagrams
The examples above and their interpretation in terms of basis func-

tions yield to the spectral interpretation of decision diagrams [175]. This
interpretation is explained in Fig. 4.27. If a given function f is assigned
to a decision tree by the Shannon expansion, which can be interpreted
as the identical mapping, we get BDDs or MTBDDs depending on the
range of functions represented. However, if we first convert a function
into a spectrum by a spectral transform determined by the decomposi-
tion rules performed in nodes of the decision tree, and then assign the
spectrum Sf by the identical mapping to the decision tree, we get a
Spectral transform decision tree (STDT). In STDTs, the values of con-
stant nodes are the spectral coefficients, and the labels at the edges are
determined by the decomposition rules such that they give the inverse
transform to determine function values from the spectral coefficients.
Therefore, from a STDT, if we follow labels at the edges by starting
from constant nodes, we read f by calculation the inverse expansion of
the function. However, if we formally replace labels at the edges by these
used in Shannon nodes, we can read the spectrum of f from a STDT.
This would be the spectrum of f with respect to the transform used in
definition of the STDT. However, the same approach can be used in the
opposite direction to calculate spectral transforms over BDTs and MTB-
DTs. Since constant nodes in these decision diagrams show function val-
ues for f , we can compute the spectrum Sf by performing at each node
calculations determined by the basic transform matrix in a Kronecker
product representable spectral transform. In BDDs and MTBDDs, this
means replacement of labels at the edges by the ones that are used in the
corresponding spectral transform decomposition rules and then reading
the spectrum by traversing paths in the diagram starting from constant
nodes.

9.1 Spectral transform decision diagrams
In this section, we will discuss two examples of spectral transform

decision diagrams where values of constant nodes are in the field of
rational numbers. Also, the operations are done over the rationals, e.g.,
x = 1−x, etc. Such decision diagrams are called the word-level decision
diagrams, unlike bit-level decision diagrams where constant nodes have
logic values 0 and 1.
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Figure 4.26. Pesudo-Kronecker decision tree and its reduction into the corresponding
diagram for the function f in Example 4.16.
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Figure 4.27. Spectral interpretation of decision diagrams.

9.2 Arithmetic spectral transform decision
diagrams

The arithmetic transform is defined by the basic transform matrix

A−1 =
[

1 0
−1 1

]
. Since the inverse matrix is A =

[
1 0
1 1

]
, which us-

ing column functions can be written in the symbolic notation as
[

1 xi
]
,

the arithmetic spectral transform decomposition rule is

f = 1 · f0 + xi(−f0 + f1).

Arithmetic spectral transform decision diagrams (ACDDs) are decision
diagrams consisting of nodes defined in terms of the arithmetic trans-
form decomposition rules, i.e., decision diagrams where a function f is
assigned to the decision diagram by tree by the arithmetic transform.
Thus, values of constant nodes are arithmetic spectral coefficients, and
labels at the edges are 1 and xi. Therefore, Arithmetic spectral trans-
form decision diagrams represent functions in the form of arithmetic

function to a decision tree [173], [175]. These are Edge-valued binary

polynomials. Notice that in literature there are at least four other
decision diagrams that exploit arithmetic transform coefficients to assign
a
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Table 4.3. Function f = (f0, f1) in Example 4.17.

x0, y0 f0 f1

0. 00 0 0
1. 01 0 1
2. 10 0 1
3. 11 1 0

f
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A A

0 1

1 x0
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y0 y0
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A A

0 1
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Figure 4.28. MTBDD and ACDD for f in Example 4.17.

cision diagrams (EVBDDs) [93], [92], Factored EVBDDs [198], Binary
moment diagrams (BMDs), and their edge-valued version ∗BMD [20],
[25].

Example 4.17 Table 4.3 shows a function f(x0, y0) = (f0, f1) specify-
ing the half-bit adder. Thus, f0(x0, y0) = x0 ⊕ y0, and f1(x0, y0) = x0y0.
This function f can be converted into the equivalent integer-valued func-
tion fz = 2f1 + f0 given by the vector Fz = [0, 1, 1, 2]T . The arithmetic
spectrum of fz is Az = [0, 1, 1, 0]T .

Fig. 4.28 shows MTBDD and ACDD defined by using Fz and Af as
vectors of constant nodes, respectively.

9.3 Walsh decision diagrams
Walsh decision diagrams (WDDs) are defined in terms of the Walsh

expansion rule f = −1
2(f0 + f1) + (1 − 2xi)(f0 − f1) derived from the

basic Walsh matrix W(1) =
[

1 1
1 −1

]
in the same way as above for

the Arithmetic transform. If WDDs are used to represent binary valued

de
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Figure 4.29. WDT and WDD for f in Example 4.17.

functions, it is convenient to perform encoding (0, 1) → (1,−1), since in
this case, values of constant coefficients are restricted to even numbers
in the range −2n to 2n, which reduces the number of possible different
constant coefficients.

Example 4.18 Encoded vectors of function values for f0 and f1 in the
above example are F0,(1,−1) = [1, 1, 1,−1]T and F1,(1,−1) = [1,−1,−1, 1]T ,
whose Walsh transforms are Wf0,(1,−1)

= 1
4 [2, 2, 2,−2]T and W1,(1,−1) =

1
4 [0, 0, 0, 4]T . Due to the linearity of the Walsh transform, the Walsh
spectrum of fz is Wfz = 2Wf1,(1,−1)

+ Wf0,(1,−1)
= 2[2, 2, 2,−2] T +

[0, 0, 0, 4]T = [4, 4, 4, 0]T .
Fig. 4.29 shows WDT and WDD for the function f in this example.

Attention should be paid to the labels at the edges in this WDD, and
for instance to the label at the left outgoing edge of the root node. It is
determined as the sum of the outgoing edges of the left node at the level
for y0 multiplied by the label at the incoming edge to this node. This
node can be deleted since both outgoing edges point to the same value 4,
however, its impact has to be taken into account by changing the label at
the incoming edge as described above.

The example of WDDs shows that in the general case, the reduction
rules for word-level decision diagrams should be modified compared to
the BDD reduction rules, since relations involving binary-valued vari-
ables and constants 0 and 1 that are used in BDD and zero-suppressed
reduction rules cannot be always used for various decomposition rules
used in definition of STDDs. Fig. 4.30 shows the generalized BDD reduc-
tion rules which can be used for both bit-level and word-level decision
diagrams, since they include the BDD reduction rules as a particular
case.

0

0

0
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Figure 4.31. Calculation of the Walsh spectrum for f in Example 4.19.

The following example illustrates and explains the calculation of Walsh
spectrum over a MTBDD, and the representation of a Walsh spectrum
by a WDD. The method can be considered as a conversion of a MTBDD
into a WDD.

Example 4.19 Consider the function f = x1x2 ⊕ x1x2x3 ⊕ x1x2x3.
Fig. 4.31 shows a MTBDD for this function in (1,−1) encoding with
cross points indicated. If at each node and cross point the calculations

determined by the basic Walsh matrix W(1) =
[

1 1
1 −1

]
are performed,

Decision Diagrams  for Representation of Switching Functions
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Figure 4.32. WDD for f in Example 4.19.

we get the Walsh spectrum at the root node. Notice that the calculations
at the levels above the last level of non-terminal nodes are performed over
subfunctions represented by the subtrees rooted in the processed nodes.
This is the main difference to FFT-like algorithms where all calculations
are over numbers representing function values. However, since we per-
form the calculations determined by the basic transform matrices, which
determine butterfly operations in the FFT-like algorithms, it follows that
in decision diagram methods for calculation of spectral transforms we ac-
tually perform FFT over decision diagrams instead of over vectors. If
each step of the calculation is represented by a decision diagram, we get
the Walsh decision diagram for f shown in Fig. 4.32.
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10. Reduction of Decision Diagrams
In applications of decision diagrams, the following basic characteristics

are most often considered

1 Size of DD, defined as the number of non-terminal nodes for bit-level
diagrams and as the sum of non-terminal and constant nodes for
word-level decision diagrams.

2 Depth of DD, defined as the number of levels,

3 Width of DD, defined as the maximum number of nodes per level,

4 Number of paths from the root node to the non-zero constant nodes.

There is a direct correspondence between these characteristic and the
basic characteristics of logic networks that are derived from decision di-
agrams as it will be discussed further in this book. For instance, the
number of non-terminal nodes corresponds to the number of elementary
modules in the corresponding networks. When calculations are per-
formed over decision diagrams, some calculation subprocedure should
be performed at each non-terminal node. Therefore, reduction of non-
terminal nodes is a chief goal in optimizing decision diagrams. The delay
in a network is proportional to the depth of the decision diagram, which
together with the width, determine the area occupied by the network.
Edges in the diagram determine interconnections in the network. Thus,
for applications where particular parameters in the networks are impor-
tant, reduction of the corresponding characteristics of decision diagrams
is useful. Considerable research efforts have been devoted to these prob-
lems, see for instance [36], [109], [113], [159], [175] and references therein.

In particular, selection of different decomposition rules, alternatively
different spectral transforms to define various STDDs may be viewed
as an approach to the optimization of decision diagram representations.
Recall that the reduction in a BDT or MTBDT is possible if there are
constant subvectors, the representation of which reduces to a single con-
stat node, or identical subvectors, that can be represented by a shared
subtree. In the case of Spectral transform decision diagrams, search for
constant or identical subvectors is transferred to spectra instead of over
the initial functions. It may happen that for an appropriately selected
transform, the corresponding spectrum, that is, the vector of values of
constant nodes, expresses more such useful regularity. Fig. 4.33 illus-
trates this statement, where a vector of 16 elements is split into four
subvectors. The first field is a constant subvector, and the other two
fields are identical subvectors and can be represented by a shared sub-
tree, which can be at most a complete tree. The last field is an arbitrary

Decision Diagrams  for Representation of Switching Functions
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V = [ ]T

Figure 4.33. Reduction possibilities in a decision diagram.

subvector and has to be represented by a separate subdiagram, which,
as the identical subvectors, could be at most a complete subtree with
four different constant nodes.

di
the size of decision diagrams in usually strongly depends on the order
of variables. Although introduced primarily for BDDs and MTBDDs,
see for example, [144], [169], [170], the method can be equally applied
to Spectral transform decision diagrams.

Example 4.20 Fig. 4.34 shows that the WDD for f in Example 4.19
which has four non-terminal nodes, can be converted in a WDD of the
size three after permutation of variables x1 and x2.

The determination of the best order of variables which produces the
decision diagram of the minimum size is an NP-complete problem [13],
[167]. There are many heuristic methods that often produce a nearly
optimal diagram.

ficient in reducing the size of decision diagrams or cannot applied.
An example are symmetric functions whose value does not depend on
the order of variables. For these reasons various methods to reduce the
sizes of decision diagrams by linear combination of variables have been
con
mapping a given function f in primary variables xi into a new function
flta in variables yi defined by a suitably determined linear transformation
over the primary variables.

Example 4.21 Consider a two-output function f = (f1, f0), which can
be represented by an integer equivalent function fz = 2f1+f0 given by the

agrams is reordering of variables in the functions represented, because
A widely exploited method for reduction of the size of decision

However, there are functions where reordering of variables is not
ef

sidered, see for example [53], [54], [78], [110]. The methods consists in
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Figure 4.34. WDD with permuted variables for f in Example 4.19.

x1 y1

z1
x2 y2x2

y2

x1 y1

z1

x2 y2
x2 y2

f f
vr f

lta

_ _

_

_ __ _

S S S

S SS S

1 1 12 2 2

Figure 4.35. MTBDDs for initial order of variables, permuted, and linearly transformed
variables in f in Example 4.21.

vector of function values F = [f(0), f(1), f(2), f(3)]T = [1, 2, 2, 1]T . Af-
ter reordering of variables, this vector is converted into the vector Fvr =
[f(0), f(2), f(1), f(3)]T = [1, 2, 2, 1]T . Since this function is symmetric,
reordering of variables y1 = x2 and y2 = x1 does not change the vector
of function values. However, the linear transformation of variables z1 =
x1 ⊕ x2 and y2 = x2 converts F into Flta = [f(0), f(3), f(2), f(1)]T =
[1, 1, 2, 2]T .

Fig. 4.35 shows MTBDDs for f , fvr and flta, where vr and lta stand
for reordering and linear transform of variables.

Decision Diagrams  for Representation of Switching Functions
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11. Exercises and Problems
Exercise 4.1
decision diagram for the function defined by F = [0, 1, 1, 1, 0, 1, 1, 0]T .

Exercise 4.2
function f in the Exercise 4.1 by traversing paths in the decision tree
and the decision diagram. Compare and discuss these expressions.

Exercise 4.3 Consider the BDD in Fig.4.36. Determine the function
f represented by this diagram and write the corresponding functional
expression for f .

S

S

S

10

x

x
x

x

2

3
3

2
_

_

_

f

x

x

1

1

Figure 4.36. Binary decision diagram.

Exercise 4.4 Construct the BDD for the function f(x1, x2, x3, x4) =
x1x2 ∨ x1x3 ∨ (x1 ∧ x4).

Exercise 4.5 Represent the function given by the truth-vector F =
[1, 0, 0, 1, 1, 1, 1, 1]T by decision trees on groups C3

2 and C2 × C4.
Determine the corresponding decision diagrams.

Exercise 4.6 Table 4.4 shows a three-variable three-output function f .
Represent f by a Shared BDD.

Exercise 4.7 Represent the multi-output function in Exercise 4.6 by
an integer equivalent function fZ = 22f0 + 2f1 + f2 and determine its
MTBDD.

Determine the Binary decision tree and the Binary

Determine the Sum-of-products expression for the
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Table 4.4. Multi-output function in Exercise 4.6.

x1x2x3 f0 f1 f2

0. 000 1 0 1
1. 001 1 1 0
2. 010 1 1 1
3. 011 0 1 0
4. 100 0 0 0
5. 101 1 0 1
6. 110 1 1 1
7. 111 1 0 1

Exercise 4.8
diagrams for the function f in Exercise 4.1.

Exercise 4.9
di
Positive and the Negative Reed-Muller trees by the BDD reduction rules.

Exercise 4.10
sion diagrams for the following assignment of decomposition rules

per levels
1. S, pD, nD 3. S, nD, pD
2. pD, S, nD, 4. nD, S, pD.

Determine the corresponding AND-EXOR expressions for f by travers-
ing 1-paths in these diagrams and determine the Kronecker spectra.

Exercise 4.11 Reduce the Kronecker decision tree in Fig. 4.37. Deter-
mine the function f represented by this diagram and write the functional
expression for f corresponding to this diagram.

Exercise 4.12 Write the set of basis functions in terms of which the
Kronecker decision tree in Exercise 4.11 is defined. Determine the cor-
responding transform matrix in terms of which the values of constant
nodes are calculated.

Calculate the values of constant nodes in the Kronecker decision tree
with the same assignment of nodes for the function given by the truth-
vector F = [1, 1, 0, 1, 1, 1, 0, 0]T .

Exercise 4.13
De

sponding functional expression for f .

Draw the Positive and Negative Reed-Muller decision

For the function in Exercise 4.1 draw Kronecker
deci

agrams in Exercise 4.8 with the BDD, and diagrams derived from the
Compare the Positive and the Negative Reed-Muller

termine the function f represented by this diagram and write the
corre

Consider the Kronecker decision tree in Fig. 4.37.

Decision Diagrams  for Representation of Switching Functions
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pD pD

nD nD nD nD

10 1 0 0 1 1 1

x3 x3 x3 x3

x2 x2

_ _ _ _

f

x1
x1

_ S

1 1

1 1 1 1

Figure 4.37. Kronecker decision tree in Exercise 4.11.

nD

pD

pD

10

x3

x2

_

_

f

x1

1

1

1

Figure 4.38. Kronecker decision diagram in Exercise 4.13.

Exercise 4.14 For the function represented by the BDD in Fig. 4.31
calculate the arithmetic spectrum over this BDD and show the corre-
sponding ACDD.

Exercise 4.15 For the function f = x1x2 + x2x3 + x1x3, determine
BDDs, and ACDDs for all possible ordering of variables. Compare the
size, the width and the number of non-zero paths in these diagrams.



Chapter 5

CLASSIFICATION OF SWITCHING
FUNCTIONS

Classification of switching functions is among the most important
problems in switching theory and closely related to their realizations.
It is motivated by the desire to reduce the number of different networks
in the modular synthesis of logic networks. There are 22n

different func-
tions of n variables, which implies the same number of different logic
networks to realize them. However, many of the functions are related in
some sense. For instance, for each function f there is a logic complement
of it, f , which can be realized by adding an inverter at the output of the
network that realizes f .

Fig. 5.1 illustrates that the classification task consists of the partition
of the set SF of all switching functions of a given number of variables n
into classes Ci of functions mutually similar with respect to some appro-
priately formulated classification criteria. Each class is represented by a
representative function ci, the representative of the class Ci. Functions
that belong to the same class can be reduced to each other by apply-
ing the operations performed in the classification. These operations are
usually called the classification rules. Thus, a function f ∈ Ci can be
reduced to the representative function ci by the application of the clas-
sification rules. It follows that f can be realized by the same network
as ci modified as determined by the classification rules applied in order
reverse the process in the classification.

There are several applications of the classification, and we point out
two of them

1 Realization by prototypes, which assumes design of similar circuits
for functions within the same class,

2 Standardization of methods for testing logic networks.

125
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SF

C1

C2

.

.

.

{ f } similar with c1

C
k

.

.

.

{ f } similar with c2

{ f } similar with ck

Figure 5.1. Classification of switching functions.

1. NPN-classification
Probably the most widely used is the NPN-classification due to the

simplicity of the classification rules.
In NPN -classification, the classification rules are

1 Negation of input variables (N) xi ↔ xi,

2 Permutation of input variables (P ) xi ↔ xj ,

3 Negation of the output (N) f → f .

If we only use a subset of these rules in the classification, we obtain
several

”

guished

1 N (rule 1),

2 P (rule 2),

3 NP (rules 1 and 2),

4 NPN (rules 1, 2 and 3),

with NP and NPN -classification the most often used in practice. Clas-
sifications with a larger number of classification rules produce a smaller
number of classes, and thus are considered stronger classifications.

We say that two functions f1 and f2 of the same number of variables n
belong to the same class, or are equivalent, if they can be reduced each to
other by the classification rules allowed in the classification considered.

subclassifications”. The following cases are usually distin
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Example 5.1 (Equivalent functions)
Consider the functions

f1 = x1x2 + x2x3,

f2 = x1x2 + x2x3,

f3 = x1x3 + x2x3,

f4 = x1x3 + x2x3,

whose truth-vectors are

F1 = [0, 0, 0, 1, 1, 1, 0, 1]T ,

F2 = [0, 1, 0, 0, 0, 1, 1, 1]T ,

F3 = [0, 0, 1, 0, 0, 1, 1, 1]T ,

F4 = [1, 1, 0, 1, 1, 0, 0, 0]T .

P -equivalence

Functions f1 and f2 are P -equivalent, since they can be reduced each
to other by the permutation x1 ↔x3. Indeed, if the subscript P
denotes the permutations, then fP

1 = x3x2 + x1x2 = f2. Similar, fP
2 =

x3x2 + x2x1 = f1.

NP -equivalence

Functions f1 and f3 are NP -equivalent, since if x2 ↔ x2, then fN
1 =

x1x2 + x2x3, where the subscript N denotes negation of variables. Fur-
ther, if x2 ↔ x3, then fNP

1 = x1x3 +x3x2 = f3. Conversely, if x2 ↔ x3,
then fP

3 = x1x2 + x3x2. When x2 ↔ x2, then fPN
3 = x1x2 + x3x2 = f1.

NPN -equivalence

We have shown that functions f1 and f3 are in the same NP -class.
It is obvious from the truth-vectors of f1 and f4, that these functions are
complements of each other. Thus, they can be reduced to each other by
the negation of the output. It follows, that f1 and f4 belong to the same
NPN -class.

Fig. 5.2 shows the representative functions for P , NP , and NPN -
classes of switching functions for n = 3. In specifying the representative
functions, we assume the canonic order of variables x1, . . . , xn, and all
the variables are written in positive literals, except in P -classification.
In this figure, we have indicated the number of functions represented
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Figure 5.2. Representative functions in NPN -classification for n = 3.

Table 5.1.
variables (#f(n)), and representative functions in CP , CNP and CNPN classes.

n
1 2 3 4 5 6

#f 4 1 256 65536 4.3 × 109 1.8 × 1019

#f(n) 2 10 128 64594 4.3 × 109 1.8 × 1019

|CP | 4 12 80 3984 3.7 × 107 -

|CNP | 3 6 22 402 1228158 4.0 × 1014

|CNPN | 2 4 14 222 616126 2.0 × 1014

by a single function and the bars show the functions represented by a
single function in the next stronger classification by allowing successively
another classification rule. P , NP , and NPN -classifications partition
the set of all switching functions of a given number n of variables in
disjoint classes, since each function is covered by a single representative
function which implies that a function cannot belong to several classes.
In particular, it can be shown that they are equivalence relations in the
sense of Definition 1.5.

Table 5.1 compares the number of representative functions in different
classes of functions. It shows the number of functions of n variables
(#f), functions that essentially depend on all n variables (#f(n)), and
representative functions in CP , CNP and CNPN classes.

Number of functions of n variables (#f ), functions dependent on all n
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Table 5.2. Asymptotic number of functions per classes for n sufficiently large.

P NP NPN
22n

n!
22n

2nn!
22n

2n+1n!

x1

x2

x
i

x
n

NPN f
r

f

f
r
– NPN representative

N P N

Figure 5.3. Realization of functions by NPN -classification.

Table 5.2 shows the asymptotic number of classes when n is sufficiently
large.

Fig. 5.3 explains the basic principle of realization of logic functions
by NPN-classification. Let there be a network that realizes an NPN -
representative function ci. Then, all other functions from the same
NPN -class are realized by performing optionally negation and permu-
tation of inputs, and negation of the output.

2. SD-Classification
A classification stronger than NPN -classification is defined in terms

of self-dual functions and is, therefore, called the Self-dual (SD) classi-
fication of switching functions. It is based upon the following represen-
tation of switching functions.

Consider a function f(x1, . . . , xn) and its dual function fd(x1, . . . , xn)
defined by fd(x1, . . . , xn) = f(x1, . . . , xn).

The function

fsd(x1, . . . , xn, xn+1) = xn+1f(x1, . . . , xn) + xn+1f
d(x1, . . . , xn),

is called its self-dualization.
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Consider a self-dual function f(x1, . . . , xn+1) of exactly n+1 variables.
The nonself-dual functions f(x1, . . . , xn, 1) and f(x1, . . . , xn, 0) are called
nonself-dualized function of f(x1, . . . , xn) and xn+1 the nonself-dualized
variable.

Switching functions that become identical by self-dualization, nonself-
dualization, negation of variables or the function, or permutation of
variables are called SD-equivalent. It is an equivalence relation where
the equivalence classes contain nonself dual functions of n variables and
self-dual function of n + 1 variables.

Example 5.2 Functions f1(x1, x2, x3) = x1+x2+x3 and f2(x1, x2, x3) =
x1(x2 + x3) do not belong to the same NPN -class, however, are SD-
equivalent. Indeed,

f sd
1 (x1, x2, x3, x4) = (x1 + x2 + x3)x4 + (x1 + x2 + x3)x4

= (x1 + x2 + x3)x4 + x1x2x3.

Similar,

fsd
2 (x1, x2, x3, x4) = x1(x2 + x3)x4 + x1(x2 + x3)x4

= x1x2x4 + x1x3x4 + (x1 + x2x3)x4

= x1x2x4 + x1x3x4 + x1x4 + x2x3x4

= (x2 + x3 + x4)x1 + x2x3x4,

and after permutations x4 ↔ x4 and x1 ↔ x4 it follows

fsd
2 (x1, x2, x3, x4) = fsd

1 (x1, x2, x3, x4).

Fig. 5.4 shows details in proving the equation

(x1 + x2 + x3)x4 + x1x2x3x4 = (x1 + x2 + x3)x4 + x1x2x3,

with required Boolean relations explicitly shown and the terms that have
been joined underlined. Fig. 5.5 shows verification of the expression

x1x2x4 + x1x3x4 + x1x4 = (x2 + x3 + x4)x1,

through the equivalence of the truth-vectors for the expressions on the
left and the right side of the sign of equality.

Example 5.3 The representative functions in SD-classification for n=3
are shown in Table 5.3.

It should be emphasized that SD-classification creates an equivalence
relation in the set of all Boolean functions and each class contains func-
tions of n and n + 1 variables. This is the reason why in Table 5.3
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Figure 5.4. Equivalence of expressions in Example 5.2.
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Figure 5.5. Equivalence of expressions in Example 5.2 through truth-vectors.
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Table 5.3. SD-representative functions for n = 3.

f # of f

x1 4
x1x2 + x2x3 + x1x3 32
x1 ⊕ x2 ⊕ x3 8
(x1 + x2 + x3)x4 + x1x2x3x4 128
(x1x2x3 + x1x2x3)x4 + (x1 + x2 + x3)(x1 + x2 + x3)x4 64
x1(x2x3 + x2x3)x4 + x1 + x2x3 + x2x3)x4 96
(x1x2x3 + x1x2x3 + x1x2x3)x4 + (x1x2 + x2x3 + x1x3 + x1x2x3)x4 128

x1

x2

x
i

x
n

SD f
r

f

f
r
– SD representative

0
1

Figure 5.6. Realizations by SD-representative functions.

the sum of the number of functions representable by each representa-
tive function is greater than 256 = 223

. It follows that classes of SD-
equivalent functions are not disjoint. It means that a given function f
may be realized through several representative functions. In this case,
a reasonable choice is to select the simplest representative function or
the representative function to which f can be converted by the fewest
number of applications of the classification rules.

Fig. 5.6 shows the basic principle of function realizations through SD-
representative functions. In this case, transformations of the network at
the inputs are

1 Selective application of constant 0 and 1, besides variables x1, . . . , xn,

2 Permutation of input variables,

3 Negation of the output.
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Table 5.4. Number of functions realizable by t products.

t AND-OR AND-EXOR

0 1 1
1 81 81
2 1804 2268
3 13472 21744
4 28904 37530
5 17032 3888
6 3704 24
7 512 0
8 26 0

av. 4.13 3.66

3. LP-classification
NPN and SD-classifications are intended for AND-OR synthesis,

which means the representation of functions by AND-OR expressions.
From 1990’s, there has been an increasing interest in AND-EXOR syn-
thesis, mainly after publication of [156], due to the feature that AND-
EXOR expressions require on the average fewer product, accompanied
by the technology advent which provided EXOR circuits with the same
propagation delay and at about the same price as classical OR circuits
with the same number of inputs.

Example 5.4 Table 5.4 shows the number of functions of four vari-
ables that can be realized with t products by AND-OR and AND-EXOR
expressions, represented by SOPs and ESOPs, respectively. Notice that
AND-OR expressions require on the average 4.13 compared with 3.66
products in AND-EXOR expressions.

This consideration was a motive to introduce LP -classification adapted
by the allowed classification rules to the AND-EXOR synthesis [82], [81].
In this classification, unlike NPN and SD-classification, transforma-
tions over constants, besides over variables, are also allowed.

LP -classification has been introduced by the following considerations.
Consider the following transformations that change a function f to

(possibly) another function g

1 For i ∈ {1, . . . , n} and f written in the Shannon expansion with
respect to the variable xi

f = xif0 ⊕ xif1.
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the function g is in the form

g =
[

g0

g1

]
=
[

a b
c d

] [
f0

f1

]
,

i.e.,

g = xig0 ⊕ xig1 = xi(af0 ⊕ bf1) ⊕ xi(cf0 ⊕ df1),

where
[

a b
c d

]
is a nonsingular matric over GF (2).

2 g is obtained from f by permuting variables.

Functions f and g are called LP -equivalent if g is obtained form f by a
sequence of (operations) transformations (1) and (2) above [81].

It is clear that the LP -equivalence is an equivalence relation.

Example 5.5 Consider the transformation by the matrix
[

1 0
1 1

]
.Then,

g =
[

g0

g1

]
=
[

1 0
1 1

] [
f0

f1

]
=
[

f0

f0 ⊕ f1

]
,

and equivalently

g = xig0 ⊕ xigi = xif0 ⊕ xi(f0 ⊕ f1) = (xi ⊕ xi)f0 ⊕ xif1 = 1 · f0 ⊕ xif1.

Thus, g is obtained by the substitution xi → 1 in the expression of f .

Similarly, the matrix
[

1 1
0 1

]
corresponds to the substitution xi → 1.

Usually, the six transformations corresponding to the six different non-
singular matrices over GF (2) are expressed in this substitution notation
as shown in Table 5.5.

It is worth noticing that if f is represented by an ESOP with |f |
products, then |g| = |f | [81].

Example 5.6 Functions f(x, y) = x⊕y, f(x, y) = x⊕y, f(x, y) = x⊕y
and f(x, y) = 1 ⊕ xy are LP -equivalent.

Indeed, f(x, y) = x⊕y converts into f(x, y) = x⊕y by the transforma-
tion y → y, which can be written as f(x, y) = x ·1⊕1 ·y. Transformation
x → 1 converts this function into f(x, y) = 1⊕xy. If 1 → x and x → 1,
it follows f(x, y) = x · 1⊕ 1 · y, which can be written as f(x, y) = x⊕ y.
The transformation x → x results in f(x, y) = x⊕y, and similar, y → y,
produces f(x, y) = x ⊕ y, and similar for other functions.
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Table 5.5. LP -classification rules.

1. LP0(f) = xif0 ⊕ xif1 Identical mapping

[
1 0
0 1

]

2. LP1(f) = xif0 ⊕ 1 · f1 xi ↔ 1

[
1 1
0 1

]

3. LP2(f) = 1 · f0 ⊕ xif1 xi ↔ 1

[
1 0
1 1

]

4. LP3(f) = xif0 ⊕ xif1 xi ↔ xi

[
0 1
1 0

]

5. LP4(f) = xif0 ⊕ 1 · f1 xi → 1, and xi → xi

[
0 1
1 1

]

6. LP6(f) = 1 · f0 ⊕ xif1 x1 → 1, and xi → xi

[
1 1
1 0

]

Table 5.6. LP -equivalent functions.

Equivalent functions Transformation

xy ≡ xy x ↔ x,
x · 1 ≡ 1 · y, x ↔ y,
xy ≡ x · 1 y ↔ 1,
1 · y ≡ 1 · 1 y ↔ 1.

Example 5.7 Table 5.6 shows equivalent functions and the correspond-
ing LP -transformations.

Table 5.7 shows the LP -equivalence classes for functions of n = 2 vari-
ables. There are three LP -equivalence classes and functions are arranged
in a way that simplifies transitions between functions in the same class.
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Table 5.7. LP -equivalent functions for n = 2.

Class Functions

1 0

2 xy xy xy xy
x
1 x y y

3 x ⊕ y x ⊕ y
1 ⊕ xy 1 ⊕ xy 1 ⊕ xy 1 ⊕ xy

Table 5.8. LP -representative functions for n ≤ 4.

n 2 3 4

0 00 0000 016a 0678
1 01 0001 0180 06b0
6 06 0006 0182 06b1

16 0016 0186 1668
18 0018 0196 1669
6b 0066 0660 1681

0116 0661 1683
0118 0662 168b
012c 066b 18ef
0168 0672 6bbd

functions

0, x · y · z,
x · y ⊕ x · z, x ⊕ y · z ⊕ x · y · z,
x · y · z ⊕ x · y · z, x ⊕ y · z ⊕ x · y · z.

Table 5.8 shows the truth-vectors of LP -representative functions for
n = 2, 3, 4 in hexadecimal encoding meaning that each character in the

sequence of four binary values.
Table 5.9 shows the number of LP -representative functions for up to

6 variables, which can be compared to data in Table 5.1. Since in any
class there are n!6n functions, it follows that for n sufficiently large, the
number of LP -classes approximates to 22n

/n!6n. It should be noticed

For functions of n = 3 variables, there are 6 LP -representative

truth-vectors should be replaced by its binary representation as a
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Table 5.9. Number of LP -classes.

n 1 2 3 4 5 6

|CLP | 2 3 6 30 6936 > 5.5 × 1011

that LP -classification is the stronger than NPN and SD classifications,
since considerably reduces the number of different classes.

4. Universal Logic Modules
Classification of switching functions has as one goal the reduction of

the number of different logic networks to realize all the functions of a
given number of variables. Further development of this idea leads to
the universal logic modules (ULMs) defined as logic networks capable of
realizing any of the 22n

logic functions of n variables. It is assumed that
constants logic 0 and 1 and switching variables in positive and negative
polarity are available at the inputs of ULMs. A ULM must have some
control inputs to select which particular function the ULM realizes. The
increased number of inputs, compared to the number of variables, is
the price for the universality of the module. For example, a ULM for
functions of three variables, has five inputs, two of which are the control
inputs.

Example 5.8 Fig. 5.7 shows the ULM for n = 2. It may be shown that
there are 6 essentially different ULMs for functions of two variables x1

and x2 and the control variable xc [71]

fH = x1x2 + x1x2xc = (x1 ⊕ x2)(x1 + xc),
fI = x1x2xc + x1x2xc + x1x2xc = (x1 ⊕ x2)xc + x1x2xc,

fJ = x1x2xc + x1x2xc = x1(x2 ⊕ xc),
fK = x1x2xc + x1x2xc = (x1 ⊕ x2)(x2 ⊕ xc),
fL = x1x2 + x1xc,

fM = x1x2xc + x2xc + x1xc = x1x2 ⊕ xc.

The module described by fL is a (2 × 1) multiplexer, which will be de-
fined latter, and fM is the Reed-Muller module, since realizes the positive
Davio expansion rule. Fig. 5.8 shows logic networks which realizes the
considered ULMs.

The concept and applications of ULMs have been already considered
in [163] in the context of study of contact networks. Fig. 5.9 shows
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Figure 5.7. ULM for n = 2.
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Figure 5.8. Realization of ULMs for n = 2.

the notation used by Shannon for basic logic elements implemented as
contact networks.

Example 5.9 Fig. 5.10 shows realization of the function

f = w(x + y(z + x))

by a contact network.

In the same context, Shannon has shown that an arbitrary function
of n = 3 variables can be written as

f(x, y, z) = (x + y + f(0, 0, z))(x + y + f(0, 1, z))
= (x + y + f(1, 0, z))(x + y + f(1, 1, z)).
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Figure 5.9. Basic logic circuits in contact networks.
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Figure 5.10. Realization of f in Example 5.9.

In the notation of Shannon, this expression can be written as

uab = f(x, y, z) =
4∏

k=1

(uk + vk),

where

u1 = x + y,

u2 = x + y,

u3 = x + y,

u4 = x + y,

and

v1 = f(0, 0, z),
v2 = f(0, 1, z),
v3 = f(1, 0, z),
v4 = f(1, 1, z).
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Figure 5.11. Realization of uk and vk.

This representation can be viewed as a description of a universal logic
module to realize an arbitrary function of three variables. Fig. 5.11
shows realizations for uk and vk. Extension to functions of an arbitrary
number of variables is straightforward, and the case of four variables has
been discussed in detail in [163].

In the same technology, Shannon proposed a module shown in Fig. 5.12
that realizes all functions of two variables except the constants 0 and 1.
This is a macro element, known as the two variable function generator
(TVFG) that can be used to realize functions of an arbitrary number
of variables when combined with two-level AND-OR networks. For in-
stance, for a function f of an even number of variables n = 2r, the
pairs of variables X = (x, y) can be viewed as four-valued variables tak-
ing values 00, 01, 10, 11. With this encoding, f can be represented by
an SOP with four-valued variables. In this expression, each product
requires an AND circuit, and it follows that the minimum SOP of four-
valued variables provides for a network with minimum number of AND
circuits. The method will be explained by the following example pre-
sented in [155]. In the usual notation for logic circuits, TVFG is shown
in Fig. 5.13.

The following example [155] illustrates application of TVFGs as ULMs.
The realization in this example by TVFGs will be compared with the
realization by Reed-Muller modules in Example 5.11.

Example 5.10 ([155])
Consider a function given by the Karnaugh map in Fig. 5.15. If the

binary variables are encoded as X1 = (x1, x2) and X2 = (x3, x4), then f
can be expressed as

f = X
{00}
1 X

{00}
2 ∨ X

{00}
1 X

{11}
2 ∨ X

{01}
1 X

{01}
2 ∨ X

{01}
1 X

{10}
2

X
{01}
1 X

{11}
2 ∨ X

{10}
1 X

{01}
2 ∨ X

{10}
1 X

{10}
2 ∨ X

{10}
1 X

{11}
2 ,

which, after joining the common terms, is

f = X
{00}
1 X

{00,11}
2 ∨ X

{01,10}
1 X

{01,10,11}
2 . 5.1( )
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From the definition of f in the Karnaugh map,

X
{00}
1 = x1x2,

which corresponds to the first marked field, and

X
{00,11}
2 = x3x4 ∨ x3x4 = x3 ⊕ x4.

Similarly,

X
{01,10}
1 = x1x2 ∨ x1x2 = x1 ⊕ x2,

and

X
{01,10,11}
2 = x3x4 ∨ x3x4 ∨ x3x4 = x3 ∨ x4.

The functions X
{00}
1 , X

{01,10}
1 , X

{00,11}
2 and X

{01,10,11}
2 can be real-

ized by two TVFGs pairs of primary variables (x1, x2) and (x3, x4) at
the inputs. Since, from (5.1), when Xi expressed in terms of primary
variables,

f = (x · y)(x3 ⊕ x4) ∨ (x1 ⊕ x2)(x3 ∨ x4),

the network that realizes f is as in Fig. 5.16. The required outputs of
TVFGs can be realized as shown in Fig. 5.17, and, then, f can be realized
by the network in Fig. 5.18.

The complexity of the networks produced in the way described in this
example strongly depends on the pairing of variables at the inputs of
TVFGs. Different choice for pairs of variables would result in networks
of different complexity. Another optimization problem in this method is
simplification of AND-OR network relating outputs of TVFGs to deter-
mine f [155].

The following example illustrates applications of ULMs for a small
number of variables in synthesis of logic networks for functions of an
arbitrary number of variables. Such networks have the useful feature
that they consist of identical modules, however, a drawback is that in
some cases a complete module is wasted to realize a simple subfunction
which may also increase the number of levels in the network, thus, the
propagation delay. Recall that the propagation delay is usually defined
as the time required that a change at the input produces a change at
the output of the network.

Example 5.11 Consider realization of the function f in the Exam-
ple 5.10 expressed as in (5.1), assuming that the Reed-Muller modules
with two inputs are available. Fig. 5.19 shows the required network. It
should be noticed that the upper module in the third level realizes the logic
complement of the output of the preceding module.
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Figure 5.15. Karnaugh map for f in Example 5.10.
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Figure 5.17. Realization of outputs in TVFGs for f in Example 5.10.
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5. Exercises and Problems
Exercise 5.1 Check if the functions

1 f1 = x1 ∨ x2,

2 x1 → x2,

where → denotes the implication, belong to the same

1 P -class,

2 NP -class,

3 NP = N -class.

Exercise 5.2 Enumerate all the functions of two variables that belong
to the same

1 P -class,

2 NP -class,

3 NPN -class,

to which belongs the function x1 ⊕ x2.

Exercise 5.3 Determine all functions of n ≤ 2 variables that belong to
the same NP class with the function f(x1, x2) = x1.

Exercise 5.4 Determine all functions of n ≤ 2 variables that belong to
the same NPN class with the function f(x1, x2) = x1 + x2.

Exercise 5.5 Determine examples of functions that belong to the same

1 P -class,

2 NP -class,

3 NPN -class,

with the function f = x1x2 ∨ x1x3 ∨ x2x3.

Exercise 5.6 Determine examples of functions which belong to the same
SD-class as the majority function of three variables.

Exercise 5.7 Check whether the functions

1 x1 ∧ (x2 ∨ x3),

2 x1 ⊕ x2 ⊕ x3,
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belong to the same SD-class.

Exercise 5.8 Determine all functions of two variables which belong to
the same LP -class as the function x1∧x2, and specify the corresponding
LP transformations.

Exercise 5.9 Check if the functions x1 → x2 and x1 ∨ x2 belong to the
same LP -class.

Exercise 5.10 Determine a function of three variables which belongs
to the same LP -class as the function x1x2x3.

Exercise 5.11 Determine all functions of n ≤ 2 variables that belong
to the same NP -class with the function f(x1, x2) = x1.

Exercise 5.12 Determine all functions of n ≤ 2 variables that belong
to the same NPN -class with the function f(x1, x2) = x1 + x2.



Chapter 6

SYNTHESIS WITH MULTIPLEXERS

Multiplexers, abbreviated as MUXs, are basic circuits used in present

forwarding a particular input to the output depending on the values
as For instance, in [108] mutiplexers are
for

inputs and route it to a single output bit.
Therefore, multiplexers are data path connection elements, often used

in synthesis of logic networks. Further, there are families of FPGAs
based on multiplexers, as for example Actel ACT series and CLi 6000
series from Concurrent Logic.

If the number of data inputs is n, the number of control inputs is k =
�log2 n�. In this book, we will mainly consider complete multiplexers, in
which case n = 2k. Each data input of a complete multiplexer is selected
by a single binary k-tuple on the control inputs.

Fig. 6.1 shows the simplest multiplexer module with two inputs and
a control input, thus, usually called (2 × 1) MUX. Fig. 6.2 shows a
realization of this multiplexer in terms of NAND circuits with two inputs.

k0

y0

y1

z
0

1

Figure 6.1. (2 × 1) multiplexer.

147

They can be viewed as multi-input switcheslogic design methods.

signed to the control inputs.
mally defined as circuits that select a particular input out of

several
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k0

y0

y1

Z

Figure 6.2. Realization of a (2 × 1) multiplexer by NAND circuits.

A (2 × 1) multiplexer can be described by the relation

z = y0k0 ⊕ y1k0, (6.1)

where the notation is as in Fig. 6.1.
It is obvious that a (2 × 1) multiplexer is a circuit realization of the

Shannon expansion, since if y0 = f0 and y1 = f1, k0 = xi, then z = f ,
since f = xif0 ⊕ xif1.

In general, a multiplexer has 2n inputs and n control inputs, which is
called the size of the multiplexer. A good feature of multiplexers is that
a multiplexer of a given size can be expressed, which also means realized,
by a network with the structure of a tree of multiplexers of smaller size.

Example 6.1 Fig. 6.3 shows realization of a (4×1) multiplexer by (2×
1) and (3 × 1) multiplexers, and the corresponding circuit realization by
NAND circuits.

Different assignments of logic constants and variables to control and
data inputs realize different functions at the output of a multiplexer.

Example 6.2 Fig. 6.4 shows realization of four different functions by
(2 × 1) multiplexers.

This example can be generalized and it can be shown that multiplex-
ers are NP -complete modules in the sense of NP -classification, i.e., a
size n multiplexer can realize all functions of n variables by negation
and permutation of data inputs. For a proof of this statement, it is
sufficient to show that for a given n a multiplexer can realize all the
NP-representative functions .

Example 6.3 Table 6.4 shows assignment of logic constant and vari-
ables for inputs in a (2 × 1) multiplexer to realize NP-representative
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Figure 6.3. Realization of a (4× 1) multiplexer by (2× 1) and (3× 1) multiplexers and
NAND circuits.
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Figure 6.4. Realization of different functions by (2 × 1) multiplexers.

functions for n = 2. Therefore, combined with negation of permutation
of inputs, a (2× 1) mltiplexer can realize any of the 16 functions of two
variables.

1. Synthesis with Multiplexers
The problem of multiplexer synthesis can be formulated as follows.

Given a library of multiplexers, synthesize a larger multiplexer using
a tree of multiplexer components from a library such that the total
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Data Inputs Control Input Output
y0, y1 k f

0,− 0 0
0,− 0 1
x0,− 0 x0

0, x0 x1 x0x1

x1, 1 x0 x0 ∨ x1

x1, x1 x0 x0 ⊕ x1

area of the resulting multiplexer is kept minimized. Another criteria
of optimality could be minimization of the delay in the produced tree
network. In practice, usually the area minimization algorithm is followed
by the algorithms that minimize the delay. The area minimization is
computationally intensive and, in general, an NP-complete problem. For
that reason, various heuristic algorithms have been proposed based on
the minimization of suitably defined cost functions. For instance, in [183]
is proposed an algorithm for reduction of trees of (2 × 1) multiplexers.
A more general algorithm is proposed in [115]. Some commercial tools
for solving problems in multiplexer synthesis are available as provided
for example by Ambit Design Systems [21], and Synopsis [30].

When multiplexers with the needed number of inputs are not avail-
able, or when functions with a large number of variables are needed,
networks of multiplexers can be build in several ways. For instance, as-
sume that multiplexers with k control inputs are available and we are to
realize functions of n > k variables. In this case, the data inputs can be
the various 2k co-factors of f , fi(x1, . . . , xn) = f(x1, . . . , xn) for fixed k
variables and control inputs are arbitrary functions of k variables.

Consider a switching function f(x1, . . . , xk, xk+1, . . . xn). Let the sys-
tem of switching functions

g1(x1, . . . , xk),
g2(x1, . . . , xk),

...,
gk(x1, . . . , xk),

form a bijection (g1, . . . , gk)T : {0, 1}k → {0, 1}k.
It is clear that because (g1, . . . , gk) is a bijection, we can write f in

the form

f(x1, . . . , xn) = g1 · · · gk−1gkh0···00(xk+1, . . . , xn)
⊕g1 · · · gk−1gkh0···01(xk+1, . . . , xn)
⊕g1 · · · gk−1gkh1···11(xk+1, . . . , xn).
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Actually, for the function f , the co-factors h0···00, h0···01, . . . , h1···11

with respect to g1, . . . , gk are just a permutation of the standard co-
factors with respect to the Shannon expansion. However, determination
of both co-factors of the given function for data inputs and functions
for control inputs that will provide a network with minimum number
of multiplexers is a very complex task. Therefore, in practice functions
applied to control inputs are usually restricted to switching variables,
which simplifies the determination of the co-factors of a given function
f that are feed into data inputs. In this way, synthesis with multiplexers
reduces to recursive application of the Shannon expansion and the net-
works produced have the structure of a tree. Depth of the network, i.e.,
number of levels can be controlled by selecting the number of variables
in respect to which the decomposition is preformed at the price of com-
plexity of generation of co-factors for f . If the Shannon decomposition is
performed with respect to all the variables, the resulting multiplexer net-
work is a complete tree and data inputs are elements of the truth-vector
for the function realized.

Example 6.4 Fig. 6.5 illustrates realization of three-variable functions
by a multiplexer network with the structure of a tree. Fig. 6.6 shows how
to use the same network to realize functions of four variables.

1.1 Optimization of Multiplexer Networks

global optimization is difficult to perform. Therefore, the task is often
simplified and reduced to the minimization of the number of multiplex-
ers at the level i + 1 by the consideration of modules at the level i. In
this setting, a multiplexer at the level i + 1 is redundant if the output
of a multiplexer r at the i-th level is related to the output of another
multiplexer j at the same level by any of the relations

1 fr = 0, fr = 1, fr = xj , fr = xj ,

2 fr = fj , r �= j,

3 fr = f j , r �= j.

Fig. 6.7 shows realization of the complement of a function in the
same way as the realization of the complement of a variable as shown in
Fig. 6.4.

The optimization of multiplexer networks is usually viewed as the
reduction of the number of multiplexer modules. As noted above, this
problem is closely related to the determination of data and control
inputs. Even in the case of networks with the structure of a tree, the
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Figure 6.7. Realization of f .

In [162], it is defined a spectral transform that permits efficient de-
termination of redundant multiplexers in the way specified above. It is
shown that in the case of realization of n-variable functions by multi-
plexers with k control inputs, the upper bounds of the number of levels
is L = n−1

k , and the minimum number of modules is M =
∑L−1

i=0 2ik

[162].
A spectral method which guarantees a minimum network in the num-

ber of modules count uses the Walsh transform to determine the cofac-
tors of a given function, called the residual functions, that will be applied
on the data inputs of multiplexers [71].

1.2 Networks with Different Assignments of
Inputs

Instead of networks with the structure of a tree, serial connections of
multiplexers also realize arbitrary switching functions provided that a
proper choice of functions is applied at control inputs of multiplexers.
Such networks can be viewed as examples of universal logic networks.

Example 6.5 Fig. 6.8 shows a network consisting of seven (2×1) mul-
tiplexers connected serially. If at the control inputs elementary products
of switching variables are applied, this network can realize an arbitrary
switching function of n = 3 variables. In this figure, we show the values
of product terms (the first and every second row further) and the outputs
of each multiplexer for different assignments of switching variables. It
can be seen from the rightmost column, that the output of the network
produces the value of the function realized for each corresponding as-
signment of primary variables. Since elementary products are applied to
control inputs, it is clear that the network realizes the positive polarity
Reed-Muller expressions.
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Figure 6.8. Multiplexer network with elementary product of variables at control inputs.

1.3 Multiplexer Networks from BDD
Non-terminal nodes in Binary decision diagrams are defined as graphic

representations of the Shannon expansion, and since multiplexers are
circuit realizations of this expansion, there is a direct correspondence
between BDDs and multiplexer networks as specified in Table 6.1 and
illustrated in Fig. 6.9. This correspondence determines a straightforward
procedure for synthesizing of multiplexer networks from BDDs.

Algorithm 6.1 (Network from BDD)

1 Given a BDD for f . Replace each non-terminal node including the
root node by a (2 × 1) multiplexer.

2 Set interconnections of multiplexers as determined by the edges in the
BDD.

Example 6.6 Fig. 6.10 shows a BDD for the function f = x1x2 ∨ x3

and the corresponding multiplexer network for f .

Example 6.7 Fig. 6.11 shows BDD for the function f = x3x2x1x0 ⊕
x3x2x1x0, whose truth-vector is F = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]T .
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Table 6.1. Correspondence between BDDs and (2 × 2) multiplexers.

BDD Network

Non-terminal nodes MUX(2 × 1)
Edges Interconections
Constant nodes Inputs
Root node Output
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Figure 6.9. Correspondence between BDDs and MUX(2 × 1).
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Figure 6.10. BDD and the multiplexer network for f in Example 6.6.

This function can be realized by the multiplexer network in Fig. 6.12 or
alternatively by logic networks with AND-OR elements with four and two
inputs. Table 6.2 compares the complexities of these three realizations.

Example 6.8 The function f in Example 6.7 can be realized by the
network in Fig. 6.13 and it is shown [31] that it is optimal in both the
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Figure 6.12. Multiplexer network for f in Example 6.7.

Table 6.2. Complexity of realization in Example 6.7.

Complexity MUX AND − OR four-inputs AND − OR two-inputs

Levels 2 3 4
Circuits 3 7 7
Interconnections 10 14 21
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Figure 6.13. The optimized multiplexer network for f in Example 6.7.

number of multiplexers and the propagation delay, under the requirement
that the realization is performed with (2× 1) multiplexers. Another good
feature of this network is that the primary inputs are logic constants 0
and 1. However, in this realization, functions at the control inputs are
determined separately for each module, which is not a simple task for
larger networks, and can hardly be given an algorithm that can handle
arbitrary functions.

2. Applications of Multiplexers
There are some standard applications of multiplexers, and many of

them are related to the manipulation of registers in a computer.

Example 6.9 Fig. 6.14 shows a memory with four registers A, B, C,

register E. The register whose contents is transferred into E is defined
by a multiplexer network.

Another important case is the selection of an m-bit word among the
2n possible words.

Example 6.10 Fig. 6.15 shows a switch for words where m = 2 and
n = 2, that is, the network performs selection of a four-bit word among
four different words by transferring the corresponding bits of each given
word to the outputs of the network.

and D, the contents of which should be transferred into a particular
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Figure 6.14. Application of multiplexers.
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Figure 6.15. Switch for words realized as a network of multiplexers.

Example 6.11 A cross-bar switch is a two-input x0, x1 two-output y0, y1

device with a control input w that realizes the mapping y0 = wx0 + wx1

and y1 = wx1 + wx0. Fig. 6.16 shows a symbol and a realization of the
cross-bar switch by (2 × 1) multiplexers.

Cross-bar network is a network which performs arbitrary permuta-
tions between the inputs and the outputs.
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Figure 6.16. Cross-bar switch and realization with multiplexers.
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Figure 6.17. Cross-bar network for Q = 4.

Example 6.12 Consider Q processing elements that communicate with
Q memory modules. The cross-bar network provides conflict-free com-
munication paths such that a processing element can access any memory
module if there is no other element reading or writing the same module.
Fig. 6.17 shows the cross-bar network for Q = 4.
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Perfect shuffle is an operation of reordering of discrete data and is
met in many algorithms, in particular, in their parallel implementa-
tions. It is the operation merging two sequences (x1, x2, x3, . . . , xr) and
(y1, y2, y3, . . . , yr) into (x1, y1, x2, y2, x3, y3, . . . , xr, yr) or equivalently the
permutation (x1, x2, . . . , xr, y1, y2, . . . , yr) → (x1, y1, x2, y2, . . . , xr, yr),
see, foer example, [182]. It can be realized as a permutation of indices
of elements of the sequences that should be reordered. For a sequence
of N = 2n elements, the perfect shuffle is defined as the permutation

P (i) = 2i, 0 ≤ i ≤ N/2 − 1,
P (i) = 2i + 1 − N, N/2 ≤ i ≤ N − 1.

Notice that if the indices of elements that should be permuted are
represented in binary form, then the i-th element is shuffled to the new
position j determined by

i = in−12n−1 + in−22n−2 + · · · + i12 + i0,

j = in−22n−1 + in−32n−2 + · · · + i02 + in−1.

Multiplexers are a standard part of a network realizing the perfect
shuffle.

Example 6.13 Fig. 6.18 illustrates the perfect shuffle operation for 23 =
8 data. This reordering converts the truth-vector

F = [f(0), f(1), f(2), f(3), f(4), f(5), f(6), f(7)]T

into

F = [f(0), f(4), f(1), f(5), f(2), f(6), f(3), f(7)]T .

Fig. 6.19 shows a realization of this mapping by a network containing
(2 × 1) multiplexers.

Matrix transposition is another task that can be handled by multi-
plexer networks. Since the number of inputs is usually smaller than the
number of matrix entries, some registers are also required to delay data
before relocation and forwarding to the output. In two-dimensional net-
works, the delay is performed in parallel lines. Multiplexers as parts
of networks are used to exchange data between different locations. Net-
works for matrix transposition form a subclass of permutation networks.
In the design of such networks, the optimization goal is the minimization
of the number of multiplexers or registers. In [10], [11] it is proposed
a design methodology for two-dimensional networks for matrix trans-
position with minimum number of registers. These networks will be
illustrated in the following example.
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Figure 6.19. Realization of the perfect shuffle by multiplexers.

Example 6.14 Consider the design of a network for transposition of

The data are allocated to the registers as specified in Table 6.3. At each
clock cycle, data are shifted in parallel and sent to the output immedi-
ately when they become available. In Table 6.3 a backward allocation of
the data elements is shown by the arrows. Circles denote data that are
sent to the output. Fig. 6.20 shows the structure of the corresponding
network for the transposition of (4 × 4) matrices.

(4×4) matrices. The elements of these matrices are denoted by 0, 1,...,15.
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Table 6.3. Allocation of data in the network for transposition of a (4 × 4) matrix.

time t = 1 t = 2 t = 3 t = 4

t = 6 t = 7t = 5

Input

Input

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7

0 1 2 3

0 4 8 12

3 13 14 15

2 9 10 11 3 7 14 15

1 5 6 7 2 6 10 11 3 7 11 15

1 5 9 13 2 6 10 14 3 7 11 15

D D D D0 1 2 3

D D D D0 1 2 3

D D D D4 5 6 7

D D D D4 5 6 7

D D D D98 10 11

D D D D98 10 11

Output

Output

3. Demultiplexers
Demultiplexers are circuits that perform the inverse operation of mul-

tiplexers, that is, a single input is directed to one of the 2n possible
outputs. It follows that a demultiplexer can be viewed as a multilevel
switch as illustrated in Fig. 6.15, that has a single input y, n control
inputs, and 2n outputs.

Similarly to multiplexers, a demultiplexer with a larger number of
control inputs, can be realized by a combination of demultiplexers of
the smaller size. Fig. 6.23 shows realization of a multiplexer with four
control inputs, i.e., (1×4) demultiplexer, by three (1×2) demultiplexers
arranged into a network with the structure of a tree. Fig. 6.24 shows
realization of a (1 × 4) demultiplexer by NAND circuits.

4. Synthesis with Demultiplexers
Demultiplexers can be used in circuit synthesis in similar ways as

multiplexers, however, their main use is as address decoders. In this case,
the data input is set to the logic value 1, y = 1, and the control inputs
to which switching variables x1, . . . , xn has been applied, are considered
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Figure 6.24. Realization of a (1 × 4) demultiplexer by NAND circuits.

as primary inputs. The minterms that are generated at the outputs of
a demultiplexer can be used to address particular words in a memory
structure. For this reason, a demultiplexer with the above assignments
of inputs is called an address decoder. Fig. 6.25 shows a demultiplexer
used as an address decoder.

Since address decoders produce minterms at the outputs, they can be
used for circuit synthesis based on the complete disjunctive normal form
representations by simply connecting the corresponding outputs by logic
OR circuits as shown in Fig. 6.26.

Example 6.15 from
Example 6.7 by an address decoder with four inputs.

Fig. 6.27 shows realization of the function f
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Figure 6.27. Synthesis with address decoder.

Due to the duality of the functions of multiplexers and demultiplexers,
a network of multiplexers can be converted into an equivalent network
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Figure 6.28. Demultiplexer network for f in Example 6.7.

with demultiplexers by connecting the corresponding outputs of demul-
tiplexers with logic OR circuits.

Example 6.16 Fig. 6.28 shows the demultiplexer network realizing the
function f in Example 6.7. This network is derived by replacing multi-
plexers in the network in Fig. 6.13 with demultiplexers and connecting
the outputs by OR circuits. It is shown in [31] that this is the minimal
network in terms of the number of modules and the delay, under the
restriction that the synthesis is performed with demultiplexers with two
control inputs.

5. Applications of Demultiplexers
Applications of demultiplexers are complementary or similar to those

of multiplexers. In the following, we show two classical applications of
demultiplexers, see for example, [31], [96].

Example 6.17 Fig. 6.29 shows a network with demultiplexers used to
transfer the contents of a register E to any of four available registers A,
B, C, and D.
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Figure 6.30. Switch for words by using address decoder.

Example 6.18 Fig. 6.30 shows a switch for words described in Exam-
ple 6.10 realized by using an address decoder with two inputs.
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6. Exercises and Problems
Exercise 6.1 Realize the function f(z) = z2 + 2z for z ∈ {0, . . . , 7} by
(4 × 1) multiplexers.

Exercise 6.2 Realize by a network the function representing parity bit
for the BCD code with weights 8421.

Exercise 6.3 Realize by a network the function representing odd parity
bit for the code overhead 3.

Exercise 6.4 Realize a network that activates the seven-segment dis-
play of first 10 non-negative integers as shown in Fig. 6.31.

BCD
Encoded
Digits

Network

y1

y2

y3

y4

y5

y6

y7

Figure 6.31. Seven-segment display.

Exercise 6.5 Realize a network for the code converter which converts
the binary code with weights 4221 of first 10 non-negative integers num-
bers into the Gray code. Notice that a Gray code represents each number
in the sequence {0, 1, . . . 2n} as a binary n-tuple such representations
of adjacent numbers differ in a single bit. There may be many Gray
codes for a given n. This often used is the binary-reflected Gray code
which can be generated by starting from the n-tuple of all bits zero and
successively flipping the right-most bit that produces a new sequence.

Exercise 6.6 Denote by AB and CD coordinates of two two-bit binary
numbers. Realize a network whose output is 1 when the number AB is
greater than CD.

Exercise 6.7 Realize a network whose input are first 10 non-negative
integers x in the Gray code, and whose output has the value 1 when
5 ≤ x ≤ 7.

Exercise 6.8 Realize a network which generates the output f(x) =
x(mod3) + 4 for 0 ≤ x ≤ 25.
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Table 6.4. BCD and Hamming code.

BCD Hamming

0 0000 0000000
1 0001 0000111
2 0010 0011001
3 0011 0011110
4 0100 0101010
5 0101 0101101
6 0110 0110011
7 0111 0110100
8 1000 1001011
9 1001 1001100

Exercise 6.9
(BCD) code into the Hamming code as specified in Table 6.4.

Exercise 6.10 [94]
Consider the switching function f(x1, x2, x3) defined by the set of decimal
indices corresponding to 1-minterms f(1) = {0, 4, 6, 7}. Realize f by an
(8× 1) decoder and an OR circuit. Repeat the realization with the same
decoder and an NOR circuit. Compare the realizations in the number
of required outputs of the decoder.

Exercise 6.11 [94]
The function f(x1, x2, x3) is given by the set of decimal indices of
1-minterms f(1) = {0, 3, 4, 5, 6}. Realize f by an (8 × 1) decoder and
an AND circuit and the same decoder and a NAND circuit. Compare
these realizations in the number of required nodes of the decoder.

Exercise 6.12 [94]
Realize the switching function f = x1x3 + x1x2 + x1x2x3 + x1x2x3 by
an (8 × 1) multiplexer. Compare it with the realizations with (4 × 1)
and (2 × 1) multiplexers. Use the Shannon expansions to determine the
corresponding inputs.

Exercise 6.13 Realize the switching function f = x1x2x5 + x2x3x5 +
x2x3x5 + x2x4x5 + x3x4x5 by a (4 × 1) multiplexer and logic AND and
OR circuits.

Start by the Shannon expansion of f with respect to two variables that
appear in the largest number of products.

Realize the code converter which converts the binary
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Exercise 6.14 [94]
Realize the function f = x1x3x4 + x1x2x4x5 + x1x2x4x5 + x1x2x3x4x5 +
x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 by (4 × 1) multiplexers.

Exercise 6.15 Realize the function f(x1, x2, x3) = x1x2 ∨ x1x2x3 by a
(4 × 1) multiplexer network, with the minimum number of modules.

Exercise 6.16 From the BDD for the function f(x1, x2, x3, x4) = x1x2∨
x1x3 ∨x2x3x4, determine the corresponding (2×1) multiplexer network.
Compare realizations with BDDs for a few different orders of variables.

Exercise 6.17 Realize the function f(x1, x2, x3, x4) = x1⊕x2⊕x3⊕x4

by a network of

1 (2 × 1),

2 (4 × 1),

3 (8 × 1),

multiplexers.

Exercise 6.18 Realize the function from Exercise 6.16 by (4× 1) mul-
tiplexers using the following combination of variables at control inputs

1 (x1, x3) and (x2, x4),

2 (x1, x4), and (x2, x3).

Exercise 6.19
consisting of (1 × 2) demultiplexers.

Exercise 6.20 Determine the function f realized by the network in
Fig. 6.32.

0

0

0

0

0

1

1

1

1

1

f1

f2x1

x2

x2

x3

x3

Figure 6.32. Network in Exercise 6.20.

Realize the function in Exercise 6.16 by a network



Chapter 7

REALIZATIONS WITH ROM

A Re d Only Memory (ROM) is a part of computer devices used to
store data written by manufacturers that is only meant to be read by
the user. It can be viewed as a two-dimensional array of cells mi,j

with N inputs y1, . . . , yN−1 and M outputs z1, . . . , zM−1. Fig. 7.1 shows
the structure of a ROM. When the input yi is activated, it reads the
contents of the cells mi,j in the i-th row and sends the content of each to
the corresponding output zj . The output z1, . . . , zM−1, called the word
in the memory, is therefore determined by

zj =
N−1∨
i=0

yimi,j , 0 ≤ j ≤ M − 1.

1. Realizations with ROM
ROMs can be used to realize multi-output functions with M outputs

if the memory cell mi,j contains the i-th value of the j-th output when
expressed in disjunctive normal form. Thus, if mi,j = fj(i), then

zj(y1, . . . , yN−1) =
2n−1∨
i=0

mi(x)fj(i) = fj(x), 0 ≤ j ≤ M − 1.

In this case, the inputs yi, i = 0, . . . , 2n−1 are determined as outputs
of an address decoder. Fig. 7.2 shows principle of the realization of an
output function by ROM.

Example 7.1 The sum and carry bits of a three bit adder are repre-
sented by truth-vectors

F0 = [0, 1, 1, 0, 1, 0, 0, 1]T ,

171
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Figure 7.2. Realization of a multi-output function by ROM.

F1 = [0, 0, 0, 1, 0, 1, 1, 1]T .

This two-output function can be realized by a ROM as shown in Fig. 7.3.
It is obvious that in this realization it is actually implemented the com-
plete disjunctive normal form

f = x1x2x3f(0) ∨ x1x2x3f(1) ∨ x1x2x3f(2) ∨ x1x2x3f(3)
∨x1x2x3f(4) ∨ x1x2x3f(5) ∨ x1x2x3f(6) ∨ x1x2x3f(7).

Code converters are devices that perform conversion from one rep-
resentation into another. The following example illustrates a converter
from binary coded digits (BCD) into the Grey code, which is a code
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Figure 7.3. Realization of the three-bit adder by ROM.

where the successive code words differ in a single bit. Notice that there
several ways to define a Gray code with this property and few of them
are used in the practice.

Example 7.2 BCD to Gray code converter is a device whose input is a
four-bit BCD number and the output is a four-bit Gray code number. It
can be described by the following set of functions

f1 = x1 + x2x4 + x2x3,

f2 = x2x3,

f3 = x2 + x3,

f4 = x1x2x3x4 + x2x3x4 + x1x4 + x2x3x4.

Fig. 7.4 shows a realization of this code converter.

Example 7.3 Seven segment display is a standard way to write numbers
in an electronic form. Segments are highlighted separately to form combi-
nations that show digits. Each segment is controlled by a switching func-
tion and if these functions are written in terms of variables x3, x2, x1, x0,
then functioning of the seven segment display can be descried by the set
of functions

f0 = x3 ∨ x1 ∨ x2x0 ∨ x2x0,

f1 = x2 ∨ x1x0 ∨ x1x0,

f2 = x3 ∨ x2 ∨ x1 ∨ x0,
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Figure 7.4. BCD to Gray code convertor.

f3 = x3 ∨ x1x0 ∨ x2x1 ∨ x2x0 ∨ x2x1x0,

f4 = x2x0 ∨ x1x ,

f5 = x3 ∨ x2x0 ∨ x1x0 ∨ x2x1,

f6 = x2x1x0.

These functions can be efficiently realized by a programable logic device
as shown in Fig. 7.5.

In [31], there is a realization of the seven segment display by classical
logic circuits as shown in Fig. 7.6, achieving the minimal realization by
exploiting the property that in f0 the term x2x0 can be replaced by the
term x2x1x0, which also appears in f3.

Fig. 7.7 shows a realization of the seven segment display by ROM.

In the above examples, multiplexers are used to read the function
values from ROMs with reduced dimensions. The realization with ROM
can be efficiently combined with multiplexer synthesis, since inputs in a
tree network of multiplexers can be generated by ROMs.

Example 7.4 [155]
The majority function is a function that has the value 1 for all those
assignments of binary variables where the number of 1 bits is larger than

0



Realizations with ROM 175

PLD
x3
x2
x1
x0

Figure 7.5. Seven segment display.

x2

x2

x2

x0

x0

x0

x1

x2

x2

x2

x1

x0

x1

x1

x1

x3

x3

x3

x3

x3

x1

x1

x0

x1

x0

x0

x2

_

_

_

_

_

_

_

_

_

_

_

A

B

C

D

E

F

G

f0

f1

f2

f3

f4

f5

f6

Figure 7.6. Minimal realization of seven segment display by classic logic elements.

or equal to the number of zero bits. For n = 5, the majority function
can be expresses as

f(x1, x2, x3, x4, x5) = g0(x1, x2, x3)x4x5 ∨ g1(x1, x2, x3)x4x5

∨g2(x1, x2, x3)x4x5 ∨ g3(x1, x2, x3)x4x5

where

g0 = x1x2x3,

g1 = g2 = x1x2 ∨ x2x3 ∨ x1x3,

g3 = x1 ∨ x2 ∨ x3.
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Figure 7.7. Realization of seven segment display by ROM.
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Figure 7.8. Realization of the majority function by ROM.

Due to this representation, f can be realized by a tree of multiplexers with
x4 and x5 at control inputs and subfunctions gi, i = 0, 1, 2, 3 realized by
ROMs. Fig. 7.8 shows a realization of the majority function by a tree of
multiplexers and ROMs.

2. Two-level Addressing in ROM Realizations
In realizations by ROM, the complete truth-vector is saved. It fol-

lows that classical minimization of functions does not have much sense
in ROM realizations. However, in practical applications, it may happen
that the size of memory required for a given function does not fit to stan-
dard ROM dimensions, or the available space does not allow to place the
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Figure 7.9. ROM with two-level addressing.

required ROM. Therefore, the optimization in synthesis by ROM may
include a possibility to change the geometry of ROM. For instance order,
two-level addressing can be applied, resulting in a circuit of the struc-
ture shown in Fig. 7.9. The set of variables {x1, x2, . . . , xn} is split into
two subsets {x1, . . . , xr} and {xr+1, . . . , xn}. The optimization of ROM
realizations consists of dividing the set of input variables {x1, . . . , xn}
optimally into two subsets of variables that are applied at the inputs of
address decoder and the multiplexer network.

Therefore, two-level addressing realization with ROM can be based
on the following expressions derived for various combinations of k fixed
variables, with k = 1, 2, 3, . . . , n,

f(x1, . . . , xn) = x1f(0, x , . . . , xn) ∨ x1f(1, x2, . . . , xn)
f(0, 0, x3, . . . , xn)x1x2

∨f(0, 1, x3, . . . , xn)x1x2

∨f(1, 0x3, . . . , xn)x1x2

∨f(1, 1x3, . . . , xn)x1x2

= f(0, 0, 0, x4, . . . , xn)x1x2x3

∨f(0, 0, 1, x4, . . . , xn)x1x2x3

f(0, 1, 0, x4, . . . , xn)x1x2x3

...
f(1, 1, 1, x4, . . . , xn)x1x2x3

= f(0, 0, 0, . . . , 0)x1x2 · · ·xn ∨ f(1, 1, 1, . . . , 1)x1x2 · · ·xn

Two-level addressing in ROM realizations provides the following fea-
tures

2
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Figure 7.10. Realization by ROM with the decomposition with respect to x1, x2.

1 Reduced size of ROM by minimization of the number of rows,

2 Optimization of the address decoder, by replacing it with an opti-
mized demultiplexer network.

3 Selection of an optimized multiplexer network at the output.

Example 7.5 Fig. 7.10 and Fig. 7.11 show ROM realizations for k = 2
and expansions with respect to x1, x2 and x1, x3, respectively. It is
obviously a different geometry of ROM.

Example 7.6 Sine is an important function often met in mobile de-
vices. Due to the periodicity, it is sufficient to realize it for 0 ≤ x ≤ 90◦.
If the variable x is expressed as x = (x12−5 + x22−4 + x32−3 + x42−2 +
x52−1)90, then sin(x) = y12−8 + y22−7 + · · · + y82−1 and can be repre-
sented by truth-vectors as an five input eight output function and realized
as shown in Fig. 7.12.

Example 7.7 Consider a system of functions

f0 = x2 + x0x3 + x1x3 + x0x1,

f1 = x3 + x1x2 + x0x2 + x0x1,

f2 = x0 + x2x3 + x1x3 + x1x2,

f3 = x1 + x0x3 + x2x3 + x0x2.
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Figure 7.11. Realization by ROM with the decomposition with respect to x1, x3.
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Figure 7.12. Realization of sin(x) 0 ≤ x ≤ 90◦, by ROM.

Fig. 7.13 shows the optimal ROM realization of this system with re-
spect to the demultiplexer network at the input and the multiplexer net-
work at the output under the requirement that realization is done with
four-input ROM.
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Figure 7.13. Realization of the system of functions in Example 7.7.

3. Characteristics of Realizations with ROM
Basic characteristics of realizations with ROM can be summarized as

follows

1 A given function f is represented by the truth-vector, and therefore,
there is no minimization in terms of the number of product terms in
SOP representations.

2 Due to that, ROM realizations are inefficient in the case of functions
that have many 0 or 1 values. This is a drawback of ROM realizations.

As convenient features, we point out

1 ROM realizations are useful in the cases when functions realized are
described in a way that truth-tables are directly stored.

2 Such realizations are efficient for functions having many product
terms in SOP representations. Examples are functions describing
arithmetic circuits.

3 ROM are efficient when frequent change of the functioning of a net-
work is required. Examples are converters of codes.
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4. Exercises and Problems
Exercise 7.1 Table 7.1 shows six different codes of the first 10 non-
negative numbers. Realize the following code converters by ROM

1 BCD into the Gray code,

2 BCD into 6, 3, 1,−1,

3 BCD into XS3,

4 BCD into 2421,

5 BCD into 2 of 5.

Try realizations by ROM with different number of rows and columns.

Table 7.1. Codes in Exercise 7.1.

BCD Gray 6, 3, 1,−1 XS3 2421 2 of 5

0 0000 0000 0000 0011 0000 00011
1 0001 0001 0010 0100 0001 00101
2 0010 0011 0101 0101 0010 01001
3 0011 0010 0100 0110 0011 10001
4 0100 0110 0110 0111 0100 00110
5 0101 0111 1001 1000 1011 01010
6 0110 0101 1011 1001 1100 10010
7 0111 0100 1010 1010 1101 01100
8 1000 1100 1101 1011 1110 10100
9 1001 1101 1111 1100 1111 11000

Exercise 7.2 Realize the system of functions f = (f1, f2) specified in
Table 7.2, by (2 × 8) and (4 × 4) ROMs.

Exercise 7.3 Realize the system of functions

f1(x1, x2, x3) = x1 + x3 + x1x2 + x1x3,

f2(x1, x2, x3) = x2 + x3 + x1x2 + x2x3,

f3(x1, x2, x3) = x1x2 + x2x3 + x1x3,

f4(x1, x2, x3) = x2x3 + x1x3,

by four-input ROM.
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Table 7.2. System of functions in Exercise 7.2.

x1x2x3 f1 f2

1. 000 1 1
2. 001 0 1
3. 010 1 0
4. 100 1 1
5. 101 0 1
6. 110 1 0
7. 111 1 0
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x3 0 1
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1
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1

0

f x x( , ,0)1 2 f x x( , ,1)1 2

f

Figure 7.14. Network for the function f in Exercise 7.4.

Exercise 7.4 Write the SOP-expression for the function f realized by
the network in Fig. 7.14.

Exercise 7.5 Realize the function given by the truth vector
F=[1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1]T,
by a four input ROM. Try to minimize the number of required (2 × 1)
multiplexers.

Exercise 7.6 F=[2, 1, 0, 1, 1, 2, 1, 2]T

as a two-output binary-valued function f = (f0, f1), where f0 and f1 are
binary coordinates of entries in F, and realize by ROM.

Represent the integer-valued function



Chapter 8

REALIZATIONS WITH PROGRAMMABLE
LOGIC ARRAYS

The simplest form of Programmable Logic Arrays (PLAs) consists of
two matrix-like elements where the first implements product terms of
chosen variables and the second implements sums of chosen products.
PLAs with input coding can be viewed as memory structures with ad-
dressing through associated or translation functions. Then, the input is
an address and the outputs are function values for inputs specified by
the addresses.

Fig. 8.1 shows the structure of a commercially available PLA. It con-
sists of

1 AND matrix which realizes the logic AND operation and generates
products (implicants) of input variables,

2 OR-matrix, alternatively EXOR-matrix, to perform addition of the
outputs of the AND-matrix,

3 An input register to input data into the AND-matrix,

4 An output register to transfer the output of the OR-matrix to the
output of the PLA,

5 A feedback register to connect the output of the OR (EXOR)-matrix
to the input of the AND-matrix.

From the structure of a PLA it is obvious that PLAs can be used to
realize combinational networks for switching functions in the SOP rep-
resentations. The feedback register allows to realize also sequential net-
works. The realization is performed by establishing connections between
horizontal and vertical lines in the AND and OR (EXOR) matrices. This

183
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Input
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Figure 8.1. Structure of a PLA.

design methodology is called the personalization of a PLA and it is per-
formed by arranging connections between the AND and OR matrices.
There are several technological ways to determine links between lines in
a PLA as a part of production procedure by mask programming or by

Schottky diodes and in the OR-matrix by bipolar transistors.
Notice that besides PLA, some produces provide programmable de-

Ar
nections between products terms and specific OR circuits are hardwired.
The number of product terms representing inputs in an OR-circuits are
usually restricted to 2,4,8 and 16. Notice that unlike PLAs, in PALs
sharing of product terms is not supported.

1. Realizations with PLA
The PLA realization of a switching function can be partitioned into

three tasks [35]

1 Functional design, that consists of determination of a set of two-level
sum-of-product representation of the given multiple-output functions.

fusible diodes. For example, in the case of a pioneering PLA 82S100
by Signetic Corporation, connections in the AND-matrix are established by

ray Logic (PAL) devices have a programmable AND array, while the con-
vices with restricted programmability. For instance, Programmable



Realizations with PLA 185

x0

x1

x2

x3

f0

f1

f3

AND

OR

Figure 8.2. Realization of the system of functions in Example 8.1.

This procedure is followed by the logic minimization to reduce the
number of implicants, which can be done by classical logic minimizers,
as for instance, [17], [145].

2 Topological design, that involves the transformation of the set of
implicants into a topological representation of the PLA structure,
such as a symbolic table or a stick diagram.

3 The physical design to transfer the topological representation into
the assumed technologic array.

Example 8.1 Fig. 8.2 shows realization of the following system of switch-
ing functions by a PLA

f0 = x0 + x2x3 + x1x2,

f1 = x2x3 + x1 + x0x3,

f2 = x0 + x1 + x2x3,

f3 = x2x3 + x0x1x2.
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Figure 8.3. Functioning of an adder.

xiyici−1 si ci ci

000 0 0 1
001 1 0 1
010 1 0 1
011 0 1 0
100 1 0 1
101 0 1 0
110 0 1 0
111 1 1 0

2. The optimization of PLA
The complexity of a PLA, thus, its cost, is determined by the number

of inputs and the area occupied. Therefore, the optimization is directed
towards reduction of the number of inputs, when this is possible, since
this usually also results in reduction of the number of outputs and the
area. However, reduction of the number of inputs, which reduces the
number of rows in AND-matrix, does not necessarily impliy reduction of
the number of columns of the AND-matrix. There are examples, where
reduction of the number of inputs increases the number of implicants.
The reduction of implicants can be performed by the classical methods
for minimzation of disjunctive normal forms. However, it can be shown
that in practical applications, reduction of the number of inputs is more
important than the reduction of implicants for the reduction of the area
of PLA.

The optimization methods in synthesis with PLAs will be illustrated
by an example of n-bit adders. Recall that an n-bit adder is a device
that has two integers x = (x1, . . . , xn) and y = (y1, . . . , yn) as inputs,
and produces their (n + 1)-bits sum z = x + y = (z1, . . . , zn+1) at the
output. Notice, that z requires (n + 1) bits, due to the possible carry.
Thus, an n-bit adder can be represented by a function with 2n inputs
and (n + 1) outputs, f(xn−1, . . . , x0, yn−1, . . . , y0). Fig. 8.3 shows basic
principle of functioning of an adder.

Example 8.2 For n = 3, the sum si and carry ci of an adder can be
represented by the Table 8.3. The sum and carry bits can be expressed
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as the disjunctive normal forms

si = xiyici−1 + xiyici−1 + xiyici−1 + xiyici−1,

ci = xiyici−1 + xiyici−1 + xiyici−1 + xiyici−1.

Fig. 8.4 shows a PLA that realizes si and ci. This realization requires
a PLA with seven columns.

Notice that in the SOP for si the true minterms correspond to the
decimal indices 1, 2, 4 and 7. True minterms in ci are at decimal indices
3, 5, 6, and 7. Thus, there are a single joint minterm at the decimal
index 7 for si and ci. The union of true minterms in si and ci is si∪ci =
{1, 2, 3, 4, 5, 6, 7}. However, the disjunctive form for ci is given by

ci = xiyi−1ci−1 + xiyici−1 + xiyici−1 + xiyici−1.

In this expression true minterms are at the decimal indices 0, 1, 2, and
4. Therefore, there are three joint minterms at decimal indices 1, 2 and
4. Thus, the union of true minterms in si and ci is si∪ci = {0, 1, 2, 4, 7},
and the number of columns in the resulting PLA would be five as shown
in Fig. 8.5. In this figure, the logic complement of ci is realized by a
EXOR circuit with an input set to the logic constant 1, thus, left open
as follows from

x1x2 ⊕ x1x2 =
{

x1, x2 = 0,
x1, x2 = 1.

It can be shown that the function expressions for si and ci can be
written as

si = xiyici−1 + xiyici−1 + xiyici−1 + xiyici−1,

= (xiyi + xiyi)ci−1 + (xiyi + xiyi)ci−1,

and

ci = xiyici−1 + xiyici−1 + xiyici−1 + xiyici−1

= (xiyi + xiyi)ci−1 + xiyi

= (xi + yi)(xi + yi)ci−1 + (xi + yi)(xi + yi)(xi + yi).

In these expressions, the maxterms, i.e., sums of variables xi and yi for
all possible combinations of polarities for variables appear. They can be
realized by negating the outputs of an address decoder with these variables
xi and yi at the inputs. Fig. 8.6 shows the realization of the three-bit
adder with the address decoder at the input.
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Figure 8.5. Realization of three-bit adder by using complement of carry.

Fig. 8.7 compares these three different realizations of the three-bit
adder.

A spectral method utilizing logic autocorrelation functions calculated
by the the Walsh transform for optimization of the AND-matrix in PLAs
has been proposed in [95].
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Figure 8.7. Comparison of different realizations of the three-bit adder.

3. Two-level Addressing of PLA
The optimization of PLA can be achieved by three-level PLAs, i.e., by

two-level addressing in PLAs. In this approach, the set of input variables
(x1, . . . , xn) is split into subsets, and an auxiliary matrix D generates
minterms with respect to the variables in each of the subsets. The output
of the D-matrix is the input in the AND-matrix, the output of which is
the input in the OR-matrix. The matrix D can be conveniently realized
by address decoder or can be replaced by another OR-matrix, which
produces OR-AND-OR PLAs.
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The previous example illustrates the method of optimization of PLA
by realization of the complement of the output function and by using
address decoders at the input. The following example illustrates opti-
mization of PLAs by two-level addressing.

Example 8.3 Consider a function

f = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4

+x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4.

This expression can be simplified by the application of rules of the
Boolean algebra as

f = x1x3 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4

+x1x2x3x4 + x1x2x3x4 + x1x2x3x4.

If the set of input variables {x1, x2, x3, x4} is split into two subsets
{x1, x2} and {x3, x4}, then f can be written as

f = (x1x2 + x1x2)(x3x4 + x3x4) + (x1x2 + x1x2)(x3x4 + x3x4)
+(x1x2 + x1x2)(x3x4 + x3x4).

In this expression, there are minterms involving either x1, x2 or x3,
4 can be generated by using two separate address decoders.

Fig. 8.8 shows the corresponding OR-AND-OR realization by PLA. This
realization is called two-address PLA.

If in this expression, minterms are converted into maxterms, f can be
written as

f = (x1 + x2)(x1 + x2)(x3 + x4)(x3 + x4)
+(x1 + x2)(x1 + x2)(x3 + x4)(x3 + x4)
+(x1 + x2)(x1 + x2)(x3 + x4)(x3 + x4).

Fig. 8.9 shows a realization of f derived from this expression and
where minterms are realized by address decoders. Therefore, this is a
D-AND-OR realization of f .

1 3

and {x2, x4}, then it is possible to represent f as

f = g0 + g1,

where

g0 = (x1 + x3)(x2 + x4)(x2 + x4),
g1 = (x1 + x3)(x1 + x3)(x2 + x4)(x2 + x4).

However, if the set of input variables is decomposed into subsets {x ,x }

x . They
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Figure 8.8. PLA for f in Example 8.3 with OR-AND-OR.

This representation provides the simplest realization shown in Fig. 8.10.
The maxterms are generated by address decoders with negated outputs.
Fig. 8.11 shows a realization of the same expression, where maxterms
are generated by an OR-matrix at the input of the classical AND-OR
PLA structure.

4. Folding of PLA
In practical implementations, AND and OR matrices in a PLA are

usually sparse, since the logic minimization is performed. This sparsity
can be utilized with an optimization technique called PLA folding to
reduce the array occupied by a PLA, as well as the capacitance of the
lines, which produces faster circuits. The technique consists of finding
a permutation of the columns, and rows, or both, that produces the
maximal set of columns and rows which can be implemented in the same
column, respectively row, of the physical array. In this way, a PLA is
split into a few AND and OR matrices. The splitting is possible when
the product terms for different outputs are disjoint.

In the literature, the following cases have been considered
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Figure 8.10. Reduced PLA for f in Example 8.3 with D-AND-OR structure.

1 Simple folding when a pair of inputs or outputs share the same col-
umn or row, respectively. It is assumed that the input lines and the
output lines are either on the upper or lower sides of the columns,
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f

x1 x2 x3 x4

Figure 8.11. Reduced PLA for f in Example 8.3 with OR-AND-OR structure.

thus, there no intersections between folded lines. Most often, the
input and output lines are folded in the AND and OR matrix, re-
spectively, due to electrical and physical constrains.

2 Multiple folding is a more general technique where the input and
output lines are folded as much as possible to minimize the number of
columns, respectively rows, in AND and OR matrices. This method
reduces the area. However, routing of the input and output lines
is more complicated, and another metal or polysilicon layer may be
required. Therefore, multiple folding is efficient when the PLA is a
component of a large system where several metal or polysilicon layers
are already required.

3 Bipartite folding is a special example of simple folding where column
breaks between two parts in the same column must occur at the same
horizontal level in either the AND or OR-matrix.

4 Constrained folding is a restricted folding where some constrains such
as the order and place of lines are given and accommodated with other
foldings.

It has been shown that PLA folding problems are NP-complete and
the number of possible solutions approximates c! or r!, were c and r are
the number of columns and rows in the initial PLA, respectively. How-
ever, the procedure of folding can be automatized, and many algorithms
have been proposed, by using different approaches, see for example [35],
[42], [57], [58], [194], [200].
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Figure 8.12. Realizations of f in Example 8.4, by (a) PLA, (b) PLA with folded columns,
and (c) PLA with folded rows.

Example 8.4 Consider a four-variable two-output function f = (f0, f1),
where

f0 = x1x2 + x1x2x4,

f1 = x2x3x4 + x3x4.

Fig. 8.12 shows (a) a PLA for this function f , (b) the PLAs with
columns folded, and (c) the PLA with rows folded.

5. Minimization of PLA by Characteristic
Functions

Multiple-valued (MV) functions are defined as mappings

f : {0, 1, . . . , p − 1}n → {0, 1, . . . , p − 1}k,

where p �= 2, n is the number of variables and k the number of outputs.
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The literal for a p-valued variable X is a subset S ⊆ {0, 1, . . . , p− 1},
and denoted by XS . The literal over X corresponding to a value j is Xj .
If S = Ø, the corresponding literal is an empty literal and the literal for
S = {0, 1, . . . , p − 1} is the full literal and means don’t care condition
for that variable. The complement of a literal is the complementary set
S for S. Thus, XS = XS . A literal is true when X ∈ S, otherwise it is
false. Thus, the empty literal is always false and the full literal is always
true.

A multiple-valued input binary output function can be represented in
the ways analogous to the representations of binary switching functions
including sum-of-product and product-of-sum representations.

These functions are used as mathematical models of signals with p sta-
ble states, however, can be efficiently applied in solving some problems
in realizations of binary-valued functions. An example of such applica-
tions is reduction of the area in PLAs with address decoders as proposed
in [149].

The method proposed in [149] exploits the feature that an n-variable
binary-valued multiple-output function f = (f1, . . . , fk) can be repre-
sented by a single-output binary-valued function F with n binary-valued
variables and the k-valued (n + 1)-st variable. This function F is called
the characteristic function for f and defined as follows [149].

Definition 8.1 (Characteristic functions)
If f = (f1, . . . , fk), where fj = fj(x1, . . . , xn), j = 0, . . . , k − 1, then
the characteristic function for f is F : {0, 1}n ×{0, 1, . . . , k − 1} defined
by F (a1, . . . , an, j) = fj(a1, . . . , an) for (a1, . . . , an) ∈ {0, 1}n and j ∈
{0, 1, . . . , k − 1}.

Since each multiple-output binary-valued function can be expressed
as a binary-valued function of multiple-valued inputs, minimization of
the latter one leads to the minimization of the former one.

It can be shown [149] that in a two-level network derived from the
minimum sum-of-product (MSOP) expression for F , the number of AND
circuits will be minimum. However, the number of interconnections in
the network produced is not always the minimum. Since reduction of
AND-matrix is a main goal in PLA design, MSOPs for the characteristic
functions F can be used to design PLAs with reduced arrays. The
method will be explained by the following example taken from [155].

Example 8.5 Consider a function f = (f1, f2, f3) given by the
Table 8.1. Then, the characteristic function F = F (X1, X2, X3, X4) is
given by the Table 8.2. The SOP expression for F is

F = X0
1X0

2X0
3X1

4 + X0
1X0

2X0
3X2

4 + X0
1X0

2X1
3X2

4 + X0
1X1

2X1
3X2

4
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Figure 8.13. Realization of f in Example 8.5 (a) direct (b) MSOP for F .

+X1
1X0

2X1
3X0

4 + X1
1X0

2X1
3X1

4 + X1
1X1

2X0
3X0

4 + X1
1X1

2X1
3X0

4 .

The correspondence between f and F is established by the variable
X4 and its superscript which shows the index of the output fj which
takes the value 1 at the assignment specified by the superscripts of Xi.
For example, X0

1X0
2X0

3X1
4 shows that f1 = 1 for X1 = X2 = X3 = 0.

Similarly, from X0
1X0

2X0
3X2

4 , it follows f1 = 1 for X1 = X2 = X3 = 0.
The minimum SOP (MSOP) for F is determined by joining pairs of

successive product terms. Therefore,

F = X0
1X0

2X0
3X1,2

4 + X0
1X0,1

2 X1
3X2

4 + X1
1X0

2X1
3X0,1

4 + X1
1X1

2X0,1
3 X0

4 .

The products in the minimum SOP for F determine rows in the PLA
for f . Fig. 8.13 shows PLAs for direct implementation of f and realiza-
tion determined by the MSOP for f . In this example, the minimization
by the characteristic function reduces the number of columns from 8 in
direct realization to 4 in the minimized PLA.

6. Exercises and Problems
Exercise 8.1 Realize by PLA a BCD to Gray code converter, where
the BCD number is represented by x1, x2, x3, x4 and the four outputs for
the Gray code word y1, y2, y3, y4 are defined as

y1 = x1 + x2x4 + x2x3,

y2 = x2x3,



Realizations with PLA 197

Table 8.1. Truth-table for f in
Example 8.5.

x1, x2, x3 f1 f2 f3

000 0 1 1
001 0 0 1
010 0 0 0
011 0 0 1
100 0 0 0
101 1 1 0
110 1 0 0
111 1 0 0

Table 8.2. Characteristic function F for f
in Example 8.5.

X1, X2, X3, X4 F

1 0000 0
2 0001 1
3 0002 1
4 0010 0
5 0011 0
6 0012 1
7 0100 0
8 0101 0
9 0102 0

10 0110 0
11 0111 0
12 0112 1
13 1000 0
14 1001 0
15 1002 0
16 1010 1
17 1011 1
18 1012 0
19 1100 1
20 1101 0
21 1102 0
22 1110 1
23 1111 0
24 1112 0

y3 = x2 + x3,

y4 = x1x2x3x4 + x2x3x4 + x1x4 + x2x3x4.

Since there are no shared product terms, the PLA realization of these
functions is convenient.

Exercise 8.2

y1 = x1,

y2 = x1x2 ∨ x1x2,

y3 = x2x3 ∨ x2x3,

y4 = x3x4 ∨ x3x4.

Exercise 8.3 A two-bit magnitude comparator has four inputs x1, x2,
x3, x4 representing two two-bit numbers at the inputs and four outputs
taking the value 1 as specified as follows. The output

Realize the BCD to a Gray code converter specified by
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Figure 8.14. PLA for f1 and f2

in the Exercise 8.6.
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Figure 8.15. PLA for fPLA for
f1 and f2 in the Exercise 8.7.

feq = 1 when x1x2 = x3x4,
fne = 1 when x1x2 �= x3x4

flt = 1 when x1x2 < x3x4

fgt = 1 when x1x2 > x3x4.

Show that the corresponding SOP-expressions for the outputs are

feq = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4,

fne = x1x3 + x1x3 + x2x4 + x2x4,

flt = x1x3 + x1x2x4 + x2x3x4,

fgt = x1x3 + x1x2x4 + x2x3x4,

and design the corresponding PLA realizing these functions.

Exercise 8.4 Realize code converters in Exercise 7.1 by PLAs.

Exercise 8.5 Consider the function f of four variables defined by

f(x1, x2, x3, x4) = x1x2x3 + x1x2x3 + x1x2x4 + x1x2x4

+x1x2x4 + x1x2x3 + x3x4.

Realize f by a PLA directly as defined, and when rewritten as

f(x1, x2, x3, x4 = (x1x2 + x1x2)(x3 + x4) + (x1x2 + x3)(x1x2 + x4),

by using address decoder for the inputs x1 and x2.

Exercise 8.6 Determine the functions f1 and f2 realized by the PLA
in Fig. 8.14.

Exercise 8.7 Consider PLA in Fig. 8.15 and determine functions f1

and f2. Realize these functions by a PLA directly and compare the com-
plexities of the realizations in terms of the number of columns of the
PLAs.



Chapter 9

UNIVERSAL CELLULAR ARRAYS

procedures in various technologies. A solution is provided by the univer-
sal cellular arrays that are planar networks consisting of circuits from
a few different classes distributed with a regular layout and with in-
terconnections reduced to the links between neighboring modules. The
term universal means that these structures can be applied to realize any
of 22n

switching functions of a given number n of variables, when the
dimension of the array is large enough.

Fig. 9.1 shows the symbol for a basic module in an universal cellular
array and illustrates that the functioning of it will be determined by
selecting the value of the control input k and depending also on the
structure of the particular module considered.

1. Features of Universal Cellular Arrays
Universal cellular arrays can be classified with respect to different cri-

teria. Depending on the number of interconnections between cells, they

0

1

z

z

k

x0

z

z

x0

x1

Figure 9.1. Modules in universal cellular arrays.
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modules with simple interconnections, are certainly a target of many design
Networks, often called modular networks, that consist of identical
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Figure 9.2. Single-rail and double-rail universal cellular arrays.

can be single-rail, double rail, and multi-rail. Fig. 9.2 shows the struc-
tures of single-rail and double-rail universal cellular arrays, also called
cascades. If there are no feedback connections, the universal cellular
arrays are called unilateral, otherwise bilateral. Iterative cellular arrays
consists of identical cells. Restriction to iterative arrays and the number
of interconnections is related to the functional completeness of the ar-
ray, because of the limited amount of information that can be transferred
through a small number of links. It is know that single-rail cascades are
not functionally complete, which means cannot realize all the functions
of n variables with n cells. Double rail universal cellular arrays are func-
tionally complete if non-iterative. Iterative multi-rail cascades can be
functionally complete.

Theoretically, besides these single-dimensional universal cellular ar-
rays, two- and three-dimensional arrays can be used to provide com-
pactness. However, in practice single-rail two-dimensional arrays are
probably the most widely used due to the planarity, simplicity of con-
nections. Fig. 9.3 illustrates the structure of a two-dimensional univer-
sal cellular array. In general, all the cells can be functionally different,
and all the connections open, and the design procedure consists of the
selection of the content of each cell and the determination of all the in-
terconnections. However, because of the prohibitively large number of
possible combinations, 2D-arrays that have both contents of the cells
and interconnections partially fixed are usually used in practice.

Fig. 9.4 shows the structure of a cell in 2D-arrays. It may be proven
that for functional completeness it is sufficient to be able to realize any of
two-variable functions from the set f(x, y) ∈ {y, x+y, xy, x+y, xy, x⊕y}
at each cell [69]. Selection of the contents of cells depends on the ana-
lytical representations of function to be realized. Most often, universal
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Figure 9.3. Two-dimensional single-rail universal cellular array.
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Figure 9.4. Structure of cells for realizations with 2D-arrays.

cellular arrays realize Sum-of-Products or Product-of-Sums and Reed-
Muller expressions.

2. Realizations with Universal Cellular Arrays
Fig. 9.6 shows basic cells for realization of SOP/POS expressions by

the universal cellular arrays whose structure is illustrated in Fig. 9.5.
In this case, the interconnections and the operations in the cells of the
upper part are fixed and only the last row depends on the function
to be realized. The design procedure consists of the determination of
the interconnections from the upper part to the last row in the array.
It is obvious that the realization is based on the complete disjunctive
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Figure 9.6. Module for realization of SOP and POS expressions.

form, and minterms are generated as the outputs from the upper part
of the array. Therefore, the realization is universal in the sense that
the same array can be used to realize all 22n

functions, by selecting
interconnections towards the OR circuits in the last row. This realization
is planar and modular, also called of homogenous structure, but these
useful features are achieved at the price of the size of the array.

Example 9.1 Fig. 9.7 shows realization of the function f(x1, x2) = x1+
x1x2 by a 2D-array.

Fig. 9.8 shows cells used to realize positive polarity Reed-Muller
expressions by the arrays with the structure as in Fig. 9.9. These arrays
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Figure 9.8. Modules for realization of PPRM-expressions.

also have partially fixed contents and interconnections and the design
procedure consists of the determination of connections towards the last
row of the array consisting of EXOR circuits. The outputs from the up-
per parts are elementary products of variables in terms of which PPRM-
expressions are defined. The design procedure consists of determination
which connections towards the last row of the array should be estab-
lished, so that the PPRM-expression of the function is realized.

Example 9.2 Fig. 9.10 shows the realization of the function f(x1, x2) =
x1 + x1x2 whose PPRM-expression is f(x1, x2) = 1 ⊕ x1 ⊕ x1x2.

Notice that there are switching functions which have a regular struc-
ture, for instance when written by truth-vectors, and therefore, are par-
ticularly suitable to be realized with logic networks of a regular form.
In particular, functions that can be realized in the form of a single-
dimensional iterative array are called iterative functions. These func-

Examples of such functions are all totaly symmetric functions, detectors
of fixed patterns, binary adders, etc., [196].

tions are naturally realized by iterative single-dimensional arrays.
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Figure 9.9. Realization of PPRM expressions by 2D-arrays.
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Figure 9.10. Realization of the function f in Example 9.2.

Many of these functions, as for instance symmetric functions, have
SOPs that consist of many prime implicants, each covering a relatively
small number of true minterms in the truth-vectors. Therefore, their
two-level realizations by SOPs are very expensive in the number of gates.
The same applies to the POS realizations for these functions. A supreme
example are the n-variable XOR functions, which becomes obvious when,
for example for n = 4 the XOR function x1 ⊕x2 ⊕x3 ⊕x4 is represented
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Figure 9.11. Realization of the parity function for n = 8.

by the Karnaugh map that resembles the chessboard, with black and
white arrays corresponding to the logic 0 and 1. The cost of realization
by iterative arrays for such functions is, however, linear in the number
of variables.

The main disadvantage of realization by single-dimensional arrays is
that the signal may have to pass through many, sometimes all of the cells,
which results in the propagation delay linear in the number of inputs
n. It can be shown that all iterative functions can be also realized by
networks with the structure of a tree, with the worst case propagation
delay proportional to log n. The number of cells is linear in n, but they
are generally more complex than cells in the single-dimensional circuits.

Example 9.3 Consider parity functions defined as functions whose out-
put is 1 when the odd number of inputs is 1. For n = 8, the parity
function can be written as [196]

f = (((((((x1 ⊕ x2) ⊕ x3) ⊕ x4) ⊕ x5) ⊕ x6) ⊕ x7) ⊕ x8),

and realized by a single-dimensional array as in Fig. 9.11. However, if
due to the associativity of EXOR, f is written as

f = ((x1 ⊕ x2) ⊕ (x3 ⊕ x4)) ⊕ ((x5 ⊕ x6) ⊕ (x7 ⊕ x8)),

it can be realized by an iterative network with the structure of a tree as
in Fig. 9.12.

More information about iterative functions and their realizations can
be found, for example, in [196].

3. Synthesis with Macro Cells
Synthesis with universal cellular arrays expresses some useful fea-

tures, as universality, similar to universal logic modules, which ensures
reusability of designed modules after simple modifications, reduced de-
sign procedure, regular layout, simple interconnections, etc. For these
reasons, this approach to synthesis of logic networks, which can be
viewed as synthesis with explicitly specified library of cells, has evolved
into the two main approaches in semicustom design popular today
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Figure 9.12. Realization of the parity function for n = 8 with reduced propagation delay.

1 Cell-based design, which can be design with standard cells and macro-
cells, which will be discussed briefly in the following, and

2 Array-based design, where it may be distinguished the predifused (or
mask programmable, MPGA) and prewired (or field programmable,
FPGA) design.

Recall that, unlike the custom design where each part of the network
produced is optimized to the maximum level at the high price of the
complex and time consuming design procedure, semicustom design con-
sists of assembling and interconnecting of predesign elements with veri-
fied and specified performances. Thus, it allows reusability of modules
and reduce the design time. When during integration and system-level
verification, the performance of each module preserved, the verification
reduces to the verification of the system, and repeated verification of
each component is not required. In custom design the high design cost
is justified if re-compensated by the large production volume. The ap-
plication specific design of integrated circuits, (ASIC) can be viewed as
custom design where the high design cost is justified by the importance
of the application intended.

In the case of MPGAs, programming is done during the fabrications
of the chip, with programming consisting of application of metal and
contact layers to connect entries of a matrix of uncommitted components
often called the sites. In the FPGAs, the term field means that they can
be programmed

”

in the field”, i.e., outside of the factory, as will be
discussed in Chapter 10.
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The standard-cell based design is mainly intended to simplify the de-
sign procedure, as in universal cellular arrays above, which does not
necessarily simplifies the manufacturing process. In this approach, a li-
brary of cells is provided and the designer has to confirm a logic scheme
into the available cells in the library, which is called library binding or
technology mapping, followed by cells allocation and establishing inter-
connections. In this approach, a hierarchical method is often used, where
larger cells are derived as combinations of simpler cells from the library.

ules, which produce macro-cells for (optimized to some level) logic
sub
tional cells produced automatically from logic expressions. It is usually
assumed a set of restrictions to starting logic expressions. These restric-
tions are mainly related to the area and performances of the cell that
will be produced from logic expressions. For instance, restrictions could
be the maximum number of inputs allowed for a cell, or the number of
transistors within a cell that may be connected in parallel or in series.
Logic expressions and cells that fulfil such functional restrictions form a
virtual library. The design procedure consists of the manipulation of the
network until the required performances achieved under the constrains
imposed. Developing algorithms to solve various problems and tasks in
these areas is subject to intensive research work. For example, there
are several heuristic algorithms when the restrictions to functional cells
are specified in terms of the number of transistors. If the restrictions
are related to the number of inputs, the design is similar to that with
FPGAs.

Both of these usually used approaches, design with macro-cells and
FPGAs, can be viewed as the synthesis with an implicitly given library
of cells.

Discussing universal cellular arrays is important, since provides foun-
dations for analysis of properties of future technologies for system design
and computing [16]. As it can be expected, in the future, regular struc-
tures will be highly prevalent, due to several reasons. First, the decrease
of the minimum dimensions, as well as manufacturing variations, make
the custom-made circuits difficult to produce. Effects like cross-talk
noise, inductive effects, and prediction of the delay will run beyond the
complexity bound for economic custom design.

Regular structures are more predicable in delays, and since the re-
peated patterns are relatively small, they can be hand-designed and
extensively analyzed to avoid internal problems. Due to the uniform
structure, manufacturing variations should decrease.

Design with macro-cells uses computer programs, generators of
mod

networks. Macro-cells are derived by connecting and distributing func-
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4. Exercises and Problems
Exercise 9.1 [31]
Analyze the cellular array in the Fig. 9.13 consisting of four different

types of cells A, B, C, and D, and determine the output functions f and
g. Fig. 9.14 shows a cell with two control inputs z1 and z0 to determine
the contents of the cell which can replace any of these cells in this array

(z1, z0) = (0, 0) → A,

(z1, z0) = (0, 1) → B,

(z1, z0) = (1, 0) → C,

(z1, z0) = (1, 1) → D.

x2

x1

x0

0

1

A B C D

1 1 1 1

f

g

Figure 9.13. Array in Exercise 9.1.

y1

y0

x0

x1

z0

z1

Figure 9.14. Module in the array in Exercise 9.1.
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Exercise 9.2 [31]
Determine the output of the array in Fig. 9.15, where each cell realizes
the majority function of three variables f(x2, x1, x0) = x1x0 + x0x2 +
x1x2.

f f f1

x0 x1 x
n-1

z0 z1 z
n-1

f x x( ,..., )
n-1 0

Figure 9.15. Array in Exercise 9.2.

Exercise 9.3 Fig. 9.16 shows a module proposed in [74] for applica-
tions in universal cellular arrays with reduced routing. Show the assign-
ments of inputs to realize the functions

1 x1 ∧ x2,

2 x1 ∨ x2,

3 x1 ∨ x2 ∧ x3.

x1

x2

x3

x4

z1

z2

Figure 9.16. Module for the cellular array in Exercise 9.3.

Exercise 9.4 Realize the (2×1) multiplexer by the module in Fig. 9.16.

Exercise 9.5 Consider the universal cellular array in Fig. 9.17. De-
termine the function realized by this array if

1 The first two rows are modules for realization of SOPs in Fig. 9.6,
and the last row are the OR circuits,
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x1

x2

f

1 1 1 1

0

Figure 9.17. The cellular array in Exercise 9.5.

f1

f2

1

1

1

1

1

1

x1 x3

x2

x4

Figure 9.18. The cellular array in Exercise 9.6.

2 The first two rows are the Reed-Muller modules in Fig. 9.8 and the
last row are EXOR circuits.

Exercise 9.6 Fig. 9.18 shows an array consisting of the module in
Fig. 9.16. Determine the functions f1 and f2 realized by this array for
the given specification of inputs.



Chapter 10

FIELD PROGRAMMABLE LOGIC ARRAYS

Field Programmable Logic Arrays (FPGA) are widely used in logic
design, especially for fast prototyping and small series production, since
they combine many nice features of other methods. In particular, FPGA
provide both large scale integration and programmability by users. When
compared for example with PLA realizations, we have the following basic
features.

With PLAs

1 Basically two-level realizations are produced,

2 Realizations are based on AND-OR or AND-EXOR expressions, and

3 Large number of inputs in AND circuits is allowed.

With FPGAs

1 Multi-level realizations are produced,

2 The number of inputs in the circuits is smaller,

3 They are more compact than two-level realizations.

FPGAs can be viewed as programmable logic chips consisting of logic
blocks, each capable of realizing a set of logic functions, programmable
interconnections, and switches between blocks. Fig. 10.1 shows the struc-
ture of an FPGA.

Complexity of FPGAs is usually estimated by comparing their logic
blocks, which can consist of

211
 



212 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

LB

I/O

c

c - Interconnections

LB - Logic Block

I/O - Input/Output

Figure 10.1. Structure of an FPGA.

2 Basic logic circuits with few inputs (AND, OR, NAND, NOR),

3 Multiplexers,

4 Look-up tables (LUTs), often implemented as Static RAMs,

5 AND-OR structures with many inputs as PLAs, etc.

In this respect, FPGAs can be classified as fine-grain and coarse-grain
arrays, and the comparison of logic blocks is performed with respect to
the number of

1 Equivalent NAND circuits,

2 Transistors,

3 Normalized area defined as the ratio of the area occupied by a logic
block and the total area of the FPGA, i.e., na = a(LB)/a(FPGA),

4 Inputs and outputs.

The size of logic blocks influences considerably the performances of
FPGAs [89], [142], since large logic blocks require less routing resources
resulting in a smaller overall routing delay. On the other hand, larger
logic blocks are slower and generally less efficiently exploited. Much
research has been done to determine the optimal granularity of FPGAs

[89], [142],[3] .
In routing, the interconnections are established by connecting seg-

ments of lines in an FPGA by programmable switches. The number

1 A pair of transistors,
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of segments determines the density of elements in an FPGA [193]. A
small number of segments reduces the possibilities of interconnecting
logic blocks. However, a large number of segments implies that many of
them will remain unused, which wastes the area. The size of segments
is another issue. Short segments require many switches, which causes
delay, but long segments occupy area and also cause delay, because nowa-
days the delay in VLSI circuits is generally due to the interconnections
more than logic circuits. Since this topics is strongly dependent on tech-
nology, a deeper analysis requires a more detailed specification of the
architecture. It can be found in some overviews as, for example, [143].

With respect to the way of programming, FPGAs can be classified
into hard and soft programmable FPGAs. In the first case, programming
is performed thorough connecting segments of interconnections by an-
tifuses, i.e., open circuits that are converted into short circuits by an
appropriate current pulse or voltage. The second class involves FPGAs
consisting of arrays of memory elements, called look-up tables (LUTs)
that are programmed to store information about the module configura-
tion and interconnections.

Look-up table based FPGAs are programmed in the same way as
memory chips, and a word of configuration data is written into an ad-
dressed segment in the array. Every bit in the memory array controls
a particular interconnecting element. Several of these elements, up to
the width of a data word, are programmed in parallel by applying volt-
ages, usually 0 and 5 volts, to the FPGA in the correct programming
sequence.

Antifuse based FPGAs are programmed with a mixed sequence of
digital control and high voltage analog waveforms. Generally, antifuses
are programmed separately each of them at a time within the full array of
antifuses. An antifuse array can be viewed as a collection of vertical and
horizontal wires with an antifuse at every wire crossing or intersection
whenever it may appear a need to connect two lines. Many of them
remain unused, however, since antifuses are small, this is a negligible
and inexpensive overhead [105].

In general, an antifuse can exist in three states, off-state, on-state,
and an off-on transition state. In the off-state, the antifuse consists of
its original non-conducting amorphous (glass like - non-crystalline) state
located between top and bottom metal electrodes. Application of the
programming pulse across the metal electrodes leads to a transitional
off-on state in which the amorphous silicon becomes a liquid and forms
a complex metal-silicon composition. In the final on-state condition,
the antifuse has become a conductive polycrystalline silicon-metal alloy

Field Programmable Logic Arrays
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Figure 10.2. Distribution of antifuses in an FPGA.

with a low resistance. The programming process is irreversible. Fig. 10.2
shows an example of distribution of antifuses [105].

There are many FPGA families provided by different companies that
differ in the technologies and structures of blocks. More details on each
can be found e.g. on the Web pages of the producers.

Example 10.1 (Logic blocks in FPGA) [143]
Fig. 10.3 shows an example of a fine-grain FPGA (Crosspoint Solutions,
Ltd.), realizing the function (a, b, c) = ab + c. This is an example of
FPGAs by the company Crosspoint Solutions. Concurrent Logic offers
logic blocks containing a two-input AND circuit and a two-input EXOR
circuit. Toshiba provides FPGAs with logic blocks containing NAND cir-
cuits. The company Algotronix produces FPGAs whose logic blocks are
configurable multiplexers that can realize any function of two variables.

Fig. 10.4 shows the realization of the same function by an Altera 5000
FPGA.

Actel offers FPGAs whose logic blocks are based on multiplexers.
Fig. 10.5 shows the realization of the function in this example by an
FPGA from the family Act1.

Fig. 10.6 shows the logic blocks in FPGAs by Quick Logic.

and 10.9 shows examples of logic blocks in Xilinix 3000 and Plessey FP-
GAs.

The following examples, illustrate basic logic blocks in the family of
FPGAs by Xilinix and Altera. The first is an example of devices that

Fig. 10.7explains the basic principle of Look-up table FPGAs. Figs. 10.8
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b

Figure 10.3. Crosspoint FPGA.

cabf ��

0

0

a b c

ff

Figure 10.4. Altera 5000 FPGA.

provide all key requirements for replacing application specific integrated
circuits (ASIC) up to 40.000 gates, and may be suitable for production
of high-volume series. The latter is an example of devices that offer up

efficient implementation of high-performance filters and multipliers.

to 22 digital signal processing (DSP) blocks with up to 176 (9-bit ×
9-bit) embedded multipliers, optimized for DSP applications that enable

Field Programmable Logic Arrays
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Figure 10.5. Actel 1 FPGA.
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Figure 10.6. Quick Logic FPGA.
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Figure 10.7. Look-up table FPGA principle.
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Figure 10.8. Xilinix 3000 FPGA.

Example 10.2 Fig. 10.10 shows the structure of basic blocks in the
FPGA family Spartan-XL by Xilinix as described in the corresponding
data book. Fig. 10.11 shows in a simplified form the principal elements
in configurable logic blocks (CLB) used in this FPGA. Each CLB con-
sists of three LUTs used as generators of logic functions, two flip-flops
and two groups of signal steering multiplexers.

Two (16×1) memory LUTs (F-LUT and G-LUT) may implement any
switching function with no more than four inputs (F1 to F4 or G1 to
G4). Since memory LUTs are used, the propagation delay is independent
of the functions implemented.

Field Programmable Logic Arrays
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RAM
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Figure 10.9. Plessey FPGA.

A third three input function generator (H-LUT) can implement any
switching function of n = 3 variables. Two of these inputs are controlled
by programmable multiplexers (shown in the box A) These inputs can
came from either the F-LUT or G-LUT outputs or from CLB inputs.
The third input always come from a CBL input. Because of that, a CLB
can implement certain functions up to nine inputs, for instance, parity
checking. These three LUTs can be also combined to implement any
switching function of five inputs.

In summary, a CLB can implement any of the following functions

1 Any function of up to four variables, and another function up to four
unrelated variables, any additional function of up to three unrelated
variables. Notice, that since there are available two unregistered func-
tion generator outputs from the CLB, when three separate functions
are generated, a function must be captured in a flip-flop internal to
the CLB.

2 Any single function of five variables.

3 Any function of four variables together with some functions of six
variables.

4 Some functions of up to nine variables.

Example 10.3 Stratix devices by Altera is a two-dimensional array in-
tended to implement custom logic. It consists of array blocks (LABs),
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CLB - functional elements to implement logic

IOB - interface between the package pins and
internal signal lines

Routing Channels - pats to interconnect the inputs
and outputs of CLB and IOBs

RDBK - read back the content of the configuration memory
and the level of certain internal nodes

START-UP - start-up bytes of data to provide four clocks
for the start-up sequence at the end of configuration

Figure 10.10. Configurable logic block in Spartan FPGAs by Xilinix.

memory block structures, and DSP blocks connected with lines of vary-
ing length and speed. The logic array consists of LABs, with 10 logic
elements (LEs) in each LAB. An LE is a small unit of logic providing
efficient implementation of user logic functions. LABs are grouped into
rows and columns across the device. Fig. 10.12 shows the structure of
the Stratix device.

The smallest unit of logic in this architecture is the LE, that contains
a four-input LUT, which is a function generator that can implement any
function of four variables. In addition, each LE contains a programmable
register and carry chain with carry select capability. A single LE also
supports dynamic single bit addition or subtraction mode selectable by
an LAB-wide control signal. Fig. 10.13 shows the structure of a LE.

Field Programmable Logic Arrays
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Figure 10.11. Components of the CLB in Spartan FPGAs.

Figure 10.12. Structure of Stratix device by Altera.
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Figure 10.13. Logic element in Stratix.

1. Synthesis with FPGAs
Since FPGAs are a relatively new and fast evolving technology, the

design methodologies are equally quickly developing and are technology
dependent. Therefore, it is hard to present them in a rigorous and com-
plete manner and, thus, provide here only some basic design guidelines
with both antifuse and LUT-based FPGAs.

In general, the synthesis with FPGAs is a procedure that consists of
two steps

1
elements to be used in the implementations and their features are
not taken into account,

2 Technology mapper, meaning the realization of the network opti-
mized in the first step on a target FPGA.

Design with FPGAs can be viewed as the personalization of the pro-
grammable logic modules they consists of, to realize the functions re-
quired.

Technology independent optimization, where the particular logic

Field Programmable Logic Arrays
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2. Synthesis with Antifuse-Based FPGAs
In the case of antifuses-based FPGAs it is often assumed that all pro-

grammable modules can realize the same type of single-output function
called the module function. Thus, the module function is a description
of the logic block. A cluster function is a function that describes a por-
tion of a network. The task is to find out if a cluster function f can be
implemented by the personalization of a module function F . Therefore,
given logic function f or a network to be realized, the design consists of
finding an equivalent logic network with the minimum number of circuits
and the minimum critical path delay which is equal to a personalization
of the module function F . The personalization means specification of
some parameters in the module function to concrete values, which, in
practice, corresponds to the introduction of some stuck-at and bridging
faults in the circuit.

When number of possible different personalizations for F is relatively
small, currently less than 1000 functions, the library can be specified
explicitly. In this case, the following features are achieved

1 Application of standard library binding algorithms,

2 It is possible to eliminate gates with inconvenient delays or pin con-
figurations,

3 Area and delay cost of each cell can be precisely determined.

Example 10.4 The module function for the Act 1 family of FPGAs in
Fig. 10.5 is

F = (s3 + s4)(s1w + s1x) + (s3 + s4)(s2y + s2z),

and it can realize 702 different functions for different values of parame-
ters. The personalization to realize the function f(a, b, c) = ab + c is
done by specifying the parameters as w = 1, x = 1, s1 = 0, y = 0, z = a,
s2 = b, s3 = c, s4 = 0.

Binary decision diagrams (BDDs) have proven useful in FPGA syn-
thesis, especially when logic block are based on multiplexers, due among
other features, also to the straightforward correspondence of nodes in
BDDs and (2 × 1) multiplexers.

Example 10.5 [43]
Consider the module function F for a logic block in a multiplexer based
FPGA

F = (s0 + s1)(s2a + s2b) + s0s1(s3c + s3d).
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Figure 10.14. Module functions and cluster functions represented by BDDs.

This function can be represented by a BDD as in Fig. 10.14. If a cluster
function f is given by f(x, y, z) = xy + xz, then it can be represented
by the corresponding BDD shown in the same figure. It is obvious that
the BDD for f is a subtree in the BDD for F for the specification of
the parameter s1 = 1, which results in the realization of f by a (2 × 1)
multiplexer.

Recall that BDDs are sensitive to the order of variables, and there-
fore, to cover all possible personalizations, the BDDs for all different
orders of variables have to be considered. Therefore, a virtual library
corresponding to a module function can be covered by a Shared BDD
[34].

Various algorithms and techniques for efficient multiplexer synthesis
can be efficiently combined with BDDs in synthesis with multiplexer-
based FPGAs, as for instance, algorithms discussed in [55], [56], [128],
[129]. In [104], it has been shown that by using some of these algo-
rithms, BDDs with different order of variables along different paths can
be produced and exploited efficiently in reducing the delay and power
consumption in multiplexer-based FPGAs. It is worth noticing that
techniques for splitting and duplicating of nodes can be used to reduce
the delay and the number of FPGA nodes. These nodes are suitably

Field Programmable Logic Arrays
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configured to reduce the switched capacitance, which appears to be the
dominant source for power dissipation in the network produced [104].

3. Synthesis with LUT-FPGAs

For LUT-FPGAs, it is impossible to show the virtual library explic-
itly, due to a large number of possible functions a LUT can realize even
for the number of inputs n ≥ 5. Therefore, classical approaches to li-
brary binding and Boolean matching used for instance in the design with
macro-cells and related methodologies [34], [43], cannot be directly ap-
plied. Since different FPGAs have LUTs organized in different ways, a
general theory is hard to be given. We will restrict here to a brief dis-
cussions of some possible approaches, and also point out some advanced
methods by exploiting multiple-valued logic.

It is assumed that a LUT with k inputs and m outputs may realize
up to m functions with the total number of variables equal to k. In this
case, the design with LUT-FPGAs is based on the decomposition of a
given function of n variables into no more than m subfunctions, each
with at most k variables.

Similarly to the case of logic blocks in antifuses-based FPGAs, the
size of LUTs considerably effects performances of FPGAs. Research has
shown that wider LUTs offer higher performance, but narrower LUTs are
more area and cost efficient [3], [142]. In the last decade, the development
was primarily based on four-input LUTs to achieve the optimal trade-
off. However, nowadays manufacturers offer, for various applications,
different solutions giving predominance to performances or FPGA archi-
tectures targeted at specific applications. For instance, in the Stratix II
devices by Altera various combinations or LUTs with 4,5,6, and 7 inputs
are provided for efficient implementation of combined logic-arithmetic
operations of complex arithmetic operations. At the same time, in Vir-
tex devices by Xilinix, four-input LUTs are efficiently combined with
various multiplexers of small orders to provide (16 × 1) and (31 × 1)
multiplexers, or further with some additional and dedicated two-input
multiplexers to perform operations involving wide AND and OR circuits,
which may combine four-input LUT outputs. The idea of using universal

so-called FXMUX logic, where for instance such modules for X = 6, 7, 8
capable to realize any function of 4,7, and 8 variables, are modules used
in Virtex devices to implement custom Boolean functions up to 39 vari-
ables within the same logic bloc, or a function with 79 inputs in two
blocks with dedicated connections in a single level of logic. An overview

tureof these actual various solutions can be found in the specialized litera

logic modules within FPGAs [97], [184], [208], can be recognized in the
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Figure 10.15. Covering of a network by LUTs.

as, for example, [90], [116]. More detailed information is available in
the corresponding data books at the web pages of manufacturers.

3.1 Design procedure
There are several algorithms for design with LUT-FPGAs, see for

example, [18], [47], [106], [121], [192], [201], [205].
Functions that should be realized are represented by an initial AND-

OR multi-level network, a two-level specification as cubes, or BDDs,
etc. The design consists of decomposing the initial network or other
description of the given function into sub-networks or sub-functions, each
realizable by a LUT.

The starting point of mapping a given function f to an LUT-FPGA
with k inputs per LUT, is to decompose f into basic subfunctions with
no more than k variables. It is usually convenient to use two-variable
subfunctions to achieve a finer network granularity [34].

Example 10.6 [46], [34]
Fig. 10.15 illustrates the basic principle of covering a network by the
LUTs. It is assumed that a LUT has five inputs, and an network with
12 primary inputs is, therefore, covered by three LUTs.

The following example illustrates that a Sum-of-Product expression
can be covered by LUTs in different ways.

Example 10.7 [46], [34]
Consider realization of a function of four variables f(a, b, c, d) = ab+cd

Field Programmable Logic Arrays
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k = 3 n = 4 cdabf �� | ab | = | cd | = 2 < k = 3

| f | = 4 > k = 3

LUT(1) LUT(1)LUT(2) LUT(2)

LUT(3)

( )a ( )b

Figure 10.16. Covering of a SOP by LUTs.

by a LUT-FPGAs where LUTs have k = 3 inputs. Fig. 10.16a shows a
direct assignment of product terms to LUTs. However, if f is written as
f = ab + f2, where f2 = cd, then, two LUTs are sufficient as shown in
Fig. 10.16b.

Assignment of SOPs to LUTs can be performed by the following al-
gorithm.

A given function f of n variables is represented by a SOP consisting
of r products Pi with qi = |Pi| literals. The task is to assign f to a LUT-
FPGA with k > max{q1, . . . , qr} inputs per LUT by using the minimum
number of LUTs. That means, few product terms can be realized by the
same LUT, if the total number of variables in products qi is smaller than
the number of inputs k in the LUT.

1 Label available LUTs by assigning an identifier to each LUT. Create
a list Q recording the labels of exploited LUTs and the number of
used inputs v out of the total of k inputs. Set Q = ∅.

2 Select a product Pi with most literals, i.e., with qi = max{q1, . . . qr},
and assign to a LUT, where number of unused inputs is greater than
qi.

3 If there are no available LUTs with enough capacity, i.e., with the
number of unused inputs v > qi, add a new LUT to the present
solution for the assignment, thus, increase the content of Q.
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4 Declare as the final assignment of a Pi to a LUT, LUTPi the LUT
with fewest number of unused variables v.

5 Associate a new variable z to this LUTPi , and assign it to the first
LUT that accepts it, i.e., where v < qLUTPi

.

6 Repeat the procedure for all i ∈ {1, . . . , r}.
7 Declare the last processed LUT as the output LUT.

If products in a SOP for a given function f are disjoint, then the
algorithm ensures minimum number of LUTs for k = 6.

when this may reduce the number of LUTs.
The following example confirms that this algorithm will produce the

optimal solution in Example 10.7.

Example 10.8 Since in the function f in Example 10.7, both products
have the same number of variables, we randomly select the product cd
and assign it to a LUT (1) as specified in the Step 1, where a variable
remains unused. The Step 2 does not apply, since k = 3 is greater than
the number of variables in the product v = 2. By the Step 3, we assign
the product ab to the LUT (2). By the Step 4, since in both LUT (1) and
LUT (2) a variable is unused, we select LUT (1) as the LUT with the
minimum number of unused variables, declare it as a final assignment
and assign another variable z. By the Step 5, we assign this variable to
the LUT (2) that accepts it. Then, we declare the output of LUT (2) as
the final output. Fig. 10.17 illustrates this procedure.

Application of decision diagrams in synthesis with LUT-FPGA is con-
venient, because then it is not necessary to construct the initial logic
network [111]. Since a non-terminal node in a BDD is related to the
Shannon expansion, which can be implemented by a (2×1) multiplexer,
mapping of a BDD to a LUT-FPGA with k = 3 is straightforward and
each non-terminal node requires a LUT that performs the function of a
(2 × 1) multiplexer. It follows that when k > 3, LUTs are inefficiently
used.

The routing architecture is an inherent necessary part of each FPGA.
Reducing the area occupied by routing, would allow increasing the area
devoted to the functionality of the FPGA. Reduced routing is often
emphasized as an advantage of multiple-valued logic over the binary
logic. LUT-FPGAs are pointed out in [111] as such an example.

With this motivation, a method for mapping a p-valued function rep-
resented by decision diagrams representing a straightforward extension

This algorithm is implemented in [46] with some modifications that
allow sharing of variables between products and also duplicating products

Field Programmable Logic Arrays
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f ab cd= +

c d

b

z

f

Declare as final and assign z

LUT(1)

a

LUT(2)

a

Figure 10.17. Assignment of the function f in Example 10.7 to LUTs.

of BDDs to multiple-valued functions, see, for example, [175], into a
LUT-FPGAs has been presented in [111].

The method in [111] will be presented here for the case of binary-
valued switching functions represented by BDDs.

Denote by x1, . . . , xn variables in a function f represented by a BDD.
The variables xn+1 up to some xr, where r depends on the given function
f and the corresponding BDD, will be assigned to LUTs that will be used
in the implementation of f .

For a non-terminal node to which the variable xi is assigned, the de-
pendency set Di is the union of xi and the dependency sets of descendant
nodes, Di0 and Di1 , i.e., nodes to which point the outgoing edges i0 and
i1 of the considered node [111]. Thus,

Di = {xi} ∪ Di0 ∪ Di1 .

The dependency set of a constant node is the empty set, since constant
nodes show function values.

The method of mapping a BDD into a LUT-FPGA proposed in [111],
can be described as follows. It is assumed that a given function of n
variables has to be realized by a LUT-FPGA with k inputs per LUT.
As in the other LUT-FPGA design methods, the procedure starts by
decomposition of the BDD into subdiagrams representing subfunctions
that can be realized by a LUT. The method should provide exploiting
of as few of LUTs as possible which is viewed as increased functionality
of FPGAs. Therefore, the assignment of subfunctions, i.e., subtrees
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to LUTs, will be performed by a greedy algorithm. Recall that a greedy
algorithm is an algorithm which searches a solution by making a sequence
of best local decisions based on the local information. Therefore, it is a
heuristic method, and does not guarantee the optimality of the solution
produced. The complexity of a greedy algorithm depends on the number
of local decisions and, therefore, it is often implemented in a top dow
way with linear complexity.

The method in [111] consists of the following steps.

1 Traverse BDD for the given function f from constant nodes to the
root node.

2 Mark non-terminal nodes, by starting from nodes at the level (n−k),
where n is the number of variables and k number of inputs in LUTs.

3 Each marked non-terminal node is a root of a subdiagram and can
be viewed as a pseudo constant node, since represents a subfunction
that will be realized by a LUT.

4 Write a list of subdiagrams.

5 Assign subdiagrams rooted in the marked nodes into LUTs by using
a greedy algorithm.

6 Process subdiagrams in order as generated.

7 If the number of variables v in a subdiagram is smaller that k, search
for preceding subdiagrams with the number of variables u, such that
v + u ≥ k.

8 Make such combinations until list of subdiagrams traversed.

This method can be implemented by the following algorithm.

Algorithm 10.1 (BDD into LUT-FPGA)

1

set of a constant node is an empty set.

2 If for a node, the cardinality of D, |D| < k, no further processing of
that node is required at the time.

3 If for a node |D| = k, mark this non-terminal node as the root of a
subdiagram, assign to it a unique identifier q and set D = [q]. This
node represents a subfunction that will be relied by a LUT.

Process a given BDD from the constant nodes to the root node and
assign a dependency set D to each non-terminal node. The dependency

Field Programmable Logic Arrays
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Set LUTA(NODE, k)
If (NODE = CONSTANT NODE)

NODE → D = [∅]
return NODE → D

Else
NODE→D where
D=[NODE→ x, LUTA(NODE→L), LUTA(NODE→R)]

If (|NODE → D| = k)
Mark NODE as a root of a subtree representing a LUT
assign that LUT a unique identifier q and
set NODE → D = [q]

End If
If (|NODE → D| > k)

DES = Max(|NODE → L → D|, |NODE → R → D|)
Mark DES as a root of a subtree representing a LUT

assign that LUT a unique identifier q and
set NODE → D = [q]

End If
End If

End Procedure

Figure 10.18. Mapping a BDD into a LUT-FPGA.

4 If |D| > k, search the immediate descendants of this non-terminal
node for that with the maximum |D|, mark this node as above, and
reprocess the previous node.

5 If few of the descendant nodes have the dependency sets of the maxi-
mum cardinality, chose the first encountered.

Fig. 10.18 describes this procedure in a pseudo code.
This algorithm will be illustrated by the following example [111].

Example 10.9 Consider a logic function called 2-of-5 checker, defined
as a function of five variables f(x1, x2, x3, x4, x5) which takes the value 1
when two inputs have the values 1. Fig. 10.19 shows a BDD for f , which
should be realized by a LUT-FPGA where LUTs have k = 3 inputs.

We traverse this BDD up to the level for x3, since k = 3, mark the
non-terminal nodes at this level and assign to them unique identifiers
ID = (6, 7, 8). Then, we determine dependency sets for all the nodes at
the levels below x3 as shown by numbers in square brackets. The nodes
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Assign to ntn(x3) unique ID

(6, 7, 8)

Figure 10.19. BDD for f in Example 10.9.

at the level x3 are now considered as pseudo-constant nodes in a reduced
diagram shown in Fig. 10.20(a).

Then, nodes at the level for x2 are processed, identifiers ID = (9, 10)
are assigned and dependency sets determined. The root node is processed
and, the identifier ID = 11 assigned, and the dependency set determined.
Fig. 10.20(b) shows the reduced diagrams when these nodes considered
as pseudo-constant nodes.

Each of the nodes with identifiers ID = 6, 7, 8, 9, 10, 11 is realized by
a LUT. If labels at the edges of nodes 0 and 1 are written as xi and
xi, respectively, it is possible to determine functional expressions for
functions that will be realized by LUTs by traversing the the BDD for f .

These functions correspond to the products of labels at the edges in
the paths from the pseudo-constant nodes at the level x3 to the constant
nodes in the BDD for f as shown in Fig. 10.21.

It has been pointed out in [73] that in mapping a BDD into a LUT-
FPGA, it is usually more economic to put two four-input functions in a
LUT table than a function of five inputs, since the former approach will
cover more nodes.

More about synthesis with FPGAs can be found in the broad literature
on this subject, see, for example, [18], [106], [121], [192], [201], [205].

Field Programmable Logic Arrays
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Figure 10.20. Reduced BDD for f after processing nodes for (a) x3, (b) x2.
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4. Exercises and Problems
Exercise 10.1 Discuss the main features of FPGAs which make their
application efficient, compared to PLAs and classical approaches to the
synthesis of logic networks.

Exercise 10.2 Show the basic structure of an FPGA, and briefly dis-
cuss each of the main parts. Classify FPGAs with respect to the com-
plexity.

Exercise 10.3 Classify and briefly discuss main features of FPGAs
with respect of programmability.

Exercise 10.4 Discuss and show few examples of logic blocks in FP-
GAs.

Exercise 10.5 Describe the steps in synthesis with FPGAs and explain
notions module function, cluster function and personalization of FPGA.

Exercise 10.6 Realize the functions

f(x1, x2, x3) = x1x2 + x1x2x3

by personalization of the module function for the Act1 family of FPGAs

f = (s3 + s4)(s1w + s1x) + (s3 + s4)(s2y + s2z),

Exercise 10.7 Realize the functions

f(x1, x2, x3) = x1x2 + x1x3,

f(x1, x2, x3, x4) = x2(x1 + x4) + x3(x1 + x4).

Exercise 10.8 Personalize the module function

F = (s0 + s1)(s2a + s2b) + s0s1(s3c + s3d).

to realize the functions

f1(x1, x2, x3, x4) = (x1 + x2)(x3 + x4) + x1x2x4,

f2(x1, x2, x3, x4) = (x3 + x4)(x1x2 + x2x4) + x1x2x3.

Exercise 10.9 Realize the function f(x1, x2, x3) = x1x3+x2x4+x1x2x4+
x2x3x4 by an FPGA with k = 3 input LUTs.

Exercise 10.10 Consider the function f(x1, x2, x3, x4, x5) = x1x2x3 +
x1x2x4 + x2x4 + x1x2x5 + x1x5. Represent f by a BDD and realize it

Field Programmable Logic Arrays



234 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

x1

x2

x3 x3
x3

x4 x4 x4
x4

x5 x5
x5

x5

x2

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

1

f

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 10.22. BDD for the function f in Exercise10.12.

with a LUT-FPGA, with k = 3 inputs per LUT. Try different order of
variables and make conclusions.

Exercise 10.11 Consider the function of eight variables

f(x1, . . . , x8) = x1x2 + x2x3 + x1x2x3

x1 + x7 + x6x8 + x6x7x8 + x7x8

x1x7 + x2x8 + x8 + x2x6x8.

Realize f by a LUT-FPGA with k = 5 inputs per LUT.

Exercise 10.12 Consider the function f of five variables defined by the
BDD in Fig. 10.22. Realize f by a LUT-FPGA with k = 3 inputs per
LUT.

Exercise 10.13 Realize the function f of five variables defined by the
truth-vector

F = [1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]T ,

by a LUT-FPGA with k = 3 inputs per LUT.



Chapter 11

BOOLEAN DIFFERENCE AND
APPLICATIONS IN TESTING LOGIC
NETWORKS

Differential operators are a very important tool in science. Therefore,
it has been quite natural to make attempts to extend the theory of
differential calculus of functions on the real line R to switching functions.

The notion of the partial derivative has been introduced to get esti-
mate the rate and the direction of the change of a function f(x1, . . . , xn)
caused by an infinitesimal change of its argument xi, as illustrated in
Fig. 11.1. For a real function, i.e., f : Rn → R, the Newton-Leibniz
derivative is defined as

df

dx
= lim

∆x→0

f(x + ∆x) − f(x)
∆x

.

 f

 x
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Figure 11.1. Illustration of the application of Newton-Leibniz derivative with respect to
the variable xi.
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1. Boolean difference
Switching (Boolean) functions are defined as mappings f : {0, 1}n →

{0, 1} and, therefore, the smallest change in the argument and the func-
tion is equal to 1. Since the addition and subtraction modulo 2, which
are used for switching functions coincide, and are viewed as logic EXOR,
the definition of a differential operator for switching functions with re-
spect to the variable xi is

δf

δxi
= f(x1, . . . , xi, . . . , xn) ⊕ f(x1, . . . , xi, . . . , xn).

It is clear that due to the properties of EXOR, the Boolean difference
cannot distinguish between the change of a function value from 0 to 1 or
vice versa, since 1+0 = 0+1 = 1. Thus defined operator expresses some
of the properties of the classical Newton-Leibniz derivative, and is called
the Boolean derivative [185]. However, to emphasize that it is defined
on finite and discrete structures and is applied to discrete functions, the
term Boolean difference is also used.

Since xi ⊕ 1 = xi, the definition of the Boolean difference can be
written as

δf

δxi
= f(x1, . . . xi, . . . , xn) ⊕ f(x1, . . . , xi, . . . , xn)

It is obvious that δf
δxi

= 1ifff(x1, . . . , xi, . . . , xn)=f(x1, . . . , xi, . . . , xn).
This property of the Boolean difference is used to check if a variable is
an essential variable in a Boolean function f .

Example 11.1 Fig. 11.2 shows a Boolean cube specifying the function
f(x1, x2, x3) whose truth-vector is F = [0, 0, 0, 0, 0, 1, 1, 1]T . In this figure
the dark and white nodes correspond to the values 1, and 0, respectively.

To calculate the value of the Boolean difference with respect to a vari-
able xi, i = 1, 2, 3, at a particular point x1, x2, x3), we move along the
edge connecting nodes where xi = 0 and xi = 1, for the given assign-
ment of other variables. If the values at the both ends of this edge are
different, the value of the Boolean difference is 1, otherwise it is 0. In
this figure, are shown the values of the Boolean differences δf

δx1
(000) = 0,

δf
δx2

(101) = 0, and δf
δx3

(100) = 1.

It is possible to define the Boolean difference with respect to a subset
of m variables, which is called the multiple Boolean difference or the
Boolean difference of higher order.

Definition 11.1 (Multiple Boolean difference)
1 n enceFor a function of n variables f(x ,...,x ), the multiple Boolean differ
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Figure 11.2. Illustration of the definition of the Boolean difference over a Boolean cube.

with respect to a subset of m variables is defined as

δmf

δx1δx2 · · · δxm
=

δ

δx1

(
δ

δx2

(
· · ·
(

δ

δxm

)
· · ·
))

.

The number of variables in terms of which the difference has been per-
formed is called the order of the Boolean difference.

The Boolean difference has been introduced in [119], [141], for error-
correction in communication channels transferring binary data. The
theory of this differential operator has been developed by Akers [5], and
further by Davio, Deschamps and Thayse in a series of publications re-
ported and discussed in [185]. This theory has been a subject of a contin-
uous interest mainly due to various applications in analyzing properties
of switching functions, such as symmetry, decomposability, etc., as well
as in fault detection in logic networks. Various generalizations for dif-
ferent classes of functions have been proposed in the literature, see, for
example, [40], [41], [69], [172], [174], [178], [202] and references therein.

2. Properties of the Boolean Difference
Since, by the definition, in the Boolean difference we compare the

function values for xi and xi, and all the calculations are in GF (2),
it is obvious that the Boolean difference of a switching function of n
variables is a switching function of n − 1 variables. As noticed above,
unlike the classical Newton-Leibniz derivative, the Boolean difference

in Testing Logic Networks
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0 to 1 or from 1 to 0, and therefore,

δf

δxi
=

δf

δxi
.

The order of differentiation with respect to different variables is irrel-
evant,

δ2f

δxiδxj
=

δ2f

δxjδxi
.

Since the Boolean difference with respect to a variable xi is a function
that does not depend on that variable, we have

δ2f

δxiδxi
= 0.

The Boolean differentiation rules for basic logic operations are

δ(f · g)
δxi

= f · δg

δxi
⊕ δf

δxi
· g ⊕ δf

δxi
· δg

δxi
,

δ(f + g)
δxi

= f · δg

δxi
⊕ δf

δxi
· g ⊕ δf

δxi
· δg

δxi
,

δ(f ⊕ g)
δxi

=
δf

δxi
⊕ δg

δxi
.

It is interesting that the Boolean differences of the corresponding or-
ders are the values of the coefficients in the Reed-Muller expressions.
So also in this respect, the Reed-Muller expansions is analogous to the
Taylor expansion of continuous functions.

Example 11.2 Fig. 11.3 shows the relationships between the coefficients
of the positive polarity Reed-Muller expressions and the Boolean differ-
ence for functions of n = 3 variables.

3. Calculation of the Boolean Difference
A straightforward way to compute the Boolean difference of a given

function is to apply the definition of it and basic axioms and theorems
from the Boolean algebra to simplify the expressions derived.

Example 11.3 Consider a function f(x1, x2, x3) = x1x2 + x1x3. From
the definition of the Boolean difference,

δf

δx1
= f(x1, x2, x3) ⊕ f(x1, x2, x3) = (x1x2 + x1x3) ⊕ (x1x2 + x1x3)

= x2 + x3.

cannot distinguish the direction of the change of the function value form
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Figure 11.3. Relationships between the positive polarity Reed-Muller expressions and
the Boolean differences for n = 3.

The complexity of calculations is a disadvantage of this approach, and
we do not know in advance which manipulations are needed to simplify
the expressions and in which order they should be performed. Therefore,
in some cases tedious calculations may be required to determine the
Boolean difference.

The following theorem can often simplify the calculations.

Theorem 11.1 The Boolean difference of a function f(x1, . . . , xn) with
respect to the variable xi can be expressed as

δf

δxi
= f(x1, . . . , 1, . . . , xn) ⊕ f(x1, . . . , 0, . . . , xn).

Proof. From the Shannon expansion we have

δf

δxi
= (xif(x1, . . . , 1, . . . , xn) ⊕ xif(x1, . . . , 0, . . . , xn))

⊕(xif(x1, . . . , 1, . . . , xn) ⊕ xif(x1, . . . , 0, . . . , xn))
= (xi ⊕ xi)(f(x1, . . . , 1, . . . , xn) ⊕ f(x1, . . . , 0, . . . , xn))
= f(x1, . . . , 1, . . . , xn) ⊕ f(x1, . . . , 0, . . . , xn).

When a function f is given by the truth-vector, it is convenient to
use FFT-like algorithms to calculate the Boolean difference of f . From
the definition of the Boolean difference, it is obvious that calculation
of the difference with respect to the i-th variable corresponds to the
implementation of the i-th step of a FFT-like algorithms where the basic

butterfly operation is described by the matrix ∆(1) =
[

1 1
1 1

]
with

calculations over GF (2). Notice that the singularity of this matrix is
related with the fact that the Boolean difference of a function f with
respect to the variable xi is a function ∆if that does not depend on the
variable in respect to which the differentiation has been performed.

Boolean Difference and Applications in Testing Logic Networks
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gorithms is explained by the following example.

Example 11.4 Consider calculation of the Boolean difference of a two-
variable function f(x1, x2). By the definition,

δf

δx1
(x1, x2) = f(x1 = 0, x2) ⊕ f(x1 = 1, x2)).

Therefore,(
δf

δx1

)
(0, 0) = f(x1 = 0, x2 = 0) ⊕ f(x1 = 1, x2 = 0) = f(0, 0) ⊕ f(1, 0),(

δf

δx1

)
(0, 1) = f(x1 = 0, x2 = 1) ⊕ f(x1 = 1, x2 = 1) = f(0, 1) ⊕ f(1, 1),(

δf

δx1

)
(1, 0) = f(x1 = 0, x2 = 0) ⊕ f(x1 = 1, x2 = 0) = f(0, 0) ⊕ f(1, 0),(

δf

δx1

)
(1, 1) = f(x1 = 0, x2 = 1) ⊕ f(x1 = 1, x2 = 1) = f(0, 1) ⊕ f(1, 1).

In matrix notation, where ∆x1 stands for δf
δx1

,

∆x1F =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f(0, 0) ⊕ f(1, 0)
f(0, 1) ⊕ f(1, 1)
f(0, 0) ⊕ f(1, 0)
f(0, 1) ⊕ f(1, 1)

⎤
⎥⎥⎦ .

It follows that the Boolean difference of f(x1, x2) with respect to x1 can
be written as an operator in terms of the Kronecker product in a way
similar to that used description of steps in FFT-like algorithms

∆x1 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ =
[

1 1
1 1

]
⊗
[

1 0
0 1

]
.

Similarly, for the Boolean difference of f(x1, x2) with respect to x2, it
will be

δf

δx2
(x1, x2) = f(x1, x2 = 0) ⊕ f(x1, x2 = 1).

Therefore,(
δf

δx2

)
(0, 0) = f(x1 = 0, x2 = 0) ⊕ f(x1 = 0, x2 = 1) = f(0, 0) ⊕ f(0, 1),

The method of calculation of the Boolean difference by FFT-like
al
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Figure 11.4. Flow-graphs of the fast algorithm for calculation of the Boolean difference
of f(x1, x2) with respect to (a) x1, and (b) x2.

(
δf

δx2

)
(0, 1) = f(x1 = 0, x2 = 0) ⊕ f(x1 = 0, x2 = 1) = f(0, 0) ⊕ f(0, 1),(

δf

δx2

)
(1, 0) = f(x1 = 1, x2 = 0) ⊕ f(x1 = 1, x2 = 1) = f(1, 0) ⊕ f(1, 1),(

δf

δx2

)
(1, 1) = f(x1 = 1, x2 = 0) ⊕ f(x1 = 1, x2 = 1) = f(1, 0) ⊕ f(1, 1).

In matrix notation, where ∆x2 stands for δf
δx2

,

∆x2F =

⎡
⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f(0, 0) ⊕ f(0, 1)
f(0, 0) ⊕ f(0, 1)
f(1, 0) ⊕ f(1, 1)
f(1, 0) ⊕ f(1, 1)

⎤
⎥⎥⎦ .

When written as an operator in terms of the Kronecker product,

∆x2 =

⎡
⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦ =
[

1 0
0 1

]
⊗
[

1 1
1 1

]
.

Fig. 11.4 shows the flow-graphs of the algorithm for calculation of the
Boolean differences of f(x1, x2) with respect to x1 and x2.

Boolean Difference and Applications in Testing Logic Networks
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In general, the Boolean difference of a function of n-variables with
respect to the i-th variable can be represented as

∆xi =
n∏

j=1

Di(1),

where

Di(1) =
{

∆(1) if i = j,
I(1) if i �= j.

To calculate the multiple Boolean differences, the same algorithms
should be applied iteratively to the previously calculated Boolean differ-
ences.

From the theory of calculation of spectral transforms over decision
diagrams, see, for example, [175], is know that FFT-like algorithms can
be performed over decision diagrams instead of vectors. Therefore, the
calculation of the Boolean difference can be also performed over deci-
sion diagrams due to the above FFT-like algorithms. To calculate the
Boolean difference with respect to the i-th variable of a function repre-
sented by a BDD, the nodes and the cross points at the i-th level should
be processed by the basic matrix ∆(1). The processing means perform-
ing calculations described by the matrix ∆(1). The nodes at the other
levels remain unprocessed which corresponds to the identity matrices in
the Kronecker product representing ∆xi .

Example 11.5 Fig. 11.5 shows calculation of the Boolean differences
with respect to the variables x1 and x2 of a function f(x1, x2) represented
by the BDT.

4. Boolean Difference in Testing Logic Networks
In this section, we present the principles of applying the Boolean

difference in testing logic networks.

4.1 Errors in combinatorial logic networks
Although nowadays logic circuits are remarkably reliable in terms of

the probability of a particular gate output being incorrect at any specific
occasion, testing of logic circuits is among the hardest problems in this
area. Different faults in logic networks can occur for a variety of rea-
sons, as for instance shortcircuit, broken line, wrong value of the voltage
threshold of a transistor, etc.

The failures in a logic network can be classified as
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Figure 11.5. Calculation of the Boolean difference over BDT for n = 2.

1 Soft errors which are results from transient effects as, for instance,
electrical noise entering through the power supply, or cosmic rays
causing a burst of ions on a chip,

2 Hard errors which are permanent and may occur due to various me-
chanical effects such as vibration, long term corrosion, metal migra-
tion, etc.

Soft errors are hard to detect and are mainly handled by various
software and overall system design techniques. Testing of logic networks
mainly concerns hard errors.

At the logic level, we observe the influence of an error to the behavior
of the circuit. Fig. 11.6 illustrates an example of a short circuit between
the input of an invertor and the ground, which sets the value at the
input to 0. At the logic level, such an error will be interpreted as the
error input of the inverter set to 0.

There are various models of errors, however, the single stuck-at 0/1
errors (s-at 0/1) are probably the most often considered. It should be
noted that a well determined test for these errors can discover at the
same time many other errors. In the application of the stuck-at faults
error model, we consider the cases when both input and output pins of a

)

Boolean Difference and Applications in Testing Logic Networks
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Figure 11.6. Example of a short circuit in a CMOS inverter.

= error

Figure 11.7. Errors at fan-out lines.

s-at 0

s-at 0

s-at 0

s-at 0 s-at 0
s-at 1

s-at 1

s-at 1
s-at 1 s-at 1

Figure 11.8. Examples of equivalent errors.

circuit are set to either value 0 or 1. However, if the same line drives few
circuits, the number of errors is greater than 2 for this line. Fig. 11.7
illustrates this case.

The errors at both branches and streams in a network can be consid-
ered and it follows that the number of errors is 2c where c is the number
of circuits in the Device Under Testing (DUT). However, the number of
errors that have to be considered can be drastically reduced due to the
notion of equivalent errors.

Definition 11.2 (Equivalent errors)
Consider two errors e1 and e2 in a logic network N . Denote by fe1 and
fe2 the outputs of N in the presence of the errors e1 and e2, respectively.
The errors e1 and e2 are equivalent iff fe1 = fe2.

It there are k equivalent errors e1, . . . , ek, it is sufficient to generate
the test for an error ei to cover all other errors equivalent to ei. Fig. 11.8
illustrates examples of equivalent errors. In an AND circuit, we cannot
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distinguish appearance of the error s-at 0 at any of the inputs and the
output. It is the same with the error s-at 1 in the case of OR circuits.
However, the same does not apply to the error st-at 0 in the case of
OR circuits. Similarly, the error at the output of a NAND circuit is
equivalent to the error at the input of an inverter.

In general, determination of pairs of equivalent errors is a complex
task which, however, can be resolved by a consistent application of the
considerations illustrated above. The procedure for determination of
equivalent errors in a given circuit is called the collapse of errors. It is
usually assumed that before testing a device, the collapse of errors has
been performed.

It is possible to consider also multiple errors meaning simultaneous
appearance of single errors. The basic problem in this case is the number
of possible errors. If m is the number of places where errors may occur,
then the number of multiple stuck-at j, j = 0, 1 errors is 3m − 1, since
at each place it could be either no error, s-at 0, or s-at 1, which makes
3n possibilities out of which we should exclude the case when no error
at all m places.

If for an error e1 the output of DUT is fe1 = f , where f is the
output of the fault free DUT, then e1 cannot be detected, i.e., it is an
undetectable error. Such errors are often called redundant errors, since
are usually related to the appearance of some redundancy in the circuit
(redundant gates or interconnections). Notice that an interconnection
may be redundant for the logic behavior of the network, but is of essential
importance for the functioning of it. Fig. 11.9 shows an example of
undetectable errors. In this figure, the error line b s-at 1 cannot be
detected, since to check this error we should eliminate the impact of the
input c. Thus, it has to be c = 0, which requires a = b = 1, and to
detect an error we should take the value opposite to that caused by the
error, which is this case is b = 0. Therefore, there are contradictory
requirements, and it follows that this error can be detected. In other
words, this error cannot be detected since it influences both inputs of the
NOR circuit at the same time. Notice that in this example, the output
function is identically equal to 0, so neither a, b stuck-at errors can be
detected. However, the c stuck-at 1 could be detected.

Test for error detection in a given DUT consists of the assignments
of values at the inputs such that the value at the output is the opposite
of the value for the fault free DUT. A complete test consists of test se-
quences capable of detecting all the assumed errors for a given network.

n possible assignments of values for
the inputs is complete. However, this is impractical for a large n. A
It is clear that the test of all 2

Boolean Difference and Applications in Testing Logic Networks
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Figure 11.9. Example of an undetectable error.
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Figure 11.10. Fault free and faulty DUT.

the detectable errors for a given input sequence is often considered.

which can be basically classified as

1
pressions describing the function realized by the DUT considered,

2 Topological methods related to dealing with circuits and their inter-
connections, thus, the topology of the DUT.

In the following section, we will consider ATPG for single errors by
the application of the Boolean difference.

4.2 Boolean difference in generation of test
sequences

The basic principle of application of the Boolean difference in testing
of combinatorial circuits is illustrated in Fig. 11.10. If the output of the
fault free DUT is f and the output in the presence of an error ej is fej ,
then the error is detected if f ⊕ fej = 1. For the fault free DUT, f is a
function of primary inputs, i.e., f = f(x1, . . . , xn). The appearance of
a stuck at error at a line q causes this line to behave as a pseudo-input
xq. The output of DUT becomes feq = F (x1, . . . , xn, xq).

minimum test is hard to determine, and, therefore, the problem of finding

There are various methods for automatic test patterngeneration (ATPG),

Algebraic methods consisting of manipulation with the algebraic
ex
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It is clear that among the total of 2n different assignments of logic
values 0 and 1 for n primary inputs, for the test sequences we should
select those which provide

1 Excitation of the error meaning that the value at the line q is the
opposite to that caused by the error. Thus, to test an error which
causes xq = j, we select the assignments for which xq = j.

2 Propagation of the error which should ensure that occurrence of the
error influences the output, i.e., produces output opposite to the value
for the fault free DUT. In other words, xq should be an essential
variable for feq , which can be expressed by the Boolean difference.

Therefore, the test for a stuck at error can be determined by using
the following observation.

An assignment of input values (a1, . . . , an) is a test sequence to detect
the stuck at error xq = 0, respectively 1, iff the minterm xa1

1 , · · ·xan
n is a

true minterm in the functions

xq(x1, . . . , xn)
δF (x1, . . . , xn, xq)

δxq
,

and

xq(x1, . . . , xn)
δF (x1, . . . , xn, xq)

δxq
,

respectively.
The first part, xq or xq, in these functions provides the value opposite

to that caused by the error. The second part ensures that the error will
propagate to the output, i.e., xq is an essential variable of F . The test
consist of the sequences that satisfy the above requirement.

Consequently, if

xq(x1, . . . , xn)
δF (x1, . . . , xn, xq)

δxq
= 0,

and

xq(x1, . . . , xn)
δF (x1, . . . , xn, xq)

δxq
= 0,

the errors xq stuck-at at 0, respectively 1, are undetectable. Moreover,
in this case, we cannot even specify if the line xq is stuck to the value
equal to that caused by the error, or the error does not influence the
output.

Boolean Difference and Applications in Testing Logic Networks
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example taken from [12].

Example 11.6 [12]
Consider the network in Fig. 11.11. Analyzing the network we find that
the network realizes the function f(x1, x2, x3, x4) = x2+x3. It is obvious
that there is some redundancy in the network, which suggest that there
may be undetectable faults. Fig. 11.12 shows the truth-table for f .

We will apply the Boolean difference to generate test sequences for the
four possible suck-at errors for the lines e and h in the network.

We first determine the outputs of the network for these errors as fol-
lows

Fe(x1, x2, x3, x4, e) = (e + x2) + x3(x3 + x4) = (e + x2) + (x3 + x3x4)
= (e + x2) + x3(1 + x4) = e + x2 + x3,

Fh(x1, x2, x3, x4, h) = (x1x2 + x2) + hx3 = x2(x1 + 1) + hx3

= x2 + hx3.

The Boolean differences for the outputs in the presence of the errors
are

δF (x1, x2, x3, x4, e)
δe

= ((1 + x2) + x3) ⊕ ((0 + x2) + x3)

= (1 + x3) ⊕ (x2 + x3)
= 1 ⊕ (x2 + x3) = (x2 + x3) = x2x3.

δF (x1, x2, x3, x4, h)
δh

= (x2 + 1 · x3) ⊕ (x2 + 0 · x3) = (x2 + x3) ⊕ x2

= (x2 + x3)x2 + (x2 + x3)x2

= x2x2 + x2x3 + x2x3x2 = x2x3.

For the error e stuck at 0, from the network e = x1x2, and therefore,

e
δF (x1, x2, x3, x4, e)

δe
= x1x2x1x2 = 0,

and it follows that this error is undetectable.
The explanation is that e = x1x2 �= 0 for the assignments at the

decimal indices 12, 13, 14, and 15 as shown in the truth table for
f in Fig. 11.12. However, for these assignments, x2 = 1 and since
f(x1, x2, x3, x4, e) = e + x2 + x3, the error e = 0 is covered by x2 = 1
due to the properties of the logic OR, and thus, does not propagate to
the output.

The application of the Boolean difference in generation of test
sequences for combinatorial networks will be illustrated by the following
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Figure 11.11. Network discussed in Example 11.6.

It can be shown in a similar way that the error h s-at 1 is also unde-
tectable, since h = x3x4 and

h
F (x1, x2, x3, x4, h)

δh
= x3x4x2x3 = 0.

Since,

e
δf(x1, x2, x3, x4, e)

δe
= (x1x2)x2x3 = x2x3,

h
δF (x1, x2, x3, x4, h)

δh
= (x3 + x4)x2x3 = x2x3,

the errors e s-at 1, and h s-at 0 are detectable.
We determine the test sequences for these errors from the requirements

x2x3 = 1 and x2x3 = 1, respectively, as

e1 = {0000, 0001, 1000, 1001},
h0 = {0010, 0011, 1010, 1011}.

The selection of these sequences is justified by the following consider-
ations.

For the sequences in e1, since x2 = 0, then x1x2 = 0. Similarly,
since x3 = 0, then x3(x3 + x4) = 0, and, therefore, the output f =
x1x2 + x2 + x3(x3 + x4) = 0. However, if e = 1, the output is fe1 =
e1 + x2 + x3(x3 + x4) = 0 �= f .

For the sequences in h0, since x2 = 0, it follows x1x2 +x2 = 0 and the
first input in the final OR circuit is 0. However, x3 = 1, and, therefore,
x3(x3 + x4) = 1, which produces f = 1. If h = 0, then both inputs in
the OR circuits are equal to 0, and the output is opposite of the expected
value for f , which is 1 as it can be seen from Fig. 11.12.

More information about testing and related subjects can be found, for
example, in [1], [48], [49], [59].

Boolean Difference and Applications in Testing Logic Networks
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Figure 11.12. Truth-table of the function f realized by the network in Example 11.6.

5. Easily Testable Logic Networks
This Chapter discusses design of combinatorial logic networks that can

be easily tested against errors. It presents main results in two papers
[140] and [154], published in the period of 25 years. This is a good
example showing the impact of technology to the acceptance of valuable
theoretical research results. Theory presented in 1972 by S.M. Reddy
[140], has not been applied in practice, since at that time realization of
logic networks with EXOR circuits has been considered a tedious and
costly task. Thanks to the advent of technology and due to the increasing
demands of practice, these results has been revisited from nineties by
several authors, as will be discussed below. In particular, we will present
a further development provided in 1997 by T. Sasao [154], since nowadays
design for testability and related easy testable realizations are of high
importance in optimization of circuits. For these reasons, we present
the results reported in [140] and [154]. We also provide references and a
brief discussion of related recent research work.
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5.1 Features of Easily Testable Networks
Reliability of a digital system can be achieved by introducing redun-

dancy, which may be static or dynamic.
Static redundancy assumes that the system contains repeated parts

(either hardware or software) and is designed to produce correct output
even in the case of some errors.

In the case of dynamic redundancy, the system is tested with an ap-
propriately selected frequency and in time intervals determined such that
the appearance of an error can be detected and the system corrected by
replacing the corresponding modules in a reasonably short time. There-
fore, for such systems is is very desirable to design circuits which can be
easily tested. Such circuits are usually called easily testable circuits.

It is assumed that the device under test (DUT) has primary inputs
and outputs accessible. The testing is performed by the application of
a set of test sequences, called the test for the network and a predefined
set of possible errors.

An easily testable network should express the following properties

1 The set of test sequences should be as short as possible.

2 Network cannot be static redundant, since it may happen that exis-
tence of an error cannot be detected by the application of the test
sequences.

3 The procedure for construction of the test should be simple, and, if
possible, a part of the design method.

4 The test sequences should be easily generated, and the results ob-
tained by the application of the test easily interpretable.

5 It is desirable that the test determines with certain precision also the
location of the error.

6. Easily Testable Realizations from
PPRM-expressions

It has been shown by S.M. Reddy [140] already in 1972 that eas-
ily testable combinatorial logic networks can be designed from Positive
polarity Reed-Muller (PPRM) expressions. In the following, such an
network will be called the PPRM-network. Fig. 11.13 shows the struc-
ture of a PPRM-network. It consists of the AND part realizing product
terms that appear in the PPRM-expression of the function realized, and
the EXOR performing EXOR over the products. Recall that, in matrix

Boolean Difference and Applications in Testing Logic Networks



252 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

AND

Primary In

Out

Figure 11.13. Structure of easy testable networks designed from PPRM-expressions.

variables can be generated as

Xrm(n) =
n⊗

i=1

Xrm(1),

where ⊗ denotes the Kronecker product, and Xrm(1) =
[

1 xi
]
, as

defined in Section 2.
It is assumed that

1 At the inputs and outputs of AND circuits, single stuck-at 0/1 errors
may occur,

2 If an error occurs at an EXOR circuits, then this circuit may produce
any of the remaining 15 functions of two variables.

In this case,

1 If no error at the primary inputs in a PPRM-network allowed, then
the test consists of n+4 test sequences, and the test does not depend
on the function realized.

2 If an error at the primary inputs is allowed, the test consists of n +
4 + e sequences, where e is the number of variables that appear in
an even number of product terms in the PPRM-expression describing
the network.

It is clear that in the second case, the test depends on the function
realized by the network, since the number of test sequences is determined
by the product terms and the number of appearance of variables in them.

With an additional dedicated AND circuit with accessible output, the
test consists of n + 4 sequences, and does not depend on the function
realized by the PPRM-network as in the previous case [140].

n
notation, the product terms in the PPRM-expression for a function of



253

x1
x2
x3
x4

x0=1 � � � � �
f

AND

EXOR

Figure 11.14. PPRM-network in Example 11.7.

This theory is illustrated by the following example [140].

Example 11.7 Consider the function f of four variables given by the
truth-vector

F = [1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0]T .

The PPRM-expression for f is

f = 1 ⊕ x1x2 ⊕ x1x4 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x1x2x3x4.

Fig. 11.14 shows a PPRM-network realizing this function f . The vari-
ables x1 and x2 appear in an even number of products

x1 appears in x1x2, x1x4, x1x2x3, x1x2x3x4,

x2 appears in x1x2, x1x2x3, x2x3x4, x1x2x3x4.

Therefore, in this example, e = 2.

Test for EXOR part. As mentioned above, it is assumed a single error
in the EXOR circuits in the PPRM-network, and the faulty circuit may
realize any two-variable switching function different from EXOR. The
test should check the outputs of all the EXOR circuits for all possible
combinations of values at their inputs. This can be achieved by the test
T1 specified as

T1 =

⎧⎪⎪⎨
⎪⎪⎩

(0 0 0 0 0)
(0 1 1 1 1)
(1 0 0 0 0)
(1 1 1 1 1)

⎫⎪⎪⎬
⎪⎪⎭ .

Boolean Difference and Applications in Testing Logic Networks
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Figure 11.15. Test for EXOR part in Example 11.7.

Fig. 11.15 illustrates application of this test. When the first test sequence
(00000) applied to the primary inputs, the AND circuits will generate
values of the product terms at the inputs of the EXOR circuits as shown
in the first row at the upper part of the figure. The values at the outputs
of the EXOR circuits are shown in the first row at the lower part of the
figure. The application of other test sequences is shown in the same way.

It is obvious that when all four test sequences are applied at the pri-
mary inputs, the inputs of all the EXOR circuits will be tested for all
possible combinations of logic values 0 and 1.

Test for AND part. To determine the test for the AND-part we first
consider the single stuck-at 0 fault at an input of an AND circuit. This
error is equivalent to the stuck-at 0 of the output, due to the properties
of AND-circuits.

The test in this case is T2 = { (0 1 1 1 1) }, since for this as-
signment of values at primary inputs f = 1, and in the case of the
appearance of the error, the output will be f = 0 as shown in Fig. 11.16
by the example of the appearance of the error at the output of the second
AND circuit.

Alternatively, the same error can be checked by the test sequence T2 =
{ (1 1 1 1 1) }, as explained in Fig. 11.17 by the example of the
appearance of the error at the output of the first AND circuit.

Notice that both these test sequences are contained in the already de-
termined test for the EXOR part T1, thus, T2 ⊂ T1.

A similar consideration shows that the stuck-at 1 error at the output of
the AND circuits can be tested by the sequences T3 = { (0 0 0 0 0) },
and T3 = { (1 0 0 0 0) }, and t3 ⊂ T1.
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1 1 1 1 1

1 0 1 0 1
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Fault free

1 1 0 1 0

0

Fault

Figure 11.16. Test for AND part in Example 11.7.

� � � � �
1

1 1 1 1 1

0 1 0 1 0

Fault

Fault free

1 0 1 0 1

0

Fault

Figure 11.17. Alternative test for AND part in Example 11.7.

The stuck-at error 1 at an input of AND circuits requires the test

T4 =

⎧⎪⎪⎨
⎪⎪⎩

(d 0 0 0 0)
(d 1 1 1 1)
(d 0 0 0 0)
(d 1 1 1 1)

⎫⎪⎪⎬
⎪⎪⎭ ,

where d can be either 0 or 1, thus, d ∈ {0, 1}. For instance, if d = 0,
and x1 = x2 = x3 = 1, and x4 = 0, then f = 0, in a fault free network.
However, if x4 = 1, the network will produce incorrect input f = 1.
Similarly, if d = 1, and x1 = x2 = x3 = 1, and x4 = 0, then f = 1 in the
fault free network. The error x4 = 1, will produce the incorrect output
f = 0. In a similar way, it can be shown that this test checks against all
the stuck-at 1 errors for xi, i = 1, 2, 3, 4.

Boolean Difference and Applications in Testing Logic Networks
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x3, x4 $ odd number of products

T(x3 s-at 0) = {01111} � {11111}, since x3 = 1

T(x3 s-at 1) = {01101} � {11101}, since x3 = 0
$ T1

$ T4

T(x4 s-at 1) = {01110} � {11110}, since x4 = 0

T(x4 s-at 0) = {01111} � {11111}, since x4 = 1

Figure 11.18. Test for the primary inputs x3 and x4 in Example 11.7.

Therefore, if it is assumed that primary inputs are error free, the test
for the PPRM-network in Fig. 11.14 is T = T1 ∪ T4, since T2, T3 ⊂ T1.
The size of the test is |T | = n + 4 = 8, since n = 4 and |T1| = |T4| = 4.

Consider testing of a single fault at the primary inputs under the as-
sumption that the rest of the PPRM-network is fault free. Since the
output of the network is generated as the output of EXOR circuits, prop-
agation of the error to the output requires excitation of an odd number
of primary inputs. Therefore, if an input xi appears in an odd number
of products, this requirement is satisfied and the test is already contained
in the previously determined test for the AND and EXOR parts of the
PPRM-network. Fig. 11.18 illustrates this statement.

For the primary inputs the variables which appear in an even number
of products, the test has to be extended by a some set of test sequences
Te determined as follows.

Consider a variable xi appearing in an even number of products and
denote by Pi = xi, xj · · ·xk the product which contains xi and has the
minimum number of literals. For instance, in this example, such prod-
ucts for the variable x1 would be P1 ∈ {x1x2, x1x4}.

For a product Pi, we select the assignments of input variables V =
(x1, . . . , xn), where xi = 0 and xi = 1 such that the other variables
in the product xj = · · · = xk = 1, while the remaining variables xl ∈
{x1, . . . , xn} \ {xi, xj , . . . , xk} take the value 0. We denote these assign-
ments by V 1

i and V 0
i for xi = 1 and xi = 0, respectively.

For instance, if P1 = x1x2, then V 1
1 = d1100 and V 0

1 = d0100.
For thus selected assignments of values at primary inputs correspond-

ing to a product Pi, the AND circuit which produces Pi will be the single
AND circuit whose output is 1. Therefore, if xi stuck-at 0, the out-
put will be 0, which is an incorrect value detectable at the output of the
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x1

s-at 1s-at 0

x2

11001

1 dV � 01000

1 dV �

11001

2 dV � 10000

2 dV �

T5 = {d1100, d0100, d1000}

T = T1 � T4 � T5

For all single faults stuck at r, r ${0,1}

Figure 11.19. Test for the primary inputs x1 and x2 in Example 11.7.

PPRM-network. It follows that sequences V 1
i and V 0

i are tests for the
errors xi stuck-at 0 and 1, respectively. Fig. 11.19 shows these test se-
quences for the PPRM-network considered in this example, which form
the test for the primary inputs T5.

Therefore, the complete test for the single stuck-at faults in this net-
work is T = T1 ∪ T4 ∪ T5.

7. Easily Testable Realizations from
GRM-expressions

Easily testable realizations from PPRM-networks have soem draw-
backs

1 The serial connection of EXOR circuits causes a large propagation
delay.

2 For many functions the PPRM-expressions may contain a large num-
ber of products, which implies an equally large number of AND cir-
cuits.

3 Multiple faults cannot be detected.

With the motivation to avoid these bottlenecks and to improve the
performances of related easily testable realizations, application of the
generalized Reed-Muller (GRM) expressions has been proposed in [154].

The rationale for considering GRM-expressions is explained in [154]
by an example showing the average number of product terms in different
functional expressions required to represent functions of n = 4 variables.
We show here just the main result of this example.

Boolean Difference and Applications in Testing Logic Networks
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Table 11.1. Average number of products in SOP, PPRM. FPRM, GRM, and ESOP
expressions for functions of n = 4 variables.

SOP PPRM FPRM GRM ESOP

4.13 8.00 5.50 3.68 3.66

Example 11.8 Table 11.1 shows the average number of products re-
quired in Sum-of-product (SOP), Positive-polarity Reed-Muller (PPRM),
Fixed-polarity Reed-Muller (FPRM), Generalized Reed-Muller (GRM)
and EXOR Sum-of-product (ESOP) expressions functions of n = 4 vari-
ables.

It is pointed out that for n = 4, GRM-expressions require fewer prod-
ucts than PPRM-expressions. This number is comparable with the num-
ber of product in ESOPs, that is, however, much harder to determine
for a given function.

Since, in GRM-expressions both positive and negative literals of vari-
ables are allowed, the structure of an easy testable GRM-network is as
shown in Fig. 11.20. The part to generate literals consists of two-input
EXOR circuits whose inputs are xi and c, where c is a common control
input for all these EXOR circuits. The Check part consists of addi-
tional two AND and two OR circuits with accessible outputs denoted
as AND(A), AND(B), OR(A), and OR(B), respectively. The circuits
denoted by A are intended to test the positive literals, which are, there-
fore, their inputs. Circuits B have xc

i as inputs. The AND part is used
to generate products in GRM-expressions, in the same way as in the
PPRM-networks in [140]. Improvement comes from the reduced num-
ber of products, correspondingly, AND circuits. However, instead of
a serial connection of EXOR circuits, the EXOR part can be a tree-
network, which reduces the propagation delay and makes the network
faster than a PPRM-network.

Example 11.9 [154]
Fig. 11.21 shows an easily testable GRM-network realizing the function
of n = 4 variables whose GRM-expression is

f = x2 ⊕ x1x3x4 ⊕ x2x3x4 ⊕ x1x2x4.

Notice that the PPRM-expression for this function is

f = 1 ⊕ x4 ⊕ x3x4 ⊕ x2x3 ⊕ x2x3x4 ⊕ x1x4 ⊕ x1x3x4 ⊕ x1x2x4,

which requires seven AND circuits in the PPRM-network.
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Figure 11.20. Structure of an easy testable GRM-network.
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Figure 11.21. The GRM-network realizing the function f in Example 11.9.

It is assumed in [154] that multiple stuck-at errors can be detected,
however, provided that errors appear in a single part of the network out
of the four main parts of it, the literal part, the check part, AND and
EXOR parts.
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Figure 11.22. Example of a network where application of the Fujiwara method for testing
of EXOR part is impossible.

Test for the EXOR part. It is assumed that

1 The EXOR part is realized with EXOR gates,

2 A faulty EXOR part may produce any linear function different from
the required.

Notice that Fujiwara [48] has shown that an EXOR network realizing
linear functions f = x1 ⊕ x2 ⊕ . . .⊕ xs under above assumptions can be
tested by a test T = {a0, a1, . . . , as} where the sequences

a0 = (0, 0, · · · , 0),
a1 = (1, 0, · · · , 0),

...
as = (0, 0, · · · , 1).

However, although easy to generate and efficient, this test cannon be
applied to the GRM-networks, since there are AND circuits between
the primary inputs and the EXOR-part as shown in Fig. 11.22, which
prevents propagation of the effect of test sequences to the inputs of the
EXOR-part.

Therefore, it is proposed in [154] that the test for the EXOR part in
GRM-networks consists of sequences T = {a0, a1, . . . , as}, where a0 =
(0, 0, . . . , 0), and ai = (ai0 , ai1 , . . . , ais), i ∈ {1, . . . , s}, where sequences
ai are selected as rows of an (s × s) non singular matrix over GF (2).

Actually, since each sequence corresponds to a product which is an
input in the EXOR part, these test sequences are selected such that
aij = 1 if the variable xj appears in the i-th product.
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Figure 11.23. Test for the EXOR part of the GRM-network in Example 11.9.

Example 11.10 Fig. 11.23 shows determination of test sequences for
the EXOR part of the GRM-network in Fig. 11.21. Notice that since we
are interested just in the appearance of a variable in a product, not in
its polarity, the product terms are written without specifying the polarity
of variables.

Test for the AND part. To determine the test for the AND part, the
GRM-network is first simplified converting it into a PPRM-network by
setting c = 0. It is assumed that t errors may appear simultaneously
in the AND-part, but the rest of the network is fault free. Then, the
test for the AND part consists of the sequences where the number of
0 values is smaller than or equal to �log2 2t�, where �x� is the integer
part of x. The number of such sequences, i.e., the size of the test is

|TAND| =
∑r

0

(
n
i

)
, where r = �log2 2t�.

Example 11.11 For n = 4, if t = 2, the test for the AND-part is

TAND = {(0011), (0101), (0110), (1001), (1010), (1100),
(0111), (1011), (1101), (1110), (1111)}.

Test for the Literal part. The Literal part is checked by observing out-
puts of the Check part. In the Check part the inputs of AND(A) and
OR(A) are xi. The inputs of AND(B) and OR(B) are xc

i .
The stuck-at 0 faults for xi and xc

i are tested by the test sequence
(c, x1, . . . , xn) = (0, 1, . . . , 1), and the error is detected when the output
of AND(A) has the value 0, since for this sequence, in a fault free network
all the literal lines have the value 1.

The test for stuck-at 1 faults for xi is the test sequence (c, x1, . . . , xn) =
(0, 0, . . . , 0), since for this sequence OR(A) will produce the value 1 in
the case of an error.

Similarly, the test for stuck-at faults 1 for xc
i is the test sequence

(c, x1, . . . , xn) = (1, 1, . . . , 1), and the fault will be detected when the
output of OR(B) has the value 1.

Boolean Difference and Applications in Testing Logic Networks
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Table 11.2. Test sequences for the Check part.

AND stuck-at 1 for xi xi = 0, {x1, . . . , xn} \ {xi} = 1
stuck-at 0 for xi xi = 1, {x1, . . . , xn} \ {xi} = 1

OR stuck-at 1 for xi xi = 0, {x1, . . . , xn} \ {xi} = 0
stuck-at 0 for xi xi = 1, {x1, . . . , xn} \ {xi} = 0

Therefore, the complete test for the primary input lines, which also
tests the EXOR circuits in the Literal part consists of three sequences
TLiteral = {(0, 1, . . . , 1), (0, 0, . . . , 0), (1, 1, . . . , 1)}.

Test for the Check part. The errors may appear also in the parts of the
network intended for testing, i.e., the Check part should be also tested.
Table 11.2 specifies the test sequences for the Check part in a GRM-
network.

Size of the Test. Table 11.3 summarizes the number of test sequences for
different parts of an easy testable GRM-network with the structure as in
Fig. 11.21. The test for the network is the union of tests for these parts.
Therefore, the total size of the test for the complete network satisfies

|T | ≤ s + n + 4 +
r∑

i=1

(
n
s

)
,

where n is the number of variables, s the number of product in the GRM-
expression for the function realized, r = �log2 2t� and t is the number of
multiple errors to consider.

Example 11.12 [154]
Fig. 11.24 shows the test sequences for the GRM-network used as the
example in [154]. Sequences which repeat in tests for different parts are
marked. The test is determined as the union of tests for all the parts of
the GRM-network, i.e.,

T = TEXOR ∪ TAND ∪ TLiteral ∪ TCheck.

The size of the total test is |T | = 17.
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Table 11.3. Size of the test.

Test Size

|TEXOR| = s + 1 s - number of products in GRM(f)

|TAND| =
∑r

i=0

(
n
i

)
r = �log2 2t�, t - number of multiple errors

|TLiteral| = 3
|TCheck| = 2n + 2

The main features of the easily testable realizations proposed in [154]
can be summarized as follows

1 GRM-expressions are used which reduces the number of AND cir-
cuits.

2 EXOR part is a tree network, which reduces the propagation delay
and makes the network faster.

3 The test can be easily generated, however, it is dependent on the
function realized.

4 Multiple errors are detectable, provided that they appear in a single
part of the network of the assumed structure.

The overhead is an additional input for the control signal c and four
extra outputs for the Check part.

7.1 Related Work, Extensions, and
Generalizations

The method by Reddy has been extended to Fixed-polarity Reed-
Muller expressions in [148], and ESOP expressions in [134], [160], [203].
In general, ESOPs require fewer products. However, the problem with
ESOPs, as pointed out in [154], is that when the number of minterms
in the function represented is odd, any ESOP expression contains a
minterm, i.e., a product term containing all the variables, which implies
that the test is exhaustive. For almost all functions the test has the
length near 2n for a large n. In [203], the overhead is five additional
inputs, an extra output, and another dedicated EXOR part.

Extensions to GRM-expressions in [130], suggest decomposition into
several FPRM-expressions and then exploiting the method in [148].

Boolean Difference and Applications in Testing Logic Networks
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| T | = 17

Figure 11.24. Test sequences for the network in Example 11.9.

Detecting multiple-errors has been discussed in [147] for networks de-
rived from PPRM-expressions, and [134] for ESOPs. Bridge errors have
been discussed in [203] for both PPRMs and ESOPs.

All these extensions assume that the EXOR part is realized as a serial
connection of EXOR circuits. Exception is [139], where tree EXOR
network has been considered. In this case, if m + 1 extra inputs are
provided, where m is an even number, the test will be independent on
the function realized, and will have the length 2m + n.

In [38] and [39], a generalization to multiple-valued logic functions has
been presented.

The above discussions concern the so-called deterministic testing, i.e.,
when the test sequences are explicitly determined. In [37], it has been
shown that networks based on PPRM and FPRM expressions can be
easily modified to have also good properties when tested by randomly
generated test sequences, i.e., a random pattern test. However, the ex-
perimental results reported in [37] do not indicate the same for networks
derived from other AND-EXOR expressions, including ESOPs.
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8. Exercises and Problems
Exercise 11.1 Determine the Boolean difference δf

δxi
and all multiple

Boolean differences of functions

f(x1, x2, x3) = x1x2 + x2x3 + x1x3,

f(x1, x2, x3, x4) = x1x3 + x2x4 + x1x3x4 + x2x3,

Exercise 11.2 Discuss complexity of calculation of the Boolean differ-
ence of a function of n variables by FFT-like algorithms and through
decision diagrams. Illustrate the considerations by the example of func-
tions f1 and f2 defined by the truth-vectors

F1 = [1, 0, 0, 1, 0, 1, 1, 1]T ,

F2 = [1, 0, 0, 0, 0, 1, 0, 1]T ,

and determine the number of EXOR operations required in FFT-like
algorithms and decision diagram methods.

Exercise 11.3 Show analytically that the order of processing variables
in calculation of the Boolean difference of order two with respect to the
variables xi and xj is irrelevant, i.e., δ2f

δx iδxj
= δ2f

δxjδxi
.

Illustrate the considerations by determining the Boolean difference
δ2f

δx1δx2
of the function f(x1, x2, x3) = x1x2 + x1x3 + x2x3.

Exercise 11.4 Discuss the relationships between the Boolean differ-
ences and coefficients in the Reed-Muller expressions. Illustrate the con-
siderations by the example of the function f(x1, x2, x3) = x1 + x2 +
x1x2x3.

Exercise 11.5 Does the change of polarity of a variable xi influence the
calculation of the Boolean difference with respect to this variable? What
the are relationships between the Boolean differences and coefficients in
the Fixed-polarity Reed-Muller expressions?

Exercise 11.6 For two switching functions f and g, what is the Boolean
difference of the first order of f + g, f · g, and f ⊕ g?

Exercise 11.7 Write the matrix relations for calculation of the Boolean
differences of first order for a function of n = 3 variables. Form their
Kronecker product structure, determine the matrix relations for calcula-
tion of higher order Boolean differences.

Exercise 11.8 Draw the flow-graphs of FFT-like algorithms for cal-
culation of the first order Boolean differences for functions of n = 3
variables by using matrix relations in the previous exercise.

Boolean Difference and Applications in Testing Logic Networks
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Exercise 11.9 Represent the function f(x1, x2, x3) = x2+x1x2+x1x2x3

by the BDD and calculate the Boolean differences of the first order by
processing nodes in this diagram.

Exercise 11.10 Check if the functions

f(x1, x2, x3, x4) = x2x3 + x2 + x1x3x4 + x2x3,

f(x1, x2, x3, x4) = x1x4 + x2x3 + x3x5 + x2x3x4,

have fictive variables by using the Boolean difference.

Exercise 11.11 Check if the function f(x1, x2, x3) defined by the set of
decimal indices f (1) = {0, 3, 4, 7} has fictive variables.

Exercise 11.12 For the function f(x1, x2, x3, x4) = x1 + x1x2x3 +
x1x2x4x2x3x4 calculate the Boolean difference of the first and the second
order with respect to the variables x1, x2, x4 and x1x3 and x2x3.

Exercise 11.13 Draw an easily testable network for the function spec-
ified by the positive-polarity Reed-Muller expression

f(x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x4 ⊕ x2x3x4 ⊕ x1x2x3x4.

Show the number of tests for this network against stuck-at faults in the
case of error free primary inputs and in the presence of errors at the
primary inputs.

Exercise 11.14 Consider the network in Fig. 11.25. Determine the
set of test for the error the line e stuck-at 0 and 1.

x1

x2

x3

x4

e

f

Figure 11.25. Network in the
Exercise 11.14.

x1

x2

x3

x4

e

f

Figure 11.26. Network in the
Exercise 11.15.

Exercise 11.15 For the network in Fig. 11.26, determine the set of
test for the error line e stuck-at 0 and 1.
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Exercise 11.16 Consider the network in Fig. 11.27 realizing the two-
bit binary adder. Determine the set of test for the error line e stuck-at
0 and 1. Specify some other errors at internal lines of the circuit and
show examples of tests.

x1

x2

x3

x4

e

f

Figure 11.27. Network in the Exercise 11.16.

Exercise 11.17 For the function specified by the GRM -expression

f(x1, x2, x3, x4) = x1 ⊕ x1x2 ⊕ x2x4 ⊕ x2x3x4

determine an easily testable network.

Exercise 11.18 Determine the easily testable network for a four-variable
function given by the truth-vector

F = [1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1]T .

Boolean Difference and Applications in Testing Logic Networks



Chapter 12

SEQUENTIAL NETWORKS

The output of a combinatorial logic network depends on the values
of input signals at the time. On the other hand, the output of a se-
quential network is determined by the present input and current state
of the network. Thus, the output depends on the history of the system.
From the constructional point of view, sequential networks differ from
the combinatorial networks in the memory elements used to record the
previous state of the network.

The functional behavior of a combinatorial network is described by
the truth-tables specifying the outputs of the network for all possible
combinations of the input signals. The behavior of a sequential network
is described by a mathematical model called sequential machine, finite-
state machine or finite automaton, and can be represented by a state
table or state diagram. Notice that the notions sequential machine, finite
machine, state machine, finite automaton, automaton, are synonyms.

Sequential machines can be defined by state (transition) tables or state
(transition) diagrams, or their behavior can be specified by two func-
tions: the state function that determines the next state of the sequential
machine, and the output function, that defines the corresponding output.

In this book, we will discuss finite and deterministic sequential ma-
chines, i.e., machines where for each pair of present state and input sym-
bol, there is a deterministic next state. In the case of non-deterministic
machines, there may be several possible next states for each pair.

Definition 12.1 A deterministic finite sequential machine is defined
by the quintuple M = (Σ, Q, Z, f, g), where

1 Σ - finite non-empty set of input symbols σ1, . . . , σl, also called the
input alphabet,

269
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x
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CN
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Figure 12.1. Sequential machine.

2 Q - finite non-empty set of states q1, . . . , qn, the state alphabet

3 Z - finite non-empty set of output symbols z1, . . . , zm, the output al-
phabet,

4 f - state function,

5 g - output function.

Fig. 12.1 shows the basic structure of a sequential machine. It con-
sists of the combinatorial network (CN), realizing the state and output
functions and, the memory (M) to keep information about the state.

In the set Q, a state is selected as the initial state and marked with a
special symbol, usually by encircling the symbol for the state.

Elements of Σ are often called input symbols, inputs, or letters. The
length of a word is the number of letters it consists of. The empty word
is a word that contains any letter. It is usually denoted by λ and also
called the empty letter. We will denote the set of all possible words over
an alphabet A by W (A).

Example 12.1 Over an input alphabet Σ = {σ1, σ2}, possible words are
λ, σ1, then σ2, and σ1σ1, σ1σ2, σ1σ1σ2 and belong to W (Σ). The lengths
of these words are 0, 1, 1, 2, 2, and 3, respectively.

Notice that although all three alphabets are finite, and in particular,
the input alphabet is finite, the number of possible input signals is in-
finite, since concatenation of input symbols in an arbitrary order and
their repetition arbitrarily many times is allowed.

From the design point of view, the most important task is the mini-
mization of a sequential network. A particular function can be realized

q

q
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Mealy Moore

Figure 12.2. Elementary sequential machines (a Mealy, (b) Moore.

by an infinite number of machines and the task is to find a machine that
minimizes the number of states.

Two states in a sequential machine are equivalent if starting from
either of the states the same input word produces exactly the same
output. In the minimization, we need to identify equivalent states and
then eliminate the redundant ones.

Another important task is to find binary encodings for inputs, out-
puts, and states such that the realizing binary representation is as simple
as possible.

A third important task is to hierarchically decompose a complex se-
quential machine into smaller submachines that can be analyzed and
optimized separately.

1. Basic Sequential Machines

sequential machines.

Definition 12.2 (Mealy machine)
A deterministic sequential machine is the Mealy machine if

1 The state function is f : Q × Σ → Q and,

2 The output function is g : Q × Σ → Z.

Definition 12.3 (Moore machine)
A deterministic sequential machine is the Moore machine if

1 The state function is f : Q × Σ → Q and,

2 The output depends on the present state, but not the input, i.e.,
g : Q → Z.

There are two basic deterministic sequential machines Mealy and Moore

)
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Figure 12.3. Single-bit binary adder.

Table 12.1. Single-bit binary adder.

ci−1xiyi cisi Z

000 00 0
001 01 1
010 01 1
011 10 2
100 01 1
101 10 2
110 10 2
111 11 3

Denote by σ(t), q(t), and z(t), the input, state, and output of a se-
quential machine at the instant t = 1, 2, . . . . Then, for the state function
f and the output function g we have the relations

f(q(t), σ(t)) = q(t + 1),
g(q(t), σ(t)) = Z(t),

where σ(t), q(t) are the input, the present state, z(t) is the output, and
q(t + 1) is the next state. In the case of Moore machines, z(t) = g(q(t)).

Notice that selection of instants when values of states, input and out-
put signals, are determined may be specified differently. For instance,
sometimes the value of the output signal z(t) is determined by the
state at the moment t + 1. Thus, in this case, the output function
is z(t) = g(q(t + 1), σ(t)). Similarly, the state function is often given by
q(t) = f(q(t − 1), σ(t)). The overall properties remain the same.

Fig. 12.2 shows the structure of the Mealy and Moore finite sequential
machines.

Example 12.2 Fig. 12.3 shows a single-bit serial binary adder, which
is a device with two inputs xi and yi for operands, and the carry input
ci−1, and outputs for the sum si and the carry bit ci. Table 12.1 defines
behavior of the binary adder.
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It is clear that, when considered as a Mealy sequential machine, two
states are needed to describe the binary adder

1 q0 - no carry,

2 q1 - carry.

Therefore, the set of states is Q = {q0, q1}. The input and the out-
put symbols are Σ = {xiyi} = {00, 01, 10, 11}, and Z = {si} = {0, 1},
respectively.

A simple analysis of the impact of all possible combinations of values
at the inputs xiyi, that can be 00, 01, 10, and 11, to the next state of the
adder, can be described by the following state function f

f(q0, 11) = q1,

f(q0, 00) = f(q0, 01) = f(q0, 10) = q0,

f(q1, 01) = f(q1, 10) = f(q1, 11) = q1,

f(q1, 00) = q0.

Indeed, for instance, if the initial state is q0, i.e., there is no carry,
and the input is xiyi = 11, the result will be 1 + 1 = 2, which in binary
notation is sici = 10 meaning that the sum is 0 and the carry is 1. Thus,
the machine changes to the state q1, and we write f(q0, 11) = q1.

Similarly, since the output of the binary adder is determined as xi ⊕
yi ⊕ ci−1 = z, it can be specified by the output functions

g(q0, 00) = g(q0, 11) = 0,
g(q0, 01) = g(q0, 10) = 1,
g(q1, 00) = g(q1, 11) = 1,
g(q1, 01) = g(q1, 10) = 0.

Therefore, the binary adder can be defined as a Mealy sequential ma-
chine M = ({00, 01, 10, 11}, {q0, q1}, {0, 1}, f, g), where f and g are as
defined above.

However, if the states should take into account not just carry, but
also the sum, then four states are needed q00, q01, q10, q11. The state q00

denotes the combination when there is no carry and sum is 0. Similarly,
the state q01 denotes that there is no carry, but the sum is 1, etc.

In this case, since the states qsc include both carry and the sum, which
are uniquely determined by the inputs xiyi, the output will depend just
on the state and not the inputs. Therefore, the corresponding sequential
machine will be a Moore machine with the state function
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f(q00, 00) = f(q01, 00) = q00,

f(q00, 11) = f(q01, 11) = q10,

f(q00, 01) = f(q00, 10) = f(q01, 01) = f(q01, 10) = q01,

f(q10, 00) = f(q11, 00) = q01,

f(q10, 11) = f(q11, 11) = q11,

f(q10, 01) = f(q10, 10) = f(q11, 01) = f(q11, 10) = q10.

The output function is

g(q00) = q(q10) = 0,

g(q01) = g(q11) = 1.

Therefore, the single-bit serial binary adder can be equivalently rep-
resented by either a Mealy or Moore sequential machine. In general, two
sequential machines defined over the same input and output alphabets
are equivalent if for any input word they produce the same output. Ma-
chines can be different in the number of states, and the selection of the
one most appropriate for a given task depends on the application and
other possible requirements.

For each Moore machine there is an equivalent Mealy machine with
the same number of states. The output function is just viewed as a
function Q × Σ → Z. For each Mealy machine with |Σ| states, there is
an equivalent Moore machine with |Q| × |Σ| states.

2. State Tables
To specify a deterministic sequential machine we need to give the sets

of states, input symbols, output symbols, and output and state transition
functions. This information can be presented conveniently in the form
of a table, called the state table or state transition table.

Example 12.3 Fig. 12.4 shows the state table for the binary adder in
Example 12.2 considered as the Mealy machine. The first row shows
the possible input signals 00, 01, 10, 11. The left most column shows the
present states q0 and q1, and the remaining part of the table shows the
next states and the corresponding outputs.

For instance, the last row shows that if the present state is q1, the next
states and outputs for the corresponding inputs will be q0, 1, q1, 0, q1, 1,
and q1, 1, respectively.

Fig. 12.5 shows the state table for the equivalent Moore machine. In
this table, the output is separately shown in the column Z, since does
not depend on the present inputs.
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q0,0 q0,1 q1,0 q0,1

q0,1 q1,0 q1,1 q1,0

q0
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q
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x y
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Figure 12.4. State table for the binary adder realized as a Mealy machine.
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Figure 12.5. State table for the binary adder realized as a Moore machine.

Alteratively, the information in a state table can be presented in the
form of a state diagram.

Example 12.4
nary adder considered as the Mealy machine. In this diagram, the

directed edge q0
11/0→ q1shows that the machine goes from the state q0 into

the state q1 under the input 11 and the output is 0. Such representation
indicates that the output depends on the input and the state.

Fig. 12.7 shows the state diagram when binary adder is considered as
the Moore machine. In this diagram, the values for the output are shown
in the states.

State diagrams are useful for visualizing various properties of sequen-
tial machines.

If some of the functions that define a sequential machine, the state
function or the output function, are incompletely specified, then the
sequential machine is also incompletely specified.

Example 12.5 A Mealy machine with the input alphabet Σ = {0, 1},
the state alphabet q = {1, 2, 3, 4}, and the output alphabet Z = {0, 1},

Fig. 12.6 shows the state diagram for the single-bit
bi
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11/0

11/1

11, ,

Figure 12.6. State diagram for the binary adder realized as a Mealy machine.

Figure 12.7. State diagram for the binary adder realized as a Moore machine.
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Figure 12.8. State diagram of an incompletely specified sequential machine.
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3. Conversion of Sequential Machines
For a particular input-output relation, there are many (infinite num-

ber) of different sequential machines realizing the relation. In the design
process, it is often desirable to convert a sequential machine to another
equivalent one that is more suitable to the technology at hand. Also,
from the set of suitable sequential machines, the designer should find

while doing so, also give a more precise meaning to the words

”

equiva-
lent” and

”

simplest” in this context.

Definition 12.4 The state transition function is extended from Q×Σ
to Q × W (Σ) by

f(q, λ) = q, for all q ∈ Q,

f(q, wσ) = f(f(q, w), σ), for all q ∈ Q, σ ∈ Σ, w ∈ W (Σ).

If f is clear from the context, we can write qw for f(q, w).

Definition 12.5 The response function rq(w) induced by the input word
w is defined by

rq(λ) = λ,

rq(σw) = g(q, σ)rqσ(w), for a Mealy machine,
rq(σw) = g(q)rqσ(w), for a Moore machine,

where σ ∈ Σ, w ∈ W (Σ) and q ∈ Q.

Definition 12.6 Two states q and q′ (from the same or two machines)
are called equivalent if rq(w) = rq′(w), for all w ∈ W (Σ), and the two
machines M1 and M2 are equivalent if for each state of M1 there is an
equivalent state in M2 and vice versa.

Theorem 12.1 For any Moore machine there is an equivalent Mealy
machine with the same number of states. For each Mealy machine Me =
(Σ, Q, Z, f, g) there is an equivalent Moore machine with |Q|×|Z| states.

Proof. Let Mo = (Σ, Q, Z, f, g) be a Moore machine. Consider the
quintuple Me = (Σ, Q, Z, f1, g1), where q1(q, σ) = g(f(q, σ)). Clearly,
Me is equivalent to Mo.

Let Me = (Σ, Q, Z, f, g) be a Mealy machine. Consider the quintuple
Mo = (Σ, Q × Z, f1, g1), where

f1((q, z), σ) = (f(q, σ), g(q, σ)), q ∈ Q, z ∈ Z, σ ∈ Σ,

g1((q1, z)) = z, q ∈ Q, z ∈ Z.

the simplest one. We shall consider two examples of the above tasks and
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As f1 maps (Q × Z) × Σ to (Q × Z) and g1 maps Q × Z to Z, the
quintuple Mo defines a Moore machine. Let then q0 ∈ Q be an arbitrary
state of Mo and w = σ1σ2 · · ·σn ∈ W (Σ). Denote f(qi−1, σi) = qi and
g(qi−1, σi) = zi for i = 1, 2, . . . , n. Let z0 ∈ Z and consider the state s0

of Me and (s0, z0) of Mo. Since

f1((qi−1, zi−1), σi) = (f(qi−1, g(qi−1, σi))) = (qi, zi),

and

g1((qi, zi)) = zi,

for i = 1, . . . , n, we have

rq0(σ1σ2 · · ·σn) = r(q0,z0)(σ1σ2 · · ·σn) = z1z2 · · · zn.

We can conclude that q0 and (q0, z0) are equivalent, which implies the
theorem.

4. Minimization of States
Consider a sequential machine M = (Σ, Q, Z, f, g). It may be possible

to find another machine that has identical performance with regard to
output response to an input, but which has a smaller number of states. It
is of considerable importance to be able to find the ”simplest” machine.
For completely specified machines there is a unique solution for this
problem and an algorithm for finding it. To present it formally, we need
first some definitions.

Definition 12.7 Let q and q′ be two states in the same sequential ma-
chine or in two distinct machines that have the same input alphabet Σ,
and let σ be a word over Σ. We say that σ distinguishes q and q′ iff

respq(σ) = respq′(σ),

where resp denotes the response of the machine.
Two states are equivalent if are indistinguishable for all words.

Theorem 12.2 Consider a sequential machine M = (Σ, Q, Z, f, g) where
|Q| ≥ 2. For a positive integer l, define an equivalence relation Rl over
Q by: qRlq

′ iff q and q′ are not distinguishable by any word of length at
most l. Then, there is k < |Q| such that Rk = Rk+1. Furthermore, any
states q and q′ are equivalent iff qRkq

′.

Proof. It is straightforward to verify that Rl is an equivalence relation.
If q and q′ satisfy qRl+1q

′, then also qRlq
′ which shows that Rl+1 is a
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refinement of Rl, i.e., every equivalence class of Rl+1 is a subset of an
equivalence class of Rl. We denote this by

Rl+1 ⊂ Rl.

For the numbers of equivalence classes Sl of Rl we obviously have the
corresponding inequalities

Sl+1 ≥ Sl.

Let us now show that if Rl = Rl+1 for some l, then Rl = Rl+j for
j = 1, 2, . . ..

Assume that Rl = Rl+1 and j > 1 is smallest value such that Rl �=
Rl+j . Then, there are states q and q′ and σ1σ2 · · ·σl+j such that qRlq

′

qσ1σ2 · · ·σl+1 �= q′σ1σ2 · · ·σl+1. (12.1)

Since Rl = Rl+j−1 we must have

[qσ1σ2 · · ·σj−1]Rl[q′σ1σ2 · · ·σj−1],

which, by Rl = Rl+1, implies

qσ1σ2 · · ·σj−1 σj · · ·σl+j︸ ︷︷ ︸
l+1

= q′σ1σ2 · · ·σj−1 σj · · ·σl+j︸ ︷︷ ︸
l+1

which is a contradiction.
It immediately follows that if Rl = Rl+1, for some l, then q and q′ are

equivalent if qRlq
′.

As long as Rl �= Rl+1 the number of blocks Sl n the partition defined
by the equivalence relations must satisfy

Sl+1 > Sl,

and since it cannot be longer than the number of states |Q| we see that
there must be an integer k < |Q| such that Rk = Rk+1.

Definition 12.8 A Mealy machine is called reduced if it has no distinct
equivalent states.

The above equivalence relation Rl satisfying Rl = Rl+1 is the key to
determining the minimal Mealy machine M1 equivalent to a given Mealy
machine M = (Σ, Q, Z, f, g).

We first determine the smallest l satisfying Rl = Rl+1. Denote R = Rl

and by [q] the block containing q. Denote the set of blocks by Q1 and
define the Mealy machine M1 = (Σ, Q1, Z, f1, g1) by

f1([q], σ) = [f(q, σ)], (12.2)
g1([q], σ) = g(q, σ). (12.3)
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Figure 12.9. State diagram of the sequen-
tial machine in Example 12.6.
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Figure 12.10. State diagram of the factor
machine in Example 12.6.
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Figure 12.11. Equivalent states in the sequential machine in Example 12.6.

Let q′, q′′ ∈ [q]. Since q′Rq′′, we have

f(q′, σ)Rf(q′′, σ) for all σ,

and

g(q′, σ) = g(q′′, σ) for all σ.

Thus, the functions f and g are well defined and for any q the states
q and [q] are equivalent.

It appears evident and can be rigorously shown that there is no Mealy
machine equivalent to M that has fewer states than M1.

Similar results can be also shown to hold also for Moore machines.

Example 12.6 [31]
Consider the sequential machine given by the state diagram in Fig. 12.9
and the state Table 12.2. Fig. 12.11 shows the state function for this
machine and explains that there are equivalent states. A closed covering
is {C1 = {R, 1}, C2 = {R, 2}}, and the corresponding factor machine
is defined by the state table in Table 12.3, which is determined from
the requirements f(C1, σ) = C2, f(C2, σ) = C1 or f(C1, σ) = C1 and
f(C2, σ) = C2 for all σ ∈ Σ. Fig. 12.10 shows the state diagram for this
factor machine.
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Table 12.2. State table for the
sequential machine in Exam-
ple 12.6.

0 1

R R,− 1, 0
1 2, 0 R, 0
2 1, 1 R, 0

Table 12.3. State table for the
factor machine in the Exam-
ple 12.6.

0 1

C1 C2, 0 C1, 0
C2 C1, 1 C1, 0

5. Incompletely Specified Machines
The minimization of Mealy and Moore machines is straightforward,

in principle, and yields a unique minimal machine. However, in prac-
tice, sequential machines are often incompletely specified. For instance,
when the machine is in a certain state, then a particular input cannot
occur and state transition and output corresponding to the input are
left unspecified. Also, for certain state/input combinations it may not
matter what is the output and so it can be left unspecified.

The minimization of completely specified machines used the equiva-
lence relation R. A similar relation, compatibility relation, is used in the
minimization of incompletely specified machines. The difficulty is that
the compatibility relation is not an equivalence relation and, thus, the
classes of mutually compatible states do not form a partition of the set of
states. It follows that these classes cannot be directly used to construct
a minimal machine.

Definition 12.9 Two states q1 and q2 are compatible if for each input
word r, the outputs g(q1, r) and g(q2, r) are equal, whenever the outputs
g(q1, r) and g(q2, r) are specified.

The compatibility relation is reflexive and symmetric, however, in
general, it is not transitive. For a given machine, a compatibility class is
a set of mutually compatible states.

Definition 12.10 (Covering of states)
A covering of a set of states Q is the set B = {C1, C2, . . . , Cq} of com-
patibility classes whose union is Q, i.e., C1 ∪ C2 ∪ . . . ∪ Cq = Q.

Definition 12.11 (Closed covering)
A covering B ={C1, C2, . . . ,Cq} is closed if for each index i ∈ {1, 2, . . . , q}
and each symbol σ ∈ Σ, there exists an index j ∈ {1, 2, . . . , q} such that

f(Ci, σ) ⊂ Cj . (12.4)



282 FUNDAMENTALS OF SWITCHING THEORY AND LOGIC DESIGN

If B is a closed covering, then it is possible to define a factor machine
A/B = (Σ, b, Z, f ′, g′), where f ′(Ci, σ) = Cj , with the class Cj deter-
mined by (12.4), and g′(Ci, σ) = g(Ci, σ). It is clear that g(Ci, σ) is
either a singleton set or the empty set, since Ci is an compatibility class.

Consider a state q in a sequential machine A, and the compatibility
class Ci which contains q. If q and Ci are the initial states for the machine
A and the factor machine A/B, and to them both same input word r
is applied, then A and A/B generate the same output word whenever
the output is defined in the machine A. Thus, the factor machine A/B
behaves exactly as the initial machine A.

It follows that minimization of the number of states can be performed
in two steps

1 Determine compatibility classes,

2 Construct a closed covering for the initial machine.

For both steps, there have been developed explicit algorithms [83],
[122], [196].

Example 12.7 [31]
Consider a systems for transmission of binary messages encoded such

that appearance of two consecutive values 1, or four consecutive values
0 is forbidden. The task is to construct a system that detects faulty
messages.

We define a sequential machine with the input and output alphabets
Σ = Z = {0, 1}. The machine generates the output 1 when the string
11 or 0000 appears at the input. Fig. 12.12 shows the state table of
this sequential machine. In this table, indices are selected such that the
machine goes into the state sijk when j, j, and k, are the three last
symbols at the input.

To minimize this state table, we first search for equivalent states under
R1. The state s000 has different output for both inputs 0 or 1. Thus, it
cannot be a candidate for equivalent states under R1. States s001, s010,
and s011 have the same output for both input symbols and belong to the
same class of equivalent states under R1. Similarly, states s100, s101,
s110 and 111 have the same outputs for the both input symbols, 0 and
1, but the outputs are different for different symbols, and they form a
separate equivalence class under R1. Thus, the equivalence classes of R1

are

{s000}, {s001, s010, s011}, {s100, s101, s110, s111}.
The equivalence under R2

It has to be checked if the output is the same for all the inputs of the
is determined within these equivalence classes.

s
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Figure 12.12. State table for the sequential machine in Example 12.7.

length 2. For instance, it easily follows that the states s001 and s010 are
not in the same equivalence class under R2, since have different outputs
for the input 00.

When 0 is applied to 001, it is converted into 000 and the output is 0,
since this is the third 0 in a row. When the second 0 is applied, 000 is
again 000, however, the output is 1, since this is the fourth 0 in a row.

The first 0 converts 010 into 001 and the output is 0, The second 0
at the input, converts 001 into 000, however, the output is still 0, since
this is the third 0 in a row.

In this way it can be shown that the equivalence classes of R2 are

{s000}, {s001}, {s010, s011}, {s100, s101, s110, s111}.
Checking for the equivalence classes under R3 shows that R2 = R3.
Therefore, the blocks of R2 form the states of the minimal machine.
Fig. 12.13 which shows also the state diagram of this sequential machine.
Thus, we have the from 8 states in the initial sequential machine to four
states.

6. State Assignment
Sequential machines are defined by using different symbols for the in-

put, output alphabets, and states. However, for realization by binary
components which are nowadays prevalent circuitry, these symbols have
to be encoded by binary sequences. Usually, the encoding of input and
output signals depends on the application and the particular task the
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q1

q2

q3

q4

q1,1

q1,0

q2,0

q3,0

q4,0

q4,0

q4,0

q4,1

q 0 1

Figure 12.13. State table and state diagram for the minimized sequential machine in
Example 12.7.

sequential machine performs, and so a priori determined. However, state
encoding or assignment is mainly left to the designer and different encod-
ings may significantly reduce complexity of state and output functions
as will be illustrated by the following example.

State assignment is also very important to avoid problems related to
proper functioning of sequential machines in some modes of realization
as will be discussed in Section 7.

Example 12.8 [96]
Consider a sequential machine defined by the state table in Fig. 12.14.

For simplicity, the outputs are omitted since we discuss just the state as-
signment. There are 8 states which can be encoded by sequences of three
bits (y1, y2, y3), which results in three state functions Y1, Y2, Y3 deter-
mining the bits of next states. In this figure, three possible encodings are
shown. The encoding in the first column is the direct encoding of inte-
gers by binary sequences with weight coefficients 2i, i = 0, 1, 2. Fig. 12.15
shows the state table of the sequential machine with this direct encoding
of states. The other two encodings are arbitrarily chosen.

Consider, for instance, the state function Y2, which takes the value 1
for the input signal 11 at the present states q = 1, 4, 5, 8. Therefore,

Y2 = x1x2(y1y2y3 + y1y2y3 + y1y2y3 + y1y2y3)
= x1x2(y1y2 + y1y2) = x1x2y2.

In the same way we determine the other two state functions Y1 and Y3,
and we repeat this for the three encodings in Fig. 12.14. The corre-
sponding state functions are shown in Fig. 12.16. Fig. 12.17 compares
the number of elementary logic circuits required to realize state functions
for these three encodings.

Notice that overall measure of complexity of a state assignment is
related to the number of encoding bits, i.e., encoding length, which de-
termines the complexity of required registers to store the states, and the
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Figure 12.14. State table for the sequential machine in Example 12.8.
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221212121 )( yxxyyyyxx ��
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Figure 12.15. State table for the sequential machine in Example 12.8 with direct encod-
ing and determination of the next state function Y2.

number of literals used in the description of the combinatorial part of
the sequential machine. This latter complexity is measured in a differ-
ent way for two-level and multi-level realizations, and correspondingly
state assignment techniques are developed separately for these two ap-
proaches, see for example, [34].

The state assignment known as the 1-hot code assumes that encoding
of states is performed by binary sequences with a single non-zero bit.

Example 12.9 For a state table with four states q0, q1, q2, q3, the 1-hot
code produces the following encoding

q0 = (1000),
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2121213123212211 xxyyxxyyxyyyxyyY ����

2122 xxyY �

1321132121121321323212313 xyyyxyyyxxyxxyxxyyyyyxyyY �������
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Figure 12.16. State functions for different encodings.
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Figure 12.17. Comparisons of the number of circuits to realize state functions in Exam-
ple 12.8 with different encodings.

q1 = (0100),
q2 = (0010),
q3 = (0001).

It is clear that the number of bits required for encoding is equal to
the number of states. This results in larger registers.

In 1-hot code encoding, the logic is more complex, but generally com-
parable to some other methods, especially in the case of sequential ma-
chines with a small number of transitions [34].

The approach using 1-hot code simplifies the design. However, all the
transitions are necessarily done in two steps, since to change from a state
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in the i-th row of the state table into a state in the j-th row, first the
yj is set to 1, and then yi is reset to 0, where yi and yj are hot bits in
these two state encodings. It follows that the circuit is slower than it
could be by using a single-transition-time assignment. For more details,
see for example, [196].

The selection of the best encoding is a difficult task, since there are
2r!/(2r − s) possible encodings, where r is the number of bits and s
number of states. Since in two-level realizations, the size of sum-of-
product expressions is invariant under permutation and complementa-
tion of encoding bits, the number of possible combinations reduces to
(2r − 1)!/(2r − s)!r!. That is still large [34]. Therefore, most of the
state assignment algorithms are heuristic and often related to the tar-
geted technology. Due to its importance, state assignment is a subject
of extensive research [22], [24], [28], [68], [75], [188], [197].

7. Decomposition of Sequential Machines
Rationales for decomposition of a sequential machine are identical to

these used generally in engineering practice when a complex system is
decomposed into simpler subsystems

1 The organization of a given complex system becomes more obvious
when decomposed into smaller subsystems, which is important for
description, design, and maintaining.

2 Each subsystem can be optimized separately, when the optimization
of the entire system is hard to perform due to large space and time
requirements.

In the case of sequential machines, decomposition is usually performed
when the initial machine has many states. The first question is when
the decomposition of a given sequential machine is possible? To provide
an answer to this question, we first need some basic definitions, see for
example, [62], [96].

7.1 Serial Decomposition of Sequential Machines
Definition 12.12 (Serial connection of sequential machines)
Serial connection of two sequential machines M1 = (Q1, Σ1, Z1, f1, g1)
and M2 = (Q2,Σ2, Z2, f2, g2) where Σ2 = Z1 is the sequential machine
M = (Q1 × Q2, Σ1, Z2, f, g), where the state function f and the output
function g are

f((q, p), σ) = (f1(q, σ), f2(p, g1(q, σ))),
g((q, p), σ) = g2(p, g1(q, σ)).
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A1 - Master

A2 - Slave

Figure 12.18. Serial decomposition of a sequential machine M .

A sequential machine M1−M2, that is serial connection of M1 and M2,
is a serial decomposition of a given sequential machine M iff M1 − M2

realizes M . The decomposition is non-trivial iff the total number of
states in M1 and M2 is smaller than the number of states in M .

Fig. 12.18 shows the basic principle of the serial decomposition of
sequential machines.

Example 12.10 [96]
Consider a sequential machine that generates the parity bit to the end

of a binary sequence of three bits. Recall that the parity bit in the end
of the sequence makes the number of ones in the sequence even. Thus,
this machine accepts four binary digits and generates the output of the
length four where the last is the parity bit of he three.

Table 12.4 shows an example of the input and output sequences for
the parity bit generator for three bit sequences.

Table 12.5 shows the state table of the parity bit generator for se-
quences of three bits. Fig. 12.19 shows the state diagram for this ma-
chine.

It can be shown that the partition {(A)(B, C), (D,E), (F,G)} is an
SP-partition. Table 12.6 shows the state table of the factor machine
with respect to this partition. From this table, it is obvious that this
is an autonomous system, i.e., its output is independent on the input
signals. Thus, the output of the master machine is, by definition, equal
to the present state.

The slave machine has two states, which we denote by q1 and q2, since
the largest block in the partition contains two states.

Table 12.7 shows the encoding of states in the initial machine by the
states of the master and slave machines. These states are determined
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0/0

0/0

0/0 0/0
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0/1,1/1

1/0

1/0 1/0

1/01/0

Figure 12.19. State diagram for the parity bit generator in Example 12.10.

Table 12.4. Example of input and output sequences of a parity-bit generator.

Input 0001 0000 0110 0100 1010 1011

Output 0000 0000 0000 0001 0000 0000

P1 P2 P3 P4

q1

q2

q1,0

q1,0

q1,0

q2,0

q1,0

q2,0
-,0

-,1

0

P1 P2 P3 P4

q1

q2

q2,0

q2,0

q2,0

q1,0

q2,0

q1,0

-,0

-,1

1

Figure 12.20. State table for the serial decomposition of the initial machine in Exam-
ple 12.10.

by an analogy to the group operation table, since states of the initial
machine are dependent on the states of master and slave machines.

It remains to determine the state function and output function of the
slave machine. For instance, we calculate f((q1, p1), 0) and g((q1, p1), 0).

From Table 12.7 (p1, q1 → A, and from Table 12.6, fA(A, 0) →
B, and gA(A, 0) → 0. Since, B is obtained from (p2, q1), it follows
f((q1, p1), 0) = q1, and g((q1, p1), 0) = 0.

In a similar way, the complete state table is determined as shown in
Fig. 12.20. Fig. 12.21 illustrates this procedure.
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Table 12.5. State table for the parity bit generator.

x = 0 x = 1

A B, 0 C, 0
B D, 0 E, 0
C E, 0 D, 0
D F, 0 G, 0
E G, 0 F, 0
F A, 0 A, 0
G A, 1 A, 1

Table 12.6. State table of the
factor machine in Example 12.10.

x = 0 x = 1
(A) P1 P2, P2 P2, P2

(B, C) P2 P3, P3 P3, P3

(D, E) P3 P4, P4 P4, P4

(F, G) P4 P1, P1 P1, P1

Table 12.7. Encoding of states
in the initial machine in Exam-
ple 12.10.

q1 q2

P1 A A
P2 B C
P3 D E
P4 F G

P1

P2

P3

P4

A

B

D

F

A

C

E

G

q1 q2q

Q
C

= Q
A
·Q

B

f ((q1, p1), 0)

(P1, q1) A

f
A
(A,0) = B

g
A
(A,0) = 0

(P2,q2) B f ((q1, p1), 0) = q1

g (q1, p1), 0) = 0

A

B

C

D

E

F

G

B,0

D,0

E,0

F,0

G,0

A,0

A,1

C,0

E,0

D,0

G,0

F,0

A,0

A,1

0 1q

Figure 12.21. Determination of the state table for the serial decomposition of the initial
machine in Example 12.10.

7.2 Parallel Decomposition of Sequential
Machines

In this section, we discuss parallel decomposition of sequential ma-
chines.
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Figure 12.22. Parallel decomposition of sequential machines.

Definition 12.13 (Parallel connection of sequential machines)
A parallel connection of two sequential machines M1 = (Σ1, Q1, Z1, f1, g1)
and M2 = (Σ2, Q2, Z2, f2, g2) is a sequential machine M = M1|M2 =
(Σ1 × Σ2, Q1 × Q2, Z1 × Z2, f, g), where the state function f and the
output function g are

f((q1, q2), (x1, x2)) = (f1(q1, x1), f2(q2, x2)),
g((q1, q2), (x1, x2)) = (g1(q1, x1), g2(q2, x2)).

Definition 12.14 (Parallel decomposition of sequential machines)
A sequential machine M1|M2 is a parallel decomposition of a sequential
machine M , iff M1|M2 realizes M . The decomposition is non-trivial iff
the total number of states in M1 and M2 is smaller than the number of
states in M .

1 and M2 have equal role and may be both considered as
mas
existence of two SP-partitions.

To formulate necessary and sufficient conditions for existence of a
non-trivial parallel decomposition of a sequential machine, the following
notions are needed.

Definition 12.15 (Product of partitions)
The product P1 ·P2 of two partitions P1 and P2 of a set Q, is a partition

1with blocks of the
partition P2.

Example 12.11 Consider two partitions P1 = {{1, 2}, {3, 4, 5, 6, 7, 8}},
and P2 = {{1, 2, 3, 4}, {5, 6, 7, }}, then P1 ·P2 = {{1, 2}, {3, 4}, {5, 6, 7}}.

Fig. 12.22 shows the basic principle of parallel decomposition of
sequential machines. In the case of parallel decomposition, the subma-
chines M

ter sequential machines.Therefore, the parallel decomposition requires

sderived as the intersection of blocks of the partition P
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Definition 12.16 0-partition
For a set Q, the 0-partition (zero-partition) is a partition where each
element of Q is a separate block.

Statement 12.1 A sequential machine M has non-trivial parallel de-
composition iff there exist two non-trivial SP-partitions P1 and P2 for
M such that P1 · P2 = .

The following example illustrates determination of a parallel decom-
position of a sequential machine.

Example 12.12 Consider a sequential machine described by the state
table in Table 12.8. There are two non-trivial SP-partitions

P1 = {{1, 2, 3}, {4, 5, 6}} = {A,B} = {BP1},
P2 = {{1, 6}, {2, 5}, {3, 4}} = {C,D, E} = {BP2}

where BP1 and BP2 denote blocks of these partitions.
We associate the machines MP1 and MP2 to these partitions, which

are defined by the state tables Table 12.9 and 12.10. These tables are
determined by the inspection of the state table for the initial machine.
For instance, for M1, the state A = {1, 2, 3} and from Table 12.8 the
corresponding next states for the input 0 are 4, 5, and 6, which belong
to the block B. Therefore, the nest state for A under the input 0 is B.

The outputs in these tables are determined by the definition of parallel
decomposition, i.e., providing that for the state q, the output g(q) =
g1(BP1)·g2(BP2). For instance, the output from the state 3 is determined
by the requirement that g(3) = g1(BP1) · g2(BP2(3)), where BP1(3) is the
block of P1 containing the state 3, and similar for BP2(3). Therefore,
g(3) = g1(A) · g2(E) = 1 · 1 = 1.

The output from the state 4 is determined in the same way as g(4) =
g1(BP1(4)) · g2(BP2(4)) = g1(B) · g2(E) = 0 · 1 = 0.

It should be pointed out that although the presented algebraic struc-
ture theory of decomposition provides solutions, it is in practice hard
to apply, since requires considerable calculations, except in trivial cases.
Therefore, in practice, often heuristic methods based on some a priori
knowledge about functioning and peculiar features of the sequential ma-
chine that should be realized may exhibit. For instance, the master
sequential machine in the parity bit generator is an autonomous system,
i.e., does not depend on the input signals, and actually this is a binary
counter with four states. Existence of such a counter within the system
considered is quite natural, since it can be decomposed into four cycles.

( )

0
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Table 12.8. State table for the sequential machine in Example 12.12.

q 0 1 Z

1 4 3 0
2 6 3 0
3 5 2 1
4 2 5 0
5 1 4 0
6 3 4 0

Table 12.9. State tables of the
component sequential machines
M1 in Example 12.12.

q 0 1 Z

A B A 1
B A B 0

Table 12.10. State table of the
component sequential machine
M2 in Example 12.12.

q 0 1 Z

C E E 0
D C E 0
E D D 1

In the first three cycles the values of input bits are checked, and during
the fourth cycle, the value of the output bit is calculated.

In practice, often algebraic structure theory methods are combined
with various heuristic methods to achieve efficiency and implemented
in different programming systems for decomposition of sequential ma-
chines, see, for example, [6], [7], [8], [50], [120], [131], [132], [165]. Some
methods are related to targeted technologies [137], [138], [204], or low-
power consumption [72], [117], [118].

In [9], it is proposed a method for decomposition of sequential ma-
chines by exploiting similar disjoint subgraphs in a state diagram. The
method is reported as the factorization of state diagrams, and the exact
factorization assumes search for subdiagrams with the identical nodes,
edges, and transitions. Such subgraphs are realized as a slave machine
that is invoked by a master machine. This provides reduced complexity,
since some states and transitions are shared. Some generalizations to ex-
ploit non-identical subdiagrams providing required corrections are also
discussed [9]. In [98], it is discussed a method for realization of sequen-
tial machines that exploits both decomposition of and the so-called wave
steering, i.e., by allowing several signal waves to coexist in a circuit.
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8. Exercises and Problems
Exercise 12.1 Show that each Mealy sequential machine can be con-

example.

Exercise 12.2 Determine the state transition graph for the sequential
machine which recognizes the set S of binary sequences consisting of n
zero values followed by m values equal to 1, i.e., S = {0n1m}, where
n ≥ 1, and m ≥ 0.

Exercise 12.3 Table 12.11 shows the state transition table of a sequen-
tial machine. Show that there exist few serial decompositions of this
sequential machine.

Table 12.11. State-transition table for the sequential machine in Exercise 12.3.

q, x 0 1

1 3,1 1,0
2 3,1 1,0
3 2,0 1,1
4 1,0 3,0
5 6,1 4,0
6 5,0 4,1

Table 12.12. State-transition table for the sequential machine in Exercise 12.4.

q, x α β γ δ z

1 1 5 7 4 0
2 2 6 8 3 1
3 1 7 5 2 0
4 2 8 6 1 1
5 2 1 2 8 0
6 2 2 1 7 0
7 1 3 4 6 0
8 1 4 3 5 0

Exercise 12.4 Check if is possible to preform parallel decomposition

Table 12.12.
of the sequential machine specified by the state-transition table in

verted into a Moore sequential machine and vice versa. Provide an
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Exercise 12.5
machine specified by the state diagram in Fig. 12.23.

a

a
a

b�c

b�c

b�c

b�c

d

d

d

d

2 3

Figure 12.23. State diagram for the sequential machine in Exercise 12.5.

Exercise 12.6
ma
The garage accepts both trucks and cars, but a truck occupies two parking
places. The machine should generate the outputs corresponding to the
combinations

1 Free entrance for both cars and trucks,

2 Free entrance for cars,

3 No free places.

Exercise 12.7 Table 12.13 shows the state transition table of an ar-
biter, which is a device controlling the use of a facility required by two
users. The user xi requires the facility by setting the input bit xi to 1,
and release it by returning the input to 0. It is assumed that if both users
require the facility simultaneously, it will be granted to the user which
did not use it last. When granted, the facility cannot be taken from a
user before it releases the facility converting the input from 1 to 0. The
following encoding of states is assumed in this table

1 q0 - the initial state,

2 q1 - the user x1 requires the facility,

Determine the state table for a Mealy sequential

chine which controls the entrance of a garage with four parking places.
Determine the state diagram of a Mealy sequential
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3 q2 - the user x2 requires the facility,

4 q3 - the user released the facility, but there is no request from the
other user.

Compare the complexity of excitation functions and output functions
for the realizations of this arbiter by D-flip-flops and JK-flip-flops.

Table 12.13. State table of the arbiter.

q 00 01 11 10

q0 q0/00 q2/01 q1/10 q1/10
q1 q3/00 q2/01 q1/10 q1/10
q2 q0/00 q2/01 q2/01 q1/10
q3 q3/00 q2/01 q2/01 q1/10

Exercise 12.8 Determine the state table and the state diagram for a
sequential machine at which input an arbitrary sequence of letters a, b,
c, and d can occur. Machine produces the output 1 when the sequence
contains the string aba.

Exercise 12.9 The input in a sequential machine is a binary sequence.
The machine recognizes successive appearance of two or more 1 values.
The output is specified as follows

1 even, when the number of 1 is even,

2 odd, when the number of 1 is odd,

3 0, otherwise.

Show that the machine can be realized with four states. Determine the
state table and state diagram for this machine.

Exercise 12.10 A vending machine sales candies at the price of 70
cents. The machine accepts coins of 10, 20, and 50 cents. When the
amount of inserted coins is equal or greater than 70 cents, the candy is
offered and change, if any, returned. Then, machine waits for another
customer.

Determine the state table and draw the corresponding state table for
this vending machine.



Chapter 13

REALIZATIONS OF SEQUENTIAL
NETWORKS

Sequential machines are realized by sequential logic networks, that
can be constructed in different ways. As pointed out in [96], sequential
networks may be classified with respect to the construction or their func-
tional features. Fig. 13.1 shows a classification of sequential networks
with respect to these criteria.

Sequential Machine

Clock pulse No clock pulse

Pulse mode Fundamental mode

Sequential Machine

Synchronous Asynchronous

Clock pulse Pulse mode

Construction

Functional

Fundamental mode

Figure 13.1. Classification of sequential networks.
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Figure 13.2. SR-latch.

If the transitions in sequential networks are synchronized by clock
pulses, they are called clocked networks. Sequential machines may also
work without such external synchronization. In the latter case, sequen-
tial machines may be realized as networks working in the pulse mode or
the fundamental mode.

From the functional point of view, both clocked and pulse mode net-
works are synchronous sequential networks. The fundamental mode net-
works are asynchronous networks.

1. Memory Elements
Since the main difference between combinatorial and sequential net-

works is the existence of memory elements to store essential information
about the values of previous inputs, we will first briefly discuss basic
memory elements used for this purpose. They are also called elementary
automata and realized in hardware as flip-flops. The simplest flip-flops
are latches, and various flip-flops with additional features are often de-
signed based on latches.

Fig. 13.2 shows an SR-latch, which is a circuit consisting of two NOR
circuits whose outputs are connected back to the inputs, and the symbol
for this latch. There are two outputs y and y whose values are logic
complements of each other.

A latch can be defined as a circuit which converts the input to the
output when triggered, while the output remains invariant to the change
of the input until the appearance of a new trigger pulse. The duration
of the pulse Tw should satisfy Tw > 2T0, where T0 is the delay of NOR
circuits.

Recall that a two-input NOR circuit works as an inverter when an
input is set to the logic value 0. Since the output of a NOR circuit with
inputs x1 and x2 is y = (x1 + x2) = x1x2, if for instance, x1 = 0, then
y = 0 + x2 = 0 · y = 1 · y = y.
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Figure 13.3. Clocked SR-latch and its application as the memory element in a sequential
network.

Since the output of an SR-latch can be described as y(n + 1) =
R(n)S(n)y(n), when R = S = 0, we have y(n + 1) = 1 · 1 · y(n) = y(n).
Thus, for R = S = 0, the SR-latch keeps the present state.

Similarly, when R = 1 and S = 0, we have y(n+1) = R(n)S(n)y(n) =
0 · 1 · y(n) = 0, which causes that the output is y(n + 1) = 0 whence
the other output y(n + 1) = 1 Thus, the lower input in the upper NOR
circuit has the value 1, while the upper input of the same circuit is S = 0,
resulting that the output y keeps the value 0.

The combination R = 0, S = 1 has the opposite effect, the output
takes the value 1 and keeps it.

to
are

not complements of each other. If after using R = S = 1 the inputs
change to R = S = 0, the circuit keeps the former state with outputs
that are complements of each other. Therefore, it is unpredictable which
output will be complemented.

When sequential networks are to be clocked, it is convenient to use
latches that are controlled by clocks. Fig. 13.3 shows a clocked SR-latch
and its symbol. It changes the state when the clock pulse c = 1.

There are some restrictions that should be appreciated when using
clocked SR-latches as memory elements in sequential networks. In par-
ticular, when c = 0, the output is determined by the input in the combi-
natorial part that calculates the next state q(n+1). If the interval T −τ

The combination R = S = 1 is forbidden, since causes both outputs
take the value 0, which is a well defined state, except that outputs

between two clock pulses is short, the state changes before the
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Figure 13.4. JK-flip-flop.

in the latch disappears before it changes the state. Conversely, if τ is
long, the latch will change the state twice during the same clock pulse.

The clocked SR-latch is also called SR-flip-flop. There are many
variants of flip-flops with different additional functions. For instance,
in some applications it is inconvenient that the output of the SR-flip-
flop is undefined for R = S = 1, and flip-flops with outputs defined for
any combination of the inputs may be preferred. For this reason, the

SR-flip-flop is that the output, i.e., next state, is defined for J = K = 1
as the logic complement of the present state.

Notice that the circuit in Fig. 13.4 oscillates if the clock pulse and
J = K = 1 stands for long, and it is necessary to provide a short clock
pulse or a signal source that generates a short signal 1. For that reason,
in practice more sophisticated implementations of flip-flops the so-called
raceless flip-flops are used. They can be implemented as master-slave
(MS) flip-flops or edge-triggered flip-flops.

The behavior of MS-flip-flops is controlled by the leading and trailing
edges of a clock pulse. The leading edge isolates the slave from the
master and reads in the input information to the master. The trailing
edge isolates the J and K inputs from the master and then transfers the
information to the salve.

Master-slave flip-flops can be viewed as flip-flops triggered by both
leading and trailing edges of clock pulses. In edge-triggered flip-flops,
either the leading or the trailing edge, but not both, causes the flip-flop
to respond to an input and then immediately disconnect the input from
the flip-flop by the feedback of some gate output to its input gates. The
behavior of edge-triggered flip-flops is more reliable than the behavior
of networks using master-salve flip-flops, since inputs do not influence
edge-triggered flip-flops after the flip-flop accepts its new input value

combinational network complete computations, i.e., the network goes into
an erroneous state.If the duration τ of the clock pulse is short, the input

JK-flip-flops have been introduced by adding two AND circuits to
the inputs of an SR-flip-flop as shown in Fig. 13.4. The difference to the
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Figure 13.6. D-flip-flop.

at the edge of a clock pulse. The inputs remain disconnected from the
flip-flops until the edge of the next clock pulse.

For applications at the logical level it is important to notice that the
relationships between the combinations of values at the J ,K inputs and
the outputs of a master-slave JK-flip-flop are identical to that in the
JK-flip-flop, which is also called a JK-latch.

The so-called taggle flip-flop, or trigger flip-flop, in short T -flip-flop,
is a modification derived by connecting the J and K inputs into a single
input T as shown in Fig. 13.5.

D-flip-flop is another modification as shown in Fig. 13.6 and is also
called D-latch, polarity-hold latch, transparent latch, and Earle latch.
The value at the input during a clock pulse, completely determines the
output until the next clock pulse, i.e., Y (k + 1) = D(k), where Y is
the the

appears,
regardless the value for Y before the clock pulse.

There are some restrictions that have to be appreciated in application
of flip-flops as memory elements in sequential machines. To point out
them, denote by

1 Tp - minimum time for propagation of an input signal to the output
of a flip-flop.

2 τ - duration of a clock pulse.

3 T0 - minimum time for propagation of an input signal to the output
of a sequential machine.

Then, the following condition must be satisfied

2Tp > τ > max(Tp, T0).

The first part in this inequality, 2T > τ ensures a single transition
per clock pulse. The other requirement is related to the construction se-
quential networks and takes into account the delay of circuits in feedback
connections.

next state and D the input in the D-flip-flop. For example, if D=1,
next state of the D-flip-flop will be Y =1 when the clock pulse
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Figure 13.7. Realization of a SR-flip-flop with a D-flip-flop.

Another important feature is that a flip-flop can be realized by other
flip-flops.

Example 13.1 Fig. 13.7 shows realization of the SR-flip-flop with a
D-flip-flop.

Flip-flops can be viewed as elementary sequential machines, and there-
fore, may be described by state tables. Fig. 13.8 shows state tables and
output functions for the flip-flops considered above. The state tables
are written as Karnaugh maps, and the output functions are derived in
the minimum form by joining the corresponding minterms where possi-
ble. However, for practical applications, it is convenient to rewrite these
state tables into application tables of flip-flops, where the present state y
and the next state Y are selected as arguments in functions determining
the inputs of flip-flops. For example, in the state table for the SR-flip-
flop, if the present state y = 0 and the next state Y = 0, the inputs
can be 00 as in the second column, and 01 in third column. Therefore,
for yY = 00, the inputs SR = 0−, where bar means unspecified value,
which can be either 0 or 1. In the same way, we determine other rows
in the application tables of flip-flops. Fig. 13.9 shows application tables
of the flip-flops considered.

2. Synthesis of Sequential Networks
The synthesis of sequential networks can be performed by the follow-

ing general algorithm.
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Figure 13.9. Application tables of D, SR, JK and T -flip-flop.

Algorithm 13.1 (Synthesis of sequential networks)

1 Derive the state table from the functional description of the sequential
machine.

2 Simplify the state table whenever possible.

3 Add codes to the states.
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4 Derive

(a) The transition table, i.e., the state function f ,
(b) The output table, i.e., the output function g.

5 Minimize the state and output functions.

6 Select flip-flops.

7 Derive the excitation functions for inputs of flip-flops from their ap-
plication tables and the state function f .

8 Realize combinatorial networks for excitation functions and and the
output function g.

This algorithm will be further clarified and illustrated by the exam-
ples.

3. Realization of Binary Sequential Machines
We first consider the realization of the simplest examples, i.e., realiza-

tion of binary sequential machines where the input symbols, states and
output symbols are binary numbers, by D-flip-flops. Therefore, there is
no need for encoding. Binary counters and shift registers are classical
examples of binary sequential machines.

Example 13.2 (Shift register)
Realize a three-bit register executing shift to the right with a serial input
and output by using D-flip-flops.

This sequential machine has a single input x which can take values
in {0, 1}, and 8 states (y1y2y3), yi ∈ {0, 1}. The output (Y1Y2Y3) is
equal to the present state, therefore, symbolically, Yi = f(x, y1, y2, y3).
Fig. 13.10 shows the corresponding state table, from where

Y1 = [0000000011111111]T ,

Y2 = [0000111100001111]T ,

Y3 = [0011001100110011]T .

Therefore, Y1 = x, Y2 = y1, and Y3 = y2. From the state function of
D-flip-flop, it follows D1 = x, D2 = y1, and D3 = y2. Fig. 13.11 shows
the corresponding network, where the outputs y1, y2, y3 for different
combinations of values 0 and 1 represent 8 possible states of the shift to
the right register.

Example 13.3 (Binary counter)
A binary counter is a circuit that starts from 0 and counts until 2n − 1,
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Figure 13.10. State table of the three-bit shift to the right register.
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Figure 13.11. Realization of the three-bit shift to the right register.

when returns to 0. For example, if n = 3, the counter runs through
binary encoded numbers 0 to 7, and therefore, when viewed as a sequen-
tial machine, has 8 states. The output is equal to the state. Fig. 13.12
shows the state table of a three-bit binary counter. There are three state
functions Y1, Y2, and Y3, which from the state table are determined as

Y1 = [00011110]T ,

Y2 = [01100110]T ,

Y3 = [10101010]T .

When minimized these functions are

Y1 = y1y2 + y1y3 + y1y2y3,

Y2 = y2y3 + y2y3,

Y3 = y3.

Three D-flip-flops are needed to realize these state functions and since
Y (k + 1) = D(k), the excitation functions for inputs of D-flip-flops are
D1 = Y1, D2 = Y2, and D3 = Y3. Fig. 13.13 shows the corresponding
sequential network.
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Figure 13.12. State table for the three-bit binary counter.
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Figure 13.13. Realization of the three-bit binary counter by D-flip-flops.

4. Realization of Synchronous Sequential
Machines

Fig. 13.14 shows the model of a sequential network that can realize
an arbitrary synchronous sequential machine by using clocked flip-flops.

The synthesis of such sequential networks can be performed by the
Algorithm 13.1 as will be illustrated by the following example.

Example 13.4 Consider realization of the binary adder in Example 12.2
by clocked JK-flip-flops.

When considered as the Mealy sequential machine, the state table of
the binary adder is given in Fig. 12.4. Since there are just two states, a
single JK-flip-flop is sufficient. The states q0 and q1 should be encoded
by binary symbols, which in this case, can be done by just keeping their
indices. In this way, the encoded state table in Fig. 13.15 is derived.
For convenience in minimization, the output is shown separately. This
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Figure 13.14. Model of a synchronous sequential machine with clocked flip-flops.

table is converted into an excitation table for the J and K inputs of the
JK-flip-flop. This table shown in Fig. 13.16 is derived by the following
considerations. In the encoded state table, for the input x1x2 = 00, the
present and the next states are yY = 00, and from the application table
for the JK-flip-flop in Fig. 13.9, the corresponding values for the J and
K inputs are 0−. Therefore, in the excitation table the first element
in the column for the input 00 is 0−. The same inputs are determined
for the input signals x1x2 = 01. However, for x1x2 = 11, the present
state is y = 0 and the next state is Y = 1, and from the application
table of the JK-flip-flop, the inputs JK = 1−. Therefore, in the column
for the input 11, the corresponding JK inputs are 1−. In the same
way, the complete excitation table is determined. Fig. 13.17 shows that
the excitation functions J and K, and the output function Z can be
determined by considering this table and the table specifying the output
as Karnaugh maps with variables x1x2 for inputs and y for the present
state. In this way,

J = x1x2,

K = x12x2,

Z = x1x2y + x1x2y + x1x2y + x1x2y.

Fig. 13.18 shows the corresponding sequential network where the com-
binatorial part is realized as a PLA.

If considered as a Moore sequential machine, the binary adder is de-
scribed by the state table in Fig. 12.5. Since there are four states, two
JK flip-flops are required. Again, if we keep just indices of states q00,
q01, q10 and q11, the encoded state table in Fig. 13.19 is derived. In the
same figure, it is shown also the excitation table derived by using the
application table for JK-flip-flops as explained above. In this case, for
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Figure 13.15. Encoded state table for the binary adder.

each input x1x2, a pair of values for J1K1 and J2K2 is shown. These
pairs are determined for the first and the second bits in the binary code
for the present and the next states for the corresponding inputs. For
example, consider the present state q1q2 = 00 for the input x1x2 = 01.
Then, from the encoded state table, the next states are Y1Y2 = 01. For
the first pair q1Y1 = 00, from the application table for the JK-flip-flops,
the inputs J1K1 = 0−. For the second pair q2Y2 = 01, and the same
input x1x2 = 01, the inputs J2K2 = 1−. Therefore, in the excitation
table, for the input x1x2 = 01 the pair 0−, 1− is written. In the same
way, the complete excitation table is determined. Fig. 13.20 shows the
separated tables for each input, which when considered as the Karnaugh
maps with variables x1x2 for inputs and y1y2 for the present states, yield
the following functions excitation functions

J1 = x1x2,

K1 = x1x2,

J2 = x1x2y1 + x1x2y1 + x1x2y1 + x1x2y1,

K2 = x1x2y1 + x1x2y1 + x1x2y1 + x1x2y1.

The output function is determined from Fig. 13.19 as Z = y1y2 + y1y2.
Fig. 13.21 shows the corresponding sequential network. Notice that

a different and simpler realization will be produced for the encoding of
states as q00, q01, q10, q11 as 00, 01, 11, and 10, respectively.

A problem which should be taken into account when working with
sequential network is caused by the delay in propagation of clock pulses
to all the flip-flops in the network. The discrepancies between arrival
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Figure 13.17. Excitation functions for the binary adder with JK-flip-flop.

of the corresponding edges to flip-flops are called clock pulse skew or
in short skew. There are methods to design synchronous sequential
machines taking the skew into account [196].

5. Pulse Mode Sequential Networks
A sequential network working in pulse mode is a synchronous, but

unclocked sequential network.

Definition 13.1 (Pulse mode sequential networks)
A sequential network works in pulse mode if the following requirements
are satisfied

1 Input signals are pulses of the duration τ sufficient to allow the state
change of all flip-flops in the network.

2 Pulses are applied just to a single input.
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Figure 13.18. Realization of the binary adder as the Mealy sequential machine with
JK-flip-flop.
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Figure 13.19. Encoded state table and the excitation table for the binary adder consid-
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3 States change in response to the appearance of a pulse at an input,
and each pulse causes just a single state change. In practice, this
requirement is provided by using pulses of small width so that they are
no longer present after the memory elements changed their states.

Therefore, in a pulse mode sequential network, appearance of a pulse
at any of the inputs causes a state change. Since simultaneous pulses are
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Figure 13.20. Excitation functions for the binary adder considered as the Moore machine.
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Figure 13.21. Realization of the binary adder as the Moore sequential machine with
JK-flip-flops.

forbidden, the number of possible input signals is equal to the number
of columns in the state table, which is at the same time the number of
inputs in the sequential network. In the case of Mealy machines, the
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Figure 13.22. State table of the sequential machine in Example 13.5.

outputs are pulses. However, in Moore machines, they can be also level
signals whose value is defined in the intervals between pulses. In this
case, the number of different outputs cannot be greater that the number
of possible different states of clocked sequential circuits. Recall that
a level signal is a signal that can take two different values, a value is
preserved for an arbitrary number of periods and may be changed at an
integer multiple of periods.

Pulse mode sequential networks are generally confined to special pur-
pose circuits that are not parts of larger systems. Classical examples are
vending machines and toll-collecting machines.

In definition of state functions it is required that each product term
contains an input variable, since they are the sources of pulses, and no
other sources exist, because clock pulses are not used. Since a single
input pulse can occur at a time, the excitation functions for memory
elements are determined by considering each column of the encoded
state table separately.

The following example illustrates a pulse-mode sequential network.

Example 13.5 (Pulse-mode sequential network)
Consider realization of a sequential machine defined by the state table

in Fig. 13.22 by T -flip-flops. As in the case of synchronous sequential
machines, it is assumed that at any time the network is in an internal
state corresponding to a row of the state table. From this state table, it
is clear that the state changes occur when a pulse appear at the input x2

or a pulse occur at the input x1 and the present state is q1. Fig. 13.23
shows the encoded state table for this sequential machine and the exci-
tation table derived with respect to the application table of T -flip-flops.
We consider this table as Karnaugh map and perform the minimization
under the restriction specified above, i.e., by considering each column
separately. In this way, the state function is T = x1y + x2, and the
output function is Z = x1y. Notice again that the minimum expression
T = x2 + y cannot be used, since it contains a product term where no
input variables appear. Fig. 13.24 shows the realization of the sequential
machine considered.
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Figure 13.24. Realization of the pulse mode sequential network in Example 13.5.

6. Asynchronous Sequential Networks
Asynchronous sequential networks are used in the cases when syn-

chronizing clock pulses are not available. Notice that provision of clocks
in logic networks is often very expensive in terms of area. Asynchro-
nous networks are also often preferred within large synchronous systems
where some subsystems can operate asynchronously to increase the over-
all speed of the entire system.

The first systematic discussion of asynchronous sequential circuits is
provided by Huffman [66] who proposed a model for such networks as
shown in Fig. 13.25.

In an asynchronous sequential network, the input can change at any
time, and inputs and outputs are represented by level signals rather that
pulses. Their internal structure is characterized by using delay circuits,
usually denoted by ∆, as memory devices. The combination of level
signals at the inputs and the outputs of the delay circuits determines
pairs called the total states of the network. The values of input level
signals x1, . . . , xl are called the input states or primary variables. The
level outputs by the combinatorial part of the network determine the
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Figure 13.25. Huffman model of asynchronous sequential circuits.

next states Y1, . . . , Yn and the outputs z1, . . . , zm of the entire network.
In this settings, the values of delay circuits y1, . . . , yn are called the
internal or secondary variables, and Y1, . . . , Yn the excitation variables.

For a given input state, the network is in a stable state iff yi = Yi,
for i = 1, . . . , n. In response to a change in the input state, the com-
binatorial subnetwork produces new values for the excitation variables
and it may happen that some of internal variables yi are not equal to
the changed values of the corresponding excitation variables Yi due to
the influence of the delay circuits ∆i. Then, the network goes to an
unstable state. When again yi becomes equal to Yi after the time equal
to the delay in the ∆i, the combinatorial subnetwork generates new out-
put. This need not necessarily be a stable state, and the network may
continue to traverse through different states, until enters the next stable
state. Therefore, unlike sequential networks, the transition between two
stable states goes though a series of unstable states. For that reason,
the state table in synchronous networks is replaced by the flow table in
asynchronous sequential networks. The flow table defining functioning
of an asynchronous sequential machine has the same form as the state
table of an synchronous machine. The columns are labelled by input
signals, and rows correspond to the states. The entries of the table are
the next states and the outputs. However, the difference is that there
are stable and unstable, also called quasi-stable states. A transition to
another state occurs in response to a change in the input state. It is
assumed that after a change in an input, no other changes in any input
occurs until the networks enters a stable state. This way of functioning
is called fundamental mode [66], [67], [107], [195].

In a fundamental mode network, when due to a change of the input
state, the machine goes from a stable state, it will move within the
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Figure 13.26. Asynchronous sequential network with SR-latches.

current row of the flow table to the new input column, and then if the
state arrived at is unstable, the network will move along that column to
the next internal state.

Internal states in an asynchronous sequential circuit may be clearly
expressed if to each state variable a separate memory element is as-
signed to save the state. Fig. 13.26 shows the model of an asynchronous
sequential network with SR-latches used to save states [15].

Notice that in this network there are twice more excitation variables,
since each latch has two inputs, S and R, and saves a single state. This
circuit is asynchronous, and the state can change in response to a change
at the input. This network can be converted into a synchronous network
by adding clock pulses which will allow the state change when the clock
pulse occurs. If the SR-latches are replaced by D-flip-flops which have a
single input, the clock pulse will determine when the change is possible,
and the output will be equal to the input value keeping it until the
new clock pulse occurs. Therefore, this will be a synchronous sequential
circuit whose model is shown in Fig.13.27 [15].

As explained above, a synchronous sequential machine may be stable
in any defined state and this will last at least during a clock cycle, which
means until appearance of another clock pulse. Asynchronous machines
are stable just in these states where the next state Yi is equal to the
present state yi, since there are no any break in the feedback loops
which contains just delay circuits. We will discuss the flow tables by the
example of D-latch.

Example 13.6 (D-latch)
Fig. 13.28 shows the flow table of a D-latch derived by analyzing its
behavior. In this table, there is a stable state in each row, and it is
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Figure 13.27. Synchronous sequential network with D-flip-flops.

denoted by encircling the symbol of the state. Therefore, it is called the
simple flow table. This table is defined in the following way.

Assume that both inputs have the value 0, and that the output is also
0. These are conditions what corresponds to the upper left entry of the
table. Each entry defines a total state determined by the pair consisting
of the value at the input and a state. A change at the input causes a
change of the total state by shifting it in the next block in the same row.
An internal state cannot be changed instantaneously, which means the
row cannot be changed. For that reason, it was necessary to impose the
restrictions defining the fundamental mode. Without this restriction, we
cannot be sure in the effective order of simultaneous changes at the input.

Assume that the D-input changes the value to 1. This leads to the
second total stable state which corresponds to the input 01 and has the
output 0. This new state is in the second row, where it is labeled as a
stable state. When the D-input returns to 0, we get back into a unstable
state shown as the first entry in the second row.

Notice that in the first row, the entry which corresponds to the input
11 is undetermined, since it requires simultaneous change of both input
bits from 00 to 11, which is forbidden in the fundamental mode. In this
way, the complete flow table is derived.

Further, in each row there is is an unspecified entry, which corresponds
to the change from a stable state requiring simultaneous change of two
bits of input signals. For instance, in the second row, the rightmost entry
is unspecified since it corresponds to the input signal 01, while the stable
state, encircled 2, in this row corresponds to the input signal 01.
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Figure 13.28. Flow table for D-latch.

It is obvious from the inspection of the simple flow table, that there are
identical rows in it. Since unspecified entries may contain any next state
and the output, the first three rows can be replaced by a single row viewing
states 1, 2, and 3 as equivalent states. In the same way, the states 4, 5,
and 6 are equivalent, and these three rows can be replaced by a single row.
In this way, the reduced flow table is derived shown in Fig. 13.29. The
reduction is possible due to an appropriate specification of unspecified
states. Since unspecified states are transient states, the specification is
equally good if, for example, for the change 0 → 1 between the stable
states for the output sequence it is selected 0 → 0 → 1 or 0 → 1 → 1,
while the combinations 0 → 1 → 0 and 1 → 0 → 1 are unacceptable.

This reduction of the flow table corresponds directly to the reduction
of state tables in the case of synchronous sequential machines. There
are methods to perform it [83], [122], [196].

When reduced flow table has been determined, the synthesis of the D-
latch can be performed in the same way as in the case of synchronous
sequential networks.

Since there are just two stable states, a single variable y is sufficient.
If the values y = 0 and y = 1 correspond to the states 1 and 2, we get
the encoded excitation table as in Fig. 13.30. When the function in this
table minimized, we get a function that is realized by a circuit which
corresponds to the Huffman model of asynchronous sequential networks.
Fig. 13.31 shows the model of the circuit and the corresponding real-
ization of it. The lowest AND circuit corresponds to the two encircled
entries in columns 01 and 11 in the encoded flow table and their role will
be discussed latter.
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Figure 13.31. Model and circuit realization of D-latch.

7. Races and Hazards
In applications of asynchronous sequential networks two problems ap-

pears, the hazard and the race. Although being related to the combi-
natorial networks, since caused by the delay in circuits, these problems
become even more important in asynchronous sequential networks where
the delays are used in feedback connections to regulate normal function-
ing of networks.
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7.1 Race
A race appear when a simultaneous change of two or more secondary

variables is required. For instance, if the present state is y1y2 = 00, and
the next state is Y1Y2 = 11, two secondary variables have to be changed.
In may happen that y1 changes first, and in this case, the transition
would be 00 → 10 → 11, in the other case, when y2 changes before y1,
it would be 00 → 01 → 11 and this is a race between y1 and y2 which
may cause that the network enters the wrong state.

If the final state which the network has reached does not depend on
the order in which the variables change, the race is called non-critical
race, otherwise, it is a critical race and has to be avoided.

The races in sequential machines will be illustrated by the following
example discussed in [83].

Example 13.7 (Race)
Consider a sequential machine whose model and excitation table are

shown in Fig. 13.32. For the input x1x2 = 00 and the present state
y1y2 = 00, the next state is Y1Y2 = 11. Therefore, both secondary vari-
ables y1 and y2 has to be changed, and this is a race, since it can hardly
be expected that both delay circuits ∆1 and ∆2 will perform ideally. The
network will change the secondary variables into y1y2 = 01 or y1y2 = 10
first before they become y1y2 = 11. Since in both cases, the next state is
Y1Y2 = 11, as specified in the corresponding rows in the excitation table,
the network will finally reach the required stable state. This race is not
a critical race.

If x1x2 = 01 and y1y2 = 11, the required next stable state is Y1Y2 = 00.
If y1 changes faster than y2, i.e., for y1y2 = 01, it would be Y1Y2 = 00,
from where, after y2 change, y1y2 = 00, it will be directed into the stable
state Y1Y2 = 00 as shown in the entry at the crossing of the row 00 and
the column 01 in the excitation table. However, if y2 changes first, i.e.,
y1y2 = 10, the network will go to the state Y1Y2 = 10, which is a stable
state, and will therefore, remain there. Thus, this is a critical race and
must be always avoided.

Consider now the case when x1x2 = 11 and Y1y2 = 01. Then, the
transition into the stable state Y1Y2 = 10 is required. Simultaneous
change of both secondary variables y1 and y2 is required and it may be
that first unstable state 11 in the row 01 column 11 is entered, and the
networks will be directed to the row 11 and through another unstable state
01 will finally reach the stable state 10 in the row 10.

The unique sequence of unstable states which the network went through
to perform the required state change is called a cycle. It has to be en-
sured that each cycle contain a stable state, otherwise the network will
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Figure 13.32. Model and excitation table for the sequential machine in Example 13.7.
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Figure 13.33. A valid assignment of states for the sequential machine in Example 13.7.

go through unstable states until the input state has changed, and this
has to be avoided.

The problem of races can be solved by a suitable selection of assign-
ment of binary sequences in encoding the states. An assignment which
does not contain critical races or cycles without stable states is a valid
assignment. There are methods and algorithms to solve the problem of
races in sequential networks [83], [122], [155], [196].

Example 13.8 Fig. 13.33 shows a valid assignment of states for the
sequential machine in Example 13.7.

7.2 Hazards
A static hazard appears when a single input variable change for which

the output should remain constant, might cause a momentary incorrect
output. For instance, the static 1-hazard appears when due to the change
of an input combination which produces the output 1, to another input
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Figure 13.34. Function with 1-hazard.

combination for which the output is also 1, the appearance of a spurious
output 0 occurs. The static 0-hazard is defined similarly.

The static hazard is often related to adjacent input states. Two input
combinations are adjacent if they differ by the value of just a single input
variable. For example, x1x2x3 and x1x2x3 are adjacent input combina-
tions. If for a transition between pairs of adjacent input combinations
for which the output should remain the same, it is possible generation of
a momentary spurious output, then this transition contains a static haz-
ard. As it was shown in [195], such hazards may occur whenever there
exists a pair of adjacent input states which produce the same output
and there is not a subcube containing both combinations. In terms of
Karnaugh maps, that means subcubes covering pairs of adjacent 1 or 0
values. Conversely, a combinatorial circuit is hazard free is every pair of
adjacent 1 values and adjacent 0 values in the Karnaugh map is covered
by a subcube.

Example 13.9 Fig. 13.34 shows a Karnaugh map for a function having
the value 1 in the entries X and Y corresponding to the input signals
0111, and 1101, respectively. The transition from the input combination
X to Y requires change at two coordinates x1 and x3. In real circuits, it
can be hardly expected that this change performs simultaneously due to
physical characteristics of circuits. Therefore, the transition form X to
Y can be done over Q = (1111) if x1 changes first, or R = (0101) when
x3 changes before x1. In both input states Q and R, the output is 0, and
it may momentary appear, as a wrong output during the change of input
state X to Y . The product Dy is realized by the additional AND circuit
in Fig. 13.31.

Example 13.10 The excitation table for the D-input of the D-latch
in Fig. 13.30 contains a static 1-hazard in the transition from the input
state (101) to 011), since in both cases the output is 1 and it may happen
that the transition goes over (001), in which case the output 0 may shortly
appear. To eliminate this hazard, the adjacent values 1 should be covered
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by cubes, which implies to add another implicant Dy in the realization of
D-latch, as shown by dotted lines in Fig.13.31. Therefore, for a hazard-
free D-latch the excitation function is Y = CD + Cy + Dy.

Besides the static hazards, the phenomenon called essential hazard
occurs in fundamental mode networks whenever three consecutive in-
put changes take the network into a different stable state than the first
change alone [195]. The essential hazard described above is called the
steady state essential hazard. There is may occur also the transient
essential hazard consisting in appearance of a spurious output pulse be-
tween state transitions. Delays in feedback paths when properly deter-
mined can prevent both transient and steady state hazards [196].

When designed, asynchronous sequential machines should be analyzed
to check for the existence of critical races or hazards. The analysis
procedure consists basically in performing the synthesis procedure in
reverse [196].

8. Exercises and Problems
Exercise 13.1 Realize a sequential machine whose output Z takes the
value 1 when the input sequence x consists of two consecutive values 1
followed by two values 0, or two values 0 followed by two values 1. In
other cases, the output is Z = 0. For the realization use JK-flip-flops
and (2 × 1) multiplexers.

Exercise 13.2 Realize a sequential machine whose input is an arbitrary
binary sequence, and the output takes the value 1, when the total number
of values 1 after the start of the machine is even. For the realization,
use SR-flip-flops and NAND circuits with two inputs.

Exercise 13.3 Determine the state diagram for the quaternary counter

control input x = 1 and x = 0, respectively. Realize this sequential
machine by different flip-flops and compare the complexities of the real-
izations in the number of required circuits.

Exercise 13.4 Draw the state diagram and the state transition table
for a two-bit counter with two control inputs k1, k2 defined as follows

If k1k2 = 00, stop counting,
If k1k2 = 01, count up by 1,
If k1k2 = 10, count down by 1,
If k1k2 = 11, count by two.

Implement the counter by T , D, and JK-flip-lops and compare the
complexities of realizations in the number of circuits count. Available
are two-input circuits.

for thewhich counts as 0, 1, 2, 3, 0, 1, 2, 3, ··· and 0, 1, 3, 2, 0, 1, 3, 2, 0, ···
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Exercise 13.5 [79]
Consider a device with two control inputs k1 and k2 specified as follows

If K1k1 = 00, it works as a Gray code up-counter,
If k1k2 = 01, is works as a Gray code down-counter,
If k1k2 = 10, it works as a Gray code counter by two,
If k1k2 = 11, counter hold his present state.

Fig 13.35 shows the state diagram for this machine. Determine the
state table and the minimized next state functions.

00

00

01

01

10 00

10
00

11
10

11

01 11

1110

2 3

Figure 13.35. State diagram for the sequential machine in Exercise 13.5.

Exercise 13.6 [79]
Design the state diagram and the state transition table for the Moore
machine with a single input x and and the output y specified as follows.

The output y takes the value 1 and keeps this value thereafter when at
least the sequence 00 or 11 occurs at the input, irrespectively of the order
of occurrence. Show that this machine requires no more than 9 states.

Exercise 13.7 Realize the sequential machine in Exercise 12.6 by a
clocked sequential machine with SR-flip-flops.

Exercise 13.8 Compare complexities of the realizations of the vending
machine specified in the Exercise 12.10 by D-flip-flops and SR-flip-flops.
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”

Reduction of sizes of decision

No. 5, 2003, 592-606.

[79] Katz, R.H., Contemporary Logic Design, The Benjamin/Cummings Publishing
Company, Inc., Redwood City, CA, USA, 1995.

[80] Kebschull, U., Schubert, E., Rosenstiel, W., “Multilevel logic synthesis based on
functional decision diagrams,” Proc. 3rd European Design Automation Confer-
ence, Brussels, Belgium, March 16-19, 1992, 43-47.

[81] Koda, N., Sasao, T.,

”

An upper bound on the number of products in minimum
ESOPs”, IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expan-

29.

[82] Koda, N., Sasao, T.,

”

A method to simplify multiple-output AND-EXOR
ex
43-52.

[83] Kohavi, Z., Swithcing and Finite Automata Theory, Tata McGraw-Hill Publish-
ing Co. Ltd., New Delhi, India, 1978, third reprint 1982.

[84] Komamiya, Y., “Theory of relay networks for the transformation between the

197.

[85] Komamiya, Y., “Theory of computing networks”, Researches of E.T.L., No. 526,
November 1951, Proc. of the First National Congress for Applied Mathematics,
Tokyo, Japan, May 1952, 527-532.

sions in Circuit Design (Reed-Muller ’95), Makuhari, Japan, August 1995,
27-

decimal and binary system”, Bull. of E.T.L., Vol. 15, No. 8, August 1951,
188-

Iranli, A., Rezvani, P., Pedram, M.,
chines with mixed D and T flip-flops”, Proc. Asia and South Pacific Design

pressions”,(in Japanese), Trans. IEICE, Vol. J79-D-1, No. 2, February 1996,

diagrams by autocorrelation functions”, IEEE Trans. Computers, Vol. 52,



331

[86] Komamiya, Y.,

”

Application of Logical Mathematics to Information Theory
(Application of Theory of Group to Logical Mathematics)”, The Bulletin of the
Electrotechnical Laboratory in Japanese Government, Tokyo, Japan, April 1953.

[87] Komamiya, Y., Theory of Computing Networks, Researches of the Applied
Mathematics Section of Electrotechnical Laboratory in Japanese Government,
2 Chome, Nagata-Cho, Chiyodaku, Tokyo, Japan, July 10, 1959, pages 40.

[88] Kondrfajev, V.N., Shalyto, A.A., “Realizations of a system of the Boolean func-
tions by using arithmetic polynomials”, Automatika and Telemekhanika, No.3,
1993.

[89] Kouloheris, J.L, Gamal, A.,

”

FPGA performance versus cell granularity”, Proc.
IEEE Custom Integrated Circuits Conf., San Diego, CA, USA, May 12-15, 1991,
6.2/1 - 6.2/4.

[90] Krueger, R., Przybus, B.,

”

Xilinx Virtex Devices - Variable Input LUT Architec-
ture”, The Syndicated, A Technical Newsletter for ASIC and FPGA Designers,
2004, (www.synplicity.com).

[91] Kukharev, G.A., Shmerko, V.P., Yanushkevich, S.N., Technique of Binary Data
Parallel Processing for VLSI, Vysheyshaja shcola, Minsk, Belarus, 1991.

[92] Lai, Y.F., Pedram, M., Vrudhula, S.B.K., “EVBDD-based algorithms for integer
linear programming, spectral transformation, and functional decomposition,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol.13,
No.8, 1994, 959-975.

[93] Lai Y.-T., Sastry, S., “Edge-valued binary decision diagrams for multi-level hier-

Anahweim, CA, USA, June 1992, 668-613.

[94] ˇ

Belgrade, Serbia, 1994, (in Serbian).

[95] Lechner, R.J., Moezzi, A.,

”

Synthesis of encoded PLAs”, Proc. of Int. Conf.
Fault Detection Spectral Techniques, Boston, MA, USA, 1983, 1.3-1.11.

[96] Lee, S.C., Modern Switching Theory in Digital Design, Prentice Hall, Englewood
Cliffs, NJ, USA, 1978.

[97] Lin, C.C., Marek-Sadowska, M.,

”

Universal logic gate for FPGA design”, Proc.
ICCAD, San Jose, CA, USA, October 1994, 164-168.

[98] Macchiarulo, L., Shu, S-M., Marek-Sadowska, M.,

”

Pipelining sequential circuits
with wave steering”, IEEE Trans. Computers, Vol. 53, No. 9, 2004, 1205-1210.

[99] Malyugin, V.D., “On a polynomial realization of a cortege of Boolean functions”,
Repts. of the USSR Academy of Sciences, Vol. 265, No. 6, 1982.

[100] Malyugin, V.D., Elaboration of theoretical basis and methods for realization of
parallel logical calculations through arithmetic polynomials, Ph.D. Thesis, Inst. of
Control, Russian Academy of Science, Moscow, Russia, 1988.

References
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Stanković, R.S., Sasao, T.,

1179.

[180]
Abstract Harmonic Analysis with Applications in Signal Processing, Nauka and
Elektronski fakultet, Belgrade and Nǐs, Serbia, 1995.
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