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Preface

Electricity demand varies during each day and each week due to the cycling pattern
of our life. In addition, electricity is an instantaneously perishable commodity and
still cannot be efficiently stored in bulk. These facts raise an interesting question for
electrical power generation: how to meet the time varying demands in the most
economical way. To answer this question, a great amount of research efforts have
been devoted to the Unit Commitment (UC) problem, which aims to optimally
schedule the “on” and “off” statuses and power dispatches of electrical power
generating units while considering multiple technical and economic constraints.
The UC problems are mostly formulated as mixed integer linear programs. Based
on different perspectives and purposes, there are many variants for the UC problem.
These problems draw a lot of attentions from both power industry practitioners and
academic researchers. Many types of algorithms have been developed for or applied
to UC problems, such as dynamic programming, Lagrangian relaxation, general
mixed integer programming algorithms, Benders decomposition, etc. This book
focuses on two-stage stochastic unit commitment models and advanced techniques
to efficiently solve the large-scale problems due to scenario propagation.

Orlando, USA Yuping Huang
Gainesville, USA Panos M. Pardalos
Orlando, USA Qipeng P. Zheng
May 2016
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Chapter 1
Introduction

Electric Power Systems

Electric power system is one of the most important service systems that keep our
society running, as it is responsible for generating, transmitting and distributing elec-
tricity, which powers almost all aspects of our life. In United States, thousands of
power systems are connected through electricity grids that are managed by Indepen-
dent System Operators (ISOs) and Regional Transmission Organization (RTOs). As
the three main components of electric power system, generation, transmission and
distribution construct a multi-level network connecting initial energy supplies with
end users for daily uses of electrical power.

Worldwide the major sources used to generate electrical power are still fossil
fuels including coal, natural gas, oil, nuclear, etc., while renewable sources (e.g.,
wind, solar, etc.) are gaining bigger shares recently. According to the statistics from
US Energy Information Administration (EIA) reports in 2014 [DOE14], existing
power systems currently remain fossil-fuel dominated and this is linked to extensive
Green House Gas (GHG) emissions and other pollutants. As shown in Fig. 1.1, the
share of fossil fuel in total energy source still remains above 68% in 2012 and the
renewable share of total energy sources (including biofuels) has grown up to 12%.
Particularly, wind, solar thermal and photovoltaic energy have respectively 17%
and 138% growth rates on the contribution to energy generation, compared to their
historical data in 2011. We can expect a trend toward the mix of sources for net power
generation shown in Fig. 1.2, where coal will still be dominant, followed by natural
gas, nuclear and then renewable energy in the near future. Due to the implementations
of effective energy policies and environmental policies, share of coal will continue to
be reduced significantly while the renewable energy share of total generation source
will increases up to at least 15% in 2025.

As electric power is primarily supplied by burning fossil fuels, coal-fired power
plants has made the electric power sector the largest GHG contributor to global
warming for a long time. The GHG emissions contain a vast majority of Carbon

© The Author(s) 2017
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Fig. 1.1 Total electric power net generation, 2012 (Thousand Megawatt hours). Data source:
[DOE14]
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Fig. 1.2 Statistics for power net generation, 2002–2012 (Thousand Megawatt hours). Data source:
[DOE14]
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Dioxide (CO2), a minority of methane (CH4) and Sulfur Dioxide (SO2), and lesser
amounts of other gases. During 2012, the U.S. power industry produced 2,156,875
thousand metric tons of CO2 which, although reduced by 11% of emissions com-
pared to 2002, remain the largest source of GHG emissions. In response to mitigate
climate change, the Environmental Protection Agency (EPA) has taken many actions
to reduce GHG emissions from traditional coal-fired power plants including but not
limited to increasing energy efficiency on power plants and end-use, adopting fuel
switching, renewable energy portfolio as well as deploying carbon capture and stor-
age (CCS) systems [HRZ13, ZRP+12, U.S14]. Among of them, carbon storage as the
final step to prevent a large amount of CO2 from being emitted to the atmosphere has
been implemented successfully in geologic reservoirs and studied through optimiza-
tion approaches for scheduling to sequestrate CO2 while considering accompanying
benefits [HZFA14, HRZ14].

The Impacts of Renewable Energy on Power Systems

More generally, renewable energy is defined as the energy offered through naturally
and continually replenished resources, such as hydropower, wind power, solar power,
biomass power, geothermal power among many others. Renewable energy is very
attractive and sustainable because of “no” costs and/or no pollutant emissions, which
well fits the current and future needs of the next-generation energy systems. However,
due to the intermittent and uncertain nature of renewable energy, people realize that
a fast-growing penetration of renewable energy to current power grids would bring a
lot of challenges to the effective and efficient operations and management of power
systems.

Currently, as the portion of renewable energy grows fast, power systems are
required to become more flexible to accommodate the variability and uncertainty of
renewable energy outputs. For example, in the cases with a high penetration of wind
power, it’s really important to predict as accurate as possible the wind energy output
based on wind speed pattern and historical data. The deviations from forecasted wind
outputs due to dramatic increase/decrease on wind speed would force conventional
thermal generators to ramp up/down quickly to maintain the power balance. As this
situation occurs frequently, the increasing variability and unpredictability of renew-
ables generation systems would result in further intensifying generator cycling and
increasing additional operational costs.

In addition to continuous uncertainties caused by renewable energy and demands,
an unplanned outage of generators or transmission elements is considered a low-
probability event and could occur in much low frequency. This type of unexpected
uncertainty like power blackout can be covered by contingency control planning
and can be treated through a robust optimization approach [SOA11, XJ12]. In most
instances, power system is not built for avoiding any uncertainties, but an operational
schedule for power generation should be a robust solution to handle the impacts from
most of uncertainties.
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The Generation Scheduling on Power Systems

Throughout power generation systems in practice, there is only a minority of power
plants operating in isolation from power grids, while most of power plants partici-
pate in energy market and connect their resources to power grids. Based on avail-
able energy resources and forecasted loads, ISOs perform the main functionality of
scheduling the operations of generation units and determining hourly market clear-
ing prices for power market, and also perform energy procurement and congestion
management in the real-time market. The power generation scheduling, also named
unit commitment (UC), is essential for the whole power system operations from
day-ahead operational schedules to real-time economic dispatch, even extended to
contingency management.

Unit commitment is one of the classic optimization problems in power systems
operations and control. Generally, unit commitment problems have two common
objectives. One is used by ISOs to minimize the total operational cost mainly from
thermal generators to meet a generation target or an forecasted hourly load, and
the other is to maximize the total profit when GENCOs (GENeration COmpanies)
make bidding strategies. Most of UC problems are formulated based on dynamic
programming or mixed integer linear programming (MILP) methods. A UC model
basically includes both binary decision variables to indicate the on/off status of
generation units and continuous variables to indicate the dispatches and reserves, as
well as power generation and operation constraints, such as capacity limits, minimum
on/off hours and ramping constraints. Also, unit commitment has been developed
to provide all kinds of operation scheduling solutions for balancing energy supply
and demand in day-ahead and hour-ahead markets, which is implemented by ISOs
in deregulated electricity markets (Fig. 1.3).

The classic unit commitment problem is the security-constrained unit commit-
ment (SCUC) widely studied to minimize the total cost while maintaining a system’s
reliability at an expected level [SYL02]. Many researcher have proposed to adopt
engineering techniques and constraints to address and solve the reliability issues,
such as transmission constraints [FSL05b, FSL06], “n-1” criteria [HFO+10], sto-
chastic demands [WSL08], etc. As there could be thousands of generation units
and transmission lines existing in a system, the unit commitment problem mod-
eled by MILP becomes a computationally challenging problem with a large num-
ber of integer variables and constraints. Various optimization techniques including
Lagrangian relaxation and branch-and-bound based MILP methods have been used
to solve large-scale UC problems [HROC01, SYL02]. Benders’ Decomposition and
Lagrangian Relaxation techniques have also been developed for specific UC prob-
lems to reduce computational expenses in the means of separating the master UC
problem (determining the on/off statuses) from the reliability checking subproblems
to make the original problem smaller and solvable [FSL05b, FSL06]. Meanwhile, the
solution process will generate one or more Benders cuts from reliability constraints
or contingency simulation subproblems, and then add those cuts to the master UC
problem in the subsequent computational process when a requirement is violated
[CCMGB06, FSL06].
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Operating Day - 1 Operating Day 

DAM Offers/Bids 
Submitted by 12:00 

DAM LMPs & Schedules 
Posted at 16:00

Re-Offer / Rebid 
Period 16:00 - 18:00

RAA/SCRA Completed for 
Operating Day at 22:00
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the Operating Day

Day-Ahead Market 
SCUC
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• DAM: Day-Ahead Market

• RTM: Real-Time Market

• RTC: Real-Time Commitment

• RTD: Real-Time Dispatch

• LMP: Locational Marginal Price

• RAA: Reserve Adequacy Assessment

• SCRA: Security-Constrained Reliability Assessment

• SCUC: Security-Constrained Unit Commitment

Fig. 1.3 Day-Ahead market and real-time market timeline [Joh10, ISO16]

Unit Commitment under Uncertainty

As future energy needs keep growing, the conventional unit commitment shows a
lot of restrictions to keep up with increasing changes. ISO would need to imple-
ment innovative changes on energy and ancillary markets to accommodate the
supply-and-demand challenges. For achieving higher reliability of power systems,
ISOs plan to implement the market process and scheduling improvements using
state-of-the-art unit commitment models that are fully based on operations man-
agement and optimization methods. Also, ISOs expect to better integrate renewable
energy into existing systems, reducing the effects of the intermittence and variability
of supplies and demands on already scheduled commitments of units. One can seek
an applicable solution from three following perspectives to deal with uncertainties
in power systems, including,



6 1 Introduction

0 10 20 30 40 50

Power
(MW) 

Time (Minutes) 

Disruption
Occurs 

Regulating 
Reserve

Spinning &Non-Spinning 
Reserve

Contingency 
 Reserve

Fig. 1.4 The general timeline of operating reserve

• implementing reserve requirements and providing related reserve services,
• adopting non-generation resources, and
• applying advanced solution methods, such as stochastic optimization and robust

optimization.

First, operating reserve is a widely used approach in the power industry to deal
with uncertainties on power systems. Generally, a part of generating resources will
be retained in order to handle unexpected surges or contingency events. The current
operating reserve is comprised of spinning reserve and non-spinning reserve, in
addition to regulating reserve and contingency reserve. They have different main
functionality and can be provided or procured according to generator’s characteristics
or commitment from different energy sources. And, the operation timeline for each
reserve will be executed after an unexpected disruption occurs, shown in Fig. 1.4. The
regulating reserve is to provide the automatic response on output frequency mainly
consisting of regulation up and regulation down, and it is followed by spinning and
non-spinning reserves that can cover power shortage within up to 30 min, while the
contingency reserve is the last backup with the goal of restoring operating reserve and
may overlap with non-spinning reserve. Since above reserves don’t require specific
new technology or operating requirements, they have been successfully implemented
in generating operations to mitigate uncertainties for a long time.

Next, non-generation resource is viewed as a non-conventional source of energy
and has been proposed to diversify power market services and further improve the sta-
bility, flexibility and reliability of energy supply. In the view of ISOs, non-generation
resources consist of demand response, energy storage and other non-generation dis-
patchable resources to support the power balance. Through a decade of research,
non-generation techniques and programs, particularly in demand response and energy
storage, have been well studied and developed for expanding use of renewable energy
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as well as helping improve the cost-effectiveness of renewable energy systems. Peo-
ple have know their advances and benefits for power generation, transmission, and
end users, but some technical and operational issues are still waiting for solutions
before they can be incorporated with existing power systems and implemented in a
wide range. As the redesign of ISO wholesale market still a work in progress, CAISO
has attempted to allow non-generation resources to enter the ISO regulation markets
and be used for regulation services [Cal10, Ang12].

What’s more, taking the advantages of operations research, its applications in
energy systems can aid the better integration of existing power plants with renewable
energy sources at the strategic level. At the operation level, these methods and solu-
tion techniques are also beneficial for power system operation scheduling in practice
and making full use of energy from accessible resources while meeting modern relia-
bility needs simultaneously. Recently, more advanced modeling techniques methods
are used to address the variability and uncertainty brought by uncertain demands
and renewable energy sources, among which stochastic unit commitment (SUC)
has emerged as one of the most promising tools [BBMW06, RPZ+09, TMDO09,
WBC+09].

Different from traditional UC problem, the stochastic unit commitment prob-
lem capture the uncertainty and variability of the underlying factors by simulating
a certain number of scenarios [ZWL15]. Each scenario is expressed as a possible
realization of the uncertain sources, e.g., wind output, demand, or fuel price. One
can simulate many scenarios to represent an uncertainty to a large extent. However,
we would face a series of computational challenges because the large number of sce-
narios dramatically increases computational complexity. Thus, more advanced opti-
mization solution techniques are proposed to solve the large-scale system problems
a within reasonable time. The computational improvement also allows optimization
methods and techniques become the powerful tools for the optimization of power
generation scheduling, but also open another opportunity to improve operational
performance in the future research.

Structure of this Book

When ISOs perform the generation scheduling for energy markets (day-ahead, hour-
ahead and real-time), solving short-term unit commitment problems will need to
have full consideration of all different requirements, involving renewable energy
generation, demand variation, operating and spinning reserves, transmission plan-
ning, non-generation resources, risk aversion, contingency, unit maintenance, and so
on. Nevertheless, the aggregated requirement bring a lot of challenges on dispatch
planning, solution implementation, resource efficiency, and system reliability as well.
Decision makers may have to achieve serval organizational goals or specific deci-
sion requirements, such as seeking a most conservative decision to meet all demands
based on the worst instance, or looking for an aggressive solution to reduce opera-
tional costs but maximize the use of renewable energy when the real adjusted price
(with environmental and social aspects incorporate) keeps shooting up. However,
the scheduling process requires operations research tools and methods to under-
stand and ensure all decisions to be able to accomplish generation, transmission and



8 1 Introduction

distribution tasks with the objectives of low operation costs, high resource utilization,
high flexibility and reliability to handle unexpected supply/demand fluctuations.

The main goal of this book is to introduce the recent development of electrical
power unit commitment within the context of optimization modeling and algorithms.
The studies in the last decade provide many useful ways of gaining new insights into
the operations management of power systems. Without supply and demand uncer-
tainties, deterministic unit commitment problems have been well addressed and help
to build a solid foundation for solving more complicated unit commitment problems
in the presence of uncertainty. Also, the ongoing research of two-stage stochastic
unit commitment demonstrates that the development of power system reliability can
be achieved by using advanced optimization methods. The main advantage from this
research lies in the ability of handling predictable uncertainty, particularly that it
can help integrate and apply renewable energy and non-generation resources into the
daily power system operations.

This book thus consists of two main chapters to discuss unit commitment problems
plus appendices:

• Deterministic Unit Commitment Models and Algorithms (Chap. 2).
• Two-Stage Stochastic Programming Models and Algorithms (Chap. 3).
• Appendices on common terms, model nomenclature, and a method to generate

renewable energy scenarios.

Chapter 2 focus on basic unit commitment modeling based on mixed integer linear
programming (MILP) and corresponding solution approaches. The major theme of
this chapter is to discuss what objective an operation scheduling should achieve,
what requirements a power system operation must satisfy as well as common solu-
tion techniques applied to solve MILP models. Chapter 3 mainly covers the advanced
studies carried out for modeling the unit commitment problems associated with the
participation of non-generation resources, ancillary service, contingency, real-time
rescheduling and risk management through stochastic optimization approaches. The
advanced concepts and mathematical modeling in SUC problems are introduced in
details and also case studies are given correspondingly by using enhanced computa-
tional algorithms. To satisfy higher requirements on security, economic, and system
reliability, power system operations will continue be incorporated with advanced
operations research methods and applications to mitigate impacts arising from uncer-
tainties and new technologies and societal developments.
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Chapter 2
Deterministic Unit Commitment Models
and Algorithms

This chapter introduces the basic formulations of unit commitment problems which
are generally proposed to optimize the system operations by mixed integer linear pro-
gramming. Meanwhile, the formulations target a series of external factors that affect
electrical power generation schedules, such as ramping capacity, reserve requirement,
transmission capacity, fuel constraint and emission. This chapter also introduces the
solution approaches to solve the deterministic unit commitment problems, especially
using Lagrangian Relaxation and Benders’ Decomposition. The SCUC cases are pro-
vided to illustrate the UC modeling and decomposition processes. All formulation
notations are listed in Appendix B for reference.

2.1 Introduction

Generally, unit commitment is defined to optimize the ON/OFF status of generat-
ing units to meet the forecasted loads and reserve requirements, so as to provide a
least-cost power generation schedule. The unit commitment problems namely con-
sider how to optimally operate generators under physical conditions, such as gener-
ation capacity, minimum ON time, minimum OFF time, ramp up/down rate, reserve
requirements, as well as generation costs, such as startup/shutdown cost and fuel
costs.

Since the electric power generation is not an isolated component in the power
system, the real-time dispatch levels are also subject to demand changes, transmission
capacity and corresponding transmission conditions. Assuming that the real-time
loads follow the expectations of forecasted loads, when the transmission outage
possibly occurs at a time, it would cause to transmission congestions in some lines
and change the original transmission flows on current networks, and meanwhile, will
likely affect the original power generation schedule (real-time unit commitment).
This correlation reveals the importance of the co-optimization of generation and
transmission in practice. Although the unit commitment problems combined with a
transmission constrained network become more complicated, these studies are very
helpful to guide unit commitment scheduling from the perspective of a whole power
system’s operations.

© The Author(s) 2017
Y. Huang et al., Electrical Power Unit Commitment,
SpringerBriefs in Energy, DOI 10.1007/978-1-4939-6768-1_2
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2.2 Objective Function

The objective function of unit commitment usually achieve the minimum total opera-
tional cost over a planned time horizon, the maximum social welfare or the maximum
total profit for a GENCO.

A generic UC objective function is composed of two component costs, related to
two-stage decisions. The first component cost is determined by day-ahead decisions,
i.e. the startup decision and shutdown decision on each generator (in first stage). We
here assume there will be no reschedule of units occurring during next-day operating
hours. The first-stage decision includes the start-up decision vgt and the shutdown
decision wgt that indicate when generation units will be turned on or shut down, and
other operational determinations for operation services. The second component cost
comes from the total operational costs in the second stage, which is primarily made up
of fuel cost and possible unserved energy penalty. And, this unserved energy penalty
is usually produced by load-shedding losses when scheduled generators are not able
to satisfy real-time demands. There is a list of parameter definitions in Table 2.2 for
reference.

min
∑

g∈G

∑

t∈T

(SUgvgt + SDgwgt ) +
∑

g∈G

∑

t∈T

Fg(pgt) + V O L L
∑

i∈N

∑

t∈T

δi t

(2.1)

where

SUg start up cost of unit g
SDg shut down cost of unit g
Fg(·) fuel cost function for unit g
pgt the thermal power generation/dispatch amount of unit g at time t
V O L L value of loss load [$/MWh]
δi t load loss at but i at time t

It should be noted that the fuel cost in the second-stage objective function is a
quadratic function highly associated with power dispatch on a generator and fuel
price. In general, the fuel cost function can be presented as a quadratic function of
the dispatch/production level, p, i.e., for a generator g, Fg(p) = a +bp+cp2, where
a, b and c are usually positive cost coefficients. We know that the quadratic mixed
0–1 integer programming problem is not easy to solve in practice, especially when a
lot of generators are involved. Further, due to the presence of binary decisions, this
could bring extra computational burden on solving a nonlinear fuel cost function.

Instead of solving the mixed integer quadratic problem, an alternative method
is to apply the piecewise linear approximation method to gain very close solutions
for computational convenience. In other words, the original objective function is
reformulated to generate a piecewise linear approximation and become a mixed
integer linear programming problem. For gaining the piecewise linear approximation,
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the sum of squares (SOS) techniques are often used to substitute the fuel cost function
Fg(p) by the summation

∑K
k=1 Ckλk with additional constraints,

{pg =
K∑

k=1

Δkλk,

K∑

k=1

λk = ug,λk ≥ 0, k = 1, . . . , K },

where u is the commitment status of generator g, and Ckand Δk are coefficients used
to approximate the quadratic curve.

Based on two status of a generator, we can know that when a generator is online
and commits to supply capacity, i.e. ug = 1, the UC model will be introduced with
the following constraints,

pg =
K∑

k=1

Δkλk,

K∑

k=1

λk = 1,

λk ≥ 0, k = 1, . . . , K .

When the generator commitment status is in an “off” state, i.e., ug = 0, the power
dispatch level pg become zero and has no any operational cost Fg(p).

Because the cost function itself is convex (see Fig. 2.1), the piecewise linear
approximation function is still convex. The solution obtained from the MILP is
very close to the real optimal solution [HROC01, ZWPG13].

Fig. 2.1 Piecewise linear approximation of the fuel cost function [ZWPG13]
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2.3 Constraints

In this sections, we introduce several common sets of UC constraints and variables
from two-stage mixed integer linear programming models in details. From the most
recent studies, we separate those typical constraints to address based on operation
characteristics and service requirements.

2.3.1 Unit Commitment Constraints

In the day-ahead markets, an ISO determines an unit commitment schedule based on
forecast demands and bids before the operating day, and designates power plants to
prepare to generate electricity for next-day demands. As the first stage of operation
scheduling, the UC constraints state generator status restricted by specific operation
requirements, such as minimum ON time and minimum OFF time, and also specify
startup action and shutdown action on each unit at a time period t , respectively.

Because a generator can’t be started up or shut down arbitrarily in consecutive
hours, Constraints (2.2) and (2.3) respectively indicate two generator’s requirements:
the shortest ON duration has to be met before a generator being shut down and the
shortest OFF duration is also required before a generator being restarted up.

minimum ON time constraint:

ugt − ug(t−1) ≤ ugτ ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |} (2.2)

minimum OFF time constraint:

ug(t−1) − ugt ≤ 1 − ugτ ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |} (2.3)

where

ugt : commitment decision, a generator commits online, if ugt = 1; otherwise,
ugt = 0.

Lg: the minimum-ON duration
lg: the minimum-OFF duration
τ : time alias, a possible operating time period starting from time t
|T |: the duration of a planning horizon

The startup action vgt and the shutdown action wgt are determined by the generator
commitment statuses in the previous time period t − 1 and the current time period t .
Any operational actions can incur startup or shutdown costs, which are considered
in the objective function.
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Startup action constraint:

vgt ≥ ugt − ug(t−1) ∀ g ∈ G, t ∈ T (2.4)

Shutdown action constraint:

wgt ≥ −ugt + ug(t−1) ∀ g ∈ G, t ∈ T (2.5)

ugt , vgt , wgt ∈ {0, 1} ∀ g ∈ G, t ∈ T (2.6)

where

vgt : binary variable, startup action of unit g at time t
wgt : binary variable, shutdown action of unit g at time t

2.3.2 Thermal Generation Constraints

According to given unit commitment schedules, power generation is to fulfill system
operations through available generation resources and then to provide the least-cost
generation outputs to serve demand. A generator output in a hour is subject to the
maximum generation limit Pmax

g and the minimum generation limit Pmin
g . When a

generator is scheduled online (ugt = 1), the generation capacity is active giving
bounds on dispatch level, shown in (2.7); otherwise, a generator output is forced to
zero.

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt ∀ g ∈ G, t ∈ T (2.7)

pgt ≥ 0 ∀ g ∈ G, t ∈ T (2.8)

In addition, a generator output can be adjusted, increasing or decreasing between
two successive time periods. The generation difference between two adjacent time
periods is called ramping. A basic constraint to address generation ramping is pre-
sented in (2.9).

− RDg ≤ pgt − pgt−1 ≤ RUg ∀ g ∈ G, t ∈ T (2.9)

where

RDg: ramp-down rate of unit g
RUg: ramp-up rate of unit g

We also take into account some specific ramping situations, in which ramping
rate is a changeable value and affected by the previous time period of commitment
status. T Some recent models have addressed this situation [WWG13c, WWG13b].
If a generator has a startup ramping, i.e. the dispatch level ramping up from 0 MW to
Pmin

g , the regular ramp up rate is not suitable under this condition, but can be replaced
with Pmin

g . In addition to startup ramping or shutdown ramping, the regular ramp
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up rate and the ramp down rate are applied to consecutive online status. Therefore,
constraint (2.9) can be modified as follow:

pgt − pgt−1 ≤ Pmin
g (2 − ugt − ug(t−1)) + RUg(1 + ug(t−1) − ugt ) ∀ g ∈ G, t ∈ T

(2.10)

pgt−1 − pgt ≤ Pmin
g (2 − ugt − ug(t−1)) + RDg(1 − ug(t−1) + ugt ) ∀ g ∈ G, t ∈ T

(2.11)

where constraint (2.10) describes two following situations:

• If a unit is ON at time t − 1 and ON at time t , the ramp up rate is RUg;
• If a unit is OFF at time t − 1 and ON at time t , the ramp up rate is Pmin

g .

Similarly, constraint (2.11) describes other two situations:

• If a unit is ON at time t − 1 and ON at time t , the ramp down rate is RDg;
• If a unit is ON at time t − 1 and OF at time t , the ramp down rate is Pmin

g .

2.3.3 Operating Reserve Constraints

Operating reserve is one type of ancillary operations to support the power balance on
the demand sides. The ISO promote ancillary services not only to enlarge the pool
of energy resources and introduce advanced techniques that effectively and actively
participate in the ISO market, but also to support the renewable energy integration
as a complementary tool.

The current operating reserve services being offered in electric energy markets
include synchronous or non-synchronous, regulation reserves, spinning reserves,
and non-spinning reserves. The sources of energy provided from different reserve
services are different: regulation service mainly supplied from online generators,
partial spinning reserve provided from generators already connected to the grid or
system resources, and non-spinning reserve provided from quick-start generators,
system resources or interruptible loads. The response times of reserve services cn
vary from a few seconds to 30 min, up to 60 min, depending on the control reserve
deployment time.

To achieve the optimization of energy and reserve in practice, one can obtain an
efficient energy and reserve offering strategy by Heuristic method [NLR04] or con-
sider the reserve determination on pre-contingency and post-contingency conditions
[BGC05]. In the fact that the durations of reserve services are often less than 30 min,
if the reserve duration is considered as a significant factor, a sub-hourly unit com-
mitment model become necessary to handle this time transition issue [YWGZ12].
Here, we primarily focus on hourly unit commitment formulations based on an
optimization method.

The spinning reserve is generally accounted for partial online generating capacity
or off-line generation resources. Their outputs are constrained by predetermined
maximum spin reserve, shown as
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0 ≤ sgt ≤ Smax
g ∀ g ∈ G, t ∈ T . (2.12)

where

sgt : spinning reserve of unit g at time t
Smax

g : maximum spinning reserve limit of unit g

Meanwhile, the generators that participate in biding spinning reserve must meet
the spin reserve requirements given by ISOs. Constraint (2.13) describes an operating
condition that the total spinning reserve at bus i should not less than the fixed reserve
requirement.

∑

g∈Gi

sgt ≥ RSit ∀ i ∈ N , t ∈ T (2.13)

where

RSit : spinning reserve requirement for bus i at time t .

More typical constraints regarding spinning and non-spinning reserve require-
ments are shown in constraints (2.14)–(2.18). The provisions of spinning reserve are
expended, not only from internal spinning reserves (e.g. from synchronized gener-
ators) but also from external spinning reserve (purchased from spinning reserve not
served). The maximum spinning reserve can be estimated through the response time
of spinning reserve at ON status, which is shown in (2.15).

∑

g∈Gi

sgt + (sn)t ≥ RSit ∀ i ∈ N , t ∈ T (2.14)

0 ≤ sgt ≤ S RT × M S Rg × ugt ∀ g ∈ G, t ∈ T (2.15)

The non-spinning reserve has a more complicated situation, in fact, divided into
two types of reserves: nonspinning reserve if a unit is ON and nonspinning reserve if
a unit is OFF. The former nonspinning reserve is similar to regular spin reserve from
online generators, and the latter nonspinning reserve is provided from off-line quick
start generators with a higher level of nonspinning capacities. Either of nonspinning
reserve is also necessary to satisfy the non-spin reserve requirements by the total
provisions of non-spin reserve resources. The corresponding formulations are given
in (2.16)–(2.18).

∑

g∈Gi

(nsO N
gt + (ns)O F F

gt ) + (nsn)t ≥ N RSt ∀ i ∈ N , t ∈ T (2.16)

0 ≤ (ns)O N
gt ≤ N S RT × M S Rg × ugt ∀ g ∈ G, t ∈ T (2.17)

0 ≤ (ns)O F F
gt ≤ QSCg(1 − ugt) ∀ g ∈ G, t ∈ T (2.18)
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All reserves mentioned above are dominant in ancillary service markets.
Meanwhile, more and more new products like flexible ramping products will be
added to ancillary services and enrich the ancillary services market. ISOs also expect
to benefit from the co-optimization by the effective determination of market clearing
prices, the enhancement of reserve shortage pricing, the identification of units for
system re-dispatch and proper compensation, etc.

2.3.4 Transmission Constraints

Power flows in a transmission network are usually considered in UC optimization
problems, because they can be used to address power losses occurring in a network
and eventually affect real-time power dispatch at a bus. Generally, Kirchhoff’s current
and voltage laws in a nodal way are applicable to find out electricity characteristics
of transmission and distribution systems. Through simplifying calculation processes,
one can present the power transmission using a DC linear approximation of power
flows. In addition to voltage magnitudes, MVA or MVAR flows, the DC power flow
method actually is often used to determine the MW flows on transmission lines in
optimization models.

Measuring load-shedding losses is to help decision makers identify possible load
losses at a specific bus. We can introduce a loss variable δi t into the DC approximation
of KCL constraints, in which the loss appeared at a bus for each time period will
cause unserved energy penalty. The modified DC approximation of KCL involves
in-bound and out-bound flow, thermal generation, forecasted demands, renewable
energy generation as well as load-shedding loss, shown in constraint (2.19). The
power transmission line from bus i to j also has a flow limit given in (2.20). In some
cases, the load-shedding loss is not allowed in a specific location and thus δi t needs
to be restricted to zero.

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t =
∑

g∈Gi

pgt + Rit − D0
i t + δi t ∀ i ∈ N , t ∈ T (2.19)

− Fmax
i j ≤ fi j t ≤ Fmax

i j , ∀ (i, j) ∈ A, t ∈ T
(2.20)

li t ≥ 0, ∀ i ∈ N , t ∈ T (2.21)

where

fi j t : unrestricted variable, a bi-direction flow between bus i and bus j
δi t : load-shedding loss at bus i at time t
A+

i : the set of flow starting at bus i
A−

i : the set of flow ending at bus i
Rit : renewable energy output at bus i at time t
Fmax

i j : transmission flow limit between bus i and bus j
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Additionally, a DC approximation of Kirchhoff’s voltage law is presented in
constraint (2.22). The renewable energy output Rit , demand Dit , and phase angle βi t

are usually given as parameters in the transmission constraints.

( fi j t − f ji t ) − Bi jt (βi t − β j t ) = 0 ∀ (i, j) ∈ A, t ∈ T (2.22)

βi t unrestricted, ∀ i ∈ N , t ∈ T (2.23)

where

βi t : a phase angle at interconnected bus i
Bi j t : susceptance of an transmission line (i, j)

The system voltage and transformer tap limits are shown in constraint (2.24) and
(2.25), respectively.

Vmin ≤ V ≤ Vmax , (2.24)

Bmin ≤ B ≤ Bmax , (2.25)

where

V: system voltage vector
B: transformer tap vector

Vmin , Vmax : system voltage lower and upper limit vector
Bmin , Bmax : transformer tap lower and upper limit vector

2.3.5 Emission Constraints

Environmental factor is one of operation considerations and usually addressed as a
system level or regional emission limit in general. The emission control is mainly
executed on these emission gases, i.e. CO2, SO2, NOx . Also, the allowable emission
amount highly depends on the fuel type of generating unit, for example, a coal-
burning electric generating unit has a higher emission level than a gas-turbine unit.
A system level emission limit over a planning horizon [FSL05b] is formulated as

∑

g∈G

∑

t∈T

(
Fe

g (pgt )ugt + SU e
g vgt + SDe

gwgt
) ≤ Emax , (2.26)

where

Fe
g (·): emission function of unit g

SU e
g : startup emission of unit i at time t

SDe
g: shutdown emission of unit i at time t

Emax : system emission limit



20 2 Deterministic Unit Commitment Models and Algorithms

This constraint is applied to one emission gas and the emission function may
vary according to the fuel type of generating units. In addition, this constraint can be
tailored for regional emission limit based on the location area of generating units.

2.3.6 Unserved Energy Constraint

In some circumstances, load loss is allowed to occur and may come with unserved
energy penalty reflected in the objective function. While the unserved energy
constraint imposes a performance bounding to control the expected total load losses
within an expected loss allowance.

E(
∑

i∈N

δi t ) ≤ εt , ∀ t ∈ T (2.27)

where

E(·): the expectation of load loss in a power system
εt : loss allowance for time t

2.3.7 Reactive Power Constraints

Relative to real power generation, this subsection briefly introduce reactive power
generation in current system operating, including generation limit, load bus balance
and operating reserve requirement [].

Qmin
g ugt ≤ qgt ≤ Qmax

g ugt ∀ g ∈ G, t ∈ T (2.28)
∑

g∈G

Qmax
g ugt ≥ DQ

t , ∀ t ∈ T (2.29)

load bus balance (2.30)

where

qgt : reactive power generation of unit g at time t
Qmin

g : lower limit of reactive power generation of unit g
Qmax

g : upper limit of reactive power generation of unit g

DQ
t : reactive power flow demand at time t
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2.4 Case Studies

This section provides two selected cases to illustrate basic unit commitment problems
and their solution analyses. Both cases are based on a modified 7-bus system, which
are taken from Reference [HZW14]. The test system includes 4 generators, 1 wind
farm, and 10 transmission lines with given capacities, shown on Fig. 2.2. The bus
parameters corresponding to generating units are listed on Table 2.1. The generating
unit parameters and their bid prices are given on Table 2.2. The transmission line
parameters are given in Table 2.3. Here, line congestion is not considered in both
case studies. The daily forecasted Loads are shown in Fig. 2.3 and the wind energy
output is in Fig. 2.4. All models can be coded in C++ and solved by commercial
solvers like CPLEX.

Here are two UC cases discussed as follow:

• Case 1: Joint energy and ancillary service optimization
• Case 2: Security-Constrained unit commitment with transmission contingency

Based on the given system, the case studies do not consider the impacts of trans-
formers, phase shifter for MW control as well as contingency, i.e. generator outages,
line outage.

R1 G1 G2

G3

G4

L1 L4

L2

L3 L5

Fig. 2.2 The 7-bus system
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Table 2.1 Bus parameters

Bus ID Type Unit ID Gen Capacity
(MW)

Spin Reserve
limits (MW)

ES Cap.
(MW)

B1 Wind R1 100 − 20

B2 Coal G1 90 10 20

B2 Coal G2 60 − −
B3 − − − − −
B4 Gas G3 100 − 10

B5 − − − − −
B6 Coal G4 90 − −
B7 − − − − −

a The symbol, ‘−’, represents no generation unit available at a corresponding bus

Table 2.2 Generator parameters and costs

G1 G2 G3 G4

Min-ON (h) 2 1 2 2

Min-OFF (h) 2 2 2 1

Ramp-Up
Rate(MW/h)

30 15 60 15

Ramp-Down Rate
(MW/h)

15 15 60 15

Pmin (MW) 20 10 20 15

Pmax (MW) 90 50 90 60

Smax (MW) 15 10 15 10

Startup ($) 500 500 800 300

Shutdown ($) 500 500 800 300

Fuel Cost a ($) 6.78 6.78 31.67 10.15

Fuel Cost b
($/MWh)

12.888 12.888 26.244 17.820

Fuel Cost c
($/MWh2)

0 0 0 0

2.4.1 Case 1: Joint Energy and Ancillary
Service Optimization

This case focuses on the co-optimization of energy and ancillary service at a same
planning horizon. This energy-reserve co-optimization aims to clear both markets
simultaneously in a least-cost way. Although energy and spinning reserve come
from the same physical resources, the same amount of electricity provided have
different prices between energy market and ancillary service market. The problem is
formulated in a two-stage mixed integer linear program. The UC schedule is modeled
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Table 2.3 Transmission line parameters

Line ID From To Flow capacity
(MW)

Voltage (V) Susceptance

L1 B1 B2 50 500 1

L2 B1 B3 160 500 1

L3 B1 B4 80 500 1

L4 B2 B3 100 500 1

L5 B2 B5 50 500 1

L6 B3 B5 30 500 1

L7 B3 B6 100 500 1

L8 B4 B6 50 500 1

L9 B4 B7 60 500 1

L10 B6 B7 50 500 1
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Fig. 2.3 Hourly loads on 7 buses

in the first stage, while both economic dispatch and spinning reserve are scheduled
in the second stage.

The length of the planing horizon is 24 h and the forecasted wind energy output is
given in one scenario. The wind farm is located at Bus 1 with a generating capacity
of 100 MW. The hourly wind energy output was truncated in the range of [5, 80] MW
with assumptions of a minimum production output and a maximum production out-
put. Therefore, index sets for Case 1 are shown below and the hourly wind energy
outputs are plotted in Fig. 2.4.

G = 4 Generators
T = 24 Hours
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Fig. 2.4 Case 1: hourly wind energy output

N = 7 Buses
S = 1 Scenario
|A | = 10 Transmission Lines

Then the determinist UC problem for energy and ancillary service is formulated.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt) +
∑

t∈T

∑

g∈G

[(bgt pgt + agt ugt ) + (b′
gt sgt + a′

gt ugt )]

+ V O L L
∑

t∈T

∑

i∈N

Δi t

s.t. The first-stage constraints

ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

The second-stage constraints

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T

− RDg ≤ pgt − pgt−1 ≤ RUg, ∀ g ∈ G, t ∈ T

0 ≤ sgt ≤ Smax
g , ∀ g ∈ G, t ∈ T

pgt + sgt ≤ Pcap
g ugt , ∀ g ∈ G, t ∈ T
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Table 2.4 Objective value and unit commitment for 7-bus system

Objective value Unit ID Hour (1–24)

$60615.6 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

G4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∑

g∈Gi

sgt ≥ RSit , ∀ i ∈ N , t ∈ T

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t −
∑

g∈Gi

(pgt+sgt)−Δi t = Wit − Dit , ∀ i ∈ N , t∈T

( fi j t − f ji t ) − Bi jt (βi t − β j t ) = 0, ∀ (i, j) ∈ A, t ∈ T

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T

Δi t ≥ 0, ∀ i ∈ N , t ∈ T

fi j t , ∀ (i, j) ∈ A , t ∈ T

We can obtain the computational results using the solver CPLEX, in which the
Brand-and-Cut-and-Price algorithm is used to solve mixed integer linear programs.
The total generation cost for this recommended UC schedule is $60615.6. Table 2.4
lists the objective value and the optimal UC schedule according to the forecasted
(known) hourly wind energy outputs and loads. Figures 2.5 and 2.6 are the optimal
generator dispatches and spinning reserve levels, respectively.

Without consideration of line congestion, load-shedding loss can be resulted from
the physical generation conditions, such as generation limits or ramping constraints.
The solution shows no loss occurs under this wind scenario. Therefore, the current
generation capacities and ancillary service requirements are able to provide power
balance in this system.

2.4.2 Case 2: SCUC with Transmission Contingency

This case focuses on the N-1 reliable DC optimal dispatch under transmission line
outage. This problem bases on the Case 1’s model and further considers the impacts
of transmission contingency on operation scheduling. The model remains a mixed
integer linear program and includes the transmission flow capacity constraint (2.31)
subject to a line outage during a period [t, t + a].
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Fig. 2.5 7-bus system: dispatch level for each generator
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Fig. 2.6 7-bus system: total spin reserve

− Fmax
i j αi j t ≤ fi j t ≤ Fmax

i j αi j t , ∀ (i, j) ∈ A, t ∈ T (2.31)

where

αi j t : Binary parameter, if αi j t = 1, line outage occurs between bus i and bus j at
time t ; otherwise, αi j t = 0.

Note that the practical method to deal with transmission line outage is not limited
to UC operation scheduling, including common transmission switching, whereas the
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state of transmission element (line or transformer), voltage and phase angle are fully
taken into account in transmission switching. For the simplicity of case, here we do
not consider such factors except transmission line.

Case 2 uses the same 7-bus system and shares the same parameters with Case
1. Assuming that the occurrence of line outage can be predicted in advance, only
one line outage occurs in line (4, 7) at 11 am. During the line outage, the number of
available transmission lines is reduced to 9 and the flow capacity Fm

47(11)ax becomes
zero. The deterministic UC model for Case 2 is shown as follow.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt) +
∑

t∈T

∑

g∈G

[(bgt pgt + agt ugt ) + (b′
gt sgt + a′

gt ugt )]

+ V O L L
∑

t∈T

∑

i∈N

Δi t

s.t. The first-stage constraints

ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

The second-stage constraints

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T

− RDg ≤ pgt − pgt−1 ≤ RUg, ∀ g ∈ G, t ∈ T

0 ≤ sgt ≤ Smax
g , ∀ g ∈ G, t ∈ T

pgt + sgt ≤ Pcap
g ugt , ∀ g ∈ G, t ∈ T

∑

g∈Gi

sgt ≥ RSit , ∀ i ∈ N , t ∈ T

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t −
∑

g∈Gi

(pgt + sgt) − Δi t = −Dit , ∀ i ∈ N , t ∈ T

− Fmax
i j αi j t ≤ fi j t ≤ Fmax

i j αi j t , ∀ (i, j) ∈ A, t ∈ T

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T

Δi t ≥ 0, ∀ i ∈ N , t ∈ T

fi j t , ∀ (i, j) ∈ A , t ∈ T

Because of the disruption of line (4, 7) at 11 am, the transmission flows in the
network would be changed as well as the dispatch levels for some specific generating
units. Table 2.5 shows that the objective value for UC with a line outage is increased
to $336, 438, in which 76.6% of costs come from the loss penalty. When the line
outage happens, the new line capacities are not able to satisfy the surge in flow and
line congestions also occur between some buses. Therefore, all units are required
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Table 2.5 Objective value and unit commitment for 7-bus system with line outage

Objective value Unit ID Hour (1–24)

$336, 438 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G4 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 4 8 12 16 20 24

0

10

20

30

40

50

60

70

80

90

100

Time (Hour)

D
is
pa

tc
h 

L
ev

el
 (

M
W

)

G1
G2
G3
G4

Fig. 2.7 7-bus system: dispatch level for each generator

online and try to meet the local demands first so as to mitigate line congestions.
Meanwhile, the line outage forces G4 shut down at 11 am since the outflow of Bus
7 would be terminated.

Figure 2.7 describes the dispatch levels for each generator. Compared to the gen-
eration outputs in normal state (Fig. 2.5), these dispatch levels are more fluctuating
to accommodate the flow changes. Also, in this case, ramp up/down capabilities
regarding online units appear more important to adopt sudden changes in power
systems.

Figure 2.8 shows the total spinning reserve in the whole system. Apparently, the
overall reserve level is much higher than that of normal state and also the reserve
level changes have higher frequency. In the normal state, there is no load-shedding
loss within 24 h. However, the line outage results in load-shedding losses gathering
at Bus 7 over on-peak hours (Fig. 2.9). Meanwhile, the line outage leading to sudden
power supply changes can also trigger losses at other buses, e.g. Bus 3 and Bus 7.
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Fig. 2.8 7-bus system: total spin reserve
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Fig. 2.9 7-bus system: total load-shedding losses

In fact, the unexpected line outage is a very serious contingency event, and thus,
it’s more applicable to arrange the forced line outage for transmission maintenance to
mitigate an unexpected event. What’s more, the ISOs/RTOs execute some operating
reserves (non-spinning reserve or contingency reserve) to remove the transmission
violation, not limited to adjusting tap transformers, phase shifters, predetermined
dispatch levels and loads within given time limits.
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2.5 Solution Approaches for Deterministic
Unit Commitment

We mentioned the unit commitment problems which mainly consider physical gen-
erating requirements and power balance as a classic unit commitment problem. In
the absence of uncertainty, the classic UC problem is modified to implement some
hard operation requirements, i.e. must ON/OFF [OS92, FGL09a, FGL11], operating
reserve [SNS01], maintenance [FSL07], emissions [Gje96, FSL05a]. These studies
make the classical UC models become more realistic and applicable.

According to the nature of formulated UC problems, there are several common
solution approaches for deterministic unit commitment summarized as follow.

• Priority list, including evolutionary programming,
• Dynamic programming,
• Mixed integer linear programming (e.g. Lagrange relaxation method, decomposi-

tion method), and
• Heuristics methods.

The above solution approaches have been applied to solve UC problems in the
study and the reality. Priority list is one of initial solution methods and dynamic pro-
gramming is also widely used to obtain UC schedule and optimal generation costs.
Mixed integer linear programming has been employed in recent years as the most
efficient solution optimization techniques to solve classical UC problems, which will
be introduced in Sect. 2.5.3 with more details. Heuristics methods and evolutionary
programming have been attempted to solve deterministic UC problems. However,
their applications are limited to deterministic cases since they may have lower com-
putational performance when the UC problems face a large-scale power system, and
yet both methods can’t guarantee for solution optimality. A overview regarding these
two solution approaches refers to [Zhu09] for interests.

2.5.1 Priority List

For a generic priority list method, generators are committed in ascending order of the
fuel cost so that the most economic base load units are committed first and the most
costly units are scheduled last. The priority list method has a very fast computation
process, but it is highly heuristic and only generate schedules with relatively high
operation cost [SSUF03]. For solving simple UC examples using priority list, the
interested reader is referred to [Zhu09, WW12] for more examples.

The usage of priority list is very simple, but is restricted to the basic economic
dispatch constraints. This method thus has been extended to accommodate more
complicating constraints. The main function of priority list becomes to generate
initial solutions due to fast computation speed. Then the initial solutions will go
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through the improvement process with fast heuristic methods, and eventually one
can obtain an economic dispatch schedule and the total generation cost.

In the recent studies, priority list is collaborated with evolutionary algorithms to
solve UC problems. Some developed solution approaches provide attempts to solve
basic UC problems, such as Evolution Programming, Hybrid Evolution Program-
ming, Gbest based Artificial Bee Colony (ABC) optimization algorithms, Particle
Swarm Optimization (PSO) and Differential Evolution technique [GR12a, GR12b].

One of proposed heuristics-based evolutionary algorithm is to evolve an initial
population made of good solutions which is obtained by priority list method. Whereas
the evolution is characterized by the elimination of the less fit, the survival of the
fittest, a reproduction ability based on the fitness, and the genetic operators: cross-
over, mutation and time-window swap [SC05].

In addition, a hybrid ant system/priority list method is to cooperate the priority list
method with the feature of ant system [WCN+09]. The priority list method gives a set
of heuristics to be used for UC committing process under the operating constraints.
Meanwhile, the ant system can gain the benefit of using a set of heuristic rules
provided by the priority list method as directional bias information for improving its
evolving process.

What’s more, a study proposes an advanced quantum-inspired evolutionary unit
commitment algorithm to develop a new searching initialization method based on
unit priority list and a special Q-bit expression, which ensures the diversity in the
initial search area for improving the efficiency of solution searching. Considering
any prior knowledge of UC problem and the characteristics of the generator units,
the evolutionary optimization process can be initialized better and carried on by a
group-search for QEA-UC [CYW11].

2.5.2 Dynamic Programming

Dynamic programming (DP) is one of main solution techniques to optimize the ther-
mal unit commitment schedule. Dynamic programming with an implicit enumeration
approach is a common solution process to solve UC subproblems. Considering an
example, there are n generators in a power system, so it has 2n − 1 ON-OFF statuses
for determining an optimal UC solution. Using DP, it will go through all possible
combinations and then pick the best solution(s). The computation times are also
increased exponentially, thus the DP applications can’t be easily applied in large-
scale power systems due to its computational performance.

Some DP introductions with UC applications are clearly given in [Zhu09, WW12].
Generally, dynamic programming is not an unique method employed to produce unit
commitment schedules on the whole system. In fact, DP remains its own computa-
tional advantages as many studies have proposed DP integrated with other strategies
or methods, such as
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• Priority list [HHWS88, SPR87, LST+97]
• Lagrangian relaxation method [WSK+95, LS05a, FSL05b]
• Artificial neural network algorithm [OS92]
• Artificial intelligence technique [WS93]
• Expert system [SNS01]
• Branch and bound algorithm [Che08]

The combination of DP with other techniques aims to improve the computation
performance. Particularly, within [WSK+95, LS05a, FSL05b, GNLL97], DP is used
to solve specific UC subproblems in which the objective is required to determine the
optimal unit status cross hours. For the detailed solution process through the DP-
Lagrangian relaxation method, one can refer Sect. 2.5.4.3.

2.5.3 Mixed Integer Linear Programming

Compared to other mentioned solution approaches, MILP is the most promising
solution technique and has been successfully applied in UC problems. The classic
unit commitment problem in abstract form is shown on the following mixed 0–1
linear program (2.32a):

[P] : min cT
1 x + cT

2 y (2.32a)

s.t. A1x = b1 (2.32b)

A2x + Ey = b2 (2.32c)

x ∈ {0, 1}n1 (2.32d)

y ∈ R
n2+ (2.32e)

where c1 ∈ R
n1 , c2 ∈ R

n2 , b1 ∈ R
m1 , b2 ∈ R

m2 , Ai ∈ R
n1×mi (i = 1, 2), E ∈

R
n2×m2 , and m1, m2 are scalars.
The mixed integer program contains an integer variable vector, x, and a continu-

ous variable vector, y. The set of constraint (2.32b) represents unit commitment con-
straints only involving binary variables, while the set of sconstraint (2.32c) mainly
covers the generation limits, operating reserve, ramping limits and emission con-
straints.

The main applications of MILP in UC can be extended with helps from two
aspects: problem reformulation and algorithm modification, both of which aim to
improving solution process as well as achieving optimal solution easier and faster.

As solving UC representations purely through dynamic programming would cause
computational issues, the reformulations to UC problem can be completed using
MILP. This aspiration of better formulations promotes seeking alternative repre-
sentations to get rid of some computational obstacles, such as nonlinear structures.
For instance, the original fuel cost function is a mixed integer quadratic function
of dispatch/production level, but there exists some situations where directly solving
this function may lead to solutions hardly reaching the global optima. To reduce
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the computational burden, the piecewise linear approximation technique is used to
obtain an approximated value for generation variables [CA06, ZWPG13]. In addi-
tion, the traditional thermal generator constraints regarding to minimum ON/OFF
time are reformulated through pure integer programming (i.e. unit commitment
and startup/shutdown action constraint); ramping up/down constraints are simplified
from the general ramping constraint describing the relationship between ramping and
load level; similar to fuel cost function, the emission constraints can be linearized and
show in mixed integer linear programs. Other recent studies on reformulations have
reported alternative UC reformulations from mixed integer nonlinear programs and
how to make MILP approximations more close to real solutions [FGL09b, Jab12,
MELR13].

Regarding the second aspect (algorithm modifications), solution algorithms have
been being developed for several years and also bring a lot of vitality to the applica-
tion of MILP in UC problems. The traditional solution algorithms have been tailored
and customized in the way of integrating basic solution algorithms with other solu-
tion strategies or decomposing original problems to master problem and multiple
subproblems, so that they can be more suitable for applying in new developed UC
models. As for deterministic UC problems, solving corresponding mixed integer lin-
ear programs in the last decade utilized one or two following solution technique(s)
for better computational performance.

• Lagrangian relaxation technique [LB99, MMSN05, MMSN06, FLS+09, LS05b,
WSF10],

• Benders’ Decomposition [GGZ05b, GGZ05a, FSL05b, LS05a, LS05b],
• Branch-and-Cut method [WSF10],
• Augmented Lagrangian relaxation (LR) method and dynamic programming

[FSL05b, LS05a],
• Tabu search [MMSN05, MMSN06],
• Hybrid subgradient and Dantzig–Wolfe decomposition approach [FSL05a]

Here, we mainly introduce two of effective solution techniques, i.e. Lagrangian
relaxation (LR) and Benders’ Decomposition (BD). Since recent UC problems
involving uncertainties and their optimization models become more complicated,
Lagrangian relaxation and Benders’ Decomposition methods work as fundamental
solution theories that provide help for developing other advanced solution algorithms.

Taking the benefits from decomposition methods, a large MILP model can be
decomposed into smaller subproblem(s) which can be solved by existing solution
algorithms easily, so that computation performance is improved.

Generally, a UC original problems can be solved directly via Brand-and-Cut-and-
Price algorithms using solver CPLEX. After breaking down the original problem,
if the subproblem is a MILP, the Branch-and-Cut method is suitable for solving
this subproblem as well as Branch-and-Price method. If the subproblem is a linear
program, many well-known linear algorithms can handle it easily. For solving the
optimal commitments in master problems, LR and DP together can be applied to
solve short-term UC problems; meanwhile, Tabu Search can be used in the attempt
to solve a small size of UC. While solving a long-term UC might be still a challenge
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for current optimization methods, Fu et al. thus proposed a hybrid subgradient and
Dantzig–Wolfe decomposition approach to tackle this issue.

2.5.4 Lagrangian Relaxation

Lagrangian Relaxation (LR) is a powerful relaxation technique, which is often used
to solve UC problems. As many UC problems are complicated by a number of
coupling constraints, their original problems can be modeled as (relatively) easy
solving Lagrangian problems. More specifically, the problem reformulation is to
replace the complicated constraints with penalty terms in the objective function,
in which penalty terms are represented by the violation of constraints and their
Lagrangian multipliers. In a Lagrangian problem, a lower bound can be obtained for
the optimal value of the minimum non-convex UC problem [FLW13].

As an example, the general solution process for the SCUC model is shown on
Fig. 2.10. The solution process starts from solving the master problem (MP), in which
the constraints namely include unit commitment, economic dispatch, energy reserve,
emission limit and unserved energy limit constraints. In the normal case without any
outage, if the MP is found to be feasible, the incumbent solution (UC & ED) is passed
to the subproblem for network security evaluation (NSE). If the incumbent solution
satisfies the transmission requirements, the ED solution continues to be checked for
contingency in NSE. If there is any incumbent solution that fails in NSE for both
cases, the MP will be resolved for another solution.

Master Problem

Unit Commitment (UC)

Subproblems for the Normal Case

Network Security Evaluation (NSE)

Subproblems for Contingency

Network Security Evaluation (NSE)

UC
&

ED

ED

Loop A

Loop B

Additional
Constraints

Fig. 2.10 The decomposition approach for SCUC [FLW13]
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2.5.4.1 Application of Lagrangian Relaxation in UC Problem

Generally the abstract LR-based UC model can be written in (2.33).

[LR-OP] : min F(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) (2.33a)

s.t. H(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) ≤ d ˘ (2.33b)

Gi (xi , yi ) ≤ bi , ∀ i (2.33c)

x ∈ {0, 1}n1 (2.33d)

y ∈ R
n2+ (2.33e)

where constraints (2.33b) represent a set of coupling constraints, such as reserve
requirements, emission constraints, fuel constraints and unserved energy limits,
and constraints (2.33c) involve other non-coupling generation constraints, such as
minimum ON/OFF constraints, startup/shutdown constraints, generation capacities,
ramping limits, spinning/nonspinning constraints and so on.

Here we address the process how to create a Lagrangian problem to solve UC
model. We first let non-negative ˘ denote the Lagrangian multipliers for the system
coupling constraints (2.33b). The Lagrangian relaxations of the original problem
2.33 is to move the coupling constraint (2.33b) to the objective function, shown as

V D∗ = minF(x1, x2, . . . , xn1 , y1, y2, . . . , yn2)

+ ˘(H(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) − d) (2.34)

subject to the unit constraints in (2.33c). When ˘ is a fixed value, the term −˘T d
becomes constant and is discarded. Then the LR-based objective function can be
decomposed into n1 subproblems, where each subproblem 2.35 bases on a corre-
sponding generator, shown as follow:

[LR-SP] : min F(xi , yi ) + ˘T
Hi (xi , yi ) (2.35a)

s.t. Gi (xi , yi ) ≤ bi , (2.35b)

xi ∈ {0, 1} (2.35c)

yi ∈ R+ (2.35d)

As for solving the decoupled subproblems for each generator, dynamic program-
ming (DP) has been verified as one of effective ways to generate every possible state
at each DP stage. Many general discussions of DP can be found in the literature.

In the LR-SP, a state space is made up with all possible generator status and then
DP will execute searching the best strategy from possible strategies of each stage.
Once the generator state xi and its power dispatch yi over the planning horizon are
determined, we can obtain the objective value for V D∗. This is the lower bound of the
UC problem and will be used as the dual value. We then examine the relaxed coupling
constraints to be satisfied. If these constraints can not be satisfied, the Lagrangian
multipliers ˘ will be updated through another method (e.g., subgradient method).
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If they are satisfied, based on the given UC solution, the economic dispatch problem
will be solved to determine power dispatch amount on each generator.

V P∗ = minF(x̂1, x̂2, . . . , x̂n1 , y1, y2, . . . , yn2)

s.t.H(x̂1, x̂2, . . . , x̂n1 , y1, y2, . . . , yn2) ≤ d (2.36)

Gi (x̂i , yi ) ≤ bi , ∀ i (2.37)

y ∈ R
n2+ (2.38)

The objective value of V P∗ is the primal value as the upper bound of the UC problem.
We then compare the primal value with the dual value and examine their difference
met within the range of duality gap. If the current difference exceeds the duality gap,
Lagrange multiplier will be updated until another feasible solution is obtained and
the duality gap stays in an acceptable range. So far the LR method has been applied
to some specific coupling constraints relaxation, usually for ramping, hydropower
generation, transmission network, and emission constraints.

What’s more, due to the non-convexity of UC optimization problem, the perfor-
mance of LR is highly affected by the multipliers and less sufficient to finding a
global optimal solution with reasonable convergence speed. Then the augmented
Lagrangian method can be applied to deal with the non-convexity in the means of
adding quadratic penalty terms to the Lagrangian function. For general UC mod-
els, the main difference between Lagrangian Relaxation and Augmented Lagrangian
Relaxation exists in the Lagrangian function. In order to improve the convexity of
problem, in general we add a quadratic penalty term −(c/2)

∑
t∈T (

∑
g∈G pgt ugt −

Dt )
2, which stands for the gap between supply and demand [FSL05b, SYL03].

2.5.4.2 LR Example

To illustrate the implementation of LR in UC problem, we construct a typical UC
model to show the LR-based model and its solution process in details. We consider the
following UC model with partial prevailing constraints and decompose the original
model via the Lagrangian Relaxation method.

min
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ugt)

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, ‖T |}
(2.39a)

ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, ‖T |}
(2.39b)

vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T (2.39c)
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wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T (2.39d)

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T (2.39e)
∑

g∈G

pgt ugt = Dt + Δt , ∀ t ∈ T (2.39f)

∑

g∈G

sgt ugt ≥ RSt , ∀ t ∈ T (2.39g)

Pmin
g ugt ≤ pgt ≤ Pmax

g ugt , ∀ g ∈ G, t ∈ T (2.39h)

pgt − pgt−1 ≤ Pmin
g (2 − ugt − ug(t−1)) + RUg(1 + ug(t−1) − ugt),

∀ g ∈ G, t ∈ T (2.39i)

pgt−1 − pgt ≤ Pmin
g (2 − ugt − ug(t−1)) + RDg(1 − ug(t−1) + ugt ),

∀ g ∈ G, t ∈ T (2.39j)
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ugt + SU e
g vgt + SDe

gwgt
) ≤ Emax (2.39k)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.39l)

From the given UC model, all constraints are categorized with the same features into
separable constraints, i.e. (2.39a)–(2.39e), (2.39h)–(2.39j), and coupling constraints
i.e. (2.39f), (2.39g) and (2.39k). Since these coupling constraints have the common
feature that all units are aggregated in one constraint for operational requirement. In
the consideration of system-level operation, if one generation variable get changed,
other generation variables will be affected simultaneously. According to the LR
framework, these coupling constraints are relaxed and placed in the objective function
associated with Lagrangian multipliers. In doing so, we can construct a Lagrangian
function for this UC problem as follows:

L(vgt , wgt , ugt , pgt ,λ
b
t ,λ

r
t ,λ

e)

=
∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ugt )

−
∑

t∈T

λb
t

∑

g∈G

pgt ugt −
∑

t∈T

λr
t

∑

g∈G

sgt ugt

−λe
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ugt + SU e
g vgt + SDe

gwgt
)

(2.40)

This Lagrangian function of UC problem is subject to separable constraints (2.39a)–
(2.39e), (2.39h)–(2.39j), based on each individual generator.

During the LR decomposition process, when the commitment decision ugt and
generation decision pgt are determined for all units over the planning horizon, the
objective value of (2.40) in k + 1th iteration can be obtained as the lower bound of
original UC problem. Next, we use the current solution (û, p̂) and check for the cou-
pling constraints. When the current solution is not satisfied with that constraints, the
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Lagrangian multiplier ˘ will be updated through the subgradient method. Otherwise,
we solve the problem 2.41 with fixed û

min
∑

g∈G

∑

t∈T

(SUgt v̂gt + SDgt ŵgt ) +
∑

t∈T

∑

g∈G

(bgt pgt + agt ûgt)

s.t.
∑

g∈G

pgt ûgt = Dt + Δt , ∀ t ∈ T (2.41a)

∑

g∈G

sgt ûgt ≥ RSt , ∀ t ∈ T (2.41b)

Pmin
g ûgt ≤ pgt ≤ Pmax

g ûgt , ∀ g ∈ G, t ∈ T (2.41c)

pgt − pgt−1 ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt ),

∀ g ∈ G, t ∈ T (2.41d)

pgt−1 − pgt ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt),

∀ g ∈ G, t ∈ T (2.41e)
∑

g∈G

∑

t∈T

(
Fe

g (pgt)ûgt + SU e
g v̂gt + SDe

gŵgt
) ≤ Emax (2.41f)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.41g)

and obtain the corresponding solution p as well as the upper bound of original UC
problem. Then check for the difference between the lower bound and upper bound. If
the difference is within a specific gap, the UC final solution is obtained. Otherwise,
update ˘ again until the optima is found.

2.5.4.3 LR-Based Solution Process

Here we briefly introduce the augmented Lagrangian relaxation integrated dynamic
programming approach to solve UC problem within reasonable computation times
[FSL05b]. The flow chat for this solution process is shown in Fig. 2.11 and the
solution approach is explained as follow.

LR-Based Solution Approach:

• Step 1: Initiate Lagrangian multipliers, to support with power balance equalities,
reserve requirements, system fuel limits, system emission limits, and system secu-
rity constraints (Benders cuts).

• Step 2: Decouple the relaxed problem into several subproblems to represent indi-
vidual generators (20). Taking the current values of multipliers, apply DP to solve
the UC for each unit over a 24-h planning horizon.

• Step 3: Check all power balance, reserve, fuel, and emission constraints as
well as Benders cuts produced from the network security check subproblem.
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Fig. 2.11 The flow chart of
augmented Lagrangian
relaxation [FSL05b]

Initial Lagrangian multipliers

Use DP for single UC in 24 hours

Satisfy power balance, 
reserve, fuel and 

emission constraints

Calculate dual objective function 
and primal objective function 

UC results

Update
multipliers

Update multipliers through the subgradient method. Go back to Step 2 if one
of constraints cannot be met; otherwise, the solution process will move to Step 4.

• Step 4: Calculate the dual objective in the Lagrangian function and the primal
objective (i.e., ED over a 24-h period). Terminate the solving process in the master
problem when if the relative duality gap falls in the tolerance; otherwise, keep
updating multipliers via the subgradient method, and return to Step 2.

2.5.5 Benders’ Decomposition

The main use of Benders’ decomposition is to decompose an original single large
problem into a master problem (MP) and one/multiple smaller subproblems (SP) to
alleviate the computational difficulty from directly solving an optimization problem.
After decomposition, the algorithm process goes through serval steps: solving MP
to get a lower bound, passing its current solutions to SP, solving SP to get a upper
bound and then generating Bender’s cuts for MP until LB and UB are converged.

As for decomposition, we target to build the subproblem as a linear program (LP)
or a convex nonlinear program [CGB06] in that it applies the theory of duality to
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get a feasible solution, and allow the master problem include all discrete variables,
such as binary variables or integer variables. In some cases, one can also keep some
of the continuous variables in the master problem according to the needs of master
problem and the program structure of subproblem.

2.5.5.1 Principles of Benders’ Decomposition

In this section, we consider a MILP-based UC problem and use it as an example to
illustrate the procedure of Benders’ decomposition. The original UC has two types
of decision variables, x and y, which are vectors of integer and continuous variables.
For fixing values of x variables, the original problem is given by

min {f(x̂) + cT
2 y | Ey ≥ b2 − A2x̂, y ∈ R+, y ≥ 0}. (2.42)

Since the value of function x is fixed in the objective function and moved out from
the function y, the problem (2.42) can be written as follow:

f(x̂) + min {cT
2 y | Ey ≥ b2 − A2x̂, y ∈ R+, y ≥ 0}, (2.43)

where the inner minimization problem is defined to be subproblem (SP).
Let ¯ denote dual variables (extreme points in a feasible region) associated with

the specific constraint, Ey ≥ b2 − A2x̂. If y ∈ Y is a nonempty polytope, there exists
an extreme point for optimal solution in SP. We can further formulate the dual SP as

min {z | z ≥ (b2 − A2x̂)T ¯, ET ¯ ≤ c2, ¯ ≥ 0}. (2.44)

Solving the inner minimization problem means enumerating all extreme points
of Y in the subproblem. If there are partial k (k < Q) extreme points selected, the
MP becomes a relaxed master problem (RMP) with less constraints given by

min {f(x) + z |x ∈ X, z ≥ (b2 − A2x)T ˆ̄ j , for j = 1, 2, . . . , k}. (2.45)

Define (x̄, z̄) as an optimal solution to RMP. In this situation with given partial
extreme points, (x̄, z̄) can only be considered as a feasible solution to the master
problem (k = Q). To check this optimality condition, we equivalently check if this
solution can make the inequality (2.46) at all extreme points hold true.

z̄ ≥ (b2 − A2x̄)T ¯ j , for j = 1, 2, . . . , Q (2.46)

If the current solution of RMP, (x̄, z̄), violates one or partial constraints in SP, an
optimality cut (2.47) will be imposed to RMP.

z ≥ (b − Dy)T ûk+1. (2.47)
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Fig. 2.12 Solution types for master problem and subproblems in Benders’ Decomposition

If SP has infeasible solutions, a feasibility cut (2.48) will be added to RMP.

0 ≥ (b − Dy)T ûk+1. (2.48)

During the solving process, MP and SP may experience one or more solution
types, shown in the Fig. 2.12. After solving RMP, it may have a feasible solution
which will be passed to SP for the next-step solution, or may have an infeasible
solution that indicates the original problem to be infeasible. Then the suproblem is
solved with three possible cases: feasible, infeasible and unbounded. Based on the
solution type of SP, an optimality cut or a feasibility cut will be generated and then
added to RMP for next iterations. If the SP has the unbounded case, it also shows
that the original problem is unbounded.

To solve a classical MILP problem with L-shaped structure, we outline a
traditional Benders’ Decomposition algorithm as follow:

� Initialization: Let x̂ := initial feasible solution, only solve for the function of x
to get the initial L B and then fix x to solve for U B.

� Step 1: Solve the RMP, minx { f (x) + z| x ∈ X, cuts, z unrestricted}.
If RMP is feasible, get solutions (¯̄, z̄) and L B := f (x̄) + z̄; otherwise, the
algorithm is terminated.

� Step 2: Solve the SP, maxμ{f(x̂) + (b2 − A2x̂)T ¯|AT ¯ ≤ c, ¯ ≥ 0}.
If SP is feasible, get dual solutions ˆ̄ and U B := f(x̂) + (b2 − A2x̂)T ˆ̄.
Add optimality cut z ≥ (b2 − A2x)T ˆ̄ to RMP.
If SP is infeasible, add feasibility cut 0 ≥ (b2 − A2x)T ˆ̄ to RMP.

� If (U B − L B)/U B ≤ ε, the current solution is optimal and the algorithm is
terminated.
If (U B − L B)/U B > ε, perform next iteration and go to Step 1.
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2.5.5.2 Application of Benders’ Decomposition in UC Problem

Based on the above decomposition approach, we can obtain the decomposed UC
problems: an integer master problem (BD-MP) and a linear subproblem (BD-SP),
which are given by

[BD-MP] : L B = minx,π cT
1 x + ß (2.49a)

s.t. A1x = b1 (2.49b)

x ∈ {0, 1}n1 (2.49c)

π ≥ O(x) (2.49d)

0 ≥ F (x) (2.49e)

[BD-SP] : U B = miny cT
2 y (2.50a)

s.t. Ey = b2 − A2x̂ (2.50b)

y ∈ R
n2+ (2.50c)

whereπ is a free variable; constraints (2.49d) and (2.49e) represents a set of optimality
cuts and feasibility cuts, respectively.

In the review of decomposition strategies of UC problems the decomposition
strategy depending on the types of decision variables has been used a lot, as shown
in 2.49 and 2.50.

• Solve the MP with unit commitment and generated cuts;
• Given the current solutions from MP, solve the SP including economic dispatch,

operating reserve, emission, transmission, reactive power and unserved energy
constraints. Generate Benders’ cut(s) according to solution type of SP in current
iteration.

Another common strategy of Benders’ Decomposition is to solve general security-
constrained unit commitment (SCUC) in two operation stages:

• Solve the MP with unit commitment, economic dispatch, operating reserve and
emission constraints;

• Given the current solutions from MP, solve the SP only regarding to transmission,
reactive power and unserved energy constraints. Check if any network violations
occur and generate Benders’ cuts.

For both decomposition schemes, the MP includes new generated cuts, and the SP
are solved iteratively and checked for convergence. When using the second decom-
position scheme, the MP becomes a mixed integer program while the SP is built as
a simple linear program and used for meeting network constraints.

From the literature, the network security check is usually arranged in the SP. In
particular, the DC network security check focuses on the power flow balance and flow
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Fig. 2.13 BD-SP: the flow chart of AC network security check [FSL05b]

restrictions on transmission lines. If the DC network constraint is replaced by more
complicated AC network constraint, the scheme remains suitable for AC network
security check. Because the DC network constraints only consider the power flow
balance at a bus and have several limitations, such as ignoring bus voltage violations,
feasible distribution of reactive power and interactions between real and reactive
power conditions. When the AC network considers such requirements left behind, it
is more appropriate to handle them in SP through the security check. The flow chart
for a comprehensive network security check in subproblem is shown on Fig. 2.13.
This decomposition strategy has also been testified to solve a deterministic large-
scale UC problem effectively, i.e. 118 bus system [FSL05b].

2.5.5.3 BD Example

We take the same UC problem shown in Sect. 2.5.4.2 and decompose it using the
first strategy of Benders’ decomposition. The UC problem is decomposed into a MP
and a SP, shown in 2.51 and 2.52. For the second strategy of BD, interested readers
can find some explicit examples in [SYL03].
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[BD-MP] :
min

∑

g∈G

∑

t∈T

(SUgt vgt + SDgt wgt + agugt ) + π (2.51a)

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + Lg − 1, |T |}
(2.51b)

ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . , min{t + lg − 1, |T |}
(2.51c)

vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T (2.51d)
wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T (2.51e)
ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T (2.51f)
π ≥ O(u) (2.51g)
0 ≥ F (u) (2.51h)

[BD-SP] :
min

∑

t∈T

∑

g∈G

bgt pgt (2.52a)

s.t.
∑

g∈G

pgt = Dt + Δt , ∀ t ∈ T → αt (2.52b)

∑

g∈G

sgt ≥ RSt , ∀ t ∈ T → βt (2.52c)

pgt ≥ Pmin
g ûgt , ∀ g ∈ G, t ∈ T → γgt (2.52d)

pgt ≤ Pmax
g ûgt , ∀ g ∈ G, t ∈ T → εgt (2.52e)

pgt − pgt−1 ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt),

∀ g ∈ G, t ∈ T → ϑgt (2.52f)

pgt−1 − pgt ≤ Pmin
g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt),

∀ g ∈ G, t ∈ T → κgt (2.52g)
∑

g∈G

∑

t∈T

Fe
g (pgt) ≤ Emax −

∑

g∈G

∑

t∈T

(SU e
g v̂gt + SDe

gŵgt ) → ν

(2.52h)

pgt , sgt ≥ 0, ∀ g ∈ G, t ∈ T (2.52i)

where power balance constraint (2.39f) and spinning reserve requirement (2.39g) are
replaced with (2.52b) and (2.52c). The major difference between these two expres-
sions is that the bilinear terms (pgt ugt , sgt ugt ) are eliminated and only linear terms
(pgt , sgt ) remain for simplifying the solving process in SP. In addition, the power
balance has the same restriction as (2.39f), while the spinning reserve sources are
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expanded not only from online units but also offline units. In doing so, these modi-
fications can simplify the computation process in SP.

We define several dual variables, such as αt , βt , γgt , εgt , ϑgt , κgt , ν correspond-
ing to constraints (2.52b)–(2.52h), respectively. Then the optimality cut, π ≥ O(u),
is formed in (2.53) through the dual solution of BD-SP.

π ≥
∑

t∈T

α̂t (Dt + Δt ) +
∑

t∈T

β̂t RSt +
∑

g∈G

∑

t∈T

γ̂gt Pmin
g ugt +

∑

g∈G

∑

t∈T

ε̂gt Pmax
g ugt

+
∑

g∈G

∑

t∈T

ϑ̂gt
[
Pmin

g (2 − ûgt − ûg(t−1)) + RUg(1 + ûg(t−1) − ûgt )
]

+
∑

g∈G

∑

t∈T

κ̂gt
[
Pmin

g (2 − ûgt − ûg(t−1)) + RDg(1 − ûg(t−1) + ûgt )
]

+ν̂[Emax −
∑

g∈G

∑

t∈T

(SU e
g vgt + SDe

gwgt )] (2.53)

This cut is associated with binary variables (ugt , vgt , wgt ) and given with incumbent
dual values in kth iteration.

2.6 Summary

This chapter introduces basic UC formulations in terms of optimization methods,
including objective function and their essential constraints: unit commitment con-
straints, electricity dispatch, operating reserve constraints, transmission constraints,
emission constraints, unserved energy constraints, and reactive power constraints.
To address UC problems by optimization approaches, we chose two typical case
studies to illustrate how to model UC problems and analyze optimal solutions for
better decision making. For the improvement of solution process of UC models, we
also provided a overview of solution approaches and summarized their recent devel-
opment. Particularly, we provided a detailed introduction on the most widely used
methods for solving moderate power systems, involving MILP, LR decomposition
method and BD decomposition method.
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Chapter 3
Two-Stage Stochastic Programming Models
and Algorithms

This chapter discusses the technical and management solution approaches for solv-
ing UC problems under uncertainty. There are many recent programs and studies
targeted to uncertainty resistance, such as demand response program, energy stor-
age, real-time rescheduling, contingency management, risk measure and control.
In recent years great interests has been directed towards reducing the impacts of
uncertainty on electrical power system, and the focuses of solving deterministic UC
problems are transferred to solving UC problems under uncertainty. One of success-
ful approaches is to apply two-stage stochastic programming to build UC models
incorporating system’s uncertainties. Also, several commonly used algorithms are
introduced because they achieve better computational performance to deal with the
large-scale real world problems. Their features and uses in practice are included for
reader’s comparisons.

3.1 Introduction

The system’s uncertainties can be categorized from three aspects: supply-side uncer-
tainty, demand-side uncertainty and transmission uncertainty. The supply-side uncer-
tainty is namely composed of fuel price, unit outage, renewable energy output (e.g.
wind- and solar-based generation). The demand-side uncertainty is primarily from
local/regional demand changes presenting as daily surges or unexpected surges in
demands, due to electricity price, weather condition and social events. The transmis-
sion uncertainty is often induced by line outage in contingency, which is hard to be
detected before it occurs.

The previous chapter discussed the deterministic UC formulations which only
focus on the technical solutions. Regardless of uncertainties on power systems, the
deterministic UC optimization models are easy to solve through commercial solvers.
However, the uncertainties from internal systems or external systems may occur at
any moment and result in disturbances on normal operations and power balance. The
factors that can lead to unreliable systems are usually referred to as ‘uncertainties’. To
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avoid or mitigate the unexpected outcomes, many researchers and decision makers
have proposed many ideas, mathematical models and solution approaches to deal
with different uncertainty issues. The most common uncertainties occurring in power
systems can be summarized as follow.

• Load uncertainty
• Renewable energy outputs (e.g. wind, solar, hydro and geothermal generation)
• Contingency (e.g. generator outages, transmission line outage)

To reduce the impacts of uncertainties on electric power systems, the traditional
method uses spinning reserve, non-spinning reserve and operating reserve to han-
dle the majority of common uncertainties with substantial costs. Although all these
reserves are able to resolve most operational challenges caused by uncertainties,
reserve levels are in fact overestimated usually in normal status while underesti-
mated in extreme cases. A lot of generation resources were ‘waste’ to safeguard
electric power systems. Therefore, many studies explored and developed the tradi-
tional UC models with considerations of uncertainties on two branches: Stochastic
Optimization and Robust Optimization.

Because the development of UC using mathematical programming techniques
is fast growing, particularly mixed integer linear programming (MILP) with board
applications. This section thus focuses on an introduction of two-stage stochastic pro-
gramming approach to deal with supply-side and demand-side uncertainties, so as to
improve the system reliability. We also discuss several advanced solution approaches
and algorithms for specific stochastic mixed integer linear programming models.

3.2 Two-Stage Stochastic Unit Commitment Modeling

Stochastic optimization approach is to apply stochastic programming to model deci-
sions under uncertainties. Here, an important feature is that uncertainties are assumed
to be known and can be presented in a scenario tree. Theoretically, the more scenarios
are involved in a scenario tree, the more comprehensive uncertainties are involved
in that all possible scenarios are assumed to be discrete and independent. We define
the symbol ξ as a scenario in the UC problem. The abstract form of stochastic unit
commitment (SUC) problem can be expressed as follow.

[P] : min cT
1 x + E((cT

2 )ξ yξ ) (3.1)

s.t. A1x = b1 (3.2)

A2
ξ x + Eξ yξ = b2

ξ , ∀ξ ∈ Ξ (3.3)

x ∈ {0, 1}n1 (3.4)

yξ ∈ R
n2+ , ∀ξ ∈ Ξ (3.5)

where c1 ∈ R
n1 , c2 ∈ R

n2 , b1 ∈ R
m1 , b2 ∈ R

m2 , Ai ∈ R
n1×mi (i = 1, 2), E ∈

R
n2×m2 , and m1,m2 are scalars. From the above SUC model, decision variables can
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be separated to here-and-now variables (i.e. first-stage variables) and wait-and-see
variables (i.e. second-stage variables). On a day-ahead power market, the here-and-
now decisions are made one day ahead before all uncertainties are revealed in the
next day. These here-and-now decisions can directly or indirectly affect wait-and-see
decisions, but should ensure sufficient generation resources to deal with forecasted
uncertainties on next day.

For the relationship between stochastic unit commitment and deterministic unit
commitment, a stochastic UC model with a single scenario can be considered as
a deterministic model. In doing so, solving a stochastic UC model is equivalent
to solving a large-scale deterministic UC model, but the solution process becomes
challengeable.

As we mention above, some common uncertainties that can be described in dis-
crete scenarios include

• forecasted demand Dξ0
i t ,

• renewable energy output Rξ

i t ,
• electricity price Qξ

i t ,
• generating unit outage α

ξ

i t Pgt , and
• transmission element outage, e.g. α

ξ

i j t Fi j t .

The first three uncertainty resources usually have successive fluctuations during a
certain time period, while the last two uncertainty resources are intermittent occur-
rences. In stochastic optimization, we can simulate a continuous uncertainty to be a
serious of possible random discrete values, which can construct a finite set. Thus, all
these possible values as parameters/data inputs can be easily incorporated to SUC
models.

From the view of power balance, any changes from uncertainty resources may
lead to net load changes on generation and transmission. As dependent variables, the
decisions related to above uncertainties are modeled as higher dimensional variables
based on each scenario ξ . The following list contains main decisions made in each
scenario including, but not limited to:

• dispatch level, pξ
gt

• spinning reserve, sξ
gt

• electric power flow from bus i to bus j , f ξ

i j t

• load-shedding loss, δ
ξ

i t

• phase angle, β
ξ

i t

• shifted demand, yξ

i t

• energy storage level, r ξ

i t

• energy storage injection, vξ

i t

• energy storage dispatch level, xξ

i t .
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3.2.1 Problem Formulation

With multiple scenarios involved in the optimization problem, we modify the deter-
ministic objective function (2.1) to the stochastic objective function (3.6) considering
the scenario-based representation of variables. The difference is on the second-stage
costs which are replaced with the expected fuel costs and penalty costs under all
scenarios. Here, let Probξ denote a probability of scenario, usually called a weight
for a scenario. The objective function for a stochastic UC model can be written with
the second-stage operational costs on average,

min
∑

g∈G

∑

t∈T
(SUgvgt + SDgwgt)

+
∑

ξ∈Ξ

Probξ

⎛

⎝
∑

g∈G

∑

t∈T

[
Fg(p

ξ
gt ) + Fg(s

ξ
gt)

]
+ V OLL

∑

t∈T

∑

i∈N
Δ

ξ

i t

⎞

⎠ (3.6)

Note the first term of the objective function is the first-stage startup and shut down
costs (determined by here-and-now decisions), while the second term associated with
weighted scenarios is the expected fuel costs for electricity dispatch and the unserved
energy costs.

In the stochastic environment, we may know or estimate the second-stage input
data following a known probability distribution (e.g. Normal distribution). Corre-
spondingly, it can provide a discrete scenario with a certain probability. However, in
some situations such as generator outage, transmission line outage, demand dramatic
changes, renewable energy volatility and intermittence and other contingencies, the
probabilities for such scenarios are usually unknown or hard to estimate a probability
distribution. One can use stochastic outputs of a simulation model or an empirical
distribution from historical data as an approximation for second-stage input data.
Therefore, whichever distribution of input data in the second stage is a weighted
average of operational costs for all scenarios.

The UC decisions as we know are determined in day ahead (called first stage
decisions), more specially before uncertainty realizations. Actually, they are not
formulated as scenario-based variables. Beyond these UC decisions, other decision
variables affected by uncertainties are considered as scenario-based variables, and
their corresponding constraints are located in the second stage of stochastic UC
problems. We select some typical scenario-based constraints to show below.
For the generator-related constraints,

Pmin
g ugt ≤ pξ

gt ≤ Pmax
g ugt ,

pξ
gt − pξ

gt−1 ≤ Pmin
g (2 − ugt − ug(t−1)) + RUg(1 + ug(t−1) − ugt ),

pξ
gt−1 − pξ

gt ≤ Pmin
g (2 − ugt − ug(t−1)) + RDg(1 − ug(t−1) + ugt ),

pgt + sgt ≤ Pcap
g ugt ,

sξ
gt ≤ Smax

g ,

pξ
gt , sξ

gt ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ g ∈ G, t ∈ T
ξ ∈ Ξ

http://dx.doi.org/10.1007/978-1-4939-6768-1_2
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For the bus-related constraints,
∑

g∈Gi
sξ
gt ≥ RSξ

i t ,

yξ
i t = Dξ0

i t + Eξ
i t (q

ξ
i t − Qξ0

i t ),

αQξ0
i t ≤ qξ

i t ≤ γ Qξ0
i t ,

r ξ
i t = r ξ

i t−1 + vξ
i t−1 − xξ

i t−1,

xξ
i t ≤ r ξ

i t ,

r ξ
i t ≤ κi ,∑

(i, j)∈A+
i
f ξ
i j t − ∑

( j,i)∈A−
i
f ξ
j i t = ∑

g∈Gi
pξ
gt + Rξ

i t − Dξ0
i t + δ

ξ
i t ,

vξ
i t , xξ

i t , r ξ
i t , δ

ξ
i t ≥ 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ i ∈ N , t ∈ T
ξ ∈ Ξ

For the line-related constraints,

( f ξ

i j t − f ξ

j i t ) − Bξ

i j t (β
ξ

i t − β
ξ

j t ) = 0,

−Fmax
i j αi j t ≤ f ξ

i j t ≤ Fmax
i j αi j t ,

f ξ

i j t , β
ξ

i t , unrestricted

⎫
⎪⎬

⎪⎭
∀ (i, j) ∈ A, i ∈ N , t ∈ T, ξ ∈ Ξ

Here we continue using discrete scenarios within the scenario set Ξ to model
supply and demand side uncertainties. In practice, simulation technique is very help-
ful to generate random numbers through a simulation model and simulate real-time
scenarios as an optimization model’s data input. As the second stage is to address
the next-day decisions (i.e. power dispatch, ramping, reserve, power flow, etc.) for
all scenarios, their features are captured by |Ξ | sets of continuous variables and
constraints. Meanwhile, because the unit commitment decisions will affect next-day
decisions, dispatch constraints in the second stage work in connection with day-ahead
UC decisions.

The second stage of SUC model is mainly to solve next-day operational prob-
lems with respect to power generation/dispatch, power transmission, and other avail-
able resources after known uncertainties unfold. What’s more, an optimal operation
schedule must satisfy the criteria of system’s reliability, and thus some research
implemented VaR or CVaR-based risk constraints in the second stage, instead of per-
forming contingency feasibility check. As an example, the integrated two-stage SUC
model SUCR-DR-ES includes UC constraints (3.7)–(3.15), demand response con-
straints (3.16)–(3.17), energy storage constraints (3.18)–(3.20), power transmission
constraints (3.22)–(3.24), and CVaR risk constraints (3.25)–(3.26), stated as follow.

min
∑

g∈G

∑

t∈T
(SUgtvgt + SDgtwgt) +

∑

ξ∈Ξ

Probξ
∑

t∈T

∑

g∈G
[(bgt pξ

gt + agtugt )]

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + Lg − 1} (3.7)

ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + lg − 1}
(3.8)

vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T (3.9)
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wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T (3.10)

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T (3.11)

Pmin
g ugt ≤ pξ

gt ≤ Pmax
g ugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.12)

− RDg ≤ pξ
gt − pξ

gt−1 ≤ RUg, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ ← χ
ξ
gt , σ

ξ
gt

(3.13)

sξ
gt ≤ Smax

g , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ ← υ
ξ
gt (3.14)

∑

g∈Gi

sξ
gt ≥ RSit , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ ← λ

ξ

i t (3.15)

yξ

i = D0
i + E ξ

i t (q
ξ

i t − Qξ

i t ), ∀ i ∈ N , t ∈ T, ξ ∈ Ξ ← μ
ξ

i t , ν
ξ

i t (3.16)

αQξ

i t ≤ qξ

i t ≤ γ Qξ

i t , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.17)

r ξ

i t = r ξ

i t−1 + vξ

i t−1 − xξ

i t−1, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.18)

0 ≤ xξ

i t ≤ r ξ

i t , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.19)

0 ≤ r ξ

i t ≤ κi , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ ← ϑ
ξ

i t (3.20)
∑

(i, j)∈A+
i

f ξ

i j t −
∑

( j,i)∈A−
i

f ξ

j i t −
∑

g∈Gi

pξ
gt − Δ

ξ

i t + vξ

i t − ρi x
ξ

i t = W ξ

i t − yξ

i t , (3.21)

∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.22)

( f ξ

i j t − f ξ

j i t ) − Bi jt (β
ξ

i t − β
ξ

j t ) = 0, ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.23)

− Fmax
i j αi j t ≤ f ξ

i j t ≤ Fmax
i j αi j t , ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.24)

∑

i∈I
Δ

ξ

i t ≤ ηt + ζ
ξ
t , ∀ t ∈ T, ξ ∈ Ξ (3.25)

ηt + (1 − θ)−1
∑

ξ∈Ξ

Probξ ζ
ξ
t ≤ φ̄, ∀ t ∈ T (3.26)

ηt ≥ 0, ζ
ξ
t ≥ 0, ∀ t ∈ T, ξ ∈ Ξ (3.27)

pξ
gt , sξ

gt ≥ 0, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.28)

Δ
ξ

i t , vξ

i t ≥ 0, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.29)

f ξ

i j t , ∀ (i, j) ∈ A , t ∈ T (3.30)

3.3 SUC with Demand Respond

Electricity demand has a lot of historical data that can be accessed to provide useful
information in demand forecast. However, it is considered as one of uncertain sources
in a power system because it may have significant changes at any moment.

As demand sides are connected to supply sides through transmission network, any
demand change nearly affects the electricity supply instantly and requires an imme-
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diate response of power generation. This response requirement can be supported
by monitoring electricity consumptions on each bus. To further control electric con-
sumptions, ISOs/RTOs promote demand response programs so as to adjust electricity
demand based on current power system’s operations and generation capacities.

3.3.1 Demand Respond

As one of common non-generation resources, demand response (DR) has been imple-
mented and developed for several years in some energy markets, e.g. PJM, NYISO,
CAISO. Demand Response program aims to encourage end users to lower power
consumption during peak hours but increase consumption during off-peak hours or
high production times. In practice, demand side management has shown as an effec-
tive tool to mitigate loads at peak hours (technically measured by peak-to-average
ratio), which is generally executed through demand response programs.

Demand change is a reflection of consumers’ responding behaviors. In addition to
daily basic demands, there are many factors that can cause demand changes, such as
electricity price, weather conditions, household renewable energy outputs and social
events.

To avoid over use of costly generators (e.g. quick-start generators), some operators
investigate the relationships between responsive demands and price signals, which
can be modeled as a fixed price–elastic demand curve. So they can adjust electricity
prices to control demands within a reasonable range. The price elasticity is defined as
the percentage change of demand quantity, with the consideration of a small change
in price. Figure 3.1 shows the price–elastic demand curve that reveals the essential
relationship between responsive demands and locational marginal prices. The supply
curve and the demand curve are shown in red curve and black curve respectively,
and the intersection on these two curves indicates a demand dit on price pit .

For power system’s operations, the major uncertainty from demand side comes
from the responding behaviors of end users on varying electricity prices. For the
simplicity, the real-time demand is assumed to consist of the forecasted inelastic
demands and the demand changes due to electricity prices Qξ

i (presented by price
elasticity matrix Eξ

i ). Because renewable energy is viewed as an uncertainty and has
a relationship to DR in models, we here suppose that the outputs of any renewable
energy is independent with both DR and locational price at a bus within a planning
horizon. In doing so, small demand change subject to varying electricity price can
be described through a price elasticity matrix.

In fact, if price variation is small as in [WKK10], price–elastic demand can be
formulated by a set of approximate linear constraints associated with a price elasticity
matrix. Constraint (3.31) states that the forecasted real-time demand is the summation
of benchmark demand D0

i and elastic demand caused by the price difference between
real-time price and benchmark price, Ei (qi − Q0

i ).
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Fig. 3.1 Relationship between demands and prices [ZWWG13]

yi = D0
i + Ei (qi − Q0

i ) ∀ i ∈ N (3.31)

In additions, electricity price constraint (3.32) is help to maintain real-time price
fluctuation within an expected price range.

αQ0
i ≤ qi ≤ γ Q0

i ∀ i ∈ N (3.32)

where
yi : shifted demand at bus i for all time periods
qi : real-time electricity price at busi
D0

i : benchmark/reference demand vector at bus i for all time periods
Eξ

i : the price elasticity matrix
Q0

i : benchmark/reference electricity price vector at bus i for all time periods
α, γ : price velocity indicators

In the above linear constraints, both yi and qi are continuous decision variables
shown in vector. Each of the vectors contain the decision variables of different time
periods, e.g., yi = [yit , ∀t ∈ T ]T .

In above linear constraints, we note that a shifted demand at time t , yit , is an
affine function regard to price variations within a time period, and dependent on the
benchmark demand (day-ahead forecast) D0

i at time t . It is reasonable to assume
that the total demand of all time periods is a constant, especially formulated under a
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certain scenario. Through the price elasticity matrix Ei for each bus, we can easily
manage price variations that are reflected in demand variations.

Since the function of DR is to adjust power balance on demand sides. When it
connects to a transmission network to fulfill this function, the results from real-time
demand adjustment eventually impact thermal generation in the same power systems.
The KCL transmission formulation is shown.

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t =
∑

g∈Gi

(pgt + sgt) + Rit + δi t − yit , ∀ i ∈ N , t ∈ T

(3.33)

With the participation of DR, the forecasted demands D0
i t become the locally adjusted

demands yit influenced by demand response program.
To mitigate forecast errors for day-ahead renewable energy resource, DR pro-

grams is also viewed as another reserve resource in addition to traditional reserve.
The UC integrated with DR program and wind-based generation has been fully
discussed in [Sio10, ZZ12, DLOR12, KM11]. The price–elastic demand curve is
proposed as another different method to express the relationship between electric-
ity price and demand. Actually any price–elastic demand curve is hardly known
exactly in advance, thus it still causes uncertainty for UC scheduling. What’s more,
the renewable energy output varying within a given interval may induce the change
of price–elastic demand curve. Assuming that the response of supply changes is
instantaneous, there is an existing situation that thermal generation output would be
reduced as wind energy output increased. Considering a load area with single elec-
tricity price, the total supply from thermal and renewable can meet local demand,
but the real-time locational marginal price is subject to be reduced, probably leading
to demand increase.

Figure 3.2 shows the relationship between demand and price, where uncertainty
of price–elastic demand curve is allowed to occur within a specific range (grey area).
Based on the price–elastic demand curve, when an electricity price q0

i t is given, the
corresponding demanddit remains uncertain and could be any possible value between
upper limit and lower limit (The range for dit within two dashed line). Conversely,
if a demand is fixed at time t , there exists a uncertain price qit with a corresponding
price range. The formulation of price–elastic demand curve is

dit = Ait (qit )
α + εi t

or
dit = Ait (qit + εi t )

α,

where εi t is defined as a deviation from the original price Q0
i t or generally said the

uncertainty of price–elastic demand curve.
To linearize the price–elastic demand curve, it can be approximated as a step-wise

curve against each demand dit . Thus, the corresponding forecasted price qk
it varies
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Fig. 3.2 Uncertainty of price–elastic demand curve [ZWWG13]

within the range qk
it = [qk ′

i t − ε̂ki t , q
k ′
i t + ε̂ki t ], where qk ′

i t is the forecasted value of qk
it

and ε̂i t is the maximum deviation of εki t . Moreover, to control the span of deviation
εki t on each step, it is necessary to apply a hard limit for restricting the total amount
of deviations

∑
k∈K εki t . The uncertainty set of DR curve is shown as follow:

{
ε : −ε̂ki t ≤ εki t ≤ ε̂ki t , −�i t ≤

∑

k∈K
εki t ≤ −�i t , ∀ t ∈ T, i ∈ N , k ∈ K

}
.

3.4 SUC with Energy Storage

As one of typical non-generation resources, energy storage (ES) is an complemen-
tary approach to capture produced energy when the generation exceed demands and
provide power supply later when the peak demand is tending to over the power
generation capacities, or the generation costs are extremely high.

Currently, any electrical power system has to adopt power generation to power
consumption immediately according to the physical law on power circuits. This com-
mitment makes a power systems encounter many issues, e.g., insufficient generation
or transmission line capacities, reserve redundancy, or supply and demand imbal-
ance, etc. Taking the ES’s benefits, these issues can be solved or mitigated through
the appropriate uses of ES technologies in a power system, i.e., pumped hydroelectric
storage, compressed air energy storage, and different types of rechargeable batteries
(battery banks).
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As we know the uncertainties of renewable energy generation, ES works like a
buffer constantly saving and providing power at a moment. The intermittent and
uncertain nature of renewable energy outputs can be weakened by the operations on
energy storage devices.Thus, we are putting a lot of effort to deploy energy storage
and expecting it to provide a great assistance to expand the use of renewable energy.
The large deployment of energy storage relies on the seamless integration of energy
storage operations with existing power system operations. This is an essential step to
ensure power system’s reliability and flexibility, resolve issues of renewable energy
penetration, and even promote deployment of electric transportation [U.S13].

3.4.1 Energy Storage

With respect to operation and production planning, Rong et al. [RLL08] presents a
deflected subgradient optimization method applied for trigeneration planning with
storages. The model involves the charge/discharge and physical conditions of energy
storage. To evaluate an optimal scheduling of energy storage system, one also should
consider the dependence of storage sizing, the cost of energy delivery on renewable
energy levels as well as storage efficiency [AJ09]. Chakraborty et al. [CTT+09] study
the optimal size of energy storage systems also impacts the further UC scheduling
of power systems. DeJonghe et al. [JDBD11] address how energy storage can better
facilitate the power technology mix with wind power penetration by increasing base
load capacity.

Considering the operations of ES in stochastic environments, there are a group
of energy storage constraints to present the power status for energy storage accu-
mulators and the power charge/discharge in a ES storage system level at each time
period. Constraint (3.34) reflects the current power in a battery bank after charging or
discharge operation in the last period, where charging action and discharging action
would not occur simultaneously because the power loss due to discharge from a
battery is considered in the KCL transmission constraint.

rit = rit−1 + vit−1 − xit−1 ∀ i ∈ N , t ∈ T (3.34)

vit ≥ 0 ∀ i ∈ N , t ∈ T (3.35)

The other constraints (3.36) and (3.37) separately show a power discharge from
battery bank restricted by an available power in battery bank and a power storage
capacity.

0 ≤ xit ≤ rit ∀ i ∈ N , t ∈ T (3.36)

0 ≤ rit ≤ κi ∀ i ∈ N , t ∈ T (3.37)

where
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rit : the total remaining power in storage facilities of unit i at time t
vit−1 : the power storage at bus i in period t
xit−1 : the power discharge amount at bus i in period t
κi : the maximum storage capacity at bus i

Note that N can be replaced by a subset N ′ ⊂ N , since ES bank may not be
available at each bus.

In most cases, ES is mainly considered to be on the power supply side to adjust
power balance. When it is connected to a transmission network, power charge and
discharge would affect thermal generation in the same power system. If a power
system is without any demand-side management, the forecasted demand is normally
treated as a benchmark demand Dξ0

i t . In fact, the energy storage has two actions, i.e.
consuming power from a bus (the hourly amount of power saving denoted as v) and
supplying power to the electric grid (the hourly amount of power dispatch denoted
as x). The KCL transmission constraint is rewritten including the ES operations, as
follow.

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t =
∑

g∈Gi

(pgt + sgt) + Rit + ρi xit + δi t − vit − D0
i t ,

∀ i ∈ N , t ∈ T
(3.38)

where ρi denotes the ES efficiency mainly depending on storage device properties.
When both ES and DR programs are implemented at some nodes, we can revise the

KCL transmission constraint to accommodate the process of power saving and dis-
patch simultaneously with adjusted demands. There are many studies to address the
cost saving effects about the implementation of individual DR and ES programs, but
the combined two resources are superior and capable of reducing the total expected
operational costs for their joint actions. The following KCL constraint is suitable for
this situation,

∑

(i, j)∈A+
i

fi j t −
∑

( j,i)∈A−
i

f j i t =
∑

g∈Gi

(pgt + sgt) + Rit + ρi xit + δi t − vit − yit ,

∀ i ∈ N , t ∈ T .

(3.39)

3.4.2 Case 3: Two-Stage Stochastic Unit Commitment with
Energy Storage and Wind Power Generation

This case focuses on the optimization of UC with a non-generation resource under a
series of wind energy scenarios. To ensure the system security, the spinning reserve
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Fig. 3.3 Case 2: Hourly wind energy outputs for 10 scenarios

service remains in stochastic UC model. This case is modeled as a two-stage sto-
chastic mixed-integer linear program to adopt stochastic wind energy outputs.

Energy storage is selected as non-generator resource to offer energy supply and
storage. Only Bus 1, 2, 4 and 5 are qualified to utilize energy storage devices which
have their own storage capacities (see Fig. 2.1). The ES efficiency ρi is assumed to
be 0.95 for all devices. In this case, any costs for energy storage are not taken into
account.

Wind energy output is one of main determining stochastic factors affecting power
generation levels. For the simplicity of stochastic environment, only wind energy
output is considered as a typical renewable energy resource and is simulated through
base wind energy output patterns. Although wind speed distribution generally can be
described by Weibull distribution, the wind energy output is assumed to be normally
distributed for easy access. All scenarios can be produced by obtaining random
numbers through C++ normal distribution generators and aggregating them with
the hourly base load. We provide an scenario generation example in Appendix B,
in which the wind scenarios’ data are generated as model input parameters and
presented in Fig. 3.3. It is assumed that the probability for each scenario is known,
probξ = 10%,∀ξ ∈ Ξ .

The index sets are given below:
G = 4 Generators
T = 24 Hours
N = 7 Buses
S = 10 Scenarios
|A | = 10 Transmission Lines

http://dx.doi.org/10.1007/978-1-4939-6768-1_2
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The abstract form of stochastic UC is presented as follow.

min
∑

g∈G

∑

t∈T
(SUgtvgt + SDgtwgt) +

∑

ξ∈Ξ

Probξ
∑

t∈T

∑

g∈G
[(bgt pξ

gt + agtugt )

+ (b′
gt s

ξ
gt + a′

gtugt )] +
∑

ξ∈Ξ

ProbξV OLL
∑

t∈T

∑

i∈N
Δ

ξ

i t

s.t. The first-stage constraints

ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + Lg − 1, |T |}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + lg − 1, |T |}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

The second-stage constraints

Pmin
g ugt ≤ pξ

gt ≤ Pmax
g ugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

− RDg ≤ pξ
gt − pξ

gt−1 ≤ RUg, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

0 ≤ sξ
gt ≤ Smax

g , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

pξ
gt + sξ

gt ≤ Pcap
g ugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

∑

g∈Gi

sξ
gt ≥ RSit , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

r ξ

i t = r ξ

i t−1 + vξ

i t−1 − xξ

i t−1, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

0 ≤ xξ

i t ≤ r ξ

i t , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

0 ≤ r ξ

i t ≤ κi , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ
∑

(i, j)∈A+
i

f ξ

i j t −
∑

( j,i)∈A−
i

f ξ

j i t −
∑

g∈Gi

(pξ
gt + sξ

gt) − Δ
ξ

i t + vξ

i t − xξ

i t = W ξ

i t − Dit ,

∀ i ∈ N , t ∈ T, ξ ∈ Ξ

( f ξ

i j t − f ξ

j i t ) − Bi jt (β
ξ

i t − β
ξ

j t ) = 0, ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ

− Fmax
i j αi j t ≤ f ξ

i j t ≤ Fmax
i j αi j t , ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ

pξ
gt , s

ξ
gt ≥ 0, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

Δ
ξ

i t , v
ξ

i t ≥ 0, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

f ξ

i j t , ∀ (i, j) ∈ A , t ∈ T

If readers are interested in detailed stochastic unit commitment modeling, one can
refer to Appendix A for explicit definitions of symbols.
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Table 3.1 Objective value and stochastic UC including ES for 7-bus system

Objective value Unit ID Hour (1–24)

$60615.6 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

G4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3.2 Objective value and stochastic UC excluding ES for 7-bus system

Objective value Unit ID Hour (1–24)

$65274.8 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

G4 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Solving a stochastic UC model is equivalent to solving multiple deterministic
models with given scenario probabilities. This model is solved using C++/CPLEX,
where the Brand-and-Cut-and-Price algorithm is applied to solve this type of stochas-
tic mixed integer linear program. See Sect. 3.5 for more detailed solution techniques
and advanced solution approaches.

Tables 3.1 and 3.2 show the objective value and the stochastic UC schedules
including ES resource and excluding ES resource, respectively. Compared to their
objective values, the UC with ES has a lower total generation cost than that of UC
without ES. The energy storage capacities hold around 15% of generation capacities
and successfully help reducing 7.18% of daily generation costs based on the basic
power system (without ES). In addition, the UC schedule on Table 3.1 shows less
commitments needed since ES is able to flexibly store electricity in off-peak hours
and offer additional electricity in on-peak hours. In doing so, ES helps not only
releasing limited generation resources, but also maintaining system reliability.

We also compare the results from deterministic model (Table 2.4) and stochastic
model (Table 3.2). The difference between these two models is the number of wind
energy output scenario, where 60% of scenarios have lower wind outputs than sce-
nario 1. As more scenarios involved, the thermal generation system has to put more
generators online to handle the uncertainty of low wind energy outputs. It can be
found that G4 in the stochastic case is assigned with online task starting from 7am
until midnight. The G3 online hours also are extended forward one more hour to
satisfy the peak load. Meanwhile, the high probability of low wind output naturally
lead to higher expected thermal generation costs.

http://dx.doi.org/10.1007/978-1-4939-6768-1_2
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3.5 Two-Stage Stochastic Unit Commitment
Problem Decomposition

For the cases with large bus systems, solving an original SUC model directly by
a solver is time consuming. We can adopt a decomposition approach to shorten
the computation time for obtaining optimal solutions. A decomposition approach
generally break an original model into an integer program of RMP and one or
more linear programs for the subproblem. As an example of the classical Benders’
decomposition strategy, a two-stage SUC model will be intuitively decomposed into
the RMP only with UC constraints and the subproblem with next-day operation
constraints.

In the fact that this decomposition may bring in low-density cuts, such as a cut
only including a single decision variable u, the solving process will converge slowly.
Also, if a subproblem has a coupling constraint, i.e. all scenarios coupled by risk
constraints, this may potentially restrict applying parallel computation resources
during the solving process. Thus, an alternative decomposition strategy was proposed
to resolve this issue aiming to increase the density of Benders cuts and mitigate the
impacts from coupling constraints.

As a coupling constraint shows in the CVaR constraints (3.26), we can move
all CVaR constraints to RMP, and this allows incumbent solutions (u, l) involving
binary variables and continuous variables that will be passed to SPξ . In this way,
Benders cuts will include loss variable l and be able to cut off equivalent or more
solution space of RMP in an iteration. As for multiple complex subproblems without
coupling constraints, they can be solved by parallel computation approach to improve
computation time.

We define a free variable πξ for the minimum operational cost in a scenario.
If the load-shedding loss penalty is not considered in the objective function, the
RMP with CVaR constraints can be presented by,

[RMP] : min
∑

g∈G

∑

t∈T
(SUgtvgt + SDgtwgt ) +

∑

ξ∈Ξ

Probξπξ

s.t. (3.7)−(3.11), (3.25)−(3.27),

F(ugt , l
ξ

i t , π
ξ ) ≥ 0, ∀ ξ ∈ Ξ

where constraint F(ugt , l
ξ

i t , π
ξ ) ≥ 0 is a Benders’ cut associated with the commitment

variable ugt and loss variable lξi t . This cut is generated based on a dual solution from
the subproblem for one scenario.

As the subproblem is part of the original SUCR-DR-ES, it may not always have
optimal solutions to generate optimality cuts. We thus can use the Big-M method
in the primal subproblem to avoid getting infeasible solution, but ensure the SPξ

maintain the feasibility with incumbent solutions. Recall that the Big-M method will
introduce surplus artificial variables which are accordingly penalized in the objective
function. We introduce an artificial variable ωi t to the system-level spinning reserve
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constraint (3.15) as well as two positive artificial variables o+
i t , and o−

i t to the KCL
transmission constraint (3.22).

Also, the objective function of SPξ is modified to include the penalty term, a
summation of artificial variables associated with a penalty coefficient M. When any
of artificial variables is greater than zero, the artificial penalty will occur in the
objective function and the SPξ has an optimal solution to produce an optimality
Bender’s cut. In this case, once we obtain the incumbent solutions (u, l), we can
construct the subproblem (3.40) using the Big-M method for specific second-stage
operation constraints.

[SPξ ] : min
∑

g∈G

∑

t∈T
Fg(p

ξ
gt) + M

∑

t∈T

∑

i∈N
(ωi t + o+

i t + o−
i t )

s.t. (3.13), (3.14)−(3.20), (3.22)−(3.24) (3.40a)

pξ
gt ≥ Pmin

g ûgt , ∀ g ∈ G, t ∈ T ← ε
ξ
gt (3.40b)

pξ
gt + sξ

gt ≤ Pmax
g ûgt , ∀ g ∈ G, t ∈ T ← ρ

ξ
gt (3.40c)

∑

g∈Gi

sξ
gt + ωi t ≥ RSξ

i t , ∀ i ∈ N , t ∈ T ← τ
ξ

i t (3.40d)

∑

(i, j)∈A+
i

f ξ

i j t −
∑

( j,i)∈A−
i

f ξ

j i t −
⎛

⎝
∑

g∈Gi

pξ
gt + ρi x

ξ

i t − vξ

i t − yξ

i t

⎞

⎠ + o+
i t − o−

i t

= Rξ

i t + l̂ξi t , ∀ i ∈ N , t ∈ T ← ϕ
ξ

i t (3.40e)

where the subproblem usually includes all scenario-independent constraints, includ-
ing but not limited to, economic power dispatch, ramping, non-generation resources
and power transmissions.

3.5.1 Benders’ Cut

To build a Benders’ cut, we need to define a set of continuous non-negative dual
variables to capture the dual values during the solving process. In the SUCR-DR-ES
model, the dual variables, such as ε

ξ
gt , ρ

ξ
gt , χ

ξ
gt , σ

ξ
gt , τ

ξ

i t , υ
ξ
gt , λ

ξ

i t , μ
ξ

i t , ν
ξ

i t , ϑ
ξ

i t , ϕ
ξ

i t ,
are assigned to the corresponding constraints (3.40b), (3.40c), (3.13), (3.40d), (3.14),
(3.15), (3.16), (3.20), (3.40e). For example, dual variables χ

ξ
gt and σ

ξ
gt denote the

ramping up constraint and the ramping down constraint in (3.13), respectively. After
solving the SPξ , one can obtain all optimal dual values corresponding to the above
constraints. These dual values for one scenario (e.g. χ̂

ξ
gt and σ̂

ξ
gt ) are then used to

construct an optimality cut F(ugt , l
ξ

i t , π
ξ ), which is presented in (3.41).
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πξ ≥
∑

g∈G

∑

t∈T
ε̂

ξ
gt P

min
g ugt +

∑

g∈G

∑

t∈T
ρ̂

ξ
gt P

max
g ugt +

∑

g∈G

∑

t∈T
χ̂

ξ
gt RUg

+
∑

g∈G

∑

t∈T
σ̂

ξ
gt RDg +

∑

i∈N

∑

t∈T
τ̂

ξ

i t RS
ξ

i t +
∑

g∈G

∑

t∈T
υ̂

ξ
gt S

max
g

+
∑

i∈N

∑

t∈T
λ̂

ξ

i t (D
0
i t − E ξ

i t Q
0
i t ) +

∑

i∈N

∑

t∈T
μ̂

ξ

i tαQ
0
i t +

∑

i∈N

∑

t∈T
ν̂

ξ

i tγ Q0
i t

+
∑

i∈N

∑

t∈T
ϑ̂

ξ

i tκi +
∑

i∈N

∑

t∈T
ϕ̂

ξ

i t (R
ξ

i t + lξi t ) (3.41)

Prior to solving RMP in the next iteration, the |Ξ | of cuts will be added to RMP
in theory. In this way, a large number of cuts are accumulated to RMP, probably
leading to increase the computation times in latter iteration. Alternatively, a single
optimality cut for all scenarios F(ugt , l

ξ

i t , π
ξ ,∀ ξ ∈ Ξ) can replace with multiple

optimality cuts based on each scenario, which is presented in (3.42).

π ≥
∑

ξ∈Ξ

probξ

⎡

⎣
∑

g∈G

∑

t∈T
ε̂

ξ
gt P

min
g ugt +

∑

g∈G

∑

t∈T
ρ̂

ξ
gt P

max
g ugt +

∑

g∈G

∑

t∈T
χ̂

ξ
gt RUg

+
∑

g∈G

∑

t∈T
σ̂

ξ
gt RDg +

∑

i∈N

∑

t∈T
τ̂

ξ

i t RS
ξ

i t +
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∑

t∈T
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ξ
gt S
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+
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ξ
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0
i t − E ξ

i t Q
0
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ξ

i tαQ
0
i t +
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i tγ Q0
i t

+
∑

i∈N

∑

t∈T
ϑ̂

ξ

i tκi +
∑

i∈N

∑

t∈T
ϕ̂

ξ

i t (R
ξ

i t + lξi t )

]
(3.42)

3.5.2 The Implementation of Benders’ Decomposition

The solving process for classic Bender’s decomposition would generate one or more
Bender’s cut(s) from each iteration and append all cuts to RMP directly. The way
of adding cuts to RMP iteratively will quickly expand the size of the constraint set;
however, it can’t guarantee those newly generated cuts having stronger restriction on
the solution space. In contrast, it is possible to bring in the considerable rework and
slow down the convergence speed of the algorithm.

For the solution process, we can implement a tailored Bender’s Decomposition in
CPLEX by calling CALLBACK function. The solution flowchart (Fig. 3.4) explic-
itly addresses how to apply a modified Bender’s Decomposition to solve two-stage
stochastic UC models with the help of CALLBACK function. Different from the
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Fig. 3.4 The solution flowchart of Benders’ Decomposition with CALLBACK function [HZW14]

traditional process, the Benders’ decomposition with CALLBACK function has a
major advantage that all cuts are carried in a pool, where only violated cuts will be
appended to RMP in the following solving process. In doing so, the whole process is
able to use a limited number of stronger or equivalent Benders’s cuts and maintaining
a small size of RMP.

Another significant advantage of using CALLBACK function is that RMP is
solved only once. The whole process of solving RMP can be described by a
Branch-and-Bound-and-Cut algorithm. One or more Benders’ cuts are produced at a
branching node, which is considered as the upper echelon of a hierarchical solution
process. In fact, only the most violated Benders’ cut(s) will be used finally at each
node. The lower bound will be updated along with the RMP solving procedure in the
branch-and-bound tree in which we can obtain the upper bound at a branching node
after solving all SPξ , ξ∀ Ξ , in the lower echelon of hierarchical solution process.
Until the RMP solving procedure is finished, if the difference between lower bound
and upper bound is less than an expected error, we can say the algorithm get con-
verged. Because the LB can be improved by Benders’ cuts, it can avoid solving RMP
iteratively without LB improvement in the traditional method, and also the overall
computation time can be improved.
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3.6 SUC with Real-Time Rescheduling

In real-time, the economic dispatch process aims to balance energy by dispatching
imbalance energy, or the energy different from the schedule, and the energy requested
from ancillary service. To avoid the imbalances, ISOs/RTOs initially perform reserve
dispatches or rescheduling on online generating units. If additional units need to be
synchronized, the rescheduling process ensures that the current committed units
can’t be desynchronized. On the real-time unit commitment, quick-start generators
are designated in 15-min intervals and considered rescheduling in 15 min [Cal14].
These quick-start generators are usually gas turbine powered, but it can be expensive
to dispatch these off-line or online (if there is much excessive electricity) genera-
tors. These generators are also regularly referred to as peakers. If the reserve and
rescheduling are not able to provide enough generation resources for the demand,
ISOs/RTOs consider resort to load shedding to secure the system’s stability [OVK10].
In this section, we would like to study how to reschedule these quick-start units while
knowing the day-ahead unit commitment schedule of all generation units.

3.6.1 Problem Formulation

In day-ahead unit commitment, both quick-start and non-quick-start generators are
committed. In real time, only the quick-start generators can change from their day-
ahead schedules. Gq is used to denote the set of quick-start generators. Let the
rescheduled new status of the quick-start generators be denoted by β

ξ

j t . Note that
this has a superscript ξ denoting the corresponding scenario. Because these units are
agile, it does not need to have the minimum up and down constraints. However, it is
important to model the changes made in the rescheduling so that we can incorporate
the costs due to changes of commitments. Lets use binary variables vξ

j t and wξ

j t to
denote the renewed start-up and shut-down actions respectively in real time for these
quick-start generators. The constraints to define the actions are similar to day-ahead
models, as follows,

vξ

j t ≥ β
ξ

j t − β
ξ

j (t−1), ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ

wξ

j t ≥ β
ξ

j (t−1) − β
ξ

j t , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ

These variables can help find the changes on startup and shutdown actions, which are
respectively yξ

j t and zξ

j t . For example, in scenario ξ , yξ

j t = 1 means that generator
j has a start-up action in real time which is not scheduled in the the day-ahead
decisions; yξ

j t = 0 means that real-time action is as same as day-ahead schedule;

yξ

j t = −1 tells that there is no start-up action the real time although the day-ahead
schedule start this unit at time t . These relationships is modeled by the following
constraints,



3.6 SUC with Real-Time Rescheduling 69

yξ

j t ≥ vξ

j t − v jt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ

zξ

j t ≥ wξ

j t − wjt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ

where z jt is denoting the changes on shut-down actions of the quick-start generation
units. The corresponding unit costs are CUjt and CDjt respectively for changes
in start-up and shut-down actions. Other requirements and constraints are similar
to the two-stage stochastic programming models for unit comment problems. For
convenience, the sets (at time t) of minimum up times (t, . . . , min{t + Li − 1, |T |})
and minimum down times (t, . . . , min{t + li − 1, |T |}) are denoted by MU P(t) and
MDWN (t) respectively. In addition, let u, v, w be the vectors of day-ahead commit-
ment status, startup actions, and shutdown actions respectively. Hence the two-stage
stochastic unit comment with real-time unit rescheduling can be formulated as fol-
lows,

[SUCRR] : min
∑

t∈T

∑

i∈G
(SUit vit + SDitwit ) + Q(u, v, w) (3.43)

s.t. uit − ui(t−1) ≤ uiτ , ∀i ∈ G, τ ∈ MU P(t), t ∈ T, (3.44)

ui(t−1) − uit ≤ 1 − uiτ , ∀i ∈ G, τ ∈ MDWN (t), t ∈ T, (3.45)

vit ≥ uit − ui(t−1), ∀i ∈ {Nc ∪ Ng}, t ∈ T, (3.46)

wit ≥ −uit + ui(t−1), ∀i ∈ {Nc ∪ Ng}, t ∈ T, (3.47)

uit , vit ,wit ∈ {0, 1}, ∀i ∈ {Nc ∪ Ng}, t ∈ T, (3.48)

where Q(u, v, w) is the value function of the day-ahead schedule. The first stage
problem is as same as other standard two-stage stochastic unit commitment problems.
The value function is defined as follows,

Q(u, v, w) = min
∑

ξ∈Ξ

Probξ
∑

t∈T

⎡

⎣
∑

i∈G
Fi

(
pξ

i t

)
+

∑

j∈Gq

(
CUjt y

ξ

j t + CDjt z
ξ

j t

)
⎤

⎦

(3.49)

s.t.
∑

i∈G
pξ

i t ≥ Dξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.50)

∑

i∈G
sξ

i t ≥ RSξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.51)

∑

j∈Gq

qξ

j t ≥ ROξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.52)

yξ

j t ≥ vξ

j t − v jt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.53)

zξ

j t ≥ wξ

j t − wjt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.54)

vξ

j t ≥ β
ξ

j t − β
ξ

j (t−1), ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.55)

wξ

j t ≥ −β
ξ

j t + β
ξ

j (t−1), ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.56)
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Pmax
i uit ≥ pξ

i t ≥ Pmin
i uit , ∀i ∈ G \ Gq , t ∈ T, ξ ∈ Ξ,

(3.57)

pξ

i t + sξ

i t ≤ Pmax
i uit , ∀i ∈ G \ Gq , t ∈ T, ξ ∈ Ξ, (3.58)

Pmax
j β

ξ

j t ≥ pξ

j t ≥ Pmin
j β

ξ

j t , ∀ j ∈ Ng, t ∈ T, ξ ∈ Ξ, (3.59)

pξ

j t + sξ

j t ≤ Pmax
j β

ξ

j t , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.60)

− RDi ≤ pξ

i t − pξ

i(t−1) ≤ RUi , ∀i ∈ G, t ∈ T, ξ ∈ Ξ,

(3.61)

sξ

i t ≤ Smax
i , ∀i ∈ G, t ∈ T, ξ ∈ Ξ, (3.62)

qξ

j t ≤ (1 − β
ξ

j t )P
max
j , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.63)

β
ξ

j t , v
ξ

j t ,w
ξ

j t ∈ {0, 1}, ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.64)

yξ

j t , z
ξ

j t ∈ {−1, 0, 1}, ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.65)

pξ , sξ , qξ ≥ 0, ∀ξ ∈ Ξ, (3.66)

where pξ , sξ , qξ are the decision vectors for power dispatch, spinning reserve, and
operating reserve respectively under scenarios ξ . The constraints in the value func-
tion are similar to the standard two-stage stochastic unit commitment except the
constraints that model the changes of quick-start generator’s commitment schedules,
i.e., (3.53)–(3.56). These constraints introduce binary variables, which make the pre-
viously discussed algorithms (e.g., Benders decomposition, L-shaped methods) not
applicable. Hence we need to resorts other techniques to decompose this large-scale
optimization problems.

3.6.2 A Decomposition Algorithm

The optimization model introduced above was initially discussed by Zheng et al.
[ZWPG13], where they also proposed an efficient decomposition algorithm to solve
large-scale cases. In the following, the decomposition algorithm will be summarized
and discussed. The central idea for decomposition of this stochastic mixed integer
linear program is to approximate the value function Q(u, v, w). As Q(·) is both
noncontinuous and nonconvex, the algorithm use both combinatorial and dual cutting
planes to ensure both the convergence and the convergent rate respectively.

To ensure convergence, Integer L-shaped cuts proposed in [LL93] is introduced
to this particular problem as follows,

π ≥ (Q(û, v̂, ŵ) − L)

⎛

⎝
∑

( j,t)∈T(û)

u jt −
∑

( j,t)∈F(û)

u jt − |T(û)| + 1

⎞

⎠ + L
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where Q(û, v̂, ŵ) is the value of function Q(·) at a given day-ahead schedule û, v̂, ŵ,
and L is a lower bound for Q(u, v, w) given any day-ahead schedule, and T(û) and
T(û) are the sets of the indices whose corresponding û are “1” and “0” respectively.
The reason that only u is considered in the cutting plane is that v and w are uniquely
dependent on u in the optimal solution. Hence in the combinatorial cutting plane,
there is only the day-ahead commitment decision variables but not start-up and
shut-down action variables. In addition, if the current solution (û, v̂, ŵ) is causing
infeasibility of the second stage (or Q(û, v̂, ŵ) = ∞), a feasibility combinatorial
cuts should be added as follows,

∑

( j,t)∈T(û)

u jt −
∑

( j,t)∈F(û)

u jt ≤ |T(û)| − 1

Simply applying these Integer-L-Shaped cuts will eventually let the algorithm
converge to the real optimal solution. However, it will be very slow as the combi-
natorial cutting plane will only remove one possible day-ahead schedule each time.
Hence, as mentioned in [ZWPG13], Benders cuts are also added based on a nested
approach. In this nested or embedded approach, the value function optimization
problem is further decoupled to two parts in the following manner.

Q(u, v, w) = min
∑

ξ∈Ξ

Probξ

⎡

⎣
∑

i∈G
Rξ (u, βξ ) +

∑

t∈T

∑

j∈Gq

(
CUjt y

ξ

j t + CDjt z
ξ

j t

)
⎤

⎦

(3.67a)

s.t.yξ

j t ≥ vξ

j t − v jt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67b)

zξ

j t ≥ wξ

j t − wjt , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67c)

vξ

j t ≥ β
ξ

j t − β
ξ

j (t−1), ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67d)

wξ

j t ≥ −β
ξ

j t + β
ξ

j (t−1), ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67e)

β
ξ

j t , v
ξ

j t ,w
ξ

j t ∈ {0, 1}, ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67f)

yξ

j t , z
ξ

j t ∈ {−1, 0, 1}, ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.67g)

where the value function Rξ (βξ ) is defined as follows,

Rξ (u, βξ ) = min
∑

t∈T
Fi

(
pξ

i t

)
(3.68a)

s.t.
∑

i∈G
pξ

i t ≥ Dξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.68b)

∑

i∈G
sξ

i t ≥ RSξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.68c)

∑

j∈Gq

qξ

j t ≥ ROξ
t , ∀t ∈ T, ξ ∈ Ξ, (3.68d)
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Pmax
i uit ≥ pξ

i t ≥ Pmin
i uit , ∀i ∈ G \ Gq , t ∈ T, ξ ∈ Ξ,

(3.68e)

pξ

i t + sξ

i t ≤ Pmax
i uit , ∀i ∈ G \ Gq , t ∈ T, ξ ∈ Ξ, (3.68f)

Pmax
j β

ξ

j t ≥ pξ

j t ≥ Pmin
j β

ξ

j t , ∀ j ∈ Ng, t ∈ T, ξ ∈ Ξ, (3.68g)

pξ

j t + sξ

j t ≤ Pmax
j β

ξ

j t , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.68h)

−RDi ≤ pξ

i t − pξ

i(t−1) ≤ RUi , ∀i ∈ G, t ∈ T, ξ ∈ Ξ,

(3.68i)

sξ

i t ≤ Smax
i , ∀i ∈ G, t ∈ T, ξ ∈ Ξ, (3.68j)

qξ

j t ≤ (1 − β
ξ

j t )P
max
j , ∀ j ∈ Gq , t ∈ T, ξ ∈ Ξ, (3.68k)

pξ , sξ , qξ ≥ 0, ∀ξ ∈ Ξ, (3.68l)

The optimal dual solutions of (3.68) will help construct a cutting plane for (3.67).
Then the integrality constraints of (3.67) is relaxed to be able to obtain an approx-
imated dual solution to (3.67), which is then used to generate a Benders cutting
plane for the first-stage problem. The algorithm proposed in [ZWPG13] generates
both these Benders’ cutting planes and Integer-L-Shaped cuts at each iteration. The
whole iteration process is as same as discussed previously in this book.

3.7 SUC with Contingency Management

The contingency management aims to cover transmission facilities outages and gen-
eration facilities outages. Apart from unpredictable and uncontrollable contingency,
e.g. extreme weather-related blackouts, common contingencies are simulated forced
outages of generators, network elements and their associated disconnect devices.
The ISOs/RTOs coordinate and approve generator outage schedules; meanwhile,
they process the requests for transmission outages that potentially affect the reliabil-
ity of power systems [NYI13]. In addition, contingency management is comprised
of determining the schedule of “opening”/“closing” one or more elements as well as
the arrangement of the sequence of predefined contingency removal events.

The most contingencies probably have one or more element outage(s). As we state
the operational solutions in Sect. 2.5, most unit commitment scheduling go through
the network security check in order that no security violation is expected to occur
when any forced outage contingency happens. When facing certain contingency
conditions, the ISOs can utilize the reserves or adjust the dispatch for a short time
interval, e.g. 10-min interval.

This section mainly introduces the modelling of contingency in the respective of
generator outages and transmission outages under uncertainty.

http://dx.doi.org/10.1007/978-1-4939-6768-1_2
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3.7.1 Generating Unit Outage

A forced generation outage is viewed as a serious disturbance affecting the normal
operation of system and its reliability. However, through approved generator outage
schedules, it can avoid that the power system goes from normal operation status to
emergency status. We thus need to consider the possibility of each generator outage
happening in the system and incorporate the traditional UC model with explicit
generator outage constraints in a stochastic environment. Following the stream of
stochastic unit commitment, we introduce the two-stage stochastic unit commitment
model with explicit reliability requirements.

The objective of SUC remains to minimize the operation costs and unserved
energy penalty in a day-ahead market. However, in the first stage, a day-ahead reliabil-
ity assessment commitment (RAC) is performed regarding unit commitment schedule
and reserve commitment schedule; the second stage is to optimize next-day energy
dispatch, reserve dispatch and power transmission based on all independent scenar-
ios. The objective function (3.69) is similar to the previous SUC objective functions,
but including the reserve costs of regulation services and related regulation dispatch
costs.

min
∑

g∈G

∑

t∈T
(SUgtvgt + SDgtwgt + Cru

gt rc
u
gt + Crd

gt rc
d
gt )

+
∑

ξ∈Ξ

probξ
∑

t∈T

∑

g∈G

[
Fg(p

ξ
gt) + Fr (r

uξ

gt ) + Fr (r
dξ

gt )
]

+ V OLL
∑

ξ∈Ξ

probξ
∑

t∈T

∑

i∈N
Δ

ξ

i t (3.69)

Note that the fuel cost is the quadratic function of the dispatch level, p, i.e., for
generator g, Fg(p) = a+bp+cp2, where a, b and c are usually positive coefficients.
Similarly, the function Fr (r

ξ
gt) represent the costs of actually dispatching reserve

resources in real time. The fuel cost of real-time regulation up(down) corresponds
to the the quadratic function of the regulation level, ru(rd ), but with higher values of
coefficients. Here we assume the regulation down service rd

ξ

gt will incur cost. Due to
the nonlinear objective function, a piecewise linear approximation is used to obtain
very close solutions again.

In the first stage, unit commitment is scheduled according to the operation require-
ments for generating units such as minimum ON time, minimum OFF time, startup
action and shutdown action. The regulation up and down reserves also are included
to satisfy the forecasted reserve level in each period.

ugt − ug(t−1) ≤ ugτ ∀g ∈ G, t ∈ T,

τ = t, . . . ,min{t + Lg − 1} (3.70)

ug(t−1) − ugt ≤ 1 − ugτ ∀g ∈ G, t ∈ T,

τ = t, . . . ,min{t + lg − 1} (3.71)
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vgt ≥ ugt − ug(t−1) ∀g ∈ G, t ∈ T (3.72)

wgt ≥ −ugt + ug(t−1) ∀g ∈ G, t ∈ T (3.73)
∑

g∈Gi

rc(u,d)
gt ≥ R(u,d)

i t ∀i ∈ N , t ∈ T, (3.74)

ugt , vgt , wgt ∈ {0, 1}, ∀g ∈ G, t ∈ T (3.75)

rcugt , rc
d
gt ≥ 0, ∀g ∈ G, t ∈ T (3.76)

The second stage constraints contain the economic dispatch including generation
limits (3.77) and ramping limits (3.78)–(3.79), regulation up/down limits (3.80)–
(3.81), and power transmission (3.82)–(3.83). Since the regulation up/down takes
up a part of generation capacities when the units are ON, the ramping up/down
is considered to cover both generation and regulation at the same moment. Any
of generation changes or regulation changes can not exceed the ramp rate limit
in successive periods. Meanwhile, constraints (3.80)–(3.81) ensure the real-time
regulation up and down constrained by the regulation reserves requested from first
stage. Additionally, constraints (3.82)–(3.83) show the traditional DC approximation
of Kirchhoff’s current law and Kirchhoff’s voltage law applied into load balance,
where the regulation up/down, renewable energy output and potential load-shedding
loss are taken into account.

Pmin
g ugt ≤ pξ

gt + ru
ξ

gt − rd
ξ

gt ≤ Pmax
g ugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.77)

(pξ
gt − pξ

gt−1) − (rdξ
gt − rdξ

gt−1) ≥ −RDg, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

(3.78)

(pξ
gt − pξ

gt−1) + (ruξ
gt − ruξ

gt−1) ≤ RUg, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.79)

0 ≤ ru
ξ

gt ≤ rcugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.80)

0 ≤ rd
ξ

gt ≤ rcdgt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.81)
∑

(i, j)∈A+
i

f ξ

i j t −
∑

( j,i)∈A−
i

f ξ

j i t −
∑

g∈Gi

(pξ
gt + ru

ξ

gt − rd
ξ

gt ) − Δ
ξ

i t

= W ξ

i t − Dξ

i t , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.82)

( f ξ

i j t − f ξ

j i t ) − Mξ

i j t (β
ξ

i t − β
ξ

j t ) = 0, ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.83)

−Fmax
i j ≤ f ξ

i j t ≤ Fmax
i j , ∀ (i, j) ∈ A, i ∈ N , t ∈ T, ξ ∈ Ξ. (3.84)

pξ
gt ≥ 0, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.85)

Δ
ξ

i t ≥ 0, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.86)

To model an outage state, we modified the generation limit constraint (3.77) to the
generation availability constraint (3.87) with the consideration of generator outage
situation. We denote the generator availability index α

ξ
gt for each scenario, when

α
ξ
gt = 0 indicates the generator outage occurs in scenario ξ at hour t ; otherwise,
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α
ξ
gt = 1 and the constraint (3.87) is the same with (3.77).

α
ξ
gt P

min
g ugt ≤ pξ

gt + ru
ξ

gt − rd
ξ

gt ≤ α
ξ
gt P

max
g ugt ,

∀ g ∈ G, t ∈ T, ξ ∈ Ξ (3.87)

3.7.2 Transmission Outage

The ISOs can access transmission information from TRANSCOs and perform con-
gestion management as well as contingency management. Another purpose of con-
gestion and contingency management are to minimize transmission flow violations
and risks of supply-demand imbalance. Compared to transmission congestion, the
outcomes due to contingency are usually more serious. Therefore, ISOs expect to
offer sufficient ancillary services to maintain the reliability of power system opera-
tions, taking into account of N − 1 contingency conditions.

In day-ahead or hour-ahead power markets, ancillary services such as regulation,
spinning reserve, non-spinning reserve, or operating reserve are procured to prevent
one of outcomes from transmission line outages. This way requires a large amount
of reserve and holds a lot of generating resources.

Stochastic programming also provides a great help in effectively modelling the
transmission contingency under uncertainties. For the simplicity of modeling a con-
tingency problem, the common transmission outages including line and transformer
are simulated independently; meanwhile, the physical locations of contingency are
explicitly taken into account. Random outage occurs at any transmission line (i, j)
or transformer k between any two time period(s) [t, t + n]. We denotes a binary
parameter N1i j = 1 for the contingency on transmission line, and a binary parameter
N1k = 1 for the contingency on transformer. Then the formulations for transmission
line outages are presented on line and transformer separately, and include transmis-
sion flow capacities (3.88), transformer status (3.88) and phase angles (3.90)–(3.92).

−Fmax
i j N1ξ

i j t ≤ f ξ

i j t ≤ Fmax
i j N1ξ

i j t , ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.88)

�
min
i j N1ξ

kt ≤ �
ξ

kt ≤ �
max
i j N1ξ

kt , ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.89)

( f ξ

i j t − f ξ

j i t ) − Bi jt (β
ξ

i t − β
ξ

j t ) + (1 − N1i j )Mi j ≥ 0, (3.90)

∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.91)

( f ξ

i j t − f ξ

j i t ) − Bi jt (β
ξ

i t − β
ξ

j t ) − (1 − N1i j )Mi j ≤ 0, (3.92)

∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.93)

where �
ξ

kt is real power flow for transformer k at time t . �
min
i j and �

max
i j are the

maximum and minimum ratings of transformer k, respectively.
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Note that these formulations are correct in theory, but it may easily cause a whole
system violation if a single contingency occurs. This situation is attributed to the
high penalty costs or the infeasibility on optimization problems. This also implies
the current system fragile with less agility. The main reasons are that a line outage
causes the rest of line capacities fail to meet the required transmission amount or
breaks the only connection between two buses.

To ensure transmission flow security in N − 1 contingency cases, recent studies
focused on the optimal transmission switching (TS) [HOFO09], the co-optimization
of unit commitment and transmission switching [HFO+10, KS10], and the opti-
mal long-term generation and transmission outage scheduling with short-term UC
[WSF10].

The transmission switching embedded in UC problem is formulated for the N −1
compliant systems, in which a power system is able to survive due to the loss of
any single network component (generator or transmission element). Through the
co-optimization of TS and UC, one can investigate how TS affects UC when a
contingency occurs and vice versa. We thus provide a two-stage SUC model for this
co-optimization of TS and UC.

min
∑

g∈G

∑

t∈T
(SUgt vgt + SDgtwgt ) +

∑

ξ∈Ξ

Probξ
∑

t∈T
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ProbξV OLL
∑

t∈T

∑

i∈N
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ξ
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( f ξ
i j t − f ξ

j i t ) − Bi jt (β
ξ
i t − β

ξ
j t ) + (2 − zi j t − N1i j )Mi j ≥ 0,

∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.95)

( f ξ
i j t − f ξ

j i t ) − Bi jt (β
ξ
i t − β

ξ
j t ) − (2 − zi j t − N1i j )Mi j ≤ 0,

∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.96)

− Fmax
i j N1ξ

i j zi j t ≤ f ξ
i j t ≤ Fmax

i j N1ξ
i j zi j t , ∀ (i, j) ∈ A, t ∈ T, ξ ∈ Ξ (3.97)

βmin ≤ β
ξ
i t ≤ βmax , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ (3.98)

Δ
ξ
i t ≥ 0, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

f ξ
i j t , ∀ (i, j) ∈ A , t ∈ T

where constraints (3.95)–(3.97) specify the line switching decisions that affect the
phase angles and the transmission flows in a network under the N − 1 contingency
uncertainty.

When a transmission line is opened (not in service), constraints (3.95) and (3.96)
are satisfied no matter what values are corresponding to phase angles. Under this sit-
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uation, the transmission line also can be opened as a result of transmission switching,
zi j t = 0. The parameter Mi j is a “big M” value used to make the constraint non-
binding, indicating that Mi j ≥ |Bi jt (βi t − β j t )|. When either zi j t = 0 or N1i j t = 0,
power flow fi j t becomes zero, and then the function of Mi j ensures that constraints
(3.95) and (3.96) hold regardless of the difference in phase angles.

3.8 Two-Stage SUC with Risk Constraints

We know that an attractive feature of stochastic unit commitment models that can
take into account some certain uncertainties in power systems and their resulting
risks. In addition to considering operational economics, the risk mentioned in this
section refers to the likelihood of a load-shedding loss that happens at a bus given a
time period.

The common method to handle load losses has been discussed in Sect. 2.3.6
through unserved energy constraint. This method is a “hard” way to simply restrict the
hourly system-level loss to a predetermined loss allowance, neglecting which uncer-
tainty factor induces the load loss and the probability of occurrence. Once we can
identify significant factors bring uncertainties or disturbances to the power system,
we can build a stochastic optimization model using either stochastic programming or
robust programming and denote the load loss as a scenario-based variable to capture
the effects of uncertainty sources.

Here we use a stochastic representation of renewable output, nodal demand, fuel
price or all above. In order to describe an uncertainty more accurately, we usually
produce a large number of simulated scenarios to support the SUC modeling, partic-
ularly including some extreme cases. This may lead to an optimal solution become
overconservative, and also the recommended solution could come with high opera-
tional costs in that any operational solutions have to compensate a lot for handling
extreme scenarios. Actually, to make an operational schedule, it’s more reasonable
to base on the majority of common scenarios with high probabilities and secure the
system reliability with a target level of risk reduction. For a tradeoff between opera-
tional cost and system reliability, we introduce two popular risk constraints that have
been applied in two-stage SUC models and address how they can be incorporated
with UC models to conditionally control the risk of load loss.

3.8.1 Value at Risk

We first discuss how the loss of load to be linked with the risk in SUC problems. As
a reliable system should be able to meet as much demand as it can in an interrupted
condition, we use Loss of Load Expectation (LOLE), or Loss of Load Probability
(LOLP), to indicate the amount of installed generation capacity required and thus

http://dx.doi.org/10.1007/978-1-4939-6768-1_2
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LOLE can stay below a specific level to meet a desired reliability target. More details
about LOLE and LOLP can be accessed in [OMN04, WWG13a].

To come up with a robust scheduling, a power system should have enough gener-
ation capacities to satisfy any load with the aids of regulation service, shown as

∑

g∈G
pgt − rdgt ≤ Dit ≤

∑

g∈G
pgt + rugt , ∀i ∈ N .

Note that the forecasted demand can be replaced by a net load which is defined
by Λ0

i t = D0
i t − R0

i t . If demand and renewable energy output are described by
Normal distribution, the net load deviation is expressed by σ 2

i t = (σ D
it )2 + (σ R

it )
2.

Additionally, the generation capacities can be expended including operating reserve
and non-generation resources.

In a real world, there is a certain possibility that both scheduled thermal gen-
eration and reserves fail to satisfy demands. For this case, ISOs would implement
load shedding to satisfy unmet demands or renewable energy curtailment to avoid
power overproduction, especially for wind generation. These two operations are not
triggered frequently only when the power system encounters the following net load
situations. The probability of either situation is usually in the two tails of Normal
distribution.

• Case 1: High demands and low renewable energy outputs

This situation will make ISOs deploy the upward regulation and the spinning reserve
to satisfy demands, and the unserved energy can be expressed by a reliability distri-
bution function Υ

ξ

i t , given as

Υ
ξ

i t = Dξ

i t −
∑

g∈Gi

pξ
gt + (rugt)

ξ , ∀i ∈ N , t ∈ T, ξ ∈ Ξ.

When Υ
ξ

i t ≤ 0, the system has no risk for any scenario. When Υ
ξ

i t > 0, the load
shedding is executed at some buses. The corresponding possibility of occurrence is
defined as

LOLPit = Prob
{
Υ

ξ

i t > 0
}

, ∀ i ∈ N , t ∈ T,

and the expected unserved energy is defined as

EUEit = E

[
Υi t |Υ ξ

i t > 0
]
, ∀ i ∈ N , t ∈ T .

• Case 2: Low demands and high renewable energy outputs

Similar to case I, the renewable energy curtailment (i.e., wind curtailment) is used to
handle the abundant renewable energy generation and reduce their impacts on real-
time power balance and thermal energy generation. For this situation, after running
the downward regulation, we define another reliability distribution function Ψ

ξ

i t given
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as
Ψ

ξ

i t = Dξ

i t −
∑

g∈Gi

pξ
gt − (rdgt)

ξ , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ.

When Ψ
ξ

i t ≥ 0, the system is considered to be non-risky for any scenario. When
Ψ

ξ

i t < 0, the renewable energy curtailment will be performed after the completion
of regulation down. The probability and the expected renewable energy curtailment
are respectively defined as follow

LORPit = Prob
{
Ψ

ξ

i t < 0
}

, ∀i ∈ N , t ∈ T,

and
ERCit = −E

[
Ψi t |Ψ ξ

i t < 0
]
, ∀i ∈ N , t ∈ T .

The LOLP in nature is similar to the chance constraint bounding the risk of load
loss. More specifically, the risk of load loss can be presented by a θ -level Value at
Risk (VaR) of the loss of load, where θ is a confidence level.

On one side, to merge the LOLP into constraints, we have several ways to aggre-
gate the loss of load (e.g., the total losses over a specific planning horizon vs. the
loss at one time period), and these methods mainly rely on the degree of risk control
in a power system [WGW12].

On the other side, we can employ the Value-at-Risk (VaR) measure to quantify
the risk of load loss. Let L(x,Y ) denote the load loss function (assuming the aggre-
gated system-level loss at a time period), where x are the aggregated decision vector
and Y is the stochastic input vector (e.g., demand and renewable energy output).
VaRθ [L(x,Y )] is an abstract form to express the θ -level VaR of the loss of load
function L(x,Y ). It also can be considered as a loss at the θ -level percentile of the
distribution of losses over a planning horizon, shown as follows.

VaRθ [L(x,Y )] = min
l

{
l
∣∣ Prob

(
L(x,Y ) ≤ l

)
≥ θ

}
.

In chance constraints, VaRθ [L(x,Y )] is bounded above by the maximum acceptable
loss of load l̄. If a system has a high level of reliability target, the value of loss
allowance l̄ will restricted to close to zero.

From the definition of VaR, VaRθ [L(x,Y )] is generally nonconvex with respect to
L(x,Y ); in other words, the constraints VaRθ [L(x,Y )] ≤ l and Prob
{L(x,Y ) ≤ l} ≥ θ could be nonconvex. As there are binary variables in the VaR con-
straints and a big M used for good/bad scenario selection, the non-convexity indeed
brings many computational challenges, particularly when if a chance-constrained
problem involves a large number of scenarios and multiple uncertainty factors. Some
researchers have attempted to use tailored approximation algorithms (i.e. Sample
Average Approximation) to solve such type of chance-constrained SUC problems
[WGW12, WWG13a].
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3.8.2 Conditional Value at Risk

Conditional Value at Risk (CVaR) is an extension of VaR measure and an alternative
methodology to quantifies and manages the risks of load loss. It’s also referred as
Average Value at Risk (AVaR) or Expected Tail Loss (ETL) in Finance area. The
CVaR works as a percentile measure of risk extensively used in energy related areas,
such as natural gas system expansion planning [ZP10], power trading in day-ahead
energy market [DFTC09], stochastic network optimization [ZSS15], home energy
management system [WZLZ14].

The CVaR of L(x,Y ) with confidence level θ ∈ [0, 1] is the conditional expecta-
tion of the loss function given that the loss exceeds VaRθ [L(x,Y )]. Thus, an optimal
solution of CVaR-based SUC model contains the information of VaR measure. By the
definition in [SSU08], the CVaR constraints are expressed through the VaR definition
as follows,

min
l

{
l
∣∣ Prob

(
L(x,Y ) ≤ l

)
≥ θ

}
= η (3.99a)

E
[
L(x,Y )

∣∣L(x,Y ) ≥ η
] ≤ φ̄ (3.99b)

where η is equivalent to VaRθ [L(x,Y )], E[·] refers to the load loss expectation when
the loss exceeds VaR, and φ̄ is the maximum value of loss allowance for CVaR.
Piratically, we can estimate a value for loss allowance by a given system-level loss
limit,

φ̄ = [Loss Limit/(Max Total Demand)] × 100%.
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Fig. 3.5 VaR and CVaR on loss [SSU08]
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Figure 3.5 shows the calculation of CVaR from the probability distribution of load-
shedding loss. In addition to the VaR constraint (3.99a), Constraint (3.99b) states an
additional requirement that the expectation of the losses exceeding VaR should be
not greater than the loss allowance φ̄. Only the load loss falling between VaR and
the Maximum loss will be captured in Constraint (3.99b). Regarding the relationship
between VaR and CVaR on loss control, one may note that the VaR is always a loss
less than or equal to the CVaR. Readers can obtain more details for these two measure
techniques from [RU00, SSU08].

For employing CVaR constraints into a SUC problem, we need to determine if
CVaR is used to link to the system-level load loss for a single time period or the
load loss at a specific bus over all time periods. For instance, we model the system
loss expectation beyond VaRθ [L(x,Y )], and the loss in time period t is divided
into two parts, ηt and ζ

ξ
t as shown in (3.100). Variable ηt represents the calculated

VaRθ [L(x,Y )] at time t , and ζ
ξ
t states the loss beyond the VaR in scenario ξ , but

less than φ̄. They are defined as non-negative variables for indicating the losses in
an independent scenario. The left hand side of constraint (3.101) corresponds to the
expected system-level losses on (3.99b). In other words, these two terms are used
for the calculation of the conditional loss expectation, which is CVaRθ [L(x,Y )].
Then this CVaRθ is limited by a system loss allowance parameter φ̄ or hourly loss
allowance φ̄t ,∀ t ∈ T . A group of CVaR-based risk constraints represent as follows,

∑

i∈N
lξi t ≤ ηt + ζ

ξ
t , ∀ t ∈ T, ξ ∈ Ξ (3.100)

ηt + (1 − θ)−1
∑

ξ∈Ξ

Probξ ζ
ξ
t ≤ φ̄t , ∀ t ∈ T (3.101)

ηt ≥ 0, ζ
ξ
t ≥ 0, ∀ t ∈ T, ξ ∈ Ξ (3.102)

It should be noted that CVaR constraints are shown above only involving continuous
variables and linear constraints. Because of convexity, this makes the CVaR appli-
cation very attractive in stochastic optimization models, especially when solving a
model for a large-scale power system with a large number of scenarios.

3.8.3 Case 4: Two-Stage Stochastic Unit Commitment with
CVaR Risk Constraints

This case study is to provide an example of a two-stage stochastic unit commitment
model incorporating with conditional value-at-risk constraints (SUC-CVaR) for con-
trolling the risk of load loss. The following optimization model and result analysis
can help readers to understand how the reliability decision parameters in CVaR con-
straints can affect the operations. The two-stage SUC-CVaR model is given as
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min
∑

g∈G

∑

t∈T
(SUgtvgt + SDgtwgt ) +

∑

ξ∈Ξ

Probξ
∑

t∈T

∑

g∈G
[(bgt pξ

gt + agtugt )]

s.t. ugt − ug(t−1) ≤ ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + Lg − 1, |T |}
ug(t−1) − ugt ≤ 1 − ugτ , ∀ g ∈ G, t ∈ T, τ = t, . . . ,min{t + lg − 1, |T |}
vgt ≥ ugt − ug(t−1), ∀ g ∈ G, t ∈ T

wgt ≥ −ugt + ug(t−1), ∀ g ∈ G, t ∈ T

ugt , vgt , wgt ∈ {0, 1}, ∀ g ∈ G, t ∈ T

Pmin
g ugt ≤ pξ

gt ≤ Pmax
g ugt , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

− RDg ≤ pξ
gt − pξ

gt−1 ≤ RUg, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

sξ
gt ≤ Smax

g , ∀ g ∈ G, t ∈ T, ξ ∈ Ξ
∑

g∈Gi

sξ
gt ≥ RSit , ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

∑

(i, j)∈A+
i

f ξ

i j t −
∑

( j,i)∈A−
i

f ξ

j i t −
∑

g∈Gi

pξ
gt − lξi t = W ξ

i t − Dξ

i t ,

∀ i ∈ N , t ∈ T, ξ ∈ Ξ
∑

i∈N
lξi t ≤ ηt + ζ

ξ
t , ∀ t ∈ T, ξ ∈ Ξ

ηt + (1 − θ)−1
∑

ξ∈Ξ

Probξ ζ
ξ
t ≤ φ̄, ∀ t ∈ T

ηt ≥ 0, ζ
ξ
t ≥ 0, ∀ t ∈ T, ξ ∈ Ξ

pξ
gt , sξ

gt ≥ 0, ∀ g ∈ G, t ∈ T, ξ ∈ Ξ

Δ
ξ

i t ≥ 0, ∀ i ∈ N , t ∈ T, ξ ∈ Ξ

f ξ

i j t , ∀ (i, j) ∈ A , t ∈ T

We solve the 7-bus system problem through the SUC-CVaR model without any
assistance of non-generation resources, rescheduling or contingency management.
Also, we discuss the effects of reliability parameters on the total operational costs,
based on a 100-wind-scenario case.

For simplicity, we assume that the fuel cost function is linear regardless of the
quadratic term in the objective function. Firstly, we run the SUC-CVaR model given
with 85% confidence level and 5% of maximum hourly demands as load-shedding
loss allowance. The optimal unit commitment schedule and its total cost are shown
in Table 3.3. It can be seen that the SUC-CVaR solution keeps G1, G2 and G4 run-
ning a whole day, but G3 is turned off because of its high fuel cost as well as high
startup/shutdown cost. Although G4 has the second most expensive fuel cost gener-
ation, the SUC-CVaR solution recommends G4 online running at a low production
level to accommodate some demand changes. Because of its high ramping rate, it’s
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Table 3.3 Optimal unit commitment for a 7-bus system

Model type Operational cost Unit ID Hour (1–24)

SUC-CVaR $54917.9 G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Fig. 3.6 Cost saving comparisons in three-dimension (A 7-bus system)

more appropriate to use G4 to deal with the volatility of wind energy generation in
the way of increasing/decreasing generation outputs frequently.

Next, we performed a set of numerical tests using different reliability parameter
settings in CVaR constraints. The sensitivity analysis is used to tell us how the oper-
ational cost saving can be attributed to the θ confidence level and the loss allowance
φ̄. We can see that the cost saving is significant when raising the confidence level θ

from 60 to 99% and the load-shedding loss allowance φ̄ from 1 to 20%.
Figure 3.6 shows the cost saving reduction with respect to different confidence

levels and loss allowances, respectively. Two horizontal axes represents the decision
input parameters, θ and φ̄, and the vertical axis stands for a percent of total operational
cost reductions. One numerical point stands in an intersection on the plane. When
no loss is allowed (i.e. φ̄ = 0), the total operational cost is most expensive since the
operation solution has to make sure all demands to be satisfied in any scenario. Here
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Fig. 3.7 Reliability
parameter analysis: SUCR
model [HZW14]
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we take the point at the 0% of loss allowance, the 99% of confidence level and the
0% of cost saving reduction as a benchmark for the optimal cost comparisons.

As θ increases, the total operational cost appears constantly decreasing throughout
all investigated confidence levels. At the point when φ̄ = 20% and θ = 60%, we
can get the largest cost reduction, but this solution may be not suitable for a real
power system as this loss allowance is too high and lowers the system reliability
and customer satisfaction. We also see a big drop over 5% reduction when loss
allowance increasing from 0 to 2%. As for the 99% of confidence level, the impacts
of loss allowance change on total cost saving become less until the loss allowance
raises from 8 to 10%.

Here we also provide an example to show the reliability parameter analysis which
is very helpful to identify a specific range highly affected by loss allowance. Figure 3.7
shows the relationship between the change rate of total cost increment (i.e., ∂z∗

∂θ
(φ̄))

and the loss allowance. As for the representation of cost increment, we are interested
in the percentage of cost increment given with the percent difference of θ increment,
described in the y-axis. We can observe that each confidence level has its own volatil-
ities. If we increase a loss allowance within a range [8% 20%], it shows that the total
cost increment may vary a lot and typically become more volatile for all confidence
levels, compared to another lower level of loss allowance (<8%).

3.9 Summary

This chapter mainly introduces the two-stage stochastic programming method to
solve unit commitment problems under uncertainty, in terms of incorporating with
demand response, energy storage, real-time rescheduling, outage management, risk
control and aversion. The participation of non-generation resources can make renew-
able energy more assessable and mitigate the uncertainties from supply and demand
sides. The optimization of real-time rescheduling further improves the economic
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dispatch process, and more importantly, ensure to adopt power supply changes in
addition to from day-ahead schedule or from ancillary services. The contingency-
constrained UC focuses on the optimal scheduling with the considerations of forced
generator or transmission outage. As to securing the system reliability, the operation
schedule would become more conservative and costly. When unexpected contingency
happens or the total demand exceeds the generation or transmission capacities during
a time period, load shedding is the last-resort measure to resolve energy imbalance.
Hence the load-shedding risk control is also required in the way of applying LOLP
or CVaR constraints into stochastic UC models.
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Appendix A
Nomenclature

UC Unit Commitment
SCUC Security-Constrained Unit Commitment
SCRA Security-Constrained Reliability Assessment
SUC Stochastic Unit Commitment
ED Economic Dispatch
DR Demand Response
ES Energy Storage
ISO Independent System Operator
RTO Regional Transmission Organization
BD Benders’ Decomposition
LR Lagrangian Relaxation
RMP Relaxed Master Problem
SP Subproblem
LB Lower Bound
UB Upper Bound
DAM Day-Ahead Market
RTM Real-Time Market
RTC Real-Time Commitment
RTD Real-Time Dispatch
LMP Locational Marginal Price
RAA Reserve Adequacy Assessment

A.1 Sets and Indices

A Set of power transmission lines
G Set of all thermal generators
Gi Set of thermal generators at bus i
N Set of locations (buses)
T Length of power generation planning horizon, i.e. 24h
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g Indices of thermal generators
i, j Indices of buses

t Time period
Ξ The set of all simulated scenarios
ξ Indices of scenarios

A.2 Parameters

SUgt startup cost of generator g in period t
SDgt shutdown cost of generator g in period t
Probξ probability of scenario ξ

Lg minimum ON time of generator g
lg minimum OFF time of generator g
Pmax
g maximum power generation capacity for generator g

Pmin
g minimum power generation capacity for generator g

RUg ramping up limit of generator g
RDg ramping down limit of generator g
RSit spinning reserve requirement at bus i in period t
Smax
g maximum spinning reserve of generator g

Rξ

i t renewable energy output at bus i in period t of scenario ξ

Dit forecasted hourly demand at bus i in period t
E ξ

i t price elasticity coefficient at bus i in period t of scenario ξ

ρi energy storage efficiency at bus i
Bi j t susceptance in branch i ? j in period t ;
θ confidence level in risk constraints
β

ξ

i t voltage angle at bus i
φ̄ maximum load-shedding loss allowance
α, γ electricity price velocity indicators
κi power storage capacity at bus i

A.3 Variables

ugt commitment decision of generator g at period t
vgt startup action of generator g at period t
wgt shutdown action of generator g at period t
pξ
gt power generation of generator g in period t of scenario ξ

sξ
gt spinning reserve of generator g in period t of scenario ξ

f ξ

i j t power flow from bus i to bus j in period t of scenario ξ

qξ

i t recommended electricity price at bus i in period t of scenario ξ
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r ξ

i t remaining power in power bank at bus i in period t of scenario ξ

vξ

i t power charging amount in power bank at bus i in period t of scenario ξ

xξ

i t power dispatch amount in power bank at bus i in period t of scenario ξ

yξ

i t shifted demand at bus i in period t of scenario ξ

ηt Value-at-Risk in period t (VaR)
ζ

ξ
t load-shedding loss over VaR in period t of scenario ξ



Appendix B
Renewable Energy Scenario Generation

Here, we introduce a simple method for scenario generation in C++. Scenario gen-
eration is initially to generate a sequence of random numbers following a specific
distribution, such as Normal distribution or Weibull distribution, and then randomly
select a proportion of scenarios to construct a scenario set.

We applied this scenario generation method to support the problem modelling in
Chap.3. Since the wind energy output is assumed to follow a normal distribution,
which is described by the probability density function:

p(x |μ, σ) = 1

σ
√
2π

· e− (x−μ)2

2σ2 (B.1)

The distribution parameters thus are input including mean (μ) and stand deviation
(σ ). The procedure of random number generation has two steps [Cpl11]:

• a generator produces sequences of uniformly distributed numbers;
• a distribution transforms above numbers into sequences of numbers with a specific
distribution.

Let x ∼ N (0, 100), the C++ codes for scalable scenario generation are shown as
follow.

typedef s t d : : t r 1 : : r an lux64_base_01 ENG;
typedef s t d : : t r 1 : : n o rma l _ d i s t r i b u t i o n <double> DISTA ;
typedef s t d : : t r 1 : : v a r i a t e _ g e n e r a t o r <ENG,DISTA> GENA;

double x ;
ENG eng ;

eng . seed ( ( unsigned i n t ) t ime (NULL) ) ;

for ( i =0; i <numscn ; i ++)
for ( k=0;k<numbus ; k++)

DISTA d i s t ( 0 , 1 0 ) ;
GENA gen ( eng , d i s t ) ;
x = 0 ; d i s t . r e s e t ( ) ;
x = gen ( ) ;

© The Author(s) 2017
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Table B.1 10 scenarios of wind energy outputs

Mean S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

45.0 48.4 59.1 49.3 43.4 46.5 34.1 43.5 41.6 52.4 42.1

51.0 54.4 65.1 55.3 49.4 52.5 40.1 49.5 47.6 58.4 48.1

58.0 61.4 72.1 62.3 56.4 59.5 47.1 56.5 54.6 65.4 55.1

36.0 39.4 50.1 40.3 34.4 37.5 25.1 34.5 32.6 43.4 33.1

39.0 42.4 53.1 43.3 37.4 40.5 28.1 37.5 35.6 46.4 36.1

34.0 37.4 48.1 38.3 32.4 35.5 23.1 32.5 30.6 41.4 31.1

43.0 46.4 57.1 47.3 41.4 44.5 32.1 41.5 39.6 50.4 40.1

41.0 44.4 55.1 45.3 39.4 42.5 30.1 39.5 37.6 48.4 38.1

33.0 36.4 47.1 37.3 31.4 34.5 22.1 31.5 29.6 40.4 30.1

31.0 34.4 45.1 35.3 29.4 32.5 20.1 29.5 27.6 38.4 28.1

28.0 31.4 42.1 32.3 26.4 29.5 17.1 26.5 24.6 35.4 25.1

28.0 31.4 42.1 32.3 26.4 29.5 17.1 26.5 24.6 35.4 25.1

30.0 33.4 44.1 34.3 28.4 31.5 19.1 28.5 26.6 37.4 27.1

31.0 34.4 45.1 35.3 29.4 32.5 20.1 29.5 27.6 38.4 28.1

33.0 36.4 47.1 37.3 31.4 34.5 22.1 31.5 29.6 40.4 30.1

24.0 27.4 38.1 28.3 22.4 25.5 13.1 22.5 20.6 31.4 21.1

20.0 23.4 34.1 24.3 18.4 21.5 9.1 18.5 16.6 27.4 17.1

31.0 34.4 45.1 35.3 29.4 32.5 20.1 29.5 27.6 38.4 28.1

33.0 36.4 47.1 37.3 31.4 34.5 22.1 31.5 29.6 40.4 30.1

38.0 41.4 52.1 42.3 36.4 39.5 27.1 36.5 34.6 45.4 35.1

41.0 44.4 55.1 45.3 39.4 42.5 30.1 39.5 37.6 48.4 38.1

43.0 46.4 57.1 47.3 41.4 44.5 32.1 41.5 39.6 50.4 40.1

44.0 47.4 58.1 48.3 42.4 45.5 33.1 42.5 40.6 51.4 41.1

41.0 44.4 55.1 45.3 39.4 42.5 30.1 39.5 37.6 48.4 38.1

i f ( k==0)
for ( j =0; j <numhr ; j ++)

wind [ j ] [ k ]= mean [ j ]+x ;
e l s e

for ( j =0; j <numhr ; j ++)
wind [ j ] [ k ] = 0 ;

d i s t . r e s e t ( ) ;
end

end

Given the mean of wind energy output for each hour, we generate a hundred of
scenarios and randomly select 10 scenarios, shown in TableB.1.
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