
Lydia Y. Chen
Hans P. Reiser (Eds.)

 123

LN
CS

 1
03

20

17th IFIP WG 6.1 International Conference, DAIS 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017, Proceedings

Distributed Applications
and Interoperable Systems

Lecture Notes in Computer Science 10320

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Lydia Y. Chen • Hans P. Reiser (Eds.)

Distributed Applications
and Interoperable Systems
17th IFIP WG 6.1 International Conference, DAIS 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017
Proceedings

123

Editors
Lydia Y. Chen
IBM Research Zurich Lab
Zurich
Switzerland

Hans P. Reiser
University of Passau
Passau
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59664-8 ISBN 978-3-319-59665-5 (eBook)
DOI 10.1007/978-3-319-59665-5

Library of Congress Control Number: 2017941504

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The 12th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Neuchâtel, Switzerland, during June 19–22, 2017. It was
organized by the Institute of Computer Science of the University of Neuchâtel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Prof. Giovanna Di Marzo Seru-
gendo (UniGE, Switzerland), Dr. Marko Vukolić (IBM Research, Switzerland), and
Dr. Rupak Majumdar (MPI, Germany).

Associated with the federated event were also three satellite events that took place
during June 21–22, 2017:

– The 10th Workshop on Interaction and Concurrency Experience (ICE)
– The 4th Workshop on Security in Highly Connected IT Systems (SHCIS)
– The EBSIS-sponsored session on Dependability and Interoperability with

Event-Based Systems (DIEBS)

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the aforementioned conferences and workshops for their highly appreciated
efforts. The organization of DisCoTec 2017 was only possible thanks to the dedicated
work of the Organizing Committee, including Ivan Lanese (publicity chair), Romain
Rouvoy (workshop chair), Peter Kropf (finance chair), and Aurélien Havet (webmas-
ter), as well as all the students and colleagues who volunteered their time to
help. Finally, many thanks go to IFIP WG6.1 for sponsoring this event, Springer’s
Lecture Notes in Computer Science for their support and sponsorship, and EasyChair
for providing the reviewing infrastructure.

April 2017 Pascal Felber
Valerio Schiavoni

Preface

This volume contains the proceedings of DAIS 2017, the 17th IFIP International
Conference on Distributed Applications and Interoperable Systems, sponsored by the
IFIP (International Federation for Information Processing) and organized by the IFIP
Working Group 6.1.

DAIS was held during June 19–22, 2017, in Neuchatel, Switzerland, as part of
DisCoTec, the 12th International Federated Conference on Distributed Computing
Techniques, together with FORTE (the 37th IFIP International Conference on Formal
Techniques for Distributed Objects, Components and Systems) and COORDINATION
(the 19th IFIP International Conference on Coordination Models and Languages).
There were 23 submissions for DAIS. Each submission was reviewed by at least three,
and on average 3.7, Program Committee members. The committee decided to accept 11
full papers, two practical experience reports, and two short papers.

The accepted papers represent a compelling sample of the state of the art in the area
of distributed applications, services, and systems. There was great emphasis on data
storage and security this year. The proceedings include contributions on optimizing
distributed applications and systems (SQL streaming processing, and P2P) as well as
novel techniques to store data (data deduplication, block placement, and executable
choregraphies). The focus of the security area ranges from practical evaluation of
cryptographic schemes, specialized hardware like Intel SGX, to emerging blockchain
access control. In the area of distributed services, there are contributions on building
collaborative services and packaging micro-services are included, and the techniques to
process distributed graph.

The conference was made possible by the work and cooperation of many people
working in several committees and organizations that are listed in these proceedings. In
particular, we thank the Program Committee members for their commitment and
thorough reviews and for their active participation in the discussion phase, and all the
external reviewers for their help in evaluating submissions. We would also like to thank
Maco Vukolic, our invited keynote speaker. Finally, we also thank the DisCoTec
general chair, Pascal Felber, organization chair, Valerio Schiavoni, and the DAIS
Steering Committee chair, Rui Oliveira, for their constant availability, support, and
guidance.

April 2017 Lydia Y. Chen
Hans P. Reiser

Organization

Program Committee Chairs

Lydia Y. Chen IBM Research Zurich Lab, Switzerland
Hans P. Reiser University of Passau, Germany

Program Committee

Luciana Arantes Université Pierre et Marie Curie-Paris 6, France
Carlos Baquero HASLab, INESC TEC and Universidade do Minho,

Portugal
Sonia Ben Mokhtar LIRIS CNRS, France
Alysson Bessani University of Lisbon, Portugal
Robert Birke IBM Zurich Research Laboratory, Switzerland
Andrea Bondavalli University of Florence, Italy
Sara Bouchenak INSA Lyon, France
Nikolaos Chrysos Foundation for Research and Technology (FORTH),

Greece
Miguel Correia INESC-ID, Instituto Superior Técnico, Universidade

de Lisboa, Portugal
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Jim Dowling Swedish Institute of Computer Science, Sweden
Frank Eliassen University of Oslo, Norway
David Eyers University of Otago, New Zealand
Kurt Geihs Universität Kassel, Germany
Karl M. Goeschka Vienna University of Technology, Austria
Franz J. Hauck Ulm University, Germany
K.R. Jayaram IBM Research, USA
Mark Jelasity University of Szeged, Hungary
Vana Kalogeraki Athens University of Economics and Business, Greece
Evangelia Kalyvianaki City University London, UK
Ruediger Kapitza TU Braunschweig, Germany
Attila Kertesz University of Szeged, Hungary
Benny Mandler IBM Haifa Research, Israel
Miguel Matos INESC TEC and Universidade do Minho, Portugal
Rene Meier Lucerne University of Applied Sciences, Switzerland
Alberto Montresor University of Trento, Italy
Kiran-Kumar

Muniswamy-Reddy
Harvard University, USA

Juan Perez Universidad del Rosario, Columbia
Peter Pietzuch Imperial College London, UK

Altair Santin Pontifical Catholic University of Paraná, Brazil
Spyros Voulgaris VU University Amsterdam, The Netherlands

Steering Committee

Alysson Bessani Universidade de Lisboa, Portugal
Sara Bouchenak INSA Lyon, France
Jim Dowling KTH Royal Institute of Technology, Sweden
Frank Eliassen University of Oslo, Norway
Pascal Felber Université de Neuchâtel, Switzerland
Karl Goeschka Vienna University of Technology, Austria
Rüdiger Kapitza Technical University of Braunschweig, Germany
Kostas Magoutis FORTH-ICS, Greece
Rui Oliveira Universidade do Minho, Portugal
Peter Pietzuch Imperial College, UK
Romain Rouvoy University of Lille 1, France
François Taiani Université de Rennes 1, France

X Organization

Contents

Running System Efficiently (Distributed System)

Similarity Aware Shuffling for the Distributed Execution of SQL
Window Functions . 3

Fábio Coelho, Miguel Matos, José Pereira, and Rui Oliveira

DIsCO: DynamIc Data COmpression in Distributed Stream
Processing Systems . 19

Nikos Zacheilas and Vana Kalogeraki

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery. 34
Stéphane Grumbach and Robert Riemann

Storing Data Smartly (Data storage)

DDFlasks: Deduplicated Very Large Scale Data Store. 51
Francisco Maia, João Paulo, Fábio Coelho, Francisco Neves,
José Pereira, and Rui Oliveira

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces:
An Experimental Study (Practical Experience Report) 67

Roberta Barbi, Vitaly Buravlev, Claudio Antares Mezzina,
and Valerio Schiavoni

Private Data System Enabling Self-Sovereign Storage Managed
by Executable Choreographies . 83

Sinică Alboaie and Doina Cosovan

Roaming in Graph (Graph Processing)

Scalable Anti-KNN: Decentralized Computation of k-Furthest-Neighbor
Graphs with HyFN . 101

Simon Bouget, Yérom-David Bromberg, François Taïani,
and Anthony Ventresque

Lifting Low-Level Workflow Changes Through User-Defined
Graph-Rule-Based Patterns . 115

Alexander Jahl, Harun Baraki, Huu Tam Tran, Ramaprasad Kuppili,
and Kurt Geihs

http://dx.doi.org/10.1007/978-3-319-59665-5_1
http://dx.doi.org/10.1007/978-3-319-59665-5_1
http://dx.doi.org/10.1007/978-3-319-59665-5_2
http://dx.doi.org/10.1007/978-3-319-59665-5_2
http://dx.doi.org/10.1007/978-3-319-59665-5_3
http://dx.doi.org/10.1007/978-3-319-59665-5_4
http://dx.doi.org/10.1007/978-3-319-59665-5_5
http://dx.doi.org/10.1007/978-3-319-59665-5_5
http://dx.doi.org/10.1007/978-3-319-59665-5_6
http://dx.doi.org/10.1007/978-3-319-59665-5_6
http://dx.doi.org/10.1007/978-3-319-59665-5_7
http://dx.doi.org/10.1007/978-3-319-59665-5_7
http://dx.doi.org/10.1007/978-3-319-59665-5_8
http://dx.doi.org/10.1007/978-3-319-59665-5_8

Building Collaborative Services (Services)

Packaging Microservices (Work in Progress) . 131
Fabrizio Montesi and Dan Sebastian Thrane

formic: Building Collaborative Applications
with Operational Transformation (Work in Progress) 138

Tim Jungnickel and Ronny Bräunlich

Filament: A Cohort Construction Service for Decentralized Collaborative
Editing Platforms . 146

Ariyattu C. Resmi and François Taiani

Making Things Safe (Security)

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages
(Practical Experience Report) . 163

Stefan Contiu, Emmanuel Leblond, and Laurent Réveillère

Secure Cloud Micro Services Using Intel SGX . 177
Stefan Brenner, Tobias Hundt, Giovanni Mazzeo,
and Rüdiger Kapitza

Adaptive Cheat Detection in Decentralized Volunteer Computing
with Untrusted Nodes . 192

Nils Kopal, Matthäus Wander, Christopher Konze,
and Henner Heck

Blockchain Based Access Control . 206
Damiano Di Francesco Maesa, Paolo Mori,
and Laura Ricci

Author Index . 221

XII Contents

http://dx.doi.org/10.1007/978-3-319-59665-5_9
http://dx.doi.org/10.1007/978-3-319-59665-5_10
http://dx.doi.org/10.1007/978-3-319-59665-5_10
http://dx.doi.org/10.1007/978-3-319-59665-5_11
http://dx.doi.org/10.1007/978-3-319-59665-5_11
http://dx.doi.org/10.1007/978-3-319-59665-5_12
http://dx.doi.org/10.1007/978-3-319-59665-5_12
http://dx.doi.org/10.1007/978-3-319-59665-5_13
http://dx.doi.org/10.1007/978-3-319-59665-5_14
http://dx.doi.org/10.1007/978-3-319-59665-5_14
http://dx.doi.org/10.1007/978-3-319-59665-5_15

Running System Efficiently (Distributed
System)

Similarity Aware Shuffling for the Distributed
Execution of SQL Window Functions

Fábio Coelho1(B), Miguel Matos2, José Pereira1, and Rui Oliveira1

1 INESC TEC, Universidade do Minho, Braga, Portugal
fabio.a.coelho@inesctec.pt, {jop,rco}@di.uminho.pt

2 INESC-ID/IST, Lisboa, Portugal
mm@gsd.inesc-id.pt

Abstract. Window functions are extremely useful and have become
increasingly popular, allowing ranking, cumulative sums and other ana-
lytic aggregations to be computed over a highly flexible and configurable
sliding window. This powerful expressiveness comes naturally at the
expense of heavy computational requirements which, so far, have been
addressed through optimizations around centralized approaches by works
both from the industry and academia. Distribution and parallelization
has the potential to improve performance, but introduces several chal-
lenges associated with data distribution that may harm data locality. In
this paper, we show how data similarity can be employed across par-
titions during the distributed execution of these operators to improve
data co-locality between instances of a Distributed Query Engine and
the associated data storage nodes. Our contribution can attain network
gains in the average of 3 times and it is expected to scale as the number
of instances increase. In the scenario with 8 nodes, we were to able attain
bandwidth and time savings of 7.3 times and 2.61 times respectively.

1 Introduction

Nowadays, the scalability of database engines is paramount, specifically when
it is targeted at large scale analytical processing. Systems must be able to sup-
port several computing nodes, enabling component scalability to possibly reach
hundreds or thousands of nodes. However, reaching such scale introduces sev-
eral challenges associated with data and request distribution and balance. Cloud
computing infrastructures offer a nearly transparent environment where compu-
tation is available as virtually infinite computing nodes. However, commercial
relational database engines (RDBMS) do not conform to such paradigm, typi-
cally offering a monolithic structure. Legacy-type servers are usually considered
for running RDBMSs, limiting system scalability from the purchase moment or
until they become economically unacceptable.

Window Functions (WF) define a sub-set of analytical operations that enable
the formulation of analytical queries over a derived view of a given relation R.
They are also known as OLAP Analytical Functions and are part of the SQL:2003

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-59665-5 1

4 F. Coelho et al.

standard. All major database systems like Oracle [7], IBM DB2 [14], Microsoft
SQL Server [6], SAP Hana [21], Cloudera Impala [17] or Postgresql [20] have the
ability to execute a sub-set of the available WFs.

WF are widely used by analysts as they offer a highly configurable environ-
ment together with a straightforward syntax. In fact, SQL WF are used in at
least 10% of the queries in TPC-DS [22] benchmark, a benchmark suite aimed
to evaluate data warehouse systems. Despite their relevance, parallel implemen-
tations and optimizations considering this operator are almost non existing in
the literature. While [4,18,23] are notable exceptions, these works are targeted
at many-core CPU centralized architectures that are substantially different from
distributed architectures.

The nature of current centralized architectures do not typically take into
account data distribution. This eases their processing models, but prevents them
to scale beyond the limitations of the hardware that hosts them. The massively
parallel nature that distribution approaches enable requires, however, to care-
fully address data distribution. Having the right grasp on data placement allows
to improve data movement, but requires additional mechanisms to maximize
network efficiency.

In this paper we focus on WF, particularly exploring opportunities for their
distributed execution. We propose a technique that exploits similarity between
partitions as a metric that can be used to judiciously improve the affinity of
data and computing nodes, consequently minimizing the data movement between
computing nodes.

Contributions: First, we demonstrate that it is possible to improve data
forwarding by using partition similarity to chose the forwarding mechanism
between Distributed Query Engine (DQE) workers. Second we present an exper-
imental evaluation that confirms the merit of our approach. Roadmap: The
remainder of this paper is organized as follows: Sect. 2 introduces WF. Section 3
introduces Distributed WF, describing their query execution plans and cost mod-
els. Section 4 presents our similarity technique, improving affinity between data
and computing nodes. Section 5 evaluates our proposal. Section 6 presents related
work and Sect. 7 concludes our work.

2 Window Functions

WF started to be largely adopted by database vendors from the 2011 revision of
the SQL standard. These are powerful analytical operators that enable complex
calculations such as moving, cumulative or ranking aggregations to be computed
over data. WF are expressed in SQL semantics by the keyword OVER as shown
in Fig. 1. In the next Sections we will analyze each part of the query.

Fig. 1. Example of SQL query with WF.

Similarity Aware Shuffling for the Distributed Execution of SQL 5

Like other analytical operators, WF are required to reflect several concepts,
namely: the processing order, the partitioning of results or the notion of the cur-
rent row being computed. These design constraints are clearly translated from
the syntax as seen in the previous example, and configure two main consider-
ations as foundation for the WF environment. Firstly, WF are computed after
most of the remaining clauses in the query (e.g., such as JOIN, WHERE, GROUP
BY or HAVING), but immediately before any required final ordering (e.g., ORDER
BY). Secondly, the analytical operator to be computed with the WF environment
will create an output attribute that reflects, but does not modify or filter the
input data present in the source relation. Therefore, the result-set will present
the same cardinality of rows as in the source relation, but will have an additional
attribute mapping the result.

2.1 Partitioning, Ordering and Framing

The WF environment can be decomposed into three stages, as depicted in Fig. 2,
defining the processing order: the partitioning (1), ordering (2) and framing
(3) stages. Each stage is defined by specific clauses namely: the PARTITION BY
and the ORDER BY that respectively create logical partitions of distinct data
elements and afterwards develop an intra-partition sorting. The logical partitions
are regulated by the mandatory argument of the PARTITION BY clause, defining
the column attribute or expression that controls the partitioning. The partition
clause resembles the behavior of the GROUP BY clause, but does not collapse all
group members into a single row.

Fig. 2. Stages of the Window operator: partitioning (1), ordering (2) and framing (3).

The intra-partition ordering follows the partitioning stage and is also regu-
lated by the mandatory column attribute or expression considered as argument
for the ORDER BY clause. The ordering stage is very important for a set of non-
cumulative analytical functions, that are the focus of our contribution, but also
as it is the costliest operation in the environment [4].

Finally, the framing stage builds on the provided ordering, taking into
account the current row being considered to introduce the concept of window or
frame. The frame is built from a group of adjacent rows surrounding the current

6 F. Coelho et al.

row and changes as the current row moves towards the end of the partition.
The framing is set by either the ROWS BETWEEN or the RANGE BETWEEN clauses.
The former considers n rows before and after the current row, while the latter
restricts the window by creating a range of admissible values and, the current
row is considered if the stored values fit in the provided range1.

The WF environment allows to combine different clauses, enabling the inclu-
sion or exclusion of each clause type. For instance, it is possible to declare a WF
with just a partitioning or ordering clause. If no partitioning clause is declared,
the entire relation is considered as a single partition. If no ordering clause is
declared, then the natural ordering of the relations key, or partitioning clause
(if present) is considered. Moreover, each available analytical function may or
not change the computation logic. Due to space constraints we do not character-
ize all the possible configurations of the WF environment. The interested reader
should consult the 2003 and 2011 revisions of the ANSI SQL standard for further
information [1].

2.2 Cumulative and Ranking Analytical Functions

The analytical set of functions currently available in most Query Engines
(QE) can be classified into Cumulative or Ranking. Cumulative analytical
functions or aggregates, are a group of functions that are not order-bound.
That is, when they are computed within a WF, an ORDER BY clause is not
required. The sum(x), avg(x) or count() are just some examples of this cat-
egory of functions. Figure 3(a) depicts the result of computing a WF struc-
tured as “select analytical function() OVER (PARTITION BY A ORDER BY
D) FROM table”, but immediately before applying the requiring analytical func-
tion to a given relation. Figure 3(b) depicts the result of computing the previous
WF with the sum(D) function. The result of a cumulative function is the same
for all the members belonging in the same partition.

Fig. 3. WF query as: select analytical function() OVER (PARTITION BY A ORDER

BY D) FROM table. (a) WF where the partition by clause generated 1 partitions. (b)
Cumulative (sum) analytical function over WF in (a). (c) Ranking (rank) analytical
function over WF in (a)

1 Typically, the use of this clause is restricted to numeric types.

Similarity Aware Shuffling for the Distributed Execution of SQL 7

Ranking analytical functions, on the other hand, are order-bound. That is,
the function requires the data to be ordered according to some criteria in order
to output a deterministic result, and thus, the ordering clause is always required.
The rank(), dense rank() or ntile() are just some examples of this category of
functions. Figure 3(c) outputs the result of computing the previous WF with the
rank() function, outputting a different result for each row in the partition.

The ordering requirement for the latter category of functions implies data
co-locality in order to minimize the number of sorting steps needed to achieve
intra-partition ordering [4]. In the remainder of this paper, we consider a WF
computing a ranking analytical function with a single partition and ordering
clause and no framing clause, since the rank function implicitly defines framing
constraints.

3 Distributed Window Functions

RDBMS are built from several components, namely the QE and the Query Opti-
mizer (QO). The former translates SQL syntax into a set of single operators. The
latter considers several statistical techniques to improve the query execution
plan of a query. In a nutshell, QEs split the execution of a query in two separate
stages: the query planning and the query execution. During the first stage, the
QE decides how the query is executed during the second stage, and which oper-
ators are used in such a query plan. This builds a complex multi-optimization
problem that has to be executed in polynomial time.

The QO uses hints about data in the form of statistical approximations,
allowing the query engine to optimize query execution based on the approxima-
tion cost of each individual operator in a given data set. When scaling from a
single QE to a DQE, data partitioning techniques are necessary in order to dis-
tribute data among instances. The number of available computing nodes config-
ures the installed Degree of Parallelism (DOP). However, non-cumulative ana-
lytical algorithms are order-bound, thus requiring that logical data partitions
are co-located (i.e., they should live in the same storage node). If elements of a
given logical partition are spread in a group of nodes it becomes impossible to
sort each logical partition in just one step. The sorting in each data partition
would induce a partial sorting that is not deterministic and that would prevent
inter-partition parallelism. The QOs therefore need to adapt their cost models
to reflect the data movement required in order to ensure co-locality of partitions
during execution time of the operator.

3.1 Distributed Query Engines

The DQE takes advantage of data distribution in order to scale query execu-
tion. The present architecture is provided by a Highly Scalable Transactional
PaaS [16]. Each node in the system is split in two layers, the DQE itself and
the storage layer, holding the data partitions to be manipulated by a given
DQE instance. Particularly, the considered DQE is based on the Apache derby

8 F. Coelho et al.

Fig. 4. Distributed Query Plan for Ranking WF. Round boxes represent individual
stages of the WF environment. Arrows represent data flow in a process or over the
network. PB and OB respectively represent Partition By and Order By attributes. H
describes a statistical histogram. Numbers represent process execution order.

project [2] and the storage layer is provided by Apache HBase [11], working over
the Hadoop Distributed File Systems (HDFS) [13].

The DQE instances are able to accept client query requests through a JDBC
connection and generate the distributed query plan. This plan is then shared
with all participating DQE instances. The data distribution in each Storage
Node is typically accomplished by means of an Hash function, considering a
single or a collection of attributes as key. The distribution of keys lies within the
inner characteristics of the considered hash function, usually producing uniform
distributions that evenly place tuples across all available storage nodes. Poorly
chosen hash functions may result in data skew and should be tailored to each
specific workload providing adjusted table splitting [8].

Figure 4 presents the simplified distributed query plan for a ranking analyt-
ical function. The following stage numbers resemble the ones depicted in Fig. 4.
With data partitioned in several nodes, each one will scan (1) its local partition.
The partial results found in each node derive from the data partitioning required
to distributed data. Data movement is then required in order to ensure that each
logical partition created by the partitioning clause will reside in a single node for
computation. This is achieved by the shuffle mechanism (2). Afterwards, data
is sorted according to the partitioning and ordering clauses (3), and results are
submitted to the rank function (4). At this stage, each computing node holds
partial results from each logical partition. The results from each logical partition
are then reunited in a single location (5) before being delivered to the client (6).

Similarity Aware Shuffling for the Distributed Execution of SQL 9

Ranking aggregation algorithms are dependent on having full disclosure of the
entire logical partitions. If the first shuffling stage (2) is not performed, the par-
tial results in each partition will produce incorrect results. That is, if members of
a logical partition are processed in the same node where they are stored (there-
fore in distinct DQE instances), the partial aggregation results produced will not
be able to sort the entire logical partition. Thus, when the partial results of log-
ical partitions are merged in the final result-set (6), they will need to be entirely
recomputed. By considering the first shuffle stage (2), the results produced by
stage (3) in each logical partition are globally correct since, independence from
logical partitions ensures inter-partition parallelism, allowing computation to be
distributed through several computing locations. The partition strategy consid-
ered depends on the mandatory argument of the partitioning clause. It is thus
impractical to adjust the table splitting of the workload to a specific partitioning
clause, since the ideal configuration may change with each query. Moreover, the
environment allows the use of expressions as the arguments of the inner clauses,
posing an extra hurdle to this abstraction.

3.2 Data Shuffling

Data movement during the execution of a WF query is required, ensuring that all
the elements of each logical partition are in the same location. In order to judi-
ciously forward data while minimizing at the same time the transfer cost, in [5]
we introduced a mechanism that works together with the data transfer mecha-
nism, a shuffler, promoting co-location of logical partitions. This is achieved by
considering an histogram, characterizing the universe of elements present in each
partition. Briefly, the histogram should hold the cardinality of each different ele-
ment in each different column qualifier. The histograms referring to each node
are then combined into a global histogram. The introduction of this mechanism
along with the shuffler, allowed to forward data to the specific node that should
process a given partition.

Consider Fig. 5 where a table similar to the table in Fig. 3(a) was split
in two partitions on the storage layer. This initial partitioning is defined
by hashing the value of the nodes ol w qualifier and performing the arith-
metic modulo between the hash result and the number of computing instances
(Hash(value in ol w) % #Nodes). Guided by the query in Fig. 1, the results
were then ordered according to the qualifier ol d (the partitioning clause). Both
nodes of the storage layer hold elements from the available three partitions in
ol d (p1, p2, p3). According to the previously introduced, ol d partitions (p2)
and (p3) in instance DQE w1 will be relocated to instance DQE w2 and, ol d
partition (p1) will be relocated from instance DQE w2 to instance DQE w1.

On the one hand, hash forwarding a single row at a time prevents batching
several rows in a single request. On the other hand, due to the asynchronous
nature of DQEs, latency is usually not the bottleneck and thus, data movement
can be delayed until network usage can be maximized [12]. This enables the
use of batching in order to improve network usage. A batch payload is formed
by grouping rows that need to be forwarded to a common destination and it is

10 F. Coelho et al.

Fig. 5. Shuffling instances partitioned by ol w. In WF context, they were partitioned
by ol d and Ordered by ol num. The DQE instances will use the network to combine
partitions during execution time. Instance w1 will hold partitions ol d = 1, instance
w2 will hold partitions ol d = 2 and ol d = 3, respectively.

regulated by a buffer within the shuffling mechanism, whose size and delivery
timeout are configurable. Nevertheless, the use of this mechanism can prove to be
a misfit in cases where workloads do not benefit from grouping data (i.e., logical
partitions with reduced number of rows). Therefore, not having to delay data
transmission reduces execution time. To understand up to what level a given
logical partition may or not benefit from batching, we considered a correlation
mechanism to guide such decision, identifying the logical partitions that are good
candidates for forwarding data in batch.

4 Similarity

QOs found in modern QEs use several statistical mechanisms to explore data
features in order to improve query execution performance. Without them, inde-
pendence assumptions between attributes are preserved, which commonly leads
to under or over provisioned query plans, which is particularly undesirable in
DQEs. As in real-world data, correlations between relation attributes are the
rule and not the exception, the array of correlation or other algebraic extraction
mechanisms in the literature is vast, namely [3,9,19]. Correlations can also be
used in DQEs to improve how data distribution is handled. When logical data
partitions need to be relocated in order to improve co-locality, the correlation
between qualifiers in different locations of the storage layer can be explored to
minimize the required data movement.

In this paper, we introduce a similarity measure to quantify to what level
the partitions of a given attribute held by different storage nodes are alike.
Data partitions with high similarity are good candidates to be shuffled within
a batch payload. This is so as a high similarity implies a high common number
of partitions. On the other hand, data partitions with low similarity are better
candidates to be immediately shuffled for their destination. This is so as they
share a low number of common partitions. This is efficiently achieved through
Algorithm 1. The similarity measure quantifies in a universe between 0 (not

Similarity Aware Shuffling for the Distributed Execution of SQL 11

Algorithm 1. Similarity Aware Shuffling Mechanism
1: P (r) =< r0, r1, r2, rn >← partition
2: ri ← current row
3: pbk ← partition by key
4: w id ← worker id
5: H ← histogram
6: t ← similarity threshold
7: procedure Similarity(attr A, attr B)

8: Sim ← unique(attr A∩attr B)
unique(attr A∪attr B)

9: procedure BatchShuffling(P (r), dest)
10: send P (r) to dest

11: procedure HashShuffling(ri, dest)
12: send ri to dest

13: function Shuffler
14: dest ← H(ri.pbk)
15: if w id �= dest then
16: Sim ← similarity(w id pbk,dest pbk)
17: if Sim > t then
18: BatchShuffling(P (r), dest)
19: else
20: HashShuffling(ri, dest)

similar) and 1 (similar) how similar two attributes are, by considering the number
of unique values in each attribute to compute the metric. The data required to
compute this metric is already provided by the histogram introduced in previous
work [5], bypassing the need to collect additional statistical data. This structure
is characterized by a small memory footprint (few KB) and the update period
dictated by the DQE administrator. This algorithm will be considered during
the first shuffling stage (stage (2) of Fig. 5). It will consider each logical partition
(P (r)), the previously introduced Histogram (H) and a configurable similarity
threshold. Three auxiliary procedures are considered. The SIMILARITY procedure
computes the similarity measure from the set of unique values in the qualifiers
considered as arguments. The BATCHSHUFFLING procedure marshals all the rows
of partition P (r) and sends it to the destination worker dest. The HASHSHUFFLING
procedure marshals a single row ri and sends it to destination dest.

When the shuffler action is required, it consults the Histogram H to verify
what is the optimal destination (DQE instance) from row ri. When the des-
tination is a remote instance (line 15), the shuffling mechanism computes the
similarity measure between the local (attrA) and destination (attrB) qualifiers
(line 16). The partition P (r) is marshaled to the appointed destination when
the observed similarity is above threshold t (line 18) (BATCHSHUFFLING), or each
row ri is otherwise sent to destination (line 20) (HASHSHUFFLING). The parame-
ter t sets a threshold above which rows are forwarded in batch to the destination
instance. This parameter defaults to 0.5 meaning that if not modified, rows are
batch forwarded if the origin contains at least half the number of unique partition
values of the destination.

12 F. Coelho et al.

5 Evaluation

We validated that by batch shuffling tuples between DQE instances we would
save bandwidth, improving execution time of the shuffling stage. We considered
a synthetic data set and shuffled rows between distinct DQE instances. The data
set used was extracted from the TPC-DS [22], a benchmark suite tailored for
data analytics. We extracted a single relation (web sales) which is composed
of 35 distinct attributes, configuring TPC-DS with a scale factor of 50 GB. This
resulted in a relation with 9.4 GB corresponding to 36 million rows.

The outcome of the mechanism we propose is directly related with the data
distribution considered. In order to bound the outcome of our contribution in
terms of the lower and upper performance bounds, we statistically analyzed the
considered relation. The lower bound is set by not using the similarity mecha-
nism. The upper bound is set by considering the relation attributes that would
favor data distribution. This was achieved by identifying the placement key
attribute, but also a candidate attribute to be the partitioning clause or shuf-
fling key (PBK) of the WF. The placement key attribute will define the data
distribution in each DQE Storage Node through the use of an Hash function,
and the PBK will define the runtime partitioning within the WF environment.

The results are depicted in Fig. 6. The top plot presents the number of par-
titions in each single attribute in the considered relation. That is, the number
of unique values in each attribute. The bottom plot depicts the average cardi-
nality of each partition. That is, the average number of elements in each group
of unique values in each attribute. The ideal candidate attribute to become the
relation placement key is the attribute that displays the highest partition num-
ber and at the same time holds the smallest cardinality, ensuring an even data
distribution and reduced data skew. Observing both plots leads us to consider
attribute with index 17 (ws order number), displaying the highest number of

Fig. 6. Number of partitions per attribute (top) and the average number of elements
per partition/attribute (bottom). The horizontal axis represents the attribute index.
The vertical axis quantifies each measure in logarithmic scale. The attribute considered
for placement key (PK) is shown in black and the candidates for WF Partition By key
(PBK) are shown in dark gray.

Similarity Aware Shuffling for the Distributed Execution of SQL 13

Fig. 7. Similarity between attributes in two data nodes. Horizontal axis represents the
attribute index. Vertical axis represents the Similarity measure in logarithmic scale.

partitions, each one with a single element. On the other hand, the candidate
attributes to be selected as WF PBK are the attributes that would hold at the
same time a high number of partitions and high partition cardinality. These are
good PBK candidates since they will induce a number of logical partitions that
is above the configured DOP. The observation of the plots leads to identify as
candidates the attribute indexes depicted in dark gray, from which we select
attribute 0 (ws sold date sk) as PBK.

After the election for the PK and PBK keys, we conducted a second experi-
ment to verify the computed similarity measure. Figure 7 depicts the results of
applying the metric in two scenarios. In both cases, we consider our scenario to
be built from several DQE instances and corresponding Storage Nodes. On all
experiments, we considered only the communication layer of the DQE where our
contribution is, thus avoiding the SQL parsing and optimization stages. Each
data partition was computed by applying an Hash function with the elected PK
dividing the data into as many partitions as configured DQE instances. We first
considered the configuration with 2 instances A and B. In the experiment in the
top plot we computed the similarity measure between the PBK of location A and
each distinct attribute in location B. It is possible to observe that attribute 0 in
location B presents the highest similarity, followed by attribute two. These are
also the only attributes that are above the set up threshold of 0.5 denoted by
the horizontal line. The remaining attributes have a residual similarity measure.
The bottom plot depicts a different configuration where attribute 15 was ran-
domly chosen among all non candidate attributes. The similarity measure in this
attribute is lower than our threshold, even though it seems to be equal given
the logarithmic scale required to observe the remainder attributes. Therefore,
the results achieved during the first configuration would induce the shuffler to
use batching mechanisms to forward partitions among DQE instances, instead
of hash forwarding. The latter would culminate in sending a single row at a time.

In order to verify the impact of our contribution regarding network usage, we
conducted an experiment to assess the magnitude of the network savings pro-
moted. Namely, we considered configurations with 2, 4 and 8 DQE and Storage

14 F. Coelho et al.

instances. The computing nodes were only set up with the communication layer
responsible for the shuffling in the WF environment. Each node is comprised of
commodity hardware, with an Intel i3-2100-3.1 GHz 64 bit CPU with 2 physi-
cal cores (4 virtual), 8 GB of RAM memory and one SATA II (3.0 Gbit/s) hard
drive, running Ubuntu 12.04 LTS as the operating system and interconnected by
a switched Gigabit Ethernet network. During execution, each computing node
acts as a DQE instance shuffler, forwarding data to the remainder instances.
In a distributed deployment, the DQE instance will be co-located with other
services (e.g., storage node) which will typically restrict the available memory
to the DQE instance.

We evaluated two configurations where the first represents a baseline compar-
ison, forwarding all data by hash shuffling, and a second where data is forwarded
according to our similarity mechanism.

Fig. 8. Bandwidth (outbound) registered during shuffling between instances.

The results depicted in Fig. 8 are twofold. The similarity measure registered
both a decrease in bandwidth and it also promoted a shorter execution period
for the shuffling technique. This is the result of pairing the batch shuffling mech-
anism together with the proposed similarity measure. The savings induced come
at a residual cost, since the statistical information is not collected for the single
purpose of this improvement, nor it has to be updated in each query execution.
The similarity measure technique only proved effective from the configuration
with 4 instances onward, since it is only from that configuration that both band-
width and execution time are lower than the baseline. For the configuration with
only two nodes, the baseline technique proved to be better by both shortening
the shuffling time and registered bandwidth. However, in the configurations with
4 and 8 nodes, the similarity measure was able to reduce the bandwidth and
execution time when compared with the baseline approach. As the number of
partitions in the system increase, each single partition becomes responsible for
a shorter set of data, promoting bandwidth savings up to 7.30 times for the 8
node configuration.

The previous experiment evaluated the shuffling mechanism by considering
an attribute with ideal similarity measure and partitioning on the storage layer.

Similarity Aware Shuffling for the Distributed Execution of SQL 15

Table 1. Total Bandwidth (sent) and execution time registered for each configuration.

2 nodes 4 nodes 8 nodes

Baseline (MB) 1,132.45 4,172.59 7,237.56

Similarity (MB) 2,365.34 1,695.24 991.72

Bandwidth Gain (x) −0.48 2.46 7.30

Shuffle time

Baseline (sec) 149 172 170

Similarity (sec) 226 114 65

Speed up (x) −0.48 1.55 2.61

In order to demonstrate the impact of selecting an attribute that do not favor
an uniform distribution of data among data partitions, we conducted a second
experiment that considered an attribute with poor partitioning properties (i.e.,
reduced number of partitions). The results consider the same component config-
uration, but selected attribute 15 (ws warehouse sk) for the partitioning. When
selecting an attribute that lacks the desirable distribution, the logical partitions
will present an imbalance, thus promoting a low similarity measure. Therefore,
the shuffling mechanism will not be able to maximize network usage and will
end up having to consider the HASHSHUFFLING mechanism to forward data. The
results are not thoroughly presented due to space constraints. However, we point
out that they are in line with the considered baseline results presented in Table 1,
registering a bandwidth variance of ±4%. Moreover, even though we do not con-
sider it, the use of compression techniques may further increase the observed
savings.

6 Related Work

Window Functions were introduced in the 2003 SQL standard. Despite its rele-
vance, parallel implementations and optimizations considering this operator are
almost non existing. Works such as [4] or [23] fit in the first category, respectively
tackling optimization challenges related with having multiple window functions
in the same query, and showing that it is possible to use them as a way to avoid
sub-queries and lowering quadratic complexity. However, such approaches do
not offer parallel implementations of this operator. A vast array of correlation
mechanisms have been so far deeply studied in the literature. Nonetheless, most
of the conducted studies focus on efficient ways to discover and exploit soft and
hard correlations [15], allowing to find different types of functional dependen-
cies. Works like [18] introduced mechanisms to improve the performance of the
WF environment when many-core architectures are used. Distinct approaches
and algorithm improvements are introduced, enabling to parallelize the distinct
stages of the operator.

When addressing WFs, a common misconception generally brings a compar-
ison between SQL WF (in which our contribution focuses) and CEP windowing.

16 F. Coelho et al.

Differences are both semantical and syntactical. On the one hand, the CEP
environment is characterized by an incoming and infinite stream of events. From
there, a configurable, but constant sample (e.g., window) builds a sketch [10]
where aggregations are derived. On the other hand, SQL WF are computed over
finite sets built from SQL relations. While the former windows are fixed and the
data moves through, in the latter, the data is fixed and the window performs
the movement. Moreover each approach considers distinct SQL keywords (e.g.,
OVER, RETAIN) and subsequent syntax.

7 Conclusion

WF with ranking analytical functions are required to have full disclosure of a
given logical partition. Data partitioning is required to enable systems to scale,
but harms data locality, which poses added difficulties when trying to parallelize
these functions.

In this paper we motivate and validate how similarity between partitions can
be used to promote efficient data forwarding among instances of a DQE. We
introduced an algorithm to choose whether to batch or to hash forward rows
between such instances by understanding how the similarity measure between
distinct partitions of a DQE can be used towards the effectiveness of the WF
environment.

The WF environment changes how analytical functions are computed, requir-
ing specific implementation details for each functions. We therefore plan to lever-
age such parallelization opportunities to other analytical functions.

Acknowledgments. The research leading to these results was part-funded by
(1) the European Union’s Horizon 2020 - The EU Framework Programme for
Research and Innovation 2014–2020, under grant agreement No. 732051; (1) Project
TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial
Impact/NORTE-01-0145-FEDER-000020 is financed by the North Portugal Regional
Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development Fund (ERDF) and by
(1) the ERDF – European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT
– Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) as part of project UID/EEA/50014/2013.

References

1. ANSI: Information technology - database languages - SQL multimedia and
application packages. Technical report, ANSI (2003). http://webstore.ansi.org/
RecordDetail.aspx?sku=ISO%2fIEC+13249-2%3a2003

2. Apache: The apache derby project. Technical report, Apache Foundation (2016).
https://db.apache.org/derby/derby charter.html

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+13249-2%3a2003
http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+13249-2%3a2003
https://db.apache.org/derby/derby_charter.html

Similarity Aware Shuffling for the Distributed Execution of SQL 17

3. Brown, P.G., Hass, P.J.: BHUNT: automatic discovery of fuzzy algebraic con-
straints in relational data. In: Proceedings of the 29th International Conference on
Very Large Data Bases, vol. 29, pp. 668–679. VLDB Endowment (2003)

4. Cao, Y., Chan, C.Y., Li, J., Tan, K.L.: Optimization of analytic window functions.
Proc. VLDB Endowment 5(11), 1244–1255 (2012)

5. Coelho, F., Pereira, J., Vilaça, R., Oliveira, R.: Holistic shuffler for the paral-
lel processing of SQL window functions. In: Jelasity, M., Kalyvianaki, E. (eds.)
DAIS 2016. LNCS, vol. 9687, pp. 75–81. Springer, Cham (2016). doi:10.1007/
978-3-319-39577-7 6

6. Microsoft Corporation: Transact-SQL. Technical report, Microsoft Corporation
(2013). https://msdn.microsoft.com/library/ms189461(SQL.130).aspx

7. Oracle Corporation: SQL analysis and reporting. Technical report, Oracle Cor-
poration (2015). http://docs.oracle.com/database/121/DWHSG/analysis.htm#
DWHSG8659

8. Cruz, F., Maia, F., Oliveira, R., Vilaça, R.: Workload-aware table splitting for
NoSQL. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting, SAC 2014, pp. 399–404. ACM, New York (2014). http://doi.acm.org/10.
1145/2554850.2555027

9. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-
dencies for capturing data inconsistencies. ACM Trans. Database Syst. (TODS)
33(2), 6 (2008)

10. Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based geometric monitoring
of distributed stream queries. Proc. VLDB Endowment 6(10), 937–948 (2013).
http://dx.doi.org/10.14778/2536206.2536220

11. George, L.: HBase: The Definitive Guide: Random Access to Your Planet-Size
Data. O’Reilly Media, Inc., USA (2011)

12. Gonçalves, R.C., Pereira, J., Jiménez-Peris, R.: An RDMA middleware for
asynchronous multi-stage shuffling in analytical processing. In: Jelasity, M.,
Kalyvianaki, E. (eds.) DAIS 2016. LNCS, vol. 9687, pp. 61–74. Springer, Cham
(2016). doi:10.1007/978-3-319-39577-7 5

13. Hadoop Apache: Hadoop (2009)
14. IBM: OLAP specification. Technical report, IBM (2013). http://www.ibm.com/

support/knowledgecenter/SSEPGG 10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/
r0023461.html

15. Ilyas, I.F., Markl, V., Haas, P., Brown, P., Aboulnaga, A.: CORDS: automatic
discovery of correlations and soft functional dependencies. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, pp. 647–
658. ACM (2004)

16. Jimenez-Peris, R., Patiño-Martinez, M., Magoutis, K., Bilas, A., Brondino, I.:
Cumulonimbo: a highly-scalable transaction processing platform as a service.
ERCIM News 89(null), 34–35 (2012)

17. Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi, A.,
Erickson, J., Grund, M., Hecht, D., Jacobs, M., et al.: Impala: a modern, open-
source SQL engine for hadoop. In: CIDR, vol. 1, p. 9 (2015)

18. Leis, V., Kundhikanjana, K., Kemper, A., Neumann, T.: Efficient processing of
window functions in analytical SQL queries. Proc. VLDB Endowment 8(10), 1058–
1069 (2015). http://dx.doi.org/10.14778/2794367.2794375

19. Liu, H., Xiao, D., Didwania, P., Eltabakh, M.Y.: Exploiting soft and hard correla-
tions in big data query optimization. Proc. VLDB Endowment 9(12), 1005–1016
(2016). http://dx.doi.org/10.14778/2994509.2994519

http://dx.doi.org/10.1007/978-3-319-39577-7_6
http://dx.doi.org/10.1007/978-3-319-39577-7_6
https://msdn.microsoft.com/library/ms189461(SQL.130).aspx
http://docs.oracle.com/database/121/DWHSG/analysis.htm#DWHSG8659
http://docs.oracle.com/database/121/DWHSG/analysis.htm#DWHSG8659
http://doi.acm.org/10.1145/2554850.2555027
http://doi.acm.org/10.1145/2554850.2555027
http://dx.doi.org/10.14778/2536206.2536220
http://dx.doi.org/10.1007/978-3-319-39577-7_5
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://dx.doi.org/10.14778/2794367.2794375
http://dx.doi.org/10.14778/2994509.2994519

18 F. Coelho et al.

20. Postgresql: Advanced features - window functions. Technical report, Postgresql
(2015). https://www.postgresql.org/docs/9.4/static/tutorial-window.html

21. SAP: SAP HANA SQL reference (2014). https://help.sap.com/hana/SAP HANA
SQL and System Views Reference en.pdf?original fqdn=help.sap.de

22. Transaction Processing Performance Council: TPC Benchmark DS (2012). http://
www.tpc.org/tpcds/spec/tpcds 1.1.0.pdf

23. Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu, L., Wong, K.: Winmagic: sub-
query elimination using window aggregation. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pp. 652–656. ACM
(2003)

https://www.postgresql.org/docs/9.4/static/tutorial-window.html
https://help.sap.com/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=help.sap.de
https://help.sap.com/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf?original_fqdn=help.sap.de
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

DIsCO: DynamIc Data COmpression
in Distributed Stream Processing Systems

Nikos Zacheilas(B) and Vana Kalogeraki

Athens University of Economics and Business, Athens, Greece
{zacheilas,vana}@aueb.gr

Abstract. Supporting high throughput in Distributed Stream Process-
ing Systems (DSPSs) has been an important goal in recent years. Cur-
rent works either focus on automatically increasing the system resources
whenever the current setup is inadequate or apply load shedding tech-
niques discarding some of the incoming data. However, both approaches
have significant shortcomings as they require on the fly application recon-
figuration where the application needs to be stopped and re-uploaded in
the cluster with the new configurations, and can lead to significant infor-
mation loss. One approach that has not yet been considered for improv-
ing the throughput of DSPSs is exploiting compression algorithms to
minimize the communication overhead between components especially in
cases where we have large-sized data like live CCTV camera reports. This
work is the first that provides a novel framework, built on top of Apache
Storm, which enables dynamic compression of incoming streaming data.
Our approach uses a profiling algorithm to automatically determine the
compression algorithm that should be applied and supports both loss-
less and lossy compression techniques. Furthermore, we propose a novel
algorithm for determining when profiling should be applied. Finally, our
detailed experimental evaluation with commonly used stream processing
applications, indicates a clear improvement on the applications’ through-
put when our proposed techniques are applied.

1 Introduction

In recent years we observe a growing need for supporting complex real-time
processing of “big data”. Many systems need to process large volumes of live
data to detect events of interest in real-time. For example, in a traffic moni-
toring application it is necessary to inform the city’s authorities for events like
traffic congestion or accidents [19] as they occur. Similarly, healthcare appli-
cations [11] receive input from multiple sensors to detect unusual behavior in
the patients’ conditions. In order to be able to analyze such a high volume of
data, novel distributed systems such as Storm [14], Spark [21] and Flink [4] have
been proposed that enable us to perform scalable and low latency complex event
detection.

One important challenge in such systems is to support high throughput dur-
ing the applications’ execution despite changes in the data size or the input rate.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-59665-5 2

20 N. Zacheilas and V. Kalogeraki

Fig. 1. Image degradation due to JPEG compression.

In the literature, diverse techniques such as elasticity [9] and load shedding [16]
have been proposed for solving this problem. Elasticity schemes like [9,19], auto-
matically increase the amount of system resources (i.e., stream processing oper-
ators or components) in order to adapt to sudden load spikes. Such techniques
have significant shortcomings: (a) often DSPSs do not support this feature so
applications need to be stopped and re-uploaded in the cluster with the new
configurations, and (b) approaches such as load shedding [8,16], automatically
drop incoming data when load spikes occur; this penalizes the results’ accuracy
as many tuples will not be processed and thus important events of interest may
be lost.

A technique that has not been fully exploited in these settings is the use of
data compression. Data compression can reduce the impact of large-sized data
in the components’ communication time and thus enables the system to process
data faster, increasing the system’s throughput. However, applying compression
is not always beneficial as it creates additional processing overhead as tuples
need to be compressed/decompressed before the operator processes them. In
recent years, we observe a plethora of novel compression algorithms [2] or com-
monly used compression libraries such as LZ4 [13], Zip [22] and Snappy [15]
which are applied in the distributed system’s domain [5]. However, in current
systems the compression algorithm must be manually provided by the users and
cannot change during the application’s lifetime. Furthermore, it is not trivial for
the end-user to determine how useful a compression technique is, when it should
be applied, and which compression algorithm is most appropriate to maximize
the system throughput. In general, compression techniques can be divided in
two major categories, lossless and lossy. The main difference is that lossless
techniques enable the perfect reconstruction of the input data and therefore
the decompressed data will be the same as the initial data. In contrast, lossy
techniques include the class of data encoding methods that use inexact approxi-
mations and partial data discarding, in order to represent the content. So these
techniques lead to data degradation and possibly to inaccurate results if they
are applied in event detection applications.

In the following application example we demonstrate that the compression
ratio of lossy techniques needs to be carefully chosen, taking into account the
impact of the compression on the results’ accuracy. Our application (described in

DIsCO: DynamIc Data COmpression in Distributed Stream 21

Fig. 2. JPEG’s quality metric impact
on the results’ accuracy.

Fig. 3. Throughput using JPEG with
varying quality.

more details in Sect. 4) receives as input CCTV camera images streamed in real-
time in Dublin city and utilizes a simple image similarity algorithm [12] against
historical images which depict normal and abnormal traffic conditions. More
specifically, for each incoming image we find the most similar historical image
and based on the characterization of the latter (i.e., whether it depicts normal or
abnormal traffic conditions) we alert the traffic authorities. In Figs. 1(a), (b) we
illustrate how the JPEG quality metric affects the image in terms of visibility.
As it can observed when we use very low JPEG quality the image is not visible
(i.e., in Fig. 1(a) the obstacle that fell on the road is blurred) and therefore the
application is not able to detect the actual accident that happened (i.e., depicted
in Fig. 1(b)).

So the JPEG quality affects the accuracy of the results and this can be clearly
shown in Fig. 2 where we illustrate the number of detected events and how many
of them are false positives and false negatives. As it is shown in the figure, when
we use low compression quality the false positives and negatives events increase
due to the degradation of the images. However, when low compression quality
is applied it increases the system’s throughput due to the smaller image sizes.
This is clearly illustrated in Fig. 3 where we display the application’s throughput
using varying JPEG quality.

This trade-off between the applications’ accuracy and the system’s throughput
needs to be taken into account when we determine whether a lossy compression
technique like JPEG should be applied. Furthermore, it is not trivial for the end-
user to understand when compression is beneficial and how different compression
algorithms can affect these two metrics. So our aim in this work is to provide a
framework that is able to provide answers to the following questions:

1. When is it beneficial to compress the incoming data of a DSPS?
2. Which algorithm should be used for the compression?
3. How the chosen algorithm will be applied efficiently in a distributed streaming

environment where the overhead of compression should be minimal?

22 N. Zacheilas and V. Kalogeraki

We propose a novel framework, DIsCO, that executes on top of Apache Storm
and enables the automatic compression of incoming streaming data for the users’
applications. Our approach monitors the application’s performance and auto-
matically adjusts the compression algorithm that should be applied taking into
account the impact of the compression on the observed throughput and the
results’ accuracy. The key contributions of this work are as follows:

– We apply a profiling technique that aims to determine when compression is
beneficial for Storm applications and which algorithm should be applied. In
our framework we consider well-known compression algorithms like Zip, LZ4,
Snappy and JPEG. Our technique has as goal to find the compression algo-
rithm that balances the trade-off between the application’s throughput and
the results’ accuracy. Our approach works adaptively, where the profiling
algorithm is re-invoked when the performance of the application in terms of
throughput and results’ accuracy has significantly decreased.

– We enhance the Storm system by adding special threads that are part of the
Storm’s components (i.e., spouts/bolts) and perform the compression/decom-
pression procedure in parallel. This way we minimize the compression/de-
compression overhead (i.e., due to the time required for compressing and
decompressing the tuples) on the application’s throughput.

– We conduct an extensive experimental evaluation in our local cluster using
different applications that process both text and image data. More specifi-
cally, we used a traffic monitoring application that performs image similarity
on Dublin’s CCTV camera reports, an application that periodically crawls 5
major news sites and searches for traffic incidents and a Twitter First Detec-
tion application [20] which processes the Twitter stream and detects first
story events. Our experimental results indicate the benefits of our approach
and illustrate that we can automatically determine the compression technique
that should be applied during the applications’ execution.

2 Preliminaries and System Model

In this section we provide a brief description of Apache Storm and provide the
key parameters of our approach.

2.1 Preliminaries

Storm is one of the most widely used DSPS mainly because it provides low end-
to-end tuples’ latency and is widely used in a wide range of application domains
including traffic monitoring [19] and Twitter analysis [20]. In Storm, the logic
of a stream processing application is packaged into a Storm topology ; a graph
whose nodes are operators that encapsulate the processing logic and edges model
data flows among operators. Storm uses a Master-workers architecture where
the Master node (i.e., Nimbus) orchestrates the execution of topologies in the
available workers. In the Storm terminology nodes are called components and

DIsCO: DynamIc Data COmpression in Distributed Stream 23

the unit of information that is transferred between components is referred to
as a tuple. Users can define two types of components: (i) spouts which are the
input sources of the topology, and (ii) bolts that encapsulate the processing logic,
performing operations such as filtering, correlating and transforming tuples.

In general, there are two main approaches for processing streaming data
either on a per tuple basis or in mini-batches. The first approach has the low-
est per tuple latency, as tuples are immediately forwarded to the downstream
components. However, this approach can increase the communication cost and
thus affects the system’s throughput [6]. On the other hand, when mini-batches
are used, tuples are stalled until the mini-batch is considered ready for further
processing [21]. Usually, time (i.e., 1 s has elapsed since the creation of the mini-
batch) or size (e.g., emit the mini-batch when it comprises 50 tuples) based
criteria are applied for determining when the mini-batch should be forwarded.

Mini-batches are expected to improve the system’s throughput but they add
overhead on the per tuple’s latency as tuples need to wait until the mini-batch
is considered ready for processing. We have enhanced the Storm API to support
the processing of mini-batches for two main reasons: (1) mini-batches improve
the topology’s throughput [7], and (2) they enable us to parallelize the com-
pression/decompression procedure and thus minimize its overhead on the appli-
cation’s throughput (i.e., see Sect. 3.2 for more details). Finally, we did not
consider frameworks like Apache Spark [21] and Apache Flink [4] that use only
mini-batches for the data processing as we wanted to be able to support the per
tuple processing offered by Storm to support applications with very strict time
requirements like stock market applications.

2.2 System Model

In this section we define the parameters of our approach. For each Storm topology
the user provides the set of Spouts that comprise the topology’s input sources
and the set of Bolts which are the topology’s processing components. Further-
more, the user provides CompressAlgos which is the set of different compres-
sion algorithms that can be applied for compressing the streaming data that are
exchanged between the topology’s components. In our framework, we support
some well-known algorithms (e.g., Snappy) but the user can provide also cus-
tom implementations. Finally, the user defines the batchThr parameter which
controls the frequency with which monitor reports will be sent to Nimbus. For
example, if this parameter is set to 10 then every 10 processed mini-batches the
tasks will send a monitor report to Nimbus.

When the topology processes batchThr mini-batches, Nimbus receives a mon-
itor report regarding the performance of the compression algorithm c that is
currently utilized. More specifically, it receives the throughputc metric which
depicts the number of processed tuples per second when c is applied. Based on
the compression algorithm that is utilized we end up with different values for
this metric as each algorithm has different effect on the communication cost and
also on the time required for the compression/decompression procedure.

24 N. Zacheilas and V. Kalogeraki

Furthermore, lossy techniques penalize the accuracy of the application as
they modify the input data. For example, when JPG compression with low qual-
ity is applied, the image degrades and some of its characteristics are not visible.
In order to take into account this fact, we also measure the number of false posi-
tive (i.e., falsePosc) and false negative (i.e., falseNegc) events when batchThr
mini-batches have been processed by a lossy compression algorithm c. More-
over, we compute the number of true positive (i.e., truePosc) and true negative
events (i.e., trueNegc). In our traffic monitoring application (i.e., described in
Sect. 1), false positive events occur when we mistakenly report that we have traf-
fic congestion. This happens because the image resolution has degraded and the
similarity algorithm points out a historical image without traffic congestion as
the most similar one. The inverse problem occurs with the false negative events.
For lossless techniques, the falsePosc and falseNegc metrics are equal to zero
as these techniques guarantee the perfect reconstruction of the input data and
thus when they are applied we detect the exact same events as with the case of
no compression.

3 Methodology

In this section we describe the basic components of our framework.

3.1 Profiling

The first component of our approach is the use of profiling for determining if
compression should be applied and which algorithm to use. Profiling techniques
are commonly used for determining the appropriate configuration parameters
to be utilized in distributed processing systems [7]. For example profiling has
been efficiently applied in the context of Spark applications to determine the
appropriate number of nodes that should be allocated to the applications [17].
The benefit is that they can capture the system conditions (e.g., throughput)
which can be extremely useful in streaming environments like the one we consider
where conditions vary over time.

Our technique receives as input a list of the possible compression algorithms
and a threshold on the number of mini-batches that will be processed by each
algorithm. In this work we consider three well-known lossless compression tech-
niques (i.e, Zip, Snappy and LZ4) and one lossy compression algorithm (i.e,
JPEG). The JPEG algorithm is examined only when we have image data to
be processed while the other techniques are used mainly in case of text data.
Moreover, JPEG compression depends on the quality metric that determines the
compression ratio, so when this compression algorithm is considered the profiling
algorithm receives as input the quality metrics that need to be examined. For
example, if we want to evaluate three possible values for the quality metric (i.e.,
0.1, 0.5, 0.9) then the profiling algorithm will consider three different variations
of the JPEG algorithm, one for each quality metric.

DIsCO: DynamIc Data COmpression in Distributed Stream 25

The basic idea of our algorithm is to execute for a fixed number of mini-
batches each possible configuration (i.e., compression algorithm), compute the
throughput and the results’ accuracy for each compression technique, and then
choose the most appropriate technique. Moreover, the profiling technique also
examines these two metrics when no compression algorithm is utilized in order
to determine whether compression is beneficial. For the results’ accuracy we take
into account the fact that lossy compression algorithms can lead to false positive
and false negative events (as we indicated in Sect. 1). More formally, we compute
the results’ accuracy via the following Formula:

accc =
truePosc + trueNegc

truePosc + trueNegc + falsePosc + falseNegc
, ∀c ∈ CompressAlgos (1)

The accc metric captures the percentage of false positives and false negatives
produced when c is utilized. When lossless techniques are applied those two
metrics are equal to zero therefore we have accurate results as accc equals 1.
However, when lossy compression algorithms are considered we expect a decrease
in the accuracy as more false positives and false negatives events will be reported
and thus the denominator in Eq. 1 will increase. In contrast, we expect better
throughput when lossy techniques are applied as smaller-size data are transferred
between the components. To balance the throughput with the results’ accuracy,
we introduce a utility score function as follows:

utilityc = ˆthroughputc ∗ w + accc ∗ (1 − w), ∀c ∈ CompressAlgos (2)

where w ∈ [0, 1] is a weight given by the user based on where he wants to put
more emphasis, i.e., the application’s throughput or the accuracy of the results.
Furthermore, throughputc is normalized so that it is in the same range as accc.

The goal of our profiling algorithm is to identify the compression algorithm
that maximizes Eq. 2. The algorithm runs in the Nimbus node as it requires
information from all the topology’s components. More specifically, our technique
consists of the following steps:

1. Initially the profiling algorithm sends to the topology’s spouts all the com-
pression algorithms that need to be examined and a threshold on the number
of mini-batches to emit for each compression algorithm.

2. The algorithm waits for the monitor reports (i.e., described in Sect. 2.2) from
the bolts that receive and process the data.

3. Upon receiving all reports, the profiling algorithm computes the utility scores
of the different compression algorithms using Formula 2. Then it detects
the compression algorithm that has the largest utility score (i.e., this indi-
cates that the compression algorithm balances better the trade-off between
throughput and accuracy) and informs the spouts that they should use this
compression technique from now on.

26 N. Zacheilas and V. Kalogeraki

Algorithm 1. Trigger Algorithm
1: Input: prevTan: the previous tan that we have computed, prevReport: the pre-

vious utility score, monitorReports: the monitor reports that will be checked for
a significant decrease in their utility scores, θ: the threshold used for determining
when we have a significant decrease.

2: Output: applyAlgorithm: a Boolean variable that will determine if the profiling
algorithm should be re-applied.

3: applyAlgorithm ← true
4: for (report ∈ monitorReports) do

5: tan ← report.getUtility()−prevReport.getUtility()
report.getT ime()−prevReport.getT ime()

6: if (tan > 0 || | tan−prevTan
prevTan

| < θ) then
7: applyAlgorithm ← false
8: prevReport ← report
9: prevTan ← tan

10: return applyAlgorithm
11: prevTan ← tan
12: prevReport ← monitorReports.getLast()
13: return applyAlgorithm

In order to take into account dynamic changes in the system’s condition, we
keep monitoring the utility score and if we observe that its value drops signifi-
cantly we re-apply our profiling algorithm. The technique we used for determin-
ing when the profiling algorithm should be re-applied is described in Algorithm 1.
Nimbus continues to receive monitor reports and computes their utility scores.
When a certain number of reports have been gathered, we compare them with
a previous report in terms of utility scores. More specifically, we compute the
tan of the line that is drawn between the utility scores of the new and the pre-
vious report (i.e., Line 5 in Algorithm 1). We use the tan metric because it
provides an indication of how much the utility score has changed (decreased or
increased) from the previous report [3]. If the computed tan is positive we have
an increase in the utility score and thus we stop the search as there is no point to
re-apply the profiling algorithm. However, if it is negative (i.e., the utility score
has decreased) we must examine whether the difference between the computed
tan and the previous one (i.e., prevTan) exceeds a user-determined threshold
θ. More formally, we examine whether the following condition is true:

| tan − prevTan

prevTan
| > θ (3)

If the condition is true for all the reports that Nimbus has received, then we
re-apply the profiling algorithm. Essentially, the tan difference helps us identify
whether the utility score has decreased from its previous value significantly (i.e.,
based on the θ parameter).

The performance of the algorithm depends on the θ threshold and the num-
ber of monitor reports that we consider. Using a large threshold we expect
fewer re-invocations of the profiling algorithm as it will be harder to satisfy the

DIsCO: DynamIc Data COmpression in Distributed Stream 27

Fig. 4. Implementation details.

re-invocation condition (i.e., Eq. 3). Furthermore, the number of reports that
we use in Algorithm 1 also affects the re-invocations as when we use multiple
reports it will be harder to satisfy the condition in all of them so we expect less
re-invocations of the profiling algorithm. We evaluated how these two parame-
ters affect the re-invocations in our experimental evaluation (i.e., see Sect. 4).
In general, we observed that we need at least three reports to be sure that we
have a significant change in the utility score and thus re-applying the profiling
technique is beneficial. In contrast, using only one report leads to multiple invo-
cations of the profiling algorithm due to short-term fluctuations of the utility
score and this can penalize the application’s throughput as when the profiling
algorithm is re-applied we have to examine again all the compression algorithms.

3.2 Parallel Data Compression/Decompression

In Fig. 4 we illustrate how the compression algorithms are applied on the mini-
batches to be processed. The benefit of utilizing mini-batches is that they enable
us to parallelize the compression/decompression procedure. We use multiple
threads that run in parallel to perform the decompression whenever the process-
ing component receives a mini-batch. The decompressed data are kept in a mini-
batch which will be used for feeding the component with the input tuples. A
similar procedure is followed when we compress the data after the output mini-
batch is complete (i.e., reached the required batch size) and needs to be emitted
to downstream components. In this case the mini-batch is forwarded to multiple
concurrently running threads for the compression.

The number of compression/decompression threads can be provided by the
user. In most cases the number of threads will be fewer than the number of
tuples in the mini-batch so we have to distribute the tuples that comprise it to
the available threads. In order to balance the work among the threads we follow
a round-robin approach for assigning the tuples to the compression/decompres-
sion threads. More formally, assuming that we have N threads, T tuples in the

28 N. Zacheilas and V. Kalogeraki

mini-batch and each tuple t in the mini-batch has an id idt ∈ [0, T − 1] then
the thread that will compress tuple t is computed as: thrId = idt%N , where
thrId will be the id of the thread that will be responsible for compressing (or
decompressing) tuple t. This simple technique balances the load between the
threads and minimizes the compression/decompression overhead.

4 Implementation and Evaluation

Implementation. We have implemented our framework1 as a module of Apache
Storm and in Fig. 4 we illustrate the components we have added in order to sup-
port dynamic data compression. More specifically, we have added two extra com-
ponents on Nimbus that are responsible for auto-tuning the compression algo-
rithm that is used by the topology’s processing components. The Profiling com-
ponent is responsible for invoking the profiling algorithm described in Sect. 3.1
and for adjusting the compression algorithm of the Storm components’ (spouts
or bolts). The second component (i.e., Monitor in Fig. 4) monitors the per-
formance of all the topology’s components. More specifically, Monitor receives
reports from the bolts’ tasks whenever the threshold of processed mini-batches
has been reached (i.e., batchThr parameter in Sect. 2.2), computes the utility
score (i.e., Eq. 2) and informs the Profiling component about the new value.

In order to be able to exploit the auto-compression features we offer, users
must extend two abstract classes. More specifically, the CompressionSpout class
must be extended by the users’ spouts while the CompressionBolt class must be
extended by the users’ bolts. Each instance of these classes uses a special thread
for receiving the compression algorithm that should be applied. Furthermore,
these classes create the compression/decompression threads (i.e., see Sect. 3.2)
that are used for minimizing the computation overhead. Users still have to pro-
vide the implementation of nextTuple (i.e., for spouts) and execute (i.e., for
bolts) methods in order to be able to utilize their processing components in
their topologies.

Evaluation Setup. We have evaluated our approach in our local 8 nodes cluster.
Each node had attached 8 CPU processors and 16 GB RAM. All nodes were
connected to the same LAN and their clocks were synchronized using the NTP
protocol. We implemented our proposals on top of Storm 0.10.2 and used a
dedicated Nimbus node to avoid overloading one of the nodes. We considered
the following applications for examining the performance of our approach:

– Traffic Monitoring Application: This application receives as input live
CCTV data from Dublin city and detects events by invoking a simple image
similarity algorithm (supplied by LIRE framework [12]) against historical
images depicting normal and abnormal traffic conditions. More specifically,
for each incoming image we find the most similar historical image and based
on the characterization of the latter we inform the traffic authorities.

1 http://rtds.aueb.gr/index.php/software/.

http://rtds.aueb.gr/index.php/software/

DIsCO: DynamIc Data COmpression in Distributed Stream 29

Fig. 5. Parallel compression results.

Fig. 6. Impact of data
size on compression/de-
compression time.

Fig. 7. Impact of reports
on the number of profiling
algorithm’s invocations.

Fig. 8. Impact of θ on the
number of profiling algo-
rithm’s invocations.

– URL Crawling: The application crawls web pages and detects keywords
in them. More specifically, we crawl well-known sites (e.g., https://news.
google.ie/) and try to detect events like accidents in Dublin city.

– Twitter First Story Detection (Twitter FSD) [20]: This application
retrieves data from the Twitter Streaming API and detects tweets that cor-
respond to new events (e.g., a traffic accident in Dublin city).

Our goal was to consider applications that process both image and text data.
The difference between the two text processing applications is the size of the
data. For the URL crawling application we have larger input data (i.e., approx-
imately 600 kB) therefore compression may be beneficial while for the Twitter
application the tweets are usually small-sized (i.e., less than 200 bytes) so com-
pression may penalize the application’s performance.

Performance of parallel compression/decompression. In the first set of
experiments we illustrate the benefits of performing the parallel compression/de-
compression procedure. More specifically, we compare our multi-threaded com-
pression technique varying the number of threads. For the traffic monitoring
application we used JPEG compression with quality 0.1 while for the other
two applications we used Zip compression (similar results were observed with
the other compression algorithms but we do not display them due to lack of
space). As can be observed in Figs. 5(a), (b) and (c) using more threads improves

https://news.google.ie/
https://news.google.ie/

30 N. Zacheilas and V. Kalogeraki

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

U
til

ity
 S

co
re

Time (sec)

DIsCO
Default

(a) Traffic Monitoring

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400

U
til

ity
 S

co
re

Time (sec)

DIsCO
Default

(b) URL Crawling

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400

U
til

ity
 S

co
re

Time (sec)

DIsCO
Default

(c) Twitter FSD

Fig. 9. Utility scores comparison.

throughput as long as we do not exceed the available CPU cores on the nodes. We
argue that using at maximum four threads for the compression/decompression
procedure is a valid choice when we have 8 core nodes in the cluster. Further-
more, we wanted to evaluate how the compression overhead (i.e., in terms of
execution time) is affected by the size of the data that we want to compress/de-
compress. We used synthetic test data for this experiment and we applied the
Zip compression algorithm. As we illustrate in Fig. 6, our multi-threaded tech-
nique (using 4 compression/decompression threads) is able to keep the overhead
low (i.e., less than 6 s) even when we consider data larger than 8 MB.

Profiling re-invocation. In the second set of experiments (i.e., Figs. 7 and 8)
we perform a sensitivity analysis on the two parameters that affect the perfor-
mance of our proposed re-triggering mechanism (i.e., Algorithm 1 in Sect. 3.1).
We considered as input the utility scores of the Twitter FSD application when
no compression algorithm is applied (see the Default approach in Fig. 9(c)) and
we examined how the number of monitor reports and the θ parameter affect the
number of times that the profiling algorithm will be re-applied.

As we illustrate in Figs. 7 and 8 both parameters influence the number of
times we re-invoke the profiling algorithm with the one that affects the most
being the number of monitor reports to consider for the evaluation. In Fig. 7 we
set θ to 0.5 while in Fig. 8 we used 2 reports. As it can be observed in Fig. 7, if we
use more than 4 reports the number of re-invocations is minimized. In contrast,
when we use only one monitor report for the comparison, we end up invoking
constantly the profiling algorithm. For the rest of the experiments we set θ to
0.5 and use 3 previous reports.

Dynamic compression evaluation. In the last set of experiments we evalu-
ated the applicability of our framework to detect the correct compression algo-
rithm that should be utilized. In Figs. 9(a), (b) and (c) we illustrate the utility
score when our framework is applied against the default approach (i.e., Default
in the Figures) that does not apply any compression algorithm. The weight of
the utility score was set to 0.5. As it can be observed, DIsCO is able to maximize
the utility score in all applications. For example, in case of the traffic monitoring
application our framework exploits JPEG compression and it is able to guaran-
tee that the impact on the results’ accuracy will be minimal. DIsCO decides to

DIsCO: DynamIc Data COmpression in Distributed Stream 31

compress the images using the JPEG compression algorithm with quality 0.3.
So we have less than 200 false positives and negative events as it can be observed
in Fig. 2 in Sect. 1.

For the other two applications the utility score depends solely on the through-
put metric as we considered only lossless compression techniques (i.e., for this
reason the utility score in Figs. 9(b) and (c) is not scaled between 0 and 1). The
URL crawling application exploits the Snappy compression algorithm which is
able to achieve better throughput than the Default approach. In contrast, in
the Twitter FSD application, DIsCO detects that it is not beneficial to use a
compression algorithm as the improvements in the communication cost are negli-
gible compared to the time required for compressing/decompressing the tweets.
However, because DIsCO samples all the possible compression algorithms, in
this case the Default approach has better throughput.

5 Related Work

In recent years we have observed a plethora of stream processing frameworks
including Spark [21] and Flink [4]. Despite their popularity, there has been little
work in exploiting data compression. One recent proposal comes from the Spark
community with the implementation of a novel distributed filesystem called Suc-
cint [1] which keeps the data in a compressed form using Arrays of Suffixes (AoS)
and enables the processing of the data in this form. However, the wide adoption
of such system requires time as the majority of the data are stored in either
HDFS or distributed databases like MongoDB or Cassandra. So an approach
like ours that performs on-the-fly compression on the data streams is beneficial
to the system’s performance.

Previous work exploiting compression for improving the energy efficiency in
Hadoop clusters was done in [5]. Our work differs in, that, we examine the prob-
lem in a distributed stream processing setting trying to maximize the observed
system throughput. Authors in [8] propose the use of an unsupervised learning
technique for detecting patterns in the incoming data flow and minimize the
amount of emitted tuples by not transmitting tuples that will not contribute
on the query’s results. In our approach we decided to avoid such load shedding
techniques to minimize the information loss. Novel frameworks like [10,18] have
been proposed for performing analysis on streaming data using a compressed
representation of the input dataset. Authors in [18] propose the use of dictio-
naries for keeping the incoming data and process them in this compressed form
while in [10] the authors describe the use of compressed buffer trees (CBTs)
for keeping the in-memory data. We could exploit such techniques in DIsCO as
users can easily plugin their custom compression algorithms.

6 Conclusions

In this paper we present DIsCO, a novel auto-tuning framework on top of
the Apache Storm whose goal is to balance the trade-off between application’s

32 N. Zacheilas and V. Kalogeraki

throughput and results’ accuracy by dynamically deciding whether data com-
pression would be useful in the streaming applications and which compression
algorithm would be the most appropriate. Our approach is able to efficiently
adjust the compression algorithm to be utilized during the application’s execu-
tion, and by exploiting the use of mini-batches it can further maximize the sys-
tem’s throughput and minimize the compression/decompression overhead. In our
experimental evaluation on our local cluster using well-known stream processing
applications, we demonstrate the benefits of our approach and illustrate a clear
improvement on the applications’ performance.

Acknowledgment. This research has been financed by the European Union through
the FP7 ERC IDEAS 308019 NGHCS project and the Horizon2020 688380 VaVeL
project.

References

1. Agarwal, R., Khandelwal, A., Stoica, I.: Succinct: enabling queries on compressed
data. In: NSDI, Oakland, CA, pp. 337–350 (2015)

2. Bicer, T., Yin, J., Chiu, D., Agrawal, G., Schuchardt, K.: Integrating online
compression to accelerate large-scale data analytics applications. In: IPDPS,
Cambridge, MA, USA, pp. 1205–1216 (2013)

3. Boutsis, I., Kalogeraki, V.: Location privacy for crowdsourcing applications. In:
UbiComp, Heidelberg, Germany, pp. 694–705 (2016)

4. Carbone, P., Ewen, S., Haridi, S., Katsifodimos, A., Markl, V., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. Data Engineering, p.
28 (2015)

5. Chen, Y., Ganapathi, A., Katz, R.H.: To compress or not to compress-compute
vs. io tradeoffs for mapreduce energy efficiency. In: ACM SIGCOMM Workshop
on Green Networking, New Delhi, India, pp. 23–28 (2010)

6. Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M.,
Liu, Z., Nusbaum, K., Patil, K., Peng, B.J., et al.: Benchmarking streaming com-
putation engines: storm, flink and spark streaming. In: Parallel and Distributed
Processing Symposium Workshops, Chicago, IL, USA, pp. 1789–1792 (2016)

7. Das, T., Zhong, Y., Stoica, I., Shenker, S.: Adaptive stream processing using
dynamic batch sizing. In: SoCC, Seattle, WA, USA, pp. 1–13 (2014)

8. Eberle, J., Wijaya, T.K., Aberer, K.: Online unsupervised state recognition in
sensor data. In: PerCom, St. Louis, MO, USA, pp. 29–36 (2015)

9. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

10. Hu, L., Schwan, K., Amur, H., Chen, X.: Elf: efficient lightweight fast stream
processing at scale. In: Usenix ATC, Philadelphia, PA, USA, pp. 25–36 (2014)

11. Liu, M., Ray, M., Zhang, D., Rundensteiner, E.A., Dougherty, D.J., Gupta, C.,
Wang, S., Ari, I.: Realtime healthcare services via nested complex event processing
technology. EDBT, Berlin, Germany, pp. 622–625 (2012)

12. Lux, M., Chatzichristofis, S.A.: LIRe: lucene image retrieval: an extensible Java
CBIR library. In: ACM International Conference on Multimedia, Vancouver,
British Columbia, Canada, pp. 1085–1088 (2008)

13. LZ4. https://github.com/jpountz/lz4-java

https://github.com/jpountz/lz4-java

DIsCO: DynamIc Data COmpression in Distributed Stream 33

14. Nathan Marz’s Storm. https://github.com/nathanmarz/storm
15. Snappy. https://github.com/xerial/snappy-java
16. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: efficient load shedding tech-

niques for distributed stream processing. In: VLDB, pp. 159–170 (2007)
17. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient

performance prediction for large-scale advanced analytics. In: NSDI, Santa Clara,
CA, USA, pp. 363–378 (2016)

18. Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., Ganguli, D.: Druid: a
real-time analytical data store. In: SIGMOD, Snowbird, UT, USA, pp. 157–168
(2014)

19. Zacheilas, N., Kalogeraki, V., Zygouras, N., Panagiotou, N., Gunopulos, D.: Elastic
Complex Event Processing exploiting Prediction. Big Data, Santa Clara, CA, USA,
pp. 213–222 (2015)

20. Zacheilas, N., Zygouras, N., Panagiotou, N., Kalogeraki, V., Gunopulos, D.:
Dynamic load balancing techniques for distributed complex event processing sys-
tems. In: Jelasity, M., Kalyvianaki, E. (eds.) DAIS 2016. LNCS, vol. 9687, pp.
174–188. Springer, Cham (2016). doi:10.1007/978-3-319-39577-7 14

21. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized Streams: Fault
Tolerant Streaming Computation at Scale, pp. 423–438. SOSP, Farmington, PA,
USA (2013)

22. Zip. https://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.
html

https://github.com/nathanmarz/storm
https://github.com/xerial/snappy-java
http://dx.doi.org/10.1007/978-3-319-39577-7_14
https://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/util/zip/package-summary.html

Distributed Random Process for a Large-Scale
Peer-to-Peer Lottery

Stéphane Grumbach and Robert Riemann(B)

Inria, Lyon, France
{stephane.grumbach,robert.riemann}@inria.fr

Abstract. Most online lotteries today fail to ensure the verifiability of
the random process and rely on a trusted third party. This issue has
received little attention since the emergence of distributed protocols like
Bitcoin that demonstrated the potential of protocols with no trusted
third party. We argue that the security requirements of online lotter-
ies are similar to those of online voting, and propose a novel distrib-
uted online lottery protocol that applies techniques developed for voting
applications to an existing lottery protocol. As a result, the protocol is
scalable, provides efficient verification of the random process and does
not rely on a trusted third party nor on assumptions of bounded com-
putational resources. An early prototype confirms the feasibility of our
approach.

Keywords: Distributed aggregation · Online lottery · DHT · Trust ·
Scalability

1 Introduction

Lottery is a multi-billion dollar industry [1]. In general, players buy lottery tickets
from an authority. Using a random process, e.g. the drawing of lots, the winning
tickets are determined and the corresponding ticket owners receive a reward.

In some lotteries, the reward may be considerable, and so is the incentive to
cheat. The potential of fraud gained attention due to the Hot Lotto fraud scandal.
In 2015, the former security director of the Multi-State Lottery Association in
the US was convicted of rigging a 14.3 million USD drawing by the unauthorised
deployment of a self-destructing malware manipulating the random process [2].

In order to ensure fair play and ultimately the trust of players, lotteries are
subject to strict legal regulations and employ a technical procedure, the lottery
protocol, to prevent fraud and convince players of the correctness. Ideally, players
should not be required to trust the authority. Verifiable lottery protocols provide
therefore evidence of the correctness of the random process.

In a simple paper-based lottery protocol, tickets are randomly drawn under
public supervision of all players from an urn with all sold tickets to determine the
winners. Afterwards, all tickets left over in the urn are also drawn to confirm their

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 34–48, 2017.
DOI: 10.1007/978-3-319-59665-5 3

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 35

presence and convince the losers of the correctness. Without public supervision,
the random process can be repeated until by chance a predefined result occurred.
Further, the process can be replaced entirely by a deterministic process.

In practice, the public supervision limits the number of lottery players and
is further very inconvenient, because players are required to respect the time
and locality of the drawing procedure. With the advent of public broadcasting
channels, first newspapers, then radio and television broadcasting, protocols were
employed that replaced the public supervision by a public announcement. Only
few players and notaries verify here the correctness of the random process. In
consequence, the majority of non-present players are required to trust the few
present individuals for the sake of scalability. With the increasing availability
of phones and later the internet, protocols have been adapted to allow also the
remote purchase of lottery tickets, e.g. from home or a retail store.

The technical evolution lead to a gradual change of how people play lottery,
but in many cases, the drawing procedure has not been adapted and resembles
more a legacy that prevails for nostalgic reasons than to provide security. In the
simple paper-based lottery protocol, the chain of custody establishes trust. All
operations may be inspected by eye-sight.

This technique cannot be directly adapted for an online lottery. Thus, most
verifiable online lottery protocols [3–5] rely on a concept based on two elements.
All players can actively contribute to the random process. Nobody can compute
the random process result or its estimation as long as it is possible to contribute
or buy new tickets. The latter is required to prevent educated contributions
to circumvent the uniform distribution of the random process. It is the lottery
protocol that must ensure the order in time of the contribution and the actual
determination of winners.

A protocol consisting of equipotent players contributing each to the ran-
domness of the publicly verifiable random process is promising for its similarity
with the simple paper-based lottery protocol. Again, all players participate in
the execution and supervision of the random process. The feasibility to con-
struct such protocols with no trusted third parties has been demonstrated by
the crypto-currency Bitcoin [6] that is a distributed protocol for remote financial
transactions, while previously online banking based on trusted financial author-
ities, the bank institutes and central banks, has been without alternative [7].
Lottery protocols based on Bitcoin have been already considered [8], c.f. Sect. 2.

Although different, the security requirements of lotteries share common con-
cerns with those of voting systems [9]. Both lottery and voting protocols have
to assure trust in an environment of mutual distrust among players, respectively
voters, and the potentially biased authorities. The literature on voting protocols
and online voting protocols is extensive and comprises flexible protocols that
may be adapted to different voting systems beyond the general case of majority
voting. Of particular interest for a lottery are online voting protocols that allow
for a random choice. Already the paper-based voting common for general elec-
tions provides a solution to improve the scalability of the simple paper-based
lottery protocol: the introduction of multiple offices run in parallel. We focus on

36 S. Grumbach and R. Riemann

online voting protocols that do not rely on trusted parties and aim to provide
security properties that we adopt for lottery applications as follows:

Correctness of the random process. All numbers are equally likely to win.
Nobody can predict the random process better than guessing.

Verifiability of the random process. Players can be convinced that the
random process has not been manipulated.

Privacy of the player. Players do not learn the identity of other players to
prevent blackmailing or begging.

Eligibility of the ticket. Tickets cannot be forged. Especially, it is impossible
to create a winning ticket after the outcome of the random process is known.

Confidentiality of the number. Numbers are confidential to ensure fairness.
Tickets of other players cannot be copied to reduce their potential reward.

Completeness of the reward. Players can verify the number of sold tickets
that may determine the reward.

Our contribution is a novel protocol for verifiable large-scale online lotteries with
no trusted authority to carry out the random process, for which we use concepts
originating from online voting.

The paper is organized as follows. In the next section, we review related
work addressing both lottery and voting protocols. Our protocol is based on an
existing online lottery protocol and the distributed hash table Kademlia that
are presented in Sect. 3. Then, we introduce our protocol in Sect. 4 and discuss
its properties in Sect. 5.

2 Related Work

Different protocols have been proposed that allow players to contribute to the
publicly verifiable random process and take measures to prevent early estima-
tions of the result while it is still possible to contribute.

A trivial solution in the context of secure parameters for cryptography is
recalled in [10]. In a first round, all players choose secretly a number and publish
on a public broadcasting channel a commitment on their number, e.g. using a
hash. In a second round, all secret numbers are revealed and verified using the
commitment. Finally, all values are concatenated using the XOR operation to
form the result. The protocol owes its correctness due to the clear separation
in two rounds of player’s contributions. However, the authors stress that the
protocol is neither robust nor scalable. A termination is not possible if one player
does not reveal its secret number and for the verification, all players have to run
as many XOR operations and send as many messages as there are players.

Subsequently, a random process protocol with only one round is proposed
[10]. A delay between player contribution and winner identification by the
authority is imposed, so that estimations would be available only after con-
tributions are no longer allowed. Players or any other third party can engage
before a deadline in the collection of arbitrary data, e.g. using social networks
like Twitter, to generate a seed, an essentially random bit string. Right after
the deadline, the authority publishes a commitment on an additional, secretly
chosen seed. Both seeds provide the input for a proof of work. A proof of work

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 37

is computationally expensive to generate and thus time-consuming. A delay is
inevitable. However, due to its asymmetry, the proof allows for efficient verifi-
cation. Once the proof is found, the winners are derived from it. The additional
seed prevents dishonest players to predict the results for different potential last-
minute contributions. One has to assume that the last honest contribution is
made sufficiently late to prevent the same attack from the authority.

Chow’s online lottery protocol [5] published prior to [10] relies on a technique
called delaying function [3] that is similar to a proof of work, but is not asymmet-
ric and does not provide efficient verification. The authority commits here on the
concatenation of the players’ commitments on their secretly chosen number and
derives then the winners. Players can claim the reward by publishing the input
data of their commitment. Similar to [10], a late honest player commitment is
assumed to prevent a prediction by the authority. Then, all security measures
from the introduction are provided. The protocol requires players to process the
commitment of all other players and recompute the delaying function in order
to verify the random process, which is impractical for large-scale lotteries.

Solutions for a scalable probabilistic verification of online lotteries [11] or
online voting [12] have been presented based on a concatenation/aggregation
over a tree structure. In order to verify the result at the root of the tree, players
or voters can repeat the computation of intermediate results for a predefined or
random subset of all tree nodes. With increasing number of verified nodes, the
probability of a manipulated result at the root node diminishes.

Other online lottery protocols introduce mutually distrusting, non-colluding
authorities to allow for a separation of powers. In [13], a distinct auditor ensures
secrecy and immutability of the player’s tickets and prevents the lottery author-
ity from adding illegitimately tickets. For this, blind signatures and public-key
encryption are employed. The protocol does not cover the random process and
its verification. Authorities are assumed not to collude.

In [14], the secrecy of online lottery and voting protocols is addressed at the
same time. A mechanism based on homomorphic encryption, distributed key
generation and threshold decryption is proposed. A set of mutually distrusting
authorities have to cooperate to decrypt the result of the random process or the
voting. A colluding set of dishonest authorities below the threshold cannot reveal
prematurely the result, i.e. to add a winning ticket in the lottery case. Players or
voters are entitled to trust that the set of dishonest, colluding authorities does
not meet the threshold. Ideally, the power to decrypt would be shared among all
players or voters. Practically, this is often not feasible due to scalability issues.

The Scalable and Secure Aggregation (SPP) online voting protocol [15] builds
also on distributed decryption and employs a tree overlay network to improve
the scalability. A small set of authorities is randomly chosen among all voters.
If too many of those chosen voters are absent after the aggregation, the decryp-
tion threshold cannot be reached and, consequently, a protocol termination is
impossible.

The potential of the Bitcoin blockchain [6] for a distributed random process
has been examined. However, it has been shown that the manipulation of
presumably random bits is realistic even with limited computational capacity

38 S. Grumbach and R. Riemann

and financial resources [8]. An integration of the proof of work from [10] and an
alternative crypto-currency Ethereum [16] has been proposed1 with no practical
solution yet for a verification due to the limitation imposed by the blockchain.

3 Preliminaries

The starting point for the proposed protocol is the centralised online lottery
protocol of [5], recalled hereafter with an alternative verification based on hash
trees [11]. For the proposed lottery protocol, we choose to distribute the random
process to all players. The overlay network comprising all players is provided by
the distributed hash table (DHT) Kademlia [17] that is described in Sect. 3.2.
The integration of these building blocks is shown in Sect. 4.

3.1 Centralised Online Lottery Protocol

The following presentation of Chow’s protocol [5,11] is reduced to aspects
required for our proposition. We use the following notation:

A authority (Dealer in [5])

Pi player, i-th out of n

ni number in the set L chosen by player Pi

ri random bit string of given length chosen by player Pi

η(·) cryptographic hash function, e.g. SHA-3

η0(·) cryptographic hash function mapping any ri to L

σA(·) authority’s signature scheme using key-pair (pkA, skA)

Chow’s protocol implements a lottery in which every player Pi has to choose
a number ni ∈ L and send a commitment on it to the authority A. A aggre-
gates all commitments to a value h. That means, every Pi contributes to h. The
aggregate h is used as an input parameter for a delaying function (DF) prevent-
ing A from early result estimations. The outcome of DF is used to compute the
winning number nR with a verifiable random function and the secret key of A.
Players do not have the secret key required to compute nR, but can verify nR

using the public key of A.
During the ticket purchase phase, Pi acquires from A a personal sequence

number si. Pi has to choose its number ni and a random bit string ri to compute
its commitment ticketi with bit string concatenation || and XOR operation �.
Pi sends ticketi to A and receives in return the signature σA(ticketi) as a receipt.

ticketi = si||(ni � η0(ri))||η(ni||si||ri)

1 http://www.quanta.im, https://kiboplatform.net (accessed 02/02/2017).

http://www.quanta.im
https://kiboplatform.net

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 39

The DF cannot be evaluated before h depending on all commitments is given,
which is ideally only after the purchase phase. In [5], the DF input parameter
h is recursively computed from all n commitments with h = η(chainn) and
chaini = η(chaini−1||ticketi) with an empty initial chain chain0. An alternative
introduced in [11] consists of a computation of h using a T -ary Merkle tree [18]
with ticketi assigned to the leaf tree nodes. In both cases, all ticketi are published
to allow the verification of h by the players requiring memory and computational
resources of respectively O (n) and O (logT (n)).

Once the authority has published the verifiable winning number nR, the
reward claiming phase begins in which players Pi with ni = nR provide their
sequence number si and their secret random value ri to A via a secure channel.
Upon verification of the commitment ticketi by A, the reward is granted. Pj with
nj �= nR may verify that their commitment ticketj has been used to compute h
and are assumed to have trust in the infeasibility of A to compute DF more than
once between the latest honest ticket contribution and the publication of nR.

3.2 Distributed Hash Table Kademlia

The distributed hash table (DHT) Kademlia [17] provides efficient discovery of
lottery players and routing which is a precondition for the aggregation protocol
in Sect. 4.1. Therefore, a binary overlay network is established in which each
player Pi is assigned to a leaf node xi, that is a bit string of size B. The notation
is as follows:

x a Kademlia leaf node ID (KID) of size B

B size of a KID in bits, e.g. 160

xi KID of player Pi

d node depth, i.e. number of edges from the node to the tree root

̂S(x, d) subtree whose root is at depth d which contains leaf node x

S(x, d) sibling subtree of which the root is the sibling of the root of ̂S(x, d)

k maximum number of contacts per Kademlia subtree

The leaf node identifiers x ∈ {0, 1}B (B bits) span the Kademlia binary tree
of height B and are denoted KID. Each player Pi joins the Kademlia overlay
network using its KID defined as xi = η(ti) with an authorization token ti and
the hashing function η(·). The value ti is generated as part of the ticket purchase.
B is chosen sufficiently large, so that hash collisions leading to identical KIDs
for distinct players are very unlikely. Consequently, the occupation of the binary
tree is very sparse.

A node in the tree is identified by its depth d ∈ {0, . . . , B} and any of its
descendant leaf nodes with KID x. A subtree ̂S(x, d) is identified by the depth
d of its root node and any of its leaf nodes x. We overload the subtree notation
to designate as well the set of players assigned to leaves of the corresponding

40 S. Grumbach and R. Riemann

Fig. 1. Example of Kademlia k-buckets for KID xi = 100 assuming B = 3. The sparse
tree is partitioned into subtrees S(xi, d) with their root node depth d. The k-buckets
for each d contain at most k players Pj ∈ S(xi, d).

subtree. Further, we introduce S(x, d) for the sibling subtree of ̂S(x, d), so that
̂S(x, d) = ̂S(x, d + 1) ∪ S(x, d + 1). The entire tree is denoted ̂S(x, 0). We observe
that ∀d : Pi ∈ ̂S(xi, d) and ∀d : Pi /∈ S(xi, d).

Kademlia defines the distance d(xi, xj) between two KIDs as their bit-wise
XOR interpreted as an integer. In general, a player Pi with KID xi stores infor-
mation on players with xj that are close to xi, i.e. for small d(xi, xj). For this pur-
pose, Pi disposes of a set denoted k-bucket of at most k players Pj ∈ S(xi, dj) for
some dj > 0.2 See Fig. 1 for an example. The size of subtrees decreases exponen-
tially for growing depth d. Hence, the density of known players of corresponding
k-buckets grows exponentially.

Kademlia ensures that the routing table, that is the set of all k-buckets, is
populated by player lookup requests for random KIDs to the closest already
known players. Requests are responded with a set of closest, known players
from the routing table. One lookup might require multiple, consecutive request-
response cycles. Further, Kademlia provides requests to lookup and store values.
All operations scale with O (log n) [19]. Kademlia is used by many BitTorrent
clients and as such well tested.

4 Distributed Lottery

We introduce now the lottery protocol. It is run by an authority that handles
the ticket purchase and carries out the distribution of the reward upon winner
verification, but not the random process itself. The random process is distributed

2 Note that originally [17] the common prefix length b is used to index
k-buckets/sibling subtrees while we use the depth d = b + 1 of the root of the
subtree.

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 41

to all players using the protocol described below. The description of the lottery
protocol is given in Sect. 4.2.

4.1 Distributed Aggregation Protocol

We present a distributed aggregation protocol based on Kademlia. It relies on
Advokat [20], whose aggregation algebra, distributed aggregation algorithm,
and measures to increase its Byzantine fault tolerance are briefly recalled.

Aggregation Algebra. Aggregates are values to be aggregated, whether initial
aggregates, constituting inputs from players, or intermediate aggregates obtained
during the computation. The aggregation operation, ⊕, combines two child aggre-
gates to a parent aggregate in A, the set of aggregates. We assume ⊕ to be com-
mutative. For the lottery, ⊕ maps pairwise bit strings provided by all players
to one final bit string used to determine the winners. The algebra is sufficiently
flexible to cover a broad range of aggregation-based applications and has been
devised initially for distributed online voting [20].

Aggregates are manipulated through aggregate containers, i.e. a data struc-
ture that contains next to the aggregate itself the context of the ongoing com-
putation. The aggregate container of an aggregate a associates a to a Kademlia
subtree ̂S(x, d) and ensures integrity and verifiability of the aggregation. It has
the following attributes:

h hash η(·) of the entire aggregate container, but h

a aggregate, a = a1 ⊕ a2

c counter of initial aggregates in a, c = c1 + c2

c1, c2 counter of initial aggregates of child aggregates

h1, h2 container hashes of child aggregates

̂S(x, d) identifier of subtree whose initial aggregates are aggregated in a

Similar to the aggregation of aggregates, one or two aggregate containers of a1,
a2 can be aggregated to a parent aggregate container. To inherit the commuta-
tivity of the aggregation of aggregates ⊕, (h1, c1) and (h2, c2) must be sorted in
e.g. ascending order of the child hashes h1 and h2.

Distributed Aggregation Algorithm. Using the aggregation operator ⊕,
every player Pi computes the intermediate aggregate for all the parent nodes from
its corresponding leaf node xi up to the root node of the Kademlia overlay tree.
The aggregates used to compute any intermediate aggregate of a given subtree
̂S(xi, d) are given by its child nodes’ aggregates of ̂S(xi, d + 1) and S(xi, d + 1).
Hence, aggregates have to be exchanged between players of the sibling subtrees
and Kademlia’s k-buckets provide the required contact information.

42 S. Grumbach and R. Riemann

The aggregation is carried out in B epochs, one tree level at a time. Epochs
are loosely synchronized, because players may have to wait for intermediate
aggregates to be computed in order to continue. First, every player Pi computes
a container for its initial aggregate ai. The container is assigned to represent the
subtree ̂S(xi, B) with only Pi. In each epoch for d = B, . . . , 1, every player Pi

requests from a random Pj ∈ S(xi, d) the aggregate container of subtree S(xi, d).
With the received container of S(xi, d) and the previously obtained of ̂S(xi, d),
player Pi computes the parent aggregate container, that is then assigned to the
parent subtree ̂S(xi, d−1). If S(x, d) = ∅ for any d, the container of ̂S(x, d−1) is
computed only with the aggregate container of ̂S(x, d) from the previous epoch.

After B consecutive epochs, player Pi has computed the root aggregate aR

of the entire tree ̂S(xi, 0) that contains the initial aggregates of all players. If
all players are honest, the root aggregate is complete and correct. Due to the
commutativity of the container computation, all players find the same hash hR

for the container of the root aggregate aR. An individual verification is implicitly
given, because every player computes aR starting with its ai.

Byzantine Fault-Tolerance. The distributed aggregation is very vulnerable
to aggregate corruptions leading to erroneous root aggregates containers. We
present intermediate results to safeguard the aggregation. Please refer to [20]
for a more in-depth discussion. For the attack model, we assume a minority of
dishonest (Byzantine) players controlled by one adversary that aims to interrupt
the aggregation, and manipulate root aggregates. Dishonest players can behave
arbitrarily. Like in Kademlia, time-outs are used to counter unresponsive players.

To prevent Sybil attacks, it must be ensured that a player (a) cannot choose
on its own discretion its tree position given by the leaf node xi but (b) can proof
its attribution to xi [21]. Every player Pi generates a key pair (pki, ski) which
must be signed by A. Hence, Pi sends pki to A during the ticket purchase and
receives the signature of A to be used as the authorization token ti = σA(pki).
The KID xi = η(ti) is derived from ti and is neither chosen unilaterally by A
nor by Pi. Eventually, players provide for every message m exchanged among
players the signature of the sender σi(m), its public key pki to verify σi(m), and
the authorization token ti to verify pki.

Moreover, a dishonest authority shall be prevented to add new players after
the aggregation has started and dishonest players to delay their contributions
after predefined, global deadlines. In order to suppress both, signatures of those
players are considered invalid, who are at the start of the aggregation not in the
corresponding k-bucket even though the bucket contains less than k players and
should be exhaustive.

Further, player signatures are employed to detect deviations from the pro-
tocol. For every computed aggregate container of ̂S(xi, d) with hash h and
counter c, player Pi produces an aggregate container signature σi(h, d, c). Other
players can verify the signature using pki and verify using xi = η(ti) that
Pi ∈ ̂S(xi, d). Hence, pki and ti must be provided along every signature σi(h, d, c).

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 43

Fig. 2. Pj with xj produces a confirmed aggregate container of S(xi, b). This scheme
applies to all tree levels with possibly large subtrees to request from. If the subtrees
S(xj , d + 2), S(xl, d + 2) are empty, the depth is further increased until a non-empty
subtree may be found.

The impact of dishonest players is limited by redundant requests to confirm
a computed so-called candidate container using signatures of other players on
the same container hash as depicted in Fig. 2. Next to the proper signature (2©)
on h and h1, a signature on h from a player in each child subtree (3© and 4©)
and one on h2 (1©) must be provided for a confirmation if the respective subtree
is non-empty which can be determined using Kademlia lookup requests. The
number of distinct signatures on h, here 3, is a security parameter denoted l.

Only the confirmed container including the signatures is used to respond to
requests from players in the sibling subtree. If a confirmation is not possible,
e.g. due to non-cooperating dishonest players, the confirmed child containers are
provided instead, so that the receiver can compute the aggregation on its own.

If confirmation requests reveal diverging containers, a majority vote using
the number of distinct signatures for every container hash is used. If another
container than the previously computed is selected and if h2 differs, then the
request for the sibling aggregate container (1©) is repeated, otherwise, the pre-
vious epoch is repeated allowing for a recursive correction.

The majority vote confirms for subtrees with many players with great prob-
ability the aggregate container of the honest players. The attribution of KIDs
xi to players Pi is random, so that a global minority of dishonest players is uni-
formly distributed over all subtrees and a honest majority can be assumed for
most local subtrees.

Though, dishonest players may have a local majority in subtrees with only few
players. Here, an analysis of the signatures of confirmed containers allows honest
players to detect dishonest behaviour in the following cases with certainty. Given
two signatures σi(h, d, c) and σi(h′, d, c) from the same player Pi with different
hashes h �= h′, Pi deviated from the protocol with certainty if c ≤ l. Either
Pi signed two distinct initial aggregate containers or accepted a non-confirmed
container. For c > l, there is a non-zero probability that Pi is honest, but may
have been tricked. A manipulation may not be detected or only later during
the recursive correction. The number of distinct signatures l can be increased to

44 S. Grumbach and R. Riemann

detect manipulations with certainty for higher c, and may depend on the player
configuration in the respective subtree.

At last, the root aggregate container aR shall be confirmed more often,
i.e. more signatures on its hash h are gathered from different players, to increase
the confidence that it has been adopted by the majority of honest players.

4.2 Lottery Protocol

The proposed protocol allows for a lottery with playing mode CL or LO [13]:

Classic Lottery (CL)
Rewards are distributed with respect to a randomly ordered list of all players.

Lotto (LO)
Rewards are distributed based on the secret, prior choice of each player.

The protocol has six phases of which ticket purchase, reward claiming and winner
verification follow closely Chow’s protocol [5]. Its model provides for an author-
ity A, a tracker and players Pi. For CL, η0(·) is identical to η(·), so that the root
aggregate aR of the distributed aggregation is in the domain of the KIDs x.

Setup

1. A generates a key-pair (pkA, skA) and chooses a random bit string rA.
2. A publishes the ticket purchase deadline, pkA, η(·), η0(·) and η(η(rA)). Fur-

ther, A specifies the duration of the aggregation epoch for each tree level.

Ticket Purchase

1. Pi picks a random string ri, and for CL its number ni. It generates (pki, ski).
2. Pi sends pki to the authority and obtains in return a sequence number si and

its authorization token ti = σA(pki).
3. Pi computes xi = η(ti) and connects to the Kademlia DHT using an already

connected contact provided by the authority or a separate tracker.
4. Pi prepares its initial aggregate ai = η(ticketi). For CL, ticketi = si||ri and

for LO, ticketi = si||(ni � η0(ri))||η(ni||si||ri), c.f. Sect. 3.1.

Distributed Random Process

1. After the ticket purchase deadline, A publishes the number of sold tickets n.
2. All Pi compute jointly the root aggregate aR. The ⊕-operation is given by

ai ⊕ aj = η(aij) with aij = ai||aj , if ai < aj , otherwise aij = aj ||ai. It is a
commutative variant of the binary Merkle tree scheme proposed in [11].

3. Proofs of protocol deviation in form of pairs of signatures are sent to A that
can reveal the corresponding players and revoke their right to claim a reward.

Winner Identification

1. A requests the root aggregate of multiple random Pi until a considerably large
majority of the sample confirmed one aR.

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 45

2. A publishes aR, rA and the winning number nw = η0(aR) � η0(rA).
3. For CL, A computes all xi = η(ti), orders all Pi by their Kademlia XOR

distance d(nw, xi) = nw � xi and players on a par by nw � si, and publishes
as many ordered xi as there are rewards. For LO, winners Pi have ni = nw.

Reward Claiming

1. The winner Pi sends all its confirmed aggregate containers to A to proof their
participation. For LO, Pi must also provide its ticketi and (si, ri).

2. Proofs are published for verification by other players.

Winner Verification

1. η(η(rA)) is computed for comparison with the previously published value and
nw is verified.

2. Players verify that winner Pi participated in the aggregation by comparing
its published containers with their computed containers.

3. For CL, player verify the order of the published winners and compare it to
their own positioning. For LO, ticketi is reproduced for the given (si, ri) and
its hash must equal ai found in the published confirmed aggregate containers.

4. If the rewards depend on the number of sold tickets n, n is compared to the
counter c of the root aggregate container.

5 Evaluation

We analyse the protocol with respect to the security properties introduced in
Sect. 1 under the adversary model from Sect. 4.1 of an adversary D controlling
a fraction b < 0.5 of dishonest players of n players in total. The performance of
the protocol depends upon b, the security parameter l and the distribution of
honest and dishonest players over the tree. We assume that D and A collude.

Most Likely Scenario. Due to the uniform player distribution and for a rea-
sonably sized b, D has most likely a dishonest majority only in subtrees with
large depth d > 1 containing only a small number n′ of players. l can be adjusted
to detect container manipulations of subtrees with n′ ≤ l using signatures. Most
likely, all dishonest players have to provide a container with their signature to
at least one honest player, which corresponds to a commitment to their ticketi,
before D can learn all containers for a given depth d.

1. The correctness of the random process and its implicit verification [11] due
to the distributed computation is with great probability ensured, because D
cannot change or add tickets after a prediction becomes possible.

2. The privacy of players is ensured. Other players cannot learn the identity of
each other from the exchanged messages.3

3 The leak of the identity due to the communication channel, e.g. by the IP address,
may be solved using privacy networks like Tor and is out of the scope of this paper.

46 S. Grumbach and R. Riemann

3. The authorization token ti ensures eligibility. A participation after the aggre-
gation has started even with a valid ti is unlikely, because honest players close
in the tree deny belated players and do not confirm their containers.

4. The commitment scheme for LO provides confidentiality, because number ni

of Pi cannot be revealed without knowledge of the secret ri [5].
5. The counter c of the root aggregate container allows to examine the com-

pleteness of the reward.

Worst Case Scenario. The distribution of honest and dishonest players
is highly unbalanced. We assume a majority of dishonest players in a sub-
tree ̂S(xe, d) for some d with n′ > l. Neither the majority nor the confirmation
criterion prevent a manipulation with certainty. The local minority of honest
players may be excluded from the aggregation unable to proof their participa-
tion. As the manipulation is bounded locally, correctness and eligibility are only
locally violated.

If D has further in all other non-sibling subtrees ̂S(·, d) at least one dishonest
player to provide the local aggregate container, D can compute with the secret rA
from A the winning number nw while the container for ̂S(xe, d) is not yet known
to honest players and may be altered to change nw. A proof of work is required
to choose a particular nw. The correctness is not ensured.

The distribution of n′ honest or dishonest players to ̂S(xe, d) and its sibling
subtree S(xe, d) follows the Binomial distribution B(n′, p) with p = 0.5 and a
variance of the ratio of players in ̂S(xe, d) of p2/n′. As a result, the probability of a
local dishonest majority decreases reciprocally in n′. n′ decreases for increasing d,
but for large d, it is unlikely to have a dishonest player in all non-sibling subtrees
for the limited number of dishonest players.

Scalability. Kademlia’s communication and memory resources are O (log n)
[19]. The same applies to the distributed aggregation and its verification [20] if
upper bounds are defined for the number of attempts and stored container can-
didates of the confirmation and correction mechanism of the distributed aggre-
gation.

6 Conclusion

We have presented a novel online lottery protocol that relies on a distributed
random process carried out by all players in a peer-to-peer manner. Players are
assumed to participate throughout the random process. Unlike Chow’s protocol
[5], it allows for both classic lottery and lotto. It provides correctness and ver-
ification of the random process based on the assumption of a well-distributed
minority of dishonest players. In the most likely scenario, the correctness of the
random process is based on an information theoretical secure sharing scheme
instead of assumptions on the communication or computational capacities of
the authority or the adversary. Further, cryptography has been reduced to asym-
metric encryption and signatures. As in many distributed protocols [6,15], the

Distributed Random Process for a Large-Scale Peer-to-Peer Lottery 47

provided security is probabilistic, which may be acceptable for a lottery. We
leave for future work a quantitative analysis of the impact of the adversary.

A basic demonstrator has been implemented to carry out a classical lot-
tery. The authority has been omitted in favour of free participation. Redundant
requests for Byzantine fault-tolerance are not covered yet. Based on HTML5, it
runs in the browser. The implementation of Adavokat is based on the Kadem-
lia library kad4 and was tested previously with up to 1000 simulated nodes
[20]. Message passing among players relies on WebRTC allowing for browser-to-
browser communication. Tests have been run with few players at this stage.

Acknowledgments. The authors would like to thank Pascal Lafourcade and
Matthieu Giraud for fruitful discussions concerning the security of the lottery protocol
and the underlying distributed aggregation algorithm.

References

1. Isidore, C.: Americans spend more on the lottery than on ... (2015). http://money.
cnn.com/2015/02/11/news/companies/lottery-spending/. Accessed 16 Feb 2017

2. Rodgers, G.: Guilty verdict in Hot Lotto scam, but game safe, official says (2015).
http://dmreg.co/1JbGgRN. Accessed 23 Jan 2017

3. Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotteries: applications of
delaying functions. In: Proceedings of the Financial Cryptology 1998, pp. 214–226.
Springer (1998). doi:10.1007/BFb0055485

4. Zhou, J., Tan, C.: Playing lottery on the internet. In: Qing, S., Okamoto, T., Zhou,
J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 189–201. Springer, Heidelberg (2001).
doi:10.1007/3-540-45600-7 22

5. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: An e-Lottery scheme using
verifiable random function. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà,
A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol.
3482, pp. 651–660. Springer, Heidelberg (2005). doi:10.1007/11424857 72

6. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

7. Perez-Marco, R.: Bitcoin and Decentralized Trust Protocols (2016)
8. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. In: Arctic-

Crypt 2016, pp. 1–20 (2016)
9. Lambrinoudakis, C., Gritzalis, D., Tsoumas, V., Karyda, M., Ikonomopoulos, S.:

Secure electronic voting: the current landscape. In: Gritzalis, D.A. (ed.) Secure
Electronic Voting, pp. 101–122. Springer, USA (2003)

10. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. In: NIST
Workshop on Elliptic Curve Cryptography Standards 3 (2015)

11. Liu, Y., Hu, L., Liu, H.: Using an efficient hash chain and delaying function to
improve an e-Lottery scheme. Int. J. Comput. Math. 84(7), 967–970 (2007). doi:10.
1080/00207160701294426

12. Markowitch, O., Dossogne, J.: E-voting: Individual verifiability of public boards
made more achievable. In: 31st Symposium on Information Theory in the Benelux,
pp. 5–10. Werkgemeenschap voor Informatie en Communicatietheorie (2010)

4 http://kadtools.github.io/, v1.6.2 released on November 29, 2016.

http://money.cnn.com/2015/02/11/news/companies/lottery-spending/
http://money.cnn.com/2015/02/11/news/companies/lottery-spending/
http://dmreg.co/1JbGgRN
http://dx.doi.org/10.1007/BFb0055485
http://dx.doi.org/10.1007/3-540-45600-7_22
http://dx.doi.org/10.1007/11424857_72
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1080/00207160701294426
http://dx.doi.org/10.1080/00207160701294426
http://kadtools.github.io/

48 S. Grumbach and R. Riemann

13. Kuacharoen, P.: Design and implementation of a secure online lottery system.
In: Papasratorn, B., Charoenkitkarn, N., Lavangnananda, K., Chutimaskul, W.,
Vanijja, V. (eds.) IAIT 2012. CCIS, vol. 344, pp. 94–105. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-35076-4 9

14. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). doi:10.1007/3-540-45472-1 7

15. Gambs, S., Guerraoui, R., Harkous, H., Huc, F., Kermarrec, A.-M.: Scalable and
secure aggregation in distributed networks. arXiv e-prints (2011)

16. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

17. Maymounkov, P., Mazieres, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. Springer, Heidelberg (2002)

18. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

19. Cai, X.S., Devroye, L.: A probabilistic analysis of kademlia networks. In: Cai, L.,
Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 711–721.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-45030-3 66

20. Riemann, R., Grumbach, S.: Secure and trustable distributed aggregation based
on kademlia. In: Proceedings of the 32nd IFIP SEC. Springer, Rome (2017)

21. Baumgart, I., Mies, S.: S/Kademlia: a practicable approach towards secure key-
based routing. In: Proceedings of the ICPADS 2007, pp. 1–8. ICS, USA (2007)

http://dx.doi.org/10.1007/978-3-642-35076-4_9
http://dx.doi.org/10.1007/3-540-45472-1_7
http://gavwood.com/paper.pdf
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/978-3-642-45030-3_66

Storing Data Smartly (Data storage)

DDFlasks: Deduplicated Very Large
Scale Data Store

Francisco Maia(B), João Paulo, Fábio Coelho, Francisco Neves, José Pereira,
and Rui Oliveira

HASLab, INESC TEC, University of Minho, Braga, Portugal
{fmaia,jtpaulo,jop,rco}@di.uminho.pt,

{fabio.a.coelho,francisco.t.neves}@inesctec.pt

Abstract. With the increasing number of connected devices, it becomes
essential to find novel data management solutions that can leverage their
computational and storage capabilities. However, developing very large
scale data management systems requires tackling a number of interesting
distributed systems challenges, namely continuous failures and high lev-
els of node churn. In this context, epidemic-based protocols proved suit-
able and effective and have been successfully used to build DataFlasks,
an epidemic data store for massive scale systems. Ensuring resiliency in
this data store comes with a significant cost in storage resources and
network bandwidth consumption. Deduplication has proven to be an
efficient technique to reduce both costs but, applying it to a large-scale
distributed storage system is not a trivial task. In fact, achieving signif-
icant space-savings without compromising the resiliency and decentral-
ized design of these storage systems is a relevant research challenge.

In this paper, we extend DataFlasks with deduplication to design
DDFlasks. This system is evaluated in a real world scenario using
Wikipedia snapshots, and the results are twofold. We show that dedupli-
cation is able to decrease storage consumption up to 63% and decrease
network bandwidth consumption by up to 20%, while maintaining a fully-
decentralized and resilient design.

1 Introduction

For many years now we hear promises of the emergence of the Internet of Things
(IoT) and of Edge Computing. Still, the world of interconnected things has
remained more an idea than a concrete reality. Recent predictions from the Inter-
national Data Corporation (IDC) studies, however, point to significant develop-
ments in this area and it is expected that by 2020 there will be an extraordinary
number of 32 billion things connected to the Internet [14]. Moreover, the amount
of digital data will grow from 4.4 ZB in 2013 to 44 ZB in 2020.

Naturally, an explosion in the number of connected devices and in the amount
of data being produced and exchanged demands for novel approaches to data man-
agement. Massive scale systems, composed of thousands to millions of devices,
exhibit specific characteristics that are specially challenging and need to be

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 51–66, 2017.
DOI: 10.1007/978-3-319-59665-5_4

52 F. Maia et al.

addressed. Namely, the increase in scale is necessarily accompanied by an increase
in system dynamism. Such dynamism arises both from failures that, in these envi-
ronments, become the rule instead of the exception and by the natural constant
entrance and departure of devices, which we will call nodes from now on.

Alongside, real world applications start to struggle to find affordable systems
to manage and store massive amounts of data. As an example, the Wikimedia
Foundation is currently requesting help to users that have spare storage and
bandwidth capabilities to store and host Wikipedia snapshots1. These snapshots
contain the entire history of Wikipedia across distinct periods of time and are
valuable for a wide variety of users including researchers. However, they are
not easily accessible due to limited storage capabilities. Thus, offering a massive
scale storage system able to accommodate the entire Wikipedia and its history
relying only on commodity hardware becomes of significant interest. Moreover,
serving all these snapshots from an unified storage service, instead of scattering
the snapshots across independent storage systems, is key for users to have an
efficient way of accessing the full history of Wikipedia.

Recent research work proposed a data store entirely built with epidemic
protocols, tailored precisely for large scale environments [18]. The success of
DataFlasks, with respect to coping with high levels of system dynamism, lies
in its autonomous and unstructured approach to node organization and in its
pro-active approach to fault tolerance. In DataFlasks, nodes autonomously
organize themselves into groups that are responsible for a subset/partition of
the data. Then, the number of nodes in a group determines the data replication
factor for the data being stored. The effectiveness of a pro-active approach to
data replication comes, unfortunately, with an increase in storage and network
resource usage. In fact, bandwidth is actually a bottleneck for scalability in this
type of systems and, even though DataFlasks autonomous data partitioning
alleviates the problem, this still weakens its applicability in real world scenar-
ios [2]. Alongside, as all nodes belonging to the same group are fully-replicated,
the available storage space provided by the group is limited to the size manage-
able by the single node with the lesser storage capabilities. This restriction is of
special importance if we consider each node to be commodity hardware or even
smaller edge devices where storage space available is limited.

Data deduplication has proven to be an efficient technique for finding and
eliminating duplicate content in large volumes of data [21]. Moreover, it was used
in the past to reduce the network bandwidth consumption of distributed storage
systems. However, leveraging deduplication in a massive-scale data store such as
DataFlasks is not a trivial task. One approach is to apply local deduplication
only for the data stored in each node. As this approach does not eliminate dupli-
cates stored across distinct nodes, it requires an efficient content-aware policy for
distributing data to nodes that maximizes the obtainable space-savings. Other
approach is to perform global deduplication across data stored in all nodes, thus
finding redundancy across the entire storage system. However, finding dupli-
cates across all nodes requires global metadata and coordination, which not

1 https://dumps.wikimedia.org.

https://dumps.wikimedia.org

DDFlasks: Deduplicated Very Large Scale Data Store 53

only increases the complexity of the system but may also compromise the decen-
tralization, fault-tolerance, and performance of systems such as DataFlasks.

Contributions. We propose DDFlasks, a massive scale deduplicated data store.
It shows the applicability of integrating DataFlasks, a massive scale data store,
with deduplication, without loosing any of its design guarantees, such as decen-
tralization and high churn tolerance. Additionally, we evaluate its effectiveness
using a real workload, specifically storing and serving simultaneously both the
most recent versions of Wikipedia [10] articles and their older historical versions.
In fact, using real data from Wikipedia, we show that our system is able to store
and serve articles across several nodes with high levels of storage savings up to
63% and network savings up to 20%.

Roadmap. The rest of the paper is organized as follows. In Sect. 2 we describe
the architecture and design of DataFlasks, the baseline system used to build
our novel approach. Next, in Sect. 3 we describe the Wikipedia use case and
present some preliminary results that motivate the usage of deduplication. In
Sect. 4 we introduce DDFlasks. We then proceed to DDFlasks evaluation in
Sect. 5 and present related work in Sect. 6. The paper is concluded in Sect. 7.

2 DataFlasks: Epidemic Store for Massive Scale
Systems

The pivotal idea guiding the design of DataFlasks is decentralization, where
each node is autonomous and all nodes play the same role [18]. A node progresses
relying solely on local decisions without depending on any other node and on any
kind of hierarchy. When a client issues a request, such request is disseminated
throughout the system and each node decides how to handle it. Store requests
are composed by an identifier of the object to be stored that must be unique, by
the version of the object to be stored, and by the object’s data. Storing several
versions of the same object is important for many applications that resort to
data versioning.

Briefly, the API is composed by a get and put operation. When a get is
received, if the node holds the corresponding triple (key, version, object) it replies
to the client. Otherwise, it ignores the request. In the case of a put operation,
the node locally decides to store the corresponding triple (key, version, object)
or to discard it. The decision to store or not the data is used to implement
data distribution and replication. DataFlasks ensures that a sufficient number
of nodes actually decides to store each data object in order to guarantee data
replication, and thus, to tolerate node failures.

The set of nodes that takes the same decisions on whether to store data objects
or not is viewed as a group. Accordingly, the decision of which data to store is
reduced to the decision of which group a node belongs to. Once that decision is
made, each node is responsible for a subset of the data according to a determinis-
tic mapping between the pair (key, version) of an object and the group it belongs to.

54 F. Maia et al.

Data is thus distributed by groups, providing load balancing, and replicated a num-
ber of times equal to the size of the group. Strikingly, each node is able to decide
to which group it belongs without requiring any kind of coordination.

In order to achieve this, the system is entirely built with unstructured and
pro-active epidemic protocols. They are characterized by their independence
from any kind of structure or hierarchy among nodes and by the fact that they
rely on pro-active mechanisms for fault tolerance that are able to antecipate
system repair. The result is a completely decentralized and coordination-free
data store. Characteristics that make DataFlasks inherently scalable and able
to cope with unprecedented levels of system dynamism, may it be caused by
membership instability or by failures.

In the system’s architecture, each node runs five components: Membership,
Group Construction, Storage, Replica Maintenance and Interface. In order to
provide some background and context to the design of the system proposed in
this paper, we briefly describe how each component works in the original setting.

The Membership component is responsible for providing each node with a list
of available nodes in the system. It does so guaranteeing that such list represents
a random sample of nodes from the entire system and that it is periodically
refreshed. It is important to notice that each membership list is always a small
subset of nodes with respect to the system size, which allows the system to scale.

The Group Construction This component is responsible for determining to
which group the node belongs. As described previously, the group determines
which data to locally store or to discard. Without going into much detail, this
component works by leveraging information being propagated at the member-
ship level to estimate the number of groups needed to satisfy a desired, user
defined, replication factor. Then, the node places himself on one of those groups
guaranteeing that system nodes are uniformly distributed across the different
groups. For a detailed description of the protocol please refer to [18]. Once in a
group, each time a put operation is issued for a certain key, that key is mapped
deterministically to a group by using an hash function. As described further on,
this mapping allows different versions of the same key to be placed in the same
replication group. This will allow maximizing deduplication effectiveness.

The Storage component abstracts the actual medium to which the data is
persisted. Currently, this component can be configured to be a in-memory store
or a disk-based one. This paper introduces a new storage component to support
data deduplication.

In order to maintain the replication level in the presence of churn, the Replica
Maintenance component periodically publishes to other nodes in the group the
set of keys it currently holds locally. Within a group, all nodes store the same
set of data objects. Upon receiving a maintenance message, each node checks if
it is storing all keys correspondent to the group. If not, it requests the missing
data from the nodes in its group. In this paper we provide a new replica mainte-
nance component which allows to optimize this process by avoiding to transmit
duplicate data through the network.

DDFlasks: Deduplicated Very Large Scale Data Store 55

Finally, the Interface component is responsible for handling the incoming
connections from other nodes and managing the request workflow in the system.
In order to issue put or get requests the client only needs to be able to contact
a single node in the system. The request is then forward appropriately to the
correct nodes that can fulfill it.

3 Duplicates in the Real World

Many large information systems tend to exhibit a significant amount of duplicate
data [19]. This is particularly true for storage systems that evolve incrementally
with time. A paradigmatic example is Wikipedia, also known as the Internet
encyclopedia [10]. The Wikipedia allows users to create and complement articles
about virtually any subject. Articles evolve through time and periodic snapshots
of the entire Wikipedia are stored for future reference. Because Wikipedia serves
a very high volume of requests and stores a growing large volume of data, it
is a suitable use case for DataFlasks that can leverage its highly scalable
infrastructure to serve Wikipedia’s high demand.

Naturally, different versions of the same article share significant portions
of the text, which is redundant when stored. This means that a storage sys-
tem holding the full history of Wikipedia is expected to have a considerable
amount of duplicate content [11]. A possible approach to eliminate this redun-
dancy would be to use a traditional compression technique such as gzip. However,
compression techniques are ideally designed to eliminate intra-file redundancy
or redundancy over a small group of files, typically stored together in the same
operation. In the Wikipedia use-case, new versions of the same article are created
over time and must be retrieved efficiently if requested. This means compress-
ing and decompressing data several times which results in a significant penalty
on storage requests performance. Another possible approach to eliminate such
redundancy and to spare storage space is to use incremental backup techniques
such as delta-encoding. With this technique new versions of a previously stored
article are stored as deltas or diffs that only contain the content that was actu-
ally modified. These deltas can then be applied to the original (base) article to
rebuild a specific version of the article. Although this technique is efficient in
terms of storage space savings, it requires additional computational power and
it is slower than deduplication, specially when articles have a large number of
versions and several deltas must be applied to the base article to retrieve latest
versions. For this reason, this paper proposes the use of block-based dedupli-
cation, which allows users to query any article version in the past and get the
response without the need to rebuild a set of deltas or decompress data [21].

To validate that deduplication is, in fact, suitable and effective for a deploy-
ment where DataFlasks is serving Wikipedia articles, we performed the follow-
ing experiment. We used 15 monthly Wikipedia snapshots taken for the period
between November of 2014 and January of 2016 (See footnote 1). Each snap-
shot has the latest full version of all articles belonging to the English version of
Wikipedia. The snapshots were processed by the order they were taken and the

56 F. Maia et al.

corresponding articles were stored in a way that mimics the distributed storage
approach taken by DataFlasks in a real deployment i.e., articles were divided
into groups and stored accordingly. Each group of articles represents the data
partition that would be assigned to a specific set of DataFlasks nodes. We then
focus our analysis on each one of the partitions. It is important to notice that
deduplication will be applied locally by each node. Consequently, nodes in the
same group, that replicate the same data partition, will store the same content,
which makes it sufficient to analyze a single node per group. Additionally, across
consecutive snapshots there are some repeated articles that remained unmodified
and were not stored in our experiment.

On the other hand, new versions of previously stored articles were routed to
the same data group, where their ancestors were persisted, and were stored as
new objects (files) with distinct version identifiers. This way, the experiments
stored the full content for each article version which is in conformity with the
rationale explained previously where our very large data store is used to serve
several articles and their distinct versions without requiring the usage of incre-
mental backup techniques.

Table 1. Analysis of duplicates results with 1024, 2048 and 4096 bytes Rabin finger-
prints for a single group of the DataFlasks configuration with 40 groups.

Fingerprint
Avg size

articles Total
space
(GB)

Total #
blocks

unique
blocks

#
duplicate
blocks

Avg #
copies/duplicated
block

Space
saved
(GB)

Duplicate
space %

1024 1,393,130 7.63 7,046,744 4,226,205 2,820,539 3.20 3.27 42.88

2048 1,393,130 7.63 3,995,416 2,870,780 1,124,636 2.59 2.59 33.99

4096 1,393,130 7.63 2,550,938 2,132,849 418,089 2.65 1.89 24.81

After populating the distinct data groups with the Wikipedia dataset the
global storage space in use was ≈305GB, corresponding to 55,745,648 articles.
In order to check the percentage of redundancy in the stored dataset, we resort to
the DupsAnalyser tool an open-source project (https://github.com/jtpaulo/
dupsanalyzer) that processes the content of files and extracts statistics for the
duplicate content found. Duplicates can be found either by searching for dupli-
cate blocks with a fixed or variable size. The latter resorts to an implementation
of the Rabin Fingerprint scheme for calculating variable-sized blocks and their
corresponding content hashes efficiently [20]. As Wikipedia articles are text arti-
cles, using variable sized blocks is a better choice for finding duplicates [11,21].
Briefly, lets consider two versions of the same article where version A only dif-
fers from version B by a single character that was added to the beginning of
the latter version. If the two articles are scanned with a fixed size partitioning
scheme, no blocks from version A will match blocks from version B. In contrast,
the Rabin fingerprint scheme uses a sliding window that moves through the data
until a fixed content pattern defining the block boundary is found. This approach
generates variable-sized blocks and solves the issue of inserting a single byte in

https://github.com/jtpaulo/dupsanalyzer
https://github.com/jtpaulo/dupsanalyzer

DDFlasks: Deduplicated Very Large Scale Data Store 57

the beginning of version B. More precisely, only the first block from version B
will differ from the first block of version A due to the byte addition, while the
remaining blocks will still be duplicate. Finally, the Rabin scheme is configurable
with target average, maximum and minimum block size, which allows avoiding
the generation of very small or large blocks while still keeping their sizes variable.
In the results discussed next, we used DupsAnalyser to process the articles,
and corresponding versions, stored at each data group. Individually, for each
data group, our analysis tool processed all stored files to find intra and inter-file
duplicates.

Distinct Group Sizes Results. Our first experiment was designed to check the
amount of duplicates found per group node when dividing articles into 10, 20 and
40 groups for different block sizes: 1024, 2048 and 4096 bytes. With 10 groups
each group node holds ≈30GB, with 20 groups ≈15GB and with 40 groups
≈7.5GB. We noticed that the percentage of duplicates found does not increase
significantly if a group holds more data, because most redundancy is originated
by storing distinct versions of the same article in the same group, which happens
identically for the three group sizes.
Single Group Analysis for the 40 Groups Scenario. Since the percentage of dupli-
cates does not change significantly when considering different number of groups,
we show in Table 1 a more detailed analysis of the stored content in a single group
for the experiment with 40 groups. The analyzed group holds 7.63GB of data
corresponding to more than one million articles. For each Rabin fingerprint size,
the total number of generated blocks diverges and, as expected, with a smaller
size it is possible to find more duplicates and have significantly higher space sav-
ings. However, reducing the block size increases the size of the metadata used to
index all stored blocks and to find duplicates.

To conclude, these results show that single-node deduplication with a vari-
able 1024 bytes fingerprinting scheme allows reducing 45% of the storage space
occupied by 15 snapshots of the English Wikipedia version.

4 DDFlasks

Recalling Sect. 2, data distribution and replication in DataFlasks is achieved
by dividing nodes into groups. Each group is responsible for a set of data and,
accordingly, each node belonging to that group will have to store that specific set
of data in its local storage. The Wikipedia study discussed in the previous section
shows that a significant percentage of duplicates exists in each node when all the
versions of a specific article are grouped together. In DDFlasks, this insight is
leveraged by ensuring that data objects identified by a key are always assigned
to the same group independently of their version. With this approach, all the
versions of an article are stored in the same group while clients can still retrieve
specific versions of an article by specifying the article’s key and the desired
version. This is achieved by taking into advantage the load balancing mechanism
from the original DataFlasks, which deterministically routes a certain key to

58 F. Maia et al.

Fig. 1. Deduplication in DDFlasks

a group. DDFlasks inherits characteristics from DataFlasks, such as fully-
decentralization. In particular, it resorts to node-local deduplication that does
not require any global index or coordination mechanisms that would impact
high-churn tolerance and the performance of storage requests [21].

In comparison with the baseline architecture discussed in Sect. 2, DDFlasks
is extended with storage and network deduplication mechanisms. The resulting
open-source system is available at http://github.com/fmaia/dataflasks.

First, a new storage component is provided with integrated in-line local stor-
age deduplication, which works as follows. In each node, duplicates are identified
and eliminated before actually being stored persistently. In the literature this
approach is known as in-line deduplication [21]. Duplicates are found by resort-
ing to an index that maps blocks with unique content to their respective storage
addresses. When a block is being written, a digest of the block’s content is calcu-
lated and the index is searched for a possible duplicate. If a duplicate exists, then
the new block does not need to be stored, otherwise, the block is stored and the
index is updated with a new entry for that block. A Rabin Fingerprint scheme
identical to the one described in Sect. 3 is used to divide files into variable-size
blocks and to calculate small digests of their content [20]. This way, the index
does not store the actual block but a smaller digest identifying the content of
that block. Fingerprints are deterministically calculated per-file. Thus, at each
node, storing files in different orders does not affect the correctness of the app-
roach. In order to retrieve files from the storage system, an additional metadata
structure, that we refer to as file recipe is used. Each file recipe identifies a single
file stored on DDFlasks and tracks the digests of the blocks that belong to
that specific file. The actual storage address of these digests can be consulted
at the index. Deduplication is thus achieved because file recipes with duplicate
content share digests that are mapped to the same storage block. Figure 1 shows
an example of the proposed single-node deduplication mechanism. As the first
step, File A is routed to the correct group of nodes. Then, in each node storing
the file, the file is divided into variable-sized blocks and a digest for the content
of each block is calculated. In the example, block1 and block3 have the same
content. Each digest is checked at the index and if not found, a new entry is
added while the corresponding block is stored in a append-only storage. In the

http://github.com/fmaia/dataflasks

DDFlasks: Deduplicated Very Large Scale Data Store 59

figure blocks b1 and b3 are duplicates, so only block b1 and b2 are stored. Finally,
the file recipe for File A is also kept at the node in order to fetch all the necessary
blocks when a client asks for that file. The index keeps the digests and corre-
sponding location for all blocks at the local storage which enables both intra-
and inter-file deduplication for all files stored in the same node. In Sect. 5 we
show that our approach is still able to achieve significant storage space savings
even when metadata space is accounted for.

In this paper we do not address data deletion functionalities. This is moti-
vated by the fact that DDFlasks is a large-scale system intended to store large
amounts of archival data. For use-cases such as the Wikipedia one used in the
paper, this is a practical assumption since the main goal is to keep all versions
of wikipedia articles without ever deleting them. As described in the previous
section, for this use case, single-node deduplication proves to be an efficient
technique to spare redundant storage space and avoids scalability issues found
in large-scale in-line deduplication systems that must maintain a global index
for finding duplicates across remote storage nodes [7,8].

The second deduplication mechanism proposed in the paper aims at opti-
mizing the network bandwidth used by DDFlasks data replication techniques.
In order to cope with high levels of node churn and to maintain desirable data
replication levels, each system node proactively and periodically contacts other
nodes in the same group to announce the set of files it is currently storing. If
one node receives this set and verifies that its local storage is currently missing
some files, it must contact other nodes in the same group to ask for those files.
Naturally, when churn levels become significantly high, the volume of data tra-
versing the network increases as more files are being exchanged. We propose to
mitigate this problem by employing deduplication to the data being exchanged
between nodes. In detail, nodes periodically announce to the group not only
the set of files that they currently hold but also the digests that compose those
files. When a node receives this list and verifies that a set of files is missing,
it checks first what digests from those files are already stored locally. This can
be done by leveraging the index metadata used for local storage deduplication.
Then, the node only requests the blocks that are actually missing in its local
storage. After receiving these blocks the node updates the index and creates the
corresponding file recipes. A key advantage of this mechanism is that it relies
on the metadata already used for performing in-line deduplication, which is an
idea that has proven successful in previous proposals for backing up data across
peer-to-peer networks [5,20]. Although this strategy requires sending the list of
digests when announcing the files that nodes currently hold, we show in Sect. 5
that it still spares significant network bandwidth. Note that although single-
node deduplication is already provided in several storage appliances, it is not
trivial to incorporate these solutions with DDFlasks and take advantage of the
deduplication metadata, that is in most cases is protected within the appliance,
to implement the previous network optimizations.

Implementation Details. The two deduplication mechanisms were implemented
on top of the current implementation of the system described in Sect. 2. The

60 F. Maia et al.

deduplication index is an in-memory HashMap that maps blocks digests (8 bytes)
to storage addresses (8 bytes)2. Similarly, file recipes are stored in an in-memory
HashMap that maps the identifier of a file (16 bytes, 8 bytes for the file key and
8 bytes for the version) to its file recipe whose size depends on the number of
block digests composing that file. DDFlasks is mainly thought for running in
commodity hardware nodes and the amount of data hold by each node is not
expected to be very large (tens to hundreds of GBs). So, the amount of metadata
held by each node is also expected not grow to large values. Additionally, in the
context of this paper we assume that, even in the presence of high levels of churn,
for each group there is always a set of live nodes. This way metadata for freshly
booted nodes can always be reconstructed from live nodes.

5 Evaluation

DDFlasks was evaluated in a real deployment to validate two main claims.
First, that deduplication allows sparing significant storage space for each node.
Second, that the network bandwidth used by nodes when exchanging messages
is also reduced.

To this end, we have performed a set of experiments that demonstrate the
effectiveness of the deduplication mechanism implemented. Each experiment was
run both in the original DataFlasks, non-deduplicated system (used as the
baseline) and in DDFlasks. The experiment set up consists of a cluster of
commodity hardware nodes equipped either with a 3.1GHz Dual-Core Intel i3
Processor, 8GB of RAM and a 7200 RPMs SATA disk or a 3.7GHz Dual-Core
Intel i3 Processor, 8GB of RAM and a SSD disk. All nodes are connected through
a gigabit ethernet switch. It is important to notice that hardware heterogeneity
does not impact the results of our experiments. In fact, it is out of the scope of the
present paper the evaluation of system performance metrics. These metrics will
mostly be affected by the deduplication approach being used i.e., fingerprinting
scheme, index scheme, etc. As discussed in previous work, each scheme adds
different tradeoffs in terms of storage performance, deduplication performance
and resources (RAM, CPU, Disk) consumption [21].

Instead, we focus on analyzing storage and network savings achievable by our
system. Similarly, the validation of DDFlasks scalability to thousands of nodes
and resiliency to high churn rations is already addressed in previous work [18].

Leveraging the results obtained in Sect. 3 and aiming at real world assessment
of DDFlasks, all the experiments presented next resort to actual Wikipedia
data.

5.1 Storage Savings

In order to evaluate the storage behavior of DDFlasks we have considered 15
Wikipedia monthly snapshots. Each one of these snapshots contains a set of
2 For each entry at the index, 4 extra bytes must be stored because variable sized

blocks are being used and their size must also be kept.

DDFlasks: Deduplicated Very Large Scale Data Store 61

articles from the English version of the Wikipedia. From snapshot to snapshot
each article may change reflecting its evolution through time. In the real world
deployment of Wikipedia, users see only a single (latest) snapshot. However, in
our scenario we want to go a step forward and it is our goal to simultaneously
store and serve several Wikipedia snapshots.

The 15 snapshots used amount to ≈115GB corresponding to ≈6.3 million
articles. Each article is stored as a single data object in the storage system and
each new article snapshot corresponds to a new version of such object. Moreover,
article versions are treated as new articles thus identified with the same key as
the original article but with a different version number. This information is used
by DDFlasks to collocate articles with their subsequent versions in the same
node group.

We configured both DataFlasks and DDFlasks to arrange nodes into 16
groups. Each group is responsible for storing a subset of the articles written to
the store. As described previously, all nodes belonging to a certain group store
the same data and deduplication is applied locally to each node. Consequently,
in order to observe the system’s behavior it is sufficient to analyze the behavior
of a single node per group. Other nodes in the same group will exhibit exactly
the same results as the ones presented next.

The experiment consisted on loading both DataFlasks and DDFlasks
with the 15 data snapshots writing each article and subsequent versions in
chronological order (from the oldest snapshot to the latest one). After the load
was completed we analyzed the storage usage of a node per group.

Table 2. Storage and metadata space occupied for DDFlasks and the DataFlasks
storage systems

DataFlasks DDFlasks

Global storage space (GB) 115.5 42.4
Average storage space/node (GB) 7.2 (± 0.08) 2.65 (± 0.05)
Global deduplication savings (GB) - 73.1
Average deduplication Savings/node (GB) - 4.55
Global metadata space (GB) 1.32 12.04
Metadata space/node (GB) 0.08 (± 0.003) 0.75 (± 0.05)

In Table 2 we present the results of this experiment. It is observable that
DDFlasks is significantly more frugal than DataFlasks with respect to stor-
age space usage. The former requires 42.4GB to store all the articles while the
latter, without deduplication, requires 115.5GB. In detail, 73.1GB are saved by
using deduplication which corresponds to a space saving of 63% when compared
to the baseline approach. Please note that, when compared with the motivation
tests described in Sect. 3, there is an improvement in the storage savings results.
This improvement is explained by the fact that, in this real deployment, we used

62 F. Maia et al.

Table 3. Space occupied by DDFlasks index and file recipe

Metadata Global space (GB) Space/node (GB)

Index 5.35 0.33 (±0.002)
File recipe 6.69 0.42 (±0.003)

a sample of the articles (and corresponding versions) used in the motivation
experiments, which happen to exhibit slightly higher redundancy between them.
Additionally, we can observe that the local storage space required by nodes in
different groups is similar and that the deduplication savings in each node are
identical to the one observed globally for the whole storage by considering a load
balancing strategy that routes articles uniformly across distinct groups.

Going into some detail, we also show in the table the space used by meta-
data structures. In both systems, more than 390,000 articles were stored in each
node. As expected, deduplication requires additional metadata space for storing
and indexing articles’ blocks, while in the baseline system it is only required a
simpler file recipe that points a specific file to its storage address. Nevertheless,
the space savings achieved clearly compensate the overhead introduced by the
extra metadata structures used in DDFlasks. In fact, less than 17% of the
space spared by deduplication is needed for fulfilling the extra metadata space
overhead. Finally, Table 3 shows the exact space occupied by the index and file
recipe metadata in our system. Again, the space occupied by each metadata
structure across different nodes does not change significantly.

5.2 Network Savings

Replication is achieved in our system resorting to periodic message exchanges
between nodes with information about the data objects they are storing. Each
time, following a message exchange, a node detects it is missing some object
it requests it from other nodes in the same group. Naturally, if the system is
stable, it is expected that nodes store all correspondent data objects and that
these message exchanges do not yield missing data requests. However, when
nodes fail or enter the system data objects need to be requested to maintain the
desirable replication levels.

In this experiment, we show that deduplication can reduce network consump-
tion of the data exchange mechanism between nodes. We focus on two nodes
belonging to the same group and observe their behavior when one of them keeps
failing and re-entering the system while the system is continuously being loaded
with new data. Naturally, it is expected that each time the node re-enters the
system it will request missing data from its peer that runs continuously. The
test ran for 2 h and after the first 30min one of the nodes was stopped in inter-
vals of 20min. In detail, after being stopped the node remains offline for 20min
and then it is rebooted again and it is kept online for additional 20min. This
cycle was repeated until the last 30min of the test when the two nodes were

DDFlasks: Deduplicated Very Large Scale Data Store 63

kept online. The node being stopped saved its metadata to disk periodically to
ensure that when rebooted the index and file recipe metadata were holding pre-
viously stored information. Again, 15 Wikipedia monthly snapshots were used,
and both systems (DDFlasks and baseline) stored more than 400,000 articles,
which corresponds to ≈8.3GB. Please recall that the two nodes were configured
to be in the same group so these were fully-replicated, each holding the same
amount of articles mentioned previously. In terms of storage space savings the
DDFlasks nodes stored 4.3GB while the baseline system nodes stored 8.3GB.
This corresponds to a space saving of ≈49%, which is in conformity with the
results discussed previously and in Sect. 3. The metadata space required by each
node is also compensated by the space savings as in the previous results.

The baseline approach, without network deduplication, sends more than
22GB through the network while the deduplication approach only sends
17.71GB. Note that these bandwidth consumption results consider all network
traffic. In fact, while most of this traffic is due to the data replication mecha-
nism, system control traffic and client requests are also accounted for in the total
value. Moreover, both systems rely on the UDP protocol that requires resend-
ing messages that are lost due to failures of the protocol, which also increases
network bandwidth usage. Nevertheless, these results show that only by using
deduplication for the data replication mechanism it is possible to spare ≈20% of
all the data exchanged across replicated peers.

The previous results show that significant storage space and network band-
width can be spared with DDFlasks. We expect these savings to be simi-
lar for other backup workloads with periodic snapshots. In fact, as presented
in [19], some of these backup workloads will have higher duplication ratios than
Wikipedia, meaning that the network and storage savings achievable should also
be higher.

6 Related Work

In the pursuit for large scale data management, traditional relational database
systems have been, for certain domains and applications, largely replaced by
new approaches to data management. Commonly know as NoSQL data stores,
these data management systems offer relaxed consistency guarantees when com-
pared with traditional relational database management systems. Examples are
Dynamo, PNuts, Bigtable, Cassandra and Riak [3,4,6,15,16]. One of the key
features of these data stores is how they implement data distribution and dis-
covery. Leveraging scalability properties of peer-to-peer protocols, all these data
stores rely on a distributed hash table (DHT) such as Chord or variants to dis-
tribute and locate data objects [24]. The exceptions are Bigtable and PNUTS,
which are centrally managed instead and typically use a specific DHT varia-
tion called ‘one-hop’ DHT [13]. This variation allows faster lookups but requires
complete membership knowledge, i.e., each node knows about all other nodes
in the system. Moreover, DHTs are know to struggle in the presence of high
levels of churn [23]. As a result, even if the distributed and peer-to-peer nature

64 F. Maia et al.

of these data stores is closely related to DataFlasks, this system presents an
unique unstructured and pro-active approach to node organization and data
replication.

To our best knowledge, applying deduplication to epidemic massive scale sys-
tems for improving the usable storage space of peers and to improve the network
bandwidth usage of gossip protocols and pro-active replication mechanisms is a
novel contribution of this paper. To achieve these goals, we leverage ideas of pre-
vious work on deduplication for distributed storage systems [21]. In more detail,
for achieving both storage and network savings, in-line local deduplication is
applied so that duplicates are eliminated before being stored persistently [8,22].
In fact, for sparing network bandwidth, duplicates are eliminated before even
being sent through the network [20].

Peer-to-peer in-line deduplication, where backups are made cooperatively
with remote nodes, was introduced in Pastiche [5]. In this system, nodes backup
their data to other remote nodes that are chosen by their network proximity
and data similarity. Only non-duplicate data is sent through the network and
since nodes with similar datasets are chosen, the amount of data that must
be sent through the network and stored in each peer is reduced significantly.
Other distributed deduplication systems propose novel load balancing designs
that route similar data to the same node in order to optimize the amount of
duplicates found and, consequently, maximize storage space savings. These pro-
posals rely on centralized indexes that have global knowledge of the content
stored in all nodes, on distributed indexes that scale better than the centralized
ones, on statefull and stateless routing algorithms, and on probabilistic routing
algorithms that do not need a global knowledge of the content of each node in
the system [1,7–9,11,12,17,25].

Although DDFlasks could benefit from some of the ideas and optimizations
discussed in previous deduplication systems, our current design uses the original
load balancing algorithm proposed by DataFlasks. Our approach collocates
different versions of the same data objects, which are expected to have dupli-
cated content. Deduplication is thus performed locally on each node i.e., each
node manages its own index and only eliminates duplicates that are stored on its
local storage. Strikingly, as shown in the paper, for realistic use-cases such as the
Wikipedia one, ensuring that the same versions of articles are routed to the same
DDFlasks group is enough to achieve significant storage space savings while
keeping metadata overhead acceptable. Additionally, our deduplication design
can be leveraged to spare not only storage space but also network bandwidth
usage across nodes. For epidemic data stores such as DDFlasks this is a novel
contribution that reduces significantly the number of messages exchanged across
nodes, thus improving the efficiency of current gossip protocols, which is of par-
ticular importance since bandwidth consumption is critical in these systems [2].
Furthermore, our approach does not impact the decentralization and high-churn
tolerance assumptions of the original DataFlasks system.

DDFlasks: Deduplicated Very Large Scale Data Store 65

7 Conclusion

This paper describes a deduplicated massive scale data store, which can handle
high volumes of data while minimizing storage resource usage. DDFlasks is
built resorting to a stack of proactive and completely decentralized gossip-based
protocols.

The core idea driving this store is effective data dissemination and indepen-
dent, local decisions of what to do with the data at each node. In-line dedupli-
cation is employed at each node and we show, resorting to a real world scenario,
that the system is able to save up to 63% of storage space, in comparison with
a non deduplicated one.

Additionally, DDFlasks design is completely decentralized and is able to
cope with unprecedented amounts of churn, while saving up to 20% in network
bandwidth consumption when compared with the original DataFlasks non
deduplicated system.

Acknowledgments. The research leading to these results was part-funded by (1)
Project TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept
with Industrial Impact/NORTE-01-0145-FEDER-000020 is financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF); (2) the ERDF European Regional Development Fund through the Oper-
ational Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme within project POCI-01-0145-FEDER-006961, and by National Funds
through the FCT Portuguese Foundation for Science and Technology as part of project
UID/EEA/50014/2013 and by (3) the European Union’s Horizon 2020 - The EU Frame-
work Programme for Research and Innovation 2014–2020, under grant agreement No.
732051.

References

1. Bhagwat, D., Eshghi, K., Long, D.D.E., Lillibridge, M.: Extreme binning: scal-
able, parallel deduplication for chunk-based file backup. In: International Sympo-
sium on Modelling, Analysis, and Simulation of Computer and Telecommunication
Systems, pp. 1–9 (2009)

2. Blake, C., Rodrigues, R.: High availability, scalable storage, dynamic peer networks:
pick two. In: Conference on Hot Topics in Operating Systems, vol. 9, p. 1 (2003)

3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

4. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data
serving platform. VLDB Endowment 1(2), 1277–1288 (2008)

5. Cox, L.P., Murray, C.D., Noble, B.D.: Pastiche: making backup cheap and easy. In:
Symposium on Operating Systems Design and Implementation, pp. 1–13 (2002)

6. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

66 F. Maia et al.

7. Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., Shilane, P.: Tradeoffs in
scalable data routing for deduplication clusters. In: USENIX Conference on File
and Storage Technologies, pp. 15–29 (2011)

8. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. Technical report MSR-
TR-2002-30, Microsoft Research, July 2002

9. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P.,
Szczepkowski, J., Ungureanu, C., Welnicki, M.: HYDRAstor: a scalable secondary
storage. In: USENIX Conference on File and Storage Technologies, pp. 197–210
(2009)

10. Wikimedia Foundation: Wikipedia web page (2016). https://www.wikipedia.org
11. Frey, D., Kermarrec, A.M., Kloudas, K.: Probabilistic deduplication for cluster-

based storage systems. In: ACM Symposium on Cloud Computing, pp. 1–14 (2012)
12. Fu, Y., Jiang, H., Xiao, N.: A scalable inline cluster deduplication framework for

big data protection. In: International Middleware Conference, pp. 354–373 (2012)
13. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In:

USENIX Symposium on Networked Systems Design and Implementation (2004)
14. IDC: the digital universe of opportunities: rich data and the increasing value of the

internet of things, April 2014. http://www.emc.com/leadership/digital-universe/
2014iview/executive-summary.htm

15. Klophaus, R.: Riak core: building distributed applications without shared state.
In: ACM SIGPLAN Commercial Users Functional Programming, p. 14 (2010)

16. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

17. Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezise, G., Camble, P.:
Sparse indexing: large scale, inline deduplication using sampling and locality. In:
USENIX Conference on File and Storage Technologies, pp. 111–123 (2009)

18. Maia, F., Matos, M., Vilaça, R., Pereira, J., Oliveira, R., Rivire, E.: Dataflasks:
epidemic store for massive scale systems. In: International Symposium on Reliable
Distributed Systems, pp. 79–88 (2014)

19. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. ACM Trans. Stor-
age 7(4) (2012). Article No. 14

20. Muthitacharoen, A., Chen, B., Mazières, D.: A low-bandwidth network file system.
In: Symposium on Operating Systems Principles, pp. 174–187 (2001)

21. Paulo, J., Pereira, J.: A survey and classification of storage deduplication systems.
ACM Comput. Surv. 47(1), 11: 1–11: 30 (2014)

22. Quinlan, S., Dorward, S.: Venti: a new approach to archival storage. In: USENIX
Conference on File and Storage Technologies, pp. 1–13 (2002)

23. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the USENIX Annual Technical Conference (2004)

24. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. Netw. IEEE/ACM Trans. 11(1), 17–32 (2003)

25. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: a similarity-locality based near-exact
deduplication scheme with low RAM overhead and high throughput. In: USENIX
Annual Technical Conference, pp. 26–30 (2011)

https://www.wikipedia.org
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm

Block Placement Strategies
for Fault-Resilient Distributed Tuple Spaces:

An Experimental Study

(Practical Experience Report)

Roberta Barbi1, Vitaly Buravlev2, Claudio Antares Mezzina2(B),
and Valerio Schiavoni1(B)

1 Université de Neuchâtel, Neuchâtel, Switzerland
{roberta.barbi,valerio.schiavoni}@unine.ch

2 IMT School for Advanced Studies Lucca, Lucca, Italy
{vitaly.buravlel,claudio.mezzina}@imtlucca.it

Abstract. The tuple space abstraction provides an easy-to-use pro-
gramming paradigm for distributed applications. Intuitively, it behaves
like a distributed shared memory, where applications write and read
entries (tuples). When deployed over a wide area network, the tuple space
needs to efficiently cope with faults of links and nodes. Erasure coding
techniques are increasingly popular to deal with such catastrophic events,
in particular due to their storage efficiency with respect to replication.
When a client writes a tuple into the system, this is first striped into
k blocks and encoded into n > k blocks, in a fault-redundant manner.
Then, any k out of the n blocks are sufficient to reconstruct and read
the tuple. This paper presents several strategies to place those blocks
across the set of nodes of a wide area network, that all together form the
tuple space. We present the performance trade-offs of different place-
ment strategies by means of simulations and a Python implementation
of a distributed tuple space. Our results reveal important differences in
the efficiency of the different strategies, for example in terms of block
fetching latency, and that having some knowledge of the underlying net-
work graph topology is highly beneficial.

1 Introduction

We are currently observing a deluge of data originated by our personal devices.
Distributed applications must be able to efficiently collect, store, process and
expose data. When dealing with such applications, developers need to settle
on a specific programming model, to (i) facilitate the implementation of such
systems and (ii) retain user-friendliness and ability to scale, both horizontally
and geographically. Distributed storage systems are one prominent example of
such applications. They are typically operated across wide area networks, such

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 67–82, 2017.
DOI: 10.1007/978-3-319-59665-5 5

68 R. Barbi et al.

as Amazon AWS, which currently spans across 15 geographical regions.1 In such
deployment scenarios, applications must transparently tolerate faults, a common
threat for distributed systems.

A trivial strategy to tolerate faults is to rely on replication. Block replication
obviously entails a huge storage overhead. A state-of-the-art solution to decrease
such overhead while providing the same level of fault-tolerance is to use erasure
coding techniques [15]. With a systematic (n, k) linear code, each codeword (an
element of the linear code) consists of n blocks: k source blocks for the original
data, and n− k redundant blocks. The storage overhead is n−k

k , and if the code
is Maximum Distance Separable (MDS) [15], any k of the n blocks are necessary
and sufficient to recover the original data.

From a fault tolerance point of view, it is optimal to place the n blocks
of a codeword on different logical units (with respect to failures), so that the
MDS code can tolerate up to n − k failures. A logical unit can be a single
node (in this case for the optimum it is sufficient to place different blocks of
a codeword on different nodes), but it can also be a cluster of nodes (e.g. a
set of machines physically hosted in a single room can go down at the same
moment if the cooling system of the room fails). In this second scenario, one
is tempted to spread different blocks of a codeword into separate and faraway
clusters. Although being optimal with respect to fault tolerance, this solution
affects negatively the latency to fetch the required blocks.

The case of distributed tuple spaces. A programming model can be made
of two separate pieces: the computation model and the coordination model. The
computation model allows programmer to build a single computational unit,
while the coordination model is the glue that binds separate activities into an
ensemble [10]. The tuple space paradigm, based on this idea, offers a flexible tech-
nique to program parallel and distributed systems, by providing the abstraction
of a shared space where all the processes can access. In this model, communi-
cation between processes is indirect and anonymous as it is done through the
shared (distributed) space. Moreover, data exists in a tuple space and do not
belongs to any process. Despite the simplicity of the model, very few implemen-
tations of tuple spaces offer fault tolerant facilities usually in the form of data
replication ([4,16]), with the drawbacks of space overhead and consistency main-
tenance. In this paper, we consider an extended, distributed tuple space system
with erasure-coding capabilities. A tuple to be inserted in the tuple space is
erasure-coded and its blocks are placed across the nodes joining the tuple space
group.

Contributions. First, we study how to distribute the encoded blocks of single
codewords over a large-scale network, in order to decrease the fetch latency. We
do so by designing and evaluating several different block placement heuristics,
over synthetic and real-world network topologies. Second, we evaluate how the
proposed heuristics behave with respect to data loss when injecting faults into

1 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
using-regions-availability-zones.html.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 69

the topology. Third, we leverage the results of our simulations to identify two
suitable placement strategies that we deploy atop a simple distributed tuple
space system with the aim of evaluating their performance in a practical setting.

This paper is organized as follows. First, we present the related work (Sect. 2).
Next, Sect. 3 introduces the tuple space paradigm. In Sect. 4 we describe the
block placement heuristics. Section 5 presents some modeling results that we
leverage to drive the prototype implementation. Section 6 presents its implemen-
tation details and the extensions done to support both erasure-coding techniques
and a pluggable mechanism to choose among the different placement strategies.
We present the evaluation of the complete prototype in Sect. 7. We conclude in
Sect. 8.

2 Related Work

The tuple space coordination model is very appealing for distributed systems
thanks to its space and time decoupling and its synchronization power. As a
consequence, researchers have tried to add fault-tolerance and security to tuple
spaces.

One recent result is DepSpace [3], a Byzantine fault-tolerant coordination
service, which employs process replication for handling crashes and providing
fault tolerance.

An alternative to process replication is block replication which entails the
problem of block placement.

Block placement policies have been mainly studied in MapReduce contexts
such as Hadoop [18]. The main purpose of Hadoop’s data placement policy is to
provide good balance between reliability, write bandwidth, read performance and
load balancing [19]. Placing all replicas on a single node incurs the lowest write
bandwidth penalty but it lacks redundancy: if the node fails, data is lost. On
the other hand, placing replicas in different data centers maximize redundancy,
but at the cost of bandwidth.

Hadoop’s default strategy is to place the first replica on the same node as
the client (for clients running outside the cluster, a node is chosen at random,
although the system tries not to pick nodes that are too full or too busy). The
second replica is placed on a different rack from the first, chosen at random.
The third replica goes to the same rack as the second, but on a different node.
Further replicas are placed on random nodes on the cluster, although Hadoop’s
block scheduler avoids placing too many replicas on the same rack. Our cluster-
aware and distance-aware strategies share some similarity with this approach, in
that they take into account zones of the system that are more sensitive to simul-
taneous failures. Several enhancement were introduced in Hadoop with respect
to block placement policies, such as pluggable policies (since v0.21) or guaran-
tees of even distributions across the cluster (since v0.17). We envision a similar
technique to rebalance blocks of the tuple space according to the announced load
ratio.

70 R. Barbi et al.

Fig. 1. Example of distributed tuple space: each node writes tuples in its own local
tuple space (left) and read tuples from local and remote nodes (right).

CoHadoop [7] is a lightweight Hadoop extension that gives applications a
fine-grain control of data location. Similarly, our scheduling policies allow deploy-
ers to choose the destination of the blocks according to different performance
criteria.

Adapt [13] introduced a strategy to mitigate availability heterogeneity issues
in non-dedicated distributed computing environments. Adapt dynamically dis-
patches data blocks according to hosts’ storage capacities. Through simula-
tions, this strategy is shown to reduce the application runtime by more than
30%, increasing data locality and reducing data migration cost, even though
the improvement of performances is less significant for environment with higher
network connectivity.

3 Tuple Spaces in a Nutshell

The tuple space paradigm, made popular by Linda [9], is an abstraction of shared
associative memory for parallel and distributed computing. A tuple space is a
repository of tuples that processes can concurrently access via pattern-matching.
Processes create new tuples (out or write operation), test the existence of a
tuple (read) and consume a tuple (via the in operation). The simplicity of this
coordination model makes this model intuitive and easy to use, also for dis-
tributed applications. In fact, some synchronization primitives (e.g. semaphores,
synchronization barriers) can be easily implemented [6] leveraging this coordina-
tion model. Tuple space interaction model provides time and space decoupling,
in that tuple producers and consumers remain anonymous with respect to each
other [8]. Moreover a tuple has to survive its producer’s termination, which can
be caused by a node crash or due to the ending of the normal execution. In a
distributed tuple space, each node writes tuples in its own local space, but it can
read tuples also from remote ones. For example, in Fig. 1 node D reads also the
tuple produced by node C.

Despite the wide development of tuple space implementations [5], very few
of them offer support for distribution. While some systems use replication to
guarantee data availability [16] or to be resilient to Byzantine faults [4], no
existing system handle link or node faults to guarantee availability of data via
erasure-coding. The extensions presented in Sect. 6 fill this gap.

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 71

4 Block Placement Strategies

In this section we describe several heuristics for block placement. Data is stored
in the nodes of a graph representing a distributed storage system adding redun-
dancy via standard [10,14] Reed-Solomon code. The aim of the code is to map
10-blocks-inputs into 14-blocks-codewords in such a way that any 10 encoded
blocks are sufficient to recover the original 10. In other words, this linear code
can withstand loss of any 4 blocks of a codeword. Then the code provides the
same level of fault-tolerance as 5 times replication while entailing a storage over-
head of 40% only.

In this configuration, from a fault-tolerance point of view, it is optimal to
place the 14 blocks of a codeword on units failing independently, such as geo-
graphically remote nodes. In reality, nodes hosted in the same data center have a
higher likelihood to fail or being unreachable at the same time. Indeed there are
several threats that can lead a data center to a power outage. We can mention
cyber attacks, UPS system failures, air conditioner failures or human errors [11].

The proposed strategies must consider a trade-off between:

– Latency efficiency: placing blocks apart from each other negatively affects the
fetch latencies;

– Failure resiliency: if related blocks are placed geographically close to each
other, a failure affecting a wide geographical area will affect several blocks at
once.

With the aim of understanding experimentally this trade-off, we study 5
different placement heuristics. They take into account several structural graph
properties (e.g. the clustering degree) with the objective of minimizing the
latency for fetching blocks.

Fig. 2. Left: random graph used in this experiment. Center and right: blocks distrib-
ution induced by the placement strategies under study.

Round-robin (rr). The graph is divided into K clusters C1, . . . , CK using K-
means algorithm [12]. We place the first block in a random node inside cluster
C1, the second block in a random node in cluster C2 and so on. We proceed until
all blocks are placed.

72 R. Barbi et al.

Fig. 3. Left: scale-free graph used in this experiment. Center and right: blocks distri-
bution induced by the placement strategies under study.

Degree proportional (deg). This strategy places more blocks in nodes with
higher degree. Intuitively, it let nodes with higher network capacity serve more
blocks, irrespectively of their geographical location.

Cluster-aware (ca). This strategy assumes knowledge of the clustering of the
network and places blocks in the cluster hosting the emitting node and two neigh-
boring clusters. Using K-means, we divide the graph in K cluster C1, . . . , CK.
We say that cluster Ci is at distance 1 from cluster Cj if there is an edge of
the graph with source/target in Ci and target/source in Cj . For each Ci, we
compute all clusters being at distance 1 from Ci.

We say that clusters Ci and Cj are at distance δ from each other if we must
cross δ−1 clusters to go from Ci to Cj and this is the smallest number possible.
For each Ci, we compute all clusters being at distance 2 from Ci.

In our simulations, we statically precompute the distances between clusters.
We select a first cluster C at random for each codeword. Then, we extract at
random 8 nodes from C, 4 different ones from a cluster at distance 1 from C,
and finally 2 more from a cluster at distance 2. The chosen nodes receive the
14 blocks of the codeword. Notice that this heuristic needs at least 3 clusters to
work.

Distance-aware (da). This strategy takes into account the distance between
the node emitting the block and the other nodes in the graph. It assumes the
knowledge of the diameter of the graph (d max), and proceeds as follows. First,
3 ranges of node-to-node distances (3 being a parameter of the algorithm) must
be fixed: short (from the minimum to the 33rd percentile of d max), mid (from
the 33rd to the 66th percentile of d max), and long from the 66th to d max. Then,
for each codeword the algorithm picks a node N at random, and respectively 7
short-range nodes, 4 at mid-range and 2 from long-range nodes, for a total of
14 target nodes. Finally it places the 14 blocks of the codeword in such nodes.
We report results for 3 ranges (da3), for 4 ranges (da4, for which the percentiles
are 25th, 50th, 70th and the number of blocks are 6, 4, 2, 1 for each range,

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 73

Fig. 4. NREN topology and its blocks distribution.

respectively) and finally for 5 ranges (da5, using the percentiles 20th, 40th, 60th,
80th and the number of blocks are 5, 5, 1, 1, 1 for each range respectively).2

Random-Degree (drnd). This strategy combines a naive random strategy with
deg. Each strategy contributes for the placement of half of the blocks.

5 Simulation Results

This section presents the results of our simulations with the aim of evaluating
how the different placement strategies perform with respect to fetch-latency and
data loss.

Load Balancing. We begin by studying how the strategies spread blocks on
4 different graph topologies. First, we consider a random graph of 1000 nodes,
as depicted in Fig. 2 on the left, where we highlight the 10 clusters computed
by K-means using the Euclidean distance between nodes. The distribution of
blocks among nodes is presented in Fig. 2 (right). As expected, the rnd strategy
produces a Gaussian distribution, while the other approaches tend to flatten
and/or shift the bell.

Figure 3 shows topology and block distribution for a scale-free graph of 1000
nodes built using the preferential attachment method [2]. This topology closely
maps a real Internet topology, yet is simple to study and analyze. We observe
that deg and drnd produce a long-tail block distribution: several nodes have few

2 The number of blocks assigned to each class of range nodes (da3, da4, da5) has been
experimentally proved to work better in practice.

74 R. Barbi et al.

blocks (right side of the figure), while few nodes store plenty of blocks (left side
of the figure).

Finally, we consider two real-world topologies. The first is the Full European
Nren network [14]. This graph has 1157 nodes and 1465 edges. When computing
10 clusters, we observe 1170 inter-cluster edges (i.e. source and destination nodes
belong to different clusters). Topology and block distributions are presented in
Fig. 4. As an empirical confirmation that scale-free graphs are well-suited for
representing Internet topologies, we underline the similarity between the two
block distributions.

The second real-world topology, depicted in Fig. 5, is the Cogent network [14].
It is smaller than the Nren topology (197 nodes, 245 edges) nevertheless it
extends across Europe and US. This topology presents trans-oceanic links, with
13 edges to connect nodes across the Europe and North America. Different ranges
in the block distribution with respect to other graphs are due to the much smaller
number of nodes (while we distribute the same amount of data blocks).

Overall, block distributions generated by the da and rr strategies tend to be
bell-shaped, while dar and deg entail left-sided pick and long tail corresponding
to few blocks in many nodes and few nodes hosting many blocks respectively.

For Nren and Cogent, we know the geographical coordinates of the nodes.
To take into account of the curvature of the Earth and place more precisely the
centroids of the clusters, we use the Haversine distance [17] as K-means distance
function.

We fix the number of cluster K = 10 in our simulations except for Cogent
topology which is split in K = 2 clusters corresponding to USA and Europe. For
the same reason, results of ca are not available for Cogent, since the heuristic
requires at least 3 clusters.

Fig. 5. Cogent topology and its blocks distribution.

Fetching latency. We continue by evaluating how the proposed strategies differ
in terms of block recovery latency, as observed by the clients wishing to recon-
struct matching tuples. We assume that the fetch-latency is proportional to the
distance between nodes. Hence, we measure the length of the minimum paths
between the node hosting the target block and the client.

We observe that a node storing a lot of blocks we necessarily need to fetch
only few ones to reconstruct tuples. Hence, for each topology and each placement

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 75

Fig. 6. Distance for fetching blocks (lucky node).

Fig. 7. Distance for fetching blocks (unlucky node).

heuristic, we distinguish 3 types of clients based on the number of blocks they
store. The lucky and the unlucky node stores the greatest and the smallest
amount of blocks respectively.

We use a representation based on stacked percentiles throughout the reminder
of this section. The white bar at the bottom represents the minimum value, the
pale gray on top the maximal value. Intermediate shades of gray represent the
25th, 50th –the median– and 75th percentiles. We compare the results against
a baseline rnd strategy that randomly places blocks across the graph. Figures 6
and 7 presents the case of the lucky and unlucky node respectively.

These results validate the intuition that the number of blocks the client is
storing greatly affects the observed fetch-latency. For instance, da3 performs
better than other heuristics in 3 out of 4 topologies when the client is lucky.

76 R. Barbi et al.

However, this is not the case for the unlucky case, where deg and rr perform
better instead. These observations suggest that no strategy wins in all possible
topologies, and that deployers need to carefully consider the different trade-offs
for their applications and workloads.

Fetching latency under faults. Next, we perform a set of experiments that
faults into the graph. For each graph, we select the most populated among the
10 clusters and we crash 1% of its nodes. This setting simulates a catastrophic
event occurring to nodes geographically close to each other. Once the faults are
injected, we use the lucky nodes (Fig. 8) and unlucky nodes (Fig. 9) to try to
reconstruct all data stored.

During these simulations, we did not observe any data loss. Hence, the heuris-
tics are spreading blocks sufficiently apart from each other to tolerate crashes
within the same cluster.

However, when injecting faults the fetch-latency highly depends on the partic-
ular failing nodes. In the case of the Cogent topology, the deg strategy greatly
improves the results produced by the rnd placement, while on the scale-free
graph performance degrades for the unlucky client. The da3 strategy outper-
forms the other heuristics in the Nren topology. More in general, distance-aware
heuristics seem to be well-suited for the random graph.

Fig. 8. 1% crashes in one cluster, lucky node.

Statistical analysis. Finally, to evaluate the statistical significance of the dif-
ferences recorded by the simulations between the various heuristics, we perform
two sets of t-tests [12] on fault-free graphs. First, we build the dataset with one
entry for every node. In this entry we compute the cumulative distance, that
is, the sum of the length of all minimum paths covered to retrieve all data in
the system from that particular client. We fix a topology and compare different
heuristics against each other. We find the following p-values:

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 77

scale-free graph random graph Nren Cogent
t.test(rnd,deg) 0.2486 0.03055 0.00761 0.7828
t.test(rnd,da3) 0.4805 0.3242 0.3774 0.2203

These p-values answer the question: “what is the probability that the means of
the cumulative distances covered by the two heuristics are equal?”. For every
graph we found an heuristic between da3 and deg such that the probability is
less the 25%. We consider this a low evidence that the two means are the same
but still such a value does not provide a decisive response.

For this reason, instead of using cumulative distances, we create a dataset
of the distances covered to fetch every block by each node in the graph (e.g. in
the case of the scale-free graph the dataset has 1000 entries times the number
of blocks fetched, i.e. 3276000 entries). We run t-tests on random 1000-entries-
samples from this dataset to compare different heuristics against each other. We
find the following p-values:

scale-free graph random graph Nren Cogent
t.test(rnd,deg) 0.1661 6 · 10−6 0.0004 0.6475
t.test(rnd,da3) 0.4215 0.0406 0.2936 0.1042

So for every topology we can find a heuristic between deg and da3 with support
less than 16% for the hypothesis that the distance covered is the same as the one
covered by rand. We take into account the modeling and statistical results to
implement deg and da3 into in a real tuple space and evaluate how they perform
in a practical setting.

Fig. 9. 1% crashes in one cluster, unlucky node.

78 R. Barbi et al.

6 Implementation

We implement and deploy three of the described blocks placement strategies
(da3, deg and rnd) atop SimpleTS,3 a tuple-space implemented in Python
(v3.4.0). The original implementation of SimpleTS did not support remote tuple
space nodes. Therefore, we first extended it to support a distributed scenario,
leveraging Pyro (v4.0),4 a remoting library for Python. Overall, our modifica-
tions to the SimpleTS source code consist of only 250 additional lines of code.

Fig. 10. Distributed tuple space with erasure code: write ops. spread blocks apart
driven by a specific strategy; read ops. fetch blocks from remote nodes.

To add erasure coding and block placement techniques, we extend the tuple
space APIs with additional operations to properly handle writing, reading,
and deletion of encoded tuples. For example, using a [10,14] Reed-Solomon
code, the out(t) operation that emits the tuple t in the tuple space, becomes
out ec(t). This version encodes the tuple, splits it into 14 blocks and, accord-
ing to the chosen strategy, distributes these blocks among the other nodes. To
this end, from the original tuple a list of tuples of the following form is created:
<tupleUID, blocksAndIndicesList, nodeList> where tupleUID is a unique
identifier of the original tuple t, blocksAndIndicesList is a list of pairs (bi, i)
indicating that bi is the i-th block of the codeword and nodeList is a list of
nodes containing the remaining blocks. Figure 10 shows the extended version of
SimpleTS with erasure coding abilities.

In this configuration, reading a tuple only require to fetch 10 out of the 14
existing blocks. The tuple space programming paradigm requires the reading
operations to operate via pattern-matching [9]. In the case of encoded tuples,
the tuple space needs to decode the tuple. Therefore, this operation sequentially
reads a tuple with blocks from the tuple space. Specifically, it leverages the
nodeList index to discover and retrieve the missing blocks from other nodes in
order to reconstruct the tuple. Then it checks whether the reconstructed tuples
matches the template. Clearly, in the worst case to find a matching tuple the

3 https://github.com/jmbjorndalen/SimpleTS.
4 https://pythonhosted.org/Pyro4/.

https://github.com/jmbjorndalen/SimpleTS
https://pythonhosted.org/Pyro4/

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 79

system has to decode the entire tuple space. We assume the existence of an up-
to-date indexing service that serves the purpose of speeding up the process of
discovering the location of the required blocks. In our evaluation, we assume to
know the location of the nodes storing the blocks required to decode the tuple.
It is out of the scope of this work how to efficiently maintain this index.

We implement both da3 and deg strategies on our tuple space and test them
on a scale-free network made of 100 nodes. We emulate a large-scale network
deployment using Docker (v1.13.1). We map each SimpleTS node (with its local
tuple space) to a standalone container. The latency between two nodes, say i and
j, is proportional to their minimum distance on the graph. Latency (by mean of
a sleep system call) is then interposed by the proxy interface of the Pyro service
exposed by each tuple space process. In practice, when node i contacts node j to
read (or write) a tuple, node j sleeps latencyi,j milliseconds before replying. An
alternative method is be to add latency at the OS level, e.g. by implementing a
software router.5

7 Prototype Evaluation

This section presents our evaluation with the extended SimpleTS system. Due to
the lack of hardware resources, we are limited to a cluster of 100 node mimicking
a scale-free network. Each node is executed by a SimpleTS Docker container.
In this evaluation, only communication delays among nodes are emulated.

Erasure-coding overhead. To evaluate the overhead of erasure coding, we
execute an initial set of microbenchmarks for reading times. In this experiment,
we vary the size of data stored in each tuple, from 1 byte to 512 KB. At the
beginning, we randomly distribute 1000 tuples across 100 nodes. Then, 10 ran-
dom nodes read all the 1000 tuples. We measure the time for reading each tuple,
and we report them as Cumulative Distribution Function (CDF). As shown in
Fig. 11 (left), the size of the tuple only modestly affects the reading time from
the tuple space without encoding.

When erasure coding is enabled, Fig. 11 (right), the reading time is more
sensitive to the tuple size: it grows from milliseconds for the tuples containing
1 byte to several seconds for the size of 512 KB. For bigger tuples, the time for
encoding and decoding is significantly higher. We believe that a highly optimized
erasure-code library, such as Intel ISA-L [1], would greatly reduce the overhead
and make it more practical.

Experiments with different strategies. This experiment evaluates the per-
formances of the tuple space using different block placement strategies. At the
beginning, each of the 100 nodes writes 10 tuples. The tuples are encoded and

5 We report on our failed attempt in using Linux tc’s traffic shaping (using delay.sh
https://gist.github.com/arr2036/6598137) to emulate network latencies. In partic-
ular, the current Docker networking layer does not cope well with this approach,
where all nodes in a given network class (such as all the Docker containers running
in the same host) apply the same delay, preventing the emulation of more complex
graph topologies.

https://gist.github.com/arr2036/6598137

80 R. Barbi et al.

Fig. 11. Distribution (CDF) of tuple’s reading performance for increasing tuple size.
Left: without erasure-coding. Right: with erasure-coding.

Fig. 12. Writing and the reading times for different strategies of blocks placement

split into blocks. Those are dispatched to remote nodes according to the given
strategy. Finally, a node is chosen to fetch and reads the blocks of its own tuples.

Figure 12 presents our results for write and read operations.6 The plot shows
the CDF of the timings to write/read the tuples into/from the tuple space. The
da3 strategy achieves the best performances for writes, because the writing time
depends on the number of nodes used to spread each tuple’s blocks. Random
placement offers the worst performance as it involves a high number of nodes.
The reading time depends on the distribution of the blocks among the nodes.
The distributions obtained reflect the ones shown in Fig. 3 and we do not report
them here due to lack of space. For the distance-aware and random strategies,
distributions are more uniform and the times are low. For the degree-aware
strategy, nodes with the higher degree have considerably more blocks and the
reading time vary significantly. As consequence, the reading time depends also
on the order in which tuples are written. In the case of SimpleTS, the tuple
space is implemented as a list, hence the reading time will be greater for the
tuples which were written toward the end.

8 Conclusion

The problem of data block placement in a wide-area network setting is of para-
mount importance. Several distributed applications rely on a random strategy.
6 We omit the results for withdrawing operations. They show similar trends to read

results plus a small overhead due to the fetching of all the 14 blocks.

Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces 81

In this paper we considered a scenario where distributed applications are imple-
mented via the tuple space paradigm. These systems need to efficiently cope
with network faults to avoid losing tuples, while at the same time being storage
efficient and allow fast fetching time. We extended an open-source Python-based
tuple-space implementation with distribution capabilities and erasure-coding
features. We presented a study of several block placement strategies to dispatch
blocks over the nodes of a distributed tuple space. We considered synthetic and
real-world graph topologies, up to thousands of nodes. Our modeling, statistical
analysis and system performance results, also based the evaluation of our full
working prototype, shed some light on the trade-offs that one need to accept
when deploying such systems. Our results reinforce the believe that it is impor-
tant to gather structural informations about the underlying network topology
to wisely choose the appropriate block placement heuristic.

In this work we considered the distributed tuple space as practical use-case.
We stress that our strategies are general purpose and can be deployed in other
distributed systems such as distributed key-value stores.

Acknowledgments. The authors are grateful to Hugues Mercier and Pascal Felber
for invaluable discussions during the preliminary phases of this work. We are grateful to
Rocco De Nicola for fruitful discussions around tuple spaces. This research was partially
supported by the European Union’s Horizon 2020 - The EU Framework Programme
for Research and Innovation 2014–2020, under grant agreement No. 653884.

References

1. Intel’s ISA-L. https://github.com/01org/isa-l
2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science

286(5439), 509–512 (1999)
3. Bessani, A.N., Alchieri, E.P., Correia, M., Fraga, J.S.: Depspace: a byzantine fault-

tolerant coordination service. In: ACM SIGOPS Operating Systems Review, vol.
42, pp. 163–176. ACM (2008)

4. Bessani, A.N., Correia, M., da Silva Fraga, J., Lung, L.C.: An efficient byzantine-
resilient tuple space. IEEE Trans. Comput. 58(8), 1080–1094 (2009)

5. Buravlev, V., De Nicola, R., Mezzina, C.A.: Tuple spaces implementations
and their efficiency. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINA-
TION 2016. LNCS, vol. 9686, pp. 51–66. Springer, Cham (2016). doi:10.1007/
978-3-319-39519-7 4

6. Carriero, N., Gelernter, D.: How to Write Parallel Programs: A First Course. MIT
Press, Cambridge (1990)

7. Eltabakh, M.Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., McPherson, J.:
CoHadoop: flexible data placement and its exploitation in Hadoop. Proc. VLDB
Endowment 4(9), 575–585 (2011)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

9. Gelernter, D.: Generative communication in Linda. ACM Trans. Programm. Lang.
Syst. (TOPLAS), 7(1), 80–112 (1985)

10. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

https://github.com/01org/isa-l
http://dx.doi.org/10.1007/978-3-319-39519-7_4
http://dx.doi.org/10.1007/978-3-319-39519-7_4

82 R. Barbi et al.

11. Ponemon Institute: 2013 cost of data center outages (2013)
12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical

Learning, vol. 6. Springer, New York (2013)
13. Jin, H., Yang, X., Sun, X.-H., Raicu, I.: Adapt: availability-aware mapreduce data

placement for non-dedicated distributed computing. In: 2012 IEEE 32nd Inter-
national Conference on Distributed Computing Systems (ICDCS), pp. 516–525.
IEEE (2012)

14. Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M.: The internet topol-
ogy zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
Elsevier, New York (1977)

16. Patterson, L.I., Turner, R.S., Hyatt, R.M.: Construction of a fault-tolerant distrib-
uted tuple-space. In: SAC 1993, pp. 279–285. ACM, New York (1993)

17. Robusto, C.C.: The Cosine-Haversine formula. Am. Math. Mon. 64(1), 38–40
(1957)

18. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

19. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)

Private Data System Enabling Self-Sovereign
Storage Managed by Executable Choreographies

Sinică Alboaie1,2 and Doina Cosovan1(B)

1 Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
salboaie@gmail.com, doina.cosovan@info.uaic.ro
2 Technical University of Cluj-Napoca, Iaşi, Romania

Abstract. With the increased use of Internet, governments and large
companies store and share massive amounts of personal data in such a
way that leaves no space for transparency. When a user needs to achieve
a simple task like applying for college or a driving license, he needs to
visit a lot of institutions and organizations, thus leaving a lot of pri-
vate data in many places. The same happens when using the Internet.
These privacy issues raised by the centralized architectures along with
the recent developments in the area of serverless applications demand a
decentralized private data layer under user control.

We introduce the Private Data System (PDS), a distributed approach
which enables self-sovereign storage and sharing of private data. The
system is composed of nodes spread across the entire Internet man-
aging local key-value databases. The communication between nodes is
achieved through executable choreographies, which are capable of pre-
venting information leakage when executing across different organiza-
tions with different regulations in place.

The user has full control over his private data and is able to share
and revoke access to organizations at any time. Even more, the updates
are propagated instantly to all the parties which have access to the data
thanks to the system design. Specifically, the processing organizations
may retrieve and process the shared information, but are not allowed
under any circumstances to store it on long term.

PDS offers an alternative to systems that aim to ensure self-
sovereignty of specific types of data through blockchain inspired tech-
niques but face various problems, such as low performance. Both
approaches propose a distributed database, but with different character-
istics. While the blockchain-based systems are built to solve consensus
problems, PDS’s purpose is to solve the self-sovereignty aspects raised
by the privacy laws, rules and principles.

Keywords: Privacy Enhancing Technique · Privacy by Design · Privacy
by Default · Data self-sovereignty · Privacy · Private data · Distributed
storage · Executable choreography

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 83–98, 2017.
DOI: 10.1007/978-3-319-59665-5 6

84 S. Alboaie and D. Cosovan

1 Introduction

Every time a user needs to create an account, he needs to provide a lot of private
information, like name, birth date, gender, marital status, and so on. Even more,
he needs to choose and answer to some security questions for account recovery
in case he forgets the password or simply for user validation when performing
sensitive actions. These security questions usually consist of private data as well.

This way, each user spreads his private data to a lot of organiza-
tions/companies/service providers. This raises two main issues: one is related
to data protection and the other - to data duplication. In regards to data pro-
tection, each organization has its own ways of storing and protecting the data.
Some are better than others. The user’s data is as safe as the weakest organiza-
tion to which the user provided his data. Thus an attacker can target the weakest
link to learn private information. The data duplication issue consists mainly of
the fact that changing a piece of private information (like changing the last name
by getting married) requires updating it in all the places this particular piece of
private information was saved, which is burdening and time consuming.

An existing way of solving these problems is by using single sign-on tech-
niques. But this makes the user dependent on the single sign-on provider because
losing access to the account used for single sign-on means losing access to all the
accounts authenticating the user with this single sign-on account.

We propose a solution that enables users to keep full control over their private
data. Private Data System (PDS) is a distributed scalable system composed of
three types of nodes, transparently spread across the entire Internet: audit, index
and storage nodes. Each node manages a local key-value database and each type
of node has its own purpose in the system, as explained further.

Each piece of private information is split into undecipherable chunks. Each
chunk is assigned a different partial key in a different key-value database man-
aged by a different storage node. The association between these keys is stored
under a master key in a key-value database managed by an index node. Since the
data needs to be accessible by different processing nodes, the master key is refer-
enced by different key references. The association between them is stored under
a key reference in a key-value database managed by an audit node. The key
references are the only points of access to the actual data. Hence it also contains
information regarding who owns the referenced data, who was this particular
key reference shared with, and metadata describing the referenced data.

The communication between nodes is achieved with the help of executable
choreographies, which visit the needed nodes in the needed order, execute on
each node the needed operations, and return to the user with the results.

An interesting use case of using PDS are social networks and other systems
which, besides private data, manage also trust and reputation data [5].

We will start by reviewing the related work (Sect. 2) and introducing the sys-
tem along with its elements (Sect. 3). Then, we’ll explain how CRUD (create, read,
update, delete) and sharing/revoking operations work (Sect. 4). In the end, we
will analyze the proposed system from the privacy perspective (Sect. 5), conclude
(Sect. 6), and present future directions in regards to the proposed system (Sect. 7).

Private Data System 85

2 Related Work

Smart systems integrate technology, organizations and people in order to accom-
plish complex processes that are controlled by computer systems. For a large
number of integration points, integration is achieved through classical ESB
(Enterprise Service Bus) - type systems [8], MOM (Message-Oriented Middle-
ware) systems [9], systems based on EIP (Enterprise Integration Patterns) [11]
or through the orchestration of services through custom code or languages used
to model business processes [12].

All these methods tend to be sufficient to integrate the components belonging
to one organization. On the other hand, the integration among multiple organi-
zations should be addressed using choreographies as any centralized solution is
risky in terms of security and private data protection. Composition of systems
using orchestration tends to create centralized systems.

Although many authors perceive choreographies as a mechanism to describe
in a more formal way the contracts among several organizations [1], the academic
research proposed the concept of executable choreographies [4,6,7]. They sug-
gest transforming the descriptions of the choreographies in code that is executed
inside each organization participating in the choreography. As such, a choreogra-
phy is not only a formal description of a contract among organizations but also a
description of a workflow in an executable way. The same description (choreog-
raphy) gets to run in several organizations in a decentralized manner (without
the need for a centralized conductor) and therefore any need to translate the
choreography into other programming languages disappears.

While PDS could be implemented outside the world of the executable chore-
ographies, we believe that choreographies are suitable for the complex workflows
operating across multiple organizations. The code of the executable choreogra-
phies is verifiable at a higher level and can provide confidence that the imple-
mentation provides the privacy properties of the theoretical model.

Another advantage of the executable choreographies is that it comes with a
solution for the self sovereign identity. The Sovrin Foundation explains in [15]
why the rise of the self sovereign identities was inevitable and details the path
that had to be traversed for the community to come to this conclusion.

For PDS, the data owner must be identified and authorized. Supplementary
benefits in the data leakage preventions could be achieved if the data owner is
identified in all the other organizations contributing to a request without leak-
ing its identity (using some anonymous aliases controlled by the data owner).
The executable choreographies aim at offering these benefits without any sup-
plementary implementation effort. However, detailing the way in which the self
sovereign identities used by the data owners and processors are authenticated
and authorized is not the purpose of this paper. It is a complex enough topic to
require its own paper, so we will revisit this issue at a later date.

In regards to the advances related to data sovereignty, we would like to men-
tion [10], which proposes storing encrypted data in cloud federations and [3],
which proposes sovereign information sharing in order to integrate the informa-
tion belonging to autonomous entities. Queries are executed on the databases

86 S. Alboaie and D. Cosovan

and reveal only the results. The work is continued in [2] which enables sovereign
information sharing using web services. This work applies to service providers
which want to allow queries on their databases without sharing the content on
which the queries are executed. Our work focuses on the average user which
needs to own and store his data in a single place and provide/revoke access to
it to various service providers as needed.

Note that [14] introduces the data sovereignty notion for establishing the
nation-state where the cloud storage service providers are storing the data phys-
ically in order to ensure they are meeting their contractual geographic obliga-
tions. In this paper, we consider data sovereignty to be the ability of the user to
have full control over his data and the entities to which it is shared or revoked.

States and international organizations start to gradually introduce princi-
ples and standards, the most notable being Privacy By Design [13]. Collecting
information in parallel with the absence of technical constraints on how com-
panies can use the data intentionally or unintentionally begins to be perceived
as a risk. On the one hand, there are risks for companies because users could
refuse to adopt privacy challenged technologies. On the other hand, we have risks
regarding the whole society, the most obvious being represented by the potential
that some companies can influence society in illegal and immoral manners.

Commercial exploitation of private data has come to create the impression
that people are exploited commercially in ways that do not adequately com-
pensate for the risks they take. A more transparent model that allows fair and
equitable use of personal data is needed. Considering all these aspects, the arti-
cle proposes a software architecture in which private data’s storage places are
under the strict control of the user or his delegates.

3 System Elements

In this section, we define the terminology used for the Private Data System
throughout this paper. First, we define the following roles:

Data Owner (DO) represents the identity which owns the data.

Data Processor (DP) represents the identity which processes the data; the
identity to which the data was shared.

Second, we define the following types of data:

Private Data (PD) represents the private data which is to be stored in the
system; if a piece of private data PD is split into n undecipherable chunks, then
PDi, i = 0, n is an undecipherable chunk of data.

Metadata (MD) specifies the relationship between the Private Data and Data
Processors by labeling the data according to the Data Owner and ontologies.

Third, since the system is based on key-value databases, we define the fol-
lowing keys for data storage, associations, and references:

Private Data System 87

Master Key (MK) represents and anonymizes a piece of private information.

Partial Key (PK) represents and anonymizes one undecipherable chunk from
the set of undecipherable chunks in which a piece of private information was
split. Thus, the MK is associated to the set of PKs which represent the set of
undecipherable chunks needed to recombine the piece of private information.

Key Reference (KR) represents a reference to/an alias of a piece of private
information (a reference to a Master Key).

Key Reference Hash (KRH) is obtained by applying a hash function on the
Key Reference value and adding the address of the processing node which is to
receive the results.

In the end, we define the following types of nodes:

Processing Node (PN) stores Key References and needs to retrieve and
process the private data referenced by them. Processing nodes are forbidden
by law to store the retrieved data on long term.

Audit Node (AN) manages a key-value database which stores the association
between Key References and the Master Keys they reference along with the
information describing the data referenced by the Master Key (Data Owner,
Data Processor, and Metadata). In the database, the key is a Key Reference
and the value is a tuple consisting of the Master Key, the Metadata, the Data
Owner, and the Data Processor.

Index Node (IN) manages a key-value database which stores the association
between Master Keys and its corresponding Partial Keys. In the database, the
key is the Master Key and the value is the list of Partial Keys needed to recon-
struct the piece of private information represented by the Master Key.

Storage Node (SN) manages a key-value database which stores the association
between Partial Keys and Partial Messages. In the database, the key is the
Partial Key and the value is the undecipherable chunk of data represented by
this particular Partial Key.

4 System Operations

In this section we detail the way in which CRUD (Create, Read, Update, Delete)
operations as well as copying, sharing, and revoking access to data are performed
in the proposed system. For simplicity, we are going to use the following notations
throughout this paper:

– [E1, E2, ..., En] is a list containing the elements E1, E2, ..., En.
– (E1, E2, ..., En) is a tuple containing the elements E1, E2, ..., En.
– {K1 : V1,K2 : V2, ...,Kn : Vn} is a dictionary in which the value V1 is stored

under the key K1, the value V2 is stored under the key K2, ..., and the value
Vn is stored under the key Kn.

88 S. Alboaie and D. Cosovan

– N1 → N2 : M means the node N1 sends to the node N2 the message M ,
which corresponds to performing a step in the executable choreography.

– DB[K] := V means the value V is stored under the key K in the key-value
database DB by the node managing DB.

– V := DB[K] means the value V associated to the key K is retrieved from
the key-value database DB by the node managing DB.

– N1 : A means the node N1 performs the action A.
– M := gen() means the message M is generated (either randomly or according

to an algorithm); this is an action.
– PD1, PD2, ..., PDn := split(PD) means the private data PD is split into n

undecipherable chunks of data PD1, PD2, ..., PDn; this is an action.
– PD := recombine(PD1, PD2, ..., PDn) means the n undecipherable chunks

of data PD1, PD2, ..., PDn are recombined in order to obtain the initial piece
of private data PD which was split to obtain them; this is an action.

4.1 Creating/Storing Private Data

The storage of private data is achieved in three phases, illustrated at a higher
level in Fig. 1 and detailed in the following schema:

Phase 1

1. PN → AN : DO,MD
2. AN : MK := gen()
3. AN : KR := gen()
4. AN [KR] := (MK,MD,DO,DP)
5. AN → PN : KR,MK

Phase 2

1. PN : PD1, PD2, ..., PDn := split(PD)
2. PN : chooses randomly n SNs
3. PN → SNi : PDi, i = 1, n
4. SNi : PKi := gen(), i = 1, n
5. SNi[PKi] := PDi, i = 1, n
6. SNi → PN : PKi, i = 1, n

Phase 3

1. PN → IN : MK,PK1, PK2, ..., PKn

2. IN [MK] := [PK1, PK2, ..., PKn]
3. PN [alias] := KR

When a processing node needs to store private data, it starts the first phase
by sending to an audit node the metadata describing the information it wants
to store along with its identity (considered both data owner because it stores its
information and data processor because it is the identity which is going to use
the associated reference key for data retrieval). The audit node first generates a

Private Data System 89

Fig. 1. Storing private data

master key and a key reference, then stores the generated master key, the received
metadata, and the received data owner (as both data owner and data processor)
under the generated key reference in its key-value database. The audit node
completes this phase by sending the generated master key and the key reference
to the processing node.

In the second phase, the processing node splits the private information into
n undecipherable chunks PD1, PD2, ..., PDn and chooses randomly n storage
nodes so that each storage node is responsible for storing a single undecipherable
chunk of private data. Each storage node, upon receiving its undecipherable piece
of private data, generates a partial key, stores its chunk of information under
that key, and sends to the processing node the generated partial key.

In the third phase, the user sends to an index node the master key and its
corresponding partial keys. The processing node stores the key reference under
an alias because it is needed for subsequent private information retrieval.

4.2 Reading/Retrieving Private Data

If a processing node needs to access a private information, it must have a key
reference. The way the processing node uses the key reference to retrieve the
associated private information can be followed in Fig. 2 and is described in detail
in the following schema:

Phase 1

1. PN → AN : DP,KR

90 S. Alboaie and D. Cosovan

Phase 2

1. MK := AN [KR]
2. HKR := (location(PN), hash(KR))
3. AN → IN : DP,MK,HKR

Phase 3

1. PK1, PK2, . . . , PKn := IN [MK]
2. IN → SNi : DP,HKR,PKi, i = 1, n
3. PDi := SNi[PKi], i = 1, n
4. SNi → PN : HKR,PDi, i = 1, n
5. PN : PD := recombine(PD1, PD2, ..., PDn), where PDi, i = 1, n must have

the same HKR as PD

The key reference might reference either a piece of private information of
the processing node or a piece of private information shared to the processing
node by another processing node. By sending his key reference to the audit node
along with his (processing node’s) identity, the processing node completes the
first phase.

In phase two, the audit node retrieves the master key corresponding to the
received key reference. Next, it computes HKR, which is a hash on the retrieved
key reference prefixed with the location of the processing node. Then, the audit
node sends the processing node’s identity, the retrieved master key, and the
computed HKR to the index node. This way, the index node doesn’t learn the
association between key references and master keys, but at the same time prop-
agates HKR, which is information required by the processing node to identify
the request being answered. Note that the processing node might issue multiple
data retrieval operations at the same time and, without HKR, the processing
node wouldn’t know which undecipherable chunks correspond to which pieces of
private data he requested at the same time.

In the third phase, the index node retrieves from its database the partial
keys corresponding to the master key and sends each partial key along with
the processing node’s identity and HKR to the corresponding storage nodes.
Each storage node retrieves the undecipherable value (PDi) corresponding to
the received partial key (PKi) and sends to the processing node the retrieved
undecipherable chunk and the HKR. The processing node, upon receiving the
undecipherable chunks, groups them by HKR and recombines the grouped com-
ponents in order to obtain the private piece of information. This information can
be processed, but the law prevents the processing node to store it.

Thus HKR’s purpose is to serve as an identifier so that a processing node
which retrieves multiple private information pieces at the same time can associate
the received undecipherable pieces of information to the requested key references.

4.3 Updating Private Data

The first two phases are identical for data retrieving and data updating, but
starting with the third step of the third phase, things are performed differently
as can be observed in the following schema:

Private Data System 91

Fig. 2. Retrieving private data

Phase 1

1. PN → AN : DP,KR

Phase 2

1. MK := AN [KR]
2. HKR := (location(PN), hash(KR))
3. AN → IN : DP,MK,HKR

Phase 3

1. PK1, PK2, ..., PKn := IN [MK]
2. IN → SNi : DP,HKR,PKi, i = 1, n
3. SNi → PN : HKR, i = 1, n
4. PN : PD1, PD2, ..., PDn := split(PD)
5. PN → SNi : PDi, i = 1, n
6. SNi[PKi] := PDi, i = 1, n

The storage nodes, upon receiving the partial keys from the index node,
instead of retrieving the undecipherable chunks of private data corresponding
to the partial keys and sending them along with HKR to the processing node
for recombination as performed by the storing operation, for the updating oper-
ation they send the HKR alone to the processing node. Upon receiving the
HKR from the storage nodes, the processing node splits the new information in
undecipherable chunks and sends one chunk to each storage node which sent the
HKR corresponding to this piece of private information. Then, the storage nodes
update the values stored under the partial keys in their key-value database in
accordance to the newly received undecipherable chunks.

92 S. Alboaie and D. Cosovan

Fig. 3. Updating private data

The reason we decided to go with this approach rather than use an invalida-
tion and a store operation is because we want all the existing key references to
remain valid and, even more, to point to the updated private data.

The data flow between the nodes which are part of the system during an
update operation can be observed in Fig. 3.

4.4 Deleting Private Data

Figure 4 illustrates the data flow and the following schema illustrates the actions
performed during a delete operation:

1. PN → AN : KR,DO
2. MK := AN [KR]
3. AN → IN : MK
4. IN : invalidate IN [MK]

In order to perform a delete operation, a processing node sends to the audit
node its identity (which must be the identity of the data owner) and its key
reference of the data to be deleted. If the audit node would invalidate the received
key reference, this would mean only revoking access to the private data for the
data owner, while all the data processors which received access to this private
data at some point in time would still be able to access the data. Thus, instead
of doing this, the audit node sends the received key reference to the index node
for it to invalidate the associated master key. In this way, neither the data owner,
nor the data processors will be able to access this piece of private data anymore

Private Data System 93

Fig. 4. Deleting private data

because all the key references they have for this piece of private data point to
the same master key.

4.5 Sharing Access to Private Data

The sharing operation is described in Fig. 5 and follows the following steps:

1. PN1 → AN : KR1,DP2

2. MK,MD,DO := AN [KR1]
3. AN : KR2 := gen()
4 AN [KR2] := (MK,MD,DO,DP2)
5 AN → PN2 : KR2,MD

Fig. 5. Sharing access to private data

In order to share a piece of information, a processing node (PN1) must send
to an audit node its key reference (KR1) of the private information it wants to
share along with the identity of the processing node that is to receive access to
the private information (DP2). When this happens, the audit node retrieves the

94 S. Alboaie and D. Cosovan

master key (MK) corresponding to the received key reference (KR1), generates a
new key reference (KR2), and saves the retrieved master key (MK), the retrieved
metadata (MD), the retrieved data owner (DO) and the received data processor
(DP2) under the newly generated key reference (KR2). Of course, the initial
association (between KR1 and MK) remains in the database, as well.

Note that every association between a key reference and a master key also
has information regarding the identity of the organization owning the data (Data
Owner) and the identity of the organization with which data is shared (Data
Processor). If data owner is the same with data processor, then this association
is the initial key reference created when the private information was first stored.

Next, the audit node sends the newly generated key reference (KR2) along
with the received metadata (MD) to the processing node which is to receive
access (PN2) to the private data. In this way, neither data owner knows the
data processor’s key reference, nor the data processor knows the data owner’s
key reference.

4.6 Revoking Access to Private Data

The revocation operation is described in Fig. 6 and follows the following steps:

1. PN → AN : KR1,DO,DP2

2. MK := AN [KR1]
3. search KR2 which contains MK,DO,DP2 as values
4. invalidate AN [KR2]

The data owner can revoke access to a private information by issuing a revo-
cation request to the audit node. The revocation request contains the identity
of the data owner and of the data processor to which access is being revoked
as well as the data owner’s key reference (KR1). Note that we receive the data
owner’s key reference, while the revocation needs to be done on data processor’s
key reference (KR2). This happens because each processing node knows its key
reference, but it doesn’t know the key references of the data processors which

Fig. 6. Revoking access to private data

Private Data System 95

have access to its data. So, the audit node needs to retrieve the master key corre-
sponding to the received key reference (KR1) and search the key reference to be
revoked (KR2) knowing that it has associated the retrieved master key and the
received data owner and data processor. After learning the value of the reference
key to be revoked, the audit node simply invalidates it. Nothing is deleted.

4.7 Copying Private Data

By design, any copy operation on the private data should be done only through
the sharing operation. Data derived from the private data should be stored in
the PDS and assigned to the original data owner.

5 System Analysis from the Privacy Perspective

In this section we are going to analyze how powerful each type of node defined
in the system is and how much information they can gather by themselves or by
colluding with other types of nodes.

Each storage node has access to only one undecipherable chunk of each pri-
vate piece of information it stores. Each chunk is saved under a partial key which
has no meaning to the storage node. The storage node doesn’t know which other
storage nodes the other chunks of the same pieces of private information store,
nor under which partial keys. Even more, the storage node doesn’t know what
type of information it stores. It may be a social security number, a password,
a name, a birth date, and so on. A single storage node can’t attack the system
and neither can a collection of colluding storage nodes.

Index nodes store only the associations between master keys and partial keys.
So, they know the partial keys whose corresponding undecipherable chunks can
be recombined to form a private piece of information, but they don’t know the
values of the actual chunks, nor the type of information that will be obtained
after recombining the chunks. A single index node can’t attack the system and
neither a collection of colluding index nodes.

Audit nodes have information regarding the meaning of the data, the owner of
the data, and the identities with which the data was shared, but they don’t have
information regarding the way the data was split in chunks (the correspondence
between master key and partial keys) and the locations where the data chunks
are stored. So, a single audit node or a group of colluding audit nodes can’t
recombine the private data. However, audit nodes are able to create reference
keys at their discretion and share them with legal or illegal organizations.

Processing nodes have access to the private data as they need it for normal
operations. Privacy by Design principles are intended to regulate the usage of
private data without reducing functionality. The main goal of the PDS is to
make it obvious when a company is misusing the private data outside the pur-
pose accepted by the user, but without reducing access to the private data. For
example, if an organization collects private data by using PDS, it becomes visible
if it is copying or using private data for other purposes than intended.

96 S. Alboaie and D. Cosovan

Only processing nodes and audit nodes know what the pieces of information
referenced by key references mean. Encryption is not needed because the attack-
ers see a huge pool of partial undecipherable messages. Traffic can’t be used to
obtain information because the traffic data is encrypted using TLS and can’t be
used to deduce information regarding which nodes communicate because of the
huge amount of concurrent swarms flying from node to node.

If an index node colludes with all the storage nodes storing chunks of the same
piece of private information, then together they can recombine the message, but
without knowing its meaning, who owns it and with whom it was shared with, it
is of no value to them. In order for the data to be of value, they need to collude
also with the audit node, which stores the metadata, the data owner and the
data processor of this particular piece of information.

6 Conclusions

In normal conditions only processing nodes should be able to read plaintext data.
All the other node types involved in the PDS should not be capable of accessing
private data. In special conditions, audit nodes should be able to read the data
as well in order to enable legal access to the private data owned by other data
owners for crime prevention or other legal usages. We imagine audit organizations
offering public services that are controlled by the law and industry regulations.
The level of access to the systems storing this metadata should be similar to
the one for financial services. Special legal procedures should be followed when
accessing private data outside of the normal flow.

Systems and approaches that are trying to obfuscate and encrypt too much
are fighting an impossible fight with the common social interest and are blocking
the normal evolution of the technologies in the privacy area. The interests of any
citizen are to be protected from unfair usage of his data by the large Internet
companies, to have control on who he shares his private data with, to be able to
revoke access to his data to anyone at any time.

An Internet based on fully homomorphic encryption would not be what we
need because it would create a world in which data can be too easily lost. It would
provide a perfect method for criminals and terrorists to hide their data from the
public interest. Fighting with dangerous, corrupted governments is important,
but PDS is not supposed to have a role in this fight. PDS is a balanced solution
which enforces Privacy by Design in code and maintains an equilibrium between
public and private interests.

7 Future Work

As future work, we intend to pursue three different paths. First, we will develop
a new self-sovereignty authentication technique which uses the advantages pro-
vided by the architecture of the system proposed in this paper. Secondly, as
Privacy by Design and Privacy by Default (PbD) are being enforced by laws

Private Data System 97

(e.g. in the General Data Protection Regulation), we intend to propose a Pri-
vacy Enhancing Technique (PET) that can ensure these principles directly in
code. It is supposed to be a privacy estimation method for systems using the
technique proposed in this paper for achieving self-sovereign storage of private
data.

Thirdly, we will propose and describe a mechanism for the audit nodes to
store the metadata so that it enables the implementation of personal assistants.
The metadata will describe the schema of the stored objects (in the form of
JSON schema or OWL) and the representation types that could enable type
checking when data is shared. It will enable the use of specific Privacy Poli-
cies (which will control what entities are allowed to read the information and
will contain revocation policies) and Security Policies (which will control what
entities are allowed to modify the content of a Master Key). Both privacy and
security policies will be enforced by the audit nodes, but the input (rules and
policies) will be provided by the Data Owner himself. Giving up to the standard
communication promoted by web technologies and moving towards a model of
communication verifiable as the one proposed by executable choreographies, we
have the opportunity to develop formal verifications methods on how the private
data is used.

Acknowledgments. This work is partly funded by the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement No 692178.

It is also partially supported by the Private Sky Project, under the POC-A1-
A1.2.3-G-2015 Programme (Grant Agreement no. P 40 371).

References

1. WSCDL specification. https://www.w3.org/TR/ws-cdl-10/
2. Agrawal, R., Asonov, D., Srikant, R.: Enabling sovereign information sharing using

web services. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 873–877. ACM (2004)

3. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private data-
bases. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 86–97. ACM (2003)

4. Akkawi, F., Fletcher, D.P., Cottenier, T., Duncavage, D.P., Alena, R.L., Elrad, T.:
An executable choreography framework for dynamic service-oriented architectures.
In: 2006 IEEE Aerospace Conference, p. 13. IEEE (2006)

5. Alboaie, L., Vaida, M.-F.: Trust and reputation model for various online commu-
nities. Stud. Inform. Control 20(2), 143–156 (2011)

6. Alboaie, S., Alboaie, L., Panu, A.: Levels of privacy for ehealth systems in the
cloud era (2015)

7. Besana, P., Barker, A.: An executable calculus for service choreography. In:
Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp.
373–380. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05148-7 26

8. Chappell, D.A.: Enterprise Service Bus - Theory in Practice. O’Reilly, Sebastopol
(2004)

9. Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.
1–28 (2004)

https://www.w3.org/TR/ws-cdl-10/
http://dx.doi.org/10.1007/978-3-642-05148-7_26

98 S. Alboaie and D. Cosovan

10. Esposito, C., Castiglione, A., Choo, K.-K.R.: Encryption-based solution for data
sovereignty in federated clouds. IEEE Cloud Comput. 3(1), 12–17 (2016)

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2004)

12. Ko, R.K.L.: A computer scientist’s introductory guide to business process man-
agement (BPM). ACM Crossroads 15(4) (2009). Article No. 4

13. McKean, R.: Eu data protection reform - privacy-by-design.
http://www.olswang.com

14. Peterson, Z.N.J., Gondree, M., Beverly, R.: A position paper on data sovereignty:
the importance of geolocating data in the cloud. In: HotCloud (2011)

15. Tobin, A., Reed, D.: The inevitable rise of self-sovereign identity (2016)

http://www.olswang.com

Roaming in Graph (Graph Processing)

Scalable Anti-KNN: Decentralized Computation
of k-Furthest-Neighbor Graphs with HyFN

Simon Bouget1(B), Yérom-David Bromberg1,2, François Täıani1,2(B),
and Anthony Ventresque3(B)

1 Université de Rennes 1 - IRISA, Rennes, France
{simon.bouget,david.bromberg,francois.taiani}@irisa.fr

2 ESIR, Rennes, France
3 Lero@UCD, School of Computer Science,
University College Dublin, Dublin, Ireland

anthony.ventresque@ucd.ie

Abstract. The decentralized construction of k-Furthest-Neighbor
graphs has been little studied, although such structures can play a very
useful role, for instance in a number of distributed resource allocation
problems. In this paper we define KFN graphs; we propose HyFN, a
generic peer-to-peer KFN construction algorithm, and thoroughly eval-
uate its behavior on a number of logical networks of varying sizes.

1 Motivation

k-Nearest-Neighbor (KNN) graphs have found usage in a number of domains,
including machine learning, recommenders, and search. Some applications do
not however require the k closest nodes, but the k most dissimilar nodes, what
we term the k-Furthest-Neighbor (KFN) graph.

Virtual Machines (VMs) placement —i.e. the (re-)assignment of workloads in
virtualised IT environments— is a good example of where KFN can be applied.
The problem consists in finding an assignment of VMs on physical machines
(PMs) that minimises some cost function(s) [27]. The problem has been described
as one of the most complex and important for the IT industry [3], with large
potential savings [20]. An important challenge is that a solution does not only
consist in packing VMs onto PMs — it also requires to limit the amount of
interferences between VMs hosted on the same PM [31]. Whatever technique is
used (e.g. clustering [21]), interference aware VM placement algorithms need to
identify complementary workloads — i.e. workloads that are dissimilar enough
that the interferences between them are minimised. This is why the application
of KFN graphs would make a lot of sense: identifying quickly complementary
workloads (using KFN) to help placement algorithms would decrease the risks
of interferences.

The construction of KNN graphs in decentralized systems has been widely
studied in the past [4,14,17,30]. However, existing approaches typically assume

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 101–114, 2017.
DOI: 10.1007/978-3-319-59665-5 7

102 S. Bouget et al.

Algorithm 1. Greedy decentralized KNN algorithm executing at node p

1 each round do
2 q ← one random neighbor from Γ (p)
3 send 〈push, Γ (p) ∪ {p}〉 to q ; request Γ (q) from q � push - pull
4 cand ← Γ (p) ∪ Γ (q) ∪ {r random nodes} \ {p}
5 Γ (p) ← argtopk

g∈cand

(
sim(p, g)

)

6 on receiving 〈push, Γ ′〉 do
7 cand ← Γ (p) ∪ Γ ′ \ {p}
8 Γ (p) ← argtopk

g∈cand

(
sim(p, g)

)

a form of “likely transitivity” of similarity between nodes: if A is close to B,
and B to C, then A is likely to be close to C. Unfortunately this property no
longer holds when constructing KFN graphs. As a result, these approaches, as
demonstrated in the remainder of the paper, are not working anymore when
applied to this new problem.

To address this problem, this paper proposes HyFN (standing for Hybrid
KFN, pronounced hyphen), an hybrid decentralized approach for the decentral-
ized construction of k-furthest-neighbor graphs. We show that HyFN is able to
construct a KFN graph with 3200 nodes in less than 17 rounds, when a tradi-
tional greedy approach is unable to converge. We also show that our proposal is
highly scalable, with a convergence time evolving in O(log(n)) for larger graphs.

The remainder of this paper is organized as follows: we first discuss some
background about k-nearest-neighbor (KNN) graphs and their decentralized con-
struction in peer-to-peer networks, before presenting our intuition for the con-
struction of a k-furthest-neighbor graph (KFN) in Sect. 2. In Sect. 3, we describe
in more detail HyFN and its variants. We evaluate our approach in Sect. 4, dis-
cuss related work in Sect. 5 and conclude in Sect. 6.

2 Decentralized Construction of a KFN Graph

2.1 Background: Decentralized KNN Graph Construction

The problem of constructing a k-furthest-neighbor (KFN) graph can be seen as a
variant of a k-nearest-neighbor (KNN) graph construction that uses an opposed
similarity.

A large body of works have been proposed to construct KNN graphs in decen-
tralized systems, with applications ranging from recommendation [4,14,19], to
search [13], to news dissemination [6]. In such systems, nodes (e.g. represent-
ing a user) can connect to each other using point-to-point networking, but only
maintain a small partial view of the rest of the system, typically a small-size
neighborhood of other nodes. Each node also stores a profile (e.g. a user’s brows-
ing history), and uses a peer-to-peer epidemic protocol [1,4,17,30] to converge

Decentralized Computation of k-Farthest Neighbor Graphs 103

Fig. 1. A round of greedy decentralized KNN construction

towards an optimal neighborhood, i.e. a neighborhood containing the k most-
similar other nodes in the system according to some similarity metric on profiles
(e.g. cosine similarity, or Jaccard’s coefficient).

The principle of a typical P2P protocol for KNN graph construction [9,30]
is shown in Algorithm 1, in its push-pull variant1. Starting from a random
neighborhood, individual nodes repeatedly select a random neighbor q (line 2),
exchange their current neighborhood with that of q (noted Γ (q), line 4), and
use the gained information to select more similar neighbors (line 5)2. Similarly,
when receiving a new neighborhood pushed to them, nodes update their local
view with the new nodes they have just heard of (lines 6–8). The intuition behind
this greedy procedure is that if A is similar to B, and B to C, C is likely to be
similar to A as well. To avoid local minima, this greedy procedure is often com-
plemented with a few random peers (returned by a peer sampling service [18],
tuned with parameter r at line 4).

This mechanism is illustrated in Fig. 1. In this example, node Alice is inter-
ested in hearts (Alice’s profile), and is currently connected to Frank, and to Ellie.
During this round, Alice selects Bob as her exchange partner. After exchanging
her neighbors list with Bob, Alice finds out about Carl, who appears to be a
better neighbor than Ellie. As such, Alice replaces Ellie with Carl in her neigh-
borhood. Similarly Bob detects that Ellie is a better neighbor than Alice, and
drops Alice in favor of Ellie.

2.2 Moving to Decentralized k-Furthest-Neighbor Graph
Construction

Algorithm 1 can be easily adapted to compute a decentralized k-furthest-
neighbor (KFN) graph by using a negative similarity at line 5:

Γ (p) ← k
argtop
g∈cand

(− sim(p, g)
)

(1)

1 The presented model is close to the Vicinity algorithm [30], but variations exist,
most notably the T-Man algorithm [17], which buffers and selects nodes differently.

2 argtopk returns a k-tuple of nodes that maximizes the similarity function sim(p, −).
Said differently, argtopk generalizes the concept of argument of the maximum
(argmax for short) to the k top values of a function over a finite discrete set.

104 S. Bouget et al.

Unfortunately, with this modification, one of the key premises of Algorithm 1
disappears: the far neighbors of a far neighbor are not so likely to be interesting
candidates to construct a KFN graph. Said differently, if A is far from B, and
B far from C, this does not imply that A is far from C (or further from C than
any other node taken randomly in the dataset).

Fig. 2. The two heuristics we propose to construct a KFN graph

Starting from this observation, we propose instead to use a dual strategy that
constructs an intermediate KNN graph in order to construct a final KFN graph.
In our approach, each node p maintains two views containing k nodes each:
Γclose(p) and Γfar(p).

Γclose(p) uses the algorithm shown in Algorithm 1 to converge towards the k
most similar other nodes in the system. Γfar(p) employs two greedy optimization
heuristics that exploits Γclose(p) to progressively discover the k furthest neighbors
from p. The intuition behind these two heuristics (shown in Fig. 2 in the case of
the node Alice) is as follows:

– The first heuristic (termed far-from-close and labeled 1 in the figure) requests
the “far neighborhood” Γfar(B) of a node Bob found in Alice’s “close neigh-
borhood” Γclose(A). The idea is that if Bob is close to Alice, then nodes that
are far from Bob (such as Carl in Fig. 2) will also be far from Alice.

– The second heuristic (termed close-to-far and labeled 2 in the figure) requests
the “close neighborhood” Γclose(D) of a node Dave found in Alice’s “far neigh-
borhood” Γfar(A). The idea is that if Dave is far from Alice, then nodes that
are close to Dave (such as Ellie in Fig. 2) will also be far from Alice.

In the following we present HyFN, a general algorithm that combines the
two heuristics described above in various measures.

3 Algorithms

3.1 General Framework

Algorithm 2 provides an overview of the approach we propose, termed HyFN, as
executed by Node p. For a fair comparison with a traditional greedy approach,

Decentralized Computation of k-Farthest Neighbor Graphs 105

Algorithm 2. HyFN: A generic algorithm to implement a KFN computa-
tion, executing at node p

1 Init: For each p, Γclose(p) and Γfar(p) are heaps of size k, initialized as empty.

2 each round do
3 with probability α do
4 updateCloseView()

5 otherwise
6 updateFarView()

7 procedure updateCloseView() is
8 q ← one random neighbor from Γclose(p)
9 send 〈close, Γclose(p) ∪ {p}〉 to q ; request Γclose(q) from q � push-pull

10 candclose ← Γclose(p) ∪ Γclose(q) ∪ {r random nodes} \ {p}
11 Γclose(p) ← argtopk

g∈candclose

(
sim(p, g)

)

12 on receiving 〈close, Γ ′
close〉 do

13 candclose ← Γclose(p) ∪ Γ ′
close \ {p}

14 Γclose(p) ← argtopk
g∈candclose

(
sim(p, g)

)

15 procedure updateFarView() is
16 candfar ← Γfar(p) ∪ farCandidatesXX(p) ∪ {r random nodes}
17 Γfar(p) ← argtopk

g∈candfar

(− sim(p, g)
)

we limit ourselves to one push-pull exchange per round and per node (as in
Algorithm 1). This limitation is key to properly assess the interest of our app-
roach: an algorithm that exchanges more information is naturally advantaged
against its more frugal competitors. It would for instance be unfair to compare
an algorithm using multiple push-pull exchanges to maintain multiple views
against Algorithm 1, as such an algorithm would be more costly in terms of
network traffic.

To ensure only one push-pull exchange is performed per round we use the
construct with probability α do .. otherwise at line 3. This construct exe-
cutes with a given probability (here α) the first statement, and with a proba-
bility (1 − α) the second. In this particular case, Algorithm 2 randomly alter-
nates between invoking updateCloseView() at line 4, and invoking update-
FarView() at line 6. Both procedures (discussed below), only generate one
network exchange per node and per round, thus enforcing our communication
limit. updateCloseView() maintains Γclose(p), p’s close neighborhood, while
updateFarView() uses Γclose(p) to construct Γfar(p). The parameter α (con-
tained in [0, 1]) measures out how much effort each node will spend on Γclose(p)
rather than Γfar(p).

updateCloseView(), shown at lines 7–11, uses Algorithm 1 (discussed in
Sect. 2.1) to construct Γclose(p). updateFarView() depends on a pluggable pro-

106 S. Bouget et al.

Algorithm 3. A far-from-close strategy to select far candidates (at p)
1 procedure farCandidatesFarFromClose(node p) is
2 qclose ← one random neighbor from Γclose(p)
3 send 〈far, Γfar(p)〉 to qclose ; request Γfar(qclose) from qclose � pull
4 return Γfar(qclose)

Algorithm 4. A close-to-far strategy to select far candidates (at p)
1 procedure farCandidatesCloseToFar(node p) is
2 qfar ← one random neighbor from Γfar(p)
3 send 〈far, Γclose(p) ∪ {p}〉 to qfar ; request Γclose(qfar) from qfar � pull
4 return Γclose(qfar)

Algorithm 5. Reception of a far push message (at p)
1 on receiving 〈far, Γ ′

far〉 do
2 candfar ← Γfar(p) ∪ Γ ′

far

3 Γfar(p) ← argtopk
g∈candfar

(− sim(p, g)
)

cedure farCandidatesXX(p), which exchanges potential new candidate nodes
using a push-pull approach to update p’s far neighborhood, Γfar(p) at line 16. The
current far neighborhood of p, the nodes received by farCandidatesXX(p), and
r random nodes are stored in the intermediate candfar variable (line 16). The k
furthest nodes from candfar then become p’s new far neighborhood (line 17; note
the minus sign before sim(p, g), in contrast to line 11). (We discuss the push
part of the exchange just below.)

3.2 Instantiating the Selection of Far Candidates

The pluggable method farCandidatesXX(p) can be instantiated in three
different manners, with the procedures farCandidatesFarFromClose(p),
farCandidatesCloseToFar(p) and farCandidatesMixed(p), shown in
Algorithms 3, 4, and 6.

– farCandidatesFarFromClose(p) (Algorithm 3) implements the far-from-
close strategy discussed in Sect. 2.2: the local node p first selects one of
its close neighbors qclose (line 2), and returns the far neighbors of qclose,
Γfar(qclose), as new candidates to update Γfar(p). In addition, the procedure
pushes towards qclose the far neighbors of p, as nodes far from p are likely to
lay far from qclose as well. The receipt of the corresponding far message is
handled by the code shown in Algorithm 5.

– farCandidatesCloseToFar(p) (Algorithm 4) implements the close-to-far
strategy presented above: this time, p picks one of its current far neighbors

Decentralized Computation of k-Farthest Neighbor Graphs 107

Algorithm 6. A mixed strategy to select far candidates (at node p)
1 procedure farCandidatesMixed(node p) is
2 with probability β do
3 return farCandidatesCloseToFar(p)

4 otherwise
5 return farCandidatesFarFromClose(p)

qfar, and returns the close neighbors of qfar, Γclose(qfar) in order to improve
Γfar(p). The procedure also pushes towards qfar the close neighborhood of
node p, Γclose(p), as those are likely to lay far from qfar. The push message,
of type far, is handled as above.

– farCandidatesMixed(p) (Algorithm 6) combines the two above strategies
in one single heuristics. As in Algorithm 2, we use the with probability con-
struct to switch between the far-from-close and close-to-far strategies with
probability β, thus insuring that only one push-pull exchange occurs every
time farCandidatesMixed(p) is invoked. The parameter β further controls
how much each strategy is used, and allows farCandidatesMixed(p) to
generalize the previous two procedures: the extreme case β = 0 corresponds
to the far-from-close strategy, while β = 1 implements a close-to-far app-
roach.

Considered all-together, Algorithms 2 to 6 capture a family of decentralized
k-furthest-neighbor (KFN) graph construction protocols, controlled by two sto-
chastic parameters, α and β. Parameter α controls the distribution of efforts
between the intermediate KNN view and the final KFN view, while β arbitrates
between the far-from-close and close-to-far strategies.

Note that some gossip protocols, such as the original T-Man, tailor the can-
didates they send to the specific node that requested them, while we do not.
For instance, in farCandidatesFarFromClose, q sends back the same set
Γfar(q) as potential new neighbors for p, whatever node p sent the request. This
set is not tailored to a specific node p. This is because those other protocols work
with an unbounded view that keeps all data received but fixed-size messages,
and so they want to send back the best information they have available. As our
approach works with fixed-size view, we simply send the full set of node.

4 Evaluation

We evaluate our framework using the simulator PeerSim [23], and compare its
behavior against a basic greedy epidemic protocol (Algorithm 1) that uses a
negative similarity metric (Eq. 1). We term this baseline solution Far From Far
and we note that this is strictly better than taking purely random nodes: it
selects the best neighbors from candidates specifically including random nodes

108 S. Bouget et al.

from the peer-sampling service, but also some additional nodes known from one-
hop neighbors.

We are essentially interested in two aspects of our solution: (i) its convergence,
i.e. how fast our framework is able to converge to a good KFN graph, and (ii)
its scalability, i.e. how does this convergence speed evolve with growing network
sizes. The code used for our experiments can be found on-line at https://gitlab.
inria.fr/ASAP/HyFN.

4.1 Experimental Set-Up and Metrics

Unless stated otherwise our default set-up involves 3200 nodes regularly posi-
tioned on a [0, 1) ring. By default, we use views of k = 14 nodes, and fetch r = 3
random nodes in each round. We set the parameters of HyFN to α = β = 0.5.
These values mean that on average nodes spend the same number of rounds
constructing their KNN and KFN views (α at line 3 of Algorithm 2), and that
the construction of the KFN view uses the heuristics far-from-close and close-
from-far in equal measure (β at line 2 of Algorithm 6). We assume a random
peer sampling service (RPS) [18] is available, which we use to initialize all views
with random nodes before the protocol starts, and to provide r random nodes
in each round.

To measure the convergence of the approximate KFN graph constructed by
HyFN we use the following four metrics:

– Number of missing links: We count for each node how many of its k
furthest neighbors are missing from its KFN view. The count of all these
missing links over the network yields our first metric.

– Number of converged nodes: As a second measure of convergence, we
consider that a node is converged when at least 80% of its k furthest neigh-
bors (taking into account ties) are contained in its KFN view. As a measure
of the network’s convergence, we count in each round how many nodes are
converged.

– Average KFN distance: For each node, we compute the average distance
between this node and the nodes in its KFN view. This metric should tend
toward 0.5 in a ring of perimeter 1 (our default topology). Note that even a
perfectly converged network won’t actually reach 0.5 though, with the exact
value depending on the density of the network.

– Convergence time: Finally, we consider that the whole network is converged
when at least 80% of all nodes are converged, according to the above criterion.
We count the number of rounds until this convergence condition is fulfilled.

We do not report the communication overhead of either HyFN or our baseline:
the protocols are all designed to initiate one single push-pull exchange in each
round, and therefore present the same communication costs.

In the following we first evaluate HyFN on our default scenario (3200 nodes
on a regular ring, k = 14, r = 3, α = β = 0.5, the values for k and r being
the smallest values still providing functional results) and compare it against

https://gitlab.inria.fr/ASAP/HyFN
https://gitlab.inria.fr/ASAP/HyFN

Decentralized Computation of k-Farthest Neighbor Graphs 109

Fig. 3. Converged nodes, missing links, and average similarity of the baseline (Far-
from-Far) and of three versions of HyFN (corresponding to β = 1 for Close-to-Far,
β = 0 for Far-from-Close and β = 0.5 for Hybrid) on a 3200-node regular ring.

our baseline. We then analyze the impact of the mixing parameters α and β.
Finally, we study the scalability of HyFN up to networks of 12800 nodes, both
on a ring and grid topology. All reported values are averages computed over 25
experimental runs.

4.2 Results

Figure 3 shows the convergence of HyFN in our default scenario (3200 nodes
on a regular ring), according to three convergence metrics: the percentage of
converged nodes (Fig. 3a), the number of missing links (Fig. 3b), and the aver-
age KFN similarity (normalized to 1, Fig. 3c). The behavior of three variants
of HyFN are shown, which correspond to the three heuristics presented in
Algorithms 3 (Far-from-Close), 4 (Close-to-Far), and 6 (Hybrid), discussed in
Sect. 3.2.

Comparison to the Far-from-Far Baseline. From the three convergence
metrics, it appears that the three versions of HyFN clearly outperform the base-
line. More precisely, all HyFN variants have reached 80% of converged nodes
after at most 20 rounds whereas the baseline is unable to converge even after 65

110 S. Bouget et al.

rounds (Fig. 3a). Interestingly, the hybrid variant has the best performances in
terms of overall convergence. From the average similarity metric (Fig. 3c), the
baseline has the worst performances, even if it gets decent results in a reasonable
time. In fact, it doesn’t get the farthest neighbors, but still it gets far neighbors.
Moreover, the metric of missing links (Fig. 3b) shows clearly that the baseline
does not work: it just converges linearly only due to the couple of random neigh-
bors that are fetched at each turn. Finally, among all HyFN variants, the Hybrid
approach seems to converge most closely to the theoretically ideal network at
the price of being a slightly slower than Close-to-Far.

Fig. 4. Impact of the α stochastic parameter on a 3200-node regular ring.

Fig. 5. Impact of the β stochastic parameter on a 3200-node regular ring.

Influence of the parameters α and β. Our key aim is to evaluate the effective
impact of the stochastic parameters α and β on the KFN graph and to set them
accordingly. Figure 4 outlines the impact of the α parameter, and shows that
α = 0.5 is close to the optimal. This value provides: (i) the best convergence time
(Fig. 4a), and (ii) the best tradeoff between the convergence speed and the quality
of the neighborhood (Fig. 4b). Concerning the impact of fine tuning β (Fig. 5),
having β close to 0.2 gives the best network convergence, and convergence speed.

Decentralized Computation of k-Farthest Neighbor Graphs 111

Note that, we are not able to reach 100% of converged nodes when we choose a
β value of either 0 or 1. As a result having a non hybrid heuristic is not the most
suitable choice, although the results of these kind of heuristics is still better than
the baseline. Furthermore, as soon as we use the hybrid strategy, the value of
0 < β < 1 has a little impact on the convergence time.

Consequently, it appears that fine tuning α is predominant compared to β.
In other terms, once we have set α to its best value (i.e. 0.5), the value of β has a
little impact as long as 0 < β < 1, so as long as we are actually using an hybrid
approach.

Fig. 6. Behavior of HyFN with the hybrid heuristic for networks from s = 100 nodes
to s = 12800 nodes, for a variety of network topologies (Ring and Grid in the above
figure).

Scalability. We have investigated the applicability of the hybrid heuristic on
both a ring and grid logical networks of varying sizes from 100 to 12800 nodes
(Fig. 6). The values for k and r in the default 3200-node configuration where
the smallest possible while still providing good performances, and it is a known
property that this parameters evolve logarithmically with respect to the size
of the network s. So for every configuration, we set up k = 1.2 ∗ log2(s) and
r = 0.3 ∗ log2(s), both rounded to the closest integer — in order to give back
k = 14 and r = 3 for s = 3200. As a result, it appears that HyFN converges as
expected in logarithmic time relative to the network total size, demonstrating
thus that our approach scales well.

5 Related Work

To the best of our knowledge, HyFN is the first decentralized protocol specifically
designed to compute a distributed k-furthest-neighbor (KFN) graph.

In terms of related mechanisms, a distributed KFN graph is a form of peer-
to-peer network overlay. Peer-to-peer overlays have been widely applied in the
past to implement distributed services, ranging from distributed storage [25,
26,28], and streaming [12,22], through to pub/sub [2,24] and environmental
sensing [15]. Among peer-to-peer overlays, k-nearest neighbor (KNN) overlays

112 S. Bouget et al.

[4,17,30] come closest to HyFN, although they converge poorly when applied to
the KFN graph construction problem, as our evaluation shows. KNN overlays
have been extensively studied in the past, as they provide decentralized self-
organization properties which have been exploited to implement a large number
of resilient and scalable services, from recommendation systems [4,14,30], to
collaborative caching [11] and generic topology construction [5,17].

Epidemic topology construction protocols such as the ones presented in this
work are typically highly scalable and efficient due to their inherent concur-
rency (each node executes the protocol in parallel) and locality (nodes only
perform a few interactions per round). These two properties (concurrency and
locality) render these algorithms also attractive for high-end parallel machines,
and have given rise to several highly effective parallel KNN graph construction
algorithms [7,8,10].

VM placement (the main technique for data centre optimisation) aims at
assigning VMs to PMs in data centres — so that some cost function(s) is min-
imised [3,27], such as, electricity cost, resource (e.g. CPU or memory) wastage,
maintenance cost. The problem is often described as an instance of the general
bin packing problem, and most techniques in the literature pack as many VMs
as possible on PMs. However, in practice, piling up VMs may not be such a good
idea as all resources cannot be perfectly isolated. This lack of isolation gener-
ates contentions between VMs hosted in the same PM; for instance, pressure
on cache or I/O by one VM will have an impact on the other VMs sharing this
PM. Most studies in the literature use time series analysis to compare two VMs’
workloads. For instance, Halder et al. [16] propose an interference aware first
fit decreasing using a large correlation matrix – keeping track of the VMs’ time
series and the composition of those time series in each PM. Verma et al. [29]
simplify the time series using a concept of envelop, recording only the peaks of
utilisation and not the full time series. They then cluster similar workloads and
make sure they do not end up in the same PMs. Li et al. [21] propose a two phase
clustering that addresses the scalability issues that previous approaches suffer
from. They also propose a placement algorithm that minimises the number of
required PMs and the number of interferences. Their solution3 would certainly
benefit from the concept of KNN and the algorithms proposed in the current
paper – we are working on an adaptation to an industry setting, with large and
hosting departments running complex workloads.

6 Conclusion

In this paper, we propose HyFN, a novel and generic decentralized protocol
to compute k-furthest-neighbor (KFN) graphs. HyFN exploits an intermediate
k-nearest-neighbor (KNN) graph, which is constructed in parallel, to progres-
sively converge towards an optimal solution. We have in particular proposed

3 Note that one of the co-authors of the present paper was senior author of [21].

Decentralized Computation of k-Farthest Neighbor Graphs 113

three heuristics to exploit this KNN graph. Our evaluation shows that our pro-
posal clearly outperforms a naive greedy implementation based on existing KNN
epidemic protocols.

Beyond its application to decentralized and pair-to-pair systems, we believe
our KFN construction framework holds a strong potential for the computation
of KFN graphs on highly parallel machines. Its inherent properties of locality
and high concurrency are likely to make it a worthwhile approach in cases in
which a KFN graph is required, including resource allocation problems such as
those encountered in VM allocation services.

Acknowledgement. This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094 to Lero - the Irish Software Research Centre (www.lero.ie), and by
the ANR (Agence Nationale de la Recherche) Project PAMELA n. ANR-16-CE23-0016.

References

1. Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Gossiping per-
sonalized queries. In: EDBT 2010 (2010)

2. Baldoni, R., Beraldi, R., Quéma, V., Querzoni, L., Piergiovanni, S.T.: TERA:
topic-based event routing for peer-to-peer architectures. In: DEBS 2007, pp. 2–13.
ACM (2007)

3. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. In: FGCS, pp. 755–
768 (2012)

4. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The goss-
ple anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware
2010. LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16955-7 10

5. Bouget, S., Kervadec, H., Kermarrec, A.-M., Täıani, F.: Polystyrene: the decen-
tralized data shape that never dies. In: ICDCS’14, pp. 288–297, June 2014

6. Boutet, A., Frey, D., Guerraoui, R., Jégou, A., Kermarrec, A.-M.: WhatsUp decen-
tralized instant news recommender. In: IPDPS (2013)

7. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.-M., Patra, R.: HyRec: leverag-
ing browsers for scalable recommenders. In: Middleware, pp. 85–96 (2014)

8. Boutet, A., Kermarrec, A.-M., Mittal, N., Täıani, F.: Being prepared in a sparse
world: the case of KNN graph construction. In: ICDE 2016, pp. 172–181 (2016)

9. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: PODC 1987 (1987)

10. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW, pp. 577–586 (2011)

11. Frey, D., Goessens, M., Kermarrec, A.-M.: Behave: behavioral cache for web con-
tent. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 89–103.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43352-2 8

12. Frey, D., Guerraoui, R., Kermarrec, A.-M., Koldehofe, B., Mogensen, M., Monod,
M., Quéma, V.: Heterogeneous gossip. In: Bacon, J.M., Cooper, B.F. (eds.) Mid-
dleware 2009. LNCS, vol. 5896, pp. 42–61. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-10445-9 3

www.lero.ie
http://dx.doi.org/10.1007/978-3-642-16955-7_10
http://dx.doi.org/10.1007/978-3-642-16955-7_10
http://dx.doi.org/10.1007/978-3-662-43352-2_8
http://dx.doi.org/10.1007/978-3-642-10445-9_3
http://dx.doi.org/10.1007/978-3-642-10445-9_3

114 S. Bouget et al.

13. Frey, D., Jégou, A., Kermarrec, A.-M.: Social market: combining explicit and implicit
social networks. In:Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976,
pp. 193–207. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 16

14. Frey, D., Kermarrec, A.-M., Maddock, C., Mauthe, A., Roman, P.-L., Täıani, F.:
Similitude: decentralised adaptation in large-scale P2P recommenders. In: Bessani,
A., Bouchenak, S. (eds.) DAIS 2015. LNCS, vol. 9038, pp. 51–65. Springer, Cham
(2015). doi:10.1007/978-3-319-19129-4 5

15. Grace, P., Hughes, D., Porter, B., Blair, G.S., Coulson, G., Täıani, F.: Experiences
with open overlays: a middleware approach to network heterogeneity. In: Eurosys
2008, Glasgow, Scotland UK, 31 March-4 April 2008, pp. 123–136. ACM (2008)

16. Halder, K., Bellur, U., Kulkarni, P.: Risk aware provisioning and resource aggre-
gation based consolidation of virtual machines. In: CLOUD, pp. 598–605 (2012)

17. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

18. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., Van Steen, M.: Gossip-
based peer sampling. ACM ToCS 25(3), 8 (2007)

19. Kermarrec, A.-M., Täıani, F.: Diverging towards the common good: heterogeneous
self-organisation in decentralised recommenders. In: SNS 2012 (2012)

20. Koomey, J., Taylor, J.: New data supports finding that nearly a third of capital in
enterprise data centers is wasted (2015)

21. Li, X., Ventresque, A., Iglesias, J.O., Murphy, J.: Scalable correlation-aware virtual
machine consolidation using two-phase clustering. In: HPCS, pp. 237–245 (2015)

22. Liu, J., Zhou, M.: Tree-assisted gossiping for overlay video distribution. J. Multi-
media Tools Appl. 29(3), 211–232 (2006)

23. Montresor, A., Jelasity, M.: Peersim: a scalable p2p simulator. In: P2P 2009 (2009)
24. Patel, J.A., Riviere, E., Gupta, I., Kermarrec, A.: Rappel: exploiting interest and

network locality to improve fairness in publish-subscribe systems. Comput. Netw.
53(13), 2304–2320 (2009)

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001, pp. 161–172. ACM, New York (2001)

26. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). doi:10.1007/
3-540-45518-3 18

27. Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-
objective VM reassignment for large decentralised data centres. In: UCC (2015)

28. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31(4), 149–160 (2001)

29. Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari, R.: Server workload analy-
sis for power minimization using consolidation. In: USENIX ATC, p. 28 (2009)

30. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Euro-Par 2005 (2005)

31. Xu, F., Liu, F., Jin, H., Vasilakos, A.V.: Managing performance overhead of virtual
machines in cloud computing: a survey, state of the art, and future directions. Proc.
IEEE 102(1), 11–31 (2014)

http://dx.doi.org/10.1007/978-3-642-24550-3_16
http://dx.doi.org/10.1007/978-3-319-19129-4_5
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18

Lifting Low-Level Workflow Changes Through
User-Defined Graph-Rule-Based Patterns

Alexander Jahl(B), Harun Baraki, Huu Tam Tran,
Ramaprasad Kuppili, and Kurt Geihs

Distributed Systems Group, University of Kassel, Kassel, Germany
{jahl,baraki,tran,rkuppili,geihs}@vs.uni-kassel.de

Abstract. In dynamic service-oriented architectures, services and ser-
vice compositions underlie constant evolution that may not only affect
the own workflow but dependent services too. Subsequently, required
adaptations necessitate an effective detection of the changes and their
effects. Merely capturing a sequence of low-level changes and analyzing
each of them demands much coordination and may lead to an incom-
plete picture. An abstraction that summarizes a combination of low-level
changes will facilitate the detection and reduce the number of changes
that shall be considered for adaptation. In this paper, we propose an
abstraction that is formulated through graph-based patterns, since ser-
vice compositions are workflows that can be mapped to directed labeled
graphs. The characteristics and granularity of a graph pattern can be
adjusted by domain experts to the respective workflow language and
application case. In particular, graph-based patterns are crucial when
workflows are represented in two different formats. This could be the
case if there exists one representation for the execution and one for the
verification. We present implementation details and a detailed example
that shows the feasibility and simplicity of our solution.

Keywords: Graph transformation · Graph matching · Pattern match-
ing · Change Impact Analysis · Dependency graph · Web services ·
Service evolution · Answer set programming

1 Introduction

It is common wisdom that actively used software must be evolved continuously
in order to maintain its utility and quality [12]. Adding new features, removing
obsolete features, fixing bugs, closing security holes, improving performance all
require updating a software product from time to time. Certainly, this is also true
for services provided via a computer network. However, services seldom work in
isolation in a stand-alone fashion. They may be part of business processes where
services depend on other services and may be composed of other services.

These manifold interdependencies make on-the-fly service evolution a partic-
ularly difficult and challenging problem because the evolution of one service may

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 115–128, 2017.
DOI: 10.1007/978-3-319-59665-5 8

116 A. Jahl et al.

incur changes in other dependent services and clients. In analogy to biology, we
call this service co-evolution. Our goal is to provide a general solution for coordi-
nated decentralized service co-evolution. Such a solution is lacking. For heavily
used services in business-critical application scenarios upgrade-related downtime
is not acceptable in most cases, but often the reality. Hence, on-the-fly, zero
downtime service co-evolution is a major objective for our research.

This demands, first and foremost, an examination of the effects and conse-
quences of each alteration in a formalized way. Current formal specification meth-
ods for Change Impact Analysis (CIA) apply logic programs, state machines, and
semantic annotations. In [4] compositions are formulated in Prolog. This enables
developers to perform consistency checks through atomic Prolog queries. Ryu
et al. [15] map protocols of service compositions to finite state machines. After
a change occurs, the protocol compatibility of the participating services will be
tested to decide about a migration to the updated protocol version. Likewise,
other works in this area also focus on updates which encompass a single removal
or addition of a service or parameter, check the consistency after the update
or inform affected parties [1]. However, the consideration of single update steps
impedes detecting and processing complex changes like replacements, swaps, or
the addition of new branches and subgraphs to the workflow. These changes
are still treated as a sequence of low-level updates. Lifting a sequence of low-
level changes to a complex change captures additional information that would
be lost otherwise. By lifting we refer to the conversion of low-level changes to a
more abstract, conceptional description of model modifications. A sequence of
removals and additions of services at the same position would not be interpreted
as a replacement. The detection of a complex change would allow triggering tai-
lored actions for handling and checking them. In case of a replacement, the pre-
and post-conditions of the replaced and the replacing service could be checked
for compliance.

This work provides a practical solution for developers to define complex
change patterns by means of a simply applicable graphical approach. The change
patterns are formulated in terms of hierarchically organized graph rules. This
enables identifying and categorizing changes with different granularities. Hence,
nested rules are feasible that trigger actions for each level of the hierarchy, e.g. log
removal and insertion and verify replacement. Just considering detected higher
level changes, e.g. the replacement, would lead to a comprehensive view that
compacts dealing with changes. Further applications, which will not be discussed
in this work, include the storage and the communication and dissemination of
changes in a flexible and dense format.

In this paper, we present our change pattern definition and detection app-
roach. Both are implemented by means of our DiCORE: CIA (Distributed Coop-
erative Evolution: Change Impact Analysis) module. Additionally, we extend
this module by an Answer-Set-Programming-based logic programming reasoner
to verify the updated model and to draw conclusions about dependent compo-
nents. Throughout the paper, a comprehensive example is used consistently to
illustrate the course of action and demonstrate the practicability of our solution.

Lifting Low-Level Workflow Changes 117

The remainder of this paper is organized as follows. Section 2 introduces our
graph-rule-based change patterns and justifies the need for them. Thereafter,
Sect. 3 presents the architecture and functionality of our first DiCORE:CIA pro-
totype. Related work is discussed in Sect. 4. Finally, the main findings of this
paper and future work are summarized in Sect. 5.

2 Graph-Rule-Based Patterns

We will start with the illustration of a service workflow that is changed and
extended by the responsible service provider. With the aid of this running
example, the subsequent sections demonstrate the definition and viability of
our graph-rule-based patterns (GPs).

2.1 Scenario

The workflow depicted in Fig. 1 is an orchestration that can be executed on a
client or service provider machine. Workflows usually encompass different types
of nodes which are commonly termed activities. An activity may be the invo-
cation of a local or remote service and may also encompass user interaction.
Workflow WF1 includes one remote service invocation. The getMap function of
service S1 is requested. The other operations are executed locally. choosePOI
and getGPScoord enable a user to select a Point of Interest and acquire its GPS
coordinates. These are processed remotely by service S1 that returns a detailed
map of the corresponding area. The following activities create a suitable route
plan (pedestrian, car, public transport, bicycle) and display it accordingly. Now
let us assume that a workflow update provides a more precise localization and
an additional map type is offered. This new workflow WF2 is shown in the lower
part of Fig. 1. Additionally, service S1 is replaced by service S2. The pollution
map in workflow WF2 allows users to choose routes with low emission levels.

Fig. 1. Scenario: original workflow WF1 and revision WF2

118 A. Jahl et al.

Note that the workflows WF1 and WF2 in Fig. 1 are represented by a directed
graph. This restricts the search area for the following graph matching approach
significantly, increases its accuracy and reduces its faults. Nevertheless, it should
be pointed out here that our GPs are applicable for undirected graphs, too.

2.2 Graph Comparison and Reduction

Before explaining GPs and their application in detail, our graph comparison and
reduction approach is presented. The graph comparison matches nodes of two
subsequent versions of a workflow to detect atomic changes, more precisely, it
generates a list of added and removed nodes. The graph reduction is required to
consider the addition or removal of subgraphs as the addition or removal of one
node. This enables, for instance, that the replacement of a node by a subgraph
is detected correctly.

Graph Comparison. Subgraph matching is the challenge to find all matches of
a query graph. This task is known to be an NP-complete problem. A comparison
between two graphs G1 and G2, where:

– G = (N,E),
– N is a set of nodes,
– E is a set of edges,

consists in the determination of a mapping M that associates nodes of G1 with
nodes of G2 in compliance with some predefined constraints. The mapping M
is represented by a set of pairs (m ∈ G1, n ∈ G2), each pair representing the
mapping of a node m from G1 with a node n from G2. A mapping M ⊂ N1 ×
N2 is an isomorphism if M is a bijective function that preserves the branch
structure of the two graphs. For comparing the two versions of a graph, we
compute the minimal graph edit distance [6] between them by using an A*
algorithm and calculating the string edit distance (syntactical analysis) [13] for
a structural matching of each corresponding graph node pair. Additionally, a
semantic analysis [9] calculates a degree of similarity based on the equivalence
between the words they consist of.

In our graph comparison algorithm depicted in Algorithm1, this functionality
is implemented by the searchEquivalent function listed in line 2. The algorithm
starts with a start node N of the source graph and returns by use of searchEquiv-
alent the best match as equivalentN. The match precision is obtained through
an invocation of getPercentFor. The matching and its similarity assessment are
stored into M as a triple. The compare function is invoked recursively for neigh-
bour nodes found through direct edges (line 7). Finally, M contains the best
matches between node n ∈ N1 of a source graph G1 and node m ∈ N2 of the
target graph G2. Matches whose similarities fall below a threshold, will be dis-
carded in a subsequent step. Applying the graph comparison method to our
scenario in Fig. 1 results in a pairwise mapping of corresponding nodes of the
source and the target graph. The outcome of the comparison depicted in Fig. 3

Lifting Low-Level Workflow Changes 119

Algorithm 1. Subgraph comparison
1 function compare (N,G);

Input : N , start node from source graph; G, target graph
Output: M , mapping result

2 equivalentN = searchEquivalent(N,G);
3 percent = getPercentFor(N,G);
4 if equivalentN then
5 M .put (N, equivalentN, percent);
6 foreach edge in N.edges do
7 nodes = edge.nodes;
8 foreach node in nodes do
9 if node != N then

10 M.putall(compare (node,G));
11 end

12 end

13 end

14 end
15 return M ;

reveals that not all nodes have compliant counterparts. These nodes are marked
Green when added and Red when removed (Fig. 3). The graph matching and
the marked nodes form the starting points for the application of our change
patterns.

Fig. 2. Matching of Source graph G1

nodes and the corresponding target
graph G2 nodes

Fig. 3. Graph matching with marked
added and deleted nodes (Color figure
online)

Graph Reduction. Preparatory steps that summarize the addition or removal
of directly connected nodes will improve the scalability of our graph matching by
reducing the search space. Besides that, the definition and application of GPs
will be simplified. For instance, a developer may create a replacement GP by
means of a removed and inserted node at the same position. A single node that
is replaced by a subgraph would be identified by this GP because the insertion

120 A. Jahl et al.

of the subgraph is reduced by our approach to an insertion of one single node.
The two middle columns in Fig. 4 illustrate this amalgamation. Contracted nodes
and their connections will be saved as subgraphs that are analyzed in subsequent
steps.

A subgraph H is defined as a subset of vertices and edges of a graph
G = (N,E), with H = (NH , EH , μ, ν, Lμ, Lν) where:

– NH ⊆ N ,
– EH = E ∩ (NH × NH),
– μ function matching label l ∈ Lμ to node n ∈ NH ,
– ν function matching label l ∈ Lν to edge e ∈ EH ,
– Lμ = Lν = {x|x = green} ⊕ {x|x = red}.

Fig. 4. Identify subgraph of new added nodes and contract to one node

2.3 Graph-Rule-Based Patterns

Our GPs are formulated by the usage of graph rules that are organized hierar-
chically and which enable identifying changes with different granularities. The
GP notation is based on the graph rule syntax of [5,10].

Graph Rules. (GRs) are undirected labeled graphs defined as a 6-tuple
R = (N,E, μ, ν, Lμ, Lν) where:

– N is a set of nodes,
– E is a set of edges,
– μ function matching label l ∈ Lμ to node n ∈ N ,
– ν function matching label l ∈ Lν to edge e ∈ E,
– Lμ is a set of symbolic labels to mark nodes.
– Lν is a set of symbolic labels to mark edges.

In general, graph rules can be used to transform a graph from one domain to
another. Therefore, they connect corresponding nodes and edges and mark new
and deleted components. In our case, the source and target domain of our GRs
may be equal. A GR combines and includes information about added and deleted
nodes and edges, e.g. in parallel or as a new branch, and their context.

Lifting Low-Level Workflow Changes 121

Fig. 5. Example set of graph rules to detect low- and high-level changes

GRs are formulated through a graphical representation. Figure 5 presents an
example set of GRs and their interdependencies. GR1 stands for the insertion of
a single node. Further information is gained, if, for instance, subsequently GR2
and GR3 can be matched. This represents the replacement of a direct connection
between a node A and C by a node B and its connections to A and C.

Fig. 6. Example of the application of successive and interrelated graph rules to detect
the kind of change as precisely as possible

The application of this GR set to our example scenario is illustrated in Fig. 6.
After the execution of the aforementioned graph matching (Figs. 2, 3 and 4),
GR1 is detected in the first step. This can be interpreted programmatically as
an added node. In the second step, further GRs reachable from GR1 are tried
to be matched. Here, GR2 is fired which indicates an insertion between two
existing nodes. Finally, GR3 identifies that these two existing nodes were directly
connected before and, hence, the direct connection was replaced. Figures 7 and
8 demonstrate the described procedure or the other two identified nodes.

The colors in these GRs are part of the syntax. In our case, Lμ and Lν have
the same set of labels. We define Lμ and Lν as follows:

– Lμ = Lν = {black, green, red}.

They indicate which elements are added, removed or remained unchanged. Ele-
ments marked Black are used to find corresponding elements in both graphs.

122 A. Jahl et al.

Hence, they serve as context. Green elements were added in the target graph
and do not exist in the source graph at the same position. Red elements exist
in the source graph but do not exist at that position in the target graph. In the
depicted examples, node names refer to the corresponding functionality, that is,
same names stand for the same functionality type.

Fig. 7. Detection added node (step 1),
identification neighbour nodes (step 2)

Fig. 8. Detection removed node (step
1), identification neighbour nodes
(step 2)

GR-Based Change Patterns. GPs can be considered as a combination of
GRs. A GP may stand for a specific statement. For instance, GR1 to GR3 are
subsumed as an Insert GP. Formally, a GP is a directed graph that contains
GRs as nodes:

– P = (NR, E)
– NR is a set of R,
– E is a set of edges, formulated as E ⊆ NR × NR.

GPs can build on one another so that more details and information are cap-
tured. Linking GPs means to share related GRs. Figure 9 demonstrates this by
connecting the Insert GP and Remove GP with the Replace GP. Coming back
to our scenario, let us assume that a developer or user replaced an existing node
D by a new node B. In Fig. 9, node B represents a subgraph. Initially, GR1 and
GR4 match the added and removed nodes. These are included in the Insert GP
and Remove GP. Subsequently, GR2 and GR5 identify the context nodes. GR3
will not be activated in this case since there was no direct connection between
node A and C beforehand. The Replace GP is confirmed only if both GR2 and
GR5 fire with the same context nodes A and C. The bidirectional arrows in the
Replace GP indicate that it cannot be valid if merely one GR matches. Start-
ing with simple rules, developers can extend them by adding GRs and GPs in
a hierarchical manner to detect more complex changes. This allows, inter alia,
the recognition of patterns like swaps, parallelizations and other domain specific
structures.

The hierarchical GRs shown in Fig. 9 specify the search path for each change
pattern. Starting at node GR1 or GR4, the algorithm presented in Algorithm2
checks after a successful matching if one of the following rules can be applied.

Lifting Low-Level Workflow Changes 123

Fig. 9. GR-based change patterns Insert, Remove and Replace

In our example, that would be GR2 or GR5. If a GR matches, all relevant infor-
mation like context nodes or added or removed edges are set at that point. Fol-
lowing GRs will use the same context information. Our match checking applies

Algorithm 2. GP graph matching
1 function findMatching (G,R);

Input : G, graph with included change marker; R, current rule from GP
Output: A, map of all matched rules and connected G nodes

2 match = checkMatch(G,R);
3 if match then
4 A.put(R,match);
5 foreach childR in R.children do
6 A.put(findMatching(G, childR));
7 end

8 end
9 return A;

exact subgraph isomorphism to resolve this kind of pattern matching. Any suc-
cessful executed graph rule provides new and additional informations.

Answer Set Programming follows the Declarative Programming paradigm
and has its roots in logic programming, non-monotonic reasoning, and data-
bases. It is used for planning and diagnosis of NP-hard search problems. ASP
provides the possibility of simple ASP code generation in a readable format and
reasoning about temporal and structural dependencies in a workflow. A detailed
explanation can be found in [8].

124 A. Jahl et al.

Our framework translates process graphs to ASP in order to verify locally
the workflow after changes are performed. If a consistency violation is detected,
the change is discarded and the developer is notified. If changes affect the in- or
output of a workflow, they may affect clients using this workflow. Since in- and
outputs of workflows are formulated in ASP too, they serve as change description
for these affected clients. Our DiCORE framework is also running on client side.
This allows us to receive and process ASP fragments and check for consistency on
the client side. Consistency violations will cause a service replacement so that
pre- and post-conditions of each activity on client side are fulfilled. Figure 10
shows the transition diagram of a workflow including two Web service invo-
cations. Transition diagrams can be directly translated to ASP [8]. The ASP
translation of the transition diagram is given in Listing 1.1.

Fig. 10. Process graph to ASP

The translation to ASP is only executed for the original workflow. When-
ever changes occur in the workflow graph, they will be detected, condensed and
mapped to GPs. Each GP holds a corresponding translation in ASP which is
generated automatically during the GP creation phase. This ensures that ASP
descriptions can be updated instead of being generated anew.

Assuming that S2 and S3 are inserted into an existing workflow, our Graph
Reduction would summarize this event as an insertion of a subgraph. This sim-
plification step is also reflected automatically in ASP (Listing 1.2). It results in
a shortened ASP description which reduces the search space for valid models.
Eventually, the subgraph can be resolved into its original composition.

Lifting Low-Level Workflow Changes 125

Listing 1.1. ASP translation
1 fluent(inertial ,type)
2 fluent(inertial ,geo)
3 fluent(inertial ,pol)
4

5 action(getGeoMap)
6 action(getPollutionMap)
7

8 holds(geo , t+1) :- holds(
type , t), holds(-geo , t
),holds(-pol , t),
occurs(getGeoMap , t)

9 holds(pol , t+1) :- holds(
type , t), holds(-geo , t
),holds(-pol , t),
occurs(getPollutionMap ,
t)

10

11 holds(type , 0)
12 holds(-geo ,0)
13 holds(-pol ,0)
14 occurs(getGeoMap ,0)
15 occurs(getPollutionMap ,0)

Listing 1.2. ASP after reduction
1 fluent(intertial ,type)
2 fluent(intertial ,m)
3

4 action(Subgraph#getMap)
5

6 holds(m, t+1) :- holds(type ,
t), holds(-m, t),

occurs(Subgraph#getMap ,
t)

7

8 holds(type , 0)
9 holds(-m,0)

10 occurs(Subgraph#getMap ,0)

3 DiCORE:CIA

The DiCORE framework determines the kind of changes and the affected com-
ponents in a business process and communicates them with dependent clients.
DiCORE:CIA detects functional changes by analyzing the structure of the work-
flow. This module is implemented as a Java library and is part of our DiCORE
framework. In combination with our ASP component (based on clingo [7]), it sup-
ports the developer conveniently through assistance for recognizing changes and
their consequences. Furthermore, a graphical editor for visualizing, customizing
and extending the GPs to particular requirements is provided. The following sec-
tions present an overview of the DiCORE:CIA module architecture and explain
the main features.

3.1 Architecture Overview

DiCORE:CIA includes the following four packages: (1) Process Graph Converter,
(2) Graph Matching, (3) Graph UI, (4) ASP Analyzer.

The Process Graph Converter uses a data model, imported from one of the
well-known workflow languages, e.g. UML, BPMN, BPEL, YAWL, or EPC, to
generate a process graph, based on the process graph syntax in [3].

The Graph Matching package consists of three main components: (1) Graph
Comparator, (2) Graph Reduction, (3) Pattern Matching. The Graph Compara-
tor matches two versions of a process graph and extracts the differences. The
Graph Reduction component contracts the outputs of the Graph Comparator.
Finally, the Pattern Matching component applies the GR graph to match GPs.

126 A. Jahl et al.

Fig. 11. ASP viewer [14]

The Graph UI package encompasses three components: (1) DiCORE GR Edi-
tor, (2) DiCORE Visualization, (3) ASP Viewer. The DiCORE GR Editor is the
UI interface for designing the graph-based change patterns. The implementation
is based on JavaFX1. The graphical interface provides functions for creating and
editing hierarchically structured GRs as well as tools to import them from and
export them to JSON and XML. DiCORE Visualization shows live information
about process graphs and their changes. The ASP Viewer depicted in Fig. 11
shows the corresponding ASP models and allows further analytical steps not
discussed in this work.

The ASP Analyzer contains three components: (1) ASP Converter, (2) ASP
Query Generator, (3) ASP Updater. The process graph serves as input for the
ASP Converter which generates the ASP description needed for further ana-
lytical steps. The ASP Query Generator executes consistency checks through
automatically created queries and identifies after performed changes affected
nodes inside the process graph.

4 Related Work

Workflows are always prone to different kinds of changes, such as new regula-
tory laws, changes in policies or strategies, or emerging technologies. Therefore,
detecting, logging and notifying about functional changes in processes is a crit-
ical step in change analysis. This section will present a brief review of research
work dealing with the detection and handling of functional changes.
1 Standard GUI library for Java.

Lifting Low-Level Workflow Changes 127

For detecting functional changes, various works applied comparisons between
processes to extract different kind of information. These, however, do not provide
tools to developers to define their own patterns or change types, but consider a
fixed set of possible atomic changes.

Aamas et al. [2] propose the Bp-diff tool for a comparison of business models.
The Bp-Diff tool may identify discrepancies involving pairs of tasks and provides
both textual and visual feedback to help users understand each discrepancy. The
textual feedback explains how a given pair of tasks is related in the given model
versions. The visual feedback allows users to pinpoint the exact state where the
discrepancy occurs. Similarly, Sergey et al. [11] present their tool BPMNDiffViz
which compares process models represented in BPMN. The authors provide a
web-based tool that finds business process discrepancies and visualizes them.
However, this tool is applied only for BPMN formats and only considers atomic
changes.

Further alternative approaches are based on predefined sets of change pat-
terns. The authors in [16] suggest a set of change patterns like the addition and
removal of process fragments or moving or replacing fragments. Our approach
encompasses these patterns and is additionally editable and extendable through
our GPs.

5 Conclusions

This paper presents a new contribution for formulating and detecting user-
defined change patterns in complex service graphs. The patterns can be struc-
tured hierarchically and allow a categorization of changes. The hierarchic struc-
ture enables to capture additional information with each GP that could be
matched to a change. Furthermore, our solution allows an intuitive and graphical
formulation of patterns while other existing tools completely ignore user-defined
change patterns. Our DiCORE framework presents a first implementation of the
GPs. It communicates workflow changes with affected parties and triggers adap-
tations in case of inconsistencies. Therefore, we employ logic programming by
automatically generated ASP descriptions that are processed by an ASP solver.
GPs are not restricted to this application scenario but can be applied in general
for detection, compression, logging and communication of simple and complex
changes in a graph-based description expressed as interconnected graph rules.

In a future work, a special multi-agent system shall communicate the changes
and coordinate possible adaptations with affected parties. Therefore we extend
our DiCORE framework and continue to promote this research area.

Acknowledgment. This work is supported by the German Research Foundation
(DFG) under the project PROSECCO, grant number 5534111. The authors would like
to thank the DFG for supporting their participation in worldwide research networks.

128 A. Jahl et al.

References

1. Alam, K.A., Ahmad, R., Akhunzada, A., Nasir, M.H.N.M., Khan, S.U.: Impact
analysis and change propagation in service-oriented enterprises: a systematic
review. Inform. Syst. 54, 43–73 (2015)

2. Armas-Cervantes, A., Baldan, P., Dumas, M., Garcıa-Banuelos, L.: Bp-diff: a tool
for behavioral comparison of business process models. In: Proceedings of the BPM
Demo Sessions, pp. 1–6 (2014)

3. Bouchaala, O., Yangui, M., Tata, S., Jmaiel, M.: Dat: Dependency analysis tool
for service based business processes. In: 2014 IEEE 28th International Conference
on Advanced Information Networking and Applications, pp. 621–628. IEEE (2014)

4. Dai, W., Covvey, D., Alencar, P., Cowan, D.: Lightweight query-based analysis of
workflow process dependencies. J. Syst. Softw. 82(6), 915–931 (2009)

5. Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G.: Graph Transformations.
Springer, Heidelberg (2008)

6. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of
graph edit distance based on Hausdorff matching. Pattern Recogn. 48(2), 331–343
(2015)

7. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with Clingo 5. In: OASIcs-OpenAccess Series in Infor-
matics, vol. 52. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

8. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

9. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput.
Appl. 68(13), 13–18 (2013)

10. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.:
Using graph transformation for practical model-driven software engineering. In:
Beydeda, S., Book, M., Gruhn, V. (eds.) Model-driven Software Development, pp.
91–117. Springer, Heidelberg (2005)

11. Ivanov, S., Kalenkova, A., van der Aalst, W.M.: BPMNDiffViz: a tool for BPMN
models comparison. In: BPM (Demos), pp. 35–39 (2015)

12. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

13. Lu, W., Du, X., Hadjieleftheriou, M., Ooi, B.C.: Efficiently supporting edit distance
based string similarity search using B+ -Trees. IEEE Trans. Knowl. Data Eng.
26(12), 2983–2996 (2014)

14. Opfer, S., Jakob, S., Geihs, K.: Reasoning for autonomous agents in dynamic
domains. In: 9th International Conference on Agents and Artificial Intelligence,
ICAART 2017 (2017)

15. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the
dynamic evolution of web service protocols in service-oriented architectures. ACM
Trans. Web (TWEB) 2(2), 13 (2008)

16. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features-enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

Building Collaborative Services
(Services)

Packaging Microservices

(Work in Progress)

Fabrizio Montesi(B) and Dan Sebastian Thrane

University of Southern Denmark, Odense, Denmark
fmontesi@imada.sdu.dk

Abstract. We describe a first proposal for a new packaging system
for microservices based on the Jolie programming language, called the
Jolie Package Manager (JPM). Its main features revolve around service
interfaces, which make the functionalities that a service provides and
depends on explicit. For the first time, JPM supports binding a service
to an externally-provided package, and a notion of interface parametric-
ity that can be used to develop generic service libraries that can modify
the behaviour of arbitrary services. We illustrate the latter with a generic
circuit breaker package.

1 Introduction

Microservices is an emerging paradigm where that components (even the inter-
nal ones) are autonomous and reusable services [4]. Applications are built by
composing services as black boxes, using message passing.

The nature of microservices fosters granularity, and a MicroService Archi-
tecture (MSA) typically consists of many individual services. Since services are
independent and their coordination happens only through message exchanges,
code reuse (the focus of this work) takes a different form than that found in
standard approaches based on software packages. Typically, in other paradigms,
packages are software libraries, i.e., pieces of source or compiled code that become
a part of the execution of the main application (e.g., through source inclusion,
or static/dynamic linking). While this approach can be used for developing an
“atomic” microservice (a service that does not contain other services), it falls
short of capturing the essence of the paradigm and how it is used.

There are two key aspects that we need to keep in mind when dealing with
code reuse in microservices. First, a common pattern in service development is to
resolve the dependency of a service simply by binding it to an externally-provided
service (available somewhere else in the network), instead of importing code to
be run locally. Second, if we do decide to import some code to be run locally,
that code should still be run as a separate and independent “local” service. This
way, if we need to change strategy later on (say, when we go from development to
production) and switch from running a dependency locally to binding our service
to an external provider, we can do it without changing our implementation.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 131–137, 2017.
DOI: 10.1007/978-3-319-59665-5 9

132 F. Montesi and D.S. Thrane

Package managers for mainstream technologies were not built with MSAs in
mind, so these two patterns are not natively supported. Microservice developers
must instead typically resort to ad-hoc conventions to deal with these problems.

In this paper, we report on the development of a package management sys-
tem for the Jolie programming language [5]1: the Jolie Package Manager (JPM).
Jolie supports microservices natively, so it is a prime case study for the develop-
ment of a package system for microservices that deals with the aforementioned
aspects. We illustrate how JPM supports the configuration and use of service
packages. Furthermore, JPM supports a notion of interface parametricity (poly-
morphism), which can be used to develop services whose behaviour is determined
by the interfaces of the other services that they are bound to at deployment time.
Parametricity is necessary because these interfaces are known only when pack-
ages are “linked” to each other (to solve dependencies).

2 A Simple Example

We briefly introduce Jolie with a small e-shop example.

Listing 1.1. shop.ol: A small microservice for a shop.

1 include"paymentprocessor.iol"

2
3 inputPort Shop { ... }

4 outputPort Warehouse { ... }

5 outputPort PaymentProcessor {

6 Location: "socket://paymentprocessor.com:443"

7 Protocol: https

8 Interfaces: IPaymentProcessor }

9
10 main {

11 checkout(order)(response) {

12 charge@PaymentProcessor(/∗ ... ∗/)()

13 }

14 }

Listing 1.1 shows a simple Shop service. It has a single checkout operation,
defined in Lines 11–13. The Shop has two dependencies: the PaymentProcessor

and the Warehouse, given as output ports. An output port dictactes how we can
invoke another service. The output port PaymentProcessor is defined in Lines
5–8. This includes a Location attribute, which defines where the service can be
contacted, a Protocol attribute, which defines the transport protocol to be used,
and a list of statically defined Interfaces, which types the API of the service.

The current practice to make Jolie services configurable is based on ad-hoc
conventions. For example, we may include a file named config.iol that contains
some constant definitions (representing configuration parameters). Listing 1.2
shows the configuration file for the PaymentProcessor.
1 http://www.jolie-lang.org/.

http://www.jolie-lang.org/

Packaging Microservices 133

Listing 1.2. config.iol: Configuration for the PaymentProcessor.

1 constants {

2 PAYMENT_PROCESSOR_TEST_MODE = false ,

3 PAYMENT_PROCESSOR_ACCOUNT_ID = "xxxxx -xxxxx -xxxxx",

4 PAYMENT_PROCESSOR_LOC = "socket:// localhost:443",

5 PAYMENT_PROCESSOR_PROTOCOL = "https"

6 }

Here we provide a few fields for the behaviour of the service (TEST MODE

and ACCOUNT MODE) and configuration for the input port of the service (LOC and
PROTOCOL). The main problem of this approach is that this file needs to be included
as source code by the service that we are configuring. This hides what the parame-
ters mean (Are they bindings or not? What is the resulting architecture?). It also
opens to security risks: since we are importing source code, an attacker may insert
arbitrary malicious code in the configuration file and it would be executed.

3 Packages and the Package Manager

We introduce a package abstraction to the Jolie language and provide a tool that
combines packages with configurations to achieve our aims from the Introduction,
the Jolie Package Manager (JPM). A package is a folder containing Jolie source
code. The code of a package is read-only when used as a dependency, to enable
potential updates and integrity checks when packages are installed.

JPM distributes packages following a relatively standard approach. A pack-
age in a repository is equipped with a package manifest. A manifest contains
information about the package, used for indexing (e.g., name, description, pur-
pose, etc.) and package management (e.g., dependencies and version). We omit
the details of manifests and how they are used to install packages from reposi-
tories, since these are similar to those in mainstream package managers. In the
remainder, we focus on features that are peculiar to JPM.

3.1 Configuration

Jolie packages are configured by configuration profiles, which we introduce here.
Crucially, profiles do not need to be included as source code by packages. They
are instead given in separate deployment files (written by the user of the package)
that are processed by the Jolie toolchain in a controlled way, when we need to
run the services given inside of the package. The syntax of profiles recalls that of
the Jolie constructs that can be configured. In Listing 1.3, we show an example
of a configuration profile for the PaymentProcessor, which replaces the ad-hoc
source-included configuration file given in Listing 1.2.

134 F. Montesi and D.S. Thrane

Listing 1.3. pp.col: Configuration for the PaymentProcessor in JPM.

1 profile "pp-production" configures "PaymentProcessor " {

2 inputPort PaymentProcessor {

3 Location: "socket:// localhost:443"

4 Protocol: https }

5 PAYMENT_PROCESSOR_TEST_MODE = false

6 PAYMENT_PROCESSOR_ACCOUNT_ID = "xxxxx -xxxxx -xxxxx"

7 }

This snippet shows a single profile named "pp-production". A profile provides
binding information (location, protocol) for communication ports and configu-
ration values to a particular package. A user can provide different configuration
profiles, e.g., one for development and one for production, and select among
them at deployment time.

We require that the configurable elements of a Jolie program are marked with
a new keyword, #ext. This allows the developer to omit binding information in
communication ports; the omitted field need then to be provided externally by
a configuration profile. We do not allow setting the Interfaces part of a port
externally, since this would prevent type checking of programs until they know
their deployment setup (typing how they use ports inside of their behaviours).
Thus in the PaymentProcessor its input port is defined as:
#ext inputPort PaymentProcessor { Interfaces:IPaymentProcessor }.

3.2 Embedded Dependencies

In Jolie, all components are services that run independently. Sometimes, for
performance or convenience, it is useful to embed a service in the same local VM
(Jolie is implemented in Java). Services in the same VM still exchange messages,
but they can use efficient in-memory channels, as opposed to the network.

Our new package system allows us to embed pre-configured Jolie packages
in two ways. These two ways give a system administrator the freedom to choose
and apply the best deployment strategy without any changes required to the
services. We start by looking at the externally configurable approach.

Figure 1 shows a development configuration for the Shop. In this configu-
ration, we embed the PaymentProcessor and its dependencies inside the Shop.
Listing 1.4 depicts the desired deployment. When we state that a service should
be embedded, we simply pass the name of the configuration profile to be used.

Listing 1.4. Embedding services from a configuration.

1 prof i le ”shop−development” configures ”Shop” {
2 outputPort PaymentProcessor embeds ”pp−development”
3 }
4 prof i le ”pp−development” configures ”PaymentProcessor” {
5 inputPort PaymentProcessor { Location : ” l o c a l ” }
6 outputPort FakeCCProcessor embeds ” fake−proc e s s o r ”
7 }
8 prof i le ” fake−proc e s s o r ” configures ”FakeCCProcessor” { . . . }

Packaging Microservices 135

Fig. 1. Desired deployment configuration for our development build. The dashed region
represents services inside of the same VM.

4 Parametric Interfaces

Proxy services delegate the computation of replies for their requests to other
services. A notable example is circuit breaker [8]. We summarise this pattern in
the following (see [7] for a thorough discussion in Jolie).

Circuit breakers attempt to protect against some of the problems that occur
when using remote calls, such as connection problems, timeouts, and criti-
cal faults. During normal operation, a CircuitBreaker functions like a normal
proxy between a Client and a TargetService. Monitoring code inside of the
CircuitBreaker attempts to detect problems. If enough problems are detected,
the CircuitBreaker will start failing immediately without attempting to proxy
the call. After a period of time it will start allowing some calls through, and
eventually transition back to the normal state and allow all calls through.

Packaging proxy services like circuit breakers raises a particular problem.
Intuitively, the proxy should only accept calls for operations that are declared
in the interface of the target service. However, this interface is known only at
deployment time, since we may want to reuse the same circuit breaker package
to protect different services. Proxy services are thus inherently parametric on the
interfaces of the target services that we choose at deployment time. To address
this problem, we introduce the notion of configurable interface to Jolie.

Listing 1.5. cb.ol: An externally defined interface.

1 #ext interface ITarget

In Listing 1.5 we define an externally configurable interface. A concrete inter-
face is bound to it at deployment time by reading the configuration, giving the
service, in this case CircuitBreaker, the information needed to correctly proxy
operations. Observe that since we want Jolie services to be type-checkable with-
out knowing their configuration (since configuration may change in different
deployment setups), this means that the behaviour of the service is necessarily

136 F. Montesi and D.S. Thrane

defined as polymorphic, i.e., it cannot assume any specific operation in the con-
figurable interfaces (this is obtained through aggregation in Jolie, see [5]).

To create a circuit breaker running in a client, we would embed the circuit
breaker locally and have it bound to our external payment processor, this is
shown in Listing 1.6.

Listing 1.6. cb.col: Shop configuration with client-side circuit breaker for
PaymentProcessor.

1 prof i le ”shop−product ion ” configures ”Shop” {
2 outputPort PaymentProcessor embeds ”cb−pp”
3 }
4 prof i le ”cb−pp” configures ”Ci rcu i tBreaker ” {
5 interface ITarget = PaymentProcessI face from ”PaymentProcessor”
6 outputPort TargetSrv { . . . }
7 }

We can just as easily create a circuit breaker that operates server-side (inter-
cepting incoming calls), or as a proxy in the network, by adopting different
deployment files for "cb-pp".

5 Related Work

A common approach to simulate bindings to external services in mainstream
languages is to communicate with services via stub libraries. A stub library
provides an interface that resembles that of the target service, and internally
delegates all work to the latter. In web architectures, these libraries can be
synthesised from specifications, for example using OpenAPI [1] specifications
in tools like Swagger [9]. Our approach applies directly to web development
through Jolie [6].

Seneca [2] is a microservice toolkit for Node.js, where business logic is
enclosed in a plugin typically distributed as a Node.js module. By including
these plugins as dependencies, a server can essentially embed the logic of these
plugins, similarly to JPM. Seneca uses pattern matching to determine which
service should handle a particular message. This makes the bindings of a Seneca
service implicit, in contrast to JPM, where bindings are explicit. A similar mech-
anism may nevertheless be implemented in Jolie and JPM by adopting proxy
services, cf. [3].

Acknowledgments. This work was partially supported by CRC (Choreographies for
Reliable and efficient Communication software), grant no. DFF–4005-00304 from the
Danish Council for Independent Research, and by the Open Data Framework project
at the University of Southern Denmark.

References

1. Open api website. https://www.openapis.org/. Accessed 22 Feb 2017
2. Seneca Authors. Seneca official website. http://senecajs.org. Accessed 22 Feb 2017

https://www.openapis.org/
http://senecajs.org

Packaging Microservices 137

3. Dalla Preda, M., Gabbrielli, M., Guidi, C., Mauro, J., Montesi, F.: Interface-based
service composition with aggregation. In: Paoli, F., Pimentel, E., Zavattaro, G. (eds.)
ESOCC 2012. LNCS, vol. 7592, pp. 48–63. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33427-6 4

4. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow. In: Present
and Ulterior Software Engineering (PAUSE). Springer(2017, to Appear). https://
arxiv.org/abs/1606.04036

5. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie. In:
Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Foundations, pp. 81–
107. Springer, New York (2014)

6. Montesi, F.: Process-aware web programming with Jolie. Sci. Comput. Program.
130, 69–96 (2016). Also: SAC, pp. 761–763 (2013)

7. Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microser-
vices. CoRR, abs/1609.05830 (2016)

8. Nygard, M.T.: Release It!: Design and Deploy Production-Ready Software (Prag-
matic Programmers). Pragmatic Bookshelf, Raleigh (2007)

9. SmartBear Software. Swagger website. http://swagger.io/. Accessed 22 Feb 2017

http://dx.doi.org/10.1007/978-3-642-33427-6_4
http://dx.doi.org/10.1007/978-3-642-33427-6_4
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036
http://swagger.io/

formic: Building Collaborative Applications
with Operational Transformation

(Work in Progress)

Tim Jungnickel(B) and Ronny Bräunlich

TU Berlin, Berlin, Germany
tim.jungnickel@tu-berlin.de, r.braeunlich@campus.tu-berlin.de

Abstract. As part of the ongoing revolution of the way people work
in distributed teams, the need of applications for real-time collaboration
is increasing. Commercial products like Google Docs set the landmark
for modern web-based collaboration. In this work we provide a library
that utilizes the underlying technology, namely Operational Transfor-
mation, to simplify the development of collaborative web applications.
Our library formic features a novel transformation function that enables
simultaneous editing of JSON objects.

Keywords: Consistency control · Operational Transformation ·
Collaboration · Web development

1 Introduction

The Internet has changed the way we work together and collaboration is no
longer restricted to face-to-face meetings. Hence, working in geographically dis-
tributed teams will be the predominant part of our future work life [18]. More-
over, due to the increasing number of internet devices everyone uses, we will
easily become collaborators with ourselves.

The only way to technically realize usable collaborative applications in high
latency networks, like the Internet, is to use a local replica of the application
state on every collaborating device. Hence, users can directly access and update
the local replica on the device without any noticeable latency. All changes are
propagated in the background. Unfortunately, having multiple replicas of the
application state raises fundamental questions in distributed systems research.
Most important is the need of a consistency control mechanism to ensure con-
vergence among replicas [3].

Successful collaborative applications like Google Docs or Etherpad use Oper-
ational Transformation (OT) [7] to allow simultaneous editing of shared docu-
ments. We illustrate the mechanics of OT with the following simple text edit-
ing scenario. Two users u1 and u2 maintain their own replica of the character
sequence abc. Both users simultaneously invoke edit operations on their local
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 138–145, 2017.
DOI: 10.1007/978-3-319-59665-5 10

formic: Building Collaborative Applications with OT 139

replica. The user u1 inserts an X at position 0, resulting in Xabc. The user u2

deletes the character b at position 1, resulting in ac. A näıve interchange of
the invoked edit operations would result in diverging replicas: u1 results in Xbc,
whereas u2 results in Xac. In OT, remote operations are transformed based on
previously executed local operations. Hence, u1 needs to transform the position
of the remote delete operation to respect the effect of the local insert opera-
tion, i.e. u2’s delete operation on position 1 needs to be transformed to a delete
operation on position 2 to ensure convergence.

In modern web development, single-page applications based on JavaScript
become more and more popular. In frameworks like AngularJS or React essential
business logic is executed in the browser at client site, allowing fully responsive
user interfaces, even if the network connection is unstable. The major challenge
for building collaborative web applications is to combine the chosen web frame-
work with a fitting consistency control mechanism like OT.

Contributions: In this work we contribute to close the gap between the concep-
tual and formal descriptions of OT systems and real world web development by
providing the missing details of an OT extension that supports simultaneous
editing of JSON objects. Since JSON is the de facto standard data interchange
format of the web, we expect that a combination of JSON with OT encour-
ages the design of more complex collaborative web applications. Ultimately we
present and evaluate a programming library that utilizes provably correct trans-
formations and simplifies the development of collaboration systems.

Related Work: OT has been introduced by Ellis and Gibbs in 1989 [7], followed
by multiple decades of research around the mechanism and very valuable contri-
butions from various groups. Prominent example applications are Google’s doc-
ument editing suite Google Docs and the free competitor Etherpad. In recent
work, Dang and Ignat showed, that the performance of both systems with a
larger number of collaborators is limited [6]. Hence, our library must be able to
compete with such systems, which we evaluate in Sect. 4.

We have seen notable work outside the academic community that aims to
use OT for the development of new collaborative applications. The JavaScript
library ShareDB [9] offers the OT mechanism with support for various datatypes
such as lists or JSON objects. However, especially the JSON datatype misses a
verification of the necessary transformation property (namely TP1).

Apart from OT, other consistency control systems are interesting for col-
laborative applications, for example Conflict-Free Replicated Data Types [20].
Several benchmarks have been conducted to show the suitability of CRDTs for
document editing [1,4]. In recent work, Nédelec et al. introduced a web-based
collaborative editor CRATE that enables collaboration without the need of a
central server [17]. Kleppmann and Beresford presented a very promising JSON
CRDT [15] which has, to the best of our knowledge, not been demonstrated in
a collaborative application. In this work, however, we focus on OT systems and
compare the performance of Google Docs and ShareDB against our library.

An alternative but noteworthy mechanism is Differential Synchronization by
Fraser [8], which is a state based synchronization mechanism based on diffing and

140 T. Jungnickel and R. Bräunlich

patching. An implementation of Jan Monschke demonstrates the applicability to
JSON documents [16]. So far we have not seen much academic attention to it.

In earlier research, we presented the conceptual extension of OT to support
operations on JSON objects [14]. In this paper, we deliver the missing imple-
mentation and evaluation.

2 Preliminaries

In general, OT is an operation based consistency control system, i.e. edit oper-
ations on the local replicas of the collaborators are propagated through the
network and applied at remote sites. An OT system is composed of a control
algorithm and a transformation function [21]. The control algorithm determines
the operations to be transformed and the transformation order. The transfor-
mation function determines how the operations are transformed to include the
effects of previous operations.

We demonstrate an extract of a transformation function for operations on
lists in Listing 1.1, which was initially introduced by Ellis and Gibbs in [2] and
improved by Ressel et al. in [8]. We recall the example from the introduction
where u1 inserts a character at position 0 and u2 simultaneously deletes a char-
acter at position 1. According to line number 2 of Listing 1.1, the position of the
delete operation must be increased by one. In this example, the transformation
of the delete operation ensures convergence among replicas.

Listing 1.1. Pseudo code of the transformation function

1 function XFORM(insert(i, k1), delete(k2)):
2 if k1 < k2: return(insert(i, k1), delete(k2 + 1))
3 if k1 > k2: return(insert(i, k1 - 1), delete(k2))
4 if k1 == k2: return(insert(i, k1), delete(k2 + 1))

One essential and necessary property of a transformation function is the
Transformation Property 1 (TP1) [19]. In essence, TP1 describes that the trans-
formation function needs to repair the inconsistencies that occur if two operation
instances are applied in different orders, loosely formalized as:

∀O1, O2.XFORM(O1, O2) = (O′
1, O

′
2) ⇒ (O′

2 ◦ O1 = O′
1 ◦ O2)

OT Systems are not restricted to operations on linear data structures such
as lists. However, more complex data structures result in more complex transfor-
mation functions, which makes it difficult to prove that TP1 is satisfied. For the
rest of this paper, we focus on operations on JSON objects, because we identified
them to be most relevant for modern web applications.

JSON (JavaScript Object Notation) is a hierarchically structured data inter-
change format [10]. A JSON object is an unordered set of key/value pairs. Values
can be of primitive type (such as string, number, or boolean) or complex struc-
tures, such as arrays or other objects. An array is an ordered list of values.

formic: Building Collaborative Applications with OT 141

3 formic’s JSON Transformation

Our goal is to provide the necessary mechanics to build collaborative web appli-
cations easier and based on solid formal guarantees. Therefore, we implemented
formic [5], a free software library that features collaboration on list structures,
ordered n-ary trees, and JSON. In this section we report on formic’s architec-
ture and provide the missing details of the transformation of operations on JSON
objects.

Architecture: Our library formic utilizes the Wave OT control algorithm, which
has been introduced by Google [2]. The algorithm provably ensures convergence
among replicas as long as the used transformation function satisfies TP1. Our
library implements the client and the server part of the Wave algorithm. Updates
among server and client are sent via WebSockets, i.e. a communication protocol
for bidirectional communication over a single TCP connection. In case of discon-
nection, a client can continue to operate offline based on the state of the local
replica. If the client reconnects, all operations are exchanged and the replicas
converge. In contrast to ShareDB and Etherpad, formic is, to the best of our
knowledge, the first free software OT library that supports an offline mode.

In formic, we implemented transformation functions for operations on lists
and n-ary trees that are proven1 to satisfy TP1. Moreover, we developed a
transformation function for operations on arbitrary JSON objects.

JSON Transformation: In formic, we introduce a novel transformation function,
which features insert, delete, and replace operations on arbitrary JSON objects.
Since JSON is a hierarchical format, we derive essential parts from the transfor-
mation function on n-ary trees, which is already proven to be TP1-valid. The
major difference is, that the position parameter, which indicates where an item
should be edited, is no longer an access path, i.e. a vector with numeric para-
meters. Since a position inside a JSON is identified with a vector of keys and
positions inside an array, the operations must be translated to operations on
trees accordingly. For example, the position parameter of an operation on the
JSON object in Fig. 1, that aims to insert an item at position 0 of the array
with the key "key5", would be translated in the following way:

["key3","key5",0] → [2, 0, 1, 0, 0]

The complete translation mechanism from a JSON object to an n-ary tree is
documented in the formic repository [5]. The transformation function for replace
operations can be found in the updated version of the technical report in [13].

1 For list operations, we implemented a proof in the theorem prover Isabelle [11]. For
operations on n-ary trees, we refer to our technical report [13].

142 T. Jungnickel and R. Bräunlich

Fig. 1. Tree representation of a JSON object [14]

4 Evaluation

We evaluated the performance of our library by reusing the experiment of Dang
and Ignat [6], which was initially used to explore the performance of Google Docs
at large scale. In their experiment, real users have been simulated with Selenium,
a widely accepted web-based testing tool. The simulated users are divided into
one Writer, one Reader, and up to 50 DummyWriters. The DummyWriters write
random strings to a shared document. The Writer writes a specific string to the
document and the Reader waits until the specific string is present and reports
the delay. Dang and Ignat measured the delay with different numbers of Dum-
myWriters and various type speed (1–8 keystrokes per second). We used a similar
setup to evaluate formic by installing the server and the Selenium users on sev-
eral virtualized machines on our local cluster (16 servers with 2 x Intel Xeon
X5355 (2× 4 cores), 32 GB Memory).

Note that the original experiment design of Dang and Ignat is based on
simple insertions of characters and strings to an empty document. Hence, no
functionality of a rich text editor is utilized in this experiment. Therefore we
decided to compare the performance measurement of Google Docs in [6] to the
performance of the transformation of list operations in formic. We present the
results in Fig. 2.

In contrast to Google Docs, formic offers the OT mechanism in a way that
web developers can enable simultaneous and collaborative editing of arbitrary
objects, as long as the objects can be serialized into JSON. In order to evaluate
the transformation of operations on JSON objects properly, we decided to com-
pare the performance of formic to ShareDB in an collaborative JSON editing
scenario. For this run, we modified the mentioned experiment design so that the
DummyWriters are now invoking operations to a shared JSON object over a test
website. To ensure comparability, we implemented an identical test website with
formic and ShareDB and installed both systems on the same local cluster. We
present the results in Fig. 3.

Results: In Fig. 2, we show a comparison between the results of Dang and Ignat
and the performance of formic in an identical setup. We see that formic is
able to compete with the performance of Google Docs and even shows a better

formic: Building Collaborative Applications with OT 143

(a) Google Docs from [6]

●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●
●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●
● ●

●●
●●●●●●●
●
●●●●
●●●●●
●
●●
●●
●●●●●
●

●●
●●
●●●●●

●

●
●

●●●●●●●
●

●●
●

●●●●●●●

●●
●●
●●●●
●●

●
●
●
●

●●●●●
●

●
●

●●●
●●●●
●

●●

●●●
●
●●●
●

●

●
●●●●●●●
●

●●
●●
●●●●●

●
●

●

●●●●●●●

●●

●●
●
●●●
●
●

●

●

●
●
●
●●●●●

●
●
●
●●
●●●●●

●

●

●
●
●
●
●●●●
●

●

●
●

●
●
●
●●●

●

●

●
●●●●●●●

●

●

●

●●●●●●●

●

●

●
●
●
●●●●●

●

●●●
●
●
●
●●●

●

●

●
●●●●●●●

●

●

●
●
●

●●●
●●

●

●

●

●
●●●
●
●●

●

●

●
●
●
●
●●●●

●

●
●
●
●
●●●●●

●●

●●●
●●●●●

●

●

●

●

●
●●●
●
●

●●

●●
●●●
●●●

●

●●

●

●

●
●●●●

●

●

●

●●●
●
●

●
●

●

●

●

●●
●
●
●
●●

●

●

●
●
●●●●●●

●●

●●
●

●

●
●●●

●

●

●

●
●
●
●●●●

●●

●

●
●●●●
●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●●●●●●

●●

●

●
●●●●
●
●

●

●

●

●
●
●
●●
●●

●●

●
●●●●
●●
●

●

●

●

●
●●●●●●

●

●

●

●
●
●●●
●
●

●●

●
●
●
●
●
●●●

●
●

●

●
●
●
●
●●●

●●

●
●
●●
●●●
●

●

●

●●●
●
●●
●
●

●

●

●

●
●
●
●
●
●●

●●

●

●
●

●
●●
●●

●

●
●

●●

●●
●●●

●
●

●
●
●
●●
●
●●

●●

●●●
●

●
●
●●

●
●

●●
●
●●
●
●●

●

●

●
●
●●

●●●●

●●

●
●●●

●
●●●

●

●

●●●
●
●
●
●●

●

●
●

●●●
●
●●●

●

●
●●

●

●
●
●
●

●

●

●

●
●●
●
●
●●●

●
●

●●
●●
●
●●●

●●

●

●
●
●

●
●●●

●●

●●●
●
●

●●●

●

●

●

●●
●
●
●●●

●
●

●●
●

●●
●●
●

●
●

●●

●●●
●
●●

●
●

●

●
●
●
●
●●
●

●

●

●

●●●

●
●●●

●

●

●
●●
●

●●●●

●●
●
●

●
●
●
●

●●

●
●

●
●
●
●

●●●●

●

●

●

●●
●
●●●●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●●●●●
●

●●

●
●
●
●
●
●
●●

●

●

●

●

●
●
●
●●●

●
●

●
●
●●●
●

●●

●

●

●

●
●●●●●●

●

●

●●
●
●
●
●●●

●
●
●

●
●
●
●
●
●●

●
●

●●

●
●
●●
●
●

●

●

●
●
●
●
●
●
●●

●

●

●
●
●●
●●●●

●

●

●
●●
●
●
●●●

●
●

●
●

●

●
●
●
●

●

●
●

●

●

●

●
●

●●
●

●●

●

●
●●●●
●
●

●
●

●

●

●

●
●●
●●

●
●

●●●●●●
●●

●●

●

●

●
●

●●●●

●

●

●

●●
●●
●
●
●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●●●
●
●●

●●

●
●

●●●
●●
●

●
●

●
●

●
●
●●

●●

●

●

●

●
●●●●
●
●

●
●

●
●●
●
●
●
●●

●●

●

●
●●●●●●

●
●

●●●●●●●●

●
●

●●●●●●●
●

●

●

●●
●●●●●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●
●●
●●

●

●●

●
●
●
●
●
●
●●

●
●

●

●●●●
●
●●

●●

●●●
●●●●●

●

●

●
●
●
●●●●●

●
●

●

●

●●
●●●●

●
●

●
●
●

●

●
●●●

●
●

●
●
●
●●●●●

●
●

●
●

●●●
●
●●

●
●

●
●
●

●●●●●

●●

●

●
●
●
●

●●

●

●

●

●●
●
●
●
●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●
●
●●
●
●

●

●

●
●●

●
●
●
●
●

●

●

●

●

●
●●
●

●

●

0 10 20 30 40 50

0

10

20

30

40

50

60

Number of user

D
el

ay
 in

 s
ec

on
ds

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

(b) formic

Fig. 2. The performance of collaborative editing with one keystroke per second.

performance at large scale. In Fig. 3 we show the comparison between formic and
ShareDB in a JSON editing scenario. We see that ShareDB performs slightly
better. In contrast to the first experiment, the delay of both systems remains
relatively low and does not exceed 10 s.

Discussion: With respect to text editing scenarios, we can confirm the finding of
Dang and Ignat, that the performance of OT in collaborative web applications
is limited at large scale. However, the performance of formic is comparable with
Google Docs. We note that the used local cluster for the evaluation of formic is
relatively old. Hence, we would expect even better results with modern hardware.
Unfortunately, Google provides no insight into the used infrastructure and the
underlying OT implementation and it is therefore difficult to reason about the
performance results of Google Docs.

In the JSON editing scenario, our library performs slightly worse than the
competitor ShareDB. We explain the difference in the performance by the used
optimizations in ShareDB which are not implemented in formic yet. For example,
multiple operations on the local replica can be combined before they are sent to
the server. This reduces the amount of necessary communication and leads to
faster response times. One major bottleneck in formic is the mapping of a JSON
object to an ordered n-ary tree. The mapping enforces a total order in every
layer of the tree, which is technically not necessary for every JSON component.
For example, key/value pairs inside a JSON object do not require ordering,
whereas elements inside an array must be ordered. This issue can be solved by
introducing a more complex data model, which leads, as mentioned in Sect. 2,
to more complex proofs. The most interesting solution would use a combination
of different consistency control systems to best suit the JSON definition, e.g. a
combination of the Observed-Remove Set CRDT [20] and OT.

Ultimately, formic is a considerable tool to develop collaborative web appli-
cations that are able to compete with established collaborative solutions. The
very next step is to improve the accessibility of formic by providing exam-
ples and developer friendly integrations for commonly used web frameworks.

144 T. Jungnickel and R. Bräunlich

As a first step, we implemented a collaborative Battleship game based on a
shared JSON object and published the source code along with the library [5].
Moreover, we plan to integrate the JSON transformation into a collaborative
patient documentation system [12].

●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●

●
●●●●●●●●
●
●

●●●
●●●●●●

●

●●●●●
●●●●
●
●●●●
●●●●●

●

●
●
●●

●●
●
●

●

●
●
●●●●●●●

●

●●
●●●
●●
●●

●

●●
●●●●●
●
●

●

●●●●●
●●
●

●

●●●
●●
●●

●

●

●
●●
●
●●
●
●●

●

●

●

●

●●●
●
●●

●

●

●

●
●
●

●
●

●

●
●

●
●●●
●
●

●

●
●
●●

●●
●

●

●
●●●●
●●●
●

●

●
●●●
●

●

●

●

●
●●●
●
●
●

●

●●●●
●
●●

●

●
●
●

●

●●

●●●

●

●
●●●

●
●
●●

●

●

●

●
●●

●

●
●
●●

●

●●●

●●
●
●

●
●

●

●
●
●●
●
●
●●●

●

●

●
●●

●
●

●

●
●

●●
●

●
●

●

●●

●●●●

●

●

●
●
●

●
●●●
●

●

●
●
●
●●

●

●

●

●
●
●

●

●

●

●●

●●
●
●
●

●

●

●
●

●
●

●
●

●

●●●
●

●●

●

●
●

●
●

●●

●
●

●

●●●●

●

●●●

●

●
●
●●

●
●
●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●
●
●

●

●

●
●

●●●●●

●●

●
●
●●

●

●

●
●
●●

●●

●

●●

●
●
●

●

●●●
●●

●

●
●

●●

●●
●●

●

●●
●

●

●
●

●

●
●●
●
●●●●

●

●

●

●

●

●

●

●●
●
●●●

●

●●
●
●●●●●

●

●
●
●●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●
●

●●

●

●

●

●
●
●
●

●

●
●
●
●●
●

●

●

●

●●

●
●
●●

●

●

●●●● ●●

●

●●●
●
●●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●
●
●

●

●●
●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●
●
●
●
●

●●

●

●●●

●

●
●

●

●
●

●

●●
●●

●

●

●

●
●
●●
●●

●

●
●●●
●
●
●

●

●

●●

●

●
●
●
●

●

●

●

●
●●
●
●

●

●●

●

●

●

●●

●

●
●

●

●●●●●
●
●

●

●

●●
●

●●

●
●

●

●

●

●
●

●●

●

●

●●●●
●

●

●●

●

●●●

●

●
●

●
●

●

●

●
●●

●

●

●

●●●
●●

●

●
●
●●●●●

●

●

●●●

●

●●
●

●

●

●
●

●
●

●
●

●●
●
●

●

●

●

●

●

●●

●
●
●●
●
●
●

●

●

●
●

●
●
●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●

●

●
●●
●

●

●●●
●●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●●

●

●
●

●

●●
●●●

●

●

●
●

●

●

●

●

●
●●●
●

●

●

●
●

●

●●

●
●

●●

●
●●

●
●

●

●

●

●
●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●
●
●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

0 10 20 30 40 50

0

5

10

15

20

Number of user

D
el

ay
 in

 s
ec

on
ds

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

(a) ShareDB

●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●
●
●●●
●
●●●●●

●
●
●
●●●●
●●●
●

●
●●●●●●
●●
●

●●●●●

●

●
●●

●

●●●●
●
●●
●

●
●
●
●
●

●
●
●●●

●

●●●
●
●
●
●

●
●

●

●
●

●

●●
●
●

●
●

●

●

●

●●●
●●●●

●

●●

●
●

●
●●
●●

●

●
●●
●
●
●

●●

●

●

●
●
●●
●

●

●

●

●

●●
●
●●●●●●

●

●
●●

●●

●
●

●

●
●

●●
●●

●
●

●

●

●
●
●●

●
●
●
●

●

●●
●

●

●

●
●●

●

●

●
●●●
●
●●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●
●
●●

●

●

●●
●

●

●

●
●●

●

●●

●●●

●

●

●●
●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●

●●●

●

●
●●●

●

●
●
●
●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●●
●●●
●
●

●

●●

●

●
●
●
●

●

●

●●

●

●
●

●

●
●●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●
●

●

●

●●●
●

●

●
●

●
●
●
●

●
●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●●●
●
●
●

●

●
●
●

●
●

●●

●

●●●
●

●

●

●

●
●

●●
●

●
●

●

●
●●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0

5

10

15

20

Number of user

D
el

ay
 in

 s
ec

on
ds

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

(b) formic

Fig. 3. JSON editing with one modification per second.

5 Conclusion

With formic, we presented an open-source library that simplifies the development
of web-based collaborative applications by providing a fully working OT system
with implemented transformation functions for operations on lists, trees and
JSON objects. Moreover, formic is composed of tested and verified components.
Especially the used transformation functions are proven to be TP1-valid, which
makes formic an attractive tool to solve the consistency-related challenges in
collaborative applications.

The conducted experiment has demonstrated that our library is able to com-
pete against Google Docs, the most successful collaborative application that
utilizes OT. However, the underlying client-server architecture limits the perfor-
mance at large scale.

Ultimately, the development of collaborative web applications will become
more important in the future. The use of a single service for web-based collab-
oration, such as Google Docs, is highly questionable in terms of privacy and
confidentiality, especially for sensitive data. Therefore, we expect to see more
organizations, which use in-house applications for the collaborative work in dis-
tributed teams. The presented library simplifies the development and enables
the design of collaborative applications that are not restricted to collaborative
text editing, but rather fully flexible due to the JSON transformation. Future
work includes the improvement of the accessibility and the development of more
features, such as undo/redo or move operations.

formic: Building Collaborative Applications with OT 145

References

1. Ahmed-Nacer, M., Ignat, C.-L., Oster, G., Roh, H.-G., Urso, P.: Evaluating crdts
for real-time document editing. In: ACM Symposium on Document Engineering
(2011)

2. Apache. Wave Protocol (2014). https://incubator.apache.org/wave
3. Brewer, E.: Towards robust distributed systems. In: Principles of Distributed Com-

puting, PODC 2000 (2000). (Invited Talk)
4. Briot, L., Urso, P., Shapiro, M.: High responsiveness for group editing crdts. In:

International Conference on Supporting Group Work, pp. 51–60 (2016)
5. Bräunlich, R.: formic (2017). https://github.com/rbraeunlich/formic
6. Dang, Q.V., Ignat, C.L.: Performance of real-time collaborative editors at large

scale: user perspective. In: IFIP Networking Conference and Workshops, pp. 548–
553 (2016)

7. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18(2), 399–407 (1989)

8. Fraser, N.: Differential synchronization. In: ACM Symposium on Document Engi-
neering, pp. 13–20 (2009)

9. Gentle, J., Smith, N.: ShareDB (2016). https://github.com/share/sharedb
10. JSON. JavaScript Object Notation (1999). http://json.org
11. Jungnickel, T.: A proof of tp1 for transformations of list operations (2015). https://

gitlab.tubit.tu-berlin.de/jungnickel/isabelle
12. Jungnickel, T., Cabello, J., Raile, K.: Hotpi: open-source collaborative patient doc-

umentation. In: Companion of ACM Conference on Computer Supported Cooper-
ative Work and Social Computing, pp. 219–222 (2017)

13. Jungnickel, T., Herb, T.: Tp1-valid transformation functions for operations on
ordered n-ary trees (2015). http://arxiv.org/abs/1512.05949

14. Jungnickel, T., Herb, T.: Simultaneous editing of JSON objects via operational
transformation. In: ACM Symposium on Applied Computing, pp. 812–815 (2016)

15. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype (2016).
http://arxiv.org/abs/1608.03960

16. Monschke, J.: DiffSync (2015). https://github.com/janmonschke/diffsync
17. Nédelec, B., Molli, P., Mostefaoui, A.: Crate: writing stories together with our

browsers. In: International Conference Companion on World Wide Web, pp. 231–
234 (2016)

18. Powell, A., Piccoli, G., Ives, B.: Virtual teams: a review of current literature and
directions for future research. SIGMIS Database 35(1), 6–36 (2004)

19. Ressel, M., Nitsche-Ruhland, D., Gunzenhäuser, R.: An integrating,
transformation-oriented approach to concurrency control and undo in group
editors. In: ACM Conference on Computer Supported Cooperative Work, pp.
288–297 (1996)

20. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

21. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. Comput. Hum. Interact. 5(1), 63–108 (1998)

https://incubator.apache.org/wave
https://github.com/rbraeunlich/formic
https://github.com/share/sharedb
http://json.org
https://gitlab.tubit.tu-berlin.de/jungnickel/isabelle
https://gitlab.tubit.tu-berlin.de/jungnickel/isabelle
http://arxiv.org/abs/1512.05949
http://arxiv.org/abs/1608.03960
https://github.com/janmonschke/diffsync
http://dx.doi.org/10.1007/978-3-642-24550-3_29

Filament: A Cohort Construction Service
for Decentralized Collaborative

Editing Platforms

Ariyattu C. Resmi1(B) and François Taiani1,2(B)

1 Université de Rennes 1 - IRISA, Rennes, France
{rariyatt,francois.taiani}@irisa.fr

2 ESIR, Rennes, France

Abstract. Distributed collaborative editors allow several remote users
to contribute concurrently to the same document. Only a limited num-
ber of concurrent users can be supported by the currently deployed edi-
tors. A number of peer-to-peer solutions have therefore been proposed to
remove this limitation and allow a large number of users to work collab-
oratively. These approaches however tend to assume that all users edit
the same set of documents, which is unlikely to be the case if such sys-
tems should become widely used and ubiquitous. In this paper we discuss
a novel cohort-construction approach that allow users editing the same
documents to rapidly find each other. Our proposal utilises the semantic
relations between peers to construct a set of self-organizing overlays to
route search requests. The resulting protocol is efficient, scalable, and
provides beneficial load-balancing properties over the involved peers. We
evaluate our approach and compare it against a standard Chord based
DHT approach. Our approach performs as well as a DHT based approach
but provides better load balancing.

1 Introduction

A new generation of low-cost computers known as plug computers has recently
appeared, offering users the possibility to create cheap nano-clusters of domestic
servers, host data and services and federate these resources with other users.
These nano-clusters of autonomous users brings closer the vision of self-hosted
on-line social services, as promoted by initiatives such as ownCloud [4] or dias-
pora [1]. But the initiatives so far primarily focused on the sharing and diffusion
of immutable data (pictures, posts, chat messages) and offer much less in terms
of real-time collaborative tools such as collaborative editors. In order to fill this
gap, several researchers have proposed promising approaches [9,22,30] to realize
decentralized peer-to-peer collaborative editors.

Most of these works, generally assume that all nodes in the system edit the
same document or the same set of documents, and typically propagate updates
using a uniform broadcast primitive. This is unlikely to be the case in very large

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 146–160, 2017.
DOI: 10.1007/978-3-319-59665-5 11

Filament: A Cohort Construction Service 147

systems. Propagating changes about every document to the entire system is
highly counter-productive and unnecessary. Instead we argue that users editing
the same document should be able to first locate each other in order to exchange
updates between themselves. This finding procedure, which we term cohort con-
struction, should be efficient, reactive to changes and robust to failures.

A straightforward choice to realize such a cohort-construction mechanism
consists in using a DHT (Distributed Hash Table) [25,27,31] to act as an inter-
mediate rendezvous point between nodes editing the same document. This choice
is however sub-optimal: it adds an extra level of indirection in the document peer-
ing procedure, and creates potential hot-spots for nodes handling highly popular
documents. It also uses a DHT in a context for which DHTs are typically not
designed for: a decentralized collaborative editor will typically host fewer docu-
ments than nodes, leading to fewer keys than nodes being stored in the DHT,
in contrast to a typical DHT, which is designed to handle the reverse situation,
with more keys than nodes.

In this paper we propose Filament, a decentralized cohort-construction proto-
col adapted to the needs of large-scale collaborative editors. Filament eliminates
the need for any intermediate DHT, and allows nodes editing the same docu-
ment to find each other in a rapid, efficient, and robust manner by generating an
adaptive routing field around themselves. Filament’s architecture hinges around
a set of collaborating self-organizing overlays exploiting a novel document-based
similarity metric. Beyond its intrinsic merits, Filament’s design further demon-
strates how the horizontal composition of several self-organizing overlays can
lead to richer and more efficient services. Simulation results show that in a net-
work of 212 nodes, Filament is able to reduce the document latency by around
20% compared to a Chord-based DHT approach.

The paper is organized as follows. We first present the problem we address
and our intuition (Sect. 2); we then present our algorithm (Sect. 3), and its eval-
uation (Sect. 4). We finally discuss related work (Sect. 5), and conclude (Sect. 6).

2 Background, Problem, and Intuition

2.1 Collaborative Editing and Cohort Construction

Distributed collaborative editors allow several remote users to contribute con-
currently to the same document. Most of the currently deployed distributed
collaborative editors are centralized, hosted in tightly integrated environments
and show poor scalability [2,3] and poor fault tolerance. For instance, typical
collaborative editors such as Google Doc [3] or Etherpad [2] are limited in the
number of users they can support concurrently.

To overcome this limitation, several promising works have been proposed
to host collaborative editing platforms in decentralized peer-to-peer architec-
tures [9,22,30]. However, most of these approaches assume that all users in a
system edit the same document. In a large community, this assumption is unre-
alistic, and users editing the same document need a mechanism to find each

148 A.C. Resmi and F. Taiani

RPS layer providing
random sampling

clustering layer
gossip-based
similarity clustering

similarity link random link

Alice
Bob

Carl

Dave

Ellie

Alice
Bob

Carl

Dave

Ellie

node

Fig. 1. Overlay architecture

exchange of
neighbors lists

neighborhood
optimization

1 2

Alice Bob

Carl

DaveEllie

Frank

Fig. 2. P2P neighborhood optimization

other. This is a particular case of peer-to-peer search, which has been exten-
sively researched in the past both in unstructured [11,12,19,23] and structured
systems, in particular in DHT [25–27,31]. Unstructured approaches have prob-
abilistic guarantees: a resource might be present in the system, but it may not
get found unless a flooding or exhaustive multicast strategy is used, which might
be very costly in massive systems.

Structured approaches such as DHTs typically have deterministic guaranties
in the sense that they are correct and complete, but they assume that the number
of items to be stored is much higher than the number of storage nodes avail-
able. This is in stark contrast to distributed collaborative platforms, in which
the number of documents being edited is smaller than the number of users. Fur-
thermore, these systems use consistent hashing techniques in which a node’s role
in the system is independent of this node’s particular interests (in our case here
documents), thus adding an additional layer of redirection. In case of a highly
requested resource, DHTs use load-balancing techniques [16,24] that typically
use virtual nodes or modified hash function [10] to spread the load more evenly.
These functions are however reactive, and well suited for content that is mostly
read, but less suitable when interest in a document might vary rapidly.

To address these challenges, we propose a novel decentralized service that
connects together users interested in the same document without relying on the
additional indirection implied by DHTs, while delivering deterministic guaran-
tees, contrary to the unstructured networks. Our solution exploits self-organizing
overlays with a novel document based similarity metric and is proactively load
balancing, in that nodes working on the same documents naturally add their
resources to help route their requests to the corresponding document editing
community (which we call a document cohort) and more generally illustrate how
an advanced behaviour can be obtained by combining several sub self-organizing
overlays to create a routing structure that matches both the expected load and
document interests of individual nodes.

2.2 Self-organizing Overlays

Our proposal, called Filament, composes together several self-organizing overlay
networks to deliver its service. Overlay networks connect computers (aka nodes
or peers) on top of a standard point-to-point network (e.g. TCP/IP) in order to
add additional properties and services to this underlying network [9,25–27,30].

Filament: A Cohort Construction Service 149

A self-organizing overlay [14,28] seeks to organize its nodes so that each nodes
is eventually connected to its k closest other nodes, according to some similarity
function. A self-organizing overlay typically uses a two-layer structure to organize
peers (Fig. 1). Each layer provides a peer-to-peer overlay, in which users (or
peers) maintain a fixed list of neighbors (or views). For instance, in Fig. 1, Alice
is connected to Bob, Carl, and Dave in the bottom RPS (Random Peer Sampling)
layer, and to Carl and Bob in the upper layer (clustering).

RPS layer allows each peer to periodically obtain a random sample of the rest
of the network and thus guaranties the convergence of the second layer (cluster-
ing), while making the overall system highly resilient against churn and parti-
tions. Peers exchange and shuffle their neighbors list in periodic gossip rounds to
maximise the randomness of the RPS graph over time [15]. For efficiency, each
peer does not however communicate with all its neighbors in each round, but
instead randomly selects one of its neighbors in its RPS view to interact with.

The clustering layer implements a local greedy optimisation procedure that
leverages both neighbors returned by the RPS, and current neighbors from the
clustering views [14,28]. A peer will periodically update its list of similar neigh-
bors with new neighbors found to be more similar to them in the RPS layer.
This guarantees convergence under stable conditions, but can be slow in large
systems. This mechanism is therefore complemented by a swap mechanism in
the clustering layer (Fig. 2), whereby two neighboring peers (here Alice and Bob)
exchange their neighbors lists (Step 1), and seek to construct a better neighbor-
hood based on the other peer’s information (Step 2 in Fig. 2).

In Fig. 2(1) the interests of each user is shown as a symbol associated with
them. Thus Frank, Alice, Bob and Carl share the same interests. So instead of
a communication link to Ellie as shown in the random network, it is beneficial
for Alice to have a communication link to Carl who shares the same interest as
shown in Fig. 2(2). Bob applies a similar procedure, and decides to drops Alice
for Ellie.

3 System

In a large CE system, users editing the same document need to find each other in
order to propagate modifications between themselves. Our approach Filament
relies on a novel set of similarity metric, and exploits self-organizing overlays
to allows the rapid, efficient, and robust discovery of document communities in
large scale decentralized collaborative editing platforms. Each node in the system
further maintains a specific view for each document it is currently editing, in
order to rapidly propagate the edits: the aim of Filament is to fill this view as
rapidly as possible. In addition to this we also need mechanisms that help the
system react to changes, and reconnect nodes as required i.e. in cases where a
new node joins the system or in cases where a new document is added to a node
in the system.

150 A.C. Resmi and F. Taiani

Fig. 3. Overlay view Fig. 4. Illustration of the system model

3.1 System Model

We consider a network consisting of a large number of nodes representing users N
= {n1, n2, .., nN}. The network is dynamic: nodes may join or leave at anytime.
Nodes are assigned unique identifiers and communicate using messages over an
existing network, such as the Internet, allowing every node to potentially commu-
nicate with any other node as soon as it knows the other node’s identifier. Nodes
are organized in a set of interdependent overlay networks (termed suboverlays in
the following). For each suboverlay, individual node know the identifiers of a set
of other nodes, which forms its neighbourhood (or view) in this suboverlay. This
neighbourhood can change over time to fulfil the overlay network’s objectives.
Each node/user n is editing a set of zero or more documents (noted n.D) at a
time according to their interests. For the sake of uniformity, both the node ids
and document ids are taken from the same id space.

3.2 Filament

As mentioned previously, our approach makes use of a hierarchy of self-organizing
overlays inorder to allow the rapid, efficient, and robust discovery of document
communities. All the nodes in the system are part of several suboverlays as
shown in Fig. 3. A helper overlay (H) is associated with each node. This helper
overlay provides short distance routing links within the system, and relies on a
document-based similarity function, i.e. a similarity function that uses the set of
documents edited by individual nodes in order to compute whether two nodes
are close or far. The helper overlay view is initially filled using random peers
taken from Random Peer Sampling layer (RPS). As the system executes, n.H is
progressively filled with nodes that are similar to but not identical to node n in
terms of the documents they edit.

Each node in the system further maintains a specific view for each document
it is currently editing, in order to rapidly propagate new edits on these documents
(These edits can then be used to maintain a converged document state at each
interested node using existing algorithms [9,22,30]). In Fig. 3, nodes Alice, B
and C will form a document overlay as all of them are editing document D1.
Likewise, the system should insure that a node takes part in all the document
overlays pertaining to the documents it is currently editing.

Filament: A Cohort Construction Service 151

Table 1. Notations and Entities

n.id Node identifier of node n

kn Number of documents being edited by node n

n.D List of documents edited by node n depicted as {dn1 , dn2 , ..., dnkn
}

n.H Helper overlay associated with node n

n.F Fingers of node n

n.view(d) Set of collaborators for document d contained in node n

Fn[i] Node which is the ith finger of node n

l Maximum size of the collaborators list associated with each document

lh Size of helper overlay

lf Size of finger list

In addition to the above helper and document overlays, each node maintains
a set of fingers (F), which acts as long distance links within the system, in
order to create a small world topology, and provide fast routing. Similar to a
traditional ring-based DHT, these links also help to rapidly locate collaborating
nodes, and to avoid disjoint partitions. A simplified view of the system model
is shown in Fig. 4. It shows the overlays that are associated with a node in the
system. Table 1 summarizes the notations that are being used in this paper.

The basic algorithm behind our approach is shown with the help of Figs. 5
and 6. Figure 5 shows how the system is initialized while Fig. 6 shows what the
system does in each round.

The proposed algorithms hinge on a novel similarity metric based on docu-
ment ids. This similarity metric is described in procedure Δ(n, u) in Fig. 6. Each
node n has a list of documents n.D associated with it. This list contains the
documents that are being currently edited by that node.

Given two nodes and the list of documents being edited by those nodes,
the similarity metric in our approach is the smallest distance between the non-
identical documents contained by it. For example, suppose node A is editing
documents 5, 3 and 8, while node B is editing documents 3, 11 and 9, then the
similarity between them is taken as 1 which is the difference between 8 and 9.
The identical documents being edited by them are not taken into consideration
here. The key to the faster convergence of our system is the novel similarity
metric which helps in finding nodes which are similar but not identical in their
interests.

The initialization stage is pretty straightforward. The helper overlay asso-
ciated with each node is filled randomly using Random Peer Sampling. The
number of nodes in the helper overlay is truncated to lh. The documents that
each node is editing is also selected randomly. In the initial stage, as we don’t
know the collaborators, the helper overlay is used to fill all the document views
associated with each node. The node which is the farthest in the helper overlay

152 A.C. Resmi and F. Taiani

forms the first entry of the finger list. Based on how far this node is, the other
entries are also filled.

Figure 6 shows how our system progresses after initialization. All the sub
overlays contained in the system follow the same generic procedure. In each
cycle all the suboverlays get updated so as to reach an optimal stage. Procedure
Update Overlay(O, dist, c, s, so, base) is used for updating the overlay networks.
Six arguments are being passed to this function. Here O represents the overlay
being updated. dist represents the function used for calculating the similarity
between the nodes. s is the size of the resulting overlay. so is the sort order.
This sorts the resulting array in ascending or descending order on the basis
of similarity metric. base is used to get the nodes which are similar but non-
identical. An important argument that is being passed to this function is c, which
represents the candidate list that is used to update the overlay. This contains
a list of nodes that can be used to update a given overlay. For generality, we
are truncating the candidate list to the desired size(s) of the resulting overlay.
A good set of candidates can significantly affect the convergence speed of our
system.

In each round, node n randomly selects a node p from its helper overlay and
gets the neighbourhood information of p. p.H along with one randomly selected
node in the system is used as the candidate list for the updation of helper
overlay associated with node n. A random entry is added with the hope that the
system converges faster. Measures are taken to remove n from the candidate list
associated with updation of overlays associated with node n. The randomly filled
helper overlay is modified as the simulation progresses so as to fill it with nodes
similar to themselves but non-identical. Likewise the finger list is also updated
with another set of carefully selected candidate list. Fingers help in providing
links to non-similar nodes; in other words they provide long distance routing
links to nodes further away. They also help in preventing disjoint clusters. The
finger lists are used in cases where a node needs to find collaborators for a newly
added document. A node can look in its finger list in order to find someone
editing the newly added document or to find some one who might be editing
a document similar to the newly added document. Individual document views
are also updated in each round. If the current document view already has a
node with that document then that node’s document view is used to update the
document overlay or else a randomly selected node is made use of.

1: System initialization
2: n.H ← random R.P.S of size lh
3: for all d ∈ n.D : n.view(d) ← n.H
4: Update Overlay(F [0], Δ, n.H, 1, −1, 1)
5: for i from 1 to log F [0]
6: Update Overlay(F [i], Δ, n.H, 1, 1, Δ(F [0], n)/2i)

Fig. 5. Initialization

Filament: A Cohort Construction Service 153

1: In round(r) do
2: p ← random node from n.H
3: ch ← p.H∪ {one random R.P.S} \ {n}
4: Update Overlay(n.H, Δ, ch, lh, −1, 1)
5: for i from 1 to lf
6: cf ← F [i].F ∪ F [i].H∪ {one random R.P.S} \ {n}
7: Update Overlay(F [i], Δ, cf , 1, 1, 1)
8: for all d from n.D
9: if ∃p ∈ n.view(d) so that d ∈ p.D

10: select p ; c ← p.view(d)
11: else select a random node p from n.view(d)
12: c ← p.H ∪ p.F∪ {one random R.P.S} \ {n}
13: Update Overlay(n.view(d), Δ, c, l, −1, 0)

14: Procedure Δ(n, u)
15: S1 ← n.D \ u.D
16: if S1=∅ then S1 ← n.id
17: S2 ← u.D \ n.D
18: if S2=∅ then S2 ← u.id
19: S3 ← S1 × S2

20: m ← min(|x − y|)∀(x, y) ∈ S3

21: return m

22: Procedure δ(d, n, u)
23: if d ∈ n.D ∩ q.D
24: return 0
25: else
26: return Δ(n, u)

27: Procedure Update Overlay(O, dist, c, s, so, base)
28: O ← argmax s

p∈c(dist(n, p) − base) ∗ so

Fig. 6. Filament

After a certain number of rounds the system kind of stabilizes i.e., all the
document views get filled. Procedure δ(d, n, u) helps when a new document
gets added to a node or when a new node is added to the system. When a
new document d gets added to a node n, what we aim to do is to find its
collaborators in a fast manner. Procedure δ(d, n, u) checks whether the docu-
ment d which is newly added to node n is present in node u. If it is present
then n uses the document view of u to find collaborators for d. We can use
Update Overlay(n.view(d), δ(d,−,−), n.F ∪n.H, l, 1, 0) for this purpose. If none
of the nodes in the candidate list contains document d, then node n makes use
of the similarity metric Δ to find collaborators.

154 A.C. Resmi and F. Taiani

4 Evaluation

4.1 Experimental Setting and Metrics

Unless otherwise indicated, the default network size is taken as 212. We assume
that the system has converged when all the document sub-overlays are filled i.e.
all the nodes have successfully found collaborators for the documents they are
currently editing. For generality, the value of l (document view) and lh (size
of the help overlay) is taken as 10 in all the experiments. For all the network
sizes, we assume that a total of 10 documents are there in the system. It is also
assumed that each document is being edited by 10% of the network size number
of nodes. The results obtained during the evaluation are shown in this section.

We assess the performance of our approach using two metrics:

– Document latency - captures the number of rounds it takes for the system
to find l collaborators for a newly added document.

– Load associated with each node - measures the load associated with each
node based on the communication cost associated with them. This is directly
related to the number of times a node is accessed during simulation.

4.2 Baselines

The performance of our approach is compared against a chord-based DHT [20]
approach. The main reason for this is that a DHT is commonly used in similar
applications and they perform really well providing deterministic guaranties.
The document id is hashed and based on the hash value obtained, a node gets
selected. The collaborators list for that document gets stored in the selected
node. So in order to find the collaborators for a document all we have to do
is hash the document id and send a message to the corresponding node for
the collaborators list. The main delay here is to find a node given its node id.
Chord based topology helps in this by providing faster routing. Node ids are
ordered in an ID space modulo 2t. We say that id a follows id b in the ring, if
(a − b + 2t) mod 2t < 2t−1; otherwise a precedes b. Given an id a, its successor
is defined as the nearest node whose id is equal to a or follows a in the ring. The
notion of predecessor is defined in a symmetric way. Each node maintains two
sets of neighbors, called leaves and fingers. Leaves of node n are its lh nearest
successors. For each node n, its jth finger is defined as successor(n + 2j), with
j ∈ [0, t−1]. Routing in Chord works by forwarding messages in the ring following
the successor direction; when receiving a message targeted at node k, node n
forwards it to its furthest leaf or finger that precedes successor(k). Fingers help
in reducing the number of nodes traversed to reach the destination node.

4.3 Results

All the results (Figs. 7, 8, 9, 10, 11, 12 and Tables 2, 3) are computed with
Peersim [21] and are averaged over 10 experiments. The source code is made

Filament: A Cohort Construction Service 155

 0

 5

 10

 15

 20

210 211 212 213 214 215

C
on

ve
rg

en
ce

 ti
m

e
(#

R
ou

nd
s)

Network size

Fig. 7. Convergence time of Filament
for varying network sizes

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

C
F

D
 o

f c
on

ve
rg

ed
 n

od
es

(in
 %

)

Round

Fig. 8. Cumulative frequency distribu-
tion of converged nodes for Filament in
the base case

 0

 2

 4

 6

 8

 10

 12

11 12 13 14 15 16 17

#n
od

es
 in

 th
e

do
cu

m
en

t v
ie

w
 o

f n

Round

Fig. 9. No: of nodes in the document
view of n for Filament in the base case

 0

 2

 4

 6

 8

 10

 12

 14

210 211 212 213 214 215

D
oc

um
en

t l
at

en
cy

Network size

Filament
DHT

Fig. 10. Filament vs DHT based on
document latency

available in http://armi.in/resmi/ce1.zip. The comparison to the baseline is done
with the help of a base case setting. When shown, intervals of confidence are
computed at a 95% confidence level using a student t-distribution.

Figure 7 shows the convergence time of Filament with varying network sizes. As
the network size increases the time taken for the system to converge also increases.
We assume that the system is converged when all the document overlays are com-
pletely filled. From the graph it is clear that Filament works well for very large
network sizes. Figure 8 shows the cumulative frequency distribution of converged
nodes for Filament in the base case. A small number of converged nodes causes a
chain effect causing a larger number of nodes to converge in the following rounds.
Thus once the nodes start converging, the system progresses towards convergence
in a faster manner. Figure 9 shows the number of nodes in the document view of n
when a new document is added to n and it tries to find l collaborators.

Figure 10 and Table 2 show how our approach fares compared to a chord
based DHT approach. Our approach has lower document latency compared to a
DHT. The document latency varies from 4.8 to 8.1 as the network size grows from
210 to 215 for Filament while it varies from 5.2 to 11.1 for DHT. DHT provides

http://armi.in/resmi/ce1.zip

156 A.C. Resmi and F. Taiani

Table 2. Filament vs DHT based on
document latency (#rounds)

Network Size Filament DHT

210 4.8(±1.3) 5.2(±1.4)
211 5.6(±1.2) 6.7(±1.3)
212 6.2(±1.1) 8.1(±1.2)
213 6.9(±1.1) 9.3(±1.1)
214 7.6(±1.1) 10.2(±1.1)
215 8.1(±0.9) 11.1(±0.9)

Table 3. Load associated with nodes
for Filament and DHT (in bytes)

Load Filament DHT

Minimum 8 8
Mean 64 96
Maximum 176 880

an additional level of indirection. The document id is used for hashing and the
collaborator list associated with a document might be stored in a node which
is not editing that document at all. Moreover DHT is not exactly an optimal
solution in this scenario as the number of documents being edited is significantly
smaller compared to the number of nodes in the system. The latency in the case
of DHT is mainly associated with routing to the node with the collaborators
list. Compared to DHT, Filament shows a better performance with the help of
document sub-overlays and finger list.

The Table 3 shows the maximum, minimum and mean load associated with a
node for both Filament and DHT when a new document is added to the system.
When a new document is added to a node, the node tries to find l collaborators
for that document. Inorder to do that, it has to exchange messages with other
nodes. Here we assume that a single message has a size of 8 bytes which is the
size of node id. The results show the case when a document d is added to a
node that doesn’t contain it and 10 experiments are conducted with the same
document id. The cumulative result is shown in the table. In the case of DHT
the same node is getting accessed multiple times for the collaborators list of d
while in the case of Filament the load is divided as all the nodes editing the
document will have collaborators list in them. The average load associated with
a node is slightly lesser for Filament. But the maximum load of DHT is very
high which can lead to bottle necks in the network.

Effects of Variants. Figure 11 shows the effect of varying the number of doc-
uments in the system. As we can see increasing the number of documents in the
system helps it to converge in a faster manner. This is to be expected as the
number of sub-overlays associated with each node increases with the increased
number of documents. Making use of these additional sub-overlays, a node can
optimize its neighbourhood and finger list. But there is also a disadvantage asso-
ciated with this; the amount of overlays to be managed in each round increases
leading to an increased load for the nodes.

Filament: A Cohort Construction Service 157

 0

 5

 10

 15

 20

210 211 212 213 214 215

D
oc

um
en

t L
at

en
cy

 (
#R

ou
nd

s)

Network size

D = 1
D = 5

D = 10
D = 20

Fig. 11. Effect of varying the number
of documents for Filament

 0

 5

 10

 15

 20

210 211 212 213 214 215

D
oc

um
en

t L
at

en
cy

 (
#R

ou
nd

s)

Network size

r = 2 %
r = 5 %

r = 10 %
r = 20 %

Fig. 12. Effect of varying the number
of nodes editing a document

Figure 12 shows the effect of varying the number of nodes editing a document
or in other words the size of collaborators in the system. From the graph it is
clear that as the number of nodes editing a given document increases it helps
the system to converge faster. This is mainly because we can easily get the
information about the collaborators if more and more nodes are editing the
same document.

5 Related Work

Researchers have been looking into peer-to-peer collaborative editing plat-
forms [9,13,17,18,22,30] for some time. Most of these approaches in decentral-
ized peer-to-peer collaborative editing assume that all users in a system partici-
pate in the same edition which may not be the case in most systems. Search
techniques to find collaborators in peer-to-peer system has been extensively
researched in the past in both unstructured [11,12,19,23] and structured over-
lays, in particular in the context of Distributed Hash Tables (DHT) [25–27,31].
Most of the works assume a static network which is a rather strong assumption
considering the rather dynamic nature of CE systems. DHTs typically provide
deterministic guaranties, but usually assume that the number of items to be
stored is much higher than the number of storage nodes available. Furthermore,
these systems use consistent hashing techniques in which a node’s role in the
system is independent of this node’s interests. Unstructured approaches have
probabilistic recall rate. Flooding or exhaustive multicast strategy are used in
these systems but they are very costly. Works by Pascal et al. [9,22,30] study
structured collaborative editing platforms and routing techniques.

Our problem is very similar to peer clustering. Publish/subscribe systems
are mainly used for distributed and selective content delivery. Content based
pub/sub systems and routing are also actively studied [5–8,29]. In pub/sub sys-
tems subscribers express their interest by registering subscriptions and they will
be notified of any events(issued by publishers) which match their subscription.
The work by Voulgaris et al. [29], proposes Sub-2-Sub, a solution to implement a

158 A.C. Resmi and F. Taiani

content based pub/sub system. Subscribers sharing the same interests are clus-
tered to form a ring-shaped overlay network which is updated continuously by
analyzing the interests of users. The work mainly focuses on interest clustering
and the content dissemination. The TERA system [5] was designed with a gen-
eral overlay (similar to Filament’s helper overlay) that is used to keep track of
given topic ids used to maintain topic-overlays and perform topic based routing.
The problem of building overlays for users with possibly intersecting interests
was formalized in works like [8] and then used to define the Spidercast system [7].
In this case, a single overlay is built but the connectivity between users inter-
ested in the same topic is guaranteed. Starting from this initial trend, several
other papers [6] have appeared in this line of research. Many of these search and
routing techniques can be adapted for CE systems but is not optimal because
of the structural difference between CE and pub/sub systems.

6 Conclusion and Future Work

In this paper, we presented Filament, a novel cohort-construction approach that
allows users editing the same documents to rapidly find each other. Filament
utilises the semantic relations between peers to construct a set of self-organizing
overlays which can be used to route search requests. The resulting protocol
is efficient, scalable, and provides beneficial load-balancing properties over the
involved peers. Simulation results show that in a network of 212 nodes, Filament
is able to reduce the document latency by around 20% compared to a Chord-
based DHT approach.

One aspect we would like to explore in future is to deploy Filament in a real
system and see how it fares. A thorough analytical study of the behaviour of our
approach is also intended.

Acknowledgments. This work was partially funded by the DeSceNt project granted
by the Labex CominLabs excellence laboratory of the French Agence Nationale de la
Recherche (ANR- 10-LABX-07-01).

References

1. Diaspora. https://en.wikipedia.org/wiki/Diaspora (software)
2. Etherpad. https://en.wikipedia.org/wiki/Etherpad
3. Google docs. https://en.wikipedia.org/wiki/Google Docs, Sheets, and Slides
4. ownCloud. https://owncloud.org/
5. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci-Piergiovanni, S.: Tera:

Topic-based event routing for peer-to-peer architectures. In: Proceedings of the
2007 Inaugural International Conference on Distributed Event-based Systems,
DEBS 2007, pp. 2–13 (2007)

6. Chen, C., Tock, Y.: Design of routing protocols and overlay topologies for topic-
based publish/subscribe on small-world networks. In: Proceedings of the Industrial
Track of the 16th International Middleware Conference. Middleware Industry 2015
(2015)

https://en.wikipedia.org/wiki/Diaspora_(software)
https://en.wikipedia.org/wiki/Etherpad
https://en.wikipedia.org/wiki/Google_Docs,_Sheets,_and_Slides
https://owncloud.org/

Filament: A Cohort Construction Service 159

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: a scalable interest-
aware overlay for topic-based pub/sub communication. In: Proceedings of the 2007
Inaugural International Conference on Distributed Event-based Systems, DEBS
2007, pp. 14–25 (2007)

8. Chockler, G.V., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable over-
lays for pub-sub with many topics. In: Proceedings of the Twenty-Sixth Annual
ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland,
Oregon, USA, 12–15 August 2007, pp. 109–118 (2007)

9. Davoust, A., Skaf-Molli, H., Molli, P., Esfandiari, B., Aslan, K.: Distributed wikis:
a survey. Concurrency Comput. Pract. Experience 27(11), 2751–2777 (2015)

10. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP 2007 (2007)

11. Dorrigiv, R., Lopez-Ortiz, A., Pra�lat, P.: Search algorithms for unstructured peer-
to-peer networks. In: 32nd IEEE Conference on Local Computer Networks, LCN
2007, pp. 343–352. IEEE (2007)

12. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks:
algorithms and evaluation. Perform. Eval. 63(3), 241–263 (2006)

13. Gupta, A., Sahin, O.D., Agrawal, D., El Abbadi, A.: Meghdoot: content-based
publish/subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware
2004. LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30229-2 14

14. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

15. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen,
M.: Gossip-based peer sampling. ACM Trans. Comput. Syst. 25, 8 (2007).
http://doi.acm.org/10.1145/1275517.1275520

16. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, pp. 36–43. ACM (2004)

17. Kermarrec, A.-M., Triantafillou, P.: Xl peer-to-peer pub/sub systems. ACM Com-
put. Surv. (CSUR) 46(2), 16:1–16:45 (2013). Article no 16

18. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010). ACM

19. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstruc-
tured peer-to-peer networks. In: Proceedings of the 16th International Conference
on Supercomputing, pp. 84–95. ACM (2002)

20. Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: P2P 2005 (2005)
21. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: P2P 2009 (2009)
22. Oster, G., Mondéjar, R., Molli, P., Dumitriu, S.: Building a collaborative peer-

to-peer wiki system on a structured overlay. Comput. Netw. 54(12), 1939–1952
(2010)

23. Otto, F., Ouyang, S.: Improving search in unstructured P2P systems: intelligent
walks (I-Walks). In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL
2006. LNCS, vol. 4224, pp. 1312–1319. Springer, Heidelberg (2006). doi:10.1007/
11875581 156

24. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in
structured P2P systems. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 68–79. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45172-3 6

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. SIGCOMM Comput. Commun. Rev. 31(4), 161–172 (2001)

http://dx.doi.org/10.1007/978-3-540-30229-2_14
http://dx.doi.org/10.1007/978-3-540-30229-2_14
http://doi.acm.org/10.1145/1275517.1275520
http://dx.doi.org/10.1007/11875581_156
http://dx.doi.org/10.1007/11875581_156
http://dx.doi.org/10.1007/978-3-540-45172-3_6

160 A.C. Resmi and F. Taiani

26. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001). doi:10.1007/
3-540-45518-3 18

27. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001
(2001)

28. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Euro-Par 2005 (2005)

29. Voulgaris, S., Rivière, E., Kermarrec, A.M., Steen, M.V.: Sub-2-sub: self-organizing
content-based publish subscribe for dynamic large scale collaborative networks. In:
IPTPS 2006: the Fifth International Workshop on Peer-to-Peer Systems (2006)

30. Weiss, S., Urso, P., Molli, P.: Logoot-undo: distributed collaborative editing system
on P2P networks. IEEE Trans. Parallel Distrib. Syst. 21(8), 1162–1174 (2010)

31. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: an infrastructure for fault-tolerant
wide-area location and routing. Computer 74 (2001)

http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18

Making Things Safe (Security)

Benchmarking Cryptographic Schemes
for Securing Public Cloud Storages

(Practical Experience Report)

Stefan Contiu1,2(B), Emmanuel Leblond1, and Laurent Réveillère2

1 Scille, 94250 Gentilly, France
{stefan.contiu,emmanuel.leblond}@scille.fr

2 LaBRI, Université de Bordeaux, 33400 Talence, France
laurent.reveillere@u-bordeaux.fr

Abstract. Much research has focused during the last years on the secu-
rity and privacy concerns of public cloud storages. Cryptographic prim-
itives are commonly used to ensure user data confidentiality, authen-
ticity and integrity. Confidentiality has been addressed by the use of
symmetric-key encryption algorithms, while integrity and authenticity
have been achieved by using message authentication codes, secure hashes
or digital signatures. The choice of a specific configuration for securing
an untrusted cloud storage highly depends on the expected security level,
the size and type of data to store and the access pattern to these data.
In this work, we are interested in overcoming the lack of comprehensive
comparison of the costs and effectiveness of cryptographic primitives for
securing public cloud storage, and ease an informed choice between them
based on target usage conditions. We describe the results of an indepen-
dent experimental study of six cryptographic schemes, representative of
the principal design alternatives. Our practical experience report reveals
that the best scheme for a given situation, such as a write-heavy work-
load of mostly small files, is not necessarily the most appropriate for a
different situation such as a read-only workload of large files. We identify
the scheme characteristics that are correlated with these differences and
discuss the pros and cons of each design. Our experimental framework
and results are available in the open for use by the community.

Keywords: Cloud storage · Security · Block cipher modes · Digital
signatures

1 Introduction

Public clouds storage services such as Dropbox or Google Drive provide a con-
venient way for users to store and share personal data. As a result, we have
witnessed a rapid adoption of these services in recent years [19]. Indeed, the
cloud storage market is forecasted to grow from about $24 billion in 2016 to

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 163–176, 2017.
DOI: 10.1007/978-3-319-59665-5 12

164 S. Contiu et al.

about $75 billion in 2021 [1]. However, despite its success, public cloud storage
space is commonly assumed to be entirely untrusted, providing no guarantees
over unauthorized exposure of user sensitive data. Therefore, it is not surprising
that security and privacy issues in that context has gained increasing momentum
within research community [24].

A traditional approach to ensure user data confidentiality, authenticity and
integrity is the use cryptographic primitives. Confidentiality is addressed by the
use of symmetric-key encryption algorithms, while authenticity and integrity are
achieved by using message authentication codes, secure hashes or digital signa-
tures. Cryptographic schemes are then constructed by selecting among these
primitives depending on the expected level of security and privacy.

Among existing solutions, different configurations have been explored. For
example, CloudProof [18] relies on AES in CTR mode for symmetric-key encryp-
tion, SHA-1 for hashing and RSA with 1024 bits key for signing. DepSky [3] uses
similar cryptographic schemes except that it relies on AES in CBC mode instead
of CTR. BlueSky [21] relies on AES for encryption and uses a message authen-
tication code based on SHA-256 to provide both authenticity and integrity. In
SafeSky [23] the encryption and authentication are combined by using AES in
CCM mode.

Although widely used for general purpose usage, there exists very few stud-
ies comparing the costs and effectiveness of cryptographic primitives for securing
public cloud storage. In this practical experience report, we are interested in over-
coming this lack of a comprehensive comparison between them. We argue that
the choice of a specific cryptographic construction has a direct impact on the
performance and scalability of the secured cloud storage system, thus requiring
a sound knowledge of its intrinsic properties. We consider different usage condi-
tions such as various data size models and cloud workload scenarios and describe
the results of an independent experimental study of six cryptographic schemes,
representative of the principal design alternatives. We consider three different
block cipher modes for AES encryption: chaining mode (CBC), counter mode
(CTR), and an authenticated encryption mode that also covers integrity (GCM).
For the public-key signature primitives, we evaluate the usage of cryptosystems
based on RSA and Elliptic Curve Cryptography (ECC).

In our experiments, we perform both a set of micro-benchmarks and macro-
benchmarks. Micro-benchmarks measure the intrinsic performance of a cryp-
tographic primitive when varying the size of the cryptographic key. Macro-
benchmarks assess how cryptographic primitives perform when a user interacts
with a secured public cloud. We perform read and write operations on three large
data sets modeled by considering different block sizes: uniform sizes, mostly small
sizes, and mostly large sizes. The interaction between the user and the cloud is
modeled based on four cloud workloads inspired from Yahoo! Cloud Serving
Benchmark (YCSB) [7]. The workloads mimic mostly-write, write-heavy, read-
heavy, and read-only operations.

The contributions of our performance comparison study aim at helping prac-
titioners to decide which is the most appropriate cryptographic scheme for a
target security level under certain usage conditions. Firstly, our results show

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 165

that there is no one-size-fits-all to security in public cloud storage. Secondly, we
identify which are the schemes that better match the studied usage scenarios.
Although AES in CBC in conjunction with RSA is the preferred cryptographic
scheme in the literature [3,5,21], we show that other algorithms can out-perform
it by a factor of 10 under specific conditions. These findings can further be used
to design a cryptographic approach that changes its behavior at runtime based
on contextual information.

The rest of this paper is organized as follows. Section 2 presents the crypto-
graphic primitives we evaluate in our experiments. We describe our experimental
setup in Sect. 3. Section 4 presents our evaluation results and discusses the pros
and cons of each cryptographic scheme with respect to target usage conditions.
Section 5 reviews related work. Finally, Sect. 6 concludes.

2 Cryptographic Building Blocks

Various cryptographic primitives are used together for ensuring confidentiality,
authenticity, and integrity of user data stored in public clouds. As illustrated in
Fig. 1, securing data for public cloud storage is commonly a three step process.
First, the data bock is encrypted using symmetric-key algorithm (step ➊). Sec-
ond, a fixed size message digest is produced by using a one-way collision resistant
function (step ➋) on the input data block. Third, a digital signature algorithm
is used to prove the authenticity of the message digest with respect to the user
private key (step ➌). In the remainder of this section, we describe in more details
each step and related cryptographic algorithms.

Fig. 1. Securing data for public cloud storage

2.1 Symmetric-Key Algorithms

A symmetric-key algorithm provides data confidentiality by the use of the same
secret key for both encrypting and decrypting the data. Among existing algo-
rithms, the one specified by the AES specification has become the de facto
standard and is used worldwide [6]. It is a block cipher algorithm, operating on
fixed-length group of 128 bits called a block with a key size of 128, 192 or 256
bits. To securely transform amounts of data larger than a block, the cipher’s

166 S. Contiu et al.

single-block operation needs to be repeatedly applied accordingly to a block
cipher mode. Many modes of operation have been defined [9], each one offering a
different level of performance and robustness. We now describe the three major
modes that we cover in our study.

CBC. Cipher Block Chaining (CBC) works by chaining each block to its prede-
cessor. At each step, the current block of plaintext is xor-ed with the ciphertext
of the previous block, and then encrypted with the secret key. Since the first
block has no predecessor, a random initialization vector is used instead. The
initialization vector can then be publicly stored together with the ciphertext.
Due to the chaining nature of this mode, the encryption is sequential and can
not be parallelized. However, because each block is xor-ed with the ciphertext of
the previous block, not the plaintext, decryption can be parallelized. Note that
the reuse of the same initialization vector can leak information only about the
first block.

CTR. Counter (CTR) mode generates keystream blocks, which are then xor-ed
with the plaintext blocks to get the ciphertext. It generates the next keystream
block by encrypting successive values of a counter. The counter can be any func-
tion which produces a sequence which is guaranteed not to repeat for a long time,
although an actual increment-by-one counter is the simplest and most popular.
A nonce is combined together with the counter to produce the actual unique
counter block for encryption. Since counter values at different block offsets are
known, this mode can be fully parallelized. However, reusing the same nonce
can leak information about all blocks, making the implementation of CTR more
sensitive than CBC. Nevertheless, this mode is proven to respect tight security
requirements and is formally approved by NIST [8].

GCM. Galois Counter Mode (GCM) is a block cipher mode that performs
both encryption and authentication by combining counter mode and operations
in a finite (Galois) field. GCM is defined for block ciphers with a block size of
128 bits. Implementing GCM can make efficient use of Carry-less Multiplication
(CLMUL), an extension to the ×86 instruction set used by microprocessors from
Intel and AMD [11]. Similarly to CTR mode, GCM takes as input a nonce and
thus reusing the same nonce with the same key leaks information about the
whole message.

2.2 Message Digests

Message digests or simply hash functions are one-way collision resistant func-
tions, mapping an input data block to a short fixed size output. The role of
hash functions is to provide integrity guarantees over the data. Also, they are
utilized as a preceding operation in digital signature schemes, reducing an arbi-
trarily large amount of data to a small output on which the signature is applied.

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 167

Hash functions work by splitting the data into fixed size blocks, and iteratively
applying a compression function with an intermediate state [9]. Secure Hash
Algorithms (SHA) are a class of secure hashes standardized by NIST in three
family sets (SHA-1, SHA-2, and SHA-3). The first set has been proved insecure
due to collision attacks [22]. The second set is a popular choice, coming with
32 and 64 bits processing variants, and producing outputs of 256, 384, and 512
bits. Lastly, the third family SHA-3 was recently standardized by NIST, not as
a replacement to the previous SHA-2, but as an alternative [17].

2.3 Digital Signatures

Digital signature algorithms are employed for proving the authenticity of a data
block with respect to the user private key. Moreover, they provide the properties
of non-repudiation and integrity, meaning that the signing user can not deny
herself as the signer and that the data block content is not altered. The verifi-
cation of the message and signature pair can be openly performed by anybody
knowing the user public key.

RSA is a public key cryptosystem, based on the difficult mathematical prob-
lem of factoring the product of two arbitrarily large prime numbers. The key
sizes employed by RSA require a much larger length as compared to symmetric
encryption, because solving the mathematical problem is faster than a brute
force attack iterating over all possible keys.

Elliptic Curve Cryptography. (ECC) is a relatively novel direction in public
key cryptosystems [15], that besides a considerable interest from academia, has
also been integrated within technical solutions like Bitcoin, SSH, and TLS [4].
The advantage of ECC over the traditional RSA is the small nature of key
sizes, implying an increase of computational speed. ECC is based on the dif-
ficult mathematical problem of discrete logarithm when the computations are
performed over the points of an elliptic curve. The security of the ECC cryp-
tosystem is highly correlated to the choice of the curve equation. Various curves
have been proposed and formally reviewed, such as the ones standardized by
NIST [14].

2.4 Cryptographic Strength of Key Sizes

The size of the cryptographic key is the principal factor affecting the performance
and the security level of cryptographic primitives. Sufficiently large key sizes
protect the cryptographic algorithms from brute force attacks on the key values.
Therefore, the security strength of a cryptographic algorithm is upper-bounded
by the size of the key used.

Table 1 lists three strength levels (Low, Medium, High) as specified by
NIST [2]. The security strength level represents the upper bound protection

168 S. Contiu et al.

Table 1. Computational equivalence of key sizes (in bits).

Security strength AES RSA ECC SHA-2

Low 128 128 3,072 256–383 256

Medium 192 192 7,680 384–511 384

High 256 256 15,360 ≥512 512

in bits for a brute force attack employed on the key values. The key sizes dis-
played within the same row are computationally equivalent with respect to the
same security strength level. The strength for symmetric encryption is by design
identical to the key size. RSA requires much larger key sizes up to 15,360 bits
for a security strength of 256 bits, because solving the factorization problem
is faster than a brute force attack on the key. Elliptic curve cryptography and
secured hash methods require roughly the double in length.

3 Experimental Cloud-Based Data Store

In order to easily and efficiently evaluate the wide spectrum of cryptographic
schemes described previously, we designed and implemented an experimental
testbed, consisting of a single client accessing data on a public cloud storage.
We assume that only the client can be trusted and thus data must be encrypted
prior transmission to the storage node. The client component performs the actual
processing and transformation (e.g., encryption, hashing) of data blocks before
they are stored, as well as the reverse decoding operation (e.g., decryption, dig-
ital signature). We describe in the remainder of this section the cryptographic
schemes we used in our evaluation, the model of data and the cloud workloads.

3.1 Cryptographic Schemes

We constructed six cryptographic schemes (CBC-RSA, CTR-RSA, GCM-RSA,
CBC-ECC, CTR-ECC, GCM-ECC) using the main primitives described in
Sect. 2. The schemes are constructed by varying the block cipher mode (CBC,
CTR, and GCM) for AES symmetric encryption, and the digital signature algo-
rithm (RSA and ECC). Message digests are generated using the SHA-2 secure
hash algorithm. For each scheme, we use three different cryptographic key sizes
covering the security strength levels defined in Table 1. Each key is pre-generated
before the experiments using a pseudo random generator.

3.2 Data Sets

Users use cloud storage services for data files of various types among them most
popular ones are photos, documents, and music [19]. Such files commonly have
sizes from few hundreds of kilo bytes to several mega bytes. Smaller block sizes,

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 169

of the magnitude of tens of kilo bytes, are specific for systems that perform de-
duplication [16] or for modeling the entire set of files on a user machine [20].
On the other hand, larger block sizes such as 64 MB are utilized by distributed
file systems operating on fixed size chunks [10]. To cover this variety of file
sizes, we defined three different data sets, as depicted in Table 2, by varying the
probability distribution of sizes.

Table 2. Data sets.

Data set Probability distribution Mean Files Size (GB)

Mostly-small Log normal 256 KB 2,000 0.5

Mixed-sizes Uniform 32 MB 100 3.1

Mostly-large Reversed log normal 64 MB 20 1.2

The mostly-small data set follows a log normal distribution with a mean at
256 KB and contains a total of 0.5 GB of data. The mostly-large data set follows
a reversed log normal distribution of files sizes for a total amount of 1.2 GB of
data. The mixed-sizes data set follows a uniform distribution holding 3.1 GB of
data. For all the three data sets the file sizes range from 1 KB to 64 MB.

3.3 Cloud Workloads

The ratio of read and write operations that a client performs over a cloud stor-
age is specific to a given usage scenario. For example, when using the cloud
storage to backup local files, the workload is governed by write operations. On
the other hand, when sharing files such as photos with a large number of users,
the workload is dominated by read operations.

To model the diversity of cloud workloads, we leverage on YCSB [7], a ref-
erence framework for benchmarking cloud storages. In addition to the three
workloads defined by YCSB (write-heavy, read-heavy, read-only), we introduced
a fourth one (mostly-write) composed of 5% or reads and 95% of write opera-
tions to mimic the behavior of backup scenarios. Table 3 lists the four workloads
of our study and the corresponding ratios of read and write operations. The
mostly-write workload performs a small number of reads (5%). The write-heavy
workload consists of an even number of writes and reads. The two intensive read
workloads, read-heavy and read-only, consider a small amount of writes (5%)
and no writes respectively.

3.4 Implementation

Our implementation of the cryptographic schemes under evaluation relies on the
open-source openssl1 (v1.1.1) library. This library is implemented in a mix of

1 https://www.openssl.org/.

https://www.openssl.org/

170 S. Contiu et al.

Table 3. Cloud workloads

Reads Writes

Mostly-write 5% 95%

Write-heavy 50% 50%

Read-heavy 95% 5%

Read-only 100% 0%

C and hand-written Assembly and can take advantage of hardware acceleration
provided by AES-NI and CLMUL extension instruction sets.

To test in isolation the raw performance of each cryptographic primitive,
we have implemented a set of microbenchmarks in C. Our implementation uses
rtdsc processor instruction to collect the number of cycles from the time stamp
counter (TSC) register.

To evaluate the primitives in realistic settings, we have implemented a testbed
in Python to facilitate the integration with the cryptography.io2 (v1.8) the
reference Python binding for openssl.

The cloud storage implementation contains both a Dropbox interface and a
locally simulated cloud provider as an in-memory key-value store. To prevent
variations of real cloud access latencies interfering with the observed outcomes
and to better isolate the performance of cryptographic primitives, we report the
results when utilizing the simulated cloud storage. To mimic the behavior of a
public cloud storage, we added a delay of 50ms to each request to simulate a
realistic round-trip latency.

4 Results

This section presents our extensive evaluation of the previously described cryp-
tographic schemes. We perform our experiments on a 4-Core Intel i7-6600U
processor at 3.4 GHz with 16 GB of RAM, and operating on Ubuntu v16.04
LTS. We first test in isolation the cryptographic primitives via a set of micro-
benchmarks, and we finally evaluate the primitives in realistic settings.

4.1 Micro-Benchmark

Our first set of experiments evaluate the intrinsic performance of cryptographic
primitives for increasing security strength levels. In this scenario, the primitives
are tested in isolation via a specialized client that sequentially perform an oper-
ation (e.g., encryption, signature) on block sizes from 512 KB to 64 MB. We
repeatably execute 50 times each operation on randomly generated data and
averaging the consumed CPU cycles. Our preliminary results confirm that the
number of CPU cycles is always linear with respect to the size of the input data.
In the remainder, we thus only show the average number of cycles per byte.
2 https://cryptography.io/.

https://cryptography.io/

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 171

Fig. 2. Performance of AES (cycles per byte)

Figure 2 presents our results for AES encryption and decryption. We notice
that parallelizable operations have a considerable performance improvement
compared to the non-parallelizable encryption in CBC mode. This large per-
formance improvement by a factor of 4.5 for encryption is due to the pipelining
technique supported by the AES-NI instruction set at the processor level. We also
notice that the performance overhead increases almost linearly with the targeted
security strength level.

Fig. 3. Performance of SHA-2 (cycles per byte)

The cost of the SHA-2 hashing function is shown in Fig. 3. The SHA-256
method, for a low security strength level, requires on average 6.4 cycles per
byte. Hashing for stronger security strength levels always perform better with
an improvement of about 33%. The reason is that the calculation is done on
a larger length of data at a time. Performances of SHA-384 is comparable to
SHA-512, confirming that it uses the same algorithm, but truncating the hash
to a smaller output. As SHA-512 offers both the higher security strength and
the best performance, we use it in our macrobenchmark.

The performance results of digital signatures based on RSA and ECC are
depicted in Fig. 4. Both signing and verification operations work over the secured
hash produced using a hashing function such as SHA-2. Therefore, the time does
not depend on the size of the input data. We thus consider only the total number
of cycles required to perform the operation. The cost of the signing operation
using RSA drastically increases with the size of the key. For example, the per-
formance cost increases up to 614 millions of cycles for the strongest security

172 S. Contiu et al.

Fig. 4. Performance of digital signature

strength level (values are truncated to 10 millions in Fig. 4a), more than 100
times the cost required for the lowest security level. On the other hand, elliptic
curve signature is dramatically faster, providing a performance of 7, 58 and 153
times faster than RSA for equivalent key strengths. For the verification oper-
ation, contrary to singing, the performance of the two cryptosystems reverses.
RSA performs better than Elliptic Curve, however the difference between the
two is not at all as dramatic as in the case of signing.

4.2 Macrobenchmark

In this section we evaluate the cryptographic schemes in a more complex scenario
that involves realistic data sets and cloud workloads, as described in Sect. 3. We
measure the total time required by a client to perform all the read and write
operations on the input data set. For each entry of the data set, we randomly
select an operation (either read or write) to follow the probability distribution
defined by the cloud workload. Figure 5 shows our results for the mostly-small
test set. We can notice that RSA performs worse on mostly-write and write-heavy
workloads when the security strength increases. On the other hand, read-heavy
and read-only workloads do not present this trend as the verification process of
the RSA signature is cheap. The CTR-ECC cryptographic scheme shows always
a good performance independently of the cloud workload or the security strength.

The results of our experiments for mostly-large sizes are shown in Fig. 6.
Except for RSA that performs worse with mostly-write and write-heavy work-
loads, we observe that differences between cryptographic schemes reduce as read
operations dominate more and more the workload. We notice that RSA outper-
forms ECC by a insignificant factor of 2% in read-only workload. We can also
notice that the performance gap between the schemes based on CBC and the
ones using CTR or GCM decreases almost proportionally with the number of
write operations.

Similarly to mostly-large sizes, we observe for mixed-sizes (see Fig. 7) that
RSA performs worse with mostly-write and write-heavy workloads and that
the gap between the different schemes tends to reduce as the number of read
operation increases.

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 173

Fig. 5. Total time for small file sizes

Fig. 6. Total time for large file sizes

Fig. 7. Total time for uniform file sizes

4.3 Discussion

Our results show that CTR-ECC performs better in almost all usage scenarios.
This scheme should be preferred if there is no prior knowledge on the workloads
or data sizes.

174 S. Contiu et al.

However, we note that specific scenarios may require fine tuned schemes to
maximize performances. Indeed, CTR-ECC performs better for mostly-writes
and write-heavy workloads while CTR-RSA performs slightly better for read-
heavy and read-only workloads. Furthermore, for read-only workloads CTR-RSA
can be safely replaced by CBC-RSA, as their performances are very similar
within this context. If information about data sizes is available, then a CTR-
based scheme performs better as the data sizes increase.

When security is not a constraint, CTR-ECC and CTR-RSA are interchange-
able as best performers. Contrary, when strong security strength is required,
schemes relying on RSA should be avoided as they may induce severe perfor-
mance penalties.

5 Related Work

Many previous work make use of cryptographic schemes for securing cloud stor-
ages. However, to the best of our knowledge, none of them report the result of a
study to evaluate the rationale behind specific cryptographic choices. Some use
of AES in CBC mode [3] while others use the CTR mode [18]. Furthermore, some
even omit to describe the cipher mode they rely on [13,16]. Our benchmarking
study shows that CTR outperforms CBC almost always and should be preferred.
Moreover, we indicate that schemes using RSA for digital signatures [3,18] are
suitable only for corner cases characterized among others by read-heavy and
read-only workloads, and that ECC outperforms RSA in most usage conditions.

The costs of confidentiality, integrity and authenticity have been evaluated
by Burihabwa et al. [5] within the cloud storage context. Besides a single cloud
model, the study also considered the dispersal of confidential data over multiple
storages by using erasure encoding. Although the study makes use of crypto-
graphic primitives, there is no debate over different strength levels achieved by
cryptographic keys, nor about the modeling of both the replayed test set and the
read/write requests. Furthermore, the study makes use of AES in CBC mode
coupled with RSA, a cryptographic scheme that, according to our findings, it is
suitable only for read-only cloud workloads over mostly-small sizes.

A performance comparison study for digital signatures based on RSA and
ECC has been addressed in a general context [12]. The authors propose the
use of ECC for scenarios dominated by signing operations, while RSA have
been proposed for scenarios dominated by verification operations. Similarly, the
results of our study suggest the use of ECC for mostly-write and write-heavy
workloads, and RSA for read-heavy and read-only workloads.

6 Conclusion

We have studied and compared, in this practical experience report, the perfor-
mance of several cryptographic primitives that are widely used to implement
security and privacy in public cloud storage. The objective of this experimental

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 175

study was to compare the costs and effectiveness of cryptographic primitives for
securing public cloud storage, and not to develop original schemes.

We conducted a wide range of experiments on six different cryptographic
schemes both to measure their raw speed and their performance when used in
a realistic cloud storage setup. Our observations notably highlight that the best
scheme for a given situation, such as a write-heavy workload of mostly small
files, is not necessarily the most appropriate for a different situation such as a
read-only workload of large files.

We hope that our study will bring valuable insights and guidance to other
researchers interested in using cryptography techniques for data storage in the
cloud.

Availability. Our experimental framework and results are available in the
open for use by the community at the following webpage: https://github.com/
stefan-contiu/cloud-crypto-benchmark.

Acknowledgment. This work was partially supported by Scille and DGA under con-
tract RAPID-172906010.

References

1. Cloud storage market worth 74.94 billion USD by 2021 - MarketWatch (2016).
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-
usd-by-2021-2016-09-06-72033123

2. Barker, E.: Recommendation for key management part 1: general. Technical report,
National Institute of Standards and Technology, July 2016

3. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable
and secure storage in a cloud-of-clouds. In: Proceedings of the Sixth Conference
on Computer Systems, pp. 31–46, April 2011

4. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.)
FC 2014. LNCS, vol. 8437, pp. 157–175. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45472-5 11

5. Burihabwa, D., Pontes, R., Felber, P., Maia, F., Mercier, H., Oliveira, R., Paulo, J.,
Schiavoni, V.: On the cost of safe storage for public clouds: an experimental eval-
uation. In: 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS),
pp. 157–166. IEEE, September 2016

6. Chown, P.: Advanced encryption standard (AES) ciphersuites for transport layer
security (TLS). Technical report (2002)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

8. Dworkin, M.: Recommendation for block cipher modes of operation: methods and
techniques. Technical report, DTIC Document, December 2001

9. Ferguson, N., Schneier, B.: Practical Cryptography, vol. 23. Wiley, New York (2003)
10. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS

Operating Systems Review, vol. 37, pp. 29–43. ACM, October 2003

https://github.com/stefan-contiu/cloud-crypto-benchmark
https://github.com/stefan-contiu/cloud-crypto-benchmark
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-usd-by-2021-2016-09-06-72033123
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-usd-by-2021-2016-09-06-72033123
http://dx.doi.org/10.1007/978-3-662-45472-5_11
http://dx.doi.org/10.1007/978-3-662-45472-5_11

176 S. Contiu et al.

11. Gueron, S., Kounavis, M.E.: Intel R© carry-less multiplication instruction and its
usage for computing the GCM mode. White Paper, May 2010

12. Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve and RSA
digital signatures. University of Michigan College of Engineering, April 2004

13. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol.
6054, pp. 136–149. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14992-4 13

14. Kerry, C.F.: Digital signature standard (DSS). FIPS PUB 186-4, July 2013
15. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
16. Li, M., Qin, C., Lee, P.P.: CDstore: toward reliable, secure, and cost-efficient cloud

storage via convergent dispersal. In: USENIX Annual Technical Conference, pp.
111–124, July 2015

17. NIST: SHA3-Standard: permutation-based hash and extendable-output functions
(DRAFT FIPS PUB 202). Technical report, May 2014

18. Popa, R.A., Lorch, J.R., Molnar, D., Wang, H.J., Zhuang, L.: Enabling security in
cloud storage SLAs with CloudProof. In: USENIX Annual Technical Conference,
vol. 242, May 2011

19. Seybert, H., Reinecke, P.: Internet and cloud services-statistics on the use by indi-
viduals. Technical report, Eurostat, December 2014

20. Tanenbaum, A.S., Herder, J.N., Bos, H.: File size distribution on UNIX systems:
then and now. ACM SIGOPS Oper. Syst. Rev. 40(1), 100–104 (2006)

21. Vrable, M., Savage, S., Voelker, G.M.: BlueSky: cloud-backed file system for the
enterprise. In: Proceedings of the 10th USENIX Conference on File and Storage
Technologies, pp. 19–19. USENIX Association, February 2012

22. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
doi:10.1007/11535218 2

23. Zhao, R., Yue, C., Tak, B., Tang, C.: SafeSky: a secure cloud storage middleware
for end-user applications. In: 2015 IEEE 34th Symposium on Reliable Distributed
Systems (SRDS), pp. 21–30. IEEE, September 2015

24. Zhou, M., Zhang, R., Xie, W., Qian, W., Zhou, A.: Security and privacy in cloud
computing: a survey. In: 2010 Sixth International Conference on Semantics Knowl-
edge and Grid (SKG), pp. 105–112. IEEE, November 2010

http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/11535218_2

Secure Cloud Micro Services Using Intel SGX

Stefan Brenner1(B), Tobias Hundt1, Giovanni Mazzeo2, and Rüdiger Kapitza1

1 TU Braunschweig, Braunschweig, Germany
{brenner,hundt,rrkapitz}@ibr.cs.tu-bs.de

2 University of Naples “Parthenope”, Naples, Italy
giovanni.mazzeo@uniparthenope.it

Abstract. The micro service paradigm targets the implementation of
large and scalable systems while enabling fine-grained service-level main-
tainability. Due to their scalability, such architectures are frequently used
in cloud environments, which are often subject to privacy and trust issues
hindering the deployment of services dealing with sensitive data.

In this paper we investigate the integration of trusted execution based
on Intel Software Guard Extensions (SGX) into micro service applica-
tions. We present our Vert.x Vault , that supports SGX-based trusted
execution in Eclipse Vert.x, a renowned tool-kit for writing reactive micro
service applications. With our approach, secure micro services can run
alongside regular ones, inter-connected via the Vert.x event bus to build
large Vert.x applications that can contain multiple trusted components.

Maintaining a full-fledged Java Virtual Machine (JVM) inside an SGX
enclave is impractical due to its complexity, less secure because of a large
Trusted Code Base (TCB), and would suffer from performance penalties
due to a high memory footprint. However, as Vert.x is written in Java, for
a lean TCB this requires integration of native enclave C/C++ code into
Vert.x, for which we propose the usage of Java Native Interface (JNI).

Our Vert.x Vault provides the benefits of micro service architectures
together with trusted execution to support privacy and data confiden-
tiality for sensitive applications in the cloud at scale. In our evaluation
we show the feasibility of our approach, buying a significantly increased
level of security for a low performance overhead of only ≈8.7%.

Keywords: Vert.x · SGX · Cloud security · Micro services

1 Introduction

Micro services are popular as they offer a new paradigm and many benefits
such as flexibility, scalability, ease of development and manageability of applica-
tions [3]. Due to their scaling nature and flexibility, micro service architectures
are mostly used in data centre and cloud scenarios where scale out capabilities
are required to handle high load. However, trust issues still hinder the wide-
spread adoption of cloud services and the deployment of sensitive applications
processing sensitive data in the cloud [11,13].

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 177–191, 2017.
DOI: 10.1007/978-3-319-59665-5 13

178 S. Brenner et al.

With Software Guard Extensions (SGX) [4,12], Intel recently released a new
technology for protecting applications from many—even physical—attacks such
as the cold boot attack. SGX is an instruction set extension, released in the Sky-
lake processor family, that allows the creation of Trusted Execution Environment
(TEEs) inside the address space of an application. SGX TEEs are called enclaves
and provide strong protection of code and data inside through encryption and
integrity checks of their memory range directly by the CPU. This allows a strong
adversary model and to limit the trusted computing base to the enclave code and
the CPU package only, which is especially useful for sensitive data processing
in the cloud. On currently available hardware, SGX is limited to a maximum of
128 MB of memory to be used for enclaves. This limitation requires to keep the
memory footprint of enclaves as narrow as possible in order to prevent significant
performance implications. Another important aspect with regards to security of
TEEs is to keep their Trusted Code Base (TCB) as small as possible. This is
due to the fact, that larger amounts of code usually lead to more exploitable
security vulnerabilities [15].

Amongst others like Spring Boot1, Go Micro2, an excellent example for a
renowned protagonist in the context of micro service development is Eclipse
Vert.x [2]. The Vert.x tool-kit introduces the notion of verticles and supports the
development of micro service applications. Furthermore, it provides a distributed
event bus for its verticles to communicate with each other in a reactive fashion.

In this paper, we investigate the protection of data confidentiality in micro
service applications by exploitation of the SGX technology, and chose the Vert.x
tool-kit as an example micro service environment. Our contribution comprises
the design of our Vert.x Vault , that allows the integration of slim SGX TEEs into
the JVM-based Vert.x tool-kit, and demonstrates the feasibility of our approach,
as well as an evaluation of its induced performance overhead.

A technical challenge to be solved in this work was the way of integration of
native C/C++-based TEEs into the Java/Java Virtual Machine (JVM)-based
environment of the Vert.x tool-kit. As we argued in earlier work [8], porting a
full-fledged JVM into a TEE is not only a complex endeavour, but also violates
common security principles such as the size and complexity of the TCB as well
as the memory footprint of the TEEs which is highly performance-critical. More-
over, in this work we elaborate why the usage of SGX-based TEEs is a good fit
for micro service applications.

In Sect. 2 we describe SGX and Vert.x as the cornerstone of our system. Next,
in Sect. 3 we show the design of our Vert.x Vault followed by implementation
details in Sect. 4. Afterwards, in Sect. 5, we present the benefits of our Vert.x
Vault adopted in a critical infrastructure use case scenario. Finally, we measure
the performance of our approach in Sect. 6 and conclude in Sect. 8.

1 https://projects.spring.io/spring-boot/.
2 https://github.com/micro/go-micro.

https://projects.spring.io/spring-boot/
https://github.com/micro/go-micro

Secure Cloud Micro Services Using Intel SGX 179

Fig. 1. Vert.x architecture and thread model (Verticles V1−5, Threads T1−3).

2 Background

In this section we describe the architecture, purpose, and main concepts of the
Vert.x tool-kit. In addition, we give a short introduction to the SGX technology
and describe the enclave life cycle and programming model.

2.1 Eclipse Vert.x

The rationale behind the concept of a micro service is to do one small thing
and reduce complexity. In a micro service architecture, multiple of these services
interact with each other and each of them has its very limited purpose. This
allows the flexibility of development of such architectures, and also large devel-
opment teams to collaborate simultaneously. Real applications of Vert.x can be
for example REST services, or real time web applications3.

According to its authors, “Vert.x is a tool-kit for building reactive appli-
cations on the JVM” [2]. In the context of Vert.x, micro services are called
verticles, and are supposed to comprise a scarce, well-defined part of application
logic. As Vert.x is a polyglot tool-kit for JVM-based languages, verticles can be
implemented in various programming languages and interact across program-
ming languages. Verticles communicate via the event bus that connects verticles
even across machine boundaries were they can subscribe an “address” in order
to receive callbacks once a message arrives for this address.

All verticles are scheduled via the event loop thread of Vert.x (one per physi-
cal CPU core), which delivers events to verticles. Supporting the idea of reactive
applications, a verticle should never block this thread but implement blocking
operations such as I/O operations in an asynchronous fashion. Long running
tasks can be done in a worker verticle on a separate thread pool. Figure 1 illus-
trates the overall Vert.x system architecture and thread model.
3 http://vertx.io/whos using/.

http://vertx.io/whos_using/

180 S. Brenner et al.

Fig. 2. Interaction between untrusted application and SGX enclave.

Currently, there is no support for trusted execution in Vert.x, however, the
Vert.x engineers recently released a secure event bus implementation that pro-
vides protection of exchanged event bus messages using Transport Layer Security
(TLS).

2.2 SGX

SGX [4,12] is a new instruction set extension by Intel, which has been released
in the Skylake processor generation. It allows the creation of TEEs—called
enclaves—inside the address space of user space applications. Enclaves are pro-
tected by the CPU package itself from a number of critical security threats:
enclave memory is transparently encrypted and integrity-checked by the CPU,
limiting trust to only the CPU package itself.

Entering and exiting an enclave is only possible via a defined enclave inter-
face, that describes entry points and the allowed number of concurrent threads
inside an enclave. Calls to enclave functionality are called enclave calls (ecalls),
while calls from an enclave to outside code are called outside calls (ocalls).
The enclave interface is described in a domain-specific language during develop-
ment, which is also used to generate untrusted and trusted ecall and ocall stubs.
Figure 2 illustrates the control flow of an ecall ①, an ocall ② and returning from
an ecall to the untrusted code ③.

Enclave memory is backed by a range of normal DRAM—called Enclave
Page Cache (EPC)—which is reserved by the firmware during the boot process.
This memory range is managed by the untrusted operating system, while its
contents are encrypted by the CPU package with a random key. Currently, SGX
supports a maximum of 128 MB of EPC for all enclaves running on a system
together. Memory demand exceeding this range requires the SGX driver to re-
encrypt enclave pages and copy them to regular system memory causing a high
performance impact.

Secure Cloud Micro Services Using Intel SGX 181

Verticle1

EventBus API

Untrusted Java Code

Verticle2

EventBus API

Enclave

Trusted C/C++ Code

EventBus Bridge

JNI

Vert.x EventBus

Fig. 3. Architectural Overview of Vert.x Vault showing two verticles connected via the
Vert.x event bus and one of them containing an SGX enclave.

3 Design

With our Vert.x Vault we want to integrate TEEs into Vert.x applications
such that the TEE developer can offload parts of the application logic to SGX
enclaves. This allows usage of SGX for critical parts of the application logic while
keeping most of it including the code base of Vert.x untrusted and not part of
the TCB. Vert.x and SGX TEEs are a suitable fit, as the micro service para-
digm matches the original idea of the SGX engineers to keep enclaves lightweight
and small, and the ability of SGX to integrate multiple TEEs into a single user
process.

Since Vert.x is written in Java and enclaves are written in C/C++, we pro-
pose integration of enclaves via Java Native Interface (JNI) into verticles. While
the integration of a full-fledged JVM into an enclave would be possible, it is
not favourable as it introduces a lot of complexity to the enclave and causes a
drastic increase of the TCB, leading to a higher probability of exploitable secu-
rity vulnerabilities and an increased attack surface. Furthermore, in the context
of SGX this would lead to a significant performance penalty as the available
enclave memory—limited to 128 MB on current hardware—would be exceeded.
Exceeding the enclave memory causes the SGX driver to move enclave pages to
regular system memory, requiring an expensive re-encryption of the pages [8].

An overview of our architecture is shown in Fig. 3, illustrating two verticles
connected via the Vert.x event bus, and one of them containing an SGX enclave.
As can be seen from the figure, a secure verticle is a verticle with an integrated
enclave, that can be reached by other verticles via the Vert.x event bus. This
enables the developer to design large micro service applications consisting of a
mix of multiple untrusted and secure verticles. It is also possible to explicitly
guide further isolation via process boundaries, as verticles can be deployed on
specific hosts and multiple verticles can reside in the same JVM process.

The enclave which is integrated into a secure verticle, contains our Vert.x
Vault as a C/C++ library offering an Application Programming Interface
(API) to access the event bus directly from the enclave. In order to integrate the

182 S. Brenner et al.

C/C++-based enclave into the Java-based Vert.x tool-kit, we use a small JNI
component to forward the Vert.x Vault calls to the original Vert.x API. By this,
the enclave is able to register an address on the event bus and receive messages
from other verticles, as well as sending messages to arbitrary addresses on the
event bus.

3.1 Adversary Model and Assumptions

By using SGX to implement TEEs we gain a very high level of security allowing
a very strong adversary model. We assume an attacker that has full access to the
machines running Vert.x, including the firmware, Operating System (OS), and all
system and user space software. Even physical attacks such as cold boot attacks
can be allowed without violating the security guarantees that SGX provides. We
assume a correct implementation of SGX and all cryptographic primitives.

3.2 Security Aspects

As already outlined, the size of the TCB influences the overall security of an
application. Besides its complexity and the fact that syscalls can not be done in
an enclave, this is the main security reason why a full-blown JVM should not be
ported to run inside an enclave. Running a JVM inside an enclave would lead
to both, a large TCB inside the enclave as well as a large memory footprint of
the enclaves which negatively affects both, security and performance.

Hence, in our approach we aim at C/C++-based enclaves that execute only
minimal parts of the application logic in the trusted environment. Partitioning
the application logic to decide which parts of application logic are required to
run inside the enclave and which not is the task of the developer. We demon-
strated this approach—called application partitioning approach—for ZooKeeper,
a complex Java-based coordination service [8], in an earlier work.

Running parts of application logic in an enclave, provides protection of con-
fidentiality and integrity of data inside the enclave and the enclave code itself.
However, once data is exchanged between and enclave and the untrusted outside
world, data must also be protected in an adequate way; traditionally by using
TLS between the two parties communicating. However, in case of SGX, the TLS
endpoint must reside inside the enclave. In our Vert.x Vault , the enclave inte-
grated into a secure verticle inherits the Intel SGX SDK features and can resort
to the included cryptographic functions in order to protect data exchanged via
the Vert.x event bus or with other secure verticles, respectively.

Enclave Interface. Another possible security aspect is the enclave interface,
i.e. the amount and signature of ecalls. In general, there will be less security
vulnerabilities with a more narrow enclave interface. Also, we wanted to keep
the enclave interface generic in order to support any kind of application logic
running in the enclave. The complete enclave interface is illustrated in Listing 1.1.

Secure Cloud Micro Services Using Intel SGX 183

enclave {
trusted {

public void ecall_enclaveInit();
public void ecall_deliverMsg(

[in, size=lenCh] const char *channel , size_t lenCh ,
[in, size=lenMsg] const char *msg , size_t lenMsg);

};
untrusted {

void ocall_register([user_check] void* weak ,
[in, string] const char *channel , size_t len);

void ocall_unregister([user_check] void* weak ,
[in, string] const char *channel , size_t len);

void ocall_send([user_check] void* weak ,
[in, string] const char *channel , size_t len ,
[in, string] const char *msg , size_t lenMsg);

void ocall_broadcast([user_check] void* weak ,
[in, string] const char *channel , size_t len ,
[in, string] const char *msg , size_t lenMsg);

};
};

Listing 1.1. Enclave interface description.

We defined an enclave entry method which is called after the enclave is cre-
ated. This allows the implementation of initialisation routines inside the enclave
and to register to event bus addresses on secure verticle start-up and is analogous
to the verticle’s constructor method. Next, we implemented another method to
deliver messages from the event bus to the enclave. Only within the enclave we
distinguish the address on the event bus and deliver the message to the respective
callback function.

Calls from the enclave to the untrusted context are also part of the enclave
interface. Firstly, there are two methods for registering and de-registering an
address on the Vert.x event bus. During registration, the enclave stores a func-
tion pointer in an internal (trusted) data structure to the user-defined callback
function once a message is received for this address. In order to allow sending
messages to the event bus, we implemented two ocalls to send and broadcast
messages onto the event bus respectively.

3.3 Programming Model

A crucial requirement of our project was to give the enclave developer the
impression of the Vert.x programming model inside an enclave. Consequently, we
defined the notion of a secure verticle that essentially represents a verticle whose
application logic is implemented inside an enclave. As a Vert.x application will
usually consist of multiple verticles, the idea is to offload all sensitive application
logic components to secure verticles that can interact with the other verticles via
the event bus. In terms of the application partitioning approach from our earlier
work [8], only application logic fragments that require direct plain text access
to user data should be implemented as secure verticles, whereas all other parts
should be untrusted verticles. This is compliant with our goal of minimising the
TCB for a higher level of security.

184 S. Brenner et al.

Inside enclaves of a secure verticle, we want to give the developer a Vert.x-
like programming model, i.e. reactive event-based callbacks. For this purpose,
we mimic the Vert.x event bus API inside the enclave, and allow the enclave
developer to register event bus addresses and receive callbacks for the registered
addresses as well as sending messages to the event bus. By this, the secure
verticles get integrated into the complete system of verticles of a full Vert.x
application.

4 Enclave Integration and Vert.x Vault Features

The integration of SGX enclaves into Java applications in general, and into the
Vert.x tool-kit specifically in this work, can be done using JNI. For this purpose
we implement the interface that the enclave uses to interact with the event bus,
as well as the one that Vert.x uses to forward incoming events to the enclave in
JNI. In conjunction with stub code generated by the SGX Software Development
Kit (SDK) supporting interaction of untrusted C/C++ code and the enclave
code, this requires additional copies of the message buffers. We discuss their
performance impact in our evaluation in Sect. 6.

In order to support multiple secure verticles coexisting in the Vert.x environ-
ment, we need to maintain an enclave identifier in the Java class representing
the secure verticle, such that each secure verticle “knows” its associated enclave.

Furthermore, we want to enable one secure verticle to register multiple indi-
vidual callback functions inside the enclave for different event bus addresses.
This requires to maintain a distinct entry point inside the enclave for all incom-
ing messages where a lookup happens in order to find the right callback function
for this event. Including the deregistration of addresses on the event bus, all
these features are implemented as part of our Vert.x Vault .

4.1 Bootstrapping and Remote Attestation

SGX enclaves inherently are not able to contain secrets when they are created,
thus injection of secrets into enclaves must be done after a successful Remote
Attestation (RA). Integration of RA into our Vert.x Vault architecture requires
a generic untrusted component inside of each secure verticle that can create
a “quote” of the enclave and publish it on the event bus to an administrator
component. Along with a public key generated by the enclave, the quote can
be used by an administrator to verify the secure enclave remotely and via the
Vert.x event bus by using the Intel attestation service [4]. After a successful RA,
the administrator can inject secrets into the enclaves of secure verticles.

4.2 Secure Event Bus

Recently, the Vert.x developers added the secure event bus to Vert.x, that allows
the encryption of all messages on the event bus transparently to the verticles.

Secure Cloud Micro Services Using Intel SGX 185

Essentially, the secure event bus provides TLS-based transport security of mes-
sages across machine boundaries. In order to be transparent to verticles, the
integration of the secure event bus is done deeply inside Vert.x. Hence, the ver-
ticles can not notice the encryption or—in case of a secure verticle using our
Vert.x Vault—move the encryption endpoints into the enclaves. For this reason,
we consider the secure event bus orthogonal to the implementation of our Vert.x
Vault . In order to integrate it with our secure verticles, the TLS endpoint of the
secure event bus must be moved inside the enclave, requiring major changes to
the internals of Vert.x. However, even without integration of the secure event
bus with secure verticles, the latter can of course establish their own secure
connections transparently to the event bus.

5 Use Case Scenario SERECA Project

In the context of the SERECA project, we demonstrate the opportunities com-
ing from an integration of SGX with Vert.x through a suitable use case sce-
nario: a cloud-based application for the monitoring of seven dams belonging to
a water supply network [9]. This use case unarguably belongs to the Critical
Infrastructure (CI) domain. CIs enclose assets essential for the functioning of
all countries’ fundamental facilities such as energy, telecommunications, water
supply, and transport. Due to their importance in nations’ sustainability, CIs
are target of terrorist cyber-attacks, as demonstrated by recent events: “Black
Energy”4 in 2015, and “Havex”5 in 2014. Security threats related to the dis-
closure or manipulation of sensitive data slows the migration of CIs to cloud
technologies.

Through the cloud-based Water Supply Network Monitoring (WSNM) appli-
cation, we want to prove that the combination of Vert.x with SGX—enabled
by our Vert.x Vault—can represent a possibility to overcome CI’s security con-
cerns. The different tools provided by Vert.x enable the development of a reactive
WSNM application based on micro-services having the following peculiarities:
(1) Easily deployable among the dams and the cloud; (2) Highly scalable in front
of sensors measurements peaks (3) Highly available in front of failures; (4) Highly
performance in the process of sensors data collection, elaboration and provision.
Moreover, the SGX extension allows the encryption/decryption and sealing of
sensitive measurements by an enclave using a platform-specific key and while
requiring to trust only the CPU package.

Figure 4 shows the overall architecture of the WSNM distributed application.
On the dam-side, a data collector verticle interfaces, through a ModBus protocol,
with a data logger equipment responsible for providing all the sensor data. Then,
the acquired measurements are sent to the registered cloud-verticles through the
Vert.x secure event bus. Thanks to this, messages are securely encrypted and
signed. Only the involved receiver verticles, knowing the encryption key (AES)
and integrity key (HMAC), can decrypt the message. In addition to a TLS secure
4 https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-281-01B.
5 https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-176-02A.

https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-281-01B
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-176-02A

186 S. Brenner et al.

Fig. 4. Architecture of the dam monitoring application SGX-enabled

communication, a Route-based encryption is enforced. Senders and receivers do
not indicate the key in the message. They use an equivalent configuration, which
defines the key to be used for a specific address. In this way, they do not share
key names, but agree on the address-key mapping.

On the cloud-side, four registered verticles receive data through the secure
event bus and, based on their duties, take a specific action on it. Two of them
are secure verticles and so make use of Vert.x Vault APIs seen in Sect. 3.3:

Cache Archiver Verticle (CAV): It is responsible for the storage of time-
recent data into an in-memory system. Such a data is needed, e.g., by the alarm
manager in charge of real-time analysis activities. The CAV is unarguably a
Secure Verticle as the measurements it stores in memory must be encrypted.
Therefore, the CAV registers itself from within the enclave to the Vert.x secure
event bus through a ocall register. Then, when new updates are received, the
data—before being stored—is encrypted into the enclave. It can obviously hap-
pen that other verticles (e.g. the AMV) asks for that data. When this happens,
a ocall send is performed to provide the measurements to the interested verticle.

Alarm Manager Verticle (AMV): The alarm manager is in charge of signalling
dangerous situations occurring on the dam infrastructure by enforcing a Complex
Event Processing (CEP), i.e., correlating different data sources to find events or
patterns suggesting more complicated circumstances. To do that, the AMV needs
to receive live data from the collector verticle and also temporarily store data in
memory. For this reason, it communicates with the CAV through point-to-point
messages exchanged through the secure event bus. The AMV, that currently
operates on data securely stored, will be extended as a secure verticle to realize
the CEP processing into an enclave.

Storage Archiver Verticle (SAV): Beside saving data for CEP processing pur-
poses, it is also important to store measurements for historical trend evaluations
into a persistent storage system. Even in this case it is important that stored
data is encrypted. Hence, even the SAV is defined as a Secure Verticle.

Web Proxy Verticle (WPV): The final user operator has access to the moni-
toring application through a web-based dashboard, which reports real-time mea-
surements, historical trends, and alarm notifications. Such a dashboard commu-
nicates with the back-end cloud application through the WPV, which can ask

Secure Cloud Micro Services Using Intel SGX 187

any verticle for data to be sent to the web browser based on the requests. The
TLS-enabled transmission of sensitive data is realized through a Vert.x secured
SockJS bridge—provided in the secure event bus—able to encrypt/decrypt data
at application level using a key shared with the web browser.

6 Evaluation

In order to measure the performance impact of enclaves integrated into verti-
cles using our Vert.x Vault , we wrote a benchmark tool in order to evaluate the
performance of our prototype and present the results in this section. All mea-
surements presented in this section were done with real enclaves and executed
on SGX-capable machines with Core i7-6700 @3.4 GHz, 24 GB RAM, 256 GB
SSD and 4x GbE.

6.1 Performance Measurement

The measurement scenario comprises three verticles deployed on two hosts: a
sender verticle that sends requests and measures the response time and through-
put on one host, and a regular and a secure verticle both running on the other
host answering the requests. All communication between verticles is transferred
via the Vert.x event bus using the Hazelcast cluster manager6, which is the
default cluster manager implementation of Vert.x. In order to get an impression
of the performance impact of the usage of SGX in verticles, we exchange pay-
loads of various size between the verticles and measure throughput and response
time.

In a first experiment we investigate the level of concurrency that leads to
optimal throughput by increasing the maximum allowed number of concurrent
pending requests on the event bus in the sender verticle. We chose a realistic
payload size of real Vert.x applications of 1024 Bytes for this experiment. The
results of this experiment are shown in Fig. 5 which also includes the response
times. As can be seen, the value of 128 pending requests leads to the highest
throughput, while higher values do not significantly increase throughput.

We also measure the throughput of regular and secure verticles for various
sizes of message payload using the aforementioned value of 128 concurrently
pending requests that led to optimal throughput. Figure 6 illustrates the request
throughput of our experiment for various payload sizes. It proves that secure
verticles perform quite well, and in most of the cases reach a throughput almost
as high as regular verticles. The same is true for the transmitted payload traffic
on the event bus between the verticles, as can be seen from the same Fig. 6.

Finally, we measured the mean response time of requests for regular and
secure verticles as illustrated in Fig. 7. The figure shows the additional processing
time required to enter the enclave and copy the payload buffer in and out. As
expected, in general the response time of secure verticles is higher than the one

6 https://hazelcast.com/.

https://hazelcast.com/

188 S. Brenner et al.

Fig. 5. Request throughput for various number of pending requests.

Fig. 6. Request throughput and traffic for various payload sizes.

of regular verticles. For very small payloads between 0–512 Bytes there is a
relatively high overhead of ≈83.1%of secure verticles, while for larger payloads
between 512 Bytes and 256 KB the relative overhead decreases to only ≈26.2%.
We explain this by the constant overhead of entering and exiting the enclave
which is relatively more notable for small payloads.

6.2 Size of TCB

As motivated earlier in this paper, we aimed at minimising the Source Line of
Code (SLOC) inside the enclave (i.e. the TCB) in order to optimise both perfor-
mance and security. While the Vert.x tool-kit’s code base comprises thousands
of SLOC, our Vert.x Vault only requires 69 lines of code inside the enclave in
order to enable the enclave code to access the Vert.x event bus. Apart from this,
the TCB naturally comprises the code by the micro service application devel-

Secure Cloud Micro Services Using Intel SGX 189

Fig. 7. Response times for various payload sizes.

oper, but the majority of code resides outside of the enclave and untrusted. This
enables the developer to decide on a very fine-grained level what code is trusted.

7 Related Work

Haven [6] was the first system and supports execution of legacy applications
unchanged in an SGX enclave. While running legacy applications in enclaves
has many benefits, such as support for closed source applications, this feature
adds a large amount of code to the TCB of the enclave, like a full library OS
and other libraries. This eventually leads to a large memory footprint, which
negatively influences the performance of the application on top of SGX.

SCONE [5] supports running secure containers based on Docker [1]. This
approach reduces the memory footprint of the enclaves when compared to Haven,
while still featuring a generic platform for the execution of secure containers.

Another type of related work is the field of partitioned applications, that are
specifically paritioned applications to run most efficiently and with the least pos-
sible memory footprint on top of SGX. An example for securing complex cloud
services by partitioning them for usage with SGX enclaves is SecureKeeper [7,8]
featuring a partitioned Apache ZooKeeper [10] coordination service.

The communication of verticles on the Vert.x event bus is alike publish-
subscribe systems. In this context, Pires et al. presented secure content-based
routing with SGX [14]. Their system protects the subscription process of clients
at data providers and the confidentiality of the data exchanged between them.
In contrast, our Vert.x Vault not only enables protecting the confidentiality of
exchanged messages between verticles, but also allows general-purpose sensitive
data processing of inside secure verticles.

190 S. Brenner et al.

8 Conclusion

Micro service architectures are a modern way of writing scalable applications
tailored for cloud environments. However, trust issues still hinder the adoption
of cloud technology especially for sensitive applications handling sensitive data.

In this work, we showed an approach of integrating TEEs into the micro
service tool-kit Vert.x. With our approach due to the usage of SGX, we gain
a high level of security at a strong adversary model. Furthermore, we support
the Vert.x programming model and control flow inside the TEE by mimicing its
API. This allows interaction of trusted code with the Vert.x event bus.

Our prototype implementation demonstrates the feasibility of our approach,
while the evaluation shows a very low performance overhead of only ≈8.7%.

Acknowledgements. This project received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the SERECA project (Grand No.
645011).

References

1. Docker. https://www.docker.com/. Accessed 02 Jan 2017
2. Eclipse Vert.x. http://vertx.io/. Accessed 25 Jan 2017
3. What Led Amazon to its own microservices architecture. http://thenewstack.io/

led-amazon-microservices-architecture/. Accessed 25 Jan 2017
4. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU

based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy (2013)

5. Arnautov, S., Trach, B., Gregor, F., Knauth, T.: SCONE: secure linux containers
with intel SGX. In: 12th USENIX Symposium on Operating Systems Design and
Implementation (2016)

6. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with Haven. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (2014)

7. Brenner, S., Wulf, C., Kapitza, R.: Running Zookeeper coordination services in
untrusted clouds. In: 10th Workshop on Hot Topics in System Dependability (2014)

8. Brenner, S., Wulf, C., Lorenz, M., Weichbrodt, N., Goltzsche, D., Fetzer, C., Piet-
zuch, P., Kapitza, R.: SecureKeeper: confidential ZooKeeper using intel SGX. In:
Proceedings of the 15th International Middleware Conference (2016)

9. Cerullo, G., Mazzeo, G., Papale, G., Sgaglione, L., Cristaldi, R.: A secure cloud-
based SCADA application: the use case of a water supply network. In: Proceedings
of the Fifteenth New Trends in Software Methodologies, Tools and Techniques,
SoMeT 2016, Larnaca, Cyprus, 12–14 September 2016, pp. 291–301 (2016)

10. Hunt, P., Konar, M., Junqueira, F., Reed, B.: ZooKeeper: wait-free coordination
for internet-scale systems. In: Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference (2010)

11. Jayaram, K.R., Safford, D., Sharma, U., Naik, V., Pendarakis, D., Tao, S.: Trust-
worthy geographically fenced hybrid clouds. In: Proceedings of the 15th Interna-
tional Middleware Conference (2014)

https://www.docker.com/
http://vertx.io/
http://thenewstack.io/led-amazon-microservices-architecture/
http://thenewstack.io/led-amazon-microservices-architecture/

Secure Cloud Micro Services Using Intel SGX 191

12. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi,H., Shanbhogue,V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Architec-
tural Support for Security and Privacy (2013)

13. Pearson, S., Benameur, A.: Privacy, security and trust issues arising from cloud
computing. In: IEEE 2nd International Conference on Cloud Computing Technol-
ogy and Science (2010)

14. Pires, R., Pasin, M., Felber, P., Fetzer, C.: Secure content-based routing using intel
software guard extensions. In: Proceedings of the 17th International Middleware
Conference (2016)

15. Synopsys, Inc., Open Source Report (2014). http://go.coverity.com/rs/157-LQW-
289/images/2014-Coverity-Scan-Report.pdf

http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf

Adaptive Cheat Detection in Decentralized
Volunteer Computing with Untrusted Nodes

Nils Kopal1(B), Matthäus Wander2, Christopher Konze1, and Henner Heck1

1 Applied Information Security, University of Kassel, Kassel, Germany
nils.kopal@uni-kassel.de

2 Distributed Systems Group, University of Duisburg-Essen, Duisburg, Germany

Abstract. In volunteer computing, participants donate computational
resources in exchange for credit points. Cheat detection is necessary
to prevent dishonest participants from receiving credit points, without
actually providing these resources. We suggest a novel, scalable app-
roach for cheat detection in decentralized volunteer computing systems
using gossip communication. Each honest participant adapts its detection
effort dynamically subject to the number of active participants, which
we estimate based on observed system performance. This enables mini-
mizing the detection overhead for each participant, while still achieving
a high preselected detection rate for the overall system. Systems based
on majority voting usually produce at least 100% overhead, whereas our
approach, e.g. requires only 50.6% overhead in a network with 1 000 par-
ticipants to achieve a 99.9% detection rate. Since our approach does not
require trusted entities or an active cooperation between participants, it
is robust even against colluding cheaters.

1 Introduction

Cheating is a well-known problem in distributed systems that rely on the com-
puters of volunteers, i.e. volunteer computing systems [2]. In such a system, the
computers of volunteers are interconnected and build a large-scale distributed
system for distributed computations. We call a complete distributed computation
a job and a partial computation, typically performed by a single node, a subjob.
Researchers often use volunteer computing in cases where there is no funding for
sufficient computational resources within their research projects. Many volun-
teer computing projects have a charitable background, i.e. the search for cancer
medicaments, AIDS research, water research, etc. We distinguish two different
classes of volunteer computing: The first class is the classic volunteer computing,
which is based on a client-server approach, e.g. the Berkeley Open Infrastructure
for Network Computing [1] (BOINC). Here, a server manages the distribution
of all subjobs. The combination of the corresponding subjob results leads to the
result of the overall job. Participating nodes in the volunteer computing network
request subjobs from the central server and deliver results to the central server.
Clearly, if the server fails, the complete job computation stops since no new
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 192–205, 2017.
DOI: 10.1007/978-3-319-59665-5 14

Adaptive Cheat Detection in Decentralized Volunteer Computing 193

subjobs are assigned to requesting nodes. Additionally, a server requires main-
tenance which results in costs that have to be taken into account by researchers.
The second class is decentralized volunteer computing, e.g. [9,14]. Here, no cen-
tral server exists. The participating nodes have to self-organize distribution and
assignment of subjobs and distribution and storage of results.

To offer incentives to participate in volunteer computing projects, i.e. moti-
vate people to donate their computational resources, volunteer computing sys-
tems usually maintain lists of their participating users with respect to their com-
putational work spent [1]. People who donate resources typically aim to improve
their position on such lists, causing them to provide more resources.

Besides well-behaving users, there also exist cheaters in volunteer computing
systems [3]. Such a cheater delivers false or only partial correct results to gain
more credit points than they deserve. Correct results are essential for researchers,
which requires a verification of results coming from untrusted and potentially
unreliable volunteers. Otherwise, partly false results could impair the overall job
result up to the point of invalidating the joint effort of hundreds or thousands
of volunteers. There exist well-known anti-cheating techniques for client-server
based volunteer computing [6]. These include redundant computation, majority
voting, and sample testing, which are performed or initiated by the central and
trusted server. In a decentralized network, there is no central authority that man-
ages the distribution of subjobs. Thus, techniques like redundant computation
and majority voting cannot be easily used.

In an untrusted, decentralized network, each node needs to devote a portion
of their resources to detect and correct false results. As this reduces the overall
speedup of computation, only a subset of results can be selected to be verified for
efficiency reasons. Sample testing suffices to detect cheaters in search problem
applications with close to 100% probability [15].

In this paper, we present a method for cheat detection in untrusted, decentral-
ized volunteer computing networks based on sample testing. The method works
on top of a gossip-based communication. It is immune to colluding cheaters,
because each node performs its cheat detection independent of each other. We
show that to meet a given detection rate, the overall cheat detection effort per
network can be kept constant. With an increasing size of the network, this allows
us to reduce the cheat detection effort per node without negatively impairing the
detection rate. We thus propose to adapt the cheat detection per node dynam-
ically subject to the size of the network, which can be estimated by each node
individually by evaluating the current network workload. In sum, the contribu-
tion is a cheat detection method that dynamically adapts the verification effort
to the total number of participating nodes in untrusted volunteer computing
networks without the need of any additional messages.

The rest of the paper is organized as follows: First, in Sect. 2 we present our
system model for decentralized volunteer computing. Then, in Sect. 3 we present
our application scenario. Here, we base our model on a distributed cryptanalysis
scenario. Additionally, we present our cheater classes and our cheat detection
algorithm. We also present our definition of effort for computations and cheat

194 N. Kopal et al.

detection. After that, in Sect. 4 we present our idea for an adaptive cheat detec-
tion method. In our evaluation in Sect. 5 we simulate the effort for cheat detec-
tion of a single computing node with fixed detection rates and effort. After that,
we evaluate, on the basis of single nodes, the effort a complete network has to
perform for cheat detection with fixed detection rates and effort. After that, we
present an evaluation of our adaptive method. Then, in Sect. 6 we briefly present
the related work in the field of cheat detection and prevention. We conclude our
paper in Sect. 7 with a brief outlook on future work.

2 System Model

In a decentralized volunteer computing system, the knowledge of the partici-
pants is distributed using messages. Each participant can send messages directly
to a certain number of other participants, which are called neighbors. Nodes
disseminate knowledge by sending messages to their neighbors, which copy and
forward them to their neighbors. Since such an approach leads to a high number
of message transmissions, the amount of data that needs to be exchanged during
a job computation has to be kept small. The basis for our gossip-based distri-
bution is a network consisting of nodes. Each node is connected to randomly
chosen neighbors. Nodes transmit the results of their subjob computations and
their state of the overall job to their direct neighbors. Our distribution algo-
rithms compute an embarrassingly parallel search problem (search job) with a
result using a problem specific computation function. Such a search job can
be parallelized by dividing it into independent subjobs, where each subjob can
be computed by the same computation function. To get the overall result of a
job, the results from all subjobs can be combined using a combination function.
Furthermore, we assume that the combination function is associative, commuta-
tive, and idempotent. We assume that the size of the combination of two results
equals the size of a single result. Since the jobs in our example scenario consist
of several thousands, millions, or more subjobs, it is not possible to disseminate
the state of each subjob. We use distribution algorithms [8–10], which divide
the total computation space into subspaces. These subspaces are chosen small
enough so that it can be disseminated in total. Nodes work in parallel on the
same subspace. A node randomly selects a subjob, computes it, and sends the
results to their neighbors. These merge all received results and forward them to
their neighbors. Once the nodes finished a subspace, they move on to the next
subspace until the job is complete.

3 Application Scenario

Our application scenario is the keysearching of a modern symmetric cipher, i.e.
distributed brute-forcing an AES128 [4] encrypted text and searching for the
decryption key. In our application scenario, we divide the complete search space
(≈254 for passwords consisting of lowercase and uppercase characters, digits, and
special characters) in subjobs, each consisting of 220 = 1048 576 keys. To search

Adaptive Cheat Detection in Decentralized Volunteer Computing 195

through a single AES128 subjob, a node decrypts the given ciphertext using
every key within the range of that subjob. The goal of the cryptanalysis is to find
the correct decryption key. To rate the keys, a node uses the Shannon entropy [13]
function H as a cost function. With natural language, i.e. the original plaintext,
the entropy value is mostly at its minimum with respect to all decryption keys.
After performing all decryptions, a node generates a toplist of the k “best” keys
of a subjob. Those keys are the ones that decrypt the given ciphertext to the
plaintexts with the lowest entropy. Each node does this for different subjobs.
After finishing a subjob, the nodes send their results to their neighbors. They
combine the toplist of each received subjob result to create a global toplist over
all subjobs.

In our scenario, a cheater would not test all keys of an AES128 subjob. The
cheater has the motivation to earn credit points to achieve a high rank in a volun-
teer computing network without doing all of the required work, while avoiding the
detection by the system’s countermeasures [1]. Thus, a cheater, in general, may
compute only parts of a given subjob and only delivers partially (correct) results.
The more of a subjob a cheater computes, the harder it is for a cheat detection algo-
rithm to detect this cheater. This is based on the fact that the more results of a sub-
job are computed correctly, the less results are missing that could be detected. We
refer to a cheater that only computes parts of a subjob as an opportunistic cheater.
Opposed to that, a disturber submits garbage results just for the sake of vandalism.
Disturbers can be easily detected with the same means as opportunists. Colluding
cheaters coordinate their efforts to persist cheated subjob results in the network.
In some systems, colluding cheaters have an advantage over solitary opportunistic
cheaters, but this does not apply to our approach.

BOINC-based solutions use multiple computations of subjobs by different
nodes and make a majority decision on the correct result. In [15], we developed
an approach for the detection of cheated results within a distributed computing
scenario introduced by an opportunistic cheater. The detection is based on two
different approaches: Positive verification and negative verification. With pos-
itive verification, we verify the correctness of a subjob computation and with
negative verification, we try to find other (better) results, which the delivering
node omitted. If either positive verification fails or negative verification succeeds,
we found a cheated result and we decline it. For positive verification, we assume
that we can check the results in very short times. Clearly, this is true for an
AES128 subjob since the decryption using all of the keys of the subjob toplist
can be done very quickly.

To compare our decentralized cheat detection mechanisms and methods
with the state-of-the-art solutions (client-server-based, i.e. BOINC) we need
to estimate the effort that is needed for the computations and additionally
the cheat detection mechanisms. First, we define the effort for a single sub-
job computation as Esubjob = 1. Furthermore, the effort to compute i subjobs
is Enode(i) = i · Esubjob = i, which is i times the amount of effort needed for a
single subjob. This is possible, since every subjob is, with respect to the needed
computations, identical.

196 N. Kopal et al.

We define EDetect(PDetect) as the effort needed for the computation of a
detection algorithm with the detection rate PDetect. For example, an effort equal
to 0.5 means, that half of the subjob has to be recomputed to perform the
cheat detection. Clearly, the effort function depends on the problem that is
being computed by our volunteer computing network. Thus, the computation of
EDetect can not be generalized. In Sect. 5, we present an evaluation for the effort
that is needed for the detection of cheated subjob results in a cryptanalysis
scenario, i.e. keysearching for the key of a symmetric encryption algorithm.

4 Approach

In our approach, every node performs independently a partial cheat detection
on every subjob result disseminated in the volunteer computing network. The
approach needs no additional messages for executing the cheat detection. It is
completely based on the assumption that every honest node provides its small
part of cheat detection effort. This cheat detection effort is subject to a given
fixed destination detection rate PDetectNetwork and the current workload of the
network, to which our approach dynamically adapts to. We measure the work-
load in units of virtual nodes, which is a standard amount of processing power
provided by a node. However, our approach is able to cope with heterogeneous
nodes providing more or less workload than a virtual node. Each node performs
the following steps in our cheat detection approach for each newly received sub-
job result:

1. Determine the number of virtual nodes nV irtual currently connected to the
network with the method introduced below.

2. Compute the amount of virtual nodes r that the node represents itself.
3. Based on the amount nV irtual compute target detection rate PDetect of node.
4. Perform cheat detection with the computed node detection rate PDetect on

each newly received subjob result with effort EDetect.

4.1 Determine Workload of Network

We now present a method to infer the workload of a node and of the whole
volunteer computing network, which is necessary to determine the effort for
cheat detection required. Each node administrates a list LTimeframe of finished
subjob results within a sliding time window Timeframe. The list LTimeframe

contains the received amount of subjob results of the node, the node’s neighbors
and all of their neighbors, which follows from the gossip-based dissemination of
job results. The node divides the amount of subjob results #(LTimeframe) by
the timeframe time Timeframe to obtain the current workload WNetwork of the
network, i.e.

WNetwork =
#(LTimeframe)
Timeframe

. (1)

Adaptive Cheat Detection in Decentralized Volunteer Computing 197

To estimate the amount of nodes nV irtual, we divide the workload WNetwork of
the network by a constant virtual node workload WV irtualNode, i.e.

nV irtual =
WNetwork

WV irtualNode
. (2)

Although we cannot compute the actual number of nodes or their workload,
this virtual number of nodes suffices for our purposes. We assume that cheaters
not only skip on result computation but also omit participation in the cheat
detection process, since they have no benefit in doing so. We thus have to com-
pensate for this amount by reducing the estimated workload by the amount
of cheaters CCheaterRate that the system should be resistant against. Setting
e.g. CCheaterRate = 0.05, our approach achieves the target detection rate
PDetectNetwork in a network with at most 5% of all claimed results to be cheated.
If the actual amount of cheaters exceeds CCheaterRate, the cheat detection still
works but achieves a detection rate less than the anticipated PDetectNetwork. The
compensated amount of virtual nodes is thus

nV irtual =
WNetwork

WV irtualNode
· (1 − CCheaterRate). (3)

Each node now determines the number of virtual nodes r it represents with
its own workload. It does so by dividing its current workload WNode by
WV irtualNode, i.e.

r =
WNode

WV irtualNode
. (4)

4.2 Perform Cheat Detection

Now that the node knows its computing power relative to the network’s com-
puting power, it computes the amount of effort it has to contribute so that the
network reaches its target detection rate. Thus, it first computes the detection
rate which a single virtual node has to add, i.e.

PDetectV irtualNode = 1 − nV irtual

√
1 − PDetectNetwork. (5)

After that, the node computes its node target detection rate based on that with
the equation

PDetect = 1 − (1 − PDetectV irtualNode)r. (6)

We combine the two equations to the following final single equation for the target
node detection rate

PDetect = 1 − (1 − PDetectNetwork)
r

nV irtual . (7)

Based on this computed local detection rate PDetect, a node computes the ver-
ification effort E(PDetect) that it has to process, i.e. the amount that needs to
be recomputed of each newly seen subjob result. This effort is also based on the
type of cheater TCheater, the network has to be resistant again. A TCheater = 0.5

198 N. Kopal et al.

means, that the cheater only computes 50% of given subjobs. This target type
of cheater is set by the user of our adaptive method. In our evaluation we empir-
ically determine the function E(PDetect, TCheacter) for the 50% cheater. In other
scenarios, this effort has to be either computed, if possible, or empirically deter-
mined by the user.

5 Evaluation

In this section, we first present our idea of two distinguished cheat detection
classes: Static and adaptive. After that, we present the simulation of the effort
of a single node in the static class. Then, we use the results of that simulation to
evaluate the effort of a complete network based on the static class. After that,
we present our method to let each node adapt its cheat detection rate and the
needed mode effort with respect to the amount of nodes in the network. Doing
so, we show how we keep the detection rate as well as the node effort constant.

5.1 Detection Classes

We differentiate cheat detection in two different classes: The static class, and the
adaptive class. In the static class, a network or the nodes of the network perform
cheat detection with a static, i.e. fixed, detection rate PDetect. Thus, a node
performing cheat detection on a received result has the probability of PDetect

to detect, if the result is not correct, i.e. cheated. In the next section we show,
that this static detection class does not scale in a decentralized network since
the increasing effort ENetwork for detection reduces the speedup to an upper
limit. With the adaptive class the nodes of a network adapt their detection
rates PDetect and effort EDetect according to the amount of nodes within the
network. We furthermore use the simulation result of a single node to estimate
the correlation between effort and detection rate in the adaptive class.

5.2 Cheat Detection in the Static Class for a Single Node

We base our simulation on the AES128 scenario presented in the last sections.
In our simulation, we let the simulator search for the 10 “best” AES128 keys in
a cryptanalysis job. Thus, a simulated cheater that only searched through 50%
of the keys of a subjob would only find 5 of these keys on average. Then, to
simulate the detection of the cheater, a real node would first positively verify
the best list, i.e. check the entropy-values of each entry. Clearly, all the entropy
values within our simulation best list are correct, thus, we omitted this step in
the simulation. After that, a node would randomly try to find “better” values,
i.e. keys with lower entropy values. For that, we used different amounts of detec-
tion effort ranging from 0.0001% to 100%. We simulated the cheat detection
performed by a single node with different cheaters with respect to the cheated
amounts of computations. A cheater omits between 10% and 90% of all keys of

Adaptive Cheat Detection in Decentralized Volunteer Computing 199

a subjob computation. It selects the keys, for which it actually does computa-
tions randomly. The cheat detection node randomly selects a dedicated amount
of AES keys out of the subjob space to find lower entropy values, i.e. doing
negative verification. In Fig. 1 we show the results of our simulations. For each
point in the graph, we did 10 000 simulations and calculated the average value
over all simulation runs. The graph shows different amounts of cheated values
starting from 90% (black line) going down to 10% (purple line). A cheater with
90% means that the cheater omitted 90% of the computations. In our graph,
it can be seen that with higher amounts of negative verifications, i.e. the node
effort (abscissa), the detection probability, i.e. the detection rate (ordinate), also
increases. With an effort value EDetect > 7% our node would detect nearly every
cheated subjob. Clearly, 7% of effort, i.e. recomputation of 7% of each subjob,
is way too high for a real-world usage. But since not only one node performs
cheat detection, but also all n nodes do, we can decrease the effort and detection
probability at every node as shown in the next sections.

5.3 Cheat Detection Effort in the Static Class of a Complete
Network

If only exactly one node would perform a single detection run on each subjob,
in the previous section we evaluated that we need a recomputation of nearly 7%
(random selections) out of every subjob in the best case to perform cheat detec-
tion as seen as black line (90%) in Fig. 1. Here, the maximum value is reached
at nearly 7%. For determining the real effort of a decentralized network, we
evaluated three different scenarios (A, B, and C) with different static detection
probabilities PDetect (from high to low) and corresponding node efforts ENode.
We show the different detection probabilities and effort rates in Table 1. We
extracted these values out of our simulations, as shown in Sect. 5.2. The basis
for our computations is a volunteer computing job that consists of j = 232 dif-
ferent subjobs. First, we computed the effort EClient−Server that a client-server
solution, for example BOINC, would need for the cheat detection:

EClient−Server = 2 · ENode(j) (8)
= 2 · ENode(232) (9)
= 233 (10)

This amount of computations has to be performed in total by all the client-nodes
in a client-server based volunteer computing network. Clearly, the value is inde-

Table 1. Different scenarios - detection probability and effort of a single node

Scenario Detection probability PDetect Effort ENode

A (high) 1.22% ≈0.1271895%

B (medium) 0.46% ≈0.0490371%

C (low) 0.06% ≈0.0129130%

200 N. Kopal et al.

0

0,2

0,4

0,6

0,8

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

D
et

ec
tio

n
Ra

te
 P

de
te

ct

Effort εNode

Omitted 90%
Omitted 70%
Omitted 50%
Omitted 30%
Omitted 10%

Fig. 1. Node effort simulation (Color
figure online)

0,6

0,7

0,8

0,9

1

1.000 2.000 3.000 4.000 5.000 6.000 7.000

Q
uo

tie
nt

 Q

#(Nodes) in Network

A 'Quotient'
B 'Quotient'
C 'Quotient'

Fig. 2. Effort quotient Q

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

2.000 4.000 6.000 8.000 10.000 12.000

D
et

ec
t

Ra
te

 P
D

et
ec

tN
et

w
or

k

#(Nodes) in Network

A 'Detect Rate'
B 'Detect Rate'
C 'Detect Rate'

Fig. 3. Detect rates PDetectNetwork

2.000

4.000

6.000

8.000

10.000

12.000

2.000 4.000 6.000 8.000 10.00012.000

Sp
ee

du
p

S

#(Nodes) in Network

A 'Speedup'
B 'Speedup'
C 'Speedup'

Optimal 'Speedup'

Fig. 4. Speedup S (Color figure online)

pendent from the amount of nodes, since the distribution of subjobs to the nodes
is done by the server. We then computed the amounts for our three different sce-
narios with variable numbers of nodes. We show the result of these computations
in the Fig. 2. For comparison with the client-server case, we computed the quo-
tient Q of the client-server case effort (numerator) and the decentralized cases
(denominator) effort. A quotient of 1 means, that the network’s effort is the
same as the client-server’s effort. For example, the effort EDecentralized for sce-
nario A with PDetect = 1.22% and an assumed amount of nodes count n = 700
is:

EDecentralized = ENode(j) + (n · EDetect(j)) (11)
= 232 + (700 · 0.001271895 · 232) (12)
= 8 118 891 612.85 (13)

We now calculate the quotient Q of the client-server case EClient−Server and the
scenario A case:

Q =
EDecentralized

EClient−Server
= 0.944691034 ≈ 94, 45% (14)

Thus, a decentralized network (with parameters as in case A) needs 94, 45% of
the computations that a client-server network needs. Then, we computed the

Adaptive Cheat Detection in Decentralized Volunteer Computing 201

corresponding detection rate PDetectNetwork of such a network. To compute that
detection rate, we used the detection rate of a single node PDetect:

PDetectNetwork = 1 − (1 − PDetect)n (15)
= 1 − (1 − 0, 0122)700 (16)
= 0.999814512 ≈ 99.98% (17)

With scenario A the detection rate is nearly 100% - only one out of 1 000 cheated
subjobs would remain undetected on average in a network. Clearly, in a real
volunteer computing scenario, we assume that there would never be a thousand
cheated results disseminated in the network. By increasing the effort of a single
node the detection probability of the network can also be increased. We also
show the different detection rates of our scenarios in Fig. 3.

Finally, we computed the speedup S of our scenarios. The speedup of a
distributed system is the amount of parallel computed subjobs. If a network
consists of n nodes the speedup is optimal if n different subjobs are processed
in parallel. We computed the speedup S with the following equation

S =
ENode(j)

EDecentralized
· n (18)

where j is the total amount of subjobs, EDecentralized is the total effort of the
decentralized network, and n is the amount of nodes in the network.

We depicted the speedup graphs of our scenarios with different amounts of
nodes in Fig. 4. As a result of our evaluation it can be seen that with increasing
the amount of nodes but keeping a constant effort ENode for cheat detection at
every node, the speedup is restricted to an upper bound. For scenario A this
upper bound is ≈340, for B this upper bound is ≈1 750, and for C this upper
bound is ≈4 750. Additionally, we added the optimal speedup (green line) to the
graph. Here, the speedup S is equal to the amount of nodes n. Speedup values
higher than these bounds cannot be reached with constant EDetect values.

5.4 Our Adaptive Method

In this section, we present the evaluation which we performed with a simulator
that implements the static and the adaptive cheat detection. In this evaluation
we combine the adaptive method presented in Sect. 4 with the estimation of node
amount of Sect. 4.1 needed for the adaptive method to create a prototype. The
simulation time is represented in ‘ticks’. A simulated subjob is ‘computed’ by a
node waiting a defined amount of ticks, i.e. ‘subjob duration’.

The simulated network is defined by the amount of nodes and their neighbors,
the computational power of the nodes, cheater rates, cheat detection rates, cheat
detection effort, etc. For cheaters and their corresponding detection effort EDetect,
we used the TCheater = 0.5 cheater, i.e. a 50%-cheaters, as shown in Fig. 1. We
extracted the detection rate and effort values and created a mapping function
for our simulator.

202 N. Kopal et al.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Ef
fo

rt
 ε

D
et

ec
t

Detect Rate PDetect

50% Cheater

Fig. 5. Cheat detection effort of a sin-
gle simulated node – 50% cheater type

200.000

400.000

600.000

800.000

1e+006

100 200 300 400 500 600 700 800 9001.000

Ef
fo

rt
 ε

N
et

w
or

k

Nodes #(Nodes) in Network

Adaptive
Static

BOINC (minimum)

Fig. 6. Cheat detection effort – static
vs adaptive cheat detection vs BOINC
(Color figure online)

With our simulations we show that our adaptive method outperforms the
static cheat detection with respect to the effort needed by the nodes for per-
forming the cheat detection. Furthermore, our simulations show that the static
class does not scale with increasing amount of peers. Additionally, we show that
the adaptive method needs less effort for cheat detection than a BOINC-based
system needs.

We simulated different networks with sizes between 100 and 1 000 nodes, each
node having 5 neighbors. Our simulator performed a simulation of a distributed
job comprising of 320 000 subjobs. For the static cheat detection class, we set the
detection rate of a single node PDetectNode to 5%, which results in an estimated
PDetectNetwork of 99.4% for 100 nodes. We set the amount of cheaters in each
network to 5% who cheat with 5% of their subjobs. Thus, 0.3% ≈ 800 of all
subjobs disseminated within the simulation network were cheated on average.
Furthermore, we set the virtual node workload for our algorithm to 0.2, thus, a
virtual node finishes 0.2 subjobs in each simulation iteration. The real simulated
nodes finished a subjob in 5 simulation ticks. We set the window of our algorithm
to 10 ticks.

We present the results of our effort simulations in Fig. 6. With the static
approach, the effort increases proportionally to the number of nodes (red, dashed
line). This is caused by the fact that each node performs cheat detection on every
subjob result distributed in the network. The adaptive algorithm (blue, solid line)
adapts dynamically to the amount of nodes in the network, keeping the effort at
a rate around 162 000. This is about 50.6% of the overall amount of computed
subjobs. A BOINC-based system (black line) would compute each subjob at
least twice to enable majority voting, resulting in a minimum of 100% additional
effort for the cheat detection. Directly compared to BOINC the quotient Q is
Q = EOurMethod

EClient−Server

162 000+320 000
320,000+320,000 = 0.753125. I.e. our system needs ≈75% effort

compared to a client-server system with majority voting needs, i.e BOINC.
In Fig. 7 we depicted the cheat detection rates of the static and the adaptive

methods. Additionally, we computed the detection rate of BOINC with colluding
cheaters. BOINC achieves 99.7%, because there is a chance that BOINC gives
the same sub job to two colliding cheaters, which results in an overlooked cheated

Adaptive Cheat Detection in Decentralized Volunteer Computing 203

0,995

0,996

0,997

0,998

0,999

1

100 200 300 400 500 600 700 800 9001.000D
et

ec
tio

n
Ra

te
 P

D
et

ec
tN

et
w

or
k

Nodes #(Nodes) in Network

Adaptive
Static

BOINC

Fig. 7. Detection rate – static, adap-
tive, BOINC (Color figure online)

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1.000

Sp
ee

du
p

S

Nodes #(Nodes) in Network

Adaptive
Static

BOINC

Fig. 8. Speedup – static, adaptive,
BOINC (Color figure online)

sub job result despite redundant computation. The static method (red, dashed
line) keeps a detection rate of 100%, but as already shown does not scale with
respect to the effort. The adaptive method (blue, solid line) reaches a detection
rate between 99.8% and 100%. The target detection rate was 99.9%, which is
reached on average. Collusion among cheaters does not affect the detection rate,
because each subjob result will be checked for correctness by each honest node,
unlike e.g. with majority voting (Fig. 5).

We finally present a comparison of the achieved speedup S of the static class,
the adaptive class, and BOINC. We computed the speedup as shown in Sect. 5.3.
In Fig. 8 we show that the adaptive method performs best keeping the speedup
at the highest rate (blue line). Close to this, we see BOINC (black line). We
furthermore see, that the static class reaches a speedup limit close to 210 which
confirms that the static method does not scale.

6 Related Work

Prior work has considered cheat detection and cheat prevention in distributed
computing, which includes volunteer computing. There are attempts to secure
volunteer computing and grid computing by introducing mechanisms to either
validate the correctness of results received from participants or by making it hard
or impossible to cheat on given jobs. In [7], Golle and Mironov describe their
idea of uncheatable distributed computations. They show two different security
schemes, a weak and a strong one, that defend against cheating participants.
The weak one depends on ‘magic numbers’ and the strong one depends on a
supervisor and so called ‘ringers’. Both schemes have in common that partici-
pants have to find either these magic numbers or the ringers to get rewarded for
their done work. The main difference between their solution and ours is the orga-
nization of the computations. They use the supervisor who assigns subjobs to
nodes. In our scenario, we have no central management since our network is com-
pletely unstructured and decentralized. Moca et al. present in [11] a method for
distributed results checking for ‘MapReduce’ [5] in volunteer computing. They
use a distributed result checker based on majority voting. Furthermore, they

204 N. Kopal et al.

developed a model for the error rate of ‘MapReduce’. Compared to our solution,
which only needs recomputation of very small parts of subjobs, their method is
based on majority voting. Thus, their nodes have to redundantly compute com-
plete subjobs. Hence, the total amount of recomputations is at minimum 2 to
apply majority voting on their results. In this paper, we show that our method
needs considerably less recomputations compared to their method. Zhao and Lo
show their scheme ‘Quiz’ in [16], which inserts indistinguishable quiz tasks with
verifiable results to a distributed job. They outperform the method of the repli-
cation of jobs in terms of accuracy and overhead under collusion assumptions.
Compared to our solution, they need a central server that assigns the quiz tasks
as well as the regular tasks to the clients. With our solution, we do not need a
central server since every node in the network performs a small part of detection
work. Sarmenta presents in [12] his sabotage-tolerant mechanisms for volunteer
computing. He shows a method called ‘credibility-based fault-tolerance’ where
he estimates the conditional probability of (sub/job)-results and workers being
correct, based on the results of voting, spot-checking and other techniques, and
then he uses these probability estimates to direct the use of further redundancy.
Compared to our solution, they use a work pool-based master-worker model
where the master assigns subjobs to workers. Here, the master randomly assigns
redundant subjobs to workers. Compared to majority voting based techniques,
their method reduces the total amount of recomputations, but also increases
the chance of non-detected cheated subjob results. Our method also reduces the
needed amount of recomputation but still keeps a very high detection probability
with small network and node effort.

7 Conclusions

We introduced a cheat detection method for decentralized, gossip-based volun-
teer computing networks. The method is suitable for ad-hoc computations with-
out setting up a central server. Nodes do not need to trust each other, which
makes the method robust against colluding cheaters or cheaters who decide to
abuse their acquired reputation. We are targeting opportunistic cheaters, which
are attempting to collect the same reward as well-behaving users, e.g. credit
points. However, cheaters provide job results that are incorrect and incomplete.

The method works by sample testing each job result that is disseminated
in the network. With a static cheat detection effort per node, the scalability
is limited as the system approaches an upper bound on the speedup with an
increasing number of participating nodes. We thus adapt the cheat detection
effort subject to the workload of the network, which is determined by each node
based on the number of results disseminated in the network. This allows us
to achieve a given target detection rate efficiently, e.g. 99.9% with only about
50.6% recomputations of subjobs. As we have shown with our simulations, such a
decentralized sample testing is more efficient than a server-coordinated majority
voting like e.g. being used by BOINC. In future work, we will analyze how cheat
detection results can be used to exclude cheaters from our system and reduce

Adaptive Cheat Detection in Decentralized Volunteer Computing 205

the detection effort by doing so. Furthermore, we will examine how such a node
exclusion can be used by attackers to remove well-behaved nodes.

References

1. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In:
Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10. IEEE
(2004)

2. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer
computing. In: Sixth IEEE International Symposium on Cluster Computing and
the Grid, CCGRID 2006, vol. 1, pp. 73–80. IEEE (2006)

3. Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for
volunteer computing. In: First International Conference on e-Science and Grid
Computing, p. 8. IEEE (2005)

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2013)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Domingues, P., Sousa, B., Moura Silva, L.: Sabotage-tolerance and trust manage-
ment in desktop grid computing. Future Gener. Comput. Syst. 23(7), 904–912
(2007)

7. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001).
doi:10.1007/3-540-45353-9 31

8. Kopal, N., Heck, H., Wacker, A.: Simulating cheated results acceptance rates for
gossip-based volunteer computing. Int. J. Mob. Netw. Des. Innov. 7(1), 56–67
(2017)

9. Kopal, N., Kieselmann, O., Wacker, A.: Self-organized volunteer computing. In:
Organic Computing: Doctoral Dissertation Colloquium 2014, vol. 4, pp. 129–139.
kassel University Press GmbH (2014)

10. Kopal, N., Kieselmann, O., Wacker, A.: Simulating cheated results dissemination
for volunteer computing. In: 2015 3rd International Conference on Future Internet
of Things and Cloud (FiCloud), pp. 742–747. IEEE (2015)

11. Moca, M., Silaghi, G.C., Fedak, G.: Distributed results checking for MapReduce
in volunteer computing. In: 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), pp. 1847–1854.
IEEE (2011)

12. Sarmenta, L.F.: Sabotage-tolerance mechanisms for volunteer computing systems.
Future Gener. Comput. Syst. 18(4), 561–572 (2002)

13. Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30(1),
50–64 (1951)

14. Wander, M., Wacker, A., Weis, T.: Towards peer-to-peer-based cryptanalysis. In:
IEEE 35th Conference on Local Computer Networks (LCN), pp. 1005–1012. IEEE
(2010)

15. Wander, M., Weis, T., Wacker, A.: Detecting opportunistic cheaters in volunteer
computing. In: 2011 Proceedings of 20th International Conference on Computer
Communications and Networks (ICCCN), pp. 1–6. IEEE (2011)

16. Zhao, S., Lo, V., Dickey, C.G.: Result verification and trust-based scheduling in
peer-to-peer grids. In: Fifth IEEE International Conference on Peer-to-Peer Com-
puting, P2P 2005, pp. 31–38. IEEE (2005)

http://dx.doi.org/10.1007/3-540-45353-9_31

Blockchain Based Access Control

Damiano Di Francesco Maesa1(B), Paolo Mori2, and Laura Ricci1

1 Department of Computer Science, University of Pisa, Pisa, Italy
damiano.difrancescomaesa@for.unipi.it, laura.ricci@unipi.it

2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
paolo.mori@iit.cnr.it

Abstract. Access Control systems are used in computer security to reg-
ulate the access to critical or valuable resources. The rights of subjects
to access such resources are typically expressed through access control
policies, which are evaluated at access request time against the current
access context. This paper proposes a new approach based on blockchain
technology to publish the policies expressing the right to access a resource
and to allow the distributed transfer of such right among users. In our
proposed protocol the policies and the rights exchanges are publicly vis-
ible on the blockchain, consequently any user can know at any time the
policy paired with a resource and the subjects who currently have the
rights to access the resource. This solution allows distributed auditabil-
ity, preventing a party from fraudulently denying the rights granted by
an enforceable policy. We also show a possible working implementation
based on XACML policies, deployed on the Bitcoin blockchain.

Keywords: Bitcoin · Blockchain · Access control · XACML

1 Introduction

Access Control systems are used in computer security to regulate the access
to critical or valuable resources such as data, services, computational systems,
storage space, and so on. The rights of subjects to access resources are typi-
cally expressed through access control policies, which are evaluated at access
request time against the current access context. In Attribute-based Access Con-
trol (ABAC) [1], policies consist of a set of conditions over the attributes which
describe the features of the subjects, resources, environment, etc., involved in
the access request. Among the subject attributes there could be, for instance,
his ID, the ID of the company he works for, his role in this company, the name
of the projects assigned to him, his physical position, the number of resources
he is currently using, and so on.

Some scenarios require that access rights can be transferred from a subject
to another for some reasons. For instance, a user could sell its access right to
another user. Another example is the one where an employee of a company who
was supposed to perform a given computation on a Virtual Machine delegates

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 206–220, 2017.
DOI: 10.1007/978-3-319-59665-5 15

Blockchain Based Access Control 207

the execution of this task to another employee, who needs to access that same
Virtual Machine.

Moreover, the evaluation of the access control policy in order to decide
whether the requested access to a resource can be executed is performed by
a party which is trusted by (the owner of) that resource, but it could be not
trusted for the subject of the request who, instead, would like to be guaranteed
against unduly denial of access. For example, the Access Control system can run
directly on a server of the owner of the resource. In fact, the party which actu-
ally evaluates the policy and enforces the result on the resource could maliciously
force the system to deny the access to a subject although the policy would have
granted it. Hence, in this scenario there is the need for the subjects to have
a mean for verifying which policy has been enforced when they performed an
access request which has been denied.

This paper proposes an approach based on blockchain technology to represent
the right to access a resource and to allow the transfer of such right among users.
The proposed approach is validated by a preliminary implementation exploiting
the Bitcoin framework.

The paper is structured as follows: Sect. 2 presents a background on
blockchain technology and Bitcoin as well as a survey of related works on the sub-
ject at hand, while Sect. 3 gives a brief overview of our proposed novel approach.
In Sect. 4 we describe the architecture of the access control scheme proposed and
Sect. 5 presents our real world implementation example. Finally, Sect. 6 discusses
the conclusions and presents our future work.

2 Background and Related Work

A blockchain is a distributed, always available, irreversible, tamper resistant,
replicated public repository of data. It allows trustless users to agree on an
immutable and auditable piece of data without third party interaction. In other
words, blockchain technology allows to build an append only secure database
relying on a distributed consensus protocol to decide what valid new data to
add in a distributed manner.

Historically blockchain technology was first introduced to support cryptocur-
rencies and, up to date, cryptocurrencies are still its main field of real practical
application, even if several proposals in other fields are being studied. The first
blockchain was used by the Bitcoin cryptocurrency protocol [2] and today Bit-
coin is still the most popular and widespread example of blockchain technology
adoption. This is why we have decided to provide an implementation of this
paper proposed approach on this particular protocol.

Bitcoin, as other cryptocurrencies, exploits the blockchain as a public ledger
to store value exchanges called ‘transactions’. This ledger is divided in blocks
where each single block is a collection of non conflicting transactions. The linking
between blocks is achieved by saving the hash of the header of the previous block
in the header of the next block of the chain. To make each block header (and so
its hash) dependent from all transactions contained in that block, the root of the

208 D. Di Francesco Maesa et al.

(implicit) Merkle tree [3], built from the block transactions hashes is included
in the block header. Deciding which block to add to the ledger at each step is
resolved by a distributed consensus algorithm called ‘Nakamoto consensus’ that
relies on HashCash Proof-of-Works [4].

From a data point of view, the Bitcoin blockchain can be seen simply as a list
of transactions. Transactions are created to exchange funds between users, rep-
resented by their addresses. An address is a double hash (firstly SHA-256 [5] is
applied and then Ripemd-160 [6]) of a public key derived from a ECDSA key pair
[7]. Addresses (and hence public keys) are used by users to send and receive pay-
ments,while the corresponding private keys are used to provide proofs of ownership
(through digital signatures). Creating new addresses is as cheap as creating new
ECDSA key pairs, so each user can create and use multiple addresses. Moreover,
users are incentivized to use different addresses since the pseudonymity given by
addresses is the only (weak) anonymity protection in Bitcoin.

Since the entire state of the system is only defined by the list of transactions
saved in the blockchain, transactions are the only mean to manage funds. Funds
can be divided or aggregated only by being spent. Transactions are multi input
and multi output, hence a transaction may withdraw funds from more than one
address and can transfer funds to more than one output address. Furthermore
each input is signed by the owner with the private key corresponding to the
address spending the funds. A transaction can also specify a voluntary fee to
cover the expenses of the validation process. This fee is meant as an incentive
for users to take part in the consensus protocol mentioned previously. In a trans-
action, each output can be seen as a couple (amount, receiver address). Each
input specifies, instead, where to withdraw the funds, i.e., the previous transac-
tion (through its hash) where the funds were created. The Bitcoin protocol uses
a not Turing complete stack based scripting language, and scripts are (mostly)
used in transactions to specify conditions needed to redeem the funds of that
transaction. It is beyond the scope of this paper to analyze in detail Bitcoin
scripting language, we will only mention its features relevant to this work in
Sect. 5. Finally we note that new transactions are created by any user and noti-
fied to the community with a gossip style broadcast message on the P2P Bitcoin
network.

According to [8] even if blockchain technology is mostly well known for appli-
cations in cryptocurrencies such as Bitcoin, it can be used outside of the mon-
etary domain as well, for instance to trace the origin and transformation in a
supply chain. [9] shows how blockchain can be exploited to create decentralized,
shared economy applications that allow people to monetize, securely, their things
to create more wealth. [10] observes that the ability to have a globally available,
verifiable and untamperable source of data provides anyone wishing to provide
trusted third party services the ability to do so cheaply and robustly.

3 Proposed Approach

In this paper we propose to use blockchain technology to represent the rights to
access resources and to transfer them from one user to another. In particular,

Blockchain Based Access Control 209

we propose to store the representation of the right to access a resource in a
blockchain, allowing the management of such right through blockchain “trans-
actions”1.

The main advantages of the proposed approach are:

– the right to access a resource can be easily transferred from a user to another
through a blockchain transaction created by the last right owner, without the
intervention of the resource owner;

– the right is initially defined by the resource owner through a transaction, and
all the other transactions representing the right transfers are published on the
blockchain. Hence, any user can inspect them at any time in order to check
who currently holds the rights to perform a given action on a given resource.
Consequently, a user who had its access request denied, can check whether
the entity in charge of verifying the existence of the required right actually
made the right decision.

A common way of expressing access control rights is through Attribute-Based
Access Control (ABAC) policies. Roughly speaking, an attribute-based access
control policy combines a set of rules expressing conditions over a set of attributes
paired to the subject, to the resource or to the environment. The rules are
conjunctively or disjunctively combined and they must be satisfied accordingly
in order for the access right to be granted. A well-know policy language allowing
to express ABAC policies is the eXtensible Access Control Markup Language
(XACML), defined by the OASIS consortium [11].

The actors of our reference scenario are the resource owner, say P , (unique
for each resource) and a number of subjects, Si. The resource owner is the entity
who has the control of the policy for each of its resources, say Rj , and it creates,
updates and revokes such policies. Note that we consider for simplicity that the
policy issuer is also the corresponding resource owner. The subjects hold the
rights to perform actions on resources, as specified by the respective policies.
The subjects can transfer the action rights specified by policies, even by refining
or splitting them (as explained in Sect. 3.1).

Hence, our approach requires that P and Si perform distinct actions, inde-
pendently one from the others. The policy issuer takes no part in the policy
rights exchange, and, similarly, the subject currently owning a right takes no
part and needs not to be online when the policy issuer modifies the policy (even
if this action might of course affect the subject right).

1 In the following, we refer to cryptocurrency style blockchains, because they are
the main application of blockchain technology currently implemented. Consequently,
we assume to have transactions, which are typical of cryptocurrencies. However,
cryptocurrencies are just one of the possible applications of blockchain technology.
In those cases, we have to define proper transactions to implement the approach we
propose.

210 D. Di Francesco Maesa et al.

3.1 Policy Creation, Update, and Revoke

The policy which defines the access rights on the resource R is defined by the
resource owner P , and it is stored in the blockchain through a new transaction
called Policy Creation Transaction (PCT). After its creation, a policy can be
updated by P any number of times and, at the end, it can be revoked, i.e.,
canceled.

In our approach, the policy consists of:

– the condition which defines the ID of the subject to whom the policy grants
the access right;

– the conditions which define the sets of values allowed for the attributes of the
subject, resource and environment for the access to be granted.

In other words, the resource owner decides the subject to whom it wants to
initially grant the access right and a set of conditions that must hold to grant the
access. In our scheme we allow these conditions to be properly modified by the
right holders when they transfer these rights to other users. By properly modify
we mean that the current right holder is allowed to:

– add new conditions in AND with the conditions already defined in the policy;
– split the set of values allowed for an attribute by an existing condition C of

the policy in two (or more) sets by defining proper disjunct conditions, Ci

and Cj . i.e. the set of attribute values which satisfy Ci OR Cj is the same
set of values which satisfy C, and there is no value of the condition attribute
which satisfies both Ci and Cj .

We note that adding conditions (done by a right holder) is not the same as
executing policy updates (doable only by the policy issuer). Since the conditions
added to the policy by right holders are combined with the existing ones through
an AND operator, the resulting overall policy can only be more restrictive than
the original one. This means that the original policy conditions cannot be vio-
lated. During a policy update step, instead, the meaning of the policy can be
completely changed. This is correct since the policy issuer is the only one that
can update a policy. We also remark as the conditions added by a right holder
are added incrementally for each exchange of rights, so they cannot be modified
by the new right owners. This is correct since a right owner should be allowed
only to restrict the rights it wants to transfer, not to expand them.

For the sake of simplicity, we suppose that each policy concerns one subject
ID only. This is not a limitation, because when P wants to grant the access to
a resource to several subjects, it can simply produce a distinct policy for each
one of these subjects. Moreover, in our approach we suppose that each policy
includes one rule only, and this rule includes all the conditions of the policy,
properly combined with AND and OR logic operators.

We remember that a blockchain can be seen as a distributed append-only
database replicated among all the users. This means that every piece of data
added to the blockchain cannot be subsequently removed and it will constitute a

Blockchain Based Access Control 211

permanent burden on the entire network. This is the reason why, when defining
a new protocol, we should try to minimize the amount of data saved on the
blockchain, storing essential information only. The problem with our approach
is that the standard policy language XACML is a very verbose formalism and
policies can be relatively big. Storing policies in XACML format directly on a
blockchain will result in a serious space occupation problem.

Fig. 1. Proposed hybrid policy storage approach.

The easiest solution would be to store in the blockchain only a link to an
external source containing the policy, coupled with a cryptographic hash of the
policy itself to make it tamper proof. For example, the blockchain could save
only a tinyurl or a torrent descriptor pointing to an external source hosting the
actual policy (written in a standard format as, for example, XACML) [12]. The
advantage of this solution is obviously to minimize the quantity of information
to be stored on the blockchain, since the space occupation of the policy is con-
stant independently of the policy size. The main disadvantage is that policies
themselves are stored outside of the blockchain, thus not benefiting of blockchain
technology advantages (i.e. availability, security, etc.).

Our approach (shown in Fig. 1) adopts an hybrid solution between saving in
the blockchain the entire policy or just a link to it. We chose to store policies
directly in the blockchain but coded in a custom built efficient format that favors
compression and avoids information repetitions.

First we rewrite a policy expressed directly in ABAC format as a list of
basic conditions over attributes. Each condition can be written as three pieces
of information:

– the right attribute name;
– the operand connecting right and left term;
– the left term that can be either an attribute name or a constant value (possibly

a set of constant values).

Conditions are combined through the logic operator AND/OR to form a
unique condition.

212 D. Di Francesco Maesa et al.

If we want the policy storage to be scalable in the size of the policy we would
want each of the above listed informations of a condition to be represented with
constant size. The logic connector of the policy is of course easy to codify with
one bit (0 for OR and 1 for AND). To try to compress the rest of the condition
as much as possible we want to compress both attribute names and operands
in a fixed size field (for example one byte). To compress operands we can define
a protocol defined table of symbols representing the mapping between every
possible operand usable in a policy and a numerical code. This map would be
maintained at protocol level (open source) and updated with new usable symbols
during future protocol versions. We can then follow a similar approach to map
attribute names to a short numerical value. The difference is that attribute
names are different between users and so the mapping have to be defined by the
policy issuer. The attribute mapping is a publicly available mapping of attribute
names (identifier in the verbose XACML format) with one unique code of fixed
size (for example one byte). The list to be validly published (and accepted by
other users to be used in policies) must be signed by the issuer. This public
key/identity should be the same used to create new policies using such mapping
in the blockchain. A cryptographic hash of this list is then inserted in every
policy using the attributes of the list. Such hash is necessary to know what
mapping is being used and it prevents the policy issuer from creating a new
mapping, potentially changing the meaning of an already existing policy. The
policy issuer could still delete the mapping at a future point (since it is stored
locally and not on the blockchain), so it is recommended for the user buying the
rights derived from a policy to locally save the corresponding mapping. In case
of future dispute the right owner can prove that the mapping is correct because
the hash matches and the policy issuer cannot deny to be the mapping creator
because of the signature attached to the mapping.

We note that this solution allows to save verbose informations about an
attribute off the chain, so without space constraints. For example we can save
the attribute values type, making the type of operand non ambiguous (i.e. for
example differentiating an equality over integers from an equality over strings).

If we adopt this solution, the left term of the condition is the only one of
potentially variable length. If it is a parameter name it can be represented as a
reference to an entry of the issuer attribute table as for the right term, but if it
is a constant value we need to represent it directly, eventually in a compressed
format. Furthermore, since we know the type of the attribute (expressed in the
verbose attributes table) we can save the values in a suitable format. For example
we would save a number or a date in a numerical representation rather than in
its string representation.

3.2 Right Transfer

A relevant feature of our approach is that the right to access a resource R can be
transferred from the subject who is the current right holder, say Si, to another
subject, say Sj , through a custom data structure stored in the blockchain, called

Blockchain Based Access Control 213

Right Transfer Transaction (RTT). Each RTT must contain a (direct or indi-
rect) link to the policy whose rights are being exchanged. It is worth noting that
the only parties involved in a RTT are Si and Sj , the RTT is created by Si,
and so the intervention of the owner of the resource is not required during any
rights transfer.

When transferring its right through a RTT, Si can modify the mutable
conditions regulating its right only by restricting them. For instance, supposing
that a changeable condition defined by the resource owner (or by the previous
right owner) states the access can be performed from 9.00 AM to 5.00 PM, Si

could transfer this right to Sj by restricting the access time from 9.00 AM to
1.00 PM. Si can also split its right in two (or more) parts, and transfer a part
of it to a subject, and the other part to another subject. With reference to the
previous example, Si could transfer the access right from 1.00 PM to 5.00 PM to
a third subject Sh.

We note that the subjects are only owners of rights to perform actions, in
general they have no other right neither on the policy nor on the resource. We
also remark that the subjects are able to freely exchange action rights between
themselves without any interaction with the policy issuer. That implies that the
policy issuer (in general corresponding to the resource owner) has no knowledge
in advance of which subjects will be the policy right beneficiaries (even if it can of
course model a subject prototype by specifying the correct attributes conditions
to be satisfied inside the policy).

We also note that policy updates from a resource owner can potentially
change the meaning of a policy. This means that subjects can gain rights on
a certain resource that can be later changed by the policy issuer, but, since the
blockchain never forgets and timestamps both the right transfer and the policy
updates, those changes are manifest and traceable.

4 Architecture of the Proposed Framework

The architecture of the framework we propose for the enforcement of blockchain
based access control, shown in Fig. 2, is based on the XACML reference archi-
tecture [11], which has been integrated with blockchain technology. Specifically,
in order to allow the enforcement of blockchain based access control policies, we
customized the Policy Enforcement Point (PEP) and the Policy Administration
Point (PAP). The resulting workflow is hence an extension of the standard one.

When requesting to perform an action on the resource, beside the IDs of
the subject, of the resource, and of the action, the PEP must also retrieve an
additional information to unequivocally link the subject Si with a RTT in the
blockchain. As an example Si might be required to sign a challenge nonce with
the private key corresponding to the identity it used to get the access rights
in the RTT. This is no different from a classical authentication scheme in a
classical access control scenario. All those informations are properly included in
the request which is passed to the Context Handler (CH). The CH is in charge
of managing the workflow of the decision process, interacting with all the other
components of the authorization system.

214 D. Di Francesco Maesa et al.

Fig. 2. Architecture of the Blockchain based access control framework.

First of all, the CH sends the request to the PAP. The PAP extracts the RTT
link from the request, and retrieves from the blockchain thisRTT and all the other
RTT related to this policy, as well as the initial policy and the related policy
updates issued by the resource owner. The PAP combines the retrieved data to
produce a standard XACML policy, and sends this policy back to the CH.

Once the security policy has been reconstructed from the blockchain and
verified, its evaluation against the access request follows the process defined by
the XACML standard and described in [11]. Briefly, the CH asks the Policy
Information Points to retrieve the relevant attributes, it embeds these attributes
in the original request, and it passes the policy and the new request to the Policy
Decision Point (PDP), which evaluates it and returns to the CH the decision:
permit or deny. The CH then forwards the decision to the PEP, which enforces
it on the resource by executing the request or not.

5 Bitcoin-Based Implementation

This section describes an example of how the proposed model is deployable in
a blockchain technology model. In particular, we developed a proof of concept
implementation scheme based on the Bitcoin blockchain. Aim of this section
is also to show how our protocol can be immediately deployed on top of an
already existent real world blockchain, as the Bitcoin blockchain is, without
any modification to the underlying blockchain implementation required. As an
example we report in Fig. 3 a real PCT Bitcoin transaction we broadcasted in
the Bitcoin network as publicly visible from the site https://blockexplorer.com.

https://blockexplorer.com

Blockchain Based Access Control 215

In our scenario firstly a resource owner creates a new policy. Then, an arbi-
trary number of policy updates and right transfers can be executed, where each
of the two actions can be performed independently of the other one. Finally the
resource owner can revoke the policy. In our implementation each step (policy
creation, policy update, policy revoke or right transfer) is performed atomically
by a single Bitcoin transaction.

5.1 Storing Data

As described in Sect. 2, the Bitcoin blockchain was designed to be used as a
distributed ledger to manage a very specific kind of data: transactions. In other
words, the Bitcoin blockchain was not designed to store arbitrary data. To over-
come this limitation, we employ two commonly used methods based on Bitcoin
transactions scripting language to store arbitrary data on the blockchain: the
OP RETURN script op code and the MULTISIG transactions (either through a
MULTISIG output script or a multisignature P2SH output) [13]. Without going
in further details we only note that our implementation automatically chooses
the method to be exploited without the need of user intervention. Whatever stor-
age method we use the policies and conditions data is encoded in a compressed
custom format that follows the hybrid approach showed in Sect. 3.1.

Fig. 3. A real example of PCT in our Bitcoin-based proof of concept implementation.

Since each step is performed exploiting a Bitcoin transaction, each step has
a price, i.e., the price of the underlying transaction, defined as the transaction
fee paid by the transaction, which is dependent on the transaction size [14].
So we can evaluate the cost of a step as the size of the underlying transaction
necessary to perform it. Every Bitcoin full node also keeps in its main memory
a data structure to keep track of all unspent transactions outputs (UTXO), so if
we include a big output in a transaction (e.g. by including a big multisignature
output) this will also encumber precious main memory space of all the users.
Finally, we point out that during each step the transaction price is payed by the
beneficiary of the action. For policy creation, revoke and update transactions
the price is payed by the policy owner (that is the one benefiting from such

216 D. Di Francesco Maesa et al.

operations), while for a rights exchange the price is payed by the buyer (since
the buyer is the one who will benefit from the rights).

To embed data in a transaction we first need to create a Bitcoin transaction
and so we need value to be exchanged. To build transactions we will use fixed
amounts of BTC to represent tokens, using an approach similar to the Colored-
Coins proposal [15]. We call them tokens because the value they represent will
be used in transactions to carry data through the connected scripts, so we are
not interested in the monetary value they represent but rather on the infor-
mation they carry (visible only to those who take part in our protocol). The
actual trade value of such tokens is completely independent from their nominal
value (i.e. the number of BTC they represent). The fixed amount chosen for a
token should be low enough so that it is easy to be owned by any user (other-
wise only rich users could take part in the protocol) and its economical value
is not relevant compared to its protocol specific value, but also high enough so
that it can be transacted freely between users (above the dust limit [16]). In
our current implementation we chose 0.0001BTC that corresponds to few euro
cents at the exchange rate at the time of writing. We will indicate this value as
CommonAmount in the rest of this paper.

5.2 Policies Management

Policy Creation. A new policy is issued by the resource owner by creating a
new Bitcoin transaction with one or more inputs and two or three outputs. Each
of the first two outputs will create a new token, so it is paying out the value
of CommonAmount. The only purpose of the inputs is to provide enough funds
to create these two tokens and so should include any number of resource owner
funds so that

∑
(input values) ≥ 2 ∗ CommonAmount + fee. The first two

outputs are mandatory, and their structure is defined by the protocol, while the
third output is optional, and it represents the change address for the resource
owner to keep the unspent input. The order of the first two outputs is important
(it can not be changed):

– the first output creates the token that will be subsequently used to perform
rights exchanges among subjects. It is credited either to an address that will
be used by the policy issuer to sell the action rights to the first subject, or to
the first subject directly.

– the second output creates a token containing as data the policy encoded in
our custom format. This token is credited to an address controlled by the
resource owner and it will be used by the policy issuer to update/revoke this
policy in the future.

When the resource owner creates this transaction, the network is notified
and, eventually, this PCT will be inserted in the blockchain. If the policy is too
large to be included in the second output data field, the policy issuer creates a
normal PCT and then creates a chain of policy update transactions (as explained
later) to include all the information required. We note that the policy creator

Blockchain Based Access Control 217

does not have to wait for the PCT to be included in a block before starting to
create policy update transactions, since he is the owner of all input and output
addresses in both policy creation and update transactions and, consequently,
there is no risk of double spending attempts. In the end, this means that a very
long policy will generate several transactions and, consequently, it will be simply
more expensive for the owner (due to more fees to pay).

Policy Update/Revoke. At any time the policy issuer can update or revoke
a policy it created before. To do so, it creates a new transaction spending the
second output of the creation policy transaction if the policy was never modified
before, or spending the output of the last update policy transaction if the policy
was already updated at least once. Obviously, only the policy issuer can create
those transactions because it is the only one that can spend the corresponding
output.

– Update: the update transaction has two (or more inputs). The first input
corresponds to the previous update or PCT output and the additional inputs
are meant to provide the value necessary to be spent as fees to pay for this
transaction. The transaction has one or two outputs, the first one carries on
the token of the previous policy update or creation step, while the second
one is only used as change address to collect the money left after paying the
transaction fees. The update token contained in the first output is used to
store the data containing the policy update informations.

– Revoke: to revoke a policy, the policy issuer must spend the related token
(even to himself), i.e., it must use it as value instead of using the embedded
information. To this aim, it just creates a transaction spending the input
corresponding to the previous update or PCT. This effectively destroys the
token, thus canceling the policy.

5.3 Rights Exchange

To allow the exchange of access rights between two (or more) subjects we assume
the existence of some kind of marketplace (or any way of exchanging messages
between users) where subjects interested in selling or buying action rights take
part. We also note that, since each policy and its updates are publicly visible
in the blockchain, each subject can first check a policy to verify the actual
rights it is buying. The right exchange between two subjects is achieved through
the participation of the subjects in a message exchange protocol to allow them
to jointly build and sign the RTT. Main goal of the message exchange is to
guarantee that both subjects sign the RTT only after checking that it fulfills
the exchange agreement. The RTT is basically a transaction where the token
representing the access right is passed from the current subject to the new one
and, in exchange, the new subject accredits some money (expressed in BTC) to
the current owner. Furthermore the token can be enriched by the old owner with
new data to refine the policy conditions and it can be divided in different tokens
(as explained in Sect. 3.1). We have seen in Sect. 5.2 that the right transfer token

218 D. Di Francesco Maesa et al.

is created initially by the resource owner in the policy creation transaction, this
means that the resource owner is the first one to sell the rights to a subject.

Note that the fact that rights are represented by a token, coupled with the
fact that every output can be spent only once, guarantees that the same rights
can be transferred only once. Note also that the subject that has currently the
policy action rights can also decide to destroy those rights. To do so it only needs
to spend the corresponding token as if it was just normal value (using the same
process explained previously used by the policy owner to revoke a policy). This
is semantically correct since the current owner has payed for the rights and so
it can do with them whatever it wants. It could as well decide to never sell the
rights again, which is the same for the other users as if it had destroyed them.
The advantage is that the resource owner can see from the blockchain when a
subject rights token has been destroyed, and so it could choose to revoke the old
policy and issue a new one. We also note that revoking a policy or destroying
subject rights actively removes the policy data heavy outputs from the UTXO
(see Subsect. 5.1) of all the users, so any policy stops encumbering the network
once it is not active anymore.

5.4 Policy Evaluation

Let us suppose that a policy granting access rights to the resource R has been
created and updated m times, and that this right has been transferred among
subjects n times. This means that the blockchain includes a PCT, say pt, defined
as in Sect. 5.2 with a chain (actually a tree in case of rights splits) of n RTT
defined as in Sect. 5.3 originating from the first input of pt and a single chain of
m policy update transactions originated from the second output of pt.

When the PEP receives a request, it only receives a link (for example a
cryptographic hash) to the last RTT, say rt, and this is the only information
it needs to pass forward in a request to the CH (see Sect. 4). Given a request
the PAP can access the blockchain and navigate backward the chain of n RTT
from rt all the way back to pt, collecting at each step the additional conditions
added by right owners. Once the PAP has reached pt it can read the policy
from the blockchain. Then it traverses forward the chain of all m policy update
transactions, updating the policy accordingly with the data read at each update
step. Once it has the fully updated policy it can add the restricting conditions
inserted by right owners and read during the RTT chain traversal. At the end
of this process the PAP has derived the completely updated policy in a standard
format ready for evaluation by the PDP.

Note that the above policy reconstruction can be done by anyone, given a
RTT, since all the informations are publicly visible in the blockchain. This is
particularly important for the interested subjects that can retrieve the same
way the updated policy from the blockchain and then decide whether to buy the
rights for themselves or not.

Blockchain Based Access Control 219

6 Conclusions

This paper defines an approach to create, manage and enforce access control
policies exploiting blockchain technology. The main advantages of this approach
are that the policy is published on the blockchain, thus being visible to the
subjects of the scenario, and that the access rights can be transferred from one
user to another simply through a blockchain transaction. The approach has been
validated through a reference implementation based on Bitcoin.

We plan to extend our work to study how to better embed an access control
system in blockchain technology. In particular we are studying the possibility of
using smart contracts to obtain self enforcing policies. We are exploring how to
formulate the classical access control scheme (see Sect. 4) as a smart contract
that can be stored and executed in the blockchain to automatically evaluate
and enforce policies. Moreover we plan to improve our approach in order to
also manage multi-rule XACML policies and policy sets. We are also currently
studying the privacy implications of our approach and how to mitigate them.

References

1. Hu, V.C., David, F., Rick, K., Adam, S., Sandlin, K., Robert, M., Karen, S.: Guide
to attribute based access control (abac) definition and considerations (2014)

2. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
3. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2 32

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 10

5. NIST, U.: Descriptions of sha-256, sha-384 and sha-512 (2001)
6. Preneel, B., Bosselaers, A., Dobbertin, H.: The cryptographic hash function

ripemd-160 (1997)
7. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)
8. Pilkington, M.: Blockchain technology: principles and applications. In: Xavier

Olleros, F., Zhegu, M. (eds.) (2015)
9. Huckle, S., Bhattacharya, R., White, M., Beloff, N.: Internet of things, blockchain

and shared economy applications. In: International Workshop on Data Mining and
IoT Systems (DaMIS 2016), pp. 461–466. (2016)

10. Mainelli, M., Smith, M.: Sharing ledgers for sharing economies: an exploration of
mutual distributed ledgers (aka blockchain technology). J. Finantial Perspect. 3,
38–69 (2015)

11. OASIS: eXtensible Access Control Markup Language (XACML) version 3.0, Jan-
uary 2013

12. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using blockchain to protect
personal data. In: 2015 IEEE Security and Privacy Workshops (SPW), pp. 180–
184. IEEE (2015)

http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/3-540-48071-4_10

220 D. Di Francesco Maesa et al.

13. Hidden surprises in the Bitcoin blockchain. http://www.righto.com/2014/02/
ascii-bernanke-wikileaks-photographs.html. Accessed 24 Feb 2017

14. Bitcoin Wiki. https://en.bitcoin.it/wiki/transaction fees. Accessed 24 Feb 2017
15. Bitcoin Wiki. https://en.bitcoin.it/wiki/colored coins. Accessed 24 Feb 2017
16. Current Standard for Dust Limit. https://github.com/bitcoin/bitcoin/blob/v0.10.

0rc3/src/primitives/transaction.h#l137. Accessed 24 Feb 2017

http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://en.bitcoin.it/wiki/transaction_fees
https://en.bitcoin.it/wiki/colored_coins
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#l137
https://github.com/bitcoin/bitcoin/blob/v0.10.0rc3/src/primitives/transaction.h#l137

Author Index

Alboaie, Sinică 83

Baraki, Harun 115
Barbi, Roberta 67
Bouget, Simon 101
Bräunlich, Ronny 138
Brenner, Stefan 177
Bromberg, Yérom-David 101
Buravlev, Vitaly 67

Coelho, Fábio 3, 51
Contiu, Stefan 163
Cosovan, Doina 83

Di Francesco Maesa, Damiano 206

Geihs, Kurt 115
Grumbach, Stéphane 34

Heck, Henner 192
Hundt, Tobias 177

Jahl, Alexander 115
Jungnickel, Tim 138

Kalogeraki, Vana 19
Kapitza, Rüdiger 177
Konze, Christopher 192
Kopal, Nils 192
Kuppili, Ramaprasad 115

Leblond, Emmanuel 163

Maia, Francisco 51
Matos, Miguel 3
Mazzeo, Giovanni 177
Mezzina, Claudio Antares 67
Montesi, Fabrizio 131
Mori, Paolo 206

Neves, Francisco 51

Oliveira, Rui 3, 51

Paulo, João 51
Pereira, José 3, 51

Resmi, Ariyattu C. 146
Réveillère, Laurent 163
Ricci, Laura 206
Riemann, Robert 34

Schiavoni, Valerio 67

Taïani, François 101, 146
Thrane, Dan Sebastian 131
Tran, Huu Tam 115

Ventresque, Anthony 101

Wander, Matthäus 192

Zacheilas, Nikos 19

	Foreword
	Preface
	Organization
	Contents
	Running System Efficiently (Distributed System)
	Similarity Aware Shuffling for the Distributed Execution of SQL Window Functions
	1 Introduction
	2 Window Functions
	2.1 Partitioning, Ordering and Framing
	2.2 Cumulative and Ranking Analytical Functions

	3 Distributed Window Functions
	3.1 Distributed Query Engines
	3.2 Data Shuffling

	4 Similarity
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	DIsCO: DynamIc Data COmpression in Distributed Stream Processing Systems
	1 Introduction
	2 Preliminaries and System Model
	2.1 Preliminaries
	2.2 System Model

	3 Methodology
	3.1 Profiling
	3.2 Parallel Data Compression/Decompression

	4 Implementation and Evaluation
	5 Related Work
	6 Conclusions
	References

	Distributed Random Process for a Large-Scale Peer-to-Peer Lottery
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Centralised Online Lottery Protocol
	3.2 Distributed Hash Table Kademlia

	4 Distributed Lottery
	4.1 Distributed Aggregation Protocol
	4.2 Lottery Protocol

	5 Evaluation
	6 Conclusion
	References

	Storing Data Smartly (Data storage)
	DDFlasks: Deduplicated Very Large Scale Data Store
	1 Introduction
	2 DataFlasks: Epidemic Store for Massive Scale Systems
	3 Duplicates in the Real World
	4 DDFlasks
	5 Evaluation
	5.1 Storage Savings
	5.2 Network Savings

	6 Related Work
	7 Conclusion
	References

	Block Placement Strategies for Fault-Resilient Distributed Tuple Spaces: An Experimental Study
	1 Introduction
	2 Related Work
	3 Tuple Spaces in a Nutshell
	4 Block Placement Strategies
	5 Simulation Results
	6 Implementation
	7 Prototype Evaluation
	8 Conclusion
	References

	Private Data System Enabling Self-Sovereign Storage Managed by Executable Choreographies
	1 Introduction
	2 Related Work
	3 System Elements
	4 System Operations
	4.1 Creating/Storing Private Data
	4.2 Reading/Retrieving Private Data
	4.3 Updating Private Data
	4.4 Deleting Private Data
	4.5 Sharing Access to Private Data
	4.6 Revoking Access to Private Data
	4.7 Copying Private Data

	5 System Analysis from the Privacy Perspective
	6 Conclusions
	7 Future Work
	References

	Roaming in Graph (Graph Processing)
	Scalable Anti-KNN: Decentralized Computation of k-Furthest-Neighbor Graphs with HyFN
	1 Motivation
	2 Decentralized Construction of a KFN Graph
	2.1 Background: Decentralized KNN Graph Construction
	2.2 Moving to Decentralized k-Furthest-Neighbor Graph Construction

	3 Algorithms
	3.1 General Framework
	3.2 Instantiating the Selection of Far Candidates

	4 Evaluation
	4.1 Experimental Set-Up and Metrics
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Lifting Low-Level Workflow Changes Through User-Defined Graph-Rule-Based Patterns
	1 Introduction
	2 Graph-Rule-Based Patterns
	2.1 Scenario
	2.2 Graph Comparison and Reduction
	2.3 Graph-Rule-Based Patterns

	3 DiCORE:CIA
	3.1 Architecture Overview

	4 Related Work
	5 Conclusions
	References

	Building Collaborative Services (Services)
	Packaging Microservices
	1 Introduction
	2 A Simple Example
	3 Packages and the Package Manager
	3.1 Configuration
	3.2 Embedded Dependencies

	4 Parametric Interfaces
	5 Related Work
	References

	formic: Building Collaborative Applications with Operational Transformation
	1 Introduction
	2 Preliminaries
	3 formic's JSON Transformation
	4 Evaluation
	5 Conclusion
	References

	Filament: A Cohort Construction Service for Decentralized Collaborative Editing Platforms
	1 Introduction
	2 Background, Problem, and Intuition
	2.1 Collaborative Editing and Cohort Construction
	2.2 Self-organizing Overlays

	3 System
	3.1 System Model
	3.2 Filament

	4 Evaluation
	4.1 Experimental Setting and Metrics
	4.2 Baselines
	4.3 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Making Things Safe (Security)
	Benchmarking Cryptographic Schemes for Securing Public Cloud Storages
	1 Introduction
	2 Cryptographic Building Blocks
	2.1 Symmetric-Key Algorithms
	2.2 Message Digests
	2.3 Digital Signatures
	2.4 Cryptographic Strength of Key Sizes

	3 Experimental Cloud-Based Data Store
	3.1 Cryptographic Schemes
	3.2 Data Sets
	3.3 Cloud Workloads
	3.4 Implementation

	4 Results
	4.1 Micro-Benchmark
	4.2 Macrobenchmark
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Secure Cloud Micro Services Using Intel SGX
	1 Introduction
	2 Background
	2.1 Eclipse Vert.x
	2.2 SGX

	3 Design
	3.1 Adversary Model and Assumptions
	3.2 Security Aspects
	3.3 Programming Model

	4 Enclave Integration and Vert.x Vault Features
	4.1 Bootstrapping and Remote Attestation
	4.2 Secure Event Bus

	5 Use Case Scenario SERECA Project
	6 Evaluation
	6.1 Performance Measurement
	6.2 Size of TCB

	7 Related Work
	8 Conclusion
	References

	Adaptive Cheat Detection in Decentralized Volunteer Computing with Untrusted Nodes
	1 Introduction
	2 System Model
	3 Application Scenario
	4 Approach
	4.1 Determine Workload of Network
	4.2 Perform Cheat Detection

	5 Evaluation
	5.1 Detection Classes
	5.2 Cheat Detection in the Static Class for a Single Node
	5.3 Cheat Detection Effort in the Static Class of a Complete Network
	5.4 Our Adaptive Method

	6 Related Work
	7 Conclusions
	References

	Blockchain Based Access Control
	1 Introduction
	2 Background and Related Work
	3 Proposed Approach
	3.1 Policy Creation, Update, and Revoke
	3.2 Right Transfer

	4 Architecture of the Proposed Framework
	5 Bitcoin-Based Implementation
	5.1 Storing Data
	5.2 Policies Management
	5.3 Rights Exchange
	5.4 Policy Evaluation

	6 Conclusions
	References

	Author Index

